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1. Introduction

This paper is mainly concerned with the following problem of dynamic optimization:
minimize the Bolza functional

b
(1.1) Jla] := po((a),2(0) + [ f(a(t), &(2), t)de
over absolutely continuous trajectories z : [a,b] — R™ for the differential inclusion
(1.2) &(t) € F(z(t),t) ae. t € [a,b]

subject to geometric (abstract), inequality, and equality type endpoint constraints:

(1.3) (z(a),2(b)) € A C R,
(1.4) vi(z(a),z(b)) <0 for 1 =1, 2,...,q,
(1.5) pi(z(a),z(b)) =0 for i=q+1, ¢+2,...,q+r.

Here T := [a, b] is a fixed time interval, F' is a set-valued mapping (multifunction), and f, ¢;
are real-valued functions. We shall label this problem as (P) and call it the Bolza problem
for differential inclusions.

The problem formulated covers a broad range of other problems in dynamic optimization,
in particular, both standard and nonstandard models in optimal control for open-loop and
closed-loop control systems (see, e.g., Clarke [9]). On the other hand, problem (P) can be
imbeded in the so-called Generalized Problem of Bolza [41, 9] where the function f is allowed
to take values in R := R U {+00}. In this paper we prefer to consider the problem in form
(1.1)-(1.5) and prove results depending on the specific character of differential inclusions.

The mainstream in studying optimization problems for differential inclusions consists in
obtaining necessary conditions for optimality (global or strong local minima). There are
different approaches and various results in this area using one or another tool in nonsmooth
analysis; we refer the reader to [6-11, 17, 23-25, 28-30, 37, 38, 40, 48] and the bibliography
therein. Most of the results are obtained for the Mayer problem which corresponds to (1.1)-
(1.5) as f =0.

In [25], Loewen and Rockafellar consider the Bolza problem (P) with the explicit end-
point constraints only in form (1.3) (and with additional state constraints). Assuming that
the function f(z,-,t) and the sets F(z,t) of admissible velocities are convez, they obtain
necessary optimality conditions under usual boundedness and Lipschitzness hypotheses but
without imposing any constraint qualification such as calmness (cf. Clarke [6-11]). They
prove that if Z(¢) solves problem (1.1)—(1.3), then there exist a number A > 0 and an absolute
continuous function p : [a,b] — R™, not both zero, such that

(1.6) (B(t),p(t)) € Mo f(2(t), 2(1),t) + No((Z(),z(t)); gph F (-, 1)) ae. t € [a, b,
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(17) (—-p(t),.’i(t)) € 0CH/\(CE(t)’p(t)’t) a.e te [aa b]’
(1.8) (p(t), z(t)) = HA(2(t),p(t),t) ae. t€ [a, b],

(1.9) (p(a), —p(b)) € AOcwo(2(a),Z(b)) + No((Z(a),z(b)); Q)
where gph F(:,t) := {(z,v) € R™|v € F(z,1)},
(1.10) Hj(z,p,t) := max{(p,v) — Af(z,v,t)[v € F(z,t)},

notation N¢ and Jc stand, respectively, for Clarke’s normal cone to a closed set at a given
point and the generalized gradient of a locally Lipschitz function ([9]; see Section 4 below).

Condition (1.6) called the Euler-Lagrange inclusion was first obtained by Clarke [6] for
the Mayer problem under the calmness assumption which ensures that A = 1 (normality)
in the transversality inclusion (1.9). The Hamiltonian inclusion (1.7) was proved by Clarke
first under the calmness hypothesis and then without it; see [9, 10]. Observe that (1.8) is the
Weierstrass-Pontryagin maximum condition which is implied by each of the conditions (1.6)
and (1.7) under the convexity assumptions imposed. Note also that, in general, conditions
(1.6) and (1.7) are independent; see examples in [23, 26].

Another version of necessary optimality conditions was obtained by Mordukhovich for the
Mayer problem (1.1)-(1.5) with f = 0 under the convexity of F(z,t) and usual boundedness
and Lipschitzness assumptions but without any calmness hypotheses or something similar;
see [28-30]. The conditions obtained are stated in the form:

(1.11) (B(t), 2(t)) € co{(u,v)(u, p(t)) € N((2(t),v); gPhF (-, 1)),

v e M(z(t),p(t),t)} ae. t€]a,b,

(1.12) (p(a), —p(b)) € ADpo(Z(a), Z(b)) + N((z(a),2(b)); )

where ”co” means the convex hull of a set,
(1.13) M(z,p,t) := {v € F(z,t)|(p,z) = H(z,p,1)},

and H(z,p,t) coincides with the Hamiltonian (1.10) as f = 0. Here N and 9 are not Clarke’s
normal cone and generalized gradient but their nonconvez counterparts whose convex closures
coincide with the corresponding constructions of Clarke; see Section 4 for more details. These
nonconvex constructions were first used in Mordukhovich [27] for obtaining transversality
conditions like (1.12) in nonsmooth problems of optimal control.

Observe that condition (1.11) implies both the maximum condition (1.8) and an analogue

of the Euler-Lagrange inclusion (1.6) in the form
(1.14) 5(1) € coful(u,p(t)) € N((5(2),v); gph F (-, ),
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v € M(z(t),p(t),t)} ae. tE€][a,b]

In comparison with (1.6) as f = 0, condition (1.14) requires less convexification: only to
the components involving derivatives of the adjoint function instead of to all components at
once. This makes (1.14) essentially stronger than (1.6) in certain situations. In particular,
if the maximum set (1.13) is a singelton along (Z(t), p(t)) for a.e. ¢ € [a, 8] (it happens, for
instance, if the sets F'(z,t) are strictly convex along Z(t)), then (1.14) is reduced to

(1.15) p(t) € coful(u, p(t)) € N((2(t), 2(t)); gph F (-, 1))} ae. t € [a,b]

which is strictly better than (1.6) as f = 0.

So (1.11) appears to be an advanced version of the Euler-Lagrange inclusion and the
maximum condition for the Mayer problem involving convex (i.e., convex-valued) differential
inclusions (1.2). What relationships exist between (1.11) and the Hamiltonian inclusion (1.7)
as f = 0 under the usual convexity, boundedness, and Lipschitzness assumptions?

It follows from Rockafellar’s dualization result [45] that (1.7) implies (1.11). On the other
hand, it has been recently proved by Ioffe (personal communication; see also [20, Section
3.5]) that (1.11) implies (1.7) under the mentioned assumptions. Therefore, version (1.11)
of the Euler-Lagrange condition is equivalent to the Hamiltonian condition in Clarke’s form
(with the same adjoint function) for convex differential inclusions. This prolongs the line
of equivalency between the Hamiltonian and Euler-Lagrange conditions which is well known
for smooth and fully convex problems (see, e.g., [41, 45]). Now one can conclude that any
improvement of the necessary optimality conditions in form (1.11) provides a strengthening
of the Hamiltonian conditions in Clarke’s form for convex differential inclusions.

In the recent paper [26], Loewen and Rockafellar have established that the Mayer problem
for convex differential inclusions can be actually reduced to the situation where the sets
F(z,t) are strictly convex along the optimal trajectory. In the latter case, conditions (1.14)
and (1.15) are equivalent while (1.11) is equivalent to the simultaneous fulfilment of (1.8)
and (1.15). In the general convex case, (1.15) implies the maximum condition in (1.8) as
f = 0; see Proposition 4.12 stated below. Therefore, (1.15) also implies (1.14) as well as
(1.11) where the improvement may be proper; see Example 5.2 in [26].

Using the mentioned strict convexification procedure and a Hamiltonian calculus, Loewen
and Rockafellar prove in [26] that an optimal solution to the Mayer problem for convex dif-
ferential inclusions in (1.1)-(1.3) satisfies conditions (1.12), (1.15), and (1.7), (1.8) as f =0
with the same adjoint function p(t). Moreover, they also consider the case of unbounded
differential inclusions truncating it to the bounded case under suitable Lipschitzian assump-
tions and the convexity of F(z,t). Their consideration of the unbounded case leads to
improvements of necessary conditions for the Bolza problem with convex velocities.

It is well known that convexity assumptions are really restrictive in some important
situations and it makes sense to release them as much as possible. Moreover, if the admissible
velocity sets F(z,t) are convex and the multifunction F(:,t) is Lipschitz continuous, then
the differential inclusion (1.2) admits a control representation F(z,t) = g(z,U,t) with a



Lipschitzian function g and a control set U independent on z; see, e.g., [3, 29]. This is no
longer the case when F(z, 1) are not convex. So considering nonconvex differential inclusions,
one should definitely study them for their own sake.

The primal goal of the present paper is to develop the theory of necessary optimality
conditions in the refined Euler-Lagrange form like (1.15) with the transversality conditions
like (1.9) for the Mayer and Bolza problems involving nonconver differential inclusions. For
brevity, such a pair of necessary conditions is called the (refined) Euler-Lagrange conditionsin
the problems under consideration. We consider the case of general endpoint constraints (1.3)-
(1.5) and impose standard Lipschitzness and boundedness assumptions on the multifunction
F in (1.2). The results obtained below achieve the following advancements in the state of
art.

1. We study a new (to the best of our knowledge) concept of local minima for the
considered variational problems involving differential inclusions. Previous results for such
problems were concerned with strong (or global) minima. In contrast to a strong minimum,
we compare a reference feasible trajectory Z(-) with other feasible ones close to it not only
in the C-norm for arcs but also in the LP-norm (1 < p < o) for derivatives. This means
that we consider a neighborhood of Z(-) in the Sobolev space W' equipped with a natural
topology. Such a local minimum takes an intermediate place between the classical weak
and strong minima; we shall call it the intermediate local minimum. Note that the results
obtained in this paper provide a new information even for convex differential inclusions. In
particular, they imply the maximum condition for an intermediate local minimum which
might not be strong.

2. We obtain refined necessary conditions for the Bolza problem (P) stated above with
the Euler-Lagrange inclusion

(1.16)  p(t) € coful(u, p(t)) € Xodf ((t), 2(), 1) + N((2(t), 2(1)); gphF (-, 1))}

and the transversality inclusion

gtr
(1.17) (p(a), —p(b)) € (Q_ Xigi)(Z(a), (b)) + N((z(a), 2(b)); )
1=0
where numbers ), ..., \,+» and an absolute continuous function p(t) are not all zero, A; > 0

for:=0,...,q, and
Aipi(Z(a),z(b)) =0 for ¢ =1,...,q.

These transversality conditions are proved in Section 6 for locally Lipschitzian functions ¢;
not being surprising for experts working in the area. Actually they are related to (1.12) due
to calculus rules avaliable for the nonconvex subdifferentials under consideration (Section 4).
One can obtain such conditions even in a stronger form without Lipschitzian assumptions;
see Section 7.

In general, we prove necessary conditions (1.16), (1.17) for any trajectory Z(t) which
is feasible for the original problem (P) and provides an intermediate local minimun for the
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so-called relazed problem obtained from (P) by some convexification procedure. Note that in
this case, the Euler-Lagrange inclusion (1.16) is expressed in terms of the original data F, f
and may be quite different from its counterpart in terms of the convexifications. We discuss
effective sufficient conditions when an optimal solution to (P) solves the relaxed problem
as well, so the conditions obtained characterize solutions to the original problem of Bolza
without any convexity.

3. In the case of the Mayer functional in (1.1)-(1.5), we prove that conditions (1.15),
(1.17) are satisfied for every strong minima z(t) without any relazation. This implies that
if Z(t) solves the original Mayer problem but may not solve the relaxed one, conditions
(1.15) and (1.17) still hold. The same Euler-Lagrange inclusion (1.15) is also proved for
any boundary trajectory of (1.2) without either convexity or relazation. The latter result
essentially strengthens the recent one of Kaskosz and Lojasiewicz [23] who have proved the
Euler-Lagrange inclusion in Clarke’s form (1.6) as f = 0 for boundary trajectories.

Now let us explain the principal method we employ for obtaining the mentioned results.
This is a direct method based on finite difference (discrete) approzimations. Such an ap-
proach to variational problems goes back to Euler who used it in 1744 for proving the classical
Euler-Lagrange equation in the calculus of variations. (Actually Leibnitz was the first who
employed a similar direct method to find the brachistochrone in the very beginning of the
calculus of variations; see, e.g., [1]). The basic idea is as follows: 1) to replace (approximate)
the original continuous-time variational problem by a ”right” sequence of finite dimensional
optimization problems which can be solved (studied) effectively; and then 2) passing to
the limit with respect to approximation parameters to obtain desired charateristics of the
original variational problem.

Finite difference methods appear to be a powerful tool for numerical solutions of infinite
dimensional variational problems. We refer the reader to the book of Polak [36] and the sur-
vey paper of Dontchev and Lempio [16] devoted to numerical aspects of consistent discrete
approximations in optimal control. Some results in the present paper are also concerned with
numerical questions. In Section 3 we develop a discrete approximation algorithm for noncon-
vex differential inclusions with strong convergence properties and error estimates. But our
main interest here is to use finite difference approximations as a direct vehicle for obtaining
necessary optimality conditions in infinite dimensional problem (P) via a variational analysis
of nonsmooth problems in finite dimensions. Two issues are important in this approach:

1) to construct a correct discrete approximation of problem (P) which ensures a desired
convergence of optimal solutions for discrete problems to a given local minimum for (P);

2) to choose "right” generalized derivative (normal) constructions for nosmooth mappings
and sets suitable to the method. Such constructions need to be appropriate for obtaining
optimality conditions in discrete problems and also possess robustness and calculus properties
for passing to the limit in the approximation procedure. Let us observe that problem (P)
and its discrete counterparts are definitely objects of nonsmooth analysis and optimizations
because of a special nature of dynamic constraints like (1.2) even under smooth data in (1.1)

and (1.3)-(1.5).



Note that not any differentiation constructions in nonsmooth analysis fit these require-
ments. For example, Pshenichnyi employed in [38] some tangentially generated constructions
related to the contingent cone. Such constructions possess the required properties only in
special situations. This allowed him to prove necessary conditions for global (actually strong)
minima in autonomous differential inclusions under some restrictive assumptions close to the
graph convexity of F(-,t). He used a discrete approximation ensuring the uniform (C-) con-
vergence of optimal trajectories.

In Mordukhovich [28-30], we used generalized normals and derivatives of another nature
and somewhat different algorithms for approximating Lipschitzian differential inclusions.
These generalized constructions appear in (1.11), (1.12) and possess required robustness
and calculus properties which are considered in Section 4. Note that if one employs the
convexification of the normal cone in (1.11), i.e., uses Clarke’s normal cone to the graph of a
Lipschitzian mapping, then such a construction does not ensure the convergence of adjoint
functions in discrete approximations (see Remark 4.15).

Though the approximation algorithm in [29] is used for proving the C-convergence of
optimal trajectories in discrete approximations, its slight modification provides the strong L2-
convergence of the velocities. It was first observed by Smirnov [40] who obtained the refined
condition (1.15) for optimal solutions to a Mayer problem involving convex autonomous
differential inclusions under some additional assumptions.

In the present paper, we develop the method of discrete approximations to obtain the
results mentioned above in the general setting under consideration. The reminder of the
paper is organized as follows.

Section 2 is devoted to the concept of intermediate local minimum for the original and
relaxed problems of Bolza. We consider sufficient conditions ensuring the ”proper relaxation”
of (P) when a given minimum for the original problem solves the relaxed problem as well.

Section 3 deals with discrete approximations of problem (P). We provide a construction
of discrete approximations and natural assumptions which ensure the strong convergence of
optimal solutions with respect to the value function, trajectories, and velocities.

In Section 4 we describe the tools of the generalized differentiation for nonsmooth and
set-valued mappings used in the paper to obtain necessary optimality conditions for discrete
and differential inclusions. The reader can find there a review of the basic differentiation
properties important in the method of discrete approximations.

Section 5 is concerned with necessary optimality conditions for nonsmooth finite dimen-
sional problems. We obtain discrete analogues of the refined Euler-Lagrange conditions
(1.16), (1.17) without the convexity operation in (1.16) and any Lipschitzian assumptions
on F, f. These results appear to be direct consequences of the Lagrange multiplier rule in
nondifferentiable programming with many geometric constraints.

Section 6 is devoted to the limiting procedure in discrete approximations allowing us
to prove conditions (1.16) and (1.17) for an intermediate relaxed local minimun in (P).
Under relaxation stability, the results obtained characterize optimal solutions to the original
problem without imposing convexity.



In the final Section 7, we deal with strong minima for the nonconvex Mayer problem in
(1.1)-(1.5) without any relaxation. We prove the refined Euler-Lagrange and transversality
conditions (1.15) and (1.17) on the base of results in Section 6 and an approximation pro-
cedure involving Ekeland’s variational principle. The same approach works to prove (1.15)
for any boundary trajectory.

Notation in this paper is standard. The adjoint (transposed) matrix to A is denoted by
A*; the set B is always the unit closed ball of the space in question. Some special symbols
are introduced and explained in Section 4.

2. Intermediate Local Minimum and Relaxation

Recall that we consider problem (P) stated above in the class of absolutely continuous
functions z : [a¢,b] — R" (arcs) satisfying constraints (1.2)-(1.5). Any solution to (1.2)
is called an (original) trajectory for the differential inclusion, and any trajectory satisfying
constraints (1.3)-(1.5) is called a feasible solution to problem (P). Let us introduce a notion
of local minimum for (P) studied in the paper.

2.1. DEFINITION. The arc Z(-) is called an intermediate local minimun (i.l.m.) of rank
p € [1,00) for (P) if Z(-) is a feasible solution to (P) and there exist numbers ¢, € > 0 such
that J[z] < J[z] for any other feasible solution z(-) to (P) satisfying

(2.1) |z(t) — Z(t)| < € for all ¢t € [a,b),

(2.2) /b |z(t) — 2()|Pdt < e a.e. t € [a,b)].

If (2.2) is fulfilled, then instead of (2.1) one can obviously set |z(a) — Z(a)| < n with
n > 0 and € > n+¢(b—a). Relationships (2.1), (2.2) mean that we consider a neighborhood
of Z(-) in the Sobolev space W'? of absolute continuous functions z : [a,b] — R" equipped
with a natural norm.

If there is only requirement (2.1) in Definition 2.1, then one gets a strong local minimum
(with respect to the C-norm). This actually corresponds to the L'-weak topology for deriva-
tives instead of the strong (LP-norm) topology in (2.2). Obviously any optimal solution to
problem (P) (global minimum) provides a strong local minimun (and, therefore, an i.l.m.)
for (P). As we know, all available necessary optimality conditions for differential inclusions
work for strong local minima but it is not clear a priori whether they hold for i.l.m.

If instead of (2.3) one sets the more restrictive requirement

|z(t) — 2(t)| < € a.e. t € [a,b],

then we have a weak local minimum in the framework of Definition 2.1. This corresponds
to considering a neighborhood of #(-) in the space W' with the L*°-norm for derivatives
(or the C'-norm for continuous differentiable functions in classical variational problems).
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Therefore, the notion of i.l.m. introduced takes (for any rank p € [1,00)) an intermediate
place between the familiar concepts of strong and weak minima. Note that some aspects of
this setting are related to the Lavrentiev phenomenon in the calculus of variation; see, e.g.
(5, 24]. S

Now we construct an extension of the original problem (P) in the line well known in the
calculus of variations and optimal control (cf., e.g., [4, 7, 14, 21, 49, 51]). Let

(2.3) fr(z,v,t) := f(z,v,t) + 8(v, F(z,1))

where 8(v,A) = 0 if v € A and §(v,A) = oo if v ¢ A (the indicator function). Denote by
fr(z,v,t) the convexification (the second conjugate function) for fr in the v variable, i.e.,
the largest convex function majorized by fr(z, -, t) for each = and ¢. Along with the original
problem (P), we consider its relazation (R) as follows:

(2.4) minimize J[z] := @o(z(a), z(b)) + / b fr(z(t), (1), t)dt

over absolutely continuous functions on [a, b] under endpoint constraints (1.3)-(1.5). Note
that if J{z] < oo, then z(-) satisfies the convexified differential inclusion

(2.5) &(t) € coF(z(t),t) ae. t€ [a,b)].

Any trajectory for (2.5) is called a relazed trajectory for (1.2). It is well known that under
natural assumptions involving Lipschitzness of F' in z, the following approzimation property
holds: Every relaxed trajectory z(:) can be uniformly in [a,b] approximated by original
trajectories xx(-) starting from the same initial state (but may be not satisfied endpoint

constraints) such that

(2.6) lim /ab f(zk(t), zx(t), t)dt < /ab fp(:ﬂ(t),d:(t),t)dt as k — oo.

2.2. DEFINITION. The arc Z(-) is called an intermediate relazed local minimum (i.r.l.m.)
of rank p € [1,00) for the original problem (P) if Z(-) is a feasible solution to (P) providing
an intermediate local minimum of rank p for the relaxed problem (R) with J[z] = J[z].

It is essential in Definition 2.2 that Z() is an original trajectory for (1.2). Obviously,
there is no difference between i.r.l.m. and i.l.m. if problem (P) is conver in the following
sence: for each t € [a,b] and z around Z(t), the function f is convex in v on the convex
set F(z,t). One can see that the refined Euler-Lagrange inclusion obtained for i.r.L.m. may
be different from its counterpart for arbitrary i.l.m. in the relaxed problem. This happens
because the normal cone to the graph of F' and to the graph of coF is not the same.

On the other hand, we cannot guarantee, in principal, that necessary conditions for
i.r.l.m. will work for arbitrary i.l.m. (or strong minima) for the original problem. Neverthe-
less, the latter holds in rather general settings without any convexity assumptions. Actually



this is related to the property of "hidden convexity” inherent in continuous-time systems

like (1.2). In the present paper, we use only one result in this direction going back to the
classical Bogoljubov theorem [4].

2.3. PROPOSITION. Let &(-) € W'[a,b] be a strong minimum for problem (L.1),
(1.3)-(1.5) where the integrant f(z,v,t) is continuous in (z,v) around (z(t),z(t)) iniformly
in [a,b] and measurable in t. Then i(-) is a strong minimum for the relazed problem (1.3)-

(1.5), (24) as fr = f with J[z] = J[z].

Proof.  According to the version of Bogoljubov’s theorem in [22, Section 9.2.4], for
any z(-) € W"*[a,b] one can find a sequence of zx(-) € W'*[qa,b] such that z4(a) =
z(a), zx(b) = z(b), i(-) converges to z(-) uniformly in [a,d], and (2.6) is fulfilled as fr = f.
If Z(-) is not a strong minimum for the relaxed problem (2.4), (1.3)-(1.5) or/and j[a’:] < Jlz],
then there exists a function z(-) € W'*[a, b] with J[z] < J[z] such that z(+) belongs to the
C-neighborhood of Z(-) and satisfies constraints (1.3)-(1.5). This contradicts the strong min-
imality of Z(-) in the original problem, thanks to the Bogoljubov approximation for z(-). O

There are several generalizations and analogues of Bogoljubov’s theorem having many
important applications to optimal control systems and differential inclusions; see, e.g., [7, 14,
21, 29, 49] and references therein. They lead to the property of relazation stability (or proper
relaxation) when an optimal solution to the original problem solves the relaxed problem as
well with the same optimal value. For problems (P) involving differential inclusions with
endpoint constraints at either ¢ = a or t = b, such a relaxation stability follows directly from
the approximation property for relaxed trajectories stated above.

For problems with general endpoint constraints, the relaxation stability is ensured by
the calmness property in Clarke [7, 9]. The latter property is fulfilled for ”almost all”
endpoint constraints (at least of inequality type) and shows that the relaxation stability may
fail only for ill-posed problems where small perturbations of boundary conditions produce
proportionally unbounded variations of the minimum. According to Clarke [9], the calmness
hypothesis implies that corresponding necessary optimality conditions can be taken normal
A general result that "normality implies relaxation stability” for optimal control systems
has been obtained by Warga [50].

For special classes of problems (P) with arbitrary endpoint constraints, the relaxation
stability holds without any calmness or normality assumptions. In particular, let differential
inclusion (1.2) be represented in the linear form

#(t) € Fi(t)z(t) + Fy(t) ae. t € [a,b]

where the multifunctions F; and F, are integrable in [a,b], F) is convex-valued while F,
is not. If, moreover, the function f in (1.1) is convex in v, then any of such problems (P)
possesses the property of relaxation stability. This can be proved by using Aumann’s theorem
about set-valued integrals; cf. arguments in [29, Theorem 19.7]. The same situation holds for
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problems (P) involving nonlinear one-dimensional differentjal inclusions; see Remark 19.2 in

[29].
3. Discrete Approximations

In this section we construct a sequence of discrete approximations for the original problem
of Bolza such that optimal solutions to discrete approximations converge in WP to a given
L.r.L.m. for problem (P).

First let us consider a fixed original trajectory z(-) for (1.2) and prove that it can be
approximated by trajectories for corresponding discrete inclusions. To do this, we assume
that the multifunction F(z,t) is bounded and locally Lipschitzian around z(-) and it is also
Hausdorff continuous in ¢ a.e. on [a,b]. More precisely, we impose the following hypotheses:

(H1) There are an open set U C R™ and positive numbers Iz, mp such that zZ(t) € U for
any t € [a, b], the sets F(z,t) are closed for all (z,t) € V x [a,b], and

(3.1) F(z,t) C mpB V(z,t) € U X [a, b],

(3.2) F(zy,t) C F(zg,t) + lp|a) — 22| B Vay,2, € U, t € [a,b].

(H2) The multifunction F(z,-) is Hausdorff continuous for a.e. t € [a,b] uniformly in
zel.

Following Dontchev and Farkhi [15], let us consider the so-called averaged modulus of
continuity for the multifunction F(z,t) in t € [a,b] when = € U. This modulus 7(F;h)
depending on the parameter h > 0 is defined as follows:

b
(3.3) 7(F;h) = / o(F;t, h)dt
where o(F;-, k) := sup{w(F;z,-, h)|z € U},
w(F;z,t,h) := sup{haus(F(z,t'), F(z,t")|t',t" € [t — h/2,t + h/2] N [a, ],

haus(+,-) is the Hausdorff distance between compact sets.

It is proved in [15] that if F(z,-) is Hausdorff continuous for a.e. t € [a,b] uniformly in
z € U, then 7(F;h) — 0 as h — 0.

Note that in the case of single-valued functions f(t) not depending on z, the construction
7(f; k) in (3.3) has been developed in Sendov and Popov [39] under the name of ”averaged
modulus of smoothness”. It has been proved in [39] that 7(f; k) — oo as h — 0 if and only
if f is Riemann integrable on [a,b]. The latter is equivalent to f being continuous for a.e.
t € [a,b]. In this paper, we shall use the name ”average modulus of continuity” for both

single-valued and multi-valued cases.
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Now let us construct a finite difference (discrete) approximation for the given differential
inclusion using the replacement of the derivative in (1.2) by the Euler finite difference

(1) = [z(t + k) — 2(t)]/h.

For any natural number k£ = 1,2,..., we consider a uniform grid T} := {t;li =0,1,...,k}
with g = a, tx = b and stepsize

hk = (b—a)/k = tj+l —t]‘ (] =0,...,k— 1)
The associate discrete inclusion is as follows:
(3.4) o, €ab + B F(ah ), j=0,...k—1, 2k =3(a).

3.1. THEOREM. Let Z(-) be a trajectory for (1.2) under hypotheses (H1) and (H2). Then
there is a sequence {z¥|j = 0,...,k}, k = 1,2,..., of solutions to discrete inclusions (3.4)
such that the functions

(3.5) vF(t) == (25 — 25) ey tE [t i), 5=0,...,k—1,
converge to z(-) as k — oo in the norm topology of L'[a,b].

Proof. Let {w*(-)}, k=1,2,..., be an arbitrary sequence of functions in [a, b] such that
w*(t) are constant in [t;,¢;,1) for every j = 0,...,k—1 and w*(¢) converge to z(t) as k — oo
in the norm of L'[a, b]. Such a sequence always exists because of the density of step-functions
in the space LP[a,b] for any p € [1,00]. Taking p = co and using (3.1), one gets

(3.6) lwk(t)] < mp+1 Vt € [a,b] as k — oo.
In the arguments and estimates below, we shall use the number
(3.7) £ = / Y15 (1) — ok (b)]dt — 0 as k — oo
Let us define the discrete functions {y¥j =0,...,k} as follows:
(3.8) y;-’H:yf—}-hkwf, j=0,....k—1, y*=z(a)
where w;-‘ :=wk(t;), 7 =0,...,k — 1. Note that the functions

v (t) = 2(a) + /a' wk(s)ds, a<t<b,
are piecewise linear extensions of (3.8) on the interval [a, b] with

(3.9) ly*(t) — 2()] < (b—a)éx V€ [a,b].
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Therefore, y*(t) € U for all t € [a, b] if & is big enough.
Denote by dist(w, F') the Euclidean distance between the point w and the closed set F.
It is well known that the Lipschitz condition (3.2) is equivalent to

dist(w, F(z1,t)) < dist(w, F(z2,t)) + lp|zy — 22| Yw € R, 21,2, € U, t € [a,b].
For any w,z € R" and t;,t, € [a, b], one obviously has
dist(w, F(z,t)) < dist(w, F(z,t,)) + haus(F(z, t,), F(z,3)).

Now using (3.3), we get

k=1
Sk 1= ) hydist( w , F( y], Z/ dlst(w],F(y],t ))dt <

=0

[ L g
) /t " dist(wh, F(yk,6)dt + (F; b,
It follows from (3.2), (3.6), and (3.9) that
dist(wf, F(y5,t)) < dist(wk(t), F(y*(t), 1)) + le(mp + 1)(t — t;) Vt € [t5,tj41),

dist(w*(t), F(y*(1), 1)) < dist(w*(t), F(2(t), ) + lely*(t) — &(t)| <
|wk(t) — 2(t)| + Ip(b— a)&, a.e. t € [a,b].

Therefore, we have the estimate
(310) Sk <7k (1 +lF( —a))£k+lp(b—a)(mp+1)hk/2+T(F, hF)

Note that functions (3.8) are not trajectories for (3.4) because one does not get w* €
F(y;-‘, t;). Now we shall use wf to define trajectories for (3.4) which are close to yf and have
the convergence property stated in this theorem.

Let us construct the desired trajectories {z;c |7 =0,...,k} using the following prozimal
algorithm:

(3.11) z5 = z(a), v} € F(zF,t;) with |vf — wh| = dist(wk, F(2,1;)),

Z§+1:Z]'c+hk'0;?, j:O,...,k—l.

Note that in (3.11) we take projections of velocities as in {29, 40] instead of projections of
states as in [38, 15]. This will allow us to prove a strong convergence of discrete approxima-
tions with respect to velocities.

First we prove that algorithm (3.11) keeps {z5[j = 0,...,k} inside the neighborhood U
from (H1) if k is big enough. Indeed, we consider any number k such that z(¢) + n.B C U
for all t € [a, b] where

M := Yk exp[lp(b — a)] + (b — a)és,
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£k and v, are defined in (3.7) and (3.10) respectively. One can see that e — 0as k — oo
because 7(F'; h) — 0 under assumption (H2).

By induction, let us show that if z¥ € V for all m = 0,...,7, then this also holds for
m = j + 1. Using (3.2), (3.10), and (3.11), one gets

k k .
750 = Yial < 127 — gl + hadist(w], F(2},45)) < |25 — y¥] + hu(dist(wh, F(y%, 1))+

J
lp|z;-° - yfl) <...<h Z(l + lphk)J_mdist(w,';,F(yfn,tm)) <

m=0

exp[lr(b — a)] zj: hidist(wy,, F(yk, tm)) < 7 exp[lp(b — a)).

m=0

Due to (3.9), the latter implies

(3.12) 7541 = 2(ti1)] < i expll(b — a)] + (b — a)éx :=

which proves that z;f’ﬂ € U for all j € {0,...,k}. Taking this into account, one can extract
from the previous arguments the following estimate:

k k-1
(3.13) 3 125 =y}l < (b= @) explir(b - )] Y dist(wf, (3 )

Now let us estimate the quantity ay := f°|v*(t) — w*(t)|dt where the functions v*(t) are
defined in (3.5). Employing (3.10), (3.11) and (3.13), we get

k-1 k-1 k-1
=), hk|v§c - wf| =) hkdist(wf,F(zf,tj)) <> hkdist(wf, F(y;-‘,tj))—f—
j=0 7=0 7=0
k-1
lr Z hk|z;-c - yfI < (1 + lp(b — a) exp[lp(b — a)]).
7=0

Thus we obtain the final estimate
b .
(3.14) o := / |of (1) — z(t)|dt < By := & + (1 + (b — a) exp[lp(b — a)]).

This ensures the L'-convergence v*(-) — z(-) due to (3.7) and 7(F'; hx) — 0 as k — oo under
(H2). O

3.2. Remarks. The result obtained provides a strong approximation with respect to
velocities of any absolutely continuous trajectories for the differential inclusion (1.2) by
discrete trajectories for its Euler difference counterparts (3.4). Note that the error estimate
for velocities (3.14) immediately implies the following estimate

|25(t) — 2(t)] < (b~ a)By Vit € [a,b]
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for the corresponding motions 2*(t) := z(a)+ [ v*(s)ds which are piecewise linear extensions
of discrete trajectories (3.10). One can see that the numerical efficiency of the estimates
obtained depends on the evaluation of 7(F';h) and the approximation accuracy in (3.7).

It has been proved in [15] that 7(F; k) = O(h) if F(-,z) is of bounded variation on |a, 8]
uniformly in z € U. Using the technique for averaged moduli of continuity (smoothness)
developed in [39], one can obtain effective estimates for £ in (3.7). Indeed, if Z(-) is Riemann
integrable on [a, b], then we always get & < 27(z; hy) taking v¥(t) = z(¢;) for t € [t;,t; + h)
as 3 =0,...,k—1.

Now we consider the given original trajectory z(-) which appears to be an i.r.l.m. of some
rank p € [1,00) for problem (P). One can easily see that under boundedness assumption
(3.1), the notion of i.r.l.m. for (P) does not depend on rank p. This means that if Z(-) is an
i.rl.m. of some rank p € [1,00), then it will be an i.r.l.m. of any other rank from [1,00). In
what follows we shall always take p = 2.

Let us construct a sequence of optimization problems (Py) for discrete inclusions (3.4)
such that optimal solutions to (Py) strongly (in W'?[a, b]) converge to Z(-) as k — oco. Take
numbers € and ¢ from the W'2-neighborhood (2.1), (2.2) of the given i.r.l.m. and assume
(H1), (H2) along Z(-). One can always suppose that z(t) + ¢/2 € U for all ¢ € [a,b]. Using

Theorem 3.1, we approximate Z(-) by discrete trajectories {zf|j = 0,...,k} and compute
the numbers 7 in (3.12) and

(315) pf = Soi(j(a)’ zl]g) - 90,'(.’1?(0.), j(b)) for @ = L..., q,

(3.16) of := |pi(Z(a),2f)| for i=¢q+1,...,q+r

One can see that |p¥| < Ly for i = 1,...,q and of < Iy for i = ¢+ 1,...,¢+ r if the
corresponding functions ¢;(Z(a),-) are Lipschitz continuous around Z(b) with constants ;.
For each k = 1,2,..., we define the discrete optimization problem (Py) as follows:

(3.17) minimize Ji[z¥] = @o(zf,2f) + |2k — 2(a) P+

k-1 k=1 i A
By (e s = 2 ht) + 5 [ ks — 2 e — (0

over discrete trajectories ¥ = (z%, z¥, ... zf) for the difference inclusion (3.4) subject to
constraints

(3'18) (,0,'(.77’5,.’1}’,2) < P:‘c for z=1,...,¢,

(319) —Q:'c S%(fclg,x’;) < Q:’C for i=q+1,...,q+r,

(3.20) (zF 28) € Qp := Q4+ 0B,
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(3.21) |z¥ — 2(t;)| < €/2 for j =0,...,k,

k2l ortin .
(3.22) > [T b — a) /b — B0t < /2

Jj=0"v"%
Let z*(-) be the piecewise linear extension of the discrete trajectory {z¥|j = 0,...,k} on
[a, 8], and let #¥(-) denote the piecewise constant extension of the ”velocity” (25 — %)/ .
One has

&5 (t) = (:vf_H — a5)/hy = 2¥(t;) for any t € [t;,t;41)-
We shall consider the (strong) W2-convergence of z¥(-) to some absolutely continuous func-
tion () in [a,d]. This means that z¥(a) = 2§ — z(a) and £*(-) = #(-) in L*[a,b] as k — oco.
The latter obviously implies that z*(-) converges to z(-) uniformly in [a, b).
In addition to (H1) and (H2), now we impose the following hypotheses on f, ¢;, and §:

(H3) f(z,v,-) is continuous for a.e. ¢ € [a,b] and bounded uniformly in (z,v) €
U x (mFB)

(H4) There exists v > 0 such that the function f(-,-,t) is continuous on the set
(3.23) A,(t) :={(z,v) € U x (mp + v)B|v € F(z,t') for some t' € (t — v,t]}

uniformly in t € [a, b].

(H5) The functions ¢; are continuous on U X U for all i = 0,...,q+r; the set Q is closed
around (z(a), z(b)).

3.3. THEOREM. Let z(-) be an i.r.L.m. for problem (P) and let hypotheses (H1)-(H5)
be fulfilled. Then any sequence {z*(-)}, k = 1,2,..., of optimal solutions to (P;) converges
to z(-) in the space W'?[a,b] as k — oo.

Proof. First let us prove that for each k big enough, the discrete trajectory {z§|j =
0,...,k} constructed in Theorem 3.1 is a feasible solution to (Px). We need to check that
this trajectory satisfies all the constraints (3.18)-(3.22). For the case of (3.18)—(3.20), it
follows directly from (3.12) and (3.15), (3.16). Taking k such that i < €/2, we get (3.21)
from (3.12). By virtue of (3.1) and (3.14), constraint (3.22) for z* = 2* is reduced to

b
/ |vk(t) — :i'(t)|2dt S 2mpak S 2mpﬂk S 6/2

The latter is fulfilled for big numbers k£ due to the expression for B in (3.14). Therefore,
zF is a feasible solution to (Py) for all k big enough. According to the classical Weierstrass
theorem, we can conclude that there is an optimal solution z* to (P) for such k under the

assumptions made.
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Let us prove that for any sequence of optimal solutions z* to (P;) one has
(3.24) Iim Ji[z¥] < J[Z] as k — oo.

If it is not true, then there exists a sequence A of natural numbers £ — oo such that
b ) A
(3.25) po(#(a),2(8)) + [ f(2(2), 3(2), )dt < Jlz*] VE € N

Using again Theorem 3.1, we approximate Z(-) by discrete trajectories z* which are proved
to be feasible for (P;). Due to the continuity of o one has

wo(28,2F) = po((a), (D)) as k — oo.

In expression (3.17) for Ji[2z*], the second term vanishes; the forth term tends to zero as
k — oo because of (3.5) and (3.14). Let us prove that

k-1 b
(3.26) ok = hy Ef(zf, (z;?+1 - zf)hk,tj) — / f(z(t),z(t),t) as k — oo

j=0 ¢
under assumptions (H1), (H3), and (H4). Note that (H3) implies 7(f;hr) — 0 as k — oo
for modulus (3.3). It what follows we use the sign ”~"for expressions which are equivalent

as k — 0o. Due to (3.5), (3.12), and (3.14) one gets

o = Z / i)t ~ Z/ ), 8)dt + 7(f; hi) ~

tmﬂumwm@m:fﬂﬂmwmﬁﬁ~lﬁwmftta

The last statement holds by virtue of the classical Lebesque limiting theorem because {v*(-)}
contains a subsequence converging for a.e. t € [a, b].

Due to (3.25) and (3.26) we have Ji[z¥] < Ji[z¥] for some k — oco. This contradicts the
optimality of z* in (P;) and proves (3.24).

In the arguments above we haven’t actually used the property of Z(:) to be an i.r.l.m.
for (P). Now let us prove that in the latter case, inequality (3.24) implies that

(3.27) Jim [ex = | |u/rk (1)[2dt] = 0,
i.e., z¥(-) converges to Z(-) in the norm of W!?[a, b]. Suppose that it is not true and consider
a limiting point ¢ > 0 of the sequence {c;} in (3.27). Let, for simplicity, ¢ = lim ¢, for all
k — oo.

Because of (3.21) and (3.22) we claim the existence of an absolutely continuous function
#(t) in [a, b] such that z¥(-) — Z(-) uniformly in [a, b] and #*(-) = (-) weakly in L?[a,b] as
k — oo (we take all k£ without loss of generality). According to the classical Masur theorem,
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. . . =k . 2 .
there is a sequence of convex combinations of z"(-) which converges to z(-) in the norm

topology of L?[a,b]. Hence it contains a subsequence converging to (-) for a.e. t € [a, b).
Using these facts and taking into account that

k-1 b
b X F(@5 (@1 — ) haoty) ~ [ F(E(0), (1), )dt as k- oo
J=0 .
and also the definition of fr for (2.3), we get
b, . k-1
(328) / fF(‘%(t)? j(t)a t)dt < hm hk Z f(‘i.’;’ (i§+l - j?)hk, tj) as k — oo.
a j=0

where Z(-) satisfies the confexified differential inclusion (2.5).
Observe that the integral functional

I[v] : /|v ) — z(t)|*dt

is lower semicontinuous in the weak topology of L%[a, b] due to the convexity of the integrant
in v. Since

k=1 4
_k _ 2 = 2
3k = /e = d0Fdr = [ 13 - sy,

the latter implies that

-1 J+l .
(3.29) / |2(t) — z(t)|*dt < Z/ J+1 I-“)/hk — z(t)|*dt as k — oo.

Now passing to the limit in (3.18)-(3.22) as k — oo and using (3.29) as well as (H5), we
get that Z(-) satisfies constraints (1.3)-(1.5) and

12(t) — z(t)| < ¢/2 for t € [a,b], /ab |2(t) — (t)|%dt < /2.

The latter means that (-) belongs to the given neighborhood of Z(-) in W*?[a,b]. Moreover,
(3.28) implies

(3.30) wo(&(a), (b +/ F(E(t),2(1),t)dt + ¢ < lim Ji[z¥] as k — oo.

Due to (3.24), (3.30), and ¢ > 0 we get J[#] < J[Z]. But this is impossible because Z(-) is
an i.r.L.m. for (P). Therefore, one has ¢ = 0 which establishes (3.27) and ends the proof of
the theorem. O

The convergence theorem proved allows us to make a bridge between variational problems
for differential inclusions and dynamic optimization problems in finite dimensions. The
latter can be reduced to finite dimensional problems of mathematical programming with
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many geometric constraints. The mathematical programming problems obtained in this way
appear to be objects of nonsmooth optimization even in the case of smooth initial data in
the original problem (P).

For the variational analysis of these problems and then for passing to the limit in op-
timality conditions as k¥ — oo, we need to use generalized differential constructions with
special properties. They are considered in the next section.

4. Tools of Variational Analysis

This section is concerned with tools of generalized differentiation appropriate for the
main objectives of the research. We define the basic concepts of generalized normals and
derivatives and review some of their important properties which are broadly used in the
paper. Most of these results with detailed proofs and discussions can be found in the book
of Mordukhovich [29, Chapter 1]. We also refer the reader to Clarke [11], Ioffe [18-20],
Mordukhovich [26-35], Rockafellar [42, 46], and the forthcoming book of Rockafellar and
Wets [47] for related and additional material.

Developing a geometric approach to the generalized differentiation, we start with the
definition of a normal cone to an arbitrary set in finite dimensions.

Let €2 be a nonempty set in R™ and let

(4.1) I(z,Q) := {w € cI such that |z —w| = dist(z,N)}

be the (multivalued) Fuclidean projector of z on clf). In the following definition, ”cone”
denotes the conic hull of a set and "limsup” means the well-known Kuratowski-Painlevé
upper limit for multifunctions, i.e., the collection of all limiting points (see, e.g., [3, p. 41]).

4.1. DEFINITION [27]. Given Z € cl2, the closed cone

(4.2) N(z;9) := limsup[cone(z — II(z, Q))]

r—T

is called the normal cone to the set ) at the point z. If ¢ clQ, we put N(z;Q) = 0.

The normal cone defined (or equivalent constructions) is widely used in the literature,
sometimes under different names: the "approximate normal cone” [18], the "limiting proxi-
mal normal cone” [42], the ”prenormal cone” [11], etc. If Q is convex, then (4.2) is reduced to
the normal cone of convex analysis. In general, the normal cone (4.2) is frequently nonconvez
and its convex closure coincides with the Clarke normal cone:

(4.3) Nc(z; Q) = cleoN(z; Q).
Furthermore, (4.2) always admits the representation

(4.4) N(z;Q) = limsup N(z;Q)

r—T
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where the cone
N(z;Q) := {z* € R"[lim,(cq)—z(z*, 2’ — 2) /|2’ — 2| < 0}

appears to be dual to the well-known Bouligand contingent cone; see, e.g., [3, Chapter 4].

Note that the normal cone (4.2) is not dual to any tangent cone because it is not con-
vex. Despite its nonconvexity, this construction possesses many nice properties important
for applications. First, we observe that the normal cone (4.2) is always robust with respect
to perturbations of z, i.e., the multifunction N(-;§) has closed graph. What is really sur-
prising a priori, that the nonconvex normal cone and related generalized differential objects
(see below) enjoy rich calculi which are even better than ones for corresponding convex-
valued constructions. The progress in this direction has been achieved by using a variational
approach instead of convex analysis.

Now let us consider an extended-real-valued function f: R® — R and define its subdif-
ferential associated with the normal cone (4.2) to the epigraph epif := {(z,p) € R**!|pu >

f(=)}.
4.2. DEFINITION [27]. Let Z € domf := {z € R"| — 0o < f(z) < oo}. The set

(4.5) af(z) := {z" € R"|(z" — 1) € N((z, f(2)); epif)}

is called the subdifferential of f at z. If z ¢ domf, we put 9f(z) = 0.

There are various analytic (limiting) representations of the subdifferential (4.5) in terms
of other subgradient mappings. We refer to [11, 18-20, 29-35, 42, 46, 47] for more information
about these questions. Therein one can find subdifferential constructions equivalent to (4.5)
under different names (e.g., the approximate subdifferential, the presubdifferential, the set of
limiting proximal subgradients). Observe that for continuous functions, the subdifferential
(4.5) appears to be the upper limit (robust regularization) of the subdifferential mapping
used in the theory of viscosity solution [12]. Note that the set (4.5) may be not convex for
simple nonconvex functions such as f(z) = —|z|, * € R, where 9f(0) = {-1,1}.

For the case of Lipschitz continuous functions, we have the following well-known result

(see, e.g., [11, Propositions 1.1 and 1.2] and [29, Theorem 2.1}).
4.3. PROPOSITION. Let the function f be locally Lipschitzian around T with a Lipschitz
constant ly. Then

0f(z) #£0, |z*| <I; Va* € 0f(z), and

(4.6) Oc f(z = codf(Z)

for the generalized gradient of Clarke.
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It is easy to see that
06(z,Q) = N(z;Q) if z€Q

for the indicator (-, ) of the set 2. We can get another representation of the normal cone
in terms of the subdifferential of the Lipschitz continuous distance function. The following
result is proved in [29, Proposition 2.7].

4.4. PROPOSITION. For an arbitrary set 1, one has
N(z; ) = cone[ddist(z,Q)] if z € clf.

Among the most important advantages of constructions (4.2), (4.5) and ones related to
them, one has a rich calculus under general assumptions. We refer to [11, 18, 19, 29, 31, 34,
42, 47] for various results in this direction. For applications in this paper, we need the two
following calculus rules.

4.5. PROPOSITION. Let f; and f; be lower semicontinuous functions one of which is

locally Lipschitzian around z. Then

(4.7) O(f1 + f2)(z) C 0fi(z) + 0fa(Z)

when equality holds if one of these functions is strictly differentiable at T (in particular, be-
longs to C1).

Different proofs of inclusion (4.7) (but using somewhat close approximation ideas) can
be found, e.g., in [11, Proposition 1.5], [18, Theorem 4], [29, Theorem 4.1], and [31, Theorem
3.1]; see also references therein. The case of equality follows from (4.7) by employing it to
the sum (f; + f2) + (—f2) where f; is strictly differentiable. The next ”chain rule” in the
form of equality is proved in [29, Theorem 4.7].

4.6. PROPOSITION. Let (pog)(z) := ¢(g9(x)) be a composition of the function g : R* —
R™ Lipschitz continuous around T and the function ¢ : R™ — R strictly differentiable at
y := g(Z). Then one has

d(p o g)(z) = d(Ve(y),9)(2)
where (Vi(9), 9)(2) := (Ve(y, 9())-
Now we consider generalized differentiation constructions for multifunctions and nons-

mooth mappings connected with the normal cone (4.2) to their graphs . Pick an arbitrary
multifunction F' : R®™ = R™ with the nonempty graph

gphF := {(z,y) e R* x R™|y € F(z)}.

21



4.7. DEFINITION [28]. Let the point (Z,y) belong to the closure of gphF. The multi-
function D*F(z,y) from R™ into R" defined by

(4.8) D*F(z,9)(y*) := {z* € R"|(z*, —y*) € N((z,9); gphF)}
is called the coderivative of F at (Z,y). We put D*F(z,§)(y*) = 0 if (z,7) ¢ cl(gphF'). The

symbol D*F(z) is used when F' is single-valued at z and § = F(z).

One can see that D*F(z,§)(-) is a positive homogeneous multifunction with closed val-
ues. These values may be not convex by virtue of the nonconvexity in (4.2). Due to the
latter property, the coderivative (4.8) is not dual to any tangentially generated derivatives of
multifunctions (see, e.g., [3, Chapter 5]). On the other hand, the normal cone representation
(4.4) implies that the coderivative (4.8) appears to be the robust regularization of the dual
construction to Aubin’s contingent derivative [2, 3].

Let us observe that the subdifferential (4.5) of an extended-real-valued function f can be
treated as the coderivative of the special epigraphical multifunction

Ey(a) = {n € Rlu > f(x)}.

Indeed, (4.5) means that 0f(z) = D*E¢(z, f(z))(1). The next proposition (see [29, Propo-
sition 2.1]) allows us to replace epif by gphf in (4.5) for the case of lower semicontinuous
functions.

4.8. PROPOSITION. Let the function f : R® — R be Ls.c. around z € domf. Then
one has 0f(z) = D*f(z)(1).

Now let us consider the multifunction F of a special form which graph is
(4.9) gphF := {(z,y) e R" x R™|z € Q, g(z) —y € A}

where g : R* — R™. For each z € R" and y* € R™, define the (generalized) scalarization
function:

(4.10) s(z,y*) == (y*, 9(z)) + 6(z, Q).

The following result proved in [29, Theorem 3.3] provides the calculation of the coderivative
for the multifunction (4.9).

4.9. PROPOSITION. (i) Let the set (4.9) be closed around the point (zZ,y) € gphF. Then
one has the implication

[D*F(z,§)(y") # 0] = y* € N(9(z) — 5; A).
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(ii) If g is Lipschitz continuous around Z, then

d,8(Z,y*) fory* € N(g(8) — §; A
(4.11) D*F(z,3)(y") :{ 0 @) ozilgrweise @) =)

(4.12)

Setting @ = R™, A = {0}, and (y*,9)(z) = (y*,9(z)), we get from (4.11) the following

scalarization formula proved in [18, Proposition 8].

4.10. COROLLARY. Let g : R® — R™ be Lipschitz continuous around . Then
(4.13) D*g(z(y*) = 0(y*,9)(z) Vy* € R™.

Now using (4.6), (4.12), and a chain rule in [9, Theorem 2.6.6], one has the following re-
lationship between the coderivative (4.8) and Clarke’s generalized Jacobian J¢g(Z) of locally
Lipschitz functions [9, p. 70].

4.11. COROLLARY. Let g : R® — R™ be Lipschitz continuous around . Then
(4.14) coD*g(2)(y" = cod(y*, 9)(2) = (Jeg(2))"y" Vy* € R™.

Coming back to the coderivative (4.8) for general multifunctions, let us formulate a useful
result [29, Theorem 3.1] in the convex-valued case. In particular, this result ensures that the
considered Euler-Lagrange conditions for differential and discrete inclusions automatically
imply the maximum (minimum) conditions in problems with convex velocities. In what fol-
lows, we use a conventional concept of lower (inner) semicontinuity for multifunctions; see,

e.g., [3, p- 39].

4.12. PROPOSITION. Let the multifunction F be convex-valued around T and lower
semicontinuous at T. Then one has

[D*F(z,5)(y") # 0] = min{(y*,y)[y € F(2)}.

It turns out that the coderivative introduced enjoys a rich calculus under natural (e.g.,
Lipschitzian) assumptions in general settings. We refer the reader to our recent paper [34]
for various results in this direction. The results obtained cover not only the comprehensive
calculus for the first order subdifferentials (4.5) and relative constructions but also provide
useful calculus rules for the second order objects generated by (4.8). The latter constructions
appear to be important for the sensitivity analysis of generalized equations and variational
inequalities; see [33, 35].

To conclude this section, let us present applications of the coderivative (4.8) to dual
characterizations of Lipschitzian properies of multifunctions. These results play a crucial role
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for the approximation methods in the paper ensuring the convergence of adjoint functions;
see the proofs of Theorem 6.1 and 7.1.

Recall that the multifunction F' : R®™ = R™ of closed graph is said to be pseudo-

Lipschitzian around the point (z,y) € gphF' if there exist a neighborhood U of Z, a neigh-
borhood V of §, and a constant | > 0 such that

(4.15) F(')NV C F(z) + |z’ — z|B Vz, =’ € U.

This definition goes back to Aubin [2] who imposed an additional condition F(z)NV # §
for all z € U; see also [3, Definition 1.4.5]. The pseudo-Lipschitzian property in the sense
of (4.14) was studied by Rockafellar [43] who proved its equivalence to the locally Lipschitz-
ness of the distance function dist(v, F/(z)) in both variables. The next characterizations were
obtained by Mordukhovich (see [32, Theorem 5.7] and [33, Theorem 3.2] for different proofs).

4.13. PROPOSITION. The following conditions are equivalent:

(i) F is pseudo-Lipschitzian around (Z,7);

(ii) there exist a neighborhood U of &, a neighborhood V of i, and a constant | > 0 such
that

(4.16) sup{|z*| : ¥ € D*F(z,y)(y*)} < lly*|

foranyz €U, y € F(z)NV, and y* € R™;
(i) D*F(2,7)(0) = {0}.

If F is bounded around Z, then its classical locally Lipschitzian behavior (like in (3.2))
is equivalent to F being pseudo-Lipschitzian around (Z,§) for every § € F(Z); see [43,
Theorems 2.1 and 2.2]. Therefore, we get criteria for the classical Lipschitzian property of
multifunctions.

4.14. COROLLARY. Let the multifunction F be bounded around the point T with F(Z) #
0. Then the following properties are equivalent:

(i) F is locally Lipschitzian around ;

(ii) there are a neighborhood U of z and a number I > 0 such that estimate (4.15) holds
ifz € U and y* € R™;

(i) D*F(z,y)(0) = {0} Vy € F(z).

4.15. Remark. If one replaces the normal cone (4.2) in the coderivative construction
(4.8) by the Clarke normal cone (4.3), then such a counterpart DiF of the coderivative
does not ensure estimate (4.15) and the "null-condition” (iii) for Lipschitzian multifunctions
in many important situations. This is related to the fact that Clarke’s normal cone to
any Lipschitzian manifold (which is a set locally representable as the graph of a Lipschitz
continuous vector function) is actually a linear subspace; see Rockafellar [44]. It turns out
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that Lipschitzian manifolds include not only graphs of Lipschitz continuous functions but also
maximal monotone operators, subdifferential mappings for convex and saddle functions, etc.
For such objects, estimate (4.15) in terms of D5 F and the corresponding ”null-condition”
are fulfilled in fact only for ”strictly smooth” multifunctions. We refer to [44] and [35] for
more information about these and related properties.

5. Necessary Conditions for Discrete Approximations

In this section we obtain necessary optimality conditions in discrete approximation prob-
lems (P) for each k = 1,2,.... These conditions will be derived from a generalized Lagrange
multiplier rule for finite dimensional problems in mathematical programming with many
geometric constraints, nonsmooth inequality constraints, and smooth equality constraints.

Let ¢; : R* > R fori =0,...,s and g; : R® > R" for j = 0,...,m. Consider the
following problem (M P):

(5.1) minimize ¢o(z) for z € R? subject to
(5.2) #i(z) <0 for 1 =1,...,s,

(5.3) gi(2)=0 for j=0,...,m,

(5.4) z€Aj for 3=0,...,L

5.1. PROPOSITION. Let z be an optimal solution to problem (MP). Assume that
the functions ¢; are Lipschitz continuous, the functions g; are smooth, and the sets A;

are closed around z. Then there exist real numbers {u;|i = 0,...,s} as well as vectors

{; e R"j =0,...,m} and {zf € RYj =0,...,1}, not all zero, such that

(5.5) 25 € N(%4;) for j=0,...,1,
(5.6) p; >0 for i=0,...,s,

(5.7) widi(z) =0 for 1 =1,...,s,
(5.8) —z$—...—z,€02p¢, ivgj 2))*

The proof of this result based on the metric approzimation method can be found in
Mordukhovich [28, Theorem 1] and [29, Corollary 7.5.1]. Note that this method allows us to
obtain necessary conditions for (M P) in more general forms in the presence of nonsmooth

25



equality and inequality constraints without Lipschitzian assumptions; see [29, Section 7] and
Section 7 below.

Now we employ Proposition 5.1 and calculus rules for the generalized differential con-
structions in Section 4 to prove necessary optimality conditions for finite difference problems

(Px) in the following Euler-Lagrange form. Considering problem (Pj) in (3.4), (3.18)-(3.22)
for any fixed k = 1,2,..., we denote

F;(:) :== F(.,t;) and f;(-,"):= f(-,~t;) as j=0,...,k—1.

5.2. THEOREM. Let z* = (z£,...,zf) be an optimal solution to problem (Py). Assume
that the sets ) and gphF; are closed and the functions ¢; and f; are Lipschitz continuous
around the points (z§,2f) and (z§,(2%,, — %) /hy) respectively for all i = 0,...,q+ 1 and
j=0,...,k—1. Then there exist real numbers \E, ... ,/\f+r and a vector p* = (pk,...,pf) €
R*+HD% ot all zero, such that

(5.9) /\fz() for :=0,...,q,

(5.10) M(pi(zE,z8) = pF) =0 for i =1,.

q+r
(5.11)  (pk+20(%(a) — z§), —pf) €0 ZA,% (25, 28) + N((§, 2¢); ),

(5-12) ((P§+1 - P?)/hkvpfﬂ - ’\ggf/hk) € )‘gafj(j;’ (57§+1 - j;‘c)/hk)'*'
N((z%, (%, — 2%)/hi); gphF)) for j=0,...,k—1

where

ti+1
(5.13) 0k =2 / ) — (35, — 24/ he)dt
ty
Proof. Let us introduce a new variable z = (Zo,..., %k Yo,---,Yk—1) € R+ and
consider the following problem of mathematical programming:

(5.14) minimize @o(z) := wo(zo, k) + |70 — Z(a)|* + hkkz;%fj(xj,yj)+
Z / o t)|2dt subject to

(5.15) ¢i(2) == @i(zo,xi) — pf <0 for i =1,...,4q,

(5.16) $i(2) := pi(zo,zx) —oF <0 for i=q+1,...,qg+r,
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(5.17) br4i(2) := —i(zo, i) — 0F <0 for i =q+1,...,q4r,

(518) ¢Q+2T+j+1(z) = |xj - i(t1)| - 6/2 <0 for ] = O, v 7k’
ti+1

(519) ¢q+2r+k+2 Z/ — (l?(t |2dt — 6/2 < 0

(5.20) gi(z2) i=zjp1—x;—hyy; =0 for j=0,...,k—1,

(5.21) z €A :={(o,..., Y1) € RE*y. € Fi(z;)} for j=0,...,k—1,

(5.22) 2 € Ay = {(20,. .., yr—1) € R (20 24) € ).

It is easy to see that problem (5.14)—(5.22) defined is equivalent to the discrete approximation
problem (P) in (3.4), (3.17)-(3.22). On the other hand, (5.14)-(5.22) is a problem (M P)
in (5.1)-(5.4) with d = 2k + 1)n, s = q+2r+k+2, m = k-1, |l = k, and the
specified functions ¢;, g; and sets A;. Now we employ Proposition 5.1 for the optimal
solution z = 2% := (zk,... 25, (2F — 28)/hy, ..., (2% — 2F_,)/hi) to (5.14)-(5.22) where
zk = (zk,...,7F) is a given optlmal solution to (Py).

According to this result, one gets real numbers (po, ..., #o+2r+k+2) as well as vectors
Y; €ER" (j =0,...,k—1) and 2} = (25;,. .., Th; Y550 -+ » YT k1) € R*+)" (5 = 0,...,k),
not all zero, such that conditions (5.5)-(5.8) are fulfilled for the initial data in (5.14)—(5.22).
Note that these ;, ¥;, and 2} depend on k but we shall omit the index ”k” for simplicity,
considering k big enough.

First let us observe that thanks to Theorem 3.3, ¢;(2*) < 0O asi =q+2r +1,...,q+
2r + k + 2 for all big k. This implies p; =0 forz =q+2r+1,...,¢+ 2r + k + 2 by virtue
of the corresponding complemetary slackness conditions in (5.7).

Without loss of generality we suppose that ¢¥ > 0 for i = ¢+ 1,...,¢ + r. Then
complementary slackness for (5.16) and (5.17) implies that

i prpi =0 Vi=q+1,...,94r.
Now denoting
(5.23) A=y for i=0,...,q & MNi=p—py for i=qg+1,...,q+r,

we get conditions (5.9), (5.10) and ensure that (Af,..., A%, ) are not equal to zero simulta-
neously with (to,...,%¥x_1) and (z3,...,2}) for k big enough.
It follows from the structure of the sets A; in (5.21) and (5.22) that conditions (5.5) are

equivalent to
(5.24) (m;jay;]) € N(( (2 f+1 ‘)/hk)§gPhFj) &
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ey =yl £ Vi=0,.. k-1

(5.25) (x5, zhe) € N((25,25); Q%) & 2%, =y = 0 otherwise.

Taking this into account and using Proposition 4.5, we get from (5.7), (5.14)-(5.17), and
(5.19) the following relationships:

(5.26) by — zh, = uo + 2\E(@k — 3(a)) + MERhikdo — o,
(5.27) —ak; = MNhid; + o1 —; for j=1,...,k—1,
(5.28) —Thy = Uk + Pr-1,

(5.29) —y5; = Ahiw; + A§05 — hyyp; for j=0,...,k—1

where 0% is defined in (5.13),

q+r
(5.30) (uo, uk) € A Mv;i)(z5,2f), and
=0
(5.31) (9i,w;) € Of;(zh, (25, — 25)/hi) for j=0,...,k—1.

Now denoting
ph =z} + 205(zh — 2(a)) & pji=p;y for j=1,...,k,

one can conclude that relationships (5.24)-(5.31) imply conditions (5.11) and (5.12) where

(\E. .., . Ak ) and (p§,...,pF) are not equal to zero simultaneously. This ends the proof of
the theorem. O

5.3. COROLLARY. In addition to the assumptions of Theorem 5.2, let us suppose that for
each j =0,...,k—1, the multifunction F; is pseudo-Lipschitzian around (z; ,(E;?_H —a"c;?)/hk).
Then conditions (5.9)-(5.12) are fulfilled with (A§,..., A5, pf) #0, i.e., one can set

q+r
(5.32) Ipk| + EAk + 3 M=1Ve=1,2,.

=0 i=q+1

Proof. If Ak = 0, then (5.12) is represented as

(5.33) (phy1 — P)/hi € D*F;((35, (2, — 25)/hi)(—phyy) for 5 =0,... k-1

in terms of the coderivative (4.8). By virtue of (5.33), pf = 0 implies that p¥ = 0 for all
J=0,...,k—1, according to Proposition 4.13(iii). This proves the corollary. 0O.
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6. Necessary Conditions for the Bolza Problem

Now we come back to the original Bolza problem (P) and prove necessary optimality
conditions for an i.rl.m. in the refined Euler-Lagrange form. To accomplish it, it remains
to pass to the limit in the necessary conditions for discrete approximation problems (Py) as
k — oo (Section 5), taking into account the W'?-convergence of discrete optimal solutions
(Section 3) and some properties of the generalized differential constructions in Section 4.

Here we keep assumptions (H1)-(H3) but instead of the continuity hypothethes in (H4)
and (H5), we assume the corresponding Lipschitz continuity. Namely:

(H4') There exist numbers » > 0 and Iy < 0 such that the function f(-,-,t) is Lipschitz
continuous on the set A,(t) in (3.23) with the constant Iy, i.e.,

|f($l,vl')t) - f(x%v%t” S lfl(CU],’Ul) - (:132,”2)! V(IE],'UI), (x23v2) € Au(t)a t € [a7 b]

(H5’) The functions ¢; are Lipschitz continuous on U x U for all i = 0,...,q+ r; the set
) is closed around (z(a), z(b)).

In what follows, we denote by df = 9f(:,-,t) the subdifferential (4.5) of the function
f(z,v,t) with respect to (z,v) under fixed ¢. Similarly, N((-,-); gphF(:,t)) means the normal
cone (4.2) to the set gphF(-,t) at a given point (-,-) when t is fixed. Note that the normal
cone to the graph of F' is related to the generalized derivative (coderivative) of F' according
to (4.8).

One of the fundamental properties of the generalized differential constructions under
consideration is their robustness (upper semicontinuity) with respect to variables of dif-
ferentiation; see Section 4. This is of a principal importance for the method of discrete
approximations. In the limiting procedure below, we also need such a robustness of 9f(-, -, t)
and N((,-);gphF(-,t)) with respect to the parameter t. More precisely, we impose the fol-
lowing technical assumptions:

(H6) For a.e. t € [a, b] one has

limsup Of(z, v, t") = af(z(t), 2(t),1).

(2! v!)—(2(t),3(t))
t'>t, t'<t

(HT7) For a.e. t € [a,b] one has

limsup N((z',v"); gphF(-,1')) = N((z(t), z(t)); gPh F (-, ¢)).

(=',v")—(2(t),2(t))
t'—t, t'<t

Properties (H6) and (H7) are obviously fulfilled if f and F' do not depend on t and also
if f= fi(z,v)+ fot), F = Fi(z) + Fy(t) with F; satisfying (H2). Actually, (H6) and (HT7)
mean that the continuity in ¢ holds under the generalized differentiation of f and F' with

29



respect to the other variables. In particular, this takes place when f and F are represented
as compositions of mappings separated in t and (z,v). Note also that for smooth in (z,v)
functions f, (H6) means the classical continuity of 8f/dz and df/dv at (Z(t), z(t), ).

Now we prove the refined Euler-Lagrange conditions for the original Bolza problem (P).

6.1. THEOREM. Let Z(-) be an i.r.L.m. for problem (P) under assumptions (H1)-(H3),
(H4'), (H5'), (H6), and (HT). Then there exist real numbers Ao, ..., A4, and an absolutely

continuous function p : [a,b] — R", not all zero, such that

(6.1) Ai >0 for :=0,...,q,
(6.2) Aipi(Z(a),z(b)) =0 for 1 =1,...,q,
q+r
(6.3) (p(a), —p(b)) € 3(; Aipi)(2(a), (b)) + N((Z(a),Z(b)); V),

(6.4)  p(t) € co{ul(u,p(t)) € XoOf (2(t), 2(t), 1) + N((2(t), 2(t)); gphF (-, 1))}
for a.e. t € [a,b].

Proof. Let us construct a sequence of discrete approximations (Py) of problem (P) which

approximates Z(-) in the sense of Theorem 3.3. Now employing Theorem 5.2 for optimal
solutions z* = (zf,...,zf) to (P;) as k — oo, we find real numbers A%, .. ., AF,, and vectors

p* = (pk,...,pf) satisfying conditions (5.9)—(5.13), and (5.32). One can always suppose that
Mo XNask—oooforalli=0,...,q+7.

We shall use notation z¥(t) and p*(¢) for piecewise linear extensions of the corresponding
discrete functions on [a, b] with their piecewise constant derivatives ik(t) and p*(t). We also
consider a sequence of the functions

0% (t) := 05 /by for t € [tj,tj41), j=0,...,k—1,

generated by (5.13). Theorem 3.3 implies that
(6.5) / 10 (¢)|dt = Z 16%] < 2 Z/ zk,, — 2% /hyldt =

2/ |z(t) (t)|dt == v, = 0 as k — oco.

Without loss of generality we can suppose that

(6.6) #°(t) - (t) and 6(t) > 0 ae. t € [a,b] as k — oo.
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Let us estimate the adjoint functions p*(-) for big k. According to (5.12) and Definition
4.7 of the coderivative D*Fj, there exist vectors (9%, w *) € afi(z¥, (=% 2%, — &%) /hy) such that

(8:1) (Pfsn = i)/ hi = Ag95 € D*Fy(&], (a5, — 25)/ha) (N} + A§05 /by — vk
forall j =0,...,k — 1. Now using (6.5), (3.2), and Corollary 4.14(ii), one has
(63) (0 — 2}/ — NSOH) < NSt 4 2808 by — phyal for 5= 0,... k1.
It follows from (H4') and Proposition 4.3 that
(6.9) 9% <1y and |wk| <1; for j=0,...,k—1.

Using (5.32), (6.6), (6.8), and (6.9), we get

(6.10) P51 < (14 hidp) Iph | + hilp(1 + 1) + 1505 <.

exp(lp(b—a)]+ l;(b—a)(1 +1p) + lpvy Vi =0,...,k—1 as k — oo.

This means that the adjoint functions p*(¢) are uniformly bounded in [a, b]. Employing (6.8)
and (6.9) to estimate the derivatives p*(t), one has

B! = 1(Pf2 = P/ Bl < 1y + 1l + 105()] + 1p5]) for t; St <ty

By virtue of (6.6) and (6.10) this implies that the sequence {p*(-)} is weakly compact in
L'(a,b]. Therefore, we can find an absolutely continuous function p(-) such that p*(-) — p(-)
uniformly in [a,b] and p*(-) — p(-) weakly in L'[a,b] for k& — oo (as usual we take all
k=1,2,...).

Let us rewrite (5.12) as follows:

(6.11) B(t) € {ul(u, p*(t41)) — AGO5(1)) € AGOF(*(1;), 8" (1), 1)+

N((&*(t;), 8" (1)); gPhF(-,1,))) for t € [t5,t541), 5 = 0,..., k= 1.

According to the classical results, there is a sequence of convex combinations of p*(t) which
converges to p(t) for a.e. t € [a,b]. Now passing to the limit in (6.6) as k — oo and using
(6.11) as well as hypotheses (H6) and (HT), we obtain the Euler-Lagrange inclusion (6.4).

Passing to the limit in (5.9) and (5.10) and taking into account that p¥ — 0 as k — oo, we
get, respectively, the sign and complementary slackness conditions (6.1) and (6.2). Taking
the limit in (5.32), one has the normalization condition

gtr
Ip(b)|+ZA + 2 =1
=0 i=q+1

which implies that Ag, ..., A;4, and p(-) are not equal to zero simultaneously. It follows from
(6.10) that if p(to) = 0 at some point to € [a, b], then p(¢) =0 in [a, b].
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It remains to establish the transversality inclusion (6.3). First note that

q+r q+r

B3 Mepi) (8, 75) — B3 Nigi)((a), 2(8)) as k — oo

1=0 1=0
due to robustness of the subdifferential (4.5). Then observe that the set ) in (3.20) is
represented as

(6.12) Qi = {(z0, zx) € R*| dist((zo, zx), Q) < i}

Now passing to the limit in (5.11) as k — oo and using Proposition 4.4 in (6.12), we obtain
(6.3). This completes the proof of the theorem. O

6.2. Remark. The Euler-Lagrange inclusion (6.4) can be expressed in terms of the
coderivative DX F of the multifunction F(-,t) under fixed ¢. Indeed, one has

(6.13)  p(t) € cof U [Ao? + DIF(2(t), 2(t), t)(Aow — p())]}
(8,0)€05 (3(0)2(2).0)

for a.e. t € [a,b] which is equavalent to (6.4) by virtue of (4.8). Inclusion (6.13) implies the
following one:

p(t) € co[Xod: f(2(t), 2(), t) + DF(2(t), 2(t), 1) (Ao0uf (2(2), 2(t), 1) — p(t))]

in the case when 8f(z(t),z(t),t) C 0. f(z(t),z(t),t) x 0, f(Z(t),Z(t),t) for a.e. t € [a,b]. In
particular, it happens when either f(z,v,t) = fi(z,t)+ f2(v,t) or f possesses some regularity
(e.g., f is smooth or convex in (z,v)).

6.3. Remark. The transversality inclusion (6.3) can be expressed in the more general
form

(6.14) (p(a), —p(b)) € OLa(" Ao, - -5 Ag4r)((a), Z(b))
in terms of the essential endpoint Lagrangian

q+r
(615) Lﬂ(x03 L1, /\O’ R 7/\q+1') = Z Aini(:l:Oa xl) + 5(($0, 11,'1), Q))

1=0

see Theorem 7.1 stated below. On the other hand, (6.3) implies, thanks to Proposition 4.5,
the following ”separated” transversality inclusion

q q+r
(p(a), —p(b)) € 3 Xid¢i(z(a), (b)) + Y Nid°pi((a), (b)) + N((Z(a),2(b)); Q)
1=0 1=q+1

where 3%p(z) := dp(z) U [-9(—¢)(Z)] is a "bilateral” differential construction. Note also
that, using the procedure developed above, we can obtain transversality conditions un-
der weaker assumptions on ¢; (lower semicontinuity for ¢ = 0,...,¢ and continuity for
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i=¢q+1,...,qg+r). Such conditions are expressed in terms of the normal cone (4.2) to
graphical (epigraphical) sets associated with the functions ¢;; cf. [29, Section 7] and the
next section.

The necessary optimality conditions in Theorem 6.1 are proved for any i.r.L.m. in the
Bolza problem (P). In particular, they hold for any feasible solution to (P) which appears
to be a strong local minimum for the relaxed problem. As we pointed out in Section 2, an
optimal solution to (P) automatically solves the relaxed problem as well in some common
settings. Let us present such a corollary of Theorem 6.1 which is used in the next section
for obtaining the refined Euler-Lagrange conditions without any relaxation.

6.4. COROLLARY. Let the arc Z(-) provide a strong local minumum for the Bolza problem
(1.1), (1.3)-(1.5) with no differential inclusion. Suppose that for some number p > 0 and
open set U € R™ one has:

© (6.16) () € U Yt € [a,b] and |5(t)] < p ace. € [a,b];

f(z,v,-) is bounded and continuous for a.e. t € [a, b] uniformly in (z,v) € Ux (p¢B); f(:,-,1)
is Lipschitz continuous on U X (uB) uniformly in t € [a,b]; and (H5'), (H6) hold. Then there
ezist real numbers A, ..., Ay, and an absolutely continuous function p : [a,b] — R", not all

zero, such that conditions (6.1)-(6.3) are fulfilled and
(6.17) p(t) € coful(u, p(t)) € Ma0f(2(t),2(t), 1)} ae. t€ [a,].

Proof. The boundedness of z(t) in (6.16) means that z(-) € W1*[a,b]. According to
Proposition 2.3, Z(+) is a strong minimum for the relaxed problem (1.3)-(1.5), (2.4). Let us
consider the (trivial) differential inclusion

(6.18) z € F(z,t):= pB a.e. t € [a,b].

It is obvious that Z(-) is an ir.l.m. for problem (P) in (1.3)-(1.5), (6.18) where all the
assumptions of Theorem 6.1 are fulfilled. Moreover, (Z(t),z(t)) € (int gphF') for a.e. t €
[a,b]. In this case, (6.4) is equivalent to (6.17). O

7. The Euler-Lagrange Inclusion without Relaxation

In the concluding section of the paper we consider the original problem (P) in (1.1)-(1.5)
with f = 0. We shall denote this Mayer problem for differential inclusions by (Pps). The
main objection of this section is to prove the refined Euler-Lagrange conditions for a strong
local minimum in (Pps) without any relazation. To accomplish it, we employ the results
in the previous section (namely Corollary 6.4) and an additional approximation procedure
combining ideas in [8, 23, 29]. The latter procedure allows us to approximate the Mayer
problem under consideration by a sequence of nonsmooth Bolza problems without differential
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inclusions and any endpoint constraints. In this way we also get the refined Euler-Lagrange
inclusion for any boundary trajectories of nonconvex differential inclusions.

Keeping here assumptions (H1), (H2), and (H6) on F around the given trajectory for
(1.2), we relax the Lipschitzian assumptions on ¢;. Namely, we assume that

(H5) The functions ; are lower semicontinuous for ¢ = 0,...,q and continuous for
t=q+1,...,q+r; the set Q is closed around (z(a), Z(b)).

Consider the closed set
(7.1) &a = {(zo, 1,0, .., Vygr) € R2"+q+r+1|(xo,x1) €N,

pilo,71) S i for i =0,...,q & pilzo,z1) = vi for i =q+1,...,¢+r}.

7.1. THEOREM. Let z(-) be a strong minimum for the Mayer problem (Pp) in (1.1)-
(1.5) under assumptions (H1), (H2), (H5), and (H7). Then there exist a vector y* =
(Xos - -y Agpr) € R and an absolutely continuous function p : [a,b] — R", not both
zero, such that

(7.2) p(t) € coDXF(z(t),z(t),t)(—p(t)) a.e t € [a,b],

(7.3) (p(a), —p(b), —y") € N((z(a),z(b), ¢); €a)

where ¢ := (po(Z(a),z(b)). Condition (7.3) always implies (6.1) and (6.2) being equivalent
to the simultaneous fulfilment of (6.1), (6.2), and (6.14) if all p; are Lipschitz continuous
around (z(a), z(b)).

Proof. Let 7 := ¢o(Z(a),z(b)). According to the metric approximation method in Mor-
dukhovich [27-29], we consider the parametric functional

(7.4) L J[z] := dist((z(a), 2(b),c), ) with c:=(,0,...,0) e R vy R

on the trajectories for the differential inclusion (1.2). Let U € R" be a bounded neighborhood
of the strong minimum Z(-) where assumptions (H1), (H2), and (H5) are fulfilled. For every
€ > 0, one has

Lz <y —al<e

if v 1s close to 4. On the other hand,
I[z] > 0 for any v <%

whenever the trajectory z(-) for (1.2) belongs to the neighborhood U of the strong minimum

z(-).
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Following Clarke [8], let us consider the set X of all trajectories z(-) for (1.2) satisfying
z(t) € clU in [a,b] and let us define a metric in X as follows

(7.5) d2,9) = le(a) ~ y(@)] + [ (0) — (Dt

One can easily see that X is a complete metric space with metric (7.5) and functional (7.4)
is continuous in X for any 5. According to the constructions above, for every € > 0 we find
Ye < 7 such that v, = y as ¢ — 0, I.[z] < ¢, and

(7.6) L[z] >0 for I :=1,,

where z(-) is any trajectory for (1.2) with z(¢) € U in [a, b]. Now one can apply the Ekeland
variational principle [13] and claim the existence of z.(-) such that

(7.7) d(z.,z) < /& and

L[z] + Ved(z,z.) > I[z.] Vz(-) € X.

Note that (7.7) implies z.(t) € U for € small enough, so I.[z.] > 0 by virtue of (7.6).
Now for any positive numbers M, ¢ and the Lipschitz constant I in (3.2), we define the
functional

(7.8) JM[z] := L[z] + Ved(z,z.) + M(1 + %)/ /ab dist((z(t), z(t)), gphF (-, t))dt

on the set of all arcs z(-) (not necessarily trajectories for (1.2)) satisfying z(t) € U in [a, b].
We omit the proof of the following lemma which can be furnished by the arguments in
Kaskosz and Lojasiewicz [23, Lemmas 1 and 2].

7.2. LEMMA. There exists a number M > 1 such that for every ¢ € (0,1/M) the arc
z.(-) provides an unconditional strong local minimum for the functional (7.8).

Let us continue the proof of Theorem 7.1. Setting ¢, := (¥,0,...,0), we consider
any element (2oc,21c,€.) € I((z:(a),zc(b),ce),Eq) from the Euclidean projector (4.1) of
(ze(a),z:(b),c.) on the set £g. Using this projection and Lemma 7.2, one can conclude that
z¢(-) provides a strong local minimun for the unconstrained Bolza problem

(7.9) minimize @, (z +/ fe(z(t),2(t),t)dt

with the endpoint function

(7.10)  pe(z0,21) := [|To — 20e|* + |21 — 21| + |ce — 6e|2]1/2 + Velzo — ze(a)]

and the integrand
(7.11) fe(z,v,t) := M(1 + 12)2dist((z,v), gph F(-, 1)) + Ve|v — &(t
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Now we employ Corollary 6.4 in the unconstrained Bolza problem (7.9)-(7.11). Let
us observe that the assumptions in Theorem 7.1 ensure the fulfilment of the assumptions
in Corollary 6.4 around the solution z.(-) and the first term in (7.10) is smooth around
(ze(a),z(b)) by virtue of (7.6).

For each € > 0, using the result in Corollary 6.4 with A\p = 1 and also Propositions 4.4
and 4.5 for functions (7.10) and (7.11), we find an arc p.(-) such that

(7.12) pe(t) € co{ul(u, p(t)) € N((z.(t), 2.(t)); gPh F (-, 1)) + V(0, B)}

for a.e. t € [a,b] and

(713) pE(a) = (.’13,_-((1) - 205)/05 + \/Ea _pe(b) = (ms(b) - 215)/05

where Qe := [|a:€(a) - z0€|2 + |:E€(b) - zle|2 + |C€ - 6€|2]1/2 > 0.
Denoting y* := (e. — ¢.)/ag, one has

(7.14) Ipe(a)® + [pe(8)* + |yi* =1 and

(7.15)  (pe(a), —pe(b), —y;) € cone[(z.(a),z:(b),c.) — II((z:(a), zc(b), cc), Ea)]-

Now let us consider the limiting procedure in (7.12)-(7.15) as ¢ — 0. By virtue of
(7.5), relationship (7.7) means that z.(-) — Z(-) in W1*°[a,b] as ¢ — 0. This implies that
z.(t) — z(t) uniformly in [a,b] and 2.(t) — Z(t) for a.e. t € [a,b].

Further, using (7.12), (7.14), (4.8), and Corollary 4.14(ii), one can conclude (cf. the proof
of Theorem 6.1) that there exist an arc p(-) and a vector y* € R9*"*! not both zero, such
that y* converges to y*, pe(t) converges to p(t) uniformly in [a, b], and a convex combination
of pe(t) converges to p(t) for a.e. ¢t € [a,b] as ¢ — 0 along some subsequence.

Now passing to the limit in (7.12), (7.14), (7.15) and using Definitions 4.1 and 4.7 as
well as robustness of the normal cone (4.2), one gets the main conclusions (7.2) and (7.3)
of the theorem. Representing y* = (Xo,...,Ag4r), We obtain (6.1) and (6.2) directly from
Proposition 4.9(i) where

gphF = gﬂ? g = (990" . ’(ﬁoq+7')’ "1—: = (j(a)’a_:(b))’ g = (0,' M 70),

A = {(poy---spgr)|pi <0 for 1=0,...,¢ & p;=0 for t=q+1,...,q+7r}.

If all o; are locally Lipschitzian around (Z(a),z(b)), then the equivalence of (7.3) to the
simultaneous fulfilment of (6.1), (6.2), and (6.14) follows from Proposition 4.9(ii) where the
scalarization function (4.10) is reduced to the essential endpoint Lagrangian (6.15) in the
case under condideration. This ends the proof of the theorem. O

Let us consider an analogue of the result obtained for the case of boundary trajectories.
Given a nonempty closed set A C R"™, we denote by R(A) the reachable set for (1.2) from
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A, i.e., the set of all points z(b) where z(-) is a trajectory for (1.2) with z(a) € A.

7.3. THEOREM. Let &(-) be a trajectory for (1.2) with Z(a) € A and let assumptions
(H1), (H2), (H7) hold. If g : R® — R™ is a locally Lipschitzian function around Z(b) and
if g(&(b)) is a boundary point of the set R(A), then there ezist an arc p : [a,b] — R™ and
a unit vector ¥ € R™ such that p(-) satisfies the refined Euler-Lagrange inclusion (7.2) with
the following boundary (transversality) conditions:

(7.16) p(a) € N(z(a); A), —p(b) € B(p,9)(Z(b)).

7.4. Remark. The result formulated generalizes the recent one in Kaskosz and Lojasiewicz
[23] where (7.2) is replaced by Clarke’s form of the Euler-Lagrange inclusion (see (1.6) as
f =0) and conditions (7.16) are replaced by

p(a) € Ne(z(a); A), p(b) € [Jog(2(b))]"

in terms of Clarke’s normal cone and generalized Jacobian; cf. (4.3) and (4.13).

Proof of Theorem 7.3. Following the arguments in [23], for every ¢ > 0 we can find a
vector c. € R™ and a trajectory z.(-) of (1.2) with z.(a) € A such that |g(z.(b)) — ¢.| > 0,

ce = g(z(b)), z.(-) — z(-) in Wh™[a,b] as € — 0,

and z.(-) provides an unconditional strong local minimum for problem (7.9) with integrand
(7.11) and the endpoint functional

(7.17) @e(T0,21) := |g(z1) — ce| + Ve|zo — z:(a)| + Mdist(zo, A).

Now employing Corollary 6.4 in problem (7.9), (7.11), (7.17) and using Propositions 4.4-4.6
for computing the subdifferential of (7.17), one gets an arc p.(-) and a unit vector ¥, € R™
such that (7.12) holds and

(7.18) pe(a) € VeB + N(z.(a); A), —pe(b) € O(tp, g)(zc(b)).

Following the proof of Theorem 7.1 above, we obtain conditions (7.2) and (7.16) by passing
to the limit in (7.12) and (7.18) ase — 0. O

7.5. Remark. Using the method of metric approximation (as in proof of Theorem 7.1),
one can extend Theorem 7.3 to a more general setting when ¢(Z(b)) is a locally extremal
point of the set R(A) relative to other given sets. We refer to [29, Section 6] and [34, Section
3] for more details about this concept.
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