
Momentum for the Frank Wolfe Method

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Bingcong Li

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Professor Georgios B. Giannakis, Advisor
Professor Mingyi Hong

Professor Andrew Lamperski
Professor Ju Sun

May, 2022

© Bingcong Li 2022
ALL RIGHTS RESERVED

Acknowledgements

There are so many people to whom I wish to express my warmest gratitude for making my past

years at the University of Minnesota (UMN) the most enjoyable journey of my life.

First and foremost, my deepest gratitude goes to my Ph.D advisor Prof. Georgios B. Gian-

nakis for his valuable guidance on every perspective of life, especially on research and career.

Thanks to his incisive foresight and suggestions, I was devoted to working on the area of op-

timization for machine learning and signal processing problems, which constitutes the main

threads of this dissertation. His guidance and constant encouragement have made me become

not only a better researcher, but also a better person. Another joyful experience of being a SPiN-

COMer is that you can get a cup of coffee when you walk by Prof. Giannakis’ office. He also

recommended me various brands of high-quality coffee beans that saved my sleepy afternoons.

Special thanks go to Professor Mingyi Hong, Professor Andrew Lamperski, and Professor

Ju Sun for serving on my Ph.D committee. Professor Mingyi Hong and Professor Andrew

Lamperski are two professors who I met at the very beginning of my graduate studies in UMN.

Both of them are supportive and thoughtful for providing valuable suggestions on my courses

and research. Professor Ju Sun has done excellent works, which have great impact on my own

research even before he joined UMN.

The work in this dissertation would not have been possible without the help of my tal-

ented collaborators, who provided insightful observations, in-depth suggestions, inspiring dis-

cussions, and valuable criticism. It is my great honor to learn from and work with each of

you. In particular, I’d like to extend my gratitude to Prof. Xin Wang, Prof. Tianyi Chen, Prof.

Zhizhen Zhao, and Prof. Geert Leus, Dr. Meng Ma, Dr. Mario Coutino, Dr. Qin Lu, Dr. Shuai

Zheng, Dr. Alireza Sadeghi, Dr. Parameswaran Raman, Dr. Jun Sun, Lingda Wang, Huozhi

Zhou, Yilang Zhang, and Konstantinos Polyzos. I am truly grateful to these people for their

continuous help. My special gratitude goes to my undergraduate advisor, Prof. Xin Wang, who

i

encouraged me to pursue a Ph.D program. Prof. Wang also provided me advices during my

early Ph.D years which greatly helped my transition from an undergraduate to a researcher. I’d

also thank Prof. Tianyi Chen, from whole I learned how to research during my early Ph.D years.

I also appreciate knowing and working with every SPiNCOMer, Prof. Yanning Shen,

Prof. Jia Chen, Dr. Qiuling Yang, Dr. Fatemeh Sheikholeslami, Dr. Dimitris Berberidis,

Dr. Donghoon Lee, Dr. Panagiotis Traganitis, Dr. Liang Zhang, Dr. Georgios V. Karanikolas,

Dr. Vassilis Ioannidis, Dr. Jia Yan, Dr. Athanasios N. Nikolakopoulos, Dr. Manish Singh, Seth

Barrash, Xinhu Zheng, and Shijian Gao. Life would be much more boring and tedious without

SPiNCOMers. In addition, the presentation delivered by each of you in reading groups signif-

icantly broadened the scope of my research database and toolboxes. In addition, I would also

like to thank Prof. George Karypis and his lab members, including Ancy Tom, Zeren Shui, Yi-

long Wang, Dr. Saurav Manchanda, and Costas Mavromatis for sharing the 4th floor in Walter

Library. Last but not least, I would like to thank my family for all their unconditional support

along the way. Your love has been and will always be invaluable to me.

Bingcong Li

Minneapolis, Feb 2022

ii

Abstract

Modern machine learning tasks built to learn from data can be typically formulated as op-

timization problems. The large volume of data justifies the pressing need for efficient and

scalable iterative algorithms that are designed specifically to accommodate to the computation

resource at hand and the requirement of structural (e.g., sparse) solutions. Conditional gradient,

aka Frank Wolfe (FW) algorithms, have well-documented merits in machine learning and signal

processing applications that involves minimizing a loss function with constraints. Compared to

projection based methods, one of the key benefits is that FW overcomes the need of projection,

which is computationally heavy. Unlike projection-based methods however, momentum cannot

improve the convergence rate of FW, in general. For this reason, momentum is relatively less

studied in the FW literature. This limitation motivates the work in this dissertation.

In Chapter 2, we deal with heavy ball momentum and its impact to FW. Specifically, it is

established that heavy ball offers a unifying perspective on the primal-dual (PD) convergence,

and enjoys a tighter per iteration PD error rate, for multiple choices of step sizes, where PD error

can serve as the stopping criterion in practice. In addition, it is asserted that restart, a scheme

typically employed jointly with Nesterov’s momentum, can further tighten this PD error bound.

Going beyond heavy ball momentum, we establish the connections between the subproblem

in FW and Nesterov’s momentum in Chapter 3. On the negative side, these connections show

why momentum is unlikely to be effective for FW type algorithms on general problems. The

encouraging message behind this link, on the other hand, is that Nesterov’s momentum accel-

erates FW on a class of problems encountered in many signal processing and machine learning

applications. In particular, we prove that a momentum variant of FW, that we term accelerated

Frank Wolfe (AFW), converges with a faster rate O(1
k2

) on such a family of problems despite

the same O(1k) rate as FW on general cases. Our faster rates rely on parameter-free step sizes,

which distinguishes with most of existing faster rates of FW variants.

Chapter 4 introduces and analyzes a variant of FW termed ExtraFW. The distinct feature of

ExtraFW is the pair of gradients leveraged per iteration, thanks to which the decision variable is

updated in a prediction-correction (PC) format. Relying on no problem dependent parameters

in the step sizes, ExtraFW convergences at a faster rate O
(

1
k2

)
on a class of machine learning

problems. Compared with other parameter-free FW variants that have faster rates on the same

iii

problems such as AFW, ExtraFW has improved rates and fine-grained analysis thanks to its PC

update.

Numerical tests on binary classification with different sparsity-promoting constraints demon-

strate that the empirical performance of HFW, AFW and ExtraFW is significantly better than

FW. We also observe that AFW and ExtraFW are even faster than Nesterov’s accelerated gradi-

ent on certain datasets, even though they rely on no problem dependent parameters. For matrix

completion, the solutions found by HFW, AFW and ExtraFW enjoy smaller optimality gap, and

lower rank than FW.

iv

Contents

Acknowledgements i

Abstract iii

List of Tables ix

List of Figures x

1 Introduction 1
1.1 Problem statement . 2

1.2 Use cases of FW . 3

1.2.1 Sparse signal recovery . 3

1.2.2 Sparse classification . 4

1.2.3 Matrix completion . 5

1.2.4 Coordination of electric vehicle charging 5

1.2.5 Neural network pruning . 6

1.2.6 Other applications . 8

1.3 FW theories . 8

1.3.1 A close view of the FW subproblem 8

1.3.2 FW step sizes . 10

1.4 Open issues of FW and contributions . 11

2 Heavy ball momentum for FW 13
2.1 Introduction . 13

2.2 FW with heavy ball momentum . 15

v

2.2.1 Algorithm . 15

2.2.2 Parameter-free step size . 16

2.2.3 Smooth step size . 17

2.2.4 Line search . 18

2.2.5 Further considerations . 19

2.2.6 A side result: directional smooth step sizes 19

2.3 Restart further tightens the PD error . 20

2.4 Numerical tests . 22

2.4.1 Binary classification . 23

2.4.2 Matrix completion . 28

2.5 Appendix . 28

2.5.1 f(xk+1) ≤ f(xk) for the smooth step sizes in Alg. 2 28

2.5.2 Proof of Lemma 1 . 29

2.5.3 Proof of Theorem 1 . 29

2.5.4 Proof of Theorem 2 . 30

2.5.5 An extension of Theorem 2 for per step descent of Gk 31

2.5.6 Line search for Alg. 2 . 32

2.5.7 Proof of Theorem 4 . 33

2.5.8 Proof for choosing δk = δ . 34

2.5.9 Additional discussions . 36

2.5.10 Stopping criterion . 37

2.5.11 Proof of Theorem 5 . 37

2.5.12 Proof of Corollary 2 . 39

2.5.13 Computing directionally smooth constant 40

2.5.14 Numerical tests on binary classification 40

2.5.15 Numerical tests on matrix completion 41

3 Nesterov’s momentum for parameter-free FW 42
3.1 Introduction . 42

3.1.1 Related works . 42

3.1.2 Our contributions . 45

3.2 Connecting Nesterov’s momentum with FW 45

vi

3.3 Momentum-guided FW . 48

3.3.1 AFW convergence for general problems 49

3.3.2 AFW acceleration for a class of problems 51

3.4 Numerical tests . 53

3.4.1 Binary classification . 53

3.4.2 Matrix completion . 55

3.5 Appendix . 56

3.5.1 Proof of Theorem 8 . 56

3.5.2 f(yk) + 〈∇f(yk),vk+1−yk〉 approximates f(x∗) 58

3.5.3 AGM links with FW in strongly convex case 59

3.5.4 Proof of Lemma 3. 59

3.5.5 A few useful lemmas. 60

3.5.6 Proof of Lemma 4. 61

3.5.7 Proof of Theorem 9 . 62

3.5.8 Preparation to the proof of Theorem 10 63

3.5.9 Proof of Theorem 10. 67

3.5.10 `1 norm ball . 67

3.5.11 `p norm ball . 69

4 Enhancing Parameter-Free Frank Wolfe with an Extra Subproblem 72
4.1 Introduction . 72

4.2 Preliminaries . 73

4.3 ExtraFW . 74

4.3.1 Algorithm design . 74

4.3.2 Convergence of ExtraFW . 75

4.3.3 Acceleration of ExtraFW . 77

4.4 Numerical tests . 79

4.4.1 Binary classification . 80

4.4.2 Matrix completion . 83

4.5 Appendix . 84

4.5.1 Proof of Lemma 14 . 84

4.5.2 Proof of Lemma 15 . 84

vii

4.5.3 Proof of Lemma 16 . 85

4.5.4 Proof of Lemma 17 . 86

4.5.5 Proof of Theorem 13 . 88

4.5.6 Stopping criterion . 88

4.5.7 Proof of Theorem 14 . 89

4.5.8 `1 norm ball . 95

4.5.9 n-support norm ball . 98

4.5.10 Additional Numerical Results . 99

4.5.11 Binary classification . 100

5 Summary and Future Directions 103
5.1 Thesis Summary . 103

5.2 Future research . 104

References 106

viii

List of Tables

1.1 FW subproblem complexity . 9

2.1 A comparison of HFW with relevant works. The “computation” in the third

column is short for “the number of required FW subproblems to calculate the

PD error per iteration.” . 14

2.2 A summary of datasets used in numerical tests 41

3.1 A comparison of FW variants with faster rates, where ’ls’, ’smooth’, and ’pf’ are

short for line search, smooth step size, and parameter-free step sizes, respectively. 44

3.2 A summary of datasets used in numerical tests 53

4.1 A comparison of different algorithms for logistic regression with n-support

norm . 99

4.2 A summary of datasets used in numerical tests 100

ix

List of Figures

2.1 Performance of FW variants for binary classification with an `2-norm ball con-

straint. 23

2.2 Performance of FW variants for binary classification with an `1-norm ball con-

straint. 24

2.3 Performance of FW variants for binary classification with an n-support norm

ball constraint. 25

2.4 Performance of directionally smooth step sizes. (a) and (c) are tested on mush-

room; and (b) and (d) use ijcnn1. 26

2.5 Comparison of HFW with other algorithms on muchroom. 27

2.6 Performance of FW variants for matrix completion on MovieLens100K. 28

3.1 Similarity between the RHS of (1.8) and (3.1). 47

3.2 Performance of AFW when the optimal solution is at interior. 54

3.3 Performance of AFW on datasets: mushroom (first row), mnist (second row),

and covtype (third row). 55

3.4 Performance of AFW for matrix completion problems. 56

4.1 Performance of ExtraFW for binary classification with an `2 norm ball con-

straint on datasets: (a) mnist, (b) w7a, (c) realsim, and, (d) mushroom. 80

4.2 Performance of ExtraFW for binary classification with an `1 norm ball con-

straint: (a1) optimality error on mnist, (a2) solution sparsity on mnist, (b1) op-

timality error on mushroom, and, (b2) solution sparsity on mushroom. 81

4.3 Performance of ExtraFW for binary classification with an n-support norm ball

constraint: (a1) optimality error on mnist, (a2) solution sparsity on mnist, (b1)

optimality error on mushroom, and, (b2) solution sparsity on mushroom. 82

x

4.4 Performance of ExtraFW for matrix completion: (a) optimality vs k, (b) solu-

tion rank vs k, (c) optimality at k = 500 vsR, and, (d) solution rank at k = 500

vs R. 83

4.5 ExtraFW guarantees an O(1
k2

) rate on simplex. 97

4.6 Test accuracy of ExtraFW on different constraints. 100

4.7 Additional tests of ExtraFW for classification with X being an `1 norm ball. . . 101

4.8 Additional tests of ExtraFW for classification with X being an n-support norm

ball. 102

xi

Chapter 1

Introduction

The quick evolution and widespread applicability of machine learning and artificial intelli-

gence have fundamentally reshaped and transcended people’s life. From online shopping to

autonomous driving cars, from smart grid to intelligent infrastructure, from social media to

healthcare, learning and intelligence enabled applications and products have permeated our

daily life in various ways. Two key players stand behind such a ubiquitous emergence: big

data and advanced algorithms. The unprecedented amount of data generated every day lays the

foundation for such a tremendous transformation. Underlying many machine learning tasks are

data-driven optimization problems to be solved. The “data deluge” give rises to the need for

reducing computational burden for iterative optimization solvers, as well as the favor of struc-

tured solutions (such as sparse vectors or low rank matrices) that are not only cheap to store,

but also required by real-world tasks such as compressive sensing and recommender systems.

Modern optimizers such as projected gradient descent (GD) built to exploit such a huge amount

of data are often computationally “hungry” and their “appetite” for computing power does not

endow them with the capability to directly hunt for structured solutions. All these considera-

tions justify the pressing need for optimization algorithms that are lightweight yet flexible to

promote structural solutions.

Among commonly adopted first-order methods for constrained problems, the Frank Wolfe

(FW) algorithm (also known as conditional gradient method) [1] reduces the computational

burden by substituting the projection step to a subproblem that can be solved much more easily.

In addition, the update of FW directly promotes structural solution when sparse or low rank is

of interest. FW is thus more competitive iterative solver than its projection counter part GD.

1

2

This thesis starts with theoretical perspectives of FW for convex optimization and provide

a unified framework, which offers not only valuable insights, but also guidances on how to de-

velop novel algorithms to meet emerging requirements. The vision is to broaden conventional

view of FW while maintaining FW’s lightweight computation, insightful geometrical explana-

tion, and simple implementation to provide a principled means of analyzing, designing, opti-

mizing and accelerating constrained convex problems. The ultimate goal is to guide real-world

applications with supportive theories and promising empirical performance.

Notation. Bold lowercase (capital) letters denote column vectors (matrices); ‖x‖ stands for

a norm of a vector x, whose dual norm is denoted by ‖x‖∗; and 〈x,y〉 is the inner product of x

and y.

1.1 Problem statement

The Frank Wolfe (FW) method [1, 2, 3, 4, 5] is designed for solving the following constrained

problem

min
x∈X

f(x). (1.1)

Here, f is the loss function, and the constraint set X ⊂ Rd is assumed convex and compact,

where d is the dimension of variable x. Throughout, we let x∗ ∈ X denote a minimizer of (1.1).

The following standard assumptions will be taken to hold true throughout.

Assumption 1. (Lipschitz continuous gradient.) The objective function f : X → R has L-

Lipchitz continuous gradients; i.e., ‖∇f(x)−∇f(y)‖∗ ≤ L‖x− y‖,∀x,y ∈ X .

Assumption 2. (Convexity.) The objective function f : X → R is convex; that is, f(y) −
f(x) ≥ 〈∇f(x),y − x〉,∀x,y ∈ X .

Assumption 3. (Convex and compact constraint set.) The constraint set X ⊂ Rd is convex and

compact with diameter D, that is, ‖x− y‖ ≤ D,∀x,y ∈ X .

FW for solving (1.1) under Assumptions 1 – 3 is listed in Alg. 1. Although nonconvex

problems can also be coped via FW [6, 7], they are beyond the scope of this thesis. The FW

algorithm is simple and neat, where a FW subproblem (in line 3) and an update step (line 4) are

carried out in order per iteration.

3

Algorithm 1 FW [1]

1: Initialize: x0 ∈ X , ηk ∈ [0, 1], ∀k
2: for k = 0, 1, . . . ,K − 1 do
3: vk+1 = arg minv∈X 〈∇f(xk),v〉
4: xk+1 = (1− ηk)xk + ηkvk+1

5: end for
6: Return: xK

In various machine learning and signal processing applications, the FW subproblem in line

3 is much easier to be solved compared with projection steps in GD, as one can see that the loss

function of FW subproblem is linear. The popularity of FW is partially due to the elimination

of projection compared with projected gradient descent (GD) [8], leading to computational

efficiency especially when d is large. Next, we will provide a few examples of applications, and

then discuss the supporting theories for FW.

1.2 Use cases of FW

This section provides several examples of scenarios that favors the adoption of FW (variants).

1.2.1 Sparse signal recovery

Suppose that we want to recover a signal x∗ ∈ Rn as a sparse representation of observations

y = Ax∗ + e, where A ∈ Rm×n and e ∼ N (0, σ2Im) is the stochastic noise. One would

naturally formulate the problem as

min
x
‖y −Ax‖22

s.t. ‖x‖0 ≤ ‖x∗‖0.

However, the nonconvex constraint, i.e, `0-norm ball, renders the problem intractable in many

situations. The most widely adopted remedy is to use `1-norm as a surrogate to the `0-norm ball

[9], leading the problem to

min
x
‖y −Ax‖22

s.t. ‖x‖1 ≤ ‖x∗‖1.

4

In practice, ‖x∗‖1 := R is unknown and is typically chosen by cross validation. It is not hard

to verify that Assumptions 1 – 3 hold for this problem, and hence FW can be applied directly.

Sparsity promoting property of FW for `1-norm ball constraint. Unlike projection

based algorithms such as GD, FW in Alg. 1 directly promotes sparsity on the solution if it

is initialized at x0 = 0. To see this, suppose that the i-th entry of ∇f(xk) has the largest

absolute value, then we have vk+1 = [0, . . . ,−sgn
(
[∇f(xk)]i

)
R, . . . , 0]> with the i-th entry

being non-zero. Hence, xk has at most k non-zero entries given that k − 1 entries are non-zero

in xk−1.

1.2.2 Sparse classification

Sparse classification is a central problem in machine learning as it leads to more interpretable

and robust models [10]. There are different ways to formulate this problem, here we adopt

logistic regression for binary classification as an example. The problem is formulated as

min
x

1

N

N∑
i=1

ln
(
1 + exp(−bi〈ai,x〉)

)
s.t. ‖x‖0 ≤ k.

Here (ai, bi) is the (feature, label) pair of datum i,N is the number of data, and k is the expected

number of 0s in the classifier. Similar to sparse signal recovery, `1-norm is more favorable as

an approximation to the `0-norm ball, which further leads to the problem as

min
x

1

N

N∑
i=1

ln
(
1 + exp(−bi〈ai,x〉)

)
s.t. ‖x‖1 ≤ R.

In practice, R is unknown and is typically chosen by cross validation. FW also promotes a

sparse solution for this problem.

Other constraints. The `1 norm ball in the aforementioned problem can be substituted

to more sophisticated constraints, e.g., ordered weighted `1 norm (OWL) [11], and n-support

norm ball [12], to promote a sparse solution as well. In such cases, the FW subproblem is also

cheaper than projection.

5

1.2.3 Matrix completion

Matrix completion problems (or collaborative filtering) appear widely in recommender systems.

Consider a matrix A ∈ Rm×n with partially observed entries, i.e., entries Aij for (i, j) ∈ K are

known, where K ⊂ {1, . . . ,m} × {1, . . . , n}, where Aij is the rating of user i to item j. Based

on the observed entries that can be contaminated by noise, the goal is to predict the missing

ones. Within the scope of recommender systems, a commonly adopted empirical observation is

that A is low rank [13, 14, 15], leading to the following problem formulation.

min
X

1

2

∑
(i,j)∈K

(Xij −Aij)2 (1.2)

s.t. ‖X‖nuc ≤ R.

Problem (1.2) is difficult to solve using GD because projection onto a nuclear norm ball requires

a full SVD, which has complexity O
(
mn(m ∧ n)

)
with (m ∧ n) := min{m,n}. In contrast,

FW and its variants are more suitable for (1.2) since the FW subproblem has complexity less

than O(mn) [16].

Low rank promoting property of FW under nuclear norm ball constraint. In addition

to the projection-free property, FW is more suitable for this problem compared to GD because

it also guarantees rank(Xk) ≤ k + 1 [17, 18]. Suppose that the singular value decomposition

(SVD) of ∇f(Xk) is given by ∇f(Xk) = PkΣkQ
>
k . Then the FW subproblem can be solved

easily by

Vk+1 = −Rpkq
>
k (1.3)

where pk and qk denote the left and right singular vectors corresponding to the largest singular

value of∇f(Xk), respectively. Clearly Vk+1 in (1.3) has rank at most 1. Hence it is easy to see

Xk+1 = (1− δk)Xk + δkVk+1 has rank at most k + 2 if Xk is a rank-(k + 1) matrix (i.e., X0

has rank 1).

1.2.4 Coordination of electric vehicle charging

The convex setup of optimal schedules for electric vehicle (EV) charging in [19] is briefly

reviewed next. Suppose that a load aggregator coordinates the charging of N EVs over the T

6

consecutive time slots T := 1, ..., T of length ∆τ . Let Tn ⊆ T denote the time slots in which

vehicle n is connected to the power grid, and let xn(τ) be the charging rate of EV n at time τ to

be scheduled by the load aggregator. If x̄n is the charging rate limitation imposed by the battery

of vehicle n, then xn(τ) should lie in the interval [0, x̄n] with

x̄n(τ) :=

{
x̄n, τ ∈ Tn

0, otherwise

The charging profile for vehicle n, denoted by x>n := [xn(1), . . . , xn(T)] should therefore

belong to the convex and compact set

Xn := {xn|∆τx
>
n 1 = Rn, 0 ≤ xn(τ) ≤ x̄n(τ), ∀τ ∈ T } (1.4)

where Rn represents the total energy needed by EV n.

Given {Rn}Nn=1, {xn}Nn=1, and {Tn}Nn=1, the problem solved by the aggregator is to find

the charging profiles minimizing its electricity cost

min
x

f(x)

s.t. xn ∈ Xn, ∀n ∈ N

where f(x) should is customizable and chosen as f(x) =
∑T

τ=1

(∑N
n=1 xn(τ) + D(τ)

)2 in

[20], where D(τ) denotes additional known loads.

As the constraint set is affine, the problem can be solved via FW, where a closed form

solution exists for the FW subproblem. Noticing the blockwise structure of the constraint set,

i.e., the feasible set is the Cartesian product X := X1 × . . .× . . .XN , this problem also favors

the adoption of a specifically designed FW variant, randomized block FW (RB-FW) [20, 21],

to accommodate the block-wise structure in X , especially when N is large.

1.2.5 Neural network pruning

Deep neural networks (DNNs) enjoy documented success in real-world tasks that emerge from

various applications, including computer vision [22], and natural language processing [23]. The

widespread consensus however, is that the ‘resource-hungry’ DNNs are not yet ready to under-

take several tasks of the emerging Internet of Things (IoT) [24, 25], where devices can have

stringent computation and memory constraints [26]. With the success of transformers having

7

0.6B parameters in vision tasks [27], it is foreseeable that the model size will quickly scale up

to achieve improved performance on even more sophisticated tasks. However, these models of

overwhelming size are difficult to learn using embedded systems, such as those in autonomous

driving cars and smartphones. These considerations coupled with empirical observations that

DNNs are often highly redundant, prompts the possibility to remove unnecessary neurons while

minimally sacrificing accuracy – what DNN pruning promises to accomplish.

Consider for brevity a two-layer NN, although pruning pertains also to multi-layer DNNs.

With slightly abused notation, let x and y denote respectively the feature and label of a training

datum; σi(·) the n-th neuron’s memoryless nonlinearity, e.g., σi(x) := wi2ReLU(w>i1x); and

{wi1,wi2} the weights to be learned. The two-layer NN with N neurons models the map

x→ y, using the function

fN (x) =
1

N

N∑
i=1

σi(x) . (1.5)

Although several options are possible, suppose that training relies on minimizing the square

loss

L∗ :=
1

2
E(x,y)

[
‖f∗N (x)− y‖2

]
:= min
{wi1,wi2}i

1

2
E(x,y)

[
‖fN (x)− y‖2

]
(1.6)

where f∗N (x) is the NN map with optimally trained weights, and σ∗i (x) the i-th neuron output.

Having obtained f∗N (x), the pruning task targets at a subnetwork S of cardinality |S| < n

whose neurons are judiciously selected from f∗N (x), and with the pruned NN effecting the map

f∗S(x) := 1
N

∑N
n=1 σ

∗
n(x)1(n ∈ S), where 1 denotes the binary indicator function. As neurons

with low impact on the training loss must be pruned, f∗S(x) solves the optimization problem

min
|S|<n

L(S) :=
1

2
E(x,y)

[
‖f∗S(x)− y‖2

]
. (1.7)

The combinatorial complexity of solving (1.7) explains why several existing works only pro-

vide heuristic methods [28, 29, 30, 31]. Another critical yet time-consuming task is that of

tuning for the best n to account for the tradeoff of lowering the pruning loss and sparsifying the

subnetwork. Applying FW based approaches will systematically cope with these two concerns,

and provide guidelines for pruned DNNs with guaranteed robustness.

A desirable pruning method should remove as many as possible unnecessary neurons in a

pre-trained DNN, while incurring minimal pruning-induced training loss. A neat link bridging

8

DNN pruning with the FW was revealed in [32]. Per FW iteration, a new neuron obtained by

solving the FW subproblem, is added to the target set S. It can be established that the FW

method guarantees the training loss L(S) of the pruned DNN with n neurons left to be no

larger than L∗ + εn, where εn = O(lnnn) [32]. This result readily quantifies the worst-case

performance of the pruned NN relative to that of the original unpruned NN, hence ensuring

robustness.

1.2.6 Other applications

Besides aforementioned tasks, other tasks that favors FW or its variants include e.g., traffic

assignment [33], non-negative matrix factorization [34], video colocation [35], image recon-

struction [17], particle filtering [36], cluster detection in networks [37], adversarial training of

neural networks [38], tuning step sizes for training large neural networks [39], and optimal

transport [40].

1.3 FW theories

In this section, theories behind FW are briefly recapped. As in most optimization algorithms,

two essential ingredients are the update direction and the step sizes. Rewriting line 4 of Alg. 1

as xk+1 = xk − ηk(xk − vk+1), it is clear the update direction is −(xk − vk+1) with step size

ηk. More details on the update direction are reviewed next.

1.3.1 A close view of the FW subproblem

FW subproblem ensures a descent direction. Since vk+1 minimizes 〈∇f(xk),v〉 over X , we

have

〈∇f(xk),vk+1 − xk〉 ≤ 0.

This inequality implies that the update direction in FW is a descent direction.

Geometry of FW subproblem. The subproblem in line 3 of Alg. 1 can be visualized

geometrically as minimizing a supporting hyperplane of f(x) at xk, i.e.,

vk+1 ∈ arg min
v∈X

f(xk) + 〈∇f(xk),v − xk〉. (1.8)

9

Upon minimizing the supporting hyperplane in (1.8), xk+1 is updated as a convex combination

of vk+1 and xk in line 4 so that no projection is required. The choices on the step size ηk ∈ [0, 1]

will be discussed shortly.

The hyperplane geometry behind FW subproblem enables the calculation of primal-dual

(PD) error or the so-termed FW gap, formally defined as

Ḡk := 〈∇f(xk),xk − vk+1〉

= f(xk)−f(x∗)︸ ︷︷ ︸
primal error

+ f(x∗)−min
v∈X

[
f(xk) + 〈∇f(xk),v−xk〉

]
︸ ︷︷ ︸

dual error

(1.9)

where the second equation is because of (1.8). It can be verified that both primal and dual errors

marked in (1.9) are no less than 0 by appealing to the convexity of f . If Ḡk converges, one

can deduce that the primal error converges. For this reason, Ḡk is typically used as a stopping

criterion for Alg. 1.

Complexity of FW subproblem. For many constraint sets, efficient implementation or a

closed-form solution is available for vk+1, a few examples are provided in Table. 1.1, whereNf

denotes the number of non-zero entries of the gradient; ε denotes the desirable accuracy if one

has to use an iterative solver for FW subproblem; and σ1(.) is the largest singular value. Please

refer to [2, 41] for more comprehensive summaries of constraints on which FW subproblem can

be solved efficiently.

Table 1.1: FW subproblem complexity

Constraint solution complexity{
x ∈ Rd | ‖x‖1 ≤ 1

}
Holder inequality d{

x ∈ Rd | ‖x‖∞ ≤ 1
}

Holder inequality d{
x ∈ Rd | ‖x‖p ≤ 1

}
, p ∈ (1,∞) Holder inequality d{

X ∈ Rm×n | ‖X‖nuc ≤ 1
}

Relate to σ1(∇f(X)) O(Nf){
X ∈ Sn×n |X � 0,Tr(X) = 1

}
Lanzcos alg. Õ(Nf/ε)

Other update directions. While the standard update direction is universal, there are more

efficient ones for specific problems, typically when X is a polytope and f(x) is strongly convex

[42]. Such directions can lead to faster convergence. For example, linear rate can be achieved

using the aid of away-steps [43]. The idea is that in each iteration, we not only add a new

10

vertex s, but potentially also remove an old vertex (provided it is bad with respect to our objec-

tive). Besides away-steps, other update directions include e.g., in-face directions [18], pairwise

directions [44, 42].

1.3.2 FW step sizes

Choosing the step size ηk ∈ [0, 1], it is clear that xk+1 is a convex combination of xk and vk+1.

Hence, long as xk ∈ X , xk+1 will also lives in X . Next, we outline three commonly used step

sizes in the literature.

Parameter-free step size. This type of step sizes does not rely on any problem dependent

parameters such as L and D, and hence it is extremely simple to implement. The most com-

monly adopted step size is ηk = 2
k+2 , which ensures a converging primal error f(xk)−f(x∗) ≤

2LD2

k+1 , ∀k ≥ 1, and a weaker claim on the PD error, mink∈{1,...,K} Ḡk = 27LD2

4K [2]. One can

also choose ηk = 1
k+1 , which leads to a primal error of O(LD

2 ln k
k).

Smooth step size. When the (estimate of) Lipschitz constant L is available, one can adopt

the following step sizes in Alg. 1 [45]

ηk = min

{
〈∇f(xk),xk − vk+1〉
L‖vk+1 − xk‖2

, 1

}
. (1.10)

Despite the estimated L is typically too pessimistic to capture the local Lipschitz continuity,

such a step size ensures f(xk+1) ≤ f(xk). To see this, we have from Assumption 1 that

f(xk+1)− f(xk) ≤ 〈∇f(xk),xk+1 − xk〉+
L

2
‖xk+1 − xk‖2 (1.11)

(a)
= ηk〈∇f(xk),vk+1 − xk〉+

η2kL

2
‖vk+1 − xk‖2

(b)

≤ 0

where (a) uses xk+1 = (1 − ηk)xk + ηkvk+1; and (b) is because ηk minimizes the RHS of

(1.11) over [0, 1].

Line search. We can also choose the step size ηk via line search, although this might be

more computationally costly in practice because it requires computing the function value. The

parameters are selected as

ηk = arg min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
. (1.12)

11

Such a parameter choice also ensures per step objective descent since

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
(a)

≤ f
(
(1− θ)xk + θvk+1

) (b)
= f(xk)

where in (a) we have θ ∈ [0, 1]; and in (b) we set θ = 0.

Convergence rate. It has been established that for all aforementioned step sizes, the primal

error, f(xk)− f(x∗), converges at a rate of O(LD
2

k). Regarding the primal-dual error, existing

works are not satisfactory, and this will be discussed in detail in Chapter 2.

Existing literature also relies on blackbox optimization paradigm, where the objective func-

tion and constraint set can be accessed through oracles only. For FW in particular, the first-order

oracle (FO) and the linear minimization oracle (LMO) are needed.

Definition 1. (FO.) The first-order oracle takes x ∈ X as an input and returns its gradient

∇f(x).

Definition 2. (LMO.) The linear minimization oracle takes a vector g ∈ Rd as an input and

returns a minimizer of minx∈X 〈g,x〉.

The efficiency of an algorithm in blackbox optimization paradigm is characterized by the

number of oracles used to achieve the desirable primal error f(xk) − f(x∗) ≤ ε. Since each

FW iteration requires one FO and one LMO, simply setting convergence rate smaller than ε,

the oracle complexity for FW, i.e., the number of oracles needed, can be calculated as O(LD
2

ε).

Since the relation between convergence rate and oracle complexity is straightforward, in this

thesis we use these two terms interchangeably.

1.4 Open issues of FW and contributions

While FW has well-documented merits, there are several open problems that can further benefit

FW type algorithms. Among the unaddressed issues, the work in this thesis would mainly deal

FW with momentum, including heavy ball (aka Polyak’s) momentum and Nesteorv’s momen-

tum.

While momentum is ubiquitous in projection based algorithms for obtaining either theo-

retical or numerical benefits [46, 47, 48], it is known that momentum does not perform well

12

with FW. Indeed, the lower bound in [2, 3] demonstrates that at least O(LD
2

ε) LMO calls are

required to ensure f(xk) − f(x∗) ≤ ε, which does not guarantee that momentum is beneficial

for FW, because even vanilla FW achieves this lower bound. Due to this negative result, mo-

mentum is not carefully studied in FW literature. This thesis will systematically study the use

of momentum in FW, and provide provable evidences on the usefulness of momentum.

Chapter 2

Heavy ball momentum for FW

2.1 Introduction

In this chapter, we contend that momentum is evidently useful for FW. Specifically, we prove

that the heavy ball momentum leads to tightened and efficiently computed primal-dual error

bound, as well as numerical improvement. To this end, we outline first the primal convergence.

Primal convergence. The primal error refers to f(xk) − f(x∗). It is guaranteed for FW

that f(xk)− f(x∗) = O
(
LD2/k

)
,∀k ≥ 1 [2, 45]. This rate is tight in general since it matches

to the lower bound [3, 2]. Other FW variants also ensure the same order of primal error; see

e.g., [3, 49].

Primal-dual convergence. The primal-dual (PD) error quantifies the difference between

both the primal and the ‘dual’ functions from the optimal objective, hence it is an upper bound

on the primal error. When the PD error is shown to converge, it can be safely used as the

stopping criterion: whenever the PD error is less than some prescribed ε > 0, f(xk)−f(x∗) ≤ ε
is ensured automatically. The PD error of FW is convenient to compute, hence FW is suitable for

the requirement of “solving problems to some desirable accuracy;” see e.g., [50]. For pruning

(two-layer) neural networks [32], the extra training loss incurred by removing neurons can be

estimated via the PD error. However, due to technical difficulties, existing analyses on PD

error are not satisfactory enough and lack of unification. It is established in [51, 2, 4] that the

minimum PD error is sufficiently small, namely mink∈{1,...,K} PDErrork = O
(
LD2

K

)
, where

K is the total number of iterations. We term such a bound for the minimum PD error as Type

I guarantee. Another stronger guarantee, which directly implies Type I bound, emphasizes

13

14

the per iteration convergence, e.g., PDErrork ≤ O(LD
2

k), ∀k. We term such guarantees as

Type II bound. A Type II bound is reported in [42, Theorem 2], but with an unsatisfactory k

dependence. This is improved by [52, 53] with the price of extra computational burden since it

involves solving two FW subproblems per iteration for computing this PD error. Several related

works such as [4] provide a weaker PD error compared with [52]; see a summary in Table 3.1.

Table 2.1: A comparison of HFW with relevant works. The “computation” in the third column is short

for “the number of required FW subproblems to calculate the PD error per iteration.”

reference computation PD conv. type PD conv. rate

[2] 1 subproblem Type I 27LD2

4(K+1)

[42] 2 subproblems Type II 2LD2
√
k+1

,∀k

[52] 2 subproblems Type II 4LD2

k+1 ,∀k
This work (Alg. 2) 1 subproblem Type II 2LD2

k+1 ,∀k
This work (Alg. 3) 2 subproblems Type II 2LD2

k+1+c ,∀k with c ≥ 0

In this chapter, we show that a computationally affordable Type II bound can be obtained

by simply relying on heavy ball momentum. Interestingly, FW based on heavy ball momen-

tum (HFW) also maintains FW’s neat geometric interpretation. Through unified analysis, the

resultant type II PD error improves over existing bounds; see Table 1. This PD error of HFW

is further tightened using restart. Although restart is more popular in projection based methods

together with Nesterov’s momentum [54], we show that restart for FW is natural to adopt jointly

with heavy ball. In succinct form, our contributions can be summarized as follows.

• We show through unified analysis that HFW enables a tighter type II guarantee for PD

error for multiple choices of the step size. When used as stopping criterion, no extra

subproblem is needed.

• The Type II bound can be further tightened by restart triggered through a comparison

between two PD-error-related quantities.

• Numerical tests on benchmark datasets support the effectiveness of heavy ball momen-

tum. As a byproduct, a simple yet efficient means of computing local Lipschitz constants

becomes available to improve the numerical efficiency of smooth step sizes [45, 55].

15

2.2 FW with heavy ball momentum

This section focuses on the benefits of heavy ball momentum for FW under multiple step size

choices, with special emphasis on PD errors.

2.2.1 Algorithm

Algorithm 2 FW with heavy ball momentum (HFW)

1: Initialize: x0 ∈ X ,g0 = ∇f(x0)

2: for k = 0, 1, . . . ,K − 1 do
3: gk+1 = (1− δk)gk + δk∇f(xk)

4: vk+1 = arg minv∈X 〈gk+1,v〉
5: xk+1 = (1− ηk)xk + ηkvk+1

6: end for
7: Return: xK

HFW is summarized in Alg. 2. Similar to GD with heavy ball momentum [46, 47], Alg. 2

updates decision variables using a weighted average of gradients gk+1. In addition, the update

direction of Alg. 2 is no longer guaranteed to be a descent one. This is because in HFW,

〈∇f(xk),xk − vk+1〉 can be negative. Although a stochastic version of heavy ball momentum

was adopted in [56] and its variants, e.g., [57], to reduce the mean square error of the gradient

estimate, heavy ball is introduced here for a totally different purpose, that is, to improve the

PD error. The most significant difference comes at technical perspectives, which is discussed in

Sec. 2.2.5. Next, we gain some intuition on why heavy ball can be beneficial.

Consider X as an `2-norm ball, that is, X = {x|‖x‖2 ≤ R}. In this case, we have vk+1 =

− R
‖gk+1‖2 gk+1 in Alg. 2. The momentum gk+1 can smooth out the changes of {∇f(xk)},

resulting in a more concentrated sequence {vk+1}. Recall that the PD error is closely related to

vk+1 [cf. equation (1.9)]. We hope the “concentration” of {vk+1} to be helpful in reducing the

changes of PD error among consecutive iterations so that a Type II PD error bound is attainable.

A few concepts are necessary to obtain a tightened PD error of HFW. First, we introduce

the generalized FW gap associated with Alg. 2 that captures the PD error. Write gk+1 explicitly

as gk+1 =
∑k

τ=0w
τ
k∇f(xτ), where wτk = δτ

∏k
j=τ+1(1 − δj) > 0, ∀τ ≥ 1, and w0

k =

16∏k
j=1(1− δj) > 0. Then, define a sequence of linear functions {Φk(x)} as

Φk+1(x) :=

k∑
τ=0

wτk
[
f(xτ) + 〈∇f(xτ),x− xτ 〉

]
, ∀k ≥ 0. (2.1)

It is clear that Φk+1(x) is a weighted average of the supporting hyperplanes of f(x) at {xτ}kτ=0.

The properties of Φk+1(x), and how they relate to Alg. 2 are summarized in the next lemma.

Lemma 1. For the linear function Φk+1(x) in (2.1), it holds that: i) vk+1 minimizes Φk+1(x)

over X ; and, ii) f(x) ≥ Φk+1(x), ∀k ≥ 0, ∀x ∈ X .

From the last lemma, one can see that vk is obtained by minimizing Φk(x), which is an

affine lower bound on f(x). Hence, HFW admits a geometric interpretation similar to that of

FW. In addition, based on Φk(x) we can define the generalized FW gap.

Definition 3. (Generalized FW gap.) The generalized FW gap w.r.t. Φk(x) is

Gk := f(xk)−min
x∈X

Φk(x) = f(xk)− Φk(vk). (2.2)

In words, the generalized FW gap is defined as the difference between f(xk) and the mini-

mal value of Φk(x) over X . The newly defined Gk also illustrates the PD error

Gk = f(xk)− Φk(vk) = f(xk)− f(x∗)︸ ︷︷ ︸
primal error

+ f(x∗)− Φk(vk)︸ ︷︷ ︸
dual error

. (2.3)

For the dual error, we have f(x∗)− Φk(vk) ≥ Φk(x
∗)− Φk(vk) ≥ 0, where both inequalities

follow from Lemma 1. Hence, Gk ≥ 0 automatically serves as an overestimate of both primal

and dual errors. When establishing the convergence of Gk, it can be adopted as the stopping

criterion for Alg. 2. Related claims have been made for the generalized FW gap [52, 3, 58].

Lack of heavy ball momentum leads to inefficiency, because an additional FW subproblem is

needed to compute this gap [52]. Having defined the generalized FW gap, we next pursue

parameter choices that establish Type II convergence guarantees.

2.2.2 Parameter-free step size

We first consider a parameter-free choice for HFW to demonstrate the usefulness of heavy ball

δk = ηk =
2

k + 2
, ∀k ≥ 0. (2.4)

Such a choice on δk puts more weight on recent gradients when calculating gk+1, since wτk =

O(τ
k2

). The following theorem specifies the convergence of Gk.

17

Theorem 1. If Assumptions 1-3 hold, then choosing δk and ηk as in (2.4), Alg. 2 guarantees

that

Gk = f(xk)− Φk(vk) ≤
2LD2

k + 1
, ∀k ≥ 1.

Theorem 1 provides a much stronger PD guarantee for all k than vanilla FW [2, Theorem

2]. In addition to a readily computable generalized FW gap, our rate is tighter than [52], where

the provided bound is 4LD2

k+1 . In fact, the constants in our PD bound even match to the best

known primal error of vanilla FW. A direct consequence of Theorem 1 is the convergence of

both primal and dual errors.

Corollary 1. Choosing the parameters as in Theorem 1, then ∀k ≥ 1, Alg.2 guarantees that

primal conv.: f(xk)− f(x∗) ≤ 2LD2

k + 1
;

dual conv.: f(x∗)− Φk(vk) ≤
2LD2

k + 1
.

Proof. Combine Theorem 1 with f(xk)−f(x∗) ≤ Gk and f(x∗)−Φk(vk) ≤ Gk [cf. (2.3)].

2.2.3 Smooth step size

Next, we focus on HFW with a variant of the smooth step size

δk =
2

k + 2

ηk = max

{
0,min

{〈∇f(xk),xk − vk+1〉
L‖vk+1 − xk‖2

, 1
}}

. (2.5)

Comparing with the smooth step size for vanilla FW in (1.10), it can be deduced that the

choice on ηk in (2.5) has to be trimmed to [0, 1] manually. This is because 〈∇f(xk),xk−vk+1〉
is no longer guaranteed to be positive. The smooth step size enables an adaptive means of

adjusting the weight for ∇f(xk). To see this, note that when ηk = 0, we have xk+1 = xk. As

a result, gk+2 = (1− δk+1)gk+1 + δk+1∇f(xk+1) = (1− δk+1)gk+1 + δk+1∇f(xk), that is,

the weight on ∇f(xk) is adaptively increased to δk(1 − δk+1) + δk+1 if one further unpacks

gk+1. Another analytical benefit of the step size in (2.5) is that it guarantees a non-increasing

objective value; see Appendix 2.5.1 for derivations. Convergence of the generalized FW gap is

established next.

18

Theorem 2. If Assumptions 1-3 hold, while ηk and δk are chosen as in (2.5), Alg. 2 guarantees

that

Gk = f(xk)− Φk(vk) ≤
2LD2

k + 1
, ∀k ≥ 1.

The proof of Theorem 2 follows from that of Theorem 1 after modifying just one inequality.

This considerably simplifies the analysis on the (modified) FW gap compared to vanilla FW

with smooth step size [18]. The PD convergence clearly implies the convergence of both primal

and dual errors. A similar result to Corollary 1 can be obtained, but we omit it for brevity.

We further extend Theorem 2 in Appendix 2.5.5 by showing that if a slightly more difficult

subproblem can be solved, it is possible to ensure per step descent on the PD error; i.e., Gk+1 ≤
Gk.

2.2.4 Line search

We can also choose the step size ηk via line search, although this might be computationally

costly in practice because it requires computing the function value multiple times. The param-

eters are selected as

δk =
2

k + 2
, ∀k ≥ 0 (2.6a)

ηk = arg min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
. (2.6b)

Such a parameter choice also ensures per step objective descent since

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
(a)

≤ f
(
(1− θ)xk + θvk+1

) (b)
= f(xk)

where in (a) we have θ ∈ [0, 1]; and in (b) we set θ = 0. Primal-dual convergence is established

next, and the proof can be found in Appendix 2.5.6.

Theorem 3. If Assumptions 1-3 hold, while δk and ηk are chosen via (2.6), Alg. 2 guarantees

that

Gk = f(xk)− Φk(vk) ≤
2LD2

k + 1
, ∀k ≥ 1.

For completeness, an iterative manner to update Gk for using as stopping criterion is also

described in Appendix 2.5.10.

19

2.2.5 Further considerations

There are more choices of δk and ηk leading to (primal) convergence. For example, one can

choose δk ≡ δ ∈ (0, 1) and ηk = O
(
1
k

)
as an extension of [56].1 A proof is provided in

Appendix 2.5.8 for completeness. This analysis framework in [56], however, has two shortcom-

ings: i) the convergence can be only established using `2-norm (recall that in Assumption 1, we

do not pose any requirement on the norm); and, ii) the final primal error (hence PD error) can

only be worse than vanilla FW because their analysis treats gk+1 as∇f(xk) with errors but not

momentum, therefore, it is difficult to obtain the same tight PD bound as in Theorem 1. Our

analytical techniques avoid these limitations.

When choosing δk = ηk = 1
k+1 , we can recover Algorithm 3 in [59]. Notice that such

a choice on δk makes gk+1 a uniform average of all gradients. A slower convergence rate

f(xk)− f(x∗) = O
(
LD2 ln k

k

)
was established in [59] through a sophisticated derivation using

no-regret online learning. Through our simpler analytical framework, we can attain the same

rate while providing more options for the step size.

Theorem 4. Let Assumptions 1-3 hold, and select δk = 1
k+1 with ηk using one of the following

options: i) ηk = 1
k+1 ; ii) as in (2.5); or iii) line search as in (2.6b). The generalized FW gap of

Alg. 2 then converges with rate

Gk = f(xk)− Φk(vk) ≤
LD2 ln(k + 1)

2k
, ∀k ≥ 1.

The rate in Theorem 4 has worse dependence on k relative to Theorems 1 and 2, partially

because too much weight is put on past gradients in gk+1, suggesting that large momentum may

not be helpful.

2.2.6 A side result: directional smooth step sizes

Common to both FW and HFW is that the globally estimated L might be too pessimistic for

a local update. In this subsection, a local Lipschitz constant is investigated to further improve

the numerical efficiency of smooth step sizes in (2.5). This easily computed local Lipschitz

constant is another merit of (H)FW over projection based approaches.
1 We are unable to derive even a primal error bound using the same analysis framework in [56] for step sizes

listed in Theorem 1.

20

Definition 4. (Directional Lipschitz continuous.) For two points x,y ∈ X , the directional

Lipschitz constant L(x,y) ensures ‖∇f(x̂) −∇f(ŷ)‖∗ ≤ L(x,y)‖x̂ − ŷ‖ for any x̂ = (1 −
α)x + αy, ŷ = (1− β)x + βy with some α ∈ [0, 1] and β ∈ [0, 1].

In other words, the directional Lipschitz continuity depicts the local property on the segment

between points x and y. It is clear that L(x,y) ≤ L. Using logistic loss for binary classification

as an example, we have L(x,y) ≤ 1
4N

∑N
i=1

〈ai,x−y〉2
‖x−y‖22

, where N is the number of data, and

ai is the feature of the ith datum. As a comparison, the global Lipschitz constant is L ≤
1
4N

∑N
i=1 ‖ai‖22. We show in Appendix 2.5.13 that at least for a class of functions, including

widely used logistic loss and quadratic loss, L(x,y) has an analytical form.

Simply replacing L in (2.5) with L(xk,vk+1), i.e.,

ηk = max

{
0,min

{ 〈∇f(xk),xk − vk+1〉
L(xk,vk+1)‖vk+1 − xk‖2

, 1
}}

(2.7)

we can obtain what we term directionally smooth step size. Upon exploring the collinearity of

xk, xk+1 and vk+1, a simple modification of Theorem 2 ensures the PD convergence.

Corollary 2. Choosing δk = 2
k+2 , and ηk via (2.7), Alg. 2 ensures

Gk = f(xk)− Φk(vk) ≤
2LD2

k + 1
, ∀k ≥ 1.

The directional Lipschitz constant can also replace the global one in other FW variants, such

as [45, 55], with theories therein still holding. As we shall see in numerical tests, directional

smooth step sizes outperform the vanilla one by an order of magnitude.

2.3 Restart further tightens the PD error

Up till now it is established that the heavy ball momentum enables a unified analysis for tighter

Type II PD bounds. In this section, we show that if the computational resources are sufficient

for solving two FW subproblems per iteration, the PD error can be further improved by restart

when the standard FW gap is smaller than generalized FW gap. Restart is typically employed

by Nesterov’s momentum in projection based methods [54] to cope with the robustness to pa-

rameter estimates, and to capture the local geometry of problem (1.1). However, it is natural

to integrate restart with heavy ball momentum in FW regime. In addition, restart provides an

21

answer to the following question: which is smaller, the generalized FW gap or the vanilla one?

Previous works using the generalized FW gap have not addressed this question [3, 52, 58].

Algorithm 3 FW with heavy ball momentum and restart

1: Initialize: x0
0 ∈ X ,g0

0 = ∇f(x0
0), s← 0, C0 = 0, G00 = Ḡ00

2: while [not terminated] do
3: k ← 0, gs0 = ∇f(xs0)

4: while [Gsk ≤ Ḡsk or k = 0] and [not terminated] do . Check whether restart is needed

5: δsk = 2
k+2+Cs

6: gsk+1 = (1− δsk)gsk + δsk∇f(xsk)

7: vsk+1 = arg minx∈X 〈gsk+1,x〉
8: xsk+1 = (1− ηsk)xsk + ηskv

s
k+1

9: v̄sk+1 = arg minx∈X 〈∇f(xsk+1),x〉
10: Gsk+1 = f(xsk+1)− Φs

k+1(v
s
k+1) . Generalized FW gap

11: Ḡsk+1 = 〈∇f(xsk),x
s
k − v̄sk+1〉 . Vanilla FW gap

12: k ← k + 1

13: end while
14: Ks ← k, xs+1

0 = xsKs
, Cs+1 = 2LD2

GsKs

, s← s+ 1

15: end while

FW with heavy ball momentum and restart is summarized under Alg. 3. For exposition

clarity, when updating the counters such as k and s, we use notation ‘←’. Alg. 3 contains

two loops. The inner loop is the same as Alg. 2 except for computing a standard FW gap

(Line 11) in addition to the generalized one (Line 10). The variable Ks, depicting the iteration

number of inner loop s, is of analysis purpose. Alg. 3 can be terminated immediately whenever

min{Gsk, Ḡsk} ≤ ε for a desirable ε > 0. The restart happens when the standard FW gap is

smaller than generalized FW gap. And after restart, gsk+1 will be reset. For Alg. 3, the linear

functions used for generalized FW gap are defined stage-wisely

Φs
0(x) = f(xs0) +

〈
∇f(xs0),x− xs0

〉
(2.8a)

Φs
k+1(x) = (1− δsk)Φs

k(x) + δsk
[
f(xsk) +

〈
∇f(xsk),x− xsk

〉]
,∀ k ≥ 0. (2.8b)

It can be verified that vsk+1 minimizes Φs
k+1(x) over X for any k ≥ 0. In addition, we also have

f(xs0)− Φs
0(v

s
0) = Ḡs−1Ks−1

where vs0 = arg minx∈X Φs
0(x).

22

There are two tunable parameters ηsk and δsk. The choice on δsk has been provided directly in

Line 5, where it is adaptively decided using a variable Cs relating to the generalized FW gap.

Three choices are readily available for ηsk: i) ηsk = δsk; ii) smooth step size:

ηsk = max

{
0,min

{〈∇f(xsk),x
s
k − vsk+1〉

L‖vsk+1 − xsk‖2
, 1
}}

; (2.9)

and, iii) line search

ηsk = arg min
η∈[0,1]

f
(
(1− η)xsk + ηvsk+1

)
. (2.10)

Note that the directionally smooth step size, i.e., replacing L with L(xsk,v
s
k+1) in (2.9) is also

valid for convergence. We omit it to reduce repetition. Next we show how restart improves the

PD error.

Theorem 5. Choose ηsk via one of the three manners: i) ηsk = δsk; ii) as in (2.9); or iii) as in

(2.10). If there is no restart (e.g., s = 0 when terminating), then Alg. 3 guarantees that

G0k = f(x0
k)− Φk(v

0
k) ≤

2LD2

k + 1
,∀k ≥ 1. (2.11a)

If restart happens, in additional to (2.11a), we have

Gsk = f(xsk)− Φk(v
s
k) <

2LD2

k + Cs
,∀k ≥ 1, ∀s ≥ 1, with Cs ≥ 1 +

s−1∑
j=0

Kj . (2.11b)

Besides the convergence of both primal and dual errors of Alg. 3, Theorem 5 implies that

when no restart happens, the generalized FW gap is smaller than the standard one, demonstrat-

ing that the former is more suitable for the purpose of “stopping criterion”. When restarted,

Theorem 5 provides a strictly improved bound compared with Theorems 1, 2, and 3, since the

denominator of the RHS in (2.11b) is no smaller than the total iteration number. An additional

comparison with [52], where two subproblems are also required, once again confirms the power

of heavy ball momentum to improve the constants in the PD error rate, especially with the aid

of restart. The restart scheme (with slight modification) can also be employed in [52, 58, 60] to

tighten their PD error.

2.4 Numerical tests

This section presents numerical tests to showcase the effectiveness of HFW on different ma-

chine learning problems. Since there are two parameters’ choices for HFW in Theorems 1 and

23

4, we term them as weighted FW (WFW) and uniform FW (UFW), respectively, depending on

the weight of {∇f(xk)} in gk+1. When using smooth step size, the corresponding algorithms

are marked as WFW-s and UFW-s. For comparison, the benchmark algorithms include: FW

with ηk = 2
k+2 (FW); and, FW with smooth step size (FW-s) in (1.10).

2.4.1 Binary classification

0 200 400 600 800 1000
k

10 3

10 2

10 1

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(a) w7a (b) realsim

0 200 400 600 800 1000
k

10 3

10 2

10 1

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 3

10 2

10 1

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(c) mushroom (d) ijcnn1

Figure 2.1: Performance of FW variants for binary classification with an `2-norm ball constraint.

We first test the performance of Alg. 2 on binary classification using logistic regression in

Section 1.2.2. Datasets from LIBSVM2 are used in the numerical tests, where details of the

datasets are deferred to Appendix 2.5.14.

`2-norm ball constraint. We start with X = {x|‖x‖2 ≤ R}. The primal errors are plotted

2 https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

24

in Fig. 2.1. We use primal error here for a fair comparison. It can be seen that the parameter-

free step sizes achieve better performance compared with the smooth step sizes mainly because

the quality of L estimate. Such a problem can be relived through directional smooth step sizes

as we shall shortly. Among parameter-free step sizes, it can be seen that WFW consistently

outperforms both UFW and FW on all tested datasets, while UFW converges faster than FW

only on datasets realsim and mushroom. For smooth step sizes, the per-step-descent property is

validated. The excellent performance of HFW can be partially explained by the similarity of its

update, namely xk+1 = (1 − ηk)xk + ηkR
gk+1

‖gk+1‖2 , with normalized gradient descent (NGD)

one, that is given by xk+1 = ProjX
(
xk−ηk gk+1

‖gk+1‖2

)
. However, there is also a subtle difference

between HFW and NGD updates. Indeed, when projection is in effect, xk+1 in NGD will lie on

the boundary of the `2-norm ball. Due to the convex combination nature of the update in HFW,

it is unlikely to have xk+1 on the boundary, though it can come arbitrarily close.

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(a) w7a (b) realsim

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(c) mushroom (d) ijcnn1

Figure 2.2: Performance of FW variants for binary classification with an `1-norm ball constraint.

25

`1-norm ball constraint. Here X = {x|‖x‖1 ≤ R} denotes the constraint set that pro-

motes sparse solutions. In the simulation, R is tuned for a solution with similar sparsity as

the dataset itself. The results are showcased in Fig. 2.2. For smooth step sizes, FW-s, UFW-

s, and WFW-s exhibit similar performances, and their curves are smooth. On the other hand,

parameter-free step sizes eventually outperform smooth step sizes though the curves zig-zag.

(The curves on realsim are smoothed to improve figure quality.) UFW has similar performance

on w7a and mushroom with FW and faster convergence on other datasets. Once again, WFW

consistently outperforms FW and UFW.

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(a) w7a (b) realsim

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(c) mushroom (d) ijcnn1

Figure 2.3: Performance of FW variants for binary classification with an n-support norm ball constraint.

n-support norm ball constraint. The n-support norm ball is a tighter relaxation of a

sparsity enforcing `0-norm ball combined with an `2-norm penalty compared with ElasticNet

[61]. It gives rise to X = conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R}, where conv{·} denotes the convex

hull [12]. The closed-form solution of vk+1 is given in [62]. In the simulation, we choose

26

n = 2 and tune R for a solution whose sparsity is similar to the adopted dataset. The results are

showcased in Fig. 2.3. For smooth step sizes, FW-s and WFW-s exhibit similar performance,

while UFW-s converges slightly slower on ijcnn1. Regarding parameter-free step sizes, UFW

does not offer faster convergence compared with FW on the tested datasets, but WFW again has

numerical merits.

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

101

f(x
k)

f(x
*)

FW
FW-s
WFW-s
UFW-s
FW-ds
WFW-ds
UFW-ds

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW-s
UFW-s
FW-ds
WFW-ds
UFW-ds

(a) `2-norm ball (b) `2-norm ball

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

101

f(x
k)

f(x
*)

FW
FW-s
WFW-s
UFW-s
FW-ds
WFW-ds
UFW-ds

0 200 400 600 800 1000
k

10 2

10 1

100

f(x
k)

f(x
*)

FW
FW-s
WFW-s
UFW-s
FW-ds
WFW-ds
UFW-ds

(c) `1-norm ball (d) `1-norm ball

Figure 2.4: Performance of directionally smooth step sizes. (a) and (c) are tested on mushroom; and (b)

and (d) use ijcnn1.

Directionally smooth step sizes. The results in Fig. 2.4 validate the effectiveness of di-

rectionally smooth (-ds) step sizes. For all datasets tested, the benefit of adopting L(xk,vk+1)

is evident, as it improves the performance of smooth step sizes by an order of magnitude. In

addition, it is also observed that UFW-ds performs worse than WFW-ds, which suggests that

putting too much weight on past gradients could be less attractive in practice.

27

0 200 400 600 800 1000
k

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
WFW
UFW

= 0.6
= 0.8

WFW-restart

0 200 400 600 800 1000
k

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
WFW
UFW

= 0.6
= 0.8

WFW-restart

(a) `2 norm ball (b) n-supp norm ball

Figure 2.5: Comparison of HFW with other algorithms on muchroom.

Additional comparisons. We also compare HFW with a generalized version of [56], where

we set δk = δ ∈ (0, 1),∀k in Alg. 2. Two specific choices, i.e., δ = 0.6, and δ = 0.8, are

plotted in Fig. 2.5, where the `2-norm ball and n-support norm ball are adopted as constraints.

In both cases, WFW converges faster than the algorithm adapted from [56, 63]. In addition,

the choice of δ has major impact on convergence behavior, while WFW avoids this need for

manual tuning of δ. The performance of WFW with restart, i.e., Alg. 3, is also shown in Fig.

2.5. Although it slightly outperforms WFW, restart also doubles the computational burden due

to the need of solving two FW subproblems. From this point of view, WFW with restart is

more of theoretical rather than practical interest. In addition, it is observed that Alg. 3 is not

restarted after the first few iterations, which suggests that the generalized FW gap is smaller

than the vanilla one, at least in the early stage of convergence. Thus, the generalized FW gap is

attractive as a stopping criterion when a solution with moderate accuracy is desirable.

In a nutshell, the numerical experiments suggest that heavy ball momentum performs best

with parameter-free step sizes with the momentum weight carefully adjusted. WFW is mainly

recommended because it achieves improved empirical performance compared to UFW and FW,

regardless of the constraint sets. The smooth step sizes on the other hand, eliminate the zig-zag

behavior at the price of convergence slowdown due to the need of L, while directionally smooth

step sizes can be helpful to alleviate this convergence slowdown.

28

2.4.2 Matrix completion

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

101

f(X
k)/

f(X
*)

1

FW
FW-s
WFW
WFW-s
UFW
UFW-s

0 200 400 600 800 1000
k

0

30

60

90

120

150

180

ra
nk

(X
k)

FW
FW-s
WFW
WFW-s
UFW
UFW-s

(a) objective (b) rank

Figure 2.6: Performance of FW variants for matrix completion on MovieLens100K.

This subsection focuses on matrix completion problems for recommender systems. The prob-

lem to be solved can be found in Section 1.2.3.

Heavy ball based FW are tested using dataset MovieLens100K3 . Following the initializa-

tion of [18], the numerical results can be found in Fig. 2.6. Subfigures (a) and (b) depict the

optimality error and rank versus k for R = 3. For parameter-free step sizes, WFW converges

faster than FW while finding solutions with lower rank. The low rank solution of UFW is par-

tially because it does not converge sufficiently. For smooth step sizes, UFW-s finds a solution

with slightly larger objective value but much lower rank compared with WFW-s and FW-s.

Overall, when a small optimality error is the priority, WFW is more attractive; while UFW-s is

useful for finding low rank solutions.

2.5 Appendix

2.5.1 f(xk+1) ≤ f(xk) for the smooth step sizes in Alg. 2

When using the step size (2.7) in Alg. 2, f(xk+1) ≤ f(xk) is ensured.

f(xk+1)− f(xk) ≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL

2
‖vk+1 − xk‖2 ≤ 0

3 https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

29

where the last ineqaulity is because ηk minimizes η〈∇f(xk),vk+1 − xk〉+ η2L
2 ‖vk+1 − xk‖2

over [0, 1].

2.5.2 Proof of Lemma 1

Proof. Using gk+1 =
∑k

τ=0w
τ
k∇f(xτ), we have

arg min
x∈X

Φk+1(x) = arg min
x∈X

〈 k∑
τ=0

wτk∇f(xτ),x
〉

= arg min
x∈X

〈
gk+1,x

〉
.

By comparing with Line 4 of Alg. 2, one can see that vk+1 is a minimizer of Φk+1(x) over X .

To prove that Φk+1(x) is a lower bound of f(x), we appeal to convexity to write

Φk+1(x) =
k∑
τ=0

wτk
[
f(xτ) + 〈∇f(xτ),x− xτ 〉

]
≤

k∑
τ=0

wτkf(x) = f(x)

where the last equation is because
∑k

τ=0w
τ
k = 1 holds for any k. The proof is thus complete.

2.5.3 Proof of Theorem 1

Proof. Using Assumption 1, we have

f(xk+1)− f(xk) (2.12)

≤
〈
∇f(xk),xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2

= ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kL

2
‖vk+1 − xk‖2.

Inequality (2.12) is standard in the analysis of FW and its variants. Letting Φ0(x) ≡ 0, and v0

be any point in X , it can be verified that Φk+1(x) = (1−δk)Φk(x)+δk
[
f(xk)+

〈
∇f(xk),x−

xk
〉]

, from which we have

Φk+1(vk+1) (2.13)

= (1− δk)Φk(vk+1) + δk

[
f(xk) +

〈
∇f(xk),vk+1 − xk

〉]
(a)

≥ (1− δk)Φk(vk) + δk

[
f(xk) +

〈
∇f(xk),vk+1 − xk

〉]

30

where (a) is because 1− δk ≥ 0 and vk minimizes Φk(x) over X (hence Φk(vk) ≤ Φk(vk+1)).

Now subtracting Φk+1(vk+1) on both sides of (2.12), we have

f(xk+1)− Φk+1(vk+1) (2.14)
(b)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2
(c)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kLD

2

2

where (b) uses ηk = δk and (2.13); and (c) relies on Assumption 3. For convenience, let

∆(i, j) :=
∏j
τ=i(1− δτ), and unroll (2.14) to arrive at

f(xk+1)− Φk+1(vk+1)

≤ ∆(0, k)
[
f(x0)− Φ0(v0)

]
+

k∑
τ=0

LD2δ2τ
2

∆(τ + 1, k).

Plugging in the values of δk completes the proof.

2.5.4 Proof of Theorem 2

Proof. The first a few steps are the same as the proof of Theorem 1; i.e., we have (2.12) and

(2.13). Combining (2.12) and (2.13), we arrive at

f(xk+1)− Φk+1(vk+1) (2.15)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL‖vk+1 − xk‖2

2
.

31

It can be verified that the specific choice of ηk minimizes the RHS of (2.15) over [0, 1]. Hence

we have

f(xk+1)− Φk+1(vk+1) (2.16)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
α2
kL‖vk+1 − xk‖2

2
+ (αk − δk)

〈
∇f(xk),vk+1 − xk

〉
(b)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤
[
f(x0)− Φ0(v0)

] k∏
τ=0

(1− δτ) +

k∑
τ=0

LD2δ2τ
2

k∏
j=τ+1

(1− δj)

≤ 2LD2

k + 2

where in (a) αk can be chosen as any number in [0, 1]; in (b) we set αk = δk. This completes

the proof.

2.5.5 An extension of Theorem 2 for per step descent of Gk

In this section, we show that it is possible to ensure per step descent on generalized FW gap

when a more difficult subproblem can be solved. In particular, we will replace Line 4 of Alg. 2

and choose parameters as

(δk,vk+1) = arg min
δ∈[0,1],v∈X

(1− δ)
[
f(xk)− Φk(vk)

]
+
δ2L‖v − xk‖2

2
(2.17a)

ηk = δk. (2.17b)

It is clear that (2.17a) is harder to solve compared with a FW subproblem. The choice of

δk enables an adaptive weights for∇f(xk) in gk+1. Next we present the main result for such a

parameter choice.

Theorem 6. When Assumptions 1, 2 and 3 are satisfied, choosing vk+1, ηk and δk according

to (2.17), Alg. 2 guarantees that: i) Gk+1 ≤ Gk, and ii)

Gk = f(xk)− Φk(vk) ≤
2LD2

k + 1
, ∀k ≥ 1.

32

Proof. It can be seen that (2.15) still holds, from which we have

f(xk+1)− Φk+1(vk+1) (2.18)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

where (a) is because ηk = δk. Then by the manner δk is chosen, we have

f(xk+1)− Φk+1(vk+1) (2.19)

= (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2
(b)

≤ (1− δ̃k)
[
f(xk)− Φk(vk)

]
+
δ̃2kL‖vk+1 − xk‖2

2

where in (b) δ̃k ∈ [0, 1]. Choosing δ̃k = 0, we obtain Gk+1 ≤ Gk. Choosing δ̃k = 2
k+2 , we

obtain the convergence rate.

2.5.6 Line search for Alg. 2

Proof. Let η̃k = 2
k+2 ,∀k. By the choice of ηk, we have

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
≤ f

(
(1− η̃k)xk + η̃kvk+1

)
. (2.20)

Then using smoothness, we arrive at

f(xk+1)− f(xk) (2.21)

≤ f
(
(1− η̃k)xk + η̃kvk+1

)
− f(xk)

≤ η̃k
〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL

2
‖vk+1 − xk‖2.

Then combining (2.21) and (2.13), and following the same steps in (2.14), we can prove this

theorem.

Through Theorem 3 it is straightforward to derive the primal and dual convergence, respec-

tively, following the same argument of Corollary 1. For this reason, it is omitted here.

33

2.5.7 Proof of Theorem 4

Proof. It can be seen that (2.15) still holds.

Parameter-free step size. Plugging in δk = ηk = 1
k+1 into (2.15), we arrive at

f(xk+1)− Φk+1(vk+1) ≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤ ∆(0, k)
[
f(x0)− Φ0(v0)

]
+

k∑
τ=0

LD2δ2τ
2

∆(τ + 1, k)

= O
(LD2 ln(k + 2)

k + 1

)
(2.22)

where ∆(i, j) :=
∏j
τ=i(1− δτ), Φ0(x) ≡ 0, and v0 is any point in X .

Smooth step size. Notice that the choice of ηk minimizes the RHS of (2.15) when δk is

fixed, then we have

f(xk+1)− Φk+1(vk+1) (2.23)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL‖vk+1 − xk‖2

2
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (η̃k − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL‖vk+1 − xk‖2

2
(b)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

= O
(LD2 ln(k + 2)

k + 1

)
where in (a) η̃k ∈ [0, 1]; and in (b) we set η̃k = δk.

Line search. When ηk is chosen via line search, we have for any η̃k ∈ [0, 1]

f(xk+1) = min
η∈[0,1]

f
(
(1− η)xk + ηvk+1

)
≤ f

(
(1− η̃k)xk + η̃kvk+1

)
. (2.24)

Then by smoothness, we have

f(xk+1)− f(xk) ≤ f
(
(1− η̃k)xk + η̃kvk+1

)
− f(xk) (2.25)

≤ η̃k
〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL

2
‖vk+1 − xk‖2.

Then using the same argument as the derivation of (2.15), we can obtain

f(xk+1)− Φk+1(vk+1) (2.26)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (η̃k − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η̃2kL‖vk+1 − xk‖2

2
.

34

Simply setting η̃k = 1
k+1 , and using the same derivation as in (2.23), the proof can be completed.

2.5.8 Proof for choosing δk = δ

When Assumptions 1 is satisfied w.r.t. `2-norm, we show the following parameter choice in

Alg. 2 leads to convergence as well.

δk = δ, ηk =
c

k + k0
, ∀k ≥ 0 (2.27)

where δ ∈ (0, 1), and c and k0 are constants to be specified later. Due to the choice of δk = δ,

gk+1 is an exponentially moving average of previous gradients. Note that the moving average

was adopted in [56] for stochastic FW to reduce the mean square error of the noisy gradient.

However, we use it in a totally different purpose.

Lemma 2. Choose parameters as in (2.27). Suppose there exist a constant c0 that satisfies

c21 ≤
[
1− (1− δ)(k0 + 1)2

k20

]
δc20 (2.28)

then it is guaranteed that

‖gk+1 −∇f(xk)‖22 ≤
c20L

2D2

(k + k0)2
.

Proof.

‖gk+1 −∇f(xk)‖22 (2.29)

= (1− δ)2‖gk −∇f(xk)‖22
= (1− δ)2‖gk −∇f(xk−1) +∇f(xk−1)−∇f(xk)‖22
(a)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)‖∇f(xk−1)−∇f(xk)‖22

(b)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)L2η2k−1‖xk−1 − vk‖22

(c)

≤ (1− δ)2(1 + θ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

θ
)L2D2η2k−1

(d)

≤ (1− δ)‖gk −∇f(xk−1)‖22 + (1− δ)2(1 +
1

δ
)L2D2η2k−1

(e)

≤ (1− δ)‖gk −∇f(xk−1)‖22 + L2D2 η
2
k−1
δ

35

where (a) is by Young’s inequality with θ > 0 to be specified later; (b) follows from Assumption

1; (c) is because Assumption 3; in (d) we choose θ = δ < 1 and use the fact that (1− δ)2(1 +

δ) ≤ (1− δ); and (e) uses δ ≤ 1 so that (1− δ)2(1 + 1
δ) = 1

δ − 1 + δ2 − 2δ ≤ 1
δ .

We proof this lemma by induction. Given the choice of g0 = ∇f(x0), we must have

g1 = ∇f(x0), which implies ‖g1 − ∇f(x0)‖22 = 0 ≤ c20L
2D2

k20
directly. Next we assume that

‖gk −∇f(xk−1)‖22 ≤
c20L

2D2

(k−1+k0)2 holds for some k ≥ 1. Using (2.29), we have

‖gk+1 −∇f(xk)‖22 ≤ (1− δ)‖gk −∇f(xk−1)‖22 + L2D2 η
2
k−1
δ

≤ (1− δ) c20L
2D2

(k + k0 − 1)2
+ L2D2 η

2
k−1
δ

≤ (1− δ) c20L
2D2

(k + k0 − 1)2
+ L2D2 c21

δ(k + k0)2

= (1− δ) c
2
0L

2D2

(k + k0)2
(k + k0)

2

(k + k0 − 1)2
+ L2D2 c21

δ(k + k0)2

≤ (1− δ) c
2
0L

2D2

(k + k0)2
(k0 + 1)2

k20
+ L2D2 c21

δ(k + k0)2

≤ c20L
2D2

(k + k0)2
(2.30)

where the last inequality comes from the choice of c1. The proof is thus completed.

To avoid the complexity of choosing constants, we consider an instance where k0 = 2,

δ = 0.8, c1 = 2, and c0 ≈ 3.05. It can be verified that (2.28) is satisfied. Then applying Lemma

2, the convergence of Alg.2 can be obtained.

Theorem 7. Let g0 = ∇f(x0), ηk = 2
k+3 , and δ = 0.8. Then for ∀k ≥ 1, the convergence rate

of Alg. 2 with (2.27) is

f(xk)− f(x∗) = O
(LD2

k

)
.

Proof. Using Assumption 1, we have

f(xk+1)− f(x∗) ≤ f(xk)− f(x∗) +
〈
∇f(xk),xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖22 (2.31)

= f(xk)− f(x∗) + ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kL

2
‖vk+1 − xk‖22

≤ f(xk)− f(x∗) + ηk
〈
∇f(xk),vk+1 − xk

〉
+
η2kLD

2

2
.

36

Next we have〈
∇f(xk),vk+1 − xk

〉
=
〈
∇f(xk),x

∗ − xk
〉

+
〈
∇f(xk),vk+1 − x∗

〉
(a)

≤ f(x∗)− f(xk) +
〈
∇f(xk),vk+1 − x∗

〉
= f(x∗)− f(xk) +

〈
gk+1,vk+1 − x∗

〉
+
〈
∇f(xk)− gk+1,vk+1 − x∗

〉
(b)

≤ f(x∗)− f(xk) +
〈
∇f(xk)− gk+1,vk+1 − x∗

〉
≤ f(x∗)− f(xk) +D‖∇f(xk)− gk+1‖2 (2.32)

where (a) is by the convexity of f(x); (b) is because vk+1 minimizes 〈gk+1,x〉 over X ; and

the last inequality relies on Cauchy-Schwarz inequality and Assumption 3. Plugging (2.32) into

(2.31), we have

f(xk+1)− f(x∗) ≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ηkD‖∇f(xk)− gk+1‖2 +

η2kLD
2

2
. (2.33)

Let ξk = ηkc0LD
2

k+k0
+

η2kLD
2

2 , then we have

f(xk+1)− f(x∗) ≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ηkD‖∇f(xk)− gk+1‖2 +

η2kLD
2

2

≤ (1− ηk)
[
f(xk)− f(x∗)

]
+ ξk

=
[
f(x0)− f(x∗)

] k∏
τ=0

(1− ητ) +
k∑
τ=0

ξτ

k∏
j=τ+1

(1− ηj)

= O
(LD2

k

)
. (2.34)

The proof is thus completed.

2.5.9 Additional discussions

Many of existing works, e.g., [47], study (projected) heavy ball momentum by introducing aux-

iliary variables zk such that the update on variable xk can be viewed as a “gradient update” on

zk, i.e., zk+1 = zk−η∇f(xk). By constructing the {zk} sequence, it is possible to view heavy

ball momentum approximately as GD. Though this trick is smart and analytically convenient, it

does not give too much insight for the heavy ball momentum itself.

By comparing the use of heavy ball momentum in FW and GD, it may suggest new per-

spectives. For example, one can view Alg.2 as the dual-averaging version of FW as well. This

37

suggests that it is intriguing to study (projected) heavy ball momentum from dual-averaging

point of view. This is slightly off the main theme of this thesis, and we leave it for future

research.

2.5.10 Stopping criterion

Recall that for a prescribed ε > 0, having f(xk)−Φk(vk) ≤ ε directly implies f(xk)−f(x∗) ≤
ε. Next, we show how to update Φk(vk) iteratively in order to obtain a stopping criterion. Let

us note that

Φk+1(x) =
k∑
τ=0

wτk
[
f(xτ) + 〈∇f(xτ),x− xτ 〉

]
=

k∑
τ=0

wτk
[
f(xτ)− 〈∇f(xτ),xτ 〉

]
+ 〈gk+1,x〉

:= Ck+1 + 〈gk+1,x〉, ∀k ≥ 0.

Hence, to compute Φk+1(vk+1), we only need to update Ck+1 iteratively. A simple derivation

leads to

Ck+1 = (1−δk)Ck + δk

[
f(xk)− 〈∇f(xk),xk〉

]
,

with C1 = f(x0)− 〈∇f(x0),x0〉. (2.35)

In sum, one can efficiently obtain Φk+1(vk+1) as

Φk+1(vk+1) = Ck+1 + 〈gk+1,vk+1〉 (2.36)

with Ck+1 recursively updated via (2.35).

2.5.11 Proof of Theorem 5

Proof. Consider the case where ηsk = δsk. Using Assumption 1, we have

f(xsk+1)− f(xsk) ≤
〈
∇f(xsk),x

s
k+1 − xsk

〉
+
L

2
‖xsk+1 − xsk‖2 (2.37)

= ηsk
〈
∇f(xsk),v

s
k+1 − xsk

〉
+

(ηsk)
2L

2
‖vsk+1 − xsk‖2.

38

Then we have

Φs
k+1(v

s
k+1) = (1− δsk)Φs

k(v
s
k+1) + δsk

[
f(xsk) +

〈
∇f(xsk),v

s
k+1 − xsk

〉]
(2.38)

≥ (1− δsk)Φs
k(v

s
k) + δsk

[
f(xsk) +

〈
∇f(xsk),v

s
k+1 − xsk

〉]
.

Now subtracting Φs
k+1(v

s
k+1) on both sides of (2.37), we have

f(xsk+1)− Φs
k+1(v

s
k+1) (2.39)

≤ f(xsk) + ηsk
〈
∇f(xsk),v

s
k+1 − xsk

〉
+

(ηsk)
2L‖vsk+1 − xsk‖2

2
− Φs

k+1(v
s
k+1)

(a)

≤ (1− δsk)
[
f(xsk)− Φs

k(v
s
k)
]

+
(δsk)

2L‖vsk+1 − xsk‖2

2
(b)

≤ (1− δsk)
[
f(xsk)− Φs

k(v
s
k)
]

+
(δsk)

2LD2

2

where (a) uses ηsk = δsk and (2.38); and (b) relies on Assumption 3. For convenience, let us

define ∆s(i, j) :=
∏j
τ=i(1− δsτ). Then unrolling (2.39), we get

f(xsk+1)− Φs
k+1(v

s
k+1)

≤ ∆s(0, k)
[
f(xs0)− Φs

0(v
s
0)
]

+

k∑
τ=0

LD2(δsτ)2

2
∆s(τ + 1, k)

≤ Cs(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)

[
f(xs0)− Φs

0(v
s
0)
]

+
2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)
.

When s = 0, plugging C0 = 0, we have

f(x0
k+1)− Φk+1(v

0
k+1) ≤

2LD2

k + 2
. (2.40)

Hence (2.11a) in Theorem 5 is proved. Next consider s ≥ 1. Using the observation that

f(xs0)− Φs
0(v

s
0) = Ḡs−1Ks−1

< Gs−1Ks−1
, we then have

Gsk+1 = f(xsk+1)− Φs
k+1(v

s
k+1) (2.41)

<
Cs(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)
Gs−1Ks−1

+
2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)

(c)
=

2LD2(Cs + 1)

(k + 1 + Cs)(k + 2 + Cs)
+

2(k + 1)LD2

(k + 1 + Cs)(k + 2 + Cs)
=

2LD2

k + 1 + Cs
.

where (c) uses the definition of Cs. Hence (2.11b) in Theorem 5 is proved.

39

Finally, we only need to show that Cs ≥ 1 +
∑s−1

j=0Kj by induction. First by definition

of C1 = 2LD2/(G0K0
), with G0K0

≤ 2LD2

K0+1 , it is clear that C1 ≥ 1 + K0. Then suppose

Cs ≥ 1 +
∑s−1

j=0Kj hold for some s, we will show that Cs+1 ≥ 1 +
∑s

j=0Kj .

Using (2.41), we have Cs+1 = 2LD2/(GsKs
) ≥ Cs + Ks ≥ 1 +

∑s−1
j=0Kj + Ks. Hence

(2.11b) is proved.

For the smooth step size (2.9) and line search (2.10), the same bound can be obtained by

using the same arguments as in Theorems 2 and 3. Hence they are omitted here.

2.5.12 Proof of Corollary 2

Proof. Using Definition 4 and following the standard derivation of descent lemma [8, Lemma

1.2.3], we can show that

f(xk+1)− f(xk) (2.42)

≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL(xk,xk+1)

2
‖vk+1 − xk‖2

≤ ηk〈∇f(xk),vk+1 − xk〉+
η2kL(xk,vk+1)

2
‖vk+1 − xk‖2.

The reason for L(xk,vk+1) ≥ L(xk,xk+1) is that xk+1 lives in between xk and vk+1. Al-

though L(xk,xk+1) can provide a tighter bound, it is not tractable.

Combining (2.42) and (2.13), we have

f(xk+1)− Φk+1(vk+1) (2.43)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
+
η2kL(xk,vk+1)‖vk+1 − xk‖2

2
.

It can be verified that the specific choice of ηk in (2.7) minimizes the RHS of (2.43) over [0, 1].

40

Hence we have

f(xk+1)− Φk+1(vk+1) (2.44)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
η2kL(xk,vk+1)‖vk+1 − xk‖2

2
+ (ηk − δk)

〈
∇f(xk),vk+1 − xk

〉
(a)

≤ (1− δk)
[
f(xk)− Φk(vk)

]
+
α2
kL(xk,vk+1)‖vk+1 − xk‖2

2
+ (αk − δk)

〈
∇f(xk),vk+1 − xk

〉
(b)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL(xk,vk+1)‖vk+1 − xk‖2

2
(c)
= (1− δk)

[
f(xk)− Φk(vk)

]
+
δ2kL‖vk+1 − xk‖2

2

≤ 2LD2

k + 2

where in (a) αk can be chosen as any number in [0, 1]; in (b) we set αk = δk; and (c) uses

L(xk,vk+1) ≤ L. This completes the proof.

2.5.13 Computing directionally smooth constant

Define a one dimensional function g(η) := f
(
xk + η(vk+1 − xk)

)
, where dom η = [0, 1].

Then it is clear that ∇g(η) = 〈vk+1 − xk,∇f
(
xk + η(vk+1 − xk)

)
〉. Therefore, it is easy to

see that g(η) is smooth, i.e.,∣∣∇g(η1)−∇g(η2)
∣∣

= |〈vk+1 − xk,∇f
(
xk + η1(vk+1 − xk)

)
−∇f

(
xk + η2(vk+1 − xk)

)
〉|

≤ ‖vk+1 − xk‖
∥∥∇f(xk + η1(vk+1 − xk)

)
−∇f

(
xk + η2(vk+1 − xk)

)∥∥
∗

≤ L(xk,vk+1)‖vk+1 − xk‖2|η1 − η2| (2.45)

On the other hand, one can also analytically findLg by definition; i.e.,
∣∣∇g(η1)−∇g(η2)

∣∣ ≤
Lg
∣∣η1 − η2∣∣. Comparing Lg with RHS of (2.45), we can obtain L(xk,vk+1). This method can

be applied when f is e.g., quadratic loss and logistic loss.

2.5.14 Numerical tests on binary classification

All numerical experiments are performed using Python 3.7 on an Intel i7-4790CPU @3.60 GHz

(32 GB RAM) desktop.

41

Table 2.2: A summary of datasets used in numerical tests

Dataset d N (train) nonzeros

w7a 300 24, 692 3.89%

realsim 20, 958 50, 617 0.24%

mushromm 122 8, 124 18.75%

ijcnn1 22 49, 990 40.91%

2.5.15 Numerical tests on matrix completion

The dataset used for the test is MovieLens100K, where 1682 movies are rated by 943 users with

6.30% ratings observed. The initialization and data processing are the same as those used in

[18].

Chapter 3

Nesterov’s momentum for
parameter-free FW

3.1 Introduction

Although we have shown that heavy ball momentum is useful for improving primal dual error,

HFW exhibits slower convergence when compared to Nesterov’s accelerated gradient (NAG)

method, also known as accelerated gradient method (AGM)1 , a projection based algorithm

converging atO(1
k2

). As we have seen previously, both FW and HFW satisfy f(xk)− f(x∗) =

O(1k). Accelerating the convergence rate for FW or HFW is in general not possible supported

by the lower bound in [3, 2]. However, improved FW type algorithms are possible in speedup

rates for certain subclasses of problems. In contrary to AGM, this accelerated version of FW

does not rely on the smooth parameter L.

3.1.1 Related works

Recall that there are three common approaches to select step sizes for FW and its variants: i)

line search [2]; ii) minimizing a one-dimensional quadratic function over [0, 1] for smooth step

sizes [45, 55]; and iii) parameter-free step sizes; that is, O(1k) [2]. Most of the fast converging

FW iterations rely on choices i) or ii), which require either the smoothness parameter or the

function value of f . Step size i) is ‘clumsy’ when it is costly to access function values, e.g., in
1 We will use NAG and AGM interchangeably.

42

43

the big data regime. Concerns with choice ii) arise with how well the smoothness parameter is

estimated. In addition, it is challenging to select the smoothness inducing norm, and each norm

can result in a considerably different smoothness parameter [64]. The need thus arises for FW

variants relying on parameter-free step sizes, especially those enabling faster convergence. To

this end, we first briefly recap existing results on faster rates.

Line search. Jointly leveraging line search and ‘away steps,’ FW-type algorithms converge

linearly for strongly convex problems when X is a polytope [43, 42]; see also [65, 66], and [67]

where the memory efficiency of away steps is also improved.

Smooth step sizes. If X is strongly convex, and the optimal solution is at the boundary

of X , it is known that FW converges linearly [45]. For uniformly (and thus strongly) convex

sets, faster rates are attained when the optimal solution is at the boundary of X [68]. When

both f and X are strongly convex, FW with the smooth step size converges at a rate of O(1
k2

),

regardless of where the optimal solution resides [55]. A variant of smooth step size along with

modifications on FW jointly enable faster rates on a strongly convex f and Gauge set X [69],

at the expense of requiring extra parameters besides the smoothness constant.

Parameter-free step sizes. Without any parameter involved here, there is no concern on

the quality of parameter estimation, which saves time and effort because there is no need for

tuning step sizes. Although implementation efficiency is ensured, theoretical guarantees are

challenging to obtain. This is because f(xk+1) ≤ f(xk) cannot be guaranteed without line

search or smooth step sizes. Faster rates for parameter-free FW are rather limited in number.

In a recent work [70], the behavior of FW when k is large and X is a polytope is investigated

under the strong assumptions on f(x) being twice differentiable and locally strongly convex

around x∗. Hence, the analysis does not hold for e.g., the Huber loss, which is widely used in

robust regression but is only once-differentiable. The faster rates, along with the assumptions

on f and X , are summarized in Table 3.1 for comparison. To establish faster rates, our solution

connects the FW subproblem with Nesterov’s momentum, which is recapped next.

Nesterov’s momentum. After the O(1
k2

) convergence rate was established in [48, 8], the

efficiency of Nesterov momentum is proven almost universal; see e.g., the accelerated proximal

gradient [71, 72], projected AGM [73, 72] for problems with constraints; accelerated mirror

descent [73, 74, 72], and accelerated variance reduction for problems with finite-sum structures

[75, 76]. Parallel to these works, AGM has been also investigated from an ordinary differential

equation (ODE) perspective [77, 74, 78, 79]. However, the efficiency of Nesterov momentum

44

on FW type algorithms is shaded given the lower bound on the number of subproblems [3,

2]. One idea to introduce momentum into FW is to adopt CGS [49], where the projection

subproblem in the original AGM is substituted by gradient sliding which solves a sequence of

FW subproblems. The faster rate O(1
k2

) is obtained with the price of: i) the requirement of at

most O(k) FW subproblems in the kth iteration; and ii) an inefficient implementation (e.g., the

AGM subproblem has to be solved to certain accuracy, and it relies on other parameters that are

not necessary in FW, such as the diameter of X).

Although parameter-free FW is undoubtedly attractive in several applications, there are two

main challenges in establishing faster rates for such step sizes: i) even AGM and most of its vari-

ants are not parameter-free since they involve a smoothness parameter; and ii) parameter-free

FW in general cannot ensure per step descent, which is essential for faster rates. To overcome

these challenges, we first unveil the links between the notion of momentum and the FW sub-

problem. Then, we leverage these connections to provide provable constraint-dependent faster

rates.

Table 3.1: A comparison of FW variants with faster rates, where ’ls’, ’smooth’, and ’pf’ are short for

line search, smooth step size, and parameter-free step sizes, respectively.

work assumptions on f assumptions on X step sizes convergence

[42, 67]
smooth and

strongly convex
polytopes ls linear

[45] smooth and convex

active strongly

convex sets,

e.g., active `p norm balls

with p ∈ (1, 2]

smooth linear

[55]
smooth and

strongly convex
strongly convex sets smooth O(1

k2
)

[70]

smooth, convex,

twice differentiable, and

locally strongly convex

around x∗

polytopes pf O(1
k2

)

This work smooth and convex
active `p norm balls

with p ∈ [1,+∞)
pf Õ(1

k2
)

45

3.1.2 Our contributions

In succinct form, our contributions are as follows.

• We observe that the momentum update in AGM plays a similar role as the subproblem in

FW, intuitively and analytically. Hence, the FW subproblem can be leveraged to play the

role of Nesterov’s momentum, thus enabling faster rates on a useful family of problems.

• We prove that a momentum-guided FW, termed accelerated Frank Wolfe (AFW), achieves

a faster rate Õ(1
k2

) on active `p norm ball constraints without knowledge of the smooth-

ness parameter or the function value. We also establish that AFW converges no slower

than FW on general problems.

• We corroborate the numerical efficiency of AFW on two benchmark tasks. We validate

faster AFW rates on binary classification problems with different constraint sets. We

further demonstrate that for matrix completion, AFW finds low-rank solutions with small

optimality error more rapidly than FW.

3.2 Connecting Nesterov’s momentum with FW

Algorithm 4 AGM [8]
1: Initialize: x0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = δkvk + (1− δk)xk
4: xk+1 = yk − 1

L∇f(yk)

5: vk+1 = vk − δk
µk+1
∇f(yk)

6: end for
7: Return: xK

To bring intuition on how momentum can be helpful for FW type algorithms, we first recap

AGM for unconstrained convex problems, i.e., X = Rd. For simplicity, we also assume ‖ · ‖
stands for `2 norm in this section. Note that the reason for discussing the unconstrained problem

here is only for the simplicity of exposition, and one can extend the arguments to constrained

46

cases straightforwardly. AGM [48, 8, 73] is summarized in Alg. 4. We start this section by

characterizing the behavior of {xk}, {yk} and {vk} in the next theorem.

Theorem 8. Under Assumptions 1 and 2, with δk = 2
k+3 , µ0 = 2L, and µk+1 = (1 − δk)µk,

AGM in Alg. 4 guarantees that

f(xk)− f(x∗) = O
(f(x0)− f(x∗) + L‖x0 − x∗‖2

k2

)
, ∀k.

‖∇f(yk)‖2 ≤ O
(
L
(
f(x0)− f(x∗) + L‖x0 − x∗‖2

)
(k + 2)2

)
, ∀k.

In addition, it holds for any k that ‖vk − x∗‖2 ≤ 1
L

(
f(x0)− f(x∗) + L‖x0 − x∗‖2

)
.

Theorem 8 shows that ‖∇f(yk)‖2 = O(1
k2

), which implies that yk also converges to a

minimizer as k → ∞. Through the increasing step size δk
µk+1

= O(kL), the update of vk stays

in the ball centered at x∗ with radius depending on both x∗ and x0.

One observation of AGM is that by substituting Line 6 in Alg. 4 with vk+1 = xk+1, the

modified algorithm boils down to GD. Hence, it is clear that the key behind AGM’s accelera-

tion is vk and the way it is updated. We contend that the vk+1 is obtained by minimizing an

approximated lower bound of f(x) formed as the summation of a supporting hyperplane at yk

and a regularizer. To see this, one can rewrite Line 6 of AGM as

vk+1 = arg min
x∈Rd

f(yk) + 〈∇f(yk),x− yk〉︸ ︷︷ ︸
supporting hyperplane

+
µk+1
2δk
‖x− vk‖2︸ ︷︷ ︸

regularizer

(3.1)

where the linear part is the supporting hyperplane, and µk+1

δk
= O(Lk). As k increases, the

impact of the regularizer µk+1

2δk
‖x − vk‖2 in (3.1) will become limited. Thus the RHS can be

viewed as an approximated lower bound of f(x). Regarding the reasons to put a regularizer

after the supporting hyperplane, it first guarantees the minimizer exists since directly minimize

the supporting hyperplane over Rd yields no solution. In addition, vk+1 is ensured to be unique

because the RHS of (3.1) is strongly convex thanks to the regularizer. Since vk+1 minimizes an

approximated lower bound of f(x), it can be used to estimate f(x∗). We explain in Theorem

11 in Appendix 3.5.2 that f(yk) + 〈∇f(yk),vk+1 − yk〉 approximates f(x∗). Consequently,

one can obtain an estimated suboptimality gap using f(xk+1)−f(yk)−〈∇f(yk),vk+1−yk〉.

47

3 2 1 0 1 2 3
x

1

0

1

2

3

va
lu

e

f(x)
FW lower bound
AGM lower bound

Figure 3.1: Similarity between the RHS of (1.8) and (3.1).

Momentum vk update as an FW step. It is observed that vk+1 in both FW and AGM (cf.

(1.8) and (3.1)) are obtained by minimizing an (approximated) lower bound of f(x), where the

only difference lies on whether a regularizer with decreasing weights is utilized. The similarity

between the RHS of (1.8) and (3.1) will be amplified when k is large; see Fig. 3.1 for a graphical

illustration on how (3.1) approaches to an affine function. In other words, the momentum update

in (3.1) becomes similar to an FW step for a large k. In addition, there are also several other

connections.

Connection 1. The vk+1 update via (3.1) is equivalent to

vk+1 = arg min
v∈Vk

〈∇f(yk),v − yk〉 (3.2)

for Vk := {v|‖v − vk‖2 ≤ rk} with rk denoting the time-varying radius of the norm ball.

Clearly, rk depends on µk+1
2δk

, and it is upper bounded by 2
L

(
f(x0) − f(x∗) + L‖x0 − x∗‖2

)
according to Theorem 8. By rewriting (3.1) in its constrained form (3.2), it can be readily

recognized that for unconstrained problems Nesterov momentum can be obtained via FW steps

with time-varying constraint sets.

Connection 2. Recall that in AGM, vk+1 obtained via (3.1) is used to construct an ap-

proximation of f(x∗), which is f(yk) + 〈∇f(yk),vk+1 − yk〉. When a compact X is present,

directly minimizing the supporting hyperplane f(yk) + 〈∇f(yk),x − yk〉 over X also yields

48

an estimate of f(x∗). Note that the latter is exactly an FW step. In addition, the FW step in

Alg. 1 also results in a suboptimality gap (known as FW gap; see e.g., [2]), which is in line with

the role of vk in AGM. In a nutshell, both FW step and momentum update in AGM result in an

estimated suboptimality gap.

Connection 3. Connections between momentum and FW go beyond convexity. We discuss

in Appendix 3.5.3 that AGM for strongly convex problems updates its momentum using exactly

the same idea of FW, that is, both obtain a minimizer of a lower bound of f(x), and then perform

an update through a convex combination.

These links and similarities between momentum and FW naturally lead us to explore their

connections, and see how momentum influences FW.

3.3 Momentum-guided FW

Algorithm 5 AFW
1: Initialize: x0 ∈ X , θ0 = 0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk

4: θk+1 = (1− δk)θk + δk∇f(yk)

5: vk+1 = arg minx∈X 〈θk+1,x〉
6: xk+1 = (1− δk)xk + δkvk+1

7: end for
8: Return: xK

In this section we show that the momentum is beneficial for FW by proving that it is effective

at least on certain constraint sets. Specifically, we will focus on the accelerated Frank Wolfe

(AFW) summarized in Alg. 5, and analyze its convergence rate. Since we will see later that

δk = 2
k+3 ∈ (0, 1), ∀k, for which yk, vk and xk lie in X for all k, AFW is projection free.

Albeit rarely, it is safe to choose vk+1 = vk, and proceed when θk+1 = 0. Note that the

xk+1 update in AFW is slightly different with that of AGM. This is because AGM guarantees

f(xk+1) ≤ f(yk), ∀k, taking advantage of the known L. However, the same guarantee is

difficult to be replicated in a parameter-free algorithm.

The key to AFW is the vk+1 update, which plays the role of momentum. To see this, if

49

one unrolls θk+1 (cf. (3.17) in Appendix) and plugs it into Line 5 of Alg. 5, vk+1 can be

equivalently rewritten as

vk+1 = arg min
x∈X

k∑
τ=0

wτk
[
f(yτ) + 〈∇f(yτ),x− yτ 〉

]
(3.3)

where wτk = δτ
∏k
j=τ+1(1 − δj) and

∑k
τ=0w

τ
k ≈ 1 (the exact value of the sum depends on

the choice of δτ). Note that f(yτ) + 〈∇f(yτ),x − yτ 〉 is a supporting hyperplane of f(x) at

yτ , hence the RHS of (3.3) is a lower bound for f(x) constructed through a weighted average

of supporting hyperplanes at {yτ}. In other words, vk+1 is a minimizer of a lower bound of

f(x), hence it is in line with the role of momentum. However, the momentum in AFW differs

from AGM in two aspects. First, instead of relying on ∇f(yk), the update of vk+1 utilizes

coefficient θk+1, which is (roughly) a weighted average of past gradients {∇f(yτ)}kτ=1 with

more weight placed on recent ones. The second difference on the vk+1 update with AGM

is whether a regularizer is used. As a consequence of the non-regularized lower bound (3.3),

its minimizer is not guaranteed to be unique. A simple example is to consider the ith entry

[θk+1]i = 0. The ith entry [vk+1]i can then be chosen arbitrarily as long as vk+1 ∈ X . This

subtle difference leads to a significant gap between the performance of AFW and AGM, that is,

AFW cannot achieve acceleration on general problems, as will be illustrated shortly. However,

we confirm that momentum is still helpful since it is effective on a class of problems.

3.3.1 AFW convergence for general problems

The analysis of AFW relies on a tool known as estimate sequence (ES) introduced by [8]. ES

is commonly adopted to analyze projection based algorithms; see e.g., [75, 76, 80, 81, 64], but

seldomly used for FW. Formally, ES is defined as follows.

Definition 5. (ES.) A tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is called an estimate sequence of function

f(x) if limk→∞ λk = 0, and for any x ∈ Rd we have

Φk(x) ≤ (1− λk)f(x) + λkΦ0(x).

ES is generally not unique and different constructions can be used to design different algo-

rithms. To highlight our analysis technique, recall that quadratic surrogate functions {Φk(x)}
are used for the derivation of AGM [8] (or see (3.7) in Appendix). Different from AGM, and

50

taking advantage of the compact constraint set, here we consider linear surrogate functions for

AFW

Φ0(x) ≡ f(x0) (3.4a)

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
, ∀ k ≥ 0. (3.4b)

Evidenced by the terms in the bracket of (3.4b), i.e., it is a supporting hyperplane of f(x),

Φk+1(x) is an approximated lower bound of f(x) constructed by weighting the supporting

hyperplanes at {yτ}kτ=0. Next, we show that (3.4) together with proper {λk} forms an ES for

f . Through the ES based proof, it is also revealed that the link between the momentum in AGM

and the FW step is also in the technical proof level.

Lemma 3. With λ0 = 1 and λk = λk−1(1− δk−1), the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
in (3.4)

is an ES of f(x).

Using properties of the functions in (3.4) (cf. Lemma 6 in Appendix 3.5.5), the following

lemma holds for AFW.

Lemma 4. With Φ∗k := minx∈X Φk(x), AFW is guaranteed to satisfy f(xk+1) ≤ Φ∗k+1 +

ξk+1, ∀ k, where ξk+1 = (1− δk)ξk +
Lδ2k
2 ‖vk+1 − vk‖2 and ξ0 = 0.

Leveraging Lemma 4, the convergence rate of AFW for general problems can be estab-

lished.

Theorem 9. When Assumptions 1, 2 and 3 are satisfied, upon choosing δk = 2
k+3 and θ0 = 0,

AFW guarantees

f(xk)− f(x∗) ≤
2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
2LD2

k + 2
, ∀ k.

Theorem 9 asserts that the convergence rate of AFW is O(LD
2

k), coinciding with that of

FW [2]. Notwithstanding, AFW is tight in terms of the number of FW steps required. To see

this, note that the convergence rate in Theorem 9 translates to requiring O(LD
2

ε) FW steps to

guarantee f(xk) − f(x∗) ≤ ε. This matches the lower bound [2, 51]. Similar to other FW

variants, acceleration for AFW cannot be claimed for general problems. AFW however, is

attractive numerically because it can alleviate the zig-zag behavior2 of FW [82], as we will see

in Section 3.4.
2 The change between f(xk+1) and f(xk) is large with high frequency, so zig-zag emerges when plotting

f(xk)− f(x∗) versus k.

51

Why acceleration cannot be achieved in general? Recall from Lemma 4, that critical to

acceleration is ensuring a small ξk, which in turn requires vk+1 and vk to stay sufficiently close.

This is difficult in general because the non-uniqueness of vk prevents one from ensuring a small

upper bound of ‖vk −vk+1‖2 ∀ vk, ∀ vk+1. The ineffectiveness of momentum in AFW in turn

signifies the importance of the added regularizer in AGM momentum update (3.1).

3.3.2 AFW acceleration for a class of problems

In this subsection, we provide constraint-dependent accelerated rates of AFW when X is a

ball induced by some norm. Even for projection based algorithms, most accelerated rates are

obtained with L-dependent step sizes [83]. Thus, faster rates for parameter-free algorithms are

challenging to establish. An extra assumption is needed in this subsection.

Assumption 4. The constraint is active; that is, ‖∇f(x∗)‖22 ≥ G > 0.

To analyze convergence of FW iterations, it is reasonable to rely on the position of the

optimal solution, which justifies why this assumption is also adopted in [45, 84, 68]. For a

number of signal processing and machine learning tasks, Assumption 4 is rather mild. Relying

on Lagrangian duality, it can be seen that problem (1.1) with a norm ball constraint is equivalent

to the regularized formulation minx f(x) +γg(x), where γ ≥ 0 is the Lagrange multiplier, and

g(x) denotes some norm. In view of this, Assumption 4 simply requires γ > 0 in the equivalent

regularized formulation, that is, the norm ball constraint plays the role of a regularizer. Given

the prevalence of regularized formulations, it is worth investigating their equivalent constrained

form (1.1) under Assumption 4. Next, we will use the `2 norm ball constraints to illustrate the

intuition behind the acceleration.

`2 norm ball constraint. Consider X := {x|‖x‖2 ≤ D
2 }. In this case, vk+1 admits a

closed-form solution

vk+1 = arg min
x∈X

〈θk+1,x〉 = − D

2‖θk+1‖2
θk+1. (3.5)

The uniqueness of vk+1 is ensured by its closed-form solution, wiping out the obstacle for a

faster rate. In addition, through (3.5) it becomes possible to guarantee that vk+1 and vk are

close whenever θk is close to θk+1.

52

Theorem 10. If Assumptions 1, 2, 3 and 4 are satisfied, and X is an `2 norm ball, choosing

δk = 2
k+3 and θ0 = 0, AFW guarantees acceleration with convergence rate

f(xk)− f(x∗) = O
(

min
{LD2T + C ln k

k2
,
LD2

k

})
where C and T are constants depending on L, D and G.

Theorem 10 demonstrates that momentum improves the convergence of FW by providing a

faster rate. Roughly speaking, when the iteration number k ≥ T , the rate of AFW dominates

that of FW. We note that this matches our intuition, that is, the momentum in AGM (3.1) only

behaves like an affine function when k is large (so that the weight on the regularizer is small). In

addition, the rate in Theorem 10 can be written compactly as Õ
(
TLD2

k2

)
, ∀k, hence it achieves

acceleration with a worse dependence on D compared to vanilla FW. Note that the choice for

δk and θ0 remains the same as those used in general problems, leading to an identical imple-

mentation to non-accelerated cases. Compared with CGS, AFW sacrifices the D dependence

in the convergence rate to trade for i) the nonnecessity of the knowledge of L and D, and ii)

ensuring only one FW subproblem per iteration (whereas at mostO(k) subproblems are needed

in CGS).

`1 norm ball constraint. For the sparsity-promoting constraint X := {x|‖x‖1 ≤ R}, the

FW steps can be solved in closed form. Taking vk+1 as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[θk+1]i, 0, . . . , 0]>

with i = arg max
j

|[θk+1]j |. (3.6)

We show in the Appendix (Theorem 15) that when Assumption 4 holds and the set arg maxj
∣∣[∇f(x∗)]j

∣∣
has cardinality 1, a faster rate O(T1LD

2

k2
) can be obtained. The additional assumption here is

known as strict complementarity, and has been adopted also in, e.g.,[85, 86] for analysis.

`p norm ball constraint. Consider an active `p norm ball constraint X := {x|‖x‖p ≤ R},
where p ∈ (1,+∞) and p 6= 2. The i-th entry of vk+1 is found in closed form as

[vk+1]i = −[θk+1]i

∣∣[θk+1]i
∣∣q−2

‖θk+1‖q−1q

·R

where 1/p + 1/q = 1. We discuss in Appendix 3.5.11 that faster rates are possible under mild

conditions. Though not covering all cases, it still showcases that the momentum is partially

helpful for parameter-free FW algorithms.

53

Beyond `p norm balls. In general, when a specific structure of x∗ (e.g., sparsity) is pro-

moted by X (so that x∗ is likely to live on the boundary), and one can ensure the uniqueness of

vk through either a closed-form solution or a specific implementation, acceleration can be ef-

fected. A direct extension of the results in this subsection to matrix space is when the constraint

is a Schatten `p norm ball. This is because ‖X‖p := ‖σ1(X), σ2(X), . . . , σr(X)‖p, where

σi(X) denotes the ith singular value of X. Our numerical results confirm the acceleration in

Section 3.4.2.

Table 3.2: A summary of datasets used in numerical tests

Dataset d n (train) nonzeros

a9a 123 32, 561 11.28%

covtype 54 406, 709 22.12%

mushroom 122 8, 124 18.75%

mnist (digit 4) 784 60, 000 12.4%

3.4 Numerical tests

We validate our theoretical findings as well as the efficiency of AFW on two benchmarked

machine learning problems, binary classification and matrix completion in this section. All

numerical experiments are performed using Python 3.7 on a desktop equipped with Intel i7-

4790 CPU @3.60 GHz (32 GB RAM).

3.4.1 Binary classification

We first test the performance of Alg. 5 on binary classification using logistic regression in

Section 1.2.2. Datasets from LIBSVM3 are used in the numerical tests presented. Details

regarding the datasets are summarized in Table 3.2. The constraint sets considered include `1
and `2 norm balls. As benchmarks, the chosen algorithms are: projected GD with the standard

step size 1
L ; parameter-free FW with step size 2

k+2 [2]; and projected AGM with parameters

according to [73]. The step size of AFW is δk = 2
k+3 according to Theorems 9 and 10. Note

that both GD and AGM are not parameter-free.
3 Online available at https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

binary.html.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html

54

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

Figure 3.2: Performance of AFW when the optimal solution is at interior.

We first let X be an `2 norm ball with a large enough radius so that x∗ does not lie on

the boundary. This case maps to our result in Theorem 9, where the convergence rate of AFW

is O(1k). The performance of AFW is shown in Fig. 3.2. On dataset a9a, AFW slightly

outperforms GD and FW, but is slower than AGM. Evidently, AFW is much more stable than

FW, as one can see from the shaded areas that illustrate the range of zig-zag.

Next, we consider active `2 norm ball constraints. In this case, our result in Theorem 10

applies and AFW achieves an Õ(1
k2

) convergence rate. The performance of AFW is listed in

the first row of Fig. 3.3. In all tested datasets, AFW significantly improves over FW, while on

datasets other than covtype, AFW also outperforms AGM, especially on mushroom.

When the constraint set is an `1 norm ball, the performance of AFW is depicted in the

second row of Fig. 3.3. It can be seen that on datasets such as covtype and mnist, AFW exhibits

performance similar to AGM, which is significantly faster than FW. While on dataset mushroom,

AFW converges even faster than AGM. Note that comparing AFW with AGM is not fair since

each FW step requires d operations at most, while projection onto an `1 norm ball in [87] takes

cd operations for some c > 1. This means that for the same running time, AFW will run more

iterations than AGM. We stick to this unfair comparison to highlight how the optimality error

of AFW and AGM evolves with k.

55

0 200 400 600 800 1000
k

10 5

10 4

10 3

10 2

10 1

100
f(x

k)
f(x

*)
GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
AGM
FW
AFW

(a) `2 norm ball (b) `1 norm ball

Figure 3.3: Performance of AFW on datasets: mushroom (first row), mnist (second row), and covtype

(third row).

3.4.2 Matrix completion

We test AFW and FW on a widely used dataset, MovieLens100K4 , where 1682 movies are rated

by 943 users with 6.30% percent ratings observed. And the initialization and data processing

are the same as those used in [18]. The numerical performance can be found in Fig. 3.4. In

subfigures (a) and (b), we plot the optimality error and rank versus k choosing R = 3. It is
4 Online available at https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

56

observed that AFW exhibits improvement in terms of both optimality error and rank of the

solution. In particular, AFW roughly achieves 1.4x performance improvement compared with

FW in terms of optimality error, and finds solutions with much lower rank.

0 200 400 600 800 1000
k

10 3

10 2

10 1

100

101

102

f(X
k)/

f(X
*)

1

FW
AFW

0 200 400 600 800 1000
k

0

25

50

75

100

125

150

175

ra
nk

 o
f X

k

FW
AFW

(a) optimality (b) rank

Figure 3.4: Performance of AFW for matrix completion problems.

3.5 Appendix

3.5.1 Proof of Theorem 8

The convergence on xk is given in [83], and hence we do not repeat here. Next we show the

behavior of yk and vk.

We use the same surrogate functions with those in [83], i.e.,

Φ0(x) = Φ∗0 +
µ0
2
‖x− x0‖2 (3.7a)

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
, ∀ k ≥ 0. (3.7b)

In [83], it is shown that with λ0 = 1 and λk = λk−1(1−δk−1), the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES of f(x). In addition, it is also shown that Φk+1(x) can be rewritten as Φk(x) =

Φ∗k + µk
2 ‖x− vk‖2, where µk+1 = (1− δk)µk, and f(xk) ≤ Φ∗k = minx Φk(x). We will use

57

these conclusions directly. Rearranging the terms in Φk(x) = Φ∗k + µk
2 ‖x− vk‖2, we arrive at

1

2
‖x− vk‖2 =

1

µk

(
Φk(x)− Φ∗k

)
=

1

µk

(
Φk(x)− f(x) + f(x)− Φ∗k

)
(a)

≤ λk
µk

[
Φ0(x)− f(x)

]
+

1

µk

[
f(x)− f(xk)

]
=

1

2L

[
Φ0(x)− f(x)

]
+

1

µk

[
f(x)− f(xk)

]
where (a) is because Φk(x) − f(x) ≤ λk

(
Φ0(x) − f(x)

)
by Definition 5, and f(xk) ≤ Φ∗k

shown in [8]. Choosing x as x∗, we arrive at

1

2
‖x∗ − vk‖2 ≤

1

2L

[
Φ0(x

∗)− f(x∗)
]
− 1

µk

[
f(xk)− f(x∗)

]
≤ 1

2L

[
Φ0(x

∗)− f(x∗)
]
, ∀k.

This further implies

‖x∗ − vk‖2 ≤
1

L

[
Φ0(x

∗)− f(x∗)
]
, ∀k. (3.8)

Hence the behavior of vk in Theorem 8 is proved.

To prove the convergence of yk, the following inequality is true as a result of (3.8)

‖vk+1 − vk‖ ≤ ‖vk+1 − x∗‖+ ‖x∗ − vk‖

≤ 2

√
1

L

[
Φ0(x∗)− f(x∗)

]
.

Next, we link∇f(yk) and vk+1 − vk through the update vk+1 = vk − δk
µk+1
∇f(yk) to get

‖vk+1 − vk‖2 =
(k + 2)2

4L2
‖∇f(yk)‖2

≤ 4

L

[
Φ0(x

∗)− f(x∗)
]
, ∀k.

Rearranging the terms we can obtain the convergence of ‖∇f(yk)‖2, that is,

‖∇f(yk)‖2 ≤
16L

(k + 2)2
[
Φ0(x

∗)− f(x∗)
]
.

Plugging Φ0(x
∗) = f(x0) + L‖x0 − x∗‖2 in completes the proof.

58

3.5.2 f(yk) + 〈∇f(yk),vk+1−yk〉 approximates f(x∗)

We show next that a weighted version of f(yk)+〈∇f(yk),vk+1−yk〉 is no larger then f(x∗)+

O(1
k2

) to elaborate that f(yk) + 〈∇f(yk),vk+1−yk〉 is (almost) an under-estimate of f(x∗).

Theorem 11. If Assumptions 1 and 2 hold, and we choose µk+1

δk
= 2L

k+2 ; and per iteration k,

we let w(τ)
k = 2(τ+2)

k(k+3) for τ = 0, 1, . . . , k − 1, then i)
∑k−1

τ=0w
(τ)
k = 1; and, ii)

k−1∑
τ=0

w
(τ)
k

[
f(yτ) + 〈∇f(yτ),vτ+1 − yτ 〉

]
− f(x∗) ≤ 2L‖x0 − x∗‖2

k(k + 3)
.

Proof. It is easy to verify that
∑k−1

τ=0w
(τ)
k = 1. Next we have

f(yk) + 〈∇f(yk),vk+1 − yk〉

= f(yk) + 〈∇f(yk),vk+1 − x∗〉+ 〈∇f(yk),x
∗ − yk〉

(a)

≤ f(x∗) + 〈∇f(yk),vk+1 − x∗〉

= f(x∗) +
µk+1

δk
〈vk − vk+1,vk+1 − x∗〉

(b)
= f(x∗) +

µk+1

2δk

[
‖x∗ − vk‖2 − ‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2

]
(c)
= f(x∗) +

L

k + 2

[
‖x∗ − vk‖2 − ‖x∗ − vk+1‖2 − ‖vk+1 − vk‖2

]
(3.9)

where (a) follows from the convexity of f , that is, 〈∇f(yk),x
∗ − yk〉 ≤ f(x∗) − f(yk); (b)

uses 2〈a,b〉 = ‖a + b‖2 − ‖a‖2 − ‖b‖2; and (c) is by plugging the value of µk+1

δk
in. Now, if

we define dk := f(yk) + 〈∇f(yk),vk+1 − yk〉 − f(x∗), rearranging (3.9), we get

(k + 2)dk ≤ L
[
‖x∗ − vk‖2 − ‖x∗ − vk+1‖2

]
− L‖vk+1 − vk‖2

≤ L
[
‖x∗ − vk‖2 − ‖x∗ − vk+1‖2

]
Summing over k (and recalling v0 = x0), we arrive at

k−1∑
τ=0

(τ + 2)dτ ≤ L
[
‖x∗ − v0‖2 − ‖x∗ − vk‖2

]
≤ L‖x∗ − x0‖2.

By the definition of w(τ)
k , which is w(τ)

k = 2(τ+2)
k(k+3) , we obtain

k−1∑
τ=0

w
(τ)
k dτ ≤

2L‖x∗ − x0‖2

k(k + 3)
(3.10)

which completes the proof.

59

3.5.3 AGM links with FW in strongly convex case

We showcase the connection between the momentum update of AGM in strongly convex case

and FW. We first formally define strong convexity, which is used in this subsection only.

Assumption 5. (Strong convexity.) The function f : Rd → R is µ-strongly convex; that is,

f(y)− f(x) ≥ 〈∇f(x),y − x〉+ µ
2‖y − x‖2, ∀x,y ∈ Rd.

Under Assumptions 1 and 5, the condition number of f is κ := L
µ . To cope with strongly

convex problems, Lines 4 – 6 in AGM (Alg. 4) should be modified to [8]

yk =
1

1 + δ
xk +

δ

1 + δ
vk (3.11a)

xk+1 = yk −
1

L
∇f(yk) (3.11b)

vk+1 = (1− δ)vk + δyk −
δ

µ
∇f(yk). (3.11c)

where δ = 1√
κ

. Here vk+1 in (3.11c) denotes the momentum and thus plays the critical role for

acceleration. To see how vk+1 is linked with FW, we will rewrite vk+1 as

zk+1 = arg min
x

f(yk) + 〈∇f(yk),x− yk〉+
µ

2
‖x− yk‖2

= yk −
1

µ
yk (3.12a)

vk+1 = (1− δ)vk + δzk+1 (3.12b)

Notice that zk+1 is the minimizer of a lower bound of f(x) (due to strongly convexity). There-

fore, the vk+1 update is similar to FW in the sense that it first minimizes a lower bound of f(x),

then update through convex combination (cf Alg. 1). This demonstrates that the momentum

update in AGM shares the same idea of FW update.

3.5.4 Proof of Lemma 3.

Proof. We show this by induction. Because λ0 = 1, it holds that Φ0(x) = (1 − λ0)f(x) +

λ0Φ0(x) = Φ0(x). Suppose that Φk(x) ≤ (1 − λk)f(x) + λkΦ0(x) is true for some k. We

60

have

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
(a)

≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is because the convexity of f ; and the last equation is by definition of λk+1. Together

with the fact that limk→∞ λk = 0, the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfies the definition of

an estimate sequence.

3.5.5 A few useful lemmas.

Lemma 5. For {Φk(x)} in (3.4), if f(xk) ≤ minx∈X Φk(x) + ξk, it is true that

f(xk)− f(x∗) ≤ λk
(
f(x0)− f(x∗)

)
+ ξk, ∀ k.

Proof. If f(xk) ≤ minx∈X Φk(x) + ξk holds, then we have

f(xk) ≤ min
x∈X

Φk(x) + ξk ≤ Φk(x
∗) + ξk

≤ (1− λk)f(x∗) + λkΦ0(x
∗) + ξk

where the last inequality is because Definition 5. Subtracting f(x∗) on both sides, we arrive at

f(xk)− f(x∗) ≤ λk
(
Φ0(x

∗)− f(x∗)
)

+ ξk

= λk
(
f(x0)− f(x∗)

)
+ ξk

which completes the proof.

Lemma 6. Let v0 = x0, θ0 = 0, Φ∗0 = f(x0), then Φk+1(x) in (3.4) can be rewritten as

Φk+1(x) = Φ∗k+1 + 〈x− vk+1,θk+1〉 (3.13)

61

with

θk+1 = δk∇f(yk) + (1− δk)θk (3.14a)

vk+1 := arg min
x∈X

Φk+1(x) = arg min
x∈X

〈x,θk+1〉 (3.14b)

Φ∗k+1 := min
x∈X

Φk+1(x) = Φk+1(vk+1) (3.14c)

= (1− δk)Φ∗k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉+ δk〈∇f(yk),vk+1 − yk〉.

Proof. We prove this lemma by induction. First Φ0(x) = Φ∗0 + 〈x − v0,θ0〉 ≡ f(x0). From

(3.4) it is obvious that Φk(x) is linear in x, and hence suppose that Φk(x) = Φ∗k + 〈x−vk,θk〉
holds for some k. Then we will show that Φk+1(x) = Φ∗k+1+〈x−vk+1,θk+1〉 is true. Consider

that

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
(3.15)

= (1− δk)Φ∗k + (1− δk)〈x− vk,θk〉+ δkf(yk) + δk
〈
∇f(yk),x− yk

〉
= (1− δk)Φ∗k + δkf(yk) +

〈
x, (1− δk)θk + δk∇f(yk)

〉
− (1− δk)〈vk,θk〉 − δk

〈
∇f(yk),yk

〉
.

Clearly, since Φk+1(x) is linear in x, the slope is θk+1 := (1− δk)θk + δk∇f(yk). In addition,

because vk+1 is defined as the minimizer of Φk+1(x) over X , from (3.15) we have vk+1 =

arg minx∈X 〈x,θk+1〉. Then, since Φ∗k+1 is defined as Φ∗k+1 := minx∈X Φk+1(x), by plugging

vk+1 into Φk+1(x) in (3.15), we have

Φ∗k+1 = Φk+1(vk+1) = (1− δk)〈vk+1 − vk,θk〉

+ (1− δk)Φ∗k + δkf(yk) + δk
〈
∇f(yk),vk+1 − yk

〉
.

The proof is thus completed.

3.5.6 Proof of Lemma 4.

Proof. We prove this lemma by induction. First by definition f(x0) = Φ∗0 + ξ0. Suppose now

we have f(xk) ≤ Φ∗k + ξk for some k. Next, we will show that f(xk+1) ≤ Φ∗k+1 + ξk+1.

62

Using (3.14c), we have

Φ∗k+1 + (1− δk)ξk

= (1− δk)Φ∗k + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉

+ δk〈∇f(yk),vk+1 − yk〉+ (1− δk)ξk
(a)

≥ (1− δk)f(xk) + δkf(yk) + (1− δk)〈θk,vk+1 − vk〉

+ δk〈∇f(yk),vk+1 − yk〉
(b)

≥ (1− δk)f(xk) + δkf(yk) + δk〈∇f(yk),vk+1 − yk〉

= f(yk) + (1− δk)
[
f(xk)− f(yk)

]
+ δk〈∇f(yk),vk+1 − yk〉

(c)

≥ f(yk) + (1− δk)
〈
∇f(yk),xk − yk

〉
+ δk〈∇f(yk),vk+1 − yk〉

(d)

≥ f(xk+1)−
L

2
‖xk+1 − yk‖2 + 〈∇f(yk),yk − xk+1〉

+ (1− δk)
〈
∇f(yk),xk − yk

〉
+ δk〈∇f(yk),vk+1 − yk〉

(e)
= f(xk+1)−

L

2
‖xk+1 − yk‖2

where (a) is because Φ∗k ≥ f(xk) − ξk; (b) is by the fact vk = arg minx∈X 〈θk,x〉 so that

〈θk,vk+1 − vk〉 ≥ 0; (c) is because of the convexity of f ; (d) is by Assumption 1, that is

f(xk+1) − f(yk) ≤ 〈∇f(yk),xk+1 − yk〉 + L
2 ‖xk+1 − yk‖2; (e) follows from the choice of

xk+1 = (1 − δk)xk + δkvk+1. Finally by using yk = (1 − δk)xk + δkvk, and plugging the

definition of ξk+1, the proof is completed.

3.5.7 Proof of Theorem 9

Proof. Since Lemma 4 holds, one can directly apply Lemma 5 to have

f(xk)− f(x∗) ≤ λk
(
f(x0)− f(x∗)

)
+ ξk (3.16)

=
2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+ ξk

63

where ξk is defined in Lemma 4. Clearly, ξk ≥ 0, ∀k, and we can find an upper bound for it in

the following manner.

ξk = (1− δk−1)ξk−1 +
Lδ2k−1

2
‖vk − vk−1‖2

≤ (1− δk−1)ξk−1 +
LD2δ2k−1

2

=
LD2

2

k−1∑
τ=0

δ2τ

[k−1∏
j=τ+1

(1− δj)
]

=
LD2

2

k−1∑
τ=0

4

(τ + 3)2
(τ + 2)(τ + 3)

(k + 1)(k + 2)
≤ 2LD2

k + 2
.

Plugging ξk into (3.16) completes the proof.

3.5.8 Preparation to the proof of Theorem 10

The basic idea is to show that under Assumptions 1, 2, 3 and 4, ‖vk − vk+1‖2 is small enough

when k is large. To this end, we will make use of the following lemmas.

Lemma 7. [8, Theorem 2.1.5] If Assumptions 1 and 2 hold, then it is true that
1

2L
‖∇f(x)−∇f(y)‖2 ≤ f(y)− f(x)− 〈∇f(x),y − x〉.

Next we show that the value of∇f(x∗) is unique.

Lemma 8. If both x∗1 and x∗2 minimize f(x) over X , then we have∇f(x∗1) = ∇f(x∗2).

Proof. From Lemma 7, we have
1

2L
‖∇f(x∗2)−∇f(x∗1)‖22 ≤ f(x∗2)− f(x∗1)− 〈∇f(x∗1),x

∗
2 − x∗1〉

(a)

≤ f(x∗2)− f(x∗1) = 0

where (a) is by the optimality condition, that is, 〈∇f(x∗1),x − x∗1〉 ≥ 0, ∀x ∈ X . Hence we

can only have∇f(x∗2) = ∇f(x∗1). This means that the value of∇f(x∗) is unique regardless of

the uniqueness of x∗.

Lemma 9. Choose δk = 2
k+3 and let M := maxx∈X f(x)− f(x∗), then we have

‖∇f(yk)−∇f(x∗)‖ ≤ C1√
k + 3

.

where C1 =
√

6LM + 4L2D2.

64

Proof. By convexity

f(yk)− f(x∗) ≤ (1− δk)
[
f(xk)− f(x∗)

]
+ δk

[
f(vk)− f(x∗)

]
(a)

≤ k + 1

k + 3

[
2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
2LD2

k + 2

]
+

2M

k + 3

≤ 2M

(k + 2)(k + 3)
+

2LD2

k + 3
+

2M

k + 3

≤ 3M + 2LD2

k + 3

where (a) is by Theorem 9. Next using Lemma 7, we have

1

2L
‖∇f(yk)−∇f(x∗)‖2 ≤ f(yk)− f(x∗)− 〈∇f(x∗),yk − x∗〉

(b)

≤ f(yk)− f(x∗) ≤ 3M + 2LD2

k + 3

where (b) is by the optimality condition, that is, 〈∇f(x∗),x− x∗〉 ≥ 0, ∀x ∈ X . This further

implies

‖∇f(yk)−∇f(x∗)‖ ≤
√

2L(3M + 2LD2)

k + 3
.

The proof is thus completed.

Lemma 10. Choose δk = 2
k+3 , it is guaranteed to have

‖θk+1 −∇f(x∗)‖ ≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)
.

In addition, there exists a constant C2 ≤ 4
3C1 + 2

3(
√
3+1)

√
G such that

‖θk+1 −∇f(x∗)‖ ≤ C2√
k + 3− 1

.

Proof. First we have

θk+1 = (1− δk)θk + δk∇f(yk) (3.17)

=

k∑
τ=0

δτ∇f(yτ)

[k∏
j=τ+1

(1− δj)
]

=
k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)
∇f(yτ).

65

Noticing that 2
∑k

τ=0(τ + 2) = (k + 1)(k + 4) = (k + 2)(k + 3)− 2, we have

‖θk+1 −∇f(x∗)‖

=
∥∥∥ k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

[
∇f(yτ)−∇f(x∗)

]
− 2

(k + 2)(k + 3)
∇f(x∗)

∥∥∥
≤

k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

∥∥∇f(yτ)−∇f(x∗)
∥∥+

2

(k + 2)(k + 3)

∥∥∇f(x∗)
∥∥

(a)

≤
k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

C1√
τ + 3

+
2
√
G

(k + 2)(k + 3)

≤ 2C1

(k + 2)(k + 3)

k∑
τ=0

√
τ + 2 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(k + 2)(k + 3)
(k + 3)3/2 +

2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3 + 1)(

√
k + 3− 1)

√
k + 3 +

2
√
G

(k + 2)(k + 3)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

where (a) follows from Lemma 9 and Assumption 4.

Then to find C2, we have

‖θk+1 −∇f(x∗)‖

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 2)(k + 3)

=
4C1

3(
√
k + 3− 1)

+
2
√
G

(k + 3)(
√
k + 3 + 1)(

√
k + 3− 1)

(b)

≤ 4C1

3(
√
k + 3− 1)

+
2
√
G

3(
√

3 + 1)(
√
k + 3− 1)

where in (b) we use k + 3 ≥ 3 and
√
k + 3 + 1 ≥

√
3 + 1. The proof is thus completed.

Lemma 11. There exists a constant T ≤
(
2C2√
G

+ 1
)2 − 3, such that ‖θk+1‖ ≥

√
G
2 , ∀k ≥ T .

In addition, it is guaranteed to have for any k ≥ T + 1

‖vk+1 − vk‖ ≤
C3√

k + 2− 1

where C3 ≤ 4R
G

[
4
√
GC2 +

2C2
2√

T+4−1

]
.

66

Proof. Consider a specific k̃ with ‖θk̃+1‖ <
√
G
2 satisfied. In this case we have

‖θk̃+1 −∇f(x∗)‖ ≥ ‖∇f(x∗)‖ − ‖θk̃+1‖ >
√
G−

√
G

2
=

√
G

2
.

From Lemma 10, we have
√
G

2
< ‖θk̃+1 −∇f(x∗)‖ ≤ C2√

k̃ + 3− 1
.

From this inequality we can observe that ‖θk̃+1‖ can be less than
√
G
2 only when k̃ < T =(

2C2√
G

+ 1
)2 − 3. Hence, the first part of this lemma is proved.

For the upper bound of ‖vk+1 − vk‖, we only consider the case where θk+1 6= 0 since

otherwise vk+1 = vk and the lemma holds automatically. For any k ≥ T + 1, from (3.5), one

can rewrite

‖vk+1 − vk‖ (3.18)

= R
∥∥∥ θk+1

‖θk+1‖
− θk
‖θk‖

∥∥∥
=

R

‖θk+1‖‖θk‖

∥∥∥‖θk‖θk+1 − ‖θk+1‖θk
∥∥∥

(a)

≤ 4R

G

∥∥∥‖θk‖θk+1 − ‖θk+1‖θk
∥∥∥

where (a) is by θk ≥
√
G
2 for k ≥ T +1. Next we rewrite θk := ∇f(x∗)+γk. From Lemma 10

we have ‖γk‖ = ‖θk −∇f(x∗)‖ ≤ C2√
k+2−1 . Using this relation, the RHS of (3.18) becomes∥∥∥‖θk‖θk+1 − ‖θk+1‖θk

∥∥∥
=
∥∥∥∥∥∇f(x∗) + γk

∥∥(∇f(x∗) + γk+1

)
−
∥∥∇f(x∗) + γk+1

∥∥(∇f(x∗) + γk
)∥∥∥

≤ ‖∇f(x∗)‖
∥∥∥∥∥∇f(x∗) + γk

∥∥− ∥∥∇f(x∗) + γk+1

∥∥∥∥∥
+
∥∥∥γk+1

∥∥∇f(x∗) + γk
∥∥− γk∥∥∇f(x∗) + γk+1

∥∥∥∥∥
≤
√
G
(
‖γk‖+ ‖γk+1‖

)
+ ‖γk+1‖

(√
G+ ‖γk‖

)
+ ‖γk‖

(√
G+ ‖γk+1‖

)
≤ 4

√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
k + 3− 1)

≤ 4
√
GC2√

k + 2− 1
+

2C2
2

(
√
k + 2− 1)(

√
T + 4− 1)

.

Plugging back to (3.18), the proof can be completed.

67

3.5.9 Proof of Theorem 10.

Proof. We first consider the constraint set being an `2 norm ball. From Lemma 4, we can write

ξk+1 = (1− δk)ξk +
Lδ2k
2
‖vk+1 − vk‖2

=
L

2

k∑
τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]
(a)
=
L

2

T∑
τ=0

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]
+

k∑
τ=T+1

δ2τ‖vτ+1 − vτ‖2
[k∏
j=τ+1

(1− δτ)

]
(b)

≤ L

2

T∑
τ=0

δ2τD
2

[k∏
j=τ+1

(1− δτ)

]
+

k∑
τ=T+1

δ2τ
C2
3

(
√
τ + 2− 1)2

[k∏
j=τ+1

(1− δτ)

]

=
L

2

T∑
τ=0

4D2

(τ + 3)2
(τ + 2)(τ + 3)

(k + 2)(k + 3)
+

k∑
τ=T+1

4

(τ + 3)2
C2
3

(
√
τ + 2− 1)2

(τ + 2)(τ + 3)

(k + 2)(k + 3)

≤ 2LD2(T + 1)

(k + 2)(k + 3)
+

4C2
3

(k + 2)(k + 3)

k∑
τ=T+1

1

(
√
τ + 2− 1)2

= O

(
LD2(T + 1) + C2

3 ln k

(k + 2)(k + 3)

)
where in (a) T is defined in Lemma 11; (b) is by Lemma 11 and Assumption 4; and in the last

equation constants are hide in the big O notation.

Finally, applying Lemma 5, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk. (3.19)

Plugging ξk in the proof is completed.

3.5.10 `1 norm ball

In this subsection we focus on the convergence of AFW for `1 norm ball constraint under the

assumption that arg maxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1 (which naturally implies that the con-

straint is active). Note that in this case Lemma 8 still holds hence the value of∇f(x∗) is unique

regardless the uniqueness of x∗. This assumption directly leads to arg maxj
∣∣[∇f(x∗)]j

∣∣ −
|[∇f(x∗)]i| ≥ λ, ∀i.

68

When X = {x|‖x‖1 ≤ R}, the FW steps for AFW can be solved in closed-form. We

have vk+1 = [0, . . . , 0,−sgn[θk+1]iR, 0, . . . , 0]>, i.e., only the i-th entry being nonzero with

i = arg maxj |[θk+1]j |.

Lemma 12. There exist a constant T (which is irreverent with k), whenever k ≥ T , it is

guaranteed to have

‖vk+1 − vk+2‖ = 0

Proof. In the proof, we denote i = arg maxj |[∇f(x∗)]j | for convenience. It can be seen that

Lemma 10 still holds.

We show that there exist T = (3C2
λ +1)2−3, such that for all k ≥ T , we have arg maxj |[θk+1]j | =

i, which further implies only the i-th entry of vk+1 is non-zero. Since Lemma 10 holds, one can

see whenever k ≥ T , it is guaranteed to have ‖θk+1−∇f(x∗)‖ ≤ λ
3 . Therefore, one must have∣∣|[θk+1]j | − |[∇f(x∗)]j |

∣∣ ≤ λ
3 , ∀j. Then it is easy to see that |[θk+1]i| − |[θk+1]j | ≥ λ

3 , ∀j.
Hence, we have arg maxj |[θk+1]j | = i.

Then one can use the closed form solution of FW step to see that when k ≥ T , we have

vk+1 − vk+2 = 0. The proof is thus completed.

Lemma 13. Let ξ0 = 0 and T defined the same as in Lemma 12. Denote Φ∗k := Φk(vk) as the

minimum value of Φk(x) over X , then we have

f(xk) ≤ Φk(vk) = Φ∗k + ξk, ∀k ≥ 0

where for k < T + 1, ξk+1 = (1− δk)ξk + LD2

2 δ2k, and ξk+1 = (1− δk)ξk for k ≥ T + 1.

Proof. The proof for k < T + 1 is similar as that in Lemma 4, hence it is omitted here. For

k ≥ T + 1, using similar argument as in Lemma 4, we have

Φ∗k+1 ≥ f(xk+1) +
Lδ2k
2
‖vk+1 − vk‖2 − (1− δk)ξk

= f(xk+1)− (1− δk)ξk

where the last equation is because of Lemma 12.

Theorem 12. Consider X is an `1 norm ball. If arg maxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1, and

Assumptions 1 - 3 are satisfied, AFW guarantees that

f(xk)− f(x∗) = O
(1

k2

)
.

69

Proof. Let T be defined the same as in Lemma 25. For convenience denote ξk+1 = (1−δk)ξk+

ζk. When k < T + 1, we have ζk = LD2

2 δ2k; when k ≥ T + 1, we have ζk = 0. Then we can

write

ξk+1 = (1− δk)ξk + θk

=
k∑
τ=0

θτ

k∏
j=τ+1

(1− δj) =
k∑
τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=

T∑
τ=0

LD2

2
δ2τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)
=

2LD2(T + 1)

(k + 2)(k + 3)
.

Finally, applying Lemma 5, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk.

Plugging ξk in completes the proof.

3.5.11 `p norm ball

In this subsection we focus on AFW with an active `p norm ball constraintX := {x|‖x‖p ≤ R},
where p ∈ (1,+∞) and p 6= 2. We show that if the magnitude of every entry in ∇f(x∗) is

bounded away from 0, i.e., |[∇f(x∗)]i| = λ > 0, ∀i, then AFW converges at O(1
k2

).

In such cases, the FW step in AFW can be solved in closed-form, that is, the i-th entry of

vk+1 can be obtained via

[vk+1]i = −sgn
(
[θk+1]i

)∣∣[θk+1]i
∣∣q−1

‖θk+1‖q−1q

·R (3.20)

= −[θk+1]i

∣∣[θk+1]i
∣∣q−2

‖θk+1‖q−1q

·R

where 1/p + 1/q = 1. For simplicity we will emphasis on the k dependence only and use O
notation in this subsection. We will also use θik to replace [θk]i for notational simplicity. In

other words, θik denotes the i-th entry of θk.

First according to Lemma 10, and use the equivalence of norms, we have ‖θk−∇f(x∗)‖q =

O(1√
k
). Hence, there must exist T1, such that ‖θk‖q ≤ 2G, ∀k ≥ T1. Next using similar

arguments as the first part of Lemma 11, there must exist T2, such that ‖θk‖q ≥ G/2, ∀k ≥ T2.

70

In addition, using again similar arguments as the first part of Lemma 11, we can find that there

exist T3, such that |θik| >
λ
2 , ∀k ≥ T3.

Let T := max{T1, T2, T3}. Next we will show that ‖vk+1 − vk‖2 = O(1k), ∀k ≥ T . To

start, using (3.20), one can have

vik+1 − vik

=
R

‖θk+1‖q−1q ‖θk‖q−1q

[
− θik+1|θik+1|q−2‖θk‖q−1q + θik|θik|q−2‖θk+1‖q−1q

]
=

R

‖θk+1‖q−1q ‖θk‖q−1q

[
θik+1|θik+1|q−2

(
‖θk+1‖q−1q − ‖θk‖q−1q

)
+ ‖θk+1‖q−1q

(
θik|θik|q−2 − θik+1|θik+1|q−2

)]
.

Next using G/2 ≤ ‖θk+1‖q ≤ 2G, ∀k ≥ T , and |θik+1| ≤ ‖θk+1‖q, we have

|vik+1 − vik| (3.21)

= O

(∣∣∣‖θk+1‖q−1q − ‖θk‖q−1q

∣∣∣+
∣∣∣θik|θik|q−2 − θik+1|θik+1|q−2

∣∣∣).
We first bound the first term in RHS of (3.21). Let h(x) = (x)q−1. Then by mean value

theorem we have h(y) = h(x)+∇h(x)(y−x)+∇2h(z)‖x−y‖2, where z = (1−α)x+αy for

some α ∈ [0, 1]. Taking x = ‖θk‖q and y = ‖θk+1‖q, and using the fact G/2 ≤ ‖θk‖q ≤ 2G

for k ≥ T , we have

‖θk+1‖q−1q (3.22)

= ‖θk‖q−1q +O(
∣∣‖θk‖q − ‖θk+1‖q

∣∣+
∣∣‖θk‖q − ‖θk+1‖q

∣∣2)
= ‖θk‖q−1q +O

(1√
k

)
Hence, one can find that the first term on the RHS of (3.21) is bounded by O

(
1√
k

)
.

Next we focus on the second term of (3.21) by considering whether θik and θik+1 have

different signs.

Case 1: θik and θik+1 have the same sign. Then we have∣∣∣θik|θik|q−2 − θik+1|θik+1|q−2
∣∣∣

=
∣∣∣|θik|q−1 − |θik+1|q−1

∣∣∣ ≤ O(1√
k

)
(3.23)

71

where the last inequality uses the same mean-value-theorem argument as (3.22) and the fact

|θik| ≥
λ
2 .

Case 2: θik and θik+1 have different signs. We assume θik+1 ≥ 0 w.l.o.g. In this case, by the

update manner of θk+1, we have |θik+1| ≤ |δk[∇f(yk)]i| = O(δk) = O(1k). This is impossible

given the fact |θik+1| >
λ
2 when k ≥ T .

Therefore, we have the second term in (3.21) bounded by O(1√
k
). Hence, it is easy to see

that

‖vk+1 − vk‖2 = O
(1

k

)
.

Applying the same argument in the proof of Theorem 10, we have that when k ≥ T ,

ξk+1 = Õ(1
k2

). This further implies f(xk)− f(x∗) = Õ(1
k2

) as well.

Chapter 4

Enhancing Parameter-Free Frank
Wolfe with an Extra Subproblem

4.1 Introduction

In last chapter, we have discussed AFW, which replaces the subproblem of NAG by a single

FW subproblem, and developed constraint-specific faster rates. Taking an active `2 norm ball

constraint as an example, AFW guarantees a rate of O
(
ln k
k2

)
. A natural question is whether the

ln k in the numerator can be eliminated. In addition, although the implementation involves no

parameter, the analysis of AFW relies on the value maxx∈X f(x).

Aiming at parameter-free FW with faster rates (on certain constraints) that can bypass the

limitations of AFW, the present chapter deals with the design and analysis of ExtraFW. The

‘extra’ in its name refers to the pair of gradients involved per iteration, whose merit is to enable

a ‘prediction-correction’ (PC) type of update. Though the idea of using two gradients to perform

PC updates originates from projection-based algorithms, such as ExtraGradient [88] and Mirror-

Prox [83, 89, 90], leveraging PC updates in FW type algorithms for faster rates is novel.

Our contributions are summarized as follows.

• A new parameter-free FW variant, ExtraFW, is studied in this work. The distinct feature

of ExtraFW is the adoption of two gradient evaluations per iteration to update the decision

variable in a prediction-correction (PC) manner.

• It is shown that ExtraFW convergences with a rate of O(1k) for general problems. And

72

73

for constraint sets including active `1, `2 and n-support norm balls, ExtraFW guarantees

an accelerated rate O(1
k2

).

• Unlike most of faster rates in FW literatures, ExtraFW is parameter-free, so that no prob-

lem dependent parameter is required. Compared with another parameter-free algorithm

with faster rates, AFW [58], introducing PC update in ExtraFW leads to several advan-

tages: i) the convergence rate is improved by a factor of O(ln k) on an `2 norm ball

constraint; and ii) the analysis does not rely on the maximum value of f(x) over X .

• The efficiency of ExtraFW is corroborated on two benchmark machine learning tasks.

The faster rate O(1
k2

) is achieved on binary classification, evidenced by the possible

improvement of ExtraFW over NAG on multiple sparsity-promoting constraint sets. For

matrix completion, ExtraFW improves over AFW and FW in both optimality error and

the rank of the solution.

4.2 Preliminaries

This section reviews AFW in order to illustrate the proposed algorithm in a principled manner.

We first pinpoint the class of problems to focus on.

AFW recap. As an FW variant, AFW in Alg. 5 relies on Nesterov’s momentum type

update, that is, it uses an auxiliary variable yk to estimate xk+1 and calculates the gradient

∇f(yk). If one writes gk+1 explicitly, vk+1 can be equivalently described as a minimizer over

X of the hyperplane

k∑
τ=0

wτk
[
f(yτ) + 〈∇f(yτ),x− yτ 〉

]
(4.1)

where wτk = δτ
∏k
j=τ+1(1 − δj) and

∑k
τ=0w

τ
k ≈ 1 (the sum depends on the choice of δ0).

Note that f(yτ) + 〈∇f(yτ),x − yτ 〉 is a supporting hyperplane of f(x) at yτ , hence (4.1) is

a lower bound for f(x) constructed through a weighted average of supporting hyperplanes at

{yτ}. AFW converges at O
(
LD2

k

)
on general problems. When the constraint set is an active

`2 norm ball, AFW has a faster rate O
(
LD2

k ∧
TLD2 ln k

k2

)
, where T depends on D. Writing this

rate compactly as O
(
TLD2 ln k

k2

)
, it is observed that AFW achieves acceleration with the price

of a worse dependence on other parameters hidden in T . However, even for the k-dependence,

74

AFW is O(ln k) times slower compared with other momentum based algorithms such as NAG.

This slowdown is because that the lower bound (4.1) is constructed based on {yk}, which are

estimated {xk+1}. We will show that relying on a lower bound constructed using {xk+1}
directly, it is possible to avoid this O(ln k) slowdown.

4.3 ExtraFW

This section introduces the main algorithm, ExtraFW, and establishes its constraint dependent

faster rates.

4.3.1 Algorithm design

Algorithm 6 ExtraFW
1: Initialize: x0, g0 = 0, and v0 = x0

2: for k = 0, 1, . . . ,K − 1 do
3: yk = (1− δk)xk + δkvk . prediction

4: ĝk+1 = (1− δk)gk + δk∇f(yk)

5: v̂k+1 = arg minv∈X 〈ĝk+1,v〉
6: xk+1 = (1− δk)xk + δkv̂k+1 . correction

7: gk+1 = (1− δk)gk + δk∇f(xk+1)

8: vk+1 = arg minv∈X 〈gk+1,v〉 . extra FW step

9: end for
10: Return: xK

ExtraFW is summarized in Alg. 6. Different from the vanilla FW and AFW, two FW steps

(Lines 5 and 8 of Alg. 6) are required per iteration. Compared with other algorithms relying

on two gradient evaluations, such as Mirror-Prox [89, 90], ExtraFW reduces the computational

burden of the projection. In addition, as an FW variant, ExtraFW can capture the properties such

as sparsity or low rank promoted by the constraints more effectively through the update than

those projection based algorithms. To facilitate comparison with AFW, ExtraFW is explained

through constructing lower bounds of f(x) in a “prediction-correction” manner. The merits of

the PC update compared with AFW are: i) the elimination of maxx∈X f(x) in analysis; and ii)

it improves the convergence rate on certain class of problems as we will see later.

75

Lower bound prediction. Similar to AFW, the auxiliary variable yk in Line 3 of Alg. 6 can

be viewed as an estimate of xk+1. The first gradient is evaluated at yk, and is incorporated into

ĝk+1, which is an estimate of the weighted average of {∇f(x)τ}k+1
τ=1. By expanding ĝk+1, one

can verify that v̂k+1 can be obtained equivalently through minimizing the following weighted

sum,

k−1∑
τ=0

wτk

[
f(xτ+1) + 〈∇f(xτ+1),x− xτ+1〉

]
+ δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
, (4.2)

where wτ = δτ
∏k
j=τ+1(1 − δj) and

∑k−1
τ=0wτ + δk ≈ 1. Note that each term inside square

brackets forms a supporting hyperplane of f(x), hence (4.2) is an (approximated) lower bound

of f(x) because of convexity. As a prediction to f(xk+1) + 〈∇f(xk+1),x − xk+1〉, the last

bracket in (4.2) will be corrected once xk+1 is obtained.

Lower bound correction. The gradient ∇f(xk+1) is used to obtain a weighted averaged

gradients gk+1. By unrolling gk+1, one can find that vk+1 is a minimizer of the following

(approximated) lower bound of f(x)

k−1∑
τ=0

wτk

[
f(xτ+1) +

〈
∇f(xτ+1),x− xτ+1

〉]
+ δk

[
f(xk+1) +

〈
∇f(xk+1),x− xk+1

〉]
.

(4.3)

Comparing (4.2) and (4.3), we deduce that the terms in the last bracket of (4.2) are corrected to

the true supporting hyperplane of f(x) at xk+1. In sum, the FW steps in ExtraFW rely on lower

bounds of f(x) constructed in a weighted average manner similar to AFW. However, the key

difference is that ExtraFW leverages the supporting hyperplanes at true variables {xk} rather

than the auxiliary ones {yk} in AFW through a “correction” effected by (4.3). In the following

subsections, we will show that the PC update in ExtraFW performs no worse than FW or AFW

on general problems, while harnessing its own analytical merits on certain constraint sets.

4.3.2 Convergence of ExtraFW

We investigate the convergence of ExtraFW by considering the general case first. The analysis

relies on the notion of estimate sequence (ES) introduced in [8] or Definition 5.

The construction of ES varies for different algorithms (see e.g., [80, 8, 76, 81]). However,

the reason to rely on the ES based analysis is similar, as summarized in the following lemma.

76

Lemma 14. For
(
{Φk(x)}∞k=0, {λk}∞k=0

)
satisfying the definition of ES, if f(xk) ≤ minx∈X Φk(x)+

ξk,∀k, it is true that

f(xk)− f(x∗) ≤ λk
(
Φ0(x

∗)− f(x∗)
)

+ ξk, ∀ k.

As shown in Lemma 14, λk and ξk jointly characterize the convergence rate of f(xk).

(Consider λk = O(1k) and ξk = O(1k) for an example.) Keeping Lemma 14 in mind, we

construct two sequences of linear surrogate functions for analyzing ExtraFW, which highlight

the differences of our analysis with existing ES based approaches

Φ0(x) = Φ̂0(x) ≡ f(x0) (4.4a)

Φ̂k+1(x) = (1− δk)Φk(x) + δk
[
f(yk) + 〈∇f(yk),x− yk〉

]
, ∀k ≥ 0 (4.4b)

Φk+1(x) = (1− δk)Φk(x) + 〈∇f(xk+1),x− xk+1〉
]
, ∀k ≥ 0. (4.4c)

Clearly, both Φk(x) and Φ̂k(x) are linear in x, in contrast to the quadratic surrogate func-

tions adopted for analyzing NAG [8]. Such linear surrogate functions are constructed specifi-

cally for FW type algorithms taking advantage of the compact and convex constraint set. Next

we show that (4.4) and proper {λk} form two different ES of f .

Lemma 15. If we choose λ0 = 1, δk ∈ (0, 1), and λk+1 = (1 − δk)λk ∀k ≥ 0, both(
{Φk(x)}∞k=0,{λk}∞k=0

)
and

(
{Φ̂k(x)}∞k=0, {λk}∞k=0

)
satisfy the definition of ES.

The key reason behind the construction of surrogate functions in (4.4) is that they are closely

linked with the lower bounds (4.2) and (4.3) used in the FW steps, as stated in the next lemma.

Lemma 16. Let g0 = 0, then it is true that vk = arg minx∈X Φk(x) and v̂k = arg minx∈X Φ̂k(x).

After relating the surrogate functions in (4.4) with ExtraFW, exploiting the analytical merits

of the surrogate functions Φk(x) and Φ̂k(x), including being linear, next we show that f(xk) ≤
minx∈X Φk(x) + ξk, ∀k, which is the premise of Lemma 14.

Lemma 17. Let ξ0 = 0 and other parameters chosen the same as previous lemmas. Denote

Φ∗k := Φk(vk) as the minimum value of Φk(x) over X (cf. Lemma 16), then ExtraFW guaran-

tees that for any k ≥ 0

f(xk) ≤ Φ∗k + ξk, with ξk+1 = (1− δk)ξk +
3LD2

2
δ2k.

77

Based on Lemma 17, the value of f(xk) and Φ∗k can be used to derive the stopping criterion

if one does not want to preset the iteration number K. Further discussions are provided in

Appendix 4.5.6 due to space limitation. Now we are ready to apply Lemma 14 to establish the

convergence of ExtraFW.

Theorem 13. Suppose that Assumptions 1, 2 and 3 are satisfied. Choosing δk = 2
k+3 , and

g0 = 0, ExtraFW in Alg. 6 guarantees

f(xk)− f(x∗) = O
(
LD2

k

)
, ∀k.

This convergence rate of ExtraFW has the same order as AFW and FW. In addition, Theo-

rem 13 translates into O(LD
2

ε) queries of LMO to ensure f(xk) − f(x∗) ≤ ε, which matches

to the lower bound [3, 2].

The obstacle for faster rates. As shown in the detailed proof, one needs to guarantee that

either ‖vk − v̂k+1‖2 or ‖vk+1 − v̂k+1‖2 is small enough to obtain a faster rate than Theorem

13. This is difficult in general because there could be multiple vk and v̂k solving the FW steps.

A simple example is to consider the ith entry [gk]i = 0. The ith entry [vk]i can then be chosen

arbitrarily as long as vk ∈ X . The non-uniqueness of vk prevents one from ensuring a small

upper bound of ‖vk − v̂k+1‖2, ∀ vk. In spite of this, we will show that together with the

structure on X , ExtraFW can attain faster rates.

4.3.3 Acceleration of ExtraFW

In this subsection, we provide constraint-dependent accelerated rates of ExtraFW when X is

some norm ball. Even for projection based algorithms, most of faster rates are obtained with step

sizes depending on L [83, 89]. Thus, faster rates for parameter-free algorithms are challenging

to establish. Similar to AFW, we also include Assumption 4 to enable faster convergence rate.

More specifically, we assume that The constraint is active, i.e., ‖∇f(x∗)‖2 ≥ G > 0.

Technically, the need behind Assumption 4 can be exemplified through a one-dimensional

problem. Consider minimizing f(x) = x2 over X = {x|x ∈ [−1, 1]}. We clearly have x∗ = 0

for which the constraint is inactive at the optimal solution. Recall a faster rate of ExtraFW

requires ‖v̂k+1 − vk+1‖2 to be small. When xk is close to x∗ = 0, it can happen that ĝk+1 > 0

and gk+1 < 0, leading to v̂k+1 = −1 and vk+1 = 1. The faster rate is prevented by pushing

vk+1 and v̂k+1 further apart from each other.

78

Next, we consider different instances of norm ball constraints as examples to the accelera-

tion of ExtraFW. For simplicity of exposition, the intuition and technical details are discussed

using an `2 norm ball constraint in the main test. Detailed analysis for `1 and n-support norm

ball [12] constraints are provided in Appendix.

`2 norm ball constraint. Consider X := {x|‖x‖2 ≤ D
2 }. In this case, vk+1 and v̂k+1

admit closed-form solutions, taking vk+1 as an example,

vk+1 = arg min
x∈X

〈gk+1,x〉 = − D

2‖gk+1‖2
gk+1. (4.5)

We assume that when using gk+1 as the input to the LMO, the returned vector is given by (4.5).

This is reasonable since it is what we usually implemented in practice. Though rarely happen,

one can choose vk+1 = v̂k+1 to proceed if gk+1 = 0. Similarly, we can simply set v̂k+1 = vk

if ĝk+1 = 0. The uniqueness of vk+1 is ensured by its closed-form solution, wiping out the

obstacle for a faster rate.

Theorem 14. Suppose that Assumptions 1, 2, 3 and 4 are satisfied, and X is an `2 norm ball.

Choosing δk = 2
k+3 , and g0 = 0, ExtraFW in Alg. 6 guarantees

f(xk)− f(x∗) = O
(
LD2

k
∧ LD

2T

k2

)
, ∀k

where T is a constant depending only on L, G, and D.

Theorem 14 admits a couple of interpretations. By writing the rate compactly, ExtraFW

achieves accelerated rateO
(
TLD2

k2

)
, ∀k with a worse dependence on D compared to the vanilla

FW. Or alternatively, the “asymptotic” performance at k ≥ T is strictly improved over the

vanilla FW. It is worth mentioning that the choices of δk and g0 are not changed compared to

Theorem 13 so that the parameter-free implementation is the same regardless whether acceler-

ated. In other words, prior knowledge on whether Assumption 4 holds is not needed in practice.

Compared with CGS, ExtraFW sacrifices the D dependence in the convergence rate to trade for

i) the nonnecessity of the knowledge of L and D, and ii) ensuring two FW subproblems per

iteration (whereas at mostO(k) subproblems are needed in CGS). When comparing with AFW

[58], the convergence rate of ExtraFW is improved by a factor ofO(ln k), and the analysis does

not rely on the constant M := maxx∈X f(x).

`1 norm ball constraint. For the sparsity-promoting constraint X := {x|‖x‖1 ≤ R}, the

79

FW steps can be solved in closed form too. Taking vk+1 as an example, we have

vk+1 = R · [0, . . . , 0,−sgn[gk+1]i, 0, . . . , 0]> with i = arg max
j

|[gk+1]j |. (4.6)

We show in Theorem 15 (see Appendix 4.5.8) that when Assumption 4 holds and the set

arg maxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1, a faster rate O(T1LD
2

k2
) can be obtained with the con-

stant T1 depending on L, G, and D. The additional assumption here is known as strict comple-

mentarity, and has been adopted also in, e.g.,[85, 86].

n-support norm ball constraint. The n-support norm ball is a tighter relaxation of a spar-

sity prompting `0 norm ball combined with an `2 norm penalty compared with the ElasticNet

[61]. It is defined as X := conv{x|‖x‖0 ≤ n, ‖x‖2 ≤ R}, where conv{·} denotes the convex

hull [12]. The closed-form solution of vk+1 is given by [62]

vk+1 = − R

‖topn(gk+1)‖2
topn(gk+1) (4.7)

where topn(g) denotes the truncated version of g with its top n (in magnitude) entries pre-

served. A faster rateO(T2LD
2

k2
) is guaranteed by ExtraFW under Assumption 4, and a condition

similar to strict complementarity (see Theorem 16 in the Appendix 4.5.9). Again, the constant

T2 here depends on L, G, and D.

Other constraints. Note that the faster rates for ExtraFW are not limited to the exemplified

constraint sets. In principle, if i) certain structure such as sparsity is promoted by the constraint

set so that x∗ is likely to lie on the boundary of X ; and ii) one can ensure the uniqueness of vk

through either a closed-form solution or a specific implementation manner, the acceleration of

ExtraFW is achievable. Discussions for faster rates on a simplex X can be found in Appendix

4.5.8. In addition, one can easily extend our results to the matrix case, where the constraint set

is the Frobenius or the nuclear norm ball since they are `2 and `1 norms on the singular values

of matrices, respectively.

4.4 Numerical tests

This section deals with numerical tests of ExtraFW to showcase its effectiveness on different

machine learning problems. Due to the space limitation, details of the datasets and implementa-

tion are deferred to Appendix 4.5.10. For comparison, the benchmarked algorithms are chosen

as: i) GD with standard step size 1
L ; ii) Nesterov accelerated gradient (NAG) with step sizes in

[73]; iii) FW with parameter-free step size 2
k+2 [2]; and iv) AFW with step size 2

k+3 [58].

80

4.4.1 Binary classification

0 300 600 900 1200 1500
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

0 300 600 900 1200 1500
k

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

(a) (b)

0 300 600 900 1200 1500
k

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

0 300 600 900 1200 1500
k

100

10 2

10 4

10 6

10 8

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

(c) (d)

Figure 4.1: Performance of ExtraFW for binary classification with an `2 norm ball constraint on datasets:

(a) mnist, (b) w7a, (c) realsim, and, (d) mushroom.

`2 norm ball constraint. We start with X = {x|‖x‖2 ≤ R}. The optimality error are plotted

in Figure 4.1. On all tested datasets, ExtraFW outperforms AFW, NAG, FW and GD, demon-

strating theO(1
k2

) convergence rate established in Theorem 14. In addition, the simulation also

suggests that T is in general small for logistic loss. On dataset w7a and mushroom, ExtraFW is

significantly faster than AFW. All these observations jointly confirm the usefulness of the extra

gradient and the PC update. Figures reporting test accuracy, and additional tests are postponed

into Appendix.

81

0 400 800 1200 1600 2000
k

10 4

10 3

10 2

10 1

100
f(x

k)
f(x

*)
GD
NAG
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.70

0.75

0.80

0.85

0.90

0.95

1.00

sp
ar

sit
y

of
 x

k

GD
NAG
FW
AFW
ExtraFW

(a1) (a2)

0 400 800 1200 1600 2000
k

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.4

0.5

0.6

0.7

0.8

0.9

1.0

sp
ar

sit
y

of
 x

k GD
NAG
FW
AFW
ExtraFW

(b1) (b2)

Figure 4.2: Performance of ExtraFW for binary classification with an `1 norm ball constraint: (a1)

optimality error on mnist, (a2) solution sparsity on mnist, (b1) optimality error on mushroom, and, (b2)

solution sparsity on mushroom.

`1 norm ball constraint. Let X = {x|‖x‖1 ≤ R} be the constraint set to promote sparsity

on the solution. Note that FW type updates directly guarantee that xk has at most k non-zero

entries when initialized at x0 = 0; see detailed discussions in Appendix 4.5.11. In the simula-

tion, R is tuned to obtain a solution that is almost as sparse as the dataset itself. The numerical

results on datasets mnist and mushroom including both optimality error and the sparsity level of

the solution can be found in Figure 4.2. On dataset mnist, ExtraFW slightly outperforms AFW

but is not as fast as NAG. However, ExtraFW consistently finds solutions sparser than NAG.

While on dataset mushroom, it can be seen that both AFW and ExtraFW outperform NAG, with

ExtraFW slightly faster than AFW. And ExtraFW finds sparser solutions than NAG.

82

0 400 800 1200 1600 2000
k

10 4

10 3

10 2

10 1

100
f(x

k)
f(x

*)
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.80

0.84

0.88

0.92

0.96

1.00

sp
ar

sit
y

of
 x

k

FW
AFW
ExtraFW

(a1) (a2)

0 400 800 1200 1600 2000
k

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.80

0.85

0.90

0.95

1.00

sp
ar

sit
y

of
 x

k

FW
AFW
ExtraFW

(b1) (b2)

Figure 4.3: Performance of ExtraFW for binary classification with an n-support norm ball constraint:

(a1) optimality error on mnist, (a2) solution sparsity on mnist, (b1) optimality error on mushroom, and,

(b2) solution sparsity on mushroom.

n-support norm ball constraint. Effective projection onto such a constraint is unknown

yet and hence GD and NAG are not included in the test. The performance of ExtraFW can

be found in Figure 4.3. On dataset mnist, both AFW and ExtraFW converge much faster than

FW with ExtraFW slightly faster than AFW. However, FW trades the solution accuracy with

its sparsity. On dataset mushroom, ExtraFW converges much faster than AFW and FW, while

finding the sparsest solution.

83

4.4.2 Matrix completion

0 200 400 600 800 1000
k

10 4

10 3

10 2

10 1

100

f(X
k)/

f(X
*)

1

FW
AFW
ExtraFW

0 200 400 600 800 1000
k

0

10

20

30

40

50

60

ra
nk

 o
f X

k

FW
AFW
ExtraFW

(a) (b)

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
R

10 3

10 2

f(X
50

0)
/f(

X
*)

1

FW
AFW
ExtraFW

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0
R

0

30

60

90

120

150
ra

nk
(X

50
0)

FW
AFW
ExtraFW

(c) (d)

Figure 4.4: Performance of ExtraFW for matrix completion: (a) optimality vs k, (b) solution rank vs k,

(c) optimality at k = 500 vs R, and, (d) solution rank at k = 500 vs R.

We test ExtraFW on a widely used dataset, MovieLens100K1 . The experiments follow the

same steps in [18]. The numerical performance of ExtraFW, AFW, and FW can be found in

Figure 4.4. We plot the optimality error and rank versus k choosing R = 2.5 in Figures 4.4(a)

and 4.4(b). It is observed that ExtraFW exhibits the best performance in terms of both optimality

error and solution rank. In particular, ExtraFW roughly achieves 2.5x performance improve-

ment compared with FW in terms of optimality error. We further compare the convergence of

ExtraFW to AFW and FW at iteration k = 500 under different choices of R in Figures 4.4(c)

and 4.4(d). ExtraFW still finds solutions with the lowest optimality error and rank. Moreover,

the performance gap between ExtraFW and AFW increases with R, suggesting the inclined
1 https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/

84

tendency of preferring ExtraFW over AFW and FW as R grows.

4.5 Appendix

4.5.1 Proof of Lemma 14

Proof. If f(xk) ≤ minx∈X Φk(x) + ξk holds, then we have

f(xk) ≤ min
x∈X

Φk(x) + ξk ≤ Φk(x
∗) + ξk ≤ (1− λk)f(x∗) + λkΦ0(x

∗) + ξk

where the last inequality is because Definition 5. Subtracting f(x∗) on both sides, we arrive at

f(xk)− f(x∗) ≤ λk
(
Φ0(x

∗)− f(x∗)
)

+ ξk

which completes the proof.

4.5.2 Proof of Lemma 15

Proof. We prove
(
{Φk(x)}∞k=0,{λk}∞k=0

)
is an ES of f by induction. Because λ0 = 1, it holds

that Φ0(x) = (1 − λ0)f(x) + λ0Φ0(x) = Φ0(x). Suppose that Φk(x) ≤ (1 − λk)f(x) +

λkΦ0(x) is true for some k. We have

Φk+1(x) = (1− δk)Φk(x) + δk

[
f(xk+1) +

〈
∇f(xk+1),x− xk+1

〉]
(a)
≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

where (a) is because f is convex; and the last equation is by definition of λk+1. Together with

the fact that limk→∞ λk = 0, one can see that the tuple
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES of f .

Next we show
(
{Φ̂k(x)}∞k=0, {λk}∞k=0

)
is also an ES. Clearly Φ̂0(x) = (1 − λ0)f(x) +

85

λ0Φ0(x) = Φ̂0(x). Next for k ≥ 0, using similar arguments, we have

Φ̂k+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
≤ (1− δk)Φk(x) + δkf(x)

≤ (1− δk)
[
(1− λk)f(x) + λkΦ0(x)

]
+ δkf(x)

= (1− λk+1)f(x) + λk+1Φ0(x)

= (1− λk+1)f(x) + λk+1Φ̂0(x).

The proof is thus completed.

4.5.3 Proof of Lemma 16

Proof. For convenience, denote Bk(x) := f(xk) + 〈∇f(xk),x−xk〉. We can unroll Φk+1(x)

as

Φk+1(x) = (1− δk)Φk(x) + δkBk+1(x) (4.8)

= (1− δk)(1− δk−1)Φk−1(x) + (1− δk)δk−1Bk(x) + δkBk+1(x)

= Φ0(x)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj)

= f(x0)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj).

Hence, the minimizer of Φk+1(x) can be rewritten as

arg min
x∈X

Φk+1(x) = arg min
x∈X

f(x0)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj) (4.9)

= arg min
x∈X

k∑
τ=0

δτ
[
f(xτ+1) + 〈∇f(xτ+1),x− xτ+1〉

] k∏
j=τ+1

(1− δj)

= arg min
x∈X

k∑
τ=0

δτ 〈∇f(xτ+1),x〉
k∏

j=τ+1

(1− δj)

= arg min
x∈X

k∑
τ=0

〈
δτ∇f(xτ+1)

k∏
j=τ+1

(1− δj),x
〉

= arg min
x∈X

〈gk+1,x〉

86

where the last equation is because

gk+1 = (1− δk)gk + δk∇f(xk+1)

= (1− δk)(1− δk−1)gk−1 + (1− δk)δk−1∇f(xk) + δk∇f(xk+1)

= g0

k∏
τ=0

(1− δτ) +
k∑
τ=0

δτ∇f(xτ+1)
k∏

j=τ+1

(1− δj) =
k∑
τ=0

δτ∇f(xτ+1)
k∏

j=τ+1

(1− δj).

From (4.9) it is not hard to see vk+1 minimizes Φk+1(x).

If we write ĝk+1 explicitly, we can obtain

Φ̂k+1(x) = (1− δk)Φk(x) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
= f(x0)

k∏
τ=0

(1− δτ) +
k−1∑
τ=0

δτBτ+1(x)
k∏

j=τ+1

(1− δj) + δk

[
f(yk) +

〈
∇f(yk),x− yk

〉]
.

Hence using similar arguments as above we have

arg min
x∈X

Φ̂k+1(x) = arg min
x∈X

〈
δk∇f(yk) +

k−1∑
τ=0

δτ∇f(xτ+1)

k∏
j=τ+1

(1− δj),x
〉

= arg min
x∈X

〈ĝk+1,x〉 = v̂k+1

which implies that v̂k+1 is a minimizer of Φ̂k+1(x) over X . The lemma is thus proved.

4.5.4 Proof of Lemma 17

Proof. We prove this lemma by induction. Since Φ0(x) ≡ f(x0) and ξ0 = 0, it is clear that

f(x0) ≤ Φ∗0 + ξ0.

Now suppose that f(xk) ≤ Φ∗k + ξk holds for some k > 0, we will show f(xk+1) ≤
Φ∗k+1 + ξk+1. To start with, we have from Assumption 1 that

f(xk+1) ≤ f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2 (4.10)

(a)
= f(yk) + (1− δk)

〈
∇f(yk),xk − yk

〉
+ δk

〈
∇f(yk), v̂k+1 − yk

〉
+
L

2
‖xk+1 − yk‖2

(b)
= f(yk) + (1− δk)

〈
∇f(yk),xk − yk

〉
+ δk

〈
∇f(yk), v̂k+1 − yk

〉
+
Lδ2k
2
‖v̂k+1 − vk‖2

(c)
≤ (1− δk)f(xk) + δkf(yk) + δk

〈
∇f(yk), v̂k+1 − yk

〉
+
Lδ2k
2
‖v̂k+1 − vk‖2

87

where (a) is because xk+1 = (1− δk)xk + δkv̂k+1; (b) is by the choice of xk+1 and yk; and (c)

is from convexity, that is, 〈∇f(yk),xk − yk〉 ≤ f(xk) − f(yk). For convenience we denote

Φ̂∗k := Φ̂k(v̂k) as the minimum value of Φ̂k(x) overX (the equation here is the result of Lemma

16). Then we have

Φ̂∗k+1 = Φ̂k+1(v̂k+1)
(d)
= (1− δk)Φk(v̂k+1) + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
(e)
≥ (1− δk)Φ∗k + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
(f)
≥ (1− δk)f(xk) + δk

[
f(yk) +

〈
∇f(yk), v̂k+1 − yk

〉]
− (1− δk)ξk

(g)
≥ f(xk+1)−

Lδ2k
2
‖v̂k+1 − vk‖2 − (1− δk)ξk

≥ f(xk+1)−
LD2δ2k

2
− (1− δk)ξk

where (d) is by the definition of Φ̂k+1(x); (e) uses Φk(v̂k+1) ≥ Φ∗k; (f) is by the induction

hypothesis f(xk) ≤ Φ∗k + ξk; (g) is by plugging (4.10) in; and the last inequality is because of

Assumption 3. Rearrange the terms, we have

f(xk+1) ≤ Φ̂∗k+1 +
LD2δ2k

2
+ (1− δk)ξk (4.11)

= Φ∗k+1 + (Φ̂∗k+1 − Φ∗k+1) +
LD2δ2k

2
+ (1− δk)ξk.

Then, we have from Lemma 16 that

Φ̂∗k+1 − Φ∗k+1 = sΦ̂k+1(v̂k+1)− Φk+1(vk+1) (4.12)

= Φ̂k+1(v̂k+1)− Φ̂k+1(vk+1) + Φ̂k+1(vk+1)− Φk+1(vk+1)

(h)
≤ Φ̂k+1(vk+1)− Φk+1(vk+1)

(i)
= δk

[
f(yk) +

〈
∇f(yk),vk+1 − yk

〉]
− δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
(j)
≤ δk

〈
∇f(yk)−∇f(xk+1),vk+1 − xk+1

〉
≤ δk

∥∥∇f(yk)−∇f(xk+1)
∥∥
∗
∥∥vk+1 − xk+1

∥∥
(k)
≤ δkL

∥∥yk − xk+1

∥∥∥∥vk+1 − xk+1

∥∥
(l)
≤ δ2kL

∥∥vk − v̂k+1

∥∥∥∥vk+1 − xk+1

∥∥ ≤ δ2kLD2

88

where (h) is because Φ̂k+1(v̂k+1) ≤ Φ̂k+1(x), ∀x ∈ X according to Lemma 16; (i) follows

from (4.4); (j) uses f(yk)− f(xk+1) ≤ 〈∇f(yk),yk−xk+1〉; (k) is because of Assumption 1;

and (l) uses the choice of yk and xk+1. Plugging (4.12) back into (4.11), we have

f(xk+1) ≤ Φ∗k+1 +
3LD2δ2k

2
+ (1− δk)ξk

which completes the proof.

4.5.5 Proof of Theorem 13

Proof. Given
(
{Φk(x)}∞k=0, {λk}∞k=0

)
is an ES as shown in Lemma 15, together with the fact

f(xk) ≤ minx∈X Φk(x) + ξk,∀k as shown in Lemma 17, one can directly apply Lemma 14 to

have

f(xk)− f(x∗) ≤ λk
(
f(x0)− f(x∗)

)
+ ξk =

2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+ ξk (4.13)

where ξk is defined in Lemma 17. Clearly, ξk ≥ 0,∀k, and one can find an upper bound of it as

ξk = (1− δk−1)ξk−1 +
3δ2k−1

2
LD2

=
3LD2

2

k−1∑
τ=0

δ2τ

[k−1∏
j=τ+1

(1− δj)
]

=
3LD2

2

k−1∑
τ=0

4

(τ + 3)2
(τ + 2)(τ + 3)

(k + 1)(k + 2)
≤ 6LD2

k + 2
.

Plugging ξk into (4.13) completes the proof.

4.5.6 Stopping criterion

In this subsection we show that the value of f(xk)−Φ∗k can be used to derive a stopping criterion

(see (4.14)). How to obtain the value of Φ∗k iteratively (via (4.15) and (4.16)) is also discussed.

First, as a consequence of Lemma 17, we have f(xk) − Φ∗k ≤ ξk = O
(
LD2

k

)
. This means

that the value of f(xk)− Φ∗k converges to 0 at the same rate of f(xk)− f(x∗).

Next we show that how to estimate f(xk)− f(x∗) using f(xk)− Φ∗k. We have that

f(xk)− Φ∗k
(a)
≥ f(xk)− Φk(x

∗)
(b)
≥ f(xk)− (1− λk)f(x∗)− λkΦ0(x

∗)

(c)
= (1− λk)

[
f(xk)− f(x∗)

]
+ λk

[
f(xk)− f(x0)

]

89

where (a) is because of Φ∗k = minx∈X Φk(x); (b) is by the definition of ES; and (c) uses

Φ0(x) ≡ f(x0). The inequality above implies that

f(xk)− f(x∗) ≤ 1

1− λk

(
f(xk)− Φ∗k − λk

[
f(xk)− f(x0)

])
. (4.14)

Notice that the RHS of (4.14) goes to 0 as k increases, hence (4.14) can be used as the stopping

criterion.

Finally we discuss how to update Φ∗k efficiently. From (4.8), we have

Φk+1(x) = f(x0)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτ

[
f(xτ+1) + 〈∇f(xτ+1),x− xτ+1〉

] k∏
j=τ+1

(1− δj)

= f(x0)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτ

[
f(xτ+1) + 〈∇f(xτ+1),x− xτ+1〉

] k∏
j=τ+1

(1− δj)

= f(x0)
k∏
τ=0

(1− δτ) +
k∑
τ=0

δτ

[
f(xτ+1)− 〈∇f(xτ+1),xτ+1〉

] k∏
j=τ+1

(1− δj) + 〈gk+1,x〉

where the last equation uses the definition of gk+1. Hence, we can obtain Φ∗k+1 as

Φ∗k+1 = Φk+1(vk+1) = Vk+1 + 〈gk+1,vk+1〉 (4.15)

and Vk+1 can be updated as

Vk+1 = (1− δk)Vk + δk

[
f(xk+1)− 〈∇f(xk+1),xk+1〉

]
, with V0 = f(x0). (4.16)

4.5.7 Proof of Theorem 14

Because we are dealing with an `2 norm ball constraint in this section, we useR := D
2 for conve-

nience. And we will extend the domain of f(x) slightly to X̃ := conv{x− 1
L∇f(x), ∀x ∈ X},

i.e., f : X̃ → R. This is a very mild assumption since most of practically used loss functions

have domain Rd.

Lemma 18. [8, Theorem 2.1.5] If Assumptions 1 and 2 hold with the extended domain X̃ , then

it is true that for any x,y ∈ X

1

2L
‖∇f(x)−∇f(y)‖22 ≤ f(y)− f(x)− 〈∇f(x),y − x〉.

90

Lemma 19. Choose δk = 2
k+3 , then we have

‖∇f(xk)−∇f(x∗)‖2 ≤

√
4L
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
12L2D2

k + 2
≤ C1√

k + 2

where C1 ≤
√

12L2D2 + 4L
(
f(x0)− f(x∗)

)
.

Proof. Using Lemma 18, we have

1

2L
‖∇f(xk)−∇f(x∗)‖22 ≤ f(xk)− f(x∗)− 〈∇f(x∗),xk − x∗〉

(a)
≤ f(xk)− f(x∗)

(b)
≤

2
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
6LD2

k + 2

where (a) is by the optimality condition, that is, 〈∇f(x∗),x− x∗〉 ≥ 0, ∀x ∈ X ; and (b) is by

Theorem 13. This further implies

‖∇f(xk)−∇f(x∗)‖2 ≤

√
4L
(
f(x0)− f(x∗)

)
(k + 1)(k + 2)

+
12L2D2

k + 2
.

The proof is thus completed.

Lemma 20. If both x∗1 and x∗2 minimize f(x) over X , then we have∇f(x∗1) = ∇f(x∗2).

Proof. From Lemma 18, we have

1

2L
‖∇f(x∗2)−∇f(x∗1)‖22 ≤ f(x∗2)− f(x∗1)− 〈∇f(x∗1),x

∗
2 − x∗1〉

(a)
≤ f(x∗2)− f(x∗1) = 0

where (a) is by the optimality condition, that is, 〈∇f(x∗1),x−x∗1〉 ≥ 0, ∀x ∈ X . Hence we can

only have∇f(x∗2) = ∇f(x∗1). This means that the value of∇f(x∗) is unique regardless of the

uniqueness of x∗.

Lemma 21. Let ‖∇f(x∗)‖2 = G∗, (and G∗ is unique bacause of Lemma 20) where G∗ ≥ G.

Choose δk = 2
k+3 , it is guaranteed to have

‖gk+1 −∇f(x∗)‖2 ≤
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)
.

In addition, there exists a constant C2 ≤ 4
3C1 + 2

3(
√
3+1)

G∗ such that

‖gk+1 −∇f(x∗)‖2 ≤
C2√

k + 3− 1
.

91

Proof. First we have

gk+1 = (1− δk)gk + δk∇f(xk+1) =
k∑
τ=0

δτ∇f(xτ+1)

[k∏
j=τ+1

(1− δj)
]

(4.17)

=
k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)
∇f(xτ+1).

Noticing that 2
∑k

τ=0(τ + 2) = (k + 1)(k + 4) = (k + 2)(k + 3)− 2, we have

‖gk+1 −∇f(x∗)‖2 =

∥∥∥∥ k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

[
∇f(xτ+1)−∇f(x∗)

]
− 2

(k + 2)(k + 3)
∇f(x∗)

∥∥∥∥
2

≤
k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

∥∥∇f(xτ+1)−∇f(x∗)
∥∥
2

+
2

(k + 2)(k + 3)

∥∥∇f(x∗)
∥∥
2

(a)
≤

k∑
τ=0

2(τ + 2)

(k + 2)(k + 3)

C1√
τ + 3

+
2G∗

(k + 2)(k + 3)

≤ 2C1

(k + 2)(k + 3)

k∑
τ=0

√
τ + 2 +

2G∗

(k + 2)(k + 3)

≤ 4C1

3(k + 2)(k + 3)
(k + 3)3/2 +

2G∗

(k + 2)(k + 3)

=
4C1

3(
√
k + 3 + 1)(

√
k + 3− 1)

√
k + 3 +

2G∗

(k + 2)(k + 3)

≤ 4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)

where (a) follows from Lemma 19. This completes the proof for the first part of this lemma.

Next, to find C2, we have

‖gk+1 −∇f(x∗)‖2 ≤
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 2)(k + 3)

=
4C1

3(
√
k + 3− 1)

+
2G∗

(k + 3)(
√
k + 3 + 1)(

√
k + 3− 1)

(b)
≤ 4C1

3(
√
k + 3− 1)

+
2G∗

3(
√

3 + 1)(
√
k + 3− 1)

where in (b) we use k + 3 ≥ 3 and
√
k + 3 + 1 ≥

√
3 + 1. The proof is thus completed.

Lemma 22. There exists a constant T1 ≤
(
2C2
G∗ + 1

)2 − 3, such that ‖gk+1‖2 ≥ G∗

2 , ∀k ≥ T1.

92

Proof. Consider a specific k̃ with ‖gk̃+1‖2 <
G∗

2 satisfied. In this case we have

‖gk̃+1 −∇f(x∗)‖2 ≥ ‖∇f(x∗)‖2 − ‖gk̃+1‖2 > G∗ − G∗

2
=
G∗

2
.

From Lemma 21, we have

G∗

2
< ‖gk̃+1 −∇f(x∗)‖2 ≤

C2√
k̃ + 3− 1

.

From this inequality we can observe that ‖gk̃+1‖2 can be less than
√
G
2 only when k̃ < T1 =(

2C2
G∗ + 1

)2 − 3. Hence, this lemma is proved.

Lemma 23. Let T := max{T1, T2}, with T2 =
√

8LD
G∗ − 3. When k ≥ T + 1, it is guaranteed

that

‖vk+1 − v̂k+1‖2 ≤
δ3kLDC3

‖gk+1‖2‖gk‖2
≤

4δ3kLDC3

(G∗)2
(4.18)

where C3 := LD2 + DC2√
2−1 .

Proof. First we show that when k ≥ T + 1, both ‖gk‖2 > 0 and ‖ĝk+1‖2 > 0. First, because

k ≥ T + 1 ≥ T1 + 1, through Lemma 22 we have ‖gk‖2 ≥ G∗

2 > 0. Then we have∥∥ĝk+1

∥∥
2

=
∥∥(1− δk)gk + δk∇f(xk+1)− δk∇f(xk+1) + δk∇f(yk)

∥∥
2

≥
∥∥gk+1

∥∥
2
− δk

∥∥∇f(xk+1)−∇f(yk)
∥∥
2
≥ G∗

2
− δ2kLD

the last inequality holds when k ≥ T1. Hence when k ≥ max{T1, T2}+ 1, we must have both

‖gk‖2 > 0 and ‖ĝk+1‖2 > 0. Then for any k ≥ T + 1, in view of (4.5), we can write

‖vk+1 − v̂k+1‖2 =

∥∥∥∥− R

‖gk+1‖2
gk+1 +

R

‖ĝk+1‖2
ĝk+1

∥∥∥∥
2

(4.19)

=
R

‖gk+1‖2‖ĝk+1‖2

∥∥∥∥∥∥ĝk+1

∥∥
2
gk+1 −

∥∥gk+1

∥∥
2
ĝk+1

∥∥∥∥
2

=
R

‖gk+1‖2‖ĝk+1‖2

∥∥∥∥∥∥ĝk+1

∥∥
2
gk+1 −

∥∥ĝk+1

∥∥
2
ĝk+1 +

∥∥ĝk+1

∥∥
2
ĝk+1 −

∥∥gk+1

∥∥
2
ĝk+1

∥∥∥∥
2

≤ R

‖gk+1‖2

∥∥∥∥gk+1 − ĝk+1

∥∥∥∥
2

+
R

‖gk+1‖2

∣∣∣∣∥∥ĝk+1

∥∥
2
−
∥∥gk+1

∥∥
2

∣∣∣∣
(a)
≤ 2R

‖gk+1‖2

∥∥∥∥gk+1 − ĝk+1

∥∥∥∥
2

=
2Rδk
‖gk+1‖2

∥∥∥∥∇f(xk+1)−∇f(yk)

∥∥∥∥
2

(b)
≤ 2RLδk
‖gk+1‖2

∥∥∥∥xk+1 − yk

∥∥∥∥
2

=
DLδ2k
‖gk+1‖2

∥∥∥∥v̂k+1 − vk

∥∥∥∥
2

93

where (a) is by
∣∣‖a‖2 − ‖b‖2∣∣ ≤ ∥∥a − b

∥∥
2
; and (b) is by Assumption 1. Then we will bound

‖v̂k+1 − vk‖2.

∥∥v̂k+1 − vk
∥∥
2

=

∥∥∥∥− R

‖ĝk+1‖2
ĝk+1 +

R

‖gk‖2
gk

∥∥∥∥
2

=
R

‖gk‖2‖ĝk+1‖2

∥∥∥∥∥∥gk∥∥2ĝk+1 −
∥∥ĝk+1

∥∥
2
ĝk+1 +

∥∥ĝk+1

∥∥
2
ĝk+1 −

∥∥ĝk+1

∥∥
2
gk

∥∥∥∥
2

≤ R

‖gk‖2

∣∣∣∣∥∥gk∥∥2 − ∥∥ĝk+1

∥∥
2

∣∣∣∣+
R

‖gk‖2

∥∥∥∥ĝk+1 − gk

∥∥∥∥
2

(c)
≤ D

‖gk‖2

∥∥∥∥ĝk+1 − gk

∥∥∥∥
2

=
δkD

‖gk‖2

∥∥∥∥∇f(yk)− gk

∥∥∥∥
2

≤ δkD

‖gk‖2
∥∥∇f(yk)−∇f(x∗)

∥∥
2

+
δkD

‖gk‖2
∥∥∇f(x∗)− gk

∥∥
2

≤ δkLD
2

‖gk‖2
+

δkD

‖gk‖2
∥∥∇f(x∗)− gk

∥∥
2

≤ δkLD
2

‖gk‖2
+

δkD

‖gk‖2
C2√

k + 2− 1
≤
δk
(
LD2 + DC2√

T+3−1

)
‖gk‖2

:=
δkC3

‖gk‖2

where (c) again uses
∣∣‖a‖2 − ‖b|2∣∣ ≤ ∥∥a − b

∥∥
2
; and the last inequality is because of Lemma

19. Plugging back to (4.19), we arrive at

‖vk+1 − v̂k+1‖2 ≤
DLδ2k
‖gk+1‖2

δkC3

‖gk‖2
=

δ3kLDC3

‖gk+1‖2‖gk‖2
≤

4δ3kLDC3

(G∗)2
.

The proof is thus completed.

Lemma 24. Let ξ0 = 0 and T defined the same as in Lemma 23. Denote Φ∗k := Φk(vk) as the

minimum value of Φk(x) over X , then we have

f(xk) ≤ Φ∗k + ξk,∀k ≥ 0

where for k < T+1, ξk+1 = (1−δk)ξk+ 3LD2

2 δ2k, and ξk+1 = C4δ
4
k+(1−δk)ξk for k ≥ T+1

with C4 =
(

C1√
T+4

+G∗
)
4LDC3
(G∗)2 .

Proof. The proof for k < T + 1 is similar as that in Lemma 17, hence it is omitted here. We

94

mainly focus on the case where k ≥ T + 1.

Φ∗k+1 = Φk+1(vk+1) = (1− δk)Φk(vk+1) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
(a)
≥ (1− δk)Φk(vk) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
≥ (1− δk)f(xk) + δk

[
f(xk+1) +

〈
∇f(xk+1),vk+1 − xk+1

〉]
− (1− δk)ξk

= f(xk+1) + (1− δk)
[
f(xk)− f(xk+1)

]
+ δk

〈
∇f(xk+1),vk+1 − xk+1

〉
− (1− δk)ξk

(b)
≥ f(xk+1) + (1− δk)

〈
∇f(xk+1),xk − xk+1

〉
+ δk

〈
∇f(xk+1),vk+1 − xk+1

〉
− (1− δk)ξk

= f(xk+1) + δk
〈
∇f(xk+1),vk+1 − v̂k+1

〉
− (1− δk)ξk

(c)
≥ f(xk+1)− δk‖∇f(xk+1)‖2‖vk+1 − v̂k+1‖2 − (1− δk)ξk
(d)
≥ f(xk+1)− ‖∇f(xk+1)‖2

4δ4kLDC3

(G∗)2
− (1− δk)ξk

(e)
≥ f(xk+1)−

(C1√
T + 4

+G∗
)4δ4kLDC3

(G∗)2
− (1− δk)ξk

where (a) is because vk minimizes Φk(x) shown in Lemma 16; (b) is by f(xk+1) − f(xk) ≤
〈∇f(xk+1),xk+1−xk〉; (c) uses Cauchy-Schwarz inequality; (d) uses Lemma 23, and (e) uses

the following inequality.

‖∇f(xk+1)‖2 = ‖∇f(xk+1)−∇f(x∗) +∇f(x∗)‖2

≤ ‖∇f(xk+1)−∇f(x∗)‖2 + ‖∇f(x∗)‖2

≤ C1√
k + 3

+G∗ ≤ C1√
T + 4

+G∗.

where the last line uses Lemma 19.

Proof of Theorem 14

Proof. Let T be defined the same as in Lemma 22. For convenience denote ξk+1 = (1−δk)ξk+

θk. When k < T + 1, we have θk = 3LD2

2 δ2k; when k ≥ T + 1, we have θk = C4δ
4
k.

95

Then we can write

ξk+1 = (1− δk)ξk + θk =
k∑
τ=0

θτ

k∏
j=τ+1

(1− δj)

=
k∑
τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=

T∑
τ=0

3LD2

2
δ2τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)
+

k∑
τ=T+1

C4δ
4
τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
6LD2(T + 1)

(k + 2)(k + 3)
+O

(
C4

k3

)
. (4.20)

Again note that T < O
(

max{
√

LD
G , L

2D2

G2 }
)

is a constant independent of k. Finally,

applying Lemma 14, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk. (4.21)

Plugging the expression of ξk, i.e., (4.20), into (4.21) completes the proof.

4.5.8 `1 norm ball

In this subsection we focus on the convergence of ExtraFW for `1 norm ball constraint under

the assumption that arg maxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1 (which is also known as strict com-

plementarity [86], and it naturally implies that the constraint is active). Note that in this case

Lemma 20 still holds hence the value of∇f(x∗) is unique regardless the uniqueness of x∗. This

assumption directly leads to arg maxj
∣∣[∇f(x∗)]j

∣∣− |[∇f(x∗)]i| ≥ λ,∀i for some λ > 0.

The closed-form solution of vk+1 is given in (4.6). The constants required in the proof is

summarized below for clearance. The norm considered in this subsection for defining L and D

is ‖ · ‖1, that is, ‖∇f(x)−∇f(y)‖∞ ≤ L‖x− y‖1, and ‖x− y‖1 ≤ D,∀x,∀y ∈ X̃ . Using

equivalences of norms, we also assume ‖∇f(x) − ∇f(y)‖2 ≤ L2‖x − y‖2, ∀x,y ∈ X̃ and

‖x− y‖2 ≤ D2,∀x,∀y ∈ X .

Lemma 25. There exists a constant T (which is irreverent with k), whenever k ≥ T , it is

guaranteed to have

‖vk+1 − v̂k+1‖1 = 0

96

Proof. In the proof, we denote i = arg maxj |[∇f(x∗)]j | for convenience. With ‖∇f(x∗)‖2 =

G∗ Lemma 21 still holds.

We first show that there exist T1 = (3C2
λ + 1)2 − 3, such that for all k ≥ T1, we have

arg maxj |[gk+1]j | = i, which further implies only the i-th entry of vk+1 is non-zero. Since

Lemma 21 holds, one can see whenever k ≥ T1, it is guaranteed to have ‖gk+1 −∇f(x∗)‖2 ≤
λ
3 . Therefore, one must have

∣∣|[gk+1]j | − |[∇f(x∗)]j |
∣∣ ≤ λ

3 , ∀j. Then it is easy to see that

|[gk+1]i| − |[gk+1]j | ≥ λ
3 ,∀j. Hence, we have arg maxj |[gk+1]j | = i.

Next we show that there exists another constant T = max{T1, (3C5
λ)2 − 3}, such that

arg maxj |[ĝk+1]j | = i,∀k ≥ T , which further indicates only the i-th entry of v̂k+1 is non-

zero. In this case, in view of Lemma 21, we have∥∥ĝk+1 −∇f(x∗)
∥∥
2

=
∥∥(1− δk)gk + δk∇f(xk+1)− δk∇f(xk+1) + δk∇f(yk)−∇f(x∗)

∥∥
2

≤
∥∥gk+1 −∇f(x∗)‖2 + δk‖∇f(xk+1)−∇f(yk)

∥∥
2
≤
∥∥gk+1 −∇f(x∗)‖2 + δ2kL2D2

≤ C2√
k + 3− 1

+
4L2D2

(k + 3)2
≤ C5√

k + 3− 1
,∀k ≥ T1

where C5 ≤ C2 + 4L2D2

(
√
T1+3−1)3 .

Hence whenever k ≥ max{T1, (3C5
λ +1)2−3}, it is guaranteed to have ‖ĝk+1−∇f(x∗)‖2 ≤

λ
3 . Therefore, one must have

∣∣|[ĝk+1]j |− |[∇f(x∗)]j |
∣∣ ≤ λ

3 , ∀j. It is thus straightforward to see

that |[ĝk+1]i| − |[ĝk+1]j | ≥ λ
3 , ∀j. Hence, it is clear that arg maxj |[ĝk+1]j | = i.

Then one can see that when k ≥ T , we have vk+1 − v̂k+1 = 0.

Next, we modify Lemma 24 to cope with the `1 norm ball constraint.

Lemma 26. Let ξ0 = 0 and T be the same as in Lemma 25. Denote Φ∗k := Φk(vk) as the

minimum value of Φk(x) over X , then we have

f(xk) ≤ Φk(vk) = Φ∗k + ξk, ∀k ≥ 0

where for k < T , ξk+1 = (1− δk)ξk + 3LD2

2 δ2k, and ξk+1 = (1− δk)ξk for k ≥ T .

Proof. The proof for k < T is similar as that in Lemma 17, hence it is omitted here. We mainly

focus on the case where k ≥ T . Using similar argument as in Lemma 24, we have

Φ∗k+1 ≥ f(xk+1) + δk
〈
∇f(xk+1),vk+1 − v̂k+1

〉
− (1− δk)ξk

= f(xk+1)− (1− δk)ξk

where the last inequality is because of Lemma 25.

97

Theorem 15. Consider X is an `1 norm ball. If arg maxj
∣∣[∇f(x∗)]j

∣∣ has cardinality 1, and

Assumptions 1 - 3 are satisfied, ExtraFW guarantees that

f(xk)− f(x∗) = O
(1

k2

)
.

Proof. Let T be defined the same as in Lemma 25. For convenience denote ξk+1 = (1−δk)ξk+

θk. When k < T , we have θk = 3LD2

2 δ2k; when k ≥ T , we have θk = 0. Then we can write

ξk+1 = (1− δk)ξk + θk =

k∑
τ=0

θτ

k∏
j=τ+1

(1− δj) =

k∑
τ=0

θτ
(τ + 2)(τ + 3)

(k + 2)(k + 3)

=
T−1∑
τ=0

3LD2

2
δ2τ

(τ + 2)(τ + 3)

(k + 2)(k + 3)
=

6LD2T

(k + 2)(k + 3)
. (4.22)

Finally, applying Lemma 14, we have

f(xk)− f(x∗) ≤
2
[
f(x0)− f(x∗)

]
(k + 1)(k + 2)

+ ξk. (4.23)

Plugging the expression of ξk, i.e., (4.22) into (4.23) completes the proof.

0 300 600 900 1200 1500
k

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

0 300 600 900 1200 1500
k

10 9

10 8

10 7

10 6

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

GD
NAG
FW
AFW
ExtraFW

(a) mnist (b) mushroom

Figure 4.5: ExtraFW guarantees an O(1
k2) rate on simplex.

Beyond `1 norm ball. The O(T
k2

) rate in Theorem 15 can be generalized in a straightfor-

ward manner to simplex, that is, X := {x|x ≥ 0, 〈1,x〉 = R} for some R > 0. A minor

assumption needed is that the cardinality of arg minj [∇f(x∗)]j is 1. In this case, the FW

steps in ExtraFW admit closed-form solutions. Again taking vk+1 as an example, we have

vk+1 = [0, . . . , 0, R, 0, . . . , 0], where the only non-zero is the i = arg minj [gk+1]j-th entry.

98

The proof is similar to the `1 norm ball case, i.e., first show that both gk+1 and ĝk+1 converge to

∇f(x∗) so that vk+1 = v̂k+1,∀k ≥ T , where T is some constant depending on the difference

of the smallest and the second smallest entry of ∇f(x∗). Then one can follow similar steps of

Lemma 26 to obtain the O(T
k2

) rate. Numerical evidences using logistic regression as objective

function can be found in Figure 4.5. Note that in this case however, FW itself converges fast

enough.

4.5.9 n-support norm ball

When X is an n-support norm ball, ExtraFW guarantees that f(xk) − f(x∗) = O
(
T
k2

)
. The

proof is just a combination of Theorem 14 and 15, therefore, we highlight the general idea rather

than repeat the proofs step by step.

The norm considered in this section for defining L and D is ‖ · ‖2, that is, ‖∇f(x) −
∇f(y)‖2 ≤ L‖x − y‖2,∀x,y ∈ X̃ , and ‖x − y‖2 ≤ D,∀x,y ∈ X . Besides Assumptions 1

- 3, the extra regularity condition we need is that: the n-th largest entry of |[∇f(x∗)]| is strictly

larger than the (n+ 1)-th largest entry of |[∇f(x∗)]| by λ. Note that this condition is similar to

what we used for the `1 norm ball constraint. In addition, this extra assumption directly implies

‖∇f(x∗)‖2 := G∗ > 0. In the proof one may find the constant G∗n := ‖topn(∇f(x∗))‖2
helpful. Clearly, G∗ ≥ G∗n ≥

√
n
dG
∗.

Theorem 16. Consider X is an n-support norm ball. If the n-th largest entry of |[∇f(x∗)]|
is strictly larger than the (n + 1)-th largest entry of |[∇f(x∗)]|, and Assumptions 1 - 3 are

satisfied, ExtraFW guarantees that there exists a constant T such that

f(xk)− f(x∗) = O
(T
k2

)
.

Proof. First by using the regularity condition and similar arguments of Lemma 25, one can

show that there exists a constant T1 (depending on λ, L, D, and, G) such that the indices of the

non-zero entries of vk+1 and v̂k+1 are the same for all k ≥ T1.

Next, using similar arguments of Lemma 22, one can show that there exists a constant T̃2
such that ‖topn(gk+1)‖2 ≥ G∗

n
2 .

Let T2 = max{T̃2, T1}. It is clear that for any k ≥ T2, the indices of non-zero entries of

vk+1 and v̂k+1 are the same. Together with ‖topn(gk+1)‖2 ≥ G∗
n
2 ,∀k ≥ T2, we can show that

for any k ≥ T2 + 1, ‖vk+1 − v̂k+1‖2 = O(δ3k) holds through similar steps as Lemma 23.

99

Finally, using similar arguments of Lemma 24 with the aid of ‖vk+1 − v̂k+1‖2 = O(δ3k),

and applying Lemma 14, we can obtain f(xk)− f(x∗) = O
(
T2
k2

)
.

4.5.10 Additional Numerical Results

All numerical experiments are performed using Python 3.7 on an Intel i7-4790CPU @3.60 GHz

(32 GB RAM) desktop.

Efficiency of ExtraFW: Case Study of n-support Norm Ball In this subsection we show

that ExtraFW achieves fast convergence rate and low iteration cost simultaneously when the

constraint set is an n-support norm ball. We compare algorithms that can solve the constrained

formulation or its equivalent regularized formulation discussed in Section 4.3.3, that is

min
x

f(x) + λ(‖x‖n−sp)2 (4.24a)

⇔ min
x

f(x) s.t. ‖x‖n−sp ≤ R (4.24b)

where ‖ · ‖n−sp denotes the n-support norm [12].

Clearly, one can apply proximal NAG (Prox-NAG) to (4.24a). The proximal operator per

iteration has complexity O(d(n+ log d)) [12].

One can also apply ExtraFW for (4.24b). From the Lagrangian duality of (4.24b) and

(4.24a), one can see that if λ 6= 0, one must have an optimal solution for (4.24b) lies on

the boundary of its constraint set. Hence ExtraFW achieves acceleration in this case. Below

we summarize the convergence rate and per iteration cost of different algorithms. A simple

comparison among different algorithms illustrates the efficiency of ExtraFW.

Table 4.1: A comparison of different algorithms for logistic regression with n-support norm

Alg. convergence rate per iteration cost

Prox-NAG for (4.24a) O(1/k2) proximal operator: O(d(n+ log d))

Projected NAG for (4.24b) O(1/k2) projection is expensive

FW for (4.24b) O(1/k) FW step: O(d log n)

ExtraFW for (4.24b) O(T/k2) FW step: O(d log n)

100

4.5.11 Binary classification

Table 4.2: A summary of datasets used in numerical tests

Dataset d N (train) nonzeros

w7a 300 24, 692 3.89%

realsim 20, 958 50, 617 0.24%

news20 19, 996 1, 355, 191 0.033%

mushromm 122 8, 124 18.75%

mnist (digit 4) 784 60, 000 12.4%

The datasets used for the tests are summarized in Table 4.2.

0 400 800 1200 1600 2000
k

0.90

0.92

0.94

0.96

0.98

1.00

te
st

 a
cc

ur
ac

y

GD
NAG
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.80

0.84

0.88

0.92

0.96

1.00

te
st

 a
cc

ur
ac

y

GD
NAG
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.90

0.92

0.94

0.96

0.98

1.00

te
st

 a
cc

ur
ac

y

GD
NAG
FW
AFW
ExtraFW

(a1) mnist, `2 norm ball (a2) mushroom, `2 norm ball (b1) mnist, `1 norm ball

0 400 800 1200 1600 2000
k

0.85

0.88

0.91

0.94

0.97

1.00

te
st

 a
cc

ur
ac

y

GD
NAG
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.90

0.92

0.94

0.96

0.98

1.00

te
st

 a
cc

ur
ac

y

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.95

0.96

0.97

0.98

0.99

1.00

te
st

 a
cc

ur
ac

y

FW
AFW
ExtraFW

(a2) mushroom, `1 norm ball (c1) mnist, n-supp norm ball (c2) mushroom, n-supp norm ball

Figure 4.6: Test accuracy of ExtraFW on different constraints.

The test accuracy of different algorithms can be found in Figure 4.6. Additional numerical

results for `1 norm ball constraint can be found in Figure 4.7. It can be seen that on dataset

realsim, ExtraFW has similar performance with AFW, both outperforming FW significantly.

On dataset news20, ExtraFW outperforms AFW in terms of optimality error.

101

0 400 800 1200 1600 2000
k

10 3

10 2

10 1

100
f(x

k)
f(x

*)
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

10 5

10 4

10 3

10 2

10 1

f(x
k)

f(x
*)

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.9985

0.9990

0.9995

1.0000

sp
ar

sit
y

of
 x

k

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.00007

0.00008

0.00009

0.00010

sp
ar

sit
y

of
 x

k

+9.999e 1
FW
AFW
ExtraFW

(a) realsim (b) news20

Figure 4.7: Additional tests of ExtraFW for classification with X being an `1 norm ball.

102

0 400 800 1200 1600 2000
k

10 5

10 4

10 3

10 2

10 1

100
f(x

k)
f(x

*)
FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

10 5

10 4

10 3

10 2

10 1

100

f(x
k)

f(x
*)

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.990

0.992

0.994

0.996

0.998

1.000

sp
ar

sit
y

of
 x

k

FW
AFW
ExtraFW

0 400 800 1200 1600 2000
k

0.00002

0.00004

0.00006

0.00008

0.00010

sp
ar

sit
y

of
 x

k

+9.999e 1
FW
AFW
ExtraFW

(a) realsim (b) news20

Figure 4.8: Additional tests of ExtraFW for classification with X being an n-support norm ball.

Additional tests for n-support norm ball constraint are listed in Figure 4.8. The optimality

error of ExtraFW is smaller than AFW on both realsim and news20.

Chapter 5

Summary and Future Directions

To conclude this dissertation, a summary of its main results and possible directions for future

research are provided in this final chapter.

5.1 Thesis Summary

Chapter 2 demonstrated the merits of heavy ball momentum for FW (HFW). Multiple choices of

the step size ensured a tighter Type II primal-dual error bound that can be efficiently computed

when adopted as stopping criterion. An even tighter PD error bound can be achieved by relying

jointly on heavy ball momentum and restart. A novel and general approach was developed to

compute local Lipschitz constants in FW type algorithms.

In Chapter 3, we built links between Nesterov’s momentum and the FW step by observing

that they are both minimizing an (approximated) lower bound of the objective function. Explor-

ing this link, we show how momentum benefits parameter-free FW. In particular, a momentum

variant of FW, which we term AFW, was proved to achieve a faster rate on active `p norm ball

constraints while maintaining the same convergence rate as FW on general problems. AFW

thus strictly outperforms FW providing the possibility for acceleration.

A new parameter-free FW variant, ExtraFW, is introduced and analyzed in Chapter 4. Ex-

traFW leverages two gradient evaluations per iteration to update in a “prediction-correction”

manner. We show that ExtraFW converges at O(1k) on general problems, while achieving a

faster rate O(TLD
2

k2
) on certain types of constraint sets including active `1, `2 and n-support

norm balls. The convergence rate of ExtraFW improves over AFW. Given the possibility of

103

104

acceleration, ExtraFW is thus a competitive alternative to FW.

The efficiency of HFW, AFW, and ExtraFW is validated on tasks such as i) binary classifica-

tion with different constraints, and ii) matrix completion problems. The numerical experiments

aligns well with our theoretical findings, demonstrating the potential of momentum for FW type

algorithms.

5.2 Future research

The results in this dissertation open up interesting directions for a number of future research

topics, including both theories and applications. Next, we briefly discuss a couple of topics that

we pursue currently.

• Momentum for FW on polytopes. While this dissertation copes with general convex

constraint sets, it is known that there are FW variants with faster rates [44, 42], and those

with leveraging oracle simpler than LMO [91, 92]. Therefore, one natural question to ask

is that given a polytope constraint, can momentum help to make FW (variants) even more

efficient?

• Local smoothness in FW. Estimate of the Lipschitz constant L is typically too pes-

simistic, this is the key reason that smooth step sizes do not perform well in our numeri-

cal tests. Although this problem can be partially solved via directional-smooth step sizes,

it is not always easy to compute the directional-smooth parameter. We believe that it is

possible to access the local smoothness in a more delicate and adaptive manner such as

[93].

• Momentum aided FW for stochastic optimization. While this thesis demonstrates the

benefit of momentum for batch methods, whether momentum is helpful for stochastic FW,

e.g., [56, 57] is still unclear. It is intriguing to investigate and analyze related algorithms.

As FW is sensitive to stochastic noise [7, 94, 95], understanding the performance of

momentum in this setting is even more challenging. Another relating topic is to combine

variance reduction techniques [96, 97, 98, 75, 99, 80, 100, 101] with momentum FW. As

the stochastic noise is carefully controlled in such methods, intuitively it should be easier

to use with stochastic FW with momentum.

105

• Stochastic bandits from a FW point of view. FW also links with other fundamental

machine learning frameworks such as stochastic bandit [102]. Building upon this link,

it might be beneficial to revisit classical bandit problems [103, 104, 105, 106] using a

FW perspective. Hopefully, the fruitful results in FW literature can cross-fertilize bandit

problems by providing more insights and alternative approaches to handle the classical

problem.

• Pruning for overparameterized deep neural networks (DNN). The faster rates of AFW

and ExtraFW in Chapters 3 and 4 will carry over to DNN pruning. Building upon [32],

we hope to establish that AFW- and ExtraFW-based pruning will incur losses bounded

by εn = O(min{ 1n ,
nt
n2 }) for a certain problem-dependent constant nt that has analytical

form and n denoting the remaining neurons. As a result, the hope AFW and ExtraFW

will accelerate DNN pruning. Another important implication of the envisioned bound on

the loss is that εn is strictly smaller than O(1
n) when n ≥ nt. This suggests that DNN

pruning benefits from overparametrization, meaning that it is useful to set the number of

neurons in an un-pruned network to satisfyN > n ≥ nt. This result corroborates a recent

study [32], which also points out that overparametrization is helpful for pruning DNNs.

While [32] does not quantify how many neurons should comprise an overparametrized

DNN, our bound on εn establishes that at least nt neurons are required.

• Frank Wolfe for fairness constraints. Recent years have witnessed the pressing need to

develop algorithms that satisfy fair, responsible and trustworthy requirements on machine

learning models. One of the solutions is to pose fair constraints [107]. We hope to

develop FW variants that are tailored for such fair constraints. Our vision is that the

FW subproblem can be explainable, making the obtained model more convincing and

reasonable.

References

[1] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval

research logistics quarterly, 3(1-2):95–110, 1956.

[2] Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In

Proc. Intl. Conf. on Machine Learning, pages 427–435, 2013.

[3] Guanghui Lan. The complexity of large-scale convex programming under a linear opti-

mization oracle. arXiv preprint arXiv:1309.5550, 2013.

[4] Robert M Freund and Paul Grigas. New analysis and results for the Frank–Wolfe method.

Mathematical Programming, 155(1-2):199–230, 2016.

[5] Bingcong Li, Alireza Sadeghi, and Georgios Giannakis. Heavy ball momentum for con-

ditional gradient. Proc. Advances in Neural Info. Process. Syst., 34, 2021.

[6] Simon Lacoste-Julien. Convergence rate of frank-wolfe for non-convex objectives. arXiv

preprint arXiv:1607.00345, 2016.

[7] Sashank J Reddi, Suvrit Sra, Barnabás Póczos, and Alex Smola. Stochastic frank-wolfe

methods for nonconvex optimization. In 2016 54th annual Allerton conference on com-

munication, control, and computing (Allerton), pages 1244–1251. IEEE, 2016.

[8] Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.

Springer Science & Business Media, 2004.

[9] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal

Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

106

107

[10] Gabriel Peyré, Marco Cuturi, et al. Computational ooptimal transport: With applications

to data science. Foundations and Trends® in Machine Learning, 11(5-6):355–607, 2019.

[11] Xiangrong Zeng and Mário AT Figueiredo. Decreasing weighted sorted `1 regularization.

IEEE Signal Processing Letters, 21(10):1240–1244, 2014.

[12] Andreas Argyriou, Rina Foygel, and Nathan Srebro. Sparse prediction with the k-support

norm. In Proc. Advances in Neural Info. Process. Syst., pages 1457–1465, 2012.

[13] Maryam Fazel. Matrix rank minimization with applications. 2002.

[14] James Bennett, Stan Lanning, et al. The Netflix prize. In Proc. KDD cup and workshop,

volume 2007, page 35. New York, NY, USA., 2007.

[15] Robert M Bell and Yehuda Koren. Lessons from the Netflix prize challenge. SiGKDD

Explorations, 9(2):75–79, 2007.

[16] Zeyuan Allen-Zhu, Elad Hazan, Wei Hu, and Yuanzhi Li. Linear convergence of a Frank-

Wolfe type algorithm over trace-norm balls. In Proc. Advances in Neural Info. Process.

Syst., pages 6191–6200, 2017.

[17] Zaid Harchaoui, Anatoli Juditsky, and Arkadi Nemirovski. Conditional gradient algo-

rithms for norm-regularized smooth convex optimization. Mathematical Programming,

152(1-2):75–112, 2015.

[18] Robert M Freund, Paul Grigas, and Rahul Mazumder. An extended Frank–Wolfe method

with “in-face” directions, and its application to low-rank matrix completion. SIAM Jour-

nal on Optimization, 27(1):319–346, 2017.

[19] Liang Zhang, Vassilis Kekatos, and Georgios B Giannakis. A generalized frank-wolfe

approach to decentralized electric vehicle charging. In 2016 IEEE 55th Conference on

Decision and Control (CDC), pages 1105–1111. IEEE, 2016.

[20] Liang Zhang, Gang Wang, Daniel Romero, and Georgios B Giannakis. Randomized

block Frank–Wolfe for convergent large-scale learning. IEEE Transactions on Signal

Processing, 65(24):6448–6461, 2017.

108

[21] Yu-Xiang Wang, Veeranjaneyulu Sadhanala, Wei Dai, Willie Neiswanger, Suvrit Sra,

and Eric Xing. Parallel and distributed block-coordinate frank-wolfe algorithms. In

Proc. Intl. Conf. on Machine Learning, pages 1548–1557. PMLR, 2016.

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proc. of IEEE Conf. on Computer Vision and Pattern Recognition,

pages 770–778, 2016.

[23] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Proc. Advances

in Neural Info. Process. Syst., 30, 2017.

[24] Bingcong Li, Tianyi Chen, and Georgios B Giannakis. Secure mobile edge comput-

ing in iot via collaborative online learning. IEEE Transactions on Signal Processing,

67(23):5922–5935, 2019.

[25] Bingcong Li, Tianyi Chen, Xin Wang, and Georgios B Giannakis. Real-time energy man-

agement in microgrids with reduced battery capacity requirements. IEEE Transactions

on Smart Grid, 10(2):1928–1938, 2017.

[26] Han Cai, Ligeng Zhu, and Song Han. ProxylessNAS: Direct neural architecture search

on target task and hardware. arXiv preprint arXiv:1812.00332, 2018.

[27] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua

Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-

vain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition

at scale. arXiv preprint arXiv:2010.11929, 2020.

[28] Song Han, Jeff Pool, John Tran, and William J Dally. Learning both weights and con-

nections for efficient neural networks. arXiv preprint arXiv:1506.02626, 2015.

[29] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui

Zhang. Learning efficient convolutional networks through network slimming. In Proc.

IEEE Intl. Conf. on Computer Vision and Pattern Recognition, pages 2736–2744, 2017.

109

[30] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei

Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron impor-

tance score propagation. In Proc. IEEE Conf. on Computer Vision and Pattern Recogni-

tion, pages 9194–9203, 2018.

[31] Ben Mussay, Margarita Osadchy, Vladimir Braverman, Samson Zhou, and Dan Feldman.

Data-independent neural pruning via coresets. arXiv preprint arXiv:1907.04018, 2019.

[32] Mao Ye, Chengyue Gong, Lizhen Nie, Denny Zhou, Adam Klivans, and Qiang Liu.

Good subnetworks provably exist: Pruning via greedy forward selection. In Proc. Intl.

Conf. on Machine Learning, 2020.

[33] Masao Fukushima. A modified Frank-Wolfe algorithm for solving the traffic assignment

problem. Transportation Research Part B: Methodological, 18(2):169–177, 1984.

[34] Tri Nguyen, Xiao Fu, and Ruiyuan Wu. Memory-efficient convex optimization for self-

dictionary separable nonnegative matrix factorization: A frank-wolfe approach. arXiv

preprint arXiv:2109.11135, 2021.

[35] Armand Joulin, Kevin Tang, and Li Fei-Fei. Efficient image and video co-localization

with Frank-Wolfe algorithm. In Proc. European Conf. on Computer Vision, pages 253–

268. Springer, 2014.

[36] Simon Lacoste-Julien, Fredrik Lindsten, and Francis Bach. Sequential kernel herding:

Frank-Wolfe optimization for particle filtering. In Proc. Intl. Conf. on Artificial Intelli-

gence and Statistics, pages 544–552, 2015.

[37] Immanuel M Bomze, Francesco Rinaldi, and Damiano Zeffiro. Fast cluster detection in

networks by first-order optimization. arXiv preprint arXiv:2103.15907, 2021.

[38] Jinghui Chen, Dongruo Zhou, Jinfeng Yi, and Quanquan Gu. A frank-wolfe framework

for efficient and effective adversarial attacks. In Proceedings of the AAAI conference on

artificial intelligence, volume 34, pages 3486–3494, 2020.

[39] Leonard Berrada, Andrew Zisserman, and M Pawan Kumar. Deep frank-wolfe for neural

network optimization. arXiv preprint arXiv:1811.07591, 2018.

110

[40] Giulia Luise, Saverio Salzo, Massimiliano Pontil, and Carlo Ciliberto. Sinkhorn barycen-

ters with free support via Frank-Wolfe algorithm. In Proc. Advances in Neural Info.

Process. Syst., pages 9318–9329, 2019.

[41] Cyrille W Combettes and Sebastian Pokutta. Complexity of linear minimization and

projection on some sets. Operations Research Letters, 49(4):565–571, 2021.

[42] Simon Lacoste-Julien and Martin Jaggi. On the global linear convergence of Frank-

Wolfe optimization variants. In Proc. Advances in Neural Info. Process. Syst., pages

496–504, 2015.

[43] Jacques Guélat and Patrice Marcotte. Some comments on Wolfe’s ‘away step’. Mathe-

matical Programming, 35(1):110–119, 1986.

[44] BF Mitchell, Vladimir Fedorovich Dem’yanov, and VN Malozemov. Finding the point

of a polyhedron closest to the origin. SIAM Journal on Control, 12(1):19–26, 1974.

[45] Evgeny S Levitin and Boris T Polyak. Constrained minimization methods. USSR Com-

putational mathematics and mathematical physics, 6(5):1–50, 1966.

[46] Boris T Polyak. Some methods of speeding up the convergence of iteration methods.

Ussr computational mathematics and mathematical physics, 4(5):1–17, 1964.

[47] Euhanna Ghadimi, Hamid Reza Feyzmahdavian, and Mikael Johansson. Global conver-

gence of the heavy-ball method for convex optimization. In Proc. of European control

conference, pages 310–315, 2015.

[48] Y Nesterov. A method of solving a convex programming problem with convergence rate

1/k2. In Soviet Math. Dokl, volume 27, 1983.

[49] Guanghui Lan and Yi Zhou. Conditional gradient sliding for convex optimization. SIAM

Journal on Optimization, 26(2):1379–1409, 2016.

[50] Alexander Schwing, Tamir Hazan, Marc Pollefeys, and Raquel Urtasun. Globally con-

vergent parallel MAP LP relaxation solver using the Frank-Wolfe algorithm. In Proc.

Intl. Conf. on Machine Learning, pages 487–495, 2014.

111

[51] Kenneth L Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algo-

rithm. ACM Transactions on Algorithms (TALG), 6(4):63, 2010.

[52] Yu Nesterov. Complexity bounds for primal-dual methods minimizing the model of

objective function. Mathematical Programming, 171(1-2):311–330, 2018.

[53] Jelena Diakonikolas and Lorenzo Orecchia. The approximate duality gap technique: A

unified theory of first-order methods. SIAM Journal on Optimization, 29(1):660–689,

2019.

[54] Brendan O’donoghue and Emmanuel Candes. Adaptive restart for accelerated gradient

schemes. Foundations of computational mathematics, 15(3):715–732, 2015.

[55] Dan Garber and Elad Hazan. Faster rates for the Frank-Wolfe method over strongly-

convex sets. In Proc. Intl. Conf. on Machine Learning, 2015.

[56] Aryan Mokhtari, Hamed Hassani, and Amin Karbasi. Stochastic conditional gradi-

ent methods: From convex minimization to submodular maximization. arXiv preprint

arXiv:1804.09554, 2018.

[57] Mingrui Zhang, Zebang Shen, Aryan Mokhtari, Hamed Hassani, and Amin Karbasi.

One sample stochastic Frank-Wolfe. In Proc. Intl. Conf. on Artificial Intelligence and

Statistics, pages 4012–4023. PMLR, 2020.

[58] Bingcong Li, Mario Coutino, Georgios B Giannakis, and Geert Leus. A momentum-

guided Frank-Wolfe algorithm. IEEE Trans. on Signal Processing, 69:3597–3611, 2021.

[59] Jacob D Abernethy and Jun-Kun Wang. On Frank-Wolfe and equilibrium computation.

In Proc. Advances in Neural Info. Process. Syst., pages 6584–6593, 2017.

[60] Bingcong Li, Lingda Wang, Georgios B Giannakis, and Zhizhen Zhao. Enhancing Frank

Wolfe with an extra subproblem. In Proc. of AAAI Conf. on Artificial Intelligence, 2021.

[61] Hui Zou and Trevor Hastie. Regularization and variable selection via the elastic net.

Journal of the royal statistical society: series B (statistical methodology), 67(2):301–

320, 2005.

112

[62] Bo Liu, Xiao-Tong Yuan, Shaoting Zhang, Qingshan Liu, and Dimitris N Metaxas. Effi-

cient k-support-norm regularized minimization via fully corrective Frank-Wolfe method.

In Proc. Intl. Joint Conf. on Artifical Intelligence, pages 1760–1766, 2016.

[63] Yilang Zhang, Bingcong Li, and Georgios B Giannakis. Accelerating frank-wolfe with

weighted average gradients. In ICASSP 2021-2021 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 5529–5533. IEEE, 2021.

[64] Bingcong Li, Mario Coutiño, and Georgios B Giannakis. Revisit of estimate sequence

for accelerated gradient methods. In ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing (ICASSP), pages 3602–3606. IEEE, 2020.

[65] Fabian Pedregosa, Armin Askari, Geoffrey Negiar, and Martin Jaggi. Step-size adaptivity

in projection-free optimization. arXiv preprint arXiv:1806.05123, 2018.

[66] Gábor Braun, Sebastian Pokutta, Dan Tu, and Stephen Wright. Blended conditional

gradients: the unconditioning of conditional gradients. arXiv preprint arXiv:1805.07311,

2018.

[67] Dan Garber and Ofer Meshi. Linear-memory and decomposition-invariant linearly con-

vergent conditional gradient algorithm for structured polytopes. In Proc. Advances in

Neural Info. Process. Syst., pages 1001–1009, 2016.

[68] Thomas Kerdreux, Alexandre d’Aspremont, and Sebastian Pokutta. Projection-free op-

timization on uniformly convex sets. arXiv preprint arXiv:2004.11053, 2020.

[69] Jacob Abernethy, Kevin A Lai, Kfir Y Levy, and Jun-Kun Wang. Faster rates for convex-

concave games. In Conference On Learning Theory, pages 1595–1625, 2018.

[70] Francis Bach. On the effectiveness of richardson extrapolation in machine learning. arXiv

preprint arXiv:2002.02835, 2020.

[71] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for

linear inverse problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

[72] Yu Nesterov. Universal gradient methods for convex optimization problems. Mathemat-

ical Programming, 152(1-2):381–404, 2015.

113

[73] Zeyuan Allen-Zhu and Lorenzo Orecchia. Linear coupling: An ultimate unification of

gradient and mirror descent. arXiv preprint arXiv:1407.1537, 2014.

[74] Walid Krichene, Alexandre Bayen, and Peter L Bartlett. Accelerated mirror descent in

continuous and discrete time. In Proc. Advances in Neural Info. Process. Syst., pages

2845–2853, 2015.

[75] Atsushi Nitanda. Stochastic proximal gradient descent with acceleration techniques.

In Proc. Advances in Neural Info. Process. Syst., pages 1574–1582, Montreal, Canada,

2014.

[76] Hongzhou Lin, Julien Mairal, and Zaid Harchaoui. A universal catalyst for first-order op-

timization. In Proc. Advances in Neural Info. Process. Syst., pages 3384–3392, Montreal,

Canada, 2015.

[77] Weijie Su, Stephen Boyd, and Emmanuel Candes. A differential equation for modeling

Nesterov accelerated gradient method: Theory and insights. In Proc. Advances in Neural

Info. Process. Syst., pages 2510–2518, 2014.

[78] Jingzhao Zhang, Aryan Mokhtari, Suvrit Sra, and Ali Jadbabaie. Direct runge-kutta

discretization achieves acceleration. In Proc. Advances in Neural Info. Process. Syst.,

pages 3900–3909, 2018.

[79] Bin Shi, Simon S Du, Weijie J Su, and Michael I Jordan. Acceleration via symplectic

discretization of high-resolution differential equations. arXiv preprint arXiv:1902.03694,

2019.

[80] Andrei Kulunchakov and Julien Mairal. Estimate sequences for variance-reduced

stochastic composite optimization. In Proc. Intl. Conf. on Machine Learning, 2019.

[81] Bingcong Li, Lingda Wang, and Georgios B Giannakis. Almost tune-free variance re-

duction. In Proc. Intl. Conf. on Machine Learning, 2020.

[82] Zhaoyue Chen, Mokhwa Lee, and Yifan Sun. Continuous time frank-wolfe does not

zig-zag. arXiv preprint arXiv:2106.05753, 2021.

114

[83] Arkadi Nemirovski. Prox-method with rate of convergence o(1/t) for variational in-

equalities with lipschitz continuous monotone operators and smooth convex-concave

saddle point problems. SIAM Journal on Optimization, 15(1):229–251, 2004.

[84] Joseph C Dunn. Rates of convergence for conditional gradient algorithms near singular

and nonsingular extremals. SIAM Journal on Control and Optimization, 17(2):187–211,

1979.

[85] Lijun Ding, Yingjie Fei, Qiantong Xu, and Chengrun Yang. Spectral Frank-Wolfe algo-

rithm: Strict complementarity and linear convergence. In Proc. Intl. Conf. on Machine

Learning, 2020.

[86] Dan Garber. Revisiting Frank-Wolfe for polytopes: Strict complementary and sparsity.

arXiv preprint arXiv:2006.00558, 2020.

[87] John Duchi, Shai Shalev-Shwartz, Yoram Singer, and Tushar Chandra. Efficient projec-

tions onto the l 1-ball for learning in high dimensions. In Proc. Intl. Conf. on Machine

Learning, pages 272–279. ACM, 2008.

[88] GM Korpelevich. The extragradient method for finding saddle points and other problems.

Matecon: translations of Russian and East European mathematical economics, 12:747–

756, 1976.

[89] Jelena Diakonikolas and Lorenzo Orecchia. Accelerated extra-gradient descent: A novel

accelerated first-order method. arXiv preprint arXiv:1706.04680, 2017.

[90] Ali Kavis, Kfir Y Levy, Francis Bach, and Volkan Cevher. Unixgrad: A universal, adap-

tive algorithm with optimal guarantees for constrained optimization. In Proc. Advances

in Neural Info. Process. Syst., pages 6257–6266, 2019.

[91] Gábor Braun, Sebastian Pokutta, and Daniel Zink. Lazifying conditional gradient algo-

rithms. In Proc. Intl. Conf. on Machine Learning, pages 566–575. PMLR, 2017.

[92] Gábor Braun, Sebastian Pokutta, Dan Tu, and Stephen Wright. Blended conditonal gra-

dients. In Proc. Intl. Conf. on Machine Learning, pages 735–743. PMLR, 2019.

[93] Yura Malitsky and Konstantin Mishchenko. Adaptive gradient descent without descent.

arXiv preprint arXiv:1910.09529, 2019.

115

[94] Geoffrey Négiar, Gideon Dresdner, Alicia Tsai, Laurent El Ghaoui, Francesco Locatello,

Robert Freund, and Fabian Pedregosa. Stochastic frank-wolfe for constrained finite-sum

minimization. In Proc. Intl. Conf. on Machine Learning, pages 7253–7262. PMLR, 2020.

[95] Francesco Locatello, Alp Yurtsever, Olivier Fercoq, and Volkan Cevher. Stochastic frank-

wolfe for composite convex minimization. Proc. Advances in Neural Info. Process. Syst.,

32, 2019.

[96] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive

variance reduction. In Proc. Advances in Neural Info. Process. Syst., pages 315–323,

Lake Tahoe, Nevada, 2013.

[97] Lin Xiao and Tong Zhang. A proximal stochastic gradient method with progressive

variance reduction. SIAM Journal on Optimization, 24(4):2057–2075, 2014.

[98] Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takáč. SARAH: A novel method

for machine learning problems using stochastic recursive gradient. In Proc. Intl. Conf.

Machine Learning, Sydney, Australia, 2017.

[99] Bingcong Li, Meng Ma, and Georgios B Giannakis. On the convergence of SARAH and

beyond. arXiv preprint arXiv:1906.02351, 2019.

[100] Alp Yurtsever, Suvrit Sra, and Volkan Cevher. Conditional gradient methods via stochas-

tic path-integrated differential estimator. In Proc. Intl. Conf. on Machine Learning, pages

7282–7291. PMLR, 2019.

[101] Elad Hazan and Haipeng Luo. Variance-reduced and projection-free stochastic optimiza-

tion. In Proc. Intl. Conf. on Machine Learning, pages 1263–1271. PMLR, 2016.

[102] Quentin Berthet and Vianney Perchet. Fast rates for bandit optimization with upper-

confidence frank-wolfe. Proc. Advances in Neural Info. Process. Syst., 30, 2017.

[103] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochas-

tic multiarmed bandit problem. SIAM Journal on Computing, 32(1):48–77, 2002.

[104] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-

armed bandit problem. Machine Learning, 47(2-3):235–256, 2002.

116

[105] Bingcong Li, Tianyi Chen, and Georgios B Giannakis. Bandit online learning with un-

known delays. In The 22nd International Conference on Artificial Intelligence and Statis-

tics, pages 993–1002. PMLR, 2019.

[106] Lingda Wang, Huozhi Zhou, Bingcong Li, Lav R Varshney, and Zhizhen Zhao. Near-

optimal algorithms for piecewise-stationary cascading bandits. In ICASSP 2021-2021

IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),

pages 3365–3369. IEEE, 2021.

[107] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P Gum-

madi. Fairness constraints: A flexible approach for fair classification. The Journal of

Machine Learning Research, 20(1):2737–2778, 2019.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	Introduction
	Problem statement
	Use cases of FW
	Sparse signal recovery
	Sparse classification
	Matrix completion
	Coordination of electric vehicle charging
	Neural network pruning
	Other applications

	FW theories
	A close view of the FW subproblem
	FW step sizes

	Open issues of FW and contributions

	Heavy ball momentum for FW
	Introduction
	FW with heavy ball momentum
	Algorithm
	Parameter-free step size
	Smooth step size
	Line search
	Further considerations
	A side result: directional smooth step sizes

	Restart further tightens the PD error
	Numerical tests
	Binary classification
	Matrix completion

	Appendix
	f(xk+1) f(xk) for the smooth step sizes in Alg. 2
	Proof of Lemma 1
	Proof of Theorem 1
	Proof of Theorem 2
	An extension of Theorem 2 for per step descent of Gk
	Line search for Alg. 2
	Proof of Theorem 4
	Proof for choosing k =
	Additional discussions
	Stopping criterion
	Proof of Theorem 5
	Proof of Corollary 2
	Computing directionally smooth constant
	Numerical tests on binary classification
	Numerical tests on matrix completion

	Nesterov's momentum for parameter-free FW
	Introduction
	Related works
	Our contributions

	Connecting Nesterov's momentum with FW
	Momentum-guided FW
	AFW convergence for general problems
	AFW acceleration for a class of problems

	Numerical tests
	Binary classification
	Matrix completion

	Appendix
	Proof of Theorem 8
	f(yk) + f(yk), vk+1-yk approximates f(x*)
	AGM links with FW in strongly convex case
	Proof of Lemma 3.
	A few useful lemmas.
	Proof of Lemma 4.
	Proof of Theorem 9
	Preparation to the proof of Theorem 10
	Proof of Theorem 10.
	1 norm ball
	p norm ball

	Enhancing Parameter-Free Frank Wolfe with an Extra Subproblem
	Introduction
	Preliminaries
	ExtraFW
	Algorithm design
	Convergence of ExtraFW
	Acceleration of ExtraFW

	Numerical tests
	Binary classification
	Matrix completion

	Appendix
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16
	Proof of Lemma 17
	Proof of Theorem 13
	Stopping criterion
	Proof of Theorem 14
	1 norm ball
	n-support norm ball
	Additional Numerical Results
	Binary classification

	Summary and Future Directions
	Thesis Summary
	Future research

	References

