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PROBABILISTIC EVALUATION OF CONTROL SYSTEM ROBUSTNESS

ROBERT F. STENGEL, LAURA R. RAY, and CHRISTOPHER 1. MARRISON*

Abstract. Practical control systems must operate satisfactorily with uncertain variations in plant
parameters (i.e., control systems must be robust), but there are limits to the degree of robustness that may
be considered desirable. Tolerance to parameter variations that never occur is not useful, and it could lead to
closed-loop systems whose normal performance has been compromised unnecessarily. A probabilistic defi-
nition of robustness based on expected parameter variations is consistent with accepted design principles,
and it is readily evaluated by simulation. Stochastic Robustness Analysis predicts the effects of likely
parameter variations on closed-loop stability and performance through evaluation of commonly accepted cri-
teria. Competing control designs are judged by the likelihood that system response and design metrics will
fall within desired bounds. Together with numerical search, probabilistic evaluation is a powerful approach
not only for comparing alternative controllers but for designing control systems that satisfy robustness and
performance requirements.
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1. INTRODUCTION

Practical control systems must be designed to run satisfactorily not only with assumed
plant parameters but with possible variations in operating conditions. Perfect models of
systems to be controlled (i.e., of plants) are rarely available when controllers are being
designed, parameters of similar plants are likely to vary from one example to the next, and
dynamic characteristics may change as parts wear or operating points shift. Control sys-
tem designs must be tolerant of these differences for practical control to take place, that is,
they must be robust.

Control system robustness is related to plant uncertainty and is an inherently nonlinear
issue, even when the plant and controller are linear. Small variations in plant parameters
may have effects that are locally linearizable, allowing robustness to be expressed by con-
ventional stability and performance margins. However, it is easy to postulate systems
where robustness criteria based on nominal margins fail (e.g., a two-mode system in which
the first mode is certain and determines the stability margin, but the second mode is uncer-
tain and becomes unstable for arbitrarily small parameter variations). In such case, robust-
ness can be expressed only by measures based upon the perturbed system itself, evaluated
over the full range of possible variations.
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Measures of control system robustness should be easily understood by control engi-
neers, they should have unambiguous, one-to-one relationships to nominal design goals,
and they should be related to what can arguably be known about plant uncertainty. If, for
example, a specific degree of stability is required or a step response pattern must be
matched, robustness metrics should express the variations in stability and step response
that are likely to occur given expectable plant variations.

Robustness to unrealistically large parameter variations may be no more attractive than
inadequate robustness, because nominal performance and tolerance of parameter variations
tend to produce conflicting design requirements. The degree of robustness required for
satisfactory operation is related to the plant variations most likely to occur. This suggests
that robustness metrics should be probabilistic, deriving from descriptions of parameter
variations that are bounded by manufacturing tolerances or physical constraints. The need
for handling the nonlinear effects of uncertainty also suggests that evaluation of robustness
should be numerical rather than analytic. Consequently, robustness criteria developed for
linear systems are readily extended to nonlinear systems.

Stochastic Robustness Analysis (SRA) uses statistical descriptions of parameter uncer-
tainty and numerical evaluation to determine whether stability and performance robustness
criteria are met. This paper presents an overview of the SRA method, as well as examples
of its application. These include evaluations of Doyle's linear-quadratic-Gaussian (LQG)
counter-example, control systems for aircraft flight, and a recent benchmark problem for
robust control system design. One important conclusion of the benchmark-compensator
analysis is that there is little correlation between classical stability margins and the likeli-
hood that plant parameter variations lead to instability. The principle reason is that parame-
ter variations change the shape of the Nyquist plot as well as the gain and phase margins;
hence, the branch of the nominal Nyquist plot or critical frequency that determines stability
margins may not be the one that produces instability when parameters vary. It is further
shown that numerical search to minimize stochastic robustness criteria is a practical design
method.

2. ANALYTICAL FOUNDATIONS
Stochastic stability theory provides a logical starting point, as satisfactory stability is
often a necessary condition for satisfactory performance. A typical problem is to determine
bounds on the parameter vector p of an unforced, continuous-time system [1, 2],

(2.1) x() =f[p@®),x()], xe R*,x(0)=x,,fe R" ,pe R!



where x is the dynamic state and p(¢) is a random process, such that stability can be
expected with a probability of one (or arbitrarily close to one). A corresponding linear
control problem is to find a satisfactory control gain matrix C for the linear plant and con-
trol law,

2.2) x() =F[p®),t1x() + G[p@®),tJu(), ue Rm | F € R"¥n G € Rm>*m
(2.3) u(r) =-Cx(t), Ce Rmxn

The system dynamics vector f() becomes

2.4)  flp(®).x(0] = (Fp().1] - G[p®),f1C}x()

and the uncertainty is contained in the varying values of [F(¢), G(¢)]. Probabilistic stability
criteria have been developed using expectations of Lyapunov functions, and they require
consideration of stochastic integrals and transformations [3, 4]. Analogous discrete-time
problems are discussed in [5]. Given infinite (e.g., Gaussian) parameter distributions, the
probability of instability is finite, and the escape (or exit) time may be of interest [6].

The principal focus of current robustness research is on ensembles of linear systems for
which

(2.5) f(p,x, t) =F(p)x(t)
= [F(p) - G(p)CIx(»)

where p is a random constant rather than a random process. For a particular parameter
value pg, F'(px) is uncertain but fixed. Deterministic stability criteria apply to each mem-
ber of the ensemble. Because each dynamic system in eq. 2.5 is linear and time-invariant,
its stability is entirely determined by its eigenvalues, that is, the solutions A; to the equation

(2.6) IMI-F'(pr)l=0,j=1ton

Given a vector of the probability density functions of p, pr(p), eq. 2.6 provides an
implicit transformation for computing the probability density functions, pr(A;), of the cor-
responding ensemble of eigenvalues A;, j = 1 to n. An evaluation of the cumulative prob-
ability of (in)stability induced by pr(p) requires integration of the pr(Xj) over the (right)
left-half complex plane. Linear eigenvalue sensitivities, dA/dp, can be derived and applied



for analytic evaluation of the integral [7, 8], and additional studies of eigenvalue and eigen-
vector sensitivities can be found in [9-15].

Unfortunately, analytical solutions to this integral have limited utility for evaluating the
probability of (in)stability. The relationship between p and A; is decidedly nonlinear, so
dA;/op does not provide enough information about variations if the domain of p is large.
For system order greater than one (excluding trivial cases), the nonlinear mapping is not the
only problem: there is no clear way of integrating the probability density functions to obtain
the cumulative probability of (in)stability because a) roots coalesce and split as parameters
change, and b) instability is the result of one or more roots having positive real compo-
nents. A further complication is that the combined effects of multiple non-Gaussian
parameters cannot be represented merely by operations on mean values and covariances.
We conclude that the most practical approach for evaluating the probability of (in)stability
in the general case is to use numerical computation, as expanded below.

Numerical evaluation of probabilities involves sampling of parameter probability distri-
butions [16, 17] and computation of their consequences using either exhaustive sampling
or "Monte Carlo” methods [18]. In the first case, all possible parameter combinations in a
finite set are sampled, and the exact probability of hypothesis #is computed as

(2.7) Pr(#) = NofNTp1al

where Ngris the number of instances of #, and N7,;4; is the total number of trials. For the
second method, each scalar parameter is represented by a random number generator, whose
characteristics are shaped by the parameter's statistical description. There is no restriction
on the shapes or correlations of probability distributions (i.e., they may be bounded, non-
Gaussian, etc.), and parameters may have different distribution types. For a single trial,
each element of py is generated, and the related hypothesis (in the current discussion, the
stability or instability of the controlled system) is computed. The probability of a hypothe-
sis is computed as before (eq. 2.7), but there is uncertainty in the estimate, as discussed
below. Monte Carlo simulation finds widespread use in risk and reliability assessment
(e.g., [19, 20]), but its use in control system assessment has been limited [21, 22].
Application of Monte Carlo methods to evaluating the stability and performance robustness
of control systems is recent [13, 15, 23-30]. The approach is seen as a way of confirming
robustness estimates made by other techniques (e.g., [31, 32]).

Probabilistic synthesis of control systems is a natural adjunct to probabilistic analysis;
the random or randomized search is a dual to Monte Carlo evaluation. Building on [33],

random-search methods of finding control system gains are explored in [34-36]. There are



similarities to directed searches that minimize multi-objective cost functions [37], to
parameter-space methods [38, 39], and to fine-tuning of control gains by search [40]. A
genetic algorithm -- which performs randomized reproduction, crossover, and mutation on
candidate control-gain strings -- has been used to design controllers [41], while SRA is
extended to control design using sequential line searches in [23-29, 42].

3. EVALUATION OF ROBUSTNESS

Attention is directed to the stability robustness of linear, time-invariant (LTI) systems,
for which the probability of instability P can be estimated from repeated eigenvalue calcula-
tion [25]. Given a system with / parameters, each of which takes w values with equal
probability, P can be calculated exactly from w! evaluations using exhaustive sampling (eq.
2.7), with Ngs equal to the number of unstable cases, and N7, equal to wl. Even if the
parameters are binary (w = 2), the number of evaluations quickly becomes large as the
number of parameters increases. Note that 2/ also is the number of corners in a bounded
parameter space, suggesting that any robustness test that examines the corners has practical
limitations to the number of parameters that can be evaluated. For small numbers of
parameters, it may be most efficient to approximate continuous distributions by [ discrete
values, then to apply exhaustive sampling to estimate P with the discrete distributions.

For Monte Carlo evaluation, the closed-loop eigenvalues, A;, are evaluated N7q/ times
with each element of pg, k =1 to N7,41, specified by a random number generator whose
individual outputs are shaped by pr(p). The probability-of-(in)stability estimate becomes

increasingly precise as N1yq becomes large:

N(o <0
lim ( Ar;1ax )
NTotal —> Total

(3.2) Pr(unstable) =P =1 - Pr(stable)

(3.1) Pr(stable)

N(+) is the number of cases for which all elements of 0, the vector of the real parts of the

closed-loop eigenvalues (A = G + jw), are less than or equal to zero, that is, for which
Omax < 0, where Omax is the maximum real eigenvalue component in 0. For Nt/ < °o,

the Monte Carlo evaluation is an estimate, P, whose uncertainty is characterized by a confi-
dence interval.

Because P is a binomial variable (i.e., the outcome of each trial takes one of two val-
ues: stable or unstable), confidence intervals are calculated using the binomial test, where
lower (£) and upper () intervals satisfy the following [43]:



n-1
(3.3) Pr(Ny <n-1)= Z(NTotal, k) L5(1 - Lok =1 -
k=0
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o
(3.4) Pr(Ny <m) = Y (NTotat, k) UK (1 - UWNppa -k = 5
k=0

Ny is the actual number of unstable cases after N7y.q) evaluations (N7 = N7o1a1 ]'I;’),

!
(NTotal> K) is the binomial coefficient, 1 i 1\]7\; i‘:;all -

ficient. Explicit approximations of the binomial test [44, 45] avoid an iterative solution of
eq. 3.3 and 3.4 for (£,U), and they are accurate to within 0.1% [25].

o and (1 - o) is the confidence coef-

The number of evaluations required to estimate a binomial probability distribution for
specified interval widths and a 95% confidence coefficient varies with the true P (Fig. 1)
[23]. For narrow intervals and small P, large numbers of evaluations are required; how-
ever, large percentage interval widths may be acceptable if P is small.
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Figure 1. Number of evaluations required to estimate a binomial probability distribution
for given confidence interval widths and 95% confidence coefficient.
Interval width is given as percent of P or (1 - P). (from [23])

The number of Monte Carlo evaluations needed to yield P witha given confidence level

is independent of the number of uncertain parameters or their probability distributions.



This result has broad implications for the robustness evaluation of complex systems.

While exact or approximate exhaustive sampling may be useful when there are few parame-

ters, Monte Carlo simulation has broad application for systems with large numbers of

uncertain parameters.

3.1 Flight Control Example. Evolution of probability estimates typically provides

useful information after a few hundred trials, and it is possible to compare competing con-

trollers well before estimates have converged to small confidence intervals (Fig. 2). Three

linear-quadratic (LQ) control laws for an open-loop-unstable aircraft are compared, given

large uncertainties in a dozen system parameters [24]. Unusually fast response and large

uncertainties were specified in these examples to magnify robustness issues. From the

beginning, it is clear that Case (a) is less robust than the other controllers, and the distinc-

tions between Cases (b) and (c) are outside the individual error bands after less than 2000

trials. (This is a conservative result, as shown in [26].) After a few hundred evaluations,

subsequent probability estimates are seen to fall within the error bands predicted earlier.

0.1

0.08
i
=
==

S 0.06
=
S
e}
2

= 0.04
e
<
8
-

0.02

0

N
\\ /‘\ -
7\
\\/ . \\ P
S~~—3 Case(a)
/_/\/\/ \"/\,\wv\’_’__ T
PN B R R —_——————T T
rsl
/.
7
//
/
/
/
7
O S AU Case (b)
\ T e e ]
G e
D S R Case (c)
—~- e ————— —_——— —— e
/ T T — L e — e ———————————————
(AR -
5000 10000 15000 20000
Number of Evaluations

Figure 2. Evolution of probability-of-instability estimates for three

linear-quadratic flight control laws. 30% Gaussian variations in 10 aircraft

parameters and +30% uniform variations in air density and airspeed.



Retaining the two most significant rigid-body parameters (control sensitivity and static
stability coefficients) while adding a dozen aeroelastic (fuselage bending and wing torsion)
parameters produces the results shown in Fig. 3. The three controllers are unchanged from
the previous example, so the aeroelastic modes represent unknown high-frequency dynam-
ics not accounted for in control design. To demonstrate the consistency of probability
estimates, the number of evaluations has been increased from 25,000 to 100,000. What
had been the most robust controller [Case (c)] is now almost as likely to produce instability
as the least robust controller in the previous example. Case (b) is revealed to be the most
robust controller early in the evaluation. Exhaustive sampling of 16 binary parameters
would have required 65,536 evaluations; if each parameter were free to take five values, the
required number of exhaustive trials increases to over 152 billion. Monte Carlo evaluation
produces useful results with considerably fewer samples and allows parameters to have

continuous distributions.
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Figure 3. Evolution of probability-of-instability estimates for three linear-quadratic flight
control laws, with aeroelastic modes. 30% Gaussian variations in 2 most significant rigid-
body and 12 aeroelastic parameters, +30% uniform variations in air density and airspeed.

Various ancillary graphs provide important insights into the nature of robustness,
including histograms and cumulative distributions of Gmax, stochastic root loci, and

parameter plots [23]. Histograms and cumulative distributions of maximum eigenvalues



show the most likely values of the least-stable time constant (which can be related to times
to half or double), and they suggest that probabilities of degrees of instability can be inves-
tigated by choosing discriminants other than neutral stability (6 = 0). Alternatively, his-
tograms of parameter values associated with instability identify "trouble spots" requiring
additional attention in the design process. Stochastic root loci illustrate concentrations of
eigenvalues that result from parameter variations, either as cluster plots of individual eigen-
values or as topographical root density heights above the s plane. These are particularly
useful for identifying critical frequencies at which instabilities are most likely to occur.
They portray the migration of roots from real to complex modes and sometimes reveal
counter-intuitive results, such as peak root densities displaced from the nominal root loca-
tions. Because system specifications often are given as sector bounds in the s plane, the
degree to which these bounds may be violated is readily shown. Differences between
Gaussian and uniform parameters are seen as fuzzy vs. sharp bounds in root locations [23-
29].

When one or two adjustable control parameters appear (e.g., a scalar weight on an LQ
control weighting matrix pR or diagonal elements of R itself), plotting P against the
parameter(s) may reveal a region of maximum robustness that is relatively insensitive to the
parameters' distribution types [23]. Such plots also can uncover regions of conditional
robustness at intermediate control-parameter values.

3.2 Doyle's LQG Counter-Example. Early misconceptions about the robustness
of LQG regulators were shattered by [46], which presented an example that could be
driven to instability by arbitrarily small parameter variation as weights on state-regulation
error and disturbance-input covariance become large. While this paper set the stage for
later development of loop transfer recovery (LTR) [47] and more complete studies of LQG
robustness [48], a widespread notion lingers that LQG regulators are, by their nature, not
robust. As shown in Section 4, LQG regulators can be made exceedingly robust by
choosing cost-function weighting matrices to minimize stochastic robustness metrics.

To briefly review the example [46], an open-loop-unstable, second-order plant is sub-
jected to scalar control through a control-effect multiplier 4 (nominally equal to 1) and is
observed by measurement of a single state element. The LQG control and estimator gain

matrices are

(35) C=Q+V4+Q 1 11 %2[cd
(3.6) K=Q+Vd+wW)[1 1JT 2k kT



where Q and W scale state-error and disturbance effects for unit control and measurement-
error effects. The corresponding characteristic equation

(B.7) [s%+c353 +co52 + (k+c-4-2ck)s+ (1 +ck)] + uck2s-1)=0

takes a root-locus form [= D(s) + K[ N(s)] with Mck serving as the loop gain K [28].
There is a numerator zero at +1/2, and the product of the control and estimator gains has a
direct effect on loop gain. There are five unstable branches for loop gain in (-eo, ). With
positive ¢ and c3, the Routh criterion, a necessary (but not sufficient) condition for
stability, requires that

A 1 k+c-47a
(3.8) a—[l +Ck]<u<[1 STk ]—b

The interval (a, b) becomes small as ck increases.

Letting Q = W (giving ¢ = k), ¢ approaches 4 as Q approaches zero (Case 1), and the
system's four eigenvalues are located at -1 when pt = 1. When ¢ = k£ = 100 (Case 2), there
are double eigenvalues at -0.01 and -98 with u = 1. For Case 1, (a, b) is (0.875, 1.0625),
and for Case 2 it is (0.9902, 1.0001). Eigenvalue calculations indicate that the actual
bounds on u are (0.9243, 1.0625) for Case 1 and (0.9903, 1.0001) for Case 2 [28]. If u
is a Gaussian random variable with mean of one and standard deviation of 0.05 (assuring
that some values of the i distribution lie outside the stable interval), 10,000-sample Monte
Carlo evaluations estimate P as 0.171 for Case 1 and 0.919 for Case 2.

The corresponding stochastic root loci (Fig. 4) show the probabilistic root distribu-
tions, giving a qualitative picture of the most likely locations of roots and indicating the fre-
quencies at which instability occurs. (The actual traces are lines rather than volumes in this
single-parameter case, the jagged "mountains” being artifacts of summing in rectangular
"bins" of the s plane and of the graphing process.) Histograms show the most likely
regions for Opmax in the two cases, while cumulative distributions illustrate not only the
probability of stability (at the zero crossing) but the probabilities of intermediate degrees of
stability or instability (Fig. 5).

LQG robustness can be recovered to the level of the corresponding LQ regulator using
loop transfer recovery [47], which entails modifying the disturbance input spectral density

matrix as follows:

3.9) W =W +v2GGT

10



a) Case 1.

b) Case 2.
Figure 4. Stochastic root loci for LQG counterexample,

10,000 samples, 1 = 1, o = 0.05. (from [28])

The LQ regulator corresponding to Case 1 (¢ = 4) is completely stable over 10,000 trials
with the Gaussian u used above. Singular-value analysis suggests that v must be greater
than 10,000 for LQ transfer characteristics to be restored to the LQG regulator; however,
SRA shows that complete stability over 10,000 trials is recovered for a v of 5 [28]. The
stochastic root loci of the LQ regulator and the LQG/LTR regulator with v =5 are com-
pared in Fig. 6. The comparison reveals the estimator roots as a complex pair that never
threaten instability but that push the controller roots to the right. Increasing values of v
force the estimator to higher frequency and let the controller roots move closer to the LQ
locations, at the cost of increased transmission of measurement noise.
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Figure 5. Histograms and cumulative distributions for LQG counterexample,

10,000 samples, 4 = 1, 0y, = 0.05. (from [28])

a) Case 1 LQ Regulator. b) LQG/LTR Regulator (v = 5).
Figure 6. Stochastic root loci for Case 1 LQ and LQG/LTR (v = 5) regulators.
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3.3 Benchmark Control Problem. Stochastic Robustness Analysis provides a
"level playing field" on which to judge the robustness of controllers that have been
designed by alternate methods. Ten compensators prepared for the 1990 American Control
Conference Benchmark Control Problem [50] were analyzed for their probabilities of
instability given three levels of parameter uncertainty [30]. The nominal plant consisted of
two unit masses connected by a unit spring, with a force, u, on the first mass, mj. Itis
regulated by feeding back the position, x2, of the second mass, my, to u (hence, the mea-
surement is z = x2) With unit masses and spring constant, &, this undamped fourth-order
system has a pair of eigenvalues at the origin and another at j¥2. The LTI controllers
were designed by a variety of methods, including Hoo optimization, loop transfer recovery,
imaginary-axis shifting, constrained optimization, structured covariance, game theory, and
the internal model principle. The design solutions were single-input/single-output compen-
sators ranging from second- to eighth-order, and while none were designed for the evalua-
tion conducted in [30], all were intended to be robust against uncertainty in the masses and
spring constant. The parameter uncertainty cases investigated in [30] were: spring constant
restricted to (0.5, 2) [Ps1], Ps1 plus variations of the two masses in (0.5, 1.5) [Ps2], and
Ps2 plus small variations in internal damping (always zero or positive), loop gain, and loop
time delay [Ps3].

Gain margin proved to be a poor predictor of I/E;’ (Fig. 7) [30]. The reason derives from
the observation made in the Introduction: the changing shape of the Nyquist plot is a com-
plex function of parameter variations that is not totally captured by nominal gain (or phase)
margins. This is explicitly demonstrated for three of the compensators with similar gain
margins in [51]. The best and the worst of the compensators used Ho, criteria in design,
reminding us that choice of criterion alone does not assure robust design. Compensator
complexity was no guarantee of low P: the sixth- and eighth-order compensators had
among the highest values of ]’15 while a second-order design had the third lowest P over the
three cases. The two lowest probabilities of instability were realized with fourth-order
compensators (equal to the order of the plant).

Attention has been focused on the stability robustness of continuous-time, linear, time-
invariant systems, but it is apparent that SRA principles are applicable to other types of
systems using appropriate tests for stability. For discrete-time LTI systems, the stability
discriminant is the unit circle about the z plane origin rather than the imaginary axis in the s
plane. For time-varying and nonlinear systems, the Monte Carlo tests could be based on
absolute stability, Lyapunov criteria (e.g., [49]), or time-domain envelopes. The last alter-
native forms a natural bridge to the performance robustness metrics discussed below. The

13



probabilistic stability metric P and its confidence intervals remain the same for all of these

alternatives.
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Figure 7. Probability of instability vs. gain margin for ten compensators. (from [30])

3.4 Performance Robustness. If performance metrics are expressed as envelopes
of satisfactory (or acceptable) response, then the criteria take binary values, their statistics
are described by binomial distributions, and the prior discussion of confidence intervals
applies directly. For LTI systems, we may follow a natural progression from eigenvalue
sector bounds to initial-condition transient response, step response, frequency response,
and other graphical presentations, including Nyquist and Nichols charts and singular-value
plots. Examples of such analyses are presented in [25, 26, 29]. Classical figures of merit
can readily be introduced within the SRA framework first by identifying acceptable
response envelopes, then by evaluating the probability that responses of the uncertain sys-
tem will be confined to these envelopes. The Benchmark Control Problem analysis [30]
included comparisons of the probabilities that settling time and control response to a unit
initial disturbance would exceed acceptable values.

14



4. SYNTHESIS OF ROBUST CONTROL LAWS

4.1 Numerical Synthesis. Design for stochastic robustness follows analysis by
incorporating search. The simplest approach is to choose the best from an ensemble of
controllers, without regard to the design algorithms employed for each controller. For
example, given the Benchmark Control Problem, we could compare the probabilities of
instability, Pj, excess control usage, Py, and excess settling time, P, for the ten design
solutions, selecting the one that appears most suitable. The relative importance of the three
criteria must be known to make the selection, and the probability distributions of the uncer-
tain parameters that induce them should be well motivated. Guidelines for comparing con-
troller pairs are contained in [26].

An alternate method is to choose the parameters used in an established design procedure
(e.g., LQG synthesis) so that a cost function comprised of the probabilities of unsatisfac-
tory behavior is minimized. To test this technique, an LQG regulator was designed for the
Benchmark Problem [42]. An implicit-model-following cost function produces a constant-
gain LQ regulator whose closed-loop dynamics are close to those of an ideal model -- a
mass-spring-mass system with nominal values of mj, k, and m2, and with inter-mass
damping added to yield an acceptable settling time (9.6 sec). Control-rate weighting
reduces peak actuator usage (adding a fifth element to the design state), and the state is
estimated from the scalar output using a constant-gain Kalman filter. The settling-time limit
is violated if the displacement of my exceeds a £0.1-unit envelope 15 or more seconds after
the disturbance. The control-usage limit is violated if control displacement exceeds one
unit, and the stability requirement is violated with one or more positive closed-loop roots.
Parameters are assumed to have uniform probability distributions within their ranges.

A typical design procedure has four steps:

1) Define Quadratic Cost Function of Probabilities
(4.1) J = aP;2 + BPy2 + yPrs2
where o, B, and y are scalar weights on the relative importance of instability, excess con-

trol usage, and excess settling time over the range of parameter uncertainty. Pj, Py, and
Py are in (0, 1); squaring them reduces the relative significance of small values.

2) Compute Robust Linear-Quadratic Regulator
(4.2) v=-Cy=-C[Xu]

(43) u=[vdt

15



where v is the scalar control rate, C is the (1 x 5) LQ gain matrix for implicit model follow-
ing with control-rate weighting, and  contains the estimate of the augmented state, %, and
the control displacement, u. The control rate v must be integrated to yield the original con-
trol variable u; hence, (4.2) and (4.3) have a low-pass filtering effect on the control. A
reduced-sample Monte Carlo evaluation is made at each search point. J is then minimized
with respect to the LQ design parameters and the ideal model parameters.

The cost function forms a hypersurface adjoined to the design parameter space. The
surface is non-smooth because there is uncertainty in the results of Monte Carlo evaluation.
Furthermore, the surface has plateaus where probabilities are one or zero. For a fixed
number of evaluations, there is a tradeoff between the number of design points and the
quality of the cost estimate at each point. Parameters are adjusted in a series of line
searches. These line searches are probabilistic, as only a few evaluations (125) are made at
each design point; hence, the function estimate is "noisy."

The Kolmogorov-Smirnov 2-sample test identifies statistically significant trends [57].
If no trend is found, the search moves to the next parameter. Otherwise the cost function is
smoothed, and the minimum-cost point defines the new nominal value for that parameter.
Having searched all parameters, the search ranges are halved, and the cycle is repeated.
The search continues until there is no further improvement; typically this takes two or three
cycles.

3) Define Robust Kalman Filter
(4.4) R =FX + Gu + K(z - HY)

where & is the estimated state, u is the control, z is the scalar output, F, G, K, and H are
system, control, estimator gain, and output matrices. The disturbance-effect matrix used in
design accounts for the "process noise" arising from parameter variations in the closed-loop
system. The initial Kalman filter is designed with assumed models of the disturbance and
noise. Process noise due to plant variations is estimated by propagating an equivalent dis-
crete-time model of the closed-loop system. The estimation is based on the residual,

(4.5) qx =Xks+1 - PRk - Trg
= Awy + (@4 - @)y + (Ta - T

where wy, is the disturbance. @, and @y are the plant and filter models of the state transition
matrix, ['; and I’y are the control effect matrices, and A is the plant disturbance effect
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matrix. With parameter variation, the residual includes fictitious disturbances due to the
difference between effects propagated by the plant and the filter. The residuals are found
by Monte Carlo evaluation of responses to disturbance and control. The plant model is
changed by random-number generators during the Monte Carlo evaluation, and the pro-
cess-noise covariance is estimated by batch-processing the residuals according to [58]:

1 N
46 Q= N-1 kzlqquT

The measurement-noise matrix is calculated similarly. The filter designed using this distur-
bance matrix rejects the effects caused by differences between the plant and the filter model;
hence, it is more robust than the initial filter.

4) Perform Stochastic Robustness Analysis of the Closed-Loop System

Stochastic robustness of the LQG-controlled plant is evaluated, and the above steps are
repeated if necessary. The final design is produced by a search that minimizes the cost
function with respect to all control and estimator design parameters.

4.2 Results of Design. As a trial, four compensators were formulated with a
search procedure that used about 80,000 trials for each design. The first three emphasized
P;, Py, and P, respectively; the fourth emphasized P; but placed greater weight on Py
and Pts. The compensator transfer functions, H;,, are as follows:

79.3(s—0.8)(s+ 0.57)(s+0.11)

47 Ha = (s +2(0.60)(3.2) + (3.2)%1[s® + 2(0.93)(3.7) + (3.7)*1[s + 0.46]
(4.8) Hyy = 3.16(s—3.5)(s + 5.6)(s + 0.14)

. 2T 187+ 2(0.58)(3.4) + (3.4)71[s” + 2(0.65)(2.6) + (2.6)% J[s + 1.18]
(4.9) Hyy = 8.2(s—4.7)(s +3.9)(s + 0.24)

' 2U T 24 2(0.63)(3.7) + (B.71)2NIs% + 2(0.58)(2. ) + (2.7) s + 1.6]
(4.10) Hyy = 5.42(s—2.9)(s + 4.0)(s +0.15)

. Z =

[s% +2(0.67)(4.0) + (4.0)][s2 +2(0.51)(2.0) + (2.0)*)[s + 1.36]

Each of the compensators is strictly proper and contains a non-minimum-phase zero.
Robustness costs for both the robust LQ and LQG regulators, evaluated with 20,000 trials,
are shown in Table 1, as are the associated probabilities. Adding an estimator to the LQ
design to form an LQG regulator increases the robustness cost in every case.
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TABLE 1

Robustness Costs and Probabilities of Constraint Violation for
Four Robust LQG Controllers

o, B,y
LQ Cost
LQG Cost
P
Py
]ﬁTs

Not surprisingly, the ten compensators evaluated in [30], which were not designed to
these criteria, have larger robustness costs than the robust LQG designs in all but a single
case. One of the earlier designs had lower cost for Case 3, achieving low settling-time vio-
lation by always violating our imposed control limit by about two orders of magnitude.
(Large exceedances were not penalized more than small exceedances; hence Prg was one,

Case 1

1, 0.01, 0.01
0.0002
0.0059
0.0034
0.1077
0.7588

Case2
0.01, 1, 0.01
0.0004
0.0045
0.0173
0.0173
0.6504

but it was weighted by a small value.)

Nominal disturbance responses of the four newly designed compensators are shown in
Fig. 8. Each of these compensators can be claimed to be "robust" according to different
stability and performance criteria. In all cases, x2 satisfies the settling-time requirements,
though the response shapes are quite different. The maximum control usage is 0.82 units
for Case 3.

2.5
2
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=
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wm O W

Case3
0.01, 0.01, 1
0.0081
0.2249
0.2953
0.3591
0.4719
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Figure 8. Output Responses to Unit Disturbance Inputs for Linear-Quadratic-Gaussian
Regulators Designed to Minimize Four Stochastic Robustness Costs.
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Three additional compensators were designed with the Case 4 cost function, two to
assess possibilities for reducing compensator complexity and one to evaluate effects of loop
transfer recovery. Case 5 eliminated control-rate weighting and the associated low-pass fil-
ter, producing a fourth-order compensator with (@i, P us llP\’Ts) = (0.1108, 0.115, 0.6675).
All probabilities are higher than those of Case 4. Case 6 further reduced the order to three
by residualizing the filter's dynamic model, yielding (B;, Py, Prs) = (0, 0, 1). The mini-
mization identified an excellent design for stability and control usage, but the settling time
specification was never met. Because the search is made over a probabilistic surface, it is
possible that this result was produced by a local minimum. Case 7 was a fifth-order com-
pensator in which loop transfer recovery was applied with v = 1012, giving (@i, lﬁu, ]/IS’TS) =
(0.078, 1, 0.166). Excellent stability and settling-time properties were achieved through
excessive control usage.

Nominal characteristics of the seven LQG compensators are summarized in Table 2.
There is a broad range of stability margins and responses, yet each design can claim to be
robust by some stochastic measure. As in [30], there is little direct correlation of gain
margins (GM) and phase margins (PM) with the probability of instability; both low and
high values of the stability margins can be associated with significant I'l\”i. Nominal settling
time and @Ts are loosely correlated, as are nominal control usage and ]'13"1, though there is
little correlation in nominal control and state peak responses. The LQG/LTR regulator
(Case 7) is seen to possess the highest gain and phase margins, but its probabilities of
unsatisfactory behavior are high and its control usage is excessive.

TABLE 2
Nominal Characteristics of Seven Robust LQG Compensators

Nominal Stability Margins

Case 1 2 3 4 3 6 1
GM (dB) 4.45 5.1 0.59 3.97 3.28 2.48 11.5
PM (deg) 28.7 31.2 21.5 32 23.6 26.1 39
Nominal Unit Disturbance Response

Ts (sec) 14.4 12.1 10.1 12.5 14.2 30.5 8.5

Umax 0.59 0.46 0.82 0.54 0.54 0.53 57.55

X2max 2.12 1.59 1.09 1.43 1.07 1.07 0.57

Nominal Unit Measurement-Error Control Response
Umax 4.25 0.86 1.75 0.99 0.57 0.63 37170
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5. CONCLUSION

Stochastic robustness provides a sound basis for analyzing and designing robust con-
trol systems. Its criteria are direct extensions of classical design criteria that are closely re-
lated to design goals and to practical characterization of parametric uncertainty.
Consequently, it is possible to merge the probabilistic point of view with a variety of pre-
existing analysis and design techniques. The current analysis reveals new insights about
the robustness of linear-quadratic-Gaussian regulators, the significance of gain and phase
margins as predictors of robustness, and the relationships between nominal system charac-
teristics and the likelihood of satisfactory system behavior. In any given problem, there is
not a single robust solution but a family of solutions that depend on both subjective and
objective assessment. The synthesis approach presented here recognizes that different cri-
teria (e.g., probabilities of excessive settling time, control usage, and instability) may have
greater relative importance in different settings, allowing tradeoffs to be made among com-
peting design requirements.
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