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ABSTRACT 

Antibiotic persistence is an important mechanism that allows bacteria to survive 
antibiotic stress. Persistence also contributes to the evolution of antimicrobial resistance 
(AMR), which played a role in ~5-million death worldwide in 2019 alone. The role that 
microbial ecology plays in antibiotic persistence remains largely unknown. Here, I 
studied the effect that cross-feeding on agar surfaces has on antibiotic persistence. Using 
an obligate cross-feeding mutualism of engineered strains of Escherichia coli and 
Salmonella enterica, I discovered that in the spatially-structured environment, the 
antibiotic persister frequency in E. coli was ~100-fold higher in the cross-feeding 
coculture than in monoculture. This heightened E. coli persister frequency was removed 
(1) when E. coli’s metabolic dependency on S. enterica was broken through metabolite 
supplementation, and (2) when the growth environment was spatially homogeneous in the 
shaken liquid medium. Using high-throughput quantification of the E. coli growth 
physiology on agar, I found that average growth rate was not sufficient to explain the 
heightened E. coli antibiotic persistence in mutualism. By pairing the single-colony 
analysis with a PDE mathematical model on growth physiology, I found that the high 
persistence phenotype in the cross-feeding coculture is correlated with increased 
variability in both growth rate and lag time, and future effort will be needed to determine 
their relative contributions. Together, my thesis showed that the combination of cross-
feeding and spatial structure is a novel mechanism which increased phenotypic 
heterogeneity in bacterial growth and persistence to antibiotics. Finally, my work implies 
the potential clinical threat of antibiotic persistence in spatially-structured polymicrobial 
infection sites. The experimental setup in this work is also foundational to incorporate 
spatial structure into the study of the highly debated relationship between mutualism and 
community stability. 
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CHAPTER I: INTRODUCTION & LITERATURE REVIEW 

I.1. Post-Antibiotic Era: Antibiotic Resistance, Tolerance, & Persistence 

I.1.1. The Post-Antibiotic Era is Marked by Antibiotic Treatment Failure 

Humanity is entering a “post-antibiotic era” (Reardon, 2014; WHO, 2014), where 

minor infections can once again kill even with antibiotic treatment. Antibiotic treatments 

will increasingly fail, requiring higher antibiotic dosage or different antibiotics to control 

infections (Garcia, 2009; Tillotson et al., 2020). In fact, this trend has been true for the 

past few decades. The overall antibiotic failure rate increased on average by 12% in the 

UK between 1991 and 2012 (Currie et al., 2014). Together with this trend, about 4.95 

million deaths world-wide in 2019 alone were associated with bacterial resistance to 

antibiotics, which is responsible for more death than HIV/AIDS or malaria 

(Antimicrobial Resistance Collaborators, 2022). Antibiotics that used to be effective are 

losing their efficacy, and we need better understanding of the processes contributing to 

this pattern and how to combat them. 

Antibiotics are losing their efficacy because bacteria evolve strategies that overcome 

antibiotic stress (Bush et al., 2011). The most well-known strategy is antibiotic resistance 

(Windels et al., 2020). Two other less-researched, yet vital, strategies are antibiotic 

tolerance and antibiotic persistence (Lewis, 2010; Balaban et al., 2019). Despite recent 

research on antibiotic tolerance and persistence, almost all studies neglect the fact that 

bacteria typically live in complex microbial communities where they interact ecologically 

with many other species (Ratzke et al., 2020). Even less research has investigated the 

spatial dynamics of interspecies interactions and the interplay with antibiotic tolerance/
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persistence. In my thesis, I aimed to close an important knowledge gap around how cross-

feeding interactions regulate antibiotic persistence in a spatially-structured microbial 

mutualism. Closing this gap may result in a microbial ecology-informed clinical strategy 

for treating bacterial infections, so that we may slow down the ever-increasing rate in 

antibiotic treatment failure and postpone the post-antibiotic era. 

I.1.2. Antibiotic Resistance Can Underlie Antibiotic Treatment Failure 

Antibiotic resistance is a major cause of antibiotic treatment failure (Cunha & 

Ortega, 1995). Antibiotic resistance describes the ability of bacteria to grow in 

continuous antibiotic stress (Windels et al., 2020), so prescribing patients with antibiotics 

that the pathogenic bacteria are resistant to is bound to cause treatment failure. Thus, 

clinics and public health agencies are continuously screening bacterial isolates from 

bacteria-infected patients for antibiotic resistance to ensure correct antibiotic prescription. 

A common measurement of antibiotic resistance is the minimal inhibitory 

concentration (MIC), which is the lowest concentration of antibiotics needed to inhibit 

growth (Andrews, 2001). Growth of bacteria in liquid growth media can lead to 

accumulation of biomass and cell number, and will lead to turbidity in the bacterial 

culture (Buss da Silva et al., 2019). Fig.1.1a shows a common protocol for assessing 

MICs. Both wild-type and resistant bacterial cells are seeded at a low density into a series 

of wells with growth media and gradually-increasing concentrations of antibiotics. After 

appropriate incubation, turbidity will be checked for each well. The lowest concentration 

at which turbidity is absent will be considered the MIC. Clearly, resistant (Res) bacteria 
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have a higher MIC than wild-type (WT) ones, that is, MICRes > MICWT.  

The non-turbid wells are wells that lack bacterial growth, which can be due to either 

death or maintenance of the current cell number. When wild-type bacterial cells are 

challenged with bactericidal antibiotics, the cell number will exponentially decrease 

(Fig. 1.1b). But with bacteriostatic antibiotics, the cell number will maintain relatively 

unchanged with no significant increase. The population dynamics of wild-type bacteria 

with antibiotic challenges can be contrasted with the counterpart in the resistant bacteria, 

which will follow a logistic growth after a short non-growing lag time. This ability of 

resistant bacteria to grow in non-lethal concentrations of antibiotics was first observed by 

Alexander Fleming soon after he discovered antibiotics (Fleming, 1945), and the 
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Figure 1.1. Antibiotic Resistant Bacteria Grow in Higher Concentrations of Antibiotics. a Minimum 
inhibitory concentration (MIC) is commonly used to measure antibiotic resistance. Resistant bacteria 
(Res) can grow in higher concentration of antibiotics than wild-type cells (WT), so we have MICRes > 
MICWT. Turbidity (shown in grey) indicates bacterial growth. b For wild-type bacteria, bactericidal 
antibiotics reduce their survived cell biomass, whereas bacteriostatic antibiotics prevent growth but cause 
no death. Resistant bacteria will grow and result in an increase in biomass in antibiotic concentrations of 
MICWT.



biological mechanisms of antibiotic resistance have been thoroughly studied since then. 

As summarized in Table S1 (Appendix I: Supplementary Literature Review), the 

genetic and biochemical mechanisms are well-known due to research effort to understand 

antibiotic resistance (aka “antimicrobial resistance,” “AMR”; Munita & Arias, 2016). 

AMR is usually reflected by features in the bacterial DNA (Reygaert, 2018). The genetic 

mechanisms of AMR focus on how bacteria gain resistance through changes in DNA 

sequence, whereas biochemical mechanisms are about how the resistance-causing genetic 

information eventually leads to the resistant phenotype (e.g. observable increase in MIC 

of a bacterial strain). 

Even though AMR plays an important role in causing antibiotic failure, it is not the 

only mechanism we should care about. Antibiotic tolerance and antibiotic persistence are 

two other mechanisms that have recently been shown to be clinically relevant causes for 

antibiotic treatment failure (Liu et al., 2020), yet their mechanisms remain relatively less 

studied.  

I.1.3. Antibiotic Tolerance/Persistence Also Can Cause Antibiotic Treatment Failure 

Antibiotic tolerance and persistence can also cause antibiotic treatment failure. 

Unlike antibiotic resistance, tolerance and persistence are meaningful terms only to 

describe how bacteria respond to killing by bactericidal antibiotics. Antibiotic tolerance 

is defined as a process of dying more slowly in the presence of antibiotics (Fridman et al., 

2014). In contrast, antibiotic persistence refers to the presence of a subpopulation of 

transiently antibiotic-tolerant cells within a bacterial population (Balaban et al., 2019). By 
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definition, neither tolerant nor persistent bacteria can grow in bactericidal antibiotics. So 

their MICs are similar to the susceptible populations (Fig. 1.2a). To distinguish between 

tolerance and persistence, microbiologists rely on distinct features of the kill curves of 

bacteria under continuous treatment of the bactericidal agents. 

Tolerance and persistence are measured as the minimum duration for killing (MDK) 

a significant portion of the bacterial population by a specific antibiotic. Tolerance can be 

reliably assessed by the metric MDK99 (Brauner et al., 2017), where the time it takes to 

kill 99% of a population is tracked (Fridman et al., 2014). As shown in Fig. 1.2b, 

microbiologists can track the survival rate of the population over time to draw the 

bacteria’s “kill curve”, and use this curve to deduce MDK99. Note that both the 
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Figure 1.2. Distinguishing Antibiotic Tolerance and Antibiotic Persistence. a Both the tolerant and 
persistent populations have the same antibiotic resistance as the susceptible population and can be 
distinguished from the resistant population (measured by MIC). Figure 2a in Balaban et al. (2019) was 
reproduced here. b Tolerance and persistence are measured as the minimum duration of killing 99% and 
99.99% of the bacterial population, respectively (MDK99 and MDK99.99). The persistent population has 
the same tolerance as the susceptible one, but has a different persistence than the susceptible population. 
The tolerant population has a higher tolerance than the susceptible one. Note that the kill curve for the 
susceptible population ends right before the hypothetical antibiotic treatment time, Ta, when the 
population dies off. The indication of using high-concentration antibiotics to perform the killing 
experiment (>40x MIC) was reproduced from Figure 1b in Balaban et al. (2019).



susceptible and tolerant populations follow a simple exponential death rate, but their 

death rates are different so they differ in tolerance (MDK99Tol > MDK99WT). In contrast, 

persistence can be assessed by measuring MDK99.99, the time it takes to kill 99.99% of 

the population (Balaban et al., 2019). A persistent population includes a subpopulation of 

antibiotic tolerant cells with a different death rate than the rest of the population. Thus, 

the kill curve of a population with persisters is biphasic (Fig. 1.2b), with the less steep 

phase denoting the killing of the tolerant subpopulation. As a result, both the persistent 

and susceptible populations have the same tolerance (MDK99Per = MDK99WT). The two 

populations only differ in persistence (MDK99.99Per > MDK99.99WT).  

To test for antibiotic tolerance and persistence, microbiologists have to use antibiotic 

at a high concentration—typically at least several times the MIC of the tested bacteria—

for continuous treatment. For example, the conventional test for tolerance and persistence 

requires the use of ampicillin as the bactericidal antibiotic at a concentration of 100 µg/

mL, which is >40 times the MIC of the model microorganism Escherichia coli (Fig. 

1.2b). There are two reasons for using a high antibiotic concentration. First, using a high 

enough antibiotic concentration can prevent heteroresistance in a bacterial population 

from confusing death rate calculations. Heteroresistance arises when subpopulations of 

cells have a higher MIC than the majority of the population (Balaban et al., 2019). If 

dosed at a concentration that is just above the MIC, the heteroresistant subpopulation may 

still grow, and this will confuse the calculation of bacterial survival fractions in 

determining tolerance and persistence. Second, the bacterial death rate is dependent on 

Page  of 6 86



the concentration of the bactericidal antibiotic (e.g. penicillin) and this rate plateaus at a 

high-enough concentration (Eagle & Musselman, 1948). Using a high enough antibiotic 

concentration also rules out the possibility that the biphasic killing appears due to 

antibiotic degradation in the absence of persister cells. 

Both antibiotic tolerant and persistent bacterial populations can lead to antibiotic 

treatment failure. Demonstrated conceptually in Fig. 1.2b, the entire susceptible 

population has died off by a hypothetical duration of antibiotic treatment, Ta, whereas 

some fractions of the tolerant and the persistent populations survive Ta. After the 

antibiotics get cleared out due to reactions with the bacterial cells or to metabolism in the 

human body, the surviving bacteria can grow again and maintain infection. In a milestone 

paper, Liu et al. (2020) found that methicillin-resistant Staphylococcus aureus (MRSA) 

isolates from two life-threatening blood infection cases in the clinic showed increases in 

tolerance but not in resistance, demonstrating the relevance of antibiotic tolerant cells in 

causing treatment failure in clinics. 

Despite their clinical relevance, antibiotic tolerant bacteria have received little 

attention until the last decade. One explanation may be that antibiotic tolerant bacteria are 

not nearly as important as antibiotic resistant ones, so receive less clinical attention. But 

as Levin-Reisman et al. (2017) have shown, antibiotic tolerant cells can eventually evolve 

to become resistant. 

I.1.4. Tolerance and Persistence Can Ultimately Lead to Antibiotic Resistance 

Antibiotic tolerant cells—whether as a subpopulation or as an entire population—
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can evolve to gain AMR-related mutations in antibiotic treatment. Levin-Reisman et al. 

(2017) first made this ground-breaking discovery in vitro in their evolution experiment 

that cyclically exposed E. coli bacteria to growth medium with high- and low-

concentration antibiotics. This novel experimental evolution protocol was developed to 

simulate the living condition of infectious bacteria during clinical antibiotic treatment, 

where the high-dosage oral antibiotic administration every 5~8 hours leads to high 

concentration in the human body, which is followed by a low concentration due to the 

human body metabolism. 

Levin-Reisman et al. (2017) characterized the E. coli isolates from the end of this 

evolution experiment and discovered resistant E. coli strains. These E. coli isolates gained 

resistance by at least 5-times MIC through mutations in the promotor of the ampC gene 

encoding beta-lactamase, which was known to increase ampC expression (Jaurin & 

Normark, 1983). In early cycles of the experiment, the authors found non-resistant E. coli 

strains with mutations that increased lag time—known as “tolerance-by-lag” or “tbl” 

mutations and are a major mechanism for tolerance (Fridman et al., 2014). These tbl 

mutants can stay longer in a non-growing, and therefore, non-dying lag phase against the 

cell wall inhibitor ampicillin (Lee et al., 2018). By performing whole-genome sequencing 

on E. coli populations along different cycles of the evolution experiment, Levin-Reisman 

et al. confirmed that the AMR mutations always appeared on genetic backgrounds of the 

tbl mutations.  

Finally, Levin-Reisman et al. (2017) developed a probability-based mathematical 
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model to understand why the AMR mutations always appear on tolerant backgrounds. By 

parameterizing the model, the authors discovered that resistance mutations are >10-fold 

more likely to establish on the tolerant background than on the wild-type one. This occurs 

because tolerant mutations have a wide target size whereas the successful, one-step AMR 

mutations were almost restricted to the ampC promoter region in the E. coli strain used 

for experiments, supporting earlier evidence (Girgis et al., 2012). In another word, the 

tolerant genetic background ensures survival of bacterial strains such that the rare, yet 

key, resistance mutations can occur.  

Subsequently, the antibiotic-tolerant clinical MRSA cells that Liu et al. (2020) 

isolated from patients were also evolved in this cyclical exposure protocol in vitro to 

high- and low-concentrations of antibiotics, and were found to evolve AMR much faster 

than their non-tolerant counterparts. Taken together, results in Liu et al. (2020) and 

Levin-Reisman et al. (2017) emphasized that antibiotic tolerant mutations can quickly 

evolve due to a larger mutational target size for tolerance than for resistance, and that 

AMR mutations are likely to establish when appearing on the tolerant background. Given 

the clinical importance of antibiotic tolerant bacterial cells, it is necessary to perform 

more research to understand them.  

Despite their significance in contributing to AMR, antibiotic tolerance and 

persistence still receive much less attention by the scientific community compared to 

AMR. One potential reason is that most tolerant mutants—whether dominating the 

population or remaining a subpopulation—end up becoming resistant and get classified 
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clinically as resistant mutants. Beyond illuminating the link between antibiotic tolerance 

and resistance, results from the evolution studies above were also seminal to our 

understanding that antibiotic tolerance can form due to genotypic changes and is 

genetically stable—just like AMR. In contrast, what mechanisms contribute to antibiotic 

persistence remain largely under-explored, warranting future research.  

I.2. Phenotypic Heterogeneity: Mechanisms for Antibiotic Persistence 

Antibiotic persistence has been known to microbiologists since early 1940s. Hobby 

et al. (1942) and Bigger (1944) were the first to observe and characterize the non-

resistant, low-frequency Staphylococcus pyogenes bacteria survivors of >24h penicillin 

treatment at a near-clinical concentration. Bigger then called these survivors “persisters” 

for their phenotype to persist antibiotic stress without dying. Since then, the process of 

persister formation—i.e. how the persister phenotype arises—has been researched upon. 

It was originally thought that they were non-dividing, dormant cells that were tolerant to 

bactericidal antibiotics (Bigger, 1944). Interestingly, it was later found that not all 

dormant cells were antibiotic-tolerant (Orman et al., 2013), but persister frequency was 

enriched in the physiologically dormant fraction of the population (Lewis, 2005). In 

reality, many more complex qualitative changes in these dormant cells underlie persister 

formation (Harms et al., 2016). Importantly, researchers were able to attribute antibiotic 

persistence to a key mechanism called “phenotypic heterogeneity.” 

Phenotypic heterogeneity is foundational to our understanding of antibiotic 

persistence. Phenotypic heterogeneity is the “phenotypic diversity that occurs 
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independently of genetic or environmental variation and thus manifests between 

genetically identical individuals that live in the same microenvironment” (Ackermann, 

2015). Naturally, the isogenic bacterial populations can be phenotypically heterogeneous 

even when grown in the same microenvironment. For example, individual E. coli cells 

have been found to grow at different rates within the same growth medium (Kiviet et al., 

2014). A major task in understanding antibiotic persistence has been to understand how 

phenotypic heterogeneity can be attributed to genetic mutations (Section I.2.1), stochastic 

gene expressions (Section I.2.2) and physical mechanisms (Section I.2.3). 

I.2.1. Genetic Mutations Can Underly Persistence 

I start by reviewing the genetic mechanisms contributing to the persistence 

phenotype as a subpopulation-level tolerance. In the early years of antibiotic persistence 

research, microbiologists wanted to find a genetically stable strain of E. coli with a high 

persister fraction so that they could characterize these sub-population level persister cells. 

The first strain they found was the hipA7 mutant strain of E. coli (Moyed & Bertrand, 

1983), which has a ~1000-fold higher persister frequency than the wild-type (Balaban et 

al., 2004). This mutant allowed microbiologists to link antibiotic persistence with the 

toxin-antitoxin (TA) module in many bacteria (Korch et al., 2003). 

The TA module plays an important role in governing the bacterial dormancy state, 

which in turns leads to antibiotic persistence. The TA module encodes for a toxin protein 

(e.g. HipA) causing dormancy in bacterial cells—a bacterial physiology state where 

metabolism is reduced without causing cell death—and an antitoxin (e.g. HipB) that 
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counteracts the toxin activity (Song & Wood, 2020). The HipA toxins can trigger growth 

arrest in bacteria by inducing the biosynthesis of (p)ppGpp (guanosine pentaphosphate), a 

secondary messenger responsible for stringent stress response in many bacteria 

(Bokinsky et al., 2013). The produced (p)ppGpp then reshapes bacterial physiology by 

reprogramming transcription and halting growth and metabolism so that cells enter 

dormancy. Meanwhile, (p)ppGpp can further change the target protein activities, such as 

up-regulating hipA expression (Hauryliuk et al., 2015). Increased ppGpp level leads to 

accumulation of inorganic polyphosphate (Kuroda et al., 1997), which then allows the 

protease Lon to degrade antitoxins such as HipB and free active toxin molecules (e.g. 

HipA; Kuroda et al., 2001), forming a closed cycle to reinforce persister formation. 

The detailed molecular pathways of persister formation paved ways for 

understanding the role of genetic mutations in causing phenotypic heterogeneity. As 

hypothesized in Rotem et al. (2010), the hipA7 mutation may lead to less effective 

binding between HipA and HipB to neutralize the HipA toxicity and thus higher persister 

frequency (Vazquez-Laslop, et al., 2006). This hypothesis was supported as the authors 

observed that a substantial fraction of hipA7 colonies appeared on LB agar much later 

(i.e. longer lag time) than the rest of the population, and that there was no shift of the 

appearance time for the rest of the population. Together, these data indicated higher 

heterogeneity in terms of the cellular state regarding dormancy, rather than simply a shift 

in the average value. Further, the authors provided data from the Fluorescence Resonance 

Energy Transfer (FRET) microscopy experiment to validate that the HipA7-HipB binding 
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was significantly less efficient than that of HipAWT-HipB. All these results suggested that 

the weakened HipA7-HipB binding was sufficient to cause an effective fraction of the E. 

coli cells to have less toxin inhibition, which led to higher persistence but not tolerance.  

Other genetic mutations were also found to be associated with a heightened 

antibiotic persistence—not tolerance—in bacteria. Examples include the knockout 

mutation of the metG and hipB genes in E. coli (Girgis et al., 2012). However, whether 

these mutations led to an increased heterogeneity in the E. coli populations has not been 

mechanistically elucidated. Regardless, one question remained unanswered why 

persisters existed in E. coli with wild-type HipA-HipB binding in the first place. 

I.2.2. Stochastic Gene Expression Underlies Antibiotic Persistence 

One explanation for the existence of persister cells in wild-type E. coli with regular 

HipA-HipB binding was stochastic gene expression. Stochastic gene expression is 

“manifested as fluctuations in the abundance of expressed molecules [e.g. proteins] at the 

single-cell level, and variability and heterogeneity within populations of genetically 

identical cells” (Kærn et al., 2005). This heterogeneity in the number of free HipA 

proteins has been shown to contribute to persister formation (Rotem et al., 2010). The 

authors controlled the hipA gene expression with tetracycline induction on a plasmid in E. 

coli. The authors found that there was a larger fraction of cells with an extended lag time 

(dormancy) as the induction level of hipA expression became higher.  

Rotem et al. (2010) further found that the cells became dormant if their HipA toxin 

level was higher than a threshold, and the variability in HipA levels among cells led to a 
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coexistence between persister and growing cells. The persister fraction could be captured 

by a stochastic (i.e. Monte Carlo) simulation of the fraction of cells with free HipA level 

higher than the threshold. These result suggested that the degree of persistence can be 

controlled phenotypically under the same genetic background of bacteria. As Harms et al. 

(2016) concluded, stochasticity in hipA expression in a bacterial population (even when 

the average expression level was low) can lead to cells with high free HipA toxin 

concentrations and is sufficient to explain why only a fraction of cells are persisters. 

Most recently, single-cell, temporal analysis of bacterial growth and stress response 

gene expression established a substantial link between stochastic gene expression and 

predisposition to survive antibiotic stress (Sampaio et al., 2022), which may underlie 

antibiotic persistence as a differential survival mechanism. The authors tracked gene 

expression of E. coli using fluorescent markers before a short lethal ciprofloxacin 

treatment, and compared the pre-antibiotic expression profile and growth rate between 

survived and killed cells. Interestingly, a pulse of elevated expression of the gadX gene 

responsible for acid resistance appeared together with a period of slow growth in 

survived cells (Sampaio et al., 2022), supporting the previous idea that “transcriptional 

bursting” contributes to stochastic gene expression and persistence (Kærn et al., 2005). 

Moreover, stochastic gene expression is believed to also be affected by 

environmental conditions. Given the nature of persister formation as a stringent response, 

microbiologists have categorized persisters into two groups: (1) triggered and (2) 

spontaneous persisters (Balaban et al., 2019). Triggered persisters form due to a pre-
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exposed stress (e.g. antibiotic treatment, starvation, pH change), whereas spontaneous 

persisters are produced stochastically when the bacteria are in steady-state exponential 

growth. It was thought that even though little stress and abundant nutrient are present in 

the exponential phase of bacterial growth, “microstarvation” can occur to a very small 

fraction of the bacteria and causes them to become persisters (Harms et al., 2016). By this 

logic, more starvation or stress is thought to take place in stationary-phase cultures and is 

consistent with the fact that triggered persisters are much more frequently encountered 

than the spontaneous ones (Balaban et al., 2004; Balaban et al., 2019). Common triggers 

leading to starvation or stress include chemicals such as salicylate (Wang et al., 2017) and 

long-term starvation in a bacterial culture (Levin-Reisman et al., 2010; Orman et al., 

2013). Such starvation in bacterial culture was also shown to cause a fraction of cells to 

gain increased dormancy (Levin-Reisman et al., 2010). 

Finally, a lot of research has shown that antibiotic persistence is affected by the 

function of many genes, proteins, and pathways, and by the challenge of numerous 

chemical stress (Harms et al., 2016). Therefore, the Pash (aka PaSH, “persistence as stuff 

happens) hypothesis was posited to state that persisters are “an inadvertent product of 

different kinds of errors and glitches,” and can hardly be linked to specific genes (as 

reviewed in Levin et al., 2014). This hypothesis was supported by a recent study (Kaplan 

et al., 2021) that examined the mechanism guiding persister formation when bacteria 

were challenged with acute stress.  
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 I.2.3. Persister Formation in Bacteria Due to Acute Stress 

Recent results in Kaplan et al. (2021) supported the Pash hypothesis. The authors 

discovered that antibiotic persistence can be explained by bacterial cells stochastically 

becoming metabolically frustrated and entering growth arrest. Kaplan et al. (2021) 

provided evidence that acute stress can lead to a halt in metabolism in random members 

of the E. coli bacterial population, who then became persisters and survived the lethal 

antibiotic treatment. Furthermore, the antibiotic survival fraction of the E. coli population 

can be predicted by the duration of the acute stress.  

Experimentally, Kaplan et al. (2021) treated exponential-phase E. coli with an acute 

serine hydroxamate (SHX) stress to cause serine starvation and growth arrest (Potrykus & 

Cashel, 2008). Although the acutely-stressed E. coli population was then allowed to grow 

stress-free for an extended period of time, it was enriched for fraction of cells with longer 

dormancy (i.e. bacterial lag time) and higher persister frequency under ampicillin 

treatment. This phenomenon also appeared when E. coli was challenged with various 

stress types, suggesting the universal impact of acute stress.  

In all stressed conditions, Kaplan et al. (2021) also discovered that the duration of 

the acute stress correlates with the tail fraction of the lag time distribution and survival 

fraction under ampicillin treatment. Interestingly, when SHX was added gradually into 

the medium instead, no heightened persister frequency nor increased heterogeneity in lag 

time was observed, suggesting that the stress acuteness was essential to the antibiotic 

persistence.  

Page  of 16 86



To understand the differential effect on bacteria between acutely- and gradually-

applied stress, Kaplan et al. (2021) represented the bacterial cellular network (consisting 

of interactions among molecules such as RNAs, proteins, and metabolites) using a 

randomly connected cycles network model. In this network model, each node denotes a 

type of molecule and has two states “ON” and “OFF” to represent, say, whether the 

enzyme acting upon it was metabolically active for catalysis and push downstream 

reactions to happen. And the edge between each pair of nodes describes the interaction 

direction (sign) and strength (value) between them. As shown in the paper, the topology 

of the cellular network was sufficient to demonstrate that acute stress stochastically 

brings the cellular network of some cells to a disrupted regime with many molecular 

states turned to “OFF” mode. Once in this disrupted regime, the bacterial metabolism 

cannot self-regulate certain compounds to allow for quick stress recovery because other 

compounds are lacking, leading to a globally dysregulated state. For cells in this 

disrupted regime, it took a very long time for the states of all nodes to return to their 

original forms, resulting in an elongated lag time in a great fraction of cells. Interestingly, 

the fraction of cells with the lengthened lag time was associated with the duration of the 

acute stress exposure.  

In comparison, gradual stress allows for resilience in the cellular network. The 

network was able to remain in a “regulated regime,” where the regulatory network can 

maintain homeostasis in bacteria and quickly switch the “OFF” back to the “ON” mode. 

Together, Kaplan et al. (2021) showed that the return of the disrupted regime in the 
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bacteria cellular networks to their original state demonstrated a universal physical aging 

property in physical systems. By definition, physical aging says that the relaxation 

process of a physical system from a perturbation depends not only on the state of the 

system at the end of the perturbation, but also on the duration of the perturbation 

(Bouchaud, 1992)—in contrast to biological aging (Akermann et al., 2007). This physical 

aging process appeared experimentally as the duration of acute stress exposure explained 

persister frequency in E. coli. 

Despite these detailed characterizations of the molecular and biophysical 

mechanisms behind antibiotic persistence, our knowledge on persister formation mostly 

came from studying single bacterial species (especially E. coli) in shaken test tubes. We 

lack understanding on how microbial ecology—relationships among microorganisms and 

between microbes and their physical environment—plays a role in antibiotic persistence. 

We need to fill this knowledge gap because bacteria almost always dwell in complex 

microbial communities with other bacteria species (Ratzke et al., 2020), and so it is 

important to consider the ecology. Therefore, a top question to answer is how antibiotic 

persistence relates to (1) ecological interactions among bacterial species and (2) the 

spatial structure of the microbial community.  

I.3. Knowledge Gap: How Microbial Ecology Contributes to Persistence 

I.3.1. How Positive Interspecies Interactions Contribute to Antibiotic Persistence 

Interspecies interactions in bacteria are common. Bacteria often live in complex 

ecological communities with other species, such as within the human gut (Human 
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Microbiome Project Consortium, 2012) and in natural environments like soil (Weller et 

al., 2002) and environmental waterbody (Zimmer-Faust et al., 2021). Common pairwise, 

interspecies, ecological interactions within these communities include competition (-,-), 

commensalism (+,0), mutualism (+,+), parasitism (+,-), and predation (+,-) . While 1

positive interactions (“+” sign) are present in all but one interaction types above, they are 

previously considered to be rare (Foster & Bell, 2012). Experimental evidence pointed 

out that negative interactions such as competition dominate all types of interactions 

(Ghoul & Mitri, 2016; Foster & Bell, 2012). However, it was recently found that positive 

interactions are more common than we previously thought (Kehe et al., 2021). In fact, 

>50% of all pairwise cocultures of culturable soil bacteria included at least one positive 

interaction, by, say, increasing the growth yield of the beneficiary. Such positive 

interactions are indeed clinically relevant in polymicrobial infections. For example, 

Pseudomonas aeruginosa infections in Cystic Fibrosis patients rely on nutrients produced 

by mucin-degrading microbes in the patient lung (Flynn et al., 2016). Despite the 

prevalence of positive interactions, how they affect antibiotic tolerance and persistence 

still remains a huge knowledge gap.  

One major type of positive interaction is the cross-feeding mutualism due to 

common auxotrophy in microbial communities. Auxotrophy occurs when microbes lack 

essential biosynthetic pathways and have to feed on certain nutrient in the environment in 

order to survive (Zengler & Zaramela, 2018). Auxotrophy occurs at high frequencies in 

 Each pair-wise ecological interaction can be represented by two signs within a pair of parenthesis (__, __); each sign 1

indicates how the presence of one species affects the other. Positive effect is shown as “+”; negative effect is indicated 
by “-”; and the neutral effect is represented by “0”.
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naturally occurring microbial communities and is crucial for community assembly and 

function (Zengler & Zaramela, 2018). A recent analysis of data from the Earth 

Microbiome Project showed that amino acid biosynthesis-related auxotrophies frequently 

appear in all microbial communities, especially in host-associated ones (Yu et al., 2022). 

The auxotrophic species in microbial communities can benefit nutrient from cross-

feeding, where the metabolic byproducts of one species become resource for others 

(Fritts et al., 2021). Previous work also showed that byproduct secretion by one species 

allows for the evolution of a bidirectional cross-feeding (Harcombe, 2010; Harcombe et 

al., 2018), and such bidirectional positive interactions are defined as mutualism 

(Bronstein, 2015). Microbial species in cross-feeding communities are metabolically 

interdependent on one another and so a basal level of species diversity can be maintained 

even at low nutrient diversity (Dal Bello et al., 2021).  

Previously, positive interactions were shown to shape antibiotic susceptibility in 

microbial communities. For one, de Vos et al. (2017) measured the antimicrobial 

resistance (AMR) of microbial communities in polymicrobial urinary tract infection 

(UTI) sites in elderly patients. The authors found that while competition was enriched in 

the microbial community in antibiotic-free conditions, the AMR was higher when 

microbes were grown in coculture with other species than grown in monoculture. These 

data implied the existence of a cross-protection phenotype, where the presence of 

community members tends to protect other isolates from antibiotics (Yurtsev et al. 2016).  

On the other hand, Adamowicz et al. (2018) directly tested how metabolic 
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interdependency in cross-feeding communities affects AMR. Using a previously 

engineered cross-feeding mutualism among the Escherichia coli, Salmonella enterica, 

and Methylobacterium extorquens bacteria, Adamowicz et al. (2018) showed that the 

most resistant species in monoculture becomes inhibited in cross-feeding cocultures at 

significantly lower antibiotic concentrations. This study supported the “weakest link” 

hypothesis that the species least resistant in monoculture sets the resistance level in cross-

feeding coculture, and also raised questions on what principles apply to antibiotic 

persistence. Is it possible that the “weakest link” hypothesis should be rephrased to mean 

that the species with the longest lag time determines the community-wide antibiotic 

tolerance or persistence? It is possible that metabolic interdependency can lead to higher 

persisters through the “persistence-by-lag” mechanism (Fridman et al., 2014). 

Compared with AMR, even less is known about how interspecies interactions affect 

antibiotic tolerance or persistence. Here, my definitions for tolerance and persistence 

focus on the susceptibility of bacteria to antibiotic killing, which is different from many 

existing research pieces (e.g. Adamowicz et al., 2018; de Vos et al., 2017; Yu et al., 2022). 

These researchers used a different definition for “tolerance” as the ability of bacteria to 

grow in antibiotics in microbial community settings, which I defined as “resistance.” 

Interestingly, one research piece actually studied how positive interactions affected 

antibiotic tolerance as the population-wide killing susceptibility (Aranda-Diaz et al., 

2020). The authors examined the interactions among the gut microbiome isolates from 

laboratory Drosophila melanogaster, and measured the antibiotic tolerance of a gut 

Page  of 21 86



Lactobacillus plantarum species against rifampin in the presence and absence of another 

species, Acetobacter pasteurianus. Aranda-Diaz et al. found that coculturing with A. 

pasteurianus greatly increased L. plantarum’s tolerance against high-concentration 

rifampin. The authors found an A. pasteurianus-mediated increase in medium pH, which 

alone was sufficient for the increased L. plantarum tolerance. In antibiotic-free medium, 

the presence of A. pasteurianus caused a higher final growth yield in L. plantarum, 

indicating that L. plantarum experiences a positive interaction from A. pasteurianus. This 

study suggested that positive interactions can shape population-wide tolerance by 

modifying the chemical environment of the growth medium. However, whether this 

phenomenon was universal and how this effect of positive interactions may change 

antibiotic persistence remained unanswered. 

I.3.2. How Spatial Structure Contributes to Antibiotic Persistence 

Although microbes frequently live in microbial communities with spatial structure, 

microbial ecology studies usually do not consider this spatial organization (Connell et al., 

2014). Spatial structure (aka spatial organization) is the spatial and physical distribution 

of bacteria in an environment. Most laboratory experiments are conducted in shaken test 

tubes, where bacteria are considered to be planktonic. In shaken tubes, the entire volume 

of the growth medium is considered to be spatially homogeneous and to have no spatial 

structure. But spatial structure is important in natural microbial communities as bacteria 

can dwell in vivo in small, packed aggregates, which then modulate physiology (Connell 

et al., 2014).  
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Recently, the importance of spatial structure has been studied in terms of growth 

heterogeneity of individual bacterial colonies in a single species, E. coli or S. enterica 

(Chacón et al., 2018). Using time-lapsed imaging of agar plates spread with E. coli or S. 

enterica, Chacón et al. found that final colony sizes within monoculture of bacteria are 

best predicted by territoriality. These results make one wonder whether the effect of 

metabolic interdependency on growth will become more spatially explicit between cross-

feeding partners on coculture agar. Together, how spatial structure and the cross-feeding 

interactions between bacterial species affect antibiotic tolerance or persistence remains an 

open question.  

Previous work prepared preliminary results to help answer the aforementioned open 

question. Dal Co et al. (2019) created a glucose gradient on lawn of isogenic E. coli cells 

within a microfluidic chamber, and found evidence for cross-feeding between glucose-

fermenting and acetate-respiring subpopulations of E. coli. When challenged with a lethal 

antibiotic pulse, higher survival was found in the microfluidic chamber than in shaken 

conditions. Together, these results suggested the protective effect of spatial structure 

against antibiotic pulses. More recently, Dal Co et al. (2020) engineered a pair of amino 

acid cross-feeding E. coli strains and studied their ecology in the microfluidic chamber. 

The authors found that the growth rates of single-cell E. coli was best explained by the 

fraction of the cross-feeding partner within a small neighborhood.  

Despite these studies, much remained unanswered about the effect of spatial 

structure and cross-feeding on antibiotic tolerance and persistence. In Dal Co et al. 
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(2019), it was unknown whether the glucose gradient was sufficient to cause differential 

survival fractions by antibiotic killing. Answering this question will help disentangle the 

effect of cross-feeding from the glucose gradient. Second, whether the higher antibiotic 

survival in microfluidic chambers was due to antibiotic tolerance or persistence has not 

been investigated either, which made it difficult to understand the detailed mechanism. In 

conclusion, while previous work was related to the open question above, how spatial 

structure and cross-feeding together affect antibiotic persistence has not been studied in 

detail. 

I.4. Overview of Thesis Work 

In this thesis, I used wet-lab experiments and mathematical models to study how 

antibiotic persistence was regulated by spatial structure within a cross-feeding microbial 

mutualism. Shown in Fig. 1.3a, this synthetic obligate mutualism was previously evolved 

between an E. coli and a Salmonella enterica strain that cross-feed each other on a 

minimum agar with lactose as the only carbon source (Harcombe, 2010; Harcombe et al., 

2014). Specifically, the E. coli strain is a methionine-auxotroph and feeds on the 

methionine secreted by the S. enterica strain and on lactose in the environment. S. 

enterica feeds on E. coli’s acetate secretion. And both strains feed on ammonia in the 

environment. To ensure spatial structure, I randomly distributed bacterial cells (both in 

monoculture and in mutualistic coculture) on a filter membrane (Fig. 1.3b), which was 

then transferred between agar plates with different chemical composition. This 

experimental setup was the cornerstone to my thesis work. 
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As a result, I discovered that in the presence of spatial structure, the persister 

frequency of E. coli is ~100-fold higher when it is cross-feeding with S. enterica than 

when E. coli is grown alone. Interestingly, antibiotic tolerance was not affected. 

Subsequently, I performed analysis on the growth physiology at a single-colony 

resolution for E. coli grown on agar surfaces, and used this analysis to reveal the 

mechanism behind the heightened persistence level in the cross-feeding coculture. 

Finally, I designed a partial differential equation (PDE) based mathematical model to 

attribute the increased persister frequency to the spatial heterogeneity of methionine 

distribution, which leads to larger variance in single-cell growth rate and duration of the 

lag phase.  
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Figure 1.3. Research Framework of My Thesis. a A previously-evolved synthetic cross-feeding E. coli 
and S. enterica community was used as the model ecological community in this thesis. Figure 1a in 
Hammarlund et al. (2019) was reproduced here. b A filter membrane with appropriate E. coli and/or S. 
enterica on it was placed onto a minimum agar with lactose as the only carbon source. This filter could be 
moved to new agar media with different nutrient compositions. 



CHAPTER II: RESEARCH APPROACH & METHODS 

II.1. Experimental Approach 

II.1.1. Bacterial Strains & Media 

Bacterial Strains: To mechanistically investigate whether cross-feeding mutualisms 

affect persister frequency, I used a pair of previously domesticated bacterial species, 

Escherichia coli and Salmonella enterica. The E. coli K-12 (BW25113) used was a 

ΔmetB strain from the Keio collection and has an hfr line to insert the lac operon (labeled 

as WRH221; Baba et al., 2006). The S. enterica LT2 strain used was a mutant selected 

and engineered to secrete methionine (labeled as WRH201; Harcombe, 2010). Both E. 

coli and S. enterica are labeled with fluorescents proteins by transducing genes encoding 

them under constitutive promoters. Respectively, E. coli strain WRH224 is labeled with 

the cyan fluorescent protein (CFP) and S. enterica strain WRH240 is labeled with yellow 

fluorescent protein (YFP).  

Hypho Minimum Medium/Agar: To ensure that E. coli and S. enterica engage in 

various ecological interactions, I used the Hypho minimum medium containing 

phosphate, nitrogen, sulphate, and various carbon sources as previously described 

(Harcombe et al., 2014). As shown in Fig. 1.4a, E. coli and S. enterica engage in 

mutualism by cross-feeding to each other acetate and methionine, respectively. So the 

mutualistic coculture medium contains 2.78 mM lactose as the sole carbon source. To 

supplement the auxotrophic E. coli with methionine, the E. coli monoculture medium 

contains 2.78 mM lactose and 0.08 mM methionine. The S. enterica monoculture 

medium contains16.9 mM acetate as the sole carbon source. For E. coli to be in a 
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commensalism with S. enterica with S. enterica being the beneficiary, the E. coli 

monoculture medium was used with both E. coli and S. enterica present. Finally, the 

competition medium between E. coli and S. enterica contains 0.08 mM methionine and 

0.056 mM glucose. When appropriate, Hypho minimum agar was prepared by adding 1% 

(g/mL) of agar powder to water to be autoclaved. Afterwards, filter-sterilized carbon 

source, salts, and ampicillin were added.  

LB agar: LB agar was made for enumeration of cell density (see Section II.1.3). LB 

agar was made by adding 1 L DDI (distilled and deionized) water with 10 g agar, 10 g 

NaCl powder, 5 g yeast extract, and 10 g tryptone powder prior to autoclave sterilization. 

X-gal was added into the post-autoclave LB agar medium for distinguish between the 

lactose-metabolizing E. coli (blue colonies) and the S. enterica strain that does not 

metabolize on lactose (white colonies). 

II.1.2. Tracking Bacteria in A Spatially-Structured Environment 

By fixing E. coli and/or S. enterica onto nitrocellulose membrane (Fig. 2.1), I 

created a spatially-structured environment for bacteria that can be transferred between 
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was added onto a nitrocellulose membrane (shown in orange) and air-vacuumed to move the liquid 
medium. The bacterial population/community was then fixed onto the membrane, and can be moved 
between agar plates A and B with various medium composition to be assessed for bacterial behavior.  



agar with different medium compositions. E. coli and/or S. enterica culture was cultivated 

overnight in appropriate Hypho minimum media. 2 mL of OD=0.005 diluted culture was 

overlaid onto a nitrocellulose membrane (Radius: 4.7 mm; Thermo Fisher Scientific, 

MA) and then air-vacuumed to remove the liquid medium. The bacterial population/

community was then fixed onto the membrane, and the membrane can be moved between 

agar plates with different medium composition (Fig. 2.1). 

II.1.3. Antibiotic Tolerance & Persistence Assays 

Antibiotic tolerance and persistence were measured as in Fridman et al. (2014) and 

Balaban et al. (2019). E. coli and S. enterica were grown overnight respectively in liquid 

Hypho minimal media at 37oC to log phase (OD600 ~ 0.2; from now on OD600 is referred 

to as “OD”) and then seeded into fresh liquid medium or nitrocellulose membranes to 

acquire survival curves measured by survival fraction over time. The experimental 

protocols for measuring antibiotic tolerance and persistence are described below. All 

experiments were done in 3~6 biological replicates. 

Survival Curve Experiment in Liquid: E. coli and S. enterica cells were seeded 

into 10 mL fresh Hypho medium with appropriate nutrient supplementation. The seeding 

concentration for E. coli or S. enterica monoculture was OD = 0.01 per mL, and was OD 

= 0.005 per mL per species in the mutualistic coculture. The fresh culture was then 

incubated at 37 oC or 30 oC with shaking for 1 h. To initiate the killing experiment, 

ampicillin (Fisher Scientific, MA) was then added at 100 µg/mL (Balaban et al., 2004), 

and the culture was incubated at the same temperature as the pre-treatment incubation 
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with shaking for 24 h. Right before adding ampicillin and during ampicillin killing, 

culture were sampled by taking 100 µL for CFU (colony forming unit) counting and the 

subsequent tolerance and persistence calculation. 

Survival Curve Experiment with Spatial Structure: E. coli and S. enterica cells 

were first seeded into saline solutions, where the saline stress was known not to cause 

increased persistence (Kaplan et al., 2021). In monoculture, E. coli and S. enterica were 

seeded at OD = 0.005 per mL saline. In the mutualistic coculture, E. coli and S. enterica 

were seeded at OD = 0.0035 and OD = 0.0025 per mL, respectively. An amount of 2 mL 

of the bacteria in saline was added onto a fresh nitrocellulose membrane and air-

vacuumed to remove all liquid medium. The membrane was incubated on a fresh Hypho 

minimum agar for 2 h at 37 oC or 30 oC, before moving onto a new Hypho agar with 100 

µg/mL ampicillin. The agar was then incubated for various durations up to 24 h at the 

same temperature as the pre-treatment incubation. Every time the survival rate needs to 

be assessed, the membrane on an agar plate was sacrificed to be vortex-washed for 30 s 

in 10 mL of saline, which was then serially diluted and used to calculate antibiotic 

tolerance and persistence. 

Serial Dilution & Antibiotic Tolerance/Persistence Calculation: The ampicillin 

culture sampled at each killing duration of the killing experiment (i.e. the 100 µL samples 

from the liquid experiment or the 10 mL bacterial saline solution from the agar 

experiment) was used to perform serial dilutions in saline solutions. A stock solution of 

5000 unit/mL of beta-lactamase was made in sterile water and kept at 4 oC (Neta 
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Scientific, NJ) as in Balaban et al. (2004), and this stock was diluted at a 1:40 ratio to 

saline solutions for serial dilutions to up 10-4.  A volume of 75 uL of each dilution was 

spread on a fresh LB agar with X-gal for a 24 h incubation in 37 oC and for a subsequent 

5-day incubation at room temperature (~24oC). This long incubation process was to 

ensure that all colonies—including the small colony variants—appear to form visible 

colonies (Vulin et al., 2018). CFU was calculated and used to calculate survival rate at 

each killing duration against the CFU immediately before killing (i.e. 0 h).  

The survival curve was then used to calculate antibiotic tolerance, persistence, and 

the persister fraction. Tolerance (MDK99) and persistence (MDK99.99) were measured 

using the survival curve for each biological replicate and strain to identify the time it 

takes to kill 99% and 99.99% of the population, respectively. To calculate the persister 

fraction, I fit an exponential curve to the less steep phase of the biphasic kill curve, and 

the interaction between this exponential curve with the y-axis was considered persister 

fraction (Balaban et al., 2019). 

II.1.4. Population-Level Bacterial Growth Physiology Assays 

The growth physiology was measured for E. coli and S. enterica bacteria grown in 

Hypho minimal media—both in monoculture and in mutualistic coculture. Measurement 

in liquid and on agar plates are described separately. 

Growth in Liquid: Growth in liquid was measured as the population-level growth 

rate of E. coli and S. enterica in a a given liquid medium. I collected fluorescence signals 

of the constitutively expressed CFP in E. coli and YFP in S. enterica in each bacterial 
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population/community. Fluorescence signals were measured to indicate growth instead of 

OD so that growth of each species can be simply measured in mutualistic coculture of E. 

coli and S. enterica. The two species, E. coli and S. enterica, were grown overnight in 

liquid Hypho minimum media at 37oC to log phase (OD ~ 0.2) and then seeded into 200 

µL fresh liquid medium in a 96-well plate at OD = 0.005 per mL. The fluorescent signal 

is read using a microplate reader (TECAN Tradings, Switzerland) every 20 min for ~ 250 

cycles with continuous shaking at 37 oC or 30 oC. Fluorescence of CFP (YFP) is collected 

at excitation wavelength 430 (500) nm and emission wavelength 490 (530) nm. The 

growth rate in each well was calculated by fitting a Baranyi function to the population 

growth curve using an in-house code (Baranyi & Roberts, 1994).  

Growth on Nitrocellulose Membranes: E. coli and S. enterica were grown 

overnight in liquid Hypho minimum media at 37oC to log phase (OD600 ~ 0.2; from now 

on OD600 is referred to as “OD”) and then seeded onto nitrocellulose membranes as in 

Section II.1.3., which were then placed on a Hypho minimum agar without antibiotics. 

The agar plate was incubated for 0 h, 1 h, and 2 h at 37 oC before CFU counting and 

growth curve plotting. Similar procedure was followed as in Section II.1.3, where an 

entire nitrocellulose membrane is sacrificed to calculate CFU at each harvesting time 

point. 

Measurement of Indole Production in E. coli: The production of indole in E. coli 

was measured on nitrocellulose membranes placed on Hypho agar in either monoculture 

or coculture with S. enterica. At time points of measurement, the membrane and the 
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volume of the agar directly covered by it were taken up and vortexed in 10 mL DDI water 

for 30 s. Then the measurement followed protocols in in Darkoh et al. (2015). Briefly, 

fresh indole standards ranging from 0 to 300 M were prepared in 70% ethanol. In a new 

2-mL eppendorf tube, indole standards or the vortexed E. coli sample in a volume of 300 

L were incubated for 15 min at room temperature with 75 L of 5.3 M NaOH and 150  

L of 0.3 M NH2OH-HCl. Following incubation, a volume of 375 L of 2.7 M H2SO4 

was added, vortexed, and incubated at room temperature for another 30 min to yield a 

pink solution that was measured spectrophotometrically at a wavelength of 530 nm. 

Because E. coli was indole-positive and S. enterica is indole-negative, the same protocol 

can be used for E. coli in mono- or co-culture. 

II.1.5. Single-Colony Level Bacterial Growth Assay 

Time-Lapsed Imaging for E. coli Growth: Individual E. coli may exhibit various 

growth phenotypes (Kiviet et al., 2014). While this phenotypic heterogeneity needs to be 

studied thoroughly, the above techniques in Sections II.1.4 cannot achieve this task. Here, 

I performed a high-throughput quantification of E. coli growth physiology by examining 

each E. coli colony’s growth rate and lag time when plated on Hypho minimal agar as in 

Chacón et al. (2018). The single-colony E. coli growth physiology was known to 

approximate single-cell growth (Levin-Reisman et al., 2010). Briefly, a total of 100~200 

E. coli and/or S. enterica cells were spread on appropriate Hypho agar and subjected to 

time-lapsed imaging at 37 oC or 30 oC over a course of 10~14 days. In time-lapsed 

imaging, an Epson Perfection V600 Photo office scanner (Epson America Inc, CA) was 

μ

μ μ

μ μ
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programed to take an image of the agar plate once per hour, and the growth rate and 

appearance time of each individual colony were measured using in-house programs for 

image analysis and data analysis. The programs were built to achieve similar functions as 

in Levin-Reisman et al. (2010) and Chacón et al. (2018).  

Image & Data Analysis: The area size (unit: pixels) of each individual colony on 

the agar plate was calculated using an in-house Python code by Dr. Jeremy Chacón, a 

Research Associate in the laboratory. Briefly, E. coli and S. enterica were distinguished 

using the natural coloration differences between the two species, and the unsupervised 

learning technique was used to classify the species of each colony. The computer-

classified species of each colony was then manually curated by examining the coloration 

and colony morphology of disputable individual colonies under a stereoscope. If 

necessary, the disputable colony was spread on a separate LB agar with X-gal to observe 

the coloration as in Section II.1.3.  

The data of colony area size over incubation time were further analyzed using my 

custom-built code. Appearance time of individual colonies were recorded as the earliest 

incubation duration at which the colony area becomes non-zero, similar to the practice in 

Levin-Reisman et al. (2010). The growth rate was calculated by first converting the 

colony area data into radius data, and then applying a linear line to the initial growth 

phase of the colony, which is defined to be between the colony appearance time and the 

time it takes to reach half of the maximum radius size in the stationary phase.  
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II.2. PDE-Based Mathematical Model 

II.2.1. Overview of the Mathematical Model 

To understand how spatial structure relates to the observed differences in E. coli 

antibiotic persistence, I developed a mathematical model using partial differential 

equations (PDEs) to computationally simulate growth of individual E. coli and S. enterica 

colonies in monoculture and mutualistic coculture on a 1D line.  

In the resource-explicit model I built, bacterial colonies interact with local nutrients 

in a spatially-structured environment to grow. On a 1-dimension line of distance , 

individual cells of E. coli ( ) and/or S. enterica ( ) were seeded randomly by setting the 

initial conditions at  to be non-zero at random locations, , whereas various 

nutrients were initially overlaid evenly on the entire line. This random seeding of 

bacterial cells makes the PDE model able to describe bacterial populations and 

communities with spatial structure. Each PDE in Equations [1~2] denote the rules 

regarding how abundance of bacteria or nutrients changes over 40 units of time, 

, at any particular .  

Equations in [1] denote how E. coli and S. enterica cross-feed and grow in a 

mutualistic community. First, the growth of E. coli and S. enterica follow Eq. [1a] and 

[1b], respectively. E. coli grows by consuming methionine ( ) and lactose ( ), whereas 

S. enterica grows by taking in acetate ( ). The maximum growth rates are  and , 

respectively, and the instantaneous growth rates are limited by the nutrient’s local 

concentration in a Monod fashion with the half-saturation constants, , , and . 

Y = 5

E S

t = 0 x

t ∈ [0,40] x

M L

A rE rS

KM KL KA
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Growth is ultimately limited by exhaustion of nutrient explained below. E. coli growth 

rates depend on both methionine and lactose, while S. enterica growth rates depend only 

on acetate (see Section II.2.2 for Model Assumptions). 

, [1a] 

. [1b] 

Eq. [1c] denotes the temporal dynamics of methionine. As a nutrient source, methionine 

diffuses in space over time at a rate, . It is produced by S. enterica at a rate, , and is 

proportional to S. enterica’s consumption of acetate in a Monod fashion (Hammarlund et 

al., 2021). In another word, S. enterica only produces methionine when metabolizing on 

acetate. Methionine gets consumed by E. coli following a Monod kinetics by a maximum 

rate, . Finally, methionine degrades slowly over time at a rate, . 

. [1c] 

Similar to methionine, acetate diffuses at a rate, , gets consumed by S. enterica 

following Monod kinetics, decays exponentially by  (Eq. [1d]). Note that acetate is 

produced by E. coli at a rate, , as both lactose and methionine are being consumed. 

Acetate concentration decreases due to S. enterica consumption by a maximum rate, .  

. [1d] 

Finally, the temporal dynamics of lactose concentration—which is only consumed by E. 

∂E
∂t

= rE ( M
M + KM ) ( L
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∂S
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coli—follows Eq. [1e]. Here, the natural decay rate of lactose is, . 

. [1e] 

The Neumann boundary conditions are: 

 at , [1f] 

for . 

To simulate E. coli grown in monoculture, we remove S. enterica- and acetate-

associated terms from Eqs. [1] to form Eqs. [2] below, as methionine and lactose are now 

supplemented in the growth medium for monoculture E. coli and so no production terms 

are necessary. All variables are identical to those in Eqs. [1]. 

, [2a] 

, [2b] 

. [2c] 

Similarly, the boundary conditions are: 

 at . [2d] 

for . 

II.2.2. Model Assumptions 

My simple PDE models above are based on the following assumptions. 

κL

∂L
∂t
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M + KM ) ( L

L + KL ) E − κLL

∂N
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1. Bacterial growth can be achieved by only consuming among 3 types of nutrients 

(methionine, lactose, and acetate). In reality (experiments), more nutrients 

sources have to be present to support growth. For example, ammonia is present 

in the medium for both monoculture and mutualistic coculture. Thus, the impact 

of ammonia concentration on growth was factored into the growth rate variables 

 and . 

2. The only interaction between E. coli and S. enterica in the mutualistic coculture 

is the cross-feeding of methionine and acetate. This may deviate from reality 

because experimental RNA-Seq data suggest that E. coli may also produce 

galactose for S. enterica to consume (Unpublished data; Previous indications in 

Harcombe et al., 2018). 

3. Nutrient production of both E. coli and S. enterica only occurs when their 

growth nutrients are present. In reality, E. coli initiates the mutualism by 

producing acetate without having to metabolize on methionine (Unpublished 

data). This assumption allows me to keep the model simple without having to 

make special mathematical treatment for E. coli. The issue is further discussed 

in the Model Implementation & Parametrization section (Section II.2.3). 

4. Bacterial growth leads to no diffusion of biomass. In reality, bacterial growth on 

agar surfaces results in colony formation and colony size expansion (Chacón et 

al., 2018). This can change the average distance among bacterial colonies. 

Because my research only considers how the initial distribution of bacterial cells 

rE rS
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determines spatial structure, I incorporated this assumption in my model for 

simplicity. 

5. The growth rate of each colony reflects the instantaneous growth rate of 

individual cells on the nitrocellulose membrane before ampicillin treatment in 

the experiment. 

6. Bacteria naturally die and nutrients naturally decay over the course of the 

modeling. These decays are linear with respect to the instantaneous abundance 

of the bacteria or the nutrient. 

7. The resource-explicit growth of E. coli is based on the product of the two 

Monod terms, and not the minimum of the two as in Hammarlund et al. (2019). 

II.2.3. Model Implementation & Parameterization 

To compare the growth physiology of E. coli in cross-feeding coculture (Eq. [1]) and 

in monoculture (Eq. [2]), I performed nondimensionalization for both sets of equations to 

make all variables unit- and dimension-less (See details in Appendix II: Supplementary 

Mathematical Analysis). Twenty locations on the 1D line were selected randomly to seed 

E. coli (and S. enterica, if in the mutualistic coculture) biomass at the initial time points, 

when nutrient was distributed evenly on the line as well. Then, I numerically solved Eq. 

[1~2] in MATLAB R2021b with the pdepe function. Finally, I calculated the growth rates 

and lag time of individual colonies by fitting a log-linear growth curve to the log-

transformed biomass. These results were then used to explain the antibiotic persistence 

data observed in experiments. 
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Model parameters were chosen based on the ones in the dimensionless ODE 

(ordinary differential equations) model in Hammarlund et al. (2021) that described the 

growth of the same experimental system in liquid. Updates of these parameters were 

made to ensure that ratios between certain parameters reflect experimental measurements, 

and the diffusion parameters were chosen based on Chacón et al. (2018). A full parameter 

list can be found in Table S2 (Appendix II: Supplementary Mathematical Analysis). 

Note that very little (but non-zero) abundance of methionine and acetate were 

seeded evenly on the 1D line in the PDE model for the cross-feeding coculture. This is a 

convention in cross-feeding models (e.g. Hammarlund et al., 2019; Hammarlund et al., 

2021) to allow the PDE system to produce dynamics representative of experimental 

measurements. 

II.3. Statistics 

To understand whether observed differences in measurements between treatment 

groups—in both mathematical modeling and in wet-lab experiments—were statistically 

meaningful, I used R v.3.3.3 (R Core Team, 2016) to perform analysis of variance 

(ANOVA) with adjusted p-values using Tukey’s HSD (honestly significant difference; 

Lee & Lee, 2018), and linear regressions as described throughout the Results chapter 

(Chapter III). 
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CHAPTER III: RESULTS 

III.1. Antibiotic Persistence in A Spatially-Structured Experimental Environment 

III.1.1. Antibiotic Persistence in A Spatially-Structured Environment 

To understand whether cross-feeding affects antibiotic persistence in a spatially-

structured environment, I fixed bacteria on surfaces of nitrocellulose membranes (Section 

II.1.2), and treated E. coli and S. enterica on monoculture and mutualistic coculture 

Hypho agar with high-concentration ampicillin at 37 oC (Fig. 3.1a). First, the kill curves 

of E. coli were biphasic in both monoculture and coculture, suggesting the presence of 

persisters in both ecological conditions. Surprisingly, the MDK99 measurements were 

similar between coculture and monoculture, showing similar E. coli antibiotic tolerance 
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Figure 3.1. Bacterial Killing Dynamics Differs in Monoculture and in Mutualistic Coculture. a E. 
coli and S. enterica were grown in Hypho minimum medium till log phase, and then fixed on 
nitrocellulose membranes in either monoculture or in mutualistic coculture as in Section II.1.2~II.1.3 for 
ampicillin treatment. b Survival curves of the ampicillin over 24 hours were plotted. Error bars denote 
standard deviation of 3 biologically independent trials. c Antibiotic tolerance, persistence, and persister 
fractions of E. coli were calculated following the Methods chapter. NS: no significance, p>0.05; *: 
p<0.05.



in both monoculture and coculture (Fig. 3.1c; One-way ANOVA, p=0.237). However, 

survival in coculture was significantly higher than in monoculture by 5-hour ampicillin 

treatment (One-way ANOVA, F[1]=34.57, p=0.0042), by as much as ~40-fold. 

Furthermore, the MDK99.99 measurement showed a significantly higher antibiotic 

persistence in mutualistic coculture (Fig. 3.1c; One-way ANOVA, p=0.000975), and this 

is consistent with a ~100-fold higher antibiotic persister frequency in coculture (Fig. 3.1c; 

One-way ANOVA, p=0.00286). Together, these results suggested higher E. coli persister 

frequency when grown in the cross-feeding coculture, but not population-wide tolerance.  

In comparison, the kill curves of S. enterica have different features from E. coli. The 

initial killing rates of S. enterica in all tested ecological conditions are different. In 

particular, when grown in Hypho minimum media with acetate or glucose as the only 

carbon source, the monoculture S. enterica demonstrated different killing kinetics. I 

tested these monoculture conditions because acetate was not the only metabolite that S. 

enterica receives from E. coli (Harcombe et al., 2018; Adamowicz et al., 2020), and it 

still remains unknown what other metabolites S. enterica consumes during cross-feeding. 

Therefore, I decided to focus my effort on understanding the differential antibiotic 

persistence of E. coli during ampicillin treatment.  

The data in Fig. 3.1 raised an important question of why antibiotic persistence of E. 

coli is higher in the cross-feeding coculture than in monoculture. I developed four 

hypotheses that could explain this observation. 

• Hypothesis 1: The presence of S. enterica increases E. coli persistence to 
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antibiotics because S. enterica changes the chemical profile that E. coli 

experiences. This may be consistent with a previous study (Aranda-Diaz et al., 

2020). In this study, the antibiotic tolerance of Lactobacillus plantarum in the fruit 

fly gut is higher when grown with Acetobacter pasteurianus, which changed the 

environmental pH and increased L. plantarum tolerance. 

• Hypothesis 2: Cross-feeding alone drives the heightened antibiotic persistence in 

E. coli. Dal Co et al. (2019) showed that cross-feeding in E. coli grown in a 

microfluidic chamber led to an increased survival against antibiotic challenge. It is 

possible that being in a microfluidic chamber is not the preliminary cause. 

• Hypothesis 3: E. coli growth rates are different between monoculture and 

mutualistic coculture, and this growth rate difference can explain persistence 

difference. This is consistent with the fact that higher growth rate of E. coli 

correlates with higher death rate by beta-lactams in liquid (Lee et al., 2018).  

• Hypothesis 4: The difference in E. coli antibiotic persistence is specific to a 

spatially-structured environment. Spatial structure is known to cause heterogeneity 

in growth rate or growth yield in monocultures (Chacón et al., 2018). Potentially, 

this heterogeneity may be heightened in cross-feeding coculture compared to 

monoculture, because E. coli is metabolically dependent on S. enterica 

(Adamowicz et al., 2020). 

Here, I investigated these four hypotheses separately and propose an answer to the 

question above.  
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III.1.2. The Presence of S. enterica Alone Cannot Explain Persistence Differences 

In studying Hypothesis 1, I aimed to test whether the presence of S. enterica alone 

can explain the difference in antibiotic persistence of E. coli between mono- and co-

culture at 37 oC. First, I aimed to study E. coli’s antibiotic response when it is grown with 

S. enterica but not metabolically dependent on it. To achieve this, I incubated our E. coli 

methionine auxotroph together with S. enterica on Hypho minimal agar with lactose and 

methionine in the same nitrocellulose membranes setting as in Section III.1.1, and 

compared E. coli’s antibiotic response with data in Section III.1.1. As shown in Fig. 3.2a, 

as long as methionine was present in the environment—whether it was supplemented 

(Monoculture; Met-Supplemented Coculture) or produced by a mutualistic partner 

(Cross-Feeding Coculture)—I observed little to no difference in antibiotic tolerance in E. 

coli (One-way ANOVA, F[1]=0.172, p=0.69). However, E. coli antibiotic persistence and 

persister frequency depended on how methionine is provided (One-way ANOVA, 

Page  of 43 86

Figure 3.2. The Presence of S. enterica Alone Does NOT Explain the Heightened Antibiotic 
Persistence of E. coli in Coculture. Antibiotic tolerance, persistence, and persister fraction were 
calculated following Chapter 2 for E. coli at 37oC. Met-Supplement Coculture: E. coli was incubated with 
S. enterica on Hypho agar containing lactose and methionine. Met-Starved Monoculture: E. coli was 
incubated alone on Hypho agar with only lactose and no methionine. Error bars denote standard deviation 
of 3 biologically independent trials. NS: no significance, p>0.05; *: p<0.05.



F[2]=26.89, p=0.00211). In particular, when methionine was externally supplemented in 

the agar, there was no difference in E. coli’s persistence measurement (One-way ANOVA, 

Tukey’s HSD p=0.993) or persister fraction (One-way ANOVA, Tukey’s HSD p=0.9998) 

as compared to monoculture.  

In contrast, the heightened antibiotic persistence and persister fraction were only 

seen when E. coli depends on S. enterica to provide methionine (Fig. 3.2a). When E. coli 

metabolically depends on S. enterica for methionine, E. coli has higher persistence than 

when it can get methionine from the media with (One-way ANOVA, Tukey’s HSD 

p=0.000893) or without S. enterica (One-way ANOVA, Tukey’s HSD p=0.000975). 

Similarly, higher E. coli persister fraction was seen in the cross-feeding coculture 

compared to in monoculture (One-way ANOVA, Tukey’s HSD p=0.00286) or on 

coculture agar with S. enterica and methionine supplementation (One-way ANOVA, 

Tukey’s HSD p=0.00290). Together, these results suggest that the presence of S. enterica 

alone is insufficient to cause the high antibiotic persistence phenotype in E. coli (Fig. 

3.2a), raising a hypothesis that metabolic dependency on S. enterica may be a key to the 

heightened persistence.  

One possible rebuttal to the discovery above is that E. coli that metabolically 

depends on S. enterica are on-average starved for methionine. To test whether this 

rebuttal is true, I starved E. coli by incubating it alone on Hypho agar with lactose and no 

methionine for antibiotic killing assays (Fig. 3.2b). I found a heightened E. coli antibiotic 

tolerance in this starved condition compared with no methionine starvation, by ~12 fold 
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in MDK99 measurements. Even though much higher persistence and persister fraction 

were also observed, it is difficult not to associate the persistence change with tolerance 

change. As a result, these data point out a strong distinction between E. coli in coculture 

with S. enterica (persistence change only) and E. coli in the methionine-starved condition 

(tolerance change as well; Fig. 3.2b).  

All of the results in Section III.1.2—and in Fig. S1 (Appendix III: Supplementary 

Result Figures)—together conclusively showed that the presence of S. enterica alone 

does not explain the heightened E. coli antibiotic persistence in the cross-feeding 

coculture. Therefore, Hypothesis 1 has been falsified.  

III.1.3. Cross-Feeding Alone Cannot Explain Antibiotic Persistence Differences  

Next, I tested whether cross-feeding with S. enterica is sufficient to explain the 

difference in E. coli’s antibiotic persistence (Hypothesis 2). Results in Section III.1.2 

show that the presence of S. enterica does not increase persistence for E. coli, but we still 

do not know whether acquiring methionine from S. enterica (i.e. metabolic dependency 

on S. enterica) suffices to increase E. coli persistence. To test this, I repeated the 

antibiotic killing assays for E. coli but in liquid Hypho minimum media (Fig. 3.3a). No 

observable differences in E. coli kill curves were seen between mono- and co-culture 

(Fig. 3.3b). The measurements for antibiotic tolerance (One-way ANOVA, p=0.9327) and 

persistence (One-way ANOVA, p=0.5137) were not different between the two conditions 

either. Data here are consistent with those in Fig. 3.2a because both ruled out the 

possibility that other unknown metabolites that E. coli receives from cross-feeding can 
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lead to increased antibiotic persistence. Taken together, these results suggest that 

metabolic dependency on S. enterica alone cannot explain antibiotic persistence in E. coli 

in the cross-feeding coculture. 

As a supporting piece of evidence to the results in Fig. 3.3, I examined whether 

metabolic interdependency on the mutualistic partner itself was sufficient to change 

average expression levels of antibiotic persistence genes in both E. coli and S. enterica. 

To achieve this goal, I analyzed the RNA-sequencing data (Table 1) collected by other lab 

members, Graduate Student Leno Smith Jr. and Postdoctoral Fellow Dr. Jonathan 

Martinson. Prior to RNA-sequencing, E. coli and S. enterica were grown to log phase in 

Page  of 46 86

Figure 3.3. In Liquid, E. coli’s Killing Dynamics is Similar in Monoculture and in Mutualistic 
Coculture. a E. coli and S. enterica were grown in Hypho minimum medium till log phase, and then 
diluted in fresh Hypho minimum medium in either monoculture or in mutualistic coculture as in Section 
II.1.2~II.1.3 for ampicillin treatment. b Survival curves of the ampicillin over 24 hours were plotted, and 
antibiotic tolerance and persistence were measured by MDK99 and MDK99.99, respectively as described 
in Chapter 2. Error bars denote standard deviation of 3 biologically independent trials. NS: no 
significance, p>0.05; *: p<0.05.



either monoculture or mutualistic coculture in liquid Hypho medium. The mRNA levels 

of all ~30 genes related to antibiotic persistence in the review by Harms et al. (2016) 

were compared between mono- and co-culture. For both species, no significant changes 

in gene expression were seen in a majority of persistence-related genes (Table 1). For E. 

coli (Table 1a), only two out of 29 genes had an increased expression in the mutualistic 

coculture (Bonferroni-corrected p<0.05). Both genes, dgcI (Katharios-Lanwermeyer et 

al., 2022) and istR (Rotem et al., 2010), were associated with regulation of persister 

formation. On the other hand, only one out of 37 persistence-related genes in S. enterica 

showed an increased expression in monoculture (Table 1b). This gene, glpD, was 

associated with persister formation (Spoering et al., 2006).  

Consistent with the fact that only ~5% of known persistence-related genes have 
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Table 1. Few Antibiotic Persistence Genes Have Different Expression Levels between Mono- and 
Co-culture for E. coli (a) and S. enterica (b). Expression differences were categorized by the 
Bonferroni-corrected p-values. No sig. change: Bonferroni-corrected p>0.05, and there is not gene 
expression difference for a particular gene between mono- and mutualistic co-culture; upper arrows 
indicate “significant higher expression” with a Bonferroni-correct p<0.05.



expression differences between monoculture and the cross-feeding coculture (Table 1), I 

observed little persistence difference in the liquid experiment (Fig. 3.3b). Taken together, 

these results demonstrate that metabolic interdependency between E. coli and S. enterica 

alone cause few differences in the expression level of antibiotic persistence genes 

between mono- and co-culture, supporting the lack of persistence differences in E. coli in 

the shaken liquid condition. 

Results in Section III.1.3 demonstrated that cross-feeding alone could not increase 

the E. coli antibiotic persistence (Fig. 3.3), probably because few persistence-related 

genes would gain heightened expressions in the cross-feeding condition (Table 1). As a 

result, Hypothesis 2 is falsified.  

III.1.4. Average Growth Rates Cannot Explain Persistence Differences  

Following results above, I tested Hypothesis 3 that the antibiotic persistence 

differences in E. coli can be attributed to average growth rate differences. First, I studied 

the growth rate of E. coli populations when grown at 37 oC on ampicillin-free 

nitrocellulose membranes in monoculture and in cross-feeding with S. enterica (Fig. 

3.4a). To measure E. coli growth rates, I fit a linear line to the log-transformed CFU 

measured on nitrocellulose membranes at each harvesting time point. I found that E. coli 

barely grew in either mono- or co-culture over the first 2-hour incubation (One-way 

ANOVA, p=0.997), and its growth rates barely differed over the entire 4-hour period I 

tested (One-way ANOVA, p=0.0719). The data show that the difference in antibiotic 

persistence of E. coli between mono- and co-culture can exist without average growth 
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rate differences prior to antibiotic treatment. 

To directly examine whether growth rates can affect E. coli’s persistence on 

nitrocellulose membranes, I performed the antibiotic killing experiment with E. coli at 

different incubation temperatures to change average growth rates. It is important to do 

this experiment because even if E. coli shows a potential for growth during ampicillin 

treatment over a 24-hour period in the killing experiment, such growth can be easily 

masked by death and cannot be assessed.  

To prepare for this experiment, I first used the time-lapsed imaging setup (Section 

II.1.5) to measure the log-phase growth rate of E. coli colonies when spread on Hypho 

minimal agar (Fig. 3.4b). At 37 oC, E. coli grew much faster in monoculture than in 

Page  of 49 86

Figure 3.4. Difference in Average E. coli Growth Rate Does Not Explain Antibiotic Persistence 
Differences on Surfaces. a At 37 oC, E. coli growth on nitrocellulose membranes does not differ 
drastically within 4 hours of incubation between mono- and co-culture. b On agar surfaces, average 
growth rates of E. coli colonies depend on growth temperature and the presence of cross-feeding. c 
Average antibiotic tolerance, persistence, and persister frequency measurements for E. coli on 
membranes. All values shown are average measurements from 3 biologically independent trials. Error 
bars denote standard deviation of these measurements. NS: no significance, p>0.05; *: p<0.05.



coculture (One-way ANOVA, Tukey’s HSD p<1e-7), consistent with measurements in 

liquid (Fig. S2, Appendix III). Then, I aimed to find an incubation temperature at which 

the average E. coli growth rate in monoculture mimics that in the 37 oC coculture. I found 

that on agar, E. coli shared similar average growth rates when grown in the 30 oC 

monoculture and in the 37 oC coculture (One-way ANOVA, Tukey’s HSD p=0.301). 

Here, growth rate measurements of E. coli colonies on agar were consistent with those in 

liquid Hypho medium (Fig. S3, Appendix III), which showed the predictive power of the 

liquid growth rates to their counterparts on agar surfaces. Together, these results suggest 

that E. coli growth rates on agar can be independently varied by changing the incubation 

temperature. 

Given my above discoveries on E. coli average growth rates on agar surfaces, I then 

performed the ampicillin killing experiment on nitrocellulose membranes at 37 oC and 30 

oC, respectively (Fig. 3.4c). Specifically, I found that despite the observed growth rate 

differences in monoculture E. coli between 37 oC and 30 oC, there were few differences 

in antibiotic tolerance (One-way ANOVA, Tukey HSD’s p=0.1914), in antibiotic 

persistence (One-way ANOVA, Tukey HSD’s p=0.2316), nor in persister frequency 

(One-way ANOVA, Tukey HSD’s p=0.999). Consistent with this discovery, I compared 

the antibiotic response of E. coli in the 30 oC monoculture and in the 37 oC coculture—

two conditions different in ecology but similar in E. coli growth rates. I found that while 

there was no difference in antibiotic tolerance (One-way ANOVA, Tukey HSD’s 

p=0.5346), I observed that antibiotic persistence (One-way ANOVA, Tukey HSD’s 
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p=7e-7) and the persister frequency (One-way ANOVA, Tukey HSD’s p=0.00151) were 

both significantly higher in the 37 oC coculture. Together, these results conclude that on 

surfaces, average E. coli growth rate differences alone cannot explain its antibiotic 

persistence. 

This analysis above raised an important question of why my conclusion did not fit 

the well-known fact that higher growth rate in shaken liquid medium was associated with 

higher beta-lactam lethality (e.g. Tuomanen et al., 1986; Lee et al., 2018). One possible 

reconciliation is that antibiotic killing responses on surfaces are fundamentally different 

from those in shaken liquid culture. To investigate this possible difference, I repeated 

antibiotic killing experiments in liquid medium at 37 oC and 30 oC (Fig. S2~S4, 

Appendix III). Indeed, I found that antibiotic tolerance, persistence, and persister 

frequency in liquid all well-aligned with growth rates. Together, these efforts confirmed 

that the antibiotic killing response on surface was functionally different from that in 

shaken liquid. 

In summary, all of the data together in this Section demonstrate that on agar 

surfaces, the average growth rates of E. coli alone cannot explain the increased antibiotic 

persistence in the cross-feeding coculture at 37 oC. These results validate that 

antimicrobial killing responses on surface are fundamentally different from those in 

shaken liquid medium. Thus, I believe that these results falsified Hypothesis 3.  

III.1.5. Single-Colony Growth Physiology Can Explain Persistence Differences 

To assess whether Hypothesis 4 holds, I studied the growth physiology of E. coli on 
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surfaces at a single-colony resolution. Hypothesis 4 asserts that the spatial structure of the 

cross-feeding community leads to the heightened antibiotic persistence compared to the 

monoculture. To test this Hypothesis, I took advantage of the data from the time-lapsed 

imaging experiment (Sections II.1.5 & III.1.4), and examined the distribution of growth 

physiology. Besides the average growth rate measurements (Fig. 3.4b), I observed that on 

agar, the distribution of E. coli growth rates (Fig. 3.5a-b) and durations of lag phase (Fig. 

3.5c-d) was higher in co- than in either of the mono-culture conditions. Hence, I 

quantified such variation by calculating the coefficient of variation (CV) of log-phase E. 

coli growth rates for all colonies, and compared the average growth rate CVs from 3 

Hypho agar plates with biological replicates (Fig. 3.5b). I found that the growth rate CV 

in the 37 oC coculture was at least 2-fold higher than those in the monoculture at 37 oC 
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Figure 3.5. Single-Colony Growth Rate and Appearance Time of E. coli on Hypho Minimum Agar. 
a,c The distribution of single-colony (a) growth rates and (c) appearance time of E. coli spread on one 
representative Hypho agar (1) in monoculture at 37 oC, (2) in coculture at 30 oC, and (3) in monoculture 
at 30 oC. b,d Average coefficient of variation (CV) of (b) growth rates and (d) appearance time from 3 
agar plates spread with biologically independent replicates. Error bars denote standard deviation of these 
measurements. NS: no significance, p>0.05; *: p<0.05.



(One-way ANOVA, p=0.0227) or at 30 oC (One-way ANOVA, p=0.0572), respectively. 

Despite the average growth rate differences between monoculture at 37 oC and 30 oC, the 

growth rate variation did not differ significantly in terms of the CV value (One-way 

ANOVA, p=0.356).  

Also strikingly, I discovered a strong difference in the lag time of E. coli when 

grown in mono- versus co-cultures (Fig. 3.5c-d). One approximate measurement for the 

duration of E. coli lag phase is its appearance time on agar surfaces, which is the time it 

takes for each individual colonies to grow to be visible for the naked eye (Levin-Reisman 

et al., 2010). E. coli had different average lag times when grown at 37 oC and 30 oC in 

monoculture (Fig. 3.5c, One-way ANOVA, p=3.5e-6). Interestingly, the CV of the lag 

phase duration did not differ (Fig. 3.5d, One-way ANOVA, p=0.728). In contrast, the lag 

time CV of E. coli in the 37 oC coculture was much higher than in the 37 oC monoculture 

(One-way ANOVA, p=0.000819) and in the 30 oC monoculture (One-way ANOVA, 

p=0.000470). When considered together, all data in Fig. 3.5 demonstrated that the 

heightened antibiotic persistence in coculture grown on surfaces can be explained by the 

variation but not only the average value of the single-colony growth rate and lag time. 

Combined with previous research, my data here suggested that the heightened persistence 

of coculture E. coli can be primarily explained by the increased variance in both growth 

rates and lag time. 

Given the large variation in the single-colony growth rate and lag time of E. coli 

grown in the cross-feeding coculture (Fig. 3.5c-d) and their known contribution to 
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antibiotic persistence (Kaplan et al., 2021; Brauner et al., 2016), I sought to study what 

leads to such variation. One possible reason is that the growth physiology of each 

individual E. coli cell depends on cells in the partnering species within a neighborhood 

(Dal Co et al., 2020). Here, I hypothesized that the lag time of individual E. coli cells will 

be negatively correlated with the number or the fraction of S. enterica cells within a 

circular neighborhood of radius,  (Fig. 3.6a). I fit a Spearman’s correlation to the above 

hypothesized relationships at each radius, , and plotted the Spearman’s  with  (Fig. 

3.6b). I found a large variation in  along each  when lag time was correlated with the 

number of S. enterica colonies within , but not the fraction of S. enterica colonies. These 

finding showed that the number of S. enterica within a neighborhood mattered more than 

the fraction, supporting previous research (Hynes et al., 2018).  

r

r ρ r
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r
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Figure 3.6. Correlation between Colony Appearance Time and Size of the Neighborhood Zone. a 
The appearance time of individual E. coli cells was Spearman-correlated with either (1) the number of S. 
enterica cells or (2) the fraction of S. enterica cells within a circular neighborhood of radius, r. The 
estimated correlation parameter, Spearman’s , was then plotted against the neighborhood size, r. b The 
Spearman’s  was plotted against the neighborhood size, r, for both E. coli and S. enterica. 
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Given the importance of the colony number in the cross-feeding species within  to 

lag time of the focal species on a single-colony level, I assessed its trend of  over . 

Expectedly (Fig. 3.6a), there was a minimum value of  at a relatively small 

neighborhood (  cm for E. coli;  cm for S. enterica; Fig. 3.6b), This result 

indicates that the metabolic interdependency of the two species resulted in an 

interdependency in lag times, which underlie the persistence-by-lag phenotype in E. coli. 

Furthermore, we have min between  and  for E. coli and between  and 

 for S. enterica, demonstrating a moderate monotonicity between the colony 

number of the partnering species and the lag time of individual colonies of the focal 

species. Together, these data delineated that the lag time of individual bacterial colonies 

relies upon the cross-feeding species within a small neighborhood. Thus, the metabolic 

interdependency (due to cross-feeding) together with spatial structure allows the growth 

physiology of E. coli to be closely tied to that of S. enterica locally, resulting in a 

persistence-by-lag phenotype. As a result, Hypothesis 4 was supported.  

III.2. Mathematically Modeling Bacterial Colony Growth over Space and Time 

Finally, I tested whether the experimental data in Section III.1.5 can be recapitulated 

by my PDE model simulations of E. coli growth in both mono- and co-culture. To 

achieve this goal, I calculated the growth rate and lag time of individual bacterial 

colonies in my PDE model using the custom-designed code by fitting a log-linear 

Baranyi function on the growth curve as in Section II.1.3 (Fig. 3.7a). The distributions of 

E. coli growth rate and lag time and were compared between monoculture and coculture 

r

ρ r

ρ

r ≈ 1.8 r ≈ 1.2

ρ −0.34 −0.51 −0.42

−0.67
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(Fig. 3.7b). I found a larger variation in the growth curve trajectories in mutualistic 

culture than in monoculture (Fig. 3.7a). I further analyzed those variations by looking at 

the statistical distribution of the growth rate and lag time in 3 simulations with 

independent initial spatial seeding of E. coli. I found that E. coli had a higher average 

growth rate in monoculture than in coculture (One-way ANOVA, p<0.001), and the 

coculture growth rates are more widely distributed than monoculture ones (One-Way 

ANOVA, p=0.0471). Similarly, the average lag time is longer in coculture than in 

monoculture (One-way ANOVA, p=0.000796), and CV is higher in coculture as well 

(One-way ANOVA, p=0.0096), supporting experimental observation of the persistence-

by-lag phenotype. 
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Figure 3.7. Growth of Individual E. coli Colonies in PDE Simulations. a Growth curves of E. coli 
colonies that were initially seeded onto a 1-dimension line. The colonies grew by accumulating biomass 
but did not undergo range expansion. Different growth curves were observed between mono- and the 
mutualistic co-culture. b Each individual colony’s growth rate and lag time were calculated by fitting a 
log-linear Baranyi equation to the growth curves in a, and the distribution of these two factors were 
plotted separately. The CV of 3 independent simulations was calculated and plotted in the inset figures.



Importantly, the simulation data here demonstrated that even though the maximum 

E. coli growth rate, , was identical in the PDEs for mono- and co-culture, the effective 

growth rates were different between the two conditions. Furthermore, even though the lag 

phase of E. coli was not taken into account in the PDEs, the elongated lag phase in 

coculture was an emergent property that appeared in my simulation results. Together, all 

these data in the mathematical modeling claimed that the combination between metabolic 

interdependency and spatial structure on agar was sufficient to produce a heightened 

antibiotic persistence in coculture. 

rE
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CHAPTER IV: DISCUSSIONS & CONCLUSIONS 

IV.1. Thesis Conclusions 

In this thesis work, I investigated whether antibiotic persistence was modulated by 

cross-feeding in a synthetic obligate mutualism of E. coli and S. enterica. I found that 

when grown on nitrocellulose membranes on agar, E. coli had a ~100-fold higher 

antibiotic persister frequency in mutualistic coculture with S. enterica than in 

monoculture. However, this heightened antibiotic persistence in E. coli was absent when 

the co-culture was tested in liquid medium or when the mutualism was broken on agar 

through methionine supplementation. Furthermore, slowing E. coli growth rate in 

monoculture by lowering the temperature did not change antibiotic tolerance or 

persistence. Together, these results showed that the presence of S. enterica alone nor the 

decreased average growth rate were sufficient to cause the heightened antibiotic 

persistence on agar.  

To further characterize the growth physiology of E. coli at a sub-population level, I 

directly studied the growth rate and lag phase duration of E. coli experimentally at a 

single-colony resolution, and designed a PDE-based mathematical model to simulate E. 

coli growth physiology. Both of these methods demonstrated that cross-feeding on a 

surface increased the variation in growth rate and lag time, as well as increasing the 

average lag time. These results suggested that the spatial structure of E. coli-S. enterica 

community on the nitrocellulose membrane regulates antibiotic persistence levels in E. 

coli by increasing heterogeneity among cells. 
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IV.2. Antibiotic Persistence in A Bigger (Spatially-Structured) Picture 

IV.2.1. Spatial Structure & Cross-Feeding Increased Phenotypic Heterogeneity 

My work has potential implications for antibiotic persistence research, microbial 

ecology, and clinical microbiology. First, my work demonstrated that the combination of 

cross-feeding and spatial structure serves as a new mechanism contributing to phenotypic 

heterogeneity. While many known mechanisms (as reviewed in Section I.2) can 

contribute to phenotypic heterogeneity, few ecological mechanisms were proposed. 

Relatively few laboratory studies have investigated the impact of interspecies interactions 

or spatial structure on heterogeneity in bacterial systems. Clearly, my discoveries here 

point out the importance of both spatial ecology and interspecies interactions to antibiotic 

persistence. This result has some similarities to the work by Adamowicz et al. (2018), 

which showed that cross-feeding can impact AMR; however, in that study, the effect held 

both in liquid and on agar plates. In comparison, the effect of cross-feeding on antibiotic 

persistence was only visible in the presence of spatial structure. This differential effect of 

cross-feeding on agar and in shaken liquid medium supported the significance of cell-to-

cell phenotypic heterogeneity in antibiotic persistence, which was heightened by 

localization of interspecies interactions among cells (Chacón et al., 2018). Together, my 

work calls for studies to consider the impact of cell-to-cell variability on microbial 

community function (Holyoak & Wetzel, 2020). 

Furthermore, my work laid important groundwork to further investigate the relative 

contribution of variability in (1) growth rate and (2) lag time to antibiotic persistence. 
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Focusing first on growth rates, my work found that a high variability in growth rate—but 

not a significantly lower average value alone—is correlated with the heightened 

antibiotic persistence in E. coli on coculture agar. Interestingly, this finding emphasized 

the important distinction of antibiotic killing responses of bacteria in the presence or 

absence of spatial structure. A recent review by Ronneau et al. (2021) argued that 

antibiotic persistence can be linked to a bimodal distribution of growth rates. In contrast, 

while I observed a heightened variance in growth rate I did not observe bimodality. This 

disagreement may exist because analysis of single-cell or single-colony physiology can 

only deal with a limited number of cells (<200) before the cells occupy the entire 

microscopic view (Levin-Reisman et al., 2010) or before colonies grow into each other. 

The persister fraction is definitely smaller than the detection limit (1/200 = 0.5%) in 

single-cell or single-colony studies, making it difficult to understand the driving force of 

antibiotic persistence.  

On the other hand, my growth rate results agreed with a simpler, threshold-based 

understanding of antibiotic persistence (Rotem et al., 2010). Both my experimental (Fig. 

3.5a) and modeling (Fig. 3.7b) data revealed that with spatial structure, the fraction of 

cells below a given growth rate threshold was higher in coculture than in monoculture. 

My work showed that spatial microbial ecology is a unique mechanism contributing to 

the growth rate heterogeneity in E. coli, underlying antibiotic persistence.  

My second major discovery was that the combination of spatial structure and cross-

feeding caused both high average and high variance in lag time. Results from my PDE 
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model that only considered nutrient consumption in bacterial growth revealed the 

increased average and CV in lag time as an emergent property. This result is unique 

compared to recent research (e.g. Kaplan et al., 2021) that had to incorporate lag times 

into their mathematical model. My work suggested that the spatial heterogeneity and 

metabolic dependency (cross-feeding) together made the local growth environment more 

important than in the shaken liquid condition. Therefore, E. coli with longer lag time 

heterogeneity can appear as an emergent property in the spatially-structured cross-feeding 

community. 

Yet, an unanswered question is whether the heterogeneity in growth rate or lag time 

effects were the leading cause of antibiotic persistence. A review (Brauner et al., 2016) 

seems to suggest that persistence-by lag and persistence-by-slow-growth mechanisms are 

mutually exclusive. My observations of both challenged this perspective. In the 

Limitations & Future Directions Section (Section IV.3), I propose future experiments to 

determine the relative contribution of the two mechanisms in isolation and together.  

IV.2.2. Mutualism-Stability Relationship: Insights from Microbial Communities 

My work also has implications in understanding the highly debated relationship 

between mutualism and the stability of ecological communities. While much evidence 

(especially mathematical theories) showed that mutualisms can destabilize ecological 

communities (May, 1972; May, 2001; Allesina & Tang, 2012; Suweis et al., 2013; Coyte 

et al., 2015), others provided contrasting evidence by emphasizing the stabilizing effect 

of mutualism (Mougi & Kondoh, 2012; Rohr et al., 2014; Qian & Akçay, 2020; Stone, 
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2020; Hale et al., 2020). Settling this debate can close a huge knowledge gap in general 

ecology, and can also contribute to microbial ecology research. An aspiring goal in 

microbial ecology is to engineer natural or synthetic microbial communities to “improve 

human health, agricultural productivity, and climate management”—an effort termed 

“microbiome engineering” (Albright et al., 2022). A better understanding of the role that 

mutualism plays in community stability can help assess whether mutualisms should be 

incorporated in microbiome engineering as previously proposed (Kehe et al., 2021).  

Here, I argue that the spatially-structured microbial community setup in my research 

takes advantage of the well-domesticated synthetic microbial mutualism (Harcombe et 

al., 2014) and so is well-posed to provide further experimental evidence to the debate 

above. My experimental setup can get around the many limitations in existing studies so 

far. First, a shared limitation of most studies on this mutualism-community stability 

relationship is their ignorance on the spatial structure of ecological communities, and the 

effect of spatial heterogeneity in ecological processes still remains relatively under-

studied (Sutherland et al., 2013). Second, most studies reviewed here are theoretical in 

nature and controlled experiments can be difficult to conduct with macro-ecological 

communities. In comparison, my experimental setup with microbial communities allows 

for easy manipulation of species/strain numbers and complexity of interactions (as seen 

in Hammarlund et al., 2021).  

To help settle this aforementioned debate, I can study the stability of E. coli 

populations in the cross-feeding coculture and in monoculture with the ampicillin 
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perturbation. Stability of an ecological system can be measured by two features of the 

system: its ecological resistance and ecological resilience (Pimm, 1984). Ecological 

resistance refers to the degree to which the system state (i.e. population size) is changed 

following a perturbation (i.e. ampicillin), whereas ecological resilience measures how 

fast the system state returns to its equilibrium after the perturbation (Pimm, 1984). In the 

context of my research, the size of the survived E. coli population after ampicillin 

treatment measured its ecological resistance, while the time it takes for the E. coli 

survivors of ampicillin to grow to the pre-treatment population size would measure its 

resilience (Angeler et al., 2018).  

My results so far allowed me to conclude that spatial structure and cross-feeding 

together led to higher ecological resistance of E. coli to the ampicillin perturbation than 

in monoculture. In essence, spatial structure plays an essential role in this heightened 

ecological resistance due to cross-feeding, which supports the mutualism-stability 

relationship in the context of microbial communities. Evidently, existing studies 

assuming spatial homogeneity of ecological communities in their analyses may have 

overlooked the role of spatial heterogeneity in the mutualism-stability relationship. In 

particular, my research revealed a mechanism that may be unique to bacterial systems, 

where the combination of cross-feeding and spatial structure contributes to higher 

phenotypic diversity in growth physiology. However, whether this mechanism is 

important in other communities should be further explored. For example, growth 

physiology of partners in the plant-pollinator mutualism (Hale et al., 2020) may be 
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drastically different compared to my study, where nutrient diffusion plays a large role in 

determining growth in the cross-feeding microbial community. Finally, results in my 

thesis cannot be compared with those in Adamowicz et al. (2018) in the context of 

ecological resistance. The usage of antibiotics in that study was hardly equivalent to an 

“ecological perturbation” as the antibiotic was not necessarily at dosages high enough to 

perturb population size through mechanisms such as killing.  

On the other hand, my current research cannot answer whether resilience was 

affected by the cross-feeding mutualism in the presence of spatial structure. The time it 

takes for the ampicillin survivors in E. coli to grow back to their pre-treatment population 

densities in mono- and co-culture has not been assessed yet. Despite the higher E. coli 

survival to ampicillin in the cross-feeding coculture than in monoculture, E. coli grows 

more slowly in coculture with S. enterica than in monoculture. Thus, whether the higher 

survival in coculture can compensate for slower growth remains an interesting question to 

answer. Answers to this question will also contribute to our understanding of the 

microbial mutualism’s stability in antibiotic perturbations. This study of ecological 

resilience can be further evaluated on an evolutionary time scale (Chomicki et al., 2019), 

with an evolution experiment including cyclical exposure to ampicillin-high and -free 

agar (See future directions in Section IV.3). A deeper question to answer there is whether 

ecological resilience can be maintained over evolutionary cycles.  

IV.2.3. Spatial Structure in Polymicrobial Infections in Clinics 

Furthermore, my work calls for clinical treatments that take into account spatial 
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structure of the infection sites. Recent clinical studies in infectious disease began to 

evaluate interspecies interactions among pathogens (Akala et al., 2021) and between the 

pathogen and other co-present microbial species (de Vos et al., 2017). However, the 

complex spatial structure of microbial communities such as biofilms will make it difficult 

to consider spatial heterogeneity. It has long been known that biofilms in multi-species 

communities can increase antibiotic tolerance (Burmølle et al., 2006). More alarmingly to 

the clinical treatment of antibiotics, my work showed that the combination of spatial 

structure and cross-feeding was sufficient to increase antibiotic persistence in the 

microbial community. With the high prevalence of positive interactions such as cross-

feeding in clinically-relevant bacteria (Flynn et al., 2016; de Vos et al., 2017), the 

antibiotic persistence levels of these polymicrobial infections may be much higher than 

previously thought. 

Finally, my work implies that cross-feeding may decrease the time needed to evolve 

for antimicrobial resistance (AMR). Previous in vitro (Levin-Reisman et al., 2017) and 

clinical (Liu et al., 2020) studies with high-concentration, short-termed antibiotic 

challenges all showed that higher antibiotic tolerance against antimicrobial agents yielded 

faster evolutionary rate towards antimicrobial resistance, because the higher survival rate 

gave the bacterial pathogen more opportunities to accumulate AMR mutations. My work 

clearly found that with spatial structure, there was a higher survival rate of E. coli after 5-

hour till 24-hour antibiotic treatment in the cross-feeding coculture than in monoculture. 

This increased antibiotic persistence may likely yield faster AMR evolutions, potentially 
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causing a bigger problem in treating persistent infections. This intuition clearly contrasts 

a recent study (Adamowicz et al., 2020) that found a faster evolution rate for AMR in E. 

coli in monoculture than in the cross-feeding coculture when cells were evolved along 

gradients of antibiotics. However, that study did not include cyclical exposure to high- 

and low-concentration antibiotics (See Literature Review in Chapter I), and therefore the 

bacteria were likely to be affected by changes in antibiotic tolerance or persistence. 

IV.3. Limitations & Future Directions 

One important unanswered question within the scope of my study is what the 

relative contribution is between the variation in lag time and in growth rate on agar 

surfaces. Future work will be done to vary either one of the factors and assess antibiotic 

persistence that way. For example, to only perturb lag phase durations, I can starve E. coli 

alone for a few days (Kaplan et al., 2021) before subjecting them to antibiotic treatment 

on monoculture agar. My prediction is that while the lag time mean and variation of 

individual E. coli will be significantly affected, their growth rates will not.  

Second, a large limitation with my single-colony measurement of growth rate and 

lag time on agar surfaces is the extremely low density of bacterial cells (Density: ~2.55 

cells/cm2), which is ~  of that on my nitrocellulose membrane setups. While this low 

density does not lead to a problem in monoculture (Levin-Reisman et al., 2010) due to 

nutrient supplementation in agar, it will amplify the spatial effect for the cross-feeding 

coculture. Now, I am preparing to set up experiments on agarose pads for time-lapsed 

microscopy analysis in the near future. With a GFP-labeling plasmid that can assess real-

10−5
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time metabolism in bacteria (Wang et al., 2017; Deng et al., 2021), I will use the 

microscopy experiment to acquire measurements on single-cell growth physiology (now 

for growth rate, lag time, and metabolic rate) at a cell density similar to that in my 

nitrocellulose membrane setting. Meanwhile, further mathematical modeling is still 

necessary because it can simplify our understanding of what exactly about spatial 

structure that led to heightened antibiotic persistence in the cross-feeding coculture. With 

other parameters been unchanged, I can vary diffusion rates, initial density, or species 

ratios at the initial time, respectively, in order to evaluate the relative contribution of each 

factor.  

Furthermore, I will consider spatiotemporal evolutionary dynamics (Chomicki et al., 

2019) of E. coli in the cross-feeding coculture and in monoculture on surfaces. Evolution 

experiments to evolve for survival against antibiotic perturbations will be completed on 

agar as in previous liquid experiment (Fridman et al., 2014). In particular, the ampicillin 

treatment on nitrocellulose membranes will last long enough such that only 10~20 cells 

survive and form individual colonies. This setup will allow for isolation of each single 

colony, which can be isolated and grown on new nitrocellulose membranes with the 

spatial configuration from the previous cycle. In doing so, I will be able to track the 

spatial and evolutionary dynamics of E. coli isolates that are tolerant against antibiotic 

killing whether interspecies interactions are present or not. The time it takes for the 

survived colonies to grow back to the cell density pre-treatment can also help me 

compare the ecological resilience of bacterial systems between co- and mono-culture. 
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Table S1. Summary of the Genetic and Biochemical Mechanisms of Antibiotic Resistance.

Genetic Mechanisms: Mechanisms on how AMR is gained

Type Definition/Explanation Example

Intrinsic 
resistance

Resistance is present due to some innate trait of 
the bacteria independent of drug selective 
pressures and is not a result of horizontal gene 
transfer (Thiede, 2019). 

All Gram-positive bacteria are resistant to 
aztreonam, which only binds well with the 
protein-binding protein 3 (PBP3) of Gram-
negative bacteria (Rittenbury, 1990).

Mutational 
resistance

Resistance is gained when cells are exposed to 
antibiotics and a subset of bacteria gain 
mutations that affect the antibiotic activity. 
Cells with resistant mutations against 
antibiotics can grow in antibiotics and dominate 
the population.

E. coli evolved in sub-MIC concentrations of 
ampicillin gain mutations that raise its MIC 
(Adamowicz et al., 2020). 

Horizontal gene 
transfer-based 
resistance

Resistance is gained when a cell gets in contact 
with other cells that carry resistant mutations, 
and acquire that mutations through horizon 
gene transfer, a mechanism that allows for 
DNA to be transferred between bacteria.

Quinolone-resistance in pathogenic 
Enterobacteriaceae is attributed to 
qnrA genes, which were found to be original 
to the marine/freshwater species, Shewanella 
algae (Poirel et al., 2005).

Biochemical Mechanisms: Mechanisms on how the AMR genes result in the resistant phenotype

Type Definition/Explanation Example

Modification of 
the antibiotic 
molecule

Cells deactivate the antibiotics by changing the 
chemical structure of the antibiotics by, say, 
producing antibiotic-cleaving enzymes.

Beta-lactamases are known to cleave the beta-
lactam ring in the beta-lactam antibiotics (e.g. 
penicillin).

Blocking 
antibiotics from 
reaching targets

Cells prevent antibiotics from interacting with 
their targets to limit their activity.

Increased efflux pump TolC expression in E. 
coli can pump piperacillin out of the cell 
(Tamer et al., 2021).

Modification/
bypass of 
antibiotic target

Cells modify the target of the antibiotics to 
lower effective drug-target binding or make 
drug-target binding unable to disturb the normal 
cellular activity. 

Mutations in the rpoB gene—the gene that 
encodes the beta subunit of the RNA 
polymerase (RNAP)—can lower affinity of 
rifampin for the RNAP but maintain RNAP’s 
catalytic activity (Floss & Yu, 2005).



Appendix II. Supplementary Mathematical Analysis 

AII.1. Nondimensionalization of the PDE Model 

First, I non-dimensionalize the PDE systems in Eqs. [1~2] by defining ,

, , , , , , , , , 

and  for . Here, I let  ,  unit of distance, and  

cell unit per mL (as in Hammarlund et al., 2021). Therefore, the non-dimensionalized, 

cross-feeding system in Eq. [1], becomes: 
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The boundary conditions become: 
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becomes: 

, [A2a] 

, [A2b] 

, [A2c] 

with similar boundary conditions: 

 at , for . [A2d] 

AII.2. A Lack of Turing Pattern in the Two Population PDE Models 

One question of mathematical interest is whether ecological systems can self-

organize to form spatial patterns (Liu et al., 2013). One self-organized spatial pattern is 

the Turing pattern (Turing, 1952), which is a pattern of stripes and spots that arise 

naturally and autonomously from a homogeneous, uniform state. Example systems 

showing Turing patterns include mussel populations (Liu et al., 2013) and the 

combination of sand termites and perennial grasses in southwestern Africa (Tarnita et al., 

2017). Here, I study whether the cross-feeding system in our E. coli-S. enterica 

community can demonstrate Turing patterns in the concentration of the cross-fed 

nutrients.  

Proposition 1: The system in Eq. [A1] does not produce Turing patterns regarding local 

densities of the cross-fed nutrient,  and . 

Proof:  First, I aim to find a steady state for the spatially uniform system by setting 
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. At a steady state, I can write Eq. [A1a] as: 

, [A3a] 

where 

. [A3b] 

Because the steady state only makes biological sense if it is non-trivial, I must not have 

 with  denoting the steady state solution of variable . This means that  

  must hold with  

. [A3c] 

Therefore, I must have . Given that we are interested in lactose being present in 

the environment, I let . This means that . It is clear that these two 

terms do not interact with each other at all at steady states, so no Turing patterns can exist 

for these two variables.  

AII.3. Parametrization of the PDE Model 

Variables in Eqs. [1~2] take values in Table S2. At the initial time point ( ), 

twenty locations were selected randomly on the 1D line to seed biomass of E. coli (and S. 

enterica, if in the mutualism model). In the mutualism model, the initial biomass was set 

to be  and  for E. coli and S. enterica, 
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respectively, at locations  or . On the entire 1D line, initial lactose was set to be 

, methionine and acetate was seeded at  and 

 for all . Similarly in the monoculture model, I had 

 as initial E. coli biomass in 20 randomly selected locations. No 

acetate or S. enterica was present in the model. The initial lactose and methionine 

concentrations were  for all . 

xi xj

L (t = 0,x) = 1000∀x M (t = 0,x) = 0.01

A (t = 0,x) = 0.01 x

E (t = 0,xi) = 100

L (t = 0,x) = M (t = 0,x) = 1000 x

Page  of 80 86



 

Page  of 81 86

Parameter Unit Value Biological Interpretation Source

Arbitrary unit of 
distance 1 Unit of space. Definition

Arbitrary unit of 
time 1 Unit of time. Definition

Arbitrary unit of 
distance 5 Total size of the 1-dimension 

modeling canvas. Definition

Cell unit/mL -
E. coli, S. enterica, methionine, 
acetate, and lactose, 
respectively.

Definition; Hammarlund et 
al. (2021)

0.01 Diffusion constant of 
methionine.

Estimated based on 
Chacón et al. (2018)

0.05 Diffusion constants of the 
acetate and lactose sugars.

Estimated based on 
Chacón et al. (2018)

Unitless 1.56 Production rate of methionine 
by S. enterica.

Hammarlund et al. (2021); 
adjusted with unpublished 
laboratory data

Unitless 1.01 Production rate of acetate by E. 
coli.

Hammarlund et al. (2021); 
adjusted with unpublished 
laboratory data

0.1 E. coli consumption rate of 
methionine.

Hammarlund et al. (2021); 
adjusted with unpublished 
laboratory data

1.0 E. coli consumption rate of 
lactose.

Hammarlund et al. (2021); 
adjusted with unpublished 
laboratory data

1 S. enterica consumption rate of 
acetate.

Hammarlund et al. (2021); 
adjusted with unpublished 
laboratory data

1 E. coli maximum growth rate. Hammarlund et al. (2021)

0.5 S. enterica maximum growth 
rate. Hammarlund et al. (2021)

Cell unit/mL 1
Half-saturation methionine, 
acetate, lactose concentration 
for bacterial growth.

Hammarlund et al. (2021); 
adjusted for simplicity

5E-09
Natural decay rate of E. coli, S. 
enterica, methionine, acetate, 
and lactose.

Estimated and adjusted for 
simplicity
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Table S2. Parameters Used in the PDE Model.



Appendix III. Supplementary Result Figures 

AIII.1. Indole Production on Nitrocellulose Membranes 

 

Figure S1. E. coli’s Indole Production Does not Differ between Monoculture and Mutualistic 
Coculture on Surfaces. Indole concentration per E. coli cell was measured on the nitrocellulose 
membrane setup as in Section II.1.4 for all E. coli. E. coli CFU was then used to calculate indole 
production per cell. The production of indole over 2 hour ampicillin-free incubation was not different 
between mono- and co-culture with S. enterica (One-way ANOVA, p=0.9918). Error bars denote standard 
deviation of 3 biologically independent trials. NS: no significance, p>0.05.
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AIII.2. Antibiotic Killing Response in Liquid and on Surfaces 
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Figure S2. E. coli Growth Rate in Shaken Liquid Hypho Medium. Grow rate of E. coli was measured 
in log-phase in liquid Hypho minimum medium by tracking the constitutively-expressed CFP signal level 
over time. The E. coli growth rate is affected by cross-feeding (Two-way ANOVA, F[1]=1071.1, 
p=8.29e-10), temperature (Two-way ANOVA, F[1]= 923.6, p=1.49e-9), and the interaction between the 
two factors (Two-way ANOVA, F[1]= 303.1, p=1.21e-7). Specifically, E. coli grows much faster in 
monoculture than in the cross-feeding coculture when the growth temperature is the same (Two-way 
ANOVA; Tukey’s HSD p<1e-8 for 37 oC; Tukey’s HSD p=0.0000218 for 30 oC). Also, E. coli expectedly 
grows faster at higher temperatures in the same ecological condition (Two-way ANOVA; Tukey’s HSD 
p<1e-8 for monoculture; Tukey’s HSD p=7.44e-5 for the cross-feeding coculture). Interestingly, the E. 
coli growth rate in the cross-feeding coculture at 37 oC is not significantly different from its counterpart 
in monoculture at 30 oC (Two-way ANOVA, Tukey’s HSD p=0.4050). This growth rate trend matches 
that on agar (Fig. 3.4b). Error bars denote standard deviation of 3 biologically independent trials. NS: no 
significance, p>0.05.
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Figure S3. E. coli Response to Ampicillin Killing on Surfaces (a) and in Shaken Liquid (b). a 
Antibiotic tolerance of E. coli is associated with temperature (Two-way ANOVA, p=0.0238) alone, but 
not cross-feeding alone (Two-way ANOVA, p=0.4430) nor the interaction between them (Two-way 
ANOVA, p=0.7071). Persistence in E. coli showed a different trend. Persistence was associated with 
temperature (Two-way ANOVA, p=0.00545) and cross-feeding (Two-way ANOVA, p=0.000154) 
separately, and the interaction between them (Two-way ANOVA, p=0.00177). However, the antibiotic 
persistence measurement, MDK99.99, depends on antibiotic tolerance, MDK99. Thus, the statistically 
significant correlations here only suggest an inheritance of the effects on antibiotic tolerance. Persister 
frequency was barely correlated with temperature alone (Two-way ANOVA, p=0.0951), cross-feeding 
alone (Two-way ANOVA, p=0.0744), or the interaction between them (Two-way ANOVA, p=0.0948). b 
In liquid, temperature (Two-way ANOVA, p=8.82e-5) and cross-feeding (Two-way ANOVA, p=0.0458) 
separately had a significant impact on antibiotic tolerance, but not the interaction between the two factors 
(Two-way ANOVA, p=0.0561). Persistence in liquid could be explained by temperature (Two-way 
ANOVA, p=2.26e-5) and cross-feeding alone (Two-way ANOVA, p=0.00757), but barely by the 
interaction between them (Two-way ANOVA, p=0.0579). And the persister frequency could be explained 
by temperature (Two-way ANOVA, p=8.12e-05) and cross-feeding alone (Two-way ANOVA, 
p=0.00156), and by the interaction between them (Two-way ANOVA, p=0.00753). Error bars denote 
standard deviation of 3 biologically independent trials. NS: no significance, p>0.05. *: statistically 
significant, p<0.05.
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Figure S4. Correlation between Growth Rate of E. coli in Liquid Hypho Medium and Its Antibiotic 
Response in (a) Liquid and (b) on Nitrocellulose Membranes. Each dot was a single data point. A 
linear line was fitted between growth rate and antibiotic tolerance, persistence, and persister fraction. 
Note that the linear fit on the persister fraction data looked curvy because the y-axis was log-transformed. 
a In liquid, there was a significant correlation for tolerance (Adjusted R2=0.317, p=0.0331), persistence 
(Adjusted R2=0.4425, p=0.0109), and persister frequency (Adjusted R2=0.381, p=0.0193). b On surfaces, 
there was only a significant correlation for tolerance (Adjusted R2=0.2971, p=0.0388), but not for 
persistence (Adjusted R2=0.09125, p=0.178) or persister frequency (Adjusted R2=-0.0436, p=0.515). 
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Figure S5. Little Correlation between Growth Rate and Appearance Time (i.e. Lag Time) of E. coli 
on Surfaces. Each line was a linear line of best fit between appearance time and lag time of each E. coli 
colony on the mutualistic coculture agar (Adjusted R2=-0.012, p=0.6614) and on the monoculture agar 
(Adjusted R2=-0.00348, p=0.5826).
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