
STATISTICAL METHODS FOR ARM-BASED
BAYESIAN NETWORK META-ANALYSIS

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

ZHENXUN WANG

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

ADVISED BY DR. HAITAO CHU

June, 2020



© ZHENXUN WANG 2020

ALL RIGHTS RESERVED



Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Haitao Chu for his

guidance and support in my PhD studies. Prof. Haitao Chu is the best advisor and

friend a student could have. Beyond statistical, epidemiological, and clinical knowledge,

he showed amazing intuition about research problems. I am glad that Haitao taught

me a lot about fundamentals of scientific research, from proposing meaningful research

questions to communicating information to other scientists efficiently.

I owe a debt of gratitude to Prof. Lifeng Lin for his valuable time, insightful remarks

and careful attention to detail on my dissertation. I am grateful to my dissertation

committee, Professors James Hodges, Thomas Murray, and Richard MacLehose. They

provided numerous helpful suggestions on research questions. Prof. James Hodges also

provided great guidance on both scientific writing and statistical modeling. Moreover, I

would like to thank Professors Kyle Rudser, Cavan Reilly, Wei Pan and Xianghua Luo

for their support and guidance during my graduate assistantships. I treasure the re-

warding experience working in the PLUS-SDCC, where I learned how to collaborate

and communicate with non-statisticians. In addition, the University of Minnesota’s

Division of Biostatistics, Prof. Haitao Chu, and the Health Policy Statistics Section of

the American Statistical Association provided funds for me to present work at different

conferences.

Finally, I would like to thank my family, especially my dad Zhaoliang Wang and my

mom Meijun Wu, for their encouragement, trust and support throughout my life.

i



Dedication

To my parents, Zhaoliang Wang and Meijun Wu, for their endless support, trust, and

love.

ii



Abstract

Network meta-analysis (NMA) is a recently developed tool to combine and contrast

direct and indirect evidence in systematic reviews of multiple treatments. Compared

to traditional pairwise meta-analysis, it can improve statistical efficiency and reduce

certain biases. Unlike the contrast-based NMA approach, which focuses on estimating

relative effects such as odds ratios, the arm-based (AB) NMA approach can estimate

absolute effects (such as overall treatment-specific event rates), which are arguably more

useful in medicine and public health, as well as relative effects. Bayesian analyses with

the arm-based (AB) network meta-analysis (NMA) model require researchers to spec-

ify a prior distribution for the covariance matrix of the treatment-specific event rates

on a transformed scale, e.g., the treatment-specific log-odds when a logit transforma-

tion is used. Specifically, in AB-NMA, standard deviations of study-specific log-odds

are needed to derive treatment-specific overall effects, while accurate estimation of cor-

relation coefficients is critical for borrowing information across treatments. However,

partially due to a lack of information, estimation of correlation coefficients and vari-

ances can be biased and unstable if we use a conjugate prior (e.g., inverse-Wishart (IW)

distribution) for the covariance matrix.

To address the first challenge of accurately estimating correlation coefficients, several

separation strategies (i.e., separate priors on variances and correlations) can be consid-

ered. To study the IW prior’s impact on AB-NMA and compare it with separation

strategies, we did simulation studies under different missing-treatment mechanisms. A

separation strategy with appropriate priors for the correlation matrix (e.g., equal cor-

relations) performs better than the IW prior. It is thus recommended as the default

vague prior in the AB approach. We also re-analyzed three case studies and illustrated

the importance, when performing AB-NMA, of sensitivity analyses with different prior

specifications on variances.

To address the second challenge of variance estimation, we propose two approaches.

We first introduce a variance shrinkage method. Specifically, we assume different

treatment-specific variances share a common prior with unknown hyper-parameters.

This assumption is weaker than the homogeneous-variance assumption and improves
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estimation by shrinking the variances in a data-dependent way. We illustrate the ad-

vantages of the variance shrinkage method by re-analyzing an NMA of organized inpa-

tient care interventions for stroke. Comprehensive simulations investigate the impact

of different variance assumptions on statistical inference, and these simulation results

show that the variance shrinkage method provides better estimates of log odds ratios

and absolute risks.

In the second approach to improving variance estimation, we consider borrowing

information from single arm studies (variance extrapolation) in AB-NMA. AB-NMA

model can naturally incorporate information from single-arm studies about means and

variances. However, single-arm studies and randomized clinical trials (RCTs) may have

different study populations and study quality, so that assuming they are exchangeable

may be inappropriate. We present a novel commensurate prior on variance (CPV)

method to borrow variance (rather than mean) information from single-arm studies in

an arm-based (AB) Bayesian NMA. We illustrate the advantages of this CPV method by

reanalyzing an NMA of immune checkpoint inhibitors in cancer patients. Comprehen-

sive simulations investigate the impact on statistical inference of including single-arm

studies. The simulation results show that the CPV method provides efficient and robust

estimation even when the two sources of information are moderately inconsistent.
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Chapter 1

Introduction

Evidence-based practice (EBP) is a powerful theoretical framework to connect study

findings to a profession’s body of knowledge [2]. Evaluating evidence needed for EBP

or scientific research is generally more complicated. Typically, a hierarchy is used to

rank order the available evidence based on quality, with systematic reviews and meta-

analyses ranking at the top. In public health, systematic reviews help researchers and

practitioners remain up to date with accumulating evidence and identify topics for which

further scientific studies are needed. Meta-analysis, on the other hand, by aggregating

estimates of effects, can address certain biases (e.g., reporting bias and small-study

effects) of estimated treatment effects [3].

Traditionally, a meta-analysis of randomized controlled trials compares only two

treatments, typically an intervention and a control. With new treatments emerging, net-

work meta-analysis (NMA) was developed to simultaneously compare multiple (more

than two) interventions. Compared to pairwise comparison from a traditional meta-

analysis, NMA can gain precision by considering both direct and indirect comparisons

and has the potential to rank regimens more explicitly [4]. For instance, if three treat-

ments A, B, and C are available for a certain disease, then in NMA, comparing treat-

ments A and C provides direct evidence about A versus C while comparing A versus B

plus B versus C offers indirect evidence. Both Bayesian hierarchical approaches [5–7] and

frequentist methods [8,9] have been proposed for NMA; this thesis focuses on Bayesian

methods because they have been widely applied [8, 9].

1
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Two widely-used Bayesian hierarchical approaches have been considered, the contrast-

based (CB) approach [5, 6, 10] and the arm-based (AB) approach [7, 11, 12]. AB-NMA

focuses on absolute treatment effects and assumes that absolute effects are exchangeable

across studies, while the CB method assumes that relative effects (contrasts) are ex-

changeable across trials, a difference that has led, among other things, to a debate over

random baseline treatment effects [13–15]. The primary advantage of AB-NMA is that

it naturally estimates absolute risks and absolute risk differences. Absolute risks are

essential to calculate the incremental cost-effectiveness ratio, a useful decision tool for

resource allocation. Also, results from AB-NMA are less sensitive to treatment exclu-

sions [16]. In the remaining chapter, I will discuss some potential problems in Bayesian

analyses of the AB-NMA model and some solutions to them.

1.1 Covariance priors

Both the AB and CN approaches involve estimating the covariance matrix of random

effects and choosing a prior distribution for it, which are generally difficult in Bayesian

analysis: the number of parameters in a covariance matrix increases rapidly with the

dimension of the matrix, and these parameters are constrained because the matrix must

be non-negative definite [17]. Also, the parameters of the two models are distinct. In

the CB approach, if the total number of treatments in the NMA is T , then T − 1 vari-

ance parameters need to be estimated for contrasts and (T − 1)(T − 2)/2 parameters

for correlations between contrasts but the T − 1 variances are constrained by triangle

inequalities [6], which complicate prior specification for heterogeneous variances. The

AB approach estimates more parameters (i.e., a T -dimensional covariance matrix for

variances of absolute effects and correlations between them), but does so without con-

straints other than positive definiteness. Finally, each study generally includes only

a small portion of the NMA’s treatments, generally based on results of previous tri-

als. This selection of treatments produces missing data (treatments excluded from a

trial), which affects the AB and CB approaches differently because they use different

exchangeability assumptions: CB models require contrasts to be missing at random

(MAR) [18] while AB models require treatments to be MAR [11]. Such differences

could have distinct effects on estimates of the covariance matrix.
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To model the variance structure of contrasts in the CB approach, Lu and Ades [6]

used an ancillary representation to circumvent the triangle inequalities and compared

different prior specifications using case studies. However, in the AB approach little

attention has been paid to the choice of priors for covariance matrices and their influence

on the results. The obvious choice is the conjugate inverse-Wishart prior, which was

used by Zhang et al. [7] and Hong et al. [11] However, this prior has some problems: the

marginal distribution of the variances has low density in the region near zero [19] and

the prior imposes a dependency between the variances and the correlations [20], which

may cause the correlations to be underestimated in certain situations. Correlations

are critical for borrowing strength across treatment arms to estimate treatment effects

efficiently and to reduce potential bias. Hence, in Chapter 2, we consider and compare

different covariance priors in AB-NMA using case studies and simulation studies.

1.2 Lack of information

Generally, randomized controlled trials (RCTs) with blinded outcome assessment offer

high-quality, reliable evidence for statistical analyses [3] and are preferred for inclusion

in meta-analyses. Partly because of strict screening processes, however, nearly half

of the meta-analyses in the Cochrane Database of Systematic Reviews contain only

two or three studies [21]. It is challenging to select an appropriate method for meta-

analysis with only a few studies (≤ 5) balancing statistical power and nominal coverage

probability [22]. Similarly, in a survey of 186 NMAs, nearly 40% of treatments were

included in four or fewer trials, and the median number of trials per comparison was

2 (interquartile range, 1–4) [1]. This creates two main obstacles in analyzing NMAs.

First, not all treatments are directly compared in an NMA; in an empirical study,

18.8% of NMAs are “star-shaped”, i.e., all active treatments were compared in trials

only to a control [1]. This phenomenon may produce difficulties in accurately estimating

correlations among treatments in the AB approach, and what we propose in Chapter 2

could be a remedy. In the CB approach, lack of information may cause variances of

certain contrasts to be overestimated [6]. Second, the number of clinical studies involving

each treatment is limited. For example, we extracted 42 NMAs with binary outcomes

from a total of 186 NMAs investigated by Nikolakopoulou et al. [1] Descriptive statistics
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of these 42 networks (Figure 1.1) show that nearly 40% of treatments in these NMAs

are included in 4 or fewer clinical studies. Because of this, variances of outcomes for

individual treatments (absolute effects) in AB-NMA are difficult to be estimated.

1.2.1 Variance shrinkage

To overcome this problem, both the AB and CB approaches often make additional

assumptions. For example, in the CB model, Dias et al. [23] advocated assuming ho-

mogeneous between-study variances, that is, all treatment contrasts are assumed to

have a common between-study variance. Similarly, in the AB model we may assume

that all treatments share the same between-study variance. However, a homogeneous

treatment-specific variance assumption may not be valid in the AB approach. Moti-

vated by the James–Stein estimator [24] and the double shrinkage estimator [25–27],

Chapter 3 proposes a new method to relax this potentially strong assumption. While

the James–Stein and double shrinkage estimators can only be applied to the classical

normal mean problem with “known and equal” variance and “unknown and unequal”

variances respectively, our method can be applied to multivariate normal problems with

a focus on variance shrinkage.

1.2.2 Variance extrapolation

Another strategy could use extrapolation. When information is sparse in a targeted

population, information borrowing is a useful technique for incorporating an external

data source to improve statistical estimation. It has been widely used in RCTs, incorpo-

rating historical controls when diseases are rare or patient populations are small [28–31].

While the history of borrowing external information in evidence synthesis dates back to

the 1990s, when Begg and Pilote [32] and Li and Begg [33] tried to combine results from

controlled and uncontrolled studies using a frequentist approach, only recently have we

witnessed a surge of publications on this topic. For example, Zhang et al. [34] proposed

methods for a meta-analyses to adaptively combine RCTs and single-arm studies, while

Röver et al. [35] used Bayesian model averaging to borrow adult evidence in pediatric

meta-analysis, which generally has fewer studies available. Efthimiou et al. [36] re-

cently proposed approaches to combining randomized and non-randomized evidence in
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CB-NMA. Turner et al. [37] introduced four different informative priors for multiple

heterogeneity variances in CB-NMA, and Leahy et al. [38] tried to incorporate single-

arm evidence in a CB-NMA using aggregate-level covariate matching. There are also

AB-NMA methods to synthesize aggregate and individual patient data [39].

So far, however, very little attention has been paid to including single-arm studies

in an AB-NMA, partly because only AB-NMAs can include them and there is an on-

going debate about the relative merits of CB-NMA and AB-NMA [13, 14, 40]. The AB

approach has the potential to estimate absolute risks, which are necessary to calculate

cost-effectiveness when making decisions about drug coverage. As mentioned above,

however, scant information is so prevalent in NMA that it is difficult to estimate the

standard deviations across studies of treatment-specific effects (e.g., the log odds, if the

logit transformation is used in AB-NMA with binary outcomes). Although a homo-

geneous variance assumption or variance shrinkage methods can help, these methods

require some strong assumptions about variances. Hence, in Chapter 4, we develop

methods that can incorporate extra evidence from single-arm studies in AB-NMA, to

provide better estimation.

Finally, Chapter 5 summarizes the major findings in this thesis and introduced

directions for future research.
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Figure 1.1: Dot plot describing 42 NMAs with binary outcomes, from a total of 186

NMAs investigated by Nikolakopoulou et al. [1] The x-axis denotes Bt: the number

of clinical trials containing a certain treatment t. The y-axis is the frequency and

percentage of such treatments in each category. Nearly 40% of treatments in these

NMAs are included in 4 or fewer clinical trials.
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Chapter 2

The Impact of Covariance Priors

on Arm-Based Bayesian Network

Meta-Analyses with Binary

Outcomes

2.1 Introduction

As mentioned in Section 1.1, the commonly-used conjugate prior for the covariance

matrix, the inverse-Wishart (IW) distribution, has several limitations in AB-NMA.

Alternatives have been proposed, such as the scaled inverse Wishart [41], a separation

strategy [17], the Cholesky decomposition [42], and the LKJ prior for a correlation

matrix [43]. This chapter compares, for binary outcomes, the influence of selected priors

for the AB model on the estimation of the log odds ratios of treatment comparisons and

the correlations between treatment-specific log-odds, under different missing-treatment

mechanisms. Based on these comparisons, we aim to recommend appropriate vague

priors for the AB model’s covariance matrix.

The rest of this chapter is organized as follows. Section 2.2 describes AB approaches

for NMA, followed by Section 2.3 on Bayesian analysis, focusing on priors for the covari-

ance matrix. Section 2.4 presents simulation studies and results, followed by three case

7
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studies in Section 2.5. Section 2.6 presents our main conclusions with a brief discussion.

2.2 The arm-based network meta-analysis

2.2.1 Notation

Suppose we have collected K studies comparing a total of T treatments and each study

contains only a subset of the T treatments. Let Ak (k = 1, . . . ,K) be the subset

of treatments investigated in the kth study. If the number of elements in the set Ak

(denoted by |Ak|) is larger than 2, then study k is called multi-armed. Most randomized

clinical trials are two-arm studies with |Ak| = 2. Let Dk = {(rkt, nkt), t ∈ Ak} be

the data collected in the kth study, where rkt and nkt are the numbers of events and

total subjects in the tth treatment group in the kth study. Finally, let pkt be the true

probability of an event (i.e., absolute risk) for the tth treatment in the kth study.

2.2.2 The arm-based approach

Zhang et al. [7] proposed the following arm-based NMA model:

rkt ∼ Binomial(nkt, pkt), t ∈ Ak, k = 1, . . . ,K;

logit(pkt) = µt + νkt;

(νk1, . . . , νkT )′ ∼MVN(0,Σ),

(2.1)

where µt represents the overall fixed effect of treatment t and the vector (νk1, . . . , νkT )′ is

a random effect specific to study k, following the multivariate normal distribution with

mean 0 and covariance matrix Σ having dimension T . Here, a′ denotes the transpose of

the vector a. We used logit instead of probit transformation to estimate both marginal

and conditional log odds between treatments. Let δt be the between-study standard

deviation of log-odds for treatment t, i.e., the square root of the tth diagonal element

in the covariance matrix Σ. Here, Σ can also be written as ∆P∆ with ∆ a diagonal

matrix having standard deviation δt as its tth diagonal element, and correlation matrix

P with entries ρij .

The marginal event rate of treatment t is pt = E[pkt|µt, δt]; for the logit link as in
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Equation (2.1), pt can be approximated as in Zeger et al., [44]

pt ≈

[
1 + exp

(
−µt

/√
1 +

256

75π2
δ2
t

)]−1

.

Using these marginal absolute risks of the T treatments, the risk ratio (RR) and risk

difference (RD) for each pair of treatments can be estimated accordingly as RRij = pi/pj

and RDij = pi−pj . We can also compute two log odds ratio estimands: 1) the marginal

log odds ratio between treatments i and j mLORij = log
pi(1−pj)
pj(1−pi) , and 2) the conditional

log odds ratio cLORij = µi − µj , which is more commonly used in the meta-analyses

literature. Agresti [45] (pp. 496–497) provided further details differences between these

two LORs. Other link functions could also be used in Equation (2.1). For example,

using the probit link Φ−1(pkt) = µt+νkt as in Zhang et al. [7], the marginal absolute risk

has an exact form, pt = Φ
(
µt/
√

1 + δ2
t

)
, where Φ(·) and Φ−1(·) denote the cumulative

distribution function of the standard normal distribution and its inverse, respectively.

When the logit link is used, both cLOR and mLOR can be estimated; using the probit

link, only mLOR can be directly estimated.

2.3 Prior specifications for the covariance matrix

This section describes specifications of prior distributions for the AB-NMA in Bayesian

analysis. Specifically, we place vague N(0, 1002) priors on µt (t = 1, . . . , T ), and discuss

prior distributions for the covariance matrix Σ. Two common ways to specify the

prior distribution for the covariance matrix Σ are the natural conjugate prior for the

multivariate normal likelihood, which treats the covariance matrix as a whole, and the

separation strategy proposed by Barnard et al. [17], which decomposes the covariance

matrix into separate parts as Σ = ∆P∆ and assigns priors to the components ∆

and P separately. As above, ∆ is a diagonal matrix with standard deviation δi as

its ith diagonal element, and P is a correlation matrix with diagonal elements 1 and

off-diagonal elements ρij . The following subsections give more details about these two

methods and their variations.
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2.3.1 The Inverse-Wishart prior

The inverse-Wishart (IW) distribution for the covariance Σ is a conjugate prior for

the multivariate normal likelihood, which can speed up computation compared to other

priors. The density function of the IW distribution with degrees of freedom m (> T −1)

and positive definite scale matrix Ψ is:

π(Σ; Ψ,m) ∝ |Ψ|−m/2|Σ|−(m+T+1)/2 exp

(
−1

2
tr(Σ−1Ψ)

)
, (2.2)

where | · | and tr(·) denote the determinant and trace of a matrix, respectively. The

scale matrix Ψ is often selected to be the T × T identity matrix I.

We now give some remarks about the IW prior’s properties and problems. The

marginal distribution of each δ2
i (the ith diagonal element of Σ) is the inverse-gamma

distribution IG(m−T+1
2 , ψii2 ) for i = 1, . . . , T , where m−T+1

2 is the shape parameter and
ψii
2 is the scale parameter. Here, ψii is the ith diagonal element of Ψ.

The IW prior has limitations. For example, simulation studies by Alvarez et al.

[20] showed that although the estimated covariances (posterior means) Σij (i 6= j) are

unbiased, the estimated correlations (posterior means) ρij are biased towards zero and

the estimated variance (posterior mean) Σii is biased upward when the true variance

Σii is small. These biases are caused by the lack of prior density near zero in the

marginal prior for the variance and the dependence induced by the IW prior between the

correlation matrix P and the variances. Section 2.4’s simulation studies also illustrate

this problem.

Finally, the IW prior does not allow a user to specify different amounts of prior

knowledge about different variance components; the single parameter m controls this

uncertainty for all diagonal elements. To add more flexibility, the scaled IW prior [41]

and the hierarchical half-t prior [46] have been proposed; however, such flexibility may

be limited compared to the separation strategy [20].

2.3.2 The separation strategy

As mentioned, the separation strategy allows more flexibility by decomposing the co-

variance matrix Σ as ∆P∆ and placing independent prior distributions on the standard

deviations δi and the correlation matrix P. Popular priors for δi include the inverse-

gamma prior for the variance (δ2
i ), the uniform prior between 0 and a certain upper
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bound, the half-Cauchy [19] and the log-normal. [17] There is less consensus about

choice of a prior for the correlation matrix P, given the difficulty of constraining P to

be positive definite. The following subsections elaborate this by discussing four possible

choices.

The restricted inverse-Wishart prior and restricted Wishart Prior

We start with the restricted inverse-Wishart (RIW) prior mentioned by Barnard et al.

[17], where the correlation matrix P follows an IW distribution with the restriction that

its diagonal elements are fixed as 1. Specifically, let Q ∼ IWT (I,m), then P = ∆Q∆

follows a RIWT (m) distribution, where ∆ is a diagonal matrix with ith diagonal element

Q
−1/2
ii and Qii is the ith diagonal element of Q. In the RIW prior, the ρij have the same

marginal distributions for all i 6= j:

π(ρij) ∝ (1− ρ2
ij)

m−T−1
2 , −1 < ρij < 1, (2.3)

a beta distribution, Beta(m−T+1
2 , m−T+1

2 ), on the interval [−1, 1], which is uniform if

m = T+1. Hence, the RIWT (T+1) prior implies marginally uniform-distributed corre-

lation coefficients. This prior is distinguished from the jointly uniform prior π(P) ∝ 1,

which is a special case of the LKJ prior [43]. Actually the LKJ prior is equivalent,

in a specific sense, to the restricted Wishart (RW) prior, which we now discuss. (Ap-

pendix B.1 gives the proof.)

To define the RW prior, as for the RIW prior let Q∗ follow a Wishart distribution

WT (I,m∗), then P = ∆Q∗∆ follows a restricted Wishart distribution RWT (m∗) with

degrees of freedom m∗ (> T−1); again, ∆ is a diagonal matrix with ith diagonal element

1/
√
Q∗ii. The RW prior has density π(P) ∝ |P|(m∗−T−1)/2; if m∗ = T+1, this is uniform

on a compact subspace of the T (T − 1)/2 dimensional hypercube (−1, 1)T (T−1)/2. Also,

the ρij for all i 6= j follow the same beta distribution Beta(m
∗−1
2 , m

∗−1
2 ) on [−1, 1],

which is Beta(T2 ,
T
2 ) if m∗ = T + 1. Based on this, the marginal distributions of the

correlation coefficients ρij in the jointly uniform prior tend to place density close to zero

as the dimension T increases, which is the key difference from the marginally uniform

prior. Furthermore, the conditional distribution of the correlation coefficient ρij given

ρrs with (i, j) 6= (r, s) in the RW prior also differs from that in the RIW prior.

Although the closed form for the conditional distribution of ρij given ρrs only exists
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for special cases, we can visualize these conditional distributions as in Figure 2.1, which

compares the RIW and RW distributions when the dimension T is 3 or 10. As shown

in Figure 2.1, the RIW distribution puts a marginally uniform prior on each ρij while

the marginal prior on the individual correlation ρ12 under the RW distribution (which

is jointly uniform) concentrates around zero, more so as the dimension T increases.

Figure 2.1 also shows that compared to the RW distribution, the RIW distribution puts

more density close to 1 for ρ12 when both ρ23 and ρ13 are larger than 0.6. Interestingly,

of 1,000,000 random draws from the RW distribution with T = 10, only two satisfied

the condition that both ρ23 and ρ13 are larger than 0.8. By contrast, randomly drawing

correlation matrices from the RIW distribution, 26,174 out of 1,000,000 satisfied this

condition. The above findings may have implications for prior choice in applications.

For example, in NMA, we might prefer the RIW prior to the RW prior because the RW

prior places less density on all correlation elements ρij being large.

Exchangeable correlation structure

To reduce model complexity, Lin et al. [47] proposed an exchangeable structure (EQ

prior) for P, where all off-diagonal elements ρij are assumed equal to a common value

ρ. To keep P positive definite, ρ must be larger than − 1
T−1 , so we may specify a vague

uniform prior for ρ on (− 1
T−1 , 1).

2.4 Simulation studies

We conducted simulation studies to compare the performance of AB-NMA using dif-

ferent priors (IW, RW, RIW and EQ) in terms of bias and coverage probability, under

different mechanisms for selecting treatment arms to be included in each study of the

AB-NMA.

2.4.1 Simulation settings

We describe the simulation studies using three main steps: first, how we generated a

complete data set; second, how we applied the missing data mechanisms to omit some

arms from studies; and third, which estimands and priors we chose. In the simulation,
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we fit the AB-NMA with different priors to each simulated dataset, saved estimates of

the estimands, and described the performance measures.

Each simulated NMA dataset {D1, . . . , DK} had binary outcome dataDk = {(rkt, nkt),
t = 1, 2, 3} from 18 studies (K = 18) comparing three treatments (T = 3), de-

noted 1, 2, and 3. The number of patients nkt in each arm was fixed at 500. The

number of simulated datasets in each setting was 1000. First, we generated com-

plete datasets under the AB model specification in Equation (2.1) using the logit link

and setting (µ1, µ2, µ3) = (µ2 + 0.5, µ2, µ2 − 0.5), (νk1, νk2, νk3)′ ∼ MVN(0,Σ) where

Σ = ∆P∆ with standard deviations (δ1, δ2, δ3) and correlation matrix P with en-

tries (ρ12, ρ13, ρ23). In Scenario I, we chose (δ1, δ2, δ3) = (0.7, 0.4, 0.1), (µ1, µ2, µ3) =

(−1.0,−1.5,−2.0) and (ρ12, ρ13, ρ23) = (2
3 ,

4
9 ,

2
3). We also conducted additional simu-

lations and analyses to confirm our findings under different correlation structures and

µ’s. For these, we set (δ1, δ2, δ3) = (0.7, 0.4, 0.1) and considered three different values of

µ2 ∈ {−0.5,−1.5,−2.5} with µ1 = µ2 + 0.5 and µ3 = µ2−0.5. We also considered three

choices for P: high correlation scenario with a common between-treatment correlation

ρ = 0.7, low correlation scenario with ρ = 0.2, and mixed between-treatment correlation

scenario with (ρ12, ρ13, ρ23) = (0.7, 0.1, 0.4).

After generating the complete dataset, we omitted treatment arms to create par-

tially missing data under MAR and MNAR with respect to absolute effects. For each

missingness setting, we obtained two different sets of nine two-arm studies: one set

compared treatments 1 and 2, and another compared treatments 2 and 3. To gener-

ate partially missing data under the MAR assumption, we first kept all treatment 2

data observed and ranked the studies in ascending order by rk2/nk2. Then, we made

treatment 1 missing in the first nine studies in this ordering and treatment 3 missing

in the last nine studies. This created datasets in which the results for the control arm

(treatment 2) had improved over time (rk2/nk2 increased with k), while only studies

with treatment 1 (more advanced regimen) versus 2 were available in the more recent

period and studies with treatment 3 (less advanced regimen) versus 2 were available in

the earlier period. Next, we used the following strategy to create missing data under

MNAR with respect to absolute effects. We used mkt (k = 1, . . . ,K and t = 1, . . . , T )

to indicate missingness of the tth treatment in the kth study; mkt = 1 indicated missing
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and mkt = 0 indicated not missing. First, we assumed all treatment 2 data were ob-

served, so mk2 = 0, k = 1, . . . ,K. Then we determined the missingness of treatment 1

based on the data for all 3 treatments. After determining mk1, the missingness of treat-

ment 3 followed automatically: mk3 = 1−mk1. The model to generate the missingness

indicators was:

mk1 ∼ Bernoulli(πk1), k = 1, . . . ,K;

logit(πk1) = β0 + β1 × [logit(rk1/nk1) + logit(rk2/nk2) + logit(rk3/nk3)],
(2.4)

where πk1 is the probability of treatment 1 being missing in study k. The parameters

β0 and β1 were pre-defined to control the average number of studies without treatment

1 to be 9 in each scenario: β1 = 1 and β0 = −µ1 − µ2 − µ3. A continuity correction of

0.5 was applied to both r and n when rki was zero.

We focus on these estimands: the two kinds of log odds ratio comparing treat-

ments i and j, mLORij = log(
pi(1−pj)
pj(1−pi)) and cLORij = µi − µj , the absolute risk

of an event for treatment t (pt), the standard deviation of log-odds for treatment t

(δt), and the correlation between treatment-specific (treatments i and j) log-odds (ρij).

When applying the AB-IW model, we set the prior for the covariance matrix Σ to

be IWT (I, T + 1). For models using the RW, RIW and EQ priors, we imposed inde-

pendent uniform priors U(0, 5) on standard deviations δi, i = 1, . . . , T , then set the

RWT (T + 1), RIWT (T + 1) prior for the correlation matrix P and the uniform prior

U(− 1
T−1 , 1) for the correlation coefficient ρ, respectively. Clearly, the true standard

deviations (δ1, δ2, δ3) = (0.7, 0.4, 0.1) were not close to the center of the prior U(0,5),

nor were the true correlations (ρ12, ρ13, ρ23) = (2
3 ,

4
9 ,

2
3) close to the center of the RW,

RIW, and EQ priors.

We implemented the models using Stan [48] in conjunction with R [49]. We chose

posterior mean and 95% equal tailed credible interval as point and interval estimates re-

spectively. To measure the performance of different methods, we used bias and coverage

probability of 95% credible interval.

2.4.2 Simulation results

Table 2.1 summarizes bias of the estimates and coverage probability (CP) of the 95%

credible intervals given by four AB models (AB-IW, AB-RW, AB-RIW and AB-EQ)
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under different missingness settings (no missing, MAR, and MNAR). The table includes

the log odds ratio comparing treatments i and j, mLORij and cLORij , the absolute

risk of an event for treatment t (pt), the standard deviation of log-odds for treatment t

(δt), and the correlation between treatment-specific (treatments i and j) log-odds (ρij).

All four AB models gave unbiased estimates and good coverage probabilities for the

log odds ratios mLORij and cLORij and the absolute risks pt for complete datasets

(“no missing”, i.e., no omitted arms). However, the AB-IW model produced biased

estimates of the standard deviations δt and correlations ρij and intervals with low cov-

erage probabilities. In particular, the AB-IW method had bias 0.202 for δ3, which was

large relative to the true value δ3 = 0.1, while all AB-RW, AB-RIW and AB-EQ had

almost no bias (0.005). Also, for the IW prior the bias of ρ23 (−0.511) was so large

that this method estimated little posterior association between treatments 2 and 3, al-

though the true correlation was 0.667. In summary, the IW prior gave upwardly biased

estimates for small variances and correlation estimates biased towards zero, especially

when the variance was small. In contrast, the AB-RW, AB-RIW and AB-EQ priors

gave estimates of standard deviations and correlations with much smaller biases (albeit

not exactly zero) with good coverage probability.

For complete datasets, mis-estimating correlations between treatment-specific log-

odds did not bias estimates of log odds ratios and absolute risks. However, in datasets

with missing entries (arms omitted under MAR/MNAR), underestimation of correla-

tions, especially for the star-shaped network structure used here, gave estimated relative

effects with larger bias and worse coverage probability. Underestimation of correla-

tions increased under MAR/MNAR compared to complete data for all priors consid-

ered; e.g., for AB-IW, the estimated bias for (ρ12, ρ13, ρ23) was (−0.17,−0.32,−0.51),

(−0.45,−0.43,−0.62) and (−0.36,−0.41,−0.59) in the no missing, MAR, and MNAR

scenarios, respectively. Also, while the AB-RIW and AB-EQ priors gave similar results

under MNAR for mLORij and cLORij , the extra but reasonable assumption of equal

correlations between treatment-specific log-odds reduced the bias of estimated corre-

lations and log odds ratios under MAR. The performance of AB-RW prior is slightly

worse than AB-RIW prior in terms of estimated relative effects and correlations because

RW prior places less density on all correlation elements being large, as was mentioned

regarding Figure 2.1.
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We verified our findings using additional simulations, shown in Table 2.2, under

various µ’s and correlation structures. The AB-RW prior gave smaller bias and higher

coverage probability than the AB-IW prior for mLOR13 (cLOR13), the AB-RIW prior

gave smaller bias and higher coverage probability than the AB-RW prior for mLOR13

(cLOR13), and the AB-EQ prior gave much smaller bias than the AB-RIW prior for

mLOR13 (cLOR13) under MAR/MNAR. Also, AB-RIW and AB-EQ generally provided

more reliable estimates of absolute risks (p1) than AB-IW. These results were in line

with our findings in Table 2.1.

2.5 Case studies

One pitfall of AB-NMA is that the data may not provide enough information about

the variances of log-odds for some treatments or about correlations between treatment-

specific log-odds. In a Bayesian analysis, such a lack of information may cause the

posterior to be dominated by prior information. This section uses three examples with

different levels of information to examine the performance of different AB methods.

Here, we focus more on posterior distributions of standard deviations than on corre-

lations for two reasons. First, Figure 2.1 shows, for the RIW prior, that the positive

definiteness property already imposes strong prior information on relationships among

individual correlations and the IW and EQ priors make more strict assumptions than

the RIW prior, as shown in Sections 2.3.1 and 2.3.2, respectively. Second, NMAs com-

monly provide little information about correlations and no practical remedy is available

to avoid the influence of the prior on the posterior. We considered seven models in

these case studies: AB-IW, AB-RW, AB-RIW, AB-EQ, AB-RW-EV, AB-RIW-EV and

AB-EQ-EV. The latter three new models were based on AB-RW, AB-RIW and AB-EQ

with the further assumption that all δi (i = 1, . . . , T ) were equal to δ, with a uniform

prior U(0, 5).

2.5.1 Example 1: smoking abstinence data

Mills et al. [50] summarized results of 101 trials with 31,321 individuals comparing

4 interventions for the primary outcome of abstinence from smoking at least 4 weeks

post-target quit date. Figure 2.2A shows the network plot of the data with treatments
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1–4 being control, nicotine replacement therapy (NRT), bupropion, and varenicline,

respectively. We used the AB-IW, AB-RW, AB-RIW, and AB-EQ models to analyze

this dataset.

Table 2.3 summarizes results for marginal log odds ratios, mLORij , comparing treat-

ments i and j, the absolute risk of treatment t (pt), the standard deviation of log-odds

for treatment t (δt), the correlation between treatment-specific (treatments i and j)

log-odds (ρij), the probability that treatment t ranks ith (Rankti; a higher rank means

a larger proportion with events), and the deviance information criterion (DIC) [51]

using the different models. The four AB methods (AB-IW, AB-RW, AB-RIW, and

AB-EQ) gave similar results except for the log odds ratio of bupropion versus vareni-

cline (mLOR34) and NRT versus varenicline (mLOR24). Although the AB-RIW and

AB-EQ models gave slightly different posterior means of the log odds ratios, they led to

the same conclusions: all active therapies (NRT, bupropion, and varenicline) increased

smoking abstinence compared to control in the short term, and varenicline was more

effective than NRT or bupropion. The rank probabilities also indicated that varenicline

had the best results (Rank41 > 0.9) and control had the worst (Rank14 = 1). Because

this dataset was large and provided enough information — 101 trials comparing four

treatments, each included in at least 9 trials (varenicline was in 9 trials) — it is not

surprising that these AB methods gave similar conclusions.

2.5.2 Example 2: serious vascular events prevention data

This dataset, reported by Thijs et al. [52], consisted of 24 antiplatelet trials involv-

ing 42,688 patients after transient ischaemic attack (TIA) or stroke and compared 5

regimens: 1) placebo, 2) aspirin (ASA) plus thienopyridines (THIENO), 3) aspirin, 4)

aspirin plus dipyridamole (DP), and 5) thienopyridines. The outcome was occurrence of

a serious vascular event, including myocardial infarction and vascular death after TIA

or stroke. Figure 2.2B shows the network plot; ASA plus thienopyridines was included

in only 3 trials. As we had limited information about the variance of the effect of ASA

plus THIENO, one may wonder how its posterior distribution was influenced by its

prior. Hence, we added three models: 1) the AB-RW model assuming equal variances

(δ2
t ) (AB-RW-EV), 2) the AB-RIW model assuming equal variances (δ2

t ) (AB-RIW-EV),

and 3) the AB-EQ model assuming equal variances (AB-EQ-EV).
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Table 2.4 summarizes the results. For the absolute proportion of serious vascular

events for ASA plus THIENO (p2), which had limited information, both the AB-RIW

and AB-EQ methods gave an unrealistically high upper bound for the 95% credible

interval of δ2 (RIW: 0.19 to 3.67; EQ: 0.23 to 2.73). This resulted in wide credible

intervals for the absolute risk p2 (RIW: 0.06 to 0.53; EQ: 0.11 to 0.48) and potentially

biased estimates. Such wide intervals meant that we could not find any significant

relative effects involving ASA plus THIENO; for example, using AB-RIW, mLOR12 =

0.24 with 95% CI (−1.52, 1.35). However, assuming equal variances (the AB-RIW-EV

and AB-EQ-EV methods) narrowed the credible intervals of p2 and δ2. Using the AB-IW

model, standard deviations δ1 and δ4 were potentially overestimated when comparing

with the other two separation strategy priors (RIW and EQ), which caused disruptions

in estimating absolute risks and relative risks related to the placebo and aspirin plus

DP arms. Moreover, correlations ρ12, ρ23, ρ24, and ρ25 were potentially underestimated

by both AB-IW and AB-RW-EV models because of the lack of comparisons between

these treatments. Although the AB-IW and AB-RW-EV models could also control the

credible intervals of δt and pt, DIC indicated that we may prefer AB-RIW-EV/AB-EQ-

EV to AB-IW/AB-RW-EV (DIC: 74.91/74.55 vs. 89.97/87.08) and the DIC differences

here were large enough to be of practical importance (larger than 5 units).

2.5.3 Example 3: postpartum haemorrhage prevention data

Hofmeyr et al. [53] reviewed 25 studies on prevention of postpartum haemorrhage (blood

loss ≥ 1000 ml). This NMA compared four regimens: 1) other uterotonics, 2) miso-

prostol 600–800 mcg, 3) misoprostol 400–500 mcg, and 4) misoprostol <400 mcg as in

Figure 2.2C. Table 2.5 summarizes the results; we focus on δ4. As Figure 2.2C shows,

only one trial directly compared treatment 4 with other treatments; therefore, for the

AB-EQ method, δ4’s posterior (mean 2.48; 95% CI, 0.19, 4.85) was dominated by the

U(0,5) prior. However, this did not imply that AB-EQ was inferior to AB-EQ-EV.

When confronted with a low-information situation, both the AB-EQ and AB-EQ-EV

(or the AB-RIW and AB-RIW-EV) methods were useful: AB-EQ alerted us to a lack

of information, while AB-EQ-EV showed the consequences of an extra assumption.
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2.6 Summary and discussion

This chapter evaluated different prior distributions for the covariance matrix in an

AB-NMA, including the IW prior and a separation strategy with uniform priors on

standard deviations and the RW, RIW or EQ prior on correlations. We compared

their performance using extensive simulation studies with data generated under differ-

ent mechanisms for selecting each study’s treatments. Separation strategies with a RIW

or EQ prior on correlations performed much better than the IW prior in all situations

in terms of bias and coverage probability of log odds ratios, absolute risks, variances

and correlations. The commonly used IW prior often overestimated variances and un-

derestimated correlations, which can lead to substantial bias for log odds ratios and

absolute effects, especially under MNAR. The separation strategy with the EQ prior

gave relatively small biases for log odds ratios under all conditions considered. These

findings suggest that the separation strategy with the equal correlation prior is a much

better choice of default vague prior in AB-NMA than the widely-used IW prior.

We conducted three case studies and compared separation strategies to the IW

prior in terms of DIC. In the meta-analysis of serious vascular event prevention, the

RIW and EQ priors had noticeably improved DIC compared to the IW and RW pri-

ors. However, estimating treatment-specific variances of log-odds in AB-NMA can be

encumbered due to lack of information (i.e., most treatments are included in only a

few trials). Here we proposed a straightforward but perhaps overly simple solution of

assuming the treatment-specific variances are equal. This equal-variances assumption

gave narrower credible intervals for treatment effects in the NMAs of serious vascular

event prevention and postpartum haemorrhage prevention, and improved model fits.

Thus, we suggest that NMA users consider sensitivity analyses with different assump-

tions on variance (homogeneous and heterogeneous variance assumptions) when using

the separation strategy with the equal correlation prior.

Due to space limitation, we compared only four covariance priors. Other potential

choices include the Cholesky decomposition [42] and the spherical decomposition [54].

These methods further decompose the correlation matrix P as L′L, where L is a T × T
upper-triangular matrix. Then we can place a weakly informative prior on L through
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a spherical parameterization. Technical details and applications to multivariate meta-

analyses are in Lu and Ades [6], Wei and Higgins [55], and Lin et al. [56]. However, using

this approach, the marginal distributions of the ρij depend strongly on the indexes i and

j; see, e.g., Figure 3 in Wei and Higgins [55]. The different marginal distributions lack

statistical or clinical interpretations and meta-analysts may reasonably be concerned

about the potential impact of using different marginal priors for different correlations.

We evaluated the performance of a Bayesian analysis with different prior specifica-

tions with simulations from a frequentist perspective (e.g., bias and coverage probabil-

ity); one may argue that this may be philosophically inappropriate [57]. Nevertheless,

this does not affect the goal of this chapter, i.e., providing some practical recommenda-

tions of prior specifications for the Bayesian AB-NMA with less bias and better coverage

probability.

In the continuing debate [13,14] between proponents of the AB and CB approaches,

White et al. [40] recently compared both approaches and concluded that ’both AB and

CB models are suitable for the analysis of NMA data, but using random study inter-

cepts requires a strong rationale such as relating treatment effects to study intercepts’.

Perhaps such a rationale exists: Houwelingen et al. [58,59] pointed out that the assump-

tion of exchangeable absolute treatment risks is reasonable in most meta-analyses, while

Béliveau et al. [15] also mentioned that disconnected networks could benefit from being

analyzed using random study intercepts. But perhaps this assumption appeared to be

important only by accident, because of the choice of prior distributions: in our sim-

ulation study (Table 2.1), the separation strategy approach (AB-EV), compared with

AB-IW, substantially reduced bias and potentially reduced the risk of using random

study intercepts by improving estimation of the correlations between different treat-

ments’ random effects of log-odds.

While the most important variance parameter in a CB-NMA is the heterogeneity of

the treatment contrasts [40], in the AB approach the variances of log-odds and correla-

tions between treatment-specific log-odds are crucial, because: 1) variances of log-odds

are needed to derive absolute risks and a much wider range of estimands, which is a

key advantage of the AB approach; 2) correlations are critical to keep contrasts (rela-

tionships) between treatments stable, which can reduce the risk of assuming random

study intercepts. Also, the AB-EQ-EV prior discussed in Section 2.5, with homogeneous
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variance of treatment specific log-odds and homogeneous correlations, is equivalent to

assuming homogeneous variance of treatment contrasts in the CB approach [10], in

terms of the covariance structure.

Several other issues deserve further exploration and discussion. First, the uniform

prior on standard deviations δi, i = 1, . . . , T in the AB model may cause upward bias

when the true standard deviation is low. Second, if certain treatments are included

in only a few trials in a NMA, the posteriors of their standard deviations may be

dominated by their priors, which could lead to wide credible intervals for both the

standard deviations and absolute risks, and thus bias the estimated absolute risks. In

some NMAs, the assumption of equal variances might be too strong. Alternatively, one

may model the standard deviations of study-specific log-odds of different treatments as

random draws from a common distribution and thus allow borrowing strength in the

estimation to shrink them in a data-dependent manner. The idea of extrapolation [37,60]

could also be applied to incorporate external evidence about standard deviations. Third,

since the posterior distributions of some parameters (e.g., correlation coefficients ρij

and marginal absolute risks pi) could be skewed, posterior medians might be better

summaries than posterior means. Finally, it seems that all priors considered here may

systematically underestimate the correlations. Further research on alternative priors

may be fruitful.
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Figure 2.1: Conditional prior densities for ρ12 with dimension T = 3 (right panels)

and dimension T = 10 (left panels). Each distribution is estimated from 1,000,000

random draws from the respective distribution (restricted inverse-Wishart in the first

row and restricted Wishart in the second row), using the R function geom density()

with default settings to compute and draw kernel density estimates. Different colors

denote different conditioning criteria; e.g., the purple line is the conditional distribution

of ρ12 given ρ23 and ρ13 both larger than 0.8. We did not draw the purple density for

the restricted Wishart with dimension 10 because only 2 out of 1,000,000 random draws

had ρ23 and ρ13 both greater than 0.8.
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Table 2.1: Simulation results comparing data generated under Scenario I with (δ1, δ2, δ3) = (0.7, 0.4, 0.1), (µ1, µ2, µ3) =

(−1.0,−1.5,−2.0) and (ρ12, ρ13, ρ23) = (2
3 ,

4
9 ,

2
3). Performance of AB models (IW, RW, RIW, and EQ) under different

missingness mechanisms (No missing, MAR, MNAR) is shown: the bias of estimates (posterior mean) of cLORij ,

mLORij , pt, δt, and ρij and coverage probability of 95% credible intervals. MCMC errors are at the 0.01 level.

Bias (Coverage Probability)

Parameter Truth AB-IW AB-RW AB-RIW AB-EQ AB-IW AB-RW AB-RIW AB-EQ AB-IW AB-RW AB-RIW AB-EQ

Scenario I

Missing Setting No missing MAR MNAR

cLOR12 0.50 -0.001(0.976) -0.003(0.970) -0.003(0.962) -0.003(0.964) 0.243(0.900) 0.136(0.954) 0.087(0.964) 0.032(0.962) -0.226(0.884) -0.186(0.921) -0.172(0.918) -0.151(0.916)

cLOR13 1.00 0.010(0.957) 0.001(0.950) 0.000(0.946) 0.001(0.937) 0.293(0.904) 0.174(0.946) 0.120(0.959) 0.034(0.970) -0.240(0.927) -0.205(0.921) -0.188(0.927) -0.155(0.937)

cLOR23 0.50 0.011(0.990) 0.004(0.965) 0.004(0.961) 0.004(0.960) 0.050(1.000) 0.039(0.977) 0.033(0.980) 0.003(0.978) -0.014(0.999) -0.019(0.970) -0.017(0.976) -0.004(0.965)

mLOR12 0.54 -0.010(0.979) 0.002(0.969) 0.002(0.965) 0.003(0.966) 0.208(0.913) 0.145(0.956) 0.112(0.966) 0.066(0.967) -0.230(0.871) -0.164(0.923) -0.150(0.921) -0.133(0.922)

mLOR13 1.07 -0.012(0.962) 0.012(0.957) 0.014(0.958) 0.015(0.945) 0.221(0.950) 0.187(0.944) 0.148(0.961) 0.072(0.971) -0.280(0.898) -0.181(0.927) -0.162(0.933) -0.133(0.936)

mLOR23 0.54 -0.002(0.994) 0.011(0.965) 0.012(0.964) 0.012(0.964) 0.013(1.000) 0.041(0.980) 0.036(0.980) 0.006(0.979) -0.050(0.998) -0.016(0.973) -0.012(0.978) -0.001(0.966)

p1 0.28 0.003(0.940) 0.005(0.945) 0.005(0.951) 0.005(0.947) 0.051(0.855) 0.038(0.948) 0.032(0.959) 0.021(0.965) -0.037(0.864) -0.025(0.926) -0.022(0.930) -0.019(0.928)

p2 0.19 0.003(0.977) 0.002(0.959) 0.003(0.962) 0.003(0.958) 0.003(0.974) 0.003(0.962) 0.003(0.962) 0.003(0.960) 0.003(0.975) 0.003(0.964) 0.003(0.964) 0.003(0.966)

p3 0.12 0.002(1.000) 0.000(0.965) 0.000(0.965) 0.000(0.963) 0.002(1.000) -0.003(0.976) -0.002(0.974) 0.001(0.981) 0.008(1.000) 0.003(0.956) 0.003(0.960) 0.002(0.962)

δ1 0.70 0.023(0.964) 0.052(0.948) 0.064(0.936) 0.067(0.934) -0.044(0.980) 0.086(0.969) 0.131(0.957) 0.132(0.950) -0.038(0.975) 0.063(0.957) 0.077(0.956) 0.079(0.958)

δ2 0.40 0.068(0.932) 0.029(0.961) 0.037(0.957) 0.038(0.954) 0.066(0.938) 0.034(0.958) 0.039(0.953) 0.039(0.957) 0.067(0.934) 0.034(0.955) 0.040(0.950) 0.039(0.955)

δ3 0.10 0.202(0.000) 0.004(0.980) 0.005(0.981) 0.005(0.979) 0.296(0.000) 0.035(0.977) 0.041(0.975) 0.041(0.977) 0.295(0.000) 0.031(0.988) 0.032(0.986) 0.032(0.982)

ρ12 0.67 -0.170(0.927) -0.100(0.961) -0.067(0.960) -0.060(0.955) -0.454(0.754) -0.330(0.955) -0.270(0.971) -0.180(0.982) -0.359(0.786) -0.247(0.939) -0.200(0.948) -0.146(0.959)

ρ13 0.44 -0.316(0.914) -0.196(0.986) -0.091(0.989) 0.162(0.820) -0.430(1.000) -0.406(1.000) -0.351(0.999) 0.042(0.970) -0.411(1.000) -0.363(1.000) -0.280(1.000) 0.076(0.956)

ρ23 0.67 -0.511(0.098) -0.293(0.974) -0.228(0.983) -0.060(0.955) -0.623(0.293) -0.546(0.983) -0.508(0.989) -0.180(0.982) -0.593(0.211) -0.471(0.973) -0.423(0.984) -0.146(0.959)
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Table 2.2: Additional simulations comparing performance (bias and coverage probability of 95% credible intervals) of

AB-IW, AB-RIW and AB-EQ with respect to posterior mean of cLOR13, mLOR13 and p1 under MAR and MNAR

using data generated with (µ1, µ2, µ3) = (µ2 + 0.5, µ2, µ2− 0.5), (δ1, δ2, δ3) = (0.7, 0.4, 0.1), µ2 ∈ {−0.5,−1.5,−2.5} and

correlation matrix P chosen from low, high and mixed correlation scenarios. MCMC errors are at the 0.01 level.

cLOR13: Bias (Coverage Probability) mLOR13: Bias (Coverage Probability) p1: Bias (Coverage Probability)

Scenario µ2
Correlation

structure
Truth AB-IW AB-RW AB-RIW AB-EQ Truth AB-IW AB-RW AB-RIW AB-EQ Truth AB-IW AB-RW AB-RIW AB-EQ

MAR

1 -0.50 High 1.00 0.302(0.883) 0.175(0.945) 0.117(0.957) 0.036(0.967) 1.00 0.263(0.913) 0.170(0.948) 0.119(0.959) 0.048(0.968) 0.50 0.059(0.847) 0.033(0.948) 0.023(0.954) 0.011(0.967)

2 -0.50 Low 1.00 0.090(0.979) 0.058(0.981) 0.045(0.978) -0.063(0.978) 1.00 0.061(0.983) 0.053(0.980) 0.042(0.977) -0.045(0.977) 0.50 0.017(0.961) 0.011(0.976) 0.009(0.971) -0.009(0.976)

3 -0.50 Mixed 1.00 0.280(0.896) 0.152(0.946) 0.103(0.962) 0.042(0.961) 1.00 0.241(0.920) 0.147(0.945) 0.105(0.958) 0.049(0.961) 0.50 0.057(0.852) 0.031(0.949) 0.022(0.955) 0.016(0.953)

4 -1.50 High 1.00 0.291(0.895) 0.159(0.953) 0.099(0.965) 0.017(0.971) 1.07 0.218(0.939) 0.170(0.954) 0.126(0.962) 0.053(0.972) 0.28 0.051(0.858) 0.034(0.951) 0.027(0.962) 0.018(0.966)

5 -1.50 Low 1.00 0.093(0.982) 0.051(0.979) 0.035(0.977) -0.069(0.977) 1.07 0.043(0.990) 0.087(0.980) 0.081(0.977) -0.011(0.976) 0.28 0.020(0.965) 0.024(0.977) 0.024(0.977) 0.007(0.979)

6 -1.50 Mixed 1.00 0.280(0.903) 0.151(0.947) 0.097(0.961) 0.026(0.968) 1.07 0.207(0.946) 0.160(0.950) 0.121(0.960) 0.055(0.966) 0.28 0.052(0.856) 0.036(0.946) 0.029(0.955) 0.023(0.959)

7 -2.50 High 1.00 0.304(0.913) 0.181(0.946) 0.124(0.965) 0.031(0.973) 1.14 0.186(0.963) 0.195(0.949) 0.160(0.962) 0.074(0.981) 0.14 0.031(0.860) 0.027(0.933) 0.024(0.944) 0.018(0.955)

8 -2.50 Low 1.00 0.108(0.985) 0.059(0.983) 0.043(0.980) -0.075(0.978) 1.14 0.026(0.995) 0.124(0.981) 0.123(0.975) 0.017(0.980) 0.14 0.015(0.969) 0.024(0.971) 0.025(0.968) 0.012(0.980)

9 -2.50 Mixed 1.00 0.289(0.919) 0.168(0.956) 0.115(0.966) 0.027(0.971) 1.14 0.172(0.977) 0.183(0.954) 0.151(0.966) 0.066(0.981) 0.14 0.031(0.870) 0.027(0.935) 0.024(0.948) 0.020(0.951)

MNAR

1 -0.50 High 1.00 -0.252(0.914) -0.208(0.905) -0.189(0.913) -0.153(0.926) 1.00 -0.261(0.897) -0.197(0.903) -0.179(0.909) -0.148(0.922) 0.50 -0.052(0.853) -0.041(0.907) -0.038(0.914) -0.033(0.920)

2 -0.50 Low 1.00 -0.250(0.897) -0.250(0.884) -0.248(0.889) -0.227(0.895) 1.00 -0.256(0.880) -0.228(0.880) -0.226(0.885) -0.209(0.891) 0.50 -0.054(0.836) -0.051(0.876) -0.051(0.879) -0.047(0.890)

3 -0.50 Mixed 1.00 -0.222(0.942) -0.178(0.923) -0.164(0.930) -0.141(0.933) 1.00 -0.231(0.927) -0.168(0.922) -0.155(0.928) -0.136(0.932) 0.50 -0.049(0.862) -0.038(0.915) -0.036(0.917) -0.034(0.920)

4 -1.50 High 1.00 -0.244(0.917) -0.207(0.905) -0.188(0.906) -0.155(0.925) 1.07 -0.285(0.870) -0.185(0.910) -0.165(0.913) -0.137(0.925) 0.28 -0.037(0.860) -0.025(0.916) -0.022(0.916) -0.019(0.921)

5 -1.50 Low 1.00 -0.239(0.904) -0.243(0.896) -0.241(0.894) -0.223(0.902) 1.07 -0.274(0.871) -0.198(0.906) -0.195(0.897) -0.182(0.912) 0.28 -0.037(0.846) -0.029(0.912) -0.028(0.914) -0.027(0.923)

6 -1.50 Mixed 1.00 -0.204(0.937) -0.170(0.923) -0.154(0.932) -0.130(0.937) 1.07 -0.247(0.903) -0.148(0.921) -0.132(0.934) -0.111(0.936) 0.28 -0.033(0.885) -0.021(0.928) -0.018(0.934) -0.017(0.930)

7 -2.50 High 1.00 -0.253(0.926) -0.234(0.916) -0.214(0.923) -0.177(0.929) 1.14 -0.336(0.860) -0.205(0.925) -0.183(0.924) -0.152(0.941) 0.14 -0.021(0.875) -0.012(0.932) -0.009(0.938) -0.008(0.940)

8 -2.50 Low 1.00 -0.236(0.910) -0.252(0.907) -0.252(0.901) -0.233(0.908) 1.14 -0.311(0.855) -0.193(0.932) -0.189(0.933) -0.178(0.938) 0.14 -0.020(0.855) -0.011(0.936) -0.011(0.929) -0.010(0.939)

9 -2.50 Mixed 1.00 -0.229(0.936) -0.210(0.930) -0.193(0.936) -0.162(0.943) 1.14 -0.310(0.882) -0.179(0.933) -0.160(0.943) -0.135(0.950) 0.14 -0.020(0.873) -0.010(0.937) -0.008(0.935) -0.008(0.941)
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Figure 2.2: Network plots of the three example datasets. Each node in a plot stands for a

treatment and each edge represents a direct comparison between two treatments. Vertex

size is proportional to the number (in parenthesis) of direct comparisons containing that

treatment; edge thickness is proportional to the number (in red) of direct comparisons.
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Table 2.3: Smoking abstinence data: comparison of posterior means and 95% credible

intervals under 4 models, specifically mLORij comparing the ith and jth treatment,

absolute risk of events for the tth treatment (pt), standard deviation of log-odds for the

tth treatment (δt), correlation between treatment-specific (treatments i and j) log-odds

(ρij), and the ith rank probability of the tth treatment (Rankti). Regimen labels: (1)

control, (2) nicotine replacement therapy, (3) bupropion, (4) varenicline.

Point Estimate (95% Credible Interval)

Parameter AB-IW AB-RW AB-RIW AB-EQ

mLOR12 -0.58 (-0.74, -0.43) -0.59 (-0.75, -0.42) -0.58 (-0.73, -0.43) -0.57 (-0.71, -0.43)

mLOR13 -0.67 (-0.83, -0.51) -0.68 (-0.83, -0.53) -0.67 (-0.80, -0.53) -0.66 (-0.81, -0.51)

mLOR14 -0.90 (-1.22, -0.57) -0.89 (-1.15, -0.59) -0.94 (-1.16, -0.71) -0.93 (-1.16, -0.73)

mLOR23 -0.09 (-0.30, 0.12) -0.09 (-0.30, 0.11) -0.09 (-0.28, 0.11) -0.09 (-0.28, 0.10)

mLOR24 -0.32 (-0.66, 0.02) -0.30 (-0.59, 0.01) -0.36 (-0.61, -0.11) -0.36 (-0.61, -0.13)

mLOR34 -0.23 (-0.57, 0.11) -0.20 (-0.49, 0.10) -0.27 (-0.51, -0.03) -0.27 (-0.52, -0.04)

Rank11 0.00 0.00 0.00 0.00

Rank21 0.01 0.01 0.00 0.00

Rank31 0.08 0.08 0.01 0.01

Rank41 0.90 0.91 0.98 0.99

p1 0.28 (0.24, 0.32) 0.28 (0.24, 0.31) 0.28 (0.24, 0.31) 0.28 (0.24, 0.31)

p2 0.41 (0.36, 0.45) 0.41 (0.36, 0.45) 0.41 (0.36, 0.45) 0.41 (0.36, 0.45)

p3 0.43 (0.38, 0.48) 0.43 (0.39, 0.48) 0.43 (0.38, 0.47) 0.43 (0.38, 0.47)

p4 0.49 (0.41, 0.56) 0.48 (0.42, 0.55) 0.50 (0.44, 0.55) 0.50 (0.45, 0.55)

δ . . . .

δ1 0.89 (0.76, 1.06) 0.88 (0.74, 1.04) 0.91 (0.77, 1.08) 0.91 (0.77, 1.08)

δ2 0.83 (0.66, 1.03) 0.82 (0.66, 1.02) 0.85 (0.68, 1.06) 0.87 (0.69, 1.08)

δ3 0.79 (0.64, 0.97) 0.76 (0.62, 0.94) 0.78 (0.63, 0.96) 0.78 (0.63, 0.97)

δ4 0.54 (0.32, 0.90) 0.42 (0.23, 0.75) 0.49 (0.27, 0.82) 0.48 (0.28, 0.81)

ρ . . . 0.87 (0.78, 0.93)

ρ12 0.80 (0.65, 0.89) 0.78 (0.62, 0.89) 0.83 (0.69, 0.92) .

ρ13 0.85 (0.73, 0.93) 0.89 (0.74, 0.97) 0.92 (0.81, 0.98) .

ρ14 0.57 (-0.15, 0.89) 0.60 (-0.14, 0.94) 0.86 (0.48, 0.98) .

ρ23 0.76 (0.51, 0.90) 0.68 (0.32, 0.94) 0.83 (0.57, 0.98) .

ρ24 0.51 (-0.21, 0.86) 0.47 (-0.31, 0.92) 0.79 (0.33, 0.98) .

ρ34 0.53 (-0.18, 0.87) 0.53 (-0.25, 0.95) 0.86 (0.42, 0.99) .

DIC 331.38 332.70 332.40 330.30

D̄ 185.18 188.61 191.57 188.71

pD 146.20 144.09 140.83 141.59
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Table 2.4: Serious vascular events prevention data: comparison of posterior mean and

95% credible interval under 7 different models, specifically marginal log odds ratio

mLORij comparing the ith and jth treatments, absolute risk of events for the tth treat-

ment (pt), standard deviation of log-odds for tth treatment (δt), and correlation between

treatment-specific (treatments i and j) log-odds (ρij). Regimen labels: (1) placebo, (2)

aspirin plus thienopyridines, (3) aspirin, (4) aspirin plus dipyridamole, (5) thienopy-

ridines.

Point Estimate (95% Credible Interval)

Parameter AB-IW AB-RW AB-RIW AB-EQ AB-RW-EV AB-RIW-EV AB-EQ-EV

mLOR12 0.82 (0.03, 1.51) 0.66 (-0.90, 1.49) 0.24 (-1.52, 1.35) 0.14 (-1.32, 0.75) 0.80 (0.28, 1.34) 0.39 (0.16, 0.89) 0.35 (0.16, 0.56)

mLOR13 0.28 (0.00, 0.57) 0.27 (0.06, 0.50) 0.22 (0.08, 0.38) 0.22 (0.08, 0.38) 0.23 (0.04, 0.46) 0.17 (0.07, 0.28) 0.17 (0.07, 0.28)

mLOR14 0.48 (0.06, 0.90) 0.48 (0.16, 0.77) 0.44 (0.26, 0.61) 0.44 (0.27, 0.60) 0.45 (0.15, 0.76) 0.41 (0.27, 0.55) 0.41 (0.28, 0.54)

mLOR15 0.40 (-0.06, 0.85) 0.38 (-0.13, 0.81) 0.30 (0.06, 0.57) 0.30 (0.09, 0.53) 0.36 (0.06, 0.69) 0.25 (0.10, 0.41) 0.25 (0.11, 0.40)

mLOR23 -0.54 (-1.23, 0.23) -0.39 (-1.24, 1.18) -0.02 (-1.13, 1.74) 0.08 (-0.50, 1.53) -0.57 (-1.10, -0.07) -0.21 (-0.70, -0.01) -0.18 (-0.36, -0.01)

mLOR24 -0.34 (-1.09, 0.49) -0.18 (-1.05, 1.39) 0.20 (-0.91, 1.96) 0.30 (-0.31, 1.75) -0.35 (-0.92, 0.20) 0.02 (-0.48, 0.27) 0.06 (-0.17, 0.26)

mLOR25 -0.42 (-1.20, 0.40) -0.28 (-1.26, 1.30) 0.06 (-1.09, 1.80) 0.15 (-0.42, 1.57) -0.43 (-1.03, 0.09) -0.13 (-0.63, 0.07) -0.10 (-0.28, 0.06)

mLOR34 0.21 (-0.20, 0.60) 0.21 (-0.11, 0.51) 0.22 (0.03, 0.38) 0.22 (0.05, 0.38) 0.22 (-0.05, 0.50) 0.24 (0.10, 0.37) 0.24 (0.10, 0.36)

mLOR35 0.13 (-0.32, 0.56) 0.11 (-0.40, 0.55) 0.08 (-0.13, 0.31) 0.07 (-0.09, 0.25) 0.13 (-0.15, 0.43) 0.08 (-0.04, 0.21) 0.08 (-0.03, 0.19)

mLOR45 -0.08 (-0.62, 0.46) -0.10 (-0.64, 0.40) -0.14 (-0.40, 0.15) -0.15 (-0.37, 0.10) -0.09 (-0.45, 0.28) -0.16 (-0.33, 0.03) -0.16 (-0.32, 0.02)

p1 0.21 (0.17, 0.25) 0.21 (0.18, 0.24) 0.20 (0.17, 0.23) 0.20 (0.17, 0.23) 0.20 (0.17, 0.24) 0.19 (0.16, 0.22) 0.19 (0.16, 0.22)

p2 0.11 (0.06, 0.20) 0.13 (0.06, 0.39) 0.18 (0.06, 0.53) 0.19 (0.11, 0.48) 0.10 (0.06, 0.15) 0.14 (0.09, 0.17) 0.14 (0.12, 0.18)

p3 0.17 (0.14, 0.20) 0.17 (0.14, 0.20) 0.17 (0.14, 0.20) 0.17 (0.14, 0.20) 0.17 (0.14, 0.19) 0.17 (0.14, 0.19) 0.17 (0.14, 0.19)

p4 0.14 (0.10, 0.19) 0.14 (0.11, 0.18) 0.14 (0.11, 0.17) 0.14 (0.11, 0.17) 0.14 (0.11, 0.17) 0.14 (0.11, 0.16) 0.14 (0.11, 0.16)

p5 0.15 (0.11, 0.21) 0.15 (0.11, 0.23) 0.16 (0.12, 0.20) 0.16 (0.12, 0.19) 0.15 (0.12, 0.18) 0.15 (0.13, 0.18) 0.16 (0.13, 0.18)

δ . . . . 0.37 (0.27, 0.49) 0.42 (0.30, 0.59) 0.42 (0.30, 0.59)

δ1 0.42 (0.28, 0.65) 0.28 (0.13, 0.49) 0.36 (0.19, 0.61) 0.36 (0.19, 0.62) . . .

δ2 0.55 (0.30, 1.05) 0.86 (0.14, 3.63) 0.93 (0.19, 3.67) 0.82 (0.23, 2.73) . . .

δ3 0.52 (0.36, 0.75) 0.46 (0.30, 0.68) 0.51 (0.34, 0.77) 0.52 (0.35, 0.77) . . .

δ4 0.48 (0.29, 0.79) 0.34 (0.12, 0.74) 0.40 (0.18, 0.73) 0.41 (0.19, 0.73) . . .

δ5 0.57 (0.35, 0.94) 0.60 (0.29, 1.27) 0.55 (0.31, 1.00) 0.54 (0.32, 0.92) . . .

ρ . . . 0.97 (0.85, 1.00) . . 0.98 (0.90, 1.00)

ρ12 0.05 (-0.62, 0.66) 0.07 (-0.71, 0.79) 0.73 (-0.95, 1.00) . 0.10 (-0.68, 0.80) 0.90 (-0.24, 1.00) .

ρ13 0.43 (-0.12, 0.79) 0.68 (0.11, 0.96) 0.96 (0.81, 1.00) . 0.70 (0.17, 0.96) 0.98 (0.88, 1.00) .

ρ14 0.25 (-0.37, 0.72) 0.42 (-0.33, 0.91) 0.95 (0.68, 1.00) . 0.48 (-0.28, 0.93) 0.97 (0.83, 1.00) .

ρ15 0.23 (-0.43, 0.73) 0.33 (-0.43, 0.87) 0.92 (0.54, 1.00) . 0.40 (-0.31, 0.89) 0.96 (0.78, 1.00) .

ρ23 0.07 (-0.67, 0.73) 0.10 (-0.68, 0.80) 0.73 (-0.94, 1.00) . 0.14 (-0.63, 0.81) 0.90 (-0.23, 1.00) .

ρ24 0.04 (-0.65, 0.68) 0.04 (-0.73, 0.77) 0.72 (-0.94, 1.00) . 0.08 (-0.70, 0.79) 0.90 (-0.23, 1.00) .

ρ25 0.07 (-0.67, 0.76) 0.07 (-0.70, 0.80) 0.71 (-0.90, 1.00) . 0.09 (-0.69, 0.81) 0.90 (-0.22, 1.00) .

ρ34 0.35 (-0.27, 0.78) 0.50 (-0.18, 0.92) 0.95 (0.69, 1.00) . 0.56 (-0.10, 0.94) 0.97 (0.83, 1.00) .

ρ35 0.32 (-0.38, 0.79) 0.39 (-0.34, 0.88) 0.92 (0.56, 1.00) . 0.48 (-0.15, 0.90) 0.97 (0.79, 1.00) .

ρ45 0.18 (-0.54, 0.74) 0.21 (-0.59, 0.83) 0.91 (0.44, 1.00) . 0.28 (-0.49, 0.86) 0.96 (0.73, 1.00) .

DIC 89.97 88.56 79.99 79.11 87.08 74.91 74.55

D̄ 48.23 49.77 46.60 46.48 49.71 46.27 46.19

pD 41.74 38.78 33.40 32.62 37.38 28.64 28.37
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Table 2.5: Postpartum haemorrhage prevention data: comparison of posterior mean

and 95% credible interval under 7 different models, specifically marginal log odds ra-

tio mLORij comparing the ith and jth treatments, absolute risk of events for the tth

treatment (pt), standard deviation of log-odds for tth treatment (δt). Regimen labels:

(1) other uterotonics, (2) misoprostol 600-800 mcg, (3) misoprostol 400-500 mcg, (4)

misoprostol < 400 mcg.

Point Estimate (95% Credible Interval)

AB-IW AB-RW AB-RIW AB-EQ AB-RW-EV AB-RIW-EV AB-EQ-EV

mLOR12 -0.10 (-0.78, 0.57) -0.21 (-1.38, 0.69) -0.16 (-0.83, 0.42) -0.16 (-0.80, 0.38) -0.13 (-0.81, 0.56) -0.17 (-0.53, 0.25) -0.17 (-0.49, 0.21)

mLOR13 -0.21 (-0.73, 0.29) -0.21 (-0.83, 0.35) -0.25 (-0.73, 0.20) -0.26 (-0.76, 0.20) -0.14 (-0.51, 0.25) -0.18 (-0.45, 0.11) -0.18 (-0.45, 0.10)

mLOR14 0.14 (-3.08, 3.39) -0.70 (-4.44, 2.76) -0.59 (-4.40, 2.75) 0.73 (-1.27, 3.19) 0.08 (-2.61, 3.26) 0.05 (-2.76, 3.31) 1.13 (-0.74, 3.78)

mLOR23 -0.11 (-0.87, 0.68) 0.00 (-1.01, 1.24) -0.09 (-0.78, 0.67) -0.10 (-0.77, 0.64) -0.01 (-0.75, 0.73) -0.01 (-0.47, 0.43) -0.02 (-0.44, 0.39)

mLOR24 0.23 (-3.00, 3.52) -0.48 (-4.25, 3.15) -0.44 (-4.24, 2.96) 0.89 (-1.17, 3.42) 0.22 (-2.53, 3.46) 0.21 (-2.60, 3.50) 1.30 (-0.62, 3.98)

mLOR34 0.35 (-2.87, 3.62) -0.49 (-4.20, 3.02) -0.34 (-4.18, 3.05) 0.99 (-1.07, 3.47) 0.22 (-2.48, 3.41) 0.23 (-2.58, 3.49) 1.32 (-0.57, 3.96)

p1 0.05 (0.03, 0.09) 0.05 (0.03, 0.09) 0.06 (0.03, 0.10) 0.06 (0.03, 0.10) 0.05 (0.03, 0.08) 0.05 (0.03, 0.09) 0.05 (0.03, 0.09)

p2 0.06 (0.03, 0.12) 0.07 (0.03, 0.17) 0.07 (0.03, 0.14) 0.07 (0.03, 0.14) 0.06 (0.03, 0.11) 0.06 (0.03, 0.11) 0.06 (0.03, 0.11)

p3 0.06 (0.03, 0.12) 0.06 (0.03, 0.12) 0.07 (0.04, 0.14) 0.07 (0.04, 0.14) 0.06 (0.03, 0.09) 0.06 (0.04, 0.11) 0.06 (0.04, 0.11)

p4 0.09 (0.00, 0.52) 0.18 (0.00, 0.80) 0.19 (0.00, 0.79) 0.04 (0.00, 0.18) 0.09 (0.00, 0.39) 0.10 (0.00, 0.43) 0.03 (0.00, 0.10)

δ . . . . 1.15 (0.82, 1.61) 1.25 (0.86, 1.81) 1.25 (0.86, 1.82)

δ1 1.23 (0.82, 1.81) 1.20 (0.80, 1.79) 1.32 (0.86, 2.01) 1.32 (0.86, 2.00) . . .

δ2 1.17 (0.64, 2.00) 1.33 (0.64, 2.84) 1.32 (0.71, 2.38) 1.33 (0.71, 2.40) . . .

δ3 1.32 (0.82, 2.08) 1.34 (0.81, 2.18) 1.46 (0.88, 2.34) 1.48 (0.89, 2.37) . . .

δ4 1.14 (0.38, 3.19) 2.48 (0.16, 4.86) 2.50 (0.13, 4.88) 2.48 (0.19, 4.85) . . .

DIC 68.83 70.62 68.03 67.86 69.25 65.09 64.68

D̄ 39.42 40.10 40.66 40.30 39.97 39.82 39.70

pD 29.41 30.52 27.37 27.55 29.28 25.28 24.98



Chapter 3

A Variance Shrinkage Method

Improves Arm-Based Bayesian

Network Meta-Analysis

3.1 Introduction

As mentioned in Section 1.2.1, lack of information is a big problem in AB-NMA. In this

chapter, we introduce a variance shrinkage method to solve this problem. Specifically,

we assume different treatment-specific variances share a common prior with unknown

hyper-parameters. This assumption is weaker than the homogeneous-variance assump-

tion and improves estimation by shrinking the variances in a data-dependent way.

The rest of this chapter is organized as follows. Section 3.2 describes a motivating

example of an NMA of organized inpatient care for stroke. Section 3.3 gives a brief

review of the AB model for analyzing NMA datasets with dichotomous outcomes and

introduces the variance shrinkage method. Section 3.4 presents results from applying

the variance shrinkage method to the motivating example, followed by extensive simula-

tion studies in Section 3.5, comparing the performance of different priors on variances.

Section 3.6 presents our findings with a brief discussion.
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3.2 Motivating example and notation

A stroke occurs when oxygen-rich blood flow to the brain is blocked, which leads to brain

cell death. It is currently the world’s second leading cause of mortality [61] and the third

leading cause of disability [62]. As of the early 2000s, there were debates about whether

organized inpatient (stoke unit) care, a multidisciplinary team specializing in stroke

management, could increase patient survival and recovery [63]. Five types of organized

inpatient care had been examined: 1) stroke ward, 2) general medical ward, 3) mixed

rehabilitation ward, 4) mobile stroke team, and 5) acute (semi-intensive) ward. The

Stroke Unit Trialists’ Collaboration [64] carried out a systematic review on organized

inpatient (stroke unit) care for stroke, including 28 studies with 6585 participants. The

outcome was death by the end of scheduled follow-up. Figure 3.1 is a network plot of

the studies with the five treatments.

To better understand the problems motivating the present work, we first specify

basic notation for an NMA with binary outcomes. Assume an NMA includes K studies

(e.g., K = 28 in this case) comparing a total of T treatments (e.g., T = 5). No study

includes all T treatments; each includes only a subset of the treatments. In particular,

Ak (k = 1, . . . ,K) denotes the subset of treatments in the kth study; for example,

A4 = {1, 2, 3} implies that treatments 1, 2 and 3 are compared in the fourth study.

Generally, the number of elements in the set Ak (denoted by |Ak|) is between 2 and 4,

as few clinical studies compare more than 4 treatments at the same time. We further

define the number of studies containing the tth treatment as Bt, and the number of

direct comparisons between treatments i and j as Cij . Let D = {D1, . . . , DK} be the

data collected with Dk representing the data from the kth study. Then for NMAs with

dichotomous outcomes Dk = {(rkt, nkt), t ∈ Ak} with rkt and nkt denoting the numbers

of events and participants in the tth treatment group in the kth study, respectively.

In this motivating example, B5 = 2 and some Cij ’s are ≤ 2, which may be considered

as examples of the “lack of information” situation described in Section 3.1. We reana-

lyzed the stoke data using the AB-NMA approach specified by Zhang et al. [7] Specifi-

cally, we used the exchangeable correlation structure with a uniform prior U(− 1
T−1 , 1)

on the correlation coefficients [65] and the heterogeneous variance assumption with sep-

arate uniform priors U(0, 5) on the standard deviations (henceforth referred to as the
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UV approach). Figures 3.2A and 3.2B present the forest plots of the standard devia-

tions and absolute risks of treatments 1–5. The UV method’s results are olive-colored;

the other results will be explained later. Clearly, using the UV approach, the posterior

distribution of the standard deviation of acute (semi-intensive) ward, for which the 95%

credible interval (CrI) was (0.07, 4.20), is dominated by the U(0, 5) prior distribution.

Similarly, for acute (semi-intensive) ward, the 95% CrI for the risk was extremely wide.

To overcome these problems, we could use the homogeneous variance assumption instead

and place a U(0, 5) prior on the common standard deviation (henceforth referred to as

the EV approach). However, this strong assumption forces the standard deviations of

mobile stroke team and mixed rehabilitation ward to take a common value, which may

not be tenable according to the UV method’s estimate. To achieve a trade-off between

the UV and EV approaches, the following section proposes a variance shrinkage method.

3.3 Methods

3.3.1 Arm-based Bayesian network meta-analysis

This subsection gives a brief introduction to AB-NMA [7]. Generally speaking, the

AB-NMA model has two levels. The first level is within study, at which NMAs with

different types of outcomes would have different models. The second level is between

study, where all studies share a distribution with different link functions. We focus on

NMA with binary outcomes here. The underlying model is:

Level I: rkt ∼ Binomial(nkt, pkt), t ∈ Ak, k = 1, . . . ,K;

Level II: logit(pkt) = θkt; (θk1, . . . , θkT )′ ∼MVN(µ,Σ),
(3.1)

where pkt is the probability of an event (i.e., absolute risk) for the tth treatment in the kth

study and the vector θk = (θk1, . . . , θkT )′ follows the multivariate normal distribution

with mean µ and covariance matrix Σ. Here, µ = (µ1, . . . , µT )′ contains the overall

logit event rate (i.e., log odds) for each treatment and x′ denotes the transpose of the

vector x. If we denote the between-study standard deviation for treatment t by δt,

we can decompose Σ as ∆P∆, where P = {ρij} is the correlation matrix and ∆ is a

diagonal matrix with δt being its tth diagonal element.
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3.3.2 Prior specifications

Prior distributions for µ and Σ need to be specified. We set weakly-informative priors

N(0, 1002) on µt (t = 1, . . . , T ). For the covariance matrix Σ, we use the separation

strategy proposed by Barnard et al. [17] Instead of treating the covariance matrix as

a whole, this method first decomposes it into separate parts as Σ = ∆P∆ and then

sets priors independently on the correlation matrix P and the standard deviations δt

(t = 1, . . . , T ), which form the diagonal matrix ∆. Here, we will simply use the ex-

changeable correlation structure to set a prior for the correlation matrix P [47]; that is,

all correlation coefficients ρij are assumed equal to ρ and the uniform prior U(− 1
T−1 , 1)

is assigned to ρ. The lower bound of this uniform prior guarantees that the correlation

matrix is positive definite.

3.3.3 Variance shrinkage method

As mentioned in Section 3.2, our goal is to achieve a trade-off between the homogeneous

and heterogeneous variance assumptions. For this purpose, we propose a less stringent

assumption: all δts follow the same prior density with some unknown hyper-parameters,

and we use the data to estimate the hyper-parameters.

Accordingly, we propose the hierarchical half-Cauchy (HHC) prior, denoted by

HHC(εl, εu), on δt (t = 1, . . . , T ); that is, δt is distributed as half-Cauchy (HC) with

hyper-parameter a, which has a uniform prior U(εl, εu). The HC prior is commonly used

for standard deviations [19] and has density HC(a) ∝ (1 + δ2
t /a

2)−1. Like the uniform

prior, the HC prior may also result in overestimation of variances in an AB-NMA when

the scale parameter a is large (e.g., a = 5 is a common choice). On the other hand,

if a is too small, the HC distribution is no longer weakly informative because it has

high density near zero (e.g., a = 0.5 as in Figure 3.3). By using the HHC prior, the

data-driven posterior distribution of the hyper-parameter a determines how informative

the prior on δt should be: if it is less informative (e.g., a = 5 as in Figure 3.3), it shrinks

δt less; if it is more informative (e.g., a = 0.5 as in Figure 3.3), it shrinks δt more.
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3.3.4 Likelihood and posterior estimation

The likelihood function for θk based on data Dk from the kth study can be written as:

L(θk|Dk) =
∏
t∈Ak

[logit−1(θkt)]
rkt [1− logit−1(θkt)]

nkt−rkt . (3.2)

Denote the aforementioned prior distributions for µt, δt, a and ρ by π(µt), π(δt|a), π(a)

and π(ρ), respectively. If the density function of the multivariate normal distribution is

p(θk|µ,Σ) = p(θk|µ,∆, ρ), the joint posterior distribution is:

π(µ,∆, a, ρ,θ1, . . . ,θK |D) ∝
K∏
k=1

∏
t∈Ak

[logit−1(θkt)]
rkt [1− logit−1(θkt)]

nkt−rkt |Σ|−
1
2 e−

1
2

(θk−µ)′Σ−1(θk−µ)

×
T∏
t=1

π(µt)π(δt|a)π(a)π(ρ),

(3.3)

where |Σ| is the determinant of Σ. We use Markov chain Monte Carlo (MCMC) to

sample from the joint posterior distribution. The marginal event rate of treatment t

is pt = E[pkt|µt, δt]; for the logit link used in Equation (3.1), pt can be approximated

by [44] [
1 + exp

(
−µt

/√
1 +

256

75π2
δ2
t

)]−1

.

Two log odds ratio estimands can be considered: 1) the marginal log odds ratio between

treatments i and j, mLORij = log
(
pi/(1−pi)
pj/(1−pj)

)
, and 2) the conditional log odds ratio

cLORij = µi − µj , which is more common in the meta-analyses literature. In each

MCMC iteration, draws of pt, mLORij , and cLORij can be calculated using the above

equations. Finally, we can make statistical inferences using posterior medians, means,

and 95% equal-tailed CrIs estimated from these posterior samples.

3.4 Data analysis: organized inpatient care for stroke

This section applies the variance shrinkage method to the motivating example and

compares its results with those of other common priors. Specifically, we consider the

following models:



34

• Model 1: The inverse-Wishart (IW) prior, the conjugate prior for the multivariate

normal. The prior for the covariance matrix Σ is IWT (I, T + 1), where T + 1 is

the degrees of freedom and the scale matrix is the T × T identity matrix I.

• Model 2: The heterogeneous variance assumption (UV). We use the separation

strategy with equal correlations (all ρij = ρ) but unequal variances, and put the

priors U(− 1
T−1 , 1) on ρ and U(0, 5) on each δt.

• Model 3: The variance shrinkage method (HHC). It shares the same setting with

Model 2 except that the HHC prior HHC(0, 5) is used for δt.

• Model 4: The homogeneous variance assumption (EV). We use the separation

strategy with equal correlations and equal variances (all δt = δ). Similarly, we put

U(− 1
T−1 , 1) on ρ and U(0, 5) on δ.

Model 3 “splits the diffrence” between models 2 and 3. All models use the vague prior

N(0, 1002) on µt (t = 1, . . . , T ). We use posterior medians and 95% equal-tailed CrIs

as point and interval estimates respectively.

The Bayesian approach has the advantage of conveniently allowing inferences about

treatment rankings. We use the surface under the cumulative ranking (SUCRA) pro-

posed by Salanti et al. [66] as a measure for comparing treatments. Specifically, let

probti be the probability that treatment t has the ith rank, where i = 1 represents the

best treatment. The SUCRA of the tth treatment can be calculated as:

SUCRAt =
1

T − 1

T−1∑
j=1

j∑
i=1

probti.

3.4.1 Model comparison

We evaluated the models using the deviance information criterion (DIC) by Spiegelhalter

et al. [51] and the widely applicable information criteria (WAIC) [67]. DIC is the sum

of the mean deviance D (describing the goodness of fit) and the effective number of

parameters pD (penalizing for model complexity). A difference larger than 5 in DIC

may indicate that the model with lower DIC gives a considerable improvement. [68]

Specifically, DIC is calculated as:

DIC = D + pD, (3.4)
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where D =
∑K

k=1

∑
t∈Ak Devkt and pD =

∑K
k=1

∑
t∈Ak

(
Devkt − D̃evkt

)
. For an NMA

model, Devkt represents the residual deviance for treatment t in study k:

Devkt = 2

{
rktlog

(
rkt
r̂kt

)
+ (nkt − rkt)log

(
nkt − rkt
nkt − r̂kt

)}
, t ∈ Ak, k = 1, . . . ,K,

where r̂kt = nktpkt is the expected event count of the tth treatment in the kth study.

Then Devkt is the posterior mean of Devkt, and D̃evkt is the residual deviance evaluated

at the posterior mean event count r̃kt = nktp̄kt:

D̃evkt = 2

{
rktlog

(
rkt
r̃kt

)
+ (nkt − rkt)log

(
nkt − rkt
nkt − r̃kt

)}
.

The other criterion, WAIC, is asymptotically equivalent to leave-one-out cross-

validation [67]. Compared to DIC, WAIC is more relevant in a predictive context,

because it is calculated as the sum of the posterior distribution (i.e., log pointwise

predictive density [lppd]) with a bias correction pW (i.e., the sum of the variance of

individual terms in the log predictive density):

WAIC = −2lppd + 2pW ;

lppd =
K∑
k=1

∑
t∈Ak

log

∫
p(rkt, nkt|ψ)π(ψ|D)dψ;

pW =

K∑
k=1

∑
t∈Ak

Var(log(p(rkt, nkt|ψ))),

(3.5)

where π(ψ|D) is the joint posterior distribution in Equation (3.3), and ψ is all unknown

parameters including µ, ∆, a, ρ, and θ1, . . . ,θK . Let {ψs, s = 1, . . . , S} be MCMC

samples of ψ from this joint posterior distribution, then lppd and pW can be estimated

as

lppd =

K∑
k=1

∑
t∈Ak

log

(
1

S

S∑
s=1

p(rkt, nkt|ψs)

)
;

pW =

K∑
k=1

∑
t∈Ak

1

S − 1

S∑
s=1

(
log(p(rkt, nkt|ψs))− log(p(rkt, nkt|ψs))

)2
.

(3.6)

For both DIC and WAIC, a model with a smaller value is favored.
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3.4.2 Results

Appendix A.1 provides the diagnostic plots of HHC method (Model 3). Based on

trace plots and autocorrelation plots of δt, pt, and mLORij , the MCMC samples have

converged well.

Table 3.1 presents results for the marginal log odds ratios mLORij , the absolute risk

(AR) of treatment t (pt), the standard deviation of treatment t’s effect (δt), the SUCRA

of treatment t (a smaller value indicates worse performance in preventing death), and

DIC. The IW prior had worse performance than the other three priors in terms of DIC,

as the differences in DIC were larger than 5 relative to other models. The EV prior was

worse than the HHC, UV, and IW priors in terms of goodness of fit, as its mean deviance

D was highest with 58.68. This suggests that the homogeneous variance assumption for

the EV prior is questionable in this NMA. In addition, WAIC provided similar results

as DIC, with EV method performed worst; WAIC for EV, UV, and HHC was 6747.61,

6741.44, and 6738.99 respectively.

Figure 3.2A is a forest plot of the standard deviations δt. All priors gave almost the

same results for δ1 and δ2, because sufficient information was available for these two

treatments (B1 = 20 and B2 = 24). The HHC prior gave results more similar to the UV

prior than to the EV prior for δ3 and δ4; the posterior median and 95% CrI of δ3 were

0.28 (0.04, 0.67) for the HHC prior, 0.35 (0.08, 0.81) for the UV prior, and 0.63 (0.48,

0.85) for the EV prior; the results were quite similar for δ4. As B3 = 8 and B4 = 5,

the information available for treatments 3 and 4 might be sufficient, and we might be

more confident in the results given by the UV prior than those given by the EV prior.

In particular, the EV prior might overestimate δ3 and δ4 due to the strong assumption

of equal standard deviations. For δ5, the UV model gave an extremely wide interval,

not surprising given that B5 = 2, while the EV model gave an interval much narrower

than either IW or HHC, with the latter splitting the difference between UV and EV.

The difference in variance estimates affects the estimates of absolute risks, as shown

in Figure 3.2B. Specifically, the EV prior yielded a wider CrI for mixed rehabilitation

ward; the posterior median and 95% CrI were 0.23 (0.19, 0.29) using the HHC prior,

0.24 (0.19, 0.30) using the UV prior, and 0.25 (0.19, 0.33) using the EV prior, while

for mobile stroke team these were 0.29 (0.24, 0.35) for the HHC prior, 0.30 (0.24, 0.36)

for the UV prior, and 0.30 (0.22, 0.38) for the EV prior. On the other hand, the UV
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prior produced a wide CrI for p5 because the information was limited for acute (semi-

intensive) ward (B5 = 2) and the posterior distribution was thus greatly influenced by

prior information. The HHC prior could borrow some information about the standard

deviation of acute (semi-intensive) ward from other δt, which yielded a much narrower

CrI for the absolute risk; specifically, the 95% CrI lengths were 0.20, 0.55, and 0.15

using the HHC, UV, and EV priors, respectively.

Estimated log odds ratios and SUCRAs were also similar for the UV and HHC

priors for mixed rehabilitation ward and mobile stroke team, and for the HHC and EV

priors for acute (semi-intensive) ward. In particular, acute (semi-intensive) ward was

very likely the best treatment based on the EV and HHC priors, while using the UV

prior, the performance of acute (semi-intensive) ward had large uncertainty (SUCRAs

were 0.86, 0.98, and 1.00 using the UV, HHC, and EV priors, respectively). SUCRAs

indicated that mixed rehabilitation ward was the third best treatment under the HHC

and UV priors, while the SUCRA for mixed rehabilitation ward (0.37) was close to that

for general medical ward (0.33) under the EV prior. For the IW prior, we could not

claim that stroke ward was significantly better than general medical ward; the mLORs

with 95% CrIs were −0.23 (−0.50, 0.03) for the IW prior, −0.19 (−0.39, −0.03) for the

UV prior, −0.20 (−0.38, −0.03) for the HHC prior, and −0.23 (−0.41, −0.06) for the

EV prior. For comparing mobile stroke team versus stroke ward, the mLORs with 95%

CrIs were −0.42 (−0.97, 0.10) for the IW prior, −0.36 (−0.69, −0.06) for the UV prior,

−0.38 (−0.68, −0.07) for the HHC prior, and −0.42 (−0.76, −0.08) for the EV prior;

these relative effects were significant under all priors except the IW.

In summary, when the homogeneous variance assumption may not be valid, the HHC

prior can provide more reasonable results than the EV prior. At the same time, unlike

the UV prior, the HHC prior allows treatments with limited data to borrow information

from other treatments to estimate parameters.

3.5 Simulation studies

3.5.1 Simulation settings

We conducted comprehensive simulation studies to compare the four priors defined and

used in Section 3.4. Each simulated NMA dataset had K = 20 studies and T = 6
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treatments (denoted 1 to 6). The number of participants in each treatment arm in

each study, nkt, was fixed at 200. The number of simulated datasets in each simulation

setting was 1000.

We generated a complete dataset under the AB model with binary outcomes as

in Equation (3.1) with µ = (µ1, µ2, µ3, µ4, µ5, µ6)′ = (−2,−2.5,−3,−2,−1.5,−3)′ and

(θk1, . . . , θk6)′ ∼ MVN(µ,Σ), where Σ = ∆P∆. The correlation matrix P had an

exchangeable structure with all off-diagonal entries 0.5. We considered two scenarios

for the standard deviations δt that formed the diagonal matrix ∆. Scenario I speci-

fied (δ1, δ2, . . . , δ6)′ = (1, 5
6 , . . . ,

1
6)′ (heterogeneous variance situation), while scenario II

specified equal variances with δt = 0.5 (t = 1, . . . , 6).

Once the complete dataset was generated, we excluded the treatment arms to create

partially missing data as illustrated in Figure 3.4 under two mechanisms: 1) missing

completely at random (MCAR) and 2) missing at random (MAR) with respect to abso-

lute effects. We also considered two data structures for each missingness mechanism. For

the first MCAR structure (denoted by MCAR1), we first kept all treatment 1 data (all

20 studies) and then kept each of the remaining treatments’ data in a randomly-chosen

block of 4 studies, where the blocks did not overlap. Similarly, for the second MCAR

structure (denoted by MCAR2), we also kept all treatment 1 data and then randomly

kept data for treatments 2 to 6 data in blocks of 2, 2, 2, 2, and 12 studies respectively,

where again the blocks did not overlap. Under the MAR mechanism, the two data

structures (denoted by MAR1 and MAR2) were specified in a similar manner. For both

MAR1 and MAR2, we kept all treatment 1 data and ranked the studies in descending

order by rk1/nk1. Then for the MAR1 structure, we made treatment 3 available only in

the first 4 studies (in this ordering), treatment 6 available in the next 4, and so on as

in Figure 3.4. Similarly, for the MAR2 structure, we made treatment 3 available only

in the first 2 studies, treatment 6 available in next 12, treatment 2 available in next 2,

and so on as in Figure 3.4.

3.5.2 Simulation results

Table 3.2 summarizes the bias of the posterior mean (Biasµ̄), the bias of the posterior

median (Biasµ̃), the mean squared error of the posterior median (MSEµ̃), and the cov-

erage probability (CP) of the 95% CrI using the four priors under simulation scenario I
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with the four different missingness structures (MCAR1, MCAR2, MAR1, MAR2). We

evaluated the log odds ratio comparing treatments i and j (mLORij and cLORij), the

absolute risk of treatment t (pt), the standard deviation for treatment t (δt), and the

correlation between treatments i and j (ρij). Due to space limits, instead of present-

ing the results for each treatment comparison, for each of Biasµ̄, Biasµ̃ and MSEµ̃, we

calculated the sum of the absolute value over all pairs of comparisons. For example,

the entry in Table 3.2 with Biasµ̄ as the column and cLORij as the row was calculated

as
∑

i 6=j |Biasµ̄(cLORij)|. To summarize the CPs, the corresponding value in Table 3.2

in column CP and row cLORij was calculated as
∑

i 6=j(0.95 − CP(cLORij))+, where

(x)+ = x if x ≥ 0 and (x)+ = 0 if x < 0, i.e., the total shortfall in CP. Table 3.3

presents the simulation results under scenario II with similar summaries.

In both scenarios, using the UV and HHC priors, the posterior median was less biased

than the posterior mean, especially for the MCAR2 and MAR2, in which the missingness

structure was more unbalanced than MCAR1 and MAR1. However, using the IW and

EV priors, the difference between these two point estimates was much smaller. With a

weaker prior assumption, the UV and HHC priors may produce posterior distributions

with larger skewness than the IW and EV priors when information was limited. Hence,

for the remaining part, we focus on interpreting the posterior medians.

Comparing the HHC and UV priors, we could conclude that the HHC prior was

much better in terms of bias and MSE for all parameters of interest under the 4 dif-

ferent missingness mechanisms. For the IW prior, estimates of the correlation and

standard deviation were severely biased and had extremely poor CPs (though the MSE

for standard deviations was the best among the four methods). Such biases had little

influence on inference for log odds ratios and absolute risks when the data were MCAR

but for MAR1 and MAR2, the log odds ratio estimates produced by the IW prior were

severely biased and much worse than those given by the HHC prior. The HHC and EV

priors performed comparably in terms of bias and CP in scenario II, where the true

variances were assumed equal, though the EV prior had better MSEs for all parame-

ters than the HHC prior in scenario II. However, when the true variances were unequal

(scenario I), the EV prior gave biased estimates and low CPs, while the HHC prior still

gave estimates with reasonable biases and satisfactory CPs, especially under MAR.

Overall, the HHC prior provided the best estimates of log odds ratios and absolute
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risks among the four priors. The performance of the EV prior became worse when the

homogeneity assumption was severely violated, and the IW prior had poor performance

under MAR.

3.6 Summary and discussion

This chapter discussed different prior choices for the between-study standard deviations

of multiple treatments in an NMA. We considered the traditional IW prior on the

covariance matrix, a prior representing the UV assumption, and a prior representing

the EV assumption, and we proposed the HHC prior. We compared these 4 priors

using a real NMA. The results showed the superior performance of the HHC prior.

Specifically, when the equal variance assumption was potentially violated, the HHC

prior could still provide good results in terms of deviance and DIC, while the UV prior

overestimated the variances of treatments that had limited information. On the other

hand, the EV prior may provide biased estimates for variances and did not fit the data

well. In addition to the analyses presented here, we did a sensitivity analysis to explore

the prior’s impact on µt. Specifically, as suggested by Gelman et al. [69] and Ghosh et

al. [70], we considered the Student-t prior t7(10) on fixed effects µt, which has 7 degrees

of freedom and location parameter 10. The results were similar to those in Section 3.4;

the DICs were almost unchanged at 92.55, 90.75, and 94.43 for the UV, HHC, and EV

priors, respectively.

We also compared the performance of the different priors using simulation studies

with various settings and missing treatment structures. Table 3.4 summarizes the pros

and cons of these methods. The UV prior leads to biased estimates and the credible

intervals did not have nominal CP when Bt was small (≤4). The IW prior could not

estimate correlations and standard deviations accurately, which resulted in biased log

odds ratios and absolute risks under the MAR mechanism. The EV prior could produce

unbiased estimates when the true variances were equal, but when the homogeneous-

variance assumption was severely violated, it gave biased estimates and 95% CrIs with

poor coverage. The HHC prior generally had the best performance among the 4 priors

in terms of estimating relative effects and absolute effects. It produced almost unbiased

results and satisfactory CP using a weaker assumption than the EV prior.
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This chapter focused on shrinking standard deviations in the AB-NMA with binary

outcomes; many extensions are possible. First, the HHC is just one choice of prior

for inducing shrinkage. Other priors, such as the hierarchical inverse-gamma (HIG)

prior, denoted by HIG(εl, εu), could be considered. The HIG prior’s density is p(δ2
t |β) ∝

IG(α, β) with α fixed at 1 and β following the uniform distribution U(εl, εu). Like

the HHC prior, the HIG prior (e.g., with εl = 0 and εu = 1) can adaptively achieve a

balance between an informative prior with high density near zero, such as IG(1, 0.1), and

a prior that may overestimate a variance with true value close to zero, such as IG(1, 1);

see Figure 3.3. We compared HIG(0, 1) with other four methods (see Appendix A.2)

and found that the performance of HIG was better than IW, EV, and UV methods, but

slightly worse than the HHC method in the simulation studies. In addition, based on

WAIC and DIC, HIG and HHC methods were similar in analyzing the case study.”

Second, while we chose εl = 0 and εu = 5 in the uniform prior for the HHC’s hyper-

parameter a, this choice needs careful justification in practice. For example, the lower

bound of the uniform prior εl places an upper bound on the informativeness of the HHC

prior. Specifically, εl = 0.1 might be a better choice than εl = 0 since HC(0.1) is less

informative than HC(0.001).

Finally, the variance shrinkage method may still involve some hidden assumptions

about variances. It may be critical to assess the implications of assuming that differ-

ent treatment variances share a common distribution with somewhat arbitrarily chosen

hyper-parameters, as in the HHC prior. On the other hand, AB-NMA can naturally

include single-arm studies when they are available to make inference with more in-

formation. However, including single-arm studies in an NMA may require additional

assumptions about the mean and variance parameters. Therefore, it may be more

sensible to allow the between-study variances to be similar (i.e., sharing a common

distribution) but not exactly the same in multi-arm (≥ 2) studies versus single-arm

studies. Therefore, methods for combining single-arm and multiple-arm studies should

be further examined.
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Figure 3.1: Network plot of the case study of organized inpatient care for stroke. Each

node in the plot represents a treatment and each edge represents a direct comparison

between two treatments. Vertex radius is proportional to Bt (the number of studies

containing treatment t) and the edge thickness is proportional to Cij (the number of

direct comparisons between treatments i and j).
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Figure 3.2: Results for case study of organized inpatient care for stroke: Forest plot of

standard deviations δt and absolute risk pt (posterior median with 95% credible interval).

Different colors indicate different priors. The y-axis represents the treatment label, with

Bt in parentheses. Treatment labels: 1) stroke ward, 2) general medical ward, 3) mixed

rehabilitation ward, 4) mobile stroke team, and 5) acute (semi-intensive) ward.
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Figure 3.3: Densities of different priors on standard deviation δt. For better visualiza-

tion, the horizontal axis is limited to [0, 5].
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Table 3.1: Organized inpatient care for stroke data: Comparing posterior median and

95% credible intervals under 4 models (IW, UV, HHC and EV); mLORij compares the

ith and jth treatment, absolute risk of events for the tth treatment (pt), standard devia-

tion of the tth treatment (δt), and SUCRA of the tth treatment (SUCRAt). Treatment

labels: 1) stroke ward, 2) general medical ward, 3) mixed rehabilitation ward, 4) mobile

stroke team, and 5) acute (semi-intensive) ward.

Point Estimate (95% Credible Interval)

Parameter IW UV HHC EV

mLOR12 −0.23 (−0.50, 0.03) −0.19 (−0.39, −0.03) −0.20 (−0.38, −0.03) −0.23 (−0.41, −0.06)

mLOR13 −0.13 (−0.59, 0.34) −0.07 (−0.41, 0.26) −0.08 (−0.39, 0.24) −0.21 (−0.52, 0.09)

mLOR14 −0.42 (−0.97, 0.10) −0.36 (−0.69, −0.06) −0.38 (−0.68, −0.07) −0.42 (−0.76, −0.08)

mLOR15 1.78 (0.39, 3.16) 1.03 (−1.56, 2.31) 1.53 (0.03, 2.53) 1.03 (0.20, 2.00)

mLOR23 0.10 (−0.34, 0.56) 0.13 (−0.19, 0.42) 0.12 (−0.17, 0.43) 0.02 (−0.29, 0.32)

mLOR24 −0.19 (−0.72, 0.31) −0.18 (−0.46, 0.12) −0.17 (−0.46, 0.12) −0.19 (−0.51, 0.14)

mLOR25 2.01 (0.62, 3.38) 1.24 (−1.36, 2.51) 1.73 (0.23, 2.73) 1.27 (0.42, 2.24)

mLOR34 −0.30 (−0.91, 0.32) −0.30 (−0.66, 0.10) −0.30 (−0.64, 0.05) −0.21 (−0.64, 0.22)

mLOR35 1.91 (0.48, 3.30) 1.12 (−1.49, 2.40) 1.61 (0.09, 2.62) 1.25 (0.37, 2.25)

mLOR45 2.20 (0.75, 3.62) 1.41 (−1.21, 2.69) 1.91 (0.38, 2.92) 1.46 (0.57, 2.48)

p1 0.22 (0.17, 0.28) 0.22 (0.18, 0.28) 0.22 (0.18, 0.27) 0.22 (0.18, 0.27)

p2 0.26 (0.21, 0.32) 0.26 (0.21, 0.32) 0.26 (0.21, 0.31) 0.26 (0.21, 0.31)

p3 0.24 (0.18, 0.33) 0.24 (0.19, 0.30) 0.23 (0.19, 0.29) 0.25 (0.19, 0.33)

p4 0.30 (0.21, 0.41) 0.30 (0.24, 0.36) 0.29 (0.24, 0.35) 0.30 (0.22, 0.38)

p5 0.05 (0.01, 0.16) 0.09 (0.03, 0.58) 0.06 (0.02, 0.22) 0.09 (0.04, 0.19)

δ (Equal Variance) . . . 0.63 (0.48, 0.85)

δ1 0.73 (0.54, 1.03) 0.74 (0.54, 1.09) 0.70 (0.51, 0.98) .

δ2 0.69 (0.50, 0.97) 0.74 (0.52, 1.04) 0.68 (0.49, 0.96) .

δ3 0.51 (0.31, 0.91) 0.35 (0.08, 0.81) 0.28 (0.04, 0.67) .

δ4 0.52 (0.32, 0.99) 0.39 (0.12, 0.86) 0.31 (0.08, 0.68) .

δ5 0.60 (0.33, 1.37) 0.54 (0.07, 4.20) 0.23 (0.01, 1.43) .

SUCRA1(%) 65 71 67 73

SUCRA2(%) 28 29 28 33

SUCRA3(%) 46 51 52 37

SUCRA4(%) 11 12 05 09

SUCRA5(%) 99 86 98 100

DIC 99.99 93.66 90.27 94.53

D̄ 53.93 56.00 54.50 58.68

pD 46.05 37.66 35.77 35.86

WAIC 6742.95 6741.44 6738.99 6747.61
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Figure 3.4: Missing data structures for simulation study. (a) MCAR1 and MAR1; (b)

MCAR2 and MAR2. The number in the white background indicates the observed clin-

ical studies for each treatment, while the gray background indicates the corresponding

treatment is not observed in these studies.
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Table 3.2: Simulation results for data generated under scenario I (heterogeneous vari-

ance) with 4 different missingness settings (MCAR1, MCAR2, MAR1, MAR2), specif-

ically bias of the posterior mean (Biasµ̄), bias of the posterior median (Biasµ̃), mean

squared error of the posterior median (MSEµ̃), and coverage probability (CP) of the

95% credible intervals for 4 different priors. Specifically as an example, the table entry

in column Biasµ̄ and row cLORij was defined as
∑

i 6=j |Biasµ̄(cLORij)|. Similarly, the

table entry in column CP and row cLORij was defined as
∑

i 6=j(0.95−CP(cLORij))+.

IW HHC UV EV

Parameter Truth Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP

MCAR1

cLORij . 0.52 0.50 2.58 0.00 0.39 0.32 2.48 0.01 0.52 0.44 2.79 0.00 0.74 0.75 2.69 0.00

mLORij . 0.81 0.80 2.22 0.00 0.40 0.07 2.31 0.02 1.67 1.11 2.59 0.00 1.70 1.69 2.34 0.00

pt . 0.06 0.02 0.00 0.02 0.06 0.02 0.00 0.03 0.14 0.07 0.01 0.00 0.09 0.06 0.01 0.05

δt . 1.02 0.90 0.34 1.22 0.62 0.15 0.49 0.02 2.25 1.29 1.21 0.12 2.03 1.97 1.09 3.31

mLOR35 −1.40 −0.03 −0.04 0.15 0.99 0.05 0.01 0.16 0.97 0.21 0.15 0.20 0.99 −0.04 −0.04 0.14 0.99

p5 0.06 0.01 0.00 0.00 0.96 0.01 0.00 0.00 0.95 0.03 0.01 0.00 0.96 0.01 0.01 0.00 0.97

ρ35 0.50 −0.46 −0.45 0.22 1.00 −0.04 −0.02 0.04 0.98 −0.01 0.02 0.04 0.98 −0.13 −0.11 0.05 0.97

MCAR2

cLORij . 0.74 0.68 5.34 0.02 0.96 0.64 5.44 0.00 0.85 0.78 6.63 0.00 0.87 0.87 4.76 0.01

mLORij . 0.95 1.02 4.46 0.00 0.97 0.53 4.43 0.00 4.17 2.82 4.58 0.00 1.91 1.90 4.10 0.10

pt . 0.09 0.04 0.01 0.02 0.13 0.04 0.01 0.01 0.34 0.15 0.02 0.00 0.11 0.07 0.01 0.07

δt . 1.10 0.93 0.31 1.44 1.69 0.19 1.06 0.00 4.74 3.22 3.71 0.11 1.86 1.82 0.95 3.23

mLOR35 −1.40 −0.09 −0.10 0.35 0.99 0.02 −0.05 0.34 0.99 0.26 0.20 0.35 1.00 −0.10 −0.10 0.32 0.99

p5 0.06 0.01 0.00 0.00 0.98 0.03 0.01 0.00 0.96 0.08 0.03 0.00 0.98 0.01 0.01 0.00 0.98

ρ35 0.50 −0.49 −0.49 0.24 1.00 −0.05 −0.03 0.04 1.00 −0.05 −0.03 0.04 1.00 −0.21 −0.21 0.07 0.94

MAR1

cLORij . 2.77 2.78 3.61 0.00 1.80 0.91 3.42 0.00 8.88 7.02 10.86 0.03 6.44 6.99 8.10 0.73

mLORij . 2.93 2.70 2.90 0.00 0.91 0.60 2.44 0.00 4.04 3.75 4.48 0.05 5.05 5.55 5.40 0.70

pt . 0.08 0.06 0.01 0.01 0.10 0.03 0.01 0.01 0.28 0.17 0.02 0.07 0.20 0.19 0.03 0.19

δt . 1.27 1.02 0.41 1.25 1.01 0.30 0.61 0.01 3.89 2.72 3.09 0.33 2.27 2.18 1.33 3.35

mLOR35 −1.40 0.44 0.42 0.39 0.99 −0.01 0.02 0.22 0.99 −0.47 −0.44 0.48 0.99 −0.80 −0.90 1.14 0.85

p5 0.06 0.04 0.02 0.00 0.98 0.01 0.01 0.00 0.97 0.01 −0.00 0.00 0.99 −0.00 −0.01 0.00 0.96

ρ35 0.50 −0.49 −0.49 0.25 1.00 −0.03 0.01 0.04 1.00 0.20 0.29 0.11 0.94 0.12 0.18 0.08 0.91

MAR2

cLORij . 4.90 4.81 7.17 0.00 4.29 0.80 6.41 0.00 14.93 10.52 21.84 0.00 6.81 7.50 11.34 0.38

mLORij . 4.60 4.57 5.92 0.00 1.69 0.99 4.93 0.01 7.70 6.75 9.04 0.00 5.86 6.46 8.40 0.48

pt . 0.09 0.09 0.01 0.01 0.19 0.04 0.01 0.01 0.54 0.33 0.06 0.01 0.25 0.24 0.04 0.11

δt . 1.26 1.00 0.33 1.58 1.95 0.19 1.07 0.01 5.26 3.90 4.90 0.15 2.10 2.02 1.16 3.24

mLOR35 −1.40 0.62 0.60 0.65 1.00 −0.12 0.01 0.35 1.00 −0.88 −0.84 1.15 1.00 −0.91 −1.02 1.61 0.90

p5 0.06 0.07 0.03 0.00 0.99 0.02 0.01 0.00 0.99 0.03 0.00 0.00 1.00 0.00 −0.01 0.00 0.95

ρ35 0.50 −0.50 −0.50 0.25 1.00 −0.03 −0.00 0.03 1.00 0.10 0.18 0.06 1.00 0.08 0.14 0.06 0.95
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Table 3.3: Simulation results comparing data generated under scenario II (homogeneous

variance) with 4 different missingness settings (MCAR1, MCAR2, MAR1, MAR2). The

bias of posterior mean (Biasµ̄), the bias of posterior median (Biasµ̃), the mean squared

error of posterior median (MSEµ̃), and the coverage probability (CP) of the 95% credible

intervals were summarized for 4 different priors. Specifically as an example, the value in

the table with Biasµ̄ as column and cLORij as row was defined as
∑

i 6=j |Biasµ̄(cLORij)|.
Moreover, the value in the table with column CP and row cLORij was defined as∑

i 6=j(0.95− CP(cLORij))+.

IW HHC UV EV

Parameter Truth Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP Biasµ̄ Biasµ̃ MSEµ̃ CP

MCAR1

cLORij . 0.41 0.37 2.04 0.00 0.31 0.22 1.95 0.00 0.50 0.39 2.22 0.00 0.24 0.23 1.80 0.01

mLORij . 0.19 0.11 1.74 0.00 0.29 0.08 1.80 0.00 1.50 0.88 2.07 0.00 0.18 0.18 1.64 0.01

pt . 0.05 0.02 0.00 0.00 0.05 0.02 0.00 0.02 0.13 0.06 0.00 0.00 0.02 0.01 0.00 0.02

δt . 0.74 0.51 0.09 0.00 0.39 0.10 0.36 0.00 2.11 1.12 0.97 0.11 0.15 0.10 0.05 0.00

mLOR35 −1.44 0.00 −0.00 0.14 0.99 0.02 −0.00 0.14 0.97 0.14 0.09 0.16 0.99 −0.02 −0.02 0.13 0.95

p5 0.05 0.01 0.00 0.00 0.98 0.01 0.00 0.00 0.96 0.03 0.01 0.00 0.97 0.00 0.00 0.00 0.96

ρ35 0.50 −0.48 −0.47 0.23 1.00 −0.02 0.00 0.04 0.99 0.00 0.03 0.05 0.99 −0.06 −0.04 0.05 0.97

MCAR2

cLORij . 0.65 0.60 3.89 0.00 0.70 0.53 3.76 0.00 0.80 0.70 5.15 0.00 0.52 0.50 3.39 0.19

mLORij . 0.36 0.28 3.30 0.00 1.00 0.35 3.29 0.00 4.48 3.02 4.09 0.00 0.45 0.44 3.08 0.17

pt . 0.08 0.03 0.01 0.00 0.12 0.03 0.01 0.02 0.33 0.15 0.02 0.00 0.04 0.02 0.01 0.05

δt . 0.94 0.62 0.11 0.00 1.45 0.07 0.58 0.03 4.82 3.25 3.65 0.11 0.14 0.08 0.05 0.04

mLOR35 −1.44 −0.02 −0.03 0.35 0.99 0.03 −0.03 0.33 1.00 0.28 0.22 0.36 1.00 −0.07 −0.07 0.32 0.93

p5 0.05 0.01 0.00 0.00 0.98 0.03 0.00 0.00 0.96 0.08 0.03 0.00 0.98 0.00 0.00 0.00 0.93

ρ35 0.50 −0.50 −0.50 0.25 1.00 −0.02 −0.00 0.05 0.99 −0.02 0.01 0.05 0.99 −0.05 −0.03 0.05 0.98

MAR1

cLORij . 3.25 3.24 2.89 0.00 0.86 0.17 2.40 0.00 7.51 5.56 7.32 0.00 0.53 0.40 1.97 0.02

mLORij . 3.40 3.30 2.65 0.00 0.43 0.43 2.07 0.00 3.72 3.19 3.70 0.01 0.56 0.42 1.78 0.01

pt . 0.08 0.07 0.00 0.00 0.07 0.02 0.01 0.02 0.25 0.15 0.02 0.03 0.02 0.01 0.00 0.02

δt . 0.73 0.48 0.08 0.00 0.51 0.07 0.40 0.00 3.25 2.07 2.02 0.29 0.14 0.08 0.04 0.00

mLOR35 −1.44 0.53 0.53 0.41 0.97 0.01 0.05 0.20 0.99 −0.51 −0.48 0.53 0.99 0.09 0.07 0.16 0.98

p5 0.05 0.03 0.02 0.00 0.97 0.01 0.01 0.00 0.97 0.01 −0.00 0.00 1.00 0.01 0.00 0.00 0.97

ρ35 0.50 −0.50 −0.50 0.25 1.00 −0.05 −0.02 0.04 1.00 0.18 0.28 0.10 0.98 −0.10 −0.08 0.05 1.00

MAR2

cLORij . 4.64 4.62 5.04 0.00 2.95 0.37 4.38 0.00 12.74 8.38 15.75 0.00 0.73 0.58 3.22 0.00

mLORij . 4.41 4.44 4.45 0.00 1.11 0.71 3.61 0.00 6.67 5.30 7.03 0.00 0.76 0.59 2.92 0.01

pt . 0.08 0.09 0.01 0.00 0.15 0.02 0.01 0.02 0.49 0.28 0.05 0.00 0.03 0.01 0.01 0.01

δt . 0.93 0.60 0.10 0.00 1.54 0.07 0.57 0.02 5.24 3.77 4.49 0.13 0.14 0.08 0.05 0.00

mLOR35 −1.44 0.71 0.71 0.74 0.99 −0.01 0.10 0.39 1.00 −0.67 −0.62 0.91 1.00 0.10 0.07 0.30 0.96

p5 0.05 0.04 0.03 0.00 0.99 0.02 0.01 0.00 0.99 0.03 0.01 0.00 1.00 0.01 0.00 0.00 0.96

ρ35 0.50 −0.50 −0.50 0.25 1.00 −0.05 −0.02 0.04 1.00 0.06 0.12 0.06 0.99 −0.08 −0.06 0.05 0.99
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Table 3.4: Pros and cons of the four different models.

Model Computing burden

Performance

MCAR MAR

All Bts are large
Small Bt exists

All Bts are large
Small Bt exists

δts are similar δts differ δts are similar δts differ

IW Small Good Good Good Bad Bad Bad

UV Large Good Bad Bad Good Bad Bad

EV Large Depends Good Bad Depends Good Bad

HHC Large Good Good Good Good Good Good



Chapter 4

Bridging randomized controlled

trials and single-arm studies

using commensurate priors in

arm-based network meta-analysis

4.1 Introduction

As discussed in Section 1.2.2, an extrapolation strategy in meta-analysis and NMA is

a natural solution to the lack of information. Several statistical methods have been

developed for “information borrowing” in the field of Bayesian analysis, for instance,

power priors [71–73], hierarchical commensurate priors [74–76], and Bayesian model

averaging [77–79]. Motivated by these methods, we propose commensurate priors to

adaptively incorporate variance information from single-arm studies into an AB-NMA.

Although an AB-NMA naturally incorporates single-arm studies [16], it does not ex-

plicitly account for the possibly lower quality of single-arm studies. Our new method,

by contrast, has the advantage of downweighting single-arm studies when they appear

to be inconsistent with the NMA’s two- or multi-arm studies.

The rest of this chapter is organized as follows. Section 4.2 describes a motivating ex-

ample, an NMA comparing safety of different immune checkpoint inhibitors for treating

50
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cancer. Section 4.3 introduces commensurate priors to combine RCTs and single-arm

studies in an AB-NMA. Section 4.4 presents results from applying our method to the

motivating example, followed by simulation studies in Section 4.5, comparing the per-

formance of different commensurate priors. Section 4.6 summarizes our findings with a

brief discussion.

4.2 Motivating example: safety of immune checkpoint in-

hibitors in cancer

Immune checkpoint inhibitor (ICI) has recently emerged as a breakthrough in treating

more than 14 different cancers, including melanoma, Hodgkin lymphoma, non-small

cell lung cancer, and others [80]. Immune checkpoints (also known as receptors on T-

cells) can prevent autoimmunity of T-cells during encounter with tumor cells or tumor-

associated antigen-presenting cells by sequestering CD80/CD86 ligands that would oth-

erwise signal through CD28 (CTAL-4: cytotoxic T lymphocyte associated antigen 4)

or by inducing T-cell exhaustion (PD-1/PD-L1: programmed cell death 1/programmed

cell death ligand 1) [81]. As monoclonal antibodies, ICIs can target these immune

checkpoints and remove inhibition of T-cell function. However, they may also promote

T-cell activity against host tissues, facilitating autoimmune activity against any organ

in the body, which raises a concern about tolerability. To investigate the safety of ICIs,

Xu et al. [82] conducted a systematic review and NMA mainly on five ICIs, including

ipilimumab, tremelimumab (both against CTAL-4), nivolumab, pembrolizumab (both

against PD-1), and atezolizumab (against PD-L1). Only 3 out of 31 RCTs had an ate-

zolizumab arm, making parameters related to atezolizumab (variance, absolute risks,

and relative risks) difficult to estimate. Fortunately, Xu et al. [82] selected not only the

31 RCTs but also found 36 single-arm studies as a validation group. We collected all

available data from these RCTs and single-arm studies for our analysis.

Table 4.1 shows the modified dataset of 27 RCTs and 28 single-arm studies com-

paring eight treatments: 1) nivolumab 3mg/kg every 2 weeks (NIV); 2) ipilimumab

3mg/kg every 3 weeks (IPI low); 3) ipilimumab 10mg/kg every 3 weeks (IPI high); 4)

pembrolizumab (PEM); 5) atezolizumab 1200mg every 3 weeks (ATE); 6) one ICI drug

plus investigator’s choice chemotherapy (ICI+ICC); 7) two ICI drugs together (2ICIs);
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and 8) investigator’s choice chemotherapy (ICC). The outcome is safety, specifically

occurrence of any treatment-related grade 3-5 adverse events. We excluded 9 single-

arm studies because they did not provide information about treatment-related adverse

events. Because only one RCT investigated tremelimumab, which did not show a statis-

tically significant survival advantage over standard chemotherapy in first-line treatment

of patients with metastatic melanoma [83] and also did not have any available informa-

tion from single-arm studies, our analysis excluded tremelimumab. We also excluded 2

RCTs [84, 85] and transformed one RCT [86] into a single-arm study (by dropping one

treatment arm) because the doses of ICIs investigated in these trials (e.g., nivolumab

0.3mg/kg every 3 weeks, nivolumab 2mg/kg every 3 weeks, and nivolumab 10mg/kg

every 3 weeks in Motzer at al.’s [84] trial did not match doses in the other RCTs. Fig-

ure 4.1 intuitively shows the need to borrow information from single-arm studies to

potentially improve estimation. For example, only 4 and 3 RCTs contain ipilimumab

(high dose) and atezolizumab respectively, which causes difficulty in estimating these

variances of these two treatment-specific log-odds; however, with the additional informa-

tion from single-arm studies (3 for each of these two ICIs), we may be able to overcome

this problem.

4.3 Statistical methods

4.3.1 Notation

Assume an NMA has K clinical trials comparing a total of T treatments. Let Ak
(k = 1, . . . ,K) be the subset of treatments in the kth study. For most clinical trials, the

number of treatments in Ak (denoted by |Ak|) is 2 or 3. Let Dk be the data observed

in the kth RCT. For NMAs with a dichotomous outcome, Dk = {(rkt, nkt), t ∈ Ak},
where rkt and nkt are the numbers of events and participants respectively for the tth

treatment in the kth RCT. Assume that the NMA also includes J high-quality single-

arm studies. Let Ds
j (j = 1, . . . , J) be the data collected in the jth single-arm study;

Ds
j = {(rs

jt, n
s
jt), t ∈ As

j}, where As
j includes only one treatment (|As

j | = 1) and rs
jt

and ns
jt are the numbers of events and participants for the tth treatment in the jth

single-arm study. We further define Bt to be the number of clinical trials containing

the tth treatment, and Bs
t to be the number of single-arm studies containing the tth
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treatment. For instance, as shown in Figure 4.1, 9 RCTs and 11 single-arm studies

contain nivolumab, so B1 = 9 and Bs
1 = 11.

4.3.2 Arm-based network meta-analysis and model for single-arm stud-

ies

This subsection briefly introduces the AB-NMA [7, 11] and the model for single-arm

studies. This chapter focuses on the case of binary outcomes. The underlying model is:

rkt ∼ Binomial(nkt, pkt), t ∈ Ak, k = 1, . . . ,K;

logit(pkt) = θkt;

(θk1, . . . , θkT )′ ∼MVN(µ,Σ),

(4.1)

where pkt is the probability of an event (i.e., absolute risk) for the tth treatment in

the kth study and the latent log odds θk = (θk1, . . . , θkT )′ are assumed to follow the

multivariate normal distribution with mean µ and covariance matrix Σ. Here, x′ de-

notes the transpose of the vector x. The vector of latent variables θk models all T

treatments, even though only |Ak| treatments t are actually observed in study k. More-

over, µ = (µ1, . . . , µT )′ contains the overall logit event probability for each treatment.

If we denote the between-study standard deviation of treatment t by δt, we can de-

compose Σ as ∆P∆, where P = {ρij} is the correlation matrix and ∆ is a diagonal

matrix with δt being its tth diagonal element. We further define µn = (µ1, . . . , µT )′, and

δn = (δ1, . . . , δT )′. We call this original method no borrowing (NB) because it does not

incorporate any information from single-arm studies.

Similarly, the model for single-arm studies is:

rs
jt ∼ Binomial(ns

jt, p
s
jt), t ∈ As

j , j = 1, . . . , J ;

logit(ps
jt) = θs

jt;

θs
jt ∼ N(µs

t, (δ
s
t)

2),

(4.2)

where ps
jt is the probability of an event for the jth single-arm study, µs

t represents

the overall fixed effect of treatment t from single-arm studies, and δs
t is the standard

deviation of the tth treatment for single-arm studies. Unlike Equation (4.1) containing

some latent variables that correspond to unobserved treatment arms, the variables in
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Equation (4.2) all correspond to observed treatment arms. We further define µs =

(µs
1, . . . , µ

s
T )′, and δs = (δs

1, . . . , δ
s
T )′.

4.3.3 Connecting NMA and single-arm studies

With models in hand for an NMA and single-arm studies, we consider several methods

to adaptively integrate information from the single-arm studies into the NMA.

Existing methods: full borrowing

The AB-NMA model in Equation (4.1) could naturally incorporate information from

single-arm studies about means and variances by assuming µt = µs
t and δt = δs

t ,

t = 1, . . . , T . We call this method fully borrowing on means and variances (FBMV).

However, this assumption may be too strong and unrealistic. Instead, we can take a

step back and only borrow information about variances from single-arm studies by as-

suming δt = δs
t while µt 6= µs

t. We call this method fully borrowing on variances (FBV).

We could also borrow mean information only by assuming µt = µs
t while δt 6= δs

t , but

this chapter will not discuss this fully borrowing on mean (FBM) method in detail as it

might be less practical.

Commensurate prior on mean

Although a fully borrowing approach could naturally integrate single-arm studies, it may

also cause large biases if the reliability of single-arm studies may be doubtful. Instead,

a commensurate prior on the means, introduced by Hobbs et al. [75], is a simple way to

offer flexibility in borrowing from and downweighting single-arm studies:

µt ∼ N(µs
t, η
−1), (4.3)

where µt has a normal prior with mean µs
t and precision η. The precision η characterizes

how commensurate the two sources of information (µt and µs
t) are with each other.

Hobbs et al. [75] proposed a “spike-and-slab” prior for η, but the estimation of η is still

difficult with this prior. Instead, Murray et al. [76] proposed a modified commensurate
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prior:

µt ∼ [N(µs
t, (τ

m
t )−1)]1−ι

m
t [N(µs

t, (R
m)−1)]ι

m
t ,

ιmt ∼ Bern(pm) and τm
t ∼ U(sm

l , s
m
u ), t = 1, . . . , T ;

(4.4)

where Bern(pm) denotes a Bernoulli distribution with Pr(ιmt = 1) = pm, and the prior

distribution on the precision τm
t is uniform from sm

l to sm
u with 0 ≤ sm

l < sm
u � Rm

and 0 ≤ pm
t ≤ 1 pre-specified. With this prior, µt follows a two-part mixture normal

distribution consisting of a highly concentrated component, i.e., N(µs
t, (R

m)−1), and a

relatively diffuse component, i.e., N(µs
t, (τ

m
t )−1). This distribution imitates a “spike-

and-slab” prior by putting probability pm
t at a point (i.e., the ‘spike’ part) to encourage

borrowing information from single-arm studies (i.e., µs
t) and the remaining probability

1 − pm
t on a ‘slab’ of values close to the original information from the NMA. We call

this method commensurate prior on mean (CPM).

Commensurate prior on variance

Similarly, we propose a commensurate prior on variances to borrow only variance infor-

mation from single-arm studies. Specifically, we assume:

log(δt/δ
s
t) = ct; ct ∼ N(0, η−1), (4.5)

so the log of the standard deviation ratio follows a normal distribution with mean zero

and precision η. Like Murray et al. [76], we can modify this prior as follows:

log(δt) ∼ [N(log(δs
t), (τ

v
t )−1)]1−ι

v
t [N(log(δs

t), (R
v)−1)]ι

v
t ,

ιvt ∼ Bern(pv) and τv
t ∼ U(sv

l , s
v
u), t = 1, . . . , T ;

(4.6)

where Bern(pv) is a Bernoulli distribution with Pr(ιmt = 1) = pv and the prior dis-

tribution on the precision τv
t is uniform from sv

l to sv
u with 0 ≤ sv

l < sv
u � Rv and

0 ≤ pv
t ≤ 1 pre-specified. We call this method commensurate prior on variance (CPV).

Unlike the FBV method, this prior borrows variance information from single-arm stud-

ies adaptively. More specifically, this model encourages borrowing variance information

(i.e., δs
t) from single-arm studies if pv approaches 1, while it tends to ignore single-arm

studies if pv approaches 0.
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Double commensurate prior

We can borrow both mean and variance information adaptively by applying both the

CPV and CPM methods in Equations (4.4) and (4.6). We call this method commensu-

rate prior on mean and variance (CPMV) or double commensurate prior (DCP); it is

an adaptively borrowing version of the FBMV method.

Summary of prior specifications and models

Table 4.2 lists model names, assumptions, and prior specifications in detail. For all these

models, we specify a prior on the covariance matrix Σ using the separation strategy

proposed by Barnard et al. [17]. Specifically, we first decompose Σ into separate parts

as Σ = ∆P∆ and then set priors independently on the correlation matrix P and the

standard deviations δt (t = 1, . . . , T ), which are the diagonal elements of ∆. Here, we

focus on the exchangeable correlation prior for the correlation matrix P [47]: we assume

all correlation coefficients ρij are equal, i.e., ρij = ρ for any i 6= j, and assign a uniform

prior U(− 1
T−1 , 1) to ρ so P is positive-definite. For models in which mean or variance

information is not shared between the RCTs and single-arm studies in specific models,

we also assign a vague N(0, 1002) prior to µt and µs
t, and a uniform prior U(0, 5) to

δt and δs
t . On the other hand, if information is shared fully or adaptively between the

RCTs and single-arm studies, we assume µt = µs
t and δt = δs

t for fully borrowing, or

for adaptively borrowing, following Equations (4.4) and (4.6) with pre-specified values

(0.5, 2500, 0, 2) for (pm, Rm, sm
l , s

m
u ) and (pv, Rv, sv

l , s
v
u).

4.3.4 Likelihood and posterior estimation

The likelihood function for θk based on data Dk from the kth RCT can be written as:

L(θk|Dk) =
∏
t∈Ak

[logit−1(θkt)]
rkt [1− logit−1(θkt)]

nkt−rkt . (4.7)

Similarly, the likelihood function for θs
jt based on data Ds

j from the jth single-arm study

is:

L(θs
jt|Ds

j) =
∏
t∈As

j

[logit−1(θs
jt)]

rsjt [1− logit−1(θs
jt)]

ns
jt−rsjt . (4.8)
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Since |As
j | = 1, we can simply denote θs

jt as θs
j . Without loss of generality, we focus

on illustrating the joint posterior distribution under the DCP model. Noting that Σ

depends on ∆, and ρ, the joint posterior distribution can be written as:

π(µ,∆,µs, δs, ρ,θ1, . . . ,θK ,θ
s, ιm, τm, ιv, τ v|D1:K ,Ds

1:J)

∝
K∏
k=1

∏
t∈Ak

[logit−1(θkt)]
rkt [1− logit−1(θkt)]

nkt−rkt |Σ|−
1
2 e−

1
2

(θk−µ)′Σ−1(θk−µ)

×
J∏
j=1

∏
t∈As

j

[logit−1(θs
jt)]

rsjt [1− logit−1(θs
jt)]

(ns
jt−rsjt)(δs

t)
−1e
− 1

2

(
θsjt−µ

s
t

δst

)2
×

T∏
t=1

{
[(τm

t )
1
2 e−

1
2
τmt (µt−µst)2 ](1−ι

m
t )[(Rm)

1
2 e−

1
2
Rm(µt−µst)2 ]ι

m
t

}
×

T∏
t=1

{[
(τv
t )

1
2 δ−1
t e−

1
2
τvt (log(δt)−log(δst))

2
]1−ιvt [

(Rv)
1
2 δ−1
t e−

1
2
Rv(log(δt)−log(δst))

2
]ιvt}×

T∏
t=1

[π(µs
t)π(δs

t)π(ιmt )π(τm
t )π(ιvt )π(τv

t )]× π(ρ),

(4.9)

whereD1:K = {D1, . . . ,DK}, Ds
1:J = {Ds

1, . . . ,Ds
J}, θs = (θs

1, . . . , θ
s
J)′, ιm = (ιm1 , . . . , ι

m
T )′,

τm = (τm
1 , . . . , τ

m
T )′, ιv = (ιv1, . . . , ι

v
T )′, and τ v = (τv

1 , . . . , τ
v
T )′.

We use NIMBLE [87] to fit the proposed models both for the real dataset on safety

of ICIs and for simulated datasets, with each fit consisting of four independent Markov

chain Monte Carlo (MCMC) chains sampling from the joint posterior distribution. We

first sample posterior distributions of the parameters µ and ∆ and then use the following

equations to compute samples from the posterior distributions of the log odds ratio

between treatments i and j, and the marginal event rate of treatment t [44]:

LORij = µi − µj ,

pt = E[pkt|µt, δt] ≈

[
1 + exp

(
−µt

/√
1 +

256

75π2
δ2
t

)]−1

.
(4.10)

Convergence of chains was assessed by trace plots, sample autocorrelation, and effective

sample size. Finally, we can make statistical inference using posterior medians, and 95%

equal-tailed credible intervals (CrIs) calculated from the posterior samples.
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4.4 Data analysis

In this section, we apply the six models in Table 4.2 to the motivating example of the

ICI data and compare the results. This dataset does not have single-arm studies for

treatments 7 (2ICIs) and 8 (ICC), so the model settings are slightly different from those

described above; to demonstrate the differences, Figure 4.2 presents the directed acyclic

graph (DAG) for the DCP model applied to the ICI data. In this DAG, square nodes

represent observed data or fixed quantities, circle nodes with white background are

intermediate unknown parameters, and circle nodes with gray background are unknown

parameters with pre-specified prior distributions, e.g., µt ∼ N(0, 1002) for t = 7, 8, µs
t ∼

N(0, 1002) for t = 1, . . . , 6, δt ∼ U(0, 5) for t = 7, 8, and δs
t ∼ U(0, 5) for t = 1, . . . , 6.

4.4.1 Model comparison

The deviance information criterion (DIC) [51] and the logarithm of the pseudo marginal

likelihood (LPML) [88, 89] are two popular criteria for comparing Bayesian models.

Because estimates of single-arm studies are much less meaningful, we focus on the NMA

part of the joint model. Specifically, as a measure to quantify the model’s predictive

ability, the LPML can be written as:

LPML =
K∑
k=1

log(CPOk);

CPOk = f(Dk|D−k,Ds
1:J),

(4.11)

where CPOk is the conditional predictive ordinate of the kth RCT based on the remain-

ing D−k = {Dl : l 6= k} and on the full data from the single-arm studies Ds
1:J . Let

ψ represent all unknown parameters µ, ∆, µs, δs, ρ, θ1, . . . ,θK , θs, ιm, τm, ιv, and

τ v; also, let ψ−k represent all the unknown parameters except θk. Then, CPOk can be
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written, using the following identity, as:

E

[
1

f(Dk|θk,ψ−k)

]
=

∫
π(θk,ψ−k|D1:K ,Ds

1:J)

f(Dk|θk,ψ−k)
dθkdψ−k

=

∫
f(D1:K ,Ds

1:J |θk,ψ−k)π(θk)π(ψ−k)

f(Dk|θk,ψ−k)f(D1:K ,Ds
1:J)

dθkdψ−k

=

∫
f(D−k,Ds

1:J |ψ−k)f(Dk|θk,ψ−k)π(θk)π(ψ−k)

f(Dk|θk,ψ−k)f(D1:K ,Ds
1:J)

dθkdψ−k

=

∫
f(D−k,Ds

1:J |ψ−k)π(ψ−k)

f(D1:K ,Ds
1:J)

dψ−k

=
f(D−k,Ds

1:J)

f(D1:K ,Ds
1:J)

=
1

f(Dk|D−k,Ds
1:J)

=
1

CPOk
,

(4.12)

where π(θk,ψ−k|D1:K ,Ds
1:J) is the joint posterior distribution in Equation (4.9). Let

{ψc, c = 1, . . . , C} denote the MCMC samples of ψ from this joint posterior distribution;

then, CPOk can be estimated by

CPOk ≈

(
1

C

C∑
c=1

1

f(Dk|ψc)

)−1

, (4.13)

where c indexes MCMC iterations. The DIC can be calculated easily following the steps

in Dias et al. [23]. A larger DIC value is less favorable, while larger values of LPML are

more favorable. We use the rule of thumb that only differences larger than 5 in DIC

indicate a considerable improvement [68].

4.4.2 Treatment ranking

To summarize rankings of the treatments in terms of safety, we use the surface under

the cumulative ranking (SUCRA) proposed by Salanti et al. [66]. Let probti be the

probability that treatment t has the ith rank, where i = 1 represents the safest treatment;

the SUCRA of the tth treatment is

SUCRAt =
1

T − 1

T−1∑
j=1

j∑
i=1

probti,

where posterior mean of probti is easily calculated using MCMC samples. The SUCRA

ranges from 0% to 100%; a higher SUCRA value implies a better treatment.
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4.4.3 Results

Table 4.3 presents the results for absolute risk of events for the tth treatment (pt), fixed

effect of log-odds for the tth treatment (µt), standard deviation of log-odds for the tth

treatment (δt), selected log odds ratios LORij , LPML, and DIC. These models did not

differ notably in LPML and DIC. However, some differences appear in the estimates

and intervals.

Figure 4.3A presents a forest plot of the standard deviations δt. Clearly, because

of lack of information about treatments 3 (IPI high), 5 (ATE), and 7 (2ICIs), the

estimates of δ3, δ5, and δ7 under the NB method were dominated by prior information,

i.e., U(0, 5), with wide CrIs. By fully (the FBV method) or adaptively (the CPV

method) incorporating variance information from single-arm studies for treatments IPI

high and ATE, we may have better estimates for δ3 and δ5 with much narrower CrIs.

However, when the RCTs provided a good deal of information, e.g., for treatment 6

(ICI+ICC with B6 = 6 > 5) and the variances in the RCTs and single-arm studies

differed, the FBV method had a much stronger effect on the posterior of δ6 than the

adaptive (CPV) method; the posterior median and 95% CrI of δ6 were 0.18 (0.04, 0.57)

for NB, 0.21 (0.04, 0.66) for CPV, and 0.35 (0.10, 0.91) for FBV. Similar results were

obtained when mean information was adaptively or fully borrowed, e.g., the posterior

median and 95% CrI of µ1 were −1.84 (−2.19, −1.58) for NB, −1.75 (−2.08, −1.51)

for CPM, and −1.71 (−1.90, −1.52) for FBMV. Posterior medians of the µt’s were

generally quite similar among the NB, CPV, and FBV methods because the CPV and

FBV methods shared only variance information. The CPM method also narrowed the

CrIs of δ3 and δ5 a bit by sharing mean information from single-arm studies.

The differences between methods in mean and variance estimates can affect the

estimates of absolute risks, as shown in Figure 4.3B. The NB method yielded a much

wider CrI for treatments IPI high dose and ATE than the CPV and FBV methods

because of those treatments had few RCTs. On the other hand, the FBV method gave

wide CrIs for treatment 6 (ICI+ICC) because it fully incorporated variance information

from the single-arm studies, while the CPV method gave estimates more similar to the

NB method by adaptively downweighting variance information that was inconsistent

between the RCTs and single-arm studies; the posterior median and 95% CrI of p6

were 0.47 (0.42, 0.53) for NB, 0.47 (0.41, 0.54) for CPV, and 0.48 (0.39, 0.57) for FBV.
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The CPV and FBV methods provided almost the same posterior medians of pt for

all treatments as the NB method, while the other three methods (CPM, DCP, and

FBMV) gave rather different point estimates of pt because of incorporating potentially

inconsistent results from single-arm studies; the posterior median and 95% CrI of p2

were 0.19 (0.13, 0.27) for NB, 0.19 (0.14, 0.27) for CPV, 0.20 (0.14, 0.28) for CPM, and

0.21 (0.15, 0.28) for FBMV.

Figure 4.4 visualizes the estimated log odds ratios (the off-diagonal part) and SU-

CRAs (the diagonal part, shown in the percent) under the NB (upper right) and CPV

(lower left) methods. Specifically, the radius of the gray circle represents the point

estimate of LORij , with the radius of the inner white circle (not shown if P > 0.05

for testing the difference between two treatments) and outer colored circle representing

the 95% CrI. The coloration on the scale is determined by the P-value, with blue indi-

cating that the upper-left treatment is better than the lower-right treatment in terms

of lower drug-related grade 3–5 adverse events (AEs). The largest difference between

NB and CPV methods in estimating LORij and SUCRAt was for the log odds ratio

between ATE and IPI high dose; the posterior median and 95% CrI of LOR53 were

−1.25 (−3.20, 0.23) for NB and −1.17 (−2.01, −0.40) for CPV. Such differences arose

because the CPV method incorporated more variance information than the NB method,

which narrowed the CrI.

These analyses confirmed that drug-related grade 3–5 AEs were dose-dependent with

ipilimumab; the posterior median and 95% CrI of LOR23 were −0.97 (−1.90, −0.11)

for NB, and −0.95 (−1.63, −0.30) for CPV. Also, drug-related grade 3–5 AEs were less

frequent for all ICIs (NIV, PEM, ATE, and IPI low) than for traditional chemotherapy

or combination therapy of ICI and ICC. We found no significant differences between

anti-PD-1 monotherapy (nivolumab, or pembrolizumab), anti-PD-L1 monotherapy (ate-

zolizumab), and anti-CTLA-4 monotherapy (ipilimumab 3mg/kg every 3 weeks) in drug-

related grade 3–5 AEs, with appropriate dose. Based on SUCRA, however, nivolumab

(SUCRA1 = 0.92 for the CPV method) may be the ICI drug with the lowest frequency

of drug-related grade 3–5 AEs among the drugs that were investigated.

In summary, when results from single-arm studies were potentially unreliable, the

CPV method can provide better estimates than other methods that borrow mean in-

formation. At the same time, unlike the NB or FBV methods, the CPV method allows
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treatments with limited data to adaptively incorporate variance information from single-

arm studies to improve estimates related to these treatments.

4.5 Simulation studies

4.5.1 Simulation settings

These simulation studies compared five methods (NB, CPV, FBV, CPM, and DCP)

defined in Section 4.3. Each simulated dataset contained K = 14 RCTs, J = 30 single-

arm studies, and T = 5 treatments (indexed from 1 to 5). The number of participants

in each treatment arm in each RCT, nkt, was fixed at 150. The 30 single-arm studies

were allocated to treatments with the pre-specified partition scheme of Bs
1 = 14, Bs

2 = 5,

Bs
3 = 4, Bs

4 = 4, and Bs
5 = 3. The number of participants in each single-arm study was

75, 38, 75, 150, and 113 for treatments 1 to 5 respectively. The number of simulated

datasets in each simulation setting was 1000.

In simulated datasets, we considered four scenarios with different levels of relia-

bility of mean and variance information from single-arm studies. In scenario EM-

EV (equal mean and equal variance), we first generated a complete dataset for the

RCTs under the AB model with binary outcomes as in Equation (4.1), with µn =

(µ1, . . . , µ5)′ = (−2,−3,−2.5,−2,−1.5)′ and (θk1, . . . , θk5)′ ∼ MVN(µ,Σ). In the

covariance matrix Σ = ∆P∆, the correlation matrix P had all off-diagonal entries

ρij = 0.5 for i 6= j, and standard deviations (i.e., diagonal entries) δn = (δ1, . . . , δ5)′ =

(0.4, 1.0, 1.0, 0.3, 0.3)′. In this complete dataset for the RCTs, each trial had 5 arms

with |Ak| = 5. To generate the 30 single-arm studies, we used Equation (4.2) with µs =

(µs
1, . . . , µ

s
5)′ = (−2,−3,−2.5,−2,−1.5)′, and δs = (δs

1, . . . , δ
s
5)′ = (0.4, 1.0, 1.0, 0.3, 0.3)′.

In these single-arm studies, each study only had one arm with |As
j | = 1. The only

difference between EM-EV and the other three scenarios was the pre-specified val-

ues for µn, δn, µs, and δs, as follows: 1) UM-EV (unequal mean and equal vari-

ance) scenario had µn = (−2,−3,−2.5,−2,−1.5)′, µs = (−1,−2.5,−2,−2.5,−2)′, and

δn = δs = (0.4, 1.0, 1.0, 0.3, 0.3)′; 2) EM-UV (equal mean and unequal variance) sce-

nario had µn = µs = (−2,−3,−2.5,−2,−1.5)′, δn = (0.4, 1.0, 1.0, 0.3, 0.3)′, and δs =

(1.2, 0.5, 0.5, 0.9, 0.9)′; 3) UM-UV (unequal mean and unequal variance) scenario had

µn = (−2,−3,−2.5,−2,−1.5)′, µs = (−1,−2.5,−2,−2.5,−2)′, δn = (0.4, 1.0, 1.0, 0.3, 0.3)′,
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and δs = (1.2, 0.5, 0.5, 0.9, 0.9)′.

Once the complete RCTs dataset was generated, we excluded treatment arms to

create a realistic (partially missing) NMA dataset as illustrated in Figure 4.5, with

two types of missingness: 1) missing completely at random (MCAR) and 2) missing at

random (MAR). Under the MCAR mechanism, we kept all treatment 1 data (all 14

RCTs) and then randomly kept data for treatments 2 to 5 data in blocks of 3, 4, 2,

and 5 trials respectively, where the blocks did not overlap. Under the MAR mechanism,

we kept all treatment 1 data and ranked the RCTs in descending order by the rough

estimates of event rates rk1/nk1; then we made treatment 5 available only in the first 5

trials, treatment 4 available in next 2, and so on as in Figure 4.5.

We used the prior specifications in Table 4.2 for all models and obtained posterior

medians and 95% equal-tailed CrIs for these estimands: event risk for the tth treatment

(pt), fixed effect of treatment-specific log-odds (µt), standard deviation of treatment-

specific log-odds (δt), and log odds ratio between the ith and jth treatments (LORij).

To measure the methods’ performance, we used bias, mean squared error (MSE), and

the 95% CrI’s coverage probability (CP) and length (CrIL).

4.5.2 Simulation results

Table 4.4 summarizes the bias and MSE of the posterior median and the coverage

probability of the 95% CrI for the five methods in four different simulation scenarios

under MAR. Due to space limits, instead of presenting the results for each treatment

or each treatment comparison, for each of bias, MSE and CP, we summarized overall

measures across all treatments or across all pairs of comparisons. For example, the entry

with bias as the column and LORij as the row was calculated as
∑

i 6=j |bias(LORij)|.
The formula was similar for MSE:

∑
i 6=j MSE(LORij). To summarize the CPs, the

corresponding value in column CP and row pt was calculated as
∑5

t=1(0.95−CP(pt))+,

where x+ = x if x ≥ 0 and x+ = 0 if x < 0. Table 4.5 presents the simulation results

under MCAR with similar summaries. Figure 4.6 displays the log of CrIL ratio for

four methods (NB, FBV, CPM, and DCP) compared to the CPV method, using box

plots with whiskers representing the 1st and 99th percentiles. Each sub-figure presents

one of the four estimands: µt, δt, pt, and LORij . Also, each panel shows one of the

four scenarios (EM-EV, UM-EV, EM-UV, and UM-UV in columns) under the different
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missingness structures (MCAR and MAR in rows).

Under the MAR mechanism (Table 4.4), the CPV method was much better than the

NB method with less biased estimates, smaller MSE, and comparable CP in all scenarios.

Although the CPV method produced the second largest MSE (smaller only than that

of the NB method), the other three methods did not perform well in some situations.

For example, DCP was better than CPV in terms of bias when mean information from

single-arm studies was reliable (EM-UV and EM-EV); however, when this information

was not reliable (UM-EV and UM-UV), the biases of DCP and CPM were even worse

than that of NB. Similarly, FBV’s performance was worse than CPV’s when variance

information from single-arm studies was not reliable (EM-UV and UM-UV). Similar

performance patterns were present under the MCAR mechanism (Table 4.5), though

the difference between methods was much smaller.

Compared to the NB method, the CPV and FBV methods greatly reduced CrI

length for all estimates under all scenarios (Figure 4.6). Compared to CPV, the relative

length of CrI for CPM varied depending on simulation scenario and estimand. The DCP

method produced the smallest CrI length for all estimates under all scenarios; hence,

when we believe in the reliability of mean information from single-arm studies, the DCP

method would be the first choice.

Overall, the CPV method provided better estimates of log odds ratios and abso-

lute risks than the NB method even when true variances in the single-arm studies

differed from true variances in the RCTs, e.g., the elementwise ratios were δn/δs =

(1/3, 2, 2, 1/3, 1/3)′. The performance of the other three borrowing strategies depended

largely on the reliability of the single-arm studies.

4.6 Summary and discussion

This chapter has proposed and discussed different strategies to incorporate single-arm

studies into arm-based NMA to mitigate the prevalent “lack of information” problem.

We have performed extensive simulation studies to explore whether it is preferable to

choose a fully borrowing strategy or one of the adaptively borrowing methods (commen-

surate prior), and whether to borrow mean information, variance information, or both.

The simulation studies considered scenarios when information from single-arm studies
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could be unreliable. Our proposed CPV method delivered the most robust estimates of

relative and absolute risks in all four simulation scenarios. Specifically, CPV could gain

efficiency even in the presence of modestly discordant variance information, by facili-

tating partial pooling of variance information from single-arm studies, rather than fully

borrowing as in the FBV method. Also, unlike the CPM and DCP methods, ignoring

mean information from the supplemental source could help the CPV method produce

more reliable point estimates with reduced CrI lengths. As far as we know, this is the

first proposal in the field of Bayesian extrapolation analyses to borrow only variance

information. The application to safety of ICIs in cancer research also illustrated poten-

tial gains of the CPV method for estimates related to the treatments IPI high dose and

ATE, by adaptively incorporating variance information from single-arm studies.

We have focused on commensurate priors to synthesize RCTs and single-arm studies

in the AB-NMA; many future studies are possible. First, selecting pre-specified values

for pv, Rv, sv
l , and sv

u in the commensurate prior might lead to some problems [76];

future research is needed specifically for CPV in the AB-NMA. Also, existing methods

cannot assess the importance of single-arm studies in the AB-NMA. We need to develop

methods that separately assess each component of the joint model, of the NMA dataset

and the supplemental source, e.g., by decomposing DIC or LPML into two parts [12],

with one part for the supplemental source and the other part for the NMA dataset

conditional on the supplemental source.

Second, empirical studies should evaluate the reliability of mean and especially vari-

ance information from single-arm studies that may be eligible for use in NMAs. Such

a study could help experts to judge whether incorporating variance is reasonable in

general or in specific subject-matter areas.

Third, alternative Bayesian methods could be used to adaptively incorporate in-

formation from single-arm studies into the AB-NMA. For example, the extrapolation

strategy for meta-analyses proposed by Röver et al. [35] is to express the posterior dis-

tribution as a weighted average of posterior components from four simple models: NB,

FBM, FBV, and FBMV. Although not mentioned by Röver et al. [35], variance infor-

mation only could be borrowed by averaging just two models: NB and FBV. Another

method is the power priors [34,73] that incorporate supplemental information by raising

the likelihood of the single-arm studies to a power α ∈ [0, 1]. This may be problematic,
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however, because mean and variance information is included in the likelihood as a whole

and cannot easily be separated, as in the CPV and CPM methods or in Röver et al. [35].

Finally, Turner et al. [37] proposed to incorporate external evidence in the CB-NMA

by using informative priors specified using previously published evidence for describing

between-trial heterogeneity [60]. A similar idea could be used in the AB-NMA by first

obtaining a posterior distribution for δs
t from single-arm studies, then using this as an

informative prior for δt. However, small Bs
t or Bt may still provide litter improvement

for the estimation.
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Table 4.1: Safety of ICIs on cancer data set. Study index, reference of each study,

treatment details, number of treatment-related grade 3–5 adverse events (r), num-

ber of patients assigned in each treatment arm (n) are presented. ICI=immune

checkpoint inhibitor; NIV=nivolumab; IPI=ipilimumab; PEM=pembrolizumab;

ATE=atezolizumab; ICC=investigator’s choice chemotherapy.

Study Reference Treatment r n

Phase II or III RCT

1 [90] NIV: 3mg/kg every 2 weeks 65 452

1 IPI: 10mg/kg every 3 weeks 210 453

2 [91] NIV: 3mg/kg every 2 weeks 68 313

2 & [92] 2ICIs: NIV+IPI 186 311

2 IPI: 3mg/kg every 3 weeks 87 313

3 [93] PEM: 10mg/kg every 2 weeks 48 278

3 & [94] PEM: 10mg/kg every 3 weeks 46 277

3 IPI: 3mg/kg every 3 weeks 50 256

4 [95] ATE: 1200mg every 3 weeks 90 609

4 ICC 248 578

5 [96] NIV: 3mg/kg every 2 weeks 37 268

5 & [97] ICC 35 102

6 [98] ICI+ICC 103 247

6 & [99] ICC 15 251

7 [100] NIV: 3mg/kg every 2 weeks 32 236

7 ICC 40 111

8 [101] ICI+ICC 205 388

8 ICC 129 361

9 [102] NIV: 3mg/kg every 2 weeks 76 406

9 ICC 147 397

10 [103] NIV: 3mg/kg every 3 weeks 49 267

10 ICC 136 263

11 [104] PEM: 200mg every 3 weeks 40 266

11 ICC 126 255

12 [105] IPI: 10mg/kg every 3 weeks 128 364

12 IPI: 3mg/kg every 3 weeks 68 362

13 [106] PEM: 200mg every 3 weeks 41 154

13 ICC 80 150

14 [107] ICI+ICC 231 478

14 ICC 214 476

15 [108] ICI+ICC 23 59

15 ICC 16 62

16 [109] 2ICIs: NIV+IPI 54 94

16 & [110] IPI: 3mg/kg every 3 weeks 9 46

17 [111] PEM: 2 mg/kg every 3 weeks 43 339

17 PEM: 10 mg/kg every 3 weeks 55 343

17 ICC 114 309

18 [112] ATE: 1200mg every 3 weeks 17 142

18 ICC 55 135

19 [113] NIV: 3mg/kg every 2 weeks 24 206

19 ICC 36 205

20 [114] ICC 45 171

20 PEM: 2 mg/kg every 3 weeks 19 178

Study Reference Treatment r n

20 PEM: 10 mg/kg every 3 weeks 25 179

21 [115] NIV: 3mg/kg every 2 weeks 9 131

21 ICC 75 129

22 [116] NIV: 3mg/kg every 2 weeks 31 287

22 ICC 145 268

23 [117] ATE: 1200mg every 3 weeks 95 459

23 ICC 198 443

24 [118] ICI+ICC 40 84

24 ICC 13 44

25 [119] ICC 25 65

25 ICI+ICC 56 138

26 [120] IPI: 3mg/kg every 3 weeks 7 40

26 IPI: 10mg/kg every 3 weeks 14 42

27 [121] IPI: 3mg/kg every 3 weeks 6 71

27 IPI: 10mg/kg every 3 weeks 18 71

Single arm trials

1 [122] PEM: 200mg every 3 weeks 6 40

2 [123] PEM: 10mg/kg every 2 weeks 5 36

3 [124] IPI: 10mg/kg every 3 weeks 9 25

4 [125] PEM: 2mg/kg every 3 weeks 4 26

5 [126] NIV: 3mg/kg every 2 weeks 20 80

6 [127] ICI+ICC 30 46

7 [128] ICI+ICC 47 86

8 [129] NIV: 3mg/kg every 2 weeks 4 10

9 [130] NIV: 3mg/kg every 2 weeks 2 35

10 [131] NIV: 3mg/kg every 2 weeks 11 65

11 [132] NIV: 3mg/kg every 2 weeks 4 17

12 [133] NIV: 3mg/kg every 2 weeks 17 76

13 [134] NIV: 3mg/kg every 2 weeks 15 74

14 [135] NIV: 3mg/kg every 2 weeks 51 270

15 [136] IPI: 3mg/kg every 3 weeks 3 20

16 [137] NIV: 3mg/kg every 2 weeks 3 23

17 [138] ICI+ICC 11 15

18 [139] IPI: 3mg/kg every 3 weeks 20 53

19 [140] IPI: 3mg/kg every 3 weeks 20 103

20 [141] ATE: 1200mg every 3 weeks 20 119

21 [142] PEM: 200mg every 3 weeks 26 171

22 [143] IPI: 10mg/kg every 3 weeks 39 155

23 [144] ATE: 1200mg every 3 weeks 82 659

24 [145] NIV: 3mg/kg every 2 weeks 22 117

25 [146] ATE: 1200mg every 3 weeks 50 310

26 [147] NIV: 3mg/kg every 2 weeks 39 330

27 [148] IPI: 10mg/kg every 3 weeks 145 393

28 [86] ICI+ICC 9 35
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Figure 4.1: Network plot of the dataset about safety of ICIs in treating cancer. Each

node represents a regimen, and each edge represents a direct comparison between two

regimens. Vertex radius is proportional to the number of RCTs containing the regimen

(dark inner circle) plus the number of single-arm studies of the regimen (light outer

circle); edge thickness is proportional to the number of direct comparisons. Numbers

in parentheses under a regimen name include the number of RCTs and the number of

single-arm studies that investigate the regimen (e.g., 9 RCTs and 11 single-arm studies

investigate nivolumab).
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Table 4.2: Summary of prior specifications and assumptions for µt, δt, µ
s
t, δ

s
t , and the

correlation matrix P, for six different models.

Model
Parameter

µt, t = 1, . . . , T δt, t = 1, . . . , T µs
t, t = 1, . . . , T δs

t , t = 1, . . . , T P = {ρij}

NB µt ∼ N(0, 1002) δt ∼ U(0, 5) NA NA

FBMV µt ∼ N(0, 1002) δt ∼ U(0, 5) µt = µs
t δt = δs

t

FBV µt ∼ N(0, 1002) δt ∼ U(0, 5) µs
t ∼ N(0, 1002) δt = δs

t

CPM

Equation (4.4) with

pm = 0.5, Rm = 2500,

sm
l = 0, and sm

u = 2

δt ∼ U(0, 5) µs
t ∼ N(0, 1002) δs

t ∼ U(0, 5)

ρij = ρ (i 6= j) and

ρ ∼ U(− 1
T−1 , 1)

for all models

CPV µt ∼ N(0, 1002)

Equation (4.6) with

pv = 0.5, Rv = 2500,

sv
l = 0, and sv

u = 2

µs
t ∼ N(0, 1002) δs

t ∼ U(0, 5)

DCP

Equation (4.4) with

pm = 0.5, Rm = 2500,

sm
l = 0, and sm

u = 2

Equation (4.6) with

pv = 0.5, Rv = 2500,

sv
l = 0, and sv

u = 2

µs
t ∼ N(0, 1002) δs

t ∼ U(0, 5)
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Figure 4.2: Directed acyclic graph of the DCP model for the motivating example. �,

observed data or fixed quantities; ©, intermediate unknown parameters; , unknown

parameters with pre-specified prior distributions.

(𝑟1𝑡1 , 𝑟1𝑡2),… , (𝑟27𝑡1 , 𝑟27𝑡2) 𝑟1𝑡
𝑠 , … , 𝑟28𝑡

𝑠

𝑛1𝑡
𝑠 , … , 𝑛28𝑡

𝑠(𝑛1𝑡1 , 𝑛1𝑡2), … , (𝑛27𝑡1 , 𝑛27𝑡2)

𝜽𝟏, … , 𝜽𝟐𝟕 𝜃1𝑡
𝑠 , … , 𝜃28𝑡

𝑠

𝜌 𝜇7, 𝜇8 𝛿1, … , 𝛿6

𝜇1
𝑠, … , 𝜇6

𝑠
𝛿1
𝑠, … , 𝛿6

𝑠

𝜇1, … , 𝜇6 𝛿7, 𝛿8

𝜏1
𝑚, … , 𝜏6

𝑚
𝜄1
𝑚, … , 𝜄6

𝑚 𝜄1
𝑣 , … , 𝜄6

𝑣
𝜏1
𝑣 , … , 𝜏6

𝑣𝑅𝑚
𝑅𝑣



71

Table 4.3: Analysis of safety of ICIs in cancer treatment: comparison of posterior

medians and 95% credible intervals for 6 different models (NB, CPV, FBV, CPM,

DCP, and FBMV), specifically absolute risk of events for the tth treatment (pt), fixed

effect of log-odds for the tth treatment (µt), standard deviation of the log-odds for the

tth treatment (δt), and log odds ratio LORij comparing the ith and jth treatments.

Treatment labels: 1) NIV; 2) IPI low; 3) IPI high; 4) PEM; 5) ATE; 6) ICI+ICC; 7)

2ICIs; and 8) ICC.

Parameter
Posterior median (95% credible interval)

NB CPV FBV CPM DCP FBMV

p1 0.14 (0.11, 0.18) 0.14 (0.12, 0.17) 0.14 (0.12, 0.17) 0.15 (0.12, 0.19) 0.15 (0.12, 0.18) 0.16 (0.14, 0.19)

p2 0.19 (0.13, 0.27) 0.19 (0.14, 0.27) 0.19 (0.13, 0.27) 0.20 (0.14, 0.28) 0.20 (0.15, 0.27) 0.21 (0.15, 0.28)

p3 0.38 (0.25, 0.56) 0.37 (0.27, 0.50) 0.37 (0.27, 0.50) 0.36 (0.27, 0.49) 0.36 (0.28, 0.47) 0.36 (0.28, 0.45)

p4 0.16 (0.12, 0.26) 0.16 (0.13, 0.22) 0.16 (0.13, 0.22) 0.16 (0.13, 0.22) 0.16 (0.13, 0.20) 0.16 (0.13, 0.20)

p5 0.16 (0.09, 0.41) 0.16 (0.11, 0.25) 0.16 (0.11, 0.24) 0.16 (0.12, 0.30) 0.16 (0.12, 0.21) 0.16 (0.12, 0.21)

p6 0.47 (0.42, 0.53) 0.47 (0.41, 0.54) 0.48 (0.39, 0.57) 0.48 (0.42, 0.54) 0.48 (0.41, 0.55) 0.49 (0.42, 0.57)

p7 0.54 (0.14, 0.73) 0.54 (0.14, 0.75) 0.54 (0.16, 0.75) 0.55 (0.16, 0.75) 0.55 (0.16, 0.75) 0.55 (0.17, 0.78)

p8 0.38 (0.31, 0.46) 0.38 (0.31, 0.46) 0.38 (0.31, 0.46) 0.39 (0.32, 0.46) 0.39 (0.32, 0.46) 0.39 (0.32, 0.47)

µ1 −1.84 (−2.19, −1.58) −1.82 (−2.11, −1.60) −1.82 (−2.09, −1.59) −1.75 (−2.08, −1.51) −1.74 (−2.03, −1.54) −1.71 (−1.90, −1.52)

µ2 −1.48 (−2.06, −1.07) −1.48 (−1.99, −1.08) −1.49 (−2.03, −1.06) −1.44 (−1.93, −1.05) −1.42 (−1.87, −1.06) −1.40 (−1.82, −1.04)

µ3 −0.53 (−1.36, 0.33) −0.53 (−1.10, 0.01) −0.54 (−1.10, −0.01) −0.59 (−1.11, −0.03) −0.58 (−1.00, −0.14) −0.60 (−0.99, −0.22)

µ4 −1.67 (−2.18, −1.22) −1.67 (−2.00, −1.34) −1.66 (−1.99, −1.34) −1.69 (−2.02, −1.38) −1.68 (−1.94, −1.42) −1.67 (−1.93, −1.43)

µ5 −1.75 (−3.52, −0.59) −1.69 (−2.36, −1.22) −1.69 (−2.31, −1.23) −1.75 (−2.33, −1.25) −1.71 (−2.09, −1.40) −1.72 (−2.06, −1.42)

µ6 −0.10 (−0.34, 0.14) −0.11 (−0.38, 0.17) −0.10 (−0.47, 0.32) −0.09 (−0.31, 0.16) −0.09 (−0.36, 0.19) −0.04 (−0.32, 0.30)

µ7 0.16 (−4.09, 1.59) 0.18 (−3.84, 1.86) 0.19 (−3.55, 1.92) 0.20 (−3.41, 1.84) 0.21 (−3.37, 1.85) 0.24 (−3.36, 2.23)

µ8 −0.52 (−0.86, −0.18) −0.52 (−0.86, −0.19) −0.52 (−0.86, −0.18) −0.50 (−0.83, −0.17) −0.51 (−0.84, −0.17) −0.49 (−0.82, −0.15)

δ1 0.36 (0.15, 0.83) 0.31 (0.15, 0.59) 0.31 (0.16, 0.56) 0.35 (0.13, 0.81) 0.31 (0.14, 0.58) 0.32 (0.16, 0.57)

δ2 0.43 (0.14, 1.24) 0.41 (0.14, 1.02) 0.45 (0.18, 1.07) 0.42 (0.14, 1.20) 0.40 (0.13, 0.96) 0.44 (0.17, 1.00)

δ3 0.53 (0.18, 2.30) 0.41 (0.16, 1.22) 0.41 (0.18, 1.17) 0.49 (0.18, 1.87) 0.39 (0.16, 1.01) 0.39 (0.18, 0.95)

δ4 0.41 (0.12, 1.38) 0.29 (0.06, 0.75) 0.29 (0.08, 0.71) 0.38 (0.12, 1.11) 0.27 (0.02, 0.66) 0.26 (0.06, 0.63)

δ5 0.65 (0.12, 3.87) 0.32 (0.05, 1.33) 0.31 (0.07, 1.20) 0.49 (0.10, 2.79) 0.27 (0.05, 0.89) 0.27 (0.08, 0.82)

δ6 0.18 (0.04, 0.57) 0.21 (0.04, 0.66) 0.35 (0.10, 0.91) 0.19 (0.04, 0.58) 0.22 (0.05, 0.66) 0.35 (0.11, 0.83)

δ7 0.59 (0.02, 4.52) 0.60 (0.02, 4.49) 0.59 (0.02, 4.47) 0.59 (0.02, 4.46) 0.60 (0.02, 4.44) 0.65 (0.03, 4.52)

δ8 0.73 (0.51, 1.11) 0.71 (0.50, 1.07) 0.72 (0.51, 1.08) 0.72 (0.51, 1.10) 0.71 (0.51, 1.06) 0.71 (0.51, 1.07)

LOR14 −0.17 (−0.72, 0.38) −0.16 (−0.57, 0.23) −0.16 (−0.56, 0.23) −0.07 (−0.50, 0.33) −0.07 (−0.44, 0.26) −0.03 (−0.34, 0.28)

LOR15 −0.08 (−1.26, 1.66) −0.13 (−0.67, 0.55) −0.14 (−0.65, 0.51) −0.01 (−0.57, 0.60) −0.04 (−0.44, 0.38) 0.01 (−0.34, 0.39)

LOR45 0.09 (−1.18, 1.88) 0.03 (−0.55, 0.75) 0.03 (−0.52, 0.71) 0.06 (−0.52, 0.70) 0.04 (−0.37, 0.48) 0.04 (−0.34, 0.46)

LOR23 −0.97 (−1.90, −0.11) −0.95 (−1.63, −0.30) −0.96 (−1.63, −0.30) −0.87 (−1.53, −0.23) −0.85 (−1.41, −0.32) −0.80 (−1.33, −0.29)

LOR53 −1.25 (−3.20, 0.23) −1.17 (−2.01, −0.40) −1.15 (−1.97, −0.42) −1.16 (−1.99, −0.43) −1.13 (−1.71, −0.61) −1.11 (−1.63, −0.63)

DIC 15970.4 15971.0 15970.3 15970.7 15971.4 15970.5

LPML −224.4 −226.3 −222.4 −221.7 −224.3 −226.3
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Figure 4.3: Results for the dataset of the safety of ICIs in cancer treatment: forest plot of posterior estimates of

standard deviations δt and absolute risks pt (posterior median with 95% credible interval). Different colors indicate

different methods. The y-axis represents regimen abbreviations, with Bt +Bs
t in parentheses.
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Figure 4.4: Estimated log odds ratios LORij for grade 3–5 adverse events of ICIs in

cancer patients using the NB (upper right) and CPV (lower left) methods. The LOR

information is visualized as a plate plot, with the gray circle representing the posterior

median of LORij and the inner white circle (not shown if P-value > 0.05) and outer

colored circle representing the 95% CrI. The coloration is determined by the P-value

of LOR, with blue indicating the upper-left treatment is safer than the lower-right

treatment. The diagonal of the plot displays SUCRA of treatments under the NB

(upper right number) and CPV (lower left number) methods.
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Figure 4.5: Missing data structures for the simulation study under MCAR and MAR.

The number in the white-background boxes is the observed number of RCTs for the

treatment in the corresponding column, while the gray background indicates that the

corresponding treatment is not observed in these trials.
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Table 4.4: Simulation results comparing data generated under four different scenarios

(EM-EV, UM-EV, EM-UV, and UM-UV) with the MAR missingness of treatment arms.

The bias and mean squared error of the posterior median and the coverage probability

of the 95% credible interval are summarized for the five methods (NB, CPV, FBV,

CPM, and DCP). For example, the value in the column of bias and the row of LORij is

calculated as
∑

i 6=j |bias(LORij)|; the value in the column of coverage probability and

in the row of LORij is calculated as
∑

i 6=j(0.95− CP(LORij))+.

Parameter Truth
Bias Mean squared error Coverage probability

NB CPV FBV CPM DCP NB CPV FBV CPM DCP NB CPV FBV CPM DCP

Scenario EM-EV

LORij . 1.82 0.35 0.48 0.60 0.25 4.84 3.85 3.83 2.06 2.05 0.00 0.00 0.00 0.00 0.00

µt . 0.40 0.17 0.22 0.18 0.17 1.18 1.01 1.00 0.53 0.54 0.00 0.01 0.02 0.00 0.00

pt . 0.10 0.04 0.05 0.07 0.03 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.03 0.00 0.00

δt . 1.83 0.53 0.69 1.22 0.38 2.17 0.82 0.87 1.37 0.55 0.07 0.05 0.11 0.02 0.05

LOR25 −1.50 −0.41 0.03 −0.05 −0.13 0.01 0.68 0.35 0.38 0.25 0.23 1.00 0.98 0.98 1.00 0.99

p5 0.19 0.03 −0.01 −0.00 0.01 −0.01 0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.99 0.99 0.99

δ5 0.30 0.32 −0.01 0.01 0.16 −0.04 0.21 0.03 0.03 0.08 0.02 0.93 0.99 0.98 0.96 0.99

Scenario UM-EV

LORij . 1.81 0.36 0.46 2.21 2.11 4.83 3.82 3.80 2.63 2.60 0.00 0.00 0.00 0.00 0.03

µt . 0.40 0.17 0.20 0.75 0.71 1.17 1.00 0.99 0.66 0.65 0.00 0.02 0.04 0.00 0.09

pt . 0.10 0.04 0.04 0.11 0.09 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.04 0.03 0.06

δt . 1.83 0.45 0.63 1.13 0.25 2.17 0.76 0.76 1.28 0.51 0.07 0.07 0.18 0.00 0.07

LOR25 −1.50 −0.41 0.03 −0.05 0.34 0.39 0.67 0.35 0.37 0.34 0.36 1.00 0.98 0.99 0.99 0.96

p5 0.19 0.03 −0.00 −0.00 −0.01 −0.02 0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.99 1.00 0.95

δ5 0.30 0.32 0.01 0.03 0.17 −0.02 0.21 0.03 0.03 0.09 0.03 0.93 0.98 0.98 0.96 0.99

Scenario EM-UV

LORij . 1.81 0.39 0.69 0.93 0.28 4.83 3.75 3.56 1.57 1.93 0.00 0.02 0.03 0.00 0.00

µt . 0.40 0.11 0.24 0.23 0.08 1.17 0.97 0.92 0.39 0.50 0.00 0.02 0.04 0.00 0.00

pt . 0.10 0.04 0.11 0.08 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.10 0.00 0.00

δt . 1.83 0.63 1.85 1.26 0.65 2.17 0.86 1.65 1.36 0.65 0.07 0.03 1.82 0.02 0.02

LOR25 −1.50 −0.41 −0.03 −0.01 −0.21 −0.07 0.67 0.36 0.35 0.26 0.23 1.00 0.99 0.99 1.00 0.99

p5 0.19 0.03 0.01 0.03 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.00 0.99 0.99 0.99

δ5 0.30 0.32 0.23 0.48 0.22 0.19 0.21 0.12 0.37 0.12 0.09 0.93 0.94 0.55 0.95 0.95

Scenario UM-UV

LORij . 1.82 0.46 0.94 2.03 1.83 4.84 3.64 3.47 1.74 2.23 0.00 0.03 0.06 0.00 0.03

µt . 0.40 0.14 0.29 0.70 0.64 1.17 0.94 0.91 0.47 0.58 0.00 0.04 0.09 0.00 0.04

pt . 0.10 0.04 0.10 0.11 0.04 0.01 0.01 0.01 0.01 0.01 0.00 0.04 0.13 0.09 0.05

δt . 1.83 0.70 1.83 1.10 0.77 2.17 0.82 1.61 1.27 0.61 0.07 0.02 1.73 0.01 0.03

LOR25 −1.50 −0.41 0.02 0.08 0.26 0.33 0.68 0.34 0.32 0.23 0.28 1.00 0.99 0.99 1.00 0.99

p5 0.19 0.03 0.01 0.03 0.00 −0.01 0.00 0.00 0.00 0.00 0.00 0.99 1.00 1.00 1.00 0.99

δ5 0.30 0.32 0.23 0.49 0.20 0.17 0.21 0.13 0.42 0.11 0.08 0.93 0.95 0.58 0.95 0.96
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Table 4.5: Simulation results comparing data generated under four different scenarios

(EM-EV, UM-EV, EM-UV, and UM-UV) with the MCAR missingness of treatment

arms. The bias and mean squared error of the posterior median and the coverage

probability of the 95% credible interval are summarized for the five methods (NB,

CPV, FBV, CPM, and DCP). For example, the value in the column of bias and in the

row of LORij is calculated as
∑

i 6=j |bias(LORij)|; the value in the column of coverage

probability and in the row of LORij is calculated as
∑

i 6=j(0.95− CP(LORij))+.

Parameter Truth
Bias Mean squared error Coverage probability

NB CPV FBV CPM DCP NB CPV FBV CPM DCP NB CPV FBV CPM DCP

Scenario EM-EV

LORij . 0.57 0.49 0.53 0.34 0.39 4.27 4.04 3.99 1.99 2.11 0.00 0.00 0.00 0.00 0.00

µt . 0.23 0.17 0.19 0.15 0.16 1.09 1.04 1.02 0.50 0.54 0.00 0.01 0.02 0.00 0.00

pt . 0.08 0.03 0.04 0.07 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.02 0.02 0.00 0.00

δt . 1.52 0.46 0.65 1.06 0.32 1.81 0.84 0.89 1.27 0.59 0.07 0.04 0.09 0.03 0.05

LOR25 −1.50 −0.08 −0.05 −0.06 −0.06 −0.06 0.35 0.32 0.32 0.21 0.22 1.00 0.98 0.98 0.99 0.97

p5 0.19 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.97 0.98 1.00 0.98

δ5 0.30 0.26 −0.01 0.01 0.16 −0.04 0.16 0.03 0.03 0.09 0.03 0.93 0.98 0.98 0.95 0.99

Scenario UM-EV

LORij . 0.57 0.48 0.53 2.02 1.38 4.27 3.98 3.92 2.51 2.33 0.00 0.00 0.00 0.00 0.02

µt . 0.23 0.17 0.19 0.63 0.44 1.09 1.02 1.01 0.62 0.59 0.00 0.02 0.04 0.00 0.06

pt . 0.08 0.03 0.04 0.10 0.06 0.01 0.01 0.01 0.01 0.01 0.00 0.03 0.04 0.05 0.07

δt . 1.52 0.39 0.58 1.23 0.25 1.81 0.75 0.76 1.40 0.54 0.07 0.07 0.16 0.05 0.07

LOR25 −1.50 −0.08 −0.05 −0.06 0.25 0.17 0.35 0.31 0.31 0.27 0.24 1.00 0.98 0.98 0.98 0.96

p5 0.19 0.01 0.00 0.00 −0.00 −0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.98 0.98 1.00 0.97

δ5 0.30 0.26 0.00 0.03 0.24 0.02 0.16 0.03 0.03 0.13 0.03 0.93 0.97 0.97 0.93 0.97

Scenario EM-UV

LORij . 0.57 0.31 0.24 0.47 0.38 4.26 3.78 3.64 1.35 1.96 0.00 0.05 0.09 0.00 0.00

µt . 0.23 0.13 0.15 0.19 0.16 1.09 0.97 0.94 0.35 0.51 0.00 0.05 0.07 0.00 0.00

pt . 0.08 0.03 0.08 0.06 0.02 0.01 0.01 0.01 0.01 0.00 0.00 0.05 0.09 0.00 0.00

δt . 1.52 0.65 1.87 1.07 0.69 1.81 0.85 1.70 1.24 0.67 0.07 0.03 1.87 0.04 0.02

LOR25 −1.50 −0.08 −0.03 −0.01 −0.09 −0.08 0.35 0.30 0.30 0.19 0.20 1.00 0.99 0.99 0.99 0.99

p5 0.19 0.01 0.01 0.02 0.01 0.01 0.00 0.00 0.00 0.00 0.00 1.00 0.99 0.99 0.99 0.98

δ5 0.30 0.26 0.21 0.47 0.21 0.18 0.16 0.11 0.35 0.12 0.09 0.93 0.94 0.54 0.94 0.94

Scenario UM-UV

LORij . 0.57 0.29 0.27 2.01 1.30 4.27 3.73 3.57 1.76 2.17 0.00 0.08 0.12 0.00 0.06

µt . 0.23 0.11 0.14 0.64 0.43 1.09 0.96 0.92 0.45 0.56 0.00 0.07 0.10 0.00 0.06

pt . 0.08 0.03 0.08 0.11 0.03 0.01 0.01 0.01 0.01 0.01 0.00 0.07 0.11 0.09 0.05

δt . 1.52 0.71 1.86 1.15 0.79 1.81 0.82 1.65 1.35 0.66 0.06 0.04 1.75 0.05 0.04

LOR25 −1.50 −0.08 −0.01 0.01 0.22 0.17 0.35 0.29 0.28 0.21 0.21 1.00 0.98 0.98 0.99 0.97

p5 0.19 0.01 0.01 0.02 0.01 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.99 0.99 1.00 0.99

δ5 0.30 0.26 0.21 0.48 0.23 0.20 0.16 0.12 0.41 0.14 0.10 0.93 0.93 0.58 0.93 0.93
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Figure 4.6: Simulation results comparing data generated under the four different scenarios (EM-EV, UM-EV, EM-UV,

and UM-UV) with the two different missingness settings (MCAR and MAR). For each estimand, the log of the ratio of

95% credible interval length (CrIL) of each of the four methods (NB, FBV, CPM, and DCP) versus the CPV method

are presented as box plots with whiskers showing the 1st and 99th percentiles (outliers not displayed). Subplots show

results for: (a) fixed effects of log-odds µt; (b) standard deviations of log-odds δt; (c) absolute risks pt; and (d) log odds

ratios LORij .
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Chapter 5

Conclusion

In this chapter, we summarize the contributions of this thesis to analysis of the AB-NMA

with binary outcomes in Section 5.1, and discuss future work in Section 5.2.

5.1 Summary of major findings

In this thesis, we have found two problems in analyzing arm-based Bayesian NMA with

binary outcomes. First, the commonly-used conjugate prior for the covariance matrix,

the inverse-Wishart (IW) distribution, generally leads to underestimation of correla-

tions between treatment-specific log-odds, which are critical for borrowing strength

across treatment arms to estimate treatment effects efficiently and to reduce poten-

tial bias. Second, because many NMAs collect only a few eligible clinical studies, the

number of clinical studies involving each treatment is often small in an NMA, leading

to unstable treatment-specific variance estimates in an AB-NMA when using non- or

weakly-informative priors under an unequal variance assumption. Additional assump-

tions, such as equal (i.e., homogeneous) variances for all treatments, may be used to

remedy this problem but such assumptions may be inappropriately strong.

In Chapter 2, we tried to solve the first problem by studying the IW prior’s impact

on AB-NMA results and comparing it with separation strategies (i.e., separate priors

on variances and correlations) through simulation studies and case studies. For the

separation strategy, different priors on the correlation matrix (e.g. restricted Wishart,

78
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restricted inverse-Wishart, and the equal correlation prior) were also compared. Sepa-

ration strategies, especially with the equal correlation prior, can improve estimation on

correlations and treatment-specific log-odds. In Chapter 3, we proposed variance shrink-

age methods (e.g., a hierarchical half-cauchy prior and a hierarchical inverse-gamma

prior) to solve the second problem. We compared the variance shrinkage methods, ho-

mogeneous variance assumption, heterogeneous variance assumption, and the IW prior

using extensive simulation studies, and found that only the hierarchical half-cauchy

prior is robust under all simulation scenarios. Those results were further illustrated

by a network meta-analysis on organised inpatient care for stroke. In Chapter 4, we

proposed another approach to solve the second problem, incorporating single-arm stud-

ies into arm-based NMA. We performed comprehensive simulations to compare different

borrowing strategies, especially fully borrowing and adaptively borrowing (i.e., fully bor-

rowing on variances vs. commensurate prior on variances), and whether it is desirable

to borrow both mean and variance information, i.e., comparing the double commensu-

rate prior vs. commensurate prior on variances. We found that only the commensurate

prior on variances was robust under all simulation scenarios. We performed a network

meta-analysis on safety of immune checkpoint inhibitors to evaluate the performance of

the proposed approach and to illustrate the importance of variance extrapolation when

the number of clinical studies involving each treatment is relatively small.

Based on these simulation studies, case studies, and discussions, Figure 5.1 presents

a road map for analyzing arm-based Bayesian NMA with binary outcomes. We rec-

ommend the separation strategy with the equal correlation prior rather than the IW

prior for the AB-NMA. In the separation strategy, the traditional choices for the prior

on variances would be either a homogeneous variance assumption or a heterogeneous

variance assumption, and the literature offers no criteria for choosing or distinguishing

between these two assumptions. We propose one criterion to determine choices for vari-

ance priors: whether any treatment t ∈ {1, . . . T} in the NMA has less than 6 (Bt ≤ 5)

clinical studies involving this treatment. If not, then we could simply choose the het-

erogeneous variance assumption with a uniform prior U(0, 5) for each treatment-specific

standard deviation δt. On the other hand, if Bt ≤ 5 we could either use hierarchical

half-Cauchy prior proposed in Chapter 3 to shrink the variance in a data-dependent

way if no single-arm studies are available, or we could use the commensurate prior on
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variances proposed in Chapter 4 to bridge variance information between randomized

controlled trials and single-arm studies.

5.2 Future work

Despite the contributions of this road map to the arm-based Bayesian NMA with binary

outcomes, future work remains.

1. Applying the variance shrinkage method in arm-based Bayesian NMA with other

types of outcomes. In Chapter 3, we discussed variance shrinkage method only

for NMA with binary outcomes. However, shrinkage is feasible for AB-NMA with

other types of outcomes. For instance, the observed data for NMA with continuous

outcomes are Dk = {(ykt, skt, nkt), t ∈ Ak}, where ykt, skt, and nkt are the sample

mean, its standard error, and the sample size for the tth treatment in the kth

study, respectively. The model for AB-NMA with continuous outcomes [65] is:

Level I: ykt ∼ N(θkt, s
2
kt/nkt), t ∈ Ak, k = 1, . . . ,K;

Level II: (θk1, . . . , θkT )′ ∼MVN(µ,Σ),
(5.1)

where θkt is the underlying mean outcome of the tth treatment in the kth study.

Comparing Equations (3.1) and (5.1), the difference is on Level I (within study);

because shrinkage is applied to δt, t = 1, . . . ,K, at the between-study level, it can

be applied to AB-NMA with various outcomes simply by modifying the likelihood

and link functions. Nevertheless, additional case studies and simulations need to

be performed to examine the performance of the variance shrinkage method in

other settings.

2. Applying the variance extrapolation method in arm-based Bayesian NMA with

other types of outcomes. Like the variance shrinkage method, various borrowing

strategies discussed in Chapter 4, especially the commensurate prior on variances,

could be applied to NMA with other types of outcomes.

3. Applying the separation strategy with RIW and EQ priors on correlation matrix

in contrast-based Bayesian NMA. In CB-NMA, given a T -treatment NMA, the
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observed dataset {D1, . . . , DK} with Dk = {(rkt, nkt); t ∈ Ak} can be generated

by the following specification [5]:

rkt ∼ Binomial(nkt, pkt), t ∈ Ak, k = 1, . . . ,K;

logit(pk2) = αb ∼ N(µα, σ
2
α);

logit(pkj)− logit(pk2) = δk2j ∼ N(d2j , ς
2
2j), j = 1, 3, 4, . . . , T ;

corr(δk2i, δk2j) = γ
(2)
ij , i 6= j 6= 2,

(5.2)

where treatment 2 is assumed to be the baseline for all studies for simplicity. The

baseline treatment effect αb is generally treated as a nuisance parameter, though

here we assume it follows a normal distribution N(µα, σ
2
α) to help readers under-

stand the connection between AB-NMA and CB-NMA. The random effect δk2j

is the study-specific relative effect of treatment j vs. the baseline treatment 2,

which follows a normal distribution with overall mean effect d2j and between-trial

variance ς2
2j . Also, γ

(2)
ij denotes the correlation between the two contrasts i vs. 2

and j vs. 2 in the kth study. Note that for all treatment pairs (m,n), the ran-

dom effects {δkmn, k = 1, . . . ,K} are conditionally independent given the true

dmn and ς2
mn; this is the exchangeability assumption for the relative effects. Ob-

viously, this model can be written as one form of the AB model in Equation (2.1)

with mean (µ1, µ2, µ3, . . . , µT ) = (µα + d21, µα, µα + d23, . . . , µα + d2T ), variances

(δ2
1 , δ

2
2 , δ

2
3 , . . . , δ

2
T ) = (σ2

α+ς2
21, σ

2
α, σ

2
α+ς2

23, . . . , σ
2
α+ς2

2T ), and correlation matrix P

with entries (ρ2i, ρij) =

(
σα√
σ2
α+ς22i

,
σ2
α+γ

(2)
ij ς2iς2j√

(σ2
α+ς22i)(σ

2
α+ς22j)

)
for i 6= j 6= 2. As we can see,

the T ×T covariance matrix in the AB model is closely related to the CB model’s

(T −1)× (T −1) covariance matrix, so we can probably apply corresponding RIW

and EQ priors in the CB approach. In Lu and Ades’ paper [6], they discussed the

separation strategy for CB-NMA’s (T − 1)× (T − 1) covariance matrix. However,

they only proposed spherical parameterization methods for the correlation matrix,

and as we discussed in Section 2.6 the marginal distributions of the ρij depend

strongly on the indexes i and j in this parameterization approach.

4. Applying the variance shrinkage and the variance extrapolation methods in CB-

NMA. As we discussed in Chapter 1, and as we can see from Equation (5.2), if

we have too few comparisons between treatments 2 and i (i.e., less than 5, which
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is quite prevalent in NMA), then as with AB-NMA, the posterior distribution of

ς2i will certainly be dominated by prior information. We could apply the idea

of variance shrinkage and variance extrapolation methods to CB-NMA. However,

as discussed in Lu and Ades [6], the triangle inequalities on contrast standard

deviations

|ς2i − ς2j | ≤ ςij ≤ ς2i + ς2j , i 6= j 6= 2

could complicate prior specifications.

5. Information borrowing strategies on meta-regression and network meta-regression.

We discussed the different information borrowing strategies in AB-NMA by com-

paring fully borrowing and adaptively borrowing, and determing whether to bor-

row both mean and variance information. On top of the models considered in ordi-

nary meta-analyses, meta-regression and network meta-regression consider extra

covariates. We could also discuss potential strategies for information extrapolation

in these models, especially for covariates and covariates adjusted effects.
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Figure 5.1: Road map for arm-based Bayesian NMA with binary outcomes

Arm-based Network 
Meta-analyses

Original approach:
Inverse-Wishart Prior

Recommended approach: separation strategy with 
EQ prior for correlation matrix

Homogeneous 
variance approach

Heterogeneous variance 
approach If we have 𝐵𝑡 ≤ 5

Original approach Recommended approach

Yes: If we have single-
arm trials available

Yes: variance extrapolation 
with commensurate prior 
on variance

No: variance shrinkage

No: probably heterogeneous 
variance approach
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Appendix A

Supplementary Materials

A.1 Diagnostic plots for applying the HHC method in the

case study

A.1.1 Absolute risks pt

Figure A.1: Trace plots of absolute risks pt by chain
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Figure A.2: Autocorrelation plots of absolute risks pt by chain
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A.1.2 Standard deviations δt

Figure A.3: Trace plots of standard deviations δt by chain
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Figure A.4: Autocorrelation plots of standard deviations δt by chain
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A.1.3 Marginal log odds ratios mLORij

Figure A.5: Trace plots of log odds ratios mLORij by chain
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Figure A.6: Autocorrelation plots of log odds ratios mLORij by chain
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A.2 Results for hierarchical inverse-gamma (HIG) method

We further considered another shrinkage prior mentioned in Section 3.6: hierarchical

inverse-gamma prior. We compared the following five methods in the case study and

simulation studies.

• Model 1: The inverse-Wishart (IW) prior, the conjugate prior for the multivariate

normal. The prior for the covariance matrix Σ is IWT (I, T + 1), where T + 1 is

the degrees of freedom and the scale matrix is the T × T identity I.

• Model 2: The heterogeneous variance assumption (UV). We use the separation

strategy with equal correlations (all ρij = ρ) but unequal variances, and put the

priors U(− 1
T−1 , 1) on ρ and U(0, 5) on each δt.

• Model 3: The variance shrinkage method (HHC). It shares the same setting with

Model 2 except the HHC prior HHC(0, 5) is used for δt.

• Model 4: The homogeneous variance assumption (EV). We use the separation

strategy with equal correlations and equal variances (all δt = δ). Similarly, we put

U(− 1
T−1 , 1) on ρ and U(0, 5) on δ.

• Model 5: The hierarchical inverse-gamma (HIG) method. It shares the same

setting with Model 2 except the HIG prior HIG(0, 1) is used for δt.
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Table A.1: Organized inpatient care for stroke data: Comparing posterior median and

95% credible intervals under 5 models (IW, UV, HHC, HIG and EV); mLORij compares

the ith and jth treatment, absolute risk of events for the tth treatment (pt), and standard

deviation of the tth treatment (δt). Treatment labels: 1) stroke ward, 2) general medical

ward, 3) mixed rehabilitation ward, 4) mobile stroke team, and 5) acute (semi-intensive)

ward.

Point Estimate (95% Credible Interval)

Parameter IW UV HHC HIG EV

mLOR12 −0.23 (−0.50, 0.03) −0.19 (−0.39, −0.03) −0.20 (−0.38, −0.03) −0.21 (−0.38, −0.04) −0.23 (−0.41, −0.06)

mLOR13 −0.13 (−0.59, 0.34) −0.07 (−0.41, 0.26) −0.08 (−0.39, 0.24) −0.11 (−0.42, 0.20) −0.21 (−0.52, 0.09)

mLOR14 −0.42 (−0.97, 0.10) −0.36 (−0.69, −0.06) −0.38 (−0.68, −0.07) −0.39 (−0.70, −0.08) −0.42 (−0.76, −0.08)

mLOR15 1.78 (0.39, 3.16) 1.03 (−1.56, 2.31) 1.53 (0.03, 2.53) 1.27 (0.01, 2.30) 1.03 (0.20, 2.00)

mLOR23 0.10 (−0.34, 0.56) 0.13 (−0.19, 0.42) 0.12 (−0.17, 0.43) 0.10 (−0.20, 0.39) 0.02 (−0.29, 0.32)

mLOR24 −0.19 (−0.72, 0.31) −0.18 (−0.46, 0.12) −0.17 (−0.46, 0.12) −0.18 (−0.46, 0.11) −0.19 (−0.51, 0.14)

mLOR25 2.01 (0.62, 3.38) 1.24 (−1.36, 2.51) 1.73 (0.23, 2.73) 1.48 (0.21, 2.50) 1.27 (0.42, 2.24)

mLOR34 −0.30 (−0.91, 0.32) −0.30 (−0.66, 0.10) −0.30 (−0.64, 0.05) −0.28 (−0.63, 0.09) −0.21 (−0.64, 0.22)

mLOR35 1.91 (0.48, 3.30) 1.12 (−1.49, 2.40) 1.61 (0.09, 2.62) 1.38 (0.11, 2.41) 1.25 (0.37, 2.25)

mLOR45 2.20 (0.75, 3.62) 1.41 (−1.21, 2.69) 1.91 (0.38, 2.92) 1.66 (0.37, 2.69) 1.46 (0.57, 2.48)

p1 0.22 (0.17, 0.28) 0.22 (0.18, 0.28) 0.22 (0.18, 0.27) 0.22 (0.18, 0.27) 0.22 (0.18, 0.27)

p2 0.26 (0.21, 0.32) 0.26 (0.21, 0.32) 0.26 (0.21, 0.31) 0.26 (0.21, 0.31) 0.26 (0.21, 0.31)

p3 0.24 (0.18, 0.33) 0.24 (0.19, 0.30) 0.23 (0.19, 0.29) 0.24 (0.19, 0.30) 0.25 (0.19, 0.33)

p4 0.30 (0.21, 0.41) 0.30 (0.24, 0.36) 0.29 (0.24, 0.35) 0.29 (0.24, 0.36) 0.30 (0.22, 0.38)

p5 0.05 (0.01, 0.16) 0.09 (0.03, 0.58) 0.06 (0.02, 0.22) 0.07 (0.03, 0.22) 0.09 (0.04, 0.19)

δ (Equal Variance) . . . . 0.63 (0.48, 0.85)

δ1 0.73 (0.54, 1.03) 0.74 (0.54, 1.09) 0.70 (0.51, 0.98) 0.70 (0.51, 0.99) .

δ2 0.69 (0.50, 0.97) 0.74 (0.52, 1.04) 0.68 (0.49, 0.96) 0.67 (0.49, 0.95) .

δ3 0.51 (0.31, 0.91) 0.35 (0.08, 0.81) 0.28 (0.04, 0.67) 0.39 (0.18, 0.74) .

δ4 0.52 (0.32, 0.99) 0.39 (0.12, 0.86) 0.31 (0.08, 0.68) 0.39 (0.19, 0.74) .

δ5 0.60 (0.33, 1.37) 0.54 (0.07, 4.20) 0.23 (0.01, 1.43) 0.44 (0.17, 1.34) .

DIC 99.99 93.66 90.27 89.94 94.53

D̄ 53.93 56.00 54.50 54.41 58.68

pD 46.05 37.66 35.77 35.53 35.86

WAIC 6742.95 6741.44 6738.99 6739.40 6747.61



109

Table A.2: Simulation results for data generated under scenario I (heterogeneous vari-

ance) with the four different missingness settings (MCAR1, MCAR2, MAR1, MAR2),

specifically bias of the posterior median (Biasµ̃), mean squared error of the posterior

median (MSEµ̃), and coverage probability (CP) of the 95% credible intervals for 5 dif-

ferent priors (IW, HHC, HIG, UV, and EV). Specifically as an example, the table entry

in column Biasµ̃ and row cLORij was defined as
∑

i 6=j |Biasµ̃(cLORij)|. Similarly, the

table entry in column CP and row cLORij was defined as
∑

i 6=j(0.95−CP(cLORij))+.

IW HHC HIG UV EV

Parameter Truth Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP

MCAR1

cLORij . 0.50 2.58 0.00 0.32 2.48 0.01 0.46 2.44 0.01 0.44 2.79 0.00 0.75 2.69 0.00

mLORij . 0.80 2.22 0.00 0.07 2.31 0.02 0.46 2.16 0.00 1.11 2.59 0.00 1.69 2.34 0.00

pt . 0.02 0.00 0.02 0.02 0.00 0.03 0.02 0.00 0.03 0.07 0.01 0.00 0.06 0.01 0.05

δt . 0.90 0.34 1.22 0.15 0.49 0.02 0.62 0.35 0.74 1.29 1.21 0.12 1.97 1.09 3.31

mLOR34 −1.40 −0.04 0.15 0.99 0.01 0.16 0.97 −0.02 0.14 0.98 0.15 0.20 0.99 −0.04 0.14 0.99

p5 0.06 0.00 0.00 0.96 0.00 0.00 0.95 0.00 0.00 0.95 0.01 0.00 0.96 0.01 0.00 0.97

ρ35 0.50 −0.45 0.22 1.00 −0.01 0.04 0.98 −0.04 0.04 0.98 0.02 0.04 0.98 −0.11 0.05 0.97

MCAR2

cLORij . 0.68 5.34 0.02 0.64 5.44 0.00 0.57 4.75 0.01 0.78 6.63 0.00 0.87 4.76 0.01

mLORij . 1.02 4.46 0.00 0.53 4.43 0.00 0.91 4.12 0.00 2.82 4.58 0.00 1.90 4.10 0.10

pt . 0.04 0.01 0.02 0.04 0.01 0.01 0.03 0.01 0.01 0.15 0.02 0.00 0.07 0.01 0.07

δt . 0.93 0.31 1.44 0.19 1.06 0.00 0.64 0.35 0.36 3.22 3.71 0.11 1.82 0.95 3.23

mLOR34 −1.40 −0.10 0.35 0.99 −0.05 0.34 0.99 −0.10 0.33 0.99 0.20 0.35 1.00 −0.10 0.32 0.99

p5 0.06 0.00 0.00 0.98 0.01 0.00 0.96 0.00 0.00 0.96 0.03 0.00 0.98 0.01 0.00 0.98

ρ35 0.50 −0.49 0.24 1.00 −0.03 0.04 1.00 −0.08 0.05 0.98 −0.03 0.04 1.00 −0.21 0.07 0.94

MAR1

cLORij . 2.78 3.61 0.00 0.91 3.42 0.00 2.26 3.45 0.00 7.02 10.86 0.03 6.99 8.10 0.73

mLORij . 2.70 2.90 0.00 0.60 2.44 0.00 1.50 2.46 0.01 3.75 4.48 0.05 5.55 5.40 0.70

pt . 0.06 0.01 0.01 0.03 0.01 0.01 0.05 0.01 0.01 0.17 0.02 0.07 0.19 0.03 0.19

δt . 1.02 0.41 1.25 0.30 0.61 0.01 0.78 0.45 0.83 2.72 3.09 0.33 2.18 1.33 3.35

mLOR34 −1.40 0.42 0.39 0.99 0.02 0.22 0.99 −0.22 0.28 0.99 −0.44 0.48 0.99 −0.90 1.14 0.85

p5 0.06 0.02 0.00 0.98 0.01 0.00 0.97 0.00 0.00 0.98 −0.00 0.00 0.99 −0.01 0.00 0.96

ρ35 0.50 −0.49 0.25 1.00 0.01 0.04 1.00 0.06 0.05 1.00 0.29 0.11 0.94 0.18 0.08 0.91

MAR2

cLORij . 4.81 7.17 0.00 0.80 6.41 0.00 1.63 5.68 0.02 10.52 21.84 0.00 7.50 11.34 0.38

mLORij . 4.57 5.92 0.00 0.99 4.93 0.01 1.79 4.76 0.00 6.75 9.04 0.00 6.46 8.40 0.48

pt . 0.09 0.01 0.01 0.04 0.01 0.01 0.06 0.01 0.01 0.33 0.06 0.01 0.24 0.04 0.11

δt . 1.00 0.33 1.58 0.19 1.07 0.01 0.68 0.37 0.43 3.90 4.90 0.15 2.02 1.16 3.24

mLOR34 −1.40 0.60 0.65 1.00 0.01 0.35 1.00 −0.24 0.45 0.99 −0.84 1.15 1.00 −1.02 1.61 0.90

p5 0.06 0.03 0.00 0.99 0.01 0.00 0.99 0.01 0.00 0.98 0.00 0.00 1.00 −0.01 0.00 0.95

ρ35 0.50 −0.50 0.25 1.00 −0.00 0.03 1.00 0.04 0.05 1.00 0.18 0.06 1.00 0.14 0.06 0.95
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Table A.3: Simulation results for data generated under scenario II (homogeneous vari-

ance) with the four different missingness settings (MCAR1, MCAR2, MAR1, MAR2),

specifically bias of the posterior median (Biasµ̃), mean squared error of the posterior

median (MSEµ̃), and coverage probability (CP) of the 95% credible intervals for 5 dif-

ferent priors (IW, HHC, HIG, UV, and EV). Specifically as an example, the table entry

in column Biasµ̃ and row cLORij was defined as
∑

i 6=j |Biasµ̃(cLORij)|. Similarly, the

table entry in column CP and row cLORij was defined as
∑

i 6=j(0.95−CP(cLORij))+.

IW HHC HIG UV EV

Parameter Truth Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP Biasµ̃ MSEµ̃ CP

MCAR1

cLORij . 0.37 2.04 0.00 0.22 1.95 0.00 0.28 1.89 0.00 0.39 2.22 0.00 0.23 1.80 0.01

mLORij . 0.11 1.74 0.00 0.08 1.80 0.00 0.09 1.67 0.00 0.88 2.07 0.00 0.18 1.64 0.01

pt . 0.02 0.00 0.00 0.02 0.00 0.02 0.02 0.00 0.01 0.06 0.00 0.00 0.01 0.00 0.02

δt . 0.51 0.09 0.00 0.10 0.36 0.00 0.16 0.15 0.00 1.12 0.97 0.11 0.10 0.05 0.00

mLOR34 −1.44 −0.00 0.14 0.99 −0.00 0.14 0.97 0.00 0.13 0.98 0.09 0.16 0.99 −0.02 0.13 0.95

p5 0.05 0.00 0.00 0.98 0.00 0.00 0.96 0.00 0.00 0.97 0.01 0.00 0.97 0.00 0.00 0.96

ρ35 0.50 −0.47 0.23 1.00 0.00 0.04 0.99 −0.01 0.05 0.98 0.03 0.05 0.99 −0.04 0.05 0.97

MCAR2

cLORij . 0.60 3.89 0.00 0.53 3.76 0.00 0.55 3.55 0.00 0.70 5.15 0.00 0.50 3.39 0.19

mLORij . 0.28 3.30 0.00 0.35 3.29 0.00 0.36 3.02 0.00 3.02 4.09 0.00 0.44 3.08 0.17

pt . 0.03 0.01 0.00 0.03 0.01 0.02 0.03 0.01 0.01 0.15 0.02 0.00 0.02 0.01 0.05

δt . 0.62 0.11 0.00 0.07 0.58 0.03 0.30 0.17 0.00 3.25 3.65 0.11 0.08 0.05 0.04

mLOR34 −1.44 −0.03 0.35 0.99 −0.03 0.33 1.00 −0.03 0.31 0.99 0.22 0.36 1.00 −0.07 0.32 0.93

p5 0.05 0.00 0.00 0.98 0.00 0.00 0.96 0.00 0.00 0.98 0.03 0.00 0.98 0.00 0.00 0.93

ρ35 0.5 −0.50 0.25 1.00 −0.00 0.05 0.99 −0.01 0.05 0.99 0.01 0.05 0.99 −0.03 0.05 0.98

MAR1

cLORij . 3.24 2.89 0.00 0.17 2.40 0.00 0.58 2.22 0.00 5.56 7.32 0.00 0.40 1.97 0.02

mLORij . 3.30 2.65 0.00 0.43 2.07 0.00 0.36 1.89 0.00 3.19 3.70 0.01 0.42 1.78 0.01

pt . 0.07 0.00 0.00 0.02 0.01 0.02 0.02 0.00 0.01 0.15 0.02 0.03 0.01 0.00 0.02

δt . 0.48 0.08 0.00 0.07 0.40 0.00 0.25 0.16 0.00 2.07 2.02 0.29 0.08 0.04 0.00

mLOR34 −1.44 0.53 0.41 0.97 0.05 0.20 0.99 −0.04 0.19 1.00 −0.48 0.53 0.99 0.07 0.16 0.98

p5 0.05 0.02 0.00 0.97 0.01 0.00 0.97 0.00 0.00 0.99 −0.00 0.00 1.00 0.00 0.00 0.97

ρ35 0.50 −0.50 0.25 1.00 −0.02 0.04 1.00 0.01 0.04 1.00 0.28 0.10 0.98 −0.08 0.05 1.00

MAR2

cLORij . 4.62 5.04 0.00 0.37 4.38 0.00 0.59 3.64 0.00 8.38 15.75 0.00 0.58 3.22 0.00

mLORij . 4.44 4.45 0.00 0.71 3.61 0.00 0.31 3.04 0.00 5.30 7.03 0.00 0.59 2.92 0.01

pt . 0.09 0.01 0.00 0.02 0.01 0.02 0.03 0.01 0.00 0.28 0.05 0.00 0.01 0.01 0.01

δt . 0.60 0.10 0.00 0.07 0.57 0.02 0.36 0.17 0.00 3.77 4.49 0.13 0.08 0.05 0.00

mLOR34 −1.44 0.71 0.74 0.99 0.10 0.39 1.00 −0.04 0.34 1.00 −0.62 0.91 1.00 0.07 0.30 0.96

p5 0.05 0.03 0.00 0.99 0.01 0.00 0.99 0.00 0.00 0.99 0.01 0.00 1.00 0.00 0.00 0.96

ρ35 0.50 −0.50 0.25 1.00 −0.02 0.04 1.00 −0.01 0.05 1.00 0.12 0.06 0.99 −0.06 0.05 0.99



Appendix B

Proofs of Theorems

B.1 Definition of restricted Wishart distribution and its

properties

In this appendix, we want to show the equivalence of restricted Wishart distribution and

LKJ distribution [43] in some sense. We start with the definition of Wishart distribution.

As we know, if T × 1 vectors ν1,ν2, . . . ,νK are independent random variables that are

multivariate normally distributed with mean 0 and variance Σ, and we have a T ×K
matrix ν = (ν1,ν2, . . . ,νK), then the T -dimensional positive definite matrix S = νν ′ (ν ′

is the transpose of ν) follows the Wishart distribution with degree of freedom K > T−1

and positive definite scale matrix Σ:

S ∼WT (K,Σ) ≡ {2
1
2
KTΓT (

1

2
K)}−1|Σ|−

1
2
K |S|

1
2

(K−T−1) exp(−1

2
tr(Σ−1S)) (B.1)

where | • | is the determinant, tr is the trace, and ΓT is the multivariate (T-variate here)

gamma function. After that, we can formally define the restricted Wishart distribution

based on the Wishart distribution:

Definition 1. A positive definite correlation matrix R follows the restricted Wishart

distribution RWT (m), if R = ∆Σ∆, where Σ ∼ WT (m,Ψ) with Ψ being diagonal

matrix with diagonal entries ψ11, ψ22, . . . , ψTT , ∆ is a diagonal matrix with the ith

diagonal element σ
−1/2
ii and σii is the ith diagonal element of Σ.

Theorem 1. If R follows the restricted Wishart distribution RWT (m), then

111
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(a) the joint distribution of R is:

f(R) = bT (m)|R|
m−T−1

2 (B.2)

where

bT (m) =
ΓT (m2 )

ΓT (m2 )
(B.3)

is the normalizing constant. When m = T +1, R becomes a jointly uniform distribution

on a compact subspace of the T (T − 1)/2 dimensional hypercube [−1, 1]T (T−1)/2.

(b) this normalizing constant bT (m) matches the following alternative formula given by

Lewandowski et al. [43]:

cT = 2
∑T−1
k=1 (m−k−1)(k−T ) ×

T−1∏
k=1

[B(
m− k

2
,
m− k

2
)]k−T (B.4)

where B(•, •) is the beta function.

(c) the marginal distribution of each element ρij (i 6= j) in matrix R is

f(ρij) =
Γ(m2 )

Γ(m−1
2 )Γ(1

2)
(1− ρ2

ij)
m−3

2 , −1 ≤ ρij ≤ 1 (B.5)

which is exactly the Beta(m−1
2 , m−1

2 ) distribution on [−1, 1], and will be Beta(T2 ,
T
2 )

when f(R) = bT (T + 1).

Proof of Theorem 1. (a). We first calculate the Jacobian matrix of the transformation

Σ→ (σ11, . . . , σTT ,R)

J1 = J(σ11 = σ11, . . . , σTT = σTT , ρij =
σij√
σiiσjj

) =

[
IT 0

∗ C

]
(B.6)

where σij is the entry of matrix Σ, IT is the T -dimensional identity matrix, C is the

T (T − 1)/2 dimensional diagonal matrix with entries 1/
√
σiiσjj (i 6= j). Since J1 is a

lower triangular matrix, its determinant |J1| equals
∏T
i=1 σ

−(T−1)/2
ii and sub-matrix in

(B.6) given as ∗ need not be derived. Then, given Σ ∼ WT (m,Ψ), we can derive the

joint distribution of R and (σ11, . . . , σTT ) is

f(R, σ11, . . . , σTT ) = f(Σ)|J1|−1

=
ΓT (m2 )|R|

m−T−1
2

ΓT (m2 )

T∏
i=1

{
σ
m
2
−1

ii exp(− σii
ψii

)

2
m
2 ψ

m
2
ii Γ(m2 )

}
(B.7)
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Clearly, σii
ψii
, i = 1, . . . , T are independently distributed as chi-square with m degrees of

freedom. Also, the density of P is

f(R) =
ΓT (m2 )

ΓT (m2 )
|R|

m−T−1
2 (B.8)

(b). We just need to prove function f(T,m) = bT (m)/cT equals 1 for any integer T

(≥ 2) and m > T−1. Given ΓT (m2 ) = πT (T−1)/4
∏T
k=1 Γ(m2 + 1−k

2 ) (James [149], p. 483),

we can simplify f(T,m) as

f(T,m) =
ΓT (m2 )

ΓT (m2 )

T−1∏
k=1

[B(
m− k

2
,
m− k

2
)]T−k × 2

∑T−1
k=1 (m−k−1)(T−k)

=
ΓT (m2 )

πT (T−1)/4Γ(m2 )
∏T−1
k=1 Γ(m−k2 )

T−1∏
k=1

[
Γ2(m−k2 )

Γ(m− k)
]T−k × 2

∑T−1
k=1 (m−k−1)(T−k)

=

T−1∏
k=1

[2(m−k−1)(T−k) ×
Γ(m2 )

πT/4
Γ2T−2k−1(m−k2 )

ΓT−k(m− k)
]

(B.9)

We prove that (B.9) equals 1 using mathematical induction. Start with T = 2, then for

any m > 1, f(2,m) reduces to

2m−2π−
1
2

Γ(m2 )Γ(m−1
2 )

Γ(m− 1)
≡ 1 (B.10)

which is known as a special case (k = 1) of the identity Γ(m−k) ≡ 2m−k−1π−1/2Γ(m−k2 )Γ(m−k+1
2 )

(Abramowitz and Stegun [150], p. 483) . Assume f(T,m) = 1 holds for T = t. It must

then be shown that f(t+ 1,m) = 1, ∀m > T − 1, where

f(t+ 1,m) =

t∏
k=1

[2(m−k−1)(t+1−k) ×
Γ(m2 )

π(t+1)/4

Γ2t−2k+1(m−k2 )

Γt+1−k(m− k)
]

= [2m−t−1 Γ(m2 )

π(t+1)/4

Γ(m−t2 )

Γ(m− t)
]×

t−1∏
k=1

[2(m−k−1)(t+1−k) ×
Γ(m2 )

π(t+1)/4

Γ2t−2k+1(m−k2 )

Γt+1−k(m− k)
]

= [2m−t−1 Γ(m2 )

π(t+1)/4

Γ(m−t2 )

Γ(m− t)
]× f(t,m)×

t−1∏
k=1

[2m−k−1 1

π1/4

Γ2(m−k2 )

Γ(m− k)
]

(B.11)
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Using the same identity Γ(m − k) ≡ 2m−k−1π−1/2Γ(m−k2 )Γ(m−k+1
2 ) multiple times,

f(t+ 1,m) is

f(t+ 1,m) = [
1

π(t−1)/4

Γ(m2 )

Γ(m−t+1
2 )

]× 1×
t−1∏
k=1

[
1

π−1/4

Γ(m−k2 )

Γ(m−k+1
2 )

]

=
t∏

k=1

[
Γ(m−k+1

2 )

Γ(m−k+1
2 )

]

= 1

(B.12)

(c). According to Eaton [151] (p. 256), if Σ ∼ WT (m,Ψ), then any T1 × T1 principal

sub-matrix Σ1 of Σ has following distribution

Σ1 ∼WT1(m,Ψ1) (B.13)

with Ψ1 being the T1 × T1 principal sub-matrix of Ψ. By applying it to the (B.2), any

T1 × T1 principal sub-matrix R1 of R has density function bT1(m)|R1|
m−T1−1

2 . Simply

let T1=2, we could obtain the marginal distribution of ρij

f(ρij) =
Γ2(m2 )

Γ2(m2 )
(1− ρ2

ij)
m−3

2 , −1 ≤ ρij ≤ 1 (B.14)


