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Abstract

Geospatial artificial intelligence (GeoAI) is the generalization of conventional artificial

intelligence (AI) to meet the challenges posed by spatial data. Spatial data, i.e., data

annotated with spatial information such as locations and shapes, has been growing

available over the last decade and transformed lives by providing novel ways of observing

the world, knowing places and the relations between them. For example, large amount of

onboard diagnostics data from vehicles becomes available with the popularity of telematics

devices equipped with GPS chips and makes monitoring vehicles’ real-world performance

possible, which is valuable for domains such as vehicle mechanics, transportation science,

and city planning. In many other domains such as smart city and public health, spatial

data becomes critical as well. For example, during the Covid-19 pandemic period, mobile

tracking data from devices with GPS chips has been used as an important way of contact

tracing and traveling pattern surveying. A McKinsey Digital report estimates that

personal spatial data could help save consumers about $600 billion by 2020.

Recent years have witnessed significant advances in AI in both academia and industry.

Its fast development is powered by big data and high-performance computing platforms

that support the development, training, and deployment of AI methods with reasonable

cost.

Even though spatial data are critical, valuable, and collected in a large scale, and AI

techniques have been applied to many problems such as computer vision and natural

language processing successfully, spatial data pose great challenges to conventional AI

techniques. The first challenge is the gap between AI techniques and domain knowledge.

Conventional AI techniques rarely consider domain knowledge (e.g., physics laws and

epidemiology models), making their results hard to interpret and susceptible to violate

domain constraints even with large volumes of data. On the other hand, domain

knowledge by itself is insufficient due to its reliance on simplifying assumptions that may

not approximate the complex real-world scenarios well. The other challenges are caused

by the properties of spatial data, namely, spatial autocorrelation, spatial heterogeneity,

and spatial continuity. Spatial autocorrelation describes the fact that the data samples

(e.g., temperature, precipitation) at different spatial locations are correlated with each
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other and are affected by their geographical neighbors, which violates the common

i.i.d. (i.e., independent and identical distribution) assumption underlying many machine

learning models. Spatial heterogeneity refers to the fact that the data samples at different

spatial locations are different from each other, so there may not be universal models that

are applicable globally. Spatial continuity refers to the fact that the conflict between the

continuity of the geographic space and the discrete representation of spatial data.

This thesis investigates novel and societally important GeoAI techniques for emerging

spatial datasets such as multi-attributed trajectories and categorical point sets. Multiple

novel approaches are proposed to address challenges posed by the datasets on conventional

AI techniques. Specifically, a Quad-Grid Filter & Refine algorithm is introduced to

detect local spatial colocation patterns, which consider the spatial heterogeneity property

of colocation patterns. The algorithm can detect colocation patterns that may not be

prevalent globally but are prevalent in local regions, and it is much more computationally

efficient than the baseline algorithm. Second, the thesis investigate the problem of

discovering contrasting spatial colocation patterns that have different prevalence in

two groups of spatial datasets. It leverages the domain knowledge that neighborhood

relationships between categorical spatial objects may convey important information, and

introduces a filter & refine algorithm using the anti-monotone property of a proposed

metric to measure the prevalence difference of any colocation patterns in the two groups.

Third, the thesis discusses a point-set classification method for multiplexed pathology

images. Inspired by the domain assumption that the spatial configuration of cells

may vary under different health conditions, this thesis introduces a neural network

architecture to capture the spatial configurations of categorical point sets through

modeling pairwise relationships. Last, the thesis introduces a physics-guided K-means

algorithms to estimate the energy consumption for a vehicle to travel along a path, which

is a combination of physics laws followed by vehicle energy consumption and a machine

learning model. The thesis also proposes a path-centric path selection algorithm using the

proposed energy consumption estimation model considering the spatial autocorrelation

property of the data.
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Chapter 1

Introduction

Geospatial artificial intelligence (GeoAI) is the generalization of conventional artificial

intelligence (AI) to meet the challenges posed by spatial data, i.e., data annotated with

spatial information such as locations and shapes.

1.1 Spatial Data

Over the last decade, there has been a significant growth in the availability of spatial

data, which transforms lives by providing novel ways of observing the world, knowing

places and the relations between them [1].

The most traditional way of acquiring spatial data is surveying, which has been

conducted since the beginning of recorded history [2]. The function of surveying includes

determining and measuring spatial objects, assembling information related to spatial

objects, and using the information for planning. Due to its societal importance and high

cost to conduct, surveying was mostly conducted by government agencies, which limits

the public access to spatial data.

Since remote sensing techniques emerged in 1960s, they have become another im-

portant source of spatial data. With the development of remote sensing platforms

(e.g., satellites, airplanes, and UAVs) and sensors (e.g., multispectral scanner, LiDAR

scanner, RADAR sensor), remote sensing techniques with higher spatial, spectral, and

temporal resolution are applied in the last decade [3]. Spatial resolution of remote

sensing imagery refers to the size of the area covered of a pixel in an image, so images

1
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with high spatial resolution give us an opportunities to detect fine-grained spatial objects

such as buildings and trees. Spectral resolution refers to the number of spectrum ranges

that can be recorded by sensors. Different spectrum ranges convey different information

about spatial objects and are complementary with each other [4]. For example, images

of visible spectrum are easy to read by humans, while microwaves used by RADAR

have excellent penetration capacity that enable it to work in various weather conditions

and to detect targets under the Earth’s surface [5], and LiDAR point cloud contains

much information about the shape of spatial objects [6]. Temporal resolution means the

frequency of an area be covered by spatial data. High temporal resolution spatial data

can be used to detect spatial objects more accurately using their temporal fingerprints,

and can also be used to monitor changes of objects.

The last decade also witnesses the integration of portable computing devices (e.g.,

smart phones, watches) and GPS chips, which has boosted spatial data generation

through crowdsourcing. For example, OpenStreetMap is a crowdsourced map built by

volunteers around the world, which provides base maps to a large number of spatial data

science research (e.g., [7]). Applications that users can use to check in with their locations

such as Yelp and Twitter provide spatial data with rich non-spatial attributes and attract

considerable research interest [8]. The emerging crowdsourced spatial data are mostly in

two data types, namely, point sets and multi-attributed trajectories. A point set refers

to a collection of points in a 2/3-dimensional geographic space. Each point is associated

with multiple non-spatial attributes and represents a spatial object or an event. For

example, a point set can represent a collection of points of interest (POIs) in a city,

and each point represents a POI (e.g., a restaurant, a movie theater) and is associated

with attributes such as business hours, grand names, etc [9]. An application of point-set

spatial data in public health is that researchers can use point sets that represent the cases

of certain diseases to detect clusters of the cases so as to discover potential causes to the

diseases [10]. A multi-attributed trajectory is a sequence of multi-attributed points in a

2/3-dimensional geographic space that records the status of a moving object along a

journey. Onboard diagnostics (OBD) data from vehicles is an example of multi-attributed

trajectories, which record dozens of engine measurements (e.g., state of charge, RPM,

etc.) and vehicle locations at each timestamp during their trips [11]. Before OBD data

became available because of the popularity of onboard telematics devices, transportation
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scientists can only evaluated vehicles in controlled laboratory experiments and test track

studies, which do not adequately predict the performance of vehicles during real-world

driving [12]. In public health, crowdsourced spatial data attract growing attention as

well. For example, during the Covid-19 pandemic period, mobile tracking data from

devices with GPS chips has been widely used as a way of contact tracing and traveling

pattern surveying [13].

1.2 GeoAI

The large-scale availability of spatial data boost recent progress in geospatial artificial

intelligence (GeoAI) [14]. For instance, remote sensing images of high spatial resolution

and deep learning computer vision methods fuel progress in fast and accurate spatial

object detection ([15, 16]).

Depending on the goal to accomplish, there are four primary types of GeoAI tasks,

namely, descriptive, diagnostic, predictive, and prescriptive tasks. Descriptive GeoAI

tasks focus on revealing valuable insight from spatial data, which can be in the form

of data visualizations like graphs, charts, reports, and dashboards. For example, in

public safety discovering regions where the density of crimes is statistically higher

than other places helps allocate the police more efficiently [17, 18]. In transportation

science, detecting road segments along which vehicles spend significantly more energy

than that on any other road segments helps researchers to design more energy efficient

roads and vehicles [19]. In material science, discovering the clusters of particles with

unusual rotations helps to analyze the energy transmission across a piece of material [20].

Diagnostic GeoAI tasks look for cause and effect to illustrate why something happened.

They compare the occurrences of events or the existence of objects to determine the

causes to the occurrences or existence. Back to the transportation science example,

now that we are aware that the energy consumption of vehicles is significantly higher

along certain roads, a diagnostic task is to identify the potential causes to it. Additional

techniques are needed to discover the correlation between the high energy consumption

and other factors such as terrain and snow accumulated on roads [9]. Predictive tasks

tell what is likely to happen according to the key trends and patterns in historical

data. Back to our transportation science example, according to the features of a road
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segment (e.g., length, elevation change, road type), we may want to predict the energy

consumption of a vehicle traveling along it using historical energy consumption data for

other roads and vehicles [12]. The last group of tasks is prescriptive tasks, which focus

on finding optimal solutions according to historical data and predictions. Back to our

transportation science example, now that we know the predicted energy consumption

of a vehicle traveling along all road segments, a sample prescriptive task is to find an

energy-efficient path between two given places where the traveling energy consumption is

the lowest when compared with any other candidate paths between the two places [21].

1.3 Illustrative Application Domain I: Smart Transporta-

tion

GeoAI technologies have transformed how people travel with an ever-growing set of tools

such as Google Maps, Uber, etc. These tools change the way people understanding the

world, knowing and communicating relations to places, and navigating through these

places. Smart transportation refers to a transportation system that apply a variety of

technologies (e.g., smart phones, traffic cameras, air quality sensors) to monitor, evaluate,

and manage transportation systems to enhance efficiency and safety. With the great

variety of spatial data (e.g., onboard diagnostics data from vehicles) being collected at

both larger scales and higher resolution, there exists a lot of opportunities for GeoAI to

provide timely solutions to critical transportation problems.

One major problem faced by transportation is sustainability, which has attracted

growing more attention. Sustainable transportation aims to reduce the environmental

impact of vehicles by improving energy efficiency and reducing toxic emissions. Trans-

portation accounts for the vast majority of US petroleum consumption as well as over

a third of greenhouse gases and over a hundred thousand U.S. deaths annually via air

pollution [22]. Large amount of effort has been made to reduce energy consumption,

such as the use of regenerative braking and auto stop-start engines, as well as the

innovation of electric cars. However, the expected energy use continues to climb. The

U.S. Department of Energy predicts world energy consumption for transportation will

rise 28% between 2015 and 2040 [23]. Controlled laboratory experiments and test track

studies that are commonly used in transportation science do not adequately predict
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emissions and energy-consumption during real-world driving. This fact is illustrated by

the Volkswagen emissions scandal, fines levied on other manufacturers and the subsequent

move away from diesel and gasoline energy towards electrified vehicles in many countries.

Thanks to the development of telematics devices with GPS, which collect large volumes

of onboard diagnostics data, monitoring the vehicles under real-world driving conditions

becomes possible. Preliminary evidence for the potential of reducing energy consumption

and greenhouse gas emission through GeoAI includes the experience of UPS, which

saves around a million gallon of fuel every year by preferring routes that avoid left

turns. As this thesis will show, GeoAI has the potential to improve the sustainability of

transportation by suggesting energy-efficient paths according to the historical onboard

diagnostics data, vehicle model information, and other auxiliary spatial data (e.g., road

maps, weather) [21].

1.4 Illustrative Application Domain II: Spatial-informed

Pathology

GeoAI can also help in the pathology field. Pathology is the study of the causes and

effects of disease or injury. In pathology, the standard procedure to diagnose many

diseases, including cancers, are biopsies. In this procedure, a tissue sample is removed

from the body, chemically treated, sliced into thin sections, and placed on a glass slide,

and stained with specific chemicals to enhance contrast for visual inspection [24]. A

pathologist then performs a macroscopic examination of the specimen and describes

various features such as type of cells present, their distribution, and other important

diagnostic features.

The developments in whole slide digital imaging and antigen-based staining technology

enable identification of up to more than 30 markers on each cell based on the cell’s

surface chemistry with high throughput [25, 26]. These novel technologies have played

an important role in the era of cancer immunotherapeutic treatment regimens [27, 28].

Immunotherapy involves the treatment of diseases by inducing, enhancing, or suppressing

an immune response in the patient. This treatment regimen has been gaining increasing

attention due to its potential in the treatment of cancers which are non-responsive to

conventional methods such as radiotherapy and chemotherapy [29, 30]. As this treatment



6

regimen utilizes the immunoregulatory cells of the patient in eliminating tumorous cells,

there is a growing interest in understanding the interplay between various cells in a

spatially informed manner in the tumor microenvironment [31, 32]. For example, for

tumor infiltrating lymphocytes (TILs) to be able to induce cell death, these cells must

have direct or proximal contact with tumor cells. Thus, the distance between tumor and

immune cells is an important indicator for determining disease progression and treatment

effect, and emerging research in this area has begun to highlight the importance of

spatial organization among cell phenotypes for cancer diagnosis and prognosis [32]. The

development and adoption of spatially informed methods both for tumor and disease

micro-environment quantification generally would help in developing optimal treatment

plans tailored to each patient. Additionally, it would be prudent to leverage the power

of algorithmic intelligence in the pathology domain, as it can provide insights which

cannot be captured visually by a pathologist.

1.5 Challenges

While spatial data are critical, valuable and collected at massive scales, they pose great

challenges to conventional AI techniques and platforms when applied to important

societal problems.

1.5.1 Domain Knowledge Gap

The conventional AI techniques often do not consider domain knowledge (e.g., laws of

physics, epidemiology models), making their results hard-to-interpret and susceptible to

domain constraint violations even with large volumes of data. On the other hand, domain

knowledge by itself is also insufficient due to its reliance on simplifying assumptions

that may not be well-suited for complex real-world scenarios. This calls for a more

holistic view to solve real-world problems by leveraging both data-driven techniques and

scientific domain understanding [33].

1.5.2 Properties of Spatial Data

Other challenges come from the properties of spatial data, such as spatial dependence

and spatial heterogeneity. Tobler’s first law of geography, “everything is related to
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everything else, but near things are more related than distant things” [34], describes the

spatial dependence that ubiquitously exists in the phenomena on earth. For example,

people living in the same neighborhood tend to share similar characteristics, income,

and education level. In spatial statistics, spatial dependence is called the spatial auto-

correlation effect. Ignoring autocorrelation and assuming an identical and independent

distribution (i.i.d.) of data when analyzing spatial data may produce hypotheses or

models that are inaccurate [35]. For example, applying non-spatial machine learning

methods (e.g., random forest) on land cover segmentation using remote sensing imagery

may result in salt and pepper noise [36]. Spatial dependence exists not only at close

locations, but also distant locations. One example of long-range spatial dependence

is El Nino and La Nina effects in the climate system. Spatial heterogeneity refers

to the fact that spatial data do not follow an identical distribution throughout the

entire earth [9, 37]. For example, the appearance information of European and Spiny

Toads are visually similar, but they are located in different geographical regions and

belong to different species [38], which makes “one-size-fits-all” models using appearance

information only hardly applicable. Furthermore, while conventional AI techniques need

discrete input data, for example, transactions in association rule mining, spatial datasets

are embedded in continuous space, which makes the non-spatial techniques inapplicable.

The discretization of space may introduce problems such as the modifiable area unit

problem (MAUP) or the multi-scale effect, since the results of spatial analysis depend on

the choice of discretization methods and spatial scale. Figure 1.1(a) shows three input

spatial feature types A, B, and C and the nearby relationship in between. Depending on

the choice of discretization methods as shown in Figure 1.1(b) and (c), the correlation

coefficients of the pairs (A,B) and (B,C) are -1 and 1 respectively. Gerrymandering,

which is a practice intended to establish a political advantage for a particular party or

group by manipulating district boundaries, is a form of the MAUP, and is attracting

growing attention in recent years [39, 40].

1.6 Thesis Contributions

This thesis investigates GeoAI techniques for emerging spatial datasets. The contributions

are summarized in a taxonomy shown in Table 1.1 which describes the input spatial
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(a) (b)

A
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C

nearby
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(c)

Figure 1.1: Example of the modifiable area unit problem.

Table 1.1: Thesis contribution taxonomy.

GeoAI tasks
Descriptive Diagnostic Predictive Prescriptive

Point set Local colo-
cation
(chapter 2)

Contrasting
colocation
(chapter 3)

Point set
classifi-
cation
(chapter 4)

Data
type

Multi-
attributed
trajectory

Eco-routing
(chapter 5)

...

data types and the GeoAI tasks they are used to solve. The input spatial data are in

two data types, namely, point sets and multi-attributed trajectories. Spatial data in

the format of point sets can be used to represent the existence of spatial objects or the

occurrence of events in 2/3-dimensional geographic space. For example, a point set can

be used to represent the locations of cells on a stained tissue sample in the pathology

field. Spatial data in the format of multi-attributed trajectories can be used to represent

the status of moving objects along journeys. For example, onboard diagnostics data

from vehicles are in the form of multi-attributed trajectories. Each point in a trajectory

records the instantaneous status of a vehicle. The content of each chapter is briefly

introduced below.

• Chapter 2 discusses a novel spatial colocation pattern detection approach, local
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colocation pattern detection (LCPD), to find pairs of spatial colocation patterns

and regions such that the spatial colocation patterns are prevalent in their paired

regions [9]. The approach addresses the limitations of traditional spatial colocation

pattern detection approaches which ignore spatial heterogeneity but assume that

the instances of spatial colocation patterns are evenly distributed in the study

area. LCPD has many societal application fields such as forestry study where the

distribution of tree species is heavily affected by the environment. LCPD proposes

multiple novel algorithms, namely quadruplet and QGFR algorithms, to success-

fully handle the computational challenges caused by large number of candidate

regions, non-monotonicity of the test statistic. To balance between computational

tractability and richness of the pattern, LCPD uses minimum orthogonal bounding

rectangles (MOBRs) of spatial colocation pattern instances as approximations of

arbitrary-shape regions. Under this assumption, LCPD enumerates all MOBRs of

colocation pattern instances in the given study area and guarantees correctness

and completeness of the solution. Theoretical and experimental analyses show

that the proposed algorithms yield substantial computational savings compared to

baseline approaches. Case studies demonstrate that LCPD can find local colocation

patterns that are not prevalent globally in the study area.

• Chapter 3 investigates the problem of contrast spatial colocation pattern detection

(CSCPD) in two groups of spatial datasets whose prevalence is substantially

different in the two groups. The approach is important for a variety of application

domains such as pathology where different spatial colocation patterns of tumor

cells and immune cells may indicate different stages of diseases. CSCPD introduces

a metric to describe the difference between the prevalence of spatial colocation

patterns in two groups of spatial datasets based on a commonly-used prevalence

metric of spatial colocation patterns, and then proposes a filter & refine algorithm

utilizing the anti-monotone property of the proposed metric without affecting

the completeness and correctness of the results. Extensive experiments indicate

that the proposed algorithm yields substantial computational time savings. A

case study on a real-world dataset derived from multiplexed immuno-fluorescence

images shows that the proposed method is capable of finding patterns that are

ignored by the related work and has the potential to advance scientific discovery.
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• Chapter 4 investigates a point-set classification method for multiplexed pathology

images, which aims to distinguish between the spatial configurations of cells within

multiplexed immuno-fluorescence (mIF) images of different diseases [41]. This

problem is important because it provides a novel way for pathologists to diagnose

diseases according to the interactions between cells. This problem is challenging

because crucial spatial relationships are implicit in point sets and the non-uniform

distribution of points makes the relationships complex. Manual morphologic or

cell-count based methods, the conventional clinical approach for studying spatial

patterns within mIF images, is limited by inter-observer variability. In this chapter,

a new deep neural network architecture, namely spatial-relationship aware neural

networks, is proposed. Experimental results with a University of Michigan mIF

dataset show that the proposed method significantly outperforms the competing

deep neural network methods, by 80%, reaching 95% accuracy.

• Chapter 5 investigate the problem of selecting energy-efficient path using historical

onboard diagnostics data [12, 11, 21]. It is an societally critical problem since

the sustainability and prosperity of cities benefit from reducing energy consump-

tion of transportation. The problem is challenging because the expected energy

consumption of a vehicle depends on its physical parameters and follows physics

laws, and there exists autocorrelation between the energy consumption on road

segments. This chapter introduces a physics-guided K-means algorithm to estimate

the energy consumption of vehicles on paths, and a maximal-frequented-path-graph

shortest-path algorithm, and an informed algorithm using an admissible heuristic.

Theoretical and experimental evaluation shows that the proposed algorithms yield

substantial computational time savings, and that they select paths that are more

energy-efficient than the paths selected by the state-of-the-art methods.

• Chapter 6 summarizes the thesis findings and gives an overview of related directions

and topics for research in the future.



Chapter 2

Local Co-location Pattern

Detection

2.1 Introduction

Given instances of different spatial features (e.g., mall, hospital) and a spatial relation,

the problem of local co-location pattern detection (LCPD) pairs co-location patterns and

localities such that instances of the features in a co-location pattern tend to be related

to each other inside the paired locality. Intuitively, if a co-location pattern is infrequent

relative to all input instances, it may be neglected in the entire dataset, but more easily

found in a subset of the dataset around its spatial footprint. The uneven distribution of

spatial features in the space, i.e., spatial heterogeneity, is common, so the local existence

of co-location patterns in an area is not unusual. For example, high NOx emissions

from buses may occur with certain engine events only around the bus depot where the

route starts, since the engines have not warmed enough to perform efficiently. Other

examples include high NOx emission and elevation change in rural areas as illustrated in

the Volkswagen emissions scandal [42], and assault crimes and drunk driving events near

bars [43]. Because of its societal importance, LCPD has attracted growing attention

recently.

In this chapter, we will focus on detecting local co-location patterns with the

locality defined using minimum orthogonal bounding rectangles (MOBRs). An MOBR

is a rectangle with sides parallel to the coordinate system. It is widely used as an

11
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Power set defined rectangles

Proposed workData-aware partitioning

Data-unaware 
heuristics [3, 11]

Defining localities with 
clustering [6, 7, 10]

YesNo

YesNo

Figure 2.1: The related work.

approximation of complex shapes by minimally enclosing them [44]. However, the

enumeration of MOBRs is computationally challenging. Given a set of spatial objects

in a 2-dimensional space, the number of the set’s subsets is exponentially related to

its cardinality. Each of the subsets has an MOBR, so the number of MOBRs is also

exponentially related to the number of the input objects. Moreover, the relationship

between the participation index, a widely adopted metric for co-location patterns [45],

in any pair of localities cannot be determined without considering the distribution of

spatial objects within them.

2.1.1 Related Work and Limitations

In order to solve the LCPD problem, many methods have been proposed, which can be

generalized into two steps. The first step is partitioning the study area into potential

localities based on certain heuristics, which is followed by checking the eligibility of the

localities. Based on whether the heuristics are data-aware, these methods belong to two

classes (the right branch in Figure 2.1).

A good example using data-unaware heuristics is [46] in which Celik et al. use a

QuadTree structure to divide the study area into localities, but it requires sophisticated

domain knowledge to predefine localities. In another example, a grid is used to divide

the study area into cells, and arbitrary subgraphs of the cells’ neighbor graph are

regarded as localities [47]. Both approaches share the same limitation with others using

data-unaware heuristics, that is, the partitioning scheme employed is independent of the

spatial distribution of the data, which may break up potential localities [43].

The other class of methods using data-aware heuristics defines localities with clusters

of spatial objects or co-location instances. In [48], localities grow from initial localities
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with high objects concentration. Mohan et al. define localities as areas delineated by

neighbor graphs of spatial objects [43]. Deng et al. explore footprints of co-location

instance clusters with an adaptive density threshold as localities [49]. These methods

are not complete because localities without object or co-location instance concentrations

may be eligible as well.

Our proposed work, on the other hand, detects local co-location patterns in all

rectangular localities with sides parallel to the coordinate system, so the method will

enumerate the MOBRs determined by all subsets of co-location instances (the elements

in co-location instances’ power set). Consider the dataset shown in Figure 2.3 as an

example. If the participation index threshold is set as 0.6, the co-location pattern

{fA, fB} is not a eligible pattern globally through the data, because its participation

index is 7
18 . However, our proposed work will find a prevalence locality for the pattern

(green dash rectangles in Figure 2.2a), where the participation index is 5
6 . Contrarily,

The participation index in the locality determined by the cluster of co-location instances

shown in Figure 2.2b is 3
7 , while Figure 2.2c and 2.2d present the localities with the

highest possible participation index if the study area is partitioned using the Quadtree

and grid in them, where the participation index is 3
7 in both cases. None of the currently

available results in eligible patterns, so it is obvious that the proposed work will detect

more complete results than the relate work.

2.1.2 Contributions

To detect local co-location patterns in all rectangular localities with sides parallel to

the coordinate system, we first formally define the LCPD problem. Then, we present a

Quadruplet & Grid Filter-Refine algorithm that leverages an MOBR enumeration lemma,

and a novel upper bound on the participation index. The experimental evaluation shows

that the proposed algorithm reduces the computation cost substantially. One case studies

on North American Atlas-Hydrography and U.S. Major City Datasets was conducted

to discover local co-location patterns which would be missed if the entire dataset was

analyzed or methods proposed by the related work were applied.
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(a) Proposed work. (b) Data-aware heuristic using clustering.

Quadtree

(c) Data-unaware heuristic using Quadtree.

grid

(d) Data-unaware heuristic using a grid.

Figure 2.2: Comparison between related work. (Better in color.)
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2.2 Basic Concepts and Problem Statement

2.2.1 Basic Concepts

Huang et al. define the input, output and the interest measures for detecting co-location

patterns globally through data in [45].

Each spatial object, composed of a boolean feature (e.g., mall, hospital) and a

spatial location, can be related to others through a spatial relation (e.g., neighborhood).

A co-location pattern is a set of features. An instance of a co-location pattern is a

set of objects of every distinct feature in the pattern which can form a clique given the

input relation. In the dataset shown in Figure 2.3, there are 20 objects of feature fA

(circle) and 18 objects of feature fB (triangle), and the related objects are linked. Only

one co-location pattern, {fA, fB}, exists, and it has 8 instances.

The participation ratio of a feature fi in a co-location pattern C, pr(C, fi), is

the fraction of objects of the feature participating in instances of the pattern. The

participation index of the pattern, pi(C), is the minimal participation ratio of the

features in the pattern. In Figure 2.3, for the co-location pattern C = {fA, fB},
pr(C, fA) = 8

20 and pr(C, fB) = 7
18 , so pi(C) = 7

18 .

By extending these concepts, we introduce the following ones for the LCPD problem.

The study area is defined as the minimum orthogonal bounding rectangle (MOBR)

of all input objects, whose subsets are localities. A local co-location pattern is a

pair of a co-location pattern (C) and a locality (r), in the form of < C, r >. Its instances

and interest measure are the corresponding values of its co-location pattern in its locality.

A locality where objects of features in a co-location pattern tend to be related to each

other (determined by a participation index threshold) is called the pattern’s prevalence

locality.

In Figure 2.3, for a local co-location pattern Cr =< {fA, fB}, r >, there are 5

instances, while pr(Cr, fA) = 5
5 , pr(Cr, fB) = 5

6 , and pi(Cr) = 5
6 . If the participation

index threshold is 0.5, r is a prevalence locality of the pattern {fA, fB}.
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Figure 2.3: A local co-location pattern < {fA, fB}, r >.

2.3 Approach

We first introduce a baseline algorithm for the LCPD problem. Then, we present two

refinements: a Quadruplet (Quad) algorithm as well as a Quadruplet & Grid Filter-Refine

(QGFR) algorithm, to reduce the computational cost without impairing correctness and

completeness.

The pseudo-code of the general algorithm framework is shown in Algorithm 1. In

this framework, all possible co-location patterns of the features associated with the

input objects are enumerated in line 2-11. The instances of each co-location pattern are

generated as the input of an MOBR-generating function MOBRGenerator (line 4), and

the MOBRs obtained from this function are enumerated to detect the prevalance ones

(line 4-10). Consider the dataset in Figure 2.3 as an example. In this case, F has two

elements: fA and fB , so there is only one possible co-location pattern, {fA, fB}, whose 7

instances are saved in CI (line 3). The locality r is one of the MOBRs to be enumerated.

There are 5 instances within it, and the participation index is 5
6 . Both metrics will be

compared with the thresholds to determine whether < {fA, fB}, r > is an eligible result.

In this study, we focus on reducing the number of MOBRs enumerated for each

co-location pattern (i.e., improving function MOBRGenerator(·)), but adopt Apriori-

like algorithms to reduce the number of possible co-location patterns [45, 49], and the

state-of-the-art algorithms to generate co-location instances [45, 50].
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Algorithm 1 General algorithm framework

Require:
Obj: A set of objects;
R: A spatial relation over objects in Obj;
θ: Participation index threshold;
γ: Co-location instance number threshold.

Ensure: Local co-location patterns with participation index ≥ θ and the number of
instances ≥ γ.

1: F ← all spatial features in Obj;
2: for all possible patterns C of F do
3: CI ← co-location instances of C;
4: for all mobr ∈ MOBRGenerator(CI) do
5: p← the participation index of C in mobr;
6: n← the number of C’s instances in mobr;
7: if p ≥ θ and n ≥ γ then
8: Add < cp,mobr > to the result.
9: end if

10: end for
11: end for

2.3.1 Baseline Algorithm

As already mentioned, we focus on localities defined as the MOBRs of subsets of co-

location instances. In the function MOBRGenerator(·) of the baseline algorithm,

we will enumerate all arbitrary subsets of the input co-location instances, and generate

an MOBR for each of them. If each co-location pattern has nci instances on average,

there will be 2nci subsets, resulting in 2nci MOBRs. Thus, the computational complexity

of this baseline algorithm is O(k2nci), where k is the number of possible co-location

patterns.

2.3.2 Quad-Element Algorithm

Our first improvement is based on an MOBR enumeration lemma:

Lemma 2.3.1. Given a set s of n points in a two-dimensional plane, the set of MOBRs

for arbitrary subsets of s is the same as the set of MOBRs for arbitrary subsets with

cardinality ≤ 4 of s.

Proof. Assume that there exists an MOBR for a subset (sub) with cardinality > 4 that
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is not an MOBR for a subset with cardinality ≤ 4.

Let xmin, xmax, ymin, ymax denote the minimum and maximum of the x, y coordinates

of the points in sub. There must exist points a, b, c, and d (which may be the same) in

sub such that xa = xmin, xb = xmax, yc = ymin, yd = ymax. Thus, the MOBR for sub is

the same as that for {a, b, c, d}, which is a subset of s with cardinality ≤ 4, resulting in

a contradiction with the assumption.

Lemma 2.3.1 indicates that the enumeration cost of a co-location pattern’s MOBRs can

be reduced from 2n to n4 without affecting completeness. By changing the function

MOBRGenerator(·) to generate the MOBRs of subsets with cardinality ≤ 4 of CI we

can get the Quadruplet (Quad) algorithm with computational complexity of O(kn4ci).

2.3.3 Quadruplet & Grid Filter-Refine Algorithm

Our definition of localities determines that a small displacement of any co-location

instance that defines a locality’s boundary will create a new locality, so there are lots of

localities overlapping each other. If we can classify them into groups according to the

areas they share, and apply a filter on each group instead of on individuals, the number

of localities to be enumerated can be reduced further. Based on this idea, we proposed

the second improvement: the Quadruplet & Grid Filter-Refine (QGFR) Algorithm.

The pseudo-code of the function MOBRGenerator(·) in the QGFR algorithm is

shown in Algorithm 2. Because a grid-based filter is applied, three new parameters are

added, namely, a threshold of the participation index, a threshold of the number of

co-location instances, and the cell size of the grid covering the entire study area. The first

step of the function is saving the active cells of the input co-location pattern C (i.e., the

cells overlapping C’s instances) in AC (line 2). A cell overlapping a co-location instance

means that the intersection of the cell and the MOBR of this instance is nonempty. For

example, Cells 1, 2, and 3 in Figure 2.4 are active cells of the pattern {fA, fB}. After

getting the active cells, we will use their MOBRs (cMOBR) as an approximation of

the MOBRs of C’s instances (iMOBR). The cells in a cMOBR are classified into two

parts. The cells adjacent to the cMOBR’s boundary are named as bounding cells, while

the others are the bounded cells. In Figure 2.4, a cMOBR is delineated by a red solid

rectangle, while its bounding and bounded cells are filled with a hash pattern and a
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Figure 2.4: Grid cells and MOBRs (better in color).

solid color respectively. The boundary of each iMOBR has the following property:

Lemma 2.3.2. The boundary of any iMOBR must be within the bounding cells of one

and only one cMOBR.

The proof of this lemma is straightforward. If the boundary of an iMOBR is not

within the bounding cells of a cMOBR, at least one of its four edges does not pass active

cells, which is impossible. If two cMOBRs share the same bounding cells containing an

iMOBR’s boundary, they must be the same. Therefore, we define that an iMOBR is in

a cMOBR if its boundary is within the bounding cells of the cMOBR. For example, an

iMOBR delineated by a dash rectangle in Figure 2.4 is in the plotted cMOBR. Because

each iMOBR is in a unique cMOBR, by enumerating the iMOBRs in each cMOBR, we

can enumerate all iMOBRs just once. In the pseudo-code, we enumerate all cMOBRs

using Lemma 2.3.1 (line 3-10).

To eliminate the cMOBRs in which no iMOBR is eligible, we introduce an upper

bound (MaxPI bound), η(< C, cMOBR >), for the participation index of a local co-

location pattern composed of a co-location pattern C and any iMOBR in a cMOBR of

C. The MaxPI bound is based on an upper bound for the participation ratio, which can

be stated as:

Lemma 2.3.3. The upper bound, ζ(< C, cMOBR >, f), for the participation ratio of a

feature f in a local co-location pattern composed of a pattern C and any iMOBR in a
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cMOBR of C is

ζ(< C, cMOBR >, f) =
po(C, f, cMOBR)

o(f, bounded) + po(C, f,bounding)

∀ iMOBR in cMOBR.

Table 2.1 describes the notation used in the above formula.

Table 2.1: Symbols used in Lemma 2.3.3.

Number of objects of f in a locality r

Participating in C Not participating in C All

po(C, f, r) npo(C, f, r) o(f, r)

where r can take values of “all cells” (cMOBR), “bounding cells” (bounding), or “bounded

cells” (bounded) of the cMOBR, or the “actual iMOBR” (iMOBR), or the “intersection

of iMOBR and bounding cells” (extra). The proof is as follows:

Proof.

pr(< C, iMOBR >, f) =
po(f, C, iMOBR)

o(f, iMOBR)
=
po(f, C,bounded) + po(f, C, extra)

o(f,bounded) + o(f, extra)

=
po(f, C,bounded) + po(f, C, extra)

o(f,bounded) + po(f, C, extra) + npo(f, C, extra)
.

Because npo(f, C, extra) ≥ 0,

pr(< C, iMOBR >, f) ≤ po(f, C,bounded) + po(f, C, extra)

o(f,bounded) + po(f, C, extra)
.

Because extra ∈ bounding, 0 ≤ po(f, C, extra) ≤ po(f, C,bounding). Meanwhile,
po(f,C,bounded)
o(f,bounded) ≤ 1. Thus,

pr(< C, iMOBR >, f) ≤ po(f, C,bounded) + po(f, C,bounding)

o(f, bounded) + po(f, C,bounding)

=
po(f, C, cMOBR)

o(f,bounded) + po(f, C,bounding)
.
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Based on the definition of the participation index, we can define the MaxPI bound as

the smallest upper bound of the participation ratio of any feature in the local co-location

pattern, i.e.,

η(< C, cMOBR >) = minfi∈C(ζ(< C, cMOBR >, fi)).

Given a participation index threshold θ, if η(< C, cMOBR >) < θ, there will not be any

eligible iMOBR in this cMOBR. In the pseudo-code, the MaxPI bound of C in every one

of its cMOBRs, together with the number of instances, is compared with the thresholds

to determine whether enumerating the iMOBRs in the current cMOBR is necessary.

Algorithm 2 Function MOBRGenerator in QGFR algorithm

Require:
CI: A set of instances of a co-location pattern C;
θ: Participation index threshold;
γ: Co-location instance number threshold;
l: The size of each grid cell.

Ensure: MOBRs of CI’s subsets.
1: function MOBRGenerator(CI, θ, γ, l)
2: AC ← active cells of C;
3: for all subAC(with cardinality ≤ 4) ⊆ AC do
4: cmobr ← the MOBR of subAC;
5: η ← MaxPI(C, cmobr);
6: n← the number of C’s instances in cmobr;
7: if η ≥ θ and n ≥ γ then
8: Add iMOBRs in cmobr to the result.
9: end if

10: end for
11: end function

Assuming that each co-location pattern has nac active cells on average, and the

number of iMOBRs in each cMOBR is q, the computational complexity is O(kn4acq).

If q can be treated as a constant, because nac is much less than nci in most cases,

the computational cost of the QGFR algorithm is much lower than that of the Quad.

Because we have proved that in this algorithm all MOBRs of co-location instances are

evaluated once and only eligible results are returned, we maintain the correctness and
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completeness of the algorithm through the performance improvement.

2.4 Experimental Evaluation and Case Studies

In this section, we evaluate the baseline, Quad, and QGFR algorithm using synthetic

data and a Chicago crime dataset [51], followed by one case study using the North

American Atlas - Hydrography dataset from the U.S. Geological Survey [52] and the

dataset of the U.S. major cities from Esri.

2.4.1 Experiments

The goal of the experiments was twofold: (a) evaluate the effect of the performance

refinements of the proposed Quad algorithm and QGFR algorithm compared with the

baseline algorithm. (b) determine the robustness of the QGFR algorithm given different

inputs.

According to our analysis in §5.4, the computational complexity of the three algo-

rithms are O(k2nci), O(kn4ci), and O(kn4acq) respectively, where nci is the number of

co-location instances per pattern, nac is the number of active cells per pattern, k is the

number of co-location patterns, and q is the average number of iMOBR in each cMOBR.

To evaluate the performance refinements, we studied the following two questions: (1)

What is the effect of the number of co-location instances? (2) What is the effect of the

number of co-location patterns? To determine the robustness, we asked how well the

QGFR algorithm performed under different size of grid cells.

To answer these questions, we designed experiments as shown in Figure 2.5. The

synthetic and the real-world data (a Chicago crime dataset) were generated with con-

trolled parameters. In the simulation, three algorithms were executed with the grid cell

size as a parameter. The performance was evaluated and compared using the run time

of each algorithm. The platform for the simulation was Microsoft .NET Framework 4.5

on a computer with Intel(R) Core(TM) i7-4770 3.40 GHz CPU and 32 GB RAM. The

parameters in the experiments are shown in Table 2.2.
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Candidate algorithms:
1. Baseline;
2. Quadruplet;
3. Quad & Grid Filter-refine.

Parameters:
𝑛"#, n&& , n"'

Computational 
time cost

Synthetic data 
generation

SimulationReal-world data 
preparation

Parameters:
𝑛(, n'

Parameters:
Grid size.

Figure 2.5: Experiment design.

Table 2.2: Parameters for the experiments.

Symbol Meaning

ncp Number of core co-location patterns

ncc Core co-location patterns’ cardinality

nci Number of instances of each pattern

ni Number of input objects

nf Number of input features

Grid size Cell’s edge length of the grid used in the QGRF algorithm
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Synthetic data generation

A point distribution with co-location patterns is often modeled as an aggregated point

process [45, 53, 49]. Commonly used point processes include the Poisson cluster process

[54] and Matérn’s cluster process [55]. In order to ensure the existence of local co-location

patterns, we made two changes on the steps used in [53], including:

• Randomly select a rectangular region in the study area as a prevalence locality for

each co-location pattern.

• In each co-location pattern’s prevalence locality, ensure that at least 4 instances of

the pattern are generated, and that no noise object of the features in the pattern

is generated.

Because the subsets of a co-location pattern are also co-location patterns, when

generating the synthetic data, we named the patterns which were not subsets of other

patterns core patterns. The study area size was set to 10000 × 10000. The spatial

relation was a neighborhood with a radius of 10. The number of noise objects of each

feature was set to 4× nci.

Experimental results

Effect of the number of co-location instances. The experiments were conducted with both

synthetic and real-world data. The synthetic data was generated by fixing ncp = 2 and

ncc = 3, but changing nci, whose results were shown in Figure 2.6a. The computational

cost of the baseline algorithm, as expected, increased exponentially with nci, and was

much larger than that of the two proposed algorithms, so its run time was not included

when nci = 50, 75, or 100. The run time of the Quad algorithm was much longer than

that of the QGFR algorithm, and it also increased faster than the latter with increasing

nci. The experiment with the Chicago crime dataset was conducted by fixing nf = 3 but

varying ni. By increasing the number of input objects in a fixed study area, we increased

the number co-location instances indirectly. The results (Figure 2.6b) also shown that

the advantage of the QGFR algorithm increased as the number of input objects grew.

Effect of the number of co-location patterns. Since the number of co-location patterns

is determined by both the number of core co-location patterns and their cardinalities,

we conducted two controlled experiments with synthetic data and one with the Chicago
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Figure 2.6: Effect of the number of co-location instances.

crime dataset on them. Figure 2.7a and Figure 2.7b presented the results of experiments

with the synthetic data. In Figure 2.7a ncc = 3 and nci = 50 but ncp changed, while in

Figure 2.7b ncp = 2 and nci = 50 but ncc changed. Figure 2.7c shown the results using

the real-world data, where the number co-location pattern was increased by increasing

the number of input features. In all the cases, the growing number of co-location patterns

increased the advantage of the QGFR algorithm over the Quad algorithm.
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Figure 2.7: Effect of the number of co-location patterns

Effect of the size of grid cells. The sensitivity analysis was done through two controlled

experiments where the same synthetic and real-world data but different grid cell size

were used. The parameters for the synthetic data were ncp = 2, ncc = 3, nci = 50 and

those for real-world data were ni = 485, nf = 4. According to the results shown in

Figure 2.8, the QGFR algorithm was robust with changes in the grid cell size, since the

fluctuation of its run time was small when the grid cell size changed. When the grid

cell size was small, the number of active cells was not much smaller than the number
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Figure 2.8: Effect of the size of grid cells.

of co-location instances, so the performance would be improved if a larger cell size was

used. As the grid cell size increased, more iMOBRs resided in a single grid cell, so the

performance improvement brought about by the MaxPI bound was weakened.

2.4.2 Case Study using North American Atlas-Hydrography and U.S.

Major City Datasets

We conducted a case study using the North American Atlas - Hydrography dataset

from the U.S. Geological Survey and the data of the U.S. major cities from Esri. Other

inputs included a spatial relation specified by a neighborhood radius of 50 kilometers, a

participation index threshold θ = 0.6, and a instance number threshold γ = 20. There

were 2610 cities which represent cities in the U.S. with population of more than 10

thousand in the dataset. The number of lakes was 394. The participation index of the

co-location pattern {city, lake} was 0.33, which meant major cities were not globally

co-located with lakes in the U.S. However, our proposed QGFR algorithm detected some

prevalence localities, two of which were shown in Figure 2.9 with the zoom-in maps. In

the east locality, there were 163 cities, 109 of which were co-located with lakes, while

39 out of 41 lakes were near cities, so the participation index was about 0.67. This

locality could be detected by the related work as well, because if we defined the density

as the number of instances of a feature in a unit area, the density of both input objects

and co-location instances was high (the ratio between the density of the co-location

instances in the locality and that in the whole country was about 4.22). Contrarily,

in the west locality, there were 35 out of 50 cities co-located with 7 out of 11 lakes,

resulting in the participation index as about 0.63. In this locality, the density of the
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Figure 2.9: Case study with the hydrography and city data. Two prevalence localities of
co-location pattern {city, lake} are delineated by rectangles and shown in the zoom-in
maps. (Better with color.)

input objects and co-location instances was almost the same as that in the whole country

(the ratio between the density of the co-location instances in the locality and that in the

whole country was about 1.03), which meant that the locality could not be identified by

the related work using clustering to define localities. The findings indicated that the

co-location pattern of major cities and lakes existed not only in the southeast of the U.S

where lakes concentrated but also in the west where it was drier and lakes were more

valuable of the cities.
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2.5 Conclusion and Future Work

In this chapter, we formally defined the local co-location pattern detection problem, and

proposed two algorithms that can efficiently solve it. The effectiveness and efficiency of

the algorithms were proved theoretically and validated experimentally on synthetic and

real datasets. In addition, we presented the results of one case study using the North

American Atlas-Hydrography and U.S. Major City Datasets.

During the study, we noticed that the distribution of spatial events (e.g., the auto-

correlation between events of the same feature) may affect the results. Our future

research will take this into consideration. In addition, the distribution of events related

to humans may be strongly affected by road networks especially in urban areas. Defining

regions as subsets of road networks may result in richer and more meaningful results.

We plan to explore this idea in our future work.



Chapter 3

Contrasting Spatial Colocation

Pattern Detection

3.1 Introduction.

Contrasting spatial colocation pattern detection aims to discover spatial colocation

patterns whose prevalence is substantially different in two groups of spatial datasets.

Each spatial dataset contains objects belonging to different spatial features. For example,

a spatial dataset may represent the points of interest in a city (e.g., hospitals, restaurants).

A spatial colocation pattern refers to a set of spatial features, whose prevalence measures

the tendency of any instances of the spatial features to be located near each other. For

example, the set of McDonald’s and Burger King restaurants is a prevalent colocation

pattern in U.S. cities. However, this pattern may not have the same prevalence in a

different spatial dataset. For example, Burger King and McDonald’s are not commonly

found near each other in China. Therefore, the goal of this problem is to find these kinds

of colocation patterns given a prevalence difference threshold.

Applications domains: This problem is important for a variety of application

domains. For example, in pathology, the distance between tumor cells and immune

cells vary at different stages of diseases, which indicates their different relationships.

Identifying contrasting spatial colocation patterns helps to generate hypotheses about

the relationships between cells under different disease conditions, and also provide a

novel way to diagnose diseases. Such patterns are common in other fields as well. In

29
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environmental risk assessment, the colocation patterns of arsenic and other chemicals

differ in water supply condition on the existence of pollution sites [56]. In wetland

ecology, interspecies relationships vary significantly based on the growing environment,

community composition, and species abundance [57]. Identifying contrasting spatial

colocation patterns helps focus domain users’ efforts on specific relationships that change

with the underlying conditions.

Challenges: The challenges of the problem are two-fold. First, the number of

potential patterns is exponentially related to the number of input spatial features.

Second, the prevalence of spatial colocation patterns varies with the definitions of

geographic proximity, so many definitions of geographic proximity have to be tested for

each pattern.

3.1.1 Related Work and Limitations

Most studies on spatial colocation pattern detection originate from [58] where the concept

of a spatial colocation pattern and its prevalence metric, the participation index, were

introduced. Most research in this area falls into two groups. The first group aims

to improve computational efficiency, such as the join-less [59], tree-based [60], and

clique-based approaches [61, 62], as well as some parallel approaches [63, 64, 65]. The

other group introduces variants of the participation index to achieve different detection

objectives, such as patterns between extended objects [66] and fuzzy objects [67, 68],

statistically significant patterns [69], and co-distribution patterns [70].

However, these studies all focus on detecting prevalent spatial colocation patterns in

a single spatial dataset and cannot solve the problem in this paper efficiently. In general,

the methods of spatial colocation pattern detection have two steps: (1) enumerating

candidate spatial colocation patterns; and (2) generating the instances and calculating

the prevalence of each pattern. All the studies on improving the computational efficiency

of these methods focus on step (2), but leverage the anti-monotone property of the

participation index to reduce the number of candidate patterns enumerated in step (1).

According to this property, if a colocation pattern is not prevalent given a threshold,

then its supersets are not prevalent either. In the contrasting spatial colocation pattern

detection problem, since there is no prevalence threshold in the input, it is difficult for

the anti-monotone property to act as a filter, and the number of candidate patterns in
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step (1) becomes 2|F |, where |F | is the number of input spatial features and can be large

in many applications. For example, the number of cell types in a multiplexed pathology

point set can be more than 30, and there are hundreds of different types of points of

interest in a city, which makes the number of candidate patterns extremely large and

the related work inapplicable.

3.1.2 Contributions

In this study, we introduce a metric to describe the difference between the prevalence

of any spatial colocation patterns in two groups of spatial datasets, and a filter &

refine algorithm to detect eligible contrasting spatial colocation patterns efficiently. Our

contributions are summarized as follows.

• We formally define the problem of contrasting spatial colocation pattern detection.

• We introduce a metric to describe the difference between the prevalence of any

spatial colocation patterns in two groups of spatial datasets. It is based on a

commonly-used prevalence metric of spatial colocation patterns and satisfies the

anti-monotone property that can be employed to enhance efficiency.

• We introduce a filter & refine algorithm utilizing the anti-monotone property of

the proposed metric efficiently without affecting the completeness and correctness.

• We conduct extensive experiments which indicate that the proposed algorithm

yields substantial computational time savings.

• We conduct a case study on a real-world dataset derived from multiplexed immuno-

fluorescence images, which shows the capability of the proposed method to find

patterns that are ignored by the related work, as well as the potential to advance

scientific discovery.

Scope: We focus on contrasting spatial colocation patterns between two groups

of spatial datasets. The generalization to more than two groups of spatial datasets is

beyond the scope of this study. Generating colocation pattern instances and calculating

the prevalence metric in a single spatial dataset, which is complementary with our study,

is also beyond the scope.

3.2 Basic Concept and Problem Definition.
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3.2.1 Basic concept.

A spatial feature refers to the conceptual abstraction of a set of spatial objects with

the same feature type, such as a plant species or a business category. An instance of

spatial feature fi refers to a spatial object with feature type fi. A spatial object is

the representation of an entity or phenomenon in a 2/3-dimensional geographical space,

e.g., a point representing a hospital or a tumor cell. A spatial dataset contains a set of

spatial objects.

A spatial colocation pattern is defined as a set of spatial features. An instance

of spatial colocation pattern C is a clique composed of one instance of each feature

in C. A clique is a set of spatial objects among which every two objects are neighbors of

each other given a neighbor relationship. For example, in spatial dataset (d) in Figure

3.1, 〈fa, fb, fc〉 is a colocation pattern, and it has two instances represented by two sets

of linked squares, circles and triangles.

A neighbor relationship exists between two spatial objects when the two objects

are in geographic proximity. Geographic proximity in the spatial colocation pattern

detection problem is typically defined using a distance threshold. Given a neighbor

distance threshold d, two spatial objects are in geographic proximity if their relative

distance is ≤ d. Different neighbor distance threshold model neighbor relationships in

different spatial resolutions. There are other ways of defining geographic proximity, but

in this study, we only focus on the one using a distance threshold.

Given a neighbor distance threshold d, a commonly-used metric to measure the

prevalence of a spatial colocation pattern C in a spatial dataset is the participation

index (PI(C, d)):

PI(C, d) = min
∀fj∈C

PR(C, fj , d), (3.1)

where PR(C, fj , d) is the participation ratio of spatial feature fj (fj ∈ C) and PR(C, fj , d) =
|I(C,fj ,d)|
|I(fj)| , where |I(C, fj , d)| represents the number of unique instances of fj in the in-

stances of C, and |I(fj)| represents the number of all instances of fj . The value of

the participation index ranges from 0 to 1. The greater the value, the more prevalent

the colocation pattern is. For example, in the spatial dataset in Figure 3.1, suppose

that the neighbor relationship is defined by a threshold d. Then, PR(〈fb, fc〉, fb, d) =

0.75,PR(〈fb, fc〉, fc, d) = 0.75, and PI(〈fb, fc〉, d) = 0.75.
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Group 1 Group 2

fa
fb
fc

neighbor relationship

(a) (b)

(c) (d)

Figure 3.1: A sample input composed of four spatial datasets in two groups.
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Given a neighbor distance threshold d, to measure the difference between the preva-

lence of a spatial colocation pattern C in two groups of spatial datasets, we propose a

metric called the participation index distribution difference (PIDD(C, d)). The

metric refers to the difference between the probability density functions of PI(C, d) in

two groups of datasets, and is computed as follows. We use a histogram (denoted as

hC,d(·)) to approximate the probability density functions of PI(C, d) in each group. For

simplicity, in this study, the bins in all histograms have the same size, and the total area

of a histogram is normalized to 1. For example, the PI(〈fb, fc〉, d) values in datasets (a)

and (c) of Figure 3.1 are 0.75 and 0.5, respectively. Suppose that the number of bins in

a histogram is 5. The probability density function of PI(〈fb, fc〉, d) of the datasets in

group 1 can be represented by the left histogram in Figure 3.2. Similarly, the probability

density function of PI(〈fb, fc〉, d) in group 2 can be represented by the right histogram.

Then the difference between the two histograms is measured by the Manhattan distance

between the vectors representing the bin areas of the histograms:

PIDD(C, d) = |h[1]C,d − h
[2]
C,d|1. (3.2)

For example, in Figure 3.2, h
[1]
〈fb,fc〉,d = [0, 0, 0.5, 0.5, 0], h

[2]
〈fb,fc〉,d = [0, 0.5, 0.5, , 0], so

PIDD(〈fb, fc〉, d) = 1. The value of participation index distribution difference ranges

from 0 to 2. The larger the value, the larger the difference between the prevalence of a

spatial colocation pattern of the two groups.

A contrasting spatial colocation pattern is defined as a spatial colocation

pattern paired with a neighbor distance threshold, whose participation index distribution

difference exceeds a given threshold.

To improve readability, a table of notations is provided in Table 3.1.

3.2.2 Problem definition.

The formal definition of the problem is as follows.

Input:

• A set of spatial features F ;

• Two groups of spatial datasets containing the instances of F ;

• A set of neighbor distance thresholds;
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Table 3.1: Table of notations.

Notation Meaning

f A spatial feature.
C A spatial colocation pattern.
d A neighbor distance threshold.

PI(C, d) Given neighbor relationship defined by a neighbor distance
threshold d, the participation index of a spatial colocation
pattern C in a spatial dataset.

PR(C, f, d) Given neighbor relationship defined by a neighbor distance
threshold d, the participation ratio of a spatial feature f in a
spatial colocation pattern C in a spatial dataset.

PIDD(C, d) Given neighbor relationship defined by a neighbor distance
threshold d, the participation index distribution difference of a
spatial colocation pattern C in two groups of spatial datasets.

hC,d(·) A histogram that represents the probability density function
of PI(C, d) in a group of spatial datasets.

HC,d(·) A histogram that represents the cumulative distribution func-
tion of PI(C, d) in a group of spatial datasets.

• The number of histogram bins;

• A participation index distribution difference threshold θ.

Output: Contrasting spatial colocation patterns.

3.3 Proposed Approach.

A baseline method to the problem has three steps: (1) traversing through the spatial

colocation patterns; (2) for each colocation pattern, traversing through the neighbor

distance thresholds; and (3) given each colocation pattern and distance threshold,

generating instances of the pattern in all the input spatial datasets in two groups and

computing the participation index distribution difference. All subsets of the input spatial

features paired with certain distance thresholds may be contrasting spatial colocation

patterns, which is exponentially related to the number of features. Hence, no matter

how efficient the algorithm in step (3) is, a topic extensively studied in the related work,

the time complexity of the solution is dominated by the number of patterns enumerated

in step (1). Therefore, we propose the early-stop binary-search algorithm with two
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Figure 3.2: Histograms of h〈fb,fc〉,d(·) of two groups in Figure 3.1.

refinements: binary distance threshold search to reduce the number of neighbor

distance thresholds enumerated in step (2), and early-stop spatial colocation pattern

enumeration to reduce the number of colocation patterns enumerated in step (1).

3.3.1 Cumulative distribution function monotonicity.

The two refinements are based on the following two theorems.

Theorem 3.3.1. Given a spatial colocation pattern C and two neighbor distance thresh-

olds d1 and d2 where d1 ≤ d2,

HC,d1(b) ≥ HC,d2(b),∀b ∈ BIN, (3.3)

where HC,d1(·) and HC,d2(·) are the histograms approximating the cumulative distribution

functions of the PI(C, d1) and PI(C, d2) of a group of spatial datasets, respectively, and

BIN is a set of bins in a histogram.

Theorem 3.3.2. Given two spatial colocation patterns C1 and C2 where C1 ⊂ C2, and

an neighbor distance threshold d,

HC1,d(b) ≤ HC2,d(b),∀b ∈ BIN, (3.4)

where HC1,d(·) and HC2,d(·) are the histograms approximating the cumulative distribution

functions of the PI(C1, d) and PI(C2, d) of a group of spatial datasets, respectively, and
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BIN is a set of bins in a histogram.

The proof of Theorem 3.3.1 and 3.3.2 is based on the following two Lemmas.

Lemma 3.3.3. In a spatial dataset, PI(C, d1) ≤ PI(C, d2) if d1 ≤ d2.

Lemma 3.3.4. In a spatial dataset, PI(C1, d) ≥ PI(C2, d) if C1 ⊂ C2.

The proof of Lemma 3.3.3 is as follows.

Proof. According to the definition of an instance of a spatial colocation pattern, any

instances of a pattern C with a neighbor distance threshold of d1 must be the instances

of C with a neighbor distance threshold of d2, because d1 ≤ d2. Therefore, for any spatial

feature f in a colocation pattern C, the instances of f that are in the instances of C

with a distance threshold of d1 must be in the instances of C with a distance threshold

of d2, and |I(C, f, d1)| ≤ |I(C, f, d2)|. According to the definition of the participation

index,

PI(C, d) = min
∀fj∈C

PR(C, fj , d),

where PR(C, fj , d) =
|I(C,fj ,d)|
|I(fj)| , Lemma 3.1 is proved.

Based on Lemma 3.3.3, Theorem 3.3.1 is proved as follows.

Proof. Because of Lemma 3.1, in a group of spatial datasets, the number of datasets

with PI(C, d1) ≤ x is no less than the numbers with PI(C, d2) ≤ x, ∀x. HC,d(b) is the

histogram approximating the cumulative distribution function of PI(C, d) evaluated at b,

which refers to the probability that PI(C, d) will take a value less than or equal to b, so

HC,d1(b) ≥ HC,d2(b), ∀b ∈ BIN .

The proof of Lemma 3.3.4 is as follows.

Proof. According to the definition of an instance of a spatial colocation pattern, any

instances of a pattern C2 must contain an instance of a pattern C1 with the same

neighbor distance threshold d, because C1 ⊂ C2. Therefore, for any spatial feature f

in a colocation pattern C, the instances of f that are in the instances of C2 must also

be in the instances of C1, and |I(C1, f, d)| ≥ |I(C2, f, d)|. According to the definition of

the participation index, Lemma 3.2 is proved.
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Then, Theorem 3.3.2 is proved as follows.

Proof. Because of Lemma 3.2, in a group of spatial datasets, the number of datasets with

PI(C1, d) ≤ x is less than or equal to the numbers with PI(C2, d) ≤ x,∀x. HC,d(b) is the

histogram approximating the cumulative distribution function of PI(C, d) evaluated at b,

which refers to the probability that PI(C, d) will take a value less than or equal to b, so

HC,d1(b) ≤ HC,d2(b), ∀b ∈ BIN .

3.3.2 Binary distance threshold search.

For a spatial colocation pattern C, when the baseline method searches for any neighbor

distance thresholds d in a range [d1, d2] such that PIDD(C, d) exceeds a given threshold,

it traverses through all the distance thresholds in [d1, d2]. The key idea of this refinement

is that if we can prove that the lower bound of PIDD(C, d) exceeds the threshold or that

the upper bound of PIDD(C, d) is less than the threshold, for all d ∈ [d1, d2], we can

reduce the number of distance thresholds enumerated.

Let’s denote the histograms approximating the cumulative distribution function

of PI(C, d) in two groups of spatial datasets as H
[1]
C,d and H

[2]
C,d, respectively. Then,

according to Equation (3.2), the participation index distribution difference PIDD(C, d)

is

Σk
i=1|(H

[1]
C,d(bi)−H

[1]
C,d(bi−1))− (H

[2]
C,d(bi)−H

[2]
C,d(bi−1))|, (3.5)

where bi is the ith bin in a histogram with k bins, and HC,d(b0) = 0. The task of finding

the upper and lower bounds of PIDD(C, d),∀d ∈ [d1, d2] given the HC,d1 , HC,d2 of two

groups of spatial datasets is formalized as the following optimization problem.

Max
H

[1]
C,d,H

[2]
C,d

PIDD(C, d)

and Min
H

[1]
C,d,H

[2]
C,d

PIDD(C, d)

subject to: H
[j]
C,d1

(bi) ≥ H [j]
C,d(bi) ≥ H

[j]
C,d2

(bi), (3.6)

H
[j]
C,d(bi−1) ≤ H

[j]
C,d(bi), (3.7)

j = 1, 2, and ∀bi ∈ BIN.
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Constraint (3.6) is based on Theorem 3.3.1. Constraint (3.7) is true because cumulative

distribution functions are monotonic increasing. According to Equation (3.5), the

objective function is a linear function, so the optimum is attained on the vertices of the

feasible region. Searching for the optimums by enumerating the vertices is equivalent

to generating a path of H = [(H
[1]
C,d(b1),H

[2]
C,d(b1)), ..., (H

[1]
C,d(bk),H

[2]
C,d(bk))], where the

values of H
[j]
C,d(bi) are H

[j]
C,d1

(bl) and H
[j]
C,d2

(bl) that are in the range [H
[j]
C,d2

(bi), H
[j]
C,d1

(bi)]

for l = 1, 2, ..., k, which we call its vertex values. In the worst case, the numbers of vertex

values of (H
[1]
C,d(bi) and H

[2]
d (C, bi)) are both 2k, so the number of possible values of the

path H is (2k)2k, making the process of searching for the optimum computationally

expensive.

To reduce this cost, we introduce a dynamic-programming algorithm, called CumDP,

based on the Markov property of the feasible region of H
[j]
C,d(bi). According to this

property condition on H
[j]
C,d(bi−1), the feasible region of H

[j]
C,d(bi) is irrelevant to H

[j]
C,d(bm)

where m < i− 1. Denote

PIDD(C, d)[: t] =Σt
i=1|(H

[1]
C,d(bi)−H

[1]
C,d(bi−1))

− (H
[2]
C,d(bi)−H

[2]
C,d(bi−1))|,

(3.8)

where t = 1, 2, ..., k. This gives us the following theorem.

Theorem 3.3.5. Denote the optimum (maximum or minimum) of the PIDD(C, d)[: t]

condition on H
[1]
C,d(bt) = αt, H

[2]
C,d(bt)= βt as ∆̄t(αt, βt). Then,

∆̄t(αt, βt) = Optimum
αt−1,βt−1

(∆̄t−1(αt−1, βt−1)+

|(αt − βt)− (αt−1 − βt−1)|),
(3.9)

where αt, βt are the vertex values of H
[1]
C,d(bt) and H

[2]
C,d(bt), respectively, and αt ≥ αt−1,

and βt ≥ βt−1.

The proof of this theorem is as follows.

Proof. Since PIDD(C, d)[: t] is a linear function of H
[1]
C,d(bt), H

[2]
C,d(bt), H

[1]
C,d(bt−1) and

H
[2]
C,d(bt−1), its optimums are reached when they are at their vertex values. In addition,

condition on H
[j]
C,d(bt−1), the feasible region of H

[j]
C,d(bi) is irrelevant to H

[j]
C,d(bm) where
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m < i − 1. Therefore, the optimums of PIDD(C, d)[: t] can be found by enumerating

the combinations of the vertex values of H
[1]
C,d(bt), H

[2]
C,d(bt), H

[1]
C,d(bt−1) and H

[2]
C,d(bt−1)

as well as the corresponding optimums of PIDD(C, d)[: t− 1].

Based on Theorem 3.3.5, the CumDP algorithm consists of the following two steps.

1. Initialization: Set ∆̄0(·, ·) = 0 for all vertex values of H
[1]
C,d(b0) and H

[2]
C,d(b0).

2. Updating: Compute the values of ∆̄t(αt, βt) using Equation (3.9) until t = k.

The CumDP algorithm enumerates pairs of possible values of (αt, βt) and (αt−1, βt−1)

for t = 1, 2, ..., k. Thus, the time complexity of the algorithm is O(k5), which is much

smaller than the baseline algorithm (O(kk)).

In sum, we have an efficient algorithm to determine the optimums of PIDD(C, d)

given the HC,d1 , HC,d2 of two groups of spatial datasets for d ∈ [d1, d2]. Now we can

replace the linear enumeration of the neighbor distance thresholds in step (2) of the

baseline method with the binary distance threshold search algorithm. The idea of

this algorithm is that for a spatial colocation pattern C, the process of searching for any

neighbor distance thresholds d in a range [dlo, dhi] so that PIDD(C, d) ≥ θ is composed

of the following three steps.

1. Compute PIDD(C, dlo) and PIDD(C, dhi), and record the HC,dlo , HC,dhi of the two

groups of spatial datasets.

2. Use the HC,dlo , HC,dhi of two groups of spatial datasets to determine the maximum

and minimum of PIDD(C, d) where d ∈ [dlo, dhi].

3. If the maximum of PIDD(C, d) < θ, no neighbor distance thresholds in the range

[dlo, dhi] is eligible. If the minimum of PIDD(C, d) ≥ θ, all distance thresholds in

the range are eligible. Otherwise, divide the range [dlo, dhi] equally into two parts:

[dlo, dmid] and [dmid, dhi]. And recursively search for eligible distance thresholds in

the two ranges.

The detailed pseudocode is in Algorithm 3.

3.3.3 Early-stop spatial colocation pattern enumeration.

Our second algorithmic refinement, early-stop spatial colocation pattern enumeration, is

based on the idea that by keeping track of the set of spatial colocation patterns whose

supersets may be eligible, we can avoid enumerating the patterns whose subsets are not
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Algorithm 3 Binary distance threshold search (BDTS) algorithm

Require:
C: a spatial colocation pattern;
D: a sorted list of neighbor distance thresholds;
lo, hi: the index of the first and the last distance thresholds to be considered;
Mem: the storage to save the histograms of the cumulative distribution functions of
the participation index of C in two groups of spatial datasets;
θ: A participation index distribution difference thresholds.

Ensure: Contrasting spatial colocation patterns.
1: ans ← [].

2: Get H
[j]
dlo

and H
[j]
dhi

from Mem where j = 1, 2. If an entry does not exist in Mem,
calculate and save it in Mem.

3: max, min ← the optimums of PIDD(C, d) for d ∈ [dlo, dhi] using the CumDP
algorithm.

4: if min ≥ θ then
5: for d ∈ [dlo, dhi] do
6: ans.add((C, d)).
7: end for
8: else if max ≥ θ then
9: mid← (lo+ hi)/2;

10: firstAns ← Recursively call this algorithm BDTS(C, D, lo, mid, Mem, θ).
11: secondAns ← Recursively call this algorithm BDTS(C, D, mid, hi, Mem, θ).
12: ans ← firstAns + secondAns
13: end if
14: return ans

in the set. Once the set is empty, we can stop enumerating spatial colocation patterns.

Suppose we know H
[1]
C1,d

and H
[2]
C1,d

, which are histograms that approximate the

cumulative distribution functions of the PI(C1, d) in two groups of spatial datasets. Given

a neighbor distance threshold d, if we can prove that an upper bound of PIDD(C, d) is

less than the input participation index distribution difference threshold ∀C ⊃ C1, we

can avoid enumerating the supersets of C1, since none of them would be eligible.
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The task of finding the upper bound of PIDD(C, d) is formalized as follows:

Max
H

[1]
C,d,H

[2]
C,d

PIDD(C, d)

subject to: H
[j]
C,d(bi) ≥ H

[j]
C1,d

(bi), (3.10)

H
[j]
C,d(bi−1) ≤ H

[j]
C,d(bi), (3.11)

j = 1, 2, and ∀bi ∈ BIN.

Constraint (3.10) is based on Theorem 3.3.2, and Constraint (3.11) is true because

cumulative distribution functions are monotonic increasing. This optimization problem

is similar to the one we solved in Section 3.3.2. The only difference is that the feasible

region of H
[j]
C,d(bi) specified by Constraint (3.10) has no upper bound, while that of

H
[j]
C,d(bi) specified by Constraint (3.6) does. If we replace Constraint (3.10) with

1 ≥ H [j]
C,d(bi) ≥ H

[j]
C1,d

(bi), (3.12)

because the value of a cumulative distribution function at any point should be within

the range [0, 1], we can apply the CumDP algorithm and get the same optimum we get

in the original problem.

However, in order to determine whether we can avoid enumerating the supersets of

a colocation pattern C in the current settings, we have to know H
[1]
C,d and H

[2]
C,d for all

neighbor distance thresholds. It cannot be applied with the binary distance threshold

search refinement proposed in Section 3.3.2 whose purpose is to avoid computing the

H
[1]
C,d and H

[2]
C,d of all neighbor distance thresholds. In order to resolve this conflict, we

loosen Constraint (3.12) by replacing it with

1 ≥ H [j]
C,d(bi) ≥ H

[j]
C1,d∞

(bi), (3.13)

where d∞ is the longest input neighbor distance threshold. Because d ≤ d∞, H
[j]
C1,d

(bi) ≥
H

[j]
C1,d∞

(bi) according to Theorem 3.3.1. Therefore, the feasible region specified by

Constraint (3.12) is smaller than that specified by Constraint (3.13), and the maximum

we get with Constraint (3.13) must be no less than the maximum we get with Constraint

(3.12) and can be used as an upper bound. In this way, for each colocation pattern C, we
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only need to know H
[1]
C,d∞

and H
[2]
C,d∞

to determine whether its supersets may be eligible.

In this refinement, spatial colocation patterns are enumerated in ascending order

by their cardinality. To determine whether a spatial colocation pattern with n spatial

features needs to be enumerated, we only need to check whether all of its subsets with

n− 1 spatial features are in the set of patterns whose supersets may be eligible. If not,

this pattern can be ignored.

3.4 Experiments.

The goal of the experiments was twofold: (a) a comparative analysis to evaluate the effect

of the two refinements of the early-stop binary-search (ESBS) algorithm on computational

time cost and (b) a sensitivity analysis to determine the scalability of the ESBS algorithm.

For the comparative analysis, we asked whether the proposed refinements yield

computational time savings. The following candidate algorithms were included in the

analysis:

• The baseline algorithm (Baseline)

• The algorithm with the binary distance threshold search refinement (Binary)

• The algorithm with the early-stop spatial colocation pattern enumeration refinement

(Early-stop)

• The ESBS algorithm (ESBS)

Since the methods of generating spatial colocation pattern instances in a single spatial

dataset in the related work are complementary with our study, for simplicity, we used

the join-less method proposed in [59] in the experiments. This method can be easily

replaced by other methods and does not affect the experiment results. The sensitivity

analysis evaluated the effect of the number of spatial features |F |, the number of neighbor

distance thresholds |D|, the input participation index distribution difference threshold θ,

and the number of spatial datasets |P | on the computational time of ESBS. Table 3.2

shows the detailed parameters in the experiments.

The experimental design is illustrated in Figure 3.3. Each set of experiments was

repeated ten times. Observed execution time was the metric of computational time cost.

Experiments were performed on a computer with a quad-core Intel(R) Xeon(R) CPU

E5-2623 v3 (3.00GHz), 64GB memory, and Python 3.7.
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Table 3.2: Experiment parameters for the sensitivity analysis.

Experiment |D| |F | θ |P |
(Effect of)

|D| Vary 3 0.8 200
|F | 5 Vary 1 200
θ 10 4 Vary 200
|P | 10 4 1 Vary

Real-world data

Methods
Baseline

Binary

Metric

Time cost

Controlled parameters:

Number of spatial feature |F|
Number of distance
thresholds |D|
Interest measure threshold
Number of point sets |P| 

Data

Synthetic data

Early-stop

ESBS

Figure 3.3: Experiment design.

3.4.1 Datasets.

Experiments were conducted on both synthetic and real-world data.

The synthetic data was generated under the assumption that the distribution of the

spatial objects in the spatial datasets in two groups obey the same homogeneous Poisson

process (i.e., complete spatial randomness). The number of spatial objects in one spatial

feature in a spatial dataset was set to 100. The size of the study area was 1000× 1000.

The real-world data was generated from a collection of pathology spatial datasets

belonging to two disease groups. A pathology spatial dataset contained points that

represented the locations and types of cells in an multiplexed immuno-fluorescence image.

In the original data, there were nine types of cells, and 56 and 143 datasets in two

groups, respectively. When generating data with |F | spatial features and |P | datasets,

we sampled with replacement |P | datasets and sampled without replacement points

representing |F | types of cells in each dataset.
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Figure 3.4: Effect of the number of neighbor distance thresholds.

3.4.2 Experiment Results.

Effect of the number of neighbor distance thresholds. In this set of experiments, the

number of neighbor distance thresholds varied from 10 to 50. The results of Baseline

(blue) and Binary (orange) in Figure 3.4 indicate the binary spatial distance threshold

search refinement reduced the computational cost significantly. The results of Early-stop

(gray) and ESBS (yellow) shows a similar trend, even though the early-stop refinement was

in effect and moderated the advantage of ESBS over early-stop. The computational time

savings generated by the binary spatial distance threshold search refinement increased

with the number of neighbor distance thresholds.

Effect of the number of input spatial features. In this set of experiments, the number

of input spatial feature types was set to 3, 4, and 5. Figure 3.5 shows that the early-stop

spatial colocation pattern enumeration refinement reduced the computational time cost

significantly. As the number of input spatial features increased, the advantages of

the algorithms with the refinement became more significant. In addition, the results

in Figure 3.4 and 3.5 indicate that when the number of input spatial features was

small (e.g., 3) the computational time savings was due to the binary distance threshold

search refinement, while when the number of input spatial features increased, it was the

early-stop refinement that became important.

Effect of PIDD threshold. In this set of experiments, the PIDD threshold was set as
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Figure 3.5: Effect of the number of spatial features.

0.8, 1, 1.2, 1.4. The results show that the effect of both refinements depended heavily

on the value of the threshold. When the threshold was small (e.g, 0.8), the ESBS

algorithm only yielded 43% execution time savings compared with the baseline algorithm

in real-world data experiments. When the threshold was large (e.g., 1.4), the ESBS

algorithm yielded more than 95% execution time savings.

Effect of number of spatial datasets. We varied the number of spatial datasets from

100 to 250. The results (Figure 3.7) indicated that the execution time was almost linearly

related to the number of datasets. This was reasonable because the proposed algorithmic

refinements did not affect the generation of spatial colocation pattern instances in each

dataset, and when calculating the participation index distribution difference of a spatial

colocation pattern given a neighbor distance threshold, every spatial dataset has to be

visited once.

3.5 Case Study

The case study was conducted on the real-world data that we used in the experiments

in Section 3.4, which contained spatial datasets from multiplexed immuno-fluorescence

images. A spatial dataset contains points that record the locations and attributes (e.g.,

surface phenotype markers) of the cells in the image of a tissue sample, which becomes
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Figure 3.8: Distribution of HelperT and Treg cells in the sample spatial datasets of two
groups.

possible recently because of the developments in whole slide digital imaging and antigen-

based staining technology. Representing types and locations of cells with points facilitates

understanding the interplay between various cells in a spatially informed manner in the

tumor micro-environment [31, 32]. Currently, visual inspection and cell-counting by a

pathologist are the methods used to quantify the different phenotype of cells present

in the tissue micro-environment. However, this practice is fraught with inter-observer

variability and inconsistency between studies.

The proposed contrasting spatial colocation pattern detection method provides a

novel way to characterize the interplay between cells under different disease conditions.

The spatial datasets used in this case study belonged to two disease groups, namely,

chronic pancretitis (Group 1) and pancreatic ductal adenocarcinoma (Group 2). There

were nine types of cell surface phenotype markers: Treg, APC, Epithelial, HelperT,

PDL1 CD3, PDL1 CD8, PDL1 FoxP3, CD4, and CTLs. The participation index distri-

bution difference threshold was set to 1.2. The set of neighbor distance thresholds was

[1, 50, 100, 150, 200]. The number of histogram bins was 10.

An example of contasting spatial coloation patterns detected by the proposed method

is (〈HelperT, Treg〉, 1). Figure 3.8 shows the spatial distribution of HelperT and

Treg cells in two spatial datasets. As can be seen, in the Group 2 dataset HelperT

cells tend to overlap with Treg cells, while in the Group 1 dataset they do not. This

observation is also supported by the histograms in Figure 3.9c, where most of the
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PI(〈HelperT, Treg〉, 1) values in Group 1 were 0, while in Group 2 datasets, there

were cases when PI(〈HelperT, Treg〉, 1) > 0. Hence, the proposed method successfully

distinguished the spatial neighborhood relationships between HelperT and Treg cells

in the two groups. An explanation for this phenomenon is as follows. Treg cells have

a regulating effect on the immune response of the locale [71]. In the cancer micro-

environment (Pancreatic ductal adenocarcinoma), a large portion of the HelperT cells

are inhibited by the Treg cells colocated with them, which may be a result of or a cause

to the cancer.

If we apply the spatial colocation pattern detection methods in the related work,

which focus on finding prevalent patterns in a single spatial dataset, we have to first define

the prevalence of a spatial colocation pattern in a group of spatial datasets. Suppose

given a neighbor distance threshold, we define a prevalent spatial colocation pattern

as the one whose probability of getting a participation index exceeding 0.6 is greater

than or equal to 70%. A related work would yield pairs such as (〈CD4, Epithelial〉, 200)

and (〈CD4, HelperT 〉, 200). By comparing the histograms of the probability density

functions of the PIs of these patterns (Figure 3.9 (a) (b)) with those of the patterns found

by the proposed method (Figure 3.9 (c) (d)), we can find that the proposed method can

find pairs of spatial colocation patterns and neighbor distance thresholds whose PIs tend

to be different while the existing methods cannot.

From a clinical perspective, the results highlight some key cell relationships that

may directly or indirectly play a role in the disease micro-environment. Specifically, the

relationship between CTLs and Treg, and HelperT and Treg are of particular interest

from an immunological standpoint. CTLs (Cytotoxic Lymphocytes) are cells that actively

seek out and kill cancer cells in the environment on activation of the immune system [72].

Under normal conditions, the Treg cells have a regulating effect on the immune response

of the locale [71]. In the cancer micro-environment, however, it has been observed that

Treg cells play a more functional role. As shown in Figure 3.9 (d), in the multiplexed

immuno-fluorescence images of the pancreatic ductal adenocarcinoma group (Group 2),

Treg cells tend to be colocated with CTLs cells, which potentially inhibits the function

of CTLs cells [73]. This may be due to physiologic suppression of activated CTLs, or

pathological polarization of CD4 positive cells by tumor secreted factors in the tumor

micro-environment[74]. Further investigation on a larger cohort to confirm the potential



50

Group 2

Group 1

(a) PI(〈CD4, Epithelial〉, 200)

Group 1
Group 2

(b) PI(〈CD4, HelperT 〉, 200)
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Figure 3.9: The probability density functions of PIs of sample colocation patterns and
distance thresholds pairs detected by a related work ((a), (b)) and those detected by the
proposed method ((c), (d)).
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discriminatory power of the pairwise interactions observed in this experiment would be

warranted.

3.6 Conclusion & Future Work

This work explored the problem of contrasting spatial colocation pattern detection in

relation to application domains such as pathology, environment risk assessment, and

wetland ecology. An early-stop binary-search algorithm is proposed which discovers

contrasting spatial colocation patterns whose participation index distribution difference

exceed a given threshold in two groups of spatial datasets. The proposed approach

uses upper and lower bound pruning as well as algorithmic refinements to enhance

its scalability. Experimental evaluation indicated that the proposed refinements yield

substantial computational time savings. A case study on a real-world pathology dataset

presented the method’s potential to support scientific discovery.

In the future, we plan to generalize the problem to more than two groups of spatial

datasets, as well as spatial relationships other than spatial colocation.



Chapter 4

SRNet: A spatial-relationship

aware point-set classification

method for multiplexed pathology

images

4.1 Introduction

Point-set classification for multiplexed pathology images aims to distinguish between

the spatial configurations of cells within multiplexed immuno-fluorescence (mIF) images

of different diseases. Advances in the field of multiplexed and anti-body based imaging

methods have promoted the development of mIF images, which facilitates bio marker-

specific cell species and sub species identification [75]. An example of a multipled

immunoflourescene image is show in Figure 4.1. A point set from multiplexed pathology

images records the location and the attributes (e.g., surface phenotype markers) of the

cells in a mIF image. For example, Figure 4.2 shows a sample point set from a mIF

image. The location of each cell is represented by its pixel coordinates whose origin

is at the top left corner of the image. The cell attributes are the existence of surface

phenotype markers (e.g., Epithelial), where ”pos” means the presence of a phenotype

marker and ”neg” otherwise. Figure 4.3 illustrates the spatial distribution of ”pos”

52
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Legend:

Green – CD3 – T helper 

cells

Yellow – CD8 – Cytotoxic 

lymphocytes

Red – FoxP3 – T regulatory 

cells

Orange – CD163 – antigen 

presenting cells

Magenta – PD-L1

White – Pancytokeratin –
tumor or epithelial cells

Figure 4.1: A sample multiplexed immunofluorescence (mIF) image, with the different
colours signifying the fluorescence corresponding to different surface bio-markers on the
cells imaged. Image courtesy Dr. Timothy L. Frankel.

phenotype markers in a mIF image of chronic pancreatitis.

Classifying point sets from mIF images is important because it provides a novel way

for pathologists to diagnose diseases. For example, in the context of chronic pancreatitis

and pancreatic ductal adenocarcinoma, the point sets from mIF images describe the

spatial relationships between the diseases’ cells, which reveals information about how

the interactions between these cells vary.

This problem is challenging due to the following three reasons. First, the points are

distributed non-uniformly in the space, which results in complex spatial relationships.

Second, the contributions of different spatial relationships vary between different classifi-

cation tasks, which requires that the representation of the relationships be adjusted to

meet the need of specific tasks. Third, spatial relationships between cells of different

types are both crucial and implicit in point sets, and the small number of available

learning samples makes it difficult for deep neural networks (DNNs) to learn these spatial

relationships without appropriate neural network architectures.
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Location Attributes (e.g., surface phenotype markers)

Figure 4.2: A point set from a multiplexed pathology image.
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Figure 4.3: A map of a point set from a sample Chronic Pancreatitis mIF image.
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Manual morphologic or cell-count based methods, which are the conventional clinical

approaches for studying spatial patterns within mIF images, are limited by inter-observer

variability. Substantial efforts have been made to apply machine learning techniques

to automate the pathology diagnosis process alongside the expansion of digital imaging

techniques. In particular, deep neural networks (DNNs) have been extensively studied

in a large number of pathology diagnosis applications, including pixel/patch-level region-

of-interest detection [76, 77, 78] as well as image-level decision [79, 80] for various

diseases, which have shown state-of-the-art results. However, most of the existing DNN-

based applications take images as the input and are inapplicable for our problem. The

disadvantage of working with raw images is that the variation in staining and artifacts

present across all images in a given cohort may influence analysis. In contrast, point sets

offer a simplified representation of cell locations and neighbourhoods, invariant of cell

borders and cellular morphology. Recently, as point cloud data from LiDAR scanners have

become increasingly popular, the representation of point sets has attracted more attention

[81]. However, current methods mainly focus on point sets with few numerical attributes,

such as signal strength, and they do not handle categorical attributes specifically. Hence,

they do not take full advantage of the spatial relationships between points of different

categories.

To overcome these limitations, we propose a new DNN architecture, namely SRNet,

with novel design of spatial-configuration based representation learning layers. Experi-

ments show that the proposed methods yield much higher accuracy than the competing

DNN methods. Our contributions can be summarized as follows:

• We introduce a deep neural network architecture, SRNet, to learn a representation

of the spatial relationships between points of different categories that are not

captured by the commonly used statistics such as the cross-K function and the

participation ratio.

• We conduct rich experimental studies to evaluate the accuracy of the proposed

methods. The discovered crucial patterns are verified by domain scientists, confirm-

ing the method’s potential to help pathologists identify novel spatial relationships

between different cell types (e.g., immune cells and tumor cells) in the micro-

environment.
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Scope: The scope of this study is limited to analyzing point datasets representing

the location and types of cells derived from multiplexed immuno-fluorescence (mIF)

images to distinguish between diseases. Analyzing mIF images without converting them

to point sets is outside the scope of this paper. In addition, we do not evaluate the

proposed method with larger datasets due to a lack of public benchmarks. Field trials

to evaluate the clinical value of the proposed method also fall outside the scope of this

study.

4.2 Problem Definition & Data Description

Given a collection of categorical point sets (e.g., cells with different surface phenotype

markers) from multiplexed immuno-fluorescence (mIF) images and the class labels of

the point sets (e.g., different diseases), the goal of this study is to train a machine

learning model that distinguishes between the point sets of different classes. The primary

objective is to achieve a high classification accuracy.

We define a categorical point set as a collection of points, where each individual

point belongs to a single category and is located in 2-D Euclidean space. This study

was conducted on 199 anonymized point sets derived from mIF images belonging to

two disease groups, namely chronic pancreatitis(i.e., class 1) and pancreatic ductal

adenocarcinoma (PDAC) (i.e., class 2), which had 56 and 143 point sets, respectively.

In the original dataset, cell surface makers indicate nine phenotypes. Each cell might

be associated with one or more phenotype. To transform the original point sets into

categorical point sets, we considered any point that had a single phenotype marker as

belonging to the category corresponding to that phenotype, and we replaced every point

that had multiple phenotype markers with a group of points, having one marker each

and then assigned the points to multiple categories corresponding to the phenotype of

each point’s marker. Generating point sets from multiplexed pathology images is beyond

the scope of this paper, and we treat point sets as given inputs.
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4.3 Related Work

The history of deep neural network (DNN) methods that directly take point sets

as the input dates back to PointNet [81], which learns point features independently

through multiple fully connected neural network layers and aggregates them into a

shape feature using a max pooling layer. These methods have been widely used for

3D shape classification and semantic segmentation as the point clouds collected from

LiDAR scanners have become increasingly popular. PointNet++ [82] defines multi-scale

regions and uses PointNet to learn their features. It then hierarchically aggregates the

regions’ features, so it can capture local configurations and learn fine-grained patterns.

Similar to PointNet++, the idea of spatially partitioning points and then recursively

aggregating them has been extensively explored. For example, KD-trees are used in

[83, 84] to spatially partition points based on point density.

Meanwhile, much effort has been made to introduce DNN architectures that were

originally designed for other data formats (e.g., imagery and time series). For example,

convolutional neural network (CNN) models are studied in the spectral domain (e.g.,

RGCNN [85]) and the spatial domain (e.g., Pointwise convolution [86]). Recursive neural

network (RNN) models are applied with the assumption that “order matters” [87], and

there are autoencoders that learn the representation of point sets [88]. However, these

models are not specifically designed to handle multi-categorical point sets and do not

take full advantage of the spatial relationships between different categories of points.

4.4 Proposed Approaches: SRNet

The cross-category spatial neighborhood relationships is an important component in

the spatial configuration of points. In pathology diagnosis, the spatial correlations

between different types of immune cells may vary with diseases, which inspires us to

introduce a deep neural network (DNN) method, namely spatial-relationship aware

neural network (SRNet), with novel representation layers to represent point sets with

the spatial relationships between different categories of points in them.
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4.4.1 Spatial-Relationship Quantification

An intuitive way of representing the spatial relationships of point sets consisting of

various categories is to utilize measures quantifying the relationships. In this subsection,

we present two measures for spatial relationships widely used in spatial data mining and

spatial statistics, and how they can be used in classification tasks.

Participation ratio

The participation ratio quantifies the degree to which a category tends to be involved in

a co-location pattern. Co-location patterns [58, 1] refer to set of categorical point sets

that tend to be located in close proximity, such as a point set of Nile crocodiles and

Egyptian plovers [89].

A co-location pattern [58] has three defining concepts. First, a co-location pattern is

in the form of a set of categories. Second, a neighborhood clique is a set of points within

which every pairwise distance is smaller than a threshold. Third, an instance of a spatial

co-location pattern is a neighborhood clique composed of one point from every category

in the pattern. The participation ratio (PR) of a category in a co-location pattern is

then defined as the ratio of the points in the category that are within the instance of

the pattern, which is calculated as:

PR(ci, p) =
|ci points in the instances of p|

|ci points|
, (4.1)

where ci is a category and p is a spatial co-location pattern, and | · | yields the cardinality

of a set. The value of a participation ratio is between 0 and 1. The greater the value, the

more likely ci points are located nearby the points of other categories in the pattern p.

For the sake of computational efficiency, in this study we only consider the spatial

co-location patterns composed of two categories, so Equation 4.1 can be transformed as:

PR(ci, cj , d) =

|ci points with cj in SN(ci, d)|
|ci points|

,
(4.2)

where SN(ci, d) yields a circular spatial neighborhood with a radius of d around a ci

point. Given a point set containing points belonging to k categories and a neighborhood
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distance threshold, there will be k(k − 1) participation ratios. An important hyperpa-

rameter that affects the value of the participation ratio is the neighborhood distance

threshold. Participation ratios with different neighborhood distance thresholds imply the

relationships between points in different spatial scales, so we compute the participation

ratios with a collection of l neighborhood distance thresholds. Therefore, we can use

a vector of k(k − 1)l participation ratios as the representation of a point set with k

categories.

To validate that the spatial relationships quantified by participation ratios may

be useful for distinguishing between the point sets of different diseases, we plot the

probability density distribution of four participation ratios in the dataset we described

in Section 4.2 using histograms in Figure 4.4. Each histogram has ten equal-width

bins that represent the range of participation ratio values, and the area of each bin

is the probability density of the bin. As can be seen, the probability distribution of

a participation ratio varies with category pairs as well as with neighborhood distance

thresholds, and in Figure 4.4a and 4.4c, the probability distributions for the two diseases

are notably different. Therefore, PR(APC,Treg, 100) and PR(APC,Treg, 200) may be

used to distinguish the point sets of the two diseases.

Ripley’s cross-K function

The participation ratio, PR(ci, cj , d), can be thought of as the expectation that cj

points exist in the spatial neighborhood ci point. However, the existence of cj points

does not tell the whole story about the distribution of cj points in a ci points’ spatial

neighborhood. Ripley’s cross-K function, instead, focuses on the number of cj points in

ci points’ spatial neighborhood. It is defined in the following form:

cross-K(ci, cj , d) =
E(|cj in SN(ci, d)|)

E(|cj in entire study area|)
, (4.3)

where ci and cj are two categories, d is a neighborhood distance threshold, SN(ci, d)

yields the circular spatial neighborhood of a ci point with a radius of d, and E(·) returns

the expectation. The value of a cross-K function is non-negative. The greater the value,

the more cj points are located nearby the ci points. Similar to how we represent a point

set using its participation ratios, given l neighborhood distance thresholds, we can also
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Figure 4.4: Examples of the probability distribution of participation ratios.
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Figure 4.5: Overview of the SRNet architecture.

represent a point set with k categories using a vector contains k(k− 1)l cross-K function

values.

4.4.2 Proposed SRNet Architecture

In the definitions of the participation ratio and the cross-K function, a core component

is the representation of the spatial neighborhood of points. Given an ordered category

pair (ci, cj), and a spatial neighborhood distance threshold d, the participation ratio

uses the existence of cj points and the cross-k function uses the count of cj points to

represent the distribution of cj points in the spatial neighborhood of ci points. However,

in addition to existence and count, there may be other patterns that describe the spatial

relationships between ci and cj points. Hence, we design a DNN model that uses a

spatial-relationship aware neural network (SRNet) that learns the spatial distribution of

cj points in ci points’ spatial neighborhood for every ordered category pair (ci, cj), and

then to generate a representation of point sets. The point-set representation can then

be fed into a fully connected neural network for classification.

Figure 4.5 shows the overall architecture of SRNet. The input of the approach is a

categorical point set denoted as X ∈ RN×(D+1), where N is the number of points and
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D = 2 is the spatial dimensions. Each point has one categorical attribute, and there are

k categories in total. Similar to using the participation ratios or the cross-K function

values to represent point sets, the SRNet uses a DNN layer (spatial relationship layer)

to learn the spatial relationship measures of all k(k − 1) ordered category pairs. This

architecture facilitates the integration of human expert knowledge by concatenating the

learned spatial relationship measures with the measures provided by human experts (e.g.,

the participation ratio, the cross-K function). The architecture of the spatial relationship

layer, shown in Figure 4.6, has three main components: a spatial neighborhood layer

(Section 4.4.2), a spatial distribution attention layer (Section 4.4.2), and a weighted

average pooling layer. For every ordered category pair (ci, cj), the spatial neighborhood

layer generates a representation of the spatial distribution of cj points in every ci point’s

spatial neighborhood, and the spatial distribution attention layer learns the attention

to be paid to each ci point according to the spatial distribution of ci points. Then,

the weighted average pooling layer aggregates the spatial neighborhood representation

of every ci point with different weights to calculate the spatial relationship measures

of pair (ci, cj). Finally, the spatial relationship measures of all ordered category pairs

are concatenated to generate the overall representation of the point set, denoted as

Y ∈ Rk×(k−1)×W , where W is the feature dimension of the spatial relationship measures

of a category pair.

Spatial neighborhood layer

Given an ordered category pair (ci, cj), a spatial neighborhood layer is applied to

represent the spatial distribution of cj points within every individual ci point’s spatial

neighborhood independently. The input of this layer is a ci point and the cj points in its

spatial neighborhood, and its output is a vector representing the spatial distribution of the

cj points. There are two main steps in this layer, namely, spatial location representation

and spatial distribution summarization (Figure 4.7).

Spatial location representation focuses on representing the relative location of a cj

point in the spatial neighborhood of a ci point. The most commonly used representation

of a relative location is the difference of coordinates. However, it was reported in [90]

that the difference of coordinates failed to convey the information of various spatial

distributions. Recently, Gao et al. proposed a representational model that uses the
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Figure 4.6: The architecture of the spatial relationship layer.
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Figure 4.7: The architecture of the spatial neighborhood layer.



65

hexagon patterns of the grid cells to form a high-dimensional vector representation of

2D locations (x), based on the following theorem whose proof is given in [91].

Theorem 4.4.1. Let Ψ(x) = (ei〈aj ,x〉, j = 1, 2, 3)T ∈ C3 where eiθ = cos θ + i sin θ and

〈aj , x〉 is the inner product of aj and x. a1, a2, a3 ∈ R2 are 2D vectors such that the

angle between each pair is 2π/3, ∀j, ‖aj‖ = 2
√
α. Let C ∈ C3×3 be a random complex

matrix such as C ∗ C = I. Then φ(x) = CΨ(x), M(∆x) = Cdiag(Ψ(∆x))C∗ satisfies

φ(x+ ∆x) = M(∆x)φ(x) (4.4)

and

〈φ(x+ ∆x), φ(x)〉 = d(1− α‖∆x‖2) (4.5)

where φ(x) is the representation of location x, d = 3 is the dimension of φ(x), and ∆x

is a small displacement from x.

Based on Theorem 4.4.1, Mai et al. [90] introduced a multi-scale location representa-

tion model by using sine and cosine functions of different frequencies in Ψ(x), inspired

by the multi-scale periodic representation of grid cells in mammals [92]. In this model,

Ψ(x) is represented as a concatenation of the position embedding (PE) at S scales,

PE(x) = [PE1(x); ...;PEs(x); ...PES(x)],

PEs(x) = [PEs,1(x);PEs,2(x);PEs,3(x)], (4.6)

PEs,j(x) = [cos(
〈x, aj〉

λmin · gs/(S−1)
); sin(

〈x, aj〉
λmin · gs/(S−1)

)],

∀j = 1, 2, 3,

(4.7)

where a1 = [1, 0]T , a2 = [−1/2,
√

3/2]T , a3 = [−1/2,−
√

3/2]T are unit vectors, the angles

between every pair of vectors is 2π/3, λmin, λmax are the minimum and maximum grid

scales, and g = λmax
λmin

. The matrix multiplication CΨ(x) is represented as NN(PE(x)),

where NN(·) are fully connected ReLU layers. Therefore, the location of a cj point

relative to a ci point can be represented as NN(PE(∆x)), where ∆x is the difference of

their coordinates.
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Given a collection of relative location representations of cj points in a ci point’s spatial

neighborhood, a max pooling layer is applied to summarize the relative locations to get

the representation of the ci point’s spatial neighborhood. Pointnet[81] has theoretically

and experimentally demonstrated that with enough neurons, a max pooling layer is able

to learn to summarize a point distribution [81].

Spatial distribution attention layer

To get the representation of the spatial relationship measures of pair (ci, cj), an average

pooling layer is used to aggregate the representation of cj points’ distribution in all the

spatial neighborhoods of ci points. However, it is questionable whether all ci points

should contribute equally to the spatial relationship measures. In their study of the

spatial co-location patterns, Barua and Sander discovered that the spatial distribution

of the points belonging to a category within a co-location pattern affected the statistical

significance of the pattern’s participation ratio where all points contributed equally [93].

A potential reason is the existence of spatial auto-correlation. In other words, the spatial

neighborhoods of nearby points are similar. If all points contribute equally, the spatial

neighborhood of a point away from other points may be overwhelmed by the spatial

neighborhoods of the points in clusters. Therefore, we introduce a spatial distribution

attention layer to determine the attention paid to each ci point when generating the

spatial relationship measures of (ci, cj). The layer first generates the representation of

the spatial distribution of ci points in each ci point’s spatial neighborhood independently

using the proposed spatial neighborhood layer. Then it estimates the attention paid

to each ci point according to the representations using multiple fully connected ReLU

layers. This method is similar to the application of farthest point sampling (FPS) in

PointNet++ [82], which selects subsets of representative points to learn local features.

Instead of using a greedy heuristic as in FPS, the proposed spatial distribution attention

layer uses neural network layers to adjust the attention to points.

4.5 Experiment

Our experimental evaluation has two components: (1) a comparison of the proposed

methods with the state-of-the-art deep neural network (DNN) point set classification
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methods; and (2) an analysis of the importance of the spatial relationship measures.

4.5.1 Classification Accuracy Comparison

We have conducted two sets of experiments: (1) comparing our proposed methods:

handcrafted features using classic spatial measure (i.e., participation ratio or cross-

k function) and learned features using SRNet, each combined with a simple neural

network classifier, with the state-of-the-art (SOTA) DNN point set classification methods

(i.e., PointNet and PointNet++), (2) comparing handcrafted features combined with

simple classification models with the SOTA DNN point set classification methods. The

experiments are designed to answer the following questions: 1) did the proposed method

yield more accurate classification results than the competing DNN methods? 2) how

do the spatial relationship measures used to represent point sets affect classification

accuracy? 3) how does the choice of classification method affect accuracy? Classification

accuracy is measured by AUC-ROC, precision, recall, F1 score, and accuracy. The

candidate methods compared were as follows.

• PointNet[81]: PointNet is a neural network architecture that directly consumes

point sets for applications ranging from object classification to part segmentation.

• PointNet++[82]: PointNet++ is a hierarchical neural network architecture that

applies PointNet recursively to capture local structure and recognize fine-grained

patterns and complex scenes.

• PR + DT / RF/ NN: The point set representation composed of the participation

ratios (Section 4.4.1) is fed into a decision tree / random forest / fully connected

neural network model for classification.

• cross-K + DT / RF/ NN: The point set representation composed of the cross-K

function values (Section 4.4.1) is fed into a decision tree / random forest / fully

connected neural network model for classification.

• SRNet / +PR / +cross-K: The point set representation learned by the SRNet

model proposed in Section ?? without human expert knowledge / with the par-

ticipation ratio measures / with the cross-K function measures is fed into a fully

connected neural network model for classification.
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Table 4.1: Classification accuracy results.

Method AUC-ROC Precision Recall F1 score Accuracy

PointNet 0.518 (0.026) 0.352 (0.079) 0.518 (0.026) 0.421 (0.120) 0.508 (0.160)
PointNet++ 0.529 (0.089) 0.412 (0.138) 0.529 (0.089) 0.421 (0.138) 0.529 (0.089)

PR+DT 0.903 (0.027) 0.955 (0.028) 0.911 (0.036) 0.932 (0.016) 0.905 (0.021)
PR+RF 0.979 (0.011) 0.936 (0.025) 0.949 (0.027) 0.942 (0.022) 0.917 (0.031)
PR+NN 0.980 (0.016) 0.948 (0.035) 0.954 (0.041) 0.950 (0.025) 0.929 (0.035)
cross-K+DT 0.852 (0.011) 0.911 (0.027) 0.914 (0.058) 0.911 (0.027) 0.874 (0.031)
cross-K+RF 0.955 (0.028) 0.852 (0.019) 0.967 (0.017) 0.906 (0.015) 0.856 (0.023)
cross-K+NN 0.938 (0.027) 0.908 (0.037) 0.933 (0.046) 0.919 (0.025) 0.883 (0.036)
SRNet 0.939 (0.030) 0.951 (0.038) 0.884 (0.066) 0.914 (0.031) 0.884 (0.039)
SRNet+PR 0.985 (0.015) 0.967 (0.002) 0.962 (0.040) 0.964 (0.020) 0.950 (0.014)
SRNet+cross-K 0.964 (0.022) 0.953 (0.028) 0.909 (0.047) 0.930 (0.028) 0.904 (0.037)

The implementation of both PointNet and PointNet++ are available on GitHub 1.

The decision tree, the random forest, and the fully connected neural network methods

were implemented using the Python scikit-learn package [94]. The maximal depth of the

decision tree methods was set to 4, and the maximal depth and the number of estimators

of the random forest methods were set to 3 and 1000. Other hyperparameters were

kept as the default values. The fully connected neural network classifier had two hidden

ReLU layers with 4096 neurons and a sigmoid layer as the output layer.

The SRNet method was implemented using PyTorch, where the spatial neighborhood

of each point was set as a circle with a radius of 200, and the minimal grid cell size, the

maximal grid cell size, and the number of scales of the multi-scale location representation

layers were set at 1, 100, and 10 respectively. All the spatial neighborhood layers shared

the same architecture and parameters. The fully connected ReLU layers in the spatial

neighborhood layers had four hidden layers, and the hidden layer dimension was set at

256. The feature dimension of the learned spatial relationship measures of each ordered

category pair was 32. The SRNet and the neural network classifier were trained using

the Adam optimization algorithm with the learning rate of 10−4 to minimize the cross

entropy loss of the classification results and the ground truth.

1Link to PointNet repository: https://github.com/charlesq34/pointnet. Link to PointNet++
repository: https://github.com/charlesq34/pointnet2.

https://github.com/charlesq34/pointnet
https://github.com/charlesq34/pointnet2
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Figure 4.8: The classification accuracy of the methods using neural network classifiers.

We used the dataset described in Section 4.2. Since the original dataset only had

199 point sets, we used 5-fold cross-validation and augmented the number of point

sets by partitioning, flipping, and rotating the original point sets. To get subsets of a

point set and keep spatial relationship information in each subset, instead of randomly

sampling points, we partitioned the minimum bounding rectangle (MBR) of the point

set horizontally by 20% and 80% and then 80% and 20%, and used the 80% subsets. The

subsets were then flipped both horizontally and vertically. Finally, the flipped subsets

were rotated by 90 degrees three times. Thus, after data augmentation, there were

199× 2× 4× 4 = 6368 point sets in total.

Table 4.1 shows the mean and standard deviation (in parentheses) of classification

accuracy measures of the candidate methods. The highest accuracy is highlighted in bold.

It is evident that the proposed methods, even a very simple model (e.g., the decision tree

model) with a well-defined spatial relationship measures (e.g., the participation ratio),

were much more accurate than the competing DNN point set classification methods (i.e.,

PointNet and PointNet++).

A comparison of the classification accuracy of the methods using neural network

classifiers (Figure 4.8), shows that the methods using classic spatial relationship measures

(PR+NN and cross-K+NN) and those using measures learned by the proposed SRNet

(SRNet, SRNet+PR, SRNet+cross-K) had much higher accuracy than the competing



70

DNN methods. This indicates that the proposed SRNet was able to learn spatial

relationship measures that were missed by the competing DNN methods. Moreover, the

accuracy of the SRNet+PR and SRNet+cross-K methods was higher than that of the

PR+NN and cross-K+NN methods, respectively, which means the proposed SRNet is

able to learn features that are not captured by the participation ratio and the cross-K

function but that were useful for the classification task.

Finally, the classification accuracy of methods using the same point set representation

(e.g., PR+DT v.s. PR+NN) indicates that complex models yielded more accurate results.

However, the effect of choosing different classification methods on classification accuracy

was not as significant as the effect of point set representation.

4.5.2 Analysis of Spatial Relationship Measures

The goal of the second set of experiments was to analyze the category pairs whose spatial

relationship measures are important for classifying the point sets of the two diseases, as

this provided a way to discover the interactions between cells that varied with diseases.

In the PR+DT and cross-K+DT methods, the feature vectors composed of the

participation ratios and cross-K function values were fed into decision tree models. Since

in every node of the decision tree model, a feature is selected greedily to divide samples

into two groups according to a heuristic (e.g., the information gain), the selected features

indicate which category pairs contain high variation in their spatial relationships. Figure

4.9 shows the first two layers of the decision trees trained using the entire dataset

described in Section 4.2. As can be seen, the spatial relationships between HelperT cells

and CD4 cells and between Treg cells and HelperT cells were significantly different under

the micro environment of the two diseases.

In the PR+RF and cross-K+RF methods, the feature vectors composed of the

participation ratios and cross-K function values were fed into random forest models.

Feature importance in the random forest models can be measured by the mean impurity

decrease, which also implies the spatial relationships between the category pairs vary a lot

in the point sets of the two diseases. Table 4.2 lists the top ten important features in the

PR+RF and cross-K+RF models trained using the entire dataset. As can be seen, both

the participation ratio features and cross-K function features indicate that the spatial

relationships between the HelperT and Treg cells are most useful for distinguishing the
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PR(HelperT, CD4, 1) <= 0.973

PR(HelperT, Treg, 1) <= 0.057 PR(APC, CTLs, 150) <= 0.146

(a) PR+DT

cross-K(Treg, HelperT, 100) <= 0.019

cross-K(Treg, CTLs, 100) <= 0.006 cross-K(Treg, PDL1_CD8, 200) <= 0.002

(b) cross-K+DT

Figure 4.9: First two layers of the decision trees trained using the entire dataset in
Section 4.2

point sets of the two diseases.

For the PR+NN, cross-K+NN, and the SRNet methods, we evaluated the importance

of the spatial relationship measures, namely, the participation ratio, the cross-K function

value, and the representation learned by SRNet, through permutation feature importance.

Permutation feature importance measures the increase in the prediction error of the

model after we permute the feature’s values. In this experiment, the importance of

the spatial relationship measures of an ordered category pair was measured by the

classification accuracy after exchanging the corresponding elements in the representation

vectors. The lower the accuracy, the more important the measures of ordered category

pair. In the dataset described in Section 4.2 the most important ordered category pairs

were (HelperT, Treg), (HelperT, CD4), (CTLs, Treg), and (APC, Treg).

4.5.3 Clinical Implications

From a clinical perspective, the results highlight some key cell phenotype relationships

that may directly or indirectly play a role in the disease micro-environment. Specifically,

the relationship between CTLs and T-regs, and Helper T-cells and T-regs are of particular

interest from an immunological standpoint.Cytotoxic Lymphocytes(CTLs) are the cells

that actively seek out and kill cancer cells in the environment on activation of the

immune system[72]. On the other hand, under normal conditions, the T-regulatory cells

have a regulating effect on the immune response of the locale [71]. It has been observed
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Table 4.2: Top 10 important features obtained in the PR+RF and cross-K+RF methods.

Rank PR+RF feature cross-K+RF feature

1 PR(HelperT, Treg, 1) cross-K(Treg, HelperT, 100)
2 PR(HelperT, CD4, 1) cross-K(HelperT, Treg, 200)
3 PR(HelperT, Treg, 50) cross-K(HelperT, Treg, 50)
4 PR(HelperT, Treg, 200) cross-K(HelperT, Treg, 100)
5 PR(HelperT, Treg, 100) cross-K(HelperT, Treg, 1)
6 PR(HelperT, Treg, 150) cross-K(Treg, HelperT, 50)
7 PR(CD4, Treg, 150) cross-K(Treg, HelperT, 1)
8 PR(CD4, Treg, 200) cross-K(HelperT, Treg, 150)
9 PR(CD4, Treg, 100) cross-K(Treg, HelperT, 200)
10 PR(APC, Treg, 100) cross-K(Treg, HelperT, 150)

that T-regulatory cells play a more functional role in the cancer micro-environment, and

there is potential for some interplay between the two cell phenotypes from a functional

standpoint. Due to this, there is a tendency for them to co-localize at a higher frequency

with CTLs, and potentially inhibit their function [73]. This may be due to physiologic

suppression of activated CTLs, or pathological polarization of CD4 positive cells by

tumor secreted factors in the tumor micro-environment[74]. Further investigation on a

larger cohort to confirm the potential discriminatory power of the pairwise interactions

observed in this experiment would be warranted.

The identification of the cell-pairs opens up a potential for a novel method to capture

the difference in cellular arrangements across different diseases. This also alludes to the

influence of cell-cell distances and their relative placement in the state of the micro-

environment [32]. Along with reinforcing known relationships, these features would also

serve to offer new insight into potential cell-cell relationships that were either unknown

or little explored in previous studies. In the age of increasing focus on personalized

treatment paradigms, the utilization of a spatially-aware approach would assist physicians

in making more informed treatment plans.
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4.6 Conclusion & Future works

In this chapter, we proposed a deep learning point-set classification method, namely

SRNet, for multiplexed pathology images. SRNet provides a novel way for pathologists to

diagnose diseases. Instead of classifying multiplexed immuno-fluorescence (mIF) images

directly, we first converted mIF images to point sets representing the cells on mIF images,

and then classified the point sets. An experimental evaluation showed that the proposed

SRNet can learn spatial relationship measures that are not captured by classic measures,

and the classification accuracy of using the learned measures significantly outperformed

the SOTA deep learning point-set classification methods, reaching 95% accuracy (about

80% more accurate). In addition, the proposed methods helped to discover pairs of cell

types that might inspire new pathology findings.

In the future, we will compare the proposed method on point sets with the methods

directly analyzing mIF images without converting them to point sets. We also plan to

identify larger mIF images and other spatial pathology datasets for larger and broader

evaluation of the proposed method. In addition, the proposed SRNet focuses on the

spatial relationships between two cell types, and we plan to extend its capability by

taking the relationships between multiple cell types into consideration.



Chapter 5

Physics-guided Energy-efficient

Path Selection Using On-board

Diagnostics Data

5.1 Introduction

Given a spatial graph, two nodes in the graph as the origin and destination, and historical

on-board diagnostics (OBD) data, the energy-efficient path selection (EPS) problem aims

to find the most energy-efficient path between the origin and the destination. Figure 5.1

illustrates a sample input of the EPS problem consisting of a spatial graph with eleven

nodes (i.e., n1, n2, ..., n11) and twelve edges (i.e., e1, e2, ..., e12), six traces of OBD data

(i.e., t1, t2, ..., t6), and two nodes n1 and n5 as the origin and the destination. Figure

5.2 shows six traces in the OBD data in Figure 5.1. Every trace is in the form of an

ordered sequence of records, and each record is composed of an edge and the status of

the vehicle on the edge. Energy consumption and average speed are two examples of the

status attributes. Suppose that the expected energy consumption of the vehicle on path

[e1, e5, e8, e11, e12, e10, e7, e4] is the lowest among those on all possible paths linking n1

and n5, the path is the energy-efficient path for this example.

Monitoring and managing traffic and transportation systems using the OBD data

collected from telematics devices on connected vehicles is an important component of

74
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Figure 5.1: A spatial graph with six traces of on-board diagnostics data.

Figure 5.2: Sample OBD data with six traces.
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a smart city. This chapter describes our work on leveraging the OBD data to provide

energy-efficient routing suggestions. Two main objectives of the vision for smart cities

are sustainability and prosperity, both of which benefit from the ability to estimate

and reduce the energy consumption for transportation. Reports show that car exhaust

emissions contribute significantly to air pollution and anthropogenic climate forcing [22],

and energy consumption for transportation in the United States cost more than $507

billion in 2015 [23]. Despite the efforts to reduce energy consumption for transportation,

such as electric car research supported by the U.S. Department of Energy [95], the

expected energy use continues to climb [96].

Geo-referenced OBD data facilitate accurate travel cost estimation and novel path

selection algorithms using the estimation. Previous research on energy-efficient path

selection has demonstrated that the potential energy saving is about 10% by taking

energy-efficient routes instead of fastest routes [97, 98]. A McKinsey Digital report

also estimates that personal geo-referenced data could help save consumers about $600

billion by 2020, by providing routes to vehicles that avoid traffic congestion through

next-generation routing algorithms [99]. Equation 5.1 is a simplified powertrain energy

consumption model commonly used in mechanical engineering, where the meaning of the

symbols are in Table 5.1 [100]. Briefly, the energy consumption of a vehicle is determined

by the vehicle’s motion properties (i.e., t, a, v, and vh) as well as its physical parameters

(i.e., m, A, cair, and η). Between two places there are often multiple possible paths, and

different paths have have different spatiotemporal features such as speed limit, traffic

and road conditions, which affect the motion properties of a vehicle and its energy

consumption in turn. For example, Figure 5.3a shows that between two places there are

a fast but long path through highways and two slow but short paths through local roads.

The high speed on highways reduces the time cost, but may make the thermal energy

due to air resistance, which is represented by the term with v3 in Equation 5.1, dominate

in energy consumption. The road test we conducted in Cincinnati, OH (detailed in

Section 5.7) indicated that the expected energy consumption on the energy-efficient path

composed of local roads is about 38% lower than that on the fastest path composed

of highways. In addition, the existence of up/down hill roads (e.g., in San Francisco

(Figure 5.3b)) also affects vehicles’ energy consumption. Therefore, in this chapter we

propose a method to leverage OBD data for energy-efficient path selection.
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Table 5.1: Physics model symbols

Symbol Physical Interpretation

W work (energy consumption)
η vehicle’s powertrain system efficiency
m vehicle’s mass
A vehicle’s front surface area
cair air resistance coefficient
crr rolling resistance coefficient
a acceleration
v velocity
vh vertical velocity
t time
g gravity acceleration
ρ air density

W =
1

η
[

∫
(mav)dt+

∫
(mcrrgv)dt+

∫
(
A

2
cairρv

3)dt+

∫
mgvhdt]. (5.1)

The EPS problem, which is a variant of the shortest path selection problem, has two

sub-tasks, namely, the prediction of expected energy consumption (EEC) of a path and

the selection of the most energy-efficient path. The challenges of predicting EEC of a

path are two-fold. The first challenge is the dependence of EEC on physical parameters

of vehicles, which is different from the cost metrics (i.e., distance, time) for the shortest or

fastest path selection problems. For example, a construction truck consumes more energy

than a sedan when traveling along a path following the same velocity profile, even though

the distance and the time cost are the same. Moreover, the autocorrelation of the energy

consumption on different segments of a path prevents edge-centric travel cost estimation

models from estimating accurately. In other words, the EEC of a path is a property

of the entire path, but not the sum of the EEC of individual edges along the path.

The selection of an energy-efficient path given an EEC estimation model also has two

challenges. The first is the high computational cost of EEC estimation which is needed

for every candidate path in currently existing path selection algorithms. The second

challenge is that the EEC on a path may be negative because of regenerative braking,
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(a) Highway vs. local roads. (b) Up/down hill roads.

Figure 5.3: There are often multiple paths between two places.

which makes popular path selection algorithms like Dijkstra’s algorithm inapplicable,

since they assume that travel cost is non-negative.

Most of the methods for predicting EEC are composed of two steps [101, 102, 103,

104, 98]: 1) predict or obtain the velocity profile along the objective path, and 2) estimate

EEC using the velocity profile via a vehicle simulation model. However, accurate velocity

profile prediction is challenging since a large number of factors may affect it, some of

which (e.g., the schedule of vehicles and pedestrians) are unpredictable in real-world

road systems. A novel EEC estimation model using OBD data without velocity profile is

needed. In addition, the commonly-used path selection algorithms are based on Dijkstra’s

or the Bellman-Ford algorithm [105, 106], and apply a “path + edge” pattern to explore

candidate paths. These algorithms evaluate the travel cost of a candidate path once the

path is explored. However, the estimation of travel cost is computationally expensive,

and some estimation is redundant in cases where the OBD data on an edge is a subset of

the OBD data on a path containing the edge. Therefore, a novel path selection algorithm

is needed which adopts a “path + another path” pattern when exploring candidate

paths.

Our preliminary work [12] and [11] proposed a physics-guided energy consumption

(PEC) model for the prediction of EEC and a maximal-frequented-path-graph shortest-

path (MFPG-SP) algorithm using the PEC model for the path selection.

This chapter extends our previous work by proposing two algorithms for the sub-

task of path selection given an EEC estimation model, analyzing their correctness and
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completeness, and validating the algorithms through experiments and two case studies.

The contributions in the chapter are as follows:

1. We propose an A*-like admissible heuristic and an informed maximal-frequented-

path-graph shortest-path (IN-MFPG-SP) algorithm.

2. We propose a maximal-frequented-path-graph label-correcting (MFPG-LC) algo-

rithm that can handle negative energy consumption in a maximal frequented path

graph.

3. We analyze the proposed algorithms for correctness, completeness, and computa-

tional time complexity.

4. We evaluate the proposed algorithms via controlled experiments with real-world

and synthetic data.

5. We conduct two case studies using the OBD data collected from three UPS trucks

in 18 months to evaluate the potential energy saving of adopting the proposed

method compared to using the path recorded in the data, and to show that the

proposed method can suggest paths that are more energy-efficient than the paths

suggested by the commonly-used path selection tools.

6. We conduct one road test using one UPS truck to validate that the proposed

method can suggest paths that are more energy-efficient than the paths suggested

by the commonly-used path selection tools.

Scope: The goal of this chapter is to introduce a method of suggesting more energy-

efficient paths according to our estimation, compared with the previously used paths

and the fastest paths suggested by the currently available tools. Current initiatives such

as USDOE ARPA-E NEXTCAR [107] and EU optiTruck [108] consider path selection

to be an importance approach to reduce energy consumption by vehicles. Previous

research has also shown that path selection can save up to 10% of energy [97, 98], and

it can complement other energy saving methods related to the refinements of vehicle

characteristics, driving behaviors, road surface, traffic flow, etc. Identifying the main

factors to energy consumption is out of the scope of this chapter .
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5.2 Basic Concepts and Problem Definition

In this section, we introduce the basic concepts in this study, based on which the

energy-efficient path selection problem is formally defined.

5.2.1 Basic Concepts

A spatial graph Gs = (Ns, Es) consists of a set of spatial-nodes Ns and a set of

spatial-edges Es, where each element n ∈ Ns is a geo-referenced point, and each element

e = (ni, nj) ∈ Es is an edge that joins spatial-node ni and spatial-node nj . Figure 5.1

shows an example of a spatial graph where circles represent nodes (e.g. n1, n2) and

lines represent edges (e.g. e1, e2). A road system is an example of a spatial graph where

nodes are road intersections and edges are road segments.

A path in a graph is a sequence of edges linking an ordered sequence of nodes. The

first and the last nodes are the origin and the destination of the path respectively. Given

two paths φ1 and φ2, φ1 is a sub-path of φ2 if the edges of φ1 are all along φ2. In Figure

5.1, path [e1, e2] is a sub-path of path [e1, e2, e3]. The union (∪) of two paths φ1 ∪ φ2 at

a node shared by them is composed of the edges of φ1 before the node and those of φ2

after the node. For example, in Figure 5.1, [e2, e3, e4] ∪ [e3, e7] at n4 is [e2, e3, e7].

A trace in an on-board diagnostics (OBD) dataset is a map-matched multi-attributed

trajectory of a vehicle. Each trace has a list of records. Each record in a trace is composed

of an edge and a set of vehicle status on the edge, such as, the total energy consumption,

the average speed, and the state of charge. Figure 5.1 shows six traces of OBD data

as dashed arrows whose detailed records are in Figure 5.2. For example, trace t4 has

three records, indicating that the vehicle travels along edges e2, e3, e4 and its energy

consumption and average speed on these edges are 7,9,2 and 15,35,7 respectively.

A frequented path (FP) is a path along which there are at least a certain number

of traces of OBD data in the same direction. A union of frequented paths (UFP)

is a path composed of a union of two or more FPs such that it is not the sub-path of

any other FP. The FPs are paths where we have most historical OBD data, and UFPs

are formed by FPs, so we assume the energy consumption estimation on them would

be more accurate compared to that on other paths. In addition, FPs and UPFs also

imply people’s traveling preference. If we set the minimum number of traces of OBD
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data along an FP as 1 in Figure 5.1, path [e1, e2] is an FP along which there is a trace

t1. A sample of UFP is [e1, e2, e3, e4], which is formed by the union of two FPs [e1, e2]

and [e2, e3, e4] at n3.

Expected energy consumption (EEC) of a path in a spatial graph is the amount

of energy expected to be consumed by a vehicle traveling along the path. For the sake

of simplicity, in the examples in the chapter , the EEC of an FP is calculated as the

average energy consumption of the traces along it. For example, in Figure 5.1 there is

only one trace t1 on the entire path [e1, e2], so the EEC of each edge along path [e1, e2]

is [2, 9] according to t1, and the EEC of the path is 2 + 9 = 11. The EEC of an UFP is

the summation of the EEC of the FP forming it, and the EEC of the overlapping edges

of multiple FPs is the average EEC of the FPs on the edges. For example, in Figure 5.1

the UFP [e1, e2, e3, e4] is formed by two FPs [e1, e2] and [e2, e3, e4], and the two FPs

overlap on e2. Since the EEC of the edges on [e1, e2] is [2, 9] and that on [e2, e3, e4] is

[7, 9, 2], the EEC of the edges on [e1, e2, e3, e4] is [2, 8, 9, 2], and that of the entire path is

2 + 8 + 9 + 2 = 21. This method of estimating EEC is path-centric, because only traces

along the entire path are considered when estimating the EEC of an FP. For example,

when estimating the EEC of path [e1, e2], the path-centric methods only use t1, while

the traditional edge-centric methods will first estimate the EEC on e1 according to t1

and t2 as well as the EEC on e2 according to t1, t4, and t5. However, part of the energy

consumption of t2, t4 and t5 is for factors other than traveling on the path, such as the

right turn of t2 at node n2 and the start of t4 on edge e2.

An energy-efficient path between two locations is the path with the least EEC

according to our estimation using historical OBD data among all possible paths between

the locations. For example, the energy-efficient path between n1 and n5 is the path

[e1, e5, e8, e11, e12, e10, e7, e4] whose EEC is 18, since the other two possible paths

[e1, e2, e3, e4] and [e1, e2, e6, e9, e12, e10, e7, e4] have a total cost of 21 and 25 respectively.

In our preliminary work [11], we defined two other key terms for the maximal-

frequented-path-graph shortest-path algorithm.

A maximal frequented path (MFP) is an FP that is not the sub-path of any

other FP. Since any sub-path of an FP is an FP, only estimating the EEC of MFPs

eliminates the redundant computation of estimating the EEC of an FP and its sub-paths

repeatedly.
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Figure 5.4: The MFPG for the spatial graph and OBD data in Figure 5.1 (The color of
each MFP matches the trace on it).

A maximal frequented path graph (MFPG) of a spatial graph is a directed

graph representing the MFPs and the relationship between each pair of them. Thus,

the nodes of an MFPG (MFP-nodes) are MFPs. An edge of an MFPG (MFP-edge)

exists between two MFP-nodes (φ1 and φ2) if φ1 ∪ φ2 form an UFP at a spatial-node.

Suppose that the minimum number of OBD traces along an FP is 1. Each OBD trace

in Figure 5.1 defines an MFP. The spatial graph and the OBD data in Figure 5.1 can

be transformed into an MFPG, as shown in Figure 5.4. Each square is an MFP-node

representing an MFP in the spatial graph, while the directed arrows are the MFP-edges

between them. MFP-node Pi is the MFP defined by the trace ti. For example, P1 is

the path [e1, e2] where t1 is along.

We say a path in a spatial graph is represented by a path in a MFPG, if the path

in the spatial graph is a sub-path of the UFP formed by the MFP-nodes along the

path in the MFPG, and the origin and the destination of the path in the spatial graph

are on the first and the last MFP-nodes respectively. Since an MFP contains several

spatial-nodes in it, multiple paths in a spatial graph could be represented by a path

in an MFPG. For example, the MFPG-nodes in path [P5, P6] in the MFPG form an

UFP [e2, e6, e9, e12, e10, e7, e4] in the spatial graph, so UFPs such as [e2, e6, e9, e12, e10],

[e2, e6, e9, e12, e10, e7], and [e6, e9, e12, e10] are represented by it. The cost of a path

in an MFPG is defined as the cost of the UFP made up of all MFP-nodes in the path

and excluding the spatial-edges before the origin. For example, let n3 be the origin,

the cost of path [P5, P6] in the MFPG is the cost of UPF [e6, e9, e12, e10, e7, e4], which

is [e6, e9, e12] ∪ [e12, e10, e7, e4], in the spatial graph. We prove that, given a spatial

graph and its MFPG, every FP is a sub-path of at least one MFP, and every UFP can

be formed by the union of at least one collection of MFPs. Therefore, we can model the

FPs and UFPs in a spatial graph without losing any information via an MFPG.
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5.2.2 Problem Definition

We formally define the energy-efficient path selection problem as follows:

Input:

• A spatial graph.

• Historical OBD data of vehicles in the graph.

• A minimum threshold for the number of OBD traces along an FP.

• Two spatial nodes o and d.

Output: An energy-efficient path between o and d.

Objective: Avoid a path that is energy-inefficient.

Constraints: The resulting path is an FP or an UFP.

An example of the problem we are solving in this chapter is in the following form:

We are given the spatial graph shown in Figure 5.1, six traces on it with details shown

in Figure 5.2, the minimum number of traces along an FP as 1, and two spatial nodes

n1 and n5 as the origin and destination. The output of the problem would be the path

[e1, e5, e8, e11, e12, e10, e7, e4] with a total cost of 18. In this chapter , we only focus on

finding energy-efficient paths among FPs and UFPs. Energy consumption estimation on

paths without enough OBD data is outside the scope of this chapter .

5.3 Related Work and Preliminary Results

5.3.1 Related Work

Based on the basic spatial unit where travel cost is estimated, the existing path selection

methods can be categorized into two groups, i.e., edge-centric, and path-centric methods

(left branch in Figure 5.5).

Edge-centric methods assume the travel cost on individual edges is independent, and

the travel cost of a path is the sum of the costs on the edges along the path. Dijkstra’s

[105] and the Bellman-Ford [106] algorithms are widely applied with an assumption that

the cost of traveling on each edge is a constant. Other studies based on them have

focused on accelerating computation [109, 110, 111, 112] or introducing new constraints

[113, 114], new cost metrics [115, 116], and new cost representation [117, 118, 119, 120].

Most of the currently available energy-efficient path selection methods belong to this
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group [97, 98], which suggest path with the lowest energy consumption according to

the estimated energy consumption on individual edges. However, all the edge-centric

methods suffer from the fact they ignore the dependence between the costs of different

parts along a path.

Rather than thinking of a path as a sequence of individual edges, path-centric

methods treat it as a sequence of overlapping sub-paths[121, 12]. Since the basic unit

to estimate the cost of a path is a sub-path, these path-centric methods maintain the

dependence between the costs of different parts along a path. This is beneficial to

energy consumption estimation. For example, Figure 5.6 shows a road intersection b on

a highway from a to d, where there is an entrance ramp from c. There are two OBD

traces (t1 and t2). t1 is along the highway, while t2 is from the entrance to the highway

at b. The energy consumption of the traces on each edge is annotated. To estimate the

expected energy consumption (EEC) of the path from a to b then to d, an example of

edge-centric solutions is to sum up the average energy consumption on edges a to b and b

to d individually. The average energy consumption on edge a to b is 3 kWh according to

trace t1, and that on edge b to d is 2 kWh according to traces t1 and t2. Thus, the EEC

of the path from a to b then to d is 3 + 2 = 5 kWh according to the edge-centric solution.

Instead, if applying a path-centric solution that only uses traces along the whole path

(i.e., t1), we will get the result of 4 kWh. Intuitively, a part of the energy consumed by a

vehicle after entering a highway is for acceleration, which should not be included in the

EEC of a vehicle traveling on a highway. If we use the traces that do not lie along the

whole path (e.g., t2 in this case), we may mistakenly include energy consumption caused

by factors not on the path (e.g., the traffic light at the entrance ramp). Therefore, our

path selection algorithm uses a path-centric travel cost estimation model.

Despite their advantages of using path-centric cost estimation model, the PACE

and Physics-guided methods in [121, 12] require a lot of redundant computation. The

general framework for a path selection algorithm is shown in Algorithm ??. Given a

spatial graph, an origin, and a destination, as well as a travel cost estimation model, the

algorithm generates a path satisfying certain criteria. The main steps of the algorithm

are as follows. A set of candidate paths CP is initialized in Line 1, typically using

the paths consisting of one edge from the origin. Then in each iteration (Lines 2-8),

the most promising path in CP is extended, and the result path is added to CP . The
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Figure 5.5: A tree of related works.

Figure 5.6: Difference between edge-centric and path-centric view at a highway ramp.
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iteration ends when the stop criterion is met. The related work implements these steps

in different ways. For example, the Dijkstra algorithm’s stop criterion is that a path is

found between the origin and the destination, while the most promising path in CP is

the one with the smallest cost.

All the existing path selection algorithms explore the candidate paths in Line 4

following the pattern of “path + edge”, including the PACE and Physics-guided methods.

In other words, a candidate path is generated by adding an edge to the end of an old

path. These algorithms estimate the EEC of each candidate path after it is explored,

which results in redundant computation. Take Figure 5.1 as an example. Exploring

candidate paths at n6 given the current path [e1, e5], a path [e1, e5, e8] would be the

candidate path following the pattern of “path + edge”. However, according to the

OBD data, all traces passing n9 are on the same path from n2 to n11, which means

the estimated cost of the path [e5, e8] would be the same as the corresponding part of

the path [e5, e8, e11, e12]. The travel cost of the path [e5, e8] is estimated repeatedly

when the paths [e5, e8], [e5, e8, e11], and [e5, e8, e11, e12] are explored. Therefore, in

our preliminary work, we proposed an algorithm which applies a “path + another path”

pattern [11].

Algorithm 4 General path selection algorithm framework

Require:
G: A spatial graph;
o and d: Two nodes;
model: A cost estimation model.

Ensure: The path between o and d satisfying the criteria.
1: candidate paths CP ← initialization;
2: while stop criteria are not met do
3: p← the most promising path in CP ;
4: for all extensions p′s of p do
5: compute the cost of p′;
6: add p′ to CP ;
7: end for
8: end while
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5.3.2 Preliminary Work

Our preliminary work included a physics-guided energy consumption (physics-guided)

model [12], and an algorithm based on a maximal frequented path graph [11].

Scenario-based physics-guided energy consumption model

We proposed two energy consumption models to estimate the expected energy consump-

tion (EEC) of traveling along paths with enough data, namely, a scenario-based model

for frequented paths (FPs), and a FP-union model for union of frequented paths (UFPs).

The physics-guided model is a path-centric model based on the simplified powertrain

energy consumption model in Equation 5.1. We denote the part of energy used for

air resistance as AIR =
∫

( A2η cairρv
3)dt, and denote the part of energy used for rolling

resistance and acceleration as the product of a vehicle parameter factor V = m
η and a

motion property factor M =
∫

(av + crrgv)dt. Equation 5.1 can be written as

W = AIR+ V ×M, (5.2)

where W,AIR and M are vectors whose elements represent their values on each edge,

while V is a scalar determined by the vehicle.

We clustered the traces along each FP into k scenarios using the K-means algorithm,

a popular clustering method, according to their M , which is determined by motion

properties, and AIR, which is determined by motion properties as well as a vehicle’s

front area and powertrain system efficiency. The traces in each group record vehicles

of similar motion properties, front surface area, and powertrain system efficiency, but

varied mass due to cargo loads. The energy consumption of the traces in a scenario will

be a linear function of V , whose intersect and slope are the traces’ shared AIR and M

respectively. The detailed initialization, update and assignment steps of the K-means

algorithm are discussed in [12].

We also propose a FP-union model based on the path decomposition method intro-

duced in [121] to evaluate the energy consumption of a trace-union path (UFP). The key

to estimating energy consumption along a UFP is to join the scenarios of adjacent FPs

in the decomposition of the UFP according to the M and AIR of each scenarios on the

shared edges of the adjacent FPs. A scenario on a FP is joined with the scenario with
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Figure 5.7: MAPE of candidate methods with varying path length.

the most similar M and AIR on the next FP in the path decomposition. The similarity

of M and AIR and the method to calculate V are discussed in detail in [12].

We experimentally compared the accuracy of the physics-guided model, including

the scenario-based model for FPs and the FP-union model for UFPs, with two statistics

which are commonly used as ground truth in state-of-the-art related work, mean of the

historical energy consumption, and the distribution of historical energy consumption

represented by a histogram. The data used included a road system from OpenStreetMap,

and OBD data collected from a vehicle in Fort Worth, TX from 1/1/2017 to 3/1/2018,

which contained 10759 traces.

Figure 5.7 shows the mean absolute percentage error (MAPE) of estimates provided

by the histogram method, the mean method, and the physics-guided model on FPs, as

well as the physics-guided model on UFPs with the minimum number of traces on a

FP as 10. As can be seen, all methods became more accurate as the number of edges

increases. The physics-guided model was clearly the most accurate on FPs. On UFPs, it

achieved similar accuracy as the mean method, even though it requires much less data.

Maximal-Frequented-Path-Graph Shortest-Path (MFPG-SP) Algorithm

The MFPG-SP algorithm explores new candidate paths following a “path + another

path” pattern in Line 4 of Algorithm ?? using the maximal frequented path graph

(MFPG) of the input spatial graph. Because given a spatial graph, the path to be found

in this problem is either an FP or a UFP, and all FPs and UFPs are represented by

an MFP-node or a path in the MFPG of the input data, the MFPG-SP algorithm is
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composed of two steps: 1) find the MFP-node or the path in the MFPG that links the

origin and destination, and 2) get the objective path in the spatial graph represented by

the found MFP-node or the path in the MFPG. Since the exploration of candidate paths

is conducted in the MFPG, and each MFP-node is an MFP, the paths in the spatial

graph represented by the candidate paths are explored following the pattern of “path

+ another path”. In this way, we avoid the redundant computation for estimating the

expected energy consumption of the sub-paths of MFPs. The details of the MFPG-SP

algorithm following the general framework Algorithm ?? are as follows. In Line 1, the

set of candidate paths CP is initialized with the MFPs where the origin lies. The stop

criterion in Line 2 is that there is no candidate paths with cost lower than that of the

found path from the origin to the destination. The most promising path in CP is the

path with the lowest cost. In Line 4, as candidate paths are searched, one MFP is added

to the currently most promising path if the two can form a UFP. Once a path is extended

to the destination, we estimate its cost and remove it from the candidate path set. If

the estimated cost is lower than the current lowest cost, the result path and the lowest

cost are updated. The cost estimation method used in Line 5 is provided as an input.

We experimentally compare the performance of the MFPG-SP algorithm against the

physics-guided algorithm in [12] on a real dataset, containing 10129 traces of OBD data

collected from three UPS trucks in Fort Worth, Texas 1/1/2017 - 6/30/2018. Each trace

logs the status of a truck when it moves between two delivery stops. The road system is

from OpenStreetMap. The origin-destination (OD) pairs of each energy-efficient path

query in the experiments were the OD pairs of the traces of the OBD data. Figure 5.8

shows the results when the the minimum number of traces on a FP is 20. As can be

seen, the MFPG-SP algorithm always has a smaller time cost than the physics-guided

algorithm. Furthermore, the gap increases and indeed becomes overwhelming with

increasing result path length.

Even though the MFPG-SP algorithm realizes “path + another path” pattern when

exploring candidate paths, it applies an uninformed search strategy to find the objective

path, which does not make any use of the information we have about the destination

to help in the search process. An example of the information is the direction of the

destination. If the destination is to the east of the origin, a path heading east may be

more likely to be the energy-efficient path compared with a path heading west. The
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Figure 5.8: Computational time cost of the physics-guided and the MFPG-SP algorithm
with varying number of edges in the objective paths.

ignorance of the information may result in redundant computation to explore paths that

are impossible to reach the destination. Furthermore, the MFPG-SP algorithm assume

travel cost is always positive, which is not applicable for vehicles with regenerative

breaking.

5.4 Proposed Approaches

We design an admissible heuristic in a maximal frequented path graph (MFPG) that can

guide the search space towards the destination and still guarantee finding the correct

path. Then, we apply it in an informed maximal-frequented-path-graph shortest-path

(IN-MFPG-SP) algorithm. In addition, we propose a maximal-frequented-path-graph

label-correcting (MFPG-LC) algorithm to handle possibly negative energy consumption

in the energy-efficient path selection problem.

5.4.1 MFPG Heuristic

Since an MFPG is a representation of a spatial graph and the OBD data on it, we take

an admissible heuristic in the spatial graph as an input to compute the heuristic in the

MFPG, which we call MFPG heuristic. We name the spatial-nodes on an MFP where

the MFP form a UFP with other MFPs as the transfer spatial-nodes of the MFP. Then,
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we define the heuristic travel cost from an MFP-node P to the destination as:

H(P ) = min
n∈NP (transfer)

{h(n)}, (5.3)

where NP (transfer) is the set of transfer spatial-nodes of an MFPG-node P , and h(n)

is an admissible heuristic travel cost from a spatial-node n to the destination. When

the destination is on MFP-node P , then H(P ) = 0. If an MFP-node does not contain

any transfer spatial-nodes or the destination, its heuristic travel cost would be ∞, since

there would be no path from it to the destination.

To use the MFPG heuristic in the EPS problem, we propose an admissible heuristic

for the energy consumption of a vehicle from a spatial-node to the destination in a

spatial graph based on the physics model shown in Equation 5.1. In this model, the

energy is consumed for three purposes, namely, accelerating m
η

∫
(av)dt, working against

rolling resistance mcrrg
η

∫
(v)dt, and working against air resistance Acairρ

2η

∫
(v3)dt. A

heuristic travel cost is admissible if it always underestimates the actual travel cost in

a path selection algorithm, so we find the lower bound of the energy consumption as

an admissible heuristic. Suppose that the physical parameters of the vehicle are given.

The minimal energy for acceleration is reached when the vehicle keeps a constant speed,

in which case the energy for acceleration is 0. The energy for working against rolling

resistance is linearly correlated to the travel distance, so its minimum is reached when the

distance is equal to the Euclidean distance between the spatial-node and the destination.

The energy for working against air resistance increases with the velocity of the vehicle,

so its minimum is reached when the velocity is the minimum speed by law in the road

system. To ensure that this heuristic is admissible, we make use of the lowest values of

crr, cair, and ρ from the literature and assume the powertrain system η to be 1. Because

this heuristic for energy consumption is admissible, we can get the MFPG heuristic for

energy consumption in a MFPG by using this heuristic as h(n).

5.4.2 Informed MFPG-SP (IN-MFPG-SP) Algorithm

We adjust the MFPG-SP algorithm by including the MFPG heuristic in the cost of a

path in an MFPG to develop the informed maximal-frequented-path-graph shortest-

path (IN-MFPG-SP) algorithm. Similar to the MFPG-SP algorithm, the IN-MFPG-SP
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Figure 5.9: Sample data in Figure 5.1 with additional spatial-nodes, spatial-edges, and
traces of OBD data.

Figure 5.10: Three new traces of OBD data in Figure 5.9 in addition to those in Figure
5.2.

algorithm has two steps as well. The second step is the same in both algorithms, but

the first step of the IN-MFPG-SP algorithm uses the A* algorithm to efficiently find

the MFP-nodes or the paths in an MFPG linking the origin and destination. That is

to say, in the first step, the IN-MFPG-SP algorithm orders the candidate paths in the

MFPG not by the actual travel cost of the path (C(path)), but by the full travel cost

F (path) = C(path) + H(P ), where P is the last MFP of the path, and H(P ) is the

heuristic travel cost from P to the destination.

To show how the MFPG heuristic helps guide the search space towards the destination

we modify the spatial graph from Figure 5.1 to include three more traces, namely, t7, t8,

and t9 (Figure 5.9), whose details are shown in Figure 5.10. Suppose we set the minimum

number of traces along an FP as 1. All of the added traces lie along new MFPs, since

none is along a sub-path of any other FP. The data in Figure 5.9 can be represented by

the MFPG shown in Figure 5.11. For simplicity, we assume that the energy consumption
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Figure 5.11: The MFPG for the spatial graph and OBD data in Figure 5.9 (The color
of each MFP matches the trace on it).

Table 5.2: Heuristic travel cost of MFP-nodes in Figure 5.11.

MFP-node Transfer Spatial-nodes H(◦)

P1 n3 2
P2 n6 4
P3 n11 3
P4 - 0
P5 n11 3
P6 - 0
P7 n13 6
P8 - ∞
P9 - ∞

is only determined by travel distance, and that the edge length in the spatial graph is

1. We find that the least energy consumption per unit distance is 1 in the OBD data,

so we use 1 times the Manhattan distance from a spatial-node to the destination as

the admissible heuristic of the spatial graph. The heuristic energy consumption of each

spatial-node to the destination n5 is annotated in parentheses (Figure 5.9). We calculate

the heuristic travel cost of all the MFP-nodes according to Equation 5.3 (Table 5.2). For

example, n3 is the only transfer spatial-node on P1 ([e1, e2]) whose heuristic travel cost

is 2, so the heuristic travel cost of P1 is 2. The destination is on P4 and P6, so their

heuristic travel cost is 0. Since there is no transfer spatial-node on P8 and P9, their

heuristic travel cost is ∞.

First, we refer to the execution trace in Table 5.3 to show how the original MFPG-SP

algorithm solves the problem with the new trace data shown in Figure 5.9. In step 1,
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Table 5.3: Execution trace of the MFPG-SP Algorithm.

Step CP C(◦) p Result Path (Cost)

1 [P1],[P2] 0,0 [P1]
2 [P1, P4], [P1, P5],[P2] 10,11,0 [P2] [P1, P4] (21)
3 [P1, P5], [P2, P3], [P2,

P7]
11,3,2 [P2, P7] [P1, P4] (21)

4 [P1, P5], [P2, P3], [P2,
P7, P8]

11,3,4 [P2, P3] [P1, P4] (21)

5 [P1, P5], [P2, P3, P6],
[P2, P3, P9], [P2, P7,
P8]

11,12,11,4 [P2, P7, P8] [P2, P3, P6] (18)

6 [P1, P5], [P2, P3, P9] 11,11 [P2, P3, P9] [P2, P3, P6] (18)
7 [P1, P5] 11 [P1, P5] [P2, P3, P6] (18)
8 [P1, P5, P6], [P1, P5,

P9]
20,19 [P2, P3, P6] (18)

the set of candidate paths is initialized to include [P1] and [P2], the two MFPs where

the origin lies. Since both paths have the same cost we can extend either one. [P1] is

extended, which results in [P1, P4] and [P1, P5]. [P1, P4] already reaches the origin, so

the cost along it is estimated to be 21, and it is removed from the set of candidate paths.

At every step the process continues extending the most promising paths one MFP at a

time, so in step 2 [P2] is extended, etc. It takes eight steps for the algorithm to finally

find the path.

The execution trace of the proposed IN-MFPG-SP algorithm is shown in Table 5.4.

Again, step 1 initializes the set of candidate paths to include [P1] and [P2]. In this

case, however, it is [P1] that should be extended, since its full travel cost (F (◦)) is

lower than that of [P2]. Sometimes the rank of the candidate paths according to their

F (◦) is different from that according to their C(◦), when the MFPG heuristic works.

For example, in step 3, the original MFPG-SP algorithm extends [P2, P7] while the

informed IN-MFPG-SP algorithm extends [P2, P3], since [P2, P3] heads to the direction

of the destination. It takes the IN-MFPG-SP algorithm only six steps to find the path.

Therefore, the MFPG heuristic can reduce the computational cost.
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Table 5.4: Execution trace of the Informed MFPG-SP Algorithm.

Step CP C(◦) H(◦) F (◦) p Result Path(Cost)

1 [P1], [P2] 0,0 2,4 2,4 [P1]
2 [P1,P4], [P1,P5],

[P2]
10, 11,
0

0, 3, 4 10, 14,
4

[P2] [P1,P4](21)

3 [P1,P5], [P2,P3],
[P2,P7]

11, 3, 2 3, 3, 6 14, 6, 8 [P2,P3] [P1,P4](21)

4 [P1,P5],
[P2,P3,P6],
[P2,P3,P9],
[P2,P7]

11, 12,
11, 2

3, 0,
∞, 6

14, 12,
∞, 8

[P2,P7] [P2,P3,P6](18)

5 [P1,P5],
[P2,P3,P9],
[P2,P7,P8]

11, 11,
4

3, ∞,
∞

14, ∞,
∞

[P1,P5] [P2,P3,P6](18)

6 [P1,P5,P6],
[P1,P5,P9],
[P2,P3,P9],
[P2,P7,P8]

20, 19,
11, 14

0, ∞,
∞, ∞

20, ∞,
∞, ∞

[P2,P3,P6](18)

Analysis of the IN-MFPG-SP algorithm

Because the A* algorithm is complete and correct if the heuristic used is admissible, and

the first step of the IN-MFPG-SP algorithm uses it to find an MFP-node or a path in a

MFPG representing the energy-efficient path, if the MFPG heuristic is admissible, the

IN-MFPG-SP algorithm is complete and correct.

Lemma 5.4.1. If h(n) is admissible heuristic for a spatial-node n, H(P ) is an admissible

heuristic for MFP-node P , where H(P ) is defined in Equation 5.3.

Proof. We prove this lemma by contradiction. Assume that H(P ) is not admissible

when h(n) is admissible. Let n̂ be the spatial-node with the smallest actual travel cost

to the destination on P , so n̂ must be a transfer spatial-node of P . We denote the

actual and heuristic travel cost from n̂ to the destination as C(n̂) and h(n̂) respectively.

Because h(n) is admissible, C(n̂) > h(n̂). Since H(P ) is not admissible, the actual travel

cost from at least one spatial-node in P to the destination is less than H(P ). Then,

H(P ) > C(n̂). Since we have proved that C(n̂) > h(n̂), H(P ) > h(n̂), which results in

a contradiction with the definition of H(P ).
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The worst-case complexity of the IN-MFPG-SP Algorithm is the same as that of the

MFPG-SP Algorithm, and is O(|EMFP ||VMFP |), where EMFP and VMFP are the sets

of MFP-nodes and MFP-edges respectively.

5.4.3 Maximal-Frequented-Path-Graph Label-Correcting (MFPG-LC)

Algorithm

As regenerative braking installed on growing more vehicles, the cases where the expected

energy consumption is negative on an edge or a path becomes common, especially along

downhill slopes in mountainous areas. To enable the algorithm to deal with edges or

paths with negative costs, we propose an algorithm using a label correcting strategy,

called MFPG-LC algorithm. This approach does not assume that the first path that

reaches an MFP-node is the path with the lowest cost to the MFP-node from the origin.

To account for this, a visited node is allowed to be extended. Moreover, the MFPG-SP

algorithm terminates once all the candidate paths have a cost greater than the minimum

cost of the path found. This would not work if travel cost could be negative, since a

candidate path may eventually lead to the destination, via paths that have negative costs

and have a cost lower than the current minimum. Therefore, the termination condition

need to be adjusted for the negative cost.

To overcome the issue of negative travel cost, we use a technique as follows. Before

the first step of the MFPG-SP algorithm, that is, finding the MFP-node or the path in

the MFPG linking the origin and destination, all the spatial-edges that have negative

costs are identified. The sum of the smallest costs on all these edges indicates the

maximum cost that could be regained in the graph. This is called the maximal regain

bound. Now, if the costs of all the candidate paths are greater than the cost of the

current result path minus the maximal regain bound, it would be impossible for any of

these paths to be extended, and eventually reach the destination with a cost lower than

the currently found path. Only in this case would the algorithm terminate.

To illustrate the advantage of MFPG-LC algorithm, we modify some of the traces

from Figure 5.2 to include negative travel costs and then compare how the MFPG-LG

and the original MFPG-SP algorithms handle this case. The modified OBD data is

shown in Figure 5.12. The MFPG for the data would stay unchanged as shown in Figure

5.4.
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Figure 5.12: Sample OBD Data with Negative Edge Costs.

Table 5.5: Execution trace of the MFPG-SP Algorithm with Negative Edge Costs

Step CP Cost p Result Path (Cost)

1 [P1], [P2] 0,0 [P1]

2 [P1, P4], [P1, P5], [P2] 4,8,0 [P2] [P1, P4] (7)

3 [P1, P5], [P2, P3] 8,8 [P2, P3] [P1, P4] (7)

First, the execution trace of the MFPG-SP algorithm is shown in Table 5.5. The

algorithm terminates in step 3 since the cost of the found result path is lower than those

of both candidate paths. The path with the lowest cost is [P1, P4] whose cost is 7.

The MFPG-LC algorithm solves this problem as follows. The algorithm estimates

the maximal regain bound in the graph first. It identifies all the spatial-edges with

negative costs, namely, e7, e10, and e12. Then, it calculates the sum of the minimal

costs on these edges, which is -9. Table 5.6 shows the execution trace of the MFPG-LC

algorithm. In step 2, the algorithm finds that [P1, P4] already reaches the destination,

so it removes the path from the set of candidate paths and estimates the cost of the

objective path in the spatial graph. Since the sum of the costs of the candidate paths
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Table 5.6: Execution trace of the MFPG-LC Algorithm with Negative Edge Costs

Step CP Cost p Result Path (Cost)

1 [P1], [P2] 0,0 [P1]

2 [P1, P4], [P1, P5], [P2] 4,8,0 [P2] [P1, P4] (7)

3 [P1, P5], [P2, P3] 8,8 [P1, P5] [P1, P4] (7)

4 [P1, P5, P6], [P2, P3] 10,8 [P2, P3] [P1, P5, P6] (5)

5 [P2, P3, P6] 11 - [P1, P5, P6] (5)

are less than the cost of the current result path minus the maximal regain bound, the

algorithm continues to execute. The algorithm terminates in step 5 when there is no

candidate path left to explore.

The result path found by the MFPG-LC algorithm linking the origin and destination in

the MFPG is [P1, P5, P6], which corresponds [e1, e2, e6, e9, e12, e10, e7, e4]. Its expected

energy consumption is 5, which is lower than that of the path found by the MFPG-SP

algorithm, so the MFPG-SP algorithm terminates before finding the correct result.

Hence using the MFPG-LC algorithm would help us find the correct results when travel

cost may be negative.

The complexity of the MFPG-LC algorithm is the same as that of the MFPG-SP

algorithm, that is, O(|EMFP ||VMFP |), where EMFP and VMFP are the sets of MFP-nodes

and MFP-edges respectively.

5.5 Experiments

We conducted experiments: 1) to compare the expected energy consumption of the paths

suggested by the proposed method (MFPG-LC) and the state-of-the-art energy-efficient

path selection method (GMR Eco-routing) [98], and 2) to compare the computational

performance of the proposed IN-MFPG-SP and MFPG-LC algorithms against the

physics-guided [12] and MFPG-SP [11] algorithms introduced in our preliminary work.
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(a) Energy consumption saving experiments

(b) Computational performance experiments

Figure 5.13: Experiment Design.
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5.5.1 Experiment Settings

We designed the control experiments shown in Figure 5.13. In energy consumption

saving experiments the candidate methods were the proposed method (MFPG-LC) and

the state-of-the-art energy-efficient path selection method (GMR Eco-routing) [98]. The

GMR Eco-routing method is an edge-centric method, which estimates the expected

energy consumption (EEC) on individual road segments, and selects paths according

to the estimates. This method estimates EEC by categorizing road segments based on

their speed limit, and fits a Gaussian mixture regression model in each category for EEC

according to the average speed, speed change, average elevation change, road segment

length, and speed limit. In the computational performance experiments, the candidate

algorithms for the case where the travel cost was non-negative were the physics-guided

[12], the MFPG-SP [11], and the IN-MFPG-SP algorithms. The ones for the case

where the travel cost could be negative were the physics-guided [12], and the MFPG-LC

algorithms. The metric measuring energy consumption saving was expected energy

consumption, which was estimated using the physics-guided energy consumption model,

and the metric for computational performance was execution time.

The experiments were designed to answer the following questions:

• Comparative analysis:

– Is the EEC of the paths selected by the proposed method lower than that of

the paths selected by the state-of-the-art methods.

– Are the proposed algorithms more computationally efficient than the algo-

rithms in preliminary work?

• Sensitivity analysis:

– How are the proposed methods affected by the number of input traces?

– How are the proposed methods affected by the minimum number of traces

along a FP ?

– How are the proposed methods affected by the length of the result path ?

The real-world dataset used in the experiments was the OBD data collected from 3

UPS trucks in Fort Worth Texas between 1/1/2017 and 6/30/2018. There were 10129
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Figure 5.14: A map of the road segments visited by traces in the OBD data and OD
pairs.

traces in the OBD data, each of which logged 250 engine measurements (e.g., energy

consumption and stop count) along with the geographic location of a vehicle varying

with time when it moved between two delivery stops. A map matching algorithm from

[122] was used to align the data with a digital map from the OpenStreetMaps, which

contained 9084 road segments and 6193 intersections. Figure 5.14 shows the map of Fort

Worth, TX with the OBD data. The orange lines show the distribution of OBD data on

the map. The darker shades of orange show those paths that had a larger number of

traces along them. The origin-destination (OD) pairs of each energy-efficient path query

in the experiments were the OD pairs of the traces, so there were 10129 OD pairs in total.

In Figure 5.14, origins are the red triangles, while destinations are the blue circles. To

calculate the MFPG heuristic in the experiments, the parameters affecting the heuristic

were set as m = 3000kg, g = 9.8m/s2, A = 2m2, s = 20miles/hour, ρ = 1.14kg/m3,

cair = 0.4 [123], and crr = 0.4 [124].

The spatial graph in the synthetic data consisted of 5929 spatial-nodes, and 9560

spatial-edges between these spatial-nodes in a grid pattern. Spatial-edges were between

adjacent spatial nodes (horizontally and vertically) with a probability. The degree of
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each spatial-node is 3.2 on average. 15000 traces were randomly created on the graph.

The length of the traces was between 1 to 120. For the sake of simplicity, the travel cost

metric was time. The speed of the vehicle was assumed to be between 30 and 50 miles

per hour. Left turns were given a higher time penalty compared with right turns, to

reflect the actual road conditions. Out of the 9560 spatial edges in the graph, 3968 were

traversed by at least 1 trace. The OD pairs of each fastest path query in the experiments

were the OD pairs of the synthetic traces and 10000 randomly generated OD pairs.

The experiments were conducted on a machine with Intel(R) Core™i5-7500 CPU

@ 3.40GHz and 64GB memory. The operating system used was Windows 10. The

algorithms were implemented using C# .NET Framework 4.7.

5.5.2 Experiment Results

Energy consumption saving experiments

Among 10129 OD pairs of the traces in the OBD data, the proposed MFPG-LC method

found energy-efficient path between 4300 (about 42.45%) of them. Then, we queried the

path between these 4300 OD pairs using the GMR Eco-routing method, and estimated

the EEC of the result paths using the physics-guided model. Figure 5.15 shows the

average EEC of the paths selected by the GMR Eco-routing method and the MFPG-LC

method along with the length of the shortest paths between the OD pairs. For example,

between the OD pairs between which the shortest paths are of length from 1 km to 2 km,

the average EEC of the paths selected by the GMR Eco-routing method is 1.07 kWh,

and that of the paths selected by the MFPG-LC method is 0.61 kWh. The average EEC

of the paths selected by both methods increased as the OD pairs grew away from each

other, but the average EEC of the paths selected the GMR Eco-routing method was

always higher than that of the MFPG-LC method. Therefore, the proposed method was

able to find paths with lower EEC than the GMR method.

Computational performance experiments

• Are the proposed algorithms more efficient than the algorithms in preliminary

work?

The number of spatial-edges on all FPs varies with the number of traces (T ) in OBD
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Figure 5.15: The average EEC of the paths selected by the GMR Eco-routing method
and the MFPG-LC method.

Table 5.7: Number of frequented spatial-edges varying with the number of traces in
OBD data.

(a) Spatial-edges with more than 20 traces along it in the real-world data

Number of Traces 5065 7597 10129

Number of Road Segments 864 961 1112

(b) Spatial-edges with more than 25 traces along it in the synthetic data

Number of Traces 7500 11250 15000

Number of Road Segments 3029 3388 3538

data (Table 5.7), and with the minimum number of traces (β) on an FP (Table 5.8).

Hence the number of FPs and UFPs depends on these two factors as well, which affects

the search space of the path selection algorithms in turn. The number of edges in the

result paths also affects the number of iterations the algorithms need to find the path.

Therefore, we compared the performance of the algorithms with a fixed β (20 for the

real-world data, and 25 for the synthetic data) and a fixed T (all traces in both datasets)

on result paths with varying length.

Figure 5.16 shows the execution time of the algorithms in the case where the travel

cost is non-negative. In each sub-figures, the Y axis is the execution time, while the

Y axis is the result path length. We can see that in all cases the MFPG-SP and the

IN-MFPG-SP algorithms are faster than the physics-guided method. The difference in
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Table 5.8: Number of frequented spatial-edges varying with the minimum number of
traces on it.

(a) Real-world data

Minimum number of traces on a FP 20 35 50

Number of Road Segments 1112 858 731

(b) Synthetic data

Minimum number of traces on a FP 25 50 75

Number of Road Segments 3538 2988 2166

(a) Real-world data. (b) Synthetic data.

Figure 5.16: Is the proposed IN-MFPG-SP algorithm more efficient than the physics-
guided, MFPG-SP algorithms?
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Figure 5.17: Is the proposed MFPG-LC algorithm more efficient than the physics-guided
algorithm?

their performance becomes more evident as the path length increases. This is because as

the path length increases, the physics-guided method requires more iterations to traverse

a given path compared with the MFPG-SP and the IN-MFPG-SP algorithms, which

extend paths by appending paths rather than edges. Also, we see that the admissible

heuristic reduces the time required by the IN-MFPG-SP algorithm, as the search space

is guided towards the destination.

Figure 5.17 shows the execution time of the algorithms in the case where the negative

travel cost is allowed. Again, the Y axis is the execution time, while the Y axis is the

result path length. We see that the execution times for both the MFPG-LC and the

physics-guided algorithms are higher than the case where the travel cost is non-negative

in Figure 5.16a. This is because it took these algorithms longer to terminate once a

path is found to deal with the negative edge costs. In this case too we find that the

MFPG-LC algorithm outperforms the physics-guided algorithm, greatly reducing the

amount of time taken by the algorithm.

• How are the proposed methods affected by the number of input traces?

To illustrate the sensitivity of the proposed algorithms on the number of traces in the

input data, we generated two subsets of both the real-world and the synthetic data using

random sampling without replacement. One had 75% original traces, and the other one

had 50% original traces. To avoid the effect of the result path length, the effect of the

number of traces in the input data is shown in groups of similar result path length in

Figure 5.18, where the average execution time of each path selection query is the y axis,
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(a) IN-MFPG-SP algorithm with the real-world
data.

(b) IN-MFPG-SP algorithm with the synthetic
data.

(c) MFPG-LC algorithm with the real-world
data.

Figure 5.18: How are the proposed methods affected by the number of input traces and
the result path length?
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(a) IN-MFPG-SP algorithm with the real-world
data.

(b) IN-MFPG-SP algorithm with the synthetic
data.

(c) MFPG-LC algorithm with the real-world
data.

Figure 5.19: How are the proposed methods affected by the minimum number of traces
along a FP and the result path length?

and the result path length is the x axis. The execution time on the 50%, 75%, and entire

dataset is shown in blue, red, and orange respectively. As we can see, the execution time

of all the proposed algorithms increases with the number of input traces. The reason to

this phenomenon is that increasing the number of input traces increases the number of

FPs and UFPs, and increases the search space of the path selection algorithms in turn.

• How are the proposed methods affected by the minimum number of traces along a

FP (β)?

To show the effect of the minimum number (β) of traces along a frequented path

(FP), we executed the proposed algorithms with varying β. β = 20, 35, 50 for real-world

data, and β = 25, 50, 75 for synthetic data. To avoid the effect of the result path length,

the effect of β is shown in groups of similar result path length in Figure 5.19, where the
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average execution time of each path selection query is the y axis, and the result path

length is the x axis. The execution time with different β is shown in different colors. The

results indicate that with β increasing, the execution time of the proposed algorithms

stays the same or decreases. As analyzed before, as β increases, the number of road

segments that have at least β traces along them decreases, which shrinks the search

space of the algorithms in turn. Moreover, the effect of β increases with the length of

the result paths. The reason to this is that the value of β affects the number of new

candidate paths can be explored at an MFP-node. The difference in the number of

new candidate paths with different value of β accumulates with the length of the result

path. Hence choosing an appropriate value of β is essential to make these algorithms

run efficiently.

• How are the proposed methods affected by the length of the result path ?

The length of the result path affects the number of iteration the path selection

algorithm needs to go through to find a path. According to both Figure 5.18 and 5.19,

in most cases, increasing length of the result path should increase the execution time.

Since the input traces are not evenly distributed throughout the spatial graph, some

longer paths may have smaller execution time, as seen in Figure 5.18a, between road

segment length 50-70, and in Figure 5.18c between road segment lengths 50-80. This is

due to some longer paths going along areas that have fewer FPs, resulting in a smaller

number of nodes being expanded along these paths. Figure 5.20 shows two such paths

from the UPS truck data. The lines in blue indicate the road segments that have at least

35 traces along them, where FPs exist. The red lines indicate the path found for given

origin-destination pairs. As can be seen, a lot of the FPs concentrate in a few regions in

the road network. Figure 5.20a shows a path composed of 88 edges. This path does not

pass through a region where FPs concentrate, hence it expands a relatively fewer number

of nodes. To find this path, the IN-MFPG-SP algorithm visited 123 spatial-nodes in

total, which cost only 45ms. Figure 5.20b however shows a path that passes through

a region where FPs concentrate. Although this path is composed of 16 edges, it took

the IN-MFPG-SP algorithm 246ms to find it, and 527 spatial-nodes are visited in the

searching process.



109

(a) Path with length 88 edges (b) Path with length 16 edges

Figure 5.20: Paths in the real-world data with abnormal computational time

5.6 Case Studies

We conducted two case studies: 1) to estimate the potential energy saving resulting

from leveraging the proposed energy-efficient path selection method, and 2) to illustrate

that the proposed method can select paths that are more energy-efficient than the paths

selected by the currently widely-used path selection methods. The data used in case

studies was the same real-world OBD data and road system used in the experiments.

5.6.1 Energy Saving Resulting from the Proposed Method

We queried the energy-efficient paths between 10129 origin and destination (OD) pairs

of the traces in the OBD data using the proposed method, and compared their energy

consumption with that of the historical paths in the data. Energy-efficient paths are

found between 4300 (about 42.45%) OD pairs. The energy-efficient paths between 2510

(about 24.78%) OD pairs have lower expected energy consumption than the historical

paths, and the others have the same as the historical paths. Figure 5.21 shows the

frequency distribution of the 2510 OD pairs between which the energy-efficient paths have

lower expected energy consumption than the historical paths according to the relative

difference between the expected energy consumption. For example, the energy-efficient

paths between 680 OD pairs save 0-20% energy compared with the historical paths

between the OD pairs. In this case study, the energy saving resulted from leveraging the

proposed method was about 12.10% of the total energy consumption of the traces in the

OBD data.
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Figure 5.21: Frequency distribution of the OD pairs according to the relative difference
between the expected energy consumption on the energy-efficient paths and that on the
historical paths between them.

5.6.2 Comparison between the Proposed Method and Google Maps

We searched for a path between two road intersections in Fort Worth, TX using the

proposed method and Google Maps, which was an example of the popular tools for

routing. The proposed method selected a path 1.5 miles long with an estimated time cost

of 5 minutes (Figure 5.22a). Google Maps chose a path 1.6 miles long but with a smaller

estimated time cost of 4 minutes (Figure 5.22b). Nevertheless, the path selected by the

proposed method had a lower estimated energy cost (1.11 KWh) than the path from

Google Maps (1.60 KWh). A potential cause of this difference was that the part of the

route affected by heavy traffic (shown in orange) was longer on the path selected by the

proposed method than on the Google Maps path, but its impact on energy consumption

was not as large as on time cost. Therefore, the proposed method was able to select the

more energy-efficient path than the currently widely-used method.

5.7 A Road Test in Cincinnati, OH

We also conducted a real-world road test using one UPS delivery truck and one driver.

Figure 5.23 shows the overview of the study area. The task was to find a path between

100 Commerce Dr, Loveland, OH and 8063 Montgomery Road, Cincinnati, OH. Google

Maps suggested the path highlighted in blue. Our proposed method, instead, suggested
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(a) Path selected by the proposed
method.

(b) Path selected by Google Maps.

Figure 5.22: A path selected by the proposed method is more energy-efficient than that
from Google Maps.

the path highlighted in green, and estimated that the expected energy consumption

of the blue path found by Google Maps was 8.54 kWh, and that of the green path

suggested by the proposed method was 5.43 kWh. The expected time costs of the blue

and green paths are 14 and 17 minutes respectively. An explanation of this result is that

the main segment of the blue path is an U.S. interstate, while that of the green path is

an U.S. state highway, so the blue path has a greater speed limit than the green path. In

addition, the length of the blue and green paths is 9.2 and 7.6 miles respectively. Even

though the high speed on the interstate reduces the travel time, it causes high energy

consumption. Then, the test truck was driven on both paths twelve times to collect data

for validation. According to the validation data, the average energy consumption on the

two paths are 8.27 kWh, and 5.09 kWh. Therefore, the proposed method was able to

select the more energy-efficient path than the currently widely-used method.

5.8 Conclusion and Future Work

Today’s increasing volume of OBD data facilitates monitoring and managing traffic and

transportation systems using the data from connected vehicles, which is an important
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Figure 5.23: Paths suggested by Google Maps and the proposed method.

component of a smart city. In this chapter, we explored the energy-efficient path

selection problem, whose challenges included the dependence of the energy consumption

on the physical parameters of vehicles, the dependence of the energy consumption

on different edges along a path, the high computational cost of estimating expected

energy consumption on a path, and the potentially negative energy consumption. We

proposed the MFPG heuristic that can guide the search space of the path selection

algorithms towards the destination and still guarantee finding the correct path. We

also introduced an IN-MFPG-SP algorithm that uses the MFPG heuristic. In addition,

we proposed the MFPG-LC algorithm to handle possibly negative energy consumption

using a label correcting strategy. We analyzed the proposed algorithms for correctness,

completeness and computational time complexity. The experiments we conducted on

both real-world data and synthetic data showed that the proposed algorithms yielded

substantial computational savings compared to the algorithms in our preliminary work.

Then, we conducted two case studies, which illustrated that leveraging the proposed

method would save 12.10% energy consumption, and that the path selected by the
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proposed method was more energy-efficient than the path found by Google Maps and

the state-of-the-art eco-routing method. Last, we conducted a real-world road test to

validate that the proposed method can help to save energy compared with Google Maps.

There are several avenues we can pursue in future work, including the precomputation

and the storage of the maximal frequented path graph (MFPG), updating the MFPG

given changing OBD data rather than regenerating the MFPG every time the OBD data

are updated.



Chapter 6

Conclusions and Future Work

6.1 Key Results

The increasing amount of available spatial data over the last decade boosts the need for

geospatial artificial intelligent (GeoAI) techniques to solve the challenges posed by the

data, including the gap between conventional AI techniques and domain knowledge and

challenges caused by the properties of spatial data. This thesis addressed some of these

challenges for four groups of GeoAI applications (i.e., descriptive, diagnostic, predictive,

prescriptive) using spatial data in two common data types (i.e., point sets and multi-

attributed trajectories). First, the thesis proposed a local colocation pattern detection

method to detect spatial colocation patterns that may not be prevalent globally but

prevalent in regions because of spatial heterogeneity. The thesis introduces a Quad & Grid

filter-refine algorithm to accelerate the computation without affecting the correctness

and completeness of the results. Second, the thesis investigate the problem of discovering

contrasting spatial colocation patterns that have different prevalence in two groups of

spatial datasets. It leverages the domain knowledge that neighborhood relationships

between categorical spatial objects may convey important information, and introduces a

filter & refine algorithm using the anti-monotone property of a proposed metric to measure

the prevalence difference of any colocation patterns in the two groups. Third, the thesis

discusses a point-set classification method for multiplexed pathology images. Inspired by

the domain assumption that the spatial configuration of cells may vary under different

health conditions, this thesis introduces a neural network architecture to capture the

114
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Table 6.1: Thesis contribution taxonomy.

GeoAI tasks
Descriptive Diagnostic Predictive Prescriptive

Point set Local colo-
cation
(chapter
2), Point
set repre-
sentation
learning

Contrasting
colocation
(chapter 3),
Contrasting
colocation
in multiple
classes of
point sets

Point set
classifi-
cation
(chapter 4)

Data
type

Multi-
attributed
trajectory

Physics-
informed
energy con-
sumption
estimation,
Energy con-
sumption
probability
distribution
estimation

Eco-routing
(chapter 5)

...

spatial configurations of categorical point sets through modeling pairwise relationships.

Last, the thesis introduces a physics-guided K-means algorithms to estimate the energy

consumption for a vehicle to travel along a path, which is a combination of physics laws

followed by vehicle energy consumption and a machine learning model. The thesis also

proposes a path-centric path selection algorithm using the proposed energy consumption

estimation model considering the spatial autocorrelation property of the data.

Table 6.1 summarizes these key results, and also outlines both short-term and

long-term future work.
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6.2 Short Term Future Directions

In the short-term, as shown in Table 6.1, we plan to investigate (1) expected energy

consumption estimation using onboard diagnostics data from vehicles and (2) contrasting

spatial colocation pattern detection in more than two groups of spatial datasets.

• Given a road network and historical on-board diagnostics data from vehicles with

known physical parameters, the physics-guided K-means method introduced in

this thesis can only estimate the expected traveling energy consumption on paths

with enough historical data, because as an integration of a physical law and an

unsupervised machine learning model, the proposed method estimated the energy

consumption on a path only using the data on the path. Therefore, we plan to

develop a physics-guided deep neural network method to significantly increase

the applicable scenarios of the method. First of all, deep neural networks such as

convolutional neural network (CNN) and recurrent neural network (RNN) have

been widely used to capture spatial dependency. In addition, even though onboard

diagnostics data from vehicles are growing available with the popularity of telemat-

ics devices equipped with GPS chips, the amount of data with energy consumption

information is still much less than those with traveling time information. By

leveraging data with traveling time information and deep neural network, we plan

to explore a model that can be applied on paths with or without historical data

with energy consumption information.

• We plan to explore contrasting spatial colocation pattern detection in multiple

groups of spatial datasets, which generalize the problem of detecting contrasting

spatial colocation pattern detection in two groups of datasets that is discussed in

this thesis. The generalized problem is of significant societal importance because

there are lots of application cases where the contrasting spatial colocation patterns

in multiple classes of datasets are of interest. For example, pathologists may be

interested in the neighborhood relationships of cells in multiple disease stages.

Biologists may be interested in the different colocation patterns in multiple climate

zones. The challenges of the problem are two-fold. First, To describe the difference

between the prevalence of the spatial colocation patterns in multiple groups of

datasets, we will need to propose a novel statistic.
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6.3 Long Term Future Directions

In the long term, as shown in Table 6.1, we will attempt to investigate (1) energy

consumption probability distribution estimation using onboard diagnostics data from

vehicles, (2) representation learning of spatial relationships in categorical point set.

• Given a road network and historical on-board diagnostics (OBD) data from vehicles

with known physical parameters, the energy consumption probability distribution

estimation problem aims to project the probability distribution of the energy

consumption of a vehicle to travel along a path. The importance of this problem is

because the variance of vehicles’ energy consumption on a path may be large, which

makes the expected energy consumption less representative. By estimating the

probability distribution of the energy consumption, we will be able to predict the

chance that a vehicle can reach a destination with certain amount of energy, which

is can relief drivers’ range anxiety especially for electric car drivers. The challenges

of this problem include the limited availability of OBD data, the dependency of

energy consumption on vehicles’ physical parameters, and modeling the probability

distribution. We plan to design a physics-informed neural network framework to

predict the distribution.

• In our current work, we mainly use the spatial colocation pattern to model the

proximity relationships in a multi-categorical point set. However, there are many

other more complicated spatial relationships in point sets such as surrounding,

within, etc, which may be useful for downstream tasks involving multi-categorical

point sets such as classification, prediction. The representation learning of spatial

relationships problem aims to train a model that can capture these relationships.

The first challenge of this problem is that unlike tabular records, images, and text

that are commonly used as the input data in machine learning problems, point sets

are in irregular form. In addition, there may be a large number of types of spatial

relationships, which are in complex forms, which may require a large volume of

data to train a model to learn the representation of the relationships. We plan

to integrate the domain knowledge into machine learning models to mitigate the

need for data and simplify the machine learning models that are needed to solve

the problems.
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