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Abstract 

 
 Rheological tissue parameters have been shown to correlate with specific 

histological characteristics related to different pathologies and specifically to kidney 

rejection. For decades, kidney function tests and biopsy have been used as the main 

assessment methods for allograft health. With this work we are creating novel approaches 

for reliable and non-invasive allograft assessment tools by using shear wave elastography 

measurements with different machine learning algorithms to model the mechanical 

properties and the pathological changes in the tissue. We also propose to interpret the 

findings leveraging game theory analysis of the model inputs and outputs to understand 

what parameters are contributing most for the model prediction. We also intend to better 

comprehend the progress of kidney rejection from microscopic to macroscopic scales 

using histology-based models of shear wave propagation. Finally, we propose to create a 

fast, reliable, and non-invasive allograft assessment method by analyzing the shear wave 

propagation with minimal signal processing, leveraging convolutional neural networks 

architectures to retrieve the features from two-dimensional Fourier transform analysis of 

shear wave data, without the use of complex mathematical and physical models.   
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Chapter 1 – Introduction 
 

1.1 Background 

 

1.1.1 Chronic Kidney Disease 

 

 Proper kidney function is critical for maintaining body homeostasis. Chronic kidney 

disease (CKD), also called chronic kidney failure, describes a long-term gradual decrease 

in function of the kidneys. In its final stages, CKD can progress to end-stage renal disease 

(ESRD), which is optimally treated by kidney transplant, with hemodialysis as a temporary 

option [1]. Although transplant offers better outcomes and patient quality of life, it may not 

be a life-long solution due to rejection and other systemic conditions. Kidney allografts can 

also suffer from CKD and ESRD. At the point of failure, the patient ultimately has to return 

to hemodialysis and transplant queues.    

 The fact that patients can outlive their allografts is critical, as in 2018 over 90,000 

patients were waitlisted to receive transplantation in the Unites States alone [2]. Therefore, 

the allograft health assessment is crucial to prolong allograft survival and patients’ quality 

of life and reduce care costs. Given the importance of allograft continuous care, the 

options for surveillance are still limited. Frequent reassessments allow clinicians to 

administer immunosuppressant medications to maximize allograft lifespan without 

jeopardizing the patient’s immune response [3]. 

 

1.1.2 Renal Biopsy 

 

The gold standard procedure for evaluating kidney health is renal biopsy. Using 

the Banff diagnostic criteria, such as interstitial fibrosis and tubular atrophy (IFTA) [1], [3], 

nephropathologists can directly assess tissue alterations, even before kidney function is 

affected. Despite its allograft assessment capabilities, biopsies are invasive and might 

impose complications such as infection and bleeding, limiting the frequency in which the 

procedure can be performed [4]. At Mayo Clinic, protocol biopsies are performed at 4 

months, and 1, 2, 4, 7, and 10 years post-transplant. Additionally, at Mayo Clinic, biopsies 

can cost up to 3.5 times that of an abdominal ultrasound exam, and, in the event of 

complication, the costs associated with the procedures can reach even higher amounts.  
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1.1.3 Non-invasive Kidney Evaluation 

 

Functional surrogates such as serum creatinine and glomerular filtration rate 

(GFR) hold important insight to kidney failure. Creatinine is a metabolic subproduct that is 

freely filtered from circulation by the kidneys, and therefore, its elevated presence is 

directly related to renal function. GFR is inversely proportional to serum creatinine, as it 

describes the volume of fluid filtered by the kidneys and is the main index for functional 

assessment. Unfortunately, direct GFR evaluation is not easily performed, as it requires 

exogenous filtration monitoring through long periods of time. For that reason, endogenous 

techniques leveraging serum creatinine and/or cystatin C are common in clinical practice 

for estimated GFR (eGFR) calculation [5].   

Although serum tests can be useful and affordable, morphological alterations of 

renal tissues can precede renal function alteration [6]. Noninvasive imaging techniques 

have been implemented for kidney structural and functional assessment [7]–[9]. 

Computed tomography (CT) has been used to investigate fluid collections and renal artery 

alterations [10], [11]. Magnetic resonance imaging (MRI) has also been shown to 

differentiate normal and abnormal kidney cortex through the evaluation of kidney anatomy 

and perfusion characteristics [12].  

CT and MRI are important imaging modalities, nevertheless, tend to lack the 

affordability and availability of ultrasound. Cortical ultrasound echogenicity has been found 

to correlate with kidney sclerosis [13]. Spectral Doppler ultrasound can also be used for 

indirect morphological assessment. Changes in pulsatility and compliance of renal arteries 

can alter resistive index (RI) indicators. Although more correlated with systemic 

alterations, Doppler RI is an important biomarker for kidney prognosis [14].    

 

1.1.4 Elasticity imaging 

 

An alternative for allograft assessment is elasticity imaging. By leveraging shear 

wave motion as a contrast mechanism, it is possible to assess changes in renal allografts 

directly related to pathology. It has been shown that the shear modulus of biological 

tissues in the body can vary over six orders of magnitude [15]. Renal allografts have been 

studied using several elasticity imaging techniques over the last decade [16]–[19]. In 

contrast to most organ transplant procedures, native kidneys are not removed during 

surgery and, therefore, kidney allografts do not spatially replace native kidneys. Instead, 
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the renal allograft is placed in the lower abdomen, more superficially, when compared to 

native kidneys [20]. Shear wave applications benefit from renal allograft positioning, as 

wave propagation and detection are facilitated with less tissue attenuation. 

Magnetic resonance elastography (MRE) uses an external mechanical actuator to 

create shear waves in soft tissues and MRI techniques to measure the 3D shear wave 

motion [21]. MRE has been used to evaluate renal arterial stenosis as well as interstitial 

fibrosis in renal cortex [22]. Even though MRE has shown potential to characterize 

different tissue structures, including allografts [23], [24], it is not widely available, and 

scans can take considerable time. Another technique that has been evaluating liver and 

renal allograft noninvasive evaluation is transient elastography (TE) [25], [26]. It also relies 

on external actuators to provide a single cycle of low-frequency (typically around 50 Hz) 

vibration and ultrasound methods to track the resulting motion [17]. While this method is 

effective for liver evaluation, it lacks imaging guidance and may not be suitable for 

evaluation of renal allografts and specific assessment of the renal cortex.  

 

1.1.5 Shear wave elastography 

 

Shear wave elastography (SWE) techniques have been very useful for the analysis 

of tissue rheological mechanical properties and pathologies. SWE uses acoustic radiation 

force (ARF) to generate shear waves and high frame rate ultrasonic tracking methods to 

measure shear wave motion. The motion is analyzed to retrieve elastic and viscoelastic 

property measurements [15]. Previous studies showed significant correlation of SWE 

properties, such as shear wave velocity (SWV) [18], [27], [28], and allograft fibrosis. In an 

elastic medium, the SWV is also proportional to the shear modulus or stiffness. 

Noninvasive imaging approaches could provide a means to frequently monitor patients 

with renal allografts if the parameters measured with the imaging method correlate well 

with biopsy and laboratory results. 

In addition to examining the elastic material properties of the kidney, various 

mechanical testing techniques have been used to examine the viscoelastic properties of 

cortical and medullary tissues [29]. Viscoelastic materials exhibit time-dependent 

deformation when a stress is applied. Previous work performed by our laboratory has 

shown that renal viscoelasticity can gauge mechanical changes in ex vivo porcine models 

that underwent acute renal arterial stenosis [18]. Shear wave phase velocity variation with 
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frequency (dispersion) can be used to quantitatively characterize the viscoelasticity of the 

tissue [30], [31] and assess the degree of fibrosis and steatosis of the liver [32].  

(a) Maxwell model 

 

(b) Kelvin-Voigt model 

 

1

𝜇1
 
𝑑𝜎(𝑡)

𝑑𝑡
+

𝜎(𝑡)

𝜇2
=

𝑑𝜀(𝑡)

𝑑𝑡
 𝜎(𝑡) = 𝜇1(𝑡)  +  𝜇2

𝑑𝜀(𝑡)

𝑑𝑡
 

Figure 1-1 – Diagrams of Maxwell (a) and Kelvin-Voigt (b) viscoelastic models. 𝜎(𝑡) is 

the stress applied to the model, whereas 𝜀(𝑡) is the strain induced by the stress. The 

parameters in the models are 𝜇1 as the shear elastic modulus, while 𝜇2 is the shear 

viscosity.  

 

Several mathematical models have been used to characterize viscoelastic tissue, 

such as the Kelvin-Voigt (KV) and Maxwell models [33]. Both describe the viscoelastic 

material as a spring and dashpot system, where 𝜎(𝑡) is the stress applied to the model, 

whereas 𝜀(𝑡) is the strain sustained by the model, 𝜇1 is known as the shear elastic 

modulus (spring), while 𝜇2 is the shear viscosity (dashpot) (Fig. 1-1). The Maxwell model 

is composed of a spring and dashpot arranged in series while the KV model has the spring 

and dashpot arranged in parallel. Therefore, in the Maxwell model, both components 

share the same stress (and independent strain), whereas in the KV model they are subject 

to the same strain (with independent stress). For SWE, the KV model has been frequently 

used as the strain, or displacement, behaves approximately according to a KV model [33]. 

It is possible then to analyze the KV model for a vibrational system, and, by evaluation of 

the frequency response, one can derive the SWV as a function of the SW frequency, also 

known as the SW dispersion. The dispersion equation is given by 

𝑐𝑝(𝜔) =  √
2(𝜇1

2+𝜔2𝜇2
2)

𝜌(𝜇1+√𝜇1
2+𝜔2𝜇2

2)

 ,                                                (1-1)  
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where the shear wave velocity (𝑐𝑝) is described as a function of the angular frequency (𝜔), 

the media density 𝜌, and the viscoelastic parameters 𝜇1 and 𝜇2. 

Eq. 1-1 allows for the calculation of the viscoelastic parameters 𝜇1 and 𝜇2 based 

on the dispersion characteristics of the observed shear wave propagation. The dispersion 

curve is most commonly obtained by the two-dimensional (2D) Fourier transform of the 

acquired spatio-temporal tissue motion. Although different elastic and viscoelastic 

parameters have been shown to correlate with specific histological characteristics and 

renal function variables, optimization of the current shear wave data processing methods 

are needed to make SWE more robust for clinical translation.  

Finite difference simulations have been an important tool to better understand 

shear wave interactions. In this thesis, the staggered-grid finite-difference (SGFD) 

approach, introduced by Kijanka, et al. [34], can be used to implement a KV material using 

the Navier-Stokes equations to calculate the shear motion caused by ARF. SGFD allows 

researchers to have full flexibility of simulation parameters, including temporal and spatial 

resolutions, and custom acoustic radiation force profiles for material excitation. Another 

advantage is the pixel-based viscoelastic parameter assignment. The staggered-grid 

viscoelastic parameters can be defined independently for each node and, therefore, highly 

heterogeneous materials can be modeled and simulated.  

 

1.1.6 Machine Learning 

 

Machine learning (ML) is the computer science field dedicated to creating 

algorithms capable of learning and making predictions from a given dataset. Substantial 

progress has been made in recent decades on both algorithms and computational power 

to perform data training and predictions in feasible time [35]. ML can identify patterns in 

datasets that otherwise might be impossible to fit by standard statistical models, or by 

evaluating each feature on its own. ML framework may allow biomedical researchers to 

predict well-established gold standard biopsy scores using more novel sets of 

measurements and/or biomarkers.  

Recent progress in neural networks (NN), a form of ML, also enabled the 

expansion of the field and its adoption in many research and commercial fields, as they 

are particularly powerful for extracting non-linear features from data [36]. Novel NN 

architectures, such as convolutional neural networks (CNN) [37], have also shown 
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unprecedented accuracy for classifying two-dimensional datasets such as images. The 

use of such capabilities might open new possibilities for ultrasound imaging diagnostics. 

After proper implementation, NN techniques have the potential of performing data 

processing more efficiently, as they require much lower computational costs to predict 

outcomes from a trained model than current image processing techniques. Neural network 

architectures may allow the use of data in a lower pre-processing state, such as dispersion 

curves, Fourier representations from two-dimensional Fourier transform (2D FT) analysis, 

and shear wave velocity maps, to classify the allograft health in a more generalizable and 

time efficient fashion, enabling real-time computer-aided diagnostics (CAD) 

implementations.  

In recent years, there has been an increasing interest in the employment of ML in 

SWE applications. The combination of NN and 2D SWE have been used for various 

implementations, including diagnosis of liver fibrosis [38], reconstruction of 2D shear 

modulus maps, and lesion segmentation [39]. Although, the results have shown the 

potential of such applications the employment of ML techniques to augment performance 

of SWE applications is still in its initial stages. 

To possibly achieve classification capabilities comparable to biopsies, classic 

statistical and ML methods must face the high inter- and intra-operator variability of 

ultrasound imaging, which requires large amounts of data to be utilized [35]. Although the 

correlation between elastography measurements and kidney alterations have been 

documented in literature [16], elastography still relies on complex pre-processing 

techniques, such as directional and band-pass filtering, that can introduce variability and 

bias.  

 

1.1.7 Significance 

 

Continual renal evaluation is critical for allograft preservation. Even though renal 

biopsy is the gold standard for allograft assessment, the invasive nature of the procedure 

does not allow its frequent use by clinicians. Non-invasive functional tests can be 

leveraged to indirectly assess renal state but are not optimal, as functional alterations may 

not reflect the full health of the kidney. Rheological tests can be more sensitive to 

morphological changes, and therefore, allow for early diagnosis. Elastic and viscoelastic 

parameters have been shown to correlate with renal histological and functional alterations, 

but the current shear wave data processing techniques still lack the reliability for robust 
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clinical translation in nephrology applications. SWE implementations are still heavily 

dependent on the device characteristics and multiple pre-processing stages are necessary 

for viscoelastic quantification. 

The use of SWE combined with machine learning modeling techniques might 

enable more efficient allograft reassessment, as trained classifiers can achieve higher 

classification performance than biomarkers evaluated individually. The use of efficient and 

generalizable implementations can open the path for clinical translation and real-time 

applications, even in inter-institutional applications [38]. ML algorithms are capable of 

reaching high levels of performance, but in multiple instances it lacks the interpretability 

of what data patterns are being modeled, this “black box” characteristic can hinder clinical 

translation, as it may not inspire practitioners’ confidence. The goal of this research is to 

introduce faster, cheaper, non-invasive, and interpretable techniques capable of 

assessing allograft health reliably and more frequently, enabling more efficient 

immunosuppressant administration and, therefore, better quality of life for transplant 

patients. 

 

1.2 Specific Aims 

 

1.2.1 Specific Aim 1  

 

Develop supervised machine learning models that can predict renal transplant 

biopsy scores based on SWE measurements and other physiological biomarkers 

with >80% specificity and sensitivity.  

 

Hypothesis: SWE measurements of kidney allograft can be used to predict renal 

transplant biopsy outcomes and, therefore, assess rejection. Machine learning methods 

might allow elastographic measurements, such as shear wave velocity and attenuation, 

along with other physiological biomarkers, to classify allograft health with clinically relevant 

sensitivity and specificity.  

Rationale: Noninvasive imaging approaches could provide means to frequently monitor 

patients with renal allografts if the parameters measured with the imaging method 

correlate well with biopsy and laboratory results. It has been shown by other groups and 

in our preliminary results that SWE characterization of renal allografts correlates with 

declining function and histological features [29], [30], [32]. However, the features analyzed 
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do not hold the characterization power necessary for clinical translation individually, and 

so, a multi-parametric elastographic characterization of renal allografts is needed. The use 

of machine learning algorithms opens the possibility of combining the measurements 

obtained with SWE to produce a prediction model for biopsy’s scores that would not be 

feasible with classic statistical models.  

Chapter 2: We investigated the use of ultrasound shear wave elastography methods and 

clinical observations for kidney allograft health assessment. The SWE measurements and 

biomarkers were obtained prior to routine biopsies of kidney transplants at Mayo Clinic. 

General estimating equations and odds ratio statistical analyses were performed to 

evaluate the significance of each parameter individually, and logistic regression was used 

for combining the parameters into a single binary outcome probability for each of the 

biopsy scores. The p-values, odds ratios and logistic regression area under the receiver 

operating characteristic curve (AUROC) were reported. 

Chapter 3: Support vector machines (SVMs) were evaluated and interpreted for 

classification of kidney allograft’s biopsy scores based on the viscoelastic, physiological, 

and demographical observations described in Chapter 2. Different feature sets were used 

to test viscoelastic parameters and biomarkers in isolation along with the subset of 

features with p-value < 0.10, as evaluated in Chapter 2. The IQR-to-median ratio was also 

tested as a data quality filter by calculation data acquisition variability over each 

viscoelastic feature, position, and patient. Classification performance indicators such as 

AUROC, sensitivity and specificity were reported. 

 

1.2.2 Specific Aim 2 

 

Develop supervised machine learning models that can predict renal transplant 

biopsy scores based on analysis of data from shear wave propagation simulation 

and patient data with minimal pre-processing. 

 

Hypothesis: SWE imaging of kidney allograft can be used to predict biopsy outcomes 

and, therefore, assess rejection, without the necessity of the use of models and calculation 

of rheological parameters, such as shear wave speed and attenuation. Machine learning 

can be leveraged to evaluate histopathological changes in the tissue that modify shear 

wave propagation characteristics. 
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Rationale: It has been shown that parameters from SWE characterization of renal 

allografts correlate with declining function and histological features [29], [30], [32]. 

However, the current implementations rely on mathematical models developed under 

mechanical assumptions that do not always hold true in clinical practice, such as 

homogeneity, isotropy and linearity. The use of machine learning techniques, such as 

convolutional neural networks (CNN), may allow for a direct assessment of the 

physiological and morphological disease progression underlying the rheological 

measurement changes. The ML performance can be evaluated at multiple stages of the 

current image processing pipeline to obtain maximum classification accuracy at optimum 

processing speed and generalizability.   

Expected Outcomes: We aspire to create novel machine learning models capable of 

classifying allograft health from patient SWE data with minimal signal processing. We also 

intended to further develop the simulation models created during the preliminary study, 

and better understand how histology changes can alter the rheological characteristics of 

the tissue. The NN models developed will be trained and tested to maximize accuracy and 

generalizability, creating a reliable computer-aided diagnostic tool for allograft 

assessment.  

Chapter 4: The capabilities of CNNs to extract features from wave propagation and 

estimate elasticity and viscosity values from wave motion images sourced from staggered-

grid finite-difference (SGFD) simulations were investigated. A total of 1050 SGFD models 

were simulated using a wide range of elasticity and viscosity values for two different values 

of excitation F/N. The dataset was used to train, validate and test CNN architectures 

configured for data regression using mean squared error as loss function. The viscoelastic 

parameters were also estimated using the conventional 2D Fourier transform (2D FT) 

analysis approach with Kelvin-Voigt dispersion curve fitting and compared against the 

CNN results.   

Chapter 5: The evaluation of heterogenous kidney cortex simulations based on human 

renal allograft biopsies was performed. Staggered-grid finite-difference (SGFD) were 

leveraged to simulate shear wave propagation of 12 patients from the cohort examined in 

Chapters 2 and 3 (3 normal, 3 with interstitial inflammation, 3 with interstitial fibrosis and 

3 with tubular atrophy). Time-to-peak analysis and KV dispersion curve fitting was used to 

estimate common viscoelastic paraments to the simulated data as well as the SWE scans 

performed on the same patients. The Pearson correlation coefficient was used to calculate 

the correlation between both in vivo and in silico estimations.  
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Chapter 6: A proof-of-concept study was proposed to evaluate a novel 2D FT CNN 

technique for kidney interstitial inflammation detection. The patient dataset used in 

Chapters 2, 3 and 5 was leveraged in a preprocessed form. The shear wave motion was 

extracted from the raw in-phase/quadrature acquisition data and processed using 2D FT 

in space and time. The 2D FT images were used to train a CNN to detect interstitial 

inflammation, classification performance indicators such as AUROC, recall and precision 

were reported.  
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Chapter 2 – Kidney allograft assessment using shear wave 

elastography and clinical biomarkers 
 

2.1 Introduction 

 

 Chronic kidney disease (CKD) encompasses a long-term decrease in function of 

the kidneys. CKD can progress to kidney failure or end-stage renal disease (ESRD), which 

is treated by hemodialysis or, preferably, kidney transplant. Patient and renal graft short-

term survival rates have increased over the past two decades, but long-term survival of 

grafts is still an issue [40]. Patients can outlive the transplanted organs requiring 

hemodialysis and new transplants.  

 It is critical to assess kidney function in management of transplant patients to save 

and prolong life, improve quality of life, and reduce care costs. Various indicators such as 

serum biomarkers and noninvasive imaging methods are utilized to provide clinicians with 

feedback on the health of a patient’s kidneys. However, renal biopsy is still the gold 

standard for diagnosis of kidney health, but it cannot be used frequently due to its invasive 

characteristics that can cause complications.  An ideal indicator would be noninvasive and 

could be used frequently enough for clinical feedback to be obtained on disease 

progression and treatment regimens. 

 Noninvasive indicators such as serum creatinine (SCr), glomerular filtration rate 

(GFR) and classical medical imaging can be leveraged to provide insights into kidney 

disease state. Because creatinine is freely removed from the circulatory system by the 

kidneys, its levels are inversely proportional to GFR. GFR is considered the best overall 

index of kidney health and disease [1], [5], [41]–[43]. However, direct measurement of 

GFR is not easily performed in clinical practice, so equations have been developed that 

include the SCr or serum cystatin levels, age, race and sex (eGFR) [5], [44], [45]. 

Additionally, spectral Doppler ultrasound can be leveraged to evaluate the pulsatility and 

compliance of renal arteries with the calculation of the resistive index (RI). Although more 

correlated with systemic alterations, it holds an important biomarker for kidney prognosis 

[14].    

 Biopsies can help to guide treatment and establish a prognosis, especially in 

assessing allograft rejection by evaluating the degree of fibrosis or inflammation [46]–[51]. 

It has become more evident that examining fibrosis and inflammation in combination, 
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rather than alone, in 1 year protocol biopsies has more predictive power to determine 

which allografts may have functional decline [52]–[54]. At Mayo Clinic, protocol biopsies 

are performed at 4 months, and 1, 2, 4, 7, and 10 years post-transplant. These protocol 

biopsies can be valuable indicators of graft rejection [48]–[51], [55].  

 Renal biopsies are routinely performed, but they are associated with complications 

such as small and large hematomas, gross hematuria, arteriovenous fistula, and even 

death [56]–[58]. The complication rate has been reported to be in range of 0.1-6% [59], 

[60]. With a projection of an increase in the number of biopsies [61], the potential number 

of patients with complications also increases. 

 Elasticity imaging is a noninvasive imaging modality that uses the elasticity of 

tissue as the contrast mechanism. Shear wave elastography (SWE) uses acoustic 

radiation force (ARF) to generate shear waves and high frame rate ultrasonic tracking 

methods measure the propagation speed. Previous studies have reported significant 

correlation between shear wave velocity and the level of fibrosis found in biopsy 

examinations, allograft RI, the dysfunction of allografts physiology and negative correlation 

with eGFR [16], [19], [62]–[64]. 

In addition to examining the elastic material properties of the kidney, various 

mechanical testing techniques have been used to examine the viscoelastic and nonlinear 

mechanical properties of cortical and medullary tissues [29], [65]–[68].  

 Viscoelastic materials exhibit time-dependent deformation when a stress is 

applied. The modulus of nonlinear materials varies with the applied stress or strain. Shear 

waves can be used to investigate the viscoelastic properties of tissue. Shear wave phase 

velocity dispersion, or variation with frequency, can be used to quantitatively characterize 

the viscoelasticity of the medium [69]. Measurements in liver have shown that the shear 

elasticity and viscosity increase as the degree of fibrosis and steatosis increases [32], 

[70]–[74].  

 Our group has developed methods to measure viscoelasticity with fitting phase 

velocity dispersion, variation with frequency, with a model-based approach using a 

rheological model [69], [75] as well as methods that do not depend on a rheological model, 

but just the phase velocity and attenuation [76]. This model-free method has been very 

successful in separating patients with and without acute cellular rejection in liver 

transplants [32], [77], [78]. 
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In this study, we evaluated how elastic and viscoelastic mechanical properties 

were associated with biopsy scores to evaluate renal transplants undergoing protocol 

biopsies. 

 

2.2 Methods 

 

 The patient study was conducted from October 2017 to July 2019, following the 

protocol approved by the Mayo Clinic Institutional Review Board (IRB# 11-003249). The 

patients were recruited at the time of their routine follow-up visits and provided written 

informed consent. The ultrasound scan was performed before the subject’s biopsy 

procedure using a General Electric Logiq E9 scanner (General Electric Healthcare, 

Wauwatosa, WI, USA) using a curvilinear array (C1-6, General Electric Healthcare, 

Wauwatosa, WI, USA). A research mode was enabled on the ultrasound scanner to store 

the raw in-phase/quadrature (IQ) data for later processing.  

 All ultrasound scans were performed at Mayo Clinic’s Methodist Hospital by a team 

of sonographers trained in shear wave elastography ultrasound imaging. The 

sonographers were advised to avoid physical pressure at skin surface, because 

transducer force can alter SWE measurements, as kidney allografts are placed at a 

shallow depth [42]. 

The ultrasound SWE scans were performed at three different positions of the 

allograft (lower pole, middle region, upper pole) and in different planes (longitudinal and 

transverse) (Fig. 2-1). At every combination of position and plane, 10-13 shear wave 

excitations were performed and recorded. The kidney dimensions and Doppler resistive 

index (RI) measurements were also recorded.  

 For the processing of the SWE data, the B-mode image was reconstructed from 

the IQ data and a region-of-interest (ROI) within the kidney cortex was manually selected 

for shear wave motion reconstruction. With the cortical shear wave motion isolated, it was 

then possible to analyze a variety of elastic parameters such as group velocity, cg, the 

elastic shear modulus, µ, and viscoelastic parameters such as shear wave velocities and 

attenuation at different frequencies and rheological model parameters estimated from 

fitting shear wave velocity dispersion. 

The group velocity, cg, and shear modulus, µ, were reconstructed using the 

methods developed in our laboratory [79], [80]. The values of the shear modulus were 

calculated based on µ = cg
2 where  = 1000 kg/m3 is assumed.  



14 
 
 

 
Figure 2-1 – Combinations of plane and position used for the patient studies. Longitudinal (L) 

and transverse (T) planes, and upper pole (UP), middle region (MID) and lower pole (LP). 

*Image sourced and adapted from Biorender. 

 

 The dispersion curves were obtained using the generalized Stockwell 

transformation combined with a slant frequency-wavenumber analysis (GST-SFK) [81] 

technique developed by our group. This algorithm produces lower errors over a wider 

frequency band in comparison to a two-dimensional Fourier transform (2D FT) approach 

[82]. 

 To obtain the values for shear elasticity, 𝜇1, and shear viscosity, 𝜇1, the dispersion 

curves were then fit to the theoretical Kelvin-Voigt model. The Kelvin-Voigt model is a 

commonly used rheological model, as it has been shown to describe the shear wave 

velocity dispersion successfully, particularly within the frequency range analyzed [83]–

[85]. 

𝑐𝑝(𝜔) =  √
2(𝜇1

2+𝜔2𝜇2
2)

𝜌(𝜇1+√𝜇1
2+𝜔2𝜇2

2)

 ,                                                (2-1) 

where the shear wave speed (𝑐𝑝) is described as a function of the angular frequency (𝜔), 

the media density 𝜌, and the viscoelastic parameters 𝜇1 and 𝜇2. 
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 We also used the 2D FT, or k-space approach, to extract phase velocity and 

attenuation at various frequencies. From the k-space data, we estimated attenuation using 

 = ( √3⁄ )𝐹𝑊𝐻𝑀𝑘 where FWHMk is the full-width at half maximum in the k-direction 

(spatial frequency) [78]. The characterization of the phase velocity and attenuation does 

not require a rheological model and has been very successful in evaluating acute cellular 

rejection in liver transplants [78]. All measurements evaluated during this study are 

summarized by Table 2-1.  

 Table 2-1 – SWE measurements and clinical observations 

Column Description Column Description 

Location Scan position  Sex Patient sex 

𝑐𝑔 Group velocity, m/s Kidney Depth, mm Cortex depth on ultrasound image 

𝜇 Shear Modulus, m/s BPS, mmHg Systolic blood pressure 

𝜇1 Kelvin-Voigt 1, Pa  BPD, mmHg Diastolic blood pressure 

𝜇2 Kelvin-Voigt 2, Pas RIUP Restive index at upper pole 

𝑐2𝐷𝐹𝑇
100  

2D FT phase velocity at 100 

Hz, m/s 
RIMID Restive index at middle 

𝑐2𝐷𝐹𝑇
200  

2D FT phase velocity at 200 

Hz, m/s 
RILP Restive index at lower pole 

𝛼2𝐷𝐹𝑇
100  

2D FT phase attenuation at 100 

Hz, Np/m 

Time After 

Transplant (TAT), 

months 

Months after transplant  

𝛼2𝐷𝐹𝑇
200  

2D FT phase attenuation at 200 

Hz, Np/m 
BMI, kg/m2 Body mass index 

𝑐𝑆𝐹𝐾
100  

GST-SFK phase velocity at 100 

Hz, m/s 
SCr, mg/dL Serum creatinine 

𝑐𝑆𝐹𝐾
150  

GST-SFK phase velocity at 150 

Hz, m/s 

eGFR,  

mL/min/1. 73 m2 
Estimated glomerular filtration rate 

𝑐𝑆𝐹𝐾
200  

GST-SFK phase velocity at 200 

Hz, m/s 
Banff i Interstitial inflammation score 

𝑐𝑆𝐹𝐾
250  

GST-SFK phase velocity at 250 

Hz, m/s 
Banff ci Interstitial fibrosis score 

𝑐𝑆𝐹𝐾
300  

GST-SFK phase velocity at 300 

Hz, m/s 
Banff ct Tubular atrophy score 

Age Patient age, yrs IFTA 
Interstitial fibrosis and tubular 

atrophy (ci + ct) 

  

 The measurements were also evaluated for their reliability by calculating the ratio 

of the interquartile range (IQR) and the median of the parameter values within the 10-13 

measurements done at each subject, scan position and plane. The IQR-to-median ratio is 

widely used in the elastography field as a reliability measure of quantitative 

measurements, conventionally IQR-to-median ratios below 0.3 are deemed reliable [86], 

[87].  
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 To evaluate the predictive power of the techniques tested, the biopsy findings from 

nephropathologists were recorded. The Banff criteria was used to document the level of 

injury sustained by the allografts [46], [88]. Interstitial inflammation (Banff i), interstitial 

fibrosis (Banff ci) and tubular atrophy (Banff ct) scores range from 0 to 3, from not present 

to severe injury [88]–[90]. Additionally, Banff ci and Banff ct were combined into interstitial 

fibrosis and tubular atrophy (IFTA) by aggregating the scores. IFTA is defined by the floor 

of the sum of Banff ci and ct.  

 Three datasets were analyzed in this study. The first was the full dataset with all 

individual measurements and positions. One subset used only the L_MID location data as 

that had the lowest IQR-to-median ratio values. Another subset was created by calculating 

the median value of each parameter at each of the six locations, to decrease the level of 

noise and outliers.   

 We used a statistical analysis method called general estimating equations (GEE), 

a method of dealing with correlated data when, except for the correlation among 

responses, the data can be modeled as a generalized linear model [91]. The GEE 

parameters are robust to covariance, and therefore, appropriate in the analysis of the data 

from this research work, as the patient’s elastography measurements can be correlated 

[92]. The GENMOD procedure from SAS version 9.4 (SAS Inc. Cary, NC), allow us to 

perform the analysis to account for this correlation while assessing the associations 

between an outcome and predictor variables. 

 Outcome variables in our research are all binary thus the GENMOD procedure 

from SAS allows us to use a logit link which provides a means to quantify the magnitude 

of the associations as odds ratios (OR) and 95% confidence intervals, as in the case of 

usual logistic regression. If the number of regression parameters is not matched by the 

number of response pairs for estimating correlation, the model estimation does not 

converge and therefore no OR and/or p-value are reported.  

 Additionally, to evaluate the predictive performance of the dataset using multiple 

measurements and observations, we implemented logistic regression algorithms in 

Python (Python Software Foundation, Wilmington, DE, USA) and the scikit-learn module 

[93]. This analysis is performed at an observation level rather than at a patient level. Thus, 

it treats each observation as an independent observation. The model can describe the 

relationship between multiple independent variables and a single binary outcome, and 

therefore, can be used for prediction purposes.  
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 Logistic regression has been used extensively in the medical field to predict 

mortality and severity of different diagnostics based on observed patient characteristics 

[73]. The logistic regression hyper-parameters were adjusted using nested 5-fold cross-

validation and the final model was tested using 5-fold cross-validation, the results from 

each fold were compiled to create a single mean receiver operating characteristic (ROC) 

curve and the area under the ROC (AUROC) was also calculated. For each dataset 

analyzed (full, L_MID, and median), the logistic regression was performed using all patient 

measurements, elastography measurements only, biomarker observations only, and, for 

purposes of dimensionality reduction, a subset containing only the variables with p-value  

< 0.1 for the specific dataset was also evaluated. 

 

2.3 Results 

 

 This study is composed by 206 patients totaling 223 studies, because some 

patients were assessed at multiple follow-up visits, but each visit is treated as an 

independent study. There was a total of 122 male and 84 female participants. The age at 

time of study was 49.72  14.02 years-old (mean  standard deviation). The average time 

between transplant and the scan was 16.12  14.74 months, and the BMI at time of scan 

was 27.85  5.45. The study demographics are provided in Table 2-2. The patients’ Banff 

score distributions are summarized in Table 2-3. To evaluate the most reliable position 

and plane combination, the median IQR-to-median ratio for all measurements was taken 

and the results are displayed in Figure 2-2. 

Table 2-2 – Study demographics 

 Patients (n=206) Studies (n=223) 

Number % Number % 

Sex     

   Male 122 59.22 128 57.40 

   Female 84 40.78 95 42.60 

 Mean (Std. Dev) Range Mean (Std. Dev) Range 

Age, yrs 49.83 (13.98)* 22-76 49.72 (14.02) 22-76 

BMI, kg/m2 27.59 (5.28)* 13.1-42.3 27.85 (5.45) 13.1-42.3 

TAT (months) 14.53 (14.92)* 4-60 16.12 (14.74) 4-60 
*At first scan 

  

 The GEE and OR results are summarized in appendix Tables 2-5, 2-6 and 2-7, 

for the original dataset, L_MID position only, and median datasets, respectively. All 

datasets showed correlations of some of the elastic and viscoelastic properties in 
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addition to clinical markers. For 0.05 < p ≤ 0.10, we interpret these parameters as having 

a diagnostic trend (yellow), whereas p-values ≤ 0.05 were interpreted as statistically 

significant (orange). In some cases, the GEE model did not converge, and therefore no 

value of the OR and/or p-value is displayed (red). 

Table 2-3 – Banff score distribution 

Score 
Banff i (n=223) Banff ci (n=223) Banff ct (n=223) IFTA (n=223) 

Number % Number % Number % Number % 

0 192 86.10 127 56.95 72 32.29 127 56.95 

1 17 7.62 84 37.67 139 62.33 84 37.67 

2 10 4.48 11 4.93 11 4.93 11 4.93 

3 4 1.79 1 0.45 1 0.45 1 0.45 

>0 31 13.90 96 43.05 151 67.71 96 43.05 

 

 

LOCATION MEDIAN 

L_LP 0.28 

L_MID 0.24 

L_UP 0.32 

T_LP 0.28 

T_MID 0.29 

T_UP 0.32 
 

Figure 2-2 – Box plot of the variation of IQR-to-median ratios across all 13 elastic and viscoelastic 

measurements, the table on the right summarize the median values for every location. 

Longitudinal-middle (L_MID) have the lowest overall IQR-to-median ratio.  

  

 The full dataset showed several statistically significant correlations between the 

measurements analyzed and the four biopsy scores evaluated. For Banff i, 𝑐2𝐷𝐹𝑇
200 , 𝛼2𝐷𝐹𝑇

200  

and BPD showed statistical significance, while 𝑐𝑆𝐹𝐾
200 and sex showed statistical trend. Banff 

ci had statistical significance found with 𝑐𝑆𝐹𝐾
200, Age, TAT and BMI; and statistical trends 

with 𝑐𝑔, 𝑐𝑆𝐹𝐾
150 , 𝑐𝑆𝐹𝐾

250, 𝑐𝑆𝐹𝐾
300 and RIUP. Clinical biomarkers showed good performance for Banff 

ct, with Age, BPS, TAT and SCr p-values below statistical significance, along with 𝑐𝑔 and 

𝜇. Only 𝛼2𝐷𝐹𝑇
200  showed statistical trend with Banff ct diagnosis. IFTA showed good 

correlations with both viscoelastic and clinical parameters. 𝑐𝑆𝐹𝐾
150  showed statistical trend, 

while 𝑐𝑆𝐹𝐾
200 and 𝑐𝑆𝐹𝐾

250 showed statistical significance. Sex, RIUP, TAT and BMI showed 

statistical significance with IFTA diagnosis. 

The L_MID dataset showed lower predictive power when compared with the full 

dataset. Sex, eGFR and 𝑐𝑔 were statistically significant and BPD showed statistical trend 
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for Banff i. Banff ci diagnosis had statistically significant p-values for Age and time after 

transplant only. Banff ct had the best predictive results, with 𝛼2𝐷𝐹𝑇
100 , 𝛼2𝐷𝐹𝑇

200 , Age, BPS, TAT 

and SCr had statistical significance, and RIMID showing statistical trend. IFTA also did not 

showed any significant correlation with viscoelastic measurements in this specific dataset. 

Age and TAT showed statistical significance, whereas BPS had statistical trend. 

 The median dataset had similar results to the L_MID dataset. The parameters 𝜇1, 

sex and eGFR showed statistical significance for inflammation diagnosis. The parameters 

𝑐𝑔 and BPS showed statistical trend for Banff ci diagnosis, whereas 𝛼2𝐷𝐹𝑇
200 , Age and TAT 

showed statistical significance. For Banff ct, similarly to L_MID, 𝛼2𝐷𝐹𝑇
100 , 𝛼2𝐷𝐹𝑇

200 , Age, BPS, 

TAT and SCr had statistical significance. Finally, 𝛼2𝐷𝐹𝑇
100 , Age and TAT showed statistical 

significance, with BPS showing statistical trend. 

 The OR analysis showed TAT to have positive correlation with the prevalence of 

ci, ct and IFTA, from 1.026 OR (L_MID/IFTA) to 1.679 OR (Full/ct). Age also had positive 

correlation with OR ranging from 1.057 for inflammation up to 1.218 for tubular atrophy.  

Serum creatinine also showed strong positive correlation with the prevalence of ct (ranging 

from 1.492 to 1.522 OR), whereas eGFR showed negative correlation with Banff i (0.845-

0.8741 OR). Overall, the elastography measurements showed nearly unitary OR, apart 

from 2D FT attenuation at 200 Hz (𝛼2𝐷𝐹𝑇
200 ) which showed negative correlation with 

inflammation for the full dataset at 0.965 OR. 

 The logistic regression results are shown in Table 2-4, the AUROCs varied from 

chance (0.50) to 0.72. The standard deviation ranged from 0.03 to 0.10. Overall, the 

L_MID dataset had the best results in allograft classification, with 0.63, 0.66 and 0.72 for 

Banff i, ci and ct, respectively, when applying the low p-value (p < 0.10) measurements. 

L_MID also performed best for IFTA classification with 0.66 AUROC when fit to biomarkers 

only, although it performed similarly when fitted to all measurement and low p-value only, 

at 0.63 and 0.64, respectively. The full, L_MID only and median datasets had an overall 

mean of 0.58, 0.61 and 0.60, respectively. 

 Banff ct showed the best classification potential as it was the only score to reach 

AUROC above 0.70 and a mean of 0.62, whereas Banff i, had the weakest results, with a 

single test above the 0.60 mark and a mean of 0.55. Banff ci and IFTA had very similar 

performance throughout the tests, both with a mean of AUROC = 0.61.  

Elastography measurements alone performed the weakest overall without 

reaching 0.60 for any of the tests performed and an overall mean of 0.54. The low p-value 
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set performed best with two tests reaching 0.70, for Banff ct classification using the L_MID 

only dataset and median dataset. Both low p-value and biomarkers measurement sets 

had a mean of 0.63, while classifying using all measurements followed closely at AUROC 

= 0.62. 

Table 2-4 – Logistic regression performance 

Dataset Measurements 
Mean AUROC ± st. dev. 

Banff i Banff ci Banff ct IFTA 

Full 

All 0.58 ± 0.09 0.62 ± 0.09 0.61 ± 0.10 0.61 ± 0.06 

p-value < 0.10 0.59 ± 0.06 0.60 ± 0.03 0.67 ± 0.07 0.62 ± 0.07 

Elastography 0.51 ± 0.03 0.54 ± 0.03 0.51 ± 0.03 0.52 ± 0.05 

Biomarkers 0.51 ± 0.08 0.62 ± 0.03 0.63 ± 0.08 0.58 ± 0.06 

L_MID only 

All 0.51 ± 0.08 0.64 ± 0.05 0.64 ± 0.08 0.63 ± 0.08 

p-value < 0.10 0.63 ± 0.09 0.66 ± 0.09 0.72 ± 0.06 0.64 ± 0.04 

Elastography 0.56 ± 0.07 0.58 ± 0.04 0.50 ± 0.05 0.56 ± 0.04 

Biomarkers 0.52 ± 0.07 0.64 ± 0.09 0.66 ± 0.08 0.66 ± 0.03 

Median 

All 0.52 ± 0.08 0.62 ± 0.07 0.64 ± 0.07 0.63 ± 0.05 

p-value < 0.10 0.56 ± 0.07 0.66 ± 0.06 0.70 ± 0.05 0.62 ± 0.05 

Elastography 0.55 ± 0.06 0.55 ± 0.02 0.52 ± 0.04 0.54 ± 0.04 

Biomarkers 0.57 ± 0.10 0.64 ± 0.08 0.64 ± 0.10 0.65 ± 0.07 

  

2.4 Discussion 

 

 The general estimating equations and odds ratio analysis revealed meaningful 

insight on the datasets produced. The positive correlation and significance between 

temporal variables, Age and TAT, showed an expected trend of degradation of the 

allograft with time, although it was interesting to notice that this behavior was not evident 

for inflammation. While fibrosis and tubular atrophy increase with the age of the patient 

and the TAT, inflammation does not seem to show the same correlation and might even 

be more prevalent at the earlier post-transplant stages, as the <1 odds ratio indicate. 

Additionally, systolic blood pressure showed significance for the prevalence of interstitial 

fibrosis and tubular atrophy (ci, ct and IFTA), with a positive trend that indicates these 

injuries might be affected by hypertension. Inflammation, alternatively, showed positive 

correlation with diastolic blood pressure instead. Blood pressure prevalence is known to 

increase with age and cause injury to kidney function, and therefore, the findings are in 

agreement with literature [94]. 

 Serum creatinine and eGFR showed significance for tubular atrophy and 

inflammation, respectively. Creatinine should be freely filtrated form circulation, and the 

positive correlation with tubular atrophy agrees with the decline in kidney function. The 
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eGFR behaves oppositely, with a negative correlation with inflammation. Differently from 

interstitial fibrosis and tubular atrophy, inflammation is not permanent and may not be 

histologically present at routine evaluations, hindering the course of treatment. The overall 

time and function biomarkers’ trends agreed with literature, as fibrosis is usually the result 

of a chronic inflammatory state [52], [54]. 

 All datasets also showed significance between the AMUSE attenuation 

measurements and tubular atrophy and, in the Median dataset, with fibrosis as well. 

Attenuation also had statistical significance with respect to inflammation when the full 

dataset was evaluated. The group and phase velocities showed different significance for 

different datasets. Group velocity and shear modulus showed significance for ci and ct, on 

the full dataset; Banff i, on the L_MID dataset and i and ci, on the Median dataset. Phase 

velocity measurements calculated from the 2D FT had significance only for inflammation 

diagnostic using the full dataset, whereas GST-SFK showed significance in all frequencies 

for fibrosis using the full dataset. Overall, attenuation measurements showed negative 

correlation with injury, while velocity measurements have positive correlation with injury, 

in agreement with previous findings reported by our group [69], [73], [75], [78]. 

 The logistic regression results agreed with the IQR-to-median ratios calculated, 

L_MID had superior performance when compared to evaluating all positions. The L_MID 

position tends to have the simplest geometry, anisotropy profile and, in most cases, is the 

shallower region of the allograft. These characteristics lead to better shear wave 

propagation, and therefore, tissue characterization. Other positions impose complex 

curved geometries and variable anisotropy that might confound the SWE measurements. 

 As expected, the clinical biomarkers performed reasonably well when isolated from 

the SWE measurements, these parameters are widely used clinically and can be used for 

biopsy pre-screening. The elastography measurements did not perform well when isolated 

with a mean AUROC ranging from 0.51-0.58. The logistic regression approach implies 

that all observations are independent and show little to no multicollinearity, which does not 

hold true for SWE measurements as phase velocity at multiple frequencies, for example, 

hold high correlation. Despite these findings, the low p-value variables’ set performed the 

best, when including few SWE measurements along with significant biomarkers. When 

combining the L_MID dataset with the low p-value approach, the logistic regression 

obtained its best results with a mean of AUROC = 0.66 and a high of AUROC = 0.72 for 

Banff ct classification. Therefore, it was shown that SWE measurements hold classification 

significance when combined with well stablished biomarkers. The use of all observations 
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had an average performance of AUROC = 0.62, and it might be affected by the “curse of 

dimensionality” as linear models tend to suffer greatly from higher dimensional problems. 

The statistical significance approach for feature extraction has proven to be effective but 

it does not account for possible interactions between the different observations. 

 Another limitation imposed by the characteristics of patient study is the lack of 

severe observations of the analyzed scores (scores ≥ 2). Over 90% of the biopsy 

outcomes were non-present to mild manifestations, therefore, the rheological and 

functional alterations to the allograft can be minimal. Subjects with more advanced 

rejection or acute rejection, should be targeted for recruitment in present and future 

studies.  

 Additionally, even though this study was performed within a single institution, there 

is still some level of operator variability that may confound the methods proposed. The 

pressure applied by the sonographer can alter SWE measurements as it compresses the 

tissue [95], mainly in higher BMI patients where adipose tissue might prevent optimal 

ultrasound imaging and ARF excitation. There is also a certain level of variability within 

the nephropathologist team, and in future multi-institutional studies, the implementation of 

a voting diagnostic system between multiple operators will be imperative to ensure label 

consistency. 

 These results show the potential of the methods proposed for the classification 

and pre-screening of kidney allograft health. The use of machine learning techniques that 

overcome the limitations of the logistic regression might enable superior performance for 

the classification task. 

 

2.5 Conclusion 

 

 In this study, we evaluated the use of ultrasound shear wave elastography 

methods and clinical observations for kidney allograft health assessment. The SWE 

measurements and biomarkers were obtained during kidney transplanted patients’ routine 

biopsies at Mayo Clinic. The patients were scanned at bedside and subsequently had the 

graft biopsy performed. The SWE measurements were acquired from three different 

kidney locations (upper pole, middle region, and lower pole) and two different transducer 

orientations (longitudinal and transverse). Group velocity, shear modulus, Kelvin-Voigt 

dispersion curve fitting (𝜇1 and 𝜇2), AMUSE (2DFT phase velocity and attenuation) and 

GST-SFT (phase velocity) were implemented to obtain the quantification of the rheological 
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properties of the kidney. Standard of care biomarkers, such as, serum creatinine and 

eGFR, were also used for allograft assessment. The biopsies were studied for the 

presence of inflammation, interstitial fibrosis and tubular atrophy. The measurements and 

observations were then assessed to estimate the biopsy outcomes provided by the 

institution’s nephropathologists. In addition to the original full dataset, other two subsets 

were created to evaluate the quality of the acquisition process, in terms of acquisition 

location (longitudinal middle only) and intra-operator variability (acquisitions median). 

 GEE and OR statistical analyses were performed to evaluate the significance of 

each parameter individually, and logistic regression was used for combining the 

parameters into a single binary outcome probability for each of the biopsy scores.  

 Attenuation measurements showed strong significance (p-value < 0.05) for tubular 

atrophy with negative correlation (OR < 1), while velocity associated measurements 

showed mild significance (p-value < 0.10) for inflammation and fibrosis with positive 

correlation (OR > 1). Time after transplant (TAT) and Age showed strong statistical 

significance for interstitial fibrosis and tubular atrophy (independently and combined as 

IFTA) with a positive correlation, but showed no significance for inflammation, in 

agreement with the chronic nature of inflammation when compared to the more 

progressive and acute characteristics of fibrosis and tubular atrophy. The eGFR also 

showed significance with inflammation in some datasets, with negative correlation, and 

serum creatinine (SCr) showed strong significance for tubular atrophy for all datasets 

tested, with positive correlation, both in agreement with the declining kidney function 

cause by the injuries evaluated. 

 The logistic regression was tested on all three dataset and fitted to four different 

subsets of parameters for dimensionality reduction assessment: All measurements and 

observations, low p-value only (p-value < 0.1), elastography measurements only and 

clinical observations only. Overall, the longitudinal middle (L_MID) dataset performed the 

best during the logistic regression tests, with a peak tubular atrophy classification 

performance of AUROC = 0.72 when fit to low p-value parameters only. Inflammation and 

interstitial fibrosis also benefited the most form the L_MID/low p-value setting, with 

AUROCs of 0.63 and 0.66, respectively.  

 Logistic regression was not capable of producing good models from settings with 

larger number of dimensions such as elastography only. The non-multicollinearity 

assumptions and “curse of dimensionality” characteristics of this method might have 

confounded the performance models. Other classification approaches such as support 
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vector classifiers and dimensionality reduction techniques such as principal component 

analysis can be implemented to address the limitations of the method proposed. 

The patient study evaluated in this work is still ongoing and larger study pools will 

be available in the future. At present, the dataset is predominantly composed by non-

existent to mild injury, therefore, the groups differentiation may be minimal. The methods 

proposed can benefit considerably from larger cohorts of mild to severe chronic rejection 

and acute rejection.  

 The initial results are encouraging and in agreement with previous findings. The 

kidney’s geometric complexity, heterogeneity, anisotropy makes SWE implementation 

challenging, larger and more diverse cohorts, as well as more developments to the 

acquisition and processing workflow will be necessary for successful clinical translation.     
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2.6 Appendix 

 

Table 2-5 – Full dataset 
  Banff i Banff ci Banff ct IFTA 

 Unit of 
Increment 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

𝑐𝑔  0.5 1.0003 (0.9999, 1.0006) 0.1481 0.9998 (0.9997, 1.0000) 0.0848 0.9980 (0.9967, 0.9993) 0.0031 0.9999 (0.9997, 1.0000) 0.1274 

𝜇  1000 1.0001 (0.9999, 1.0003) 0.2506 0.9999 (0.9999, 1.0000) 0.2182 0.9992 (0.9986, 0.9997) 0.0044 1.0000 (0.9999, 1.0000) 0.2846 

𝜇1  500 0.9999 (.9949, 1.0050) 0.9823 1.0001 (0.9999, 1.0004) 0.2629 1.0002 (0.9998, 1.0005) 0.3834 1.0001 (0.9999, 1.0003) 0.2814 

𝜇2  1 1.0 (0.9835, 1.0167) 0.9958 0.9999 (0.9993, 1.0004) 0.6195 1.0014 (0.9994, 1.0035) 0.1637 0.9999 (0.9993, 1.0004) 0.6274 

𝑐2𝐷𝐹𝑇
100   0.5 0.9967 (0.9664, 1.0279) 0.8328 1.0006 (0.9997, 1.0015) 0.1939 1.0022 (0.9994, 1.0049) 0.1205 1.0006 (0.9997, 1.0015) 0.1719 

𝑐2𝐷𝐹𝑇
200   0.5 

 
0.0027 1.0001 (0.9994, 1.0008) 0.7138 0.9997 (0.9983, 1.0012) 0.7251 1.0001 (0.9994, 1.0008) 0.7768 

𝛼2𝐷𝐹𝑇
100   100 1.0022 (0.9701, 1.0353) 0.8962 1.0003 (0.9987, 1.0019) 0.7371 0.9942 (.9878, 1.0007) 0.0817 1.0002 (0.9986, 1.0017) 0.8364 

𝛼2𝐷𝐹𝑇
200   100 0.9654 (0.9419, 0.9895) 0.0051 1.0012 (0.9997, 1.0027) 0.1235 1.0032 (0.9964, 1.0100) 0.3538 1.0012 (0.9997, 1.0026) 0.1160 

𝑐𝑆𝐹𝐾
100  0.5 1.0338 (0.9884, 1.0814) 0.1472 1.0007 (0.9994, 1.0020) 0.2771 1.0000 (0.9978, 1.0022) 0.9966 1.0007 (0.9994, 1.0020) 0.2759 

𝑐𝑆𝐹𝐾
150  0.5 1.0266 (0.9947, 1.0596) 0.1034 1.0009 (0.9999, 1.0019) 0.0870 0.9999 (0.9983, 1.0014) 0.8594 1.0009 (0.9999, 1.0018) 0.0868 

𝑐𝑆𝐹𝐾
200  0.5 1.0170 (0.9973, 1.0371) 0.0910 1.0009 (1.0, 1.0018) 0.0424 1.0012 (0.9995, 1.0030) 0.1661 1.0009 (1.0001, 1.0018) 0.0367 

𝑐𝑆𝐹𝐾
250  0.5 1.0120 (0.9940, 1.0303) 0.1942 1.0008 (1.0, 1.0016) 0.0540 1.0015 (0.9995, 1.0035) 0.1445 1.0008 (1.0000, 1.0015) 0.0451 

𝑐𝑆𝐹𝐾
300  0.5 1.0140 (0.9957, 1.0327) 0.1351 1.0006 (1.0, 1.0013) 0.0675 1.0007 (0.9996, 1.0019) 0.2047 1.0006 (1.0000, 1.0013) 0.0588 

Age 5 1.0579 (0.9216, 1.2142) 0.4240 
 

0.0037 1.2177 (1.0899, 1.3604) 0.0005 
 

0.0030 

Sex 1 0.4846 (0.2195, 1.0699) 0.0730 0.6875 (0.4020, 1.1759) 0.1712 1.1967 (0.6756, 2.1198) 0.5382 0.7037 (0.4109, 1.2049) 0.2003 

Kidney 
Depth 

10 0.9999 (0.9995, 1.0003) 
0.7343 

1.0001 (0.9999, 1.0003) 
0.2422 

0.9992 (0.9972, 1.0011) 
0.4071 

1.0001 (0.9999, 1.0003) 
0.4280 

BPS 5 1.0602 (0.9546, 1.1774) 0.2746 
 

 1.1286 (1.0232, 1.2448) 0.0156 
 

NA 

BPD 5 1.2748 (1.0298, 1.5781) 0.0258 1.0157 (0.8872, 1.1628) 0.8214 1.0877 (0.9471, 1.2493) 0.2338 1.0212 (0.8918, 1.1695) 0.7611 

RIUP 0.1 1.1543 (0.7218, 1.8459) 0.5493 
 

0.0978 1.3109 (0.9157, 1.8768) 0.1392 
 

0.0041 

RIMID 0.1 0.8855 (0.5748, 1.3641) 0.5813 
 

0.5304 1.3680 (0.9406, 1.9895) 0.1011 
 

0.3573 

RILP 0.1 1.1697 (0.7422, 1.8434) 0.4995 1.0502 (0.7423, 1.4858) 0.7819 1.0846 (0.7491, 1.5703) 0.6673 1.0295 (0.7269, 1.4581) 0.8699 

TAT 12 0.8292 (0.5705, 1.2053) 0.3264 1.3580 (1.0673, 1.7279) 0.0128 1.6793 (1.1395, 2.4747) 0.0088 1.3491 (1.0606, 1.7160) 0.0147 

BMI 5 1.1966 (0.7902, 1.8119) 0.3965 
 

<0.0001 1.0960 (0.8399, 1.4303) 0.4995 
 

<0.0001 

SCr 0.5 1.2848 (0.8893, 1.8561) 0.1818 
 

0.3249 1.5119 (1.0441, 2.1893) 0.0286 
 

0.3317 

eGFR 10 0.8741 (0.7402, 1.0323) 0.1129 0.9229 (0.8105, 1.0508) 0.2255 0.9102 (0.7913, 1.0470) 0.1878 0.9253 (0.8129, 1.0533) 0.2401         
 p-value < 0.1 (Trend)      

 p-value < 0.05 (Significant)      

 Model did not converge      
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Table 2-6 – L_MID dataset 

  Banff i Banff ci Banff ct IFTA 

 Unit of 
Increment 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

𝑐𝑔  0.5 1.0 (1.0000, 1.0000) 0.0487 1.0000 (1.0000, 1.0000) 0.9950 1.0018 (0.9795, 1.0245) 0.9516 1.0 (1.0000, 1.0000) 0.9957 

𝜇  1000 1.0 (1.0000, 1.0000) 0.1264 1.0000 (1.0000, 1.0000) 0.9969 0.9997 (0.9904, 1.0091) 0.9817 1.0 (1.0000, 1.0000) 0.7085 

𝜇1  500 1.0 (0.9997,1.0002) 0.9051 1.0 (1.0000, 1.0000) 0.9877 0.9976 (0.9939, 1.0014) 0.3508 1.0 (1.0000, 1.0000) 0.9841 

𝜇2  1 0.9999 (0.9992,1.0006) 0.7853 1.0 (1.0000, 1.0000) 0.9909 1.0067 (0.9959, 1.0176) 0.4515 1.0 (1.0000, 1.0000) 0.9862 

𝑐2𝐷𝐹𝑇
100   0.5 0.9995 (0.9983, 1.0006) 0.3728 1.0 (1.0000, 1.0000) 0.9997 1.0176 (0.9951, 1.0405) 0.1867 1.0 (1.0000, 1.0000) 0.9988 

𝑐2𝐷𝐹𝑇
200   0.5 0.9997 (0.9992, 1.0002) 0.2135 1.0 (1.0000, 1.0000) 0.9957 1.0050 (0.9991, 1.0109) 0.5999 1.0 (1.0000, 1.0000) 0.9933 

𝛼2𝐷𝐹𝑇
100   100 0.9995 (0.9983, 1.0007) 0.4245 1.0 (1.0000, 1.0000) 0.9997 0.9907 (0.9888, 0.9925) <0.0001 1.0 (1.0000, 1.0000) 0.9985 

𝛼2𝐷𝐹𝑇
200   100 

 
 1.0 (1.0000, 1.0000) 0.9896 0.9860 (0.9832, 0.9888) <0.0001 1.0 (1.0000, 1.0000) 0.9892 

𝑐𝑆𝐹𝐾
100  0.5 1.0005 (0.9988, 1.0022) 0.8333 1.0 (1.0000, 1.0000) 0.9915 1.0147 (0.9887, 1.0414) 0.4706 1.0 (1.0000, 1.0000) 0.9904 

𝑐𝑆𝐹𝐾
150  0.5 1.0 (0.9984, 1.0016) 0.9929 1.0 (1.0000, 1.0000) 0.9883 0.9949 (0.9872, 1.0028) 0.7647 1.0 (1.0000, 1.0000) 0.9845 

𝑐𝑆𝐹𝐾
200  0.5 1.0003 (0.9991, 1.0014) 0.8949 1.0 (1.0000, 1.0000) 0.9115 0.9876 (0.9683, 1.0073) 0.3954 1.0 (1.0000, 1.0000) 0.9999 

𝑐𝑆𝐹𝐾
250  0.5 1.0 (0.9991, 1.0010) 0.9805 1.0 (1.0000, 1.0000) 0.9964 0.9873 (0.9695, 1.0054) 0.1671 1.0 (1.0000, 1.0000) 0.9944 

𝑐𝑆𝐹𝐾
300  0.5 1.0001 (0.9992, 1.0009) 0.9652 1.0 (1.0000, 1.0000) 0.9992 0.9853 (0.9675, 1.0035 0.1842 1.0 (1.0000, 1.0000) 0.9978 

Age 5 1.0626 (0.9174, 1.2309) 0.4005 1.1915 (1.0741, 1.3217) 0.0008 1.1780 (1.0643, 1.3039) 0.0016 1.1938 (1.0762, 1.3243) 0.0007 

Sex 1 0.4354 (0.1960, 0.9671) 0.0344 0.6780 (0.3944, 1.1657) 0.1518 1.0917 (0.6104, 1.9527) 0.7450 0.6954 (0.4040, 1.1969) 0.1819 

Kidney 
Depth 

10 0.9998 (0.9994, 1.0001) 
0.1898 

0.9999 (0.9997, 1.0001) 
0.9805 

0.9040 (0.7989, 1.0229) 
0.1650 

0.9999 (0.9997, 1.0001) 
0.9804 

BPS 5 1.0416 (0.9360, 1.1592) 0.4751 1.0680 (0.9858, 1.1571) 0.1100 1.1256 (1.0214, 1.2404) 0.0076 1.0744 (0.9906, 1.1654) 0.0855 

BPD 5 1.1845 (0.9491, 1.4783) 0.0955 1.0086 (0.8791, 1.1571) 0.9032 1.0765 (0.9365, 1.2375) 0.2938 1.0146 (0.8841, 1.1643) 0.8375 

RIUP 0.1 1.1661 (0.7282, 1.8674) 0.5285 1.3066 (0.9199, 1.8559) 0.1238 1.3022 (0.9151, 1.8530) 0.1182 1.3135 (0.9248, 1.8655) 0.1164 

RIMID 0.1 0.8955 (0.5745, 1.3958) 0.6576 1.1209 (0.8006, 1.5694) 0.5099 1.3579 (0.9368, 1.9683) 0.0784 1.1370 (0.8108, 1.5945) 0.4600 

RILP 0.1 1.2346 (0.7590, 2.0083) 0.4166 1.0771 (0.7592, 1.5282) 0.6771 1.0863 (0.7519, 1.5693) 0.6376 1.0551 (0.7430, 1.4983) 0.7645 

TAT 12 0.8193 (0.5575, 1.2041) 0.3080 1.3734 (1.0661, 1.7693) 0.0084 1.6623 (1.1217, 2.4637) 0.0012 1.0262 (1.0048, 1.0480) 0.0100 

BMI 5 1.1125 (0.7365, 1.6803) 0.5542 1.0522 (0.8198, 1.3505) 0.6866 1.0886 (0.8332, 1.4222) 0.4973 1.0094 (0.9601, 1.0613) 0.7106 

SCr 0.5 1.3757 (0.9589, 1.9737) 0.1159 1.1777 (0.8676, 1.5987) 0.2942 1.5216 (1.0524, 2.2001) 0.0178 1.3769 (0.7478, 2.5352) 0.3015 

eGFR 10 0.8452 (0.7212, 0.9905) 0.0377 0.9131 (0.7997, 1.0425) 0.1656 0.9104 (0.7868, 1.0534) 0.1626 0.9913 (0.9783, 1.0045) 0.1838          
 Trend       

 p less than 0.05 (Significant)       

 Model did not converge       
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Table 2-7 – Median dataset 
  Banff i Banff ci Banff ct IFTA 

 Unit of 
Increment 

OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value OR (95% CI) P-value 

𝑐𝑔  0.5 1.0007 (0.9990, 1.0023) 0.4191 1.0000 (1.0000, 1.0000) 0.0767 1.0000 (1.0000, 1.0000) 0.6452 1.0000 (1.0000, 1.0000) 0.1015 

𝜇  1000 1.0002 (0.9995, 1.0010) 0.5518 1.0000 (1.0000, 1.0000) 0.1143 1.0000 (1.0000, 1.0000) 0.6974 1.0000 (1.0000, 1.0000) 0.1458 

𝜇1  500 0.9997 (0.9994, 0.9999) 0.0101 1.0000 (1.0000, 1.0000) 0.8528 1.0000 (1.0000, 1.0000) 0.5420 1.0000 (1.0000, 1.0000) 0.8107 

𝜇2  1 0.9995 (0.9990, 1.0001) 0.1161 1.0000 (1.0000, 1.0000) 0.9050 1.0000 (1.0000, 1.0000) 0.4312 1.0000 (1.0000, 1.0000) 0.9612 

𝑐2𝐷𝐹𝑇
100   0.5 0.9993 (0.9982, 1.0005) 0.2491 1.0000 (1.0000, 1.0000) 0.2392 1.0000 (1.0000, 1.0000) 0.5349 1.0000 (1.0000, 1.0000) 0.2311 

𝑐2𝐷𝐹𝑇
200   0.5 0.9998 (0.9990, 1.0006) 0.6005 1.0000 (1.0000, 1.0000) 0.6592 1.0000 (1.0000, 1.0000) 0.3227 1.0000 (1.0000, 1.0000) 0.6029 

𝛼2𝐷𝐹𝑇
100   100 1.0002 (0.9975, 1.0030) 0.8792 1.0000 (1.0000, 1.0000) 0.2316 1.0000 (1.0000, 1.0000) 0.0309 1.0000 (1.0000, 1.0000) 0.2205 

𝛼2𝐷𝐹𝑇
200   100    1.0000 (1.0000, 1.0000) 0.0305 1.0000 (1.0000, 1.0000) 0.0131 1.0000 (1.0000, 1.0000) 0.0269 

𝑐𝑆𝐹𝐾
100  0.5 0.9992 (0.9978, 1.0006) 0.2602 1.0000 (1.0000, 1.0000) 0.1648 1.0000 (1.0000, 1.0000) 0.9331 1.0000 (1.0000, 1.0000) 0.1657 

𝑐𝑆𝐹𝐾
150  0.5 1.0002 (0.9990, 1.0014) 0.7439 1.0000 (1.0000, 1.0000) 0.6361 1.0000 (1.0000, 1.0000) 0.4037 1.0000 (1.0000, 1.0000) 0.6540 

𝑐𝑆𝐹𝐾
200  0.5 1.0002 (0.9991, 1.0013) 0.7539 1.0000 (1.0000, 1.0000) 0.5550 1.0000 (1.0000, 1.0000) 0.3566 1.0000 (1.0000, 1.0000) 0.5825 

𝑐𝑆𝐹𝐾
250  0.5 1.0000 (0.9990, 1.0010) 0.9705 1.0000 (1.0000, 1.0000) 0.8554 1.0000 (1.0000, 1.0000) 0.2963 1.0000 (1.0000, 1.0000) 0.8489 

𝑐𝑆𝐹𝐾
300  0.5 1.0000 (0.9991, 1.0009) 0.9515 1.0000 (1.0000, 1.0000) 0.8652 1.0000 (1.0000, 1.0000) 0.1840 1.0000 (1.0000, 1.0000) 0.9186 

Age 5 1.0621 (0.9248, 1.2198) 0.3936 1.1913 (1.0747, 1.3205) 0.0009 1.1808 (1.0668, 1.3070) 0.0013 1.1935 (1.0767, 1.3230) 0.0008 

Sex 1 0.4148 (0.1904, 0.9036) 0.0268 0.6742 (0.3944, 1.1524) 0.1495 1.1461 (0.6491, 2.0236) 0.6382 0.6917 (0.4042, 1.1837) 0.1787 

Kidney 
Depth 

10 
0.9999 (0.9977, 1.0022) 0.9582 1.0000 (1.0000, 1.0000) 0.4361 1.0000 (1.0000, 1.0000) 0.5160 1.0000 (1.0000, 1.0000) 0.4474 

BPS 5 1.0494 (0.9457, 1.1645) 0.3636 1.0715 (0.9895, 1.1602) 0.0892 1.1256 (1.0213, 1.2406) 0.0171 1.0778 (0.9943, 1.1684) 0.0688 

BPD 5 1.1921 (0.9591, 1.4817) 0.1134 1.0070 (0.8796, 1.1528) 0.9193 1.0904 (0.9492, 1.2526) 0.2211 1.0127 (0.8844, 1.1596) 0.8551 

RIUP 0.1 1.2084 (0.7633, 1.9128) 0.4193 1.3010 (0.9170, 1.8457) 0.1404 1.2904 (0.9027, 1.8447) 0.1620 1.3076 (0.9217, 1.8549) 0.1328 

RIMID 0.1 0.9374 (0.6149, 1.4291) 0.7640 1.1221 (0.8021, 1.5699) 0.5011 1.3420 (0.9216, 1.9543) 0.1250 1.1379 (0.8120, 1.5946) 0.4529 

RILP 0.1 1.2292 (0.7763, 1.9463) 0.3788 1.0581 (0.7474, 1.4980) 0.7502 1.0643 (0.7343, 1.5426) 0.7422 1.0363 (0.7313, 1.4686) 0.8411 

TAT 12 0.8169 (0.5734, 1.1639) 0.2628 1.3564 (1.0658, 1.7263) 0.0132 1.6775 (1.1389, 2.4708) 0.0088 1.3473 (1.0590, 1.7140) 0.0152 

BMI 5 1.1975 (0.8041, 1.7834) 0.3752 1.0818 (0.8460, 1.3831) 0.5309 1.0764 (0.8270, 1.4010) 0.5841 1.0779 (0.8421, 1.3796) 0.5514 

SCr 0.5 1.1998 (0.8285, 1.7374) 0.3349 1.1350 (0.8383, 1.5367) 0.4126 1.4924 (1.0345, 2.1531) 0.0322 1.1316 (0.8361, 1.5314) 0.4233 

eGFR 10 0.8557 (0.7267, 1.0077) 0.0617 0.9203 (0.8085, 1.0476) 0.2089 0.9127 (0.7941, 1.0490) 0.1982 0.9235 (0.8115, 1.0509) 0.2275 
         
 p-value < 0.1 (Trend)       

 p-value < 0.05 (Significant)       

 Model did not converge       
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Chapter 3 – Interpretable machine learning models for 

kidney biopsy score prediction based on shear wave 

elastography 
 

3.1 Introduction 

 

 Chronic kidney disease (CKD), also called chronic kidney failure, describes a long-

term gradual decrease in renal function. In its final stages, CKD can progress to kidney 

failure, which is treated by hemodialysis or kidney transplant. Patient survival rates with 

transplant have increased over the past decades, but patients still often outlive the 

allografts due to rejection, what might require hemodialysis and new transplants [40]. 

Renal biopsy is the gold standard for diagnosis of kidney health, but is an invasive 

procedure that can cause complications, and so, cannot be used frequently. Serum 

creatinine (SCr), glomerular filtration rate (GFR), and classical medical imaging are 

generally used for noninvasive assessment of kidney transplant rejection [96].  

 Creatinine is a waste product of muscle metabolism, and, therefore, is filtered 

freely by the kidneys with minimal reabsorption. The presence of serum creatinine in 

abnormal levels is directly related to the filtration capacity, and, consequently, an important 

biomarker for kidney insufficiency. In spite of GFR direct measurement complexity, it is 

still considered one of the main surrogates of kidney function. Indirect methods using SCr, 

serum cystatin C, age and sex were developed to provide estimated GFR (eGFR) with 

standard blood tests [97].  

 The renal blood flow can also be evaluated using spectral Doppler ultrasound at 

the arcuate or interlobar arteries for resistive index (RI) measurement. The RI assesses 

the pulsatility and compliance of the arteries evaluated, and so, holds more correlation 

with current systemic vascular alterations, nevertheless, it is an important parameter for 

kidney health prognosis [14]. 

 Renal biopsy is an important tool for kidney rejection diagnosis and staging, as the 

samples are evaluated for the presence of multiple histological alterations, such as fibrosis 

and inflammation. When combined, fibrosis and inflammation have shown predictive 

performance for establishing allograft accurate prognosis at 1 year protocol biopsies [46], 

[98], [99]. Nephropathologists evaluate the tissue sample to score the injury levels 
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following the standardized Banff classification criteria [46], [100]. These scores are used 

to establish rejection prognosis and treatment. 

 Even though routine biopsies are the gold standard for allograft prognosis, they 

are performed sparsely during the allograft’s life. Mayo Clinic’s post-transplant protocol 

dictates that routine biopsies should be performed at 4 months, 1, 2, 4, 7 and 10 years 

after transplant. Renal biopsies are invasive procedures that are associated with 

complications such as arteriovenous fistulas, bleeding and, in rare cases, death [101]–

[103]. The reported complication rate can vary from 0.1 to 6%, with a tendency of events 

to increase due to the increase of transplants performed and, consequently, biopsy 

employment [103]–[105].  

 Elasticity imaging methods have been studied over the last decade to determine 

their pathology discriminative capabilities as an alternative to invasive procedures like 

biopsy. Different physiological and structural changes induced by pathological processes 

can be identified as rheological alterations found during elastographic evaluations. Shear 

wave elastography is an elastography method that uses acoustic radiation force (ARF) to 

generate shear waves within the tissue under study. The propagation of the shear wave 

is then measured using high frame rate ultrasound imaging and the motion is processed 

to retrieve characteristics such as the overall propagation velocity (group velocity) as well 

as the velocity at specific wave frequencies (phase velocity). Processes such as fibrosis, 

and different biomarkers, such as RI and eGFR, have been found to correlate with shear 

wave velocity alterations [16], [19], [62]–[64]. 

 Human tissue exhibits viscoelastic mechanical properties; therefore, it is important 

to evaluate these parameters in addition to the elastic properties. The time-dependent 

deformation of viscoelastic materials give rise to shear wave velocity dispersion, which is 

defined by the variation of shear wave velocity with respect to the wave frequency. The 

phase velocity is commonly obtained with a method that uses a two-dimensional Fourier 

transform (2D FT) [82]. By analyzing the phase velocity at multiple frequencies, it is 

possible to quantitively evaluate the viscoelastic properties of a tissue [29], [31], [65]. The 

quantification of viscoelastic parameters can be derived from rheological models, such as 

Kelvin-Voigt, or through the calculation of propagation characteristics such as phase 

velocity and phase attenuation [78], [85]. 

 In previous work including that shown in Chapter 2, it was possible to correlate 

different elastography measurements and biomarkers to the incidence of interstitial 

inflammation (Banff i), interstitial fibrosis (Banff ci) and tubular atrophy (Banff ct) and 
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interstitial fibrosis and tubular atrophy (IFTA) during biopsy assessment [46], [100]. Each 

Banff category (i, ci, ct) ranges from 0-4, with 0 indicating no presence and the other values 

indicating increasing amounts of inflammation, interstitial fibrosis, or tubular atrophy. IFTA 

can be calculated by the floor average of ci and ct, e.g. if ci = 0 and ct = 1 then IFTA = 0 

[98], [100]. In this study, we distinguished between scores of 0 and > 0. 

 The increasing complexity of modern dataset structures have given rise to new 

demands for techniques capable to model such applications. In recent years, the computer 

science field of machine learning (ML) has developed to efficiently perform tasks such as 

clustering, prediction, and regression by modeling such complex datasets that 

conventional linear and statistical techniques could not perform. Most ML approaches 

embed nonlinearities, and therefore, can represent the intrinsic nonlinearities of real 

datasets. 

 One of the most effective and versatile algorithms is the support vector machine 

(SVM). The SVM has been successfully applied to solve various complex tasks, such as 

image classification, text categorization and protein classification without the data volume 

constraints present in neural network implementations [106]–[109]. The objective of the 

SVM is to minimize classification error while optimizing the separating hyperplanes 

between the different data classes. The optimal hyperplane is defined by the fine 

adjustment of its margins, the tighter the margins the better the fitting to the training data, 

while looser margins will yield better generalization. The penalty for incorrect 

classifications is defined by the hinge loss function, increasing linearly with the distance 

from the data point to the separating hyperplane. The margins’ slackness is then defined 

by the penalty parameter C applied to the hinge loss function. As C increases, the loss 

function slope increases and, consequently, the misclassification loss increases, enforcing 

better class separation with smaller margins. As with most ML algorithms, SVM results 

depend on proper balance between accuracy and generalization. Higher values of C can 

lead to high training accuracy, but poor test performance in the real world, which is referred 

to as overfitting [108].  

 In complex tasks, the linear hyperplane may not be able to successively separate 

the designated classes, in such cases, hyperspace transformations can be employed to 

achieve geometrical separation. The “kernel trick” embeds nonlinearities that transform 

the data into a higher dimension hyperspace where a linear hyperplane can be fit. SVM 

kernel development is a research field on its own, and different kernels can model different 

dataset characteristics [110]. In this work, the radial basis function kernel (RBF) was used 
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due to its flexibility to model complex datasets. The main RBF parameter, γ, defines the 

influence radius of a single observation to the calculation of the separating hyperplane. 

 In recent years, there has been an increasing concern not only on the quality of 

ML models, but also in their interpretability. The “black box” characteristics of most ML 

implementations are not suitable for critical applications such as health care, and directly 

impact the confidence on such models. Some ML algorithms, such as Decision Trees, 

have direct access to feature importance, others have feature importance surrogates, 

such as convolutional neural network’s feature maps, that can give insights on what the 

algorithm is converging for. Such solutions may not be available for SVM when a kernel 

transformation is applied to the feature space. In order to introduce interpretability to the 

RBF SVM, Shapley additive explanations (SHAP) [111] were implemented. 

 SHAP leverages the game theory solution concept of Shapley values to iteratively 

compute the feature importance based solely on the input and output of the trained model, 

therefore, this approach is mostly agnostic to the algorithm implemented. The Shapley 

value was introduced in 1951 by Lloyd Shapley and consists of a solution to fairly distribute 

the total gains to the players that collaborate towards a particular task, according to each 

player’s efforts [112]. According to the Shapley value, the player 𝑖 worth contribution to a 

given collaborative game result is: 

𝜑𝑖(𝑣) = ∑
|𝑆|!(𝑛−|𝑆|−1)!

𝑛!
(𝑣(𝑆 ∪ {𝑖}) − 𝑣(𝑆))𝑆∈𝑁/{𝑖} ,               (3-1) 

where 𝑣 is the characteristic function, which describes the total expected reward for a 

given coalition of players 𝑆. The variable 𝑛 is the total number of players, 𝑁 is the coalition 

of all players, and the sum extends over all coalitions 𝑆 that do not contain player 𝑖. Each 

individual player is evaluated and added to the coalition at a time, therefore, the average 

of the contributions over all possible permutations is interpreted as the fair compensation 

for each particular player [112]. It is then possible to translate the game theory to the 

interpretability of ML models, where the features are the players, and the model output is 

the game reward. By iteratively evaluating how the model output reacts to feature 

variations it is possible to assign Shapley values to each feature, not only for the whole 

model, but for each data point individually.  

 In the previous chapter, the renal transplant dataset, composed by 206 patients, 

was analyzed using general estimating equations (GEE) to obtain the statistical 

significance (p-values) of each of the features, elastography based and biomarkers. 

Although, multiple high statistically significant elastography features were found, logistic 
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regression was not able to produce relevant odds ratios, when evaluating features 

separately (0.965 ≤ OR ≤ 1.017), or areas under the receiver operating characteristic 

(ROC) curve above 0.63 for inflammation, 0.66 for fibrosis and IFTA, and 0.72 for tubular 

atrophy. In this study we intend to further develop and interpret the clinical application of 

SWE for kidney allograft evaluation with the use of support vector machine and SHAP. 

 

3.2 Materials and Methods 

 

 The data set used for this study was composed from 206 patients with kidney 

transplants that had SWE scans performed with a General Electric Logiq E9 ultrasound 

system (General Electric, Wauwatosa, WI, USA), right before their routine biopsy 

procedure at Mayo Clinic. It is important to note that some patients were scanned more 

than once during the course of the protocol, totaling 223 studies. The data acquisition was 

conducted from October 2017 to July 2019, under the protocol approved by the Mayo 

Clinic Institutional Review Board (IRB# 11-003249). The study cohort demographics are 

displayed in Table 3-1.  

Table 3-1 – Study cohort demographics 

 Patients (n=206) Studies (n=223) 

Number % Number % 

Sex     

   Male 122 59.2 128 57.4 

   Female 84 40.8 95 42.6 

 Mean (Std. Dev) Range Mean (Std. Dev) Range 

Age, yrs 49.8 (14.0)* 22-76 49.7 (14.0) 22-76 

BMI, kg/m2 27.6 (5.3)* 13.1-42.3 27.9 (5.5) 13.1-42.3 

TAT (months) 14.5 (14.9)* 4-60 16.1 (14.7) 4-60 

*At first scan 

 

Biopsy protocols for kidney rejection assessment rely on the diffusiveness of injury 

throughout the allograft tissue to correlate local samples to the whole kidney state [32]. 

Although the same premise can be applied to shear wave elastography, non-invasive 

techniques allow more comprehensive evaluation of the allograft. Therefore, each patient 

was scanned with 10-13 acquisitions at three kidney locations (upper pole, middle region, 

and lower pole) on both longitudinal and transversal views, generating an average of 60-

80 measurements per patient. 

The SVM was evaluated to assess its capabilities to predict the Banff i, ci, ct and IFTA 

scores from the rheological, physiological, and demographical features. The parameters 

obtained from the SWE measurements included group velocity, shear modulus, phase 
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velocity and attenuation at frequencies of 100 and 200 Hz. The Stockwell transform 

combined with a slant frequency-wavenumber analysis (GST-SFK) [81] was also used to 

retrieve the phase velocity dispersion curves at a wider frequency range (100-300 Hz). 

Additionally, the models also used clinical observation features such as blood pressure 

(systolic and diastolic), resistive index, serum creatinine and eGFR. The complete list of 

features and labels used are displayed in Table 3-2.  

Table 3-2 – SWE measurements and clinical observations 

Indicator Description Indicator Description 

Features: Kidney 

Depth 

Cortex depth on ultrasound image, 

mm Location Scan position  

𝑐𝑔 Group velocity, m/s BPS Systolic blood pressure, mmHg 

𝜇 Shear modulus, Pa BPD Diastolic blood pressure, mmHg 

𝜇1 Kelvin-Voigt shear elasticity 1, Pa  RIUP Restive index at upper pole 

𝜇2 Kelvin-Voigt shear viscosity 2, Pas RIMID Restive index at middle 

𝑐2𝐷𝐹𝑇
100  2D FT phase velocity at 100 Hz, m/s RILP Restive index at lower pole 

𝑐2𝐷𝐹𝑇
200  2D FT phase velocity at 200 Hz, m/s TAT Time-after-transplant, months 

𝛼2𝐷𝐹𝑇
100  2D FT phase attenuation at 100 Hz, Np/m BMI Body mass index, kg/m2 

𝛼2𝐷𝐹𝑇
200  2D FT phase attenuation at 200 Hz, Np/m SCr Serum creatinine, mg/dL 

𝑐𝑆𝐹𝐾
100  GST-SFK phase velocity at 100 Hz, m/s eGFR 

Estimated glomerular filtration 

rate, mL/min/1.73 m2 

𝑐𝑆𝐹𝐾
150  GST-SFK phase velocity at 150 Hz, m/s Labels: 

𝑐𝑆𝐹𝐾
200  GST-SFK phase velocity at 200 Hz, m/s Banff i Interstitial inflammation score 

𝑐𝑆𝐹𝐾
250  GST-SFK phase velocity at 250 Hz, m/s Banff ci Interstitial fibrosis score 

𝑐𝑆𝐹𝐾
300  GST-SFK phase velocity at 300 Hz, m/s Banff ct Tubular atrophy score 

Age Patient age, years IFTA 
Interstitial fibrosis and tubular 

atrophy (ci + ct) 

 
 The models were implemented in Python (Python Software Foundation, 

Wilmington, DE, USA) and scikit-learn libraries [113]. All the features were normalized 

prior to modeling. The hyperparameters and other components, such as penalty C, γ and 

kernels, were evaluated using nested 5-fold cross validation and the final model was 

tested using 5-fold cross validation. All k-fold cross-validations were implemented with 

group shuffle split algorithm, not allowing different scans from a same study to be present 

at train and test sets at the same time. 

 After hyperparameter grid search, ‘scale’ showed overall better prediction results 

when compared to ‘auto’, and fixed γ settings. The scikit-learn algorithm defines the ‘scale’ 

γ by the equation 𝛾 = 1 (𝑛𝑓𝑒𝑎𝑡 ∗ 𝑋. 𝑣𝑎𝑟)⁄ , therefore, the influence radius of a single 

observation is inversely proportional to the number of features (𝑛𝑓𝑒𝑎𝑡) and the training data 

variance (𝑋. 𝑣𝑎𝑟). The algorithm showed better performance with C ranging from 0.1 to 
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10, and optimal tolerances within 0.001 and 0.01. The class weight parameter was set to 

‘balanced’ to help accommodate for small skewness present on datasets. The positive 

Banff diagnostic outcomes (greater than zero) were combined to create binary labels. The 

Banff diagnostic outcome distribution per patient and per scan is shown in Table 3-3 and 

3-4. 

Table 3-3 – Banff patient score distribution 

Score 
Banff i (n=223) Banff ci (n=223) Banff ct (n=223) IFTA (n=223) 

Patients % Patients % Patients % Patients % 

0 192 86.10 127 56.95 72 32.29 127 56.95 

1 17 7.62 84 37.67 139 62.33 84 37.67 

2 10 4.48 11 4.93 11 4.93 11 4.93 

3 4 1.79 1 0.45 1 0.45 1 0.45 

> 0 31 13.90 96 43.05 151 67.71 96 43.05 

 

Table 3-4 – Banff scan score distribution 

Score Scans % Scans % Scans % Scans % 

0 14024 86.26 9352 57.52 5478 33.69 9352 57.52 

1 1160 7.13 6033 37.11 9907 60.94 6033 37.11 

2 767 4.72 796 4.90 796 4.90 796 4.90 

3 307 1.89 77 0.47 77 0.47 77 0.47 

> 0 2234 13.74 6906 42.48 10780 66.31 6906 42.48 

 
For each Banff binary diagnostic outcome (i, ci, ct, IFTA), several models were trained 

on a variety of dataset and feature setups. Primarily, three datasets were used: one with 

all the data available for training (Full), one limited to the longitudinal plane, middle position 

(L_MID) and one with the median values for all viscoelastic measurements throughout the 

10-13 acquisitions and any given position (Median).  Four feature sets were used to train 

the models: all features available, elastography only, biomarkers only and low p-value 

features (p < 0.10, as given in Appendix Table 3-5). To evaluate the SWE assessment 

variability, the IQR-to-median ratio for each patient’s position was calculated throughout 

every elastography measurement [114]. This information was evaluated as a data quality 

parameter, by filtering positions within the kidney (longitudinal/transverse, upper/lower 

pole, middle region) with IQR-to-median ratio > 0.4. In cases where not all viscoelastic 

features were being used, IQR-to-median ratio filtering was tested on all features 

(extensive), regardless of use, and only on the features used for training (specific, e.g., 

low p-value). In the case of Banff i, specifically, due to its skewness, IQR-to-median ratio 

based undersampling was also applied to balance the majority class. The healthy patients 

with lower average IQR-to-median ratio were selected to compose the balanced Banff i 

dataset (n = 62).  
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The receiver operating characteristic (ROC) curves from the five folds were compiled 

to produce a single average ROC curve, additionally, the area under ROC (AUROC), 

sensitivity, specificity, and accuracy (at Youden’s index optimal cutoff) were recorded. All 

ROC averages were within a standard deviation threshold of 0.10 to ensure model 

stability. The ROC standard deviation is important to ensure each of the k-folds are fair 

representations of the dataset and, therefore, certify the mean ROC as a trustworthy 

representation of the model’s real performance.  For each fold, the Shapley values of each 

test observation were recorded. In addition to the overall importance, it is possible to also 

identify the feature effect trend, that is, the behavior of the of the output given the 

increment or reduction of a given feature. The SHAP typical output is exemplified in Figure 

3-1 [111]. 

Table 3-5 – Low p-value features (p-value < 0.10) 

Diagnostic Outcome Full L_MID Median 

Banff i 

 

𝑐2𝐷𝐹𝑇
200  

𝛼2𝐷𝐹𝑇
200  

𝑐𝑆𝐹𝐾
200 

BPD 

 

𝑐𝑔 

BPD 

eGFR 

𝜇1 
eGFR 

Banff ci 

 

𝑐𝑔 

𝑐𝑆𝐹𝐾
150  

𝑐𝑆𝐹𝐾
200 

𝑐𝑆𝐹𝐾
250 

𝑐𝑆𝐹𝐾
250 

Age 
RIUP 

TAT 
BMI 

 

Age 
TAT 

 

𝑐𝑔 

𝛼2𝐷𝐹𝑇
200  

Age 
BPS 

TAT 

Banff ct 

 

𝑐𝑔 

𝜇 

𝛼2𝐷𝐹𝑇
100  

Age 
BPS 

TAT 
SCr 

 

𝛼2𝐷𝐹𝑇
100  

𝛼2𝐷𝐹𝑇
200  

Age 
BPS 

RIMID 

TAT 
SCr 

𝛼2𝐷𝐹𝑇
100  

𝛼2𝐷𝐹𝑇
200  

Age 
BPS 

TAT 
SCr 

IFTA 

 

𝑐𝑆𝐹𝐾
150  

𝑐𝑆𝐹𝐾
200 

𝑐𝑆𝐹𝐾
250 

Age 
RIUP 

TAT 
BMI 

 

Age 
BPS 

TAT 

𝛼2𝐷𝐹𝑇
200  

Age 
BPS 

TAT 
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Figure 3-1 – Example of ROC for 5-fold cross-validation test and its SHAP evaluations of a SVM 

classifier trained with the entire dataset, all features available, no IQR-to-median ratio filtering 

and undersampling. Each dot represents one evaluation, the color encodes the feature value, 

and the horizontal position its impact to the model output. In this example, it is possible observe 

diastolic blood pressure has positive importance, as it increases so does the output of the model. 

*Only top 20 features are displayed. 

 

3.3 Results 

 
 The AUROC, sensitivity, specificity, and accuracy for each model was recorded. 

For the sake of conciseness, the analysis will be focused on the AUROC. The values of 

sensitivity, specificity, and accuracy are available in the Appendix of this chapter. Figure 

3-2 shows the AUROC performance distribution for each dataset variation proposed, 

dataset (Full, L_MID and Median), feature set (All, Elastography, Biomarkers, low p-

value), IQR-to-median ratio filtering (no, specific, and general). 

 Banff ci, ct and, consequently IFTA, had similar performance distributions, in 

contrast with inflammation (Banff i). Discrimination of interstitial fibrosis and tubular 

atrophy show better performance with the L_MID dataset and leveraging all features. The 

elastography feature set showed poor performance for all three diagnostic outcomes, with 

AUROCs close to the 0.50 mark. The use of all features consistently showed best median 

performance with AUROCs in the 0.62-0.70 range. Although the p-value feature set was 

the only to reach the 0.70 mark, IQR-to-median ratio filtering showed better median 

performance for Banff ci and ct, but worst median performance for IFTA. 
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Figure 3-2 – AUROC distribution for every diagnostic category aggregated by dataset, feature 

set, IQR-to-median ratio filtering and undersampling (Banff i only). The red line is the median 

value, the grey box displays the interquartile range (IQR) and the maximum and minimum 

whiskers set to 1.5 IQR. Outliers are displayed as a blue vertical line. The list of all results is 

available in the chapter Appendix. 

 

Table 3-6 – Top 3 SVM models for each diagnostic outcome 

Diagnostic 
Outcome 

Rank Dataset Feature set 
IQR-to-
median 

ratio Filter 

Undersampling 
AUROC 

Banff i 

1st Median Elastography No Yes 0.76 

2nd Median All No Yes 0.75 

3rd Full p-value No Yes 0.72 

Banff ci 

1st L_MID p-value General N/A 0.67 

2nd Median Biomarkers No N/A 0.67 

3rd Full All No N/A 0.66 

Banff ct 

1st L_MID p-value No N/A 0.74 

2nd Full p-value General N/A 0.73 

3rd L_MID All No N/A 0.70 

IFTA 

1st Median p-value No N/A 0.69 

2nd L_MID All Specific N/A 0.67 

3rd L_MID All No N/A 0.65 

 
 Banff i, in contrast, showed the best median performance when trained with the 

full dataset, low p-value features, but with IQR-to-median ratio applied to all features, 

applying the IQR-to-median ratio only to the features at hand decreased variability but did 

not improve the overall performance. Banff i greatly benefited from undersampling with an 

increase in median of 14%. 
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 Table 3-6 shows the three best performing models for each diagnostic outcome. 

Banff i and Banff ct had models that were able to reach AUROC > 0.70, with 0.76 and 

0.74, respectively. It is important to note that, in some cases, the best overall performance 

does not align with the median trends shown in Figure 3-2. Banff ci showed the worst 

overall performance, with a maximum of AUROC = 0.67. IFTA showed slightly better 

performance with a top AUROC = 0.69. A table with all models tested and their 

performances is supplied in the chapter Appendix.  

 
Figure 3-3 – Scatter plot of feature mentions at 1st, 2nd, and 3rd importance rank. The marker 

color encodes which diagnostic outcome was analyzed, and the marker shape encodes the trend 

(e.g., upright triangle indicates positive trend). Positive trends occur when the output of the 

classifier increases as the feature value increase, whereas negative trend occurs when the 

classifier output increases when the feature value decreases. 

 
 Figure 3-3 summarizes the top 3 importance mentions for each model tested with 

AUROC > 0.60 as calculated by the SHAP algorithm. Any models below AUROC = 0.60 

were deemed too close to chance (AUROC = 0.50), and the SHAP analysis should not 

hold significance. The SHAP analysis showed the strong importance of the time 

dependent biomarkers Age and TAT for Banff ci, ct and consequently IFTA. These 

features consistently showed positive trends, and therefore, the probability of positive 

prediction increases as Age and TAT increases. It is important to note that are only 14 

longitudinal studies are present in the data set, and therefore TAT and Age are not directly 

correlated. The eGFR showed strong importance for all diagnostic outcomes analyzed, 

with a negative trend, as the eGFR decreases the probability of positive prediction 

increases. Differently from other diagnostic outcomes, Banff i, showed strong diastolic 



39 
 
 

blood pressure importance with this biomarker as top importance for 16 models, always 

with a positive behavior. 

 From the elastography features, group velocity (𝑐𝑔) and 2D FT phase attenuation 

at 200 Hz (𝛼2𝐷𝐹𝑇
200 ) showed higher importance with 18 and 17 mentions, respectively. 

Overall, Banff i was the diagnostic prediction most impacted by viscoelastic alterations, 

although Banff ci, ct and IFTA had better results when viscoelastic features were 

combined with the biomarkers.  

 

3.4 Discussion 

 

 In this study, we evaluated and interpreted the implementation of support vector 

machines for classification of kidney allograft’s biopsy scores based on viscoelastic, 

physiological, and demographical observations. Group velocity (𝑐𝑔), shear modulus (𝜇), 

Kelvin-Voigt dispersion curve fitting (𝜇1 and 𝜇2), AMUSE (2D FT phase velocity and 

attenuation, 𝑐2𝐷𝐹𝑇 and 𝛼2𝐷𝐹𝑇) and GST-SFK (phase velocity, 𝑐𝑆𝐹𝐾) were used to assess 

renal cortex rheological properties. Kidney depth, blood pressure (systolic and diastolic), 

resistive index (at upper pole, middle region, and lower pole), time-after-transplant (TAT), 

Age, BMI, serum creatinine and eGFR were used to assess the performance of common 

bedside biomarkers. The SVMs were trained and tested on different subsets of patient 

data, the original full dataset, one containing the L_MID position only, and median dataset, 

calculated over all scans performed at each specific patient and position. Different feature 

sets were used to test viscoelastic parameters and biomarkers in isolation along with the 

subset of features with p-value < 0.10, as evaluated in Chapter 2. The IQR-to-median ratio 

was also tested as a data quality filter by calculation data acquisition variability over each 

viscoelastic feature, position, and patient.   

 Several models reached AUROCs > 0.70, a level of performance compatible with 

previous work performed by our group and others [17], [21], [22], [33]–[36]. The results 

were encouraging but still lack the performance necessary for clinical translation. 

Nevertheless, it was possible to evaluate different characteristic of the allograft injuries as 

related to the most common biomarkers and experimental viscoelastic measurements. 

The SHAP importance analysis agreed with the generalized estimating equations (GEE) 

and odds ratio analysis performed previously (Chapter 2), showing the reliability of SVM 

for model classification and interpretability. 
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 Overall, inflammation was shown to be the most detectable injury by elastography 

measurements, demonstrating classification AUROC > 0.70 even when biomarkers were 

not present. Inflammation may tend to have a transient occurrence, with tubular atrophy 

and interstitial fibrosis being a consequence of recurring inflammation [120]. It is possible 

to note how temporal biomarkers, TAT and Age, do not give insight into the inflammation 

prediction. Diastolic blood pressure also showed high importance for inflammation 

detection, with a positive trend, suggesting that hypertensive patients might be more 

associated with having transplant inflammation. Group velocity also had reasonably high 

importance, with 9 mentions in the top 3 ranking. Its trend was negative, which might be 

due to the increase of non-scarred interstitial volume with infiltrate of plasma cells and 

edema between tubules at the area affected [100]. Limiting the features to the most 

significant, as analyzed by GEE, prove to be the most reliable technique, although the 

best performance was reached using all the viscoelastic measurements and no 

biomarkers. Best reliability as reached with the use of a general IQR-to-median ratio filter, 

by filtering subject positions where any viscoelastic measurement had IQR-to-median ratio 

is above 0.40.  

 Regardless, the use of the median dataset proves to be a viable solution for 

reducing data variability and improving quality. Even when combined with no IQR-to-

median ratio filtering it was able to produce the best Banff i models. Banff i was also the 

least frequent injury present in the patient study, with less then 14% prevalence. 

Therefore, the models significantly benefited from majority class undersampling, the use 

of the IQR-to-median ratio to retain the most reliable negative scores also prove to be a 

viable technique for better models. It is important to note that, in order to clinically translate 

such models, IQR-to-median ratio calculations should be embedded to the acquisition 

process, to ensure data quality similar to how it has been done with liver SWE [114]. 

Further investigation on inflammation prediction is necessary, which would involve studies 

with more patients with moderate and severe allograft inflammation are imperative for the 

advancement of the proposed techniques. 

 Banff ci, ct and IFTA, had very similar behavior in terms of performance distribution 

for dataset, feature set and IQR-to-median ratio filter. The L_MID dataset showed the best 

reliability for all three of the diagnostic outcomes, possibly due to a more diffuse 

characteristic of the interstitial fibrosis and tubular atrophy. As discussed previously, 

L_MID is the best quality acquisition position with lower average IQR-to-median ratio, and 

therefore it might provide reasonable evaluations without relying on other orientations or 
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kidney locations. For Banff ci and ct, the L_MID dataset also showed the best overall 

performance. Discrimination of interstitial fibrosis and tubular atrophy relied heavily on 

biomarkers for accurate classification. Time associated biomarkers such as TAT and Age 

showed high importance with a positive trend, this agrees with the progressive 

characteristics of the injury. In this study, the number of longitudinal patient acquisitions 

was limited, with only 14 patients (6.8%) being scanned at multiple timepoints, therefore, 

the are no strong correlation between TAT and Age. The Age positive trend importance 

then suggests a higher prevalence of ci, ct and IFTA in older patients. These findings also 

agree with the GEE and odds ratio evaluations performed previously.  

 Besides inflammation, tubular atrophy was the only diagnostic outcome to reach 

over AUROC > 0.70, at a maximum of 0.74. Although TAT and Age showed higher 

importance, as expected, the models benefitted from the addition of viscoelastic 

measurements, especially 2D FT shear wave attenuation at 200 Hz, 𝛼2𝐷𝐹𝑇
200 , which showed 

a negative trend, the decrease in attenuation is consistent with the interstitial inflammation 

process, where interstitial contents expand and compress, decreasing the overall 

attenuation of the tissue [23][38][39]. The eGFR also demonstrated high importance in 

multiple models for the different outcomes, its negative trend relates directly to the allograft 

function, as the injury progresses the filtration capacity of the kidney tends to decline [45]. 

Interstitial fibrosis and IFTA had the worst performance at a maximum AUROC of 0.67 

and 0.69, respectively. All Banff ci patients evaluated presented tubular atrophy as well, 

which did not occur with Banff i and Banff ct. The lack of isolated fibrosis cases might 

confound the classification of both Banff ci and IFTA. Further patient studies are necessary 

to isolate fibrosis and ensure proper training. 

 All patient studies were performed in a single institution what can impose levels of 

bias to the dataset. Future studies should aim at multi-institutional assessment to evaluate 

a broader demographic representation and different allograft care methodologies. The 

patients present in this study also showed minimal to no injury prevalence, which might 

confound the performance of the algorithms tested. Inflammation and isolated interstitial 

fibrosis had limited representation on the dataset, with 14% and no representation, 

respectively. Conversely, the single institutional characteristic of this study helps to control 

intra-operator variability of the scans performed as both sonographers and 

nephropathologists underwent similar training standards. Similar to other machine 

learning algorithms, RBF SVM assumes feature non-collinearity. Although SWE 

measurement can have different levels of multicollinearity that might confound the method 
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proposed, the low p-value feature selection did not alter the performance of the datasets 

significantly, as shown in Figure 3-2. 

 Overall, the work proposed showed encouraging results for early inflammation 

detection, even on limited datasets. With more Banff i cases, the classification 

performance may be improved further. Additionally, it is possible to relate the acquisition 

position with the biopsy location annotation, allowing better understanding of the 

localization of inflammation within the allograft. More frequent assessment of allograft 

state might enable better control of the inflammation process and, consequently, reduce 

the prevalence of progressive injuries such as fibrosis and tubular atrophy.   

 

3.5 Conclusion 

 

 Overall, prediction of inflammation showed the best results, reaching AUROC = 

0.77. Banff i, was also the diagnostic more correlated to rheological alterations, reaching 

best performance without the use of biomarker features. Undersampling was necessary 

in other to achieve superior results what indicates that more positive cases are necessary 

to create a more balanced, but still diverse, dataset. Interstitial fibrosis and tubular atrophy 

classification, differently, relied more on temporal biomarkers such as Age and time-after-

transplant (both with positive trends), this agrees with the progressive characteristics of 

these injuries, being related to the recurrence of inflammation, in a scarring process. 

Regardless of biomarkers higher importance, Banff ci, ct and IFTA benefited from the 

inclusion of viscoelastic parameters such as 2D FT shear wave attenuation.  

 The results reported agree with previous GEE and odds ratio analysis, which 

reinforces the reliability of machine learning methods. The interpretation of SVM models 

enabled important insights into the rheological alterations causes by the injuries sustained 

during allograft rejection. Further investigation is necessary to better understand how the 

micro-structure changes caused by repeated inflammation, progressing fibrosis and 

tubular atrophy can dictate the macro viscoelastic changes observed. The kidney is a 

complex, anisotropic, and heterogenous organ, what poses a variety of data acquisition, 

processing and analysis challenges, machine learning might be an important tool to 

advance the field towards clinical translation.   
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3.6 Appendix 

 
Diagnostic Dataset QA Feature set Under 

sampled 
AUC Sens Spec Cutoff Acc 1st 2nd 3rd 

Banff i Median No Elastography Yes 0.76 0.58 0.84 0.36 0.68 cp mu ap_100 

Banff i Median No All Yes 0.75 0.67 0.76 0.48 0.68 cg mu ap_100 

Banff i Full No p-value Yes 0.72 0.63 0.76 0.46 0.68 BPD cp_SFK_200 ap_200 

Banff i Full General p-value Yes 0.72 0.74 0.68 0.51 0.62 BPD cp_SFK_200 ap_200 

Banff i Median No p-value Yes 0.71 0.77 0.59 0.59 0.64 cg BPD eGFR 

Banff i Full No All Yes 0.68 0.49 0.81 0.25 0.61 BPD Kidney Depth BMI 

Banff i Full General p-value No 0.68 0.61 0.68 0.94 0.89 BPD cp_SFK_200 cp_200 

Banff i L_MID No All Yes 0.65 0.60 0.69 0.11 0.60 BMI RI_LP eGFR 

Banff i L_MID Specific Elastography Yes 0.65 0.71 0.55 0.52 0.58 ap_200 cp_SFK_100 cp_SFK_150 

Banff i L_MID Specific p-value Yes 0.65 0.72 0.55 0.54 0.59 cg eGFR BPD 

Banff i Full Specific All Yes 0.64 0.41 0.85 0.17 0.59 Kidney Depth BPD BMI 

Banff i Full Specific Elastography Yes 0.63 0.55 0.67 0.46 0.59 cg ap_100 mu 

Banff i L_MID Specific p-value No 0.63 0.85 0.42 0.94 0.87 cg eGFR BPD 

Banff i L_MID No p-value Yes 0.62 0.93 0.30 0.73 0.58 cg eGRF BPD 

Banff i Full No Biomarkers Yes 0.62 0.34 0.92 0.45 0.55 BMI RI_LP TAT 

Banff i Full Specific p-value Yes 0.62 0.67 0.57 0.51 0.57 BPD cp_SFK_200 ap_200 

Banff i L_MID General p-value No 0.62 0.74 0.60 0.95 0.88 BPD cg eGFR 

Banff i Full No Biomarkers No 0.61 0.37 0.84 0.80 0.87 eGFR RI_M BPD 

Banff i Median No Biomarkers Yes 0.61 0.75 0.58 0.49 0.67 Kidney Depth BPD BPS 

Banff i L_MID General p-value Yes 0.60 0.55 0.72 0.45 0.39 BPD cg eGFR 

Banff i Median No Biomarkers No 0.60 0.85 0.45 0.85 0.87 Kidney Depth BPD eGFR 

Banff i L_MID No p-value No 0.59 0.55 0.67 0.87 0.87 cg eGFR BPD 

Banff i Full No p-value No 0.57 0.41 0.77 0.82 0.86 BPD ap_200 cp_200 

Banff i Full Specific All No 0.57 0.58 0.59 0.94 0.86 BPD RI_LP RI_UP 

Banff i Full Specific Elastography No 0.57 0.50 0.63 0.86 0.86 ap_100 cp_SFK_100 cp_200 
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Diagnostic Dataset QA Feature set Under 
sampled 

AUC Sens Spec Cutoff Acc 1st 2nd 3rd 

Banff i Full Specific p-value No 0.56 0.83 0.31 0.93 0.86 BPD cp_SFK_200 ap_200 

Banff i L_MID Specific Elastography No 0.55 0.53 0.59 0.87 0.86 cg ap_200 cp_SFK_100 

Banff i Median No All + IQR No 0.53 0.90 0.17 0.51 0.46 Kidney Depth eGFR SCr 

Banff i L_MID Specific All No 0.52 0.49 0.60 0.93 0.83 BPD eGFR Kidney Depth 

Banff i Median No p-value + IQR No 0.52 0.39 0.72 0.84 0.87 BPD cg eGFR 

Banff i Median No p-value No 0.51 0.39 0.74 0.85 0.87 BPD cg eGFR 

Banff i Median No Elastography + IQR No 0.51 0.77 0.31 0.87 0.86 ap_200 ap_100 cp_SFK_250 

Banff i L_MID No All No 0.50 0.12 0.94 0.52 0.87 BPD eGFR Kidney Depth 

Banff i L_MID Specific All Yes 0.50 0.68 0.50 0.61 0.39 SCr RI_LP mu1 

Banff i Median No All No 0.50 0.27 0.77 0.83 0.87 BPD RI_M eGFR 

Banff i Median No Elastography No 0.50 0.78 0.26 0.86 0.72 cp_SFK_250 ap_200 cp_SFK_300 

Banff i Full No All No 0.39 0.03 0.98 0.01 0.34 BPD RI_UP TAT 

Banff ci L_MID General p-value N/A 0.67 0.68 0.64 0.51 0.55 TAT Age BMI 

Banff ci Median No Biomarkers N/A 0.67 0.63 0.70 0.33 0.68 TAT Age eGFR 

Banff ci Full No All N/A 0.66 0.51 0.73 0.49 0.62 TAT Age eGFR 

Banff ci L_MID No All N/A 0.66 0.67 0.59 0.63 0.62 TAT Age eGFR 

Banff ci Full Specific All N/A 0.65 0.60 0.61 0.63 0.54 TAT Age RI_LP 

Banff ci L_MID Specific All N/A 0.64 0.56 0.63 0.59 0.58 TAT Age eGFR 

Banff ci L_MID No p-value N/A 0.63 0.65 0.59 0.6 0.62 Age TAT BMI 

Banff ci Median No All N/A 0.63 0.48 0.73 0.5 0.59 TAT Age eGFR 

Banff ci Full No Biomarkers N/A 0.62 0.51 0.71 0.56 0.62 TAT Age eGFR 

Banff ci Median No p-value N/A 0.62 0.61 0.59 0.56 0.59 Age TAT ap_200 

Banff ci Full No p-value N/A 0.61 0.46 0.72 0.48 0.58 Age TAT RI_UP 

Banff ci Median No p-value + IQR N/A 0.61 0.63 0.58 0.57 0.59 Age TAT ap_200 

Banff ci L_MID Specific p-value N/A 0.60 0.57 0.65 0.56 0.55 TAT Age BMI 

Banff ci Median No All + IQR N/A 0.60 0.48 0.72 0.44 0.57 TAT eGFR SCr 

Banff ci Full Specific p-value N/A 0.59 0.67 0.48 0.67 0.57 Age TAT RI_UP 
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Diagnostic Dataset QA Feature set Under 
sampled 

AUC Sens Spec Cutoff Acc 1st 2nd 3rd 

Banff ci Full General p-value N/A 0.58 0.32 0.83 0.01 0.48 TAT BMI Age 

Banff ci L_MID Specific Elastography N/A 0.55 0.48 0.61 0.56 0.55 cp_SFK_100 cg cp_100 

Banff ci Full Specific Elastography N/A 0.53 0.4 0.66 0.52 0.54 cp_100 cp_200 cg 

Banff ci Median No Elastography + IQR N/A 0.52 0.51 0.53 0.57 0.58 cp_100 mu2 cp_SFK_200 

Banff ci Median No Elastography N/A 0.49 0.88 0.13 0.35 0.67 cg mu cp_100 

Banff ct L_MID No p-value N/A 0.74 0.67 0.72 0.30 0.69 TAT Age SCr 

Banff ct Full General p-value N/A 0.73 0.68 0.69 0.04 0.68 TAT Age SCr 

Banff ct L_MID No All N/A 0.70 0.64 0.71 0.12 0.68 TAT kidney Depth RI_UP 

Banff ct Full Specific All N/A 0.70 0.73 0.63 0.28 0.69 TAT eGFR RI_UP 

Banff ct L_MID Specific p-value N/A 0.70 0.78 0.53 0.44 0.67 TAT Age SCr 

Banff ct Median No p-value + IQR N/A 0.69 0.66 0.68 0.32 0.66 TAT Age SCr 

Banff ct L_MID Specific All N/A 0.68 0.71 0.61 0.25 0.67 RI_UP RI_M TAT 

Banff ct Full No All N/A 0.66 0.49 0.78 0.14 0.69 TAT RI_LP RI_UP 

Banff ct Full No p-value N/A 0.65 0.45 0.78 0.16 0.68 TAT Age SCr 

Banff ct L_MID General p-value N/A 0.64 0.52 0.79 0.04 0.65 TAT Age BMI 

Banff ct Median No p-value N/A 0.64 0.58 0.65 0.54 0.62 TAT Age SCr 

Banff ct Median No All + IQR N/A 0.63 0.49 0.77 0.20 0.68 TAT RI_LP Age 

Banff ct Median No Biomarkers N/A 0.63 0.70 0.51 0.59 0.59 TAT RI_UP kidney Depth 

Banff ct Median No All N/A 0.62 0.45 0.75 0.12 0.66 TAT RI_UP eGFR 

Banff ct Full Specific p-value N/A 0.61 0.47 0.71 0.02 0.63 TAT Age SCr 

Banff ct Full No Biomarkers N/A 0.60 0.31 0.88 0.26 0.68 TAT RI_UP eGFR 

Banff ct Full Specific Elastography N/A 0.52 0.65 0.40 0.40 0.64 cp_SFK_200 cp_SFK_150 cg 

Banff ct L_MID Specific Elastography N/A 0.52 0.68 0.39 0.42 0.63 cp_SFK_300 cp_SFK_200 cp_SFK_100 

Banff ct Median No Elastography N/A 0.51 0.66 0.39 0.58 0.57 cg mu ap_200 

Banff ct Median No Elastography + IQR N/A 0.50 0.74 0.27 0.34 0.67 ap_200 IQR ap_100 

IFTA Median No p-value N/A 0.69 0.60 0.70 0.28 0.69 Age TAT ap_200 

IFTA L_MID Specific All N/A 0.67 0.46 0.78 0.41 0.61 TAT eGFR Age 
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Diagnostic Dataset QA Feature set Under 
sampled 

AUC Sens Spec Cutoff Acc 1st 2nd 3rd 

IFTA L_MID No All N/A 0.65 0.76 0.47 0.74 0.60 TAT Age RI_LP 

IFTA Full No p-value N/A 0.64 0.41 0.81 0.42 0.61 Age TAT BMI 

IFTA Median No All N/A 0.64 0.56 0.65 0.57 0.59 TAT Age RI_LP 

IFTA Full Specific All N/A 0.63 0.66 0.50 0.71 0.59 TAT Age RI_LP 

IFTA L_MID Specific p-value N/A 0.63 0.57 0.68 0.56 0.57 Age TAT BPS 

IFTA Median No p-value + IQR N/A 0.63 0.69 0.54 0.59 0.59 Age TAT ap_200 

IFTA Median No Biomarkers N/A 0.63 0.70 0.51 0.59 0.59 TAT Age eGFR 

IFTA Full No All N/A 0.62 0.40 0.78 0.35 0.58 TAT Age eGFR 

IFTA L_MID No p-value N/A 0.62 0.60 0.61 0.55 0.60 TAT Age BPS 

IFTA L_MID General p-value N/A 0.62 0.46 0.80 0.49 0.55 TAT BPS Age 

IFTA Median No All + IQR N/A 0.62 0.43 0.77 0.42 0.57 TAT Age eGFR 

IFTA Full Specific p-value N/A 0.61 0.61 0.58 0.59 0.6 TAT Age RI_UP 

IFTA Full No Biomarkers N/A 0.60 0.65 0.57 0.58 0.57 TAT Age eGFR 

IFTA Full General p-value N/A 0.59 0.72 0.43 0.71 0.50 TAT Age BMI 

IFTA L_MID Specific Elastography N/A 0.56 0.42 0.74 0.37 0.53 cp_SFK_100 ap_200 mu 

IFTA Median No Elastography N/A 0.53 0.28 0.78 0.53 0.57 cp_100 mu2 cg 

IFTA Full Specific Elastography N/A 0.52 0.27 0.78 0.45 0.54 cp_100 cp_SFK_150 cp_SFK_100 

IFTA Median No Elastography + IQR N/A 0.52 0.24 0.86 0.58 0.57 cp_SFK_100 ap_200 mu2 
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Chapter 4 – Viscoelastic parameter estimation using 

simulated shear wave motion and convolutional neural 

networks 
 

4.1 Introduction 

 

 Ultrasound imaging is one of the main imaging modalities used in healthcare. It is 

widely used for multiple applications due to its low cost, relative portability and safety [123]. 

One of the applications that has developed popularity over the last several years is 

ultrasound shear wave elastography (SWE). SWE typically uses focused ultrasound 

beams to produce acoustic radiation force (ARF) that pushes within the tissue [124], [125]. 

When the ARF ceases, the locally perturbed tissue returns to its equilibrium position, but 

also generates waves traveling perpendicular to the push direction. These shear waves 

propagate through the tissue, and the motion is measured using high frame rate 

ultrasound techniques [125],[126].The wave motion can be analyzed to extract information 

about the wave velocity and attenuation. These parameters can also be used to 

characterize rheological properties of the tissue such as elasticity and viscosity.   

 The estimation of rheological parameters is dependent on mathematical models, 

such as the Kelvin-Voigt and Maxwell models [31], [128]. To date, methods have been 

developed to directly measure the wave velocity and attenuation of shear waves as they 

vary with frequency [32], [75], [83], [121], [122], [128]–[131]. However, the shear wave 

attenuation can be difficult to directly measure [78]. With the wave velocity dispersion 

information alone, it is possible to estimate viscoelastic properties for different rheological 

models [31], [75], [83], [128], [132], [133]. Most of these methods involve Fourier analysis 

to extract dispersion curves that are used for fitting to the rheological models. Each of the 

approaches that have been studied have different levels of bias and variability. 

Additionally, different aspects of the SWE acquisition such as the ARF distribution and 

beam shape and measurement noise can affect the wave motion and confound these 

methods [134]–[136]. Taken together, there is still a need for robust methods for 

viscoelastic parameter evaluation from measured shear wave motion. 

Machine learning (ML) is the computer science field dedicated to creating 

algorithms capable of modeling complex datasets, and performs tasks such as prediction, 

regression or clustering. These methods commonly have high computational costs. In 

recent years, there has been substantial progress on both algorithms and computational 
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power to perform data training and predictions in feasible time with available 

computational resources. ML can identify patterns within datasets that otherwise would be 

very difficult to fit by standard statistical models or by evaluating each feature on its own. 

The use of ML might enable SWE to reach higher applicability, by naturally modeling the 

intrinsic complexity of viscoelastic tissues [38], [39], [137], [138]. 

 Artificial neural networks (ANN), or simply neural networks (NN), were inspired by 

the central nervous system structure and its physiology. They are composed by nodes, or 

neurons, interconnected into multiple layers, from input to output. Each node has adjusted 

weights and activation functions that simulate the synaptic reinforcement plasticity. The 

adjustment of the weights is implemented by solving the convex problem that minimizes 

the loss of the networks, which evaluates the prediction assigned by the network against 

the ground truth output [36], in a process called supervised learning.  

 

Figure 4-1 – General schema of a convolutional neural networks. Convolutional and max pooling 

layers can be stacked for deeper networks. The input image is convolved with a sliding window 

(yellow square), resulting in a set of feature maps that are processed by the max-pooling layers. 

The output of the final max-pooling is then processed by a set of dense layers responsible to 

interpret the feature maps and provide the estimated value of elasticity or viscosity as output. 

 

 The convex problem is solved using numerical approaches, such as gradient 

descent, which are iterative, and therefore, can take time and large amounts of data. The 

process of weight adjustment is called optimization and it is an area of research of its own. 

Some of the most common optimizers used for neural networks are Stochastic Gradient 

Descent [139] and Adam [140]. 

 Convolutional neural networks (CNN), as other NN architectures, were also 

inspired by neurophysiology. The architecture replicates the layer-based structure from 

the human visual system, where the convolutional layers work as the receptive fields 

present in the brain, while the max-pooling layers act as the lateral geniculate nucleus by 

reducing the level of information and extracting the relevant features for the task in hand 
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[37]. The input is convolved with the feature weights to produce a feature map which is 

processed by a non-linear activation function (rectified linear units, traditionally). The 

pooling layers then reduce the spatial resolution of the feature maps to achieve spatial 

invariance to input distortions and translations. Max-pooling layers aggregate and 

propagate the maximum value in a receptive field to the next layers. After stacking multiple 

convolutional and pooling layers, a fully connected layer is implemented to interpret the 

feature representations extracted by previous layers, much like the human visual cortex. 

 The fully connected layer is a traditional NN, with different output layer activation 

functions and loss functions, depending on the task [37]. The CNN basic schema is 

described in Fig. 4-1. CNNs have been extensively used for image recognition tasks with 

high performance and generalizability [37], [137].  

 In this proof-of-concept study, we propose to analyze, in a controlled setting, the 

capabilities of ML to model wave propagation and retrieve elasticity and viscosity values 

from wave motion images simulated using the staggered-grid finite-difference (SGFD) 

approach to implement a Kelvin-Voigt (KV) material model [34], [141], [142]. Due to the 

two-dimensional (2D) image characteristics of the task, the CNN architecture was deemed 

the best for the objectives of this proof-of-concept. We also compared the ML performance 

to the two-dimensional Fourier transform (2D FT) analysis approach for evaluating 

dispersion curves and fitting to the KV theoretical dispersion curve [31], [128], [132]. 

 The modeling of viscoelastic wave propagation is useful for understanding wave 

phenomena in complex media. Finite-difference modeling approaches have great 

importance for geophysical exploration, reservoir engineering, and military applications 

because they provide complete wavefield responses at reasonable computational cost 

[141], [143]. The SGFD method was used to simulate wave propagation in viscoelastic 

homogeneous media. SGFD adopts a finite difference operator with fixed-order accuracy 

to calculate spatial derivatives for a homogeneous or heterogeneous medium. The 

method’s accuracy, efficiency and stability are improved by the use of staggered-grid for 

spatial discretization [141], [142]. 

 

4.2 Methods 

 

 For this study, the simulations were created using SGFD simulations implemented 

in MATLAB (Mathworks, Natick, MA, USA) and computed on GTX 1080 and RTX 2080Ti 

GPU cards (Nvidia, Santa Clara, CA, USA). Each simulation took approximately 1-8 hours 
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of computing time depending on the GPU card used. The SGFD simulations implement a 

KV material in the Navier-Stokes equations to calculation the motion caused by acoustic 

radiation force from ultrasound push beams. The shear elasticity and viscosity ranges for 

the KV model were chosen so they would cover a wide range of values for normal and 

pathological soft tissues [33]. The shear elasticity, 1, ranged from 1-25 kPa with 

increments of 1 kPa, and shear viscosity, 2, ranged from 0-10 Pas with increments of 

0.5 Pas. The 25 values of shear elasticity and 21 values of shear viscosity yield 525 

unique combinations of viscoelastic parameters. The medium is assumed to be 

homogeneous, isotropic, linear, and incompressible [34].  

  

(a) 

 

(b) 

 

Figure 4-2 – Images of excitation profiles for F/N = (a) 1 and (b) 2 

based on the normalized beam intensity. Lower f-numbers 

generate more concentrated pushes, whereas with higher f-

numbers the push profile is spread axially (z), creating more planar 

wave fronts.  

 

 We used two different ARF excitation focus profiles with f-numbers (F/N = focal 

length/width of aperture) 1 and 2 (Fig. 4-2) with a focal distance of zf = 2.5 cm, adding up 

to 1050 simulations. These values of F/N are used frequently in practice and provided 

cases of a very focused beam (F/N = 1) and a less focused beam (F/N = 2). The ARF was 

simulated using FOCUS using the model of  an L7-4 linear array transducer (Philips 

Healthcare, Andover, MA) [144], [145]. The element pitch was set to 0.0308 cm, the 

element kerf was 0.0025 cm, the element height was 0.7 cm, the elevation focus was 2.5 

cm, and the frequency was 4 MHz. The medium was modeled using a density of 1000 

kg/m3, speed of sound of 1540 m/s, and ultrasound attenuation of 0.5 dB/cm/MHz. A focal 
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depth of 2.5 cm was used and for F/N = 1 and 2, such that 82 and 40 elements were used, 

respectively. The pressure was simulated, and the intensity was calculated as it is 

proportional to the ARF in absorbing soft tissues. For the models, the force was applied 

for 200 s. For each combination of 1, 2, and F/N, a dataset was produced. 

 An important factor of finite-difference methods is the model’s boundary conditions. 

The boundary conditions have to absorb and attenuate the waves without creating artifacts 

such as reflections. It is also important that boundary conditions do not overly increase 

computational costs. Perfectly matched layers (PML) are considered the optimal 

absorbing boundary condition for finite-difference methods, and therefore, were 

implemented in this study [146].  

 Another important aspect of SGFD simulations is the Courant-Friederichs-Lewy 

criterion (CFL), as it describes the conditional stability that allows convergent behavior of 

the solution. The space-time discretization is dictated by the smallest shear elasticity (µ1) 

and the highest shear viscosity (µ2) to be simulated, and so, the CFL criterion determines 

the time increment and thus the number of time steps to achieve a certain simulation 

length for a given shear wave velocity. 

𝐶 =
∆𝑡√𝑉𝑝

2+𝑉𝑠
2

∆𝑥
≪ 1 ,                                               (4-1) 

where the dimensionless number C is called the Courant number, 𝑉𝑝 and 𝑉𝑠 are the 

compressional and shear wave velocities, ∆𝑡 is the time step, and ∆𝑥 the spatial step in 

the x dimension. In this study’s simulations, the ∆𝑥 and ∆𝑧 (spatial step in the z dimension) 

were set to 0.1 mm, in a field of 44 mm width and 32 mm height. To optimize the simulation 

run time, two different values of C were used in the simulations depending on the media 

properties: 0.2 if µ1 > 5 kPa and 0.05 if µ1 ≤ 5 kPa and µ2 ≥ 4 Pas. The simulation ∆𝑡 was 

then calculated based on Eq. (4-1), for a total period of 25 ms. To meet the conditions 

described above, the temporal resolution was very high (5-7 MHz). After completion, the 

simulated data was resampled in time to 16 kHz, to ensure that all models would have the 

same time discretization. This sampling frequency could be reached with interpolated data 

that would be upsampled for precise time-of-flight estimates for evaluation of shear 

elasticity estimations [133].  

 The three-dimensional simulations (z, x, t) were then cropped and sampled in the 

z-direction to create the 2D x-axis vs. time wave motion dataset for training. The excitation 

generates two identical wave fronts propagating perpendicular to the push, therefore, the 

simulation region-of-interest (ROI) used to create the dataset was composed solely by the 
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right hand-side wave front (Fig. 4-3a). The ROI has a width of 2 cm with its origin at 0.2 

cm laterally from the push center, to eliminate the high amplitude motion of the push from 

the dataset images. The time range adopted was 20 ms. The data that was used for the 

CNN input was the motion from particular depths in the z-direction. To augment the 

dataset the right hand-side lateral propagation was used from five different vertical 

positions relative to the push focus (Fig. 4-3a), at -0.90, -0.45, 0.00 (center), 0.45 and 0.90 

cm (Fig. 4-3). Another technique implemented to augment the number of samples, was 

adding different levels of Gaussian noise to the lateral propagation images to generate 

motion with signal-to-noise ratios (SNRs) consistent to literature, at 20, 10 and 5 dB (Figs. 

3b and 3c) [34], [147], [148]. The segmentation and augmentation of the dataset was also 

implemented in MATLAB. With the five depth positions and three noise levels and 1050 

unique combinations of the viscoelastic parameters, the total number of images used for 

the study was 15,750. 

 

 The CNN architecture was implemented in Python (Python Software Foundation, 

Wilmington, DE, USA), using Keras [149] with Tensorflow (Google Brain, Mountain View, 

CA, USA) backend, and trained on a Z820 workstation (Hewlett-Packard, Palo Alto, CA, 

USA) equipped with a GTX 1080 GPU (Nvidia, Santa Clara, CA, USA). The data in each 

image was normalized by subtracting the minimum amplitude from the whole ROI and 

dividing all motion amplitude values by the maximum amplitude after subtraction, creating 

images where all the values had an amplitude between 0 and 1. The labels were also 

normalized with a normalizing factor of the maximum label value (1 = 25 kPa for elasticity 

and 2 = 10 Pas for viscosity) plus a 20% margin, to leave a margin for model 

overestimation in the top of the range. The same margin was not used at the bottom of 

(a) 

 

(b) 

 

(c) 

 

Figure 4-3 – (a) Example of segmentation performed during the preprocessing stage for F/N = 

2, µ1 = 2 kPa and µ2 = 4 Pas. The z-axis origin is the center of excitation (zf  = 25 mm from Fig. 

4-1); (b) and (c) examples of 20 and 5 dB SNR.  
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the range (1 = 1 kPa for elasticity and 2 = 0 Pas for viscosity), because negative values 

are not physically possible.  

 The training, validation and test sets were defined using a group shuffle split of 

60/20/20, which means that images derived from the same simulation (1, 2, F/N 

combination) could not be present in more than one set simultaneously. This ensures that 

simulation subjects presented to the CNN in the validation and test datasets were never 

seen during training in any of their augmented versions. Due to the regression 

characteristics of the task, sigmoid and mean squared error (MSE) were implemented as 

output layer activation function and loss function, respectively.  

The elasticity and viscosity determine different characteristics of the wave 

propagation. The elasticity is related to the time-of-flight (e.g., slope of the wave motion 

distribution in the x-t plane, Fig. 4-3b), whereas the viscosity affects the widening of the 

wave at a particular location.   

 Therefore, for each dataset, a pair of CNN models were implemented, one for 

elasticity regression, and one for viscosity regression. To facilitate the compilation of 

results, a coding system was applied to name the models and results in terms of what the 

training/validation and test f-numbers were used (Table 4-1). The letter designates what 

label was used, elasticity (E) or viscosity (V); the first number specifies the F/N used for 

training and validation, whereas the second number designates the F/N used for testing.  

Table 4-1 – Model codes 

Pair code 

Training 
F/N 

(number of 
images) 

Validation F/N 
(number of 

images) 

Test F/N 
(number of 

images) 

E11, V11 1 (4725) 1 (1575) 1 (1575) 

E12, V12 1 (4725) 1 (1575) 2 (7875) 

E22, V22 2 (4725) 2 (1575) 2 (1575) 

E21, V21 2 (4725) 2 (1575) 1 (7875) 

E1+2, 
V1+2 

1 & 2 
(9450) 

1 & 2 (3150) 1 & 2 (3150) 

  

 The CNN models trained, validated and tested on data from both f-numbers were 

denoted by the X1+2 designation. The CNN models were optimized for multiple 

combinations of 1, 2 and 3 convolutional layers; 2, 3 and 4 dense layers; 16 and 32 nodes 

per layer (convolutional and dense); 0.001, 0.0005 and 0.0001 learning rates; totaling 54 

models. Tensorboard (Google Brain, Mountain View, CA, USA) was used to monitor and 

evaluate the models during the hyperparameter grid search. By evaluating the validation 

loss and mean absolute error (MAE) during 200 epochs, it is possible to determine when 
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the learning reached an asymptote or demonstrated overfitting. MAE is defined by the 

equation: 

𝑀𝐴𝐸 =   
1

𝑁
∑ |𝑥𝑖 − 𝑥𝑖|𝑁

𝑖=1  ,                                                  (4-2) 

where 𝑁 is the number of test subjects, 𝑥𝑖 is the estimated value of the subject and 𝑥𝑖 is 

the true value of the parameter.  

 

 Each 200-epoch training session took approximately 1 hour of GPU computing 

time on the GTX 1080 GPU card. For each grid search, the top 20% CNN models with the 

                      (a) 

 

  

                      (b) 

 

Figure 4-4 – Examples of validation loss (a) and MAE (b) for second round of evaluations, where 

the combinations were reduced to 3 convolutional layers; 3 and 4 dense layers; 32 nodes per 

layer (convolutional and dense); 0.001, 0.0005 and 0.0001 learning rates. The lower the values 

of validation loss and MAE indicated a better model. From these plots 3 convolutional layers, 4 

dense layers with 32 nodes and a 0.0005 learning rate were chosen for elasticity regression of 

F/N = 1 (pink arrow). The curves are plotted using Tensorboard with a smoothing factor of 0.5 

(solid color lines) over the calculated values (shaded color lines). 
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lowest validation MAE were selected and re-trained for a subsequent round of evaluation 

until one hyperparameter set remained (Fig. 4-4). This approach was used to mitigate 

hyperparameter overfitting, because each iteration of cross evaluation is performed on 

different random group splits. The final model was then trained, also for 200 epochs, using 

the optimal hyperparameters. Checkpoint recall was used to store the best model 

generated and prevent overfitting. The models were then evaluated against the test set.  

 The datasets were also evaluated using 2D FT analysis and the estimated 

dispersion curves were fit to the theoretical Kelvin-Voigt model to obtain the viscoelastic 

parameters. This analytical approach was implemented in MATLAB. The 2D fast Fourier 

transform was performed with a zero padding factor of 4096 for optimum frequency and 

wavenumber resolution of the frequency domain representation (k-space). The dispersion 

curves were than estimated from the k-space using the relationship  𝑐𝑝(𝜔𝑝) = 𝜔𝑝 𝑘𝑚𝑎𝑥⁄ , 

where 𝑐𝑝 is the phase velocity at 𝜔𝑝 frequency from 100-600 Hz, and 𝑘𝑚𝑎𝑥 is the 

wavenumber of maximum k-space energy at 𝜔𝑝. Additionally, 𝑐𝑝values below 0 m/s and 

above 10 m/s were discarded from further analysis. The dispersion curves were then fit to 

the theoretical Kelvin-Voigt model (Eq. 4-3), with the density ρ = 1000 kg/m3, to obtain 1 

and 2 values. The estimated values were then compared to the CNN results. 

𝑐𝑝(𝜔𝑝) =  
√2(𝜇1

2+𝜔𝑝
2 𝜇2

2)

𝜌(𝜇1+√𝜇1
2+𝜔𝑝

2 𝜇2
2)

  .                                             (4-3) 

4.3 Results 

 

 The testing results were evaluated using the MAE between the true value of the 

viscoelastic property and the CNN prediction output. A linear regression was performed 

to compare the results from the 2D FT analysis as well as the CNN prediction to the identity 

line, and the slope, intercept and R2 of the regression line were also calculated and 

reported. The optimal hyperparameters were also noted and reported in Tables 4-2 and 

4-3 for the elasticity and viscosity CNN models, respectively. All elasticity models trained 

and tested on the same f-numbers showed very good fitting with MAE below 0.079 kPa 

with slopes and intercept of approximately one and zero, respectively. The viscosity 

models trained and tested on the same f-numbers also showed very good agreement with 

MAE below 0.091 Pas with slopes and intercept of approximately one and zero, 

respectively. Alternatively, CNN models tested on f-numbers different from the 
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training/validation F/N had diminished performance with MAE of at least 1.542 Pas (V12) 

and as high as 2.834 kPa for E12. 

Table 4-2 – Elasticity results 

CNN 

Result 
Code 

Hyperparameters Results 

Convolutional 
Layers 

Dense 
Layers 

Layer 
Size 

Learning 
Rate 

MAE, 
kPa 

Slope Intercept R2 

E11 
3 4 32 0.0005 

0.051 1.000 -0.001 1.000 

E12 2.834 0.666 4.951 0.836 

E22 
2 2 32 0.0001 

0.079 1.001 -0.033 1.000 

E21 1.663 0.848 0.547 0.958 

E1+2 4 4 32 0.0005 0.065 0.998 0.021 1.000 

2D FT 

E1     2.380 0.936 0.404 0.762 

E2     2.211 0.901 1.252 0.775 

 

Table 4-3 – Viscosity results 

CNN 

Result 
Code 

Hyperparameters Results 

Convolutional 
Layers 

Dense 
Layers 

Layer 
Size 

Learning 
Rate 

MAE, 

Pas 
Slope Intercept R2 

V11 
4 3 32 0.0001 

0.065 0.997 0.007 0.999 

V12 1.644 0.678 -0.030 0.856 

V22 
3 2 32 0.0005 

0.052 0.998 0.001 0.999 

V21 1.611 1.046 1.296 0.885 

V1+2 3 2 32 0.0001 0.069 1.003 -0.015 0.999 

2D FT 

V1     3.173 1.580 -0.022 0.693 

V2     2.925 1.593 -0.240 0.695 

  

 The errors for each CNN model were also aggregated and plotted versus the true 

value (Fig. 4-5). The data were reported with boxplots where the red line represents the 

median, and the edges of the box represent the interquartile range (IQR, 25th and 75th 

quantiles). The whiskers represent 1.5*IQR above or below the 75th or 25th quantile, 

respectively. Values denoted by markers outside of whiskers are denoted as outliers. For 

cases E11, E22, and E1+2, the level of bias was minimal over the range of true shear 

elasticity. For E12, 1 was overestimated when the true 1 < 15 kPa, and underestimated 

for larger values of 1. For E21, a consistent underestimation of 1 was observed. In the 

cases of V11, V22, and V1+2, the bias was relatively low, where the MAE was less than 

0.069 Pas. For V12, 2 was consistently underestimated and for V21 2 was consistently 

overestimated. 

 When compared to the 2D FT analysis, the CNN results were found to be 

significantly more reliable. The Fourier analysis showed reduced performance at higher 
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viscosity and lower elasticity combinations, driving elasticity underestimation and viscosity 

overestimation. In these types of materials, the ARF excitation was not able to generate 

energy at higher frequencies (300-600 Hz), and therefore it limited the quality of Kelvin-

Voigt fitting. Although the linear regression technique was able to retrieve acceptable 

values for slope and intercept for the elasticity estimations, the errors still drove MAE 

values above 2.2 kPa, and R2 below 0.78. The viscosity estimations were more inferior to 

the performance achieved with the CNNs, with slopes above 1.5, MAE above 2.9 Pas 

and R2 below 0.7. 

E11 

 

E22 

 

E1+2 

 

E12 

 

E21 

 

V11 

 

V22 

 

V1+2 

 

V12 

 

V21 

 

E1 – 2D FT 

 

E2 – 2D FT 

 

V1 – 2D FT 

 

V2 – 2D FT 

 

Figure 4-5 – Elasticity and viscosity error box plots aggregated by true values, the top ten plots are 

results for the CNNs trained, validated and tested on data from the same and different F/N datasets, 

whereas the bottom four were evaluated using Fourier analysis (FT) for comparison. The letter 

designates what label was used, elasticity (E) or viscosity (V); the first number specifies the F/N 

used for training and validation, whereas the second number designates the F/N used for testing. 

 

 The errors were also plotted versus vertical position in Fig. 4-6. Similar trends were 

observed for these additional parameters as compared to those discussed above. The 

prediction of 1 was largely insensitive to the vertical position of the wave motion used, 

though the results for model E1+2 exhibited more outliers. For E12, the bias is positive 

(average of 0.14 kPa), and 1.5*IQR of over 0.63 kPa showing a very large variability, but 

insensitive versus vertical position. For E21, there was a larger negative bias for data from 

the pre-focal locations (-0.27 kPa at -0.90 cm and -0.1 kPa at the focus), while larger 
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numbers of outliers for post-focal datasets. For V11, V12, and V1+2, the bias was small, 

but the number of outliers slightly increased for the V1+2 case. The errors in 2 for V12 

were largely insensitive to the position, though for V21 the error increased both in bias 

and variability as the data farther from the focus was used, with 0.1 ± 0.18 kPa at the 

focus, 0.15 ± 0.22 Pas at -0.90 cm and 0.28 ± 21 Pas at 0.90 cm. When compared to the 

2D FT analysis, the CNN is more reliable with respect to the depth position, when trained 

with the proper f-number. The same sensitivity to off-focus position was also observed 

using the 2D FT analysis for F/N = 1 (Fig. 4-6 – E1-2D FT and V1-2D FT). 
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E1+2 
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E21 
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V12 
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E1 – 2D FT 

 

E2 – 2D FT 

 

V1 – 2D FT 

 

V2 – 2D FT 

 

Figure 4-6 – Elasticity and viscosity error box plots aggregated by vertical position, the top ten plots 

are results for the CNNs trained, validated and tested on data from the same and different F/N 

datasets, whereas the bottom four were evaluated using Fourier analysis (FT) for comparison. The 

letter designates what label was used, elasticity (E) or viscosity (V); the first number specifies the 

F/N used for training and validation, whereas the second number designates the F/N used for 

testing. 

 

 The errors for the models as a function of noise level are shown in Fig. 4-7. The 

model results for the elasticity prediction were not largely affected by the level of noise. 

The cases of E1+2 and E21 did demonstrate a larger number of outliers. The models 

trained/validated and tested with different f-numbers showed bias invariance to the noise 

levels, nevertheless, E11 showed an increase of 21% and 82% in 1.5*IQR from 20 dB to 

10 dB and 10 dB to 5 dB, respectively, while V11 showed an increase of 60% and 38% in 

1.5*IQR from 20 dB to 10 dB and 10 dB to 5 dB, respectively. The results for model V1+2 
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showed more outliers than V11 and V22 models. The 2D FT analysis showed a larger 

number of outliers, when compared with the CNN. While the number of outliers were 

relatively constant, the 2D FT results were similar across different levels of noise. 

E11 

 

E22 

 

E1+2 

 

E12 

 

E21 

 

V11 
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V2 – 2D FT 

 

Figure 4-7 – Elasticity and viscosity error box plots aggregated by noise levels, the top ten plots 

are results for the CNNs trained, validated and tested on data from the same and different F/N 

datasets, whereas the bottom four were evaluated using Fourier analysis (FT) for comparison. The 

letter designates what label was used, elasticity (E) or viscosity (V); the first number specifies the 

F/N used for training and validation, whereas the second number designates the F/N used for 

testing. 

 

 For models trained, validated and tested with both f-numbers, the errors were also 

compiled by f-number (Fig. 4-8). No relevant difference was found between the errors for 

both elasticity and viscosity. Because all the data is aggregated, there are a high number 

of outliers present, but the error has a similar overall range for all models and F/N values 

(Tables 4-2 and 4-3). The outliers cover a similar range for both F/N values for V1+2. 

Models trained and tested on the same f-numbers generally showed very low absolute 

errors with no relevant bias and standard deviation of less than 0.5 kPa or 0.5 Pas 

throughout the true value range.  

 Models E21 and V12 showed a pattern of higher bias and IQR with the increase 

of true value, whereas E12 and V21 showed more complex patterns of error across the 

true value range. In some cases, even with the overestimation margin applied to the label 

normalization, the higher value estimations were saturated and drove the bias negatively, 
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e.g., E11 and V11.  It is also notable that model V1+2 presented a higher level of outliers 

and positive bias at 0 Pas. 
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Figure 4-8 – Elasticity and viscosity error box plots aggregated by noise levels, the top ten plots 

are results for the CNNs trained, validated and tested on data from the same and different F/N 

datasets, whereas the bottom four were evaluated using Fourier analysis (FT) for comparison. The 

letter designates what label was used, elasticity (E) or viscosity (V); the first number specifies the 

F/N used for training and validation, whereas the second number designates the F/N used for 

testing. 

 

E1+2 

 

V1+2 

 

Figure 4-9 – Elasticity and viscosity error box plots aggregated by 

the F/N of the test subject. The model pair was trained, validated 

and tested on both F/N datasets (E1+2 and V1+2). 

  

4.4 Discussion 

 

 The results shown are encouraging and exhibit the potential of the use of 

convolutional neural networks in ultrasound SWE for viscoelastic characterization. The 
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results demonstrated that the CNN models were robust to noise, vertical position and 

partially to F/N. When tested on datasets with the same excitation F/N for training and 

testing, the elasticity and viscosity estimations were very good and showed robustness to 

noise and vertical position.  

 The CNN models were marginally reliable when presented with test data from a 

different F/N than used for the training, with a trend of overestimation for E12 and V21, 

and underestimation for E21 and V12. Vertical position showed some level of variability in 

models trained with data using F/N = 2 and tested on data with F/N = 1 (X21), possibly 

due to the planar characteristics of higher F/Ns, when compared to a lower F/N, which 

produced more curved wave fronts.  

 Higher f-numbers have less focused beams that might cause wider lateral shear 

wave profiles that could simulate the widening effect of viscosity in the wave propagation. 

When trained on data using F/N = 1 and tested on data when F/N = 2 (X12), the results 

showed a consistent underestimation profile increasing linearly with the true viscosity 

(V12, Fig. 4-5), while the opposite effect occurred with V21, showing consistent viscosity 

overestimation. The V21 overestimation is exaggerated with the distance from the focus, 

as F/N = 1 has a more curved intensity profile to produce the wave front while F/N = 2 has 

a more planar wave front (Fig. 4-2). This behavior is well exemplified in Figs. 4-6 and 4-9. 

This characteristic is important because it suggests the possibility of reliable estimation 

correction for cases of F/N for which the model was not trained. 

 When different F/N values were used, the elasticity estimations showed the 

opposite behavior from the viscosity, overestimation for E12 and underestimation for E21. 

It is possible that the more curved intensity profile in the z-direction used for the ARF push 

beam, and the presence of more pre-focal and post-focal intensity for F/N = 1 also leads 

to errors in elasticity estimation, as it might change the perceived slope of the wave motion 

(Fig. 4-10). 

 Similarly to viscosity, the elasticity showed correlation between absolute bias and 

the distance to push focus when trained with F/N = 2 and tested on F/N = 1 (X21). Models 

trained with F/N = 2 are tuned to the planar wave front characteristics, therefore, when 

presented with data from a lower F/N for testing, show higher levels of error off-center 

(Fig. 4-6, V21 and E21). 

 Noise did not affect the estimations significantly in any of the scenarios tested, 

which suggests the robustness of the technique to SNR changes. 
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 When trained with both f-numbers the CNNs were able to overcome the 

shortcomings discussed above and performed similarly as the pairs trained, validated, and 

tested with a single F/N. The results indicate that the CNNs can discern between wave 

front profiles with high accuracy, as long as they are trained properly. 

(a) 

 

(b) 

 

Figure 4-10 – Example of 1 = 18 kPa and 2 = 2 Pas, at z = +0.90 cm and 20 dB SNR, with F/N 

= 1 (a) and F/N = 2 (b). It is possible to observe that the response using F/N = 1 has a wider 

wave front, which might simulate the viscosity effect which also widens the wavefront. 

 

(a) 

 

(b) 

 

Figure 4-11 – Example of 1 = 18 kPa and 2 = 0 Pas , at z = +0.90 cm and 20 dB SNR, with 

F/N = 1 (a) and F/N = 2 (b). The fringing effect present in F/N = 1 case might explain the elasticity 

bias present in cross F/N evaluations.  

 

   

 Overall, this proof-of-concept study showed that the CNN models were able to 

successfully retrieve the viscoelastic properties from the wave motion images. The 

approach proposed required minimal preprocessing, without the employment of filters or 

transforms. The conventional 2D FT analysis approach showed inferior performance on 
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the same datasets, with worse MAE and R2 levels found compared to those found with 

CNN regression, even in cases where the CNN was trained and tested with different f-

numbers. The 2D FT analysis was especially affected by materials where the effects of 

the viscosity was more prominent compared to the elasticity (e.g., high 2 and low 1), 

whereas the CNN did not show the same behavior and was reliable over the full 

viscoelastic parameter range. As noted in the Results, in the cases where the viscosity 

effects were substantial, energy at higher frequencies was diminished and curve fitting 

was more error prone. These findings with the CNN models are particularly encouraging, 

because changes in viscoelastic properties are related to pathological changes to the 

tissue, e.g. fibrotic tissue is correlated with higher 1 [32], [132]. Therefore, patients and 

practitioners can benefit from ML classification of tissue state based on SWE, which is an 

affordable and non-invasive measurement.  

 Although encouraging, the methods discussed still need further investigation. The 

method needs to be extended to allow for heterogeneous cases and other noise 

characteristics. The practical use of ML in ultrasound SWE has specific challenges such 

as the noise due to ultrasound detection and physiological motion, the standardization of 

images, and simulation model limitations that will have to be addressed in future work.  

 In this study, we used simulated motion from the SGFD based on a Kelvin-Voigt 

rheological model. Although it has been shown in literature, in multiple works, that the 

Kelvin-Voigt model does describe shear wave velocity dispersion over the typical 

elastography analysis ranges of frequency, such as 100-600 Hz [85], [150]–[152], the use 

of the KV model on SGFD simulations might impair the use of simulations for ex vivo and 

in vivo transfer learning as not all tissues may be well-described by a KV rheological 

model. We also chose to use the 2D x-t wave motion images to directly estimate the values 

of 1 and 2. Other ML approaches or NN architectures could be utilized to estimate the 

dispersion curves for fitting to different rheological models. 

 We did not incorporate the ultrasound detection in these simulated data, which 

may add additional bias, but this proof-of-concept approach shows the promise of using 

shear wave motion and the overall shape of the wave fronts to estimate the viscoelastic 

properties. We did explore adding Gaussian noise to the wave motion data, and the 

models were largely robust to different noise levels. Higher levels of noise could be 

explored in future work. Physiological motion will also introduce noise as well that is not 

accounted for in this work. Each of the images used for these models used a fixed range 

of lateral space and measurement time. For in vivo implementation, this would have to be 
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standardized for a given application or transducer. We also limited the range of depths 

over which we made the evaluations. Typically, viscoelastic measurements are made 

within or near the depth-of-focus of the ARF push beams, but an evaluation of parameter 

estimation versus depth will be investigated in our ongoing work. 

 Ultrasound SWE implementations have a wide variety of characteristics, such as 

F/N, transducer profile, motion detection approaches, all of which with specific use cases, 

strengths and weaknesses, and therefore, need to be evaluated separately. Ideally, for in 

vivo implementation, an acquisition approach with the aforementioned parameters would 

need to be thoroughly modeled and likely used in the training and validation and later 

testing for a robust technique. The entire pipeline including ARF push beam modeling, 

wave motion modeling with different material models, ultrasound detection, and motion 

estimation and filtering would need to be incorporated to all for transfer learning with 

experimental data from phantoms or ex vivo and in vivo soft tissues. This work represents 

a first step to demonstrate the promise of this type of approach as well as identify some 

of the next steps to be taken in this technology development. 

 

4.5 Conclusion 

 

 In this study, we proposed to evaluate the capabilities of CNNs to model wave 

propagation and retrieve elasticity and viscosity values from wave motion images sourced 

from staggered-grid finite-difference (SGFD) simulations. A total of 1050 SGFD models 

were simulated using a wide range of elasticity and viscosity values for two different values 

of excitation F/N. The dataset was then augmented using five different vertical positions 

to generate the spatiotemporal images and using three different levels of noise. The 

dataset was used to train, validate and test CNN architectures configured for data 

regression using mean squared error as loss function. The viscoelastic parameters were 

also estimated using the conventional 2D Fourier analysis approach with Kelvin-Voigt 

dispersion curve fitting and compared against the CNN results.   

 The overall results showed the CNNs’ potential to be an alternative to complex 

mathematical analyses such as Fourier analysis and dispersion curve estimation used 

currently for shear wave viscoelastic parameter estimation. The CNN approach does not 

impose the biases and variabilities associated with these methods and requires minimal 

amount of preprocessing, such as filters and transforms. The methods proposed might 

enable simpler and more reliable non-invasive evaluation of tissue injuries that alter 
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rheological parameters such as liver and kidney fibrosis. The use of transfer learning is 

also a possibility to enable ex vivo and in vivo viscoelastic estimations [153], and this will 

be pursued in ongoing work.  

 More evaluations regarding other f-numbers are necessary, although higher 

values will yield even more planar wave fronts and should provide easier translation to 

other CNN models. The initial robustness to noise was also encouraging as it is a strong 

characteristic of ultrasound applications, but other noise settings need to be evaluated. 

This work serves as a proof-of-concept to demonstrate the use of CNN models for 

estimation of viscoelastic properties directly from shear wave motion. We will continue to 

develop this technology to test on experimental data from phantoms and soft tissues. 
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Chapter 5 – Kidney cortex shear wave motion simulations 

based on segmented biopsy slides 
 

5.1 Introduction 

 

 Chronic kidney disease (CKD) is defined by the progressive decrease in renal 

filtration. In later stages of failure, when the kidneys are no longer capable of sustaining 

homeostasis, hemodialysis or kidney transplant are necessary to increase patient survival 

and quality of life. Although patient survival rates have increased with the improvement of 

transplant protocols, improving allograft longevity is still challenging. Transplanted 

patients with allograft failure are required to return to dialysis and return to transplant 

waiting lists [40]. To monitor allograft health, and adjust the course of treatment 

accordingly, several biomarkers are commonly used to evaluate kidney function, such as 

serum creatinine (SCr) and glomerular filtration rate (GFR) [96]. Doppler imaging 

techniques can also be leveraged to calculate the resistive index (RI) in multiple locations 

of the allograft [14]. Although important surrogates of kidney health, biopsy is still the gold 

standard for allograft assessment, due to its capabilities of detecting microscopic tissue 

alterations before kidney function is affected significantly. 

 The most common injuries used for allograft prognosis from biopsy samples, as 

described by the Banff criteria [46], [100], are interstitial inflammation (i), interstitial fibrosis 

(ci) and tubular atrophy (ct) [98], [99]. The Banff scores can range from 0, indicating no 

presence of disease, to 4, with increasing severity. In spite of their usefulness in the clinical 

practice, protocol biopsies cannot be performed frequently, because the invasive nature 

of the procedure can cause complications such as bleeding, fistulas, infections and even 

death [101]–[103]. 

  Over the last decades the use of elasticity imaging techniques has been evaluated 

to discriminate from normal and abnormal tissue. Different pathological processes can 

physiologically and morphologically modify the structure of organs, and therefore, possibly 

modify its rheological characteristics. Shear wave elastography (SWE) is a technique that 

has emerged with the potential for non-invasive and affordable tissue evaluation. The 

SWE method relies on exciting shear waves with a focused ultrasound beam, which 

produces acoustic radiation force. The wave propagation is then measured with high 

frame rate ultrasound imaging. The wave motion is processed to assess a variety of shear 
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wave characteristics, such as shear wave group velocity, phase velocity and attenuation 

[16], [19], [62]–[64]. 

 In addition to the more established elastic properties, the viscoelasticity of human 

tissue may also change with disease. The viscosity of a given material dictates time-

dependent deformation properties, which can be estimated using the shear wave velocity 

dispersion, i.e., the change in shear wave speed in respect to frequency. The velocity 

dispersion curves can be obtained by applying a two-dimensional Fourier transform (2D 

FT), in space and time, to the shear wave motion data. It is possible then to evaluate the 

dispersion curves with the use of model-free parameters such as specific phase velocities 

and attenuation [78], [82], [85], or perform fitting to rheological models, such as Kelvin-

Voigt, to estimate the shear elasticity and viscosity of the material [29], [31], [65]. 

 It has been shown that various elastography measurements correlate to the 

prevalence of interstitial inflammation, fibrosis and tubular atrophy, in different levels [64], 

[117]–[119]. However, there is still a gap in knowledge of how the morphological 

alterations in the kidney microstructure can alter the macroscopic shear wave propagation 

for different injuries.  

 Viscoelastic material simulation through finite difference (FD) numerical 

techniques have been vastly adopted in geophysical applications due to their capabilities 

of modelling wave propagation in complex discretized media at feasible computational 

cost [141], [143].  Staggered-grid finite-difference (SGFD) scheme have been shown to 

successfully to implement the Kelvin-Voigt (KV) material model for human tissue [34], 

[154]. SGFD calculates the spatial derivatives for a given media with fixed-order accuracy. 

The use of the staggered-grid method for spatial discretization enhances the stability, 

efficiency and accuracy of FD models [141], [142]. 

 In this study, heterogeneous models based on kidney allograft biopsy histology 

were simulated using SGFD to investigate the interaction of the morphological alterations 

commonly caused by rejection with the rheological alterations as perceived by SWE. The 

parametric in silico experiment was developed based on digitized biopsy cores of 12 

kidney transplanted patients (3 normal, 3 with interstitial inflammation, 3 with interstitial 

fibrosis and 3 with tubular atrophy). The main components of kidney morphology 

(glomeruli, tubule, interstitial, and fluid) were segmented and assigned baseline 

mechanical properties. The baseline properties were then altered independently to 

evaluate the impact to the overall shear wave propagation for all the different subjects. 
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5.2 Methods 

 

 The subjects from this study were obtained from a cohort of 200+ patients already 

evaluated by our group in previous clinical studies. The patients’ biopsies were collected 

at routine allograft surveillance visits at Mayo Clinic from February 2016 to June 2019. 

Our SWE study followed a protocol approved by the Mayo Clinic Institutional Review 

Board (11-003249). In addition to the biopsy Banff scores annotation and core digitization, 

each patient was also scanned using the SWE capabilities of a Logiq E9 ultrasound 

system (General Electric Healthcare, Wauwatosa, WI, USA). The in-phase and quadrature 

(IQ) data were stored for post-processing and viscoelastic parameter estimation. The 12 

subjects were selected based on having low IQR-to-median ratio values available in the 

dataset, to minimize intra-operator variability. The subjects’ demographics are displayed 

in Table 5-1.  

Table 5-1 – Study cohort demographics 

 Patients (n=12) 

Number % 

Sex   

   Male 5 42 

   Female 7 58 

 Mean (Std. Dev) Range 

Age, yrs 43.7 (13.2)* 24-60 

BMI, kg/m2 25.0 (4.0)* 20.7-35.7 

TAT (months) 18.3 (20.3)* 4-60 

  

The biopsy cores were digitized at 100x magnification using trichrome staining due 

to its higher color contrast between the interstitial and tubule components. The 

segmentation was performed in MATLAB (Mathworks, Natick, MA, USA) leveraging the 

RGB component differences between interstitial space, tubules, and fluid. The RGB 

approach was not capable of discerning the glomeruli from the interstitial and tubular 

space, and therefore, a user interface was implemented to manually segment the 

glomeruli due to its complex morphology. An example of histological sample and its 

respective segmented image is displayed in Figures 5-1a and 5-1b. At 100x magnification 

was not possible to digitize the entire core into a single image, therefore, the multiple 

segmented images from a single core were concatenated. The whole core segmented 

images were then randomly selected, flipped horizontally and vertically, and concatenated 

to create 12 composite 1.0 x 2.0 cm 2D models (Fig. 5-1c), one for each subject. The 

diagnostic outcome scores and relative morphological component area, for each subject 

analyzed are listed in Table 5-2. 



69 
 
 

(a) 

 

(b) 

 

(c) 

 

Figure 5-1 – (a) Original 100x histology image, (b) segmented version of digitized histology, (c) 

2.5 x 5 mm sample of 1.0 x 2.0 cm composite mask used for SGFD simulation. The black lines 

divide the different cores composing the image. 
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Table 5-2 – Diagnostic outcome and spatial composition  

Diagnostic  Banff i Banff ci Banff ct G% T% I% Fl% 

Normal 1 0 0 0 5.6% 46.1% 38.3% 10.0% 

Normal 2 0 0 0 4.3% 38.0% 42.2% 15.5% 

Normal 3 0 0 0 6.3% 33.1% 47.8% 12.7% 

Banff i 1 2 0 0 7.9% 42.4% 41.5% 8.2% 

Banff i 2 1 0 0 5.7% 40.0% 46.0% 8.3% 

Banff i 3 2 0 0 5.5% 20.7% 69.9% 4.0% 

Banff ci 1*  0 1 1 6.1% 40.1% 42.9% 10.9% 

Banff ci 2* 0 2 2 3.2% 55.4% 33.5% 8.0% 

Banff ci 3* 0 1 1 3.7% 25.5% 57.9% 12.9% 

Banff ct 1 0 0 1 5.8% 47.7% 37.1% 9.3% 

Banff ct 2 0 0 1 3.1% 41.7% 44.0% 11.1% 

Banff ct 3 0 0 1 4.1% 48.7% 41.6% 5.5% 
G: Glomeruli, T: Tubules, I: Interstitial space, Fl: Fluid 
*All patients from the IRB cohort that presented interstitial fibrosis also presented with tubular atrophy. 

 

 The KV materials were implemented using the Navier-Stokes equations to 

calculate shear wave propagation excited by an acoustic radiation force (ARF) push [155]. 

The push was generated using Field II [156], with f-number (F/N = focal  length/width of 

aperture) of 2. The transducer model was set to L7-4 linear array transducer (Philips 

Healthcare, Andover, MA), with an element pitch of 0.0308 cm, kerf of 0.0025 cm, height 

of 0.7 cm, and the frequency was set to 4 MHz. A 200 s ARF excitation was applied using 

40 elements to simulate the push at a focal depth of 0.5 cm. 

 The media was assumed to be isotropic, linear, and incompressible [34]. All 

models were set with a density of 1000 kg/m3, speed of sound of 1540 m/s, and ultrasound 

attenuation of 0.5 dB/cm/MHz. The shear elasticity, 1, and shear viscosity, 2, of each 

kidney cortex component was determined using baseline values found in the literature 

[151], [157]–[161]. From baseline values, two other values were assigned, above and 

below baseline, to perform a parametric study with a total of 156 models. The baseline 

values and parametric analysis are listed in Table 5-3. 

Table 5-3 – Parametric analysis 

Cortex component Parameter Lower value Baseline Upper value 

Glomeruli 
1, kPa 2.00  4.00  6.00  

2, Pas 0.10  0.25  1.00  

Tubules 
1, kPa 1.00  1.50  2.00  

2, Pas 0.10  0.25  1.00  

Interstitium 
1, kPa 0.50 1.00  2.00 

2, Pas 0.50 1.00 2.00 

Fluid 
1, kPa N/A 0.00 N/A 

2, Pas N/A 0.10 N/A 
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 Boundary conditions are crucial to the effectiveness simulating wave propagation 

in viscoelastic models, the interaction of pressure and shear waves with the borders of the 

model can generate artifacts that would not be present in real applications. The use of 

perfectly matched layers (PML) was implemented to the models for optimal absorption of 

pressure and shear waves at the boundaries of the material [146]. The spatial resolution 

was set to 0.05 mm for both axes, and the simulation time was set to 15 ms. The simulation 

sampling frequency was defined by the Courant-Friederichs-Lewy criterion (CFL), 

allowing for model’s conditional stability and convergent behavior. The CFL determines 

the temporal step ∆𝑡 based on the compressional and shear wave velocities, 𝑉𝑝 and 𝑉𝑠,  

and the spatial step, ∆𝑥, in the x dimension (Eq. 5-1). In this study, a CFL of 0.2 was used 

for proper model stability. 

∆𝑡 =
𝐶𝐹𝐿∗ ∆𝑥

√𝑉𝑝
2+𝑉𝑠

2
 ,                                                         (5-1) 

 The SGFD models were implemented in MATLAB (Mathworks, Natick, MA, USA) 

and processed using computing resources from the Minnesota Supercomputing Institute 

at the University of Minnesota. The simulations leveraged CUDA (Nvidia Corporation, 

Santa Clara, CA, USA) for GPU cluster utilization. The simulations computing time was 

approximately 1-2 hours when queued for Nvidia V100 (Nvidia Corporation, Santa Clara, 

CA, USA) nodes, and approximately 3-4 hours if the Nvidia K40 (Nvidia Corporation, 

Santa Clara, CA, USA) clusters nodes were used. The shear motion data was resampled 

then saved with a sampling frequency of 8 kHz for further processing.   

 To evaluate the masks’ rheological heterogeneity, the shear wave velocity (SWV) 

map of the baseline models for each patient was calculated. The map was calculated 

using a window of 0.30 x 0.30 mm with a patch size of 0.15 mm [162]. The dispersion 

curves, from the simulations and patient scans, were retrieved using generalized 

Stockwell transformation combined with a slant frequency-wavenumber analysis (GST-

SFK) [81] from 100-400 Hz, due to its wider and more reliable frequency band when 

compared to the standard 2D Fourier transform approach [34], [82]. The dispersion curves 

were then fit to the Kelvin-Voigt model (Eq. 5-2) to estimate the shear elasticity, 1, and 

shear viscosity, 2 

𝑐𝑝(𝜔) =  √
2(𝜇1

2+𝜔2𝜇2
2)

𝜌(𝜇1+√𝜇1
2+𝜔2𝜇2

2)

 ,                                          (5-2) 
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where the shear wave phase velocity (𝑐𝑝) is described as a function of the angular 

frequency (𝜔), the media density 𝜌. Additionally, the group velocity was calculated using 

time-to-peak algorithm and a linear fit (Eq. 5-3) was applied to the simulation dispersion 

curves to estimate the dispersion slope (𝑑𝑐/𝑑𝑓) and phase velocity at 200 Hz (𝑐𝑝(200)) 

[32] 

𝑐𝑝(𝑓) = 𝑐0 +
𝑑𝑐

𝑑𝑓
𝑓 ,                                                   (5-3) 

where 𝑐0 is the shear wave velocity intercept at 0 Hz and 𝑓 is the phase frequency. 

 

5.3 Results 

 

 A total of 156 models were simulated for the 12 subjects’ masks. The models’ 

rheological heterogeneity can be observed in Fig. 5-2. The shear wave speed velocities 

were able to successfully illustrate the spatial variation of mechanical properties induced 

by the presence of the various different components of kidney morphology and its different 

mechanical properties, particularly as the shear wave propagates through glomerular 

structures.  

 In some cases, due to the limitation of available biopsy cores for digitization, the 

shear wave velocity map showed some level of striation, as the cores had to be repeated 

more often to generate the model mask, creating the pattern observed for patients 1 and 

3 in the Banff ct category. The x-axis origin was positioned at push focus, therefore, the 

maps only cover about 15.5 mm. It is important to note that all shear waves showed 

significant attenuation after approximately 12 mm of lateral propagation, the higher 

velocity values estimated after shear wave dissipation (yellow to red hue) are, therefore, 

artifacts. 

 The group velocity, 1, 2, dispersion slope and intercept at 200 Hz were calculated 

and reported. For simplification the three different subjects composing each diagnostic 

outcome under evaluation (normal, Banff i, ci and ct) were compiled into mean and 

standard deviation for each of the simulated variations from baseline listed in Table 5-3. 

The slope calculation showed the highest level of standard deviation, with a mean of 0.14 

m/s/kHz, with a maximum standard deviation of 0.63 m/s/kHz for the upper interstitial 

viscosity variation (2 = 2 Pa·s from 1 Pa·s baseline). All other measurements showed 

significantly lower standard deviations, with a maximum of 0.16 Pa·s for the shear 
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viscosity for the upper interstitial viscosity variation (2 = 2 Pa·s). The results are displayed 

in Figure 5-3. 

 

 

 

 

Figure 5-2 – Shear wave velocity maps calculated from baseline simulations of each subject. 

The rightmost high velocity artifacts are caused by the low amplitude of the shear wave, as it 

attenuates away from the push at origin. The striated pattern is caused by the limited number of 

cores available for digitization, and therefore its repetition over the mask composition.  

  

 For diagnosis comparison, the average measurements’ difference from normal 

within each diagnosis were calculated and divided by the normal subjects’ average to 

obtain a percentage change from normal (Eq. 5-4). The results regarding inflammation 

showed the highest levels of viscoelastic change, with a mean change of over 25% in 2 

and 32% in slope. The results from inflammation and tubular atrophy subjects showed 

slight changes from normal in 1, group velocity and intercept, ranging from 1.8% (Banff 

ct intercept) to 4.9% (Banff ct shear elasticity). Banff ct showed more significant change 
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for interstitial alterations specifically, with -0.3 to -0.5% 2 change, and -6.2 to -11.7% 

slope change. The cases of interstitial fibrosis were the least affected injury in terms of 

elasticity, with 0.7%, 1.0% and 1.2% change for group velocity, intercept, and 1, 

respectively. Viscosity evaluations showed larger change trends for interstitial fibrosis, 

within 6.2% to 8.9% change in 2 and slope, respectively. The percent change plots are 

displayed in Figure 5-3.  

  

  

Figure 5-3 – Compiled results for each patient, iteration, and biopsy outcome. Each biopsy 

outcome cluster is composed by the six mechanical parameters that compose the cortex 

morphology: elasticity and viscosity; for the glomeruli, tubule, and interstitial space. The vertical 

bars display the standard deviation across the three patients that composed each biopsy 

outcome. Shear viscosity and slope showed the most sensitivity to rheological alterations, while 

alterations to tubules and interstitial space altered the measurements the most. 

  

𝐼𝑛𝑗𝑢𝑟𝑦 % 𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝐼𝑛𝑗𝑢𝑟𝑦𝑎𝑣𝑔 −𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑣𝑔

𝑁𝑜𝑟𝑚𝑎𝑙𝑎𝑣𝑔
                                     (5-4) 

 To compare the simulation results with the measurements obtained in vivo, SWE 

evaluations were performed using a Logiq E9 ultrasound system acquisitions performed 

on the same patients prior to biopsy procedure. The Pearson correlation coefficient 
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between in silico and in vivo was calculated for the median values of each patient and the 

aggregated biopsy outcome. The results are displayed in Figure 5-5 and Table 5-4. The 

p-values for the in silico measurements as predictors of in vivo estimations was also 

calculated, all p-values were <0.001, aside from 1 with p-value of 0.09. For all parameters 

evaluated the in vivo estimations showed significantly higher values, particularly for 2 and 

dispersion slope at 6.72 and 6.85 average multiplication factor, respectively. Group 

velocity, intercept, and 1 had an average multiplication factor of 1.14 to 2.32. Due to its 

intrinsic challenges (e.g., operator variability, kidney position variability), the in vivo 

measurements also showed significant higher levels of variability when compared to 

simulation. 

  

 

Figure 5-4 – Comparison of each diagnostic outcome depicted in Figure 5-3, against normal 

patients. The percent difference from each diagnostic outcome mean was calculated and plotted. 

Inflammation was found to affect the rheological measurements the most. 

  

 Although group velocity did not show correlation within the patient-wise median 

analysis, mean diagnostic group velocity showed high correlation between the in silico 

and in vivo cases, with Pearson correlation coefficient of 0.95 and p-value < 0.001. 

Therefore, group velocity variability impaired the patient-wise collinearity, but did not 
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confound the diagnostic outcome trend, where patients with inflammation and tubular 

atrophy tend to present higher group velocity estimations. 

 

Table 5-4 – in silico and in vivo comparison 

Patient outcome analysis 

Diagnostic/ 
Patient 

Group 
Velocity 

(m/s) 

Phase 
Velocity  
at 200 Hz 

(m/s) 

Slope 
(m/s/kHz) 

Shear 
Elasticity 

(kPa) 

Shear 
Viscosity 

(Pa·s) 

In 
silico 

In 
vivo 

In 
silico 

In 
vivo 

In 
silico 

In 
vivo 

In 
silico 

In 
vivo 

In 
silico 

In 
vivo 

Normal 1 1.13 1.92 1.12 2.23 0.84 6.16 1.07 1.16 0.40 2.48 

Normal 2 1.05 2.62 1.09 2.08 0.75 5.22 1.02 1.93 0.38 2.89 

Normal 3 1.05 2.41 1.13 2.22 1.00 6.39 1.03 1.06 0.44 2.83 

Banff i 1 1.14 2.84 1.14 2.03 0.89 7.54 1.09 0.85 0.44 2.80 

Banff i 2 1.11 2.62 1.13 2.10 1.00 5.91 1.06 0.88 0.45 3.00 

Banff i 3 1.09 2.52 1.19 2.58 1.37 7.46 1.09 1.73 0.56 3.25 

Banff ci 1 1.09 2.08 1.12 2.38 0.92 8.15 1.05 1.20 0.43 2.92 

Banff ci 2 1.14 2.72 1.12 2.05 0.73 3.84 1.09 1.24 0.37 2.68 

Banff ci 3 1.02 2.69 1.12 2.30 1.18 5.22 0.98 1.37 0.46 3.31 

Banff ct 1 1.13 2.82 1.12 2.30 0.80 5.09 1.08 1.16 0.39 3.10 

Banff ct 2 1.09 2.86 1.12 2.32 0.88 6.50 1.06 1.14 0.41 3.32 

Banff ct 3 1.14 2.54 1.15 2.04 0.91 8.43 1.13 0.82 0.42 2.60 

Pearson 
coefficient 

0.01 0.43 0.35 -0.43 0.46 

Diagnostic outcome analysis 

Normal 
1.08 

± 
0.04 

2.33 
± 

0.30 

1.11 
± 

0.02 

2.17 
± 

0.07 

0.87 
± 

0.10 

5.92 
± 

0.51 

1.04 
± 

0.02 

1.38 
± 

0.39 

0.41 
± 

0.02 

2.73 
± 

0.18 

Banff i 
1.11 

± 
0.02 

2.66 
± 

0.13 

1.16 
± 

0.03 

2.24 
± 

0.25 

1.09 
± 

0.21 

6.97 
± 

0.75 

1.08 
± 

0.01 

1.15 
± 

0.41 

0.48 
± 

0.05 

3.02 
± 

0.18 

Banff ci 
1.08 

± 
0.05 

2.50 
± 

0.29 

1.12 
± 

0.00 

2.24 
± 

0.14 

0.94 
± 

0.19 

5.74 
± 

1.80 

1.04 
± 

0.04 

1.27 
± 

0.07 

0.42 
± 

0.04 

2.97 
± 

0.26 

Banff ct 
1.12 

± 
0.02 

2.74 
± 

0.14 

1.13 
± 

0.02 

2.22 
± 

0.13 

0.86 
± 

0.05 

6.67 
± 

1.37 

1.09 
± 

0.03 

1.04 
± 

0.15 

0.40 
± 

0.01 

3.01 
± 

0.30 

Pearson 
coefficient 

0.95 0.58 0.52 -0.93 0.45 

  

 The phase velocity at 200 Hz, dispersion slope and 2 showed similar correlation 

results with diagnostic-wise Pearson correlation coefficient of approximately 0.50. Patients 

with inflammation showed higher levels of shear wave dispersion than normal subjects, 

whereas ci and ct alterations where not as prominent, with both the measurements 

diverging within the standard deviation magnitude.  
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 Although 1 showed the lowest scale factor, of approximately 1.14, 1 was the only 

measurement to show negative correlation, both patient and outcome-wise. The 1 

estimation showed a high outcome-wise Pearson correlation, above 0.90, but with a 

negative trend. 

 

 

 

Figure 5-5 – Scatter plot of in vivo and in silico elastography estimations, linear regression is also 

displayed. The color of the dots decodes the patient respective diagnostic outcome. 

  

5.4 Discussion 

 

The results shown are encouraging and successfully demonstrated the capabilities 

of biopsy-based SGFD simulations. The shear wave speed maps were able to capture the 

micro-structure heterogeneity of the kidney cortex created by the biopsy masks. The 

spatial reconstruction resolution of the Logiq E9, as configured, was 0.3 mm, and therefore 

not capable of detecting micro-structures underlying the macroscopic rheological 

changes. For instance, the average glomeruli diameter in humans is 0.2 mm [163], and 

consequently not detectable by the Logiq E9 equipment. The use of simulations enable 

analysis with higher spatial resolution (0.05 mm), capable of assessing both micro- and 

macro-structural alterations in a controlled setting. 
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 The average morphological composition for each diagnosis was calculated and 

displayed in Table 5-5. Inflammation differed the most from the other cases with higher 

interstitial and glomerular area (52.4% and 6.4%, respectively), and lower tubular and fluid 

relative area (34.1% and 6.8%, respectively). Tubular atrophy showed the highest tubular 

area, at 46%, and lower fluid composition, in agreement with the thickening of tubular 

basement membranes in addition to the tubular flow constriction [164]. Normal and 

interstitial fibrosis showed similar component distributions with an average deviation of 

±1.6%. 

Table 5-5 – Average spatial composition 

 Avg_G% Avg_T% Avg_I% Avg_Fl% 

Normal 5.4% 39.1% 42.7% 12.8% 

Banff i 6.4% 34.4% 52.4% 6.8% 

Banff ci 4.3% 40.3% 44.8% 10.6% 

Banff ct 4.4% 46.0% 40.9% 8.7% 

G: Glomeruli, T: Tubules, I: Interstitial space, Fl: Fluid 

 

 Inflammation was found to alter the kidney composition the most, and therefore, 

change the cortex mechanical properties the most. This finding agreed with the results 

from the in vivo study described in Chapter 2, showing significantly higher values for all 

measurements, when comparing normal to Banff i patients. The increase in interstitial 

space in detriment of fluid and tubular composition is compatible with higher tissue 

stiffness, and viscosity, and therefore compatible with the elastography findings. Interstitial 

fibrosis and tubular atrophy did not appear to have such differentiation potential. The lack 

of patients with exclusively interstitial fibrosis in the subject pool for this study may have 

confounded Banff ci characterization, since ci positive patients also presented Banff ct. 

 The simulations showed, for the most part, consistent correlation with the in vivo 

studies performed. Although helpful for the understanding of the morphological alterations 

and its consequences, the simulation setting proposed in this study inherit several 

limitations that impair its capacity of numerically matching the in vivo assessments. We 

did not perform ultrasound detection of the moving tissue to avoid any potential introduced 

bias to the evaluations. The clinical setting also imposes different levels of variability, such 

as operator variability, not present in simulations. One of the main challenges, and the aim 

for future investigations, is the effect of perfusion to the elastography assessment. Several 

groups investigated these phenomena [150], [165]–[167], nevertheless rheological 

parameters for each specific cortex component in vivo and under perfusion were not 
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available at the time of development. Additionally, the models proposed did not account 

for the kidney cortex anisotropy, which can also induce bias. However, we only used SWE 

measurements in patients from the longitudinal plane of the kidney in the middle of the 

organ to reduce effects of anisotropy that may occur closer to the kidney’s poles. 

 The only parameter to show negative correlation was 1. The in vivo data showed 

approximately 5 times more dispersion than in silico, even though with diagnostic-wise 

positive correlation above 0.45. The higher levels of dispersion tend to highly affect the 

shear elasticity estimation through Kelvin-Voigt model fitting. The increase of dispersion 

tends to decrease the dispersion curve zero intercept and, therefore, lower the shear 

elasticity estimation proportionally to the increase of slope/viscosity. The implementation 

of such simulations allows further investigation of these findings and artifacts and will be 

aims of future work.   

 Overall, the results shown agreed with those presented in Chapters 2 and 3. The 

inflammation cases were found to affect rheological characteristics the most, while group 

velocity and specific phase velocities showed the most sensitivity for inflammatory 

alterations. Inflammation diagnosis is critical for continuous allograft surveillance, as it is 

the main cause of more progressive injuries, such as fibrosis and tubular atrophy [98]. The 

use of SWE techniques might be a viable solution for more frequent allograft assessment.  

 

5.5 Conclusion 

 

 In this study, we proposed to evaluate the simulation of heterogenous kidney 

cortex models based on human renal allograft biopsies. Staggered-grid finite-difference 

(SGFD) were leveraged to simulate shear wave propagation in 12 patient models. The 

results showed the method was capable of successfully simulate shear wave propagation 

in heterogeneous media based on segmented biopsy images. Although the elastography 

measurements, in silico and in vivo, diverged quantitatively, the results showed good 

correlation with the results obtained from the biopsy volunteers. Inflammation showed the 

most differentiation, with higher elasticity and viscosity levels when compared to the 

control group. Group velocity showed a Pearson diagnostic-wise correlation of over 0.9, 

although the same level was not found patient-wise. Intercept at 200 Hz, dispersion slope 

and shear viscosity showed reasonable correlation, above 0.40, whereas shear wave 

elasticity showed negative correlation between in silico and in vivo measurements. These 
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implementation gaps and limitations, such as anisotropy, should be addressed as the 

computation capabilities for more complex simulations advances.   

 Despite the disparities between in silico and in vivo limitations, the results were 

encouraging and present SGFD heterogeneous simulations as a viable testing framework 

for better understating on how the pathological changes to organs’ micro-structure can 

alter the macro-structure rheological characteristics. Compared to interstitial fibrosis and 

tubular atrophy, interstitial inflammation was shown to alter the kidney cortex’s morphology 

the most and therefore its mechanical properties the most both in vivo and in silico, this 

finding is particularly important as inflammation is a recurring injury that gives rise to 

fibrosis and tubular atrophy, and consequently, one of the main targets for more frequent 

allograft assessment. 
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Chapter 6 – Renal allograft interstitial inflammation detection 

based on convolutional neural networks and shear wave 

motion 2D Fourier transform 
 

6.1 Introduction 

 

Kidney function is essential to homeostasis and survival. Chronic kidney disease 

(CKD) is characterized by declining renal filtration and ultimately leads to end-stage renal 

disease (ESRD). Depending on the level of renal failure, the kidneys are no longer able to 

sustain homeostasis, and consequently, hemodialysis and transplantation are the 

standard course of treatment. Renal transplant is the preferred procedure as it increases 

patient survival and quality of life. Although transplantation outcomes have been improved 

since the introduction of the procedure, allografts can also be affected by rejection and 

other systemic disorders, such as hypertension. Renal allograft failure can reverse the 

benefits of transplantation eventually requiting hemodialysis and patient’s return to 

transplant waiting lists [40]. 

 Proper surveillance is critical to ensure allograft longevity and patient’s quality of 

life. Biomarkers, such as serum creatinine (SCr), glomerular filtration rate (GFR) and 

resistive index (RI) have been used to assess kidney function and detect filtration 

anomalies [14], [96]. Although useful, these biomarkers are surrogates of kidney function, 

but not necessarily of kidney tissue state. The gold standard for kidney assessment is 

renal biopsy, as nephropathologists can directly evaluate tissue alterations and score 

tissue state using the Banff criteria, even before the renal function is affected [46], [100], 

[168]. Nevertheless, biopsies are an invasive procedure that incur higher clinical costs and 

can cause complications, such as hemorrhage, infection and ectasia [101], [105], [169]. 

 Interstitial inflammation is the most common initial alteration presented during 

kidney rejection, although remediable, it can initiate scarring processes that can lead to 

interstitial fibrosis and tubular atrophy [98], [170]. It is, therefore, imperative to minimize 

inflammation processes with proper surveillance and treatment. Because common 

biomarkers cannot detect tissue alterations before function decline and biopsies cannot 

be performed frequently due to invasiveness, other non-invasive renal assessment 

modalities should be developed. 
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 Over the past two decades, elasticity imaging techniques have been proven to be 

a viable non-invasive tool for tissue evaluation [21], [123]. Different pathological processes 

can alter the tissue morphological structure, that can translate to rheological alterations 

detectable by elasticity imaging techniques. Shear wave elastography (SWE) has 

emerged as a promising non-invasive and affordable tissue evaluation approach. The 

methodology leverages acoustic radiation force (ARF) pushes to generate shear waves 

that propagate through the investigated tissue. The propagation is then measured using 

high frame rate ultrasound image and reconstructed to estimate rheological parameters 

[171]. 

 A variety of SWE parameters and have been leveraged for kidney assessment, 

from model-free estimations, such as group velocity, phase velocity and attenuation, for 

model-based estimations such as Kelvin-Voigt (KV) fitting [16]. Most of the techniques for 

rheological estimation rely on some form of time-to-frequency transformation, the most 

common methodology is the shear wave velocity dispersion calculation based on the two-

dimensional Fourier transform (2D FT) of the shear motion in space and time. The Fourier 

frequency resolution is defined by the signal discretization characteristics (signal sampling 

frequency and length), while its bandwidth is defined by the Nyquist frequency (half the 

sampling frequency) alone. Even though, different acquisitions can present different 

discretization characteristics the 2D FT approach is able to output standardized frequency 

spectra. The frequency bandwidth can be truncated at the smallest Nyquist frequency 

available, and the frequency resolution can be adjusted by truncating or zero padding the 

signal to the required length. Analogous signal standardization in the original time-space 

dimensions require the use of interpolation techniques, that may introduce bias and 

variability to the signal. 

 The shear wave velocity dispersion, i.e., the velocity dependency on frequency, 

can then be evaluated for tissue characterization [78], [82], [132]. Although such 

measurements have been shown to correlate with the prevalence of interstitial 

inflammation and other alterations [64], [117]–[119], the quantification of rheological 

properties require complex post-processing techniques, such as directional filtering, noise 

filtering and curve fitting, that can introduce different levels of bias and variability, as they 

rely on premises, such as isotropy and linearity, that do not hold true, especially in the 

renal perspective [172], [173].  

 During the last decade, convolutional neural networks (CNNs) have been 

developed to model increasingly complex non-linear datasets, especially for imaging 
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tasks, such as computer vision and inclusion detection. The CNN implements a layer-

based architecture where weighted kernel convolutions are performed to mimic a 

receptive field, which is then reduced by a pooling layer to extract the most relevant 

features. The output of multiple convolutional and pooling layer pairs is then fed through 

fully connected neural network to perform the final image interpretation [37]. The training 

objective is defined by the reduction of a given loss function defined by the task (e.g. binary 

cross-entropy for binary classification), the weights are then adjusted with the optimization 

task in mind, usually by leveraging stochastic gradient descent techniques [139], [140]. In 

this proof-of-concept study, we propose to evaluate the capabilities of CNNs to detect 

interstitial inflammation from shear wave 2D FT images with binary biopsy score 

supervision (Fig. 6-1).          

 

Figure 6-1 – General convolutional neural network architecture implemented for 2D FT image 

classification. Convolutional and max-pooling pairs can be stacked for deeper feature extraction. 

The feature extracted are resized into a one-dimensional array that is then processed by the fully 

connected layers to produce the image classification.    

 

 

6.2 Methods 

 

 The dataset was taken from a cohort of 223 SWE studies performed with General 

Electric (GE) Logiq E9 ultrasound system (General Electric, Wauwatosa, WI, USA) prior 

to routine allograft biopsy, under the protocol approved by Mayo Clinic’s Institutional 

Review Board (IRB# 11-003249). A small fraction of patients (n = 13) had studies 

performed at multiple routine visits, all 206 participants provided written informed consent. 

The inflammation biopsy scoring was performed and annotated by the Mayo Clinic’s 

nephropathologists for supervised training. Each subject was scanned at lower pole, 

middle portion, and upper pole, in longitudinal and transverse planes. The data quality of 

each subject was evaluated using ratio of the interquartile range (IQR) and median (IQR-

to-median ratio) for common elastography measurements, such as group velocity, phase 
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velocity and shear wave attenuation from 100 to 300 Hz, and KV shear elasticity and 

viscosity.  

Table 6-1 – Study cohort demographics 

 
Patients (n=206) Studies (n=223) 

Number % Number % 

Sex     

  Male 122 59.2 128 57.4 

  Female 84 40.8 95 42.6 

 Mean (Std. Dev) Range Mean (Std. Dev) Range 

Age, yrs 49.8 (14.0)* 22-76 49.7 (14.0) 22-76 

BMI, kg/m2 27.6 (5.3)* 13.1-42.3 27.9 (5.5) 13.1-42.3 

TAT (months) 14.5 (14.9)* 4-60 16.1 (14.7) 4-60 
*At first scan 

 

 The dataset showed high skewness, with only 31 subjects with detected 

inflammation, therefore, majority under sampling was used to balance the dataset. All 31 

positive subjects ware used for training, whereas the control subjects were ranked 

according to mean IQR-to-median ratio over the elastography measurements.  

 To produce the 2D FT images for training, a MATLAB (Mathworks, Natick, MA, 

USA) script was implemented to pre-process the shear wave motion images. To eliminate 

the signal’s DC component, the mean value was subtracted from the shear motion field. 

Because boundary discontinuity can introduce additional spectral leakage to the 2D FT 

evaluation, a 2D Tukey window (α = 0.2) was implemented prior to transform [174]. The 

2D FT was applied to the spatiotemporal (x-t) image to obtain the 2D FT wavenumber (kx)-

frequency (f) image (Fig. 6-2). In all these cases, the magnitude of the 2D FT was used. 

Because the GE Logic E9 system applies two simultaneous ARF pushes, on each side of 

the region-of-interest (ROI), the motion data contains waves traveling in the positive x-

direction and negative x-direction. As a result, the four quadrants were used to generate 

the training images, and therefore, eliminating the necessity of directional filtering. 

Although the sampling frequency was constant throughout the acquisitions, the ROIs were 

defined per acquisition by the operators, therefore, zero padding was employed to 

generate consistent 2D FT discretization in both axes. The distributions in the first and 

third quadrants represent the waves traveling in the positive x-direction and the 

distributions in the second and fourth quadrants represent the waves traveling in the 

negative x-direction. The distributions in these quadrants have complex conjugate 

symmetry. 
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Figure 6-2 – (a) Original ROI shear motion, (b) shear motion with DC component removed, (c) 

shear motion after Tukey windowing, (d) final four quadrant 2D FT image used for training. 

 

 The CNN was implemented in Python (Python Software Foundation, Wilmington, 

DE, USA), using Keras [149] with a Tensorflow (Google Brain, Mountain View, CA, USA) 

backend. The models were trained on a Z280 workstation (Hewlett-Packard, Palo Alto, 

CA, USA) equipped with a GTX 1080 GPU (Nvidia, Santa Clara, CA, USA). All subjects 

positive for inflammation were loaded while, the control subjects with the lowest IQR-to-

median ratio values were loaded according to the defined under sampling. The Banff 

inflammation scores from the biopsy evaluation equal or above 1 were defined as 1, for 

binary classification. All images loaded were then normalized and flipped vertically for 

dataset augmentation, consequently doubling the number of data samples. Group shuffle 

split was used to define the training, validation, and test sets (60/20/20), reducing the 

chance that overfitting occurs due to data leak, as different images from a single subject 

cannot be presents in multiple split sets. 

 The number and size of convolutional, dense and dropout [175] layers were varied 

to evaluate the models’ performance using the Tensorboard API (Google Brain, Mountain 

View, CA, USA). Additionally, batch normalization was implemented for all layers. The 

training was set to a maximum of 1000 epochs and early stopping  was implemented [175] 

with a minimum validation loss δ of 0.0001 over 20 epochs. The models’ loss, accuracy 

and area under the Precision-Recall curve were recorded for each epoch. The Adam 

optimizer [140] was used to adjust the weights according to the binary cross-entropy loss. 

The best hyperparameter sets were selected for final testing and reported. The final test 

was performed on the segregated test set. The receiver operating characteristic curve and 

its area (AUROC) were recorded. To better evaluate the inflammation detection 

capabilities in different skewness settings the precision (Eq. 6-1), recall (Eq. 6-2) and F1-

score (Eq. 6-3) at Youden’s index optimal cutoff, were also recorded [176]. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
 ,                                    (6-1)    

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 ,                                      (6-2) 
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𝐹1 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 .                                                (6-3)  

 

6.3 Results 

 

 The results showed the potential for interstitial inflammation detection using 

convolutional neural networks on the 2D FT images. No under sampling (6.2:1), 1:1 and 

2:1 control/abnormal ratios were used to train different models. The original Banff score 

distribution in terms of patient and scans are displayed in Table 6-2. 

Table 6-2 – Banff patient and scan score distribution 

Score 
Banff i (n=223) 

Patients % 

0 192 86.10 

1 17 7.62 

2 10 4.48 

3 4 1.79 

> 0 31 13.90 
 

Score Scans % 

0 14024 86.26 

1 1160 7.13 

2 767 4.72 

3 307 1.89 

> 0 2234 13.74 

 

 The best architecture for 2:1 and 1:1 datasets was found to be 3 convolutional 

layers, with 16 nodes each, 2 dense layers with 16 nodes each, and dropout of 0.3 at each 

layer interface. The original 6.2:1 dataset was tuned to 3 convolutional layers, with 16 

nodes each, 4 dense layers with 16 nodes each, and dropout of 0.1 at each layer interface. 

 The 1:1 and 2:1 ratio datasets were able to achieve F1-scores of 0.75 and 0.69, 

respectively. Although the 1:1 dataset managed to reach a high level of inflammation 

detection at 0.79 recall rate, it performed similarly to 2:1 in terms for specificity and 

precision, at 0.72 and 0.71 respectively. The high skewness of the dataset heavily 

confounded the original 6.2:1 dataset training with an AUROC of 0.57 and F1-score below 

0.3. The performance metrics for each CNN model and the ROC curves are displayed in 

Table 6-1 and Figure 6-3, respectively.  

Table 6-3 – CNN performance metrics 

Skewness AUROC Cutoff Specificity 
Sensitivity/ 

Recall 
Precision F1-score 

6.2:1 0.57 0.09 0.35 0.77 0.15 0.26 

2:1 0.75 0.49 0.73 0.68 0.70 0.69 

1:1 0.81 0.47 0.72 0.79 0.71 0.75 
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(a) 6.2:1 

 

(b) 2:1 

 

(c) 1:1 

 

Figure 6-3 – ROC plots for 6.2:1 (a), 2:1 (b) and 1:1 (c) testing. The orange line is the ROC curve, 

while the dashed blue line is the chance performance (AUROC = 0.50). 

 

6.4 Discussion 

 

This proof-of-concept study showed that a CNN using 2D FT magnitude images 

was capable of detecting interstitial inflammation at similar levels presented in literature 

[63], [117], [119] and in our group previous studies, without resorting to complex image 

processing techniques such as directional filtering. Given the limited availability of kidney 

allograft datasets and the morphological complexity of kidney cortex, when compared to 

more homogeneous and isotropic organs, such as liver [78], [132], the results were 

encouraging and further investigation will be necessary to improve the methodology. 

 In this study, a more balanced dataset was achieved using a data quality driven 

majority under sampling, this is not ideal as it can diminish the generalizability of the 

trained model. The number of moderate to severe inflammation (Banff i > 1) was 6.27% 

of the total cohort, while mild (Banff i = 1) cases accounted for 7.62% of the patient cohort. 

The ongoing expansion of the patient study will allow the group to collect more moderate 

to severe cases, enhancing binary classification, as well as allowing for categorical 

classification. The models proposed would also benefit from a more diverse cohort of 

patients, with different demographic backgrounds and standard of care. Interstitial 

inflammation treatment can vary significantly depending on patients’ secondary 

diagnostics and institutional protocols [177]. The expansion of this study to other 

institutions may be beneficial, as standards of care and patients’ common underlying 

conditions (such as hypertension and obesity) may affect the observed severity 

distribution [178], [179].  

    Inter-institutional training imposes specific data standardization challenges. In 

such perspective, the 2D FT approach also holds potential for inter-institutional training. 

High levels of data processing can enhance data acquisition biases, as such techniques 
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often are equipment and methodology specific. The use of minimal processing and 2D FT 

images allows a more prompt adaptation of different acquisition profiles and facilitate 

transfer learning applications [153], i.e., different sampling frequencies and ROIs can be 

easily adjusted during Fourier transform. The use of all four 2D FT quadrants combined 

with CNNs’ translation and rotation invariance may also be beneficial to accommodate 

different ARF profiles. 

 Even though scans at 3 different locations within kidney cortex were used for 

training, the biopsy was performed at a single location (usually the closest to surface). 

Both biopsy and this study leverage the premise of diffuse inflammation within kidney 

cortex, which may not hold true. In future work, this premise will be investigated with the 

use of the biopsy location annotation and employment of weak supervision learning 

techniques. In addition, classification uncertainty techniques [180] might also be 

implemented to produce easily interpretable uncertainty quantification to clinicians, and 

better support decision making. It is also important to note that other injuries such as 

tubular atrophy and interstitial fibrosis were also present, what might confound 

inflammation discrimination. 

 

6.5 Conclusion 

 

 Ultrasound SWE has shown its potential for low-cost and non-invasive tissue 

assessment. The use of machine learning techniques, such as CNNs, for imaging 

applications have also showed increasingly performance when compared to well 

established processing techniques. The proof-of-concept study introduced a novel 2D FT 

CNN technique for kidney interstitial inflammation detection. The method was applied to 

a dataset of 31 subjects with interstitial inflammation and 31 to 192 control subjects (1:1, 

2:1 and 6.2:1 control/inflammation ratios). The 1:1 balanced dataset was able to reach an 

AUROC of over 0.8 and a F1-score of 0.75, showing the potential of this technique for 

allograft inflammation detection. Further investigations will be performed to advance the 

technique and mitigate its limitations. 
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Chapter 7 – Summary and Future Work 
 

7.1 Introduction 

 

 This thesis objectives were to explore machine learning (ML) capabilities for kidney 

allograft biopsy classification based on in vivo and in silico shear wave elastography 

(SWE) evaluations. The use of SWE for non-invasive and affordable tissue assessment 

has been researched for decades, but well established clinical implementations are still 

limited. The kidney morphological characteristics add to the challenges SWE wider clinical 

adoption of renal assessment. Given that the kidney is highly heterogeneous, anisotropic 

and non-linear, machine learning applications might be able to better model the renal 

complexity without the common homogeneous, isotropic and linear assumptions of 

classical mathematical models, or by intrinsically modelling the biases and noise 

introduced by such assumptions.  

 For in vivo evaluation, data from a patient study performed at Mayo Clinic from 

October 2017 to July 2019 was leveraged. Each transplanted patient was scanned with a 

SWE capable ultrasound equipment prior to biopsy procedure. Six different cortical 

positions were evaluated; upper pole, lower pole and middle region at longitudinal and 

transverse orientations. The biopsies were evaluated by Mayo Clinic’s 

nephropathologists, and the degree of interstitial inflammation, fibrosis and tubular atrophy 

was annotated to the dataset. Other clinical biomarkers were also recorded, such as blood 

pressure, serum creatinine and resistive index.   

 In Specific Aim 1, we investigated the ML capabilities as well as classical statistical 

modalities, such as general estimation equations, to model and classify renal allograft 

biopsy scores based on stablished SWE measurements and stablished protocol 

biomarkers. Specific Aim 2 investigated the correlation between the morphological 

alterations caused by the pathological processes common to allograft rejection, and how 

they affect the rheological characteristics of cortical tissue as perceived by SWE 

measurements. Specific Aim 2 also investigated the capabilities of convolutional neural 

networks for modelling the viscoelastic measurements (regression task), and biopsy 

outcomes (classification task), based on shear wave motion, and 2D FT images, 

respectively. 
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7.2 Summary of Results 

 

7.2.1 Specific Aim 1 

 

Develop supervised machine learning models that can predict renal transplant 

biopsy scores based on SWE measurements and other physiological biomarkers 

with >80% specificity and sensitivity.  

  

 In Chapter 2, the in vivo dataset was used to investigate the significance of a 

variety of common SWE measurements. Group velocity, shear modulus, Kelvin-Voigt 

dispersion curve fitting (𝜇1 and 𝜇2), 2D FT phase velocity, shear wave attenuation using 

AMUSE, and GST-SFK (phase velocity) were used quantify the rheological properties of 

the kidney. Clinical biomarkers, such as, serum creatinine and eGFR, were also used for 

allograft assessment. The presence of inflammation, interstitial fibrosis and tubular 

atrophy were evaluated and annotated by nephropathologists.  

 Attenuation measurements showed strong significance (p-value < 0.05) for tubular 

atrophy with negative correlation (0.97 ≤ OR < 1.00), while velocity associated 

measurements showed mild significance (p-value < 0.10) for inflammation and fibrosis 

with positive correlation (1.00 < OR ≤ 1.02).  

 Time after transplant (TAT) and Age showed strong statistical significance for 

interstitial fibrosis and tubular atrophy (independently and combined as IFTA) with a 

positive correlation, but showed no significance for inflammation, in agreement with the 

chronic nature of inflammation when compared to the more progressive and acute 

characteristics of fibrosis and tubular atrophy.  

 The eGFR also showed significance with inflammation in some datasets, with 

negative correlation, and serum creatinine (SCr) showed strong significance for tubular 

atrophy for all datasets tested, with positive correlation, both in agreement with the 

declining kidney function cause by the injuries evaluated. 

 Overall, the longitudinal middle position performed the best with the logistic 

regression tests, with the best classification performance of AUROC = 0.72 for tubular 

atrophy when fit to low p-value parameters only. Inflammation and interstitial fibrosis also 

benefited the most form the L_MID/low p-value setting, with AUROCs of 0.63 and 0.66, 

respectively.  
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 In Chapter 3, the patient dataset was evaluated for biopsy binary classification 

using the support vector machine (SVM). For model interpretability Shapley explanations 

(SHAP) was implemented. Several models reached AUROCs > 0.70, a level of 

performance compatible with previous work performed by our group and others [17], [21], 

[22], [33]–[36]. The SHAP importance analysis agreed with the generalized estimating 

equations (GEE) and odds ratio analysis performed in Chapter 2, showing the reliability of 

SVM for model classification and interpretability. 

 Inflammation was the least frequent injury present in the patient study, with less 

than 14% prevalence. Therefore, the models significantly benefited from majority class 

undersampling, the use of the IQR-to-median ratio to retain the most reliable majority 

samples also prove to be a viable technique for mitigating skewness. Inflammation was 

the most detectable injury by elastography measurements, demonstrating classification 

AUROC > 0.70 even when biomarkers were not present. As noted in Chapter 2, temporal 

biomarkers TAT and Age do not give insight into the inflammation prediction. Diastolic 

blood pressure also showed high importance for inflammation detection, with a positive 

trend, suggesting that hypertensive patients might be more associated with having 

transplant inflammation. Further investigation on inflammation prediction is necessary, 

which would involve studies with more patients with moderate and severe allograft 

inflammation are imperative for the advancement of the proposed techniques.  

 Besides inflammation, tubular atrophy was the only diagnostic outcome to reach 

AUROC > 0.70, at a maximum of AUROC = 0.74. Although TAT and Age showed higher 

importance, as expected, the models benefitted from the addition of viscoelastic 

measurements, especially 2D FT shear wave attenuation at 200 Hz, 𝛼2𝐷𝐹𝑇
200 , which showed 

a negative trend, the decrease in attenuation is consistent with the interstitial inflammation 

process, where interstitial contents expand and compress, decreasing the overall 

attenuation of the tissue [23][38][39]. The eGFR also demonstrated high importance in 

multiple models for the different outcomes, its negative trend relates directly to the allograft 

function, as the injury progresses the filtration capacity of the kidney tends to decline [45].  

 Unfortunately, the 80% sensitivity and specificity targets were not able to be 

reached. Logistic regression reached a maximum of AUROC = 0.72 for fibrosis 

classification, with sensitivity and specificity below 0.65 at optimal Youden’s index. Best 

classification performance was found with the SVM implementation, with sensitivity and 

specificity for AUROCs > 0.7 varied from 0.58-0.77 and 0.53-0.84, at optimal Youden’s 

index. As indicated in Chapter 2, the cutoff for classification can be adjusted to favor 
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sensitivity or specificity. Lower cutoff will increase sensitivity in detriment of specificity. 

This solution is not ideal as false positive rate will increase, but can be leveraged in primary 

care setting, as indication for further investigation. 

 

 

 

7.2.2 Specific Aim 2  

 

Develop supervised machine learning models that can predict renal transplant 

biopsy scores based on analysis of data from shear wave propagation simulation 

and patient data with minimal pre-processing. 

 

 In Chapter 4, shear wave motion simulations were created using staggered-grid 

finite-difference (SGFD) method. The shear elasticity and viscosity ranges for the KV 

model were chosen so they would cover a wide range of values for normal and 

pathological soft tissues. The shear elasticity, 1, ranged from 1-25 kPa with increments 

of 1 kPa, and shear viscosity, 2, ranged from 0-10 Pas with increments of 0.5 Pas. Two 

different ARF excitation focus profiles were used, with f-numbers (F/N = focal  length/width 

of aperture) 1 and 2 with a focal distance of zf = 2.5 cm,  totaling 1050 simulations.  

 The results shown in Chapter 4 were encouraging and exhibit the potential of the 

use of convolutional neural networks in ultrasound SWE for viscoelastic characterization. 

The results demonstrated that the CNN models were robust to noise, vertical position and 

partially to F/N. When tested on datasets with the same excitation F/N for training and 

testing, the elasticity and viscosity estimations were very good and showed robustness to 

noise and vertical position of the measurement.  

 The testing results were evaluated using the MAE between the true value of the 

viscoelastic property and the CNN prediction output. A linear regression was performed 

to compare the results from the 2D FT analysis as well as the CNN prediction to the identity 

line, and the slope, intercept and R2 of the regression line were also calculated and 

reported. All elasticity models trained and tested on the same F/N showed very good fitting 

with MAE below 0.079 kPa with slopes and intercept of approximately one and zero, 

respectively. The viscosity models trained and tested on the same f-numbers also showed 

very good agreement with MAE below 0.091 Pa·s with slopes and intercept of 



93 
 
 

approximately one and zero, respectively. Alternatively, CNN models tested on f-numbers 

different from the training/validation F/N had diminished performance. 

 When trained with both F/Ns the CNNs were able perform similarly as the pairs 

trained, validated, and tested with a single F/N. The results indicate that the CNNs can 

discern between wave front profiles with high accuracy, as long as they are trained 

properly. Overall, the proof-of-concept study showed that the CNN models were able to 

successfully retrieve the viscoelastic properties from the wave motion images. The 

approach proposed required minimal preprocessing, without the employment of filters or 

transforms. 

 In Chapter 5, heterogenous kidney cortex models based on human renal allograft 

biopsies were evaluated. Staggered-grid finite-difference (SGFD) were leveraged to 

simulate shear wave propagation in 12 patient models based on segmented biopsy 

images. Although the elastography measurements, in silico and in vivo, diverged 

quantitatively, the results showed good correlation with the results obtained from the 

transplant patients. Inflammation showed the most differentiation, with higher elasticity 

and viscosity levels when compared to the control group. Group velocity showed a 

Pearson correlation coefficient of over 0.90 when considering correlations within a 

diagnostic outcome. Intercept at 200 Hz, dispersion slope and shear viscosity showed 

reasonable correlation, above 0.40, whereas shear wave elasticity showed negative 

correlation. 

 Despite the disparities between in silico and in vivo implementations, the results 

were encouraging and present SGFD heterogeneous simulations as a viable testing 

framework for better understating on how the pathological changes to organs’ micro-

structure can alter the macro-structure rheological characteristics. Compared to interstitial 

fibrosis and tubular atrophy, interstitial inflammation was shown to alter the kidney cortex’s 

morphology and rheology the most, this finding is particularly important as inflammation is 

a recurring injury that gives rise to fibrosis and tubular atrophy, and consequently, an 

important target for more frequent allograft assessment.  

 In Chapter 6, the 2D FT CNN was evaluated for inflammation classification. The 

architecture proposed was able to reach AUROCs above the performances reported in 

Chapter 2 and 3 for balanced inflammation datasets (AUROC = 0.81). The proof-of-

concept study proved it is possible to obtain better classification performance from less 

pre-processed datasets, although further investigations are necessary to further advance 

the technique, including the expansion of the current dataset.  
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 The objectives proposed by Specific Aim 2 were concluded, not only with the 

introduction of novel methodologies but also with valuable insights on the usefulness of 

the combination of SWE and ML, and the association between pathological and 

rheological alterations. 

  

7.3 Limitations 

 

 Chapters 2, 3, 5 and 6 used data from the in vivo patient study. The patient study 

includes several limitations in terms of operator variability. To mitigate inter-operator 

variability all sonographers have performed the same training for SWE capable ultrasound 

applications. The level of compression applied by the sonographer during scan can modify 

kidney stiffness. All sonographers were instructed to apply minimal compression as 

possible and be cognizant of allograft displacement at B-mode imaging. Although beyond 

the scope of this research, have been investigated by our group [77].  

 The complex kidney morphology also imposes specific limitations, the common 

assumptions of isotropy and homogeneity do not hold, especially for renal tissue. To 

account for anisotropy the scans were performed in both transverse and longitudinal 

planes, and, during ML training with elastography parameters, the location of scan was 

always provided so the SVM could possibly model the biases introduced by fiber 

orientation. The restriction to only longitudinal middle position also proved a viable 

mitigation strategy, as it had the best IQR-to-median ratio results.  

 All biopsy labeling was performed by Mayo Clinic’s pathology department. All 

nephropathologists use the well-established Banff criteria for injury scoring, therefore 

inter-operator variability within the label annotation process was deemed minimal. For 

future studies voting processes can be implemented to further reduce variability, although 

such strategies were beyond the scope of this thesis and not included in Mayo’s Clinic 

protocol transplant evaluations. 

 The patient dataset is also limited by the demographics of patient cohort, all 

patients enrolled in the research protocol received treatment a single institution, therefore, 

the lack of diversity in standard of care might have limited the variability of patient 

outcomes. The number of patients with moderate-to-severe (Banff > 1) injury were below 

6% for all injuries evaluated, which can hinder classification performance. Interstitial 

fibrosis and tubular atrophy had 43.1% and 67.7% mild-to-severe (Banff > 0) rate, 

respectively, whereas interstitial inflammation had only 13.9% mild-to-severe prevalence. 
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Highly skewed datasets can hinder ML training, therefore, balanced datasets were created 

using the IQR-to-median ratio, for all inflammation evaluations. 

 The elastography quantification techniques implemented in Specific Aim 1 can also 

introduce different levels of variability to the dataset, especially in noisy environments such 

in vivo applications. The use of ML to reduce the data processing overhead was 

investigated in Chapter 4 and 6, by quantitatively and qualitatively evaluating in silico, and 

in vivo datasets with minimal pre-processing.  

 Chapters 4 and 5 leveraged SGFD simulations. Due to computational resource 

restrictions, ultrasound detection was not implemented to the simulated data, which may 

add bias to elastography measurements. Although Gaussian noise was added to mitigate 

noise discrepancies between in silico and in vivo data, it does not replicate all ultrasound 

noise characteristics and can further introduce bias.  

 The homogeneous assumption limitations were investigated in Chapter 5. The 

SGFD method was capable of reproducing isotropic cortical heterogeneity. The results 

showed correlation between heterogeneous in silico and in vivo elastography estimations, 

however it was not possible to match the results numerically. The ex vivo evaluations used 

for glomeruli, tubule and interstitial mechanical property assignment did not take perfusion 

into consideration. Perfusion affects cortical rheology, as demonstrated by our group in 

previous research [166], and should be taken under consideration. The perfusion analysis 

was beyond the scope of the proof-of-concept study introduced, nonetheless, the 

framework implemented can be used for perfusion investigation, due to the flexibility of 

assigning renal cortex viscoelastic parameters individually. 

  

7.4 Future Research 

 

 The patient study that produced the data used in Chapters 2, 3, 5 and 6 is still 

active, therefore, more data have become available. Dr. Urban’s group will further advance 

the investigation proposed in this thesis with the newly acquired data, possibly mitigating 

inflammation skewness characteristics. The study has expanded to other Mayo Clinic 

sites, in Florida and Arizona, to augment data diversity.  

 The simulation framework introduced in Chapter 5 will also be leveraged for further 

renal cortex parametric analysis. Future research will be devoted to adjusting the 

rheological parameters to account for perfusion alterations and better understand not only 
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the morphological changes to the micro-structure, but also the individual component (i.e., 

glomeruli) rheological alterations. 

 Chapter 6 introduced a novel 2D FT data representation for CNN training. With the 

advance of the patient study more data will be available for training and other architectures 

may be evaluated. The current implementation assumes the injuries present at the biopsy 

location are present in other regions of the kidney. The group also envision the 

implementation of weak learning techniques [181], by assigning the scan locations near 

to biopsy site as strong labels, and other locations as weak labels for better performance 

and generalization.   

 The content in Chapter 4 was published in Computers in Medicine and Biology, 

and the content in Chapters 2, 3, 5 and 6 are, at time of thesis submission, under co-

authors’ review for future submission as peer-reviewed articles.  

 

7.5 Conclusion 

 

 This thesis work consisted of investigating the renal allograft assessment 

capabilities of shear wave elastography combined with machine learning algorithms. The 

group also investigated the explainability of the proposed support vector machine 

algorithms and showed that machine learning agrees with classic statistical approaches 

such as generalized estimating equations while delivering better performance. 

 Convolutional neural networks architectures were leveraged to estimate 

viscoelastic parameters from homogeneous shear wave motion simulation, as well as 

predict allograft interstitial inflammation based on two-dimensional Fourier images. 

Additionally, annotated biopsy slides were used to construct heterogeneous staggered-

grid finite-difference and investigate the interaction between the morphological alterations 

caused by the rejection processes, and the rheological changes perceived by shear wave 

elastography.  

 Interstitial inflammation was shown to be the best target for shear wave 

elastography evaluation, with higher levels cortical morphological and rheological 

alterations. Recurring inflammation is known to originate common scarring injuries such 

as interstitial fibrosis and tubular atrophy, and therefore, inflammation assessment and 

treatment is imperative to extent allograft longevity. Shear wave elastography and 

machine learning have the potential to be important tools for allograft surveillance and 

better patient care. 
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 We envision that the novel techniques introduced in this thesis will allow clinicians 

to better understand the ML capabilities and how they relate to SWE and tissue pathology. 

The level of confidence introduced by novel technologies is equally important as 

performance indicators. We hope to strengthen the interpretability, reliability and 

performance of ML and SWE alike, so, in the future, SWE can be widely implemented as 

a reliable, cheap, fast and non-invasive methodology allograft diagnostic. 
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