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Abstract

Communication at millimeter-wave (mmWave) frequencies (ranging from 30 ∼ 300 GHz)

has been unanimously recognized as the essential remedy for addressing the current cellular

spectrum bottleneck. The exploration of this uncharted band commenced by the lower end

(28GHz) and now taps into the higher (60GHz) or even sub-Terahertz (100GHz) bands, making

mmWave communication a powerful pillar in future wireless networks. Unlike the precedent

generations deploying digital transceivers, the fifth-generation (5G) mmWave networks adopt

the so-called restricted (hybrid or low-bit) architecture to alleviate power requirements and over-

all cost. Aside from hardware limitations, the unique channel propagation environment and re-

markably augmented signal dimension necessitate a paradigm-shifting design. To this end, the

research investigation in this thesis deals with physical-layer mmWave communications with

restricted massive multiple-input multiple-output (mMIMO) structures.

The overarching goal throughout the technical design is to harness more (namely improved

error performance and higher spectrum efficiency) with less (that is, fewer pilot symbols and

lower computational complexity). The major efforts toward this target can be summarized as:

i) development of a new-domain index modulation to break the restriction of multiplexing gain

in narrowband hybrid systems; ii) a precoded index modulation scheme to boost spectrum effi-

ciency in wideband hybrid systems; iii) design of a doubly-selective channel estimator leverag-

ing the channel’s double sparsity, iv) a generic wideband multi-user transceiver following hybrid

block diagonalization framework; v) a model-enhanced learning-based detector to address the

uplink access issue for 1-bit systems; and vi) a vector-based constellation generator to facilitate

downlink multi-casting for 1-bit systems. The relevant findings and outcomes contribute to the

fundamental research and practical deployment of mmWave communications.
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Chapter 1

Introduction

1.1 Context and motivation

Since the first-generation wireless system launched in the early 1980s, cellular technologies

have been undergoing an upgrade almost every decade [5]. From the primitive analog radio to

today’s entirely digital signal, and from the very basic voice telephony to today’s high-definition

mobile TV, claiming the evolution in the telecommunication sector to be “earth-shaking” is

no exaggeration. Heading into the third decade of the 21st century, the fifth-generation (5G)

wireless communication network has been poised for worldwide standardization and deploy-

ment. According to the blueprint regulated by the International Mobile Telecommunications

2020 (IMT-2020), three disruptive application domains, namely enhanced mobile broadband

(eMBB), massive machine-type communications (mMTCs) and ultra-reliable low-latency com-

munications (uRLLCs) have been rolling out in the 5G era [6]. Some key 5G capabilities include

20 Gbps peak data rate, 0.1 Gbps user experienced data rate, 1 ms end-to-end latency, supporting

500 km/h mobility, 1 million devices/Km2 connection density, 10 Mbps/m2 area traffic capac-

ity, 3 times spectrum efficiency, and 100 times energy efficiency compared to fourth-generation

long-term-evolution (4G-LTE) [7].

Such powerful 5G indicators breed numerous exciting applications, including augmented

1
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reality, autonomous driving, and smart cities, which were technically incapable of being deliv-

ered by the peak data rate of around 100Mbps and latency up to dozens of ms in the 4G-LTE

era. For all the 5G predecessors, their operating bands reside in the congested sub-6GHz mi-

crowave spectrum. Even more serious is that many frequency bands have been regulated for

dedicated use. The outstanding spectrum bottleneck renders 4G-LTE incapable of supporting

data-intensive and delay-sensitive applications, motivating the exploration of mmWave frequen-

cies. Thanks to the maturity of semiconductor fabrication, deploying mmWave cellular has

become practically feasible. Meanwhile, a concerted effort from multiple international organi-

zations, including ECMA, IEEE 802.15.3 Task Group 3c, IEEE 802.11ad standardization task

group, and the Wireless Gigabit Alliance, has also sped up the mmWave standardization [8].

Convincing evidence of mmWave’s popularity is that major economic entities have basically

finalized the spectrum planning for commercial use1 .

Since the wavelengths are curtailed by magnitude at mmWave compared to the sub-6GHz

microwave frequencies, diffraction and material penetration will incur more significant atten-

uation. Furthermore, the various resonances of oxygen and other gasses in the air also lead

to pronounced signal absorption in the atmosphere [9]. For these reasons, mmWave has long

been recognized as unsuitable for long-range transmission. Fortunately, mmWave’s inherent

short wavelength makes it a perfect companion for the massive multiple-input multiple-output

(MIMO) technique [10]. The resulting diversity and multiplexing gain can be remarkable, help-

ing mmWave overcome severe path loss and fulfill reliable communication. In principle, shift-

ing to the higher mmWave band should not alter the digital baseband processing. However,

many implementing concerns, such as power consumption and hardware expenditure, prohibit

mmWave systems from inheriting fully-digital transceivers. In contrast, two economic yet re-

stricted (hybrid [11] and one-bit [12]) structures come into practical use. In conjunction with
1 Potential readers can refer to https://www.qualcomm.com/media/documents/files/spectrum-for-4g-and-5g.pdf

for more details about mmWave spectrum regulation and deployment.
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significantly augmented signal dimensions and complicated channel environments, it is imper-

ative to investigate a paradigm-shifting design to accommodate the restricted mmWave struc-

tures.

Actually, mmWave technologies, embracing hybrid structures, have been a hot research

area for nearly a decade. Some representative works include hybrid precoding [10], channel

estimation [13], beam tracking [14], codebook design [15] and channel modeling[16]. Among

these fruitful results, we find that existing works still exhibit three major limitations:

• Limited expanding capacity based on the restricted structure.

• Lack of coherent treatment for the wideband multi-user setup.

• No dedicated strategy to combat potential time variation.

This thesis will showcase a series of promising mmWave massive MIMO (mMIMO) techniques,

with an emphasis on the physical layer to harness more with less. We anticipate the relevant re-

sults will partially mitigate the existing research deficiencies and contribute to mmWave cellular

communication and networking.

1.2 Thesis Organization

The main body of this thesis comprises six chapters. For clarity, we visualize the organization

in Fig.1.1 and summarize what more has been harnessed with less.

Specifically, the central theme of Chapter 2 is an advanced index modulation named gener-

alized beamspace modulation (GBM) for a narrowband hybrid mmWave system. The key idea

behind GBM is to project the spatial channel into a sub-beamspace via the existing hardware

structure, and subsequently place an index mapper to activate the very few selected high-quality

beams for bit embedding. By doing so, the resultant multiplexing gain can break the limit of

radio-frequency (RF) chains without sacrificing power gains.
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Figure 1.1: The hierarchical map of the thesis organization.

Building upon Chapter 2, Chapter 3 contributes a novel symbol-based modulation mecha-

nism to extend GBM from narrowband to wideband channels. The developed wideband GBM

(wGBM) retains all benefits of GBM while ensuring compatibility with the hybrid structure

employing orthogonal frequency division multiplexing (OFDM). Aside from a general map-

ping and decoding design, wGBM is further refined via Doppler compensation at the receiver

to combat time selectivity, along with a diagonal precoder at the transmitter to boost coding

gain.

As accurate channel state information (CSI) is indispensable for GBM related designs,

Chapter 4 henceforth develops a doubly-sparse doubly-selective (DSDS) channel estimator for

hybrid systems. The overarching goal is to reduce the training overhead and storage demand

by leveraging the channel’s sparsity in the beamspace and delay domains. Specifically, with
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the first-stage random probing, energy detection is applied to facilitate tap identification, and a

compressive sensing algorithm is customized for the subsequent beam determination. Steerable

probing then follows to estimate beam amplitudes and the associated Doppler shift accurately.

The simple yet effective channel estimator outperforms existing counterparts by a large margin.

Chapter 5 deals with a general wideband multi-user setup and aims at an optimal transceiver.

The core design adopts the prevalent hybrid block diagonalization (HBD) framework, but with

two significant advances made. Firstly, the asymptotic optimality of HBD in terms of mutual

information has been rigorously demonstrated. Secondly, both the upper and lower bounds

regarding the mutual information have been derived. The obtained transceiver offers an attrac-

tive alternative to the available ad hoc designs by maximizing the lower bound. In addition, it

remains applicable to inferior mmWave channel conditions and analog configurations.

Leaping from the more popular hybrid structure, Chapter 6 concentrates on the uplink ac-

cess for ultra-simplified 1-bit structures. As the system suffers from severe non-linearity and

the absence of CSI, a model-enhanced learning-based detector (Me-LeaD) is introduced by

transforming detection into a classification problem. Moreover, the unveiled delay-domain in-

formation is tactfully incorporated into the learning network to guarantee a light overhead. The

angular information is further introduced for dimension reduction via beam projection.

Still, in the context of a 1-bit structure, Chapter 7 switches the gear to downlink, and ex-

plores a pertinent multi-cast setting. As the 1-bit quantization prevents the use of the classic

one-vector-make-all strategy, an iterative method is proposed by transforming the constellation

design into a series of non-convex sub-problems, aiming to maximize the minimum Euclidean

distance. The semi-definite relaxation tool is drawn to secure a decent solution. By utilizing the

unique signal structure of the constructed constellation, the detection problem is accordingly

formulated as a convex constrained least absolute shrinkage and selection operator (LASSO)

[17] problem. In this manner, the achieved error rate is dramatically lower than the conven-

tional linear equalization-based method.

Despite the best effort made over the course of this dissertation, it is prudent to recognize



6

that a PhD Thesis can only cover a tip of the iceberg of mmWave physical-layer communica-

tion. For this reason, Chapter 8 concludes by discussing some open problems and promising

directions to inspire future studies.

1.3 Notation

a, a and A represent a scalar, a vector and a matrix, respectively. AT (A
′
), A∗(AH ) and A†

represent the transpose, the hermitian transpose, and the pseudo-inverse ofA, respectively. a[i]

represents the i-th element of a. A[m,n], A[m, :] and ‖A ‖F are denoted as the (m,n) en-

try, the m-th row and the Frobenius norm of A. Tr(A) and diag(A) are the trace and the

collection of all diagonal elements of A. |A| is the cardinality of set A. Ckn denotes the

number of k combinations from a given set of n elements. IM is an M × M identify ma-

trix. FM is the M -dimensional discrete Fourier transform (DFT) matrix. diag{Ak}Kk=1 =

blkdiag[A1,A2, · · · ,AK ]. b·c and d·e represent the floor and ceiling operation, respectively.

Q(·), I(·), B(·), E(·) and δ(·) represent the Gaussian Q-function, the binary indicating func-

tion, the Beta function, the expectation function, and the Dirac function. respectively. || · ||2 is

the l2-norm, and | · | is the l1-norm. U and CN represent the uniform distribution and circular

complex Gaussian distribution, respectively.
⊗

stands for the convolution operation and ⊗ for

Kronecker product. aI and aQ stand for the real and imaginary parts of a, respectively. mod

stands for the modulo operation. sgn(x) is 1 if x is positive or −1 if x is negative.



Chapter 2

Generalized beamspace modulation

(GBM) for mmWave massive MIMO

In mmWave mMIMO, the potential multiplexing gain (MG) is fundamentally limited by the

minimum number of radio frequency (RF) chains at both ends. To cope with this fundamental

limit and further boost the spectral efficiency (SE), there is an urgent need to develop index

modulation (IM) techniques suitable for mmWave mMIMO.

As a matter of fact, similar problems have already been investigated in existing centimeter

wave (cmWave) MIMO systems, and an effective solution is the generalized spatial modulation

(GSM). The main idea of GSM is to convey the so-called index bits by utilizing the activation

status of antennas [18, 19, 20, 21], therefore a higher MG can be achieved by activating a

subset of RF chains [22, 23, 24]. Although GSM has demonstrated remarkable superiority in

cmWave MIMO, it does not directly apply to mmWave mMIMO. First, unlike cmWave MIMO

where a digital structure is employed, mmWave mMIMO typically adopts an economic hybrid

structure for power consumption and hardware cost concerns [10, 3, 25]. Secondly, different

from the typically isotropic environment in cmWave propagation, mmWave channels are well

known to exhibit limited scattering [26, 27, 28, 29, 11], thus the highly correlated channels may

severely affect the error performance. As a result, a simple transplantation of existing cmWave

7
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IM techniques into mmWave mMIMO is not feasible. Instead, the ultimate solution requires a

judicious design by accounting for the unique properties of mmWave mMIMO. To this end, the

first step, which is also the top priority, is to seek a proper space where the index mapping can

take place. We will first list existing options, and then introduce our proposed approach.

IM in spatial domain:A natural implementing space is the spatial domain; that is, the index

bits directly determine which antennas are activated. In [30], an antenna-group (AG-) GSM

is designed for mmWave MIMO, with transmitter structure shown in Fig. 2.1. Clearly, in

mMIMO, directly (de-)activating each and every antenna will incur unbearable complexity, to-

gether with a huge number of RF chains. AG-GSM is adapted to hybrid mmWave structures

by (de-)activating groups of (as opposed to individual) antennas. However, this approach es-

sentially divides the entire array to a few groups of smaller ones, and will thus suffer from a

severe loss of array gain and angle resolution. In addition, as the MG is dictated by the num-

ber of groups, there is clearly a tradeoff between the achievable MG and the array gain/angle

resolution.

Figure 2.1: The transmitter of mmWave AG-GSM

Figure 2.2: The transmitter of mmWave EDC-IM

IM in digital domain: Recall that GSM is essentially a digital technique, thus can be directly
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applied to the equivalent digitized channel (EDC) that is encountered before the RF chains at

the transmitter (Tx) and after the RF chains at the receiver (Rx). The Tx structure of EDC-IM

is shown in Fig. 2.2. Although only a subset of RF chains are activated when performing IM,

all antennas are employed for transmission. Hence EDC-IM is not only applicable to hybrid

structures, but can also fully exploit the large array gain. However, its maximum MG is clearly

limited by the minimum number of RF chains at the transceivers.

In view of the limitations of the abovementioned options, one may have realized that a

proper domain has to leverage both the channel properties and the hybrid hardware structures

that are unique to mmWave mMIMO. In this work, we innovatively resort to the beamspace, and

the index mapping in GBM takes place neither at the antennas as the AG-GSM nor before the

RF chains as the EDC-IM. Instead, the index mapping occurs after the RF chains but before the

selecting network. Different from both aforementioned options, all RF chains and all antennas

at the Tx are always active. As a result, not only that the array gain is fully exploited, but also

the achievable MG is no longer restricted by the number of RF chains. The resultant GBM

design is also perfectly compatible with prevalent mmWave mMIMO systems.

Figure 2.3: The transmitter of mmWave GBM

Figure 2.4: The system model of the uplink mmWave beamspace mMIMO
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2.1 System and the beamspace

In this chapter, we consider an uplink mmWave mMIMO system, where the mobile station

(MS) and the base station (BS) are equipped with lens arrays, each having M and N antennas,

respectively. Essentially, an M -dimensional lens array plays the role of an M ×M spatial fast

Fourier transform (FFT) matrix, which contains orthogonal steering beams covering the entire

beam domain [11]. To alleviate the high power consumption and deployment cost, the numbers

of RF chains at both ends are much smaller than that of the antennas.

At the MS, let M = {m1,m2, · · · ,mK} with K ≤ min(M,N) be the set containing

the indices of selected beams from the M -dimensional FFT matrix FM . The function of the

selecting network (SN) can be described by

SM = [eM (m1), eM (m2), · · · , eM (mK)] (2.1)

where eM (m) is the m-th column of IM . Let s = [s1, s2, · · · , sK ]T be the symbol vector to be

transmitted from the SN port. After propagation through the N ×M channel H , the received

signal at the BS is

r = HFMSMs+ n (2.2)

where n ∼ CN (0, σ2IN ) is the Gaussian noise vector.

Similar to [31, 32], we consider a narrow-band block fading channel. The propagation en-

vironments between the MS and the BS are modeled as the widely accepted geometric channel

consisting of P paths1 . With uniform linear array (ULA) antennas configured at both ends, the

channel matrix is given by

H =

√
MN

P

P∑
p=1

αpar(θp)a
∗
t (φp) (2.3)

where αp ∼ CN (0, 1) is the complex gain of the p-th path; θp and φp represent the corre-

sponding angle of arrival (AoA) and angle of departure (AoD), respectively, both modeled as
1 Here, each path refers to a cluster of multipath components traveling closely in time and/or spatial domains

[33].
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uniformly distributed variables on [0, 2π); at(·) and ar(·) stand for the transmitting and receiv-

ing array responses, respectively. When half-wavelength spaced ULAs are employed at both

ends, at(·) and ar(·) can be written as

at(φ) =
1√
M

[1, ejπ sinφ, · · · , ej(M−1)π sinφ]T (2.4a)

ar(θ) =
1√
N

[1, ejπ sin θ, · · · , ej(N−1)π sin θ]T . (2.4b)

At the BS, we defineN = {n1, n2, · · · , nK}, which contains the selected indices of the comb-

ing beams from the N -dimensional FFT matrix FN . Accordingly, the function of SN at the BS

end can be expressed as

SN = [eN (n1), eN (n2), · · · , eN (nK)]. (2.5)

After analog combing, the signal to be detected in the digital baseband is given by

y = S∗NF
∗
NHFMSMs+ ξ (2.6)

where ξ = S∗NF
∗
Nn ∼ CN (0, σ2IK) remains white.

Let us now take a closer look to the effective N ×M channel matrix

H = F ∗NHFM . (2.7)

Note that the FFT basis is similar to the array responses shown in Eqs. (2.4a) and (2.4b).

Therefore, H[n,m] can be interpreted as the beam “path” coming from 2π(m−1)
M and arriving

at 2π(n−1)
N . From this perspective,H essentially captures the channel in the “beamspace.”

Proposition 2.1: The beam with AoA θp and AoD φp is mainly captured by H[n,m], with m

and n satisfying
∣∣ arcsin

(φp
2

)
− m−1

M

∣∣ ≤ 1
M and

∣∣ arcsin(
θp
2 )− n−1

N

∣∣ ≤ 1
N , respectively.

Proof. See Proof of Proposition 2.1.

To illustrate the capturing effect in beamspace, we randomly generate a channel with three

paths, and plot the channel amplitude in the spatial domain and beamspace, respectively. It is

clear that each path is localized within a small bin in the beamspace.
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Figure 2.5: The amplitude comparison between the spatial domain and beamspace

Given the N ×M effective beamspace channel matrix H , one can potentially apply GBM

directly therein. It is worth noting that though H has the same size as H , GBM on H is

fundamentally different from AG-GSM (see Section I), because GBM implements selection of

beams but activate all antennas and thus exploit the full array gain. Even though this is the case,

it is not wise to apply GBM directly on H . With M and N both being large, GBM directly on

H will incur high complexity and imply a huge number of RF chains. In addition, the resultant

MG and error performance will both be compromised due to the sparsity in H (see Fig. 2.5)

caused by the limited scattering of mmWave mMIMO channels.

To this end, the SN comes as a natural help, and one can obtain the sub-beamspace as

follows

HK = S∗NHSM. (2.8)

The corresponding I/O relationship accordingly becomes

y = HKs+ ξ. (2.9)

Evidently, the system performance heavily relies on HK (SNs), whose optimization will be

detailed in Section IV.

At this point, it is worth emphasizing that we are simply describing the practical mmWave

transceiver without any alteration, except for revealing that the lens arrays naturally project the

spatial domain to the beamspace and the SNs naturally facilitate the dimensional reduction and
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beam selection. Next, we are going to introduce GBM that is judiciously designed for the (sub-

)beamspace. As will be seen next, GBM will facilitate the multiplexing in ready-for-deployment

mmWave systems under limited number of RF chains.

2.2 The digital part of GBM

In this section, we will focus on the digital part of GBM. The modulation along with the pattern

selection is first introduced, followed by the demodulation design.

2.2.1 The GBM Modulator

Figure 2.6: An illustration of GBM modulator.

The prototype of GBM modulator is shown in Fig. 2.6. With R ≤ K RF chains at Tx,

there are η = R log2X + blog2(CRKc incoming bits every transmission, with R log2X sym-

bol bits and blog2(CRK)c index bits. The symbol bits are modulated into a symbol vector

x = [x1, · · · , xR]T , whose elements are chosen from S, e.g., the constellation of an X-ary

phase shift keying/quadrature amplitude (PSK/QAM) modulation. In this chapter, S is assumed

to be normalized, so the signal-to-noise ratio (SNR) per bit is defined as Eb/N0 = R/(ησ2).

Evidently, one only needsR ≤ K RF chains to transmit theseR PSK/QAM symbols. How-

ever, it is worth emphasizing that this reduction in RF chains is not at the price of compromised

SE, because the actual transmitted signal s has a higher dimension than x. The conversion from

x to s is realized by a K ×R index mapping matrixBR. LetR be a length-R lexicographical
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sequence, whose elements range from [1,K] and are sorted in an ascending order, then BR is

constructed as follows:

• ∀n /∈ R,BR[n, :] = 0T1×R

• BR[R, :] = IR.

To make it more clear, we take (K = 4, R = 3) as an example. Suppose the 1st, the 2nd and

the 4th beams are selected, i.e,R = {1, 2, 4}, then s is given by

s = BRx =


1 0 0

0 0 0

0 1 0

0 0 1



x1

x2

x3

 =


x1

0

x2

x3

 . (2.10)

Each BR corresponds to a unique R, which essentially represents a specific index pattern. If

log2 CRK is an integer, all index patterns will be used. However, if log2 CRK is not an integer,

then CRK − 2blog2 CRKc index patterns become redundant.

For GSM, these 2blog2 CRKc index patterns are often just arbitrarily selected or lexicographi-

cally selected via a look-up table as in [34]. For GBM, K is not entirely a design parameter but

is rather dictated by the channel as we will discuss in SectionVI. In addition, the beam quality

may vary significantly. Therefore, if there are redundant index patterns, pattern selection is

expected to have a non-negligible influence on the overall error performance.

An algorithm is henceforth proposed herein to select the preferred index patterns. The

detailed procedure is described as follows

• Let pi and pj represent two index patterns2 , then the pattern distance (PD) between

them is defined as di,j = |HK(pi − pj)|;

• Choose the index combination with the maximal minimal PD (max-MPD), and the corre-

sponding index patterns are recognized as preferred.
2 For a mapping matrix, its corresponding index pattern is the sum of all its columns.
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The total number of index combinations is upper-bounded by max
(
Cd

K
2
e

K ,Cb
K
2
c

K

)
. Since the

maximumK is restricted by the low-rank mmWave channels, it is typically very small (typically

less than 12 as we will discuss in Section V). Thus the additional complexity involved by the

pattern selection is minimal. From simulations in Section VI, we will see that such a simple

scheme can bring a noticable performance improvement.

2.2.2 The GBM Demodulator

To meet different implementing requirements, we provide two detectors, namely the ML detec-

tor and the ZF-2Q detector.

ML detector

The ML criterion is expressed as

ŝ = arg min
s∈G

‖ y −HKs ‖2 (2.11)

where G is the ensemble containing all effective GBM vectors. Since the noise samples after

RF combining remain uncorrelated, the ML detector can achieve the optimal detection per-

formance. The overall computational complexity in terms of the number of multiplications is

O(2η).

ZF-2Q

As a low-complexity alternative to the ML detector, the ZF detector is a popular option. A

standard ZF detector consists of two components: i) the linear ZF filter s = H
†
Ky; ii) the

non-linear vector quantization:

ŝ = arg min
s∈G

‖ s− s ‖2 . (2.12)

However, in the context of IM as GBM here, the vector quantization actually induces exponen-

tial complexityO(2η), which is identical to ML! To this end, we propose the 2-step quantization

(2Q) following the linear ZF filter.
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2a: Quantization-I (Per-symbol quantization)

ŝ[i] = arg min
s∈S

|s[i]− s|2. (2.13)

2b: Quantization–II (Index pattern quantization)

p̂ = arg max
p∈P

K∑
i=1

(
real{s[i]∗ × ŝ[i]} − |ŝ[i]|2/2

)
p[i] (2.14)

where P contains all preferred index patterns.

Along the lines of Page. 5 (L-C ML detector) in our earlier work [35], it can be readily proved

that this 2-step quantization is equivalent to the vector quantization given in Eq. (2.12), but

achieves a complexity reduction from O(2η) to O(CRK). Plus the complexity of the first-step

ZF equalization, the overall computational complexity of ZF-2Q is O(CRK + K3), which has

polynomial complexity. It is worth noting that, when all beams are strictly orthogonal as the

array size M and N approach infinity, no performance degradation will be incurred by ZF-2Q

detector.

2.3 The analog part of GBM

In this section, we concentrate on the analog part of GBM. Via a careful beam selection design,

highly reliable communications can be guaranteed by GBM.

2.3.1 Optimizing the size ofHK

LetMGGBM denote the maximum achievable MG facilitated by mmWave mMIMO beamspace

channelH . We have the following result:

Proposition 2.2: In mmWave mMIMO channels modeled as in Eq. 2.3, the maximum achievable

MG MGGBM is determined by the number of exclusively resolvable beams (ERBs) sharing no

common AoA or AoD.

Proof. See Proof of Proposition 2.2.
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Clearly, MGGBM is upper bounded by the number of paths (P ) in the channel. In con-

ventional MIMO systems, MGGBM is typically regarded as the rank of the channel matrix.

The unique beamspace behavior of the mmWave mMIMO channels, together with the sparsity

therein lead to Proposition 2.2. Though MGGBM is in general not precisely equal to rank(H),

they remain very close to each other. The difference of these two is induced by the finite

beamspace (or angle-domain resolution of the antenna array). Such limited resolution leads

to beamspace leakages which may contribute to rank(H) but does not contribute meaning-

ful MG. As the array size M and N approach infinity, the beam resolution approaches zero

and the beam leakage vanishes. In such an extreme case, one will find that both MGGBM and

rank(H) converge to the number of paths P . We further investigate the probability distribution

of MGGBM and obtain the following result.

Proposition 2.3: In a mmWave mMIMO channel with P spatial paths, the maximum achievable

MG MGGBM follows a cumulative mass function (CMF) that can be upper bounded by

CMFMG(p)
4
= Pr(MGGBM < p) ≤ CMFMG(p)

=



(
1−

p−1∏
i=0

(
1− f(i)

))P
p

, if mod(P, p) = 0(
1
p−1∏
i=0

(1− f(i))

)bP
p
c−1(

1−
p∏
i=0

(1− f(i))

−
( p∑
i=1

f(i)
) p∏
i=1

(
1− f(i)

))
, o.w.

(2.15)

with f(i) = i(M+N−i)
MN .

Proof. See Proof of Proposition 2.3.

As M and N approach infinity, CMFMG(P ) → 0, implying that MGGBM → P . In

addition, as the size of the array increases, the array resolution approaches zero and thus

rank(H) → P as well. An example of CMFMG(p) with a finite array size (M = 32 and

N = 64) is presented in Fig. 2.7. Existing measurements show that mmWave channels typi-

cally have 8 ∼ 12 dominant paths in “rich” scattering environments [36], so we set P = 8, 10

and 12.
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Lemma 2.1: The probability that the size of SNsK is no smaller than the maximum achievable

MG MGGBM can be lower bounded by

Pr(MGGBM ≤ K) ≥ 1− CMFMG(K) (2.16)

where CMFMG(·) has been defined in Proposition 2.3.

Figure 2.7: The upper-bound CMFMG of the achievable MG under different number of paths

Based on Lemma 2.1, one can learn that choosing the size of sub-beamspace channel K too

large may lead toHK with insufficient beams to support GBM. Whereas choosing K too small

will not fully exploit MGGBM facilitated by the channel. Hence given M , N and P , Eq. (2.15)

provides a valuable guidance for choosing the size of SNs.

2.3.2 Optimizing the entries ofHK

Even with K determined, not allHK candidates can support reliable communications because

the beam quality may vary significantly. To optimize the entries of HK , the immediate ob-

jective is to minimize the bit error rate (BER). Considering that the exact BER expression is
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mathematically intractable, we resort to the APEP. We use PGBM(HK) to stand for the condi-

tional APEP underHK . According to [35], PGBM(HK) can be approximated as

PGBM(HK) ≈ 1

η2η

∑
∀s

∑
∀ŝ

Q

√d2(HK , s, ŝ)

2σ2

 e(s, ŝ) (2.17)

where d(HK , s, ŝ) =‖HK(s− ŝ) ‖F ; e(s, ŝ) represents the number of differing bits between

s and ŝ after demodulation.

Existing IM-related works have shown IM manifests prominent advantages mainly at high

SNR (see, e.g., [19] and [37, 38].) Therefore, we will seek a simplified form of Eq. (2.17) at

high SNR. A proposition relating to PGBM(HK) is made as follows.

Proposition 2.4: At high SNR, the conditional APEP PGBM(HK) can be approximated as a

monotonic decreasing function of d(HK), where d(HK)
4
= min
∀ŝ 6=s

d(HK , s, ŝ).

Proof. See Proof of Proposition 2.4.

Note that this monotonicity is independent of the SNR, so the original SNR-coupled APEP min-

imization problem can be simplified to the SNR-independent problem of d(HK) maximization.

Ideally, the maximal d(HK) can be obtained via exhaustive search among allM’s andN ’s.

However, the computational burden would be badly severe under mMIMO (over 7.8× 1012 for

M = 64, N = 32 and K = 4). For practical implementation, it is necessary to shrink the

searching space.

Thanks to the sparsity ofH , a power-based criterion can be used to screen out weak beams:

P1 =

{
(i, j)

∣∣∣∣ |H[i, j]|2

max
i,j
|H[i, j]|2

≥ λ
}
, (2.18)

where λ is a small threshold (e.g., 0.05). Although the cardinality of P1 is much smaller than

MN , further modifications are still required to avoid two extreme cases.

1) The cardinality of P1 may be too large such that the searching complexity is still unaccept-

able.

2) The cardinality of P1 may be too small such that it does not provide K entries forH .
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Case.1 can be addressed via a trimming procedure if the cardinality of P1 exceeds a certain

threshold. For case.2, we can choose the first K largest and exclusive indices from H , and

these selected indices are collected by B.

Proposition 2.5: DefineH(A) to be theA-th (A > K) largest entry fromH , then the searching

space is given by

P =


P1
⋃
B; Cal(P1) ≤ A{

(i, j)
∣∣|H[i, j]| ≥H(A)

}⋃
B; Cal(P1) > A.

(2.19)

The union of B in Eq. (2.19) is to guarantee the existence of a searching set. Denote (ni,mi)

as the index of the i-th selected beam, then the optimal beam indices can be obtained via

{
(n1,m1), (n2,m2), · · · , (nK ,mK)

}
= arg max
∀i,(ni,mi)∈P

d(HK , s). (2.20)

Replacing N = (n1, n2, · · · , nK) andM = (m1,m2, · · · ,mK) in Eq. (2.8), we can getHK .

In summary, the GBM design procedures can be listed as follows:

1: Determine the number of selected beams at the transceiver SNs (K) based on MGGBM.

2: Choose the number of RF chains R at the MS satisfying R < K;

3: Select the preferred beams based on the min-APEP criterion;

4: Trim redundant index patterns based on “max-MPD” algorithm; and

5: Choose the ML or ZF-2Q detector.

2.4 Analyses for GBM

To gain a better understanding of GBM and evaluate its performance, extensive analyses and

discussions will be provided in this section.
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2.4.1 APEP analysis

Due to the uncertainty of the sub-beamspace and the off-grid beam leakage, it is extremely

difficult to derive an exact APEP. Here we attempt to derive an APEP bound to evaluate the

error performance. As the array size approaches infinity, the actual APEP will also approach

the derived bound.

Let β = [β1, · · · , βK ]T with βi = P
MNH

2
K [i, i], and neglect the off-grid beam leakage.

The pairwise error probability PGBM(s, ŝ) can be approximated as

PGBM(s, ŝ) = Q

√d2(HK , s, ŝ)

2σ2


(a)
≈ Eβ

{
1

12
exp
(
−

K∑
i=1

MNβi∆s
2
i /4Pσ

2

)
+

1

4
exp
(
−

K∑
i=1

MNβi∆s
2
i /3Pσ

2

)}
(2.21)

where (a) comes from Q(x) ' 1
12e
−x

2

2 + 1
4e
− 2x2

3 , which is a tight approximation of Q(x) [39].

Proposition 2.6: At high SNR, when K beams are selected from a mmWave channel with P

paths, the pairwise error probability PGBM(s, ŝ) can be approximated as

PGBM(s, ŝ) '
(CP−1−κ

P−1 P )K

12

K∏
i=1

B
(
MN∆s2

iEbη

4PRN0
+ P + 1− κ, κ

)

+
(CP−1−κ

P−1 P )K

4

K∏
i=1

B
(
MN∆s2

iEbη

3PRN0
+ P + 1− κ, κ

)
(2.22)

where κ is the diversity gain ranging from 1 to P . In practice, the selected beams are generally

strong, so the actual achieved diversity gain is very unlikely close to the lower-bound. How-

ever, the off-grid leakage not only incurs interference but also influences the beam selection,

preventing one from achieving the diversity upper-bound. Therefore, we can infer that the ac-

tual diversity gain should be moderately high. This will be verified by simulations. In addition,

Eq. (2.22) also reveals that the power gain achieved by GBM is MN , which is in fact the full

array gain.
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2.4.2 SE analysis

With R and K RF chains at the Tx and Rx, respectively, the achievable SE of GBM is

C =

{
blog2C

R
Kc+R log2X

∣∣∣∣K ≤MGGBM;R < K

}
. (2.23)

To understand the advantages of GBM over other alternatives, we will next compare their SE

peformances. Considering that comparing SE under different setups is somewhat “unfair,” we

adopt the normalized spectral efficiency (nSE) for comparison, and the nSE is defined as the

ratio of the SE and the number of Tx-end RF chains. According to [4], the energy efficiency

(EE) is defined as the ratio of the SE and the sum of the transmit power consumption and

hardware power consumption. The consumed power is roughly proportional to the number of

RF chains, so nSE can roughly imply the EE as well.

Figure 2.8: The nSE comparisons among GBM,

non-GBM and EDC-IM.

Figure 2.9: The nSE gain of GBM over non-GBM

and EDC-IM.

In Fig. 2.8, GBM is compared with the EDC-IM and the non-GBM cases in terms of the

nSE. In Fig. 2.9, the nSE gain of GBM over EDC-IM and non-GBM is further presented. For

all cases, we adopt two modulation orders: X = 4 and X = 16, both with K = 8. Based on

these two figures, we make the following remarks:
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• Using the same RF chains, GBM is always superior over non-GBM in terms of the nSE.

This is because GBM can exploit a higher MG.

• Under the same MG, GBM is always superior over EDC-IM in terms of the nSE. This is

because GBM requires less RF chains at the Tx.

• The nSE gain of GBM over non-GBM decreases with the modulation order, while the nSE

gain of GBM over EDC-IM is irrelevant to the modulation order.

2.4.3 GBM Variants

Recall that in Fig. 2.3, the optional precoder is essentially set as I in GBM. In this case, the

Tx needs minimal or no CSI. The only information needed are the AoD indices of the selected

beams, leading to a lightweight feedback overhead of K log2M (as apposed to MN with full

CSI). Nevertheless, GBM can have different variants by altering the precoder or other system

parameters.

Spatial scattering modulation (SSM): If only one RF chain is employed at the Tx, GBM is

similar to SSM [40]. However, SSM assumes (and works if and only if) there is no leakage

among the selected beams, whereas GBM explicitly cope with beam leakage that is inevitable

due to the finite array size.

Generalized Eigenspace Modulation (GEM): The precoder in Fig. 2.3 can be configured

such that the combined digital precoding and analog SN selection can approximate the (sub-

)eigenspace of the channel. By selecting different hybrid precoders in each transmission, GBM

subsumes to GEM, which is the mmWave counterpart of the authors’ earlier work in [41]. By

optimizing the power allocation, GEM can potentially achieve an improved end-to-end mutual

information. If the array size approaches infinity, GBM and GEM become identical. However,

the GEM variant of the GBM comes at much increased complexity and compromised practi-

cality in that i) frequent transmitter reconfiguration; ii) complicated power allocation and bit

loading; and iii) extremely heavy feedback overhead.
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Precoded beamspace modulation (PBM): The precoder in Fig. 2.3 can also implement pre-

equalization, such as the ZF precoding, to lower the receiver complexity at the cost of increased

feedback overhead of CSI.

2.5 Simulations

In this section, extensive simulations are presented for an uncoded mmWave mMIMO system.

The size of lens-array is set as M = 32 at the MS and N = 64 at the BS. Each BER curve is on

the average of 20000 independent channel realizations, with a block length of 500 for each. For

all figures, we set P = 12, λ = 0.05 and A = 2P . Without a specific statement, the receiver

adopts ML detector to perform demodulation.

Figure 2.10: BER comparisons among different sub-beamspace construction methods

To understand the critical importance ofHK , in Fig. 2.10, we compare BER using different

HK construction methods for non-GBM with K = 4 and BPSK modulation. It is clear to see
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that a random construction will result in an unusable system. Another two methods, namely

the power-based (PB) method and eigen-based (EB) method are also provided. For PB method,

those strongest beams are selected. For EB method, those transmitting/receiving beams best

matching the channel left/right singular vectors (EB) will be selected. Our proposed method

can achieve an optimal performance at almost whole SNR region, even though the optimality is

derived at high SNR.

Figure 2.11: BER comparisons for different index pattern selection schemes

In Fig. 2.11, to validate the advantages of the proposed index pattern selection algorithm, we

consider two GBM cases with binary phase-shift keying (BPSK) modulation: (K = 3, R = 1)

and (K = 4, R = 2), both of which have a proportion of 1/3 redundant patterns. Simulations

show that with max-MPD scheme, more than 0.5dB BER advantage can be achieved over the

lexicographically sequential selection (LSS) and random selection. Unlike LSS, max-MPD

method requires an additional feedback of dCRKe bits to indicate the selected index combination,
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but this overhead is obviously negligible. Therefore, our method is an appealing option when

index patterns have redundancy.

Figure 2.12: BER comparisons between GBM and non-GBM under η=4bits/Hz

In Fig. 2.12, we compare the BER performance of GBM and non-GBM with a spectral

efficiency of 4 bits/Hz. For the GBM, we set (K = 4, R = 1) with 4-QAM modulation. To

achieve the same spectral efficiency, the non-GBM uses BPSK modulation. With an increase of

SNR, the BER advantage of GBM over non-GBM gradually becomes noticeable. At high SNR,

the BER advantage is over 2dB. This advantages owe to a large ratio (50%) of index bits, which

are more robust compared to the index bits in high SNR region. Furthermore, we observe that

the BER curves of GBM and non-GBM can be well described by Eq. (2.22), and the diversity

gain of GBM is slightly larger than that of non-GBM. Besides, the actual diversity gain of both

systems is about 6 (1 < 6 < 12), which is also consistent with our previous analysis.
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Figure 2.13: BER comparisons between GBM and non-GBM under η=8bits/Hz

Fig. 2.13 shows the BER performance with a higher spectral efficiency by setting (K =

4, R = 3, 4-QAM) for GBM. The non-GBM adopts 4-QAM for the same spectral efficiency

(8 bits/Hz). At low SNR, GBM is inferior to non-GBM, as the index bits are vulnerable to be

wrongly detected. However, GBM soon outperforms non-GBM with a small increase of SNR.

Even though the ratio of index bits is only 25%, the BER advantage is still over 0.5dB combined

with a 33% nSE enhancement. In addition to the ML detector, the BER performance using ZF-

2Q detector is also presented here. Although the detection complexity has been largely reduced,

the performance gap compared to the ML detector is also notable. However, when both adopt

ZF-2Q detector, we find the advantage of GBM over non-GBM is about 1.5dB. This signifies

the GBM can partially compensate the performance loss due to sub-optimal equalizer.
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2.6 Concluding Remarks

By exploiting the unique features of mmWave channels and the hybrid transceiver structures,

a novel IM design termed as GBM has been judiciously devised for mmWave mMIMO. Un-

der limited RF chains, GBM can achieve improved MG and SE, without compromising the

array gain or the compatibility with prevalent mmWave mMIMO systems. Based on the (sub-

)beamspace, a complete GBM transceiver is designed and optimized from the digital and analog

parts. Extensive theoretical analyses and numerical simulations have demonstrated the remark-

able advantages of GBM over non-GBM alternatives in terms of both the BER and SE.

2.7 Proof of Propositions for GBM

2.7.1 Proof of Proposition 2.1

Without loss of generality, we take the p-th path as an example. The 2-D beamforming gain at

grid point [n,m] is F ∗N [:, n]ar(θp) × a∗t (φp)FM [:,m]. Due to the symmetry, we consider the

left part only, which is calculated as

a∗t (φp)FM [:,m]=
1

M

∣∣∣∣∣sinπM
(

arcsin
(φp

2

)
−m−1

M

)
sinπ

(
arcsin

(φp
2

)
−m−1

M

) ∣∣∣∣∣ . (2.24)

The main-lobe of Eq. (2.24) is limited to
∣∣ arcsin

(φp
2

)
− m−1

M

∣∣ ≤ 1
M , and the beamforming

gain decreases rapidly in large M . Similarly, the main-lobe of the BS-end beamforming gain is

limited to
∣∣ arcsin

( θp
2

)
− n−1

N

∣∣ ≤ 1
N . BothM andN are quite large in mmWave mMIMO, thus

the 2-D beamforming gain at [m,n] tends to be negligible for either
∣∣ arcsin

(φp
2

)
− m−1

M

∣∣ > 1
M

or
∣∣ arcsin(

θp
2 )− n−1

N

∣∣ > 1
N .

2.7.2 Proof of Proposition 2.2

The sufficiency is easy to be verified thus being omitted, so we focus on the necessity only.

When less than K exclusive elements exist in beamspace, at least one common column (row)
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will be shared by SN (or SM), leading to two columns (rows) in HK linearly dependent.

Therefore, the rank ofHK will be smaller than K.

2.7.3 Proof of Proposition 2.3

Let p(a, b) represent the probability that at least b out of a(b ≤ a) entries are exclusive, then

one can readily get

p(m,m) =

m−1∏
i=0

(
1− i(M +N − i)

MN

)
.

p(m+1,m) includes two cases: allm+1 entries are exclusive, and onlym entries are exclusive,

thus p(m+ 1,m) is lower-bounded by

p(m+ 1,m) ≥ p(m+ 1,m+ 1) +

(
m∑
i=1

i(M +N − i)
MN

)
m∏
i=1

(
1− i(M +N − i)

MN

)
.

If bab c = 1, it is clear that P (a, b) ≥ p(min(b+1, a), b). Thus when bab c > 1, if mod(a, b) = 0,

one can get p(a, b) ≥ 1− (1− p(b, b))b
a
b
c; if mod(a, b) 6= 0, one can get p(a, b) ≥ (1− p(b+

1, b))(1− p(b, b))b
a
b
c−1.

2.7.4 Proof of Proposition 2.4

Let d(HK) = min
∀ŝ 6=s

d(HK , s, ŝ). By using the following result in [42] inductively

a1Q(x1) + a2Q(x2) ' aQ(min(x1, x2))

with a =


aµ, µ = arg min

i=1,2
xi; if x1 6= x2

2; if x1 = x2

at high SNR, PGBM in Eq. (2.17) can be approximated as

PGBM(HK) ' 1

η2η
Q
(√

d(HK)/2σ2
)
C

where C =
∑
∀s

∑
∀ŝ
e(s, ŝ)I(d(HK , s, ŝ) == d(HK)). Hence PGBM can be approximated as a

monotonically decreasing function of d(HK).
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2.7.5 Proof of Proposition 2.6

Since the amplitude of each path obeys a complex norm distribution, its square obeys a unit

exponential distribution. The distribution of βi corresponding to the strongest path is f(βi) =

P (1− e−βi)P−1e−βi . Denote C = EbMNη
N0P

, and the first item in Eq. (2.21) can be bounded by

1

12

K∏
i=1

∫ ∞
0
f(βi)e

−Cβi
∆s2i

4 dβi
(b)
=
PK

12

K∏
i=1

B(
C∆s2

i

4R
+ 1, P )

where (b) is according to Eq.(3.251) in [43]. Thus lower-bound of Eq. (2.21) is derived as

PK

12

K∏
i=1

B
(
C∆s2

i

4R
+ 1, P

)
+
PK

4

K∏
i=1

B
(
C∆s2

i

3R
+ 1, P

)
.

For the weakest path,f(βi) = Pe−Pβi . Following the same procedure, the upper-bound of Eq.

(2.21) can be derived as

PK

12

K∏
i=1

B
(
C∆s2

i

4R
+ P, 1

)
+
PK

4

K∏
i=1

B
(
C∆s2

i

3R
+ P, 1

)
.

At high SNR, it can be verified that

K∏
i=1

B
(
C∆s2

i

4R
+ P + 1− κ, κ

)

'
K∏
i=1

(C∆s2
i /4R+ P − κ)!(κ− 1)!

(P + C∆s2
i /4R)!

'M0

(
Eb
N0

)−κ
+ o

{(
Eb
N0

)−κ}
whereM0 is a constant irrelevant to Eb/N0. Therefore κ represents the diversity gain, whose

lower-bound and upper-bound is 1 and P , respectively. Thus, the APEP can be described as the

form of Eq. (2.22).



Chapter 3

Wideband Generalized Beamspace

Modulation (wGBM) for Hybrid

mmWave Massive MIMO

In Chapter 2, we have seen the remarkable superiority of GBM in boosting multiplexing gain.

Yet, GBM was designed for narrowband channels and is inapplicable to practical wideband

mmWave channels [44, 45, 46]. Therefore, how to make GBM immune to frequency selectivity

deserves an extra research focus.

Many works have revealed that with the help of OFDM, extending IM to wideband channels

in conventional fully-digital transceivers is straightforward by applying the corresponding nar-

rowband IM on each subcarrier independently [35]. However, the mentioned similar approach

fails for the broadband expansion of GBM due to two main reasons: i) the analog precoder in

hybrid OFDM systems is shared by all subcarriers, therefore extending GBM requires joint con-

sideration among all subcarriers; and ii) even with a decent analog precoder, simply inheriting

GBM’s index mapper will render the SE-enhanced merit disappearing in OFDM systems. In

light of these challenges, wideband GBM (wGBM) is proposed via an innovative symbol-based

modulating scheme. The resulting design promises to remain compatible with hybrid OFDM

31
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systems and retain SE-enhanced advantage. To overcome the detection challenge arising from

symbol-based modulation, we develop the minimum mean square error (LMMSE)-based de-

tector and approximate message passing (AMP)-based detector by breaking the complicated

block detection into the more manageable sub-block ones. Finally, we demonstrate that placing

a first-order compensator at the receiver suffices to combat Doppler at a negligible cost. To

the best of our knowledge, there is no IM technique designed for hybrid wideband mmWave

systems except for the hybrid precoded spatial modulation (hPSM) [47]. Although hPSM can

improve the error performance, its SE is still restricted by the number of RF chains. In this

sense, wGBM is the first SE-enhanced wideband IM for hybrid mmWave systems and can be

well-suited for time-varying channels.

3.1 wGBM Transceiver

Figure 3.1: Illustration of uplink wideband mmWave mMIMO system.

3.1.1 System and Channel Models

We consider an uplink wideband mmWave mMIMO system, whereNm-dimensional lens-array

antennas with Mm (Mm << Nm) RF chains and Nb-dimensional lens-array antennas with

Mb (Mb << Nb) RF chains are deployed at the transmitter (mobile station) and receiver (base

station), respectively. In the studied system shown in Fig. 3.1, the mobile station communicates

with BS via L (Mm ≤ L ≤ Nm) streams. Without loss of generality, we further assume
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L = Mb and adopt OFDM for wideband transmission, with its number of subcarriers being K

and the length of cyclic prefix (CP) being Lcp. All the channel and signal related notations are

listed in Table. 3.1 for readers’ reference.

Let sk be the transmitted signal on subcarrier k. An inverse FFT (IFFT) operation is first

applied to it, followed by CP insertion. The processed signal goes through the devised digital-

to-analog module and be precoded by the analog precoder

PA = [pT (t1),pT (t2), · · · ,pT (tL)], (3.1)

where pT (i) stands for the i-th column of FNm . It is worth mentioning that PA remains iden-

tical across all subcarriers in wideband hybrid system, forcing the subsequent wGBM design

to be designed across all subcarriers. As will be detailed later, it is such a unique feature that

renders the proposed wGBM distinctive from the existing wideband IMs.

To incorporate the angular-delay sparsity as well as the frequency-time selectivity exhib-

ited by mmWave channels, we adopt a generic geometric channel model with Nc distinguish-

able delay taps and P dominant paths. According to [48], the tap-d channel at time instant-n

Hd[n] ∈ CNb×Nmcan be written as

Hd[n] =

√
NbNm

P

P∑
p=1

αpprc(dTs − τp)ar(θp)a∗t (φp)ejwpn, (3.2)

where Ts is the sampling period; prc(·) is the response of the pulse-shaper. For the p-th path, τp

is the propagation delay uniformly distributed within [0, (Nc−1)Ts);wp = 2πfcvmTs sin(θp)/cv

is its associated Doppler frequency shift, with fc being the system carrier frequency, cv be-

ing the speed of light, and vm being the relative speed between mobile station (MS) and

base station (BS); αp ∼ CN (0, 1) is the complex gain; θp and φp represent the AoA and

AoD, respectively. at(·) and ar(·) stand for the MS- and BS-end array responses, respec-

tively. Define fN (ψ) = 1√
N

[
1, ejψ, · · · , ej(N−1)ψ

]T
. Then, under the commonly used half-

wavelength spaced uniform linear arrays (ULAs), we have at(φp) = fNm(π sin(φp)) and

ar(θp) = fNb(π sin(θp)). In this section, channel state information (CSI) is assumed to be
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available at the transceivers. This assumption is reasonable, because CSI can be accurately esti-

mated in doubly-selective mmWave mMIMO channels by exploiting the delay-angular sparsity.

Table 3.1: Notations relating to uplink mmWave mMIMO system.

Notation

Definition
Type

Time

domain

Frequency

domain

Channel

Hd[n] Hk[r]
Spatial channel

(CNb×Nm , wp 6= 0)

Hd Hk

Spatial channel

(CNb×Nm , wp = 0)

H̄d[n] H̄k[r]
Equivalent channel incorporating

analog parts (CL×L, wp 6= 0)

H̄d H̄k

Equivalent channel incorporating

analog parts (CL×L, wp = 0)

Signal

x[n] sk Signal before analog precoding

y[n] yk Signal after analog combing

ȳ[n] ȳk Signal after compensation

Given the time-domain channel response in Eq. (3.2), the corresponding inter-subcarrier

channel responseHk[r] ∈ CNb×Nm(k, r ∈ [0,K − 1]) can be expressed as [49]

Hk[r] =
1

K

K−1∑
i=0

Nc−1∑
d=0

Hd[Lcp + i]e−j2π(rd+(k−r)i)/K , (3.3)

where Hk[r] represents the channel response at subcarrier-k if k = r, or the inter-carrier in-

terference (ICI) from subcarrier-r to k if k 6= r. Apparently, when wp = 0, Hd[n] turns out
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to be time-invariant. Denote the static version of Hd[n] as Hd, then in this case, all the inter-

subcarrier channels vanish except for leaving

Hk[k] = Hk =

Nc−1∑
d=0

Hde
−j 2πk

K
d. (3.4)

After channel propagation, the received signal on subcarrier k is given by

rk = Hk[k]PAsk +
K−1∑

r=0,r 6=k
Hk[r]PAsr +wk, (3.5)

wherewk ∼ CN
(
0, σ2INb

)
is the white Gaussian noise, with σ2 representing the noise power.

rk is first combined by the analog combiner WA = [fR(r1),fR(r2), · · · ,fR(rL)] with fR(i)

being the i-th column of FNb . After CP removal and FFT operation, the signal to be processed

in digital baseband becomes

yk = W ∗
AHk[k]PAsk +

K−1∑
r=0,r 6=k

W ∗
AHk[r]PAsr +W ∗

Awk

= H̄k[k]sk +

K−1∑
r=0,r 6=k

H̄k[r]sr + ξk, (3.6)

where ξk = W ∗
Awk ∼ CN

(
0, σ2IL

)
is the combined noise. Finally, the system I-O relation-

ship can be expressed as
y0

...

yK−1


︸ ︷︷ ︸

y

=


H̄0[0] · · · H̄0[K − 1]

...
. . .

...

H̄K−1[0] · · · H̄K−1[K − 1]


︸ ︷︷ ︸

H


s0

...

sK−1


︸ ︷︷ ︸

s

+


ξ0

...

ξK−1


︸ ︷︷ ︸

ξ

. (3.7)

Define H̄k = W ∗
AHkPA. When wp = 0,H in Eq. (3.7) can be further simplified as

H̄ = diag
{
H̄k

}K−1

k=0
. (3.8)
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3.1.2 wGBM over Static Channels

Figure 3.2: The prototype of wGBM modulator

The prototype of wGBM modulator shown in Fig. 3.2 comprises bit splitter, bit mapper, FFT

module, OFDM modulator and digital-to-analog module. To be specific, the input bit stream

is split into K branches, each having b = Mmlog2(M) +
⌊
log2(CMm

L )
⌋

bits. Taking the k-th

branch as an example to explain the specifics. The firstMmlog2(M) bits will be modulated into

a symbol vector uk = [uk,1, uk,2, · · · , uk,Mm ]T , of which each entry is chosen from a normal-

ized M -ary phase shift keying/quadrature amplitude (PSK/QAM) constellation χ. The remain-

ing
⌊
log2(CMm

L )
⌋

bits will be mapped into a length-Mm sequence Ik ⊂ S = {S1, · · · , SQ},

whose elements range from [1, L] in an ascending order. As a result, the data vector after bit

mapper can be written as

xk = IL[:, Ik]uk. (3.9)

After FFT module, a stacked frequency-domain signal vector is obtained as

s = [sT0 , s
T
1 , · · · , sTK−1]T = (FK ⊗ IL)x, (3.10)

with x being a concatenation of xk. By applying IFFT, the corresponding time-domain signal

becomes

x = (FK ⊗ IL)∗s. (3.11)
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Define _
x to be the concatenated signal after CP insertion. Then the corresponding time-domain

signal at instant n is

x[n] =
_
x[nL+ 1 : (n+ 1)L](n < K + Lcp − 1). (3.12)

Note that, with FFT applied before the OFDM modulator, x[n] always contains a fixed number

of zero elements. Therefore, we can employ a simple digital-to-analog module to reduce the use

of RF chains. That is, only those non-zero elements of x[n] will be up-converted via RF chains

while the zero elements will be connected to the analog ground (essentially transmitting 0). It is

worth mentioning that wGBM degenerates to GBM when K=1. By taking the CP consumption

into account, the achievable SE of wGBM can be expressed as

η =
K

K + Lcp

(⌊
log2CRL

⌋
+Rlog2M

)
. (3.13)

1): ML detector: Based on Eqs. (3.7) and (3.10), the ML detector can be expressed as

x̂ = arg min
∀k,xk∈G

∥∥y − H̄s∥∥2
= arg min
∀k,xk∈G

∥∥y − H̄(FK ⊗ IL)x
∥∥2
, (3.14)

where G contains all possible xk’s. Since the detection is performed across all subcarrier sym-

bols, the computational complexity in terms of multiplications is O ∼ (2bK(4K2R+ 4KL2 +

2KL)), which grows exponentially with K. The complexity would be badly high, driving us to

seek a low-complexity alternative for practice use.

2): LMMSE-based detector: The high complexity of ML detector results from wGBM’s

symbol-based modulating nature. Therefore reducing complexity needs to decouple the inter-

twined relationship among subcarriers. Towards this objective, a two-step low-complexity de-

tector is proposed. At first,the widely-used LMMSE equalizer M = {H̄∗H̄ + σ2ILK}−1H̄∗

is applied to get estimated s, i.e., s̄ = My, so with Eq. (3.10), xk can be estimated as

x̄k = (FK
∗[k, :]⊗ IL)s̄ = (FK

∗[k, :]⊗ IL)My. (3.15)

In the next, ML detection is applied to the low-dimensional vector x̄k, giving rise to

x̂k = arg min
xk∈G

‖x̄k − xk‖2. (3.16)
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In this manner, the detection complexity in terms of multiplications is O ∼ (2KL3 + 8K2L3 +

K(4KL + 2b+1L)), being polynomial with K and L. In essence, the LMMSE-based detec-

tor transforms complicated symbol detection into manageable subcarrier (sub-block) detection,

thereby being more implementable.

3: AMP-based detector: LMMSE exhibits cubic-order complexity with respect to the signal

dimension. To lower the detection burden, the AMP algorithm [50] comes into play to help

reduce the complexity to square order. In brief, the AMP-based detector aims to break a joint

KL-dimension estimation problem into KL simple ones, each dealing with a scalar estimation

problem. The detailed procedures are summarized in Algorithm 1.

Recall that thoseL beams for constructing the analog parts should be determined in advance.

Based on the estimated frequency-domain signal vector s̄, we can obtain the beam selection

criterion of minimizing the mean square error function

‖e‖2 = ‖s̄− s‖2 = ‖My − s‖2. (3.17)

Ideally, those L beams can be obtained via exhaustive search within the set containing all pos-

sible beam candidates, but the computational complexity would be prohibitive in mMIMO.

Thanks to the fact that beamspace sparsity still holds in wideband channels, we can apply

the power-based exclusion as in [51] on each subcarrier to get a small-size beam set Pk. Let

P =
⋃
∀k
Pk and (r, t) = {(r1, t1), · · · , (rL, tL)} ⊂ P with ∀i, (ri, ti) ∈ P . Those L beam

indices for constructing the analog beamformer can be determined as

{(r̄1, t̄1), · · · , (r̄L, t̄L)} = arg min
∀(r,t)⊂P

{∥∥MH̄ − ILK
∥∥2

+ σ2‖M‖2
}

(a)
' arg min
∀(r,t)⊂P

{∥∥H̄+H̄ − ILK
∥∥2

+ σ2
∥∥H̄+

∥∥2
}

= arg min
∀(r,t)⊂P

Tr
{
{H̄∗H̄}−1

}
, (3.18)

where (a) is for M ' H̄+ at high SNR. The approximation is reasonable because IM is

well-known to manifest advantages at high SNR [37]. Based on the selected beams, the ana-

log precoders are accordingly designed as PA = [fT (t̄1),fT (t̄2), · · · ,fT (t̄L)] and WA =

[fR(r̄1),fR(r̄2), · · · ,fR(r̄L)].
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Algorithm 1 AMP-based Detector for wGBM

1: Initialization: t=1, H̃ = H̄(FK ⊗ IL);

x̂1
i =

∑
x∈χ

x/2b, v̂1
i =

∑
x∈χ

∣∣x− x̂1
i

∣∣2/2b, i = 1, · · · ,KL; V 0
j = 1, Z0

j = y(j), j =

1, · · · ,KL;

2: Decoupling step: For j = 1, · · · ,KL and i = 1, · · · ,KL, compute

V t
j = δ

∑
i

∣∣∣H̃[j, i]
∣∣∣2v̂ti + (1− δ)V t−1

j ,

Ztj =
∑
i
H̃[j, i]x̂ti − V t

j (y(j)− Zt−1
j )/(σ2 + V t−1

j )

For i = 1, · · · ,KL, calculate

Σt
i =

[∑
j

|H̃[j,i]|2
σ2+V tj

]−1

, x̄ti = δx̂ti + (1− δ)x̄t−1
i

Rti = x̄ti + Σt
i

∑
j
H̃[j, i]

∗
(y(j)− Ztj)/(σ2+V t

j )

Here δ = 1 is used in the first iteration.

3: Denoising step: For i = 1, · · · ,KL, k̃ = ceil(i/L) − 1, S̄q = {1, · · · , L}\Sq, q =

1, · · · , Q
Dt
i(xi) = exp

(
− |xi|

2−2Re(Rtix
∗
i )

Σti

)
×

∑
q:(i−k̃L)∈Sq

∏
a∈Sq ,

a6=(i−k̃L)

(∑
x∈χ

exp
(
−
|x|2−2Re(Rt

k̃L+a
x∗)

Σt
k̃L+a

))

Eti =
∑

q:(i−k̃L)∈S̄q

∏
a∈Sq

(∑
x∈χ

exp
(
−
|x|2−2Re(Rt

k̃L+a
x∗)

Σt
k̃L+a

))

qt(xi) =


Dti(xi)∑

x∈χ
Dti(x)+Eti

, xi ∈ χ

Eti∑
x∈χ

Dti(x)+Eti
, xi = 0

x̂t+1
i =

∑
x∈χ

xqt(xi = x)

v̂t+1
i =

∑
x∈χ
|x|2qt(xi = x)− |x̂t+1

i |2

4: Set t← t+ 1 and proceed to step 2) until t < Tmax or∑
i

∣∣x̂t+1
i − x̂ti

∣∣2 < 0.1.
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3.1.3 wGBM Error Performance

After accomplishing the wGBM transceiver design, we then analyze its error performance under

the proposed LMMSE detection. Due to the similarity across all subcarriers, the asymptotic

pairwise error probability (APEP) of wGBM can be approximated as

PAPEP =
1

Kb2b

K−1∑
k=0

∑
xk

∑
x̂k

e(xk, x̂k)P (xk → x̂k)

' 1

b2b

∑
xk

∑
x̂k

e(xk, x̂k)P (xk → x̂k), (3.19)

where e(xk, x̂k) stands for the number of error bits between xk and x̂k, and P (xk → x̂k)

stands for the pair-wise error probability.

Proposition 3.1: For wideband mmWave systems equipped with Mm(Mb) RF chains at the MS

(BS) and communicating through channels consisting of P dominant beam paths, the pair-wise

error probability at subcarrier k can be approximated as

P (xk → x̂k) ≈
PCν−1

P−1

12
B

(
NbNmA

4σ2P

L∑
l=1

|∆xk,l|2 + P − ν + 1, ν

)

+
PCν−1

P−1

4
B

(
NbNmA

3σ2P

L∑
l=1

|∆xk,l|2 + P − ν + 1, ν

)
, (3.20)

withA =
∫ (Nc−1)Ts

0

(
|prc(bτc−τ)|2+|prc(bτc−τ+Ts)|2

2(Nc−1)Ts
+ (|prc(bτc−τ)|−|prc(bτc−τ+Ts)|)2

2(Nc−1)Ts

)
dτ , ∆xk,l =

xk,l − x̂k,l, and ν denoting the diversity gain.

Proof. See Proof for Proposition 3.1.

3.1.4 wGBM Accommodating Doppler

The above wGBM transceiver is designed in the absence of Doppler. In time-varying chan-

nels, the ICI may severely compromise the error performance. To address this issue, an addi-

tional operation, i.e., the first-order Doppler compensation, will be applied to the received signal
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y[n] (see Fig. 3.3) before removing CP. Such an receiver operation does not change the exist-

ing wGBM design and will demand negligible computational complexity. The effectiveness is

guaranteed by the following two arguments.

Figure 3.3: The schematic of the Doppler compensator at the receiver end.

Lemma 3.1: For two beams whose AoAs (BS side) are θ1 and θ2, respectively, once satisfying

| sin(θ2)− sin(θ1)| > 2/Nb, these two beams are approximately orthogonal.

Proof. Let ∆ = sin(θ2)− sin(θ1).The correlation between two beams can be calculated as

|ar(θ1)∗ar(θ2)| = 1

Nb

∣∣∣∣sin (πNb∆/2)

sin (π∆/2)

∣∣∣∣ . (3.21)

This value decreases rapidly as |∆| increases in mMIMO, so two beams from distinct directions

tend to be orthogonal, resulting in a tiny interference regardless of Doppler compensation.

Lemma 3.2: For two beams whose AoAs (BS side) are θ1 and θ2, respectively, once satisfying

| sin(θ2)− sin(θ1)| < 2/Nb, the two beams experience a similar Doppler effect.

Proof. The relative Doppler shift ∆w for these two beams can be calculated as∣∣∣∣w2 − w1

w2

∣∣∣∣ =

∣∣∣∣2πfcvmTs(sin(θ2)− sin(θ1))/cv
2πfcvmTs sin(θ2)/cv

∣∣∣∣ =

∣∣∣∣ ∆

sin(θ2)

∣∣∣∣ < ∣∣∣∣ 2

Nb sin(θ2)

∣∣∣∣ . (3.22)

Clearly this value can be very small in mMIMO, implying w2 ≈ w1.
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Figure 3.4: Validation of first-order compensator’s sufficiency: (a) The beam correlation versus the

beam index gap; and (b) The Doppler difference versus the beam index gap.

Define H̄d[n] = W ∗
AHd[n]PA, then the signal after down-conversion becomes

ȳ[n] =

Nc−1∑
d=0

diag
{
e−jw̄ln

}L
l=1

H̄d[n]x[n− d] + v̄[n], (3.23)

where w̄l is the Doppler associated with the l-th selected beam, and v̄[n] ∼ CN
(
0, σ2IL

)
.

With the two lemmas above, ȳ[n] can henceforth be approximated as

ȳ[n]'
Nc−1∑
d=0

H̄dx[n− d] + v̄[n]. (3.24)

where H̄d = W ∗
AHdPA. Unlike the original H̄d[n], H̄d here turns out to be irrespective of n. If

neglecting the minimal interference or Doppler residue, x[n] is essentially transmitting through

a time-invariant channel H̄d. As Nb goes to infinity, it can be readily verified that the above

compensation leads to an exact static channel H̄d, such that ICIs can be completely vanished.

Hence, the end-to-end I-O relationship degenerates into the case in static channels.

3.2 Simulations for wGBM

In this section, we first compare wGBM with the conventional spatial multiplexing (CSM)

and the maximum beamforming (MBF). The pulse-shaper is set as the raised-cosine function



43

with β = 0.8. Other simulation parameters are: K = 256, Nc = 64, Lcp = 64, P = 10,

ψ ∼ U [−7π
16 ,

7π
16 ].

In Fig. 3.5, we make BER comparisons among wGBM, CSM and MBF in frequency-

selective time-invariant (FSTI) channels. When η = 2.4 bps/Hz, the advantage of wGBM over

CSM and MBF gradually becomes noticeable as SNR increases. At high SNR, the coding gains

over CSM and MBF reach 2.5dB and 1.5dB, respectively. To achieve the SE of 5.6 bps/Hz,

CSM adopts hybrid 4-QAM and 8-QAM modulation, while MBF adopts 128-QAM modula-

tion. At low SNR, we observe that wGBM is inferior to CSM because the index bits are sus-

ceptible to strong noises, leading to more frequent erroneous detection. At high SNR, wGBM

performs similar to CSM because the detection loss of wGBM caused by the MMSE detector

can partially be bridged by the advantage of index modulation. With 14% index bits, wGBM

also enjoys a coding gain of 6dB over MBF, whose adopted modulation order has to be every

high. For wGBM, we further compare the theoretical and numerical results and the consistency

hold for both the perfect and imperfect beam orthogonality.
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Figure 3.5: BER comparisons among wGBM, CSM, and MBF in FSTI channels : (a) η = 2.4 bps/Hz,

Nm = 32 and Nb = 32; and (b) η = 5.6 bps/Hz, Nm = 32 and Nb = 32.
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Figure 3.6: BER comparisons between LMMSE- and AMP-based detectors with η = 2.4bps/Hz and

5.6bps/Hz, Nm = 32 and Nb = 32.

Following the same system configuration, we then compare LMMSE- and AMP-based de-

tectors in Fig. 3.6. We set Tmax = 5 and δ = 0.4 for AMP-based detection. Simulations

show that AMP gains 0.5dB edge on the LMMS at BER = 10−6. The reason is that the former

algorithm can explore the structural sparsity of the transmitted signal.

In doubly-selective channels, we consider three different levels of maximum Doppler shift:

0.005, 0.01, and 0.015, corresponding to vm = 40km/h, 80km/h, and 120km/h, respectively. As

can be seen from Fig. 3.7, wGBM with compensation performs dramatically better than that

without compensation. The gap between compensated wGBM and ideal benchmark is minimal

at relatively low SNR. In the high SNR region, the former exhibits a BER floor as vm increases.

However, this error floor can be lowered by increasing Nb because higher angular resolution

leaves a smaller interference residue after compensation.



45

-10 -8 -6 -4 -2 0 2 4 6 8

SNR(dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

wGBM with compensation FSTV

wGBM without compensation FSTV

wGBM FSTI

40km/h-120km/h

40km/h-120km/h

-14 -12 -10 -8 -6 -4 -2 0 2 4 6

SNR(dB)

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

B
E

R

wGBM  FSTI

wGBM with compensation FSTV

wGBM without compensation FSTV

40km/h-120km/h

40km/h-120km/h

(a) (b)

Figure 3.7: BER comparisons in doubly-selective channels with η = 5.6 bps/Hz(a) Nm = 32 and

Nb = 32; and (b) Nm = 32 and Nb = 64.

3.3 From wGBM to P-wGBM

Figure 3.8: The schematic of P-wGBM for wideband hybrid mmWave m-MIMO.

3.3.1 Motivation of P-wGBM

Before going to RF domain, sk is initially precoded by P k ∈ CNs×Ns . Stacking all precoded

sk’s gives rise to a KNs-dimensional vector

x = Ps, (3.25)
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where P = diag(P 1, . . . ,PK) and s = {sk}Kk=1. Note that wGBM fixes the digital precoder

as an identity matrix. Motivated by the advantage of applying precoding in index modulation

[52, 53], one would expect a positive yield to wGBM as well by activating the digital precoder.

To enable the transmission of Ns streams via NRF chains and RF switches. P-wGBM confines

P k to be a diagonal matrix such that the Ns-dimensional IFFT output remains NRF -sparse. As

P k is a diagonal matrix, the precoding design boils down to finding an optimalKNs-dimension

vector. LetPe(p) stand for the corresponding error rate, which is commonly quantified as APEP.

Then we can formulate the following optimization problem to guide the precoding design.

[P. 1: Original APEP-minimized precoding optimization]

arg min
p

Pe(p)

s.t.
∥∥∥p(k−1)Ns+1:kNs

∥∥∥2

F
≤ Ns,∀k ∈ [1,K].

The constraint ensures that the transmit power in P-wGBM remains equal to wGBM.

3.3.2 Problem Transformation

The top priority in dealing with P.1 is of course to find a tractable alternative of Pe(p). Denote S

as the set containing all possible s’s, and assume that the maximum-likelihood (ML) detection

is adopted by the BS. Then the APEP for P-wGBM can be written as follows:

Pe(p) =
1

Kη2Kη

∑
s∈S

∑
ŝ 6=s

Pr (s→ ŝ) e (s, ŝ)

=
1

Kη2Kη

∑
s∈S

∑
ŝ 6=s

Q

√d(s, ŝ)

2N0

 e (s, ŝ) , (3.26)

where d(s, ŝ) =
∥∥ΛP (s− ŝ)

∥∥2, K is the subcarrier number, and η is the information bits

per subcarrier. e(s, ŝ) =
∑K

k=1 e(sk, ŝk) denotes the sum of bit-type Hamming distance, with

e(sk, ŝk) calculated similar to [51] and [23].

Taking a closer look at Eq. (3.26), we discover its calculation involves 22Kη−1 items, while

only K22η−1 items are required in precoded SM [54]. Such a vast disparity arises from their
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different modulation mechanisms. That is, P-wGBM is associated with the entire OFDM symbol

while precoded SM is associated with one subcarrier. As the subcarrier number K would be

in the hundreds in mmWave systems, the primitive APEP is barely useful, forcing us to find

a tractable alternative. Fortunately, the following two conclusions provide us with such an

opportunity.

Proposition 3.2: Λ2
= Λ

H
Λ is a sparse matrix whose dominant energy is captured by the

sub-matrices along its diagonal line.

Proof. See Proof for Proposition 3.2.

Following the derivation above, we can instantly get another useful result to simplify APEP.

Lemma 3.3: The sub-matrices Λ2
k,k’s on the diagonal line of Λ2 are exactly the same.

Proof. We have already arrived at Λ2
=
∑K

i=1(fHi f i)⊗ (ΛHi Λi). Since matrix fHi f i has an

all-one diagonal line, the sub-matrices on the diagonal line of Λ2 can be represented by

Λ
2
k,k =

[
Λ

2
]

(k−1)Ns+1:kNs,(k−1)Ns+1:kNs
=

K∑
i=1

H
H
i H i. (3.27)

As revealed by Proposition 3.2 thatΛ2 is near block-diagonal, the computation of Euclidean

distance between two OFDM symbols can be transformed into per subcarrier. Therefore, the

original APEP given in Eq. (3.26) can be approximated as

1

K2η2η

K∑
k=1

∑
sk∈G

∑
ŝk 6=sk

Q

√d(sk, ŝk)

2N0

 e (sk, ŝk) , (3.28)

where G represents the ensemble of sk, being common to all subcarriers; d(sk, ŝk) = pHk Λ
H
k,kΛk,k�

[(sk− ŝk)(sk− ŝk)H ]Tpk. This step of approximation reduces the number of summations from

2ηK(2ηK − 1) to K2η(2η − 1).

Recall that lemma 3.3 points out all subcarriers share the same Λ2
k,k. Also, they have a

shared error pattern set. Hence, their behavior in terms of the error performance is the same,
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leading to p1 = . . . = pK = p. Using this property, we are able to absorb the summation over

k on the outermost layer of Eq. (3.28), giving rise to a more compact form as follows:

1

Kη2η

∑
si∈G

∑
sj 6=si

Q

√pHDi,jp

2N0

 e (si, sj) , (3.29)

where Di,j = Λ
H
i,iΛi,i � [(si − sj)(si − sj)H ]T . As a result, APEP can be computed by

summing up only 2η(2η − 1) items, even fewer than that required in precoded SM.

We replace Pe(p) with Eq. (3.29) and further define

q = [Re(p)T , Im(p)T ]T ∈ R2Ns×1, (3.30a)

Ri,j =

Re(Di,j) −Im(Di,j)

Im(Di,j) Re(Di,j)

 , (3.30b)

then similar to [55], we rewrite the optimization problem in its equivalent real-valued form into

[P. 2: Simplified APEP-minimized precoding optimization]

arg min
q

P̃e(q) =
1

Kη2η

∑
si∈G

∑
sj 6=si

Q

√qTRi,jq

2N0

 e (si, sj)

s.t. ‖q‖2 ≤ Ns.

3.3.3 Problem Solving

Our ultimate goal is to solve P.2, whose global optimum is generally not achievable. How-

ever, we will show that the obtained solution can be sufficiently close to the optimum if the

signal-to-noise ratio (SNR) is high enough. In fact, this SNR range is also within our interest

because index modulation is well-known to show an advantage over conventional modulations

in that SNR range. Under the high-SNR assumption, the objective function of P.2 can be tightly

approximated as

P̃e(q) ≈ P̃e,h(q) =
1

Kη2η

∑
si∈G

∑
sj 6=si

Q

√qTRi,jq

2N0

 e (si, sj) I(si, sj) (3.31)
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where I(si, sj) is a binary indicator function taking on 1 if sj and si differ in only one element.

Once I(si, sj) = 1,Di,j = Λ
H
i,iΛi,i�[(si−sj)(si−sj)H ]T contains a single non-zero element

on its diagonal line. Then one can verify that altering the sign of an arbitrary element of q does

not change P̃e,h. In consequence, minimizing P̃e,h over ‖q‖2 ≤ Ns equates to minimizing over

S = {q| ‖q‖2 ≤ Ns, q � 0}.

Proposition 3.3: P̃e,h(q) is asymptotically convex w.r.t. q over S at high SNR.

Proof. See Proof for Proposition 3.3.

Thanks to the asymptotic convexity of Pe,h(q), we can get a near-optimal solution to P. 2,

denoted as q, at high SNR via a simple projected gradient algorithm. Accordingly, the precoder

can be determined as

P k = diag
(
q1:Ns

)
+ jdiag

(
qNs+1:2Ns

)
, ∀k. (3.32)

3.3.4 Simulations for P-wGBM

Numerical simulations will be carried out in this part to test the bit error ratio (BER) perfor-

mance of P-wGBM. The well-known geometrical channel model [56] is adopted, with the tap-d

channel (d < Nc) and the corresponding k-th subcarrier channel represented as

H[d] =

√
NbNm

Np

Np∑
l=1

αlp(dTs − τl)ar(φl)aHt (θl) (3.33a)

Hk =

Nc−1∑
d=0

H[d]e−j
2πk
K
d. (3.33b)

Specifically, p(·) is the raised-cosine filter with roll-off factor β = 0.8 and Nc is the maximum

tap. The uniform linear arrays with half-wavelength spacing are employed at the transceivers, so

ar(φ) = 1√
Nr

[
1, ejπ sinφ, . . . , ej(Nr−1)π sinφ

]T
. Other system and channel related parameters

are listed in Table.3.2. The SNR is defined as Eb/n0 = NRF /(ηN0). All BER curves are the

average of 10000 independent channel realizations, each with a block of 2000 symbols.
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Table 3.2: System and channel parameters for simulating P-wGBM

Parameter Value

BS-end antenna number Nb 64

MS-end antenna number Nm 32

Subcarrier number K 32

Maximum delay tap Nc 8

Angle of arrival (departure) φl (θl) U [0, 2π)

Tap delay τl U [0, (Nc − 1)Ts)

Path amplitude αl CN(0, 1)

Sampling time Ts 10−9 s

Path number Np 8

Figure 3.9: Normalized power map of Λ
2
.

Recall that the success of APEP simplification counts on the unique structure of Λ2. Ac-

tually, one can interpret Λ2 as the autocorrelation of sub-beamspace channels. To gain more

intuition, we visualize this matrix in a power map by averaging 10000 realizations. As seen
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from Fig. 3.9, all sub-matrices along the diagonal line are exactly the same, amassing the ma-

jority of channel power. In contrast, the off-diagonal sub-matrices are suppressed to a very

low level. The result implies that all subcarriers have a similar behavior regarding the error

performance, so they share a common digital precoder.

Since ML detection is infeasible due to prohibitive complexity, we henceforth adopt near-

ML detector proposed in [57] for both schemes. In brief, by leaving more effective candidates,

whose number is denoted as m, the achieved performance is closer to the ML detector at the

expense of higher complexity. As can be seen from Fig. (3.10), the coding gain is up to 2dB

at high SNR under the setup of {NRF = 1, Ns = 4, 16-PSK}. More configurations have been

tested, and in general, we find that a large Ns and a high modulation order typically lead to

a high coding gain. This is because in this case the beam quality exhibits a higher degree of

discrimination, hence digital precoding can help compensate for the weak beams and reduce

their adversary effects on the error performance.
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Figure 3.10: BER comparison between P-wGBM and wGBM under NRF = 1, Ns = 4, and 16-PSK:

η = 6 bits/Hz/s.

From the hardware perspective, wGBM and P-wGBM have equal complexity because no

additional component is needed. From the computation perspective, P-wGBM requires digital
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precoding whose complexity primarily relies on computingDi,j and updating gradient descent,

each needing the number of flops in the order ofO(KN2
s ) andO(NiteN

2
s ). The beam selection

and detector complexity are O(K3N3
s ) for both wGBM and P-wGBM. Although the latter is a

bit more complicated, it shares the same cubic-order complexity concerning the subcarrier and

stream number. Plus, the resulting nearly 1dB coding gain consolidates that such complexity

cost is rather worthwhile.

3.4 Conclusions

In this chapter, we first generalized GBM from the narrowband to realistic wideband scenar-

ios via a novel symbol-based IM framework. The developed wGBM is compatible with hy-

brid OFDM systems while retaining the SE-enhancing feature. Apart from the generic wGBM

transceiver design, a simple first-order Doppler compensator is carefully designed to enhance

the robustness against Doppler. Evolving from wGBM, P-wGBM was then developed by ac-

tively involving the digital precoder. Starting with determining a feasible precoding set, an

optimization problem has been formulated, seeking the optimal precoder that retains multiplex-

ing merit. To circumvent analytical intractability, we then devised a two-step simplification by

exploiting the beamspace properties. Instead of resorting to complex processing, the resulting

near-optimal precoder was efficiently obtained via projected gradient-descent algorithm. Simu-

lations verified that a slightly increased complexity could yield more than 1dB coding gain over

wGBM.
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3.5 Proof of Propositions for wGBM

3.5.1 Proof for Proposition 3.1

Leveraging the fast-decaying nature of prc, we get

δl =
NbNm

P

∣∣∣∣∣
Nc−1∑
d=0

αlprc(dTs − τl)e−jd
2πk
K

∣∣∣∣∣
2

≈ NbNm

P
|αlprc (bτl/TscTs − τl) e−jbτl/Tsc

2πk
K

+ αlprc ((bτl/Tsc+1)Ts − τl) e−j(bτl/Tsc+1) 2πk
K |2

≈ NbNm

P
|αl|2{(|prc (bτlc − τl)|2 + |prc (bτlc − τl + Ts)|2)/2+

(|prc (bτlc − τl)| − |prc (bτlc − τl + Ts)|)2/2}. (3.34)

DefineR = diag
{

δl
δl+σ2

}L
l=1

. According to Eq. (3.15), we have

x̄k = (FK
∗[k, :]⊗ IL)MH̄s+ (FK

∗[k, :]⊗ IL)Mξ

= (FK
∗[k, :]⊗ IL)(IK ⊗R)s+ nk

= (I1 ⊗R)(FK
∗[k, :]⊗ IL)s+ nk

= Rxk + nk. (3.35)

Thus, the LMMSE-based detector in Eq. (3.16) can be approximated as

x̂k ' arg min
xk∈G

‖x̄k −Rxk‖2. (3.36)

The above equation can further lead to

P (sk → ŝk) = EH̄k

{
Q

(√(
‖R(xk − x̂k)‖2

)2
/σ2

k

)}
(b)
' EH̄k

{
1

12
exp

(
−
(
‖R(xk − x̂k)‖2

)2
/2σ2

k

)}
+ EH̄k

{
1

4
exp

(
−2
(
‖R (xk − x̂k)‖2

)2
/3σ2

k

)}
, (3.37)
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where (b) comes fromQ(x) ' 1/12e−x
2/2+1/4e−2x2/3 [39], and σ2

k = 2σ2
L∑
l=1

δ3
l

(δl+σ2)4 |∆xk,l|2.

Let γ = [γ1, · · · , γL]T with γl = |αl|2, and β = [β1, · · · , βL]T with

βl =(|prc (bτlc − τl)|2 + |prc (bτlc − τl + Ts)|2)/2+

(|prc (bτlc − τl)| − |prc (bτlc − τl + Ts)|)2/2. (3.38)

Recall that γl obeys unit exponential distribution, so by replacing all γl’s with the p0-th (1 ≤

p0 ≤ P ) largest one yields

f(γ) =PCP−p0

P−1

(
e−γL

)p0
(
1− e−γL

)P−p0

L∏
j=2

δ(γj − γj−1). (3.39)

Neglecting the constant term, the first expectation in Eq. (3.37) can be approximated as∫ ∞
0
· · ·
∫ ∞

0
f(γ)

{
exp

(
−
(
‖R(xk − x̂k)‖2

)2
/2σ2

k

)}
dγ1 · · · dγL

=PCP−p0

P−1

∫ ∞
0

e
−(

NbNm

4σ2P

L∑
l=1

E[βl]|∆xk,l|2+p0)γL
(1− e−γL)P−p0dγL

(c)
=PCP−p0

P−1 B

(
NbNm

4σ2P

L∑
l=1

E [βl] |∆xk,l|2 + p0, P − p0 + 1

)
(d)
=PCP−p0

P−1 B

(
NbNm

4σ2P

L∑
l=1

E [βl] |∆xk,l|2 + P + 1− ν, ν

)
, (3.40)

where (c) comes from B(X,Y ) =
∫ 1

0 γ
X−1(1− γ)Y−1dγ and (d) is because ν = P − p0 + 1.

As prc(x) ≈ 1/2 cos(πx/Ts)+1/2, x ∈ (−Ts, Ts), E [βl] =
∫ (Nc−1)Ts

0 βl
1

(Nc−1)Ts
dτl, ∀l, high

SNR will lead to

PCν−1
P−1

(NbNm
4σ2P

L∑
l=1

E [βl] |∆xk,l|2 + P − ν)!(ν − 1)!

(NbNm
4σ2P

L∑
l=1

E [βl] |∆xk,l|2 + P )!

'M0

(
S

N0

)−ν
+ o

{(
S

N0

)−ν}
,

(3.41)

Apparently, ν (1 ≤ ν ≤ P ) represents the diversity gain.
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3.5.2 Proof for Proposition 3.2

Let f i be the i-th row of FK , then

Λ
2

= (FH
K ⊗ INs)ΛHΛ(FK ⊗ INs)

=


f1 ⊗ INs
f2 ⊗ INs

...

fK ⊗ INs



H 
H

H
1 H1

. . .

H
H
KHK



f1 ⊗ INs
f2 ⊗ INs

...

fK ⊗ INs


=

K∑
k=1

(fHk fk)⊗H
H
k Hk (3.42)

Defining ω = ej
2π
K , we have

Λ
2
m,n =

[
Λ

2
]

(m−1)Ns+1:mNs,(n−1)Ns+1:nNs

=

K∑
k=1

ω(n−m)·(k−1)H
H
k Hk, m 6= n. (3.43)

∀k, HH
k Hk is demonstrated to be asymptotically equal as antennas approach infinity [58].

Since 1
K

∑K
k=1 ω

n·(k−1) = 0 if k 6= 0, Λ2
m,n is proved to be close to a zero matrix.

3.5.3 Proof for Proposition 3.3

The heart of demonstration lies in proving the convexity of Q-term. Let Ri,j = Ri,j + R
T
i,j .

Taking the second derivative of the Q-term w.r.t. q results in

∂2Q

∂2q
∝ e−

qTRi,jq
4N0

(
qTRi,jq

2N0

)− 1
2
(
Ri,jqq

TRi,j

4N0
−Ri,j+(

qTRi,jq

2N0

)−1
Ri,jqq

TRi,j

4N0

)
∝ Ri,jqq

TRi,j − o(SNR−1)Ri,j

Note that if I(si, sj) = 1, Ri,j is rank-deficient, so Ri,jqq
TRi,j � 0. The Hessian matrix is

non-negative, leading to the convexity (not strict convexity) of P̃e,h(q).



Chapter 4

Doubly-Sparse Doubly-Selective

(DSDS) Channel Estimator for Hybrid

mmWave Massive MIMO

To facilitate the transceiver design including but not limited to the prior GBM and wGBM, the

top priority is to acquire an accurate channel state information (CSI) [59]. However, compared

to the cmWave MIMO systems, channel estimation for mmWave mMIMO faces unprecedented

challenges. First, mmWave mMIMO typically adopts a hybrid structure for power and cost

concerns [10], so the high-dimensional channel matrix has to be recovered via very few RF

chains. Since the latter essentially determines the number of effective training symbols that

can be transmitted simultaneously, it can take significant amount of time to transmit sufficient

training symbols for mMIMO. When it comes to the mobile scenarios, the problem becomes

even more challenging, because the channel turns out to be time-varying in the presence of

Doppler.

As mmWave channels exhibit limited scattering, a unique sparsity holds in beamspace under

mMIMO. Thanks to this sparsity, it may not be necessary to estimate the channel matrix element

by element. Instead, one can resort to the compressed sensing (CS) theory to reduce the training

56
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overhead while ensuring a high accuracy. Following this idea, in [13], a hierarchical beam

training coupled with orthogonal matching pursuit (OMP) [60] is devised to estimate static

narrowband mmWave channels. In [61], block-OMP (BOMP) is applied to estimate narrowband

and time-varying mmWave channels. The static wideband channel estimation in the line-of-

sight (LoS) scenarios is considered in [62], and the relevant work has been further extended

to the non-LoS (NLoS) scenarios like [56] and [63], where OMP is applied either in the time-

domain or the frequency-domain to assist channel estimation.

Due to the wideband nature of mmWave, the narrowband channel model suffers from se-

vere limitations, motivating us to focus on the wideband channel model. Generally speaking,

existing wideband channel estimation works can be divided into two main categories: time-

domain estimation vs. frequency-domain. The former is to estimate all channel taps jointly,

while the latter is to estimate individual subcarriers independently. By exploiting the sparsity

in beamspace, both schemes achieve similar performance in the sense of the normalized mean

square error (NMSE), with a largely reduced training overhead compared to the least-squares

(LS) estimator. However, to effectively exploit the sparsity so that OMP could be applied, either

the demanding storage requirement or the heavy computational burden is inevitable. On top of

that, these works have not taken into account of the Doppler effects, rendering their feasibility

in mobility scenarios questionable. To address these issues, there is an urgent need for a more

generalized and more efficient channel estimation approach.

To achieve significant reduction in training overhead and computational complexity, we re-

sort to the under-exploited delay-domain sparsity in combination with the well-known beamspace

sparsity. Aiming at a high-performance and easy-to-implement channel estimator, a novel chan-

nel estimator is proposed by exploiting the double sparsity. As a matter of fact, the idea of using

either the delay-domain sparsity or the double sparsity can be also found in some works, such

as [64] and [65]. However, these works are not specifically designed for hybrid mMIMO, and

their studied channels have not taken time selectivity into account. In fact, once the time se-

lectivity is involved, how to exploit either the delay-domain sparsity or the beamspace sparsity

becomes a thorny problem. Furthermore, the introduction of the hybrid structure makes channel
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estimation a totally different topic as before, because the design flexibility is severely restricted

by the hardware constraints. To address the aforementioned deficiencies, we propose a novel

doubly-sparse approach to estimate mmWave mMIMO channels. Specifically, the so-called

DSDS channel estimator comprises the following steps:

• To deal with the sparsity in delay domain, a special training pattern is judiciously designed

to successfully separate each channel tap. Based on the energy detector, only a small

proportion of channel taps will be identified effective regardless of Doppler effects and

awaits a further processing.

• To deal with the beamspace sparsity, an enhanced OMP algorithm termed as A-BOMP

is proposed to recover the beam direction. Given the maximum Doppler, A-BOMP can

adjust basis matching and residue update with properly determined iterations, such that a

high accuracy can be guaranteed even under strong Doppler effects.

• To jointly estimate the amplitudes and Doppler, repetitive steering-probing is applied

based on the estimated beam direction. As a result, both the amplitudes and Doppler can

be reliably estimated with low training overhead.

In the rest of chapter, we will detail these steps in sequence.

4.1 System and Channel Description

4.1.1 System Model

A mmWave mMIMO system is considered, where Nt and Nr antennas are employed at the

transmitter (Tx) and receiver (Rx), respectively. Since the proposed channel estimation ap-

proach does not rely on the channel reciprocity, we simply assume channel estimation is im-

plemented at Rx. For the power consumption and hardware cost concerns, mmWave mMIMO

typically adopts a hybrid structure, in which the number of RF chains at the transceivers is much

smaller than that of the antennas.



59

Figure 4.1: The system model of hybrid mmWave mMIMO with one RF chain deployed at transceivers.

Similar to [66], a fully-connected hybrid structure is studied here, where the RF chains and

antennas are connected via a digitally controlled analog phase shifter (APS) network. Suppose

each APS component has a resolution of b bits, then all adjustable angles are contained in

B =
{

0, 2π/2b, · · · , 2π(2b − 1)/2b
}

(4.1)

with | B |= 2b. Accordingly, the angular quantization function is expressed as

Q(x) = B(i∗), i∗ = arg min
i

mod
(
x− B(i), 2π

)
. (4.2)

Let the transceivers each employ a single RF chain as shown in Fig. 4.1. Note that, since we

focus on channel estimation in this chapter, this setup is without loss of generality and can be

readily generalized to cope with arbitrary number of RF chains at the transceivers.

4.1.2 Geometric Channel

In this chapter, we adopt the modified Sen-Matolak channel model [67], which is an extension of

the narrowband geometric model by taking the path delay and the Doppler effect into account.

Denote the maximum number of delay taps as Nc. At time instant n, the sampled version of the

tap-d channel (0 ≤ d < Nc) is given by

Hd(n) =
P∑
p=1

√
NtNr

P
αph(dTs − τp)ar(θp)a∗t (φp)ejωpn (4.3)
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where αp ∼ CN (0, 1) is the complex gain of the p-th path; h(·) is the pulse shaping filter

response; τp is the propagation delay of the p-th path that obeys a uniform distribution on

[0, (Nc − 1)Ts); θp and φp represent the angle of arrival (AoA) and angle of departure (AoD),

respectively, both of which being modeled as uniformly distributed variables on [0, 2π). Define

the system carrier frequency to be fc, the velocity of light to be cv, and the maximum relative

velocity to be vm. Then the normalized Doppler shift is ωp = 2πfcvmTs sin(θp)/cv. For

notational simplicity, an array response generating function is defined as

fN (y) =
1√
N

[
1, ej2πy, · · · , ej2π(N−1)y

]′
. (4.4)

With half-wavelength uniform linear arrays (ULAs) employed at the transceivers, we have

at(φ) = fNt
(

sin(φ)/2
)

and ar(θ) = fNr
(

sin(θ)/2
)
.

4.1.3 Beamspace Representation

To simplify expression, one can rewrite the geometric model into a compact form [61]

Hd(n) = ARdiag
(
gd(n)

)
A∗T (4.5)

whereAT =
[
at(φ1),at(φ2), · · · ,at(φP )

]
∈ CNt×P andAR =

[
ar(θ1),ar(θ2), · · · ,ar(θP )

]
∈

CNr×P are steering matrices that remain unchanged during the channel estimation stage. The

time-varying effects are incorporated in gd(n) given by√
NtNr

P

[
α1h(dTs − τ1)ejω1n, · · · , αPh(dTs − τP )ejωPn

]′
(4.6)

which contains the path gains at time instant n.

In Eq. (4.5), AT , AR as well as gd(n) are all associated with the physical channel taps,

which are not always resolvable due to the finite resolution of the receiver in time and space, and

thus cannot be directly estimated. To seek an equally general but more practical representation,

we first construct the Tx-end and Rx-end angular dictionary matrices as in [13]

Dt =
[
fNt(0),fNt(1/Gt), · · · ,fNt

(
(Gt − 1)/Gt

)]
(4.7a)

Dr =
[
fNr(0),fNr(1/Gr), · · · ,fNr

(
(Gr − 1)/Gr

)]
(4.7b)
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where Gt and Gr represent the size of corresponding dictionaries. Taking Dt as an example,

it contains the steering vectors ranging from [0, 2π] with resolution 2π/Gt. As Gt approaches

infinity, the resolution becomes zero, thus leading to a continuous dictionary. For practical

implementation, most work show that setting Gt as 2 ∼ 4 times the array size can provide

sufficient resolution for separating the AoAs/AoDs of the propagation paths. Based on the

dictionary matrices, the channel representation in Eq. (4.5) can be re-expressed as

Hd(n) = ARdiag
(
gd(n)

)
A∗T = DrHd(n)D∗t . (4.8)

Under the mMIMO setup, P propagation paths result in P dominant non-zero entries in

Hd. AsDr andDt are irrelevant toHd,Hd essentially gathers the entire channel information

that was originally contained by AT , AR and gd(n). Specifically, by omitting the time instant

and assuming on-grid AoA/AoD pairs, ∀p ∈ [1, P ], np =
φp

2π/Gt
, mp =

θp
2π/Gt

, Hd(mp, np) =

gd[p]. From this sense, Hd can be interpreted as the channel representation in beamspace.

Because a limited scattering effect in mmWave propagation leads to P � GrGt [51], Hd

exhibits an evident sparse nature.1

Revisiting Eq. (4.3), the prior information available at both ends areNt,Nr,Nc, the steering

pattern of at/r, while the remaining parameters are unknown to the transceivers, and thus have

to be recovered via channel estimation. In the following, we will heavily rely on the beamspace

representation to recover the beam direction (AoA and AoD), the beam amplitude, as well as

the associated Doppler shift.

4.1.4 Input-output relationship

Let s(n) be the training symbol at instant-n. At the Tx, s(n) is first processed at the APS

network, and the transmitted signal is x(n) = pt(n)s(n) ∈ CNt×1. Since each APS component

1 In practice, the off-grid leakage may lead to extra non-zero entries in Hd. Since the leakage is typically very
weak under mMIMO, the ensemble of dominant entries in Hd is still similar to gd. Regardless of whether the non-
zero entries of Hd corresponds to a single channel path p or to some leakage terms, these entries are the resoluble
ones that can be estimated.
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can only adjust the phase, the probing vector pt(n) bears the form as

pt(n) =
√

1/Nt

[
ejα1(n), ejα2(n), · · · , ejαNt (n)

]′
(4.9)

with αi(n) ∈ B, ∀i ∈ [1, Nt].

After channel propagation, the received signal is

r(n) =

Nc−1∑
d=0

Hd(n)x(n− d) + η(n) (4.10)

which is the convolution of multiple time-varying channel taps. η(n) ∼ CN (0, σ2INr) is

the receiver noise vector. r(n) then goes through the Rx-end APS network, whose function is

described by an Nr × 1 probing vector pR(n), so the received sample after APS becomes

y(n) =

Nc−1∑
d=0

p∗r(n)Hd(n)pt(n− d)s(n− d) + ξ(n). (4.11)

where ξ(n) = p∗r(n)η(n) ∼ CN (0, σ2) remains white. Let pt(n) = Dtpt(n) and pr(n) =

Drpr(n). Based on the beamspace representation in Eq. (4.8), we have

y(n) =

Nc−1∑
d=0

p∗r(n)Hd(n)pt(n− d)s(n− d) + ξ(n). (4.12)

Without loss of generality, we consider a general I-O relationship for the first frame only unless

otherwise specified. The length-Nf training frame is simply denoted as [s(0), s(1), · · · , s(Nf−

1)], and its specific form will be explained later. By concatenating all received samples, we write

the I-O relationship in matrix form shown in Eq. (4.13) at the top of next page,

y = [y(0), y(1), · · · , y(Nf − 1)]
′

=P
∗
r



H0(0) 0 0 · · · 0
... H0(1) 0 · · · 0

HNc−1(Nc − 1) · · · . . . · · ·
...

...
. . . · · · . . . 0

0
... HNc−1(Nf − 1) · · · H0(Nf − 1)


P t



s(0)
...

s(Nc − 1)
...

s(Nf − 1)


+ξ.

(4.13)
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withP ∗r =


p∗r(0) 0 · · · 0

0 p∗r(1) · · · 0
...

...
. . . 0

0 0 · · · p∗r(Nf − 1)

 and P t =


pt(0) 0 · · · 0

0 pt(1) · · · 0
...

...
. . . 0

0 0 · · · pt(Nf − 1)

.

4.2 Exploit delay-domain sparsity

As described earlier, mmWave channels exhibit sparsity in beamspace. Apart from this well-

known sparsity, this section will further show that mmWave channels exhibit sparsity in the

delay domain as well. We first analyze why existing approaches fail to exploit the delay-domain

sparsity, and then explain how one can effectively benefit this largely overlooked sparsity.

4.2.1 Sparsity in delay domain

To eliminate inter-frame interferences (IFIs) in block transmission, a commonly adopted ap-

proach amounts to zero-padding (ZP) a guard interval with length at least (Nc − 1) to each

frame. For example, the data-frame length is 512 in IEEE 802.11ad, while the prefix length can

be up to 128. However, a long delay spread with large Nc due to the high symbol rate does

not mean a rich multi-path environments. In fact, mmWave channels have very few dominant

paths2 Hence, a majority of the channel taps are actually too weak to be considered, render-

ing sparsity in the delay domain. To gain some intuitive insight, we plot the colormap of a

randomly generated channel in Fig. 4.2, where the double sparsity in both the beamspace and

delay domain can be clearly observed.
2 typically 8 ∼ 12 even in “rich” scattering environments, and is much less in other environments [36].
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Figure 4.2: The delay-beamspace colormap of a randomly generated mmWave channel withNt = Nr =

32, Nc = 64 and P = 5.

4.2.2 Conventional Training Pattern

The currently adopted training pattern [63] is given by

[s(0), s(1), · · · , s(Nf − 1)] =
[
s0, s1, s2, · · · , sN−1, 0, · · · , 0︸ ︷︷ ︸

Nc

]
. (4.14)

Specifically, each frame contains Nf = N + Nc symbols, where N and Nc are the length of

the data sequence and ZP, respectively. Clearly, the I-O relationship of this pattern still follows

the general one in Eq. (4.13), but some specifics need to be clarified.

In wideband mmWave systems, symbols are pumped out at a very high rate, thus leaving

insufficient buffer time for the APS network reconfiguration except for the ZP interval [56]. As

a result, the probing vectors remain unchanged over the entire frame, that is

pt/r(n) = pt/r(0), ∀n ∈ [0, Nf ). (4.15)

Accordingly, P ∗r = INf ⊗ p∗r(0) and P t = INf ⊗ pt(0).

Although the introduction of ZP ensures IFI-free, Nc channel taps remain unresolvable

after convoluting with the training sequence. In consequence, channel estimation requires joint
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processing across all taps, leading to high storage demand and heavy computational burden.

More importantly, exploiting the delay-domain sparsity becomes an intractable task.

4.2.3 Proposed training pattern

To avoid these limitations, there is a great urgency to devise a new training pattern, by which the

delay-domain sparsity could be exploited to facilitate channel estimation, and the pattern itself

must be friendly to implementation. To this end, a new training pattern is designed as follows

[s(0), s(1), · · · , s(Nf − 1)] =
[
s0,

Nc−1︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

(1)

∣∣∣∣ s1,

Nc−1︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸

(2)

∣∣∣∣ · · · · · · ∣∣∣∣ sL−1,

Nc−1︷ ︸︸ ︷
0, · · · , 0︸ ︷︷ ︸
(L)

]
. (4.16)

As can be seen, each frame is further divided into L = Nf/Nc subframes3 . Owing to

the ZP in each subframe, sufficient buffer time is left to reconfigure the APS network after

each non-zero training symbol. In other words, the probing vectors can be updated L times per

frame, i.e.,

pt/r(n) = pt/r
(
Ncbn/Ncc

)
, ∀n ∈ [0, Nf ). (4.17)

An interesting fact is that, when it comes to the frequency-selective channel estimation in con-

ventional MIMO setup, the training pattern in Eq. (4.16) has been proved optimal in the sense

of both the mean squared error (MSE) and system mutual information [68]. Before taking a

closer look at the I-O relationship with the new pattern, we first make the following definition.

Random-probing vector: At the random-probing stage, the probing vectors are generated by

randomly adjusting the angle of each APS component from B. The resultant vector is termed as

the random-probing vector and denoted as

pRt/r(l) = pt/r(lNc + nc), (l < L, nc < Nc). (4.18)

Applying random probing is simply because no prior CSI is available at this stage. Note that,

the above definition implies that pRt/r possesses both the randomness and subframe-updatability

3 Without loss of generality, L is assumed to be an integer here. If Nf/Nc is not an integer, one can simply use
L = bNf/Ncc.
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property. Applying a similar notational change to pt/r, P
∗
r becomes Eq. (4.19),

P
∗
r =


INc ⊗

(
pRr (0)

)∗
0 · · · 0

0 INc ⊗
(
pRr (1)

)∗ · · · 0
...

...
. . . 0

0 0 · · · INc ⊗
(
pRr (L− 1)

)∗

 (4.19)

and P t is obtained likewise. Substituting the new P ∗r and P t, together with the training frame

into Eq. (4.13), the received signal becomes

y(lNc + nc) =
(
pRr (l)

)∗
Hnc(lNc + nc)p

R
t (l)sl + ξ(lNc + nc). (4.20)

Clearly, the received samples are now associated with a single channel tap. Hence, our proposed

pattern facilitates separating channel taps and thus rendering it possible to exploit the delay-

domain sparsity easily. Since the success of tap separation does not rely on the non-zero training

symbol sl in Eq. (4.16), sl is set as 1 in the rest of chapter without loss of generality.

4.2.4 Identification of effective taps

To determine the existence of tap-d channel, we gather allHd-related samples, i.e., y(lNc+d),

∀l ∈ [0, L − 1]. If at least one dominant path exists in the tap-d channel, y(lNc + d) includes

both the signal and noise parts. Otherwise, y(lNc + d) contains noise only. Hence, detecting

the existence of the tap-d channel is a binary hypothesis testing problem that can be dealt with

via energy detector. We first average the power of all samples associated with Hd, and get the

test statistics (TS) and its normalized version nTS as

Yd =
1

L

L−1∑
l=0

∣∣y(lNc + d)
∣∣2 (4.21a)

Y d =
Yd − σ2

max
0≤m<Nc

(Ym − σ2, 0)
. (4.21b)

When applying CS, random probing is necessary in estimating both the time-invariant and time-

varying channels. While for the latter, another important function of random probing is to

remain robust against Doppler.
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Proposition 4.1 [Validity of test statistics with Doppler]: With sufficient random probings, the

test statistics Yd is approximately irrelevant to the channel’s time variation.

Proof. Let n = lNc + d and gd,p(n) be the p-th element of gd(n), then

y(n) =

Nc−1∑
d=0

p∗r(n)Hd(n)pt(n− d) + ξ(n)

=

P∑
p=1

(
pRr (l)

)∗
ar(θp)a

∗
t (φp)p

R
t (l)gd,p(n) + ξ(n). (4.22)

Denote ρp(l) = (pRR(l))∗ar(θp)a
H
t (φp)p

R
T (l). By using gd,p(n) = gd,p(0)ejωpn, we have

|y(n)|2 =

P∑
p=1

|ρp(n)gd,p(0)|2 + 2R
{ P∑
p=1

ρp(l)gd,p(0)ξ(n)ejωp1n
}

+ 2R
{∑

p1

∑
p2

ρp1(l)gd,p1(0)ρ∗p2
(l)g∗d,p2

(0)ej(ωp1−ωp2 )n

}
. (4.23)

Since pRt and pRr are random probing vectors with zero mean, it can be readily verified E{ρp(l)} =

0, ∀p ∈ [1, P ]. By averaging sufficient |y(n)|2 terms, the last two terms in Eq. (4.23) approach

zero, thus the TS becomes irrelevant to ωp.

Proposition 4.1 guarantees the exploitation of the delay-domain sparsity regardless of Doppler

effects. With the energy detector, the effective taps can be roughly selected as

P1 =

{
d

∣∣∣∣ Y d ≥ µ
}⋂{

d

∣∣∣∣ Yd > σ2

}
, (4.24)

where µ is the threshold4 . To avoid extreme cases where cal(P1) is either 0 or unreasonably

large, a tuning procedure is added, and the ultimately determined taps are given by

P =


P1, 0 < cal(P1) ≤ A{

d|Y d ≥ λA
}
, cal(P1) > A{

d|Yd ≥ λA
}
, cal(P1) = 0.

(4.25)

4 Evidently, the energy detector is somewhat heuristic. Recall that the energy detector actually plays the role
of a binary classifier, a promising direction is to seek the power of deep neural networks. Specifically, given the
channel model, a bunch of synthesized data can be generated to train the network for classification (tap detection) in
a supervised manner. The offline trained network could then be used for online prediction.
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with λA and λA representing the A-th largest TS and nTS, respectively.

Up till now, we have accomplished the first part of the random-probing stage. Summarizing,

the main steps can be described as follows:

• Transmit judiciously designed training frames with random APS probing.

• Calculate the TS/nTS for each channel tap based on the corresponding received samples.

• Determine the non-negligible channel taps based on the energy detector P .

4.3 Exploiting the Beamspace Sparsity

As outlined in Section II, the beamspace channel exhibits sparsity under mMIMO settings.

Therefore, instead of estimating the original geometric channel matrix Hd with dimension

NtNr, we estimate the sparse beamspace channelHd. Since the time variation imposes a great

difficulty in recovering the exact values of non-zero entries from Hd, we focus on locating the

non-zero entries (essentially the angle support) first in this section, and leaving the estimation

of exact values to the next section.

4.3.1 Sparse transformation

After tap detection, nc out of Nc taps are recognized effective, with their indices collected by

D = {d1, d2, · · · , dD}. Using the samples already obtained at the random-probing stage, we

proceed to determine the angle support for those taps belonging to D. It has to be stressed that

this step does not require extra training frames.

Due to the similarity, we take tap-di (di ∈ D) for example, and the subscript of di is omitted

for brevity. To apply CS, let us first derive the sparse representation for received samples.

Stacking allHd-related samples from y yields

yd = [y(d), y(Nc + d), · · · , y((L− 1)Nc + d)]
′
. (4.26)
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Denoting nl = lNc+d
(
∀l ∈ [0, L)

)
and using matrix equality vec(ABC) = (C

′⊗A)vec(B),

y(nl) can be rewritten as

y(nl) =

((
pRt (l)

)′
⊗
(
pRr (l)

)∗)
︸ ︷︷ ︸

ψ(l)

(
vec

(
Hd(nl)

))
︸ ︷︷ ︸

hd(nl)

+ξ(nl). (4.27)

Neglecting the noises temporarily for brevity, yd can be further expressed as

yd =


ψ(0) 0 · · · 0

0 ψ(1) · · · 0
...

...
. . .

...

0 0 · · · ψ(L− 1)


︸ ︷︷ ︸

Ψ


hd(n0)

hd(n1)
...

hd(nL−1)


︸ ︷︷ ︸

hd

. (4.28)

In the special case of time-invariant channels, all hd(nl)’s are exactly the same [61], thus

giving rise to

yd =


ψ(0)

ψ(1)
...

ψ(L− 1)

hd(n0). (4.29)

Determining the angle support ofHd is equivalent to locating non-zero entries from the GtGr-

dimensional vector hd. Since P � GtGt, the “localization” can be effectively solved via

OMP, through which O(P logGtGr) instead of O(GtGr) samples suffice to guarantee a high

accuracy.

However, Eq. (4.29) is no longer valid in the presence of Doppler shifts, motivating us to

restudy the more general Eq. (4.28). Because hd remains sparse for LP � LGtGr, a natu-

ral option would be OMP as well. Reminisce that the variations of AoAs/AoDs are negligible

during the channel estimation, thus a common angle support is shared by all hd(nl)’s. How-

ever, OMP cannot exploit such a unique structure because it treats hd(nl) as a generic sparse
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vector. Fortunately, by utilizing the unique property of hd(nl), a more general block-sparse rep-

resentation can be derived. Specifically, constructing such a permutation matrix P satisfying

P [:, (i− 1)GtGr + j
]

= IGtGr [:, (j − 1)GtGr + i] [69], yd can be decomposed as

yd =
(
ΨP

)
·
(
P
′
hd
)
. (4.30)

The “new” sparse signal and sensing matrix then become

h̃d = P
′
hd =

[
h̃
′

d,1, h̃
′

d,2 , · · · , h̃
′

d,GtGr

]′
(4.31a)

Ψ̃ = ΨP =
[
Ψ̃1, Ψ̃2, · · · , Ψ̃GtGr

]
(4.31b)

where h̃d,i =
[
hd,i(n0), hd,i(n1), · · · , hd,i(nL−1)

]∗ and Ψ̃i = diag
[
ψi(0), ψi(1), · · · , ψi(L−

1)
]
, ∀i ∈ [1, GtGr], with hd,i(nj) and ψi(l) being the i-th entry of hd(nj) and ψ(l), respec-

tively. Unlike the original hd, the rearranged h̃d exhibits block sparsity [70]. More importantly,

the block sparsity of h̃d equals to the sparsity of hd(nl).

Towards the issue of block or structured compressed sensing, quite a few methods are avail-

able in the existing literature. To be more specific, these methods can be categorized into the

Bayesian type and non-Bayesian type. For the former, representative solutions include block-

sparse Bayesian learning [71, 72], message passing based compresses sensing [73, 74], etc;

while for the latter, representative solutions include structured Lasso [75], block OMP [76], etc.

In this chapter, we choose the OMP-based method similar to many related works [13, 62, 56].

It should be mentioned that this choice has no optimality guarantee, and other methods could

be attempted in the future.

Although block OMP seems to be a powerful tool to estimate h̃d in Eq. (4.28), accurate

identification of the non-zero support still encounters two major difficulties:

P.1 How to properly set the number of iterations when applying CS algorithms.

P.2 How to avoid the potential degradation resulting from the strong Doppler effects.

To address these problems, we propose an algorithm termed as adaptive-block OMP (A-BOMP)

that will be detailed next.
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4.3.2 A-BOMP

When recovering the sparse signal via CS, a proper number of iterations is equal to (or a slightly

higher than) the signal sparsity. Unfortunately, the actual sparsity of h̃d is unknown. To reduce

the risks of estimation loss, most works adopt large iterations. However, once the iterations

severely mismatch the signal sparsity, it may result in increased computational complexity and

potential over-fitting errors. Albeit not knowing the sparsity either, we will show that, it is

possible to set iterations properly after tap identification.

Since D out of Nc taps are regarded effective, the number of beams should be no greater

than D, thus the signal sparsity is upper bounded by D. Surprisingly, the upper bound could be

set even smaller for implementation. To verify this, we first provide the following result

Lemma 4.1: For the wideband channel with Nc taps, the probability that k out of K (k ≤ K)

beams reside within one tap is approximated as

P (K, k) = CkK

(
1

Nc

)k (Nc − 1

Nc

)K−k
. (4.32)

A brief illustration is made under Nc = 128 and K = 10. In this case, P (10, 4) < 10−5,

implying that it is virtually impossible for one tap containing over 3 beams, so k is expected to

be smaller than 4, regardless to say 10 for P (10, 10) < 10−18. Combing above discussions, a

proposition is made below to provide guidance on iterations setting:

Proposition 4.2 [Number of iterations]: Let PT be a small threshold (e.g, 10−3) and D be the

number of effective taps after tap identification. A proper iterations can be set as k − 1, where

k is the smallest integer satisfying P (D, k) < PT .

To address P.2, DPC-BEM model was used in [61] to capture the variations before imple-

menting BOMP. This approach can dramatically lower the deterioration, but has two drawbacks.

First, the estimation performance is heavily dependent on the basis order. Secondly, to construct

orthogonal DPC basis, a large-scale eigenvalue decomposition (EVD) has to be involved [77]

with complexity O(L3). To lower complexity while remaining robustness against Doppler, A-

BOMP is proposed with its pseudo-code presented in Algorithm 2. In A-BOMP, each outer

iteration consists of three parts:
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S1 (Lines.4-9) partial basis matching: select the angle pair having the largest sum of grouping

correlations, and make sure that there is no overlapping with the selected ones.

S2 (Lines.10-16) resolution refinement: re-construct sensing matrix associated with the se-

lected angle pair, and implement estimation procedure like S1 to refine resolution.

S3 (Lines.17-21) partial residue update: estimate the coefficients by the least-squared (LS)

estimator, then update the residue rd by subtracting the projection of each group.

In A-BOMP, another key parameter is the group size S (equivalent to the group number

G). In the presence of Doppler, the size of the non-zero support always exceeds the number of

measurements. In this case, accurately localizing the non-zero support is already challenging,

not to mention to the recovery of the entire vector. The only exception is in the absence of

Doppler, where the uncertainty could vanish when sufficient training frames are available.

The great shortage of measurements forces us to “shrink” the non-zero support. To this

end, we divide h̃d,i defined in Eq. (4.31a) into S groups, and those entries belonging to one

group are highly correlated thus being treated equally. Therefore, the group division essentially

performs the signal compression, and S is nothing but the coherent interval.
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Algorithm 2 Proposed A-BOMP Algorithm

Input: yd, Ψ̃d, block-sparsity K, group size S, group number G = L
S , threshold ε

Output: Ãd and D̃d
1: Initialization: rd = yd, C = 0, β =∞, Φ = ∅, x = x0 = 0.

2: while C < K and β > ε do

3: C = C + 1

4: gi = arg max
g

G∑
i=1

‖[Ψ̃∗d,grd]((i−1)S+1:iS)‖1
‖Ψ̃d,g‖F

5: nR = dgi/Gte and nT = gi − (nR − 1)Gt.

6: if ∃ i,mod(| nD/nR −D(i)/A(i) |, Gt/Gr) ≤ 1 then

7: goto 2

8: end if

9: A = {A, nR}, D = {D, nT }

10: ÂT = [fNt(
nT−1
Gt

+ 2jT
G2
t

)]
jT∈[−Gt

2
:1:

Gt
2
−1]

11: ÂR = [fN (nR−1
Gr

+ 2jR
G2
R

)]jR∈[−Gr
2

:1:Gr
2
−1]

12: ψ̂[ni] = (p
′
A[ni]⊗w∗A[ni])(Â

∗
T ⊗ ÂR)i=1∼L

13: Ψ̂d,i = diag
[
ψ̂[n1](i), · · · , ψ̂[nGtGr ](i)

]
i=1∼GtGr

14: ĝi = arg max
g

G∑
i=1

‖[Ψ̂∗d,grd]((i−1)S+1:mS)‖1
‖Ψ̂d,g‖F

15: n̂R = dĝi/Gte and n̂T = ĝi − (n̂R − 1)Gt.

16: Φ =
[
Φ,M(f∗Nt(

Gt(nT−1)+n̂T
G2
t

)⊗ fNr(
Gr(nR−1)+2n̂R

G2
r

)
]

17: for j = 1 : G do

18: j = (j − 1)S + 1 : mS

19: x = x+ ‖Φ(j, :)†y(j)‖2

20: rd(j) = yd(j)−Φ(j, :)Φ(j, :)†y(j)

21: end for

22: β = |x− x0|/x

23: x0 = x, x = 0

24: Ãd =
{
Ãd, 2πGr(nR−1)+n̂R

G2
r

}
and D̃d =

{
D̃d, 2πGt(nT−1)+n̂T

G2
t

}
25: end while
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Proposition 4.3: [Determination of the group size] Let τ denote a high-correlation coefficient

(e.g, 0.707). A proper group size can be set as the largest S satisfying cos(ωmaxNcS) ≤ τ and

ωmaxNcS ≤ π/2.

Proposition 4.3 indicates that a smaller ωmax results in a larger S. For ωmax = 0, i.e.,

a time-invariant channel, A-BOMP degenerates to BOMP as G = L/S = 1. Besides, one

can readily verify that estimating h̃d via BOMP and estimating hd(ni) via OMP are equiva-

lent. Compared to BOMP, A-BOMP only introduces a few small-scale matrix inversions, and

simulations show that such minimal computational cost will bring in a significantly improved

accuracy. Based on the output of A-BOMP, the steering matrices for tap-d channel are estimated

as

Ãr,d=
[
fNr

(
Ãd(1)/2π

)
, · · · ,fNr

(
Ãd(cd)/2π

)]
(4.33a)

Ãt,d=
[
fNt

(
D̃d(1)/2π

)
, · · · ,fNt

(
D̃d(cd)/2π

)]
(4.33b)

with cd = cal(Ãd). The approximate beamspace representation for tap-d bears a form as

H̃d(n) = Ãr,ddiag(g̃d(n))Ã
∗
t,d. (4.34)

where g̃d(n) consists of unknown path gains. Despite that both the amplitudesand angle support

can be simultaneously obtained via OMP in time-invariant channels, for the more general time-

varying channels, an additional stage is still necessary to estimate the amplitudes and Doppler.

So far, we have completed the second part of the random-probing stage. Summarizing, the

main steps are listed as

• Stack the receive samples for each identified tap.

• Transform the samples into a generic block-sparse form.

• Determine the iterations and group size for A-BOMP.

• Apply A-BOMP to estimate the angle support.
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4.4 Joint Estimation of Path Gain and Doppler

At the random-probing stage, the effective taps are identified with their angle support obtained

as well. In this section, we proceed to estimate the remaining unknown path gain/Doppler at the

so-termed steering-probing stage.

4.4.1 Steering probing design

To accurately estimate path gains and Doppler shifts, steering-probing will be implemented

based on the estimated beam direction. Specifically, for tap-d channel, construct set Id whose

i-th element is (Ad(i),Dd(i)). Because of the off-grid issues in beamspace and delay domain,

different Id’s may share the same element, thus we get their union as

I = Id1

⋃
Id2

⋃
· · ·
⋃
IdD . (4.35)

Further, all AoAs and AoDs are individually extracted from I and captured by IA and ID,

respectively. To facilitate beamforming, only the discrete AoD indices need to be fed back.

Without causing ambiguity, we reset the time instant at the steering-probing stage, and making

the following definition.

Steering-probing vector: At the steering-probing stage, denote pSt (n) and pSt (n) to be the RF

vectors at time instant n. To improve receive SNR, pSp,t(n) (the p-th element of pSt (n)) and

pSq,r(n) (the q-th element of pSr (n)) are designed as

pSp,t(n) =
1√
Nt
ejQ
(

(p−1)ID(n̂)
)
, p ∈ [1, Nt] (4.36a)

pSq,r(n) =
1√
Nr

ejQ
(

(q−1)IA(n̂)
)
, q ∈ [1, Nr] (4.36b)

with n̂ = mod
(⌊
n/Nc

⌋
, cal(I)

)
. As can be seen from Eq. (4.36), the probing vectors repeat

every cal(I) subframes, so that that each beam will be steered once during each polling.
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4.4.2 Path gain/Doppler estimation

At the i-th polling, stacking all tap-d related samples yields

yd,i =
[
y
(
d+ ni,0

)
, · · · , y

(
d+ ni,|I|−1

)]′
(4.37)

where ni,j = Ncj+cal(I)Nci, ∀j ∈ [0, cal(I)). Using the compact beamspace representation

obtained in Eq. (4.34), each sample in yd,i is approximately equivalent to

y(ni,j + d) ≈ (pSr (ni,j))
∗Ãr,ddiag(g̃d(ni.j + d))Ã

∗
t,dp

S
t (ni,j) + ξ(ni,j + d)

= vec
′
(diag(g̃d(ni,j + d)))md(ni,j) + ξ(ni,j + d) (4.38)

where md(ni,j) =
(
(pSt (ni,j))

′
Ã
∗
t,d

)
⊗
(
(pSr (ni,j))

∗Ãr,d

)
. By capturing the amplitudes with

the one sampling in the middle of current polling, yd,i can be approximately represented as

yd,i ≈


md

(
ni,0
)

md

(
ni,1
)

...

md

(
ni,cal(I)−1

)


︸ ︷︷ ︸

M d,i

vec

(
diag

(
gd(ni)

))
+ ξd,i (4.39)

with ni =
(
ni,0+ni,cal(I)−1

)
/2+d and ξd,i = [ξ(ni,0+d), ξ(ni,1+d), · · · , ξ(ni,cal(I)−1+d)]

′
.

Let M̃d,i =
[
Md,i[:, 1

2],Md,i[:, 2
2] · · · ,Md,i[:, C

2
d ]
]
, then Eq. (4.39) equals to

yd,i ≈ M̃d,igd(ni) + ξd,i (4.40)

Since cal(I) ≥ cd, gd(ni) can be recovered by LS estimator:

ĝd(ni) = M̃
†
d,iyd,i = gd(ni) + M̃

†
ξd,i. (4.41)

Once getting a new ĝd, we pick its j-th element, which is the estimated amplitudesof the j-th

beam in current polling. The polling lasts for R = bL/cal(I)c times5 , so a pseudo time series

is finally obtained as ĝd,j =
[
ĝd,j(n0), ĝd,j(n1), · · · , ĝd,j(nR−1)

]′
.

5 Similar to the random-probing stage, we introduce the steering-probing state based on one frame consisting of
L subframes. In practice or numerical comparisons, one can simply replace L with the actual number of subframes,
i.e., cal(I)R.
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Lemma 4.2: Through repetitive polling, the pseudo time series ĝd,j has an equal sampling

interval thus can be modeled as finite noisy samples of a single-tone sinusoid.

Many techniques have been proposed over the years for the frequency estimation of a com-

plex sinusoid in complex additive white Gaussian noise. Here we adopt the WNALP estimator

known for its computational efficiency and near-optimal performance [76]. The detailed proce-

dures for path gain/Doppler estimation are described as below

• Set M0 = bR/2c.

• Calculate the autocorrelation of ĝd,j as

R(m) =
1

R−m

2M0∑
i=m+1

ĝd,j(ni)ĝ
∗
d,j(ni−m) (4.42)

• Calculate the smoothing coefficient wm as

wm =
3
(
(M0 −m)(2M0 −m+ 1)−M2

0

)
M0(4M2

0 − 1)
(4.43)

• Estimate the Doppler shift as

ω̂d,j =
1

Nccal(I)

M0∑
m=1

wmangle(R(m)R∗(m− 1)) (4.44)

• Estimate the amplitudesas

ĝd,j(d) =
e−jω̂d,j

Nccal(I)
2

R

R∑
i=1

ĝd,j(ni)e
−jω̂d,jNccal(I)(i−1)

=
1

R

R∑
i=1

ĝd,j(ni)e
−jω̂d,jNccal(I)(i−1/2). (4.45)

The rest beams can be estimated similarly thus being omitted.

4.5 Discussions and Simulations

4.5.1 Implementing Discussions

Implementing procedures: The implementation of the proposed DSDS channel estimator entails

four key components:
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1: Send multiple delta-like training pilots to separate channel taps with random probing applied.

2: Identify significant channel taps via energy detector to exploit the delay-domain sparsity

regardless of Doppler.

3: Identify the direction of significant beams via A-BOMP with effective mechanism applied

to combat time-variation.

4: Apply steering-probing to estimate the amplitudes and Doppler using high-quality received

samples.

The proposed channel estimator is tailored for a general doubly-selective channels. In practice,

the investigated channel may not exhibit double selectivity, so one can use part of the above

steps to accommodate these special cases.

Storage demand: The major storage demand in channel estimation comes from the sensing

matrix. Suppose p1 frames (p1L subframes actually) are allocated at the random-probing stage,

then the size of sensing matrix in [56] is C1 = p1N×UNcGtGr, with U being the up-sampling

ratio. Although our estimation is conducted at each tap independently, the sensing matrix is

shared by all taps with size C2 = p1L ×GtGr. For Nc = 128 and N = 512, C1 is more than

13000 times larger than C2.

Computational complexity: The major computational complexity comes from the OMP-

based algorithm, which comprises three parts: basis matching, orthogonal projection, and

residue update. For aQ-dimensional sparse vector recovered via V measurements, the involved

flops for these parts at iteration-k are (2V − 1)Q, 4kV , and 2kV flops, respectively [78]. The

total flops of [56] and ours are p1NV (2UNcGtGr +3p1N) and p1LV G(2GtGr +3p1L), both

in the order of O(p2
1). Thanks to our extremely small-scale sensing matrix, even for p1 < 300,

the former is still more than ten times larger than the upper-bound of the latter.

Sensing matrix construction: To ensure a reliable recovery via OMP, the sensing matrix

should best satisfy the restricted isometry property (RIP). According to [79], the optimal sens-

ing matrix in terms of the RIP is the independent and identically distributed (IID) Gaussian
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matrix. Unfortunately, due to the constant-modulus limitation of APS, the optimal sensing ma-

trix remains a open topic. In this work, we follow [62] and randomly adjust APS obeying a

uniform distribution.

From a single RF chain to multiple RF chains: Although the DS-DS channel estimator is

introduced based on a single RF chain, it can be readily generalized to multiple RF chains,

because the proposed estimator is relevant to RF precoder only without a dedicated digital

precoding design. Besides a slight change in the number of effective measurements each time,

the algorithm can be carried out for arbitrary number of RF chains without any modification.

4.5.2 Simulation Verification

In this subsection, extensive numerical results are presented to verify the advantages of the

proposed approach over existing works. In simulations, the system carrier frequency fc is 60

GHz. The number of antennas is Nt = Nr = 32, The dictionary sizes are Gt = Gr = 64. h(·)

is the raised-cosine filter with the roll-off factor β = 1. Each channel realization is generated

according to Eq. (4.3) with P ranging from 1 to 4. One-stage refinement is applied for all cases

when applying OMP-based methods. If not specified, the resolution of APS is 2-bit. Other

simulation parameters include Nc = 16, N = 64, Ts = 50ns, A = 8, PT = 10−3, ε = 0.01

and µ = 0.03. The SNR (averaged TSNR) is defined as L
Nσ2 . The estimation performance is

weighted by the normalized MSE (NMSE) given by

ε =

∑Nc−1
d=0 ‖Hd − Ĥd ‖2F∑Nc−1

d=0 ‖Hd ‖2F
. (4.46)

Each curve is on the average of 1000 channel realizations.

1: Verification of the functionality of tap identification

To verify the effectiveness of tap identification, we plot the averaged selected taps together

with their power ratio in Fig. 4.3. P = 3 and 40 frames are allocated at the random-probing

stage. Three different vm’s: 0, 12km/h, and 120km/h are considered. We see that the tap

identification is regardless of Doppler effects. Fewer taps are selected with the increase of
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SNR, and reduction is 75% at 0dB. As this work uses the raised-cosine pulse-shaper, the delay-

domain also suffers from off-grid issues due to side-lobe leakage, so the number of identified

taps is slightly larger that of actual paths. Note that, the large reduction in taps to be processed

is not at the cost of power loss. As can be seen from Fig. 4.3, the averaged power ratio

soon exceeds 97% at medium SNR. The effectiveness of tap identification is attributed to the

delay-domain sparsity of mmWave channels.
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Figure 4.3: The averaged selected taps after tap identification.

We then compare the double-sparse approach (DSA) with state-of-the-art beamspace-sparse

approach (BSA) [56] at the same averaged SNR in Fig. 4.4. The channel is generated with 3

paths and ωm = 0. For DSA, 40 training frames are allocated at the random-probing stage

with repeating beamforming polling for R = 4 times at the steering-probing stage. 60 training

frames are allocated for BSA and the regularized LS-estimator. For BSA, its sensing matrix

size is 16384 × 131072, requiring a memory space over 18GB, in contrast to ours with size

200×4096 occupying 9Mb memory space. Due to the great shortage of training frames, the LS
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estimator without utilizing any sparsity performs the worst. BSA performs much better than LS

but still much worse than DSA. In addition, the shortage of probings makes the NMSE curve

of BSA soon becomes flat. Even under the same peak SNR, we see that DSA still outperforms

BSA at medium-to-high SNR region, implying that the benefits brought by DSA outweight the

power inefficiency of the proposed training pattern.

2: NMSE comparisons in static and wideband channels:
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Figure 4.4: A comparison in static wideband channels. (a) NMSE comparisons among different

schemes; and (b) total training frames consumed by different schemes.

We further plot the averaged consumed training frames of different approaches. From two

figures, it is clear that improper iterations (K = 8) will result in additional training overhead

without making any substantial performance improvement. Following proposition 4.2, itera-

tions can be properly set for A-BOMP (A-BOMP is equivalent to OMP here), and the resultant

NMSE performance is very close to the ideal benchmark (K = 4). With pre-determined itera-

tions, DSA requires the least training overhead, with a reduction of 20% compared to BSBA at

high SNR.

3: NMSE comparisons in frequency-flat time-varying channels
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Figure 4.5: The NMSE comparisons in “frequency-flat”and time-varying channels in modest mobility.

In Fig. 4.5, the channel is generated with P = 3 with vm=48km/h and vm=120km/h, respec-

tively. We compare the NMSEs with the angle support recovered via A-BOMP and DPC-BOMP

[61], respectively. Since each tap channel is “frequency-flat” and time-varying (FTV), the re-

sults are essentially the comparison with state-of-the-art FTV channel estimator [61]. p1 = 60

frames are allocated at the random-probing stage with repeating beamforming polling R = 4

times at the steering-probing stage. The DPC-basic order is 2 as in [61]. In modest mobility

(vm=48km/h), A-BOMP and DPC-BOMP achieve similar performances, both outperforming

BOMP remarkably. In high mobility (vm=120km/h), the advantage of A-BOMP over DPC-

BOMP becomes notable. As described before, A-BOMP avoids the large-scale EVD required

in DPC-BOMP, demonstrating that it is more efficient and superior.

4: NMSE performance in doubly-selective channels

To thoroughly evaluate the functionality of DSA, we fix SNR=−1dB and vm=55km/h, and

simulate NMSE versus frame duration under various conditions. In Fig. 4.6-a, we compare the

NMSEs by varying the number of paths. Other parameters are p1 = 60, R = 4, and b = 2.
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Figure 4.6: Self-comparison in doubly-selective channels.(a) NMSE vs. the path number; (b) NMSE vs.

APS resolution; and (c) vs. the number of RF chains.

The results show that, without Doppler compensation, the NMSE is soon to exceed−10dB,

resulting in a great discrepancy with the actual channels. By compensating for the Doppler using

the estimate, superb tracking ability can be guaranteed over up to 20 frames. Furthermore, there

is a minimal performance degradation when increasing P from 2 to 4. In contrast, [56] suffers

from a nearly 2dB degradation in a similar setup, implying that the proposed estimator is more

robust against frequency selectivity.

In Fig. 4.6-b, we compare the NMSEs by varying the resolution (referring to b) of APS.

Other parameters are set as p1 = 60, b = 2, R = 4, and P = 3. A remarkable performance gap

is noticed with the ultra-coarse 1-bit APS. However, increasing b by 1 bit will lead to a huge

improvement. The performance gap compared to a finer APS (3∼5-bit) in terms of the NMSE

is very small (only 0.5dB), implying that the proposed channel estimator is insensitive to the

resolution of APS.

In Fig. 4.6-c, we compare the NMSEs by varying the number of RF chains. Other parame-

ters are set as P = 3, b = 2, R = 6, and p1 = 30. As can be seen, multiple RF chains can lower

the estimation error compared to the single RF chain. This is because multiple RF chains can

generate more random beam probing patterns, which in turn benefits the recovery of the angle

support using CS. We need to mention that throughout the estimation, all non-zero symbols are
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set as one. Actually, if the peak to average power ratio (PAPR) is not a significant concern, one

can potentially set these symbols as the Gaussian distributed variables like [62] to strengthen

the randomness.

4.6 Conclusions

In this chapter, we investigated the doubly-selective channel estimation for hybrid mmWave

mMIMO systems. The channel’s beamspace- and delay-domain sparsity has been utilized via

judiciously designed training pattern and analog probing to simplify the processing. The pro-

posed channel estimator demonstrates strong robustness against double selectivity, without im-

posing any additional constraints on the hybrid structure itself. Compared with existing works,

the DSDS approach proves to a more general and superior solution to channel estimation under

hybrid mmWave mMIMO.



Chapter 5

Hybrid Block Diagonalization Based

Transceiver for Wideband Multi-User

mmWave Massive MIMO

In mmWave cellular, a mmWave mMIMO base station (BS) is expected to simultaneously serve

multiple user equipments (UEs). Although both academia and industry have made remarkable

efforts to design transceivers for mmWave mMIMO, relevant studies are congested in the single-

UE scenarios. Driving by current research insufficiency, this chapter will concentrate on wMU

transceiver design, hoping to improve the system capacity via inferior hardware structures.

There are three significant challenges encountered in transceiver design. The first stems

from the hybrid structure that imposes more constraints on precoding [10] [51]. The second is-

sue still associates with the unique structure, in which the per-subcarrier processing with OFDM

applied is no longer independent due to a shared analog beamformer [66] [80]. Last but not least,

unlike the P2P scenarios, the wMU scenarios have to jointly consider the user-specific signal

quality variation and the multi-user interference (MUI) [81] [82]. To tackle these challenges,

quite a few methods have been proposed (see e.g., [31, 83, 3, 84, 85, 82, 86, 87, 88, 89, 90]).

85
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In the existing literature, a so-termed hybrid block diagonalization (HBD) framework is com-

monly adopted for transceiver design. Essentially, HBD requires the transmitter to eliminate the

MUI with the help of CSI, such that independent detection can be applied individually at the

UE end. For reference, we survey some of the most representative HBD schemes. The solution

proposed in [66] and [85] entails analog beam steering and digital MUI cancellation. This one

is easy-to-implement so long as a high-resolution analog beamformer is deployed, but its per-

formance is mostly mediocre. Another solution proposed in [82] and [86] relies on the so-called

equal-gain-transmission (EGT) processing. This technique does not demand a sparse channel,

but it is a narrowband design and requires the BS to be operated at the multiplexing mode only.

Another solution proposed in [87] and [88] consists of pre-beam separation and post-subspace

projection. This one works relatively well if the multiplexing gain could perfectly match the

rank of the channel, but a performance decline is likely to happen once such a condition is

violated. In addition, its applicability to wideband channels is also questionable. Although

HBD devised in [89] and [90] has taken the frequency-selectivity into account, it is essentially

a greedy extension of its P2P ancestors, thereby inheriting their limitation and lacking a proper

MUI management.

As can be seen, existing techniques fail to offer a performance guarantee for general wMU

mmWave mMIMO systems due to their ad-hoc nature. To overcome the present limitations, we

seek to design a systematic HBD-based transceiver framework explicitly for wMU mmWave

mMIMO. Towards this aim, quite a few efforts have been made in this chapter, with the primary

outcomes summarized as follows:

• By revealing the crucial role of analog processing in HBD-based transceiver design, we

are able to transform the complicated hybrid processing into a well-tractable two-stage

analog plus digital processing, and subsequently, establish the corresponding MI upper-

and lower-bounds.

• By linking analog processing and channel decomposition, we prove that the upper and

lower MI bounds will merge with probability 1 in the limit sense and demonstrate the
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global optimality of HBD in the sense of MI optimization for wMU mmWave mMIMO.

• By optimizing the achievable yet asymptotically optimal MI lower-bound, we end up

with sub-optimal yet high-performance analog processing. With the help of the post-

digital processing, we accomplish the HBD-based transceiver designs for both the multi-

aperture structure (MAS) and the multi-beam structure (MBS).

5.1 System and Channel Models

A downlink scenario is considered in this chapter, with an illustrative diagram shown in Fig.

5.1. Specifically, Nt antennas with Mt RF chains are employed at the BS, and Nr antennas

with Mr RF chains are employed at each of the K UEs. The BS communicates with each UE

via Ns data streams, satisfying KNs ≤ Mt ≤ Nt and Ns ≤ Mr ≤ Nr. Without loss of

generality, we assume Mr = Ns as in [87, 88, 89].

Figure 5.1: An illustrative wMU mmWave mMIMO system model with K = 2, N = 4, Mt = 4 and

Mr = 2.

To incorporate the unique characteristics of mmWave channels, a commonly-used geomet-

ric wideband channel model is adopted. Let L and D represent the number of dominant paths

and delay taps, respectively. Then according to [56, 63], the tap-d channel (d ∈ [0, D)) between
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the BS and UE-k can be expressed as

Hk,d =
L∑
l=1

√
NtNr

L
αl,kh(dTs − τl,k)ar(θl,k)a∗t (φl,k) . (5.1)

For path-l, αl,k ∼ CN (0, 1) represents its amplitude; h(τ) is the pulse-shaping response sam-

pled at τ ; τl,k is the propagation delay uniformly distributed over [0, (D − 1)Ts); θl,k and φl,k

are the AoA and AoD, respectively, both uniformly distributed within [0, 2π). With the typical

ULA, at(φ) = 1√
Nt

[1, ejπ sinφ, · · · , ej(Nt−1)π sinφ]T .

For notational simplicity, we further define

At,k = [at(φ1,k),at(φ2,k), · · · ,at(φL,k)] , (5.2a)

Ar,k = [ar(θ1,k),ar(θ2,k), · · · ,ar(θL,k)] , (5.2b)

Λk,d = diag{αl,kh(dTs − τl,k)}Ll=1 , (5.2c)

then Hk,d can be rewritten as

Hk,d = Ar,kΛk,dA
∗
t,k . (5.3)

5.1.1 Input-Output Relationship

Let xn =
[
x∗1,n,x

∗
2,n, · · · ,x∗K,n

]∗ be the input data on subcarrier-n (n ∈ [1, N ]), satisfying

E{xk,nx∗k,n} = 1
Mr
IMr . xk,n will be sent to UE-k (k ∈ [1, k]) with its symbols selected from

a Gaussian constellation. xn is first precoded by the BS-end digital precoder

PD,n = [PD,1,n,PD,2,n, · · · ,PD,K,n] ∈ CMt×KMr , (5.4)

followed by Mt N -point IFFT’s. The resultant time-domain signal will be appended by a

length-D (D ≥ Nc − 1) CP before being processed by the analog precoder PA ∈ CNt×Mt .

In hybrid OFDM systems, PA is applied after IFFT, thus it remains identical across all subcar-

riers. Note that this is drastically different from conventional fully digital OFDM systems, the

precoders are independent and distinct across subcarriers.
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After the BS-end hybrid precoding, the transmitted signal on subcarrier-n becomes

sn = PAPD,nxn . (5.5)

Given the time-domain channel Hk,d in Eq. (5.1), we can obtain its frequency-domain channel

on subcarrier-n as

Hk,n =

D−1∑
d=0

Hk,de
−j 2πn

N
d . (5.6)

Therefore the signal captured by UE-k on subcarrier-n is given by

rk,n = Hk,nsn + ηk,n , (5.7)

where ηk,n ∼ CN (0, σ2INr) is the Gaussian noise. In this chapter, the SNR is defined as 1
σ2 .

Upon the reception of rk,n, the analog combiner denoted as WA,k ∈ CNr×Mr , will be ap-

plied. By further removing CP and implementing Mr N -point fast Fourier transform’s (FFT’s),

the frequency-domain signal will finally be combined byWD,k,n ∈ CMr×Mr , resulting in

yk,n = W ∗
D,k,nW

∗
A,kHk,nPAPD,nxn +W ∗

D,k,nW
∗
A,kηk,n

= W ∗
D,k,nH̃k,nPD,nxn + ξk,n , (5.8)

Here, H̃k,n = W ∗
A,kHk,nPA is termed as the equivalent digital channel (EDC) associated

with UE-k on subcarrier-n. By stacking all {yk,n}Nn=1 into a long vector, the multi-user I-O

relationship accordingly becomes

yn = W ∗
D,n


H̃1,n

H̃2,n

...

H̃K,n


︸ ︷︷ ︸

H̃n

PD,nxn + ξn , (5.9)

with WD,n = diag{WD,k,n}Kk=1, ξn being the concatenated noise vector, and H̃n being the

multi-user EDC on subcarrier-n. It is worth mentioning that WD,n and PD,n in Eq. (5.9)

correspond to the digital part, while H̃n corresponds to the analog part, for it has incorporated

PA andWA,k.
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5.1.2 Problem Formulation

Our aim is to develop a systematic HBD scheme for wMU systems. More specifically, given

Hk,d, our task is to determine the digital part PD,n andWD,k,n, as well as the analog part PA

andWA,k, to maximize the system MI while satisfying the following prerequisite for HBD:

H̃nPD = diag
{
H̃n[(k − 1)Mr + 1 : kMr, :]PD,k,n

}K
k=1

. (5.10)

Once each UE enjoys an MUI-free EDC, thus the achievable MI for UE-k on subcarrier-n can

be computed as

Ik,n = det

(
IMr +

1

Mrσ2

(
W ∗

D,k,nW
∗
A,kWA,kWD,k,n

)−1
He,k,nH

∗
e,k,n

)
, (5.11)

with He,k,n = W ∗
D,k,nW

∗
A,kHk,nPAPD,k,n. As a result, the HBD-based transceiver design

problem for wMU mmWave mMIMO can be formulated as:

P1. Problem Statement 1[Generic HBD-wMU transceiver design]:

arg max
WD,k,n,W A,k,P A,PD,n

I =
K∑
k=1

N∑
n=1

log2 Ik,n , (5.12a)

subject to Eq. (5.10) , (5.12b)

PA ∈ F , (5.12c)

∀k, WA,k ∈ W , (5.12d)

∀k, n, ‖ PAPD,k,n ‖≤Mr . (5.12e)
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Figure 5.2: The diagram of MBS and MAS

In P1, F and W stand for the feasible sets of analog precoders1 , which exhibit different

constant-modulus forms in two mainstream hybrid mMIMO structures, namely MBS (shown

in the upper part of Fig. 5.2) and MAS (shown in the lower part of Fig. 5.2). Briefly speaking,

MBS corresponds to the so-called lens-array antennas, while MAS fits to the fully-connected

analog phase shifter (APS) network. Both types will be investigated in-depth within a unified

design paradigm.

5.1.3 Design Strategy

To obtain the optimal precoders, a common practice is to solve the formulated optimization

problem P1 directly. However, as an explicit objective function of P1 is unavailable, the

straightforward manner turns out to be intractable. Nevertheless, with a closer look at Eq. (5.10),

we find that the BS-end digital precoder PD,k,n resides in the null-space of H̃n, indicating that

the former is determined by the latter. Therefore, once Eq. (5.10) holds, UE-k will enjoy an

MUI-free EDC W ∗
A,kHk,nPAPD,n, which is a function of H̃n. It can be rapidly verified

1 This chapter does not deliberately distinguish between the precoder and combiner, so both terms will be named
precoder without causing ambiguity.
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that a similar conclusion applies to WD,k,n as well. In consequence, the digital part (includ-

ing PD,n and WD,k,n) is essentially a function of the analog part (including WA,k and PA).

Such a property makes it able to transform the original joint processing design into a sequential

analog and digital processing.

To be more specific, given the analog part, an MI bound can be derived in replacement of

the inexplicit I , thus the analog precoders can be determined via bound optimization. After

analog processing, one can proceed with the digital processing to meet HBD condition and

maximize MI. Based on this strategy, we will detail the HBD-based transceiver design in the

ensuing sections.

5.2 MI Bounds and HBD Optimality

In this section, we first derive the MI upper- and lower-bounds via HBD. Then, we will investi-

gate the properties of the derived bounds, and reveal the global optimality of HBD in the sense

of MI optimization in wMU mmWave mMIMO transceiver design.

5.2.1 MI Upper-Bound

For notational simplicity, we express the system I-O relationship in a concise form as

y = diag{W ∗
D,n}Nn=1︸ ︷︷ ︸

W ∗
D

diag{H̃n}Nn=1︸ ︷︷ ︸
H̃

diag{PD,n}Nn=1︸ ︷︷ ︸
PD

x+ ξ . (5.13)

In a multi-user setup, WD,n bears a block-diagonal form, but this restriction could be relaxed

if UEs are allowed to cooperate. If this is the case, by performing singular value decomposition

(SVD) of H̃n, i.e., svd(H̃n) = ŨnΣ̃nṼ
∗
n, setting PD,n = Ṽ n and WD,n = Ũn leads to

PD andWD being the right and left singular matrices of H̃ , and the corresponding MI can be
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computed as

IU =
N∑
n=1

KMr∑
i=1

log2

(
1 +

Σ̃2
n[i, i]

Mrσ2

)

=

NKMr∑
i=1

log2

(
1 +

Σ̃2[i, i]

Mrσ2

)
, (5.14)

with Σ̃[i, i] representing the i-th eigenvalue of H̃ . Since Eq. (5.14) is obtained through the

SVD of H̃ under user cooperation, it is clear that IU is an MI upper-bound for HBD-based

wMU transceivers.

5.2.2 MI Lower-Bound

If no cooperation is allowed among UEs, we set WD,n = I and PD,n = H̃
†
ndiag{‖H̃

†
n[:

, i]‖−1
F }

NMr
i=1 . In this case, it can be verified that PD acts as the zero-forcing (ZF) pre-equalizer

for H̃ , and the system MI can be calculated as

IL =
N∑
n=1

KMr∑
i=1

log2

1 +

∥∥H̃†n[:, i]
∥∥−2

F

Mrσ2


=

NKMr∑
i=1

log2

1 +

∥∥H̃†[:, i]∥∥−2

F

Mrσ2

 . (5.15)

In the above, the BS-end processing not only cancels out the MUI but also the inter-stream

interferences for an individual UE, hence such a transceiver design is essentially a special type

of HBD. Besides, achieving IL does not involve any UE-end digital processing, so we can

recognize IL as the MI lower-bound for HBD-based wMU transceivers.

5.2.3 MI Relationship

Typically, IL will be strictly smaller than IU . Nevertheless, we will see that, as the number

of antennas (Nt, Nr) approaches infinity, these two bounds will merge with probability 1. To
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verify this point, we first rewrite Eq. (5.6) as

Hk,n = Ar,k

(
D−1∑
d=0

Λk,de
−j 2πn

N
d

)
A∗t,k . (5.16)

In the case of infinite Nt and Nr, we have

a∗t(r)(θ1)at(r)(θ2) =


0 θ1 6= θ2

1 θ1 = θ2

, (5.17)

so both At,k and Ar,k are semi-unitary matrices. Noticing that the term inside the bracket of

Eq. (5.16) is a diagonal matrix, it can be concluded that ∀n, {Hk,n}Nn=1 share common singular

vectors. Utilizing this property, the HBD-based transceivers as Nt and Nr go to infinity can be

designed as

PA =
[
At,1,At,2, · · · ,At,K ,A

]
, (5.18a)

WA,k = Ar,k , (5.18b)

PD,n =
[
I∗KMr

,0∗Mt−KMr

]∗
, (5.18c)

WD,k,n = IMr . (5.18d)

In the above, At,k ∈ CNt×Mr is an arbitrary right singular sub-matrix extracted from At,k,

Ar,k is the corresponding left singular sub-matrix extracted from Ar,k, and A is an arbitrary

matrix bearing constant-modulus form. Such a design is valid because all analog precoders

are constant-modulus, and ‖ PAPD,n ‖F= Mr satisfies Eq. (5.12e), i.e., the transmit power

constraint. On top of that, the above setting leads to H̃ defined in Eq. (5.13) being a diagonal

matrix, hence IU achieved via SVD equals to IL achieved via ZF pre-equalization.

5.2.4 HBD Optimality

Although the proposed HBD solution above reveals that IL = IU as Nt, Nr → ∞, it does not

guarantee the optimality of IU or IL. This is because Ar,k (or At,k) defined in Eq. (5.18) has

multiple choices, thereby awaiting further determination.
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Note that, regardless of Ar,k, the above design always assures that Hk,n (see Eq. (5.16))

can be decomposed into Mr parallel single-input single-output (SISO) channels, each of which

stands for a singular vector pair (SVP). Suppose that SVP-ik (ik ≤ L) is selected for UE-k,

then the MI contributed by this one can be individually computed as

Ik,ik =
N∑
n=1

log2

(
1 +
|
∑D−1

d=0 Λk,d[ik, ik]e
−j 2πn

N
d|2

Mrσ2

)
. (5.19)

To maximize IU or IL, it suffices to choose Mr out of L SVPs with the most significant contri-

bution to system MI. ThenAt,k andAr,k are automatically determined. Interestingly, with this

method, the ultimately achieved MI not only reaches the optimum among HBD-based wMU

transceivers, but also among any wMU transceivers. For clarity, a proposition is expressly pro-

vided as follows.

Proposition 5.1: [Optimality of HBD] With an infinite number of antennas employed at the

transceivers, HBD is the optimal precoding technique in the sense of MI optimization for wMU

mmWave mMIMO transceiver design.

Proof. In P2P scenarios, it has been proven that the near-optimal analog precoder is the Karcher

mean of the optimal unconstrained precoders on individual subcarrier (see Eqs. (26) and (27)

in [66], where “≈” is exactly “=” when Nt, Nr →∞, thus near-optimal accordingly becomes

optimal). For UE-k, the optimal unconstrained precoder on each subcarrier is a sub-matrix of

At,k, hence the resultant Karcher mean is still a sub-matrix of At,k, and a similar conclusion

holds for Ar,k as well. Therefore, choosing the best Mr out of L SVPs to construct the analog

precoder for UE-k clearly leads to optimality. Since all UEs enjoy MUI-free EDC, individual

optimality automatically leads to overall optimality. Therefore, HBD is the optimal precoding

technique in the sense of MI.

5.3 wMU-HBD Transceiver Design

In this section, we will develop HBD-based transceivers for practical wMU mmWave mMIMO

systems. Following the established design strategy, we start with the analog processing by
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optimizing the MI bound, then complete the digital processing to facilitate MUI-free reception

and individual MI improvements.

5.3.1 Analog Processing

Since the MI lower-bound IL is always achievable and asymptotically optimal in the limit case,

it is reasonable to use it as a replacement of the inexplicit I . For simplicity, we make a slight

modification to IL by omitting the “1” term in Eq. (5.15), giving rise to

IL =

NKMr∑
i=1

log2

1 +

∥∥H̃†[:, i]∥∥−2

F

Mrσ2


≈ − log2

{
NKMr∏
i=1

(H̃H̃
∗
)−1[i, i]

}
−NKMr log2Mrσ

2 . (5.20)

Eq. (5.20) monotonically decreases with the term inside the bracket, regardless of the SNR.

Thus the analog processing problem can be formulated as the following one:

P2. Problem Statement 2 [Analog processing via optimizing IL]:

arg min
W A,k,P A

NKMr∏
i=1

(H̃H̃
∗
)−1[i, i] , (5.21a)

subject to PA ∈ F , ∀k,WA,k ∈ W . (5.21b)

As has been mentioned before, there are two mainstream hybrid mmWave mMIMO structures,

namely MBS and MAS. Since P2 does not use any specialties in terms of the analog structures,

both types could share a common design paradigm after taking their individual constraints into

account.

MBS: Denote FM as the set containing all M -dimensional DFT bases. Given the antenna

dimension Nt and Nr, the analog constraints for MBS can be expressed as

∀n, k,PA[:, n] ∈ FNt , WA,k[:, n] ∈ FNr . (5.22)

Although the minimizer of P2 can be acquired via CMt
Nt

(
CMr
Nr

)K
trials, the complexity would

be formidable under wMU mMIMO setup(> 1014 trials for Nr = 16, Nt = 64, Mr = 2,
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Mt = 6, K = 3), so a low-complexity remedy is necessary. A natural means to reduce com-

plexity is by shrinking the search space as in [51], whereas two drawbacks will emerge in the

studied problem. First, the effectiveness of this method is highly sensitive to the sparsity level of

mmWave channels. Secondly, even if the mmWave channel is extremely sparse, the complexity

is still huge for growing exponentially with the number of UEs. In light of these deficiencies, we

judiciously devise a double-sequential-search (DSS) algorithm for the MBS, with the detailed

pseudo-code provided in Algorithm 3.

The DSS algorithm entails greedy codeword selection for constructing the UE-end analog

precoders and greedy codeword exclusion for constructing the BS-end analog precoder. As the

BS-end precoder applies to all UEs, we start from the UE-end design by setting PA = FNt to

eliminate the BS-end influence. Using the notation defined in Step.1, the criterion of codeword

selection at the inner-loop (m, k) (Step.2-Step.7) can be mathematically described as

m∗ = arg
m

min

NKMr∏
i=1

(
H̃(m, k)H̃

∗
(m, k)

)−1
[i, i] , (5.23)

where H̃(m, k) = diag
{
H̃n(m, k)

}N
n=1

satisfying

H̃n(m, k) =



W̃
∗
R,1H1,n

...

W̃
∗
R,k−1Hk−1,n[

W̃
R,k
,FNr [:,m]

]∗
Hk,n

W̃
∗
R,k+1Hk+1,n

...

W̃
∗
R,KHK,n


FNt . (5.24)

The above criterion ensures a linear implementing complexity with the number of UEs as well

as the fairness among UEs. After getting WA,k, the hybrid structure forces PA to delete some

redundant codewords and retain only Mt codewords. To this aim, the criterion of codeword
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exclusion at the loop-j (Step.8-Step.13) is designed as

j∗ = arg
j

min

NKMr∏
i=1

(
H̃(j)H̃

∗
(j)
)−1

[i, i] , (5.25)

where H̃(j) = diag
{
H̃n(j)

}N
n=1

with

H̃n(j) =


W̃
∗
R,1H1,n

W̃
∗
R,2H2,n

...

W̃
∗
R,KHK,n

FNt [:, I\I(i)] . (5.26)

In each iteration, the codeword with the least contribution to system MI will be excluded. Such

an exclusion terminates until only Mt codewords are left.

MAS: Assume MAS consists of b-bit APS, whose adjustable angles are given by

B =
{

0, 2π/2b, · · · , 2π × (2b − 1)/2b
}
. (5.27)

The analog constraints in the MAS are imposed on each entry, giving rise to

∀m,n, k,PA[m,n] ∈ ejB√
Nt
,WA,k[m,n] ∈ ejB√

Nr
. (5.28)

In this case, P2 is a large-scale NP-hard problem, whose minimizer is difficult to be obtained in a

brute force manner. Furthermore, the DSS algorithm developed for the MBS is also inapplicable

here because the MBS obeys a column-wise constraint, while the MAS obeys a more flexible

entry-wise constraint. To secure a local minimizer within an acceptable complexity, we resort

to the entry-wise update. First, we apply the DSS algorithm to get P (MBS)
A andW (MBS)

A,k , then

quantize them as

PR =
1√
Nt
ejQ(∠P (MBS)

R ) , (5.29a)

WA,k =
1√
Nr

ejQ(∠W (MBS)
A,k ) , (5.29b)
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Algorithm 3 DSS analog processing algorithm for the MBS

Input: ∀k, n,Hk,n, FNt , FNr , K, Mr and Mt;

Output: ∀k,WA,k, PA

1: Initialization ∀k, W̃R,k = ∅, P̃A = FNt , count = Nt, I = {1, 2, · · · , Nt};

2: for m ≤Mr do

3: for k ≤ K do

4: Compute Eq. (5.23) to get m∗ ;

5: W̃A,k =
[
W̃A,k,FNr [:,m

∗]
]
;

6: end for

7: end for

8: while count > Mt do

9: Compute Eq. (5.26) to get j∗ ;

10: I = I\I(j∗);

11: P̃A = FNt [:, I];

12: count = count− 1;

13: end while

14: ∀k,WA,k = W̃R,k, PA = P̃A;

with Q(x) = B
(

arg min
i

mod(x − B(i), 2π)
)

representing the quantizer. Despite some

differences between the MBS and MAS, PR and WA,k are expected to be decent initializ-

ers. Next, we take PA[a, b] to exemplify the entry-wise update while assuming other PA and

{WA,k}Kk=1 elements stay unchanged. By testing all candidates within 1√
Nt
ejB, the one mini-

mizing Eq. (5.21a) will be selected to replace the current PA[a, b]. After refreshing the entire

PA, a similar operation is then applied to {WA,k}Kk=1. The updating process keeps running

until triggering a specific terminating condition.
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Subcarrier down-sampling

For either the MAS or MBS, the complexity regarding analog processing grows linearly with

the subcarrier number. In mmWave systems, the ultra-wideband spectrum is very likely to be

divided into a large number subcarriers. To alleviate the computational burden, we can apply

the subcarrier down-sampling, such that only part of the subcarriers will be involved in analog

processing. Specifically, if an r-time down-sampling operation is applied, the original multi-

user EDC diag{H̃}Nn=0 will be replaced by

H̃DS,r = diag{H̃1+nr}N/r−1
n=0 . (5.30)

Consequently, the objective function in P2 will be adapted to
NKMr/r∏

i=1

(H̃DS,rH̃
∗
DS,r)

−1[i, i] . (5.31)

The computational complexity will be reduced by r times from minimizing Eq. (5.21a) to

Eq. (5.31). Later on, the simulations will show that even a relatively large r will cause a negli-

gible MI loss.

5.3.2 Digital processing

After analog processing, we start to complete the digital processing targeting at MUI removal

and MI maximization. Without loss of generality, we take UE-k on subcarrier-n as an exam-

ple. To highlight the twofold functionality of digital processing, we specially decompose the

associated digital precoder as

PD,k,n = PD,k,1,nPD,k,2,n , (5.32)

where PD,k,1,n ∈ CMt×Mr is for MUI removal, and PD,k,2,n ∈ CMr×Mr is for individual MI

maximization.

1st-step digital-processing: Eq. (5.10) points out that, to get an MUI-free EDC, PD,k,1,n

must lie in the null-space (here referring to column space) of

Hk,n =

[
H̃
∗
1,n, · · · , H̃

∗
k−1,n, H̃

∗
k+1,n, · · · , H̃

∗
K,n

]∗
. (5.33)
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By performing svd(Hk,n) = Uk,nΣk,nV
∗
k,n, the null-space ofHk,n can be extracted as

V̂ k,n = V k,n[:, (K − 1)Mr + 1 : Mt]. (5.34)

It is worth mentioning that rank(V̂ k,n) ≥Mr must hold, otherwise the HBD constraint cannot

be satisfied anyhow.

When Mt = KMr, PD,k,1,n = V̂ k,n is clearly the only viable option. Whereas for Mt >

KMr, PD,k,1,n is non-unique because any Mr-dimensional subspace of V̂ k,n would suffice.

Nevertheless, randomly selecting a subspace may compromise the EDC, especially for Mt and

KMr being significantly different. To harness power as well as removing MUI, we adopt the

subspace projection method similar to [87]. Specifically, towards Hk,n, denote its MUI-free

space P n
k,n and signal space P s

k,n as

P n
k,n = I −H∗k,n(Hk,nH

∗
k,n)−1Hk,n , (5.35a)

P s
k,n = H̃

∗
k,n(H̃k,nH̃

∗
k,n)−1H̃k,n . (5.35b)

By performing svd(P s
k,nP

n
k,n) = Uk,nΣk,nV

∗
k,n, PD,k,1,n can be set as V k,n[:, 1 : Mr].

2nd-step digital-processing: Thanks to PD,k,1,n, along with the analog precoders, UE-k

ends up with an MUI-free EDC on subcarrier-n as follows:

H̃eff,k,n = H̃k,nPD,k,1,n , (5.36)

The received signal can, therefore, be expressed as

yk,n = H̃eff,k,nxk,n + ξk,n . (5.37)

According to [27], the analog precoderWA,k is approximately semi-unitary under mmWave

mMIMO setup, so the noise vector ξk,n = W ∗
A,kηk,n is almost white. Therefore, the opti-

mal digital precoders for H̃eff,k,n correspond to its right and left singular matrix, denoted as

Ũ eff,k,n and Ṽ eff,k,n, respectively. By setting PD,k,2,n = Ṽ eff,k,n and taking the transmit

power constraint into account, the digital precoders are finally determined as

PD,k,n =
√
Mr

PD,k,1,nV̂ eff,k,n

‖PAPD,k,1,nV̂ eff,k,n‖F
, (5.38a)

WD,k,n = Û eff,k,n . (5.38b)
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Up to this point, we have accomplished the entire HBD-based transceiver design for wMU

mmWave mMIMO. Summarizing, the specific design can be carried out as follows:

1. Calculate the MI lower-bound according to Eq. (5.15);

2. Formulate P2 according to Eq. (5.21);

3. Apply DSS algorithm for the MBS or the entry-wise update for the MAS to get the analog

precoders;

4. Obtain the digital precoders according to Eq. (5.38)

5.3.3 Complexity analysis

As the end of Section IV, this part will quantify the complexity of the proposed HBD scheme and

compare it with some representative alternatives. For all methods, their complexity regarding

the low-dimensional digital processing tends to be relatively small, so we will only focus on

the high-dimensional analog processing that occupies the primary computational burden. For

simplicity, while without affecting the central conclusion, we will compare the complexity in

the order of multiplications.

The major computing burden of the proposed MBS-HBD lies in calculating Eqs. (5.23) and

(5.26), each requiring multiplications of O(KNrN(KMr)
3) and O(KNtN(KMr)

3), respec-

tively. AsNt � Nr usually holds, the sum of these two can be merged intoO(KNtN(KMr)
3).

In comparison with MBS-HBD, MAS-HBD further involves iterations withO((KMr)
3) multi-

plications per update. Hence, the ultimate complexity comes toO(KNt(N +npMr)(KMr)
3),

with np representing the iteration times that is typically very small. When it comes to the

existing schemes, the complexity of BS-HBD [32] can be easily obtained as O(KNN2
t N

2
r ).

EGT-HBD proposed in [86] and AM-HBD proposed in [89] involve a one-time SVD and a

per-UE per-subcarrier SVD, respectively, so their individual complexity can be roughly char-

acterized by O(N3
t + NK(NrMr)

2) and O(KNN3
t ). As for IMD-HBD proposed in [87],

although its applicability in wideband channels is unknown, its complexity is expected to be no
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smaller than O(N(N3
t + naKM

3
r )) given its narrowband realization, with na representing the

iterations of matrix decomposition that is often large.

In most cases, BS-HBD enjoys the lowest complexity for free of cumbersome matrix inver-

sions or decompositions, while IMD-HBD suffers from the highest complexity for many times

of matrix decompositions. As for the proposed one, the corresponding implementing complex-

ity is generally somewhere in between, and some more detailed remarks are in order.

• With a small number of UEs, the proposed HBD is highly efficient because no large-scale

SVD (at least O(N3
t )) is required.

• With a large number of UEs, the proposed HBD tends to be less efficient because the

complexity can reach to O(K4).

• In a standard hybrid system, the proposed HBD has a modest complexity because the

limited BS-end RF chains restricts the number of to-be-served UEs.

5.4 Simulations

In this section, simulations will be carried out to verify the superiority of the proposed HBD

scheme over existing HBD counterparts. Unless otherwise specified, the transceiver-related

parameters are set as: Nt = 32, Nt = 16, Mt = 8, Mt = 2, and K = 4; the channel-related

parameters are set as: D = 8 and N = 32; h(·) is set as the raised-cosine filter with a roll-

off factor β = 0.2. 3-bit APS will be used in the MAS, and the entry-wise update for analog

processing will terminate in 5 iterations 2 or the relative changing ratio no exceeding 0.01. In

simulations, the ideal MI upper-bound is obtained by neglecting the MUI and summing up the

MI of each and every UE achieved in fully-digital structures. All curves are the average of 500

independent channel realizations.
2 One iteration stands for a complete update of PA and {WA,k}Kk=1.
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Figure 5.3: Averaged MI/UE for various HBD schemes in narrowband channels: L = 6, 12 and 100.

MI in frequency-flat channels: Before studying the wideband channels, we first focus on

the narrowband channels. Three different levels of channel sparsity are considered with L = 6,

L = 12, and L = 100. The first two cases are quite standard to mmWave channels, while the

last case is unlikely to hold at mmWave frequencies as the the corresponding channel tends to

be Rayleigh-fading. However, testing this extreme case is still important for us to speculate the

applicability of the proposed scheme at lower frequencies.

For BS-HBD proposed in [32], the beam codewords are selected from the DFT matrix. For

EGT-HBD proposed in [86], 5-bit APS is used at the BS and 4-bit APS is used at the UE. For

IMD-HBD proposed in [87], continuous APS is adopted by the transceivers. Fig. 5.3 shows that

the performance of IMD-HBD and BS-HBD is sensitive to the sparsity level. Although EGT-

HBD is less insensitive, its performance is much worse than the proposed one. Specifically,

the proposed MAS-HBD outperforms all schemes by over 2dB in the entire SNR region. The

proposed MBS-HBD not only exceeds BS-HBD with the same hardware configurations, but

also well matches and even excels IMD-HBD and EGT-HBD, both enjoying better hardware

configurations. Despite being originally proposed in frequency-selective channels, it is clear

the proposed HBD also works well in narrowband channels, regardless of channel sparsity.
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Figure 5.4: Averaged MI/UE for different HBD schemes in wideband channels with L = 6, 12 and 100.

MI in frequency-selective channels: We then compare MI performances in wideband

mmWave channels. Apart from BS-HBD and EGT-HBD3 , AM-HBD devised in [89] for

wideband channels is also taken into comparison, and its analog configuration is set the same as

EGT-HBD. Fig. 5.4 shows that, when the wideband mmWave channels exhibit strong sparsity,

(L = 6 and L = 12), the proposed HBD is remarkably superior to others and its performance

gap to the ideal upper bound is less than 3dB. Similar to the narrowband case, we also test the

performance in wideband rich-scattering environments, by setting L = 100. The corresponding

results reveal that all schemes suffer from certain performance degradation. It is worth men-

tioning that the degradation is inevitable and should be largely due to the limitations of hybrid

structures. Even so, it can be observed that the proposed HBD still outperforms the rest and has

the least degradation in comparison with the standard sparse scenarios.

With the r = 4 down-sampling applied, the resultant MI loss is very minimal for L = 6 and

12. Only until L = 100 will a small degradation (< 0.8dB) occurs as the correlation between
3 For fairness, we have extended the narrowband EGT-HBD to the wideband channels, where a common RF

precoder is calculated as the quantized Karcher mean of the RF precoder at each subcarrier.
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two distant subcarriers diminishes in the Rayleigh-fading like channel. Based on the results, it

can be safely concluded that the subcarrier down-sampling is an effective means to reduce the

implementing complexity dramatically at the cost of little performance loss.

APS Impact: To verify the effectiveness of the entry-wise update in analog processing

for the MAS, we fix L = 6 and plot the relative changing ratio versus the iteration times in

Fig. 5.5-a. The result illustrates that three iterations suffice to reach a local optimum, implying

that entry-wise update will not cause a heavy computational burden. By fixing SNR=−8dB,

Fig. 5.5-b reveals that three iterations could harvest an over 20% MI improvement, and MAS

with 2-bit APS could get a close performance as MBS. Basically, 3-bit APS could be sufficient

for practical use for its good MI performance and economic hardware costs.
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Figure 5.5: (a) Averaged MI in MAS vs. iterations with SNR=−8dB; and (b) Averaged MI in MAS vs.

APS resolution.

MI versus the number of RF chains: One may notice that the previous results are with

Mt = KMr. While in practice, the BS may utilize more RF chains to strengthen the signal

quality (diversity gain). Since this operation mode can be supported by the proposed HBD and

AM-HBD, we then take the MBS as an example to compare their MI performance versus the

number of BS-end RF chains in Fig. 5.6.
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Figure 5.6: Averaged MI versus the number of BS-end RF chains. AM-HBD is with 5-bit APS at the

BS and 4-bit APS at the UE.

As expected, a dramatic MI improvement is gained from Mt = 8 to Mt = 20. This can be

explained by that the adversity arising from the coarse beam resolution is partly redeemed by the

affluence of RF chains. However, in very sparse channels (L = 6), the positive compensation by

RF chains will saturate rapidly, so a minimal MI improvement can be observed from Mt = 20

to Mt = 32. In contrast, the path energy is more dispersively distributed when L = 100, thus

deploying more RF chains will make the path energy more accumulated, thus resulting in a

higher MI. Under the same Mt, MI achieved via the proposed HBD is dramatically higher than

that of AM-HBD. This is within our expectation because AM-HBD heavily relies on the strong

correlation among subcarriers, while such a correlation will be weaker if L is large.

MI versus the number of UEs and antennas: By fixing the number of BS-end RF chains

as 32, we then simulate the system MI versus the number of UEs. Fig. 5.7 shows that system

MI increases with K in a roughly linear fashion at first. As K becomes relatively large, the

adverse effects arising from the MUI emerge, reflected by a smaller slope of the curve. As K

further increases, an MI decline takes place because a large number of UEs severely lower the

freedom in constructing the MUI-free space, thus compromising the quality of the EDC.
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While increasing the number of antennas Nt from 32 to 64, we see a later appearance of

the inflection point from which MI starts to decline. The reason is that more antennas bring
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in a higher beam resolution, thereby easing the separation of UEs. When infinite antennas are

deployed, the beam resolution also becomes infinite, and then it can be expected that the MI

curve will monotonically increase with K.

MI in other deployment configurations: In Fig. 5.8, we compare MI performance over a

modest range of transmit SNR in more specific conditions. The channel model used is the 3GPP

type-A clustered-delay-line (CDL-) based model, with only the azimuth angles considered given

the one-dimensional ULA setup. More details about how to generate the type-A CDL-based

channel can be found in Chapter 7 in [91]. With perfect CSI, we see that the proposed method

still achieves the highest MI. This result is of no surprise because the CDL-based model belongs

to the generic geometric model. Another finding worth mentioning is that the BS-HBD performs

rather well in this case because the adopted CDL-based channel contains line-of-sight clusters.

As perfect CSI might be unattainable at the BS, a common practice is to report the best beams

associated with their amplitude and propagating delay. To this end, we set the transmit SNR

for channel estimation as 10dB. Only the best one-third of beams is fed back with their angles

quantized to five bits. As can be seen, the proposed scheme yields the highest MI under limited

feedback, and is even well-comparable to others with ideal CSI at low-to-medium SNR.

5.5 Conclusions

In this chapter, a systematic transceiver solution has been tailored for wMU mmWave mMIMO

based on the criterion of MI maximization. The proposed scheme follows the popular HBD-

based paradigm but mitigates the potential ad-hoc or empirical nature. For the limit case, we

have demonstrated the asymptotic optimality of HBD in the sense of MI for wMU mmWave

MIMO transceiver design. For the general case, we have devised high-performance HBD-

wMU transceivers for both the MAS and the MBS, regardless of the resolution of the analog

beamformers or the sparsity of mmWave channels. Extensive simulations have been carried

out, demonstrating the superiority of the proposed HBD over existing counterparts.



Chapter 6

Model-Enhanced Learning-Based

Detectors for Wideband Multi-user

1-bit mmWave Communications

In classic communication systems, each antenna is assigned an independent radio-frequency

(RF) chain, including the high-bit (e.g., 8∼12 bits [92]) analog-to-digital converters (ADC) and

digital-to-analog converters (DAC), local oscillator (LO), low noise amplifier (LNA), mixers,

base-band amplifier as well as automatic gain control (AGC) [1]. Such a system is deemed trans-

parent in the sense that signal experiences negligible distortion when going through RF chains.

However, three significant obstacles hinder a similar configuration being deployed in mmWave

systems. First, the power consumption of converters increases linearly with the sampling rate

and exponentially with the byte-width [93] [94]. Even for a single 8-bit mmWave converter this

value has already reached 500mW [95]. Secondly, despite the advances in mmWave fabrica-

tion, the hardware cost is still far more expensive than its sub-6GHz counterparts. Besides, to

accommodate high-bit mmWave converters, the peripheral RF circuitry also needs to be of high

quality, thus further augmenting the expenditure. Given the concerns above, 1-bit mmWave

communications, referring to the system equipped with 1-bit converters, comes as a promising

110
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remedy. Undoubtedly, 1-bit communications face many limitations, but once combined with

mmWave, they exhibit remarkable superiority in terms of energy efficiency.

In transparent systems, data detection typically incorporates two stages, namely channel

estimation and coherent demodulation. Briefly speaking, a pilot-based method is often applied

in stage-1 to obtain an estimated channel state information (CSI). Then in stage-2, detection

can take place based on the input-output channel model. Unfortunately, in 1-bit systems, the

severe non-linear distortion renders the model-based approach inapplicable. For this reason,

quite a few new detection schemes have been proposed for 1-bit systems. They can be divided

into two categories: The first (e.g., [96, 97, 98, 99, 100]) works on amending the model-based

methods, while the second (e.g., [101, 102, 103, 104]) focuses on applying the learning-based

methods. In general, the existing literature is mostly restricted to narrowband or point-to-point

systems, with very few eceptions (e.g., [100]) where both the wideband and multi-user features

are considered. However, these works either require infinitely dense channel taps or an ideal

transmitter, lacking a solid foundation for practical use.

Despite the absence of an off-the-shelf solution, we find the method proposed in [101] might

be helpful. The reason is, except for a narrowband assumption, this supervised-learning based

detector does not rely on CSI and can support multi-user systems with 1-bit converters employed

at both ends. Specifically, this design also consists of two phases similar to the model-based

one. In phase-1, all users will transmit all possible data vectors. For an arbitrary transmitting

vector, its index and the corresponding received vector are regarded as the label and template,

if using the language of machine learning. Based on the collected labeled templates, a classifier

can be trained. By doing so, the demodulation in phase-2 is equivalent to label prediction.

Inspired by this idea, we will pursue a similar route in wMU 1-bit mmWave systems.

We first develop a so-termed learning-based detector (LeaD) based on the concept of the

maximum likelihood (ML-) block detection. Nevertheless, we find such a mechanism comes

with unaffordable computational complexity and training overhead in 1-bit wMU systems. To
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mitigate the impracticability, we henceforth propose a more practical detector termed as model-

enhanced LeaD (Me-LeaD). Me-LeaD converts the block detection into a serial detection by uti-

lizing the channel delay-domain information. In this manner, the affordability can be markedly

improved without sacrificing any data rate. To facilitate serial detection, we further design a

compatible frame structure for Me-LeaD. Nevertheless, in 1-bit mmWave systems, Me-LeaD

has an outstanding issue for the classifier has to be trained over high-dimensional inputs. To

boost the efficiency of Me-LeaD, we then seek the assistance of channel angular-domain infor-

mation, giving rise to the augmented (a-)Me-LeaD. In consequence, the training only involves

low-dimensional inputs, which will dramatically reduce the complexity while causing negligi-

ble harm to the detecting performance. Note that applying (a-)Me-LeaD requires the channel

domain information, which is, in fact, unknown in advance. To deal with this problem, we

develop an effective method for extracting the model information. Owing to the exploitation of

the unique underlying system features, a high precision can be guaranteed with low overhead.

6.1 System Descriptions

In this section, we will first explain the wMU 1-bit mmWave system and the adopted channel

model, based upon which we will then introduce the corresponding I-O relationship.

Figure 6.1: An illustrative diagram of the wMU 1-bit mmWave communication system.
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6.1.1 System and channel models

A wMU 1-bit mmWave system consisting of K sensor nodes and one central access point (AP)

is studied, with the schematic shown in Fig. 6.1. Each single-antenna node uses a pair of ultra-

economic 1-bit DACs for data transmission. At the AP side, an Na-dimensional uniform linear

array (ULA) is deployed for data reception. Each receiving antenna is further connected with a

pair of 1-bit ADCs applied to the real and imaginary parts of the received signal.

It is well-known that mmWave’s propagation exhibits limited scattering and reflections. In

addition, the ultra-wideband mmWave spectrum further leads to the frequency selectivity. To

incorporate these channel properties, a generalized geometric model [105] is used. Then the

uplink channel response between node-k and the AP can be characterized as

hk,d =

√
Na

ρ

Lk∑
l=1

αl,kar(θl,k)δ(d− dl,k), d < dm, (6.1)

where d represents the delay tap. In Eq. (6.1), ρ is the distance-dependent large-scale fading

(free-space loss); dm represents the maximum distinguishable delay taps; Lk represents the

number of paths; αl,k ∼ CN (0, 1), dl,k and θl,k ∼ U [0, 2π) represent the small-scale fading, the

propagation delay and the angle of arrival (AoA) associated with path-l, respectively. Without

loss of generality, the antenna spacing is assumed to be half-wavelength. As a result, we have

the array response as follows:

ar(θ) =

√
1

Na

[
1, ejπ sin θ, · · · , ej(Na−1)π sin θ

]T
. (6.2)

Two points need to be mentioned here regarding the channel. First, no assumption is made

in terms of the presence of a line-of-sight (LoS) path. Instead, all lk paths may have similar

power levels. Secondly, perfect CSI is unavailable at the AP because obtaining it would be

challenging in 1-bit systems.
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6.1.2 I-O Relationship

Orthogonal frequency-division multiplexing (OFDM) is the mainstream wideband transmission

scheme in transparent communications for its outstanding ability to combat frequency selectiv-

ity. Whereas it 1-bit systems, OFDM becomes ineffective for the destroyed system linearity. In

light of this, we will go back to the single-carrier (SC) transmission.

Let sk,p stand for the data sent from node-k at time instant-p, then

sk,p ∈

{
±
√

1

2
±
√

1

2
j

}
→ Complex transmission , (6.3a)

sk,p ∈ {+1,−1} → Real transmission . (6.3b)

In perfect synchronization, the AP will receive an aggregated signal as

rp = rp,I + jrp,Q =
√
Pt

K∑
k=1

hk ⊗ sk,p + np (6.4)

where Pt is the transmitting power; np ∼ CN (0, n0BINa) is the white Gaussian noise with

n0 being the noise power density and B being the communication bandwidth. Throughout this

chapter, signal-to-noise ratio (SNR) is defined as ε = Pt
n0B

. Note that, sk,p, i.e., the output

of one-bit DACs, has been implicitly incorporated the transmitter non-linearity, thus the linear

model of rp actually represents the channel part only. After 1-bit quantization, the signal to be

processed in digital baseband becomes

yp = sgn(rp,I) + jsgn(rp,Q) . (6.5)

In this work, our aim is to establish a general supervised-learning based detection framework

such that sk,p can be efficiently detected in the absence of explicit CSI. For ease of description,

the detection framework will be introduced based on the following configuration:

• Two sensor nodes, i.e., K = 2.

• Modulation order X = 2, i.e., sk,p = ±1, ∀k, p.
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• For node-1, its effective delay taps are contained in {d1,1, d1,2, ..., d1,k1}; 0 ≤ d1,1 <

d1,2 · · · < d1,k1 < dm.

• For node-2, its effective delay taps are contained in {d2,1, d2,2, ..., d2,k2}; 0 ≤ d2,1 <

d2,2 · · · < d2,k2 < dm.

• The starting instant is set as 0.

Note that restricting to two nodes will not sacrifice any loss of generality of the proposed de-

tecting schemes.

6.2 Existing Works

Before developing detectors for wMU 1-bit mmWave systems, let us first make a quick review

of two representative detectors that are applicable to wMU transparent systems and nMU 1-bit

systems, respectively.

6.2.1 Model-Based Detection for wMU Transparent systems

The model-based approach consisting of channel estimation and coherent demodulation is com-

monly used in wMU transparent systems. In the following, we will explain the details under the

prevalent OFDM regime.

Let the length of the cyclic prefix (CP) be dm and the size of discrete Fourier transform

(DFT)/inverse DFT (IDFT) be P . According to [100], the frequency-domain channel for node-

k on subcarrier-p (p < P ) can be expressed as

hk,p =

dm−1∑
d=0

hk,de
−j 2πp

P
d . (6.6)

Denote sk,p as the data transmitted from node-k on subcarrier-p, then the system I-O relation-

ship can be represented as

yp =
√
Pt

K∑
k=1

hk,psk,p + np (6.7)
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Following the prevalent pilot insertion and post interpolation [106], we can first estimate

hk,p (∀k, p), with which the AP is able to equalize and demodulate yp. In fact, this approach is

being used in LTE physical layer standard. The reason for its popularity and excellence should

largely owe to an accurately modeled I-O relationship, based upon which abundant methods are

available to tackle the detection therein.

6.2.2 Learning-Based Detection for nWU 1-bit Systems

The learning-based detection [101] [104] was originally designed for narrowband systems, cor-

responding to dl,k = 0, ∀k, in Eq. (6.1). The main advantage over the model-based approach is

the outstanding ability in coping with non-linear distortion.

According to [101], the learning-based approach incorporates the template learning and the

label prediction. To make it clear, we illustrate the details based on formerly defined configu-

rations. Let sp = [s1,p, s2,p]
T representing the transmitting vector. All possible sp is collected

by

S =

{ 1

1

 ,
 1

−1

 ,
 −1

1

 ,
 −1

−1

}. (6.8)

In phase-1, two nodes obey the following transmission:

sp = S {mod (p, 4)} . (6.9)

At least one complete scan over S is mandatory.

For a specific sp, its index and corresponding receiving vector can be regarded as the label

and the template, denoted as LLp and TLp , respectively [104]. After R scans, a classifier can be

trained as

f
(
[TLp,I , T

L
p,Q];θ

)
7→ LLp , p < 4R, (6.10)

with LLp = mod (p, 4) and TLp = yp.

In phase-2, the two nodes will report their respective data to the AP, thus the received TLp =

yp accordingly becomes a testing data whose label awaits determination. By feeding it into the
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classifier, the following label prediction actually plays a role of demodulation [101], resulting

in

ŝp = S
{
f
(
[TLp,I , T

L
p,Q]
)}
, p ≥ 4R . (6.11)

As can be seen, demodulation via the learning-based approach does not need explicit CSI. This

property is vital to 1-bit systems because accurate channel estimation is tough.

Remark: The model-based and learning-based methods do demonstrate their respective su-

periority in specific scenarios, but their applicability still exhibits substantial limitations. For the

former, a violation of the system linearity will render it largely inferior and even inapplicable.

For the latter, its ability to combat non-linear distortion only holds in narrowband channels. As

a result, both types fail to undertake the demodulation tasks in wMU 1-bit mmWave systems.

6.3 Detectors for wMU 1-bit mmWave

In light of the existing deficiencies, new detectors will be explicitly designed to 1-bit wMU

mmWave systems via model-enhanced learning.

6.3.1 Learning based Detector (LeaD)

We name the first detector LeaD. Although this one follows a similar route as the aforemen-

tioned narrowband detector, we will later see that it takes on strikingly different characteristics

in wideband channels. Eq. (6.9) tells that the data transmission remains active in narrowband

channels, but this manner does not apply to wideband channels. This is because the multi-path

effects will render the interference arising from the next transmission falling into the current

one, leading to the ambiguity in classification. To address this issue, our proposed LeaD will

adopt a zero-padded block transmission given by: s1,0 s1,1 · · · s1,P−1 01×(dm−1)

s2,0 s2,1 · · · s2,P−1 01×(dm−1)

 . (6.12)
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To cover all transmit blocks, at least 4P effective transmissions are required in the training

phase. Define S̃ to be the ensemble containing all possible blocks. We can write the templates

and their corresponding labels as

Template : TLeaDp = vec
(
yp(P+dm−1)

{
S̃(p)

})
, (6.13a)

Label : LLeaDp = mod
(
p, 4P

)
. (6.13b)

After R complete scans, all labeled templates can be used for training a 4P -classes classifier as:

Classifier : f
(
[TLeaDp,I , TLeaDp,Q ];θ

)
7→ LLeaDp , p < 4PR. (6.14)

Moving on to phase-2, the transmission still follows Eq. (6.12) except for replacing s1,p and

s2,p with the nodes’ effective data. By feeding the obtained TLeaD into the classifier, the entire

block can be demodulated as

Demodulator : S̃
(
f
(
[TLeaDp,I , TLeaDp,Q ]

))
, (6.15)

with p ≥ 4PR and mod(p, P + dm − 1) = 0. (6.16)

As can be seen, LeaD is analogous to the ML block detector, a well-recognized optimal solution

in transparent systems in the sense of error performance. Unfortunately, gaining such an opti-

mality is impractical in wMU 1-bit systems even with a modestly large P . The reason is that

demodulation via LeaD is through predicting one out of a total of 4P classes, thus the training

overhead and computational complexity would be 4P−1 times higher than the narrowband case.

Let us consider a special form of LeaD, namely LeaD-1 by setting P = 1. This case enjoys

supreme affordability, but it suffers from huge data loss because each UE transmits only one

symbol per dm instants. In this regard, LeaD-1 is also an “impractical” solution.

Remark: Summarizing, LeaD is capable of demodulating without explicit CSI, but its ap-

plicability is severely restricted by the block size P ; that is, either decreasing or increasing P

cannot decently balance the data rate and complexity.
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6.3.2 Model Enhanced (Me-)LeaD

Being aware of the impracticability of block detection in 1-bit systems, we decide to adopt serial

detection that is presumably more tractable. To enable this mechanism, we will seek the help of

channel unique domain information, giving rise to Me-LeaD.

Figure 6.2: Proposed frame structure to accommodate serial detection.

Suppose the effective channel delay taps are available at the AP. For an arbitrary symbol

s1,p, its associated receiving vectors form the following matrix:

Y p,1 =
[
yp+d1,1

,yp+d1,2
, ...,yp+d1,k1

]
. (6.17)

To detect s1,p, we need to depend on Y p,1 comprising k1 vectors, each having at most 2k1+k2

combinations if neglecting the noise term. Y p,1 has 2k
2
1+k1k2 options, which encompass all

patterns associated with s1,p. Therefore, one can treat Y p,1 as the template and s1,p as the lable.

Using them a binary-classifer can be trained and used for later demodulation).

Recall that mmWave channels generally exhibit notable sparsity in the delay domain [94,

99, 48], implying k1 and k2 are very small. As a result, the size of the template ensemble for

node-1, i.e., 2k
2
1+k1k2 , is significantly smaller than 4P via LeaD. Meanwhile, the much smaller

template size as well as the much fewer associated classes also brings a huge reduction in

training complexity1 .

Applying Me-LeaD requires each to-be-decoded symbol entails a full-order interference

pattern, whereas this requirement cannot be met by those upfront and trailing symbols in zero-

padded transmission. To facilitate serial detection, we propose a new transmission scheme

with its frame structure presented in Fig. 6.2. Specifically, the training part is designed as a
1 It is worth mentioning that a complete scan of all patterns is not a must for Me-LeaD because the number of

classes is only two.
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length-Nm pseudo sequence composed of modulated symbols, aiming to serve sufficient labeled

templates for classifier training; the data part is divided into two segments, with the first being a

length-P sequence padded with effective data and the second being a length-dm suffix to meet

the pattern requirement.

Take node-1 as an example, whose templates and associated labels can be represented as

Template : TMe
1,p = vec ([Y p,1,I ,Y p,1,Q]) , (6.18a)

Label : LMe
1,p = s1,p , dk,1 ≤ p < Nm . (6.18b)

With these labeled templates, we can train a binary-classifier for node-1 as

Classifier : f(TMe
1,p ;θ1) 7→ LMe

1,p , dk,1 ≤ i < Nm . (6.19)

By feeding TMe
1,p , whose associated transmit symbol belongs to the segment of effective data,

into the classifier, we can get the demodulated data as

Demodulator : ŝ1,p = f(TMe
1,p ), Nm ≤ p < Nm + P. (6.20)

Remark: Note that, there is a tradeoff between the block-detection based LeaD and the

serial-detection based Me-LeaD. That is, the former enjoys a better error performance at the

price of higher computational complexity and reduced data rate. Although reducing the block

size of LeaD will render its computational complexity more affordable, the computation load

increases so steeply with the block size such that the block size would have to be extremely

small in order for LeaD to become computationally practical. In other words, the tradeoff be-

tween LeaD and Me-LeaD is largely theoretical without much practical implication, making

Me-LeaD much more favorable than LeaD in practical use. Nevertheless, Me-LeaD has a no-

table drawback for the classifier has to be trained over high-dimensional inputs. To streamline

the training process, we will resort to additional model information to augment Me-LeaD.

6.3.3 Augmented (a-)Me-LeaD

Abundant mmWave literature (e.g., [11, 31, 86]) has revealed that in transparent systems, the

mixed multi-user signals can be separated from the angular domain, transforming the original
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high-dimensional spatial processing into the low-dimensional angular processing [86]. Despite

the non-transparency of 1-bit systems, we will show that by introducing the angular information

to Me-LeaD, the resultant augmented (a-)Me-LeaD still enjoys a similar benefit, thereby notably

accelerating training with minimal performance degradation.

Proposition 6.1: The core angular information of the unquantized signal rp still retains in its

quantized version yp.

Proof. Rewrite the unquantized signal rp in Eq. (6.7) as

rp =



aHr (θ1,d1,1)
...

aHr (θ1,d1,k1
)

aHr (θ2,d2,1)
...

aHr (θ2,d2,k2
)



H

︸ ︷︷ ︸
˜Hp

×



α1,d1,1s1,p−d1,1

...

α1,d1,k1
s1,p−d1,k1

α2,d2,1s2,p−d2,1

...

α2,d2,k2
, s2,p−d2,k2


︸ ︷︷ ︸

s̃p

+np . (6.21)

Both the Bussgang and AQNM methods [107] are commonly used to linearly model a low-bit

quantizer. For instance, applying the former gives

yp = sgn(rp)

' sgn
(
H̃p

(
s̃p + H̃

†
pnp

))
≈ 0.64[diag(H̃pH̃

H
p )]−

1
2 H̃p

(
sp + H̃

†
pnp

)
+ qB

= CH̃ps̃p + q , (6.22)

where C = 0.64(k1 + k2)−
1
2 and q is a colored noise whose covariance can refer to [107]. A

similar linear form can also be obtained via the AQNM method, which reveals that the quantized

signal retains the core angular information. It is worth mentioning that the approximated linear

model yp only includes the channel and receiver part without the transmitter part. Therefore,

yp cannot be treated as an end-to-end linear system model where OFDM can be applied.
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Following proposition 6.1, we can quicky arrive at the following conclusion that will help

in developing a-Me-LeaD.

Lemma 6.1: The unitary transformation FNa is also a sparse transformation concerning the

quantized signal yp.

Proof. Eq. (6.22) shows that ỹp ≈ CFH
NaH̃ps̃p + FH

Naq. Since FH
Naar(θ) ≈ e

T
i∗ with i∗ =

arg max
i∈[0,Na)

cos(π sin θ− 2πi
Na

), ỹp has very few prominent entries, implying FNa performs a sparse

transformation.

Based on Eq (6.18a), we define

T̃Me
1,p = FH

NaT
Me
1,p . (6.23)

Theoretically, using either T̃Me
1,p or TMe

1,p to train the classifier is of no difference. Nevertheless,

is focusing on a practical scenario with restricted training overhead and transmit power, using

the later would be better because the underlying features of TMe
1,p has already been unveiled by

FNa . Furthermore, if those few prominent features are reliably identified, then using them as

templates should greatly simplify the training process.

Assume that all AoAs are known by the AP, then applying “matched filtering” gives rise to

Ŷ p = H̃
H
p Y p

≈ C

 Ik1 0

0 Ik2

 s̃1,p+d1,1 · · · s̃1,p+d1,k1

s̃2,p+d2,1 · · · s̃2,p+d1,k1

+

 q̂1

q̂2

 , (6.24)

and s̃1,p = [α1,d1,1s1,p−d1,1 · · ·α1,d1,k1
s1,p−d1,k1

]T , s̃2,p = [α2,d2,1s2,p−d2,1 · · ·α2,d2,k2
s2,p−d2,k2

]T .

Eq. (6.24) reveals that the multi-user signal has been approximately separated via filtering.

Hence one can only use Ŷ p,1 formed by the first k1 rows of Ŷ p to detect node-1’s data. In

consequence, the templates and labels related to node-1 become

Template : T a−Me
1,p = vec

(
[Ŷ p,1,I , Ŷ p,1,Q]

)
, (6.25a)

Label : La−Me
1,p = s1,p. (6.25b)
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Based on Eq. (6.25), a binary classifier can be trained as

Classifier : f(T a−Me
1,p ;θ1) 7→ La−Me

1,p , dk1 ≤ p < Nm . (6.26)

Then node-1’s data is demodulated as

Demodulator : ŝ1,p = f(T a−Me
1,p ;θ1), Nm ≤ p < Nm + P. (6.27)

Remark: Summarizing, a-Me-LeaD performs serial detection for each user after suppressing

the multi-user interferences. The corresponding complexity is only k1
Na

of the Me-LeaD’s. De-

spite a potential performance degradation at high SNR, a-Me-LeaD is still appealing because

the transmit power at the user end is usually constrained to extend battery life. To apply (a-

)Me-LeaD, the channel model information is indispensable, while acquiring it is no easy task

in wMU mmWave 1-bit systems. Due to the space limitation, we will leave the specifics in the

next section.

6.3.4 Design Considerations

Classifier Option

In the application of (a-)Me-LeaD, we adopt the linear support vector machine (SVM) to train

the classifier. The reason is twofold. First, the labeled templates should be limited in commu-

nication applications, so deep learning related techniques are unsuitable. Secondly, the linear

SVM is trained over a small-scale dataset with few tuning parameters, which will not impose a

heavy computational burden on on-line learning.

According to [108], SVM aims at finding an optimal hyperplane to separate two classes.

The hyper-parameters (w, b) are obtained through solving the following optimization problem

mininize.
w,b,ζ

1

2
wwT + C

m∑
i=1

ζ(i)

subject to. t(i)(wTx(i) + b) ≥ 1− ζ(i)

ζ(i) ≥ 0. (6.28)
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where C is a regularization parameter and t(i) = ±1 is the label of the input data x(i). The

primitive SVM is designed for binary classification. To handle the multi-class classification,

One-vs-Rest and One-vs-One are commonly used [109]. As the number of classes is at most

4 (QPSK), these two types do not differ much. In simulations, we choose the One-vs-One

strategy. This type takes one class as positive and all the rest as negative, so it will train n

classifiers for the data having n classes. In the scoring phase, all the n-classifiers predict the

probability of a particular class, and the class with the highest probability will be selected.

Training Sequence

It is speculated that the quality of templates will hugely impact the detection performance of

(a-)Me-LeaD. To ensure a balanced set of labeled templates, the training sequence is preferably

adjusted according to the current channel delay-domain information. However, this approach

is impractical for a high-volume feedback. For this reason, we devise an “inflexible” scheme

by fixing the training sequence as a modulated m-sequence. Furthermore, the m-sequence

generator at each node will be allotted a mutually different stage. Such a design enjoys two

remarkable benefits:

• Each class contains an almost equal number of templates thanks to the near-perfect ran-

domness of m-sequence.

• Whenever varying the length of the training sequence, the only parameter in feedback is

the order of m-sequence.
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Table 6.1: Characteristics of different detectors.

Applicable range Data Rate Input dimension Classes Complexity

Model-based wMU transparent OFDM: P
P+dm

Na N/A O(N2
a )

Learning-based nMU 1-bit SC:1 Na XK O(XK)

LeaD wMU 1-bit ZP: P
P+dm

Na(dm + P ) XKP O(XKP )

Me-LeaD wMU 1-bit SC: P
P+dm

NaLk X O(N2
aL

2
k)

a-Me-LeaD wMU 1-bit SC: P
P+dm

L2
k X O(L4

k)

Up to this point, we have explained the principles for all proposed detectors. Their charac-

teristics are listed in Table.6.1 for reference.

6.4 Model Information Extraction

As mentioned before, applying (a-)Me-LeaD needs channel angular-delay information. There-

fore in this section, we will investigate how to get these required domain information.

6.4.1 Angular-Domain Information

Without loss of generality, we explain the AoA estimation based on an arbitrary beam αar(θ).

In transparent systems, it is well-known that θ can be estimated as

θ̂ =
2πi∗

Na
with i∗ = arg max

i

∣∣FH
Na [:, i](αar(θ))

∣∣ . (6.29)

The effectiveness of Eq. (6.29) is attributed to the following fact:

aHr (θ1)ar(θ1)� aHr (θ1)ar(θ2), | θ1 − θ2 |>
2π

Na
. (6.30)

Perhaps a little bit surprising, we find that a similar fact also holds for the studied 1-bit systems.

Proposition 6.2: In 1-bit mmWave systems with Na antennas, | θ1 − θ2 |> 2π
Na

will lead to

sgn
(
aHr (θ1)

)
sgn (ar(θ1)) being much larger than sgn

(
aHr (θ1)

)
sgn (ar(θ2)).
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Proof. We first define the following matrix2 :

FC =
1

2Na

(
sgn(F T

Na,I)sgn(FNa,I) + sgn(F T
Na,Q)sgn(FNa,Q)

)
. (6.31)

Proposition 6.2 can be proved through elucidating the following two properties:

• The largest off-diagonal element (denoted as Lm) of FC is much smaller than 1.

• εD = ‖ FC − INa ‖F /‖ INa ‖F ' 0.

A rigorous demonstration of these properties is hard, whereas numerical validation can be

quickly done by testing Na, i.e., the antenna array size, over a wide range. The relevant results

are presented in Table.6.2, from which we are convinced of the validity of the above properties

in 1-bit mmWave systems.

Table 6.2: Lm and εD under different Na.

Na 16 32 64 128 256 512 1024

Lm 0 0.25 0.25 0.313 0.313 0.328 0.328

εD 0 0.063 0.054 0.047 0.047 0.027 0.021

Now that 1-bit quantization does not really affect the low-correlation relationship between

ar(θ1) and ar(θ2), then it is fair to speculate that the criterion of AoA estimation can mimic

Eq. (6.29) by replacing FH
Na [:, i] and αar(θ) with their quantized version. Unfortunately, this

naive implantation is invalid because sgn (αar(θ)) 6= sgn (ar(θ)). In other words, the am-

plitude α = |α|ejβ may change where the highest correlation occurs. Recall that ar(θ) =

[1, ejπ sin θ, · · · , ej(Na−1)π sin θ]T , from which we observe that ejβ|α|ar(θ) is a cyclic-shift ver-

sion of |α|ar(θ). To find the original peak position, we first generate [ar(θ)]j by cyclically

2 It is recommended to use ejπ/NaFNa instead of FNa throughout angle estimation. This is for the purpose
of mitigating the ambiguity in quantizing the on-axis element. All the results achieved in this chapter are based on
ejπ/NaFNa .
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shifting ar(θ) by j elements; then, by projecting sgn ([αar(θ)]j) (∀j < Na) into sgn(FN ), we

locate the angular index as

θ̂ =
2πi∗

Na
with i∗ = arg max

i

{
max
j

∣∣sgn
(
FH
Na [:, i]

)
sgn ([αar(θ)]j)

∣∣} . (6.32)

6.4.2 Delay-Domain Information

The only work left now is to acquire the channel delay-domain information. In our prior work

[48], the following training pattern is used in a similar task but without 1-bit constraints

[1, 0, 0, ...., 0]1×dm . (6.33)

Here, we continue to use this pattern for its capability of decoupling the delay taps regardless

of quantization. In the estimation stage, all nodes are assumed to operate in the time-division-

duplex (TDD) mode. Once a node is scheduled a time slot, it will send the above training pattern

for a specified number of times.

Owing to the channel’s sparsity in the delay domain, we can quickly identify the useful

delay taps in transparent systems per the received power. However, this method is invalid in the

studied 1-bit system as the received power is a constant, i.e.,

‖ yd ‖2 =‖ sgn(rp,I) ‖2 + ‖ sgn(rp,Q) ‖2
.
= 2Na , (6.34)

forcing us to propose an enhanced power-based method. To this end, let us first define

C(yd) =
1

2Na
max
i,j

∣∣sgn
(
FH
N [:, i]

)
sgn ([yd]j)

∣∣ . (6.35)

For an ineffective tap, say tap-d, yd ' sgn (ηd) holds, so both the real and imaginary parts of

yd[i] can be approximately modeled as a bernoulli variable with

Pr (yd[i] = 1) = Pr (yd[i] = −1) =
1

2
. (6.36)

We can readily verify that the mean and the variance of sgn
(
FH
N

)
sgn ([yd]j) are 0 and 1

2Na
,

respectively. Since Na is typically very large in 1-bit mmWave systems, the variance tends to
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be zero, implying that C(yd) is densely distributed around 0. On the other hand, if tap-d is

effective, then C(yd) will be much deviated from 0 and approaches to 1 at high SNR. In this

sense, C(yd) acts as a reliable indictor signifying the strength of the tap-d channel. Inspired

by this insight, an off-line learning strategy is henceforth proposed, aiming at constructing a

look-up table from which we can get an estimated channel strength. The detailed procedures

are listed as follows:

1: Giving Pm, randomly generate a bunch of synthesize data

ys = sgn
(√

Pme
jβar(θ) + η

)
(6.37)

according to β, θ ∼ U [0, 2π] and η ∼ CN (0, INa).

2: Calculate C(ys) according to Eq. (6.35), then store a key-value pair < E{C(ys)}, Pm >.

3: Repeat Steps.1 and 2 by varying Pm.

In the on-line stage, we first calculate E{C(yd)}, then from the constructed table we pin-

point the closest Pm to which E{C(yd)} corresponds. Only those taps with notable Pm will

be selected, and the rest with minimal power contributions are simply excluded. Within the se-

lected taps, their AoAs are estimated according to Eq. (6.32) except for replacing αar(θ) with

yd
3 . With the estimated delay-angular information, one can apply (a-)Me-LeaD for demodu-

lation.
3 When one tap contains more than one prominent path, the estimated AoA is expected to be the one associated

with the strongest path.
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Table 6.3: Hardware power consumption according to [1] [2]. c =494fJ/step/Hz according to state-of-

the-art HPADC structure.

,

Device Notation Value

Low Noise Amplifier PLNA 39mW

Local oscillator PLO 5mW

Low pass filter PLPF 14mW

Base-band amplifier PBAMP 5mW

Mixer PM 16.8mW

b-bit ADC(DAC) PADC cB2b

6.5 Simulations

In this section, simulations will be carried out to compare the performance among different

detectors. The system parameters for simulation are given in Table.6.4. Apart from BER, EE

and EDR will also be included in comparison. In this work, EE (bit/Joule) is defined as the ratio

between EDR and the overall system power consumption (hardware and communication). The

latter value for a b-bit system is estimated as

Ptol(b) ≈ KPt + (Na +K)(PM + PLO + PLPF + PBAMP + PLNA︸ ︷︷ ︸
PRF

+2Pb−ADC) . (6.38)

The definition and the typical value of each term within Eq. (6.38) are given in Table. 6.3. In

the following, we use Ptol(8) to stand for the power consumption in transparent systems.
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Table 6.4: System parameters for simulation.

System Parameters Value

ULA size Na 128

System bandwidth B 1GHz

Carrier frequency fc 60GHz

Noise power density n0 -174dbm/Hz

CP length dm 64

OFDM size P 512

Path Loss ρ 110dB

Modulation QPSK

SVM regularization parameter 10

Simulation parameters: Without loss of generality, the channel between each node and AP

has an equal number of paths, denoted as L. When K = 3, the model-based detector and LeaD

take up two OFDM symbols for channel estimation and template training, respectively. The

proposed Me-LeaD uses one symbol duration to estimate channel domain information and the

other one to pad training sequence. When K = 6, the model-based detector and LeaD take up

three OFDM symbol durations for channel estimation and template training, respectively. Me-

LeaD uses two symbol durations to estimate channel domain information and the remaining

one to pad training sequence. The least-squares estimator is used for channel estimation in

model-based detection. All the curves are the average of 300 independent channel realizations.



131

-3 -2 -1 0 1 2 3 4 5 6 7 8
0

2

4

6

#
 o

f 
T

a
p

s

-3 -2 -1 0 1 2 3 4 5 6 7 8
0.8

0.85

0.9

0.95

1

P
o

w
e

r 
R

a
ti
o

-3 -2 -1 0 1 2 3 4 5 6 7 8

SNR (dB)

0

1

2

3

4

A
n

g
le

 I
n

d
e

x
 G

a
p

Figure 6.3: Validation of the high-accuracy in obtaining the delay-angular information.

Validation of model-information estimation: We first verify the effectiveness in estimat-

ing the model information by setting K = 3 and L = 3. As can be seen from Fig. 6.3, only a

small proportion of taps are identified from a total of 64 taps, making up over 95% of the chan-

nel power at a modest training SNR. Among those correctly identified taps, we then compare

the gap between the estimated AoA index and the actual quantized one. If the gap is no larger

than one, we treat the estimation as a successful one. Fig. 6.3 shows that the averaged gap is

small than 1 even at a low training SNR, indicating that the proposed AoA estimation is very

reliable. In Table.6.5, we further present the standard deviation for the estimated number of taps

as well as the index gap within the correctly identified taps. Both types have small deviations,

implying a high stability of the estimation method. Since only one OFDM symbol duration is

used to get all the required model information, the proposed method is very efficient.

Table 6.5: Standard deviation of the estimated number of taps and angle index gap.

SNR(dB) -2 0 2 4 6 8

Devtap 1.37 0.89 0.49 0.55 0.076 0.078

Devang 0.94 0.81 0.75 0.67 0.66 0.65
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Figure 6.4: EE and EDR comparisons among different detectors with K = 3.

Performance comparisons among different detectors: In Fig. 6.4, we compare the EE

and EDR performance among LeaD, Me-LeaD, and the model-based detector by settingK = 3.

As can be seen, the model-based detector achieves the lowest EE because the hardware con-

sumption in transparent systems is significantly higher than their 1-bit counterparts. Under the

adopted configurations, LeaD and Me-LeaD achieve a similar EE performance. LeaD is slightly

more energy efficient than Me-LeaD is because it remains idle most of the time. However, such

a tiny advantage comes at a significant sacrifice of EDR.

We then compare the error performance by setting L = 2 The transmission power is set

as Pt = 1W (SNR≈3dB) when either estimating the entire channel or domain information

only. Note that, only 18 out of 64 combinations can be scanned via LeaD within the pre-defined

training duration. Assume the scanned ones can always be correctly detected, while the rest is

randomly determined to be one of these 18 combinations. By doing so, the resultant BER can

be treated as the BER lower-bound via LeaD. Fig. 6.5shows that LeaD performs worst merely

for an incomplete scan.



133

-22 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0

SNR (dB)

10
-3

10
-2

10
-1

10
0

B
E

R

LeaD-1:lower-bound

Me-LeaD(accurate info)

Me-LeaD

a-Me-LeaD(accurate info)

a-Me-LeaD

Me-LeaD unitary transformation

Model-based

Figure 6.5: BER comparisons among different detectors with K = 3, L = 2 and QPSK modulation.

With an equal amount of training overhead, Me-LeaD performs remarkably better than

LeaD because the former performs serial detection, thereby significantly lowering the require-

ment of templates. When using the estimated model information, Me-LeaD with sparse trans-

formation is superior to its plain version and a-Me-LeaD. At a low-to-modest SNR, the most-

efficient a-Me-LeaD also enjoys a lower error rate than Me-LeaD. But as SNR increases, a-

Me-LeaD gradually becomes inferior to Me-LeaD. The inferiority mainly comes from the AoA

mismatch, including both the resolution error and estimation error. Although Me-LeaD suffers

from a 3dB gap compared to the model-based detector, its EE is more than 4 times higher than

the latter. Therefore, through a comprehensive evaluation, Me-LeaD stands out as an appealing

detection solution for wMU 1-bit mmWave system owing to its overall decent performance.

BER performance in more special cases: In this part, we compare the BER performance

in two special cases. In case-1, we keep K = 3 but change L from 2 to 1, so the channel is

frequency-flat. In case-2, we set K = 6 and L = 4, doubling both the number of nodes and the

number of paths used in Fig. 6.5. From Fig. 6.6-a, one may surprisingly observe that Me-LeaD

still well matches the model-based detector, and Me-LeaD with sparse transformation even
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performs best. Their excellent performances should owe to the fact that the training templates

(512) are way ampler than required (43 = 64). We have to admit this case is somewhat unfair

to the model-based because it remains workable if assigned to one symbol duration for channel

estimation, while Me-LeaD cannot.
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Figure 6.6: BER comparisons among different detectors (a) K = 3 and L = 1 with QPSK; and (b)

K = 6 and L = 4 with QPSK.

In case-2, Me-LeaD unsurprisingly performs much worse than the model-based detector.

This reason is that 512 training templates are far from sufficient to cover a total of 424 inter-

ference patterns. Thanks to the serial detection, an incomplete pattern scan does not paralyze

Me-LeaD. From the above results, we conclude that the training overhead has a huge impact

on the performance of Me-LeaD. In practice, it is advisable to properly prolong the training

sequence, as a small increase in overhead may harvest a notable performance improvement.

6.6 Conclusions

To address the detection problem for wMU 1-bit mmWave systems, the supervised-learning

techniques were utilized to cope with the challenges arising from the non-linear distortion.

Starting from a generally optimal yet impractical block detector LeaD, two additional practical
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serial detectors termed as Me-LeaD and a-Me-LeaD have been developed by exploiting the

channel model information. To facilitate (a-)Me-LeaD, we further designed an efficient method

to estimate the required domain information. Owing to an innovative integration of learning

and modeling, the proposed (a-)Me-LeaD can effectively complete the detection task for wMU

1-bit mmWave systems without relying on explicit CSI or sacrificing data rate.



Chapter 7

Wireless Multi-casting for Wideband

mmWave System with 1-bit DAC

Centering at a 1-bit mmWave system as in Chapter 6, we will study a downlink transmission

scenario. A particular focus will be placed on wireless multi-casting, a crucial transmission

modality frequently used for network control and information sharing. Actually, multi-casting

has been extensively studied either in digital sub-6GHz systems (e.g., [110, 111]) or hybrid

mmWave systems (e.g., [112, 113]). Despite pronounced distinctions in their hardware ar-

chitectures, nearly all the examined systems are transparent in the sense that the end-to-end

linearity holds. And thanks to this property, the resultant multi-casting design boils down to

finding an optimal beam-forming vector under a specific quality-of-service (QoS) target. With

the obtained vector, one can multiply it with an arbitrary symbol, by convention a PSK or QAM

symbol for information delivery. The entire process imposes no challenges on detection, so a

single-tap linear equalizer generally suffices. For this reason, we term the conventional strategy

as “one-make-all."

Unfortunately, such an elegant framework does not work for 1-bit systems. To clarify this

argument, one needs to realize that in conventional multi-casting modulation occurs in the scalar

symbol rather than the beamforming vector. As a 1-bit DAC component enables to output at

136
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most four distinct value, associating an arbitrary symbol with a vector is not permitted by hard-

ware. This tightening restriction drives us to complicate modulation via customizing M vectors

for anM -ary constellation. By doing so, each vector acts as an independent codeword that is not

necessarily co-linear to another as in convention. Following this overarching methodology, we

first investigate the achievable constellation size for different types of 1-bit structures, including

the analog, the digital, and the hybrid setup. In addition, energy efficiency has been analyzed

to measure their individual modulation efficiency. Starting from the low-order modulation case

(M ≤ 4), we demonstrate the optimal pattern is akin to a standard M -ary PSK constellation

that can be produced from a basis. Leveraging this property, we are capable of constructing a

constellation with arbitrary size by iteratively solving formulated max-min problems, each giv-

ing rise to a basis vector. Semi-definite relaxation (SDR-) programming is exploited to bypass

non-convexity and NP-hardness, followed by carefully designed rank-1 approximation to make

sure the codeword is valid. To further streamline the generation of high-order constellations, we

also provide a low-complexity alternative that performs comparably to the generic SDR-based

approach.

Owing to a different modulation paradigm at the transmitter, the receiver is found to call

for adaption in demodulation for twofold reasons. First, as the transmitter applies non-linear

quantization, the OFDM scheme cannot diagonalize the convoluted end-to-end channel, making

the single-tap equalizer ineffective at each subcarrier. Secondly, when the codewords become

linearly independent, the resulting signal model used for block detection tends to be under-

determined. As a result, the classic linear equalizer suffers from performance deficiency. Aspir-

ing to a lower error rate, we resort to investigating detection from an optimization perspective,

via which the sparse signal structure can be incorporated conveniently to boost detection per-

formance. Via a series of manipulations, the original detection problem is transformed to a

constrained LASSO optimization problem, whose optimum can be assured thanks to its con-

vexity. Simulations show that the achieved error rate with this approach can be dramatically

lower than that via the linear equalization.
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7.1 System Descriptions

In this section, we will introduce the generic system and channel models adopted for mmWave

1-bit multi-casting. We consider a downlink multi-user mmWave system consisting ofK single-

antenna sensor nodes and one multi-antenna access point (AP) with Na antennas. To alleviate

power consumption and hardware cost, we suppose the AP, whose number of antennas is mas-

sive, deploys a so-called ultra-economic 1-bit-DAC structure for information transmission. At

the receiver, each node still adopts conventional high-resolution analog-to-digital converters for

data reception because a single RF chain incurs very limited expenditure.

7.1.1 System Model

Figure 7.1: The system model of multi-casting.

In the studied 1-bit-DAC system, we focus on a multi-casting scenario where the AP broad-

casts common information content to all sensor nodes. Such an means of information delivery

is frequently used in wireless downloading and system reconfiguration. In spite of facing a

potentially frequency-selective channel, we are prevented from adopting the prevalent OFDM

regime because the system linearity is severely corrupted after 1-bit quantization at the AP side.

Therefore, we opt to apply the primitive single-carrier (SC) scheme for block transmission.
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Let wp stand for the transmit vector at time instant p. After multi-casting, the received

signal at node-k can be represented as

rk,p = hHk,p ⊗wp + nk,p , (7.1)

where nk,p ∼ CN (0, σ2) is the additive Gaussian noise with power σ2. Throughout this chapter,

we set |wp| =
√
Na, and the SNR is defined as ε = 1

σ2 . Note that wp in Eq. (7.1) does not

involve any user-related subscript. This is because in the context of multi-casting, wp conveys

information common to all users.

Figure 7.2: The block diagrams for analog, digital, and hybrid 1-bit-DAC setups.

7.1.2 Channel Models

Similar to [62], we adopt the widely used Saleh-Valenzuela channel model to characterize the

propagation environment between AP and node-k. Using this model, the channel response for

the d-th delay tap can be expressed as

hk,d =

√
Na

1 + (Lk − 1)K

(
α0,ka

H
t (θ0,k +

Lk−1∑
l=1

αl,ka
H
t (θl,k)δ(d− dl,k)

)
, d < dm (7.2)

where dm is the maximal number of distinguishable taps in the delay domain; Lk is the number

of paths; αl,k, dl,k, and θl,k represent the small-scale fading, the propagation delay and the

angle of arrival (AoA) associated with the l-th path, respectively. For the direct path, α0,k ∼

CN (0, 1). For other scattered paths, αl,k ∼ CN (0, 1/K) with K standing for the Rician factor.

Suppose the AP adopts a half-wavelength spaced uniform linear array (ULA), then we can
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write the array response as at(θ) =
√

1
Na

[
1, ejπ sin θ, · · · , ej(Na−1)π sin θ

]T
. LetHk consist of

all effective delay taps between node-k and AP. Therefore, it can be used to describe the effect

channel matrix for node-k.

7.2 Rate Fundamentals of 1-bit Multi-casting

Before detailing the specific multi-casting strategy, we first focus on establishing some crucial

fundamentals in this section for three types of 1-bit-DAC setups: analog, digital, and hybrid.

The theoretical aspects to be covered include the rate limit for each 1-bit structure along with

the corresponding energy efficiency.

7.2.1 Analog Structure

We start with the analog type with its schematic shown in Fig. 7.2. Upon the completion of

digital signal processing, the output will be processed by 1-bit DAC before being precoded by

the 1-bit APS network. The 1-bit APS component acts as an RF comparator thus it is very

cost-effective [31]. For simplicity, we drop out the time index, then a valid transmit vectorw at

the antenna side should satisfy

w = as, with


s ∈

{
±
√

1
2 ±

√
1
2j
}

a[i] ∈ {−1, 1}, ∀i ∈ [1, Na]

. (7.3)

Lemma 7.1: For an analog 1-bit-DAC setup havingNa antennas, the maximal number of trans-

mit vectors under a fixed value of transmission power is 2Na+1.

Proof. Since as = (−a)(−s), either s or−s results in an identical constellation with size 2Na .

Thus the eventual number of transmit vectors is 2Na+1.

The core hardware upholding these 2Na+1 vectors comprises one RF chain, Na low noise

amplifiers, and Na 1-bit APS components. An RF chain further consists of a local oscillator, a

low pass filter, a base-band amplifier, a mixer, a splitter, and a pair of 1-bit DACs. The power
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consumption for each component is listed in Table.7.1. To simplify notation, we use PRF to

denote the total power consumed by one RF chain. With taking the communication power Pt

into account, the energy efficiency is computed as

ηa =
Na + 1

Pt + PRF + PSP +NaPLNA +NaPAPS
. (7.4)

Table 7.1: Hardware power consumption with reference to [1, 3, 4]. c =494fJ/step/Hz according to

state-of-the-art HPADC structure and B is the bandwidth and is set as 1GHz in this chapter.

Device Notation Value

Based-band processor PBB 200mW

Low Noise Amplifier PLNA 40mW

Local oscillator PLO 5mW

Low pass filter PLNA 14mW

Base-band amplifier PBAMP 5mW

Mixer PM 16.8mW

1-bit DAC PDAC cB2

1-bit APS PAPS 10mW

RF adder PADD 19.5mW

Splitter PSP 19.5mW

Transmission power Pt 1W

7.2.2 Digital Structure

When it comes to a digital setup, regardless of digital signal processing, a valid transmit vector

w must obey the following form:

w[i] ∈

{
±
√

1

2
±
√

1

2
j

}
, i ∈ [1, Na]. (7.5)
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Recall that a pair of DAC components can output at most four distinct values, one can readily

draw the following conclusion:

Lemma 7.2: For a digital 1-bit-DAC setup havingNa antennas, the maximal number of transmit

vectors under a fixed value of transmission power is 4Na .

The involved hardware components here mainly include Na RF chains and Na low noise

amplifiers. Therefore, the corresponding energy efficiency can be calculated as

ηd =
2Na

Pt +NaPRF +NaPLNA
. (7.6)

7.2.3 Hybrid Structure

Our attention finally lands in a hybrid setup where Nr (Nr > 1) RF chains are deployed. Let

A ∈ CNa×Nr and s ∈ CNr×1 represent the analog precoder and the DAC output, respectively,

then the transmit vector can be expressed as

w = As with


A[i][j] ∈ {−1,+1}, i ∈ [1, Na], j ∈ [1, Nr]

s[i] ∈
{
±
√

1
2 ±

√
1
2j
}
, ,∀i ∈ [1, Nr]

. (7.7)

Lemma 7.3: For a hybrid 1-bit-DAC setup having Na antennas and Nr RF chains, the maximal

number of transmit vectors under a fixed value of transmission power is bounded by

(Nr + 1)Na+1 ≤ C ≤ 2Nr(Nr + 1)Na . (7.8)

Proof. For a given s, multiplying its real part with a row of A yields at most (Nr + 1) distinct

values, indicating that the real part of w has (Nr + 1)Na combinations. On the other hand, he

imaginary part of the product of s and A will contribute (Nr + 1) combinations at least and

2Nr combinations at most. Thus using these two limits, one can quickly get Eq. (7.8).

Based on lemmas 7.2and7.3, it is straightforward to verify that once the hybrid structure

has no fewer than 3 RF chains, its achievable rate will always exceed its digital counterpart.

Such an interesting finding may seem counter-intuitive at the first sight, but it relies on the

fact that the hybrid structure is not necessarily simpler than the digital type under the 1-bit
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setup. Specifically, the former consists ofNr RF chains, NaNr APS components, Na low noise

amplifiers, and Na RF adders. Once Na tends to be large, which is usually the case of mmWave

systems, taking the logarithm on both sides of Eq. (7.8) gives rise to

RL
RU

=
log2(Nr + 1)Na+1

log2 (2Nr(Nr + 1)Na)
=

(Na + 1) log2(Nr + 1)

Na log2(Nr + 1) +Nr
' 1. (7.9)

The above approximation reveals that the derived rate bounds are tightly close. Hence we can

take the rate lower bound RL to assess the energy efficiency for hybrid structures, which is

computed as

ηh(Nr) =
(Na + 1) log2(Nr + 1)

Pt +Nr(PRF + PSP +NaPAPS) +Na(PLNA + PADD)
. (7.10)

Unlike the other two structures whose energy efficiency is irrelevant to the number of RF chains,

ηh in Eq. (7.10) behaves as a function of Nr. In this sense, pinpointing which Nr will yield the

highest energy efficiency would be useful for hybrid structures.

Lemma 7.4: Let N∗r stand for the stationary point of ηh(Nr). The maximal energy efficiency

of a hybrid 1-bit setup with Na antennas will be achieved by setting Nr = arg max
N̂r∈N

ηh(N̂r)

with N = {max(2, bN∗r c),min(Na, dN∗r e)}

Proof. By treating ηh as a function over a continuous argument Nr, we calculate its first-order

derivative and find the value first appears positive and then remains negative as Nr increases.

Therefore, ηh first ascends with Nr and then keeps descending. Setting Nr leads the deriva-

tive to be zero, thereby maximizing ηh. Since Nr has to be a positive integer in practice, we

henceforth arrive at the lemma 7.4.

7.3 Constellation Construction

The rate limit has been established in the previous section. In a massive MIMO setup, the actual

rate usually is significantly lower than the limit. Such considerable discrepancy motivates a

careful selection from a vast candidate pool to boost the quality of service (QoS). To this end,

we will shed light upon the codeword selecting strategy in this part.
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7.3.1 Conventional Multi-casting

To better sense the difficulty in 1-bit multi-casting, we first review the conventional paradigm in

the absence of 1-bit constraints. A common practice is to transform the multi-casting design into

a beamforming optimization problem under a particular metric, say maximizing the weakest

received power. Once determining a specific vector w, the transmit vector will be set as

w = ws, (7.11)

where s is chosen from an M -ary PSK or QAM constellation by convention. Following this

manner, we see that modulation in multi-casting essentially takes place in s instead of w.

For simplicity but without losing any generality, we assume the channel between AP and

the considered user is frequency-flat. In addition, we omit the user index becausew is common

to all users, so the received signal can be represented as

r = aHt (θ)ws+ n. (7.12)

Eq. (7.12) describes a generic inter-symbol interference (ISI-)free model, where s can be de-

modulated via simple linear equalization. The function ofw becomes apparent, that is, enhanc-

ing the equivalent channel gain. A summarizing remark is made as follows with reference to

convention multi-casting.

Conventional multi-casting equates to finding a beamforming vector that optimizes the link

reliability. Either modulation or demodulation relates to the modulated constellation symbol

rather than the beamforming vector.

7.3.2 Generic problem formulation for 1-bit-DAC multi-casting

Unfortunately, the prior one-make-all paradigm fails in the 1-bit setups because the transmit

vector embedded with an arbitrary s in Eq. (7.12) is not necessarily invalid. For this reason,

tailoring a new multi-casting paradigm dedicated to the studied constrained system is crucial.

Applying multi-casting relies on a well-crafted constellation. Since the minimum Euclidean
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distance (MED) is a key measure of constellation’s performance, our overarching goal is to max-

imize this indicator, which in turn can be roughly translated to optimizing the error performance

of multi-casting. As such, anM -ary constellation design problem can be formulated as follows:

P.1 : Generic M-ary Constellation Design

max
w1,··· ,wM

min
∀i∈[1,M ]
i 6=j

∀k∈[1,K]

∣∣(wi −wj)
HHk

∣∣

s.t.


Eq.(7.3) if analog

Eq.(7.5) if digital

Eq.(7.7) if hybrid

, ∀{wm}Mm=1

Compared with prior formulated problems (e,g., [114]), P.1 exhibits three major challenges:

• It needs to jointly optimize M codewords.

• It entails non-convex 1-bit-DAC constraints.

• It traverses all Euclidean distances in objective function.

Note that the processing difficulty will further be aggravated by the high dimension issue in

mmWave systems. Therefore, directly addressingP.1 would be extremely arduous, and seeking

a more tractable alternative, despite being sub-optimal, becomes a necessity.

7.3.3 1-bit-DAC constellation: M ≤ 4

In light of the difficulty in handling P.1, we retreat to perhaps the simplest condition, i.e., M =

1. In this case, only one codeword needs to be designed, and the corresponding optimization

problem can be formulated as follows:

P.2 : Generic Design for the First Basis

max
w

min
{∣∣wHH i

∣∣}K
i=1

s.t. Eq.(7.3)/Eq.(7.5)/Eq.(7.7).
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Other than the 1-bit-DAC constraint, the problem is similar to a conventionally formulated one,

by solving which we can complete multi-casting design. Although such convenience does not

apply here, the obtained w∗ via solving P.1 still lays a foundation for constellation expansion.

Proposition 7.1: If w∗ is a valid codeword for a specific 1-bit-DAC setup, the optimal 2-ary

constellation in the sense of maximizing the minimum Euclidean distance can be designed as

{−w∗,w∗}.

Proof. For ease of representation, let us define

f(w) = min
{∣∣wHH i

∣∣}K
i=1

. (7.13)

Adding w to {w∗} will make the MED be 1
2 |f(w∗ − w)|, which, according to the triangular

inequality, satisfies
1

2
|f(w∗ −w)| ≤ 1

2
(|f(w∗)|+ |f(w)|)

≤ |f(w∗)|.
(7.14)

It is clear that w = −w∗ will ensure both equalities hold.

After obtaining {−w∗,w∗}, a 4-ary constellation calls for two more codewords. As learned

from proposition 7.1, we only need to determine one codeword as the other one will automati-

cally be its inverse. The codeword can be found by solving the following optimization problem:

max
w

min{|f(w −w∗)|2, |f(w +w∗)|2} (7.15a)

s.t. Eq.(7.3)/Eq.(7.5)/Eq.(7.7). (7.15b)

Proposition 7.2: Ifw∗ represents a valid codeword for a specific 1-bit-DAC structure, then the

optimal 4-ary constellation in the sense of maximizing the minimum Euclidean distance can be

designed as {−w∗,w∗, jw∗,−jw∗}.
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Proof. Expanding the objective function of P.2 yields

min{|f(w −w∗)|2, |f(w +w∗)|2} (7.16a)

≤|f(w)|2 + |f(w∗)|2 (7.16b)

≤2|f(w∗)|2. (7.16c)

Equality holds for (7.16b) ifR{fHwfw∗} = 0. This condition can be met by settingw = jw∗,

which meanwhile leads the equality holds for (7.16c) as well because jw∗ is a phase-rotated

version of w∗. Apparently, jw∗ is attainable through conjugating the DAC output of w∗.

Now that the optimal constellation follows a PSK pattern if M ≤ 4, the entire design boils

down to finding an optimal codeword, and the corresponding problem is precisely the already

formulatedP.2. Recall thatP.2 contains 1-bit constraints, and together with the massive MIMO

configuration, the problem is a large-scale NP-hard one. For tractability, we leverage SDR

programming, a widely used optimization tool in prior multi-casting literature, to simplify P.2.

It is worth mentioning that one may seek other more advanced optimization techniques to tackle

this problem, but the standard SDR approach can generally yield a decent solution. Following

rank relaxation, we can transform P.2 into the following problem:

P.3 : Design the First Basis via Relaxation

max
W

min
{

Tr(H iH
H
i W )

}K
i=1

s.t.W � 0
Tr(W ) = Na for hybrid

Diag(W ) = 1Na for analog/digital.

Notice that the constraint associated with the hybrid setup slightly differs from the other

two with relaxation. The reason is that codewords in the former case are not restricted to be

constant-modulus according to Eq. (7.7). By introducing slack variables, we can rewrite P.3

into its equivalent form, which demonstrates to be a standard quadratically constrained quadratic
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programming (QCQP) problem.

min
W,t,s

− t

s.t. − t− si + vec(H∗iH
T
i )T vec(W ) = 0

W � 0

t ≥ 0

si ≥ 0, i ∈ [1,K]
Tr(W ) = Na for hybrid

Diag(W ) = 1Na for analog/digital.

Thanks to this standard form, we can efficiently get P.3’s optimal solution via the CVX

solver. Note that the obtained W ∗ is an Na-dimension square matrix instead of vector that we

need, thus rank-1 approximation is essential. The overall process basically follows the classic

framework proposed in [115], but two more steps are carefully crafted to accommodate 1-bit

structures. First, different quantizing operations are applied per the hardware type. Secondly,

iterative update [58, 116, 27] has been customized for the hybrid setup for its digital processing

and analog processing are mutually coupling. The detailed procedures are listed in Algorithm

4 for readers’ reference.

7.3.4 1-bit-DAC constellation: M > 4

Despite the success in getting low-order constellations via a single codeword (basis), further

generalization to high-order constellations fails because all the valid phase-rotated versions

concerning the first basis have been used up in constructing the 4-ary constellation. While

as implied by proposition 7.2, in order to get an 8-ary constellation based on the obtained 4-ary

one, we just need to seek the second basis. For notional conciseness, we define w(j) = we
jπ
2 ,
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then the second basis can be sought by solving the following optimization problem:

P.4 : Generic Design for the Second Basis

max
w̃

min
1≤i≤K
1≤j≤4

∣∣w̃HH i − f(w∗j )
∣∣

s.t. Eq.(7.3)/Eq.(7.5)/Eq.(7.7).

Relaxing P.4 is not that straightforward as relaxing P.2 because the objective function con-

tains cross terms. Fortunately, the homogenization trick proposed in [114] comes as a remedy,

via which the generic form can be relaxed into a more tractable form described by P.5.

P.5 : Design the Second Basis via Relaxation

max
W̃

min
1≤i≤K
1≤j≤4

fi,j(W̃ )

s.t. W̃ � 0

fi,j(W̃ ) = Tr

 H iH
H
i −H if(w∗j )

−fH(w∗j )H
H
i fH(w∗j )f(w∗j )

 W̃



Tr(W̃ ) = Na + 1, W̃ [Na + 1, Na + 1] = 1 hybrid

Diag(W̃ ) = 1Na+1 analog/digital.

At first glance, P.5 may seem much more difficult than P.2. But with a closer look, we

observe that these two problems are essentially homogeneous, implying that the former can

also be equivalently represented as a QCQP problem. Hence we can rely on the CVX solver

to acquire P.5’s global optimum and implement Algorithm-1 to get the corresponding rank-1

approximation, denoted as w◦. Note that w◦ is an (Na + 1)-dimension rather than an Na-

dimension vector. The augmented dimension comes from introducing an auxiliary variable in

homogenization [114]. Therefore, w◦ itself is not an ultimate basis. Instead, w̃∗ = (w◦[Na +

1])Hw◦[1 : Na] is what we need as the second codeword basis. Following a similar design flow

from M = 4 to M = 8, we can increase the constellation size to an even higher value. The

extension is straightforward, so the details are omitted here.
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7.3.5 Low-complexity alternative

In previous subsections we have transformed a generic constellation design problem into a

series of QCQP optimization (sub-)problems. SDR programming is adopted to circumvent the

intractability of non-convexity and NP-hardness. Despite a generic feasibility, the complexity

issue would be outstanding in a mmWave massive MIMO system. For this reason, a low-

complexity alternative, albeit losing some technical rigor, would be in favor in practice.

Let us still focus on the generalization of an 8-ary constellation. To do so, the proposed

heuristic method first applies SVD within each user’s effective channel1 , i.e., svd(Hk) =

UkΣkV
H
k , and form a matrix as follows:

H̃1 = [U1[:, 1],U2[:, 1], ..,UK [:, 1]]. (7.19)

Another round of SVD will be implemented on H̃1 to get its first left singular vector u1.

By feeding u1 into Algorithm-1, we set the corresponding output as the first codeword basis.

Likewise, the second codeword basis is obtained by refining the first left singular vector of

H̃2 = [U1[:, 2],U2[:, 2], ..,UK [:, 2]]. These two basis vectors finally yield an 8-ary constella-

tion according to lemma 7.2.

Some explanations can be made towards this heuristic method: the first-stage SVD aims

at extracting interference-suppressed scatters from the propagation environment between each

user and AP. The second-stage SVD essentially calculates the centroid among these scatters,

each acting as a decent virtual path w.r.t. all users. Although the 1-bit hardware severely de-

grades centroids’ resolution, massive antennas still help separate them. This method is generally

more efficient than the SDR-based approach in generating a relatively high-order constellation.

The later simulations will show that it performs similarly to the SDR-based method.
1 We assume all the singulars are sorted in descending order per their amplitudes.
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7.4 Constellation Identification

How to demodulate information is rarely touched upon in prior multi-casting studies because

the one-make-all policy will not bring in any particular challenges to detection. But when the

1-bit system adopts a fundamentally different multi-casting paradigm at the transmitter side, we

find that the receiver side also demands accommodation in deciphering the shared information.

Algorithm 4 Rank-1 Approximation for 1-bit-DAC multi-casting

Input: SDR Solution: W ∗ ∈ CNa×Na , Maximum random generations Tr, Maximum updates

Te, Effective channels {Hk}Kk=1, Type∈{Analog, Digital, Hybrid}.

Output: Codeword vector: w∗ ∈ CNa×1

1: Set i = 0 and factorizeW ∗ = V V H

2: for i ≤ Tr do

3: vi = V Hej2π∗rand(Na,1)

4: if Type == Analog then

5: Get v̂i by (element-wise) quantizing v1 to {±e
jπ
4 }

6: else

7: Get v̂i by quantizing v1 to {±e
jπ
4 ,±e

j3π
4 }

8: end if

9: end for

10: l = arg max
j=1,··· ,Tr

min
{∣∣v̂Hj H i

∣∣}K
i=1

11: if Type == Analog or Type == Digital then

12: w∗ = v̂l

13: else

14: Randomly generateA ∈ CNa×Nr satisfying (7.7)

15: s ∈ CNr×1 that satisfies (7.7) by quantizingA†v̂l

16: Apply Te complete rounds of entry-wise update

17: w∗ =
√
Na

As
|As|

18: end if
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7.4.1 Generic LMMSE equalizer based detector

We omit the user index without triggering ambiguity since the information delivered via multi-

casting is common to all users. For an illustration purpose, we assume that the channel between

the user and AP contains two effective taps, delayed by 0 and 1 sampling instant, respectively.

Let Ω stand for a matrix having M columns, each standing for a codeword from an M -ary

constellation. The transmit vector can be uniformly represented as:

w = Ωei, (7.20)

Supposing the length of data frame to be P , we can express the received signals as

r = Hs+ n

=



hH0 Ω 0 0 · · · 0

hH1 Ω hH0 Ω 0 · · · 0

0 hH1 Ω hH0 Ω · · · 0
...

. . . . . . . . .
...

0 · · · hH1 Ω hH0 Ω 0

0 · · · 0 hH1 Ω hH0 Ω

0 · · · 0 0 hH1 Ω




s1

s2

...

sP

+ n. (7.21)

with sp ∈ {e1, e2, · · · , eM}, ∀p, r = [r0, · · · , rP ]T , and n = [n0, · · · , nP ]T . Amid a plethora

of detection solutions, the linear minimum mean square error (MMSE-) based equalizer is

widely used to in mainstream wireless standards [117]. Assume that all the codewords are

equiprobably selected from the constellation, then E{ssH} = 1
M IPM . By applying linear

MMSE equalization, sp can be demodulated as

ŝp = arg min
ei∈{e1,··· ,eM}

|s̃p − ei|

with [s̃T1 , s̃
T
2 , · · · , s̃TP ]T =

(
M

ε
IPM +HHH

)−1

HHr.

(7.22)

From Eq. (7.21), we may notice that the signal model involves PM unknowns and P mea-

surements. From the perspective of estimation theory, the model is under-determined, so the
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classic LMMSE solution might not be a decent choice. Nevertheless, if focusing on a small-

size constellation, i.e., M ≤ 4, the solution still guarantees decency because at instant p, we

can write the transmit vector as

wp = w∗sp , (7.23)

with sp chosen from an M -PSK constellation CMPSK . Eq. (7.21) henceforth degenerates to

r = H̃s̃+ n

=



hH0 w
∗ 0 0 · · · 0

hH1 w
∗ hH0 w

∗ 0 · · · 0

0 hH1 w
∗ hH0 w

∗ · · · 0
...

. . . . . . . . .
...

0 · · · hH1 w
∗ hH0 w

∗ 0

0 · · · 0 hH1 w
∗ hH0 w

∗

0 · · · 0 0 hH1 w
∗




s1

s2

...

sP

+ n, (7.24)

which is exactly a standard signal model in ISI channels [118]. With this observation, the

LMMSE based demodulator is accordingly adapted to

ŝp = arg min
s∈CMPSK

|s− s̃[p]| with = (ε−1IM + H̃
H
H̃)−1H̃

H
r. (7.25)

Remark: Regardless of the modulation size, block detection still comes as a must in 1-bit

setups because OFDM cannot diagonalize the convoluted channel. This restriction, however,

does not apply to conventional multi-casting.

7.4.2 Constellation Size: M > 4

Moving to a high-order constellation, say 8-ary, we fail to express the codeword using Eq. (7.23).

Instead, we have to rely on the primitive Eq. (7.20), which usually leads to an under-determine

signal model. Although the LMMSE approach is still workable, a more powerful yet computa-

tionally manageable detector is desired. To this end, we revisit the detection problem from an
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optimization perspective, giving rise to

min
s
|r −Hs| (7.26a)

s.t. 1Tsp = 1, ∀p ∈ [1, P ] (7.26b)

sp[i] ∈ [0, 1], ∀i ∈ [1,M ] (7.26c)

The main roadblock of solving the above problem lies in the discrete constraint Eq. (7.26c). If

linking it with Eq. (7.26b), s ends up as a structured sparse vector. With this property, we first

replace the objective from 1-norm to 2-norm, then remove the constraints via regularization, so

the ultimate objective function becomes

L(s, λ, µ) = |r −Hs|2 + λ|s|1 + µ
P∑
p=1

|1Tsp − 1|2

=

∣∣∣∣∣∣
 r

µ1T

−
 H

µ1T
⊗
IP

 s
∣∣∣∣∣∣
2

+ λ|s|1. (7.27)

The penalizing idea is drawn from [119] where it deals with detecting classic QAM symbols.

Specifically, the l-1 penalty term aims at promoting sparsity, and the l-2 term is to absorb

Eq. (7.26c) by setting a large µ. The detection optimization problem is finally formulated as

P.6 : Detection via Sparse Signal Recovery

min
s
L(s, λ, µ)

s.t. s � 0.

P.6 is a constrained LASSO problem, so we can easily get its global optimum via the

projected proximal gradient method. Define s̃ to be the optimal solution, then sp will be de-

modulated as

ŝp = ei? with i? = arg max
i=1,··· ,M

s̃[(p− 1)M + i]. (7.28)

Similar to [119], we can further lower the error rate by leveraging interference cancellation. In

particular, ŝp will be regarded as a reliable demodulated result if its maximal value approaches
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1. By excluding those “reliable” sp’s, we can proceed with the next-round detection where a

fewer number of unknowns will be involved. Let τ be a reliability threshold, then so long as

max
i∈[1,M ]

s̃p[i] > τ satisfies, we will remove the contribution made by the p-th transmit vector. In

consequence, the received signal for the next-round detection is updated as

r̃ = r −
P∑
p=1

H[:, (p− 1)M + 1 : pM ]ŝp × I
(

max
i∈[1,M ]

s̃p[i] > τ

)
. (7.29)

Apparently, one can apply multiple rounds of iterative cancellation schemes. Nevertheless, we

will only implement one additional round in this chapter for an illustration purpose.

7.5 Simulations

In this section, we will showcase some numerical results regarding the multi-casting perfor-

mance under various configurations. All the system and channel related parameters used in

simulations have been listed in Table. 7.2.

Table 7.2: System and channel parameters for simulation.

Parameters Value

ULA size Na 64

Effective taps Lk 3 ∼ 8

Delay taps dm 64

Tap index dl,k U ∼ [1, 64)

AoA θl,k U ∼ [0, 2π)

l-1 penalty λ 10

l-2 penalty µ 1000

Cancellation threshold τ 0.8
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Figure 7.3: MED comparisons among different constellation generating schemes under digital 1-bit.

Multi-casting via various schemes: We take the digital 1-bit as an example to compare the

MED achieved via various constellation generation methods. Aside from the proposed two basis

iterative approaches, another two heuristic methods are added to the comparison. Specifically,

the first one relies on arbitrarily generating valid codewords, and the second one applies exhaus-

tive search over the Hardmard codebook to maximize MED [31]. Multiple configurations are

tested by varying the number of paths, the number of users, and the Rician factors.

Fig. 7.3 shows that the MED obtained via the proposed schemes remains at least 50% higher

than the other two options in all tested configurations. Such remarkable superiority implies that

in spite of severe restrictions imposed by the 1-bit hardware, a careful design still matters be-

cause the massive antennas leave us a high degree of freedom in codeword selection generation.

As for the proposed two methods, we notice that their performances are pretty similar, espe-

cially in the low-order case. Another interesting observation is that all schemes’ effectiveness

is insensitive to the Rician factor, implying that a single beam can accommodate more than one

user due to its coarse resolution. Nevertheless, with more users getting in, all schemes incur a

dramatic decline in MED due to the inherent nature of multi-casting.
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Figure 7.4: spectrum efficiency and energy efficiency comparisons among different 1-bit structures.

Multi-casting via various structures: Fig. 7.4 compares the achievable rate and the energy

efficiency for three 1-bit structures. The hybrid type proves to be the most powerful in support-

ing high-order constellations, while the analog type tends to be the weakest. The rate merit of

the hybrid structure over the other two becomes more comprehensive as increasing the number

of RF chains for the former. However, the accompanying downside for the hybrid setup is a

rapid reduction in energy efficiency due to the use of massive APS components. Still within

this structure, we calculated that setting Nr = 6 will maximize the energy efficiency based on

corollary 1, which is consistent with the simulation result.

Fig. 7.5 illustrates that the MED achieved in the hybrid setup is nearly 25% higher than that

in the analog structure for bothM = 4 andM = 8, regardless of how many RF chains are used.

Nevertheless, only when the number of RF chains becomes moderately large will the hybrid

structure outperform the digital counterpart, and the advantage in MED is also minimal (around

5%) and will soon be saturated. Interestingly, the hybrid setup gets a lower MED when it has an

odd number of RF chains because the oddness will corrupt the codewords’ symmetry, leading

to the MED decrease. Compared with an ideally transparent system, the achieved MED values

in digital and hybrid setups are 15% shorter. The result is rather promising if considering the
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ultra-simplified expenditure in 1-bit systems. According to Fig. 7.4 and Fig. 7.5, we conclude

that either the hybrid setup with very few RF chains or the digital setup can be a suitable option

to serve mmWave internet-of-things (IoT) applications for their overall balanced efficacy.
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Figure 7.5: MED comparisons among different 1-bit structures using SDR-based method.

Error performance of multi-casting: This part will present the bit error rate (BER) results

for M = 4 and M = 8. All the curves are the average of 3000 independent channel realiza-

tions, each with a length-100 sequence. The penalty parameters used in LASSO, corresponding

to λ and µ in (7.27) used, are set as 10000 and 100, respectively. It is worth mentioning that

extensive tests show that BER performance is insensitive to these two values, so we are free of

cumbersome parameter tuning. The BER result using an 8-ary constellation strikingly differs

from the above. From Fig. 7.6, it is evident that the LMMSE detector exhibits a huge perfor-

mance gap to the LASSO one. The underlying reason is that the rank-deficient signal model,

on the one hand, aggravates the ambiguity in LMMSE equalization. Still, on the other hand, it

helps promote a sparse output via the LASSO-based approach. Unlike the 4-ary case, iterative

cancellation here will tremendously benefit detection, as the post round will bring in a 3dB gain.

Such a notable improvement relies on the fact that more estimated symbols reside around the
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threshold; hence slightly alleviating the inter-symbol interference level will remarkably boost

the next-round detection. To eliminate the trend of error floor occurring at high SNR, one can

augment the iterations of project gradient descent add more rounds of interference cancellation.
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Figure 7.6: BER comparisons between LMMSE- and LASSO-based methods under digital 1-bit with 3

users(a) 4-ary constellation ; and (b) 8-ary constellation.

7.6 Conclusions

This chapter customized a new multi-casting scheme for 1-bit mmWave systems. The overar-

ching idea is to shift the paradigm from scalar-based modulation to vector-based modulation.

Specifically, we first derived theoretical rate fundamentals for different 1-bit configurations.

Then, we identified the optimal pattern for low-order constellations and arrived at an iterative

scheme to generate high-order constellations. Effective detection solutions were finally individ-

ually proposed for low-order and high-order modulations per their constellation structures. The

entire design manifests high efficacy under various configurations and promises to reinforce the

applicability of 1-bit mmWave IoT.



Chapter 8

Summary and Future Directions

The growing interest earned from and hefty effort made by regulatory, industrial, and academic

sectors has transformed mmWave cellular communication systems from a concept to reality.

Despite already being deployed in the 5G era, mmWave only take up a small proportion among

all cellular infrastructure. Meanwhile, many designs at the nascent 5G stage draw from the

sub-6GHz family without being tamed and refined per the mmWave features. As 5G continues

to evolve, it is envisioned that future generations will exploit more mmWave frequency bands

to support data-intensive applications, including dynamic vehicular communications. To fully

unleash the vast potential of mmWave and achieve economic 5G & Beyond networks with low

carbon emission, additional venues have to be pursued for mmWave research and development.

To this end, the present thesis investigated a few critical aspects of mmWave systems with

reduced complexity structure, emphasizing the physical layer and aspiring to harness more with

less.

8.1 Summary of Contributions

We first focused on the popular hybrid structures with limited complexity RF chains. Recall

that the achievable multiplexing gain generally cannot exceed the number of RF chains. This

shortcoming will seriously confine the ultimate spectrum efficiency, particularly in the uplink

160
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transmission. This prompted us to introduce index modulation in order to heighten the multi-

plexing gain. Its applied domain was carefully constructed as a high-quality (sub-)beamspace.

As such, the multiplexing gain of GBM promises to break the limit of RF chains and up to the

rank of spatial channels.

With the help of OFDM, we can apply spatial modulation per subcarrier when communicat-

ing over frequency-selective channels. However, this does not carry over to GBM because the

hybrid structure couples processing across subcarriers. This prompted us to devise an OFDM

symbol-based modulating scheme . The time-domain samples in the resulting WGBM obey a

regular sparse pattern, which allows transmission via fewer RF chains. Relying on the analog-

dictated WGBM, we complemented a near-optimal diagonal digital precoding matrix based on

the APEP-minimizing criterion to boost the coding gain. As for the receiver, we demonstrated

that a simple first-order Doppler compensator suffices to combat time variation in mmWave

mMIMO. Owing to these prominent merits, the proposed (P-)WGBM holds great potential for

uplink transmission in vehicular-related scenarios.

The transceiver designs require CSI, which led us to develop our so-called DSDS chan-

nel estimator for hybrid structures. On the one hand, the proposed channel estimator ex-

ploited the well-known beamspace sparsity by transforming the original channel estimation

into a compressed-sensing problem. On the other hand, the delay-domain sparsity was used

to help exclude a majority of channel taps, and thus simplify processing. The key to enabling

double-sparsity exploitation is a well-customized training pattern. After identifying the effec-

tive taps and associated dominant beams, we applied beam steering to capture the amplitudes

and Doppler shifts. The entire process requires lightweight storage and computation burden,

and has been tested to be effective in combating the double (time-frequency) selectivity.

Moving on to the wideband multi-user setup, we designed an overall improved transceiver

that can maximize the end-to-end mutual information. This endows the adopted HBD frame-

work with a well defined sense of optimality, in sharp contrast to available ad hoc designs

that rely either on the extension from narrowband multi-user transceivers or the compromise of

wideband single-user transceivers. Instead, we directly tackled the general wideband multi-user
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problem by optimizing the explicit mutual information lower bound. Interestingly, the derived

lower bound strictly equals the upper bound in the limit, indicating that the proposed transceiver

guarantees the asymptotic optimality.

Transitioning from hybrid to one-bit structures, we commenced by studying a detection

problem for the uplink access. A so-called Me-LeaD detector was developed, and offers three

prominent advantages: i) It outperforms the conventional linearization method because it by-

passes inaccuracies arising from modeling the non-linear quantization noise; ii) It gains over

the pure learning-based method because the serial detector needs considerably fewer training

templates, thus significantly easing the classification; and iii) It offers high-performance di-

mension reduction thanks to importing the model information into the classifier, ensuring low

computation complexity in online implementation.

Swapping from uplink to downlink, we proceeded with the 1-bit system and investigated

the multi-casting setup to underpin network configuration and content sharing. Our initial study

shows that the original constellation design problem can be formulated as a large-scale NP-

hard optimization problem given the modulation order and the specific criterion. However, the

immediate treatment is mathematically intractable, which motivates looking for a sub-optimal

solution. We established that the optimal pattern for a low-order constellation is PSK-like.

Leveraging this fundamental conclusion, we successfully converted high-order generation into a

series of homogeneous yet low-complexity optimization problems. Detectors were customized

for both low- and high-order constellations by considering the underlying signal structure. On

top of that, we also derived the theoretical bounds regarding the achievable rate and energy

efficiency for various types of 1-bit architectures.

8.2 Future Directions

The research thrusts outlined in the last section only cover a tiny tip of the entire map of

mmWave communications. Nevertheless, a number of open problems await deeper exploration

even within this small field. In the following, we will broadly discuss a few promising directions
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in anticipation of stimulating a growing emphasis invested in this exciting field.

Multi-mode cellular communications: Despite diving into the multi-user setup, our cur-

rent research still focuses on a single-cell scenario. In practical cellular, one must deal with

both in-cell and out-cell interference [120]. Due to mmWave’s directional nature and sensitivity

to blockage, it is critical to optimize the beamforming vector in order to improve the signal-to-

interference ratio, especially for edge users. In addition, spatial multiplexing has to be adapted

to accommodate various transmission modalities, including broadcasting, uni-casting, as well

as multi-casting.

Sub-6GHz assisted downlink transmission: Although mmWave cells are expected to be

densely deployed, in the long term they will co-exist with the current sub-6GHz cellulars. The

uplink transmission will frequently count on the latter to deliver low-volume but critical data

traffic. Parsing uplink signals, especially the pilots, is expected to benefit the downlink mmWave

transmission because the two spectrum bands share a similar spatial environment [121]. This

prompts one to rely on the unveiled frequency-insensitive factors in order to identify the likely

line-of-sight channel. In this manner, the downlink is free of cumbersome training and can

project the beam instantly.

Two-dimensional mmWave index modulation: The proposed GBM and its derivatives

utilize the beamspace domain only. As mmWave systems tend to employ a considerable num-

ber of subcarriers, how to take advantage of the subcarrier domain can be of great significance.

A preliminary idea here is to implement index modulation across a 2D beamspace-subcarrier

grid. By properly setting the group size in line with the subcarrier correlation, those less cor-

related subcarriers will form a larger group, giving rise to more index combinations [35]. Due

to an elevated indexing dimension, the receiver has to develop a low-complexity detector in

practice. The approximate message passing algorithm may help in this direction because the

higher dimension increases the accuracy in updating the mean and variance via the central limit

theorem.

Integrated mmWave radar communication: The mmWave not only brings in more spec-

trum resources for communication but also paves the way for integrating sensing. The reason
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is that, on the one hand, mmWave’s wideband band can offer unparalleled sensing resolution.

On the other hand, the frequency itself also approaches or overlaps with the frequency radar

ssytems operate on. Therefore, integrated sensing and communication at the mmWave band

would be a promising research direction. A few scatterers, for example, can be parsed through

the sensed results so that mmWave beamforming can select them for multiplexing [122]. On

the contrary, intelligent spectrum allocation can be carried out to boost sensing precision by

analyzing the density and quality of communication traffic.

1-bit structure in mobility: Although the 1-bit structure is generally perceived as an alter-

native for fixed access, a certain degree of mobility is still inevitable. The resulting even mild

dynamics may minimally impact transparent systems, but can lead to severe detection errors in

1-bit systems. Our preliminary study reveals that a frequency offset results in a periodic pattern

after quantization. This renders it possible to recover the underlying frequency offsets through

learning the quantized samples over a relatively long period. This way, post compensation can

be applied to correct the phase mismatch, thus combating the mobility effects.
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