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Abstract

We show that the way in which finite differences are applied to the nonlinear term in
certain PDEs can mean the difference between dissipation and blowup. For fixed parameter
alues and arbitrarily fine discrefizations we construct solutions which blow up in finite
time for two semi-discrete schemes. We also show the existence of spurious steady states
whose unstable manifolds, in some cases, contain solutions which explode. This connection
between the blowup phenomenon and spurious steady states is also explored for Galerkin
and nonlinear Galerkin semi-discrete approximations. Two fully discrete finite difference
schemes derived from a third semi-discrete scheme, shown in Foias and Titi (1990) to be
dissipative, are analyzed. Both latter schemes are shown to have a stability condition
which 1s independent of the initial data. A similar result is obtained for a fully discrete

Galerkin scheme. While the results are stated for the Kuramoto-Sivashinsky equation,



most naturally carry over to other dissipative PDEs.

1. Introduction

In this paper we compare how well various numerical schemes capture the property of
dissipation for dissipative partial diffcrential equations (PDEs). We show the drastic effect
the way in which finite differences are applied to a particular nonlinear term can have
on the property of dissipation. With one such semi-discrete scheme (time is continuous)
this property is preserved [Foias and Titi (1990)]. We show that similar semi-discrete
schemes have solutions which blow up in finite time. The blowup phenomenon is linked
to the existence of spurious steady state solutions. Similar spurions solutions have been
observed [Jolly et al. (1990D)] for Galerkin and certain nonlinear Galerkin methods {also
known as approximate inertial manifold methods). This connection has led in turn to
numerical evidence that these particular nonlinear Galerkin methods also have solutions
which blow up in finite time. This is to be contrasted with other nonlinear Galerkim
methods which have been shown to be dissipative. [Jolly et al. (1990b), see also Marion
and Temam (1988)]. Though we will illustrate the behavior of the schemes as applied to
the Kuramoto-Sivashinsky equation (IKSE), much of the results carry over directly to other
dissipative PDEs [see e.g. Constantin et el. (1988) for a number of such equations|.

We also study the long time stability of fully discrete versions of the dissipative fi-
nite difference scheme of Foias and Titi (1990), and the Galerkin approximation. One
scheme is implicit, the other semi-implicit as it is also linear. These schemes are shown
to have stability conditions which are independent of the initial data and the solution it-
self. This independence represents a strong correspondence between the dissipation of the
approximating dynamical system and that generated by the dissipative PDE. While for

the implicit scheme we are only able to derive a uniqueness condition that depends on the



initial data, we encounter no such difficulty with the semi-implicit scheme. However the
implicit scheme yields a significantly better estimate for the size of the absorbing ball than
the semi-implicit scheme. A semi-implicit fully discretized Galerkin scheme is also shown
to have a stability condition which is independent of the initial data. Shen (1990) has
derived stability conditions for certain fully discrete nonlinear Galerkin schemes applied to
the Navier-Stokes equation. In that paper, however, the conditions depend on the initial
data.

The KSE has been the subject of much analytic and computational study (sce e.g.
Jolly et al. (1990a) for references). In addition, the KSE is known to have an inertial man-
iold, ie. a finite dimensional, positively invariant Lipschitz manifold which exponentially
attracts all trajectories, and thus contains the global attractor. In Folas and Titi (1990)
an interpretation is given for the finite difference scheme in terms of approximate inertial

manifolds.

One can combine the results of Demengel and Ghidaglia (1988), Eden et al. (1990),
and Shen (1990) to show that the fully discrete schemes presented here generate discrete
dynamical systems which have global attractors, and in fact inertial manifolds [see Foias
and Titi (1990} for the semi-discrete case and also Yan (1990)]. Moreover, as indicated in
the works above, the inertial manifolds for the discrete systems converge to those of the of
the PDE, as the discretization parameters tend to zero.

This paper is structured as follows. We construct solutions which blow up in finite time
for certain arbitrarily fine spatial discretizations of the KSE in section 2. In section 3 we
construct spurious steady states whose unstable manifolds, in some cases, contain solutions
which explode. We also carry out a similar construction for the Galerkin approximation
and present numerical evidence that there is blowup for some nonlinear Galerkin methods.

We analyze the two fully discrete finite difference schemes in section 4, and a fully discrete



Galerkin scheme in section 5.
1.1 The PDE

We consider the renormalized KKuramoto-Sivashinsky equation

Gu Ou  u Su ’
8" 0zt T Oa? or t) €R X RY KS
at i Jxt i Jx? z "oz 0, (,t)€Rx (K5)

ufz,0) = uo(x), zeilt

subject to periodic boundary conditions
u(z,f) = u(z + L,t), 158

Let H}% ({0, L)) denote the subspace of the Sobolev space H™ ({0, L)) consisting of
functions which, along with all their derivatives up to order m — 1, are periodic with period
L. Tt is known that for every ug € L#((0, L)) which is periodic with period L, there exists
a unique solution u(z,t) € H;,,((0, L)) for all t > 0 (see Nicolaenko and Scheurer (1984)
and Tadmor (1986)). Moreover, if we assume in addition that wg is an odd function (i.c.
wo(x) = —uo(L — &), a.e. in R), then the corresponding solution u(z,f) is also an odd
function (w(z,t) = —u(L — 2,1}, a.c. in R).

For (KS) restricted to the invariant subspace of odd functions, it has been shown by

Nicolaenko et al. (1985) (see also Folas ef al.) that for every p > 0 there exists a time

T*(p) > 0 such that whenever ||uy||z2 < p, then
()] Lz < po = e L2, (1.1)

IVe(liz: < o1 = e 772, (1.2)

for all + > T*. The constants ¢y and ¢; (as well as ey, ¢, . . . to follow) are universal in that

they are independent of the problem parameter I and the initial value wg.



To date rigorous studies of the long time dynamics of the Kuramoto-Sivashinsky equa-
tion have been limited to the invariant subspace of odd functions, as the inequalitics (1.1),
(1.2) are essential in showing the existence of a compact global attractor and subscquently
in estimating the dimensions of the global attractor and inertial manifolds (see ¢.g. Nico-
lacnko et al. (1985), Foias et al (1988¢), Constantin et l.(1988,1089)). II’yashenko (1990)
has recently proved the existence of an absorbing ball for the general periodic case. This
means that results concerning the existence of a global attractor and inertial manifold for
the odd case could also enjoy similar extensions, for the general case. Nevertheless, the

reswits in this paper are for the odd case.

2. Semi-Discrete Finite Difference Schemes

Given a positive, even integer N, we denote the space discretization step by h = L/N and
the nodal values by é;(f) = u(a;,t), where 2y = jh for 3 =1,2,..., N. Since u is periodic
with period L, 1t is convenient to extend to a double infinite sequence £;,7 = 0, £1,£2,.. .,

wlich satisfies

§i =Eirn - (2.1)
Note that the oddness condition
£i=—én—;, JEZ, (2.2)
together with (2.1) implies
Enyatj = Ent(i—ny2y = Sj-njz = —Enje—jy JE L. (2.3)

In addition we have {o = £y = 0.
Direct application of the centered difference formula to the second and fourth order

terms in {KS) yiclds



[@ ﬁ] Gt 645 =461+ &-2 | Gir =26 + 6
dzt " a2 1N hi h?

= L(£) - (24)

There are however, several ways to treat the bilinear term. The most direct approach, is

to take

[u%](mj) s ’SJ’(E:’—Hm; S (2.5)

An alternative is to rewrite the bilinear term so that

du 1
um} (erial 3

[3(1;2)“_@3,) = il :

A (2.6)

Finally, one may consider linear combinations of approximations (2.5) and (2.6), in par-
ticular the combination
2

Sk el e S

considered in Foias and Titi (1990). Since the solutions of (I{S) can be shown to belong
to a Gevrey analytic class of regularity (Foias and Temam (1989)) it follows that they are
in €. Hence the approximations of the bilinear term in (2.5), (2.6), and (2.7) are, like
those of the lincar terms in (2.4), O(A?%).

The three treatments above provide three different semi-discerete systems:

£ (& lr«f'-l]‘ = (a)
1€ . 2 _25' 1
%+£({)+ Enfiog 14;;5 -1 — () (b); (2.8)
" g (& 41—Ei— ) e, —£&2_,
S =0 (c),

to approximate the evolution of the nodal values. We emphasize that these are semi-
finite difference schemes ag time is not discretized. It is easily verified that for each of
the systems (2.8a-c), condition (2.1) defines an invariant N-dimensional subspace of the

infinite dimensional system. Moreover, assuming N is even, condition (2.2) reduces (2.8a-¢)



to an equivalent system of dimension N/2. While all three schemes share the same overall
quantitative error estimate of O 3/ 2} (a factor of VN is introduced when computing the
P norm of the error vector), they produce substantially different long time gqualitative
behavior. We recall that system (2.8¢) correctly inherits the property of dissipation from

the full KS equation, provided the parameters k, L are suitably chosen.

Theorem 2.1. {Foias and Titi (1990)) Suppose N is large enough so that
(3 - 1?2 —24R°L > 0. (2.9)

Then system (2.8¢c) has a global solution for all t € Ry.. Morcover, there exists rg > 0,

such that for every solution £(£) of (2.8¢) there exists f*(|€[(])l) such that
tﬁ:fﬂ < vy, forall t > ¢,

F —
where rg = 2%, with f, ||, and p; as defined in section 4.
"1

We will show in section 3 below that the system (2.8¢) is not dissipative for all possible
values of h and L.
2.1 Blowup

We now show that the result in Theorem 2.1 does not hold for system (2.8a) and
(2.8h). In fact for arbitrarily fine discretizations, both systems (2.8a) and (2.8b) have

particular solutions which blow up in finite time.
Theorem 2.2. For fixed N = Gk, k € Z7, and fixed h = L/N < V'3, there exists a
particular solution € of (2.8a) and a fimte time ¥, such that £(t) — oo as t — 1*. The

same statement holds for system (2.8h).

The proof will be given in terms of system (2.8a) only, as the proof for system (2.8D)

is completely analogous.



Proof for System (2.8a):

We first concentrate on the case k = 1, where (2.1), (2.2) and (2.3) imply

bo=b=6=0,(a=6="5, L= .

It follows that (2.6a) can be reduced to the pair of equations

@4_551—452_'_52—251_‘_5152 £

2.10
dt h h? 2h ( )
dfs BEy—46 &1 —26 £i6 .
e = = 0. 211
dt i ht r 2 2h ( )
Let
a=§&+& and § =&, — &, (2.12)

By first adding (2.10) and (2.11), and then subtracting (2.11) from (2.10), one obtains

% +ao =10
2.13
Sl el !
dt Ap et
where
a=a(h)=h™" - h™% and b= b(h) = 9~ — 3172 (2.14)

Taking o(0) = 0 so that o{t) = 0 is the first component of a particular solution to

(2.13), we have that the é-component must satisfy the Ricatti equation

One may solve (2.15) by elementary methods to obtain the solution

4hbd,
a(f) =
( ) 61‘] v (‘SU e 4?1!])6{'!' N

which blows up at time

1 5
= o e 2.1
bn(%—4M) )



for initial data satisfying

8y > 4hb (2.17)

in the case when b > 0, 1.e. when h < V3. The extension by (2.1), (2.2), and {2.3) to a

particular solution of (2.8a) gencrated by

o (s 0N (2.18)

2

completes the proof for k = 1.

For k > 1 we consider system (2.8a) once again with only 6 nodes, but this time over
the interval of length I = £. It follows that the particular solution constructed in (2.18)
over the interval of length I, can be extended by (2.1) to a solution of (2.8a) for N = 6k

over the interval of length L, which blows up at #* given in (2.16).

3. Spurious Stationary Solutions

We now turn to the issue of spurious stationary solutions for various space discretizations
of the KS equation. We observe some similarities between the spurious solutions for finite
difference and Galerkin methods, and make a connection with the blowup phenomenon

described in section 2.



3.1. Finite differences

For the semi-discrete systems (2.8a) and (2.8b), and N = 6, we again let o and é be
as in (2.12), and look in the invariant subspace defined by (2.2) and (2.3). The condition

for a stationary solution can then be written

2 T
e s e o
4h
PRy
ac —ad =0 , b+ Gy 0 for (2.8h),
4h
where a and b are as in (2.14). In either case, 0 = 0, § = 4bh for (2.8a), & = —4bh

for (2.8b) define a one parameter families (or branches} of stationary solutions. Most
significant is that the stationary solution for (2.8a,b) given by

6(3N3 — L2N2)
JE ‘

£y = —& =2bh = (3.1)

along with conditions (2.2) and {2.3), grows without bound as L — 0, when in fact for
the PDE, it is casy to show by energy estimates that the global attractor for L < 27 is
simply the trivial solution u = 0. This branch represents a significant deviation from the
true dynamics of the PDE and is therefore spurious. It also follows from (2.17) that some
of the solutions in the unstable manifold blow up in finite time. These branches are shown
in figure 3.1 for N = 6 (reduced dynamical system of dimension two) after rescaling time

and space so that (KS) becomes

du Mu d%u du ; e
—6?-1-45;;‘-+af E—{—u—é;] =00 =lx =2 (K Sa)
where o = L?/n?. All computations presented i this paper arc done for (KS«). The

bifurcation diagrams are produced using the package AUTO [Doedel (1981)].
For N = 6 and o, 4, a, and b defined as above, the stationary solution equations for
(2.8¢) reduce to

ao —oé/6h =0, b6+ a®/6h=0. (3.2)



There are then two nontrivial stationary solutions derived from (3.2), one of which is given
by

o =6hv—ab, § = 6ha, for 1 < h < V3. (3.3)

The other occurs when b = 941 — 352 = 0, i.e. when h = L/N = /3, and has o = (
with & unspecified (see figure 3.2). With h fixed, the existence of these latter fype of
steady states with arbitrarily large § component implies that (2.8¢) is not dissipative for
all values of I. However the solutions in (3.2) and (3.3) do not exist in the region delimited

by Theorem 2.1 since condition (2.9) is equivalent to

1[¢

5 3
- < N I RN T e T
A s («./24N+1) i

The branch in (3.3) is climinated by condition (2.9) it is bounded, and in fact for
certain fixed N, may play the role of what is considered to be a true branch of stationary
solutions, i.e. one observed to persist under finer and finer discretizations. For example in
fipure 3.3 for N = 12 (so the reduced system is of dimension five) this branch which exists
between o & 16 and « = 43 displays the same secondary bifurcations as the ‘bimodal’
branch commonly observed in computational studies of the KSE. Note however, that the
branch in (3.3) will migrate with Increasing L as h decreases, rather than converge to a
fixed branch. The diagram in figure 3.3 is quite similar to the diagram for the five mode
Galerkin approximation while that for N = 24 (reduced system has dimension 11, in figure
3.4) is virtually identical to that for the 12 mode Galerkin scheme [see Jolly et al. (1990a)

to (:cmlpfu‘t:] 2



3.2. Galerkin and Nonlinear Galerkin Approximations

The appearance of a vertical, dissipation destroying branch of stationary solutions has
also been observed for the Galerkin approximation of the KSE [Jolly et 6l (1990a)]. The
success in analyzing this phenomenon for the finite difference approximation has led to the
following rigorous treatment of the Galerkin case. Let Py be the projection of the space
of odd, periodic functions onto the span of {sin(z),...,sin(Mz}}. The M-mode Galerkin

approximation amounts to substituting

M

pulz,t) = Z aj(t)sin(jz)

i=1

into (I Se) and applying the projection Pys. Thus the condition for a stationary solution

to this approximation reads

ali F 52 a :
PS5 SOaUNMG S gm
A

PM[ dxt ¥ dz?

|i=i0: (3.4)

jth

The vertical branch will occur when the linear part of (3.4) vanishes for the j** mode, for

large enough 7. More precisely we have
Proposition 3.1. The functions py(x) = a;sin(jz), a; € R, satisfy (3.4) provided a =
45 and M2 < j < M.
Proof:
By the choice of o we have that,

d'pur ﬂasz e
du? Ox?

Also, since

Gpie ot
Pm 5; = E? sin(25x),
and M < 27, we have that
a 1) 1
Pylapm e )



Unfortunately such a simple explanation does not seem available for the presence
of spuricus stationary solution branches for certain nonlinear Galerkin approximations of

(K Sa) [see Jolly et el (1990a,b)]. These methods express the higher modes represented
by

QM(I)-: Z ajsin(j.?:}

i>M+1

in terms of the lower modes represented by pypr. Consider for example the nonlinear

Galerkin approximation

dp
BN D T (k) — 0 :
7 (3.5)

qu = —A7'QuF(pm) ,

where

4 2
A= 8— Flu) = ty@ i

o
o2 + nfui ,and Qpr = I — Py

In this case there is a spurious branch of stationary solutions which behaves similarly to
those for the finite difference discretizations (2.8a,b) in that apparently it grows withou
bound as L — 0. The blowup of (2.8a,b) under these circumstances suggests that the
same phenomenon may accompany the spurious branch for the nonlinear Galerkin system.
Indeed, certain numerical trajectories for the latter system, starting with initial condition
data near the spurious stationary solution, but with slightly larger norm, also appear to

blow up in finite time (see figure 3.5).



4. Fully Discrete Finite Difference Schemes

In this section we present stability results for two fully discrete finite difference schemes
I ¥ ¥

= { all double

for KS. It is convenient to adopt the following notation. Let 5[, e

infinite sequences satisfying (2.1) and (2.2)}. We will represent the elements of S s by

N-dimensional vectorq ((“'3]?':6] with the understanding that £ satisfies (2.2) and can

be extended by (2.1). Throughout this section, we denote by {-,-) the inner product

N—1

(€M =h Z ExMs
=0

and by | - |, the induced norm. We recall the following results.

Proposition 4.1. (Foias and Titi (1990)) Let B" : SN, PR S et Sndd,pcr be
defined as follows: for every €, i€ SNy e
BME ) = Ek(e+1 — 1) + Eer1its — Ee—17i—1 (4.1)

6h

forgki— 0 El: L2088 Thopn

N—1

Ry BHE M = (BHE7), =0, (4.2)
k=0
Remark 4.2. From Proposition 4.1 it follows easily that
(BM(E ), M) = —(B"(, i), 7).

The next result 1s well known.

Proposition 4.3. Let Ay, : RY x RY be the matrix



Set w = e"f:_ then the real and the imaginary parts of the vector (1,w*, w?, .., JwlNallE

are eigenvectors of —A\;, with corresponding cigenvalue pi = % (1 — cos (32k)), for k =

D8l et N

Corollary 4.4. (Foias and Titi (1990)) The matrix (—A) Is a symunetric nonnegative

definite. Moreover, for every f e SN we have

aodd,per
ek N-1 i e
—80E 8 =1 [(—anée] = mld? (43)
w=0 :

4
where ji; = i? (1 — cos (23 )) = T‘%*ﬂn (§). Notice that for h < 1,41 2 5.

We may now express system (2.8¢) as
{ %+ O3+ A€+ B E (4.4)
([}) i £U € Socld per

4.1 An Implicit Scheme

Consider the following implicit fully discrete scheme for (I£5)

-

geil T eR AT et rAREPH L p Bl gty (4.5)

We will show below that the discrete dynamical system in (4.5) 1s dissipative. Moreover,
we will derive a stability condition involving the discretization parameters & and 7, which
is independent of initial condition. The proof requires the translation by a fixed vector

defined m the following lemma.

Lemma 4.5. (Foias and Titi (1990)) Let ij € SY,

odd,per

{??}' :jh_g _'j:1,,.‘.,ﬂr—l, (4.6)
o Z??NZU

be such that

and let b be small enough so that

(B hia oiRR =0 (4.7)



Then for every 56 Sé\fid,per we have
(0368 + (G + (B EM.E) 2 I-Ba)EP (48)
which implies that the linear operator
DG+ DNy + B, 1)
15 coercive.

Replacing £ by €+ 7, we rewrite (4.5) as

(5_-'11-}-1 4y En. 4k T&fign.-i-'l A T’:&h E_'n.—i-l

(4.9)
_|_T[Bh(£n+ljﬁ) B Bh(ﬁ: ‘E-n+1) + Bh(én—kl.,‘fn-lqj] Al f,
where f = —B"if, ) — A2 — AL (4.90)

We now state the main result of this subsection,

Proposition 4.6. Suppose 5“‘, n=0,1,2,... is a solution to (4.9). For all n > 0 we have

- v i L‘i -y ) L

gl g et mEDEs = RIS Jo =), (+10)
where § = 73%, and f is as in (4.9a). Thus the ball of radius | ﬂzé'—: is invariant and
absorbing.
Proof:

Taking the inner product of {4.9) with £7+1 and using Proposition 4.1 we find that
Q(g:.ﬂ o EH,ERH} 4 2r [(ﬁigh+11 En+1> i (&;LE""“,E"“) At {BJL((.;-:H-IJT),E-R-l-w
— 276,

Now by Lemma 4.5 we have

§F 6, 6) 27 - ANEP < 21|18, @)



Using the Hilbert space identity
2w —w,v) = |o|* + v — w]* — vl (4.12)
and (4.11) we obtain
[+ | R R A s e (4.13)

;From Corollary 4.4 and the fact that sin(z) > £z for 0 < z < @/2 it follows that

= 2 21 16 . 5 - 1 .
|(_&hjEn+l|" > H-ﬂf 'HI? = [F suﬁ(wﬂ‘v )} |€ +'|"’ > — ( )’ |€ +1|2

Ak
%
162, =
Lo (LJ) |‘Ei,+1|2
for N > 2. Hence, from (4.13) we have

T ,16.2,=

b1 2 Fllentl
+ (G VIE P < 2rlFlIER)

161:;-{-1'2 B |£ﬂ+l EL £n|2 |€nlz

By Young’s inequality it follows that

o ; ) F | it | 7,16 T P L‘i
ek e s el el e (LJ|£“V 4ﬂﬂ2mp
and hence
1 ()] < e ()i (4.14)
Define & = ‘T(—&;:l . We may then rewrite the inequality (4.13) as
2
Ign.+1!2 S (1 1 5)—].'&1;'2 it (%)l.ﬂz(l + 6)_1 (415)

for n =0,1,2,.... Thus we have that

2 b x
B < 14+ 8T+ ([ + 67 + (14877,



and in general that

2 —
|€"n.—|—l|2 < (1+§)-(n+1)|£lil'z i (3:-5-)|f|2 [(1 _|_5)—-1 +_._+(1+5)—(-n+1)}

|ﬂ‘2 s (1 + 6)—(n+])
(1+5)[ B 5 ]

]
= (]_ - ;5)_(”‘“]'5-‘“'2 + (ﬁ)l.flz [1 o {1 +‘S)—(H+l]]!

2
. T
= 1+ R 4+ (D)

from which (4.10) follows immediately.
Remark 4.7. Notice that a similar result holds for the untranslated scheme in (4.5), with
the radius of the absorbing ball replaced by | ﬂz% + |77, We also remark that the last
estimate in the proof above is similar to the discrete Gronwall inequality which appeared
in Eden et «l. (1990) and Shen (1989).

Next we show that the scheme in (4.5) has a solution. Let us recall the following

classical proposition of Poincaré from Constantin and Foias (1988), page 58.

Proposition 4.8. Let B be a closed ball in R, Suppose that ® :— R” is continuous and

{@(v),w) < 0 for all v € 3B. Then there exists v € B such that $(v) = 0.

We now apply this result to establish the existence of a solution to (4.5). Assume that
g“' is given. We want to show that we can find {“‘H satisfying (4.9). Let B be the ball of

radius I, where

2
B = 21+ &y [IE*F + | 77), (4.16)

and § is defined as in the preceding proof. ;From (4.15) we have that all solutions gntl of

(4.9) satisfy
3n?

Gl (4.17)

Define

—_ b

_B(E) = 2AE— ) + 20 [DIE + L, + BYE D + BY7FE + BMEE) - f].



Take the inner product with £. Then, as in the proof of Proposition 4.6, we have

—

—(@(6), &) 2 [P + 1= 892 = "1 + 51(~ L) — 271711
— 1§ + 81E* - S1FT?
> (14 8) [ - (1 + O EP + Z17)]

for £ € B we have |£]? = R?, so that

ERE} > 0.

—((8),) 2 (1+6)[R* - 5

So by Proposition 4.8 we have a solution.
As for uniqueness, we can show that it holds up to a time step that depends on the

initial data.

Proposition 4.9. There exists a time step 1y = rn(|éb|,F) such that if 0 < 7 < 7, the

soltion to (4.5) with initial condition £ is unique,

The proof of Proposition 4.9 will use the following lemma which is proved in the

Appendix.

Lemma 4.10. The following hold for all ff, @ e 8N

odd,per
(4) |{B*(,3),8)| < 2)(- A)M23)|E] mrl,n}: I|w;_.1
(B) max |w;c| <o\l =N R LA

0<k<
Proof of Proposiiron £.9:
Suppose £" is given and consider two solutions {;'“'H and 211 of (4.9). Let & =

entl _ 21! so that

S+ TALE + 7043 + TB"(@,7) + TBM7.@) + 7B (@, ) + 1 BHE &) =0



We take the inner product with & and apply Proposition 4.1 and Lemma 4.5 to get
l&1* + -l( AR < T|(BM(@, ), @) -

Applying in order, Remark 4.2, Lemma 4.10 parts A and B, and the inequalities of Cauchy-
Schwarz and Young, we have
@12 + 2= < 7I(BYE,@). &4
< 2rl(=APANEH | g ol
< 2rl(~ D) 22 VRE) I
< B/2r|(= 00,)B 2B

i 2 gie Sl -12
< ot + (3
;From (4.17) we have that for all n

S

where R = R{|f],]€"]) is defined in (4.16). Therefore, if

()" <

—

it follows that @ = 0.
4.2 A semi-implicit Scheme

We now analyze the scheme
FoH1 G BRE A E 4 BH(E ) = 6 (419

Since (4.18) is a linear system, it is enough to show uniquencss to infer existence. Tlis

will also establish the invertibility of the operator defined by

-

£ E+7ALE + o€+ TBY(E™, )



so that the scheme in (4.18) is indeed semi-implicit.

To this end let E"‘ be given, and suppose £t and t;:.;"'H are two solutions of {4.18).

Then & = £rH1 — ¢l

satisfies

]

B+ TA}S + AWE + rBY (", &)
Taking the inner product with &, observing (4.2) and Young’s inequality we have
— -] [ — — | =+ T — —
3|2 + T)ARG] € T{AWG, @)Y < 7|LR&||6] £ E|/L\.;,,w|2 + 3%

Thus a solution to (4.18) exists and is unique provided 7 < 4.
To carry ot the stability analysis, we proceed as above and translate by 1, as defined
in Lemina 4.5, to obtain

L,;T’n+1 _é'n +T&i€n+l it T&hfn-{-l

4,19
+7[B (&) + BT, &) + BH(E )] =1 F, o
where f is as in (4.9a).
Proposition 4.11. Let 7, h satisfy
- 212
o< ﬁﬁ [LQIf?;ﬁfr?h?]' (#20)
Suppose {—.’", n=20,1,2,... is a solution to (4.19). For all n > 0 we have
e <PP(L+8) 0 4 (2) 170 - g+ 1), (421)

where § = Zu}, and 4] is as in Lemma 4.5. Thus the ball of radius |f |2(£)! is invariant

and absorbing.

We show the contrast of using the bilincar term in (2.8b) as opposed to using that
in (2.8¢) in a fully discrete scheme in figures 4.1a,b. The proof of Proposition 4.11 will

require the following,



Lemma 4.12. For all &, #,and @ in RN one has that

(B, )w>|<—|m|w| g e |

(4.22)
— u”[ —\; }]ﬂtﬂ max  |vk] -
' 0<kL N1

The proof of Lemma 4.12 is in the Appendix,
Proof of Proposition 4.11:
As in the proof of Proposition 4.6, we start by taking the inner product of equation

(4.19) and observing Proposition 4.1 to obtain
{£n+1 6:1 £n+1 S 21_[ & €Jn+1,§u+l> s (&;L:f-'”+l,§'+l)+

(Bh(g:-%l’ﬁ)’é'n%d) {Bh(ﬁn Lk u—i—l )ré’n+1)] e TZT(_)F‘, g'u-H}_

Applying onee again Lemma 4.5 and (4.12) we have

=3 ¢ Fn mh| £ ety ~ y s = —n L c Pl | £
EUHI 4 E = E = B T AL 4 2(BH(E — 0, ), 8 < 2l IEH

(4.23)
It follows from (4.6) that
L Te41 — HEk—1 L
3 | < = e — 4.24
ug]}»—r-l_ci]};:—l el = 2 ugi}gﬁﬂ h 2 (£25)
By Lemma 4.12, (4.24), and Young’s inequality we now have that
2 (B4 (& = e, |
T o b i IR P = pno el
< —|gntl _gnj|gndl) 2 2 entl gm0 A /200412
< TIEH — B 4 TUE = Bl (- 00) 2 S
< |§“+1 ) Enl? L i;gn—l—llz L:Z e lgﬂ-l-l én|2 [( A }lj2‘511+1| L
= 2 18 4h? 2 a3

iFrom (4.23) and Young's inequality we now have that

Ay £ |2 T = '
EHI — I+ = Dn)EH

rife ; 212 5 o
Rl R R i w2 4 9. 1
= el sl A | ol ER
TQL‘Z - T2L2 A B 27_ ,-, i
< _ﬂ w112 g \ 112 e o —E}L 1
S T-amrg (T ONEH 4 g - A)EE 4+ Al AnE T
Tt [? T ltx

) Hork =
< [(~an)E ) + 7 + FU=B0ET
1

18« 4h?u? v 1814



It follows that

TZL‘Z TQLZ
18 - 4h? il s 18414

— - — —+ 4: =+
l£n+i]2 i |£niz s I_l(___‘,f_\h)gnri—l lz < i(—&a)§"’+l|2( ) -+ —-r:—lfiz (425)
4 5

Using the fact that

we have

: 27,2 i 2 -
2 ()] = ) &) [ &)+

67 il
< — 1].
B 18_{“ |:-CUE,2,'.!,1 £ ]

Thus whenever condition (4.20) holds, we will satisfy the quadratic inequality

(4.26)

Combining (4.25) and (4.26) with the lower bound for g; in Corollary 4.4 we have that

Frit it " Fntl w1y |2 i =n-tly
e | & anlen < e |E - G LG AT

dr . LNt .
<:_' '2< e -‘a,
s SIft < (7)1

The rest of the proof is as in that of Proposition 4.6, starting from (4.14).



5. A fully discrete Galerkin scheme

Using a similar tcchnique as in the last section, we will show that a cerfain fully discrete,
semi-implicit Galerkin scheme has a stability condition which is independent of initial
condition. To define our scheme we first write the KSE in funciional form. It is well

known (see e.g. Foias ei al. (1988), Temam (1988)) that (KS) is equivalent to

%+Au—ﬂlﬂu—l—3(u,u)=0, ve H (5-1)

where A = §*/82" with domain D(A) = H}.((0,L)), B is the bilincar operator defined
by

Blu,v) = ?_E%;{'? for all u,v € Hy((0, L)), (5.2}

and
H={uc Lg{(U,L)ﬂu[m,f} =u(x + L, 1), u{z,t) = —u(l —a,t), ae.x € R},

the subspace of L2((0,L)) of periodic odd functions. The space H has a complete or-

o0
=1

thonormal basis consisting of eigenfunctions of 4, {w;} corresponding to eigenvalues
Aj for j = 1,2,.... We define P = Py to be the orthogonal projection from H onto
span{wy,wsz, ... s }. The Hilbert space H 1s endowed with the L? inner product de-
noted by (-, ). Tts corresponding norm will be denoted by | - | throughout this section.

The scheme requires a special decomposition of the bilinear function used in Jolly ¢t

al. (1990b). Let

B(u,v) = %u% +

Ov
= for all u,v € H,((0,L)). (5.3)

L N
&
?|

It is clear that

(Blu, v}, w) = —(Blu,w),v), for all u,v,w € Hiu((0, L)), (5.4)



that

(B(u,v),0) =0, for all u,v € H (0, L)), (5.5)

and also that

B(u,u) = B(u,u), forallue H;er((U,L)]. (5.6)

Thus the semi-diserete Galerkin approximation to (I{S) can be written as

d , i
<L 4 ap— A%+ PB(p.p) =0.

We now define our fully discrete Galerkin scheme to be
p"t — p" 4 T Apt! — TANEp L rPB(p™, p"t1)=0. (5.7)

The derivation of the stability condition for (5.7) will require an analog of the franslation
used in section 4. Here we replace 7 defined in (4.5) with the gauge function ¢ introduced

in Nicolacnko et al. (1985) and recalled below.

Proposition 5.1. (Nicolaenko, Scheurer and Temam) For every L > 0 there exists an

M(L) ~ (3£ and an odd trigonometric polynomial ¢ € ParH such that
A : 1 . ’
|AY 2y* — [A”dui‘z — (B(u,u),¢) = E|.‘1]’r2?.‘.|Z + A lul?, (5.8)

for all u € H.((0,L)) N H.

-

Note that by (5.6) the above result holds for B.

Let p = 5 + ¢, where § € PayrH. Then equation (5.7) becomes:
ﬁn+1 — " -I-TAIT‘H o TA"lfi'I'jn—t-‘l A TP[I?(;’E”,QM B f),(ﬁn it qéjﬁn+l)] iz TQ(@), (5.9)

where g(¢) = —Ad + A4 — PB(,¢) . For simplicity, we will henceforth drop the ~

over p.



Proposition 5.2. Let 7 be small enough so that both
2 )\l‘u 27
S=7A — L”qfi;“m >0, and M ——]]cﬁ”w >0
hold. Suppose p*, n =0,1,2,... is a solution to (5.2). For alln 2 0 we have

> 1
2R < R o)R s @I S B ).
1

Thus the ball of radius ,\Ll lg(#)|? is absorbing and invariant for (5.9).

(5.10)

The proof of Proposition 5.2 will require the following lemma which is proved in the

appendix.

Lemma 5.3. For all u, v, w In Hém[(U,L:}) we have that
-~ 1 l ],h[
(B(u,v),w) < Fllvellsolullw] + llolloofA™ awfful

proof of Propositien 5.2:

By adding and subtracting p™t' within B, taking the inner product of (5.9) with

p* ! and observing (5.5) we obtain

2(});11-1 __p-u)p-u+1)+2T[|‘41/2pn+1|2 |41;4pn+1kz ( ( n+1 ﬁb) n—]—l)]

+27(B(p" — p" 1L, 4), ") = 2r(g(8), p" ) .

Applying (4.12), (5.4), and then Proposition 5.1 to (5.11), we have

"+ Ip™ - R - PP+ 27 [EIA'”P““ 2+ A fp ! l‘]

+2r(B(p™ — p™t, 4),p" ) < 2rgllp"| .

Note that by Lemma 5.3 and Young's inequality
|2'T(B[Pﬂ s pn—}-'l : ¢’)1I-'ln'|‘1]|
2T T n—]—l n41 ‘)
= _:;ll‘?t’:,“colp s ||p |+

7= 3
" L 2T

|41f4 n-4-1 “pn e p'n+] ”105”00

i 2T 4..n
el B (5) S8l IA

(5.13)



Also by Young's inequality
T 1 b ¥ -
27)g||p" | < rlﬂlz HEE DSt (5.14)
1

Combining (5.12), (5.13) and (5.14) we obtain
: W Al 2 12
PPl + 2T AP g
27 n 12
< 22 g™ 4 2o gl 5 el

It follows from (5.10) that
"1+ 6] < "+ Lol
L

The rest of the proof is again as in Proposition 4.6 starting at (4.14).

Existence and uniquencss for (5.7) can be established in a similar fashion as for (4.18).

A. Appendix

In the next three proofs, all for statements from section 4, the norm denoted |-| corresponds
to the inner product {-,-). Using (2.2), one can casily verify the following identity to be
used repeatedly below.
: S e W41 — Wk .
(=D3)3,3) = h ; (T—) : (A.1)

proof of Lemma .10, part 4

Applying the Cauchy-Schwarz inequality to the definitions of {-,-) and B" we have

- - — ] = g : 1)y 27 1/2
(B4@,), 8| < |Al[n 3 (ke erm) b lonsn — e okns + ko))

N—1

(("-‘-".'.——H — Wr—1) ) 2] 1/2
h

k=0



To complete the proof note that by Young’s inequality, (2.1), and (A.1) we have

N-1

N—1
Z(wk+1 . Wk——1)2 = Z(“’H] —wi +wyg ""-‘-’Ic—'l)z
k=0 k=0

N-1

= Z(wk“ = Wk)z + (Wi — wr—1 )2 + 2(wgy1 — wg Hwr — wg_1)
k=0
N-1

<4 Z:(wka — wi)?
k=0
= 4h{&, &) .
proof of Lemme 4.10, purt B

Writing w? as a telescoping sum, then using the Cauchy-Schwarz inequality and (A.1),

we obtaln

& N

g Wi — Wio 5y Bt

wh = |Sw? —wty)| < 3 4w < 20(-00)20 13
i=1 j=1

proof of Lemma 4.12

From the definitions of {+,:} and B* wc have

N= .
Z ['”J'.('”R (1 — Vk—1 )Wk o (Up4+1VE41 — Up—1Vk—1 )wk”

h
L —

(B (i, %), %) =

N—1
10 |okp1 — Vi1 h (Tht1Vegr — Up—1 Vi) )W
< =|d||w| max |——————— )+ = E :
6 0<k<N -1 h it h

Using (A.1) and integration by parts we obtain
—1 N—1

‘ E (Upp10r41 = Up—1Vk—1 W5 _\ E URVRWE—1 — URVRWE4]
k=0 k=0

= (wp—1 — Wk41)
— Z 1],}:_'{!;, f h
Fgh 2

= joxl |{§f“*“”"”‘““fff”
H |t e e fA
= 11_21&_1 UE ||t 2 7 _

0<k

iy - 172
< ofi max foel [{(~20), )] /2.



Now (4.19) follows by substitution.

proof of Lemma 5.3

The norm denoted | - | now corresponds to the inner product (-, -).

Integrating by parts we obtain
5 1 2
[(B(u,v),w)| = |§ f‘t:ruxw i /u’uxw|

]—} v uw—i/vw u+g/uv wl
Sl 3 g O} o

1 1
< Fllvelloolllef + Sl llvllecful

il

1 A
= Zloslloolullio] + 314" w0 ollolu] -
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Figure Captions

Figure 3.1 Bifurcation diagram showing spurious stationary solutions for (2.8a,b) plot-
ted as Euclidean norm versus parameter a.
Figure 3.2 Spurious stationary solutions associated with (2.8¢c).
Figure 3.3 Bifurcation diagram for (2.8¢) with N=12 (i.e. a five-dimensional reduced
system).
Figure 3.4 Bifurcation diagram for (2.8¢) with N=24 (i.e. areduced system of dimension
eleven).
Figure 3.5 Time series {Euclidean norm vs. time) of a trajectory starting near a spurious
steady state for the nonlinear Galerkin method in (3.5).
Figure 4.1

(a) Time serics of a trajectory for the scheme in (4.18). The initial condition is near
a spurious steady state for (2.8a,b).

(b) Time series of a trajectory starting with the same initial condition as in figure

4.1a using the scheme in (4.18), but with the bilinear term discretized as in (2.8a).
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