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Abstract

Manual protocols to predict the number, size, and location of cancerous lesions in the

prostate using imaging data are highly dependent on reader experience and exper-

tise. Existing computer-aided voxel-wise classifiers do not directly provide estimates

of lesion boundaries, which are clinically important. Spatial partitioning methods es-

timate boundaries separating regions of local stationarity in spatially registered data,

but existing methods are inadequate for the application of lesion detection because the

boundaries are restricted to be linear or piecewise linear. We first introduce a novel

Bayesian functional spatial partitioning method (BFSP-1) which estimates the parti-

tioning boundary around an anomalous region of data with a distinct distribution or

spatial process. Our algorithm transitions between a fixed Cartesian and a moving po-

lar coordinate system to model the boundary with functional estimation tools. Using

adaptive Metropolis-Hastings, the BFSP-1 algorithm simultaneously estimates the par-

titioning boundaries and the parameters of the spatial distributions within each region.

BFSP-1 assumes the data contain one and only one anomalous region. To create a

more clinically useful tool, we build upon our original boundary estimation framework

and propose BFSP-M for multiple region discovery. This method uses reversible jump

Markov chain Monte Carlo to jointly estimate the number of lesions, their boundaries,

and their distinct spatial processes. Finally, we discuss BFSP-3D, which extends the

BFSP framework to three dimensions. Through simulation, we show that our methods

are robust to the shape of the target zone and region-specific spatial processes. Our

methods prove to be a clinically useful tool for automatic boundary drawing of cancerous

lesions using non-invasive prostate imaging data.
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Chapter 1

Introduction

Prostate cancer (PCa) remains a leading cause of cancer death in American men. In fact,

in 2022 there will be an estimated 268,490 new cases of PCa and 34,500 deaths [3]. The

burden of PCa is not equally distributed by race. Black men in America have a two-fold

higher mortality rate as compared to their White counterparts [3]. Screening techniques

offer the opportunity to reduce morbidity and mortality from PCa [4]. Currently, the

most widely used modality is serum prostate-specific antigen (PSA) testing. However,

PSA testing continues to have low positive and negative predictive value. This leads to

unnecessary invasive prostate biopsy, while missing PCa in other patients [5].

Multiparametric MRI (mpMRI), a combination of several imaging parameters, has

an increasingly important role in early detection of PCa [6]. MpMRI includes T2-

weighted (T2w) MRI, diffusion-weighted imaging (DWI), dynamic contrast-enhanced

MRI (DCE-MRI), and MR spectroscopy (MRS). Across several studies, sensitivity for

detecting PCa was generally high (5/8 studies found sensitivity exceeding 90%). How-

ever, negative predictive value (NPV) is more clinically important than sensitivity. The

NPV asnwers, “In a patient with a negative MRI, can we be confident that no significant

prostate cancer is present?”. MRI guided biopsy, where a targetable lesion is identified,

has much higher NPV (96.9%) than standard transrectal ultrasound guided biopsy [7].

The diagnostic performance of mpMRI depends on reader skill and experience. At-

tempts to measure the NPV of mpMRI have come to differing conclusions based on

the expertise of the study radiologists [6]. Computer aided diagnosis (CAD) systems

aim to automate the process of lesion detection and thereby improve the accuracy and

1
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consistency of diagnosis and detection [8]. CAD systems can make a clinical decision

quickly, effectively, and reliably. Further, CAD systems have been shown to match or

exceed the ability of experienced observers to detect cancer [9]. Recent developments in

CAD systems include accounting for differences in cancer probability between anatomi-

cal regions of the prostate and modeling spatial correlations of the imaging parameters

[10].

Previously, our group developed a voxel-wise classifier for prostate cancer using

mpMRI data [1, 10], but an additional step is needed to translate the voxel-wise clas-

sifications into lesions for clinical practice [11]. Our goal is to partition the prostate

and flag the cancerous lesion or lesions using the voxel-wise probabilities from Jin et

al. [1], which are derived from the non-invasive mpMRI imaging data. Compared to

traditional imaging analysis of voxel-wise cancer classification, lesion detection is more

interpretable and meaningful in clinical practice.

The voxel-wise probabilities exhibit strong spatial autocorrelation and non-stationarity,

complicating possible modeling strategies. Spatial autocorrelation is the phenomenon

where measurements taken at nearby locations tend to be more similar than measure-

ments taken far apart. Statistical methods applied to imaging data often ignore this

autocorrelation. This type of model misspecification can lead to poor results in terms

of false positives and false negatives, a phenomenon that was identified in the landmark

paper by Eklund et al. [12]. When the mean or covariance is not constant across a

space, we say the data exhibit spatial non-stationarity. In the mpMRI data and in turn

the voxel-wise probability maps, the areas of cancer exhibit distinct properties, most

noticeably a raised mean surface. Our methods leverage these properties by searching

the image for the optimal boundaries separating the two (or more) distinct areas of the

prostate. Thus the problem of lesion detection is equivalent to estimating the boundary

curves or surfaces that partition the image into contiguous regions of homogeneous or

stationary spatial processes.

Techniques for lesion detection generally fall into one of three categories: clustering,

partitioning, or boundary/edge detection. Examples of clustering include k-means, and

mixed models. In the context of voxel-wise probabilities, these algorithms assign clus-

ter memberships by thresholding the voxel-wise probabilities. Some clustering methods

account for the spatial nature of the data and encourage spatial contiguity [13, 14, 15].



3

However, none of these methods ensure perfect spatial contiguity. Spatial partitioning

methods find the optimal set of boundaries that divide the data into spatially contiguous

groups of similar observations. The simplest example are Regression and Classification

Trees (CART). Spatial partitioning methods have also been widely developed to model

spatial correlations [16, 17, 18]. Existing methods in this space generate strictly linear

or piecewise linear boundaries which are insufficient for the problem of lesion detection,

in which boundaries are smooth. Boundary and edge detection methods detect discon-

tinuities in voxel intensity. Existing methods may not produce a closed boundary [19]

or may not properly address the spatial correlations in the data [20]. Our proposed

method enjoys the advantages of existing spatial partitioning methods and boundary

detection methods.

We aim to partition the prostate with one or more closed boundaries into contiguous

and disjoint regions with distinct mean surface and covariance structure in order to

identify regions of tissue which are likely cancerous. Although our motivations are

specific, our goal is to develop methods that have wide applicability. Our methods can

be applied to 2D or 3D non-stationary spatial data to identify anomalous regions or “hot

spots”. Possible applications include structural parcellation of the brain, prostate, or

other tissues based on imaging data and identification of elevated risk regions in disease

mapping.

In Chapter 2 we introduce our novel spatial partitioning method for spatial data ex-

hibiting exactly one anomalous region or “hot spot”, BFSP-1. We develop a boundary

estimation technique utilizing functional estimation tools that can be generalized for

estimating boundaries with varying shape and smoothness. We assume distinct spatial

distributions in each resulting partition and estimate those distributions simultaneously

with the boundary parameters using Metropolis Hasting. Uncertainty of the boundary

can be easily visualised with 95% point wise credible bands. A simulation study provides

evidence that BFSP-1 can locate and estimate boundaries of varying shape, separating

“hot spots” from noisy background data. In application to prostate imaging data con-

taining exactly one cancerous lesion, BFSP-1 outperforms competing clustering, image

segmentation, and boundary detection methods.

Our work in Chapter 3 is motivated to overcome a major drawback of BFSP-1. In

practice, prostate imaging data may contain more than one cancerous region or no cancer
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at all. We develop BFSP-M to fill this gap. BFSP-M uses Reversible Jump MCMC

to jointly estimate the number of lesions, their boundaries, and their distinct spatial

distributions. In addition to boundary uncertainty, we can quantify lesion uncertainty,

i.e., how certain we are that each identified lesion is distinct from the surrounding

healthy tissue. Our novel approaches for displaying uncertainty are more clinically

relevant than voxel-level uncertainty, as we illustrate in the data analysis. BFSP-M

uses the same boundary estimation technique as BFSP-1. Simulation studies show that

BFSP-M is accurate in identifying the true number of lesions whether there are multiple

or no lesions present.

Most existing lesion detection methods analyze one slice of mpMRI data at a time.

We hypothesize that leveraging a patient’s entire 3D dataset will improve the accuracy

of lesion detection methods. In Chapter 4, we present BFSP-3D, a method to spatially

partition 3D imaging data. We expand upon the methods developed in Chapter 2 to

model a 2D boundary surface which partitions the image into an inner anomalous volume

and its surrounding area. Uncertainty can be visualized with 95% pointwise credible

surfaces. In simulation, BFSP-3D can estimate simulated volumes more accurately than

competing methods. In application to 3D voxel-wise probabilities, our method provides

a clinically useful presentation of cancer lesion location, shape, and volume.

Chapter 5 provides a discussion of previous chapters and avenues for future work.



Chapter 2

Bayesian Functional Spatial

Partitioning for Single Lesion

Detection

2.1 Introduction

Spatial partitioning is used to separate a spatially registered region of data into non-

overlapping regions of local homogeneity or stationarity. Spatial partitioning estimates

cluster membership by searching the (x, y) plane for a set of boundaries that maximizes

the observed differences between zones. Decision tree methods are the simplest approach

to spatial partitioning. The Classification and Regression Tree (CART) algorithm is

the most widely used [21]. The CART algorithm is binary recursive; the split which

maximizes the reduction in impurity is chosen, the data set is split and the process is

repeated. In the 2D variable space, CART partitions the data into strictly rectangular

zones.

Current methods can jointly estimate the partitions and spatial processes within each

partition via a Bayesian approach. These methods have proven useful in modeling soil

permeability [16], NASA simulations of a proposed rocket booster [17], and ozone data

[18]. Further developments have utilized spatial partitioning models to reveal anomalies

or “hot spots” to identify regions of heightened childhood cancer risk in Florida [22].

5
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The method by Kim et al. [16] creates a Voronoi tesselation of the space by proposing

centers and assigning each data point to its nearest center. This method provides

added flexibility over treed methods as its partitioning boundaries are not restricted to

be perpendicular to the axes. However, this method makes a strong assumption that

spatial locations are classified to the nearest center. The method by Gramacy et al.

[17] divides the space as in the CART algorithm to create regions of spatial stationarity.

Konomi et al. [18] further developed this method using covariance approximations for

more efficient computation with large datasets. In these methods, zones created by

the partitions are assumed to follow stationary Gaussian processes. The partitioning

boundaries estimated by these methods are strictly linear and lack the flexibility to

detect arbitrarily shaped regions.

Our goal is to develop a spatial partitioning method that creates contiguous regions

of an arbitrary shape that can be applied to any non-stationary spatial data to identify

anomalous regions or “hot spots”. Possible applications include structural parcellation

of the brain, prostate, or other tissues based on imaging data and identification of

elevated risk regions in disease mapping. We are specifically motivated by the desire

to detect prostate cancer using multi-parametric magnetic resonance imaging (mpMRI)

data from Metzger et al. [2].

Previously, our group developed a voxel-wise classifier for prostate cancer using these

data [1], but an additional step is needed to translate the voxel-wise classifications into

lesions for clinical practice [11]. Our goal is to partition the prostate and identify the

cancerous lesion. The cancer lesion can be thought of as an anomalous contiguous

region with a distinct spatial process within the healthy tissue separated by a closed

boundary curve. Thus the problem of lesion detection is equivalent to estimating the

boundary curve that partitions the image into contiguous regions of homogeneous spatial

processes. Compared to traditional imaging analysis of voxel-wise cancer classification,

lesion detection is more interpretable and meaningful in clinical practice.

Simple thresholding techniques fail to identify the entire lesion, while also identifying

spurious lesions. Existing clustering, segmentation, and boundary detection methods

are popular in the domain field of MRI but are inadequate for our specific motivat-

ing problem. Ensemble tree methods such as Boosted trees [23] and Bootstrapped or

Bagged trees [24] are constructed using multiple decision trees. Tree ensembles tend
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to have higher classification accuracy but are difficult to interpret Voxel-wise clustering

methods such as K-means [25] and K-medoids [26] can create a partition of a 2D space

by assigning cluster membership at each location, but they fail to create contiguous

zones. Mixture models assign each data point with probabilities of belonging to each

cluster and have been adapted to account for spatially registered data. The mixture

methods by Shao et al. [13] and Xiong et al. [14] model spatial data via Markov Ran-

dom Fields. The R-package bayesImageS offers computationally efficient methods to

fit gaussian mixtures with spatial contiguity encouraged by a hidden Potts model [15].

Contiguous regions are not guaranteed by these methods. Boundary or edge detec-

tion methods search for points at which the data changes sharply. One such method,

Bayesian areal wombling, identifies a set of edges that separate areas with high dissimi-

larity [19]. Bayesian areal wombling may not produce fully connected boundaries. The

boundary detection method, “BayesBD”, by Li at. al. [27] identifies a smooth and con-

nected boundary but assumes no presence of spatial correlation in the data and assumes

that the boundary center is known and fixed. Misspecification of the boundary center

can result in poor performance. Convolutional neural networks (CNNs) are widely used

in segmenting medical imaging data from MRI but require large sets of training data

and may not lead to spatially contiguous clusters [28]. Further, deep learning methods

lack interpretability and do not quantify the uncertainty in the results.

In this paper, we propose a novel Bayesian functional spatial partitioning (BFSP)

method which estimates the closed curve surrounding a contiguous target zone with a

distinct spatial process. Our method utilizes transitions between the fixed Cartesian

coordinate system of the image space and a moving polar coordinate system to estimate

the boundary using a Fourier-based functional approximation. The BFSP algorithm es-

timates the boundary and spatial parameters jointly through a Bayesian Markov chain

Monte Carlo (MCMC) framework which allows for quantification of uncertainty in the

boundary via point-wise credible bands. To our knowledge no method exists which

jointly models spatial correlated data and guarantees spatially contiguous clusters via

boundary detection. Although our motivating application is segmentation of MRI im-

ages, our method offers a general statistical framework for modeling non-stationary

spatial data by a novel partitioning method. The functional tools implemented to de-

tect boundaries of spatial correlation structures can be extended to 3D, longitudinal,
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and/or multivariate spatial data analysis. In simulations, BFSP performs well, with

the flexibility to detect irregularly shaped regions with high sensitivity and specificity

compared to existing competing methods. An application to the data from Metzger et

al. [2] and Jin et al. [1] illustrates the flexibility to identify cancerous lesions in the

prostate using mpMRI.

The remainder of the paper is organized as follows. We introduce our novel method

for functional spatial partitioning, discuss Bayesian modeling of the underlying spatial

process, and discuss the computational implementation of our method in Section 2.2.

We evaluate the statistical properties of our method via simulation and compare its

performance to existing methods in Section 2.3. This is followed by an application of

our method to the data from Jin et al. [1] in Section 2.4. Finally, we conclude with a

discussion and suggest future extensions in Section 2.5.

2.2 Methods

Let Z(s) indicate a scalar variable that is observed at location s = (x, y) ∈ D, where

D is a region in R2. Let s = (s1, ...sn) and Z = (Z(s1), ..., Z(sn)) denote a set of

locations within the region D and the corresponding set of observations. We assume

that D can be partitioned into a contiguous target region D1 and an outer region D0

by a closed boundary curve B, such that n = n0 + n1. Let s0 and s1 be the vectors of

spatial locations within regions D0 and D1 respectively, and Z0 and Z1 the vectors of

observed values at those locations. Let h(s) = 1 if s ∈ D1 and h(s) = 0 if s ∈ D0. We

further assume Z0 and Z1 follow different spatial processes. Our goal is to estimate

h = (h(s1), ..., h(sn)) by ĥ via finding the boundary B based on the likelihood of Z.

The target regions from our motivating data have irregular shapes. Our objective

is to estimate the boundary that partitions the data into two regions based on hetero-

geneity in the underlying spatial processes with minimal restrictions on the shape of the

target region. Our partitioning process utilizes functional tools for boundary estima-

tion in a moving polar coordinate system and is accomplished iteratively via MCMC to

jointly estimate the boundary and spatial parameters based on their posterior probabili-

ties given the data. Details on approximating the partitioning boundary are provided in

Section 2.2.1, details on modeling the spatial process within each partition is provided
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in Sections 2.2.2 and 2.2.3, and a computational overview is given in Section 2.2.4.

2.2.1 Modeling the partitioning boundary

Popular tree-based partitioning methods generate boundary curve, B, only in rect-

angular shapes as they partition space by horizontal or vertical segments iteratively.

However, this is a strong restriction that does not apply to general applications of non-

stationary spatial data. Here we consider the case of allowing the boundary curve to

be a smooth closed curve. Our proposed method can detect shapes in the star domain.

A region S is a star domain if there exists an x0 in S such that for all x in S the line

segment from x0 to x is in S.

A key feature of our method is that any partition of D is uniquely determined by

the separating boundary curve B around the contiguous target zone, D1. Given a point

c = (xc, yc) located at the center ofD1, the boundary curve can be modeled as a function

of an angle in a polar coordinate system centered at c: B = {s ∈ D : dc→s = fc(θs), θs ∈
[0, 2π]}, where dc→s is the distance between a point s to the polar center c, and θs is the

angle corresponding to s. Thus modeling the boundary curve is equivalent to estimating

the location c and function fc(θ).

Figure 2.1 illustrates the main idea of our method. For a given boundary curve, such

a polar function is not unique but determined by the location of the polar center. To

avoid identifiability problems in our Bayesian computation, we choose the polar center

to always be fixed at the centroid of the current estimate. As the boundary is being

updated, the centroid is updated as the mean of the spatial locations within D1, c ≡ s̄1.

In this way, the polar coordinate system is not fixed but moves with the centroid c as

it updates. Each spatial location s in the fixed Cartesian coordinates can be uniquely

defined in the polar coordinates by its angle θc(s) and distance dc(s) referenced to

current centroid c. At a given iteration, we classify s as within the target region if s is

within the boundary i.e. the distance dc(s) is less than the boundary curve at θc(s)

ĥ(s) =

1 if dc(s) ≤ f(θc(s))

0 if dc(s) > f(θc(s)).

We model f using the Fourier approximation.
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Figure 2.1: An example of how spatial locations are assigned given a boundary. A
boundary B is shown in black. s = (x, y) is a spatial location, c = (xc, yc) is the centroid
at the current iteration, θ is the angle between s and c, and f(θ) is the magnitude of
the boundary at θ. In this example, s is categorized as outside the target region: the
distance from s to c is greater than f(θ).
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f (θc(s)) ≈ b0 +
K∑
k=1

{b1,k sin(kθc(s)) + b2,k cos(kθc(s))} for 0 ≤ θc(s) ≤ 2π,

where b0, b1 = {b1,1, · · · , b1,K}, b2 = {b2,1, · · · , b2,K} are coefficients for the Fourier basis

series in the sine-cosine form to be estimated and K is a fixed positive integer. The

Fourier approximation ensures a smooth and closed curve, i.e. f(0) ≡ f(2π). This

allows the target region D1 to be flexible in size and shape. The use of a Fourier series

to develop periodic regression models has been proposed previously [29, 30], but using

this approach to develop partitioning boundaries is novel. The function f() may also

be modeled by any periodic basis function satisfying f(0) = f(2π) to produce smooth,

jagged, or straight edged boundary curves. In Section 2.3 we display the results of BFSP

with the fourier basis specified above alongside results produced with periodic B-splines.

To our knowledge, our method is the first to use functional tools in modeling a boundary

to partition a region of non-stationary spatial data. This novel implementation expands

the scope of applicability of spatial partitioning to general non-stationary spatial process

data that is composed of homogeneous regions of arbitrary shapes.

A higher value ofK will produce a boundary that captures fine detail whereas a lower

value of K will produce a smoother boundary. We choose K to balance the desired level

of smoothness, detail, and computational efficiency. Through simulation we determined

that K = 5 can approximate shapes well with reasonable computational speed. In other

applications, the user may specify the value of K based on desired smoothness of the

boundary. We found that increasing K did not result in better DIC values for our data,

see Figure A.1.

In the Markov Chain Monte Carlo (MCMC) computation of our Bayesian model,

we update b = [b0, b1, b2] and corresponding boundary curve B using the Metropolis

Hastings (MH) algorithm. The probability for accepting a proposed boundary is pro-

portional to the ratio of the likelihood of the data given the proposed boundary to the

likelihood of the data given the previous boundary. Computation details are provided

in Section 2.2.4.
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2.2.2 Spatial Modeling

The estimation of the spatial distributions within each region happens jointly with the

estimation of the boundary. Given a current estimate of c and fc(·), we can partition the

space into D1 = {s ∈ D : dc(s) ≤ fc(θc(s)), θc(s) ∈ [0, 2π)} and D0 = {s ∈ D : dc(s) >

fc(θc(s)), θc(s) ∈ [0, 2π)}. In each region we assume a distinct stationary distribution.

Zj |c, fc(·) ∼ N(µj + ξj , τ
2Inj )

ξj ∼ N(0, σ2
jHj),

where µj is the mean specific to region j, and ξj is the vector of spatial random effects

that follows a region-specific Gaussian distribution with covariance σ2Hj . τ2 is the

variance for non-spatial random errors common to both regions.

In a Bayesian framework, we encourage spatial smoothness within each region using

the proper conditional autoregression (CAR) prior for ξj ’s distribution. This leads

to a valid marginal likelihood of data and can be used to efficiently approximate many

spatial processes [31]. Our method can be implemented with various assumed covariance

structures (see Figure A.2). However, we choose CAR as it is computationally efficient

and approximates the Gaussian process well enough as demonstrated by our simulation

and imaging data analysis. With specification of a CAR prior on the spatial random

effects ξj , we have

Hj = (Inj − ρjWj)
−1,

where Wii′ is the inverse Euclidian distance between locations si and si′ and I is the

n × n identity matrix. We set the value of ρj to be 0.99 encourage a strong spatial

correlation for each region [32] and avoid large matrix inversions in estimation. We

show via simulation that our method is robust to any sensible value of ρ (see Figure

A.3).

2.2.3 Prior specification

Let Φ = {(µ0, µ1),σ
2 = (σ2

0, σ
2
1), τ

2, b, c} be all of the parameters of the Gaussian

distributions and boundary curve. The polar center c is the centroid of the target
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region, the location of which is assumed to be uniform over the space domain D. We

assign the following prior for Φ assuming independence of the parameters:

π(Φ) = π(τ2)π(µ)π(σ2)π(b)

= π(τ2)π(µ0)π(µ1 − µ0)π(σ
2)π(b0)π(b1)π(b2)

Without prior information, we assign vague priors for all the parameters in the

boundary function and spatial parameters. Specifically, we assign vague normal priors

N(0, 100) to all basis coefficients in b except for b0, which we assign a uniform prior

covering zero to the approximate radius of the entire image space D as b0 controls the

approximate radius of the boundary. This encourages f(θ) to be positive and ensures

that the area within the closed boundary does not greatly exceed the entire space

of interest. Since the approximate radius of D is guaranteed to be larger than the

approximate radius of the target region, results are not sensitive to choice of upper

bound of the uniform prior. We assign the mean of the outer region a vague normal

prior. The difference in means between the target region and the outer region is assumed

to follow a vague half-normal prior because we have prior information that the mean of

the anomalous region is elevated as compared to its complement. This can be modified

for other applications. All variance parameters are assigned vague inverse Gamma priors

IG(.1, .1). To prevent the boundary from extending beyond the entire space of interest

(specified by the user) we set a prior on B, π(B), which equals 0 if any points in B lie

outside the space of interest and 1 if not.

2.2.4 Bayesian Computation

MCMC algorithm

Model fitting is completed iteratively via MCMC. At each iteration a new set of bound-

ary parameters and distribution parameters are proposed. They are accepted with

probability determined by the ratio of the posterior probability of the proposed param-

eters to the posterior probability of the current parameters. For a partition of the data

ĥ, we can calculate the joint posterior probability of the boundary parameters and the
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distribution parameters by the marginal likelihood times the prior.

π(Φ|Z) ∝ L(Z|Φ)π(Φ),

where π(Φ) is given in Section 2.2.3 and the form of L(Z|Φ) will be discussed in Section

2.2.4.

Due to the complex nature of our partitioning method, we use adaptive MCMC to

aid in convergence as we sample from the posterior [33]. Adaptive measures allow for

adjustment of the proposal density based on the acceptance ratio. Let Ψ = Φ \ c be the

set of parameters to update via MCMC. Ψ is blocked into 3 blocks: Ψ1 = {µ0, σ
2
0, τ

2},
Ψ2 = {µ1, σ

2
1}, Ψ3 = {b0, b1}, and Ψ4 = {b2}. After initialization the generating

algorithm is as follows: For m = 1, 2, 3:

1. Draw Ψ∗
m at iteration t from the proposal density Qt(Ψ

∗
m|Ψm)

2. Accept Ψ∗
m with probability α = min

(
1, π(Ψ

∗|Z)
π(Ψ|Z)

)
3. Update c∗ to be the centroid of the shape defined by Ψ and c.

4. Update b based on new centroid c∗ by solving d(Bt, c
∗) = Xc∗b for b where

d(Bt, c
∗) is n × 1 vector of distances between the boundary points Bt and new

centroid c∗ and Xc∗ is the n× (2+1K) matrix of basis functions referenced to c∗.

The proposal density Qi(Ψ
∗
m|Ψm) is determined by the iteration number t and is based

on an example from Roberts et al. [33].

Qt(Ψ
∗
m|Ψm) ∼ Nd(Ψm, (.1)2Id/d) for t < 50

Qt(Ψ
∗
m|Ψm) ∼ (1− γ)Nd(Ψm, exp(lmt)Σmt) + γNd(Ψm, (.1)2Id/d) for t ≥ 50,

where d is the dimension of Ψm, γ is a small positive constant (we set γ = .01), and

Σmt is the empirical estimate of the covariance structure of the target distribution at

iteration t based on the run so far. lmt controls the step-size of the proposal distribution

and is adjusted to achieve the desired acceptance rate of about 40% every 20 iterations

by either adding or subtracting 0.1 to the previous value for ln. The final partition is

defined by the posterior mean of the all parameters after discarding samples from the

burn-in period.
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Marginal Likelihood Approximation

For a given partition of the data, we can calculate the marginal likelihood as

L(Z|Φ) = L(Z0|Φ)L(Z1|Φ), (2.1)

where the distribution of Zj is assumed to follow a multivariate Normal distribution

N(µj , τ
2Inj + σ2

jHj), j = 0, 1 as in Section 2.2.2. Fitting the likelihood for the above

model with large n is infeasible due to the time requirements of calculating the determi-

nant and inverse of the covariance matrices. To further increase the computational effi-

ciency of our method we assume a sparse covariance matrix by multiplying the assumed

covariance matrix by a tapering kernel Cν(si, si′). Tapered covariances are commonly

used to analyze large spatial datasets as they allow for sparse matrix algorithms. The

tapering kernel must be a positive definite matrix such that the covariance between two

spatial locations becomes zero after a given distance. The Wendland family of tapered

covariance functions [34] are widely used. We assume the form of

Cν(si, si′) =

(
1− h

ν

)4

+

(
1 + 4

h

ν

)
,

where h = ||si−si′ || and we fix ν = .1. This yields our approximation of the covariance:

Σj = σ2
jHj ⊙ Tj + τ2Inj ,

where H is a CAR correlation matrix, Tj is the nj × nj matrix with the (i, i′)-th entry

Cν(si, si′).

Posterior Boundary Uncertainty

A 95% point-wise credible band can be computed to visually display the posterior

uncertainty of the boundary estimate. The MCMC samples require post processing

due to the centroid not being fixed post burn-in. First, the average centroid, cT , is

computed using the post burn-in samples. Then, for each bt, t = 1, ..., T where T is the

total number of post burn-in samples, we compute the boundary parameters corrected
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to centroid cT , bt,cT , by solving:

d(Bt, cT ) = XcT bt,cT

for bcT where d(Bt, cT ) is an n× 1 vector of distances between boundary points Bt and

cT , and XcT is the n × 2K + 1 matrix of basis functions where θ is measured to cT .

Then we can compute the vector f t,cT via:

f t,cT = Xbt,cT

where X is a 200× 2K +1 vector of basis functions based on 200 equally spaced angles

between 0 and 2π.

The 95% credible bands can be estimated with the corrected boundary functions

f t,cT referenced to cT as in Syring at. al. [20]. For all, t = 1, ..., T MCMC samples post

burn-in, we compute.

ut = sup
θ
{|ft,cT (θ)− f̂cT (θ)|/ŝ(θ)},

where f̂cT (θ) and ŝ(θ) are the posterior mean and standard deviations of {ft,cT (θ)}Tt=1.

The 95% credible interval for f(θ) is given by:

[f̂cT (θ)− Lŝ(θ), f̂cT (θ) + Lŝ(θ)],

where L is the 95th percentile of the ut’s. See Figure A.4 for an example 95% point-wise

credible band for a simulated dataset

2.3 Simulation Study

We evaluate the classification accuracy and statistical properties of BFSP in comparison

to competing partitioning methods through simulations. On a 50x50 regular grid we

divide the area into a target region and an outer region. The target region is either

square, triangular, or heart shaped. We model each of the two distinct areas with inde-

pendent Gaussian processes with Matérn covariance structures. To test the robustness
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of our method across different situations we vary the smoothness of the target region,

ν1, and the spatial nugget parameter, τ2. For 3 different shapes we randomly generate

50 spatial data sets for each of the following settings.

1. Strong spatial correlation with low noise: ν1 = 1.5, τ2 = .1

2. Weak spatial correlation with low noise: ν1 = .5, τ2 = .1

3. Strong spatial correlation with moderate noise: ν1 = 1.5, τ2 = .5

4. Weak spatial correlation with moderate noise: ν1 = .5, τ2 = .5

The performance of BFSP and the competing partitioning methods are evaluated in

terms of sensitivity, specificity, and the Dice coefficient which measures overall similarity

of two partitions. Further details about the simulation settings and evaluation methods

are provided in Section A.1.

We present the results of BFSP on simulated data as specified in Section 2.2. The

MCMC chain is initialized by setting the centroid at the center of the entire space D,

the partitioning boundary to be a large circle, the means of the Gaussian processes at

-1 and 1, and the variance parameters at 1. We collect 50,000 iterations and discard

the first 10,000 based on convergence of the boundary points B. We also present the

results of BFSP using a spline basis for specifying the boundary function. [35].

We compare the results of BFSP to four competing methods. The first two, K-means

(KM) with 2 clusters using the function kmeans() from the R Stats package [36] and

classification trees (CART) using R package “tree” [37], are basic clustering methods

that do not account for spatial correlations in the data. We also compare BFSP to two

image segmentation methods, BayesBD [27] using the R-package “BayesBD” [20] and

BayesImageS [15] using R-package “bayesImageS” [38] function mcmcPotts(). BayesBD

partitions the space using a single connected boundary while BayesImageS is a voxel-

wise classifier that encourages contiguous clusters. Details on the implementation of the

competing methods are provided in Section A.1.

Figure 2.2 shows the distributions of the sensitivity, specificity, and Dice coefficient

for detecting the target zone across 600 simulated datasets (50 for each of the 12 set-

tings). Figure 2.2 shows that while spatial partitioning methods CART and BayesBD

suffer from low sensitivity and voxel-wise method KM tends to have low specificity,
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Figure 2.2: Distributions of sensitivity, specificity, and Dice coefficient of BFSP, BFSP
Spline, CART, KM, BayesBD, and BayesImageS over all 600 simulated data sets.

BFSP maintains both high sensitivity and specificity in our simulated data. The per-

formance of BFSP and BFSP Spline are similar to the performace of BayesImages in

all measures of accuracy. On average, BFSP and BFSP Spline achieve sensitivity of

0.951 and 0.952, respectively, and specificity of 0.965 and 0.947 respectively. Further,

BFSP and BFSP Spline achieve a strong average Dice coefficient of 0.876 and 0.840,

respectively.

The mean and standard deviation of sensitivity, specificity, and Dice score for BFSP

and competing methods are provided for each of the 12 unique settings for a heart

shaped region in Table 2.1. Tables providing full results for square and triangular

shaped regions are provided in Tables A.1, and A.2. Our method is robust to varying

spatial smoothness and shape of the target region. Average sensitivity never falls below

89% and average specificity is at least 96% for all simulation settings. BFSP performs

best on estimating square and heart-shaped target regions. Our algorithm has more

difficulty capturing a triangular shaped region due to its sharp angles, but maintains

average Dice coefficient of at least 0.81 over all settings.
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Figure 2.3: From top to bottom: average partitioning results of the BFSP, BFSP Spline,
KM, CART, BayesBD, and BayesImageS methods in the simulation study. Each image
represents 50 simulations of the same setting. The color represents the proportion of
time the method classified each spatial location as within the target region. The black
outline shows the true boundary.
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To visualize the average classification performance we display results of 50 simula-

tions for each of the 12 settings by averaging the estimated cluster memberships ĥ based

on the estimated partitions. Figure 2.3 presents the probability that each voxel was in-

cluded in the target region for 3 of the 12 settings for BFSP, BFSP Spline, CART, KM,

BayesBD, and BayesImageS. The BFSP methods results in a high contrast in color be-

tween the two regions for the three pictured scenarios, indicating both a high sensitivity

in the target zone detection and high specificity of the outer region. KM consistently

identifies the target region, but does not guarantee spatial contiguity of the regions and

thus random locations in the outer region are incorrectly assigned to the target region

resulting in low specificity as seen in Figure 2.2 and Table 2.1. CART and BayesBD

tend to detect a region that is smaller than the target region, explaining the low sen-

sitivity seen in Figure 2.2 and Table 2.1. Because these methods do not account for

spatial smoothness in the data, they fail to properly identify the entire target region of

interest. BayesImageS performs well at identifying the entirety of the target region but

often identifies spurious outer groups of voxels.

2.4 Data Analysis

Metzger et al. [2] present a unique set of data of men who received an MRI study prior

to prostatectomy as definitive treatment for prostate cancer. After surgery, the removed

prostates were sectioned following strict protocols allowing the prostate to be sectioned

in planes that matched in vivo imaging. The sectioned prostates were made into slides

and digitized allowing the study pathologist to annotate and label the regions of cancer

thus identifying the extent and Gleason score of each region. These labeled regions

were then co-registered to the in vivo imaging data thus creating the ground truth for

disease through which the models were trained and validated. The process of pathologic

correlation and registration are detailed in Kalavagunta et al. [39]. The mpMRI data

are composed of 34 prostate slices, obtained from 34 patients, with 2098 to 5756 voxels

per slice.

Previously our group developed a voxel-wise prediction model for prostate cancer

using the mpMRI data detailed above. The goal of this analysis is to further develop

a pipeline from imaging to lesion detection using non-invasive methods. Using the
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predictive model from Jin et al. [1], we aim to identify the cancerous lesion within

the prostate using our method. We specifically apply our partitioning method to the

results of the “mcoord” classifier which models the mpMRI parameters and cancer risk

by voxel coordinates and outputs a probability heatmap with values between 0 and 1.

Our aim is to translate a heatmap of cancer probabilities into a contiguous region of

cancer. First we filtered out slices which contained multiple cancerous lesions or little

to no healthy tissue. Then we selected the 6 slices for which the voxel-wise classifier of

Jin et al. [1] was most successful at predicting the true voxel-wise cancer status. This

allows us to focus on the performance of our segmentation relative to the ground truth,

whereas an application for which the underlying voxel-wise classifier is misaligned with

the ground truth will result in misaligned segmentation regardless of the performance

of our method. We calculate true and false positive and negative rates using the true

cancer status of each voxel to measure accuracy.

We compare BFSP to competing clustering methods CART and KM and compet-

ing image segmentation methods BayesBD and BayesImageS. We initialize BFSP with

µ0 = −1, µ1 = 1, all variance parameters set to 1, and initial boundary set to be a

circle centered at the spatial location with the highest probability. We collect 30,000

iterations and discard the first 10,000 based on convergence of the boundary points B.

For BayesBD we set the center to be the spatial location with the highest probability.

We also found the optimal threshold based on ROC analysis and present the resulting

cluster memberships of the optimal threshold.

The results of lesion detection for three images by BFSP, CART, KM, BayesBD, and

BayesImages are displayed in Figure 2.4. The drawbacks of tree-based partitions are

clear. The linear boundaries created by CART are not reasonable for these data, which

contain non-rectangular shaped regions of heightened risk. KM identifies spurious extra

regions because it is not constrained to identify contiguous areas. Both methods suffer

from their inability to account for spatial smoothness in the data. BayesBD can fail to

identify the entire cancerous region for the same reason. BayesImageS and Thresholding

also find spurious regions of interest but tend to identify the entire cancerous region quite

well.

Over all 6 slices, BFSP achieves average sensitivity of 0.840 with standard deviation

of 0.108 and average specificity of 0.946 with standard deviation 0.026. The average
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Figure 2.4: From left to right: Map of voxelwise predicted cancer probabilities from
four sample slices [1], true cancer status, partitioning results from BFSP, CART, KM,
BayesBD, BayesImageS, and Thresholding.
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dice coefficient was 0.726 indicating good overlap with the true cancerous lesions. The

standard deviation of the dice coefficient was 0.153.

2.5 Discussion

We propose a flexible Bayesian functional spatial partitioning method. A key advantage

of our method is the ability to detect arbitrarily shaped regions, as compared to existing

methods, which are either limited in their ability to detect non-standard shapes or that

do not detect contiguous regions. Our method outperforms competing alternatives in

our simulation study, maintaining high levels of sensitivity and specificity in detecting

anomalous regions across varying levels of spatial smoothness and noise. We have shown

that our method closely approximates the true cancerous lesion boundary in prostate

cancer imaging data.

This research was motivated by the desire to identify prostate cancer lesions non-

invasively using MRI data. There are previously developed voxel-wise classifiers for

prostate cancer using MRI, but an additional step is needed to translate these into le-

sions for clinical practice. Prostate cancer lesions are contiguous and irregularly shaped

and display spatial smoothness, which prevented the direct application of existing spa-

tial partitioning methods. Our proposed method addresses all limitations and is a

general approach to spatial partitioning. It results in flexible boundaries, which are

more realistic than polygons with straight line boundaries in most cases.

The modeling of spatial heterogeneity and correlation structure in imaging statis-

tics is critically important. BFSP uses novel functional tools to detect boundaries which

separate regions of spatial homogeneity. In general, misspecification of correlation struc-

ture can lead to very poor results in terms of false positives and false negatives. This

phenomenon was identified in the landmark paper by Eklund et al. [40]. In our own

simulation study and data analysis, competing methods which ignore the heterogeneous

spatial correlation structures exhibited poor performance. BFSP and BayesImageS con-

sistently achieved better results due to correct specification of the spatial correlation

structure of the data.

Although our method shows promise, several limitations still exist. First, our

method is not as successful at estimating boundaries for regions that contain sharp
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angles. To improve this, we could increase the number of Fourier bases at the expense

of computation time or use a different set of basis functions. However, in our application

cancerous lesions tend to be smooth so this is not needed. Second, due to the complex

nature of the partitioning boundary estimation our method may be inefficient, especially

on very large data sets. To address this inefficiency we use covariance approximation

methods that significantly speed up computation.

As with any Bayesian model with a complex posterior distribution, achieving con-

vergence within a reasonable amount of time is challenging. To address this, we chose

to assume a simple and sparse form for the covariance structure within each estimated

partition. This allows computational efficiency while assuming some degree of spatial

smoothness. In simulation and data analysis we have shown our method’s utility de-

spite these assumptions. To further increase the efficiency of our algorithm we use an

adaptive sampling scheme to aid in the convergence of the MCMC chain. Our method

takes an average of 5.5 hours to run the full 50,000 iterations in the simulated data.

Convergence on the target region typically happens quickly regardless of initial values.
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Table 2.1: Results of BFSP and competing methods in simulated data. Mean and
SD of sensitivity, specificity, and Dice coefficient for each simulation setting referenced
in Section 2.3 for a heart shaped target region where ν1 and τ2 are parameters of the
simulated Gaussian processes.

Sensitivity Specificity Dice

ν1 τ2 Method Mean (SD) Mean (SD) Mean (SD)

0.5 0.1 BFSP 0.966 (0.072) 0.962 (0.048) 0.877 (0.11)
BFSP Spline 0.975 (0.039) 0.938 (0.084) 0.84 (0.152)

CART 0.592 (0.269) 0.989 (0.008) 0.664 (0.249)
KM 0.98 (0.016) 0.768 (0.067) 0.548 (0.077)

BayesBD 0.691 (0.181) 0.996 (0.006) 0.791 (0.123)
BayesImageS 0.985 (0.025) 0.922 (0.123) 0.824 (0.159)

0.5 0.5 BFSP 0.976 (0.029) 0.97 (0.042) 0.903 (0.097)
BFSP Spline 0.975 (0.025) 0.958 (0.062) 0.88 (0.127)

CART 0.686 (0.191) 0.985 (0.015) 0.747 (0.154)
KM 0.974 (0.014) 0.734 (0.055) 0.507 (0.054)

BayesBD 0.749 (0.2) 0.992 (0.011) 0.814 (0.129)
BayesImageS 0.98 (0.024) 0.938 (0.14) 0.875 (0.169)

1.5 0.1 BFSP 0.971 (0.044) 0.963 (0.048) 0.883 (0.107)
BFSP Spline 0.972 (0.037) 0.958 (0.061) 0.877 (0.128)

CART 0.521 (0.249) 0.992 (0.006) 0.619 (0.242)
KM 0.989 (0.022) 0.78 (0.085) 0.571 (0.102)

BayesBD 0.621 (0.224) 0.997 (0.005) 0.732 (0.164)
BayesImageS 0.979 (0.035) 0.926 (0.157) 0.852 (0.175)

1.5 0.5 BFSP 0.946 (0.075) 0.974 (0.028) 0.893 (0.087)
BFSP Spline 0.941 (0.116) 0.966 (0.052) 0.877 (0.141)

CART 0.587 (0.244) 0.986 (0.015) 0.665 (0.217)
KM 0.973 (0.028) 0.729 (0.078) 0.508 (0.082)

BayesBD 0.666 (0.174) 0.996 (0.006) 0.773 (0.123)
BayesImageS 0.966 (0.045) 0.912 (0.207) 0.852 (0.202)



Chapter 3

Bayesian Functional Spatial

Partitioning for Multiple Lesion

Discovery

3.1 Introduction

Multiparametric magnetic resonance imaging (mpMRI), a combination of MRI images,

has improved diagnostic accuracy for detecting prostate cancer compared to previous

methods [41]. Computer-aided diagnostic (CAD) systems to estimate voxel-wise can-

cer probabilities based on mpMRI features continue to be developed and evaluated

[9]. Previously, our group developed fully automated voxel-wise classifiers that account

for regional heterogeneity in the prostate and spatial dependence in the data without

the need for manual segmentation [1, 10]. While these models can guide clinicians in

locating approximate areas with high probability of cancer, an additional step to trans-

late probabilities into lesions is needed for use in clinical practice. Besides estimating

location and size, correctly identifying the number of cancerous lesions is important,

clinically [11].

Previously we developed Bayesian Functional Spatial Partitioning, re-named as

BFSP-1, a boundary detection method for spatially correlated data exhibiting a sin-

gle anomalous region [42]. This method proved to be successful when applied to data

26
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derived from mpMRI containing a single cancerous lesion. However, BFSP-1 is not

applicable when the data have zero more than one anomalous regions, which is common

in practice. As we show in our simulations, BFSP-1 may detect one or more separate

anomalous regions with a single partitioning boundary. This precludes applying BFSP-

1 repeatedly to one imaging slice containing multiple anomalous regions. Further, we

aim to estimate the uncertainty in both the number and location of lesion boundaries,

which BFSP-1 cannot do.

Estimating the true number of distinct groups, clusters, or lesions in a spatially ref-

erenced dataset is a challenging and largely unsolved problem in frequentist statistics.

Existing methods for estimating the true number of clusters tend to be ad-hoc or to

require unrealistic assumptions and complicated calculations [43, 44, 45]. Determin-

ing the optimal number of terminal nodes or partitions in a decision tree is similarly

challenging. Classification and regression trees (CART) [21] recursively split the data

until no additional split improves the homogeneity within the nodes. CART tends to

overestimate the number of nodes and often requires ad-hoc pruning methods to pre-

vent over-fitting [46]. Clustering methods using likelihood maximization do not provide

estimates of uncertainty in the number of clusters or cluster membership.

Bayesian modeling provides a straightforward framework for estimating the num-

ber of clusters and the uncertainty of the estimate. This is typically accomplished

via Bayesian mixture models that estimate voxel-wise cluster membership [47, 48, 49].

Product partition models, first introduced by Hartigan [50], create clusters using a prior

that takes the form of a product of cohesion functions. The cohesion function measures

how likely data points are to be clustered together. Page and Quintana [51] developed a

spatial version of the product partition model by making the cohesion a function of spa-

tial location. These methods may not lead to spatially disjoint clusters which is a major

drawback for our motivating problem. Kang et al.[52] developed a soft-thresholded

Gaussian process model to partition the brain in order to detect regions that are highly

predictive of alcoholism using EEG data. This regression method detects spatial regions

that are important on average across several patients and time points. We aim to detect

distinct regions from each patient’s imaging data. None of the above methods provide

estimates of boundaries or boundary uncertainty, which are of critical importance to

our clinicians.
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Bayesian random partitioning models can quantify uncertainty in the number and

locations of boundaries but existing methods are not well suited for our application.

Denison et al. [46] developed a Bayesian CART algorithm which provides insight into a

range of good trees of varying depth rather than returning a point estimate. They further

developed a Bayesian partition model for count data based on a Voronoi tessellation

in which centroids are proposed and data points are assigned to the nearest center

[53]. Chipman et al. [54] extended the Bayesian CART method by fitting hierarchical

linear models in each terminal node. The spatial partitioning methods by Gramacy

and Lee [17] and Konomi et al. [18] fit Gaussian processes (GPs) in the terminal nodes.

The method by Kim et al. [16] also uses Voronoi tessellation in which the tiles follow

distinct GPs. However, all of the above methods assume linear or piece-wise linear

partitioning boundaries. Prostate cancer lesions can be of any shape, rendering these

methods inadequate for our application. Our goal is to develop a fully automated lesion

detection pipeline that jointly estimates the number of lesions and their boundaries from

the mpMRI data using a Bayesian approach. This allows quantification of uncertainty

in both the number of lesions and their boundaries.

We propose BFSP-M, a general framework to identify and describe an unknown

number of arbitrarily shaped anomalous regions using boundary detection for spatially

registered data. BFSP-M utilizes separate moving polar systems for each lesion, within

which the boundary curves are estimated with functional approximation, and reversible

jump Markov chain Monte Carlo (RJ-MCMC) to explore parameter spaces of different

dimensions which vary with the number of lesions. In the same vein as Richardson and

Green [55], we develop four jump steps to add, subtract, split, and merge the lesion-

defining boundaries. They use jump proposals to add or subtract densities in a mixture

model, while our method defines proposals to add or subtract boundaries and updates

the corresponding boundary parameters. These moves efficiently avoid the local-trap

problem in our Bayesian spatial partitioning and ensure faster mixing and convergence

in estimating the number of lesions. Compared to machine learning methods for imag-

ing segmentation, our method allows estimation of uncertainty about the number of

lesions and each lesion boundary. Further, our method provides a statistical modeling

framework that allows extensions to multi-subject and/or longitudinal analysis of le-

sion status. We show through simulations that BFSP-M can detect multiple irregularly
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shaped regions with higher sensitivity and specificity compared to competing image

segmentation methods. An application to the data from Metzger et al. [2] and Jin et

al. [1] illustrates the flexibility to identify an unknown number of cancerous lesions of

arbitrary shape in the prostate using mpMRI. While our application is specific, this

method of partitioning is general and can be applied to any type of spatially related

data that contains anomalous areas within a larger homogeneous space.

The remainder of the paper is organized as follows. We introduce our novel Bayesian

model for functional spatial partitioning and discuss Bayesian modeling of the under-

lying spatial process in Section 3.2. We discuss the computational implementation of

our method via RJ-MCMC in Section 3.3. We evaluate the statistical properties of our

method via simulation and compare its performance to existing methods in Section 3.4.

This is followed by an application to the data from Jin et al. [1] in Section 3.5. Finally,

we conclude with a discussion and suggest future extensions in Section 3.6.

3.2 Model Specification

Let Z(s) indicate a scalar variable that is observed at location s = (x, y) ∈ D, where

D is a region in R2. In our application, we assume D to be a unit square. Let s =

(s1, ...sn) and Z = (Z(s1), ..., Z(sn)) denote a set of locations within the region D and

the corresponding set of observations. Assume some partition of the space, Pm, with

m ≥ 0 mutually exclusive contiguous regions, D1, .., Dm, all within D, with boundaries

B1, ..., Bm and D0 = D \D1 \ · · · \Dm. Let sj be the vector of spatial locations within

region Dj for j = 0, ...,m, and Zj the vector of observed values at those locations. We

assume each vector Zj follows a distinct distribution.

Our objective is to estimate the set of boundaries {B1, ..., Bm} that partitions the

data into multiple regions based on heterogeneity in the underlying spatial processes

with minimal restrictions on the shapes of the target regions. Estimation is accomplished

iteratively via RJ-MCMC to jointly estimate the number of target regions, the boundary

parameters, and the spatial parameters based on their posterior probabilities given the

data.

We aim to jointly estimate the partition with m regions and the parameters defining

that partition and the distinct distributions of each generated region, Φm = {ϕ0, ..., ϕm},
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given the data Z = {Z0, ...,Zm}. We assume the following hierarchical model:

π(Φm,m|Z) ∝ π(Z|Φm,m)π(Φm|m)π(m) (3.1)

π(Z|Φm,m) =

m∏
j=0

π(Zj |Φm) ∼
m∏
j=0

N(µj ,Σj)

π(Φm|m) =
m∏
j=0

π(ϕj)

π(m) =
1

Mmax −Mmin + 1

Section 3.2.1 discusses how a partition is defined by a set of boundaries, B1, ..., Bm.

In Section 3.2.2, we provide details about the likelihood π(Z|Φm,m). Details on the

form of π(Φm|m) and π(m) are provided in Section 3.2.3. Finally, details of Bayesian

computations are given in Section 3.3 including approximations to the likelihood in

3.3.3.

3.2.1 Defining a Partition

A partition of D with m boundaries B1, ..., Bm creates m + 1 regions D0, D1, ..., Dm.

In our motivating problem, D0 represents the healthy tissue and regions D1, ..., Dm

represent m non-overlapping cancerous regions. Given a point cj = (xcj , ycj ) located at

the centroid of Dj , the boundary curve of Dj can be uniquely modeled as a function of

an angle in a polar coordinate system centered at cj . We define the boundary Bj = {s ∈
D : dcj→s = fj(θs|cj), θs ∈ [0, 2π]}, where dc→s is the distance between a point s and

the polar center c, and θs is the angle corresponding to s. Thus modeling the boundary

curves is equivalent to estimating the locations of the cj and the functions fj(θ|cj) for
j = 1, ...,m. Each spatial location s can be assigned to a region by its distances dcj (s)

referenced to the centroids cj for j = 1, ...,m. See Figure 3.1 for an illustration of our

partitioning method. Boundaries are prevented from overlapping during the estimation

process by prohibiting acceptance of overlapping boundaries in the MCMC. See Section

3.3.2 for details.

The boundary functions are estimated by linear combination of K basis functions.
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For j = 1, ...,m:

fj
(
θcj (s)

)
≈

K∑
k=0

βjkhk
(
θcj (s)

)
for 0 ≤ θcj (s) ≤ 2π

where βj are coefficients to be estimated and h(·) are basis functions. The only

constraint on the choice of basis function is that h(·) must be periodic ensuring f(0) =

f(2π). In our previous work we showed that Fourier and spline basis functions work

well for our application [42]. While we use Fourier and spline basis functions for lesion

detection, wavelets can also be used to model bumpy boundary functions as long as they

satisfy the constraint. For the simulation and data analysis, we implement our method

with Fourier basis functions. This restricts the boundaries to be in the star domain.

A region S is in the star domain if there exists an x0 in S such that for all x in S the

line segment from x0 to x is in S. The parameter K corresponds to the level of detail in

the boundary. A lower value will produce a smoother boundary. In our previous work

we found that K = 5 was adequate for lesion detection in our data. However for other

applications, the value of K can be treated as an additional parameter and chosen by

cross-validation by the user.

3.2.2 Spatial Modeling

Estimation of the spatial process within each region occurs simultaneously with esti-

mation of the boundary. At each iteration, by transitioning back into Cartesian co-

ordinates we can classify s as within region Dj if s is within the boundary, i.e., the

distance dcj (s) is less than the boundary curve at θcj (s). Given a current estimate

of m regions with centroids cj and boundary functions fcj (·) for j = 1, ...,m, we can

partition the space into Dj = {s ∈ D : dcj (s) ≤ fcj (θcj (s)), θcj (s) ∈ [0, 2π)} and

D0 = {s ∈ D : s /∈ Dj∀j = 1, ...,m}. For a given partition of the data with m bound-

aries, we can calculate the likelihood as the product of m+ 1 independent likelihoods:

L(Z|Φm,m) =
∏m

j=0 L(Zj |Φm)

In each region we assume a distinct stationary Gaussian spatial process. For j =
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Figure 3.1: An example of how spatial locations are assigned given multiple boundaries.
Boundaries B1 and B2 are shown in black. s = (x, y) is a spatial location, c1 = (xc, yc)
is the centroid of B1 at the current iteration, θ1 is the angle between the horizontal
and the line from s to c1, and f(θ1) is the magnitude of the boundary at θ1. In this
example, s is categorized as within region D2 but not D1: the distance from s to c1 is
greater than f(θ1).

0, ...,m:

Zj |Φm ∼ N(µj + ξj , τ
2Inj )

ξj ∼ N(0, σ2
jHj)

where µj is the mean specific to region j, and ξj is the vector of spatial random effects

that follow a region-specific Gaussian distribution with covariance σ2
jHj . The variance

for non-spatial random errors, τ2, is assumed to be common to all regions.

We encourage spatial smoothness within each region by assuming an exponential

kernel.

Hj(si, s
′
i) = exp(−γri,i′)

where ri,i′ is the Euclidean distance and γ is the spatial decay parameter which is

assumed to be common to all regions. Other kernels can be specified. We chose the

exponential kernel due to its simplicity and its ability to approximate other types of
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spatial correlation structures well.

We marginalize over the spatial random effects and model the data in each region

by:

Zj |Φm ∼ N(µj ,Σj)

Σj = σ2
jHj + τ2Inj

In Section 3.3.3, we provide an approximation to this likelihood in order to increase

computational efficiency.

3.2.3 Prior Specification

LetΦm = {ϕ0, ϕ1, ..., ϕm} be all of the parameters describing a given partition Pm where

ϕ0 = {µ0, σ
2
0, τ

2} and ϕj = {µj , σ
2
j , βj , cj} for j = 1, ...,m. The joint prior π(Φm,m)

is equal to the product of the conditional π(Φm|m) and π(m). We specify a discrete

uniform prior between Mmin and Mmax for m. We allow Mmin to be 0 corresponding

to no lesions detected in the image slices.

π(m) =
1

Mmax −Mmin + 1

We assign the following prior for Φm given m assuming independence of the param-

eters:

π(Φm|m) =

m∏
j=0

π(ϕj)

= π(τ2)π(γ)π(µ0)π(σ
2
0)

m∏
j=1

π(µj − µ0)π(σ
2
j )π(βj)

Without prior information, we assign vague priors for all parameters in the boundary

functions and spatial processes. Specifically, we assign normal priors N(0, 1) to all basis

coefficients in βj except for βj0. This is a vague prior since βjk << βj0 for k = 1, ...,K

when the area of the entire region is standardized to be a 1 × 1 unit square. For βj0

which we assign a uniform prior covering zero to the approximate radius of D to ensure

that the area within the closed boundary does not greatly exceed the entire space of
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interest. We assign the mean of the outer region a vague normal prior N(0, 100). The

difference in means between a target region and the outer region is assumed to follow

a vague half-normal prior HN(0, 10) because we have prior information that the mean

of the anomalous region is elevated as compared to the rest of the space. This can be

modified for other applications. Following the advice of Banerjee et al. [32], we assign

vague priors for the variance parameters σ2 and τ2 and an informative prior for spatial

range parameter γ. Thus IG(.1, .1) is the prior used for σ2 and τ2 parameters and the

spatial range parameter γ follows G(3, .5). We specify a discrete uniform prior between

Mmin and Mmax for Pm. We allow Mmin to be 0 corresponding to no lesions detected

in the image slices.

3.3 Bayesian Computation via RJ-MCMC

Our proposed method uses the Bayesian paradigm to jointly model the number of lesions

and their boundaries. A varying number of target regions with correspondingly vary-

ing number of parameters necessitates jumping between parameter spaces of different

dimensions. The RJ-MCMC algorithm by Green [56] is an extension of the Metropolis

Hastings (MH) algorithm that allows movement between different dimensional spaces.

In the RJ-MCMC, we propose addition, deletion, splitting, and merging of bound-

aries and corresponding lesions to allow the chain to move between different partitions.

We refer to the addition of a new boundary as a “birth”, the deletion of an existing

boundary as a “death”. We also introduce the merging of two existing boundaries as a

“merge”, and the splitting of one existing boundary into two as a “split”. The “split”

and “merge” types of jump efficiently prevent the MCMC chain from being trapped in

local minima and thus greatly speed up mixing and convergence of spatial partitions.

With a specified probability, a birth, death, split, or merge is proposed and the current

boundary and distribution parameters are updated. Moves are automatically rejected

if they lead to overlapping boundaries. Adaptive MH is used to update the boundary

and GP parameters given the current number of regions.

Let m be the current number of regions in MCMC, which is between Mmin and

Mmax. We allow movements that increase or decrease the number of regions by one

at each iteration. The RJ-MCMC algorithm is composed of two steps: 1. propose a
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new partition with corresponding parameters, and 2. calculate the acceptance ratio

to determine whether to accept or reject the proposed move. Let Φm be all of the

parameters of a partition with m boundaries. RJ-MCMC uses two types of proposal

distributions.

• j(m′|m) is the model proposal. It defines the probability of switching from Pm to

Pm′ and must be reversible.

• q(v) is the auxiliary variable proposal distribution where v is used to match di-

mension between m and m′. In our case, for example, when a new boundary is

proposed, v contains the parameters defining that new boundary and GP.

RJ-MCMC also requires a mapping function hm,m′(Φm,v) which maps (Φm,v) to

(Φm′ ,v′). The function hm,m′ is a deterministic function and must be bijective so that

its inverse is well-defined. The acceptance ratio of a move from m to m′ boundaries is

given by

α{(Pm,Φm), (Pm′ ,Φm′)} = min{1, Am,m′(Φm,Φm′)}

where the ratio Am,m′(Φm,Φm′) is

Am,m′(Φm,Φm′) =
π(m′,Φm′ |Z)j(m′|m)q(v′|Φm′ ,m′)

π(m,Φm|Z)j(m|m′)q(v|Φm,m)

∣∣∣∣∂hm,m′(Φm,v)

∂(Φm,v)

∣∣∣∣
The joint posterior distribution is given by Equation 3.1. We set j(m+1|m) = j(m|m) =

j(m − 1|m) = 1/3 which ensures that at each iteration the chain is equally likely to

propose a jump to a higher dimension, a lower dimension, or stay at the same dimension.

All other moves have probability zero. When m = Mmax, j(m|m) = j(m− 1|m) = 1/2

and other moves have probability zero. When m = Mmin, j(m+ 1|m) = j(m|m) = 1/2

and other moves have probability zero.

If all proposed model parameters are generated via the proposal density q(), the

Jacobian is equal to 1. This will be the case for all proposed parameters except for

the σ2 terms. For the birth, split, and merge steps we propose log(σ2) because σ2 is

constrained to [0,+∞). In these cases, the Jacobian equals the product of proposed

variance parameters. See Section B.2 for a more detailed derivation of the Jacobian for

each type of jump.
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(a) Two boundaries before merge (b) Merged boundaries

(c) One boundary with random bisect-
ing line (dotted)

(d) Split boundaries

Figure 3.2: An illustration of the “split” and “merge” steps outlined in Section 3.3.1

Next, we define the proposal density for each type of move: birth, death, merge, and

split.

3.3.1 Jump Steps

Birth: The proposal of a new boundary includes the generation of a new boundary

function by proposing cm+1, βm+1 and defining the GP of the resulting new region by

µm+1, σ
2
m+1. The parameters of the outer region remain the same. The new parameters

are proposed via the proposal distribution qb(ϕm+1|Φm,m). The acceptance rate for a
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proposed birth is given by:

Am,m+1(Φm,Φm+1) =
π(m+ 1,Φm+1|Z)j(m+ 1|m)σ2

m+1

π(m,Φm|Z)j(m|m+ 1)qb(ϕm+1|Φm,m)

where qb() is the proposal density for a birth.

qb(ϕm+1|Φm,m) = qb(cm+1, b0,m+1, µm+1, log(σ
2
m+1)|Φm,m)

=
1

n0
×Unif(b0,m+1; 0, .5)×N(µm+1; µ̄, 1)×N(log(σ2

m+1); log(σ̄
2), 1).

where n0 is the number of voxels in the outer region. The birth proposal distribution gen-

erates a circle at a random location within the outer region, of random size, with GP pa-

rameters based on existing regions where µ̄ = (1/m)
∑m

i=1 µi and σ̄2 = (1/m)
∑m

i=1 σ
2
i .

The choices for the proposal densities are dependent on our specific motivating data.

Death: When a death is proposed a boundary is randomly selected with equal proba-

bility from m existing boundaries to be removed. The voxels that were within selected

boundary m are absorbed by the outer region D0. The parameters of the outer region

remain the same. The proposal density for v′ is 1/m since each boundary is equally

likely to be chosen for deletion. The acceptance rate for a proposed death is given by:

Am,m−1(Φm,Φm−1) =
π(m− 1,Φm−1|Z)j(m− 1|m)1/m

π(m,Φm|Z)j(m|m− 1)

Split: A split step involves splitting one target region into two with distinct GPs by

bisecting one boundary. A split is proposed by selecting one boundary at random with

equal probability from the existing boundaries. Without loss of generality, let boundary

m be the chosen proposed boundary to split. Then, two points on the boundary p1, p2

are sampled with a uniform distribution on [0, 2π]. The two points define the line, l, that

will split the region. The two new centers cm∗ , cm+1 are proposed as the centroids of

the two new areas. The resulting sets of boundary parameters are computed by solving
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the following equations for βm∗ and βm+1:

r({Bm < l ∪Bl}, cm∗) = Xcm∗βm∗

r({Bm ≥ l ∪Bl}, cm+1) = Xcm+1βm+1

where r({Bm < l∪Bl}, cm∗) is the vector of distances between the new centroid cm∗ and

the new set of boundary points for the m∗ boundary that consists of 100 equally spaced

points along l and the boundary points Bm that lie below l. The proposal distribution

qs generates the parameters of the GPs for the resulting boundaries and generates a

boundary based on the solution above. We use a proposal density given by:

qs(ϕm∗, ϕm+1|Φm,m) = qs(µm∗ , µm+1, log(σ
2
m∗), log(σ2

m+1), p1, p2, βm∗ , βm+1|Φm,m)

= N(µm∗ ;µm, 1)×N(log(σ2
m∗); log(σ2

m), 1)×N(µm+1;µm, 1)

× N(log(σ2
m+1); log(σ

2
m), 1)×Unif(p1, p2; 0, 2π)× qs,β(βm∗ , βm+1;βm, l)

where qs,β() is a point mass distribution concentrated at the solution of the above equa-

tions. The proposal density for v′ is 1/m since each boundary is equally likely to be

chosen for splitting. The acceptance rate for a proposed split is given by:

Am,m+1(Φm,Φm+1) =
π(m+ 1,Φm+1|Z)j(m+ 1|m)(1/m)σ2

m∗σ
2
m+1

π(m,Φm|Z)j(m|m+ 1)qs(ϕm∗, ϕm+1|Φm,m)

where ϕm∗ and ϕm+1 are the sets of parameters generated when an existing boundary

is split into two boundaries and qs is the proposal distribution for a split given above.

Merge: When a merge is proposed, two boundaries are selected at random to be-

come one region. WLOG, let boundaries m and m − 1 be proposed to merge. The

centroid of the combined voxels is cm∗ . The boundary parameters of the new merged

boundary m∗ are computed by solving the following equation for βm∗

r(Bm∗ , cm∗) = Xcm∗βm∗

where Bm∗ is the set of n boundary points in {Bm ∪Bm−1}. The proposal distribution

qm generates the parameters of the GPs of the resulting new boundary and generates a
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boundary based on the solution above. We use a proposal density given by:

qm(ϕm∗ |Φm,m) = qm(µm∗ , log(σ2
m∗), βm∗ |Φm,m)

= N(µm∗ ; (µm + µm−1)/2, 1)×N(log(σ2
m∗); (σ2

m + σ2
m−1)/2, 1)

× qm,β(βm∗ ;βm, βm−1)

where qm,β() is a point mass distribution concentrated at the solution of the above

equation. The proposal density for v′ is 2/m(m− 1) with is the probability of selecting

two boundaries at random from m. The acceptance rate for a proposed merge is given

by:

Am,m−1(Φm,Φm−1) =
π(m− 1,Φm−1|Z)j(m− 1|m)(2/m(m− 1))σ2

m∗

π(m,Φm|Z)j(m|m− 1)qm(ϕm∗ |Φm,m)

where Φm∗ is the set of parameters generated when two existing boundaries are merged

into one and qm is the proposal distribution for a merge given above.

3.3.2 MCMC algorithm

Below we summarize our MCMC algorihtm. To aid in convergence, we sample from

the posterior via adaptive MCMC [33]. Adaptive sampling allows adjustment of the

proposal density of the boundary and GP parameters based on the acceptance ratio.

At iteration i with m regions the algorithm proceeds as follows:

1. Propose a jump by sampling m′ from the probability distribution j(m′|m)

• If m′ = m proceed to step 4

• If m′ = m+ 1 with equal probability propose a birth or split step. If m = 0

propose a birth step.

• If m′ = m−1 with equal probability propose a death or merge step. If m = 1

propose a death step.

2. Accept or reject the jump proposed in Step 2 according to acceptance probabilities

in Section 3.3.1.

3. Update ϕ0 given m:
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(a) Draw ϕ∗
0 at iteration i from the proposal density Q0,i(ϕ

∗
0|ϕ0)

(b) Accept ϕ∗
0 with probability α = min

(
1, π(Φ

∗|Z)
π(Φ|Z)

)
4. Update ϕj , for j = 1, ..,m given m:

(a) Draw ϕ∗
j at iteration i from the proposal density Qj,i(ϕ

∗
j |ϕj)

(b) If ϕ∗
j creates a partition where ∃sk ∈ Dm ∩ Dn for n ̸= m, k ∈ 1, ..., n (i.e.

overlapping boundaries), reject ϕ∗
j else

(c) Accept ϕ∗
j with probability α = min

(
1, π(Φ

∗|Z)
π(Φ|Z)

)
(d) Update c∗j to be the centroid of the shape defined by Φj and cj .

(e) Update βj based on new centroid c∗j by solving r(Bj , c
∗
j ) = Xc∗j

bj for bj

where r(Bt, c
∗) is n× 1 vector of distances between the boundary points Bj

and new centroid c∗j and Xc∗j
is the n × (2K + 1) matrix of basis functions

referenced to c∗.

The proposal density Qj,i(ϕ
∗
j |ϕj) is adaptive to the current posterior samples at iteration

i and based on an example from Roberts and Rosenthal [33].

Qj,i(ϕ
∗
j |ϕj) ∼ Ndj (ϕj , (.1)

2Idj/dj) for i < 50

Qj,i(ϕ
∗
j |ϕj) ∼ (1− ω)Nd(ϕj , exp(lj,i)Σi) + ωNd(ϕj , (.1)

2Idj/dj) for i ≥ 50

where dj is the dimension of Φj , ω is a small positive constant (we set ω = .01), and

Σi is the empirical estimate of the covariance structure of the target distribution at

iteration i based on the run so far. lj,i controls the step-size of the proposal distribution

and is adjusted to achieve the desired acceptance rate of about 40% every 20 iterations

by either adding or subtracting 0.1 to the previous value for lj,i.

3.3.3 Likelihood Approximation

Fitting the likelihood with the spatial model specified in 3.2.2 with large n is infea-

sible due to the time requirements of calculating the determinant and inverse of the

covariance matrices. To further increase the computational efficiency of our method we

assume a sparse covariance matrix by multiplying the assumed covariance matrix by

a tapering kernel Cν(si, si′). Tapered covariances are commonly used to analyze large
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spatial datasets as they allow for sparse matrix algorithms. The tapering kernel must

be a positive definite matrix such that the covariance between two spatial locations be-

comes zero after a given distance. The Wendland family of tapered covariance functions

[34] are widely used. We assume the form of

Cν(si, si′) =

(
1− h

ν

)4

+

(
1 + 4

h

ν

)
,

where h = ||si−si′ || and we fix ν = .1. This yields our approximation of the covariance:

Σj = σ2
jHj ⊙ Tj + τ2Inj

where H is based on the exponential kernel, Tj is the nj × nj matrix with the (i, i′)-th

entry Cν(si, si′).

If the sample size is quite large, additional approximations may be neccessary to

increase efficiency. For the simulation study and data analysis we make a further sim-

plification to the likelihood by dividing D0 into four roughly equally sized and indepen-

dent zones. The mean x and y coordinates of s ∈ D0 at a given iteration define the

boundaries that split the area into Z0,1, ...,Z0,4. Thus, the likelihood becomes:

L(Z|Φm,m) =
∏4

l=1 L(Z0,l|Φm)
∏m

j=1 L(Zj |Φm)

3.3.4 Posterior Boundary Estimation & Uncertainty

The MCMC samples require post processing due to the centroids not being fixed post

burn-in. Using all sampled boundaries after burn-in, we group together boundaries that

have similar centroids into boundary groups based on the distance between centroids. In

our simulations and data analysis, we assume that boundaries are in the same boundary

group if their centroids are within a distance of 1/10 of the entire area. Then we keep all

boundary groups with group centroids that are present in ≥ 50% of the samples. The

number of boundary groups is the estimated number of anomalous regions. For each

boundary group, the average centroid, cT , is computed using the post burn-in samples.

Then, for each βt, t = 1, ..., T where T is the total number of post burn-in samples, we
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compute the boundary parameters corrected to centroid cT , βt,cT , by solving,

d(Bt, cT ) = XcTβt,cT

for βcT where d(Bt, cT ) is an n× 1 vector of distances between boundary points Bt and

cT , and XcT is the n × (2K + 1) matrix of basis functions where θ is measured to cT .

Then we can compute the vector f t,cT by:

f t,cT = Xβt,cT

where X is a 200×(2K+1) vector of basis functions based on 200 equally spaced angles

between 0 and 2π. The final estimate of a boundary is given by the mean of f t,cT over

all t. This is repeated for all boundary groups.

The 95% credible bands can be estimated with the corrected boundary functions

f t,cT referenced to cT as in Li and Ghosal [27]. For all, t = 1, ..., T MCMC samples post

burn-in, we compute.

ut = sup
θ
{|ft,cT (θ)− f̂cT (θ)|/ŝ(θ)},

where f̂cT (θ) and ŝ(θ) are the posterior mean and standard deviations of {ft,cT (θ)}Tt=1.

The 95% credible interval for f(θ) is given by:

[f̂cT (θ)− Lŝ(θ), f̂cT (θ) + Lŝ(θ)],

where L is the 95th percentile of the ut’s. See Figure 3.3 for an illustration of the

estimated partitioning boundaries and 95% credible bands for a simulated dataset.

3.4 Simulation Study

We evaluate the classification accuracy and statistical properties of BFSP-M in com-

parison to competing spatial partitioning and image segmentation methods through

simulation. We consider a unit square image space D of 40 by 40 resolution and gener-

ate data for each region from independent Gaussian processes with Matérn covariance
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Figure 3.3: Estimated partitioning boundary (black) and 95% credible bands (grey) for
one simulated dataset . Color represents voxel intensity. The procedure for simulating
this data is outlined in Section 3.4.

structures. For j = 0, 1, ...,M

Zj |νj , ρj ∼ N(µj ,Σj), Σ = σ2
jH(νj , ρj) + τ2Inj

(H(νj , ρj))i,i′ = H(νj , ρj ; di,i′) =
21−νj

Γ(νj)

(√
2νj

di,i′

ρj

)ν

Kνj

(√
2νj

di,i′

ρj

)
where di,i′ is the Euclidean distance between spatial locations si and si′ , Γ is the gamma

function, Kν is the modified Bessel function, ν is a smoothness parameter, and ρ is a

spatial range parameter.

To test the robustness of our method, we consider two different scenarios with either

zero or two targeted regions in the space. Here we present the results for the simulations

with two targeted regions. Refer to Section B.1 for simulation settings and results for

data containing zero target regions. In the simulated data with m = 2 regions, we

include a large heart and a small square shaped anomalous region with means µ1 = 2

and µ2 = 4, and vary the smoothness of the target region, νj , j > 0, and the spatial

nugget parameter, τ2. We fix the following settings during simulation: ν0 = 1, ρ0 =

· · · = ρM = .05, µ0 = 0, σ2
0 = σ2

1 = · · · = σ2
M = 1. We randomly generate 100 spatial
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data sets for each of the following settings.

1. ν1 = ν2 = 1.5, τ2 = .1

2. ν1 = ν2 = .5, τ2 = .1

3. ν1 = ν2 = 1.5, τ2 = .5

4. ν1 = ν2 = .5, τ2 = .5

We set the maximum number of boundaries that can be proposed Mmax = 10 and

the minimum number of boundaries to be Mmin = 0. We collect 50000 MCMC samples

and remove the first 20000 as burn-in samples. To increase computational efficiency

we divide the outer region into four zones and approximate the likelihood of the entire

outer region by aggregating the likelihoods of the four zones. In simulations this did not

impact the accuracy of our method but significantly increased computational efficiency.

The performance of BFSP-M is evaluated in terms of the frequency of correctly

estimating the number of regions, and the sensitivity, specificity, and the Dice coefficient

of voxel-level classification. For the settings with two anomalous regions, we compare

the classification results of BFSP-M to four competing methods, two of which are basic

clustering methods, K-means (KM) with 2 clusters using the function kmeans() from

the R Stats package [36] and a two-stage CART method. The two-stage method involves

first estimating the partitions via CART using [37]. This results in a tiling of the space.

The second stage is to group the partitions into two clusters via KM. The cluster of

tiles with the higher mean represents the target regions. We also compare to an image

segmentation method BayesImageS (BIS) [15] using R-package “bayesImageS” function

mcmcPotts() for which we specified neighbors via KNN with k=8 and 4 blocks and

set the number of clusters at 2. We also ran these three competing methods with the

number of clusters equal to 3 and all resulted in worse average Dice and Sensitivity

scores. We further include BFSP-1 from our previous paper [42] which assumes the

presence of one and only one partitioning boundary. We initialized the MCMC chain

with a large circular boundary centered at the center of the space and run for 30,000

iterations discarding the first 10,000 as burn-in samples.

In the 400 simulated data sets, using the number of boundary groups present in at

least half of post burn-in simulations, our algorithm correctly identified the number of
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Figure 3.4: Distributions of sensitivity, specificity, and Dice coefficient of BFSP-M, KM,
Two-Stage CART, BayesImageS, and BFSP-1 over 400 simulated data sets.

regions in 84% of the cases, identified a single boundary in 9% of cases, and estimated 3

boundaries in 7% of cases. Estimation of the number of distinct clusters is not possible

with other competing methods in which the number of clusters must be pre-specified.

Figure 3.4 presents the distributions of the sensitivity, specificity, and Dice coefficient

in detecting the target zone across the 400 simulated datasets (100 for each of the first

4 settings). Varying the parameters of the spatial processes did not have a large effect

on the accuracy of BFSP-M. Figure 3.4 shows in contrast, the two-stage method suffers

from low sensitivity and KM tends to have low specificity. BFSP-M maintains both

high sensitivity and specificity in all simulation settings. Due to the large difference in

means of the two target regions, BayesImages often fails to identify both regions. On

average, BFSP-M achieves a sensitivity of 0.841, specificity of 0.975, and Dice coefficient

of 0.842.

The average sensitivity, specificity, and Dice coefficient are provided for each of the

first 4 settings in Table B.1 along with results for competing methods. Our method is

robust to varying spatial smoothness. Average sensitivity is greater than 75%, in all

scenarios, and average specificity is at least 97% for all simulation settings. BFSP-M

maintains average Dice coefficient of at least 0.77 over all settings.
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Figure 3.5: From left to right: average partitioning results of the BFSP-M, KM, Two-
Stage CART, BayesImageS, BFSP-1 methods in the simulation study. Each image
represents 100 simulations of the first simulation setting. The color represents the
proportion of time the method classified each spatial location as within a target region
with red close to 1 and blue close to 0. The black outline shows the true boundaries.

To visualize the average classification performance we summarize the results of 100

simulations for the first setting by averaging the estimated cluster memberships based

on the estimated partitions. Figure 3.5 presents the probability that each voxel was

included in a target region for BFSP-M, KM, the two-stage CART method, BIS and

BFSP-1. The BFSP-M method leads to the best contrast in color between the two

target regions and the background, indicating both a high sensitivity in the target zone

detection and high specificity of the outer region. The heart shaped region was more

difficult to detect for all methods because its mean is relatively close to that of the

outer region. The two-stage method often misses the heart shaped region altogether,

explaining the low sensitivity seen in Figure 3.4. KM consistently identifies the target

region, but does not guarantee spatial contiguity of the regions and thus random loca-

tions in the outer region are incorrectly assigned to the target region resulting in low

specificity as seen in Figure 3.4. On average, BayesImageS identifies both regions but is

more likely to missclassify voxels in the outer region than BFSP-M. BFSP-1 performs

poorly due the assumption that only one target region is present in the data. BFSP-M

is the only method that simultaneously estimates the number of separate regions and

the voxel-wise cluster membership.

Additional simulation results evaluating the performance of BFSP-M in the presence

of zero lesions are presented in Section B.1. Our results indicate that BFSP-M was
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highly likely to correctly identify no anomalous regions when the covariance structure

is correctly specified, but performance is somewhat degraded when the covariance is

misspecified.

3.5 Data Analysis

Metzger et al. [2] present a set of data of men who received an MRI study before

prostatectomy as treatment for prostate cancer. The prostates were sectioned in planes

to match in vivo imaging. The sectioned prostates were digitized, allowing the pathol-

ogist to annotate and label the regions of cancer. These labeled regions were then

co-registered to the imaging data, thus creating the ground truth for disease through

which the models were trained and validated. This process is detailed in Kalavagunta

et al. [39]. The mpMRI data are composed of 34 prostate slices, obtained from 34

patients, with 2098 to 5756 voxels per slice.

Previously our group developed a voxel-wise prediction model for prostate cancer

using the mpMRI data detailed above. The goal of this analysis is to further develop a

pipeline from imaging to lesion detection using non-invasive methods. Using the results

from the predictive model of Jin et al. [1], we aim to identify the cancerous lesions

within the prostate using BFSP-M. We specifically apply our partitioning method to

the results of the “mregion” classifier, which models the mpMRI parameters and cancer

risk by voxel coordinates and outputs a probability heatmap with values between 0 and

1.

Our aim is to translate a heatmap of cancer probabilities into one or more contiguous

regions of cancer. We selected the 2 slices for which there was more than one cancerous

lesion. Then we selected another 9 slices containing one lesion for which the voxel-wise

classifier of Jin et al. [1] was most successful at predicting the true voxel-wise cancer

status. This allows us to focus on the performance of our segmentation relative to the

ground truth, whereas an application for which the underlying voxel-wise classifier is

misaligned with the ground truth will result in misaligned segmentation regardless of

the performance of our method. The BFSP-M model is applied to each slice separately.

We calculate true and false positive and negative rates using the true cancer status of

each voxel to measure accuracy.
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We compare BFSP-M to competing spatial clustering and image segmentation meth-

ods CART, KM, BayesImageS, and our previous method BFSP-1. First we scale each

slice such that all voxels fall within the unit square. We initialize BFSP-M with µ0 = 0,

µ1 = 1, all variance parameters set to 1, and one boundary set to be a small circle cen-

tered at the voxel with the highest probability. We collect 50,000 iterations and discard

the first 10,000 based on convergence of the boundary points B. Samples of posterior

boundary coefficients corresponding to centroid groups that were not present in at least

half of the MCMC samples are discarded as in Section 3.4. The minimum number of

possible boundaries is set to be 1 because we have prior knowledge that all slices contain

cancer. The maximum number of boundaries is set to be 10. We fixed the maximum

number of boundaries at 10 as a conservative upper bound. The true number of lesions

is less than 5 in all tested slices. Also, the MCMC sampler never visited the maximum

of 10 in any of the slices. The user may consider alternate values for Mmax for other

applications. To increase computational efficiency we divide the outer region into four

zones and treat them as independent to approximate the likelihood. For competing

methods we use the same initial settings as discussed in Section 3.4. For BFSP-1 we

use the same initial settings as BFSP-M.

The results of lesion detection for three images by BFSP-M, KM, Two-Stage CART,

BayesImageS, and BFSP-1 are displayed in Figure 3.6. The drawbacks of linear bound-

aries are clear. The estimates from CART are not reasonable for these data, which

contain non-rectangular shaped regions of heightened risk. KM identifies spurious extra

regions because it is not constrained to identify contiguous areas. Both methods often

fail to capture the entire lesion due to their inability to account for spatial smoothness

in the data. BFSP-1 will only identify one region, therefore, when multiple are present

in the data as in row 1 of Figure 3.6, the estimated boundary covers several lesions and

severly overestimates the extent of the cancer. BayesImageS and BFSP-M find spurious

regions of interest but tend to identify the entire cancerous region quite well. Table B.2

shows sensitivities, specificities, and Dice scores for BFSP-M and all competing methods

for each of the 11 slices.

Credible bands can be computed for each discovered lesion as in Section 3.3.4. See

Figure B.2 for 95% credible bands for one prostate imaging slice. In addition to the
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Figure 3.6: From left to right: Map of voxelwise predicted cancer probabilities from
five slices where color indicates probability of cancer with red close to 1 and blue close
to 0 [1], true cancer status, partitioning results from BFSP-M, Two-Stage CART, KM,
BayesImageS, and BFSP-1.

boundary uncertainty, we can also compute the uncertainty of each detected lesion. Le-

sion uncertainty is determined by calculating the proportion of times that each centroid

group appears in an MCMC posterior sample. Figure 3.7 displays the lesion uncertainty

for two slices of data that contain multiple distinct lesions. The color of each lesion cor-

responds to the proportion of MCMC samples in which that lesion is present. Lesions

colored red appear in all or almost all of the post burn-in MCMC samples whereas, le-

sions colored pale green appear less often in MCMC sampling. This result is consistent

with the data which displays a high degree of noise and weak signal for several of the

true cancerous lesions.
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Figure 3.7: From left to right: Map of voxelwise predicted cancer probabilities derived
from mpMRI data from 2 slices containing multiple lesions, where color indicates prob-
ability of cancer with red close to 1 and blue close to 0 [1], true cancer status, lesion
uncertainty of BFSP-M where color indicates the proportion of time that a lesion was
included in the MCMC posterior draws post burn-in.
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3.6 Discussion

We propose a new method, BFSP-M, to accurately define spatial partitions in spa-

tially registered imaging data containing multiple anomalous zones. The method uses

functional estimation tools within multiple separate moving polar systems for boundary

estimation. By assuming a minimum of zero boundaries, BFSP-M can also identify data

that is generated by a stationary process. We model spatial processes within each region

to capture the spatial correlations present in the mpMRI data. Using novel boundary-

defined jump steps in RJ-MCMC and likelihood approximations we have developed a

computationally efficient and novel method to detect an unknown number of anomalous

regions or “hot spots” in imaging data. Unlike competing methods, BFSP-M automat-

ically detects the number of lesions, is flexible to enough detect lesions of arbitrary

shape, and is able to evaluate uncertainty in boundary estimation. Further, our novel

statistical framework allows for multi-subject and longitudinal analysis.

Extending the methods to detect of an unknown number of regions adds a layer

of computational complexity to our previous method, BFSP-1. First, the algorithm

requires a longer burn-in period as the birth/death steps slow convergence. Furthermore,

adding partitions slows computation of the posterior due to the higher dimensionality

of the parameter space. We have implemented two key strategies to ensure BFSP-

M is computationally efficient. First, we employ likelihood approximation to speed

computation of the posterior. Second, we use adaptive MH sampling to encourage

acceptance of proposals in MCMC. Lastly, we sample parameters in blocks to encourage

mixing and decrease the number of times the likelihood must be computed. BFSP-M

completed 50,000 iterations in an average time of 6.9 hours for the simulated data

containing 1600 voxels.

With a birth and death process, we found that our method tended to overestimate

the number of boundaries needed to partition the space into regions of local homogeneity.

Without the ability to merge two boundaries, the MCMC could converge on a local

maximum of the posterior where one target region is being estimated to be two separate

GPs with very similar estimates of the spatial distributions. The merge step allows the

MCMC to jump to a solution in which one boundary encloses both regions with one

GP. With the implementation of the split and merge steps, BFSP-M estimates the true
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number of boundaries in 84% of datasets.

One of the advantages of the functional tools used to estimate the boundaries is that

they lend themselves well to theoretical extensions. There are several avenues to further

extend our methods. The boundary function can be extended to be a function of two

angles in the spherical coordinate system allowing estimation of boundary surfaces in

three-dimensional images. Leveraging a person’s entire set of imaging data rather than

one slice at a time would improve localization of prostate cancer and allow estimates

of cancer volume. The framework of BFSP-1 could also be extended to model lesion

boundaries over time to track disease progression. We leave these for future study.



Chapter 4

Bayesian Functional Spatial

Partitioning for Boundary

Surface Lesion Detection using

3D MRI

4.1 Introduction

A patient’s set of mpMRI imaging data is made up of several slices which must be

evaluated together to determine the location, size, and severity of the cancer. The one-

slice-at-a-time approach of our previous methods BFSP-1 and BFSP-M is not ideal.

Applying boundary detection to each slice of imaging data does not account for spatial

alignment of slices and cannot guarantee contiguity of the resulting boundary surface.

We hypothesize that leveraging a patient’s entire set of imaging data will improve ac-

curacy and interpretablity compared to applying boundary detection methods to each

slice individually.

Existing methods to detect anomalous regions in 3D data fall short. Voxel-wise

clustering methods do not ensure contiguous regions and may not properly account for

the spatial correlations in the data. BayesImageS is a voxel-wise clustering method that

encourages spatial contiguity by a hidden Potts model [38] and can be applied to 3D

53
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datasets. Although contiguity is encouraged it is not guaranteed. Further, uncertainty is

measured on the voxel level which is not clinically interpretable in the setting of medical

imaging. Tree based partitioning methods, the simplest being classification trees, use

linear boundaries to divide an area into regions of local homogeneity. Methods such

as treed Gaussian processes take into account the spatial relatedness of the data and

can be applied to 3D data, but are not scalable in large n settings [17]. Furthermore,

linear partitioning boundaries are not adequately flexible for the application of lesion

detection. Boundary or edge detection methods like Wombling [19] may not provide a

closed surface. BayesBD does provide a closed boundary but does not extend to 3D

data and assumes iid data [20]. To our knowledge there is no existing method which

estimates a closed boundary surface containing a region of anomalous data and properly

accounts for spatial correlation.

We propose BFSP-3D, a general method to estimate the closed surface surrounding

a contiguous, arbitrarily-shaped inner region with a distinct spatial process from the

outer area. When applied to our motivating data, BFSP-3D estimates the cancerous

lesion surface and volume of the estimated region. By utilizing a Bayesian approach, we

can produce estimates of boundary uncertainty using 95% credible surfaces. We model

the voxel-wise probabilities with region specific Gaussian processes and estimate their

parameters jointly with the boundary surface using MCMC. The boundary surface is

estimated using a linear combination of periodic basis functions of two angles in the

spherical coordinates. Our novel approach performs better than existing methods in

simulation and offers more interpretable estimates of uncertainty. In application to 3D

data derived from mpMRI, our boundary estimation approach is flexible to the shape

of the true lesion boundaries from pathologist annotations.

The remainder of the paper is organized as follows. First, we describe the methods

for boundary surface function estimation and spatial modeling in Section 4.2. Section

4.3 covers our Bayesian computational algorithm. We demonstrate the flexibility of our

boundary estimation technique to estimate various volumes in Section 4.4. Section 4.5

provides results of BFSP-3D in an application to 3D prostate voxelwise probability data

derived from mpMRI. We conclude with a discussion in Section 4.6.
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4.2 Methods

Let Z(s) indicate a scalar variable that is observed at location s = (x, y, z) ∈ D, where

D is a region in R3. Let s = (s1, ...sn) and Z = (Z(s1), ..., Z(sn)) denote a set of

locations within the region D and the corresponding set of observations. We assume

that D can be partitioned into a contiguous target region D1 and an outer region D0

by a closed boundary surface B. Let s0 and s1 be the vectors of spatial locations within

regions D0 and D1 respectively, and Z0 and Z1 the vectors of observed values at those

locations. We assume Z0 and Z1 follow different spatial processes. Our goal is to

estimate the boundary surface B that partitions the data into two regions based on

heterogeneity in the underlying spatial processes with minimal restrictions on the shape

of the target region. Estimation is accomplished with MCMC to estimate the boundary

parameters and the spatial parameters based on their posterior probabilities given the

data. Bayesian estimation allows quantification of the uncertainty of the boundary

surface with 95% point-wise credible surfaces. Details on approximating the boundary

surface by functional estimation are provided in Section 4.2.1, details on modeling the

spatial distributions within each region is provided in Sections 4.2.2 with the priors of

the parameters specified in 4.2.3, the details of Bayesian computations and boundary

uncertainty estimation are given in Section 4.3.

4.2.1 Defining a Partition

Given a point c = (xc, yc, yc) located at the centroid of D1, the boundary surface B

can be uniquely modeled as a function of two angles in a spherical coordinate system

centered at c: B = {s ∈ D : dc(s) = f(θs, ϕs|c), θs ∈ [0, π], ϕs ∈ [0, 2π]}, where dc(s)

is the distance from the point s to the polar center c, θs is the polar angle measured

between c and s, and ϕs is the azimuthal angle measured between c and s. Modeling

the boundary curves is equivalent to estimating the location of c and function f(θ, ϕ|c).
Each spatial location s can then be assigned to either D0 or D1 by its distance dc(s)

referenced to centroid c.

The boundary functions are estimated by the linear combination of basis functions

in spherical coordinates. In the 2D setting we used the following linear combination of
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Fourier basis functions in polar coordinates for f [42]:

f (ϕs|c) ≈ β0 +

K∑
k=1

{β−k sin(kϕs) + βk cos(kϕs)} for 0 ≤ ϕs ≤ 2π,

To span a 3D space, we make the following expansion of the β’s:

f (ϕs, θs|c) ≈ β0(θs) +

K∑
k=1

{β−k(θs) sin(kϕs) + βk(θs) cos(kϕs)} for 0 ≤ θs ≤ π, 0 ≤ ϕs ≤ 2π

where β0(θ), βk(θ), and β−k(θ) are expanded by another linear combination of basis

functions. To ensure continuity at the poles we use the following expansion from Cheong

[57]:

βk(θ) =


∑K

l=0 βl,k cos(lθ) for k = 0∑K
l=1 βl,k sin(lθ) for k odd∑K
l=1 βl,k sin(θ) sin(lθ) for k even

The parameter K corresponds to the level of detail in the boundary surface. A lower

value will produce a smoother surface. In our previous work on 2D partitioning, we

found that K = 5 was adequate for lesion detection in our data. This corresponded to

2K + 1 = 11 total boundary parameters. In the 3D context, there are 2K2 + K + 1

total boundary surface parameters, which becomes unmanageable for increasing values

of K. We continue to use K = 5 in simulation and data analysis. However, the value

of K can be treated as an additional parameter and chosen by cross-validation by the

user for other applications.

4.2.2 Spatial Modeling

We estimate the parameters defining the distribution within each region simultaneously

with the estimation of the boundary surface parameters. Each iteration involves tran-

sitions between the spherical coordinate boundary surface estimation space and the

Cartesian image space. In the Cartesian coordinates we classify s as within region D1

if s is within the boundary surface, i.e., the distance dc(s) is less than f(ϕs, θs|c). We
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can calculate the likelihood by the product of 2 independent likelihoods due to the

conditional independence of the regions given the spatial partition:

L(Z|Φ) = L(Z0|Φ)L(Z1|Φ).

When the data exhibit spatial autocorrelation, we assume a distinct stationary Gaussian

spatial process in each region. For j = 0, 1:

Zj |Φ ∼ N(µj + ξj , τ
2Inj )

ξj ∼ N(0, σ2
jHj)

where µj is the mean specific to region j, and ξj is the vector of spatial random effects

that follow a region-specific Gaussian distribution with covariance σ2
jHj . The variance

for non-spatial random errors, τ2, is assumed to be common to all regions.

We model the spatial correlation within each region with an exponential kernel.

Hj(si, s
′
i) = exp(−γri,i′) (4.1)

where ri,i′ is the Euclidean distance and γ is the spatial decay parameter which is as-

sumed to be common to all regions. We chose the exponential kernel due to its simplicity

and its ability to approximate many other types of spatial correlation structure well.

However, other kernels can be specified.

For computational stability, we marginalize over the spatial random effects and

model the data in each region by:

Zj |Φ ∼ N(µj ,Σj) (4.2)

Σj = σ2
jHj + τ2Inj

When the data do not exhibit strong spatial autocorrelation or the data becomes

very large and computation becomes burdensome, one may opt to drop the spatial

random effects from the model and assume distinct independent normal distributions
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in each region.

Zj |Φ ∼ N(µj , σjI) (4.3)

We use this strategy in the data analysis, see Section 4.5 for details.

4.2.3 Prior Specification

Let Φ = {c,µ = (µ0, µ1),σ
2 = (σ2

0, σ
2
1), τ

2, γ,β} be all of the parameters of the Gaus-

sian distributions and boundary surface. The spherical origin c is fixed at the centroid of

the target region, the location of which is assumed to be uniform over the space domain

D a priori. We set c to be the geometric centroid of D1 at each iteration and do not

estimate c with MCMC. We assign the following prior for Φ assuming independence of

the parameters:

π(Φ) = π(τ2)π(γ)π(µ)π(σ2)π(β)

where π(β) = π(β0,0)
K∏
l=1

K∏
k=0

π(βl,k)

π(µ) = π(µ0)π(δµ)

For the basis coefficients β, we assign vague normal priors N(0, 1) except for β0,0,

which we assign a uniform prior with support from zero to the approximate radius of

the entire image space D. This encourages the surface to have positive volume and

not exceed the size of the entire area D. We assign the mean of the outer region µ0 a

vague normal prior N(0, 100). The difference in means between the target region and

the outer region, δµ = µ1 − µ0 is assumed to follow a vague half-normal prior. We use

prior information that the mean of the anomalous region is elevated as compared to its

complement. This can be modified for other applications. Variance parameters, σ2
j and

τ2, are assigned vague inverse Gamma priors IG(.1, .1). The spatial decay parameter, γ,

is assumed to follow an informative prior IG(3, .5). This follows the advice of Banerjee

et al. [32], who recommend vague priors for the variance parameters σ2
j and τ2 and an

informative prior for spatial range parameter γ.
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4.3 Bayesian Computation

The parameters of the boundary surface and spatial distributions are estimated using

Metropolis-Hastings (MH). At each iteration a new set of parameters is proposed and

accepted with probability proportional to the ratio of the posterior probability at the

proposed and current parameter values. We can calculate the posterior probability of

the parameters given the current centroid by:

π(Φ|Z) ∝ L(Z|Φ)π(Φ)

where π(Φ) is given in Equations 4.4-4.4. The form of L(Z|Φ) is provided in Section

4.2.2. Approximations to the likelihood for computational efficiency are discussed in

Section 4.3.2. Due to the high dimensional parameter space, we adopt an adaptive

proposal density and use blocking to aid in mixing and maintain a high acceptance

rate. These strategies are further discussed in Section 4.3.1. We estimate the final

boundary surface and its uncertainty in Section 4.3.3.

4.3.1 MCMC Algorithm

Let Φ be the parameters of the boundary surface and spatial GPs. We divide the

parameter space into K + 2 blocks: Φ1 = {τ2, γ,µ,σ2}, Φ2 = {β0,0, · · · , βK,0},Φ3 =

{β1,1, · · · , βK,1},...,ΦK+2 = {β1,K , · · · , βK,K}. After initialization, the generating algo-

rithm is as follows. For m = 1, ...,K + 2:

1. Draw Φ∗
m at iteration t from proposal density Qt(Φ

∗
m|Φm)

2. Accept Φ∗
m with probability α = min

(
1, π(Φ

∗
m|Z)

π(Φm|Z)

)
3. Update c∗ to be the centroid of the shape defined by Φ and c.

4. Update β based on new centroid c∗ by solving d(Bt, c
∗) = Xc∗β for β where

d(Bt, c
∗) is n × 1 vector of distances between the boundary points Bt and new

centroid c∗ and Xc∗ is the n× (2K2 +K +1) matrix of basis functions referenced

to c∗.
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The proposal density Qt(Φ
∗
m|Φm), based on an example from Roberts et al. [33], de-

pends on the iteration number t:

Qt(Φ
∗
m|Φm) ∼ Nd(Φm, (.1)2Id/d) for t < 50

Qt(Φ
∗
m|Φm) ∼ (1− δ)Nd(Φm, exp(lmt)Σmt) + δNd(Φm, (.1)2Id/d) for t ≥ 50,

where d is the dimension of Ψm, δ is a small positive constant (we set δ = .01), and

Σmt is the empirical estimate of the covariance structure of the block of parameters

at iteration t based on the run so far. The step size of the proposal distribution is

controlled by lmt which is adjusted to achieve the desired acceptance rate of about 40%

every 20 iterations by either adding or subtracting 0.1 to the previous value.

4.3.2 Marginal Likelihood Approximation Methods

3D imaging data has a very large number of voxels. Calculating the likelihood of

the assumed model is prohibitively computationally intensive with increasing sample

size. Therefore, we adopt two strategies to increase the computational efficiency of our

method in the simulation study.

First we assume a sparse covariance matrix with tapering. This is accomplished

by multiplying the covariance kernel H(si, s
′
i) by a tapering kernel Cν(si, s

′
i). The

Wendland family of tapered covariance functions [34] are widely used. We assume the

form of

Cν(si, si′) =

(
1− h

ν

)4

+

(
1 + 4

h

ν

)
, (4.4)

where h = ||si − si′ || and we assume the range parameter ν = .1. This yields our

approximation of the covariance:

Σj = σ2
jHj ⊙ Tj + τ2Inj ,

where Tj is the nj × nj matrix with the (i, i′)-th entry given by Equation 4.4.

We make a further simplification to the likelihood by dividing D0 into eight roughly

equally sized and independent zones. The mean x, y, and z coordinates of s ∈ D0 at a
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given iteration define the boundaries which split the area into Z0,1, ...,Z0,8. Thus, we

assume:

L(Z|Φ) ≈ L(Z1|Φ)
∏8

l=1 L(Z0,l|Φ)

By breaking up the large covariance matrix into smaller components, this step signifi-

cantly decreases computational burden. In simulation we found this assumed likelihood

approximates the full likelihood sufficiently well.

4.3.3 Posterior Boundary Estimation & Uncertainty

The posterior samples require post processing due to the center not being fixed over

MCMC iterations. Therefore, we must compute the mode of the centroid draws after

burn-in and for all samples with centroid not equal to the mode, recompute the boundary

surface with respect to the mode centroid.

The modal centroid, cT , is computed using the post burn-in samples. Then, for

samples with centroid not equal to the mode, βt we compute the boundary parameters

corrected to centroid cT , βt,cT , by solving,

d(Bt, cT ) = XcTβt,cT

for βcT where d(Bt, cT ) is an n× 1 vector of distances between boundary points Bt and

cT , and XcT is the n× (2K2 +K + 1) matrix of basis functions where θ is measured to

cT . Then we can compute the boundary surface vector f t,cT by:

f t,cT = Xβt,cT

where X is a 2500× (2K2+K+1) vector of basis functions based on 50 equally spaced

angles between 0 and 2π and 50 equally spaced angles between 0 and π. The final

estimate of a boundary is given by the mean of f t,cT over all t.

We compute the 95% credible surfaces using the corrected boundary surfaces f t,cT

referenced to cT as in Li et al. [27]. For all, t = 1, ..., T MCMC samples post burn-in,
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Figure 4.1: Credible surface of BFSP-3D for one simulated dataset containing an el-
lipsoid target region. The solid blue surface represents the lower 95% credible surface.
The transparent blue surface is the point estimate of the surface. The transparent grey
surface is the upper 95% credible surface.

we compute.

ut = sup
ϕ,θ

{|ft,cT (ϕ, θ)− f̂cT (ϕ, θ)|/ŝ(ϕ, θ)},

where f̂cT (ϕ, θ) and ŝ(ϕ, θ) are the posterior mean and standard deviations of {ft,cT (ϕ, θ)}Tt=1.

A 95% credible interval for f(ϕ, θ) is given by:

[f̂cT (ϕ, θ)− Lŝ(ϕ, θ), f̂cT (ϕ, θ) + Lŝ(ϕ, θ)],

where L is the 95th percentile of the ut’s.

Figure 4.1 displays a boundary surface estimated with BFSP-3D with 95% credible

surfaces. The data contained an ellipsoidal inner target region. See Section 4.4 for

details on how the data were generated.
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4.4 Simulation Study

We evaluate the classification accuracy and statistical properties of BFSP-3D by sim-

ulation. We compare the performance of BFSP-3D with existing clustering, spatial

partitioning, and image segmentation methods. For the simulated data we consider a

25 x 25 x 25 resolution unit cube image space D. We generate data for the inner and

outer regions from independent Gaussian processes with Matérn covariance structures.

For j = 0, 1,

Zj|Φ ∼ N(µj ,Σj), Σ = σ2
jH(ϕj) + τ2Inj

(H(ϕj))i,i′ = H(ϕj ; di,i′) =
21−νj

Γ(νj)

(√
2νj

di,i′

ρj

)ν

Kνj

(√
2νj

di,i′

ρj

)
where di,i′ is the Euclidean distance between spatial locations si and si′ , Γ is the gamma

function, Kν is the modified Bessel function, ν is a smoothness parameter, and ρ is a

spatial range parameter.

Each simulated dataset contains an outer region generated from the above GP with

Matérn covariance. The inner region is one of six shapes of approximately equal volume:

rectangle, hyperboloid, ellipse, “X”, cone, or cross. The parameters defining the outer

region are consistent for all simulated datasets, µ0 = 0, ν0 = 1, σ2
0 = 1. For the inner

region, µ1 = 2 and σ2
1 = 1 for all simulated datasets. We randomly generate 20 datasets

for each of the six shapes, and consider four scenarios, which vary ν1 and τ2 as follows:

1. ν1 = 1.5, τ2 = .1

2. ν1 = .5, τ2 = .1

3. ν1 = 1.5, τ2 = .5

4. ν1 = .5, τ2 = .5

For the simulation study, we fit the spatial model given by Equation 4.2 with approxima-

tions given in Section 4.3.2. We initialize the MCMC chain with a spherical boundary

surface centered at the voxel with highest intensity. We initialize the parameters of the

GP at µ0 = 0, µ1 = 1, γ = .1 and all variance parameters set to Var(Z)/2. We collect
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12000 MCMC samples and remove the first 4000 as burn-in samples. To increase com-

putational efficiency we divide the outer region into eight zones and approximate the

likelihood of the entire outer region by aggregating the likelihoods of the eight zones. In

simulations this did not impact the accuracy of our method but significantly increased

computational efficiency.

The performance of BFSP-M is evaluated in terms of the sensitivity, specificity, and

the Dice coefficient of voxel-level classification. We compare these metrics with those of

four competitive methods, two of which are basic clustering methods, K-means (KM)

with 2 clusters using the function kmeans from the R Stats package [36] and a two-

stage CART method (CART+KM). The two-stage method involves first estimating the

partitions using CART with [37]. This results in a tiling of the space. The second

stage is to group the partitions into two clusters by KM. The cluster of tiles with the

higher mean represents the target regions. We also compare to an image segmentation

method BayesImageS (BIS) [15] using R-package “bayesImageS” function mcmcPotts

based on a 6 neighbours structure where the neighbours of a vertex comprise its available

N,S,E,W, upper and lower adjacencies. We again set the number of clusters at 2. The

final competing method is a Gaussian mixture model (GMM) with 2 regions using R

function Mclust() from the mclust package [58].

We present summaries of the results by shape and method in Figure 4.2. The

boxplots show distributions of the sensitivity, specificity, and Dice coefficient in detecting

the inner target region across 80 simulated datasets from the four scenarios for a given

shape. Varying the variance parameters of the GP did not have a large effect on the

accuracy of BFSP-3D. BFSP-3D maintains reasonably high Dice scores accross the

different shaped target regions. We perform best when the inner region is defined by a

smooth and concave shape like the ellipse and worse for shapes that contain concavities

and/or straight edges like the “X”. Voxel-wise clustering methods KM and GMM

tend to have high specificities because they do not account for the spatial noise in

the outer region. The two stage method divides the space into rectangular volumes

and is not adequate for complex shapes. Image segmentation method BIS maintains

a similarly good Dice coefficient on average and achieves a higher level of sensitivity

due to no restrictions on the shape of the partitioning boundary. However, the method

occasionally suffers from extremely low specificity and does not guarantee contiguous



65

Figure 4.2: Distributions of sensitivity, specificity, and Dice coefficient of BFSP-3d,
BayesImageS, Two-Stage CART, Gaussian Mixture Model, and K-means over 80 simu-
lated data sets for each shape.

clusters. Overall, BFSP-3D achieved a mean Dice score of 0.71, a mean sensitivity of

0.72, and a mean specificiy 0.98. The best competitor, BIS, achieved averages of 0.57,

0.86, and 0.65 respectively.

4.5 Data Analysis

The motivating data are comprised of 34 patients who received an MRI prior to un-

dergoing prostatectomy as treatment for prostate cancer, presented by Metzger et al.

[2]. Each set consists of the mpMRI imaging parameters measured at 21,000 to 53,000
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voxels distributed across 11 to 16 imaging slices extending from apex to base of the

prostate. After surgery, the prostates were sectioned in planes that matched in vivo

imaging and digitized, allowing the study pathologist to annotate the cancerous region.

For one slice per patient, the pathologist labeled region is co-registered with imaging

data. Thus for each patient, we have one slice out of the 11 to 15 total imaging slices

that contains the ground truth cancer status. For one 3D dataset, we use the 34 co-

registered slices to train the “mregion” model from from Jin et al. [1] holding out the

slice contained in the 3D data. Then we calculate the posterior probability of cancer

at each of the voxels in the 3D data. This provides voxel-wise probability estimates to

which we will apply BFSP-3D to partition the prostate into two regions.

From the 34 datasets, we choose two which had the best congruence between the

voxel-wise probability and the true cancer status. Imaging is less reliable toward the

apex and base, so we exclude the first and the last slices of data for each dataset chosen.

We omit voxels containing missing mpMRI parameters. The data are scaled such that

all voxels fall within the unit cube.

Developing a method that is computationally feasible for our clinical collaborators

is of utmost importance. Due to the large size of the data, we assume the voxel-

wise probabilities follow distinct independent normal distributions in each region as in

Equation 4.3. This drastically improves the computational time making this method

clinically usable. Since the strength of the signal relative to noise is quite strong in these

data, we do not sacrifice much power when we make this assumption. In simulations,

we show little to no loss of accuracy in the presence of a large mean difference relative

to the level of noise. See Figure C.1 for details.

We initialize BFSP-3D with a large sphere centered at the centroid of the entire

region with means 0 for the outer region and 1 for the inner region. The variance

parameters are initialized to be half the total variance of the voxel-wise probabilities.

We collect 50,000 samples of the posterior and discard the first 20,000 as burn-in samples.

Figures 4.3 and 4.4 display the partitioning results of BFSP-3D on data from subject

118. Figures 4.5 and 4.6 display the partitioning results of BFSP-3D on data from

subject 111. In each figure, the first column shows the voxelwise probabilities of cancer at

each slice - the data to which we apply our method. The color represents the probability

with red close to 1 and blue close to zero. The second column shows the estimated
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cluster membership by BFSP-3D where red indicates that the voxel was included in the

cancerous lesion boundary. The third column shows the pathologist annotated slices

where available. The blue or purple boundaries indicate the presence of cancer. The

co-registered 2D imaging data do not perfectly align with the 3D imaging data. For this

reason, we cannot measure the accuracy of our results with respect to the ground truth.

Visually, boundaries estimated by our method align with the voxel-wise probability data

quite well. BFSP-3D is able to identify the boundary which separates the region of high

cancer probability from the surrounding healthy tissue.

4.6 Discussion

We present a novel method to partition a 3D dataset exhibiting spatial non-stationarity

due to the presence of an anomalous region located within a larger homogenous space. In

simulation, our method outperforms existing image segmentation, spatial partitioning,

and clustering methods. Despite simplifications to the likelihood which ignore spatial

autocorrelation in the data, our method can accurately capture the lesion boundary

from mpMRI derived imaging data. This is due to the relative strength of the signal

of the cancerous regions. A more substantial degradation in performance would be

expected in the presence of a smaller signal to noise ratio. In simulation, we showed

this assumption may cause loss of power when the difference in means between the two

regions is small. See Figure C.1 for details.

Due to the protocol for sectioning and mapping the prostate to assess pathology, the

resolution of the data in the Z-direction is much lower than in the X-, an Y- directions.

When data are standardized to fall within a 1x1 cube, the neighboring voxels in the

Z-direction are .1 units apart. Neighboring points in one XY plane are about 10 times

closer. This quirk of the data does not preclude the application of BFSP-3D.

Extending the boundary to be a function of two rather than one angle increases the

number of boundary coefficients significantly. We used 11 total boundary coefficients in

BFSP-1 and to achieve a similar level of detail in BFSP-3D would require 56 boundary

coefficients. High dimensional and correlated parameters are known to cause difficul-

ties in typical MH algorithms. To overcome this challenge, we block the boundary
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(a) (b) (c)

Figure 4.3: For subject 118 slices 1-5: (a) Voxelwise probabilities of cancer [1] (red=1,
blue=0) (b) Clustering results from BFSP-3D (c) Pathologist annotated slices [2]
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(a) (b) (c)

Figure 4.4: For subject 118 slices 6-9: (a) Voxelwise probabilities of cancer [1] (red=1,
blue=0) (b) Clustering results from BFSP-3D (c) Pathologist annotated slices [2]
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(a) (b) (c)

Figure 4.5: For subject 111 slices 1-5: (a) Voxelwise probabilities of cancer [1] (red=1,
blue=0) (b) Clustering results from BFSP-3D (c) Pathologist annotated slices [2]
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(a) (b) (c)

Figure 4.6: For subject 111 slices 6-9: (a) Voxelwise probabilities of cancer [1] (red=1,
blue=0) (b) Clustering results from BFSP-3D (c) Pathologist annotated slices [2]
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parameters into 11 approximately equally sized blocks. We also utilize adaptive pro-

posal densities which learns the correlation among the blocks and adjusts the step size

to increase acceptance rates. Although in theory the value of K could be increased to

model greater detail in the lesion boundary, doing so is not advised as the computational

burden becomes too intense.

The dimension of the data also increases in the context of 3D imaging data. Modeling

the spatial correlation of the data becomes prohibitively computationally expensive as

n becomes large. Likelihood approximations increase efficiency but the method remains

computationally intensive in the context of large 3D data. Another limitation of this

method is the assumption that there is one cancerous lesion or anomalous area. We

previously developed a 2D segmentation algorithm that allows for an unknown number

of regions, and future will focus on extending BFSP-3D to allow for an unknown number

of regions, as well.



Chapter 5

Conclusion

In this dissertation, we have developed novel methods to estimate partitions of a 2D or

3D image space exhibiting non-stationarity due to the presence of anomalous regions or

“hot spots.” In Chapter 2, we proposed a general framework for boundary estimation

using functional tools that can be adapted and extended for various applications. Our

spatial modeling framework is similarly flexible and can be adapted by changing the

covariance kernel or assuming an independence structure. Though we assume the “hot

spot” is defined by a heightened mean, users may adapt our method to search the image

for regions of lower mean, or even regions with different variability. In Chapter 3, we

extended the general framework of our first method to develop a method for discovering

an unknown number of lesions or “hot spots.” This method is a clinically useful tool

which can identify the number, location, size, and shape of possible cancerous lesions.

Finally, in Chapter 4, we built upon the framework laid out in BFSP-1 to extend

our method to the 3D image space. Each iteration of this project has prioritized the

applicability and interpretability of its clinical use as a tool for non-invasive prostate

cancer lesion detection using mpMRI data.

Our novel framework for boundary estimation offers added flexibility over existing

methods, which assume linear or piecewise-linear boundaries. Any shape in the star

domain can be easily modeled by our method. This has proven to be particularly

useful for our application to PCa lesion boundary modeling. Furthermore, although

Fourier bases are used for our motivating application, our method allows customization

of boundary characteristics by specification of other type and number of basis functions

73
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to suit various problems that require spatial partitioning. As shown in Chapter 4, the

framework allows seamless extension to three dimensions.

Another key advantage of our approach is the quantification of uncertainty. Com-

peting methods do not provide clinically relevant estimates of the variability of the

estimated lesions. Voxel-wise clustering methods may only provide voxel-level uncer-

tainty, if at all. Our approach provides credible bands showing possible ranges of the

cancer. BFSP-M can also estimate lesion specific uncertainty, which measures the pro-

portion of time that our algorithm identified each region as distinct from the healthy

tissue.

The main challenge we faced and continue to face as we develop extensions is heavy

computational burden. Each iteration of our project added a layer of computational

complexity. Computation of the likelihood in the presence of spatial autocorrelation can

be prohibitively time consuming due to large dense covariance matrices. To increase

efficiency we adopted likelihood approximations such as tapering and partitioning the

data. Our boundaries are defined by 2K + 1 parameters in BFSP-1, (2K + 1) ∗M in

BFSP-M where M is the number of lesions, and 2K2 +K +1 parameters in BFSP-3D.

K may be chosen but we found that K < 5 was not adequate for our motivating data.

Thus, the dimension of the parameter space can quickly become prohibitively large as

M increases or in the 3D setting. We employed adaptive MCMC strategies to combat

low acceptance and poor mixing.

Despite tapering strategies and partitioning of the likelihood, computation for large

3D datasets is still quite time consuming. A quicker approach involves ignoring the

spatial autocorrelation in the data. We found that this solution, although not ideal,

estimates lesion boundaries quite well in our motivating data due to the strength of the

signal of the cancerous regions.

There are several avenues to explore in extending this work. First, the methods of

BFSP-M and BFSP-3D may be combined for the purpose of multiple lesion discovery

in 3D imaging data. As both methods are computationally intensive in their own

right, the combination may require further simplification and approximation of the

likelihood. We are also interested in the idea of modeling lesion boundaries over time

using longitudinally captured imaging data. This would allow clinicians to track cancer

progression or response to treatment over time.
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Appendix A

Supplementary Material for

Chapter 2

A.1 Simulation Study Details

The simulated data are generated via two distinct Gaussian processes with Matérn

covariance as detailed below. For j = 0, 1

Zj|Φj ∼ N(µj ,Σj), Σ = σ2
jH(ϕj) + τ2Inj

(H(ϕj))i,i′ = H(ϕj ; di,i′) =
21−νj

Γ(νj)

(√
2νj

di,i′

ρj

)ν

Kνj

(√
2νj

di,i′

ρj

)
,

where di,i′ is Euclidean distance between spatial locations si and si′ , Γ is the gamma

function, Kν is the modified Bessel function, ν is a smoothness parameter, and ρ is

a spatial range parameter. We fix the following settings during simulation: ν0 = 1,

ρ0 = ρ1 = .05, µ0 = −1, µ1 = 2, σ2
0 = σ2

1 = 1.

The sensitivity is the proportion of points in the true target region that are identified

as being in that region. The specificity is the proportion of points in the true outer region

that are identified to be in that region. The Dice coefficient is:

DSC =
2TP

2TP + FP + FN
, (A.1)

where TP is the number of true positives, FP is the number of false positives, and
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FN is the number of false negatives. The value of the Dice coefficient ranges from 0,

indicating no spatial overlap, to 1, indicating complete overlap.

For KM, we take the target region to be the cluster with the higher mean. For

the CART algorithm, we take the estimated target region to be the partition with the

highest mean and disregard other partitions made by the algorithm. For BayesBD we

provided the true centroid of the target region which would be unknown in practice and

specified the inner region to have a heightened mean. For BayesImageS we specified

neighbors via KNN with k=8 and 4 blocks. BFSP spline utilizes periodic B-splines of

degree 3. We set the total number of basis functions to be 11 so that the total number

of parameters to be estimated is the same as our original implementation. The periodic

B-spline basis functions are computed using R package “pomp”.

A.2 Supplementary Tables & Figures
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Figure A.1: Comparison of DIC when the number of basis functions, K, is 5 or 10 in
the data analysis. The dotted line is the line y = x.
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Table A.1: Results of BFSP and competing methods in simulated data. Mean and SD
of sensitivity, specificity, and Dice coefficient for each simulation setting referenced in
Section 3 for a square target region where ν1 and τ2 are parameters of the simulated
Gaussian processes.

Sensitivity Specificity Dice

Shape ν1 τ2 Method Mean (SD) Mean (SD) Mean (SD)

Square 0.5 0.1 BFSP 0.981 (0.017) 0.962 (0.042) 0.909 (0.084)
BFSP Spline 0.976 (0.018) 0.962 (0.059) 0.912 (0.1)

CART 0.838 (0.27) 1 (0) 0.882 (0.213)
KM 0.969 (0.019) 0.855 (0.06) 0.718 (0.082)

BayesBD 0.665 (0.176) 0.997 (0.008) 0.777 (0.124)
BayesImageS 0.985 (0.016) 0.954 (0.082) 0.905 (0.109)

0.5 0.5 BFSP 0.969 (0.045) 0.958 (0.055) 0.897 (0.099)
BFSP Spline 0.969 (0.026) 0.957 (0.054) 0.895 (0.102)

CART 0.882 (0.23) 1 (0) 0.917 (0.174)
KM 0.954 (0.021) 0.775 (0.051) 0.613 (0.057)

BayesBD 0.775 (0.181) 0.992 (0.009) 0.841 (0.125)
BayesImageS 0.977 (0.027) 0.93 (0.173) 0.889 (0.154)

1.5 0.1 BFSP 0.968 (0.043) 0.967 (0.046) 0.914 (0.088)
BFSP Spline 0.967 (0.036) 0.968 (0.05) 0.917 (0.093)

CART 0.684 (0.301) 1 (0) 0.772 (0.232)
KM 0.978 (0.028) 0.861 (0.081) 0.739 (0.111)

BayesBD 0.574 (0.176) 0.999 (0.003) 0.711 (0.139)
BayesImageS 0.964 (0.057) 0.954 (0.138) 0.914 (0.131)

1.5 0.5 BFSP 0.949 (0.085) 0.966 (0.048) 0.9 (0.098)
BFSP Spline 0.959 (0.037) 0.945 (0.071) 0.872 (0.116)

CART 0.709 (0.31) 1 (0.001) 0.786 (0.245)
KM 0.962 (0.023) 0.761 (0.075) 0.608 (0.082)

BayesBD 0.612 (0.227) 0.997 (0.007) 0.724 (0.2)
BayesImageS 0.947 (0.069) 0.924 (0.203) 0.877 (0.166)
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Table A.2: Results of BFSP and competing methods in simulated data. Mean and SD
of sensitivity, specificity, and Dice coefficient for each simulation setting referenced in
Section 3 for a triangular target region where ν1 and τ2 are parameters of the simulated
Gaussian processes.

Sensitivity Specificity Dice

Shape ν1 τ2 Method Mean (SD) Mean (SD) Mean (SD)

Triangle 0.5 0.1 BFSP 0.938 (0.035) 0.975 (0.027) 0.868 (0.082)
BFSP Spline 0.942 (0.041) 0.938 (0.086) 0.787 (0.168)

CART 0.512 (0.194) 0.996 (0.004) 0.635 (0.188)
KM 0.992 (0.009) 0.729 (0.075) 0.43 (0.077)

BayesBD 0.675 (0.177) 0.994 (0.013) 0.766 (0.115)
BayesImageS 0.985 (0.023) 0.89 (0.193) 0.774 (0.238)

0.5 0.5 BFSP 0.937 (0.034) 0.957 (0.064) 0.825 (0.131)
BFSP Spline 0.936 (0.044) 0.916 (0.097) 0.728 (0.172)

CART 0.515 (0.232) 0.994 (0.008) 0.619 (0.217)
KM 0.981 (0.016) 0.673 (0.048) 0.374 (0.04)

BayesBD 0.672 (0.166) 0.992 (0.016) 0.758 (0.109)
BayesImageS 0.974 (0.025) 0.88 (0.238) 0.779 (0.248)

1.5 0.1 BFSP 0.92 (0.057) 0.961 (0.055) 0.823 (0.123)
BFSP Spline 0.918 (0.062) 0.93 (0.088) 0.753 (0.17)

CART 0.517 (0.205) 0.994 (0.005) 0.63 (0.189)
KM 0.992 (0.016) 0.729 (0.079) 0.435 (0.108)

BayesBD 0.57 (0.142) 0.996 (0.014) 0.701 (0.098)
BayesImageS 0.946 (0.147) 0.897 (0.185) 0.754 (0.234)

1.5 0.5 BFSP 0.893 (0.141) 0.965 (0.05) 0.816 (0.166)
BFSP Spline 0.897 (0.088) 0.933 (0.081) 0.742 (0.165)

CART 0.476 (0.237) 0.993 (0.008) 0.578 (0.237)
KM 0.98 (0.024) 0.668 (0.062) 0.372 (0.051)

BayesBD 0.612 (0.148) 0.996 (0.01) 0.73 (0.108)
BayesImageS 0.948 (0.066) 0.847 (0.297) 0.755 (0.267)
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Figure A.2: Results of BFSP on 600 simulated datasets with either tapered CAR or
tapered Exponential covariance.

Figure A.3: Sensitivity, specificity, and Dice coefficient of BFSP for different values of
CAR parameter ρ on 60 simulated datasets.
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Figure A.4: Example of simulated data with results of BFSP (black line) and 95%
credible band (grey)

Figure A.5: Post burn-in trace plots of all parameters for one simulated data set. X-axes
in thousands.



89

Figure A.6: Results of BFSP and competing methods when model is misspecified. The
mean within the target region is a function of the distance from the centroid of the
region to mimic the voxel-wise prostate cancer probability data.



Appendix B

Supplementary Material for

Chapter 3

B.1 Simulation settings and results for data containing

zero target regions

We consider a unit square image space D of 40 by 40 resolution and generate data from

a Gaussian processes with Matérn covariance structure exhibiting stationarity (i.e. no

anomalous regions). We vary the smoothness parameter and nugget parameter of the

entire region. We fix the following settings during simulation: ρ0 = .05, µ = 0, σ2
0 = 1.

We randomly generate 100 spatial data sets for each of the following settings.

1. ν0 = 1.5, τ2 = .1

2. ν0 = 1.5, τ2 = .5

3. ν0 = .5, τ2 = .1

4. ν0 = .5, τ2 = .5

BFSP-M was highly successful in identifying zero anomalous regions when the covari-

ance structure was correctly specified by the model (i.e. exponential spatial correlations

given ν0 = .5). Our method tends to find false positive signals when the covariance

structure is misspecified (ν0 = 1.5). See Figure B.1 for the posterior distribution of
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Figure B.1: Distribution of the estimated number of boundaries over 400 simulated
data sets containing zero anomalous regions stratified by smoothness parameter of the
simulated data.

number of boundaries in the 400 simulated datasets containing zero regions for data

simulated with ν0 = .5 and ν0 = 1.5. When the model is correctly specified, BFSP-M

correctly identified the true number of null lesions 100% of the time.

B.2 Derivation of Acceptance Ratios for RJ-MCMC

B.2.1 Birth Step

For a birth step we have m′ = m+1. We generate v, which is the proposed parameters

defining the new boundary and spatial process of the new region created by the new

boundary. In this scenario, v′ is empty.

v = (cm+1, βm+1, µm+1, log(σ
2
m+1))

hm,m+1(Φm,v) = (Φm, cm+1, βm+1, µm+1, exp(log(σ
2
m+1)))
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The Jacobian term is given by:

∣∣∣∣∂hm,m+1(Φm,v)

∂(Φm,v)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

0
. . . 0 0

... 0 1 0

0 0 0 σ2
m+1

∣∣∣∣∣∣∣∣∣∣∣
= σ2

m+1

B.2.2 Death Step

For a death step we have m′ = m − 1. This time v is empty and v′ contains the

parameters for the boundary that we propose to delete. Assume that we propose to

delete boundary m.

v′ = ϕm

hm,m−1(Φm) = (Φm−1,v
′)

Therefore the Jacobian term is:

∣∣∣∣∂hm,m−1(Φm)

∂(Φm)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

0
. . . 0 0

... 0 1 0

0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣
= 1

This holds when proposing deletion for any index i = 1, ...,m after a reordering of labels.

B.2.3 Merge Step

For a merge step we have m′ = m− 1. This time v contains the parameters of the new

merged boundary and v′ contains the parameters for the boundaries that we propose to

merge. Assume that we propose to merge boundaries m and m− 1 into boundary m∗.

v = (cm∗, βm∗, µm∗, log(σ
2
m∗))

v′ = (cm−1, βm−1, µm−1, σ
2
m−1, cm, βm, µm, σ2

m)

hm,m−1(Φm,v) = (Φm−2,v
′, cm∗, βm∗, µm∗, exp(log(σ

2
m∗)))
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The Jacobian term is:

∣∣∣∣∂hm,m+1(Φm,v)

∂(Φm,v)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0

0
. . . 0 0

... 0 1 0

0 0 0 σ2
m∗

∣∣∣∣∣∣∣∣∣∣∣
= σ2

m∗

This holds when proposing a merge for any 2 indices from i = 1, ...,m after a reordering

of labels.

B.2.4 Split Step

For a merge step we have m′ = m+ 1. This time v contains the parameters of the two

new boundaries resulting from the split and v′ contains the parameters for the boundary

that we propose to split. Assume that we propose to split boundary m.

v = (cm∗, βm∗, µm∗, log(σ
2
m∗), cm+1, βm+1, µm+1, log(σ

2
m+1))

v′ = (cm, βm, µm, σ2
m)

hm,m+1(Φm,v) = (Φm−1,v
′, cm∗, βm∗, µm∗, exp(log(σ

2
m∗)), cm+1, βm+1, µm+1, exp(log(σ

2
m+1)))

Therefore the Jacobian term is:

∣∣∣∣∂hm,m+1(Φm,v)

∂(Φm,v)

∣∣∣∣ =
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0

0
. . . 0 0 0

... 0 1 0 0

0 0 0 σ2
m∗ 0

0 0 0 0 σ2
m+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= σ2

m∗σ
2
m+1

This holds when proposing a split for any index i = 1, ...,m after a reordering of labels.

B.3 Additional Tables & Figures
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Figure B.2: Estimated partitioning boundary (black) and 95% credible bands (grey) for
one slice of prostate imaging data. Color represents voxel probability of cancer.

Table B.1: Mean (SD) of sensitivity (TPR), specificity (TNR), and Dice coefficient for
each simulation setting. ν1 and τ2 are parameters of the simulated Gaussian processes.

ν1, τ
2 BFSP-M BIS CART+KM KM BFSP-1

.5, .1
Dice 0.887 (0.135) 0.706 (0.226) 0.618 (0.215) 0.595 (0.067) 0.517 (0.162)
TPR 0.891 (0.174) 0.856 (0.224) 0.697 (0.285) 0.902 (0.039) 0.47 (0.263)
TNR 0.98 (0.034) 0.841 (0.251) 0.866 (0.235) 0.778 (0.064) 0.944 (0.119)

.5, .5
Dice 0.84 (0.164) 0.644 (0.243) 0.581 (0.225) 0.533 (0.052) 0.52 (0.162)
TPR 0.846 (0.216) 0.836 (0.242) 0.662 (0.307) 0.892 (0.043) 0.464 (0.26)
TNR 0.974 (0.038) 0.777 (0.304) 0.854 (0.258) 0.719 (0.052) 0.945 (0.138)

1.5, .1
Dice 0.861 (0.118) 0.675 (0.212) 0.625 (0.189) 0.593 (0.087) 0.536 (0.17)
TPR 0.869 (0.154) 0.805 (0.227) 0.621 (0.268) 0.904 (0.074) 0.462 (0.256)
TNR 0.972 (0.045) 0.829 (0.269) 0.927 (0.155) 0.774 (0.073) 0.961 (0.106)

1.5, .5
Dice 0.779 (0.204) 0.608 (0.238) 0.591 (0.227) 0.53 (0.062) 0.511 (0.164)
TPR 0.757 (0.266) 0.747 (0.278) 0.685 (0.29) 0.888 (0.07) 0.451 (0.26)
TNR 0.976 (0.046) 0.777 (0.344) 0.836 (0.275) 0.716 (0.059) 0.947 (0.131)
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Dice

slice BFSP-M BIS CART+KM KM BFSP-1

1 0.69 0.43 0.63 0.59 0.75
2 0.60 0.54 0.59 0.56 0.63
3 0.64 0.62 0.78 0.71 0.78
4 0.89 0.81 0.82 0.83 0.89
5 0.46 0.37 0.43 0.36 0.51
6 0.76 0.72 0.82 0.79 0.79
7 0.52 0.48 0.53 0.57 0.04
8 0.56 0.50 0.47 0.52 0.53
9 0.53 0.43 0.41 0.38 0.12
10 0.32 0.21 0.36 0.36 0.68
11 0.57 0.60 0.63 0.69 0.63

Sensitivity

slice BFSP-M BIS CART+KM KM BFSP-1

1 0.60 0.28 0.73 0.49 0.69
2 0.58 0.42 0.59 0.50 0.70
3 0.60 0.46 0.69 0.64 0.76
4 0.91 0.75 0.92 0.92 0.92
5 0.39 0.27 0.52 0.28 0.57
6 0.72 0.64 0.88 0.87 0.77
7 0.41 0.36 0.44 0.57 0.02
8 0.43 0.35 0.34 0.43 0.39
9 0.69 0.30 0.50 0.29 0.08
10 0.19 0.12 0.22 0.22 0.52
11 0.44 0.45 0.70 0.69 0.49

Specificity

slice BFSP-M BIS CART+KM KM BFSP-1
1 0.98 0.99 0.95 0.96 0.98
2 0.95 0.96 0.94 0.95 0.94
3 0.88 0.98 0.96 0.93 0.93
4 0.94 0.95 0.89 0.90 0.94
5 0.94 0.94 0.92 0.93 0.93
6 0.95 0.95 0.95 0.94 0.95
7 0.97 0.97 0.97 0.96 0.71
8 0.95 0.96 0.94 0.92 0.95
9 0.90 0.94 0.88 0.90 0.76
10 0.99 1.00 1.00 1.00 1.00
11 0.99 0.99 0.98 0.98 0.99

Table B.2: Dice score, Sensitivity, and Specificity for BFSP-M and competing methods
applied to voxel-wise cancer probabilities for 11 slices.
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Figure C.1: Sensitivity and specificity of BFSP-3D assuming distinct GPs (Spatial) or
distinct independent gaussian distributions (Independent). Data is simulated according
to Section 4.4 for the retangular shapes only with a small (µ1 = .5) or large (µ1 = 2)
difference in means.
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