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ABSTRACT

Climate change is considered one of the greatest challenges for humanity in the twenty-first

century. The changing climate affects almost every aspect of people’s lives, including but

not limited to water, energy, agriculture, ecosystems, economics, safety, and health. In

the past decades, due to climate change, extreme events, such as wildfire, droughts, and

flooding, have become more frequent and intensive, which can cause devastating economic

loss and humanitarian crises. Therefore, skillful climate modeling, which can improve the

understanding and predictability of climate behavior, would have immense societal values.

In climate science, climate models are used for representing the major climate system com-

ponents (atmosphere, land, ocean, and sea ice) and their interactions. A climate model

consists of mathematical equations derived using fundamental laws of physics, which need

to be solved using powerful supercomputers. In general, climate models are an important

tool for understanding climate change, and continually become more complete and accurate.

Nevertheless, the Earth’s climate system is too complex to be fully simulated. The state-

of-the-art climate models are not yet perfect for fulfilling all needs in understanding and

forecasting climate behaviors, which leaves open opportunities for interdisciplinary climate

studies.

In the past decades, machine learning (ML), especially deep learning, has achieved re-

markable strides in wide-ranging applications. The emergence of climate data with high

spatiotemporal resolution also makes it possible to tackle complex climate problems using

machine learning techniques. Recent studies have shown the effectiveness of machine learn-

ing approaches on various tasks, including weather prediction, climate forecasting, weather

extremes detection, etc. The dissertation explores how machine learning techniques can

make advances in solving two fundamental problems in climate science. The first type

of problem is on understanding the dependencies among or within key components in the

climate system. Two types of machine learning models are proposed for addressing the prob-

lem, that are high-dimensional structure learning model and regularized regression model.

We first propose a novel high-dimensional structure learning algorithm for estimating the

underlying dependency structure (interactions) among different spatial locations around the

globe in global atmospheric circulation. Secondly, to obtain a better understanding of the

predictive relationships between land and ocean climate variables, we introduce a weighted

Lasso model for land temperature prediction using sea surface temperatures and establish
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the finite sample estimation error bounds for the proposed model. The second climate prob-

lem that we target is sub-seasonal forecasting (SSF), the prediction of key climate variables,

e.g., temperature and precipitation, on a 2-week to 2-month horizon. We investigate 10 ma-

chine learning models on SSF over the contiguous United States (U.S.). The experimental

results indicate that suitable ML models can outperform commonly-used climate baselines

and, to some extent, capture the predictability on sub-seasonal time scales. In addition,

we perform a fine-grained comparison of a suite of modern ML models with state-of-the-art

physics-based dynamical models for SSF over the western U.S. We carefully analyze the

strengths of both types of models and propose to incorporate dynamical model forecasts in

machine learning modeling, which significantly enhances the forecasting performance of the

ML models. Further, to compensate for the limited availability of climate data for SSF, we

work on generating synthetic climate data and propose a novel Vision Transformer-based

variational autoencoder (ViT-VAE) model. We compare the proposed model with another

dominant type of generative model, and show both models are able to generate realistic

synthetic samples that match the underlying ground truth distribution closely.
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Chapter 1

Introduction

1.1 Background

Climate change is considered one of the greatest challenges for humanity in the twenty-first

century (Romm, 2018). In addition to temperatures rising, climate change includes glaciers

melting, sea level rise, more frequent weather extremes (e.g., drought and flooding), and

much more. The changing climate affects almost every aspect of people’s lives, including

but not limited to water, energy, agriculture, ecosystems, economics, safety, and health. For

example, the heatwave, which affected Western North America in June and July 2021, has

led to a death toll of over 1,400 people and at least $8.9 billion in damages (NOAA, 2021).

The heatwave has caused wildfires, snow melt, damages to crops, closures of businesses,

destruction of road and rail infrastructure, etc. Such effects were seen as likely to trigger

some more severe consequences, such as flooding and global food price increase.

Therefore, skillful climate modeling, which can improve our understanding and pre-

dictability of climate behavior, would have immense societal values. In climate science, cli-

mate models are used for representing the major climate system components (atmosphere,

land, ocean, and sea ice) and their interactions (Edwards, 2011; Flato, 2011). The schematic

of a climate model is shown in Figure 1.1. Specifically, the Earth’s surface is divided into a

three-dimensional grid of cells where the materials in each cell and the exchange of matter

and energy with its neighbor cells can be described by mathematical equations. A climate

model consists of systems of differential equations based on basic laws of physics, which need

to be solved by powerful supercomputers (Edwards, 2011). Running and maintaining a cli-

mate model can be computationally expensive and labor-intensive, and sometimes require

subjective decisions from climate experts (Hourdin et al., 2017). In general, global climate

2
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Figure 1.1: Schematic of a climate model coupling atmosphere, ocean, land, and sea ice.
Graphic by Courtney Ritz and Trevor Burnham (Edwards, 2011).

models are useful for understanding the impact of human actions on climate change, while

regional climate models are more practical for studying climate behavior for agriculture,

local ecosystem, transportation system, etc. However, due to the high complexity of var-

ious climate processes and the limitation of computational resources, it is extremely hard

to accurately model a climate system. Current climate models are not yet perfect to fulfill

all the needs in understanding the relationships among various components in the climate

systems as well as forecasting at different time scales, which leaves open opportunities for

interdisciplinary climate studies.

In the past decades, machine learning, especially deep learning, has achieved remarkable

strides in a wide range of applications, such as natural language processing, computer

vision, speech recognition, etc (Devlin et al., 2018; Jordan and Mitchell, 2015; Krizhevsky

et al., 2012a; LeCun et al., 2015; Vaswani et al., 2017). Meanwhile, as climate data with

improved spatiotemporal resolutions have become available, increasing efforts have been

made to tackle complex problems in climate science using machine learning models (Rolnick

et al., 2019). For example, skillful machine learning methods, ranging from support vector

machine to deep learning models, have been developed for short-term weather forecasting

(Arcomano et al., 2020; Cofıno et al., 2002; Grover et al., 2015; Kuligowski and Barros,

1998; Radhika and Shashi, 2009; Ravuri et al., 2021), as well as for long-term climate

forecasts (Badr et al., 2014; Cohen et al., 2019; Strobach and Bel, 2016). In addition,

tailored machine learning solutions have been created for finding predictive relationships

among different climate variables (Chatterjee et al., 2012; DelSole and Banerjee, 2017; He

et al., 2019; Steinhaeuser et al., 2011b), and predicting weather extremes (Liu et al., 2016;

McGovern et al., 2014; Racah et al., 2017). Such models have the potential to aid a better
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understanding of the impact of climate change and attribution of observed events as well

as guide decision/policy making in a variety of domains such as agricultural planning,

water resource management, and extreme weather events (O’Brien et al., 2006). In this

dissertation, we develop machine learning models for two important problems in climate

science, which are (1) understanding the dependencies among or within key components

in the climate systems, and (2) forecasting climate variables on sub-seasonal time scales.

We elaborate on the developments in machine learning for solving the two problems and

illustrate our contributions in the subsequent section.

The first type of problem that we focus on is identifying the relationships within or

among land, ocean, and atmosphere, which can help improve climate modeling and fore-

casting capabilities. There are two broad groups of machine learning methods that can be

used for the task. The first group of methods is based on structure learning, which esti-

mates a graph representing the dependence structure among different variables in a given

dataset. In the past decades, structure learning has been emerging as an important tool for

inferring interactions between spatiotemporal climate variables around the globe (Golmo-

hammadi et al., 2017). Recent applications include the study of teleconnections (Chu et al.,

2005) and global atmospheric information flow (de Perez and Mason, 2014; Ebert-Uphoff

and Deng, 2012). In Chapter 2, we propose a novel structure learning algorithm to identify

statistical dependencies in high-dimensional physical processes with a small sample size,

which is shown capable of recovering the underlying structure of global atmospheric circu-

lation. The second group of methods uses predictive modeling to identify the predictive

relationships among various climate variables. A series of works have been conducted to

predict land temperatures and precipitations from sea surface temperatures (SST), using

machine learning techniques including principal component regression (PCR) (Francis and

Renwick, 1998), clustering (Steinhaeuser et al., 2011a), neural networks (Hsieh and Tang,

1998), and high-dimensional linear regression (Chatterjee et al., 2012; DelSole and Baner-

jee, 2017). To obtain a better understanding of the predictive relationships between land

and ocean climate variables, in Chapter 3, we introduce a weighted Lasso model for land

temperature prediction using SST, which is capable of yielding interpretable results with

high prediction accuracy.

As for the second problem, we shift focus towards a specific forecasting task in climate

science, that is sub-seasonal climate forecasting (SSF). Sub-seasonal climate forecasting is

the prediction of key climate variables, e.g., temperature and precipitation, on a 2-week to

2-month time horizon. Skillful sub-seasonal climate forecasts have significantly beneficial
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impacts on agricultural productivity, hydrology and water resource management, trans-

portation and aviation systems, emergency planning for extreme weather events (National

Academies of Sciences, Engineering, and Medicine, 2016; National Research Council, 2010).

Despite its societal importance, the progress on SSF has remained limited (Braman et al.,

2013; de Perez and Mason, 2014). In climate science, high-quality sub-seasonal forecasting

has proven difficult to accomplish compared to both short-term weather forecasting and

long-term seasonal forecasting (Vitart et al., 2012). Similarly, from a machine learning

perspective, SSF poses an unconventional forecasting problem due to the unique nature of

climate data and the large temporal gap (2 weeks to 2 months) between the latest available

data and its forecasting target (He et al., 2021a). Recent studies (Buchmann and DelSole,

2021; He et al., 2021a; Hwang et al., 2019; Mouatadid et al., 2021; Srinivasan et al., 2021;

Wang et al., 2021; Weyn et al., 2021) have shown that machine learning has the potential

to advance sub-seasonal forecasting capabilities. In Chapter 4, we rigorously investigate 10

machine learning approaches to sub-seasonal temperature forecasting over the contiguous

United States (U.S.), which shows suitable machine learning models can capture predictabil-

ity at sub-seasonal time scales and outperform existing approaches in climate science. In

Chapter 5, we perform a fine-grained comparison of a suite of modern machine learning

models with state-of-the-art physics-based dynamical models from the Subseasonal Exper-

iment (SubX) (Pegion et al., 2019) project for SSF in the western U.S. (He et al., 2021b).

We carefully analyze the strengths of both types of models and propose to incorporate

dynamical model forecasts into machine learning modeling, which significantly enhances

the forecasting performance on sub-seasonal time scales. Further, the limited availability

of high-quality climate data makes it more challenging for machine learning to advance

SSF. Therefore, in Chapter 6, we focus on generating synthetic climate data using genera-

tive modeling and show that, with proper adjustment, deep generative models are able to

generate synthetic data that match the ground truth distribution closely.

1.2 Contributions

In this dissertation, we dive deep into two fundamental climate problems and develop cor-

responding machine learning solutions. In Part II, including Chapter 2 and 3, we target on

identifying relationships among or within land, ocean, and atmosphere. Part III, including

Chapter 4, Chapter 5, and Chapter 6, focuses on advancing sub-seasonal climate forecasting

using machine learning. Below we introduce the contribution of the subsequent chapters in

detail and clarify the specific problems solved in each chapter.
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In Chapter 2, we consider the use of structure learning methods for probabilistic graph-

ical models to identify statistical dependencies in high-dimensional physical processes (Gol-

mohammadi et al., 2017). Such processes are often synthetically characterized using partial

differential equations (PDEs) and are observed in a variety of natural phenomena. We

present ACLIME-ADMM, an efficient two-step algorithm for adaptive structure learning,

which decides a suitable edge-specific threshold in a data-driven statistically rigorous man-

ner. We compare ACLIME-ADMM with classical (like PC algorithm (Spirtes et al., 2000))

and modern (like CLIME algorithm (Cai et al., 2011)) structure learning approaches on

both synthetic data that model advection-diffusion processes, and real data (50 years) of

daily global geopotential heights. ACLIME-ADMM is shown to be efficient, stable, and

competitive, especially can outperform the baselines in difficult scenarios. On real data,

ACLIME-ADMM recovers the underlying structure of global atmospheric circulation, in-

cluding switches in wind directions at the equator and tropics entirely from the data.

In Chapter 3, we consider the problem of predicting monthly deseasonalized land tem-

perature at different locations worldwide using sea surface temperature (He et al., 2019).

Contrary to popular belief on the trade-off between (a) simple interpretable but inaccu-

rate models and (b) complex accurate but uninterpretable models, we introduce a weighted

Lasso model for the problem which yields interpretable results while being highly accurate.

In addition, we establish finite sample estimation error bounds for weighted Lasso, and

illustrate its superior empirical performance and interpretability over complex models, such

as deep neural networks (Deep nets) (Goodfellow et al., 2016) and gradient boosted trees

(GBT) (Chen and Guestrin, 2016; Friedman, 2001) . We also present a detailed empirical

analysis of what has been wrong with Deep nets for the specific problem, which may serve

as a helpful guideline for the application of Deep nets to small sample scientific problems.

In Chapter 4, we carefully investigate 10 machine learning approaches to sub-seasonal

temperature forecasting over the contiguous U.S. using the SSF dataset we collect (He et al.,

2021a). The SSF dataset includes a variety of climate variables and climate indices from the

atmosphere, ocean, and land. Our results indicate that suitable machine learning models,

e.g., XGBoost (Chen and Guestrin, 2016), to some extent, capture the predictability on

sub-seasonal time scales and can outperform the climatological baselines, while deep learn-

ing models barely manage to match the best results with carefully designed architectures.

Besides, our analysis and exploration provide insights on important aspects to improve

the quality of sub-seasonal forecasts, e.g., feature representation and model architecture.

The SSF dataset and code base have been made publicly available for the broader research

community.
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In Chapter 5, we perform a fine-grained comparison of a suite of machine learning

models with state-of-the-art physics-based dynamical models from the SubX project for

SSF over the western U.S. (He et al., 2021c). Empirical results illustrate that, on average,

machine learning models outperform dynamical models, while the machine learning models

are more likely to underpredict the amplitude compared to the SubX models. Further,

we show that machine learning models make forecasting errors under extreme weather

conditions, e.g., cold waves due to the polar vortex, highlighting the need for separate

models for extreme events. Finally, we explore potential mechanisms to enhance machine

learning models and show that suitably incorporating dynamical model forecasts as inputs

to machine learning models can substantially improve the forecasting performance of the

machine learning models.

In Chapter 6, to compensate for the limited availability of high-quality climate data for

SSF, we seek to generate synthetic 2-meter temperature (tmp2m) anomalies using deep gen-

erative models. We propose a novel ViT-based variational autoencoder (ViT-VAE) model

which combines the state-of-the-art computer vision model with VAE. The proposed model

can learn latent representations of tmp2m anomalies for each climatically consistent region,

and generate synthetic climate data over the western U.S. In addition, we carefully com-

pare the proposed model with another popular type of generative model, i.e., Wasserstein

Generative Adversarial Networks with Gradient Penalty (WGAN-GP). The empirical re-

sults illustrate that, with proper adjustment, deep generative models are able to generate

synthetic tmp2m anomalies that match the ground truth distribution closely.



Part II

Identify Dependencies Among Key

Climate Variables

8



Chapter 2

Learning Statistical Dependencies

in High-Dimensional Physical

Processes

2.1 Introduction

The ability to infer interactions between variables from high-dimensional data sets has the

potential to help geoscientists answer numerous questions critical for improved modeling

and prediction capabilities for various geoscience processes. Using atmospheric science as

an example, it would enable us to (1) delineate better the interactions between atmospheric

disturbances of different spatial scales, which is critical for understanding the working of a

weather-climate continuum; (2) develop a better understanding of the degree and spatial

pattern of coupling between the top of atmosphere (TOA) radiative imbalance and surface

temperatures, which provides a unique perspective of climate feedback processes; (3) identify

causal pathways in the atmospheric circulation and infer how they might change under a

warming climate (Deng and Ebert-Uphoff, 2014); and (4) study the dynamical processes

of air-sea interaction that lead to the onset of the monsoons. These applications would

contribute to both our understanding of the key processes determining the main features

of the Earth’s climate system and our capabilities to predict changes in this system with

changing external forcing (e.g., aerosols and greenhouse gas emissions) in the near future.

Structure learning is thus emerging in the geoscience as an important tool for that

purpose. Recent applications include the study of tele-connections (Chu et al., 2005) and

the study of atmospheric information flow around the globe (Ebert-Uphoff and Deng, 2012).

9
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Such studies have only recently become possible, thanks to increasing computational power,

combined with the rapidly increasing amount of observational and model output data for

the earth atmosphere (Stocker et al., 2013).

2.1.1 State-of-the-art and Its Limitations

Structure learning methods can be broadly divided into two groups. The first group of

methods were developed in the seminal work by Pearl (Pearl, 2009) and Spirtes-Glymour-

Scheines (Spirtes et al., 2000), among others. The PC algorithm and its variants (Spirtes

et al., 2000), (Spirtes and Glymour, 1991), (Kalisch and Bühlmann, 2007), (Harris and

Drton, 2013) constitute the most popular methods from this family, and are capable of

producing the skeletal structure of the underlying Bayesian network capturing the data

dependency. However, such methods are ‘information-theoretic’ in the sense that they give

the correct output in the asymptotic limit of infinite samples (Kalisch and Bühlmann, 2007)

and may need exponential computation in the worst case. On the statistical side, in the

real world setting of finite samples, such methods cannot (yet) characterize the probability

of error (or p-value) of the graph produced. On the computational side, while advances

have been made (Colombo and Maathuis, 2014), existing advanced implementations of the

PC algorithm do not scale beyond 100,000 variables, whereas geoscience data routinely

involves higher dimensional physical processes (Karpatne et al., 2017).

The second group of methods, such as graphical Lasso (Friedman et al., 2008), (Mein-

shausen and Bühlmann, 2006) and CLIME (Cai et al., 2011), have seen active development

over the past decade (Cai et al., 2016), (Wang et al., 2013) and come with rigorous fi-

nite sample statistical guarantees and efficient computational algorithms. However, such

algorithms do need to assume the joint distribution over the variables to be of a specific

(semi)parametric family, e.g., multivariate Gaussian (copula), Ising, multivariate Poisson,

etc. The second group of methods (Drton and Maathuis, 2017), based on sparse high-

dimensional estimation, can do structure learning by estimating the moral graph of the

underlying Bayes net using finite samples in theory, but has a major limitation in prac-

tice: instability due to (hyper-)parameter choices. Such methods, based on Lasso and

variants need to choose constants, say λ for Lasso (Friedman et al., 2008), (Meinshausen

and Bühlmann, 2006), which determine the level of sparsity. For structure learning, the

output graph can vary significantly based on the specific parameters used. Recent years

have seen advances on making the output more stable possibly by repeatedly running the

algorithm for different values of the parameters possibly on (disjoint) subsets of the sample

(Meinshausen and Bühlmann, 2010), (Meinshausen and Bühlmann, 2006). Such advances,
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while promising, are computationally demanding, due to the need for repeated runs, and

can be statistically demanding due to the need for larger samples.

2.1.2 Contributions of This Work

We seek to address the issues of both stability and computational demands in this work

through the following key contributions. First, we introduce ACLIME-ADMM, an efficient

two-step algorithm for adaptive structure learning, which estimates an edge specific param-

eter λij for edge (i, j) in the first step, and uses these parameters to learn the structure

in the second step. Both steps of our algorithm use (inexact) ADMM to solve suitable

linear programs, and all iterations can be done in closed form. Second, we propose a sig-

nificantly more scalable version of ACLIME-ADMM based on block updates rather than in

single column updates for basic ACLIME-ADMM. The block updates are non-trivial since

every column solves a mildly different linear program. The proposed method is developed

based on a careful analysis of the shared structure of these problems, and first does a block

update followed by column specific adjustments. Third, we illustrate the effectiveness of

ACLIME-ADMM by comparisons with state-of-the-art baselines, i.e, PC-variants (PC sta-

ble (Colombo and Maathuis, 2014)) and CLIME variants (CLIME-ADMM (Wang et al.,

2013)) through extensive experiments on both synthetic and real data involving geo-physical

processes. Furthermore, methods from structure learning for probabilistic graphical models

(Drton and Maathuis, 2017; Pearl, 1988) have been applied with great success in disciplines

ranging from social science (Spirtes et al., 2000) to bioinformatics (Chen et al., 2006), to

identify direct dependencies. The proposed algorithm can also be applied in such area with

its advantages of efficiency and scaliablity.

The rest of the chapter is organized as follows. We elaborate our derivation of ACLIME-

ADMM algorithm in Section 2.2, along with the stability analysis for hyperparameters.

In section 2.3, PC stable algorithm and how structure learning algorithm is applied for

temporal models are illustrated. We provide the description of both synthetic and observed

data sets for climate application and the corresponding experimental results in section

2.4 and section 2.5 respectively. The advantages of fast implementation of the proposed

algorithm is illuminated in section 2.6 and the chapter is concluded in section 2.7.

2.2 Related Work

Over the past decade, advances in structure learning have been made by making explicit as-

sumptions about the parametric form of the joint distribution. For example, advances have
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been made based on the assumption that the joint distribution is a multivariate Gaussian

(Cai et al., 2011; Friedman et al., 2008; Meinshausen and Bühlmann, 2006), or a Gaussian

copula distribution (Liu et al., 2012; Xue et al., 2012). Typically, such estimators involve a

sparsity inducing optimization problem, and efficient algorithms for solving such problems

have been developed (Banerjee et al., 2008; Hsieh et al., 2011). In recent work, the CLIME

estimator (Cai et al., 2011) was proposed to estimate sparse inverse of covariance matrix

(precision matrix), which reveals the dependency structure for multivariate Gaussian dis-

tribution (Lauritzen, 1996). For a p-dimensional problem, CLIME estimates the sparse

precision matrix Ω ∈ Rp×p by solving the following linear program (LP):

Ω̂ = argmin
Ω∈Rp×p

‖Ω‖1 s.t. ‖CΩ− I‖∞ ≤ λ , (2.1)

where C ∈ Rp×p is the covariance matrix and λ > 0 is a tuning parameter. Recent work

has developed scalable optimization algorithms for the problem, which have been shown to

scale to a million dimensions (Wang et al., 2013). In spite of its scalability, the empirical

performance of the CLIME estimator is sensitive to the choice of the tuning parameter λ,

and it is usually difficult to make the choice in a rigorous data driven manner (Cai et al.,

2011; Wang et al., 2013). In recent work, a more powerful adaptive version of CLIME, called

ACLIME, has been proposed (Cai et al., 2016). In this section, we propose the ACLIME-

ADMM algorithm, which is able to solve the corresponding optimization efficiently using

block parallel updates along with simple per column adjustments. The introduced inexact

ADMM algorithm, which utilizes closed-form updates for both primal and dual variables,

improves the scalability of our method considerably.

2.3 Adaptive Estimation of Statistical Dependencies

While estimators such as graphical Lasso (Friedman et al., 2008; Meinshausen and Bühlmann,

2006) and CLIME (Cai et al., 2011) effectively use the same (soft/box) threshold parameter

λ, recent work on the Adaptive CLIME (Cai et al., 2016) estimator advocates using a dif-

ferent threshold parameter λij for different entries. Such a choice arguably leads to better

statistical properties of the estimator (Cai et al., 2016). Further, the necessary threshold

parameters themselves can be obtained in a data driven manner using a suitable estimator.
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2.3.1 ACLIME Estimator

We start by briefly reviewing the ACLIME estimator, the key optimization problems which

need to be solved. The following result (Cai et al., 2016) motivates the estimator:

Theorem 1. Let x1, · · · , xn ∼ Np(µ
∗, C∗) with log p = O(n1/3), and let Ω∗ be the cor-

responding precision matrix. Let C be the unbiased sample estimate of C∗ and let S =

(sij)1≤i,j≤p = CΩ∗ − Ip×p. Then

V ar(sij) =

{
n−1(1 + c∗iiω

∗
ii) for i = j

n−1c∗iiω
∗
jj for i 6= j ,

and for all δ ≥ 2,

P

{
|(CΩ∗ − Ip×p)i,j | ≤ δ

√
c∗iiω

∗
jj log p

n
,∀1 ≤ i, j ≤ p

}
≥ 1−O

(
(log p)−

1
2 p−

δ2

4
+1

)
. (2.2)

To use the adaptive bound in (2.2), one can use the sample estimate cii as a surrogate to

c∗ii. However, the bound also needs an estimate of ω∗jj , the diagonal estimates of the precision

matrix. The ACLIME estimator works in two stages: in the first stage, an estimate ω̆jj

for ω∗jj is computed; in the second stage, the estimate ω̆jj is used to adaptively estimate

Ω based on (2.2). In particular, in the first stage, each column of the precision matrix is

estimated (Cai et al., 2016) by solving:

ω̂1
.j = argmin

bj∈Rp
{‖bj‖1 : |Ĉbj − ej |∞ ≤ τn(cii ∨ cjj)× bjj , bjj > 0} , (2.3)

where Ĉ = C + 1
nIp×p, τn = δ

√
log p
n , δ ≥ 2, (cii ∨ cjj) = max(cii, cjj) and bjj is the j-th

element in bj . Then, the diagonal elements ω∗jj are estimated as:

ω̆jj = ω̂1
jjI

{
cjj ≤

√
n

log p

}
+

√
log p

n
I

{
cjj >

√
n

log p

}
. (2.4)

Given ω̆jj , in the second stage, ACLIME estimates Ω∗ by first solving the following

optimization problem to get a primitive estimate of the j-th column:

ω̃1
.j =argmin

bj∈Rp
{‖bj‖1 : |(Ĉbj − ej)i| ≤ τn

√
ciiω̆jj} . (2.5)

In the final step, ACLIME symmetrizes Ω̃1 = (ω̃1
ij) to obtain Ω̂ = (ω̂ij), the estimate of Ω∗:
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ω̂ij = ω̂ji = ω̃1
ijI{|ω̃1

ij | ≤ |ω̃1
ji|}+ ω̃1

jiI{|ω̃1
ij | > |ω̃1

ji|} . (2.6)

2.3.2 ACLIME-ADMM Algorithm

We now focus on developing efficient optimization algorithms for solving the two stages of

the ACLIME estimation, in particular the problems in (2.3) and (2.5). (Cai et al., 2016)

observes that the optimization problem can be decomposed into p independent LPs, one for

each column of Ω̂. We first introduce an inexact ADMM algorithm for solving the column-

specific LPs corresponding to each stage, where all computations are in closed form based

on elementwise operations and matrix multiplications. Later we generalize the algorithm

to solve column block LPs where the computations need more care since the LP for each

column is mildly different but has some shared structure which our algorithm uses. As the

experiments illustrate, the methods are efficient and scalable.

Stage 1: Estimating diagonal elements ωjj. We first focus on developing an approach

to solving (2.3), which yields the initial estimates of the diagonal elements ωjj of the pre-

cision matrix. We z-score the variables so that cjj = 1 for j = 1, . . . , p. As a result,

considering the constraint in (2.3), we note that τn(cii ∨ cjj) = τn. Hence the constraint in

(2.3) can be rewritten as:

−τnbjj1p ≤ Ĉbj − ej ≤ τnbjj1p , (2.7)

where 1p is the p dimensional vector with all entries being 1. Focusing on the right hand

side inequality in (2.7), we can rewrite it as:

Ĉupbj ≤ ej , (2.8)

where Ĉup = Ĉ−τn1peTj . Note that Ĉup is a rank-1 and sparse perturbation of Ĉ where only

column j, interacting with bjj , gets a constant τn subtracted from every entry. Introducing

non-negative variables uj ∈ Rp+, so that uj ≥ 0p, the p dimensional vector with all entries

being 0, the inequality constraint in (2.8) can be rewritten as an equality constraint:

Ĉupbj + uj = ej . (2.9)
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Similarly, focusing on the left hand side inequality of (2.7), we get

−Ĉdownbj ≤ −ej (2.10)

where Ĉdown = Ĉ + τn1pe
T
j . Introducing non-negative variables vj ∈ Rp+, so that vj ≥ 0p,

the inequality constraint in (2.10) can be rewritten as an equality constraint:

−Ĉdownbj + vj = −ej , (2.11)

Then, by combining (2.9) and (2.11), the constraint corresponding to (2.7) can be written

as: [
Ĉup

−Ĉdown

]
︸ ︷︷ ︸

Aj

bj +

[
Ip×p 0

0 Ip×p

]
︸ ︷︷ ︸

B

[
uj

vj

]
︸ ︷︷ ︸

rj

=

[
ej

−ej

]
︸ ︷︷ ︸

cj

. (2.12)

Then, the original problem in (2.3) can be written in a canonical form suitable for ADMM

as follows:

min
bj∈Rp,rj∈R2p

‖bj‖1 + 1R+(rj) s.t. Ajbj + rj = cj , (2.13)

where 1R2p
+

(·) is the indictor function over non-negative reals in R2p, i.e., 1R2p
+

(zj) = 0, if

zj ≥ 02p, and ∞ otherwise, and we have used the fact B = I2p×2p, the identity matrix.

The augmented Lagrangian of the optimization problem in (2.13) is :

L(bj , rj ,yj) = ‖bj‖1 + 1R2p
+

(rj) + ρ〈yj , Ajbj + rj − cj〉+
ρ

2
‖Ajbj + rj − cj‖22 , (2.14)

where yj ∈ R2p is the Lagrange multiplier vector. Based on the augmented Lagrangian, the

ADMM steps are:

bt+1
j = argmin

bj∈Rp
‖bj‖1 +

ρ

2
‖Ajbj + rtj − cj + ytj‖22 (2.15a)

rt+1
j = argmin

rj∈R2p

1R2p
+

(rj) +
ρ

2
‖Ajbt+1

j + rj − cj + ytj‖22 (2.15b)

yt+1
j = ytj +Ajb

t+1
j + rt+1

j − cj . (2.15c)

The update of bj in (2.15a) does not have a closed form solution because the ATj Aj term

makes the components of bj coupled. While one can use iterative approaches to solve the

problem, we decouple the bj by linearizing the quadratic term and adding a proximal term,
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a strategy used in inexact ADMM (Boyd et al., 2011):

bt+1
j = arg min

bj∈Rp
‖bj‖1 + η〈gtj ,bj〉+

η

2
‖bj − btj‖22 , (2.16)

where gtj = ρ
ηA

T
j (Ajb

t
j + rtj − cj + ytj) and η > 0. Inexact ADMM has been shown to

have the same rate of convergence as ADMM for general (non-smooth) convex optimization

problems (Wang and Banerjee, 2014). Now, based on the dual update in (2.15c), we have

gtj = ρ
ηA

T
j (2ytj − yt−1

j ). Then, (2.16) has the following closed form solution based on soft-

thresholding (Boyd et al., 2011)

bt+1
j = soft(btj − gtj ,

1

η
) . (2.17)

Updating rt+1
j in (2.15b) is simply the projection of elements of htj = cj − ytj − Ajb

t+1
j to

R2p
+ which can be done in closed form as rt+1

j = max(htj , 0), applied elementwise.

The solution of the above optimization for stage 1 gives ω̂1
·j in (2.3), from which only the

diagonal elements ω̂1
jj are of interest, which are then used to compute ω̆jj following (2.4).

Stage 2: Estimating Ω. In the second stage of ACLIME, the goal is to utilize the

ω̆jj estimated in stage 1, and solve the problem in (2.5) to obtain ω̃·j . Considering the

constraints in (2.5), since cii = 1 due to z-scoring, the constraints over bj ∈ Rp can be

simplified to

−τn
√
ω̆jj1p ≤ Ĉbj − ej ≤ τn

√
ω̆jj (2.18)

Then, following the same strategy as used for stage 1, the system of linear inequality

constraints can be rewritten as a system of equality constraints[
Ĉ

−Ĉ

]
︸ ︷︷ ︸

A

bj +

[
Ip×p 0

0 Ip×p

]
︸ ︷︷ ︸

B

[
uj

vj

]
︸ ︷︷ ︸

rj

=

[
ej + τn

√
ω̆jj1p

−ej + τn
√
ω̆jj1p

]
︸ ︷︷ ︸

cj

. (2.19)

where rj ∈ R2p
+ as before. Then, the original problem in (2.5) can be written in a canonical

form suitable for ADMM as follows:

min
bj∈Rp,zj∈R2p

‖bj‖1 + 1R+(zj) s.t. Abj + zj = cj . (2.20)

We note that the optimization problem in (2.13) is essentially the same as that in (2.20),

in fact simpler since A is the same for all j. One can use the same ADMM algorithm for
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stage 2, take advantage of the same structures in the matrices to speed up computations,

and also perform block updates which are going to be simpler since A is the same for all j.

Given that the structure of the optimization in stage 2 is simpler, one can also consider

an alternative route (Wang et al., 2013), which uses less variables and is arguably amenable

to block updates. Note that since cii = 1 due to z-scoring, the problem in (2.5) can be

posed as:

min
bj∈Rp

‖bj‖1 s.t. ‖Ĉbj − ej‖∞ ≤ λj (2.21)

where λj = τn
√
ω̆jj is a constant. Introducing zj ∈ Rp, the problem can be rewritten as

min
bj ,zj∈Rp

‖bj‖1 s.t. ‖zj − ej‖∞ ≤ λj , Ĉbj = zj . (2.22)

Note that the constraint on zj is a box constraint, on which efficient projection is possible.

Hence the box constraint can be handled inside the primal update for zj , without having

to convert the box constraint to a system of equality constraints. Thus, ignoring the box

constraint for now, the augmented Lagrangian is

L(bj , rj ,yj) = ‖bj‖1 + ρ〈yj , Ĉbj − zj〉+
ρ

2
‖Ĉbj − zj‖2 . (2.23)

The ADMM updates, which take the box constraint into account, are as follows

bt+1
j = argmin

bj∈Rp
‖bj‖1 +

ρ

2
‖Ĉbj − ztj + ytj‖2 (2.24a)

zt+1
j = argmin

‖zj−ej‖∞≤λj

ρ

2
‖Ĉbt+1

j − zj + ytj‖2 (2.24b)

yt+1
j = ytj + Ĉbt+1

j − zt+1
j . (2.24c)

Note that (2.24a) can be solved using an inexact update similar to (2.16). Further, we note

that the box-constrained quadratic problem in (2.24b) can be solved in closed form as

zt+1
j = box(Ĉbt+1

j + ytj , ej , λj) (2.25)

where for a,w ∈ Rp, λ ∈ R+

box(a,w, λ) =


wi + λ , if ai − wi > λ

ai , if |ai − wi| ≤ λ

wi − λ , if ai − wi < −λ .

(2.26)
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In the current setting, a = Ĉbt+1

j + ytj ,w = ej , and λ = λj .

The solution of the above optimization in stage 2 gives ω̃·j in (2.5). The final step is to

symmetrize the resulting precision matrix estimate as in (2.6).

2.3.3 Column-Block ACLIME-ADMM Algorithm

We propose an improvement to solve the two-stage ACLIME optimization in terms of

column blocks instead of column-by-column.The implementation for each step is either

element-wise parallel or utilizes suitable matrix multiplication, which improved the compu-

tational efficiency of the proposed algorithm. For stage one, we rewrite Ajbj as following:

Ajbj =

[
Ĉupbj

Ĉdownbj

]
=

[
Ĉx− τnbjj1p
−Ĉx− τnbjj1p

]
=

[
Ĉ

−Ĉ

]
bj − τnbjj12p . (2.27)

Since all Aj are transformed from Ĉ, the computation across columns can be shared, e.g.,

computing Ĉbj . Now we consider the column blocks, assumingX ∈ Rp×k denotes k columns

in Ω̂. Thus, the AX for a column block is defined as:

AX =

[
Ĉ

−Ĉ

]
X − 12p×kXdiag , (2.28)

where Xdiag ∈ Rk×k is a diagonal matrix with the corresponding diagonal elements in X

and 12p×k ∈ R2p×k is a matrix with all entries being 1. Therefore, the equality constraints

(2.12) for column block is AX + R = E, where R is the column block of corresponding rj

in (2.13) and E ∈ Rp×k denotes the same k columns in Ip×p.
Therefore, the optimization problem is rewritten as follows:

min
X∈Rp×k,R∈R2p×k

‖X‖1 + 1R2p×k
+

(R)

s.t. AX +R = Z .
(2.29)

Thus, the augmented Lagrangian of the above optimization problem is

Lρ = ‖X‖1 + 1R2p×k
+

(R) + ρ〈Y,AX +R− E〉+
ρ

2
‖AX −R− E‖22, (2.30)

where Y ∈ Rp×k is a scaled dual variable and ρ > 0. Similar to (2.24), inexact ADMM
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(a) Undirected Graph (b) Residuals (c) Accuracy

Figure 2.1: The results of 10-variable synthetic data from column-block ACLIME-ADMM.
(a) It is the true underlying undirected graph for the synthetic data, which illustrates
the dependencies among 10 variables. (b) The primal and dual residuals of two stages in
column-block ACLIME-ADMM are shown converging to 0 after 400 iterations when δ = 2.
(c) When parameter ρ in two stages are chosen in (0, 2], the accuracy for estimating the
non-zero entries in precision matrix are always 100% for the synthetic data.

yields the following iterates:

Xt+1 = argmin
X∈Rp×k

‖X‖1 + η〈V t, X〉+
η

2
‖X −Xt‖22 (2.31a)

Rt+1 = argmin
R∈R2p×k

1R2p×k
+

(R) +
ρ

2
‖AXt+1 +R− E + Y t‖22 (2.31b)

Y t+1 = Y t +AXt+1 +Rt+1 − E , (2.31c)

where V t = ρ
ηA

T (2Y t − Y t−1). Then (2.31a) has a closed form solution based on element-

wise soft-thresholding Xt+1 = soft(Xt − V t, 1
η ). The only problem left is how to compute

ATY in V t, which can be solved as

ATY =
[
Ĉ −Ĉ

] [Y1

Y2

]
−Wdiag , (2.32)

where Y1, Y2 ∈ Rp×k are respectively upper and lower half of Y and Wdiag = Wdiag1−Wdiag2.

Assume the k-column block matrix X contains (i + 1)-th column to (i + k)-th column in

B̂, then Wdiag1 is

Wdiag1 =


01

Dk×k

02

 , (2.33)

where 01 ∈ Ri×k and 02 ∈ R(p−i−k)×k are matrices with all zero entries. Dk×k ∈ Rk×k
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is a diagonal matrix block, in which the m-th diagonal element dm,m = τnY1

T
(m+1)1p and

Y1(m) is the m-th column of Y1 in (2.32). Wdiag2 has the same format based on Y2. The

update of Rt+1 can be done in closed form as Rt+1 = max(Ht, 0), applied elementwise,

where Ht = E − Y t −AXt+1.

For stage two, the problems for different columns only differ in the threshold λj in

(2.24a), therefore the corresponding update in (2.25) can be done in element-wise parallel

manner for column blocks.

Stability of Column-Block ACLIME-ADMM The inexact ADMM algorithm in-

troduced two parameters, i.e., the scaled stepsize ρ and linearization parameter η. In (Wang

and Banerjee, 2014), it is proved that the value of η depends on the convexity of the ob-

jective function. The experimental results for synthetic datasets show that the proposed

algorithm is stable within the reasonable range of ρ. For a fixed η, the converge rate can be

guaranteed if η ≥ ρλ2
max(C), where λmax(C) is the largest eigenvalue of covariance matrix.

We validate the stability with a 10-variable synthetic dataset with 1500 samples, in which

the variables follow multivariate Gaussian distribution. The underlying undirected graph

is shown in Fig. 2.1(a). Fig. 2.1(b) and Fig. 2.1(c) show that the primal and dual residual

converges to 0 and the estimated matrix can always detect the non-zero elements (i.e., the

undirected edge in graph) correctly when ρ for both stages are chosen in (0, 2]. The pro-

posed column-block ACLIME-ADMM can be achieved based on the parallel processing for

separate column blocks, which leads to the high-efficiency and scalability. The estimation

of precision matrix for large scale datasets is solvable with limited working memory.

2.4 PC Stable and Temporal Models

We use a variation of the classic PC algorithm as baseline algorithm for comparison. This

section provides details of that algorithm and explains how structure learning algorithms

can be used to derive temporal models.

2.4.1 PC Stable Algorithm

One of the best-known algorithms for structure learning is the well-known PC algorithm

(Spirtes and Glymour, 1991). Colombo and Maathuis (Colombo and Maathuis, 2014) de-

veloped an improved version of the PC algorithm, called PC stable. PC stable is order-

independent, more robust and easy to parallelize, and is used in this work. PC stable has

only one parameter to choose, the significance value α for the statistical independence tests.

We used α = 0.05 for the runs with synthetic data and α = 0.1 for the runs with observed
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data. There is generally little difference in the output of the PC stable algorithm for varying

values of α (even up to α = 0.5), so such a small change has no relevance for the results.

2.4.2 From Static to Temporal Model

Structure learning methods, including PC stable, CLIME-ADMM and ACLIME-ADMM,

treat their input data as static data, i.e. the order of the samples does not matter. Most

data in the geoscience, however, comes from temporal processes and the order of, and tem-

poral distance between, samples is crucial for their interpretation. We can adapt structure

learning algorithms to incorporate that information and to capture those temporal relation-

ships explicitly using the approach first proposed by Chu et al. (Chu et al., 2005). The key

idea is to introduce lagged variables into the model that capture the relationship between

variables at different instances in time. The data of those lagged variables is populated from

the original data and encapsulates the temporal information. In effect, we can thus turn a

data set with q variables and temporal information into a data set with p = (q×T ) variables,

where T is the number of lagged copies for each variable. The new dataset can be treated

as a static data set, and thus can be handled by standard structure learning algorithms.

Once the static model with lagged variables is solved, the output can be converted to model

the original variable set but complete with temporal relationships. The price to pay for this

temporal model is high complexity, because rather than dealing with q variables, we deal

with p = (q × T ). This is another reason why we often encounter very high-dimensional

problems in the geoscience. There are some associated initialization issues, but those can

easily be overcome (Ebert-Uphoff and Deng, 2014). We adopt this approach for all algo-

rithms used here. For the synthetic datasets (see Section 2.6), we have q = 400, T = 20, so

that p = 8, 000 with n = 5, 200 samples; for the real dataset, q = 800, T = 15, so p = 12, 000

with n = 4, 500 samples. Note that since ACLIME-ADMM works with p2 edges in each

stage, the optimization for synthetic data involves 64 million variables and that for the real

data involves 144 million variables.

2.5 Synthetic and Observed Datasets

2.5.1 Simulated Advection-Diffusion Processes

As a testbed for structure learning we created a simulation of a two-dimensional advection-

diffusion process. This testbed generates synthetic data sets with known diffusion and
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advection properties, as benchmarks to test and compare different structure learning al-

gorithms. We selected advection (e.g. transfer of heat through movement of a fluid) and

diffusion (e.g. spread of heat in a resting fluid) processes, because in many geoscience

applications they represent the two most dominant processes.

The two-dimensional advection-diffusion process is described by the following partial

differential equation (PDE):

∂f

∂t
+

(
Vx
∂f

∂x
+ Vy

∂f

∂y

)
=

(
κx
∂2f

∂x2
+ κy

∂2f

∂y2

)
, (2.34)

where f(x, y, t) can be interpreted as the temperature of a fluid at location (x, y) over time

t, κx and κy are the diffusion coefficients in x and y-direction, respectively, and V (x, y) is

the velocity vector field that describes the advection velocity at any point (x, y). For the

results described here diffusion is symmetric, κx = κy = κ. We use a square grid with

periodic boundary conditions, i.e. we apply a wrap-around in both x and y direction. To

ensure that the connectivity between the grid points is encoded in the data, we send one

signal to each grid point (one at a time) to disturb the system from equilibrium, let the

signal travel to other points and dissipate, then repeat the process with the next grid point.

Finally, we create three distinct scenarios for testing by choosing three different advection

fields. In Scenario 1 (Fig. 2.2(a)) the advection field is circular and the magnitude of the

velocity is proportional to the distance of the grid point from the grid center. Note that

the velocity direction near the boundaries is discontinuous because of the wrap-around at

the boundaries. Scenario 1 tests the effect of discontinuity. In Scenario 2 (Fig. 2.2(b))

the advection velocity is non-zero only in a ring shape. Inside and outside of that ring,

advection velocities are zero, i.e., in those areas only diffusion is present. Scenario 2 can

thus be used to test the algorithms for larger areas with only diffusion. In Scenario 3 (Fig.

2.2(c)) there are two crossing currents. One flows from left to right, the other from bottom

to top. Advection velocities outside the main currents are small, but not zero.

2.5.2 Observed Data

We use data from the NCEP-NCAR reanalysis project (Kalnay et al., 1996a). The NCEP-

NCAR reanalysis project provides data on a global grid for a variety of atmospheric variables

and is derived from observations, but also incorporates the output of numerical weather

predictions to improve the quality of the data. We use daily geopotential height data at

500mb, which denotes for any location the height at which the air pressure is 500mb. Data

from the years 1950-2000 is used here, and, in order to focus on the dynamics of only one



23
season only daily data from the boreal winter months (Dec, Jan, Feb) are used. Since

irregularities in the grid, such as varying cell size, are known to create artifacts in the

results of structure learning (Ebert-Uphoff and Deng, 2014), the data is interpolated on

an 800-point grid of nearly equally distributed points, called Fekete points, on the sphere

(Bendito et al., 2007).

(a) Scenario 1: Circular flow (b) Scenario 2: Ring flow (c) Scenario 3: Cross current

Figure 2.2: Advection Velocity Fields for the three scenarios, which can be interpreted as
velocity of fluid flow at each point of square grid.

2.6 Experimental Results

In this section we compare results from the PC stable, CLIME-ADMM and ACLIME-

ADMM methods for synthetic and real world data. We first discuss the experimental setup

and implementation details.

2.6.1 Interpretation and Error Measures

The result of each structure learning algorithm is an adjacency matrix that describes which

nodes in the graph are connected. Since we are learning a temporal model, each node in

the graph represents a location (grid point) coupled with a specific time stamp. Thus each

connection from the adjacency matrix represents a connection between two physical loca-

tions along with the two time stamps, so we can deduct the time it took to travel from

potential source to potential effect. Connections with identical time stamps are interpreted

as undirected edges. The remaining edges are directed, going from the location with the

earlier time stamp to the one with the later time stamp. While it might be tempting to

try to develop error measures directly for those edges (or for the corresponding adjacency

matrices), those would be misleading. The reason is that physical connections do not have
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a unique representation in this space. For example, a signal that travels one grid point in

one time step can be represented by a connection spanning one grid point distance in one

time step, or by a connection spanning two grid point distances in two time steps, or both.

More generally, there are many ways in which signal propagation can be represented in this

framework, and methods should not be punished for using different, legitimate representa-

tions. The way to resolve this problem is to focus on physically meaningful quantities, since

those are by definition unique. In this case a natural choice is to calculate an estimated

velocity field, i.e. for each grid point we estimate a velocity vector by taking the average of

all directed edges incident at the grid point, with each edge normalized by its travel time,

T , which is the difference between the time stamps of its two end points. (We include both

incoming and outgoing edges at each grid point to increase the robustness of the estimates.)

This results in an estimated velocity vector at each grid point, which then can be compared

directly to the advection velocities shown in Fig. 2.2.

Even if the structure learning method was perfect, we could not expect an exact match

between the two fields—because of simulation errors and the fact that the advection field

does not model the diffusion effects—but the results should be very similar to each other.

Thus this is the best ground truth we can get for such a physical set-up.

Note that we can provide error measures only for the synthetic data, since the observed

data does not have any quantitative ground truth. For the observed data we also generate

velocity plots and compare them (visually) to domain knowledge in the geoscience.

We use the following error measures. Numbering the grid points from i = 1 to 400, let

Ladv
i , αadv

i denote the length (magnitude) and angle of the advection velocity field at point

i. L̂i, α̂i denote the corresponding velocity estimates obtained through structure learning.

Then ∆αi = abs(αadv
i − α̂i) denotes the absolute angle error and ∆Li = abs(Ladv

i − L̂i)
denotes the absolute length error at Point i. Note that if either the advection field or the

approximation has zero velocity at a grid point, then length ∆Li is still well defined, while

angle ∆αi is undefined. Note that if the velocity is zero in both advection and estimated

velocity, we set ∆αi = 0.

We report the following error measures:

• RMSE-Length: The root mean square error of ∆Li;

• RMSE-Angle: The root mean square error of ∆αi, taking only points into account for

which ∆αi is well defined.

• PPDL15: The percentage of points for which ∆αi≤15 degrees, out of all points for

which ∆αi is well-defined.
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Figure 2.3: Velocity estimates from three algorithms for Scenario 4.

Ideally, we want both RMSE measures to be small and the percentage value PPDL15 as close

as possible to 100. From a geoscience viewpoint, the direction of connections is generally

more important than the exact speed of signal travel, thus the angle-related measures are

more important than the length-related measures. To highlight the angle accuracy in the

velocity plots for synthetic data, arrows in these plots are colored based on their angle

deviation, ∆αi. The color code is as follows: blue for deviation of [0, 15] degrees, black for

(15, 30] degrees, yellow for (30, 45] degrees, and red for (45, 180] degrees. Furthermore, if

the input velocity is zero, and the output velocity is non-zero, then the deviation angle,

and thus color, is undefined. In that case a small length of the output vector indicates a

better match, so colors are chosen as follows in that case: blue for length of [0, 0.1], black

for length of (0.1, 0.5], and red for a length of (0.5,∞).

2.6.2 Results for Synthetic Data

Fig. 2.3 shows the results for Scenario 4 for all three algorithms (compare to Fig. 2.2(b)).

CLIME-ADMM fails miserably for the high-speed scenario (Fig. 2.3(b)), in fact it does not

find a single connection, while both PC stable and ACLIME-ADMM provide good results

(Fig. 2.3(a,c)). This failure was a primary reason for developing ACLIME-ADMM, namely

to provide a scalable algorithm that can handle high-speed connections.

For the remaining scenarios CLIME-ADMM performed similarly to ACLIME-ADMM,

thus we now focus on the comparison of ACLIME-ADMM and PC stable. Table 2.1 shows

the error measures for PC stable and ACLIME-ADMM for four scenarios and Fig. 2.4 shows

the results for Scenarios 1-3 from PC stable and ACLIME-ADMM. Both algorithms capture

the basic shape of the corresponding velocity fields in Fig. 2.2. However, there are some
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Table 2.1: Error measures of velocity estimates for synthetic data.

Scenario Method PPDL15 RMSE-Angle RMSE-Length

Circular flow
PC stable 76 27.0671 0.8206

ACLIME-ADMM 84 25.6995 0.7994

Ring flow
PC stable 90 11.2116 0.6241

ACLIME-ADMM 83 7.1998 0.6124

Cross Current
PC stable 65.5 35.7746 0.7165

ACLIME-ADMM 100 5.1364 0.7754

Fast Ring Flow
PC stable 49 59.8538 1.5234

ACLIME-ADMM 30 50.0490 1.7871

differences. (1) ACLIME-ADMM tends to be more sensitive. Thus it is better than PC

stable in identifying velocities of small magnitude (see center of Fig. 2.4(d)). (2) PC stable

is better at handling contradicting edge directions near the boundary (see near the four

corners in Fig. 2.4). (3) PC stable struggles with edges that do not align with the vertical

or horizontal direction of the grid, i.e. diagonal directions tend to be distorted (strongest

effect at center of Fig. 2.4(c), but the rings in Fig. 2.4(a, b) also appear more ”boxy”).

ACLIME-ADMM does not show this problem, probably because of its higher sensitivity,

i.e. the velocity estimates are calculated from a larger number of edges. Overall PC stable

and ACLIME-ADMM both detect the primary patterns in the synthetic data, but ACLIME

has generally higher accuracy than PC stable, as shown in Table 2.1, and is better at picking

up weaker signals.

2.6.3 Results for Observed Data

Fig. 2.5(a-d) shows the velocities obtained from PC stable and ACLIME-ADMM for the

dataset of observed daily geopotential height data for the Northern and Southern hemi-

sphere. As a reference, we present the well known wind flow patterns in Fig. 2.6(a), as well

as wind patterns at 500mb height in Fig. 2.6(b). The estimates are obtained in a similar

way as for the synthetic data, but here only outgoing edges are considered at each node.

Color indicates connectivity of the grid points: for each grid point we count the number of

directed edges incident at that point, i.e. the number of edges contributing to its velocity

estimate. This number indicates strength of connectivity at that point.

Firstly, ACLIME-ADMM shows even higher sensitivity for the observed data than for

the synthetic data, resulting in a much larger number of arrows and higher connectivity than

PC stable. Secondly, the results from both algorithms show information transfer mostly

consistent with well known wind directions. Namely, the spatial distribution of winds at
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(a) PC stable - Scenario 1
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(b) PC stable - Scenario 2
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(c) PC stable - Scenario 3
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(d) ACLIME - Scenario 1
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(e) ACLIME - Scenario 2
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(f) ACLIME - Scenario 3

Figure 2.4: Velocity estimates from PC stable for Scenarios 1, 2 and 3 are decent, but some
directions are distorted. Velocity estimates from ACLIME-ADMM for Scenarios 1, 2 and 3
are more accurate than PC stable.

500mb is such that easterlies (winds blowing from east to west) dominate the tropical bands

(15S-15N), while westerlies (winds blowing from west to east) dominate mid latitudes (30N-

60N), and another band of weak easterlies are typically seen in the polar region (Fig. 2.6(f)).

Both algorithms capture the two major bands of easterlies and westerlies. However, the

results from ACLIME-ADMM additionally detect very strong information flow near the

equator, which cannot be readily explained by the weak easterlies seen at 500mb. We

are currently exploring alternative explanations, such as these edges maybe being tied to

weather features of similar lifecycles occurring simultaneously at different locations, etc.

2.7 Conclusions

The main contribution of this chapter is a new algorithm, ACLIME-ADMM, which is suit-

able for high-dimensional structure learning and for small sample sizes. The work was

motivated by geoscience applications, primarily the use of structure learning to identify in-

teractions between different locations around the globe. PC stable was previously used for
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Figure 2.5: Velocity estimates in Northern ((a) and (b)) and Southern ((c) and (d)) Hemi-
sphere.

(a) Circulation (b) Wind at 500mb

Figure 2.6: Atmospheric wind circulation: (a) global circulation patterns and surface winds;
and (b) wind at 500 mb height (yearly average).

this application and is used here for comparison. PC stable gives decent, stable results, but

is currently limited in the number of variables it can handle (about 100,000), which is not

sufficient for many high-dimensional geoscience applications extending over both space and

time. CLIME-ADMM, which promises to be much more scalable (already used for 1,000,000

variables for other applications), was applied for the first time to this application. It per-

formed well for most scenarios, but failed miserably for the high speed signals (Scenario

4), where PC stable still gave good results. This motivated the development of the new

algorithm, ACLIME-ADMM, which builds on CLIME-ADMM, but adjusts to local prop-

erties of the data. ACLIME-ADMM is much more sensitive than PC stable, thus produces

denser plots, and is able to identify weaker signals. For the synthetic data ACLIME-ADMM
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provided the best overall results, including good results for the high-speed scenario. For

observed data, both algorithms detect the strong easterlies and westerlies bands. Further-

more, ACLIME-ADMM yielded new strong edges near the equator that still need to be

traced back to a specific physical mechanism. Clearly, more work needs to be done in order

to fully understand the differences between the results obtained from CLIME-ADMM and

PC stable. However, ACLIME-ADMM was shown to be a very promising candidate for

structure learning in many climate science applications.



Chapter 3

Interpretable Predictive Modeling

for Climate Variables with

Weighted Lasso

3.1 Introduction

Over the past decade climate datasets with improved spatial resolutions have become avail-

able. While such datasets come from a mix of real observations and physics based models,

recent years have seen considerable interest in applying machine learning techniques for

predictive modeling of climate variables of interest. Such models have the potential to aid a

better understanding of the impact of climate change and attribution of observed events as

well as guide decision/policy making in a variety of domains such as agricultural planning,

water resource management, and extreme weather events (O’Brien et al., 2006).

We consider one such problem in climate science of identifying predictive relationships

between ocean sea surface temperature (SST) and land temperature (Steinhaeuser et al.,

2011a). Recent work has shown sparse modeling techniques like Lasso (Chatterjee et al.,

2012) tend to better capture predictive relationships between SST and land climate com-

pared to more traditional methods like principal component regression (PCR) (Francis and

Renwick, 1998), shallow neural networks (Steinhaeuser et al., 2011b), etc. From a climate

science perspective, parsimony in variable selection leads to more interpretable models help-

ing climate scientists gain a better understanding of the underlying relationships between

climate variables. Still, there are difficulties in explaining the relationships due to the vari-

able selection inconsistency of Lasso and the high spatial correlation among SST variables.

30
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Inspired by the adaptive Lasso (Zou, 2006), we propose a weighted `1 regularized model

suitable for spatial problems since it encourages the estimator to pick spatially contiguous

SST covariates. The weighted `1 regularizer penalizes different components of regression co-

efficients θ differently and is mathematically defined by R(θ) =
∑p

i=1wi|θi|, where wi is the

weight for component i. Lower the weight, lower is the penalization on the corresponding

covariates and consequently more are the chances they will be nonzero. Note that, adaptive

Lasso is weighted Lasso, where the weights are chosen to be inversely proportional to the

estimated coefficients from estimator like ordinary least squares (OLS). For the problem

we consider, we propose the weights on ocean locations are directly proportional to their

distance from the land location thus penalizing faraway ocean regions more, which is con-

sistent with domain knowledge in climate science. We show that the weighted Lasso, in

contrast to Lasso, gives more interpretable results which conform to the observations of

nearby ocean locations having the most effect on land temperature.

We perform extensive comparison of the weighted Lasso with baselines on data from 3

different Earth System Models (ESMs) (Taylor et al., 2012). First, comparisons between

weighted Lasso and Lasso shows that they achieve similar predictive performance, but

weighted Lasso is considerably more interpretable in terms of variable selection. Second,

somewhat surprisingly, we illustrate that weighted Lasso persistently outperforms Deep nets

which form the state-of-the-art in many other application areas (He et al., 2016; Krizhevsky

et al., 2012b; LeCun et al., 2015); weighted Lasso is also illustrated to have superior per-

formance over gradient boosted trees (Chen and Guestrin, 2016) and PCR (Jolliffe, 2011).

We also present a detailed analysis of the poor performance of Deep nets and report results

on a variety of settings such as number of layers, number of hidden units, mini-batch size,

regularization type, etc. The key factor limiting the performance is sample size. Deep nets

overfit the training set leading to poor validation/test performance. The results emphasize

the need for caution and further work on Deep nets for small sample (scientific) problems.

Our main contributions are as follows:

1. We suggest the weighted Lasso estimator, which incorporates domain knowledge for

finding relationships in spatial data. We also derive non-asymptotic parameter esti-

mation error bounds for the weighted Lasso estimator.

2. We show that weighted Lasso achieves high prediction accuracy and consistent variable

selection for land climate prediction using SST compared to other latest state-of-the-

art machine learning methods like Deep nets and gradient boosted trees.

3. We perform extensive experiments with Deep nets and show that Deep nets easily
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overfit the training data without sufficient samples.

Organization of the chapter: We start with a discussion on related work. We then

give finite sample estimation error bounds for weighted Lasso. We subsequently present

experimental results comparing the weighted Lasso with baseline methods along with in-

depth results on Deep nets.

3.2 Related Work

We briefly review the statistical models used in the climate science to discover predictive

relationships between climate variables. Most statistical models perform some form of

dimensionality reduction due to the large spatial datasets and relatively fewer data samples.

A popular method is principal component regression (PCR) (Olivieri, 2018), which has been

used for temperature and precipitation prediction in New Zealand (Francis and Renwick,

1998). In (Hsieh and Tang, 1998), principal component analysis (PCA) is used to compress

large spatial fields followed by fitting a neural network on the compressed dataset. In

(Steinhaeuser et al., 2011a) clustering is used for dimension reduction followed by various

regression methods, such as linear regression, support vector regression, regression trees, to

predict land temperature and precipitation from global SST field. In contrast (Chatterjee

et al., 2012) model the same problem in (Steinhaeuser et al., 2011a) as a high-dimensional

sparse regression problem where the land climate is the dependent variable, SST field are the

independent variables and a sparsity promoting regularizer captures the constraint that land

temperature is influenced by only a few ocean locations. More recently a spectral nonlinear

dimensionality reduction method is used in (DelSole and Banerjee, 2017) to capture the

relationship between summer Texas area temperature and Pacific SST.

Geostatistical methods, like kriging (Goovaerts, 1999) and its variations have been ap-

plied for spatial interpolation of climate variables (Aalto et al., 2013). However, such meth-

ods usually only perform well within a defined local neighborhood (Walter et al., 2001).

Morevover the success of such methods relies on proper choice of kernels and hyperparam-

eters which is statistically and computationally challenging in high-dimensional datasets.

There is increasing interest in exploring the application of Deep nets in climate appli-

cations inspired by their success in domains like image processing (He et al., 2016), speech

recognition (LeCun et al., 2015), etc. Recent work explore the use of Deep nets for pre-

diction of the Oceanic Niño Index (ONI) (McDermott and Wikle, 2017) and for statistical

downscaling of climate variables (Vandal et al., 2017), although there is currently lacking

an understanding or comprehensive study on the generalization performance of Deep nets
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on small sample size datasets routinely found in climate science applications.

3.3 Estimation Error Bound for Weighted Lasso

For land climate prediction using SST, the spatial information can be considered while

designing the predictive models. Since land temperature is known to be mostly influenced

by nearby ocean locations, we propose a modification of the weighted `1 regularizer used

in weighted Lasso. It penalizes differently for temperature at each ocean location based on

their distance from land target region.

In this section, we provide the non-asymptotic estimation error bound for the following

weighted Lasso estimator in a general setting,

θ̂ = argminθ∈Rp
1

2n
‖y −Xθ‖22 + λ

p∑
i=1

wi |θi| (3.1)

where, for our application, y ∈ Rn is the land temperature, X ∈ Rn×p are SST at p ocean

locations, θ ∈ Rp are regression coefficients, θi is the ith coefficient in θ, wi is the positive

weight corresponding to θi, and λ is penalty parameter. The weights can be assigned in

a data-dependent way or chosen intelligently using prior knowledge. For example, in our

application, the weights wi, 1 ≤ i ≤ p are assigned to be proportional to the distance of

the ocean location from the land location.

The weighted Lasso estimator is equivalent to the adaptive Lasso estimator (Zou, 2006),

except for the procedure used to define the weights wi, 1 ≤ i ≤ p. While prior work has

focused on analysis of the adaptive Lasso estimator in the asymptotic setting (Huang et al.,

2008; Zou, 2006), we derive results for the weighted Lasso estimator in the non-asymptotic

setting. The results can also be suitably extended to the adaptive Lasso estimator.

Assumptions:Consider data generated according to the linear model yi = 〈xi, θ∗〉+εi, 1 ≤
i ≤ n and θ∗ is estimated using the weighted Lasso estimator. The rows of the design matrix

X ∈ Rn×p are independent sub-Gaussian random vectors with sub-Gaussian norm bounded

by L and covariance matrix Σ = E[xix
T
i ]. The noise εi ∈ R, 1 ≤ i ≤ n is mean-zero i.i.d.

sub-gaussian noise with sub-Gaussian norm less than 1. Assume the following,

1. The true parameter θ∗ is s-sparse. Let w↑ denote the weight vector with elements in

ascending order. We assume that the weights corresponding to the s non-zero elements in θ∗

are among the smallest m weights w↑1:m in w. Also, let θ̂ = θ∗+ ∆ = θ∗+M(∆) +M⊥(∆),

where ∆ = θ̂ − θ∗ is the error vector, M is the subspace, to which the m elements in θ∗

corresponding to the weights w↑1:m belongs, and M⊥ is the orthogonal subspace.
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2. When penalty parameter λ satisfies

λ ≥ c′ ∗max

{ √
m

√
n‖w↑1:m‖2

,

√
log p√
nw̃min

}
, (3.2)

where c′ > 0 is a constant,and w̃min is the minimum element in M⊥(w↑), the error set is

Er = {∆ ∈ Rp|R(M⊥(∆)) ≤ β‖w↑1:m‖2‖M(∆)‖2} , (3.3)

where β > 1 is a constant and R(θ) =
∑p

i=1wi|θi|. The restricted eigenvalue (RE) condition

(Bickel et al., 2009) is assumed to be satisfied.

Theorem 2. Under the above assumptions, the following bound holds on the error vector

∆ = θ̂ − θ∗ with high probability for some positive constant c,

‖∆‖2 ≤
c√
n

(
√
m+

‖w↑1:m‖2
√

log p

w̃min

)
. (3.4)

Remark 1. For Lasso wi = 1, 1 ≤ i ≤ p. Hence in the context of the above result we

recover the non-asymptotic estimation error of Lasso (Bickel et al., 2009; Chandrasekaran

et al., 2012; Negahban et al., 2012) by substituting m = s, ‖w↑1:m‖2 =
√
s and w̃min = 1.

Remark 2. If the s lowest weights in w↑ correspond to the non-zero weights in θ∗ then we

note that m = s and ‖w↑1:s‖2/w̃min ≤
√
s thus giving an improvement over the corresponding

bound for Lasso.

Remark 3. If we end up assigning the largest weights to the non-zero elements in θ∗ then

m = p and we recover the bound ‖∆‖2 ≤
√
p/n which is equivalent to performing ordinary

least squares on the dataset.

The weighted Lasso problem can be numerically optimized by converting it to a Lasso

problem by rescaling the data with the weights (Zou, 2006).

3.4 Land Temperature Prediction

We analyze relationships between land temperature and SST in Earth system model (ESM)

data. ESMs are numerical models representing physical processes in the ocean, cryosphere
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and land surface with data generated using simulations with different initial conditions

(Pachauri et al., 2014; Taylor et al., 2012).

We use data from the historical runs of 3 ESMs (see Table 3.1) included as part of

the core set of experiments in CMIP5 (Taylor et al., 2012). The historical runs of CMIP5

ESMs try to replicate observed climate conditions from 1850-2005 closely, capturing effects

from changes in atmospheric CO2 due to both anthropogenic and volcanic influences, solar

forcing, land use, etc. Each monthly ESM dataset has SST data over a 2.5◦×2.5◦ resolution

grid of earth and corresponding monthly surface temperature over land locations. In effect

for each ESM we have 1872 data points with 5881 ocean locations. Brazil, Peru, and South-

east Asia are selected as the 3 land target regions to study in this work as they are known

to have diverse geological properties (Steinhaeuser et al., 2011b).

3.4.1 Experiment Setting

We divide the data into 10 training sets by applying a moving window of 100 years with

a stride of 5 years. The 10 years subsequent to the end of the training set are used for

testing. We deseasonalize each training-test set combination separately by z-scoring each

month data with the corresponding monthly mean and standard deviation. Note that both

train and test sets are z-scored using monthly means and standard deviations computed

from the training set. We compare the performance of weighted Lasso against the following

baseline methods:

1. `1 penalized least squares (Lasso) (Tibshirani, 1996): This is equivalent to setting all

weights in weighted Lasso equal to 1.

2. Principal Component Regression (PCR) (Jolliffe, 2011): A popular method in climate

science where principal components computed from training data are considered as

covariates for ordinary least square regression on response variables.

Table 3.1: Description of the Earth System Models used in the experiments.

Model name Origin References

CMCC-CESM
Centro Euro-Mediterraneo per I
Cambiamenti Climatici (Italy)

(Fogli et al., 2009),

(Vichi et al., 2011)

INM-CM4 Institute for Numerical Mathematics (Russia) (Volodin et al., 2010)

MIROC5-r1i1p1

Atmosphere and Ocean Research Institute,
National Institute for Environmental Studies,

Japan Agency for Marine-Earth
Science and Technology,

University of Tokyo (Japan)

(Watanabe et al.,
2010)
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3. Gradient Boosted Trees (GBT) (Chen and Guestrin, 2016): An ensemble method

which uses decision tree as its weak learner. GBTs are implemented in Python using

xgboost package (Chen and Guestrin, 2016).

4. Deep neural networks (Deep nets) (LeCun et al., 2015): Multilayer perceptrons with

many hidden layers and CNNs. All networks are implemented in Python using Keras

package (Chollet, 2015).

Table 3.2: Comparison of RMSE on test sets for land climate prediction of Brazil, Peru
and South-east Asia using weighted Lasso and other baseline methods. Average RMSE ±
standard error on test sets are shown. The minimum average RMSE for each target region
is shown as bold. Weighted Lasso achieves overall best performance. Furthermore, linear
model weighted Lasso and Lasso both outperform Deep nets and GBT.

Model Location Weighted Lasso Lasso PCR Deep nets GBT

C
M

C
C

-C
E

S
M Brazil 0.6580± 0.0344 0.6681± 0.0317 0.8629± 0.0654 0.8151± 0.0364 0.7354± 0.0377

Peru 0.6901± 0.0269 0.7120± 0.0214 0.8541± 0.0560 0.8476± 0.0283 0.7400± 0.0251

SE Asia 0.5217± 0.0103 0.5284± 0.0109 0.7252± 0.0544 0.7424± 0.0153 0.5774± 0.0171

IN
M

-C
M

4 Brazil 0.7641± 0.0173 0.7753± 0.0161 1.2030± 0.0637 0.9144± 0.0304 0.8707± 0.0193

Peru 0.7127± 0.0144 0.7202± 0.0101 1.1879± 0.0654 0.8785± 0.0228 0.8164± 0.0184

SE Asia 0.7719± 0.0171 0.7742± 0.0174 1.2751± 0.0645 0.9986± 0.0290 0.8970± 0.0218

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.5395± 0.0258 0.5614± 0.0266 0.7214± 0.0566 0.6822± 0.0263 0.6005± 0.0279

Peru 0.5441± 0.0331 0.5764± 0.0350 0.7654± 0.0581 0.6979± 0.0227 0.5953± 0.0262

SE Asia 0.5092± 0.0154 0.5308± 0.0164 0.8139± 0.0712 0.7500± 0.0187 0.5758± 0.0098

Table 3.3: Comparison of R2 on test sets for land climate prediction of Brazil, Peru and
South-east Asia using weighted Lasso and other baseline methods. Average R2 ± standard
error on test sets is shown. The maximum average R2 for each target region is shown as
bold. Weighted Lasso achieves overall best predictive performance. Furthermore, linear
model weighted Lasso and Lasso both outperform Deep nets and GBT.

Model Location Weighted Lasso Lasso PCR Deep nets GBT

C
M

C
C

-C
E

S
M Brazil 0.4887± 0.0555 0.4697± 0.0595 0.1372± 0.0982 0.2292± 0.0633 0.3706± 0.0587

Peru 0.4044± 0.0357 0.3655± 0.0333 0.1004± 0.0704 0.1018± 0.0476 0.3168± 0.0336

SE Asia 0.6963± 0.0205 0.6901± 0.0188 0.4086± 0.0763 0.3763± 0.0509 0.6312± 0.0222

IN
M

-C
M

4 Brazil 0.1855± 0.0342 0.1616± 0.0340 −1.098± 0.2387 −0.1650± 0.0639 −0.0629± 0.0550

Peru 0.3457± 0.0324 0.3334± 0.0258 −0.8853± 0.2447 −0.0034± 0.0680 0.1372± 0.0498

SE Asia 0.3131± 0.0262 0.3091± 0.0266 −0.8827± 0.1583 −0.1498± 0.0568 0.0727± 0.0372

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.7615± 0.0369 0.7413± 0.0390 0.5878± 0.0616 0.6263± 0.0423 0.7146± 0.0330

Peru 0.7609± 0.0300 0.7331± 0.0326 0.5120± 0.0843 0.5964± 0.0503 0.7186± 0.0256

SE Asia 0.7436± 0.0298 0.7224± 0.0309 0.2949± 0.1448 0.4584± 0.0409 0.6794± 0.0260

The models are evaluated quantitatively on test sets based on two metrics: (a) the root
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mean square error (RMSE), defined as RMSE =

√∑n
i=1(ŷi − yi)2/n; (b) the coefficient

of the determination (R2), given by R2 = 1 −
∑n

i=1(yi − ŷi)
2/
∑n

i=1(yi − ȳ)2, where for

the i-th data point, yi is the true normalized land temperature for a target region and ŷi

is the corresponding estimated value. ȳ is the average value for all n data points. The

hyperparameters for weighted Lasso (regularization parameter), Lasso (regularization pa-

rameter), PCR (number of principal components for regression) and GBT (learning rate

and maximum depth of tree) are selected by validation set. Specifically, in each training

set we select the first 80 years to train the model and use the next 20 years as a validation

set. The hyperparameters giving best performance on the validation set are chosen. We

then refit the predictive models on the full training set using the chosen hyperparameters.

For GBT, we fix the number of trees to 100, and perform a grid-search to find the optimal

learning rate and maximum depth of tree. For all models the optimal value of learning rate

on the validation set varies between 0.05 and 0.07 and the optimal maximum tree depth is

found to be 3. For Deep nets we experiment with various combinations of: (a) the number

of hidden layers, (b) the number of hidden units in each layer, (c) different mini-batch size

when training using the Adam optimization algorithm (Kingma and Ba, 2014), and (d) `1,

`2 and no regularization. Each network uses Relu (Nair and Hinton, 2010) as activation

function. The maximum number of epochs for training is set as 150. We also use early-

stopping by examining validation set error. In almost all cases, an 8 hidden layer Deep nets

with `1 regularization on the weights gave the best performance on the validation set. We

report results with mini batch size set to 32. We also run experiments with transfer learning

(Yosinski et al., 2014) for Convolutional Neural Networks (CNN) (Lecun et al., 1998) by

training only the last two layers of the Resnet-50 (He et al., 2016) which is pre-trained

on ImageNet (Russakovsky et al., 2015). Resnet-50 is found to have worse performance in

comparison to Deep nets and hence, in the interest of brevity and space, we exclude it from

the comparison. More details on the performance of Resnet-50 can be found in Table 3.4.

Table 3.4: Comparison of the best RMSEs among weighted Lasso, Deep nets, and Resnet-50
using data from CMCC-CESM. Resnet-50 shows the worst predictive accuracy.

Location Weighted Lasso Deep nets Resnet-50

Brazil 0.6513± 0.0635 0.8151± 0.0364 1.2972± 0.4109

Peru 0.6944± 0.0444 0.8476± 0.0283 1.3739± 0.3211

SE Asia 0.5162± 0.0213 0.7424± 0.0153 1.4760± 0.4227
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3.4.2 Experimental Results

We compare different baseline methods against weighted Lasso using average RMSE and

R2 over test sets. We also show an in-depth analysis of the performance of Deep nets for

our application.

Prediction Accuracy Table 3.2 and Table 3.3 report the average RMSE, R2, and their

standard errors. Weighted Lasso achieves better average predictive accuracy compared to

other baseline methods across all 3 ESMs. The p-values of 2-sample K-S test (Daniel, 1978)

for RMSE on test sets are shown in Table 3.5. Weighted Lasso is significantly better than

PCR, Deep nets and GBT (p < 0.05) in most cases (21 out of 27). While the prediction

accuracy of weighted Lasso is not significantly better than Lasso, we show that weighted

Lasso consistently chooses a subset of variables of which ocean locations are close to the

land target region, which is more interpretable in climate science perspective.

Table 3.5: The p-values from 2-sample KS-test on RMSE of test sets of weighted Lasso
against other baseline methods are shown. The p-values less than 0.05 are shown in bold.
The performance of weighted Lasso is significantly better than non-linear baseline methods
for most of target regions.

Model Location Lasso PCR Deep nets GBT

CMCC-CESM
Brazil 0.9747 0.1108 0.0310 0.1108

Peru 0.6750 0.3128 0.0068 0.3128

SE Asia 0.6750 0.0001 0.0000 0.0068

INM-CM4
Brazil 0.6750 0.0001 0.0012 0.0012

Peru 0.9747 0.0000 0.0000 0.0068

SE Asia 0.9747 0.0000 0.0001 0.0068

MIROC5-r1i1p1
Brazil 0.9747 0.0339 0.0120 0.1473

Peru 0.6750 0.1108 0.0120 0.3743

SE Asia 0.6750 0.0000 0.0000 0.0120

Variable selection Weighted Lasso and Lasso introduce sparsity in variable selection.

During the training phase, an ocean location is considered selected, if it has a corresponding

non-zero coefficients. The behavior of weighted Lasso (and Lasso respectively) is similar

for land climate prediction across 3 land target regions. We analyze the ocean locations

selected by Lasso and weighted Lasso for Brazil temperature prediction for all the 10 runs

for all ESM models as an example. Figure 3.1 plots for each ESM model the number of

times each location is selected across the 10 runs. We make two observations from the plots:

(a) weighted Lasso assigns non-zero weights to ocean location close to Brazil consistent with
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domain knowledge, and (b) variable selection in weighted Lasso is more stable compared

to Lasso in the sense that the same locations are picked in all 10 datasets. However, Lasso

has few variables which are consistently chosen in all predictive models for the same land

target region. Also, the frequently selected variables using Lasso are distributed at arbitrary

locations, which is not interpretable in climate science perspective.

(a) Variable-selection of weighted Lasso using
CMCC-CESM

(b) Variable-selection of Lasso using CMCC-CESM

(c) Variable-selection of weighted Lasso using INM-
CM4

(d) Variable-selection of Lasso using INM-CM4

(e) Variable-selection of weighted Lasso using:
MIROC5

(f) Variable-selection of Lasso using: MIROC5

Figure 3.1: Comparison of variable selection by Lasso and weighted Lasso for Brazil tem-
perature prediction. The plot shows the probability that each ocean location is selected in
the 10 runs for each ESM model. In contrast to Lasso, weighted Lasso chooses more ocean
locations closer to Brazil and achieves more consistent variable selection.

We also compare the weights from a unit from the first layer in Deep nets in Figure 3.2.

Deep nets assign non-zero weights for all ocean locations even with `1 regularization.
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3.4.3 Deep Nets: What Happened?

In this section, we analyze various facets of the performance of Deep nets. The performance

of Deep nets is influenced by the number of hidden layers, number of hidden units, mini-

batch size, regularization etc. We analyze the impact of each of these on the performance

of Deep nets by varying one of the parameters while keeping the others fixed. We also

demonstrate that Deep nets overfit the training data and hence do not generalize well on

the test set.

(a) Weights of Deep nets without regularization. (b) Weights of Deep nets with `1 regularization.

Figure 3.2: Comparison of regression coefficients of a unit from Deep nets with and without
`1 regularization for Brazil. All weights are normalized to [−1, 1] by dividing the largest
value among absolute weights.

Overfitting Figure 3.3(a) shows the training and validation set RMSE after each epoch

for a 8 layer Deep nets with 32 hidden units trained for temperature prediction over Brazil.

The Deep nets training error stabilizes after about 20 epochs and is lower than the RMSE

of linear models. In contrast the validation set error of the Deep nets is much higher which

indicates that Deep nets overfit the noise in the training set and hence can not generalize

well over the unseen test set.

Effect of number of hidden units Figure 3.3(b) plots the test RMSEs for temperature

prediction over Brazil as we alter the number of hidden units in each layer. The RMSE

slightly decreases as the number of hidden units increases from 1 to 64 for both shallow

networks with 1 hidden layer, and Deep nets with 8 hidden layers.

Shallow vs Deep Structure Figure 3.3(c) compares Deep nets with 1 hidden layer against

Deep nets with 8 hidden layers on test set prediction over Brazil. Having more layers gives

better test set RMSE.
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(a) Overfitting (b) Number of hidden units

(c) Shallow vs. deep (d) Mini batch size

Figure 3.3: (a) An example of model overfitting for Deep nets. Deep nets are trained
for 150 epochs. The blue curve and orange curve indicate the RMSE of the training and
validation set for Deep nets. There is a clear gap between the training and validation
RMSE. The RMSE of weighted Lasso on both training (green line) and validation (red
line) sets are also shown for comparison. (b) Average RMSE on test sets vs. number
of hidden units for Brazil temperature prediction with CMCC-CESM. The shaded zone
indicates the confidence intervals (95%) around the predicted mean. For both 1-Layer and
8-Layer network configuration, the RMSE tends to slightly decrease with increasing number
of hidden units. (c) The comparison of predicted land temperatures in Brazil with CMCC-
CESM over a 10 year period (1950-1960) between a shallow and a deep network structure.
The deep structure predictions are better than a shallow network. (d) Average test RMSE
vs mini batch size over Brazil, Peru, and SE Asia for CMCC-CESM. Mini batch size of 1, 2,
4, 8, 16, 32, 64, 128, 256, 512 as well as full batch size are used on a 8 hidden layer network.
The average RMSE on test sets decreases as batch size increases.

Effect of mini-batch size Mini-batch size while training is believed to have a strong

impact on Deep nets performance (Bengio, 2012; Masters and Luschi, 2018). We analyze

the effect on average test RMSE of mini-batch size for temperature prediction over all three
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land locations (Figure 3.3(d)). The RMSE are highest with small batch sizes, steadily

decreasing with increasing batch size.

Effect of Regularization We explore 3 regularization schemes, `1, `2 and `1+`2. Table 3.6

shows the comparison on the test RMSE values of weighted Lasso and Deep nets before and

after applying `1, and `2 regularization. `1 regularization seems to give better performance

over other regularization schemes including no regularization.

Table 3.6: Comparison of RMSE on test sets of regularized Deep nets and weighted Lasso.
Average test RMSE ± standard error are shown. Deep nets with `1 regularization has
smaller test set RMSE than `2 and `1 + `2 regularization.

Model Location Weighted Lasso Deep nets Deep nets with `1 Deep nets with `2 Deep nets with `1 + `2

C
M

C
C

-C
E

S
M Brazil 0.6580± 0.0344 0.8151± 0.0364 0.6931± 0.0260 0.8458± 0.0744 1.0635± 0.1308

Peru 0.6901± 0.0269 0.8476± 0.0283 0.7499± 0.0210 0.9099± 0.0374 1.2099± 0.0453

SE Asia 0.5217± 0.0103 0.7424± 0.0153 0.5656± 0.0063 0.6869± 0.0215 0.8992± 0.0324

IN
M

-C
M

4 Brazil 0.7641± 0.0173 0.9144± 0.0304 0.8453± 0.0185 0.7334± 0.0403 1.0992± 0.1232

Peru 0.7127± 0.0144 0.8785± 0.0228 0.7815± 0.0119 0.7193± 0.0390 1.1686± 0.0964

SE Asia 0.7719± 0.0171 0.9986± 0.0290 0.8585± 0.0204 0.7891± 0.0600 1.2414± 0.1042

M
IR

O
C

5
-r

1i
1p

1 Brazil 0.5395± 0.0258 0.6822± 0.0263 0.5919± 0.0160 0.9884± 0.0278 1.2544± 0.0477

Peru 0.5441± 0.0331 0.6979± 0.0227 0.5848± 0.0358 0.8781± 0.0177 1.5395± 0.1526

SE Asia 0.5092± 0.0154 0.7500± 0.0187 0.5616± 0.0194 0.9887± 0.0458 1.3306± 0.0949

3.5 Conclusions

In this chapter, we propose a weighted Lasso scheme for prediction on spatial climate data in

order to encode the inherent spatial information in such datasets. Also, the non-asymptotic

estimation error bound for weighted Lasso is given. The proposed method is evaluated on a

task to predict temperature for 3 distinct land target regions using SST from the historical

runs of 3 ESMs. The weights are set to be proportional to the geographical distance between

the ocean location of each predictor and the target land region, constraining the estimator

to pick spatially nearby ocean locations. Weighted Lasso not only achieves better prediction

accuracy compared to other linear and non-linear models, including PCR, GBT and Deep

nets across all ESMs, but also selects stable predictors consistent with domain knowledge.

We also conduct a comprehensive analysis of Deep nets on high-dimensional climate

datasets with small sample size. Empirical results show that linear models outperform the

non-linear models and thus are more suitable for climate problems where the number of

samples is limited.
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Chapter 4

Sub-Seasonal Climate Forecasting

via Machine Learning: Challenges,

Analysis, and Advances

4.1 Introduction

Over the past few decades, major advances have been made in weather forecasts on time

scales of days to about a week (Lorenc, 1986; National Research Council, 2010; Simmons

and Hollingsworth, 2002). Similarly, major advances have been made in seasonal forecasts

on time scales of 2-9 months (Barnston et al., 2012). However, making high-quality fore-

casts of key climate variables such as temperature and precipitation on sub-seasonal time

scales, defined as the time range between 2-8 weeks, has long been a gap in operational

forecasting (National Academies of Sciences, Engineering, and Medicine, 2016). Skillful

climate forecasts at sub-seasonal time scales would be of immense societal value, and would

have an impact in a wide variety of domains including agricultural productivity, water re-

source management, and emergency planning for extreme weather events, etc. (Klemm

and McPherson, 2017; Pomeroy et al., 2002). The importance of sub-seasonal climate fore-

casting (SSF) has been discussed in great detail in two recent high profile reports from the

National Academy of Sciences (National Academies of Sciences, Engineering, and Medicine,

2016; National Research Council, 2010). Despite the scientific, societal, and financial im-

portance of SSF, progress on the problem has been limited (Braman et al., 2013; de Perez

and Mason, 2014), partly because it has attracted less attention compared to weather and

seasonal climate prediction. Also, SSF is arguably more difficult compared to weather or

44
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(a) Sources of Predictability
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(c) Results of FNN and CNN

Figure 4.1: (a) Sources of predictability at different forecast time scales. Atmosphere is
most predictive on weather time scales, whereas for SSF, land and ocean are considered
important sources of predictability (Uccellini and Jacobs, 2018). (b) Maximum information
coefficient (MIC) (Reshef et al., 2011) between residualized temperatures of week 3 & 4
and week -2 & -1. Small MICs (≤ 0.1) at a majority of locations indicate little information
shared between the most recent date and the forecasting target. (c) Predictive skills of Fully
connected Neural Networks (FNN) and Convolutional Neural Networks (CNN), in terms of
temporal cosine similarity (see definition in Section 4.5), for temperature prediction over
2017-2018. FNN and CNN do not perform well, as the cosine similarities for most locations
are either negative (red) or close to zero (white).

seasonal forecasting due to limited predictive information from land and ocean, and virtu-

ally no predictability from the atmosphere (Uccellini and Jacobs, 2018), which forms the

basis of numerical weather prediction (Simmons and Hollingsworth, 2002) (Figure 4.1(a)).

There exists great potential to advance sub-seasonal prediction using Machine Learning

(ML) techniques. Due in large part to this potential promise, a recently concluded real-time

forecasting competition called the Sub-Seasonal Climate Forecast Rodeo was sponsored by

the Bureau of Reclamation in partnership with NOAA, USGS, and the U.S. Army Corps of

Engineers (Hwang et al., 2019; Raff et al., 2017). However, a direct application of standard

black-box ML approaches to SSF can run into challenges due to the high-dimensionality

and strong spatial correlation of the raw data from atmosphere, ocean, and land, e.g., Fig-

ure 4.1(c) shows that popular approaches such as Fully connected Neural Networks (FNN)

and Convolutional Neural Networks (CNN) do not perform so well when directly applied to

the raw data. One reason is that sub-seasonal forecasting does not lie in the big data regime:

about 40 years of reliable data exists for all climate variables, with each day corresponding

to one data point, which totals less than 20,000 data points. Additionally, different seasons

may have different predictive relations, and many climate variables have strong temporal

correlations at daily time scales, further reducing the effective data size. Therefore, it is
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worth carefully and systematically investigating the capability of ML approaches including

Deep Learning (DL) while keeping in mind the high-dimensionality, spatial-temporal cor-

relations, and limited observational data available for SSF. Our main contributions are as

follows:

• We illustrate that, with the limited predictability at sub-seasonal time scale and

the unique nature of climate data, i.e., strong spatial-temporal correlation, high-

dimensionality, and limited amount of high-quality observational data, SSF imposes

a great challenge for ML despite the recent advances in various domains.

• We perform a comprehensive empirical study on 10 ML approaches to SSF over the

contiguous U.S. and show that suitable ML models, e.g., XGBoost, to some extent,

capture predictability at sub-seasonal time scales and outperform existing approaches

in climate science, such as climatology, i.e., the 30-year average at a given location

and time. Notably, DL models are only able to match the best results after careful

selection of architecture.

• We analyze and explore various aspects, e.g., feature representation and model archi-

tecture, which shed light on potential directions to improve the quality of sub-seasonal

forecasts. Further, an analysis of feature importance suggests that ocean and land

covariates are more useful than atmospheric covariates, which is consistent with Fig-

ure 4.1(a).

• We construct an SSF dataset covering the contiguous U.S. and including climate

variables from the atmosphere, ocean, and land. We release the dataset and a flexible

code base for data extraction, preprocessing, and SSF model training and evaluation.

Organization of the chapter. We discuss related work in Section 4.2. In Section 4.3,

we describe the SSF problem tackled in this chapter and demonstrate its difficulties. In

Section 4.4, we outline the investigated ML approaches. The details of experimental setup

and results are provided in Section 4.5 and Section 6, and we conclude in Section 4.7.

4.2 Related Work

Although statistical models were used for weather prediction before the 1970s (Frederik

Nebeker, 1995), since the 1980s weather forecasting has been carried out using mainly

physics-based dynamical models (Barnston et al., 2012). More recently, there has been

a surge of application for ML approaches to both short-term weather forecasting (Cofıno
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et al., 2002; Grover et al., 2015; Radhika and Shashi, 2009), and longer-term climate pre-

diction (Badr et al., 2014; Cohen et al., 2019). However, little attention has been paid on

forecasting on sub-seasonal time scale (Vitart et al., 2012). Recently, ML techniques have

made great strides in statistical prediction in many fields, so it is natural to investigate

whether it can advance sub-seasonal climate prediction. In particular, many advances have

occurred in developing prediction models using spatiotemporal climate data (Goncalves

et al., 2017; Hwang et al., 2019; Steinhaeuser et al., 2011b), e.g., predicting land tempera-

ture using oceanic data (DelSole and Banerjee, 2017; He et al., 2019).

Since SSF can be formulated as a sequential modeling problem (Sutskever et al., 2014;

Venugopalan et al., 2015), bringing the core strength of DL-based sequential modeling, a

thriving research area, has great potential for a transformation in climate forecasting (Ham

et al., 2019; Reichstein et al., 2019; Schneider et al., 2017). In the past decade, recurrent neu-

ral network (RNN) (Funahashi and Nakamura, 1993) and long short-term memory (LSTM)

models (Gers et al., 2000) have become popular sequential models and have been success-

fully applied in language modeling and other seq-to-seq tasks (Sundermeyer et al., 2012).

Starting from (Srivastava et al., 2015; Sutskever et al., 2014), the encoder-decoder struc-

ture with RNN or LSTM has become one of the most competitive algorithms for sequence

transduction. Variants of such models that incorporate mechanisms like convolution (Shi

et al., 2017; Xingjian et al., 2015) or attention mechanisms (Bahdanau et al., 2015) have

achieved remarkable breakthroughs for audio synthesis, word-level language modeling, and

machine translation (Vaswani et al., 2017).

SSF is an extremely important but largely understudied problem and ML is just starting

to get used in this area. Within ML, (Hwang et al., 2019) are the first to specifically focus

on SSF over western U.S. and released their benchmark dataset. In this work, we expand

the spatial forecasting range to cover the entire contiguous U.S. and extend the set of

predictors by including climate variables considered as important sources of predictability

on sub-seasonal time scale (Uccellini and Jacobs, 2018), such as soil moisture, Niño and

NAO indices.

4.3 Sub-seasonal Climate Forecasting

Problem statement. In this chapter, we focus on building temperature forecasting models

at the forecast horizon of 15-28 days ahead, i.e., the target variable is the residualized

average temperature of week 3 & 4. The geographic region of interest is the contiguous U.S.

(latitudes 25N-49N and longitudes 76W-133W) at a 2◦ by 2◦ resolution (197 grid points).
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Table 4.1: Description of climate variables and their data sources.

Type Climate variable Description Unit Spatial coverage Data Source

S
p
a
ti

o
te

m
p

o
ra

l

tmp2m
Daily average

temperature at 2 meters
C◦

Contiguous U.S.

CPC Global Daily Temperature
(Fan and Van den Dool, 2008)

sm
Monthly

Soil moisture
mm

CPC Soil Moisture
(Fan and van den Dool, 2004)

sst
Daily sea surface

temperature
C◦

North Pacific
& Atlantic Ocean

Optimum Interpolation SST (OISST)
(Reynolds et al., 2007)

rhum
Daily relative humidity

near the surface
(sigma level 0.995)

%
Contiguous U.S.

and North Pacific
& Atlantic Ocean

Atmospheric Research
Reanalysi Dataset

(Kalnay et al., 1996b)
slp

Daily pressure
at sea level

Pa

hgt10 & hgt500
Daily geopotential height

at 10mb and 500mb
m

T
em

p
or

al

MEI
Bimonthly multivariate

ENSO index

NA NA

NOAA ESRL MEI.v2
(Zimmerman et al., 2016)

Niño 1+2, 3,
3.4, 4

Weekly Oceanic
Niño Index (ONI)

NOAA National Weather Service, CPC
(Reynolds et al., 2007)

NAO
Daily North Atlantic

Oscillation index
NOAA National Weather Service, CPC

(Van den Dool et al., 2000)

MJO phase
& amplitude

Madden-Julian
Oscillation index

Australian Government BoM
(Wheeler and Hendon, 2004)

Our covariates consist of climate variables, such as sea surface temperature, soil moisture,

geopotential height, etc., indicating the status of land, ocean, and atmosphere. Table 4.1

provides a detailed description.

Difficulty of the problem. To illustrate the challenge of SSF, we measure the statistical

dependence between the residualized average temperature of week -2 & -1 (1-14 days in

the past) and week 3 & 4 (15-28 days in the “future”) at each grid point by maximum

information coefficient (MIC) (Reshef et al., 2011), an information theory-based measure

of the linear or non-linear association between two variables. The values of MIC range

between 0 and 1, and a small MIC value close to 0 indicates a weak dependence. To assess

statistical significance, we apply moving block bootstrap (Kunsch, 1989) to time series of

2-week average temperature at each grid point from 1986 to 2018, with the block size of

365 days. The top panel in Figure 4.1(b) illustrates the average MIC from 100 bootstrap

over the contiguous U.S., and the marginal distribution of all locations is shown at bottom.

Small MIC values (≤ 0.1), which indicate little predictive information shared between the

most recent data and the forecasting target, to some extent, demonstrate how difficult SSF

is.

From an ML perspective, applying black-box DL approaches naively to SSF is less
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likely to work due to the limited number of samples, and the high-dimensional and spatial-

temporally correlated features. Figure 4.1(c) shows the performance of two vanilla DL

models: FNN with ReLU activation function and CNN, in terms of the (temporal) cosine

similarity between the prediction and the ground truth at each location over 2017-2018.

For most locations, their cosine similarities are either negative or close to zero. Besides,

as we illustrate in the sequel, we explore about 10 ML models for the problem, and most

do not even get positive relative R2, indicating that they perform no better than the long

term average (details are presented in Appendix B.1). Such results further demonstrate the

difficulty of the problem.

4.4 Methods

Notation. Let t denote a date and g denote a location. The target variable at time t

and location g is the residualized average temperature over weeks 3 & 4 (from t + 15 to

t + 28), denoted as yg,t. For a given location g, yg,T represents the target variable over

a time range T . Similarly, yG,t denotes the target variable over all G locations at time t.

Xt ∈ Rp denotes the p-dimensional covariates at time t.

Non-DL models. We explore the following non-DL models.

• MultiLLR (Hwang et al., 2019). MultiLLR introduces a multitask feature selection

algorithm to remove the irrelevant predictors and integrates the remaining predictors

linearly. For a location g and a target date t∗, its coefficient βg is estimated by

β̂g = argminβ
∑
t∈D

wg,t(yg,t − βTXt)
2 , (4.1)

where D is the temporal span around the target date’s day of the year and wg,t is

the corresponding weight. In (Hwang et al., 2019), an equal data point weighting

(wg,t = 1) has been employed.

• AutoKNN (Hwang et al., 2019). An auto-regression model with weighted temporally

local samples, where the auto-regression lags are selected via a multitask k-nearest

neighbor criterion. The method only takes historical measurements of the target

variables as input. The nearest neighbors of each target date are selected based on

an average of spatial cosine similarity computed over a history of M = 60 days,

starting one year prior to a target date t∗ (lag l = 365). More precisely, the similarity

between the target date t∗ and a date t in the corresponding training set is formulated
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(a) Encoder (LSTM)-Decoder (FNN) (b) CNN-LSTM

Figure 4.2: Architectures of the designed DL models. (a) Encoder (LSTM)-Decoder (FNN)
includes a few LSTM layers as the Encoder, and two fully connected layers as the Decoder.
(b) CNN-LSTM consists of a few convolutional layers followed by an LSTM.

as simt = 1
M

∑M−1
m=0 cos(yG,t−l−m,yG,t∗−l−m), where cos(yG,t1 ,yG,t2) computes the

(spatial) cosine similarity (see formal definition in Section 4.5), evaluated over G

locations, between two given dates t1 and t2.

• Multitask Lasso (Jalali et al., 2013; Tibshirani, 1996). It assumes yG,t = XtΘ
∗+ ε,

where ε ∈ RG is a Gaussian noise vector and Θ∗ ∈ Rp×G is the coefficient matrix

for all locations. With n samples, Θ∗ is estimated by Θ̂n = argminΘ∈Rp×G
1

2n‖Y −
XΘ‖22 + λn‖Θ‖2,1 with X ∈ Rn×p and Y ∈ Rn×G. λn is a penalty parameter and the

corresponding penalty term is computed as ||Θ||2,1 =
∑

i(
∑

j Θ2
ij)

1/2.

• Gradient boosted trees (XGBoost) (Chen and Guestrin, 2016; Friedman, 2001).

A functional gradient boosting algorithm using regression tree as its weak learner.

The algorithm starts with one weak learner and iteratively adds new weak learners

to approximate functional gradients. The final ensemble model is constructed by a

weighted summation of all weak learners.

• State-of-the-art climate baselines. We consider two baselines from climate science

perspective, both are Least Square (LS) linear regression models (Weisberg, 2005).

The first model uses covariates based on climate indices, such as NAO and Niño in-

dices, which are widely used to monitor ocean conditions. The covariate of the second

model is the most recent available data point from target variable, i.e, residualized

temperature of week -2 & -1, with which the model, also known as damped persis-

tence (Van den Dool, 2007) in climate science, is essentially a first-order autoregressive

model.

DL models. We design two DL models, namely Encoder (LSTM)-Decoder (FNN) and
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CNN-LSTM, specifically adapting to SSF. The objective function is to minimize the mean

squared error (`2 loss) among all dates and locations.

• Encoder (LSTM)-Decoder (FNN). Inspired by Autoencoder widely used in sequen-

tial modeling (Sutskever et al., 2014), we design the Encoder (LSTM)-Decoder (FNN)

model, of which the architecture is shown in Figure 4.2(a). Input of the model is features

extracted spatially from covariates using unsupervised methods like Principal Component

Analysis (PCA). The temporal components of covariates are handled by feeding features

of each historical date into an LSTM Encoder recurrently. Then, the output of each date

from LSTM is sent jointly to a two-layer FNN network with ReLU activation function.

The output of the FNN Decoder is the predicted residualized temperature of week 3 & 4

over all target locations.

• CNN-LSTM. The proposed CNN-LSTM model directly learns the representations from

the spatiotemporal data using convolutional layers. Shown in Figure 4.2(b), CNN extracts

features for each climate variable at all historical dates separately. Then, the extracted

features from the same date are collected and fed into an LSTM model recurrently. The

temperature prediction for all target locations is done by an FNN layer taking the output

of the LSTM’s last layer from the latest input.

4.5 Data and Experimental Setup

Data description. Climate agencies across the world maintain multiple datasets with dif-

ferent formats and resolutions. We construct the SSF dataset by collecting climate variables

(Table 4.1) from a diverse collection of data sources and converting them into a consistent

format. In particular, temporal variables, e.g., Niño indices, are interpolated to a daily

resolution, and spatiotemporal variables are interpolated to a spatial resolution of 0.5◦ by

0.5◦.

Preprocessing. Spatiotemporal climate variables are normalized by z-scoring at each lo-

cation and each date using the mean and standard deviation of the corresponding day of

the year over 1986-2016. Temporal covariates, e.g., Niño indices, are directly used without

normalization. CNN and CNN-LSTM take the temporal and normalized spatiotemporal

variables as input. Models other than CNN based models, e.g., XGBoost and Multitask

Lasso, can not directly use spatiotemporal covariates due to the extremely high dimension-

ality of such covariates. In those cases, we extract the top 10 principal components (PCs)

of each spatiotemporal covariate, based on PC loadings from 1986 to 2016 (for details, refer
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Table 4.2: Comparison of spatial cosine similarity of tmp2m forecasting for test sets over
2017-2018. XGBoost and Encoder (LSTM)-Decoder (FNN) have the best performance.
Models achieve better performance using temporally global set compared to temporally
local set.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

Temporally Global Dataset

XGBoost - one day 0.3044(0.03) 0.3447(0.05) 0.0252(0.05) 0.5905(0.04)
Lasso - one day 0.2499(0.04) 0.2554(0.06) -0.0224(0.05) 0.5604(0.06)

Encoder (LSTM)-Decoder (FNN) 0.2616 (0.04) 0.2995 (0.07) -0.0719 (0.06) 0.6310 (0.05)
FNN 0.0792(0.01) 0.0920(0.02) 0.0085(0.02) 0.1655(0.02)
CNN 0.1688(0.04) 0.2324(0.06) -0.0662(0.06) 0.4768(0.04)

CNN-LSTM 0.1743(0.04) 0.2867(0.06) -0.1225(0.07) 0.5148(0.04)

LS with NAO & Niño 0.2415(0.03) 0.3169(0.04) 0.0454(0.05) 0.4624(0.03)
Damped persistence 0.2009(0.04) 0.2310(0.06) -0.0884(0.06) 0.5335(0.05))

MultiLLR 0.0684 (0.03) 0.1046 (0.05) -0.1764 (0.06) 0.3156 (0.04)
AutoKNN 0.1457 (0.03) 0.1744 (0.05) -0.1018 (0.06) 0.4000 (0.04)

Temporally Local Dataset

XGBoost - one day 0.1965(0.04) 0.2345(0.05) -0.0636(0.06) 0.5178(0.05)
Lasso - one day 0.1631(0.04) 0.2087(0.06) -0.1178(0.05) 0.5059(0.05)

Encoder (LSTM)-Decoder (FNN) 0.1277 (0.04) 0.1272 (0.06) -0.1558 (0.06) 0.4971 (0.06)

to Appendix B.2), and normalize PCs by z-scoring at each day of the year. For all models,

the target variable is the residualized 2m temperature over the contiguous U.S. via the same

normalization as spatiotemporal climate variables.

Feature set construction. We combine the PCs of spatiotemporal covariates with tem-

poral covariates into a sequential feature set, which consists not only covariates of the target

date, but also covariates of the 7th, 14th, and 28th day prior to the target date, as well as the

day of the year of the target date in the past 2 years and both the historical past and future

dates around the day of the year of the target date in the past 2 years (see Appendix B.2

for a detailed example).

Evaluation pipeline. Predictive models are created independently for each month in 2017

and 2018. To mimic a live system, we generate 105 test dates during 2017-2018, one for each

week, and group them into 24 test sets by their month of the year. Given a test set, our

evaluation pipeline consists of two parts: (1) “5-fold” training-validation pairs for hyper-

parameter tuning, based on a “sliding-window” strategy designed for time-series data. Each

validation set consists of the data from the same month of the year as the test set, and we

create 5 such sets from dates in the past 5 years (2012 - 2016). Their corresponding training

sets contain 10 years of data before each validation set; (2) the training set, including 30-

year data in the past. To assure no overlap between the training and test set, we enforce the

training set to end 28 days before the first date in the test set. We share more explanations,

including a pictorial example, in Appendix B.2.
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Figure 4.3: Temporal cosine similarity over the contiguous U.S. of ML models for temper-
ature prediction over 2017-2018. Large positive values (green) closer to 1 indicate better
predictive skills. Overall, XGBoost and Encoder (LSTM)-Decoder (FNN) perform the best.
Qualitatively, coastal and south regions are easier to predict than inland regions (e.g., Mid-
west).

Evaluation metrics. Forecasts are evaluated by cosine similarity, the only metrics used in

the Sub-Seasonal Climate Forecast Rodeo (Raff et al., 2017). The cosine similarity between

ŷ, a vector of predicted values, and y∗, the corresponding ground truth, is computed as

cos(ŷ,y∗) = 〈ŷ,y∗〉
‖ŷ‖2‖y∗‖2 , where 〈ŷ,y∗〉 denotes the inner product between the two vectors.

Then, the spatial cosine similarity is defined as cos(ŷG,t,y
∗
G,t), measuring the prediction

skill at a date t. The temporal cosine similarity, assessing the prediction skill at a location

g, is defined as cos(ŷg,T ,y
∗
g,T ).

4.6 Experimental Results

We compare the predictive skills of 10 ML models on SSF. In addition, we discuss a few

aspects that impact the ML models the most, as well as the evolution of our DL models.
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4.6.1 Results of All Methods

Temporal results. Table 4.2 lists the mean, the median, the 0.25 quantile, the 0.75

quantile, and their corresponding standard errors of spatial cosine similarity of all meth-

ods. Additional results based on relative R2 can be found in Appendix B.3. XGBoost,

Encoder (LSTM)+Decoder (FNN) and Lasso accomplish higher predictive skills than other

presented methods and can outperform climatology and two climate baseline models, i.e.,

LS with NAO & Niño, and damped persistence. Overall, XGBoost achieves the highest pre-

dictive skill in terms of both the mean and the median, demonstrating its predictive power.

Surprisingly, linear regression with a proper feature set has good predictive performance.

Even though DL models are not the obvious winner, with careful architectural selections,

they still show some encouraging results.

Spatial results. Figure 4.3 shows the temporal cosine similarity of all methods evaluated

on test sets described in Section 4.5. Among all methods, XGBoost and the Encoder

(LSTM)-Decoder (FNN) achieve the overall best performance, regarding the number of

locations with positive temporal cosine similarity. Qualitatively, coastal and south regions

in general are easier to predict compared to inland regions (e.g., Midwest), which might

be explained by the influence of the slow-moving component, i.e., Pacific and Atlantic

Ocean. Such component exhibits inertia or memory, in which anomalous condition can

take relatively long period of time to decay. However, each model has its own favorable

and disadvantageous regions. For example, XGBoost and Lasso do poorly in Montana,

Wyoming, and Idaho, while Encoder (LSTM)-Decoder (FNN) performs much better on

those regions. The observations naturally imply that the ensemble of multiple models is a

promising future direction.

Comparison with the state-of-the-art methods. MultiLLR and AutoKNN are two

state-of-the-art methods designed for SSF on western U.S. (Hwang et al., 2019). Both

methods have shown good forecasting performance on the original target region. However,

over the inland region (Midwest), Northeast, and South region, the methods do not perform

so well (Figure 4.3). To be fair, even though a similar set of climate variables have been

used in our work compared to the original paper (Hwang et al., 2019), how we prepossess

the data and construct the feature set are slightly different. Such differences may lead to

relatively poor performance for these two methods, especially for MultiLLR. A detailed

comparison over western U.S. and on SubseasonalRodeo dataset (Hwang et al., 2019) can

be found in Appendix B.3.
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(a) XGBoost (b) Lasso

Figure 4.4: SHAP values computed from (a) XGBoost and (b) Lasso. Darker color means
a covariate is of the higher importance. The first 8 rows contains the top 10 principal com-
ponents extracted from 8 spatiotemporal covariates respectively, and the last row includes
all temporal indices. Land covariate, e.g., soil moisture and ocean covariates, e.g., sst and
some climate indices, are considered more important.

4.6.2 Analysis and Exploration

We analyze and explore several important aspects that could influence the performance of

ML models.

Temporally “local” vs. “global” dataset. Our current training set consists of all

calendar months over the past 30 years, which we refer to as the temporally “global” dataset.

Another way to construct the training set is to only consider calendar months within a

temporal neighborhood of the test date. For instance, to make forecasts of June 2017, the

training set can contains dates in June (from earlier years), and months that are close to

June, e.g., April, May, July, and August, over the past 30 years only. Such a construction

accounts for the seasonal dependence of predictive relations, for example summer predictions

are not trained with winter data. We name such dataset as a temporally “local” dataset. A

comparison between the “global” and “local” datasets has been listed in Table 4.2 where a

significant drop in cosine similarity can be noticed when using “local” dataset for all of our

best predictive models, including XGBoost, Lasso, and Encoder (LSTM)-Decoder (FNN).

We suspect such performance drop from “global” to “local” dataset may come from the

reduction in the number of effective samples.

Feature importance. We study which covariates are important, considered by ML mod-

els, based on their SHAP (SHapley Additive exPlanations) values (Lipovetsky and Conklin,

2001; Lundberg and Lee, 2017). SHAP values illustrate how much each feature contributes
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to the forecasts. Therefore, features with large absolute SHAP values are important. Fig-

ure 4.4 shows the mean of absolute SHAP values for each covariate over 24 models (one per

month in 2017-2018), computed from (a) XGBoost and (b) Lasso. Among all covariates,

soil moisture (3rd row from the top) is the variable that has been constantly considered

as important covariates by both models. Another set of important covariates is the fam-

ily of Niño indices. An LS model using those indices alone as predictors performs fairly

well (Table 4.2). Besides, sst of both Pacific and Atlantic also stand out. Such observa-

tions indicate that ML models pick up ocean-based covariates, some land-based covariates,

and almost entirely ignore the atmosphere-related covariates, which are well aligned with

domain knowledge (Delsole and Tippett, 2017; Uccellini and Jacobs, 2018).

The influence of feature sequence length. To adapt the usage of LSTM, we construct

a sequential feature set, which consists not only the target date, but also 17 other dates

preceding the target date. However, other ML models, e.g., XGBoost and Lasso, which

are not designed to handle sequential data, experience a drastic performance drop when we

include more information from the past. More precisely, by including covariates from the

full historical sequence, the performance of XGBoost drops approximately 50% compared

to when using covariates from the most recent date only. A possible explanation is that,

as we increase the feature sequence length, such model weights covariates from different

dates exactly the same without considering temporal relationship, thus irrelevant historical

information might mislead the model. In Appendix B.3, we compares results obtained from

various sequence lengths.

4.6.3 What Happened with DL Models?

While applying black-box DL models naively does not work well for SSF, the improvement

(Table 4.2), as we evolve from FNN to CNN-LSTM, and finally to Encoder (LSTM)-Decoder

(FNN), demonstrates how the network architecture plays an important role. Below we focus

on discussing feature representation and the architecture design for sequence modeling.

More discussions are included in Appendix B.3.

Feature representation: CNN vs. PCA. Since SSF can be considered as a spatiotempo-

ral prediction problem, to handle the spatial aspect, CNN can be applied as a “supervised”

way for learning feature representation by viewing each climate covariate as a map. CNN,

while doing convolution using a small kernel, mainly focus on spatially localized regions.

However, the global dependency among climate variables restricts the effectiveness of CNN

kernels on feature extraction, which explains the limited predictive skill of CNN shown

in Table 4.2 and Figure 4.3. Meanwhile, PCA, termed Empirical Orthogonal Functions
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(EOF) (Von Storch and Zwiers, 2001) in climate science, is a commonly used “unsupervised”

feature representation method, which focuses on low-rank modeling of spatial covariance

structure revealing spatial connection. By using PCs, we are including spatial and temporal

information about the dominant components of variability in each spatiotemporal covariate.

Our results (Table 4.2) illustrate that PCA-based models have higher predictive skills than

CNN-based models, verifying that PCA is an adequate technique for feature extraction in

SSF.

Sequential modeling: Encoder-Decoder. With features extracted by PCA, we for-

mulate SSF as a sequential modeling problem (Sutskever et al., 2014), where the input

is the covariates sequence described in Section 4.5, and the output is the target variable.

Due to the immense success in sequential modeling (Srivastava et al., 2015), the standard

Encoder-Decoder, where both Encoder and Decoder are LSTM (Hochreiter and Schmid-

huber, 1997), is the first architecture to investigate. Unfortunately, the model does not

perform well and suffers from over-fitting, possibly caused by overly complex architecture.

To reduce the model complexity, we replace the LSTM Decoder with an FNN Decoder

which takes only the last step of the output sequence from the Encoder. Such change leads

to an immediate boost of predictive performance. However, the input of the FNN Decoder

mainly contains information encoded from the latest day in the input sequence and can

only embed limited amount of historical information owing to the recurrent architecture

of LSTM. To further improve the performance, we adjust the connection between Encoder

and Decoder, such that FNN Decoder takes every step of the output sequence from LSTM

Encoder, which makes a better use of historical information. Eventually, such architec-

ture achieves the best performance among all investigated Encoder-Decoder variants (see

comparisons in Appendix B.3).

4.7 Conclusions

In this chapter, we investigate the potential to advance sub-seasonal climate forecasting,

a challenging and understudied problem, using ML techniques. SSF is typically a high-

dimensional problem on strongly spatiotemporal correlated climate data with limited num-

ber of samples. We conduct a comprehensive study of 10 ML models, including DL models,

on the SSF dataset, which is constructed for SSF over the contiguous U.S. Empirical re-

sults show the gradient boosting model XGBoost, the DL model Encoder (LSTM)-Decoder

(FNN), and the linear model Lasso manage to outperform forecasts based on climatology,

damped persistence and climate indices. Besides, our analysis and exploration provide
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insight on several essential aspects to improve the SSF performance, and show that ML

models are capable of picking the climate variables from important sources of predictability

on sub-seasonal time scale. We release the SSF dataset and code base publicly, which will

hopefully reduce the barrier to work on SSF for the broader ML community.



Chapter 5

Learning and Dynamical Models

for Sub-seasonal Climate

Forecasting: Comparison and

Collaboration

5.1 Introduction

Nowadays, weather forecasts are routinely available out to a few days, and seasonal forecasts

are routinely available out to a few months. These forecasts are based largely on dynamical

models that solve partial differential equations (PDEs) derived from the laws of physics.

On the other hand, sub-seasonal forecasting (SSF), which refers to the prediction of key

climate variables, e.g., temperature and precipitation on 2-week to 2-month time scales,

are not yet routined. Nevertheless, two high-profile reports from the National Academy of

Sciences (NAS) discuss the immense societal values of SSF (National Academies of Sciences,

Engineering, and Medicine, 2016; National Research Council, 2010). In particular, skillful

SSF in the western contiguous United States would allow for better hydrology and water

resource management, and emergency planning for extreme events such as droughts and

wildfires (White et al., 2017). Currently, sub-seasonal forecasts based on dynamical models

are available weekly through the Subseasonal Experiment (SubX) project (Pegion et al.,

2019), but the full utility of these for operational forecasting still remains to be determined.

SSF is challenging for a variety of reasons. First, atmospheric weather is chaotic, mean-

ing that forecasts are sensitive to small differences in the initial condition (Lorenz, 1963).

59
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Furthermore, the target time window is beyond the 2-week period for which individual

weather systems can be predicted, but shorter than the 3-month period over which weather

variability can be filtered by time averaging (National Research Council, 2010). Also, from

a physical point of view, the predictability on sub-seasonal time scales depends on correctly

modeling the atmosphere, ocean, and land, including their interactions and couplings as

well as the memory effects of land and ocean. In addition to these physical complexities,

SSF poses unconventional time series prediction problems. Given a training set {x1:t, y1:t},
where y denotes the target response variable, e.g., land temperature, and x denotes suitable

covariates, temporal models typically focus on predicting yt+1 or maybe yt+1:t+τs for a small

τs (a few days or less). Instead, SSF is about predicting yt+T :t+T+τl for large T � τs, e.g.,

weather prediction one month ahead (T = 31 days). The long temporal range relative to the

weather predictability time, along with the nonlinear dynamics and complex interactions,

makes SSF challenging.

For climate forecasting, one standard baseline for comparing forecasts is the so-called

climatology (Trewin et al., 2007). Typically, the climatology is defined as the 30-year aver-

age temperature/precipitation for each calendar day at each geographic location. Note that

the climatology is merely the historical average without using any initial condition infor-

mation. Despite its simplicity, the climatology provides a competitive benchmark for SSF.

For instance, in the last Forecast Rodeo (NIDIS, 2019), a SSF competition sponsored by

the U.S. Bureau of Reclamation and the NOAA/National Integrated Drought Information

System (USBR and NOAA, 2019), real-time predictions of sub-seasonal temperature and

precipitation were submitted by different groups but about half of the submitted forecasts

could not beat climatology. Therefore, for any other possibly more advanced SSF model,

the first order of business is to do better than this strong climatological baseline. In recent

years, progress has been made in developing ML models (He et al., 2021a; Hwang et al.,

2019; Srinivasan et al., 2021; Weyn et al., 2021) which have shown great promise for SSF,

including outperforming the climatology.

In this chapter, we consider two new directions: first, comparing and contrasting ML

models for SSF with an arguably stronger baseline provided by physics-based dynamical

models for SSF, and second, exploring enhancing the ML models by using forecasts from

such dynamical models. For the comparison, earlier literature have done such comparisons

with certain statistical approaches and have illustrated dynamical models to have better

forecasting ability (Barnston et al., 2012). Instead, we do the comparison with a suite of

modern ML methods, including non-parametric AutoKNN (Hwang et al., 2019), multitask

Lasso (Jalali et al., 2013; Tibshirani, 1996), gradient boosted trees (Chen and Guestrin,
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2016; Friedman, 2001), and deep encoder-decoder networks (He et al., 2021a), and illustrate

that on average ML models outperform dynamical models on SSF. With considerably more

details, our empirical analysis demonstrates key properties of ML-based vs. dynamical

model based predictions. In particular, ML models are more conservative in their forecasts

whereas dynamical models are more aggressive, so that when dynamical models are wrong,

they can be wrong by a large amount; on the flip side, when dynamical models are correct,

they can be more accurate than ML models. Further, we illustrate that ML models make

most of their bad predictions during extreme events, e.g., unusual cold waves in North

America for which there is not enough training data. More practically, these results suggest

that a separate ML model for extreme events will help improve the aggregate performance.

The second direction is using physics-based dynamical model forecasts as covariates in the

ML models. We show that using dynamical model forecasts as inputs improves the ML

model forecasts, and the improvements are statistically significant.

We briefly emphasize the contributions of our work. We are not proposing another new

algorithm which improves performance on an existing task using benchmark datasets, such

as MNIST (Lecun et al., 1998) and ImageNet (Deng et al., 2009). We are enabling a new

application area for data mining based on one of the most challenging and societally impor-

tant scientific problems in the context of climate forecasting. We are reporting promising

results using ML models, reporting detailed and nuanced empirical analysis acknowledging

the strengths of both ML and dynamical models, and illustrating gains by using dynamical

model forecasts as covariates in the ML models. We also suggest ways of further improving

the ML models, e.g., by separately modeling extreme events. Finally, the dataset con-

structed for this work, dynamical model predictions, and code for the ML models will be

made available to enable the data mining community improve on the current results. We

also hope that the SSF dataset will become a standard benchmark like MNIST(Lecun et al.,

1998) or ImageNet(Deng et al., 2009), and accelerate advances on SSF.

5.2 Related Work

Dynamical models and S2S forecasting. Nowadays, weather predictions rely heavily

on ensemble forecasts from physics-based dynamical models (Barnston et al., 2012). On

sub-seasonal to seasonal (S2S) time scales, forecasts have shown limited predictive skill

compared to the climatology (Vitart, 2004,1; Weigel et al., 2008). However, successful S2S

predictions can be performed for certain regions and seasons (Delsole and Tippett, 2017;

Li and Robertson, 2015), as well as certain climate states (Mariotti et al., 2020). In order
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to better understand the conditions that lead to enhanced predictability and to improve

sub-seasonal forecasts, projects such as S2S (Vitart et al., 2017) and SubX (Pegion et al.,

2019) have been established. These coordinated multi-model efforts act both to fulfill the

growing needs of real world applications and to enrich our understanding of S2S prediction

and predictability.

ML on weather and S2S forecasting. Recently, increasing efforts have been made

to tackle complex problems in climate science using machine learning. Such applications

aim to advance weather forecast skill using deep learning methods (Dueben and Bauer,

2018; Ham et al., 2019; Liu et al., 2016; Scher and Messori, 2019). Despite early studies

that show dynamical models outperform statistical models for ENSO seasonal forecasts

(Barnston et al., 2012), recent advances in machine learning, especially the development of

deep learning, are making the performance of ML models more competitive with dynamical

models for both weather (Dueben and Bauer, 2018; Grover et al., 2015; Shi et al., 2017)and

seasonal (Stevens et al., 2021) prediction.

In particular, machine learning models have started to be used to improve forecast skills

for predictions of temperature, precipitation, and other climate variables on sub-seasonal

time scales (He et al., 2021a; Hwang et al., 2019; Srinivasan et al., 2021; Weyn et al.,

2021). Some successful ML approaches for S2S forecasting include (Hwang et al., 2019)

and (He et al., 2021a), where both works show increased predictive skill for ML models

compared to climatic baselines, e.g., climatology and damped persistence. Such advances

from ML models are particularly relevant and valuable because dynamical models have

limited predictive skills at sub-seasonal time scales (Uccellini and Jacobs, 2018).

5.3 Sub-seasonal Climate Forecasting

5.3.1 Problem Statement

For our comparison, we follow the Forecast Rodeo competition, which is a SSF compe-

tition sponsored by the U.S. Bureau of Reclamation and the NOAA/National Integrated

Drought Information System (USBR and NOAA, 2019). The details of this competition

were motivated by the needs of water managers, where skillful information on weather and

climate conditions could enhance the efficient utilization of water resources to reduce the

impact of hydrological variations. Broadly speaking, the competition is focused on SSF of

temperature and precipitation over the western contiguous U.S. In this study, we focus on

forecasting temperature over days 15 - 28, i.e., predicting average temperatures over week
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3 & 4 ahead of time, over the region bounded by latitudes 25N-50N and longitudes 93W-

125W at 1◦ by 1◦ spatial resolution with 508 grid points. The specific temporal range of

interest and temporal resolutions are determined by each SubX model and its initialization

frequency (see Table 5.1).

5.3.2 Ground Truth Dataset

The ground truth dataset is constructed from NOAA’s Climate Prediction Center (CPC)

Global Gridded Temperature dataset (Fan and Van den Dool, 2008), which contains ob-

servations from the Global Telecommunication System (GTS) gridded using the Shepard

Algorithm (Shepard, 1968). Commonly applied for forecast verification by NOAA/CPC

(Fan and Van den Dool, 2008), the CPC dataset provides daily max and min 2m tempera-

tures (tmp2m) at 0.5 ◦ by 0.5 ◦ spatial resolution from Jan 1, 1979 to present.

To obtain the ground truth temperature anomalies for weeks 3 &4, we preprocess the

data as follows: (1) daily 2m temperature at each grid point is taken as the average of daily

max and min tmp2m, (2) all missing values are imputed by averaging the daily tmp2m

of its spatial/temporal neighbors, (3) the tmp2m at 0.5 ◦ × 0.5◦ resolution are linearly

interpolated to a 1 ◦×1◦ grid, (4) the daily tmp2m anomalies are computed by subtracting

the climatology from the observed daily tmp2m, and (5) the forecasting target at each date

and grid point is the average of tmp2m anomalies at day 15 to 28. The climatology used in

step (4) is the smoothed long-term average of tmp2m over 1990 - 2016 for each month-day

combination and grid point. Specifically, for a given grid point, we compute the long-term

average over 1990 - 2016, one for each month-day combination. Then the 365 values are

smoothed using moving average with a window size of 31 days.

5.3.3 Evaluation Metrics

We consider three metrics to evaluate the predictive performance of each forecasting model.

Let y∗ ∈ Rn denotes a vector of ground truth observation and ŷ ∈ Rn the corresponding

predicted value.

(Uncentered) Anomaly Correlation Coefficient (ACC) (Wilks, 2011) is defined as

ACC =
〈ŷ,y∗〉
‖ŷ‖2‖y∗‖2

, (5.1)

where 〈ŷ,y∗〉 denotes the inner product between the two vectors. Uncentered anomaly

correlation is the only metric used in the Sub-Seasonal Climate Forecast Rodeo Competition
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Table 5.1: Summary of GMAO-GEOS and NCEP-CFSv2.

SubX Model
Ensemble
Members

Initialization
Interval

Hindcast
Range

Forecast
Range

GMAO-GEOS 4 5
01-01-1999 to

12-31-2015
07-25-2017 to

06-30-2020

NCEP-CFSv2 4 1
01-01-1999 to

12-31-2015
07-01-2017 to

03-15-2020

(Hwang et al., 2019; Raff et al., 2017).

Relative R2 is defined as

relative R2 = 1− Relative MSE (5.2)

= 1−
∑n

i=1(y∗i − ŷi)
2∑n

i=1(y∗i − ȳtrain)2
, (5.3)

where ȳtrain is the long-term average of tmp2m at each date and grid point in the training

set. Relative R2 represents the relative skill against the best constant predictor, i.e., ȳtrain.

A model which achieves a positive relative R2 is, at least, able to predict the sign of y∗

accurately and outperforms the climatology.

Root Mean Square Error (RMSE) is defined as

RMSE =

√∑n
i=1(y∗i − ŷi)2

n
. (5.4)

where y∗i and ŷi are the i-th element in y and ŷ respectively.

Denote the ground truth temperature anomalies as Y ∗ ∈ RT×G, where T is the number

of dates and G is the number of grid points. The spatial predictive skill for a given date t

can be evaluated on y∗t = Y ∗[t, :], the t-th row in Y ∗, where y∗t ∈ RG is the ground truth

for all grid points at date t with the corresponding forecasts ŷt. The temporal predictive

skill for a grid point g can be evaluated on y∗g = Y ∗[:, g], the g-th column in Y ∗, similar to

time series prediction evaluation.

5.4 Subseasonal Experiment (SubX) Project

The Subseasonal Experiment (SubX) is a project that provides sub-seasonal forecasts from

multiple global forecast models. Data are publicly available through the International Re-

search Institute for Climate and Society (IRI) Data Library at Columbia University. A
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detailed description of the SubX project and the contributing models can be found in (Pe-

gion et al., 2019). The SubX project has two predictive periods: hindcast and forecast. A

hindcast period represents the time when a dynamic model re-forecasts historical events,

which can help climate scientists develop and test new models to improve forecasting. Hind-

casts in the SubX project occurred during January 1999 to December 2015. In contrast,

a forecast period has real-time predictions generated from dynamic models. The real-time

forecast period in the SubX project starts from July 2017. In this work we evaluate the

predictive skills of the SubX models over their forecast periods.

In this chapter, we focus on two SubX models, NCEP-Climate Forecast System version 2

(CFSv2) (Saha et al., 2014) and NASA-Global Modeling and Assimilation (GMAO) version

2 of the Goddard Earth Observing System (GEOS) model (Reichle and Liu, 2014). NCEP-

CFSv2 is a coupled atmosphere–ocean–land–ice model and is the operational seasonal pre-

diction model currently used by the U.S. Climate Prediction Center. The NCEP-CFSv2

forecasts are initialized daily and include four ensemble members. In order to ensure our

results are not unique to a single dynamical model, we also analyze output from the GMAO-

GEOS. The GMAO-GEOS is also fully coupled atmosphere–ocean–land–sea ice model, with

forecasts initialized every five days and includes four ensemble members. We selected the

GMAO-GEOS model for comparison because it has an initialization frequency (every 5

days) that is closer that of the NOAA-CSFv2 (daily). Other SubX models were initialized

less frequently. Besides, our code base and the ground truth dataset are fairly flexible,

which can easily be extended to evaluate other SubX models.

Further information of the two SubX models are presented in Table 5.1. For both SubX

models, the average of four ensemble members’ outputs are taken as the forecasts. All

forecasts include daily values for 45 days beyond the initialization date. The weeks 3 & 4

outlooks are computed by averaging the forecasts 15 to 28 days beyond each initialization

date and subtracting the corresponding climatology computed from the model’s hindcast

period.

5.5 Machine Learning-based SSF Modeling

Notation. Let Y ∈ RT×G denote the targeted weeks 3 & 4 temperature anomalies over

T dates and G grid points. yt is the t-th row in Y , denoting the temperature anomalies

over all grid points G at date t. X ∈ RT×p denotes the p-dimension covariates for T dates.

Xt ∈ Rp (the t-th row in X) is the covariate at date t.
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5.5.1 Machine Learning Models

In this chapter, we focus on state-of-the-art machine learning models which have been shown

to work effectively for sub-seasonal climate forecasting (He et al., 2021a; Hwang et al., 2019).

AutoKNN (Hwang et al., 2019). An auto-regressive model only uses features from histor-

ical temperature anomalies, which selects lagged measurements with a multitask k-nearest

neighbor criterion. For a given date t, the algorithm chooses the temperature anoma-

lies from 20 historical dates with the highest similarity and 29 days, 58 days, and 1 year

prior to t as features. Specifically, the similarity between two dates t1 and t2 is defined

as sim(t1,t2) = 1
M

∑M−1
m=0 cos(yt1−l−m,yt2−l−m), where cos(yt1−l−m,yt2−l−m) is the cosine

similarity between the temperature anomalies at l − m days before t1 and t2. Following

the settings in (Hwang et al., 2019), we use M = 60, the length of the considered historical

sequences prior to each date, with the lag l = 365. At each grid point, we fit a weighted

local linear regression model, where the weight is one over the variance of the temperature

anomalies at the corresponding date.

Multitask Lasso (Jalali et al., 2013; Tibshirani, 1996). A multitask regularized linear

regression model. By assuming yt = XtΘ
∗ + ε, where ε ∈ RG is a Gaussian noise and

Θ∗ ∈ Rp×G is the coefficient matrix for all locations, the parameter Θ∗ is estimated by

Θ̂ = argminΘ∈Rp×G
1

2T
‖Y −XΘ‖22 + λ‖Θ‖2,1 (5.5)

with ||Θ||2,1 =
∑

i(
∑

j Θ2
ij)

1/2 and λ being the penalty parameter.

Gradient boosted trees (XGBoost) (Chen and Guestrin, 2016; Friedman, 2001). A

functional gradient boosting algorithm, of which the weak learners are regression trees. The

algorithm combines multiple weak learners into a stronger learner in an iterative manner.

At each iteration, a new weak learner is created to correct the previous prediction and

optimize the loss function along with regularization. We build one XGBoost model for each

location, and the hyper-parameters are selected jointly based on the performance over all

locations.

Encoder-FNN (He et al., 2021a) A deep learning model designed for SSF over the contigu-

ous U.S. The architecture is shown in Figure 4.2(a). The model input is a historical sequence

of the features shared by all locations and is fed into an LSTM encoder recurrently. The

output of each step in the sequence are combined and jointly sent to the decoder, which is a

two-layer fully-connected neural network with ReLU activation. The outputs of the decoder

are the predicted tmp2m anomalies over all grid points. Note that, besides standard hyper-

parameters like layer size, number of layers, and dropout rate, the length of the sequence
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Table 5.2: Description of climate variables and their data sources.

Type Climate variable Description Data Source

S
p
at

io
te

m
p

o
ra

l

tmp2m Daily temperature at 2 meters
CPC Global Daily Temperature
(Fan and Van den Dool, 2008)

sm Monthly soil moisture
CPC Soil Moisture

(Fan and van den Dool, 2004)

sst Daily sea surface temperature
Optimum Interpolation SST (OISST)

(Reynolds et al., 2007)

rhum
Daily relative humidity

near the surface (sigma level 0.995)
Atmospheric Research

Reanalysis Dataset
(Kalnay et al., 1996b)

slp Daily pressure at sea level

hgt10 & hgt500 Daily geopotential height

T
em

p
or

al

MEI.v2 Bimonthly multivariate ENSO index
NOAA ESRL MEI.v2
(Zhang et al., 2019)

MJO phase & amplitude Madden-Julian Oscillation index
Australian Government BoM
(Wheeler and Hendon, 2004)

Niño 1+2, 3, 3.4, 4 Weekly Niño index
NOAA National Weather Service, CPC

(Reynolds et al., 2007)

NAO Daily North Atlantic Oscillation index
NOAA National Weather Service, CPC

(Van den Dool et al., 2000)

SSW
Sudden Stratospheric Warming index

(The zonal mean winds at 60N at 10hPa)

Modern-Era Retrospective Analysis
for Research and Applications v2

(Gelaro et al., 2017)

is also a hyper-parameter. The final forecast is the average of 20 independent runs.

5.5.2 Covariates for ML Models

The feature set for the ML models contains the following climate variables. Spatially over

the contiguous U.S. we consider (1) 2m temperature (tmp2m), which is also the source

data for the ground truth dataset; (2) soil moisture, which influences temperature and

precipitation through its impact on surface fluxes of heat and moisture (Koster et al.,

2011); and (3) four climate variables - geopotential height (ght) at 10mb and 500mb, sea

level pressure (slp) and relative humidity (rhum) - from the reanalysis dataset, which capture

variations in the northern hemisphere polar vortex and persistent variations in the large-

scale atmospheric circulation. We also obtain sea surface temperature (sst) over the Pacific

Ocean, from latitudes 20S to 65N and longitudes 120E to 90W, and the Atlantic Ocean,

from latitudes 20S to 50N and longitudes 20W to 90W. Variations in sst have been linked

to enhanced sub-seasonal predictability over the U.S.(DelSole et al., 2017).

In addition, we include nine climate indices that describe the state of the climate sys-

tem or are related to different climate phenomena, such as El Niño/Southern Oscillation

(ENSO). Multivariate ENSO index (MEI.v2) and Niño indices are included for monitor-

ing El Niño and La Niña events (DelSole et al., 2017; Stan et al., 2017). The amplitude
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and phase of Madden-Julian Oscillation are considered since the MJO has dramatic im-

pacts in the mid-latitudes and is a strong contributor to various extreme events in the U.S.

(Waliser, 2005). North Atlantic Oscillation index (NAO) is considered since variations in

the NAO drive changes in temperature and precipitation over the U.S. and western Europe

(Stan et al., 2017). Sudden Stratospheric Warming index (SSW) is included to capture the

variations in the strength of the polar vortex, which are associated with extreme cold air

outbreaks in mid-latitude U.S., Europe, and Asia (Butler et al., 2015).

5.5.3 Data Preprocessing

For all ML models except AutoKNN, we consider two types of climate variables, namely

spatiotemporal and temporal climate variables. For each spatiotemporal variable, we flatten

the values at all grid points for each date and compute the top 10 principal components

(PCs) as features. For example, if Xsm ∈ RT×G denotes the soil moisture for T dates in

training set (1990-2016) and all G spatial grid points over the contiguous U.S., we compute

the PC loadings using Xsm and extract the top 10 PCs to get the feature matrix Xsm
pc ∈

RT×10. The extracted PCs are then normalized by z-scoring for each month-day combination

separately. The temporal variables and the PC-based features of all spatiotemporal climate

variables jointly form the feature set for each date. For XGBoost and Lasso, the covariates

are the feature values two weeks lagging from the forecasting period. For example, if the

forecasting period is Jan, 15 - Jan, 28 in 2019, the covariates are the features on Jan 1,

2019. For Encoder FNN, the features of a historical sequence are treated as the model input

for each date. The historical sequence is constructed similarly to the features of Encoder

FNN shown in Figure B.2 (He et al., 2021a). AutoKNN takes only the historical tmp2m

anomalies as the covariate.

5.5.4 Experimental Setup

Since the relationships between the covariates and target variables vary at different times

of the year, test sets are created for each month from July 2017 to Jun 2020 and separate

predictive models are trained accordingly. Since an individual ML model is built for each

month of the year, the best hyper-parameters of each type of ML models are selected

on a monthly basis. To do so, for each month of the year, we construct five validation

sets containing data from the same month between 2012 and 2016, and the corresponding

training sets consist of 10 years of data prior to each validation set. The best hyper-

parameters are determined by the average performance over the five validations sets. We
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thus have twelve sets of the best hyper-parameters corresponding to each month of the year.

Once the best hyper-parameters are selected, we use 28 years of data prior to a given test

set to train the corresponding ML forecasting model.

5.6 Experimental Results

In this section, we compare the predictive skill of the four ML models and the two SubX

models on the forecast period from 2017 to 2020. A comprehensive analysis is conducted

for the experimental results, which reveals possible directions for further improvement of

the ML models for SSF. Besides, we explore the potential of advancing SSF by combining

the ML models and the SubX forecasts.

5.6.1 Forecast Period Evaluation

(a) The plots for spatial relative R2. (b) The plots for spatial ACC.

Figure 5.1: (a) The empirical cumulative distribution function (cdf) of spatial relative R2

(top) of all methods and the quantile-quantile (QQ) plot of relative R2 (bottom) between
XGBoost and GMAO-GEOS (left) or NCEP-CFSv2 (right). XGBoost, Lasso and AutoKNN
all have spatial relative R2 close to or above 0, while the SubX models and Encoder-FNN
have relative R2 much smaller than -1. (b) The cdf and QQ plot of spatial ACC. Despite
the similarity of the cdf curves, the ML models (yellow, green, and red) are in general below
the blue curve (the SubX model) when the spatial ACCs are negative, which indicates that
the ML models are less likely to have extremely negative predictive skills compared to the
SubX models.

Since the GMAO-GEOS and NCEP-CFSv2 models have different forecast periods and
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temporal resolutions, all results are evaluated at their respective forecast periods and res-

olutions. We first present the empirical cumulative distribution function (cdf) of spatial

relative R2 for all methods over the forecast periods of GMAO-GEOS and NCEP-CFSv2

in Figure 5.1(a). It is shown that ML models such as XGBoost, Lasso, and AutoKNN are

capable of generating forecasts with positive or smaller negative relative R2, while the SubX

models and the Encoder-FNN model commonly stay in the negative relative R2 zone. On

the other hand, considering the positive side of the cdf plot, the SubX model and Encoder-

FNN are able to achieve relative R2 close to 1 in some cases, whereas the cdf of other ML

models reach 1 when the relative R2 are comparatively small. The quantile-quantile (QQ)

plot of spatial relative R2 in Figure 5.1(a) shows that the relative R2 can be much smaller

than -1, indicating the SubX models can make predictions with a large deviation from the

ground truth. A similar set of plots for spatial ACC is presented in Figure 5.1(b). Despite

the similarities in the cdf across models, a closer inspection shows the cdf of the ML models

(yellow, green, and red curves) are generally below the cdf of the SubX models (blue curve)

for spatial ACC between [-1, 0]. The QQ plot of the spatial ACC between XGBoost and

SubX models supports the observation, where all the points are below the diagonal line

when the spatial ACC of XGBoost is between [-1, 0]. For the positive side of the spatial

ACC for XGBoost, most points are close to or slightly above the diagonal line. To sum-

marize, at a given date, the SubX models are more likely to have spatial ACC close to the

extreme values (-1 or +1), while ML models, such as XGBoost, are more conservative and

are able to avoid extreme negative ACC.

The temporal ACC and temporal relative R2 over the western U.S. are illustrated in

Figure 5.2(a) and (b) respectively. Similar to spatial results, the SubX models achieve

positive temporal ACC for most spatial locations while performing poorly with respect to

temporal relative R2. Among all ML models, XGBoost and Encoder-FNN are the best two

considering temporal predictive skills and substantially outperform the SubX models for

most spatial locations, especially compared to NCEP-CFSv2. Spatially, the central area,

including the states of North Dakota, South Dakota, Montana, Wyoming, Kansas, and

Oklahoma, are the areas where the temperature fluctuations are more drastic compared

to the coastal states. Therefore, linear model like Lasso and non-parametric model like

AutoKNN tend to perform worse in such regions, while more complicated nonlinear models

like XGBoost and Encoder-FNN perform relatively better. Additionally, the SubX models

have negative temporal relative R2 and positive temporal ACC for the coastal area, which

implies the SubX models may predict incorrect magnitudes despite their relatively accurate

prediction of the temporal patterns.
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(a) Temporal ACC

(b) Temporal Relative R2

Figure 5.2: (a) Temporal ACC and (b) temporal relative R2 of the SubX models (leftmost
columns) and the ML models. For both metrics, values closer to 1 (green) indicate more
accurate predictions. Overall the SubX models achieve positive temporal ACC for most
spatial locations while performing poorly if considering temporal relative R2. Among all the
ML models, XGBoost and Encoder-FNN are the two best models regarding both predictive
skills, and substantially outperform the SubX models over most spatial locations, especially
compared to NCEP-CFSv2.

5.6.2 Machine Learning and Extreme Weather Events

Given that SSF is a challenging problem, it is natural to investigate under which circum-

stance(s) the ML models fail to provide accurate forecasts. The average spatial ACC of

the XGBoost models and the SubX models for each month during the forecast periods are

shown in Figure 5.3. For most months, XGBoost is either competitive or achieves higher

spatial ACC compared to the SubX models. The exceptions occur in December 2018 and
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Figure 5.3: The monthly average spatial ACC of XGBoost and the SubX models (top 2)
during the respective forecast periods and the mean of tmp2m anomalies over the western
U.S. (bottom). Most of the time, XGBoost achieves competitive or even higher spatial ACC
compared to the SubX models. The only exception, that both SubX models outperform
XGBoost, happens from Dec. 2018 to Feb. 2019 (highlighted in orange) when a cold wave
affected the U.S. leading to extreme low average tmp2m anomalies.

first two months of 2019, when the January–February 2019 North American cold wave

impacted the United States. The cold wave brought the coldest temperatures in over 20

years to most locations (Wikipedia, 2019). The temperature anomalies reached -15◦C and

beyond in the central U.S. Extreme weather events are hard to predict since there is a lack

of enough training data for such events. However, the dynamical models are reasonably

successful in predicting the extreme cold temperatures, since they follow the physics. For

example, the cold wave followed a sudden stratospheric warming event, which have been

shown to increase predictability of these extreme events (Domeisen and Butler, 2020).

The value of spatial ACC is not affected by the scale of the response. Therefore, we

analyze the predictive performance regarding RMSE for the ML models. We first separate

all grid points in the western U.S. into five climatically consistent regions (Karl and Koss,

1984), i.e., northwest, west, west-north-central, southwest, and south (Figure 5.4). To

represent the spatial variance of tmp2m anomalies at each forecasting date and each region,

we approximately compute the standard deviation (std) of tmp2m anomalies at each date

and each region as

√∑nr
i=1

y2i
nr

, where nr is the number of grid points for a given region

at one date. As shown in Figure 5.5(a), the RMSE from all four ML models at a given

date and region is strongly correlated to the std of tmp2m anomalies, which implies the

dates and regions with high variance are difficult to predict. Figure 5.5(b) illustrates the

average of tmp2m (with sign, unlike Figure 5.5(a)) for each date and region versus the
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Figure 5.4: The nine climatically consistent regions identified by National Centers for Envi-
ronmental Information scientists( NOAA - National Centers for Environmental Information,
2021; Karl and Koss, 1984). The western contiguous U.S. (orange rectangular) covers five
regions with 20 states.

predictive RMSE, which further demonstrates that extreme events are the samples with

negative bias and large variance during the forecast period. Besides, the distribution of

different regions in Figure 5.5 implies that the spatial variance is, in general, lower for

coastal regions compared to inland regions. For instance, west-north-central region can

experience extremely cold winter temperatures when the polar jet stream sinks down into

the mid-latitudes and brings with it the coldest polar air.

This analysis illustrates the difficulty of modeling extreme weather events using a single

ML model, not only because of the inadequate samples, but also due to the intense tem-

perature fluctuations caused by such events. Therefore, it is necessary to utilize separate

modeling techniques for weather extremes or regions with drastic fluctuations in tmp2m

anomalies, to achieve more accurate predictions. Ideally, if weather extremes can be de-

tected ahead of time, we can choose not to trust the ML forecasts for a certain time period

and turn to the forecasting models specifically designed for extreme conditions.

5.6.3 Enhancing ML Models with SubX Forecasts

To demonstrate the strengths and limitations of the SubX and the ML model forecasts,

we present forecasts of two days as anecdotal evidence in Figure 5.6. The first example

(Figure 5.6(a)) shows that, on Mar. 12, 2018, both GMAO-GEOS and XGBoost have

successfully reproduced the spatial pattern of the ground truth. As a result, GMAO-GEOS

and XGBoost obtain good spatial ACC. However, the predicted scale from GMAO-GEOS

is much larger than XGBoost and is closer to the scale of the ground truth. The second

example is the forecasting results on Jan 6, 2020, when the SubX forecasts fail badly. As
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(a) Spatial RMSE vs. std of tmp2m anomalies (b) Spatial RMSE vs. average tmp2m anomalies

Figure 5.5: Spatial RMSE versus (a) the standard deviation of tmp2m anomalies over dates
and regions and (b) the average tmp2m anomalies over the dates and regions. The high
spatial RMSE appears for samples having large standard deviation or extreme negative
average of tmp2m anomalies, which indicates that the west-north-central region are hard
to predict.

shown in Figure 5.6(b), while the ground truth is that all the locations over the western

U.S. have positive tmp2m anomalies with the largest values around 8◦C, GMAO-GEOS

predicts all negative tmp2m anomalies with the lowest values close to −8◦C. Meanwhile,

XGBoost partially predicts the correct spatial pattern but with conservative values in the

range of [−1.5◦C, 1.5◦C], which are much smaller than the magnitudes of the ground truth.

These two examples demonstrate that the SubX models have certain advantage on matching

the magnitude of the tmp2m anomalies, while the ML models are more conservative and

provide predicted values with smaller amplitude. On the flip side, in situations where the

SubX models does not predict the spatial pattern correctly, the forecasts can be wrong by

a large amount.

Acknowledging the advantages of both types of models, we explore a suitable combina-

tion of the ML models and the SubX forecasts. More specifically, we investigate whether

including SubX forecasts in the feature set of the ML models can enhance the predictive

skill of the ML models. Since the hindcast periods of the SubX models are ∼10 years

shorter than the temporal range of the training data for the ML models, and the temporal

resolution of SubX models is also relatively lower, incorporating the SubX forecasts signif-

icantly reduces the sample size. To compare the performance fairly, we first train a ML

model using the samples that are available during the hindcast periods and then compare
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(a) Ground truth and forecasts on Mar. 12, 2018

(b) Ground truth and forecasts on Jan. 6, 2020

Figure 5.6: Comparison between the ground truth and forecasts made by GMAO-GEOS
and XGBoost at two selected dates. (a) On March 12, 2018, both XGBoost and GMAO-
GEOS successfully predict the spatial pattern of ground truth data (red in the southwest
and blue in the northeast). However, predicted values from XGBoost are much smaller
than GMAO-GEOS forecasts as XGBoost is more conservative on the magnitude. (b) On
Jan 6, 2020, the ground truth has positive tmp2m anomalies (red) for most locations, while
GMAO-GEOS mistakenly makes extreme negative forecasts (dark blue).

it with version of the ML model that uses SubX forecasts as features, this guarantees both

models are trained with exactly the same sample size. Note, for Multitask Lasso, features

are originally shared for all locations. To incorporate SubX forecasts, we have to build

one Lasso model for each location but the hyper-parameter is jointly selected based on the

performance for all locations.

Table 5.3 presents the mean and median and their standard error of the spatial ACC

using XGBoost and Lasso, with and without the inclusion of SubX forecasts in the feature

set. Temporal results are shown in Figure 5.7. Overall adding either GMAO-GEOS or

NCEP-CFSv2 forecasts in the feature set leads to a significant enhancement of predictive

skill. We conduct the sign test introduced in (DelSole and Tippett, 2016) to compare dif-

ferences in forecast skills. Overall, comparison of ML model performance with and without

SubX features yields p values much smaller than 0.01. The one exception is the spatial
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(a) Temporal ACC (b) Temporal relative R2

Figure 5.7: The temporal ACC and relative R2 of XGBoost and Lasso with and without
GMAO forecasts as features.Including GMAO forecasts in the feature set evidently improves
the forecasting performance, especially for the central U.S. (top right corner, marked by
blue frames).

ACC for Lasso with and without GMAO forecasts, for which the p value is 0.21. Further-

more, as shown in Figure 5.7, the combination of the ML models and the SubX forecasts

effectively converts some negative temporal ACC to positive and strengthens the forecasts

originally achieving positive temporal ACC. The improvement is particularly outstanding

for the west-north-central region, a region considered hard to predict. Similarly, regarding

temporal relative R2, both ML models obtain some improvements in the areas originally

characterized by negative values. Especially for Lasso, it picks the central area where the

GMAO-GEOS model performs well and obtains positive temporal relative R2. These results

highlight the potential to further increase predictive skill of the ML models by incorporating

SubX forecasts. We anticipate that more hindcast data from SubX models would lead to

notable improvement in predictive skills of the ML models.

5.7 Conclusions

In this chapter, we perform a rigorous evaluation and comparison between state-of-the-art

machine learning models and two dynamical models from the SubX project, i.e., GMAO-

GEOS and NCEP-CFSv2, for SSF in the western contiguous U.S. Experimental results

demonstrate that, in general, the ML models can outperform the SubX models. However,

the ML model forecasts usually are relatively conservative compared to the SubX forecasts
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Table 5.3: The mean and median (standard error) of spatial ACC of XGBoost and Lasso
with and without including the SubX forecasts in their feature set. Their spatial ACC have
improved significantly when the SubX forecasts are included.

Features without GMAO with GMAO without NCEP with NCEP

XGBoost

Mean 0.09 (0.02) 0.13 (0.02) 0.15 (0.02) 0.18 (0.02)

Median 0.12 (0.03) 0.14 (0.04) 0.21 (0.03) 0.23 (0.02)

Lasso

Mean 0.12 (0.03) 0.16 (0.03) 0.19 (0.01) 0.23 (0.02)

Median 0.16 (0.04) 0.18 (0.04) 0.21 (0.02) 0.25 (0.02)

which, when correctly made, match the scale of the ground truth better. Acknowledging

the strengths of both ML and dynamical models, we obtain significant improvements in

predictive skill by including the SubX forecasts as a new feature of ML models, which

illustrates the potential in generating skillful SSF by combining such two types of models.

Further, we show that ML models make most of the bad forecasts during weather extremes,

e.g., unusual cold waves, and suggest ways of further improving the ML models by separately

modeling extreme events.



Chapter 6

Synthetic Climate Data Generation

Using Generative Models

6.1 Introduction

As illustrated in the two previous chapters, sub-seasonal climate forecasting is a challenging

problem for machine learning algorithms. One main reason is that SSF does not lie in the

big data regime due to the limited availability of high-resolution climate data. Therefore,

in this chapter, we focus on generating synthetic climate data using generative modeling.

In machine learning, generative modeling targets capturing the distribution of observed

data x or the relationships between observed data x and some unobservable latent variables

z (Ghahramani, 2015). Recently, due to the breakthroughs in deep learning, deep genera-

tive models, which seek a rich latent representation of data, have wide-ranging applications

(An and Cho, 2015; Kingma et al., 2019; Kusner et al., 2017; Pu et al., 2016), as diverse

as from image generation (Cai et al., 2019) to natural language processing (Bowman et al.,

2016). The two main paradigms in generative modeling are Generative Adversarial Net-

works (GANs) (Goodfellow et al., 2014) and Variational Autoencoders (VAEs) (Kingma and

Welling, 2014; Kingma et al., 2019). GANs implicitly estimate the density via a stochastic

procedure that generates data directly, whereas VAEs aim explicitly to approximate the

posteriors for latent variables via maximizing the lower bound of the data log-likelihood.

The popularity of GANs has drastically increased in the past few years since they are

able to produce images that are visually appealing and realistic (Creswell et al., 2018; Good-

fellow et al., 2016). However, it is hard to train GANs due to the issues like non-convergence,

78
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mode collapse, and unbalance between the generator and discriminator (Arjovsky and Bot-

tou, 2017). Recent studies (Arjovsky et al., 2017; Metz et al., 2016; Poole et al., 2016;

Salimans et al., 2016) have shown various ways to stabilize the training of GANs. In par-

ticular, (Arjovsky et al., 2017) proposed an alternative with better theoretical properties

than vanilla GANs, named Wasserstein GAN (WGAN), which leverages the Wasserstein-1

distance, rather than Jensen–Shannon (JS) divergence (used in vanilla GANS), between the

model and target distributions. WGAN has the constraints that its discriminator must be

a 1-Lipschitz function, which is enforced through weight clipping. Later, to prevent some

undesired behaviors introduced by weight clipping in WGAN, Gulrajani et al. (2017) pro-

pose gradient penalty (WGAN-GP), which outperforms WGAN and achieves high-quality

image generations on various benchmarking datasets (Karras et al., 2018).

On the other hand, VAEs use the lower bound of log-likelihood as the objective func-

tion, which targets modeling the underlying distribution of data. Unlike GANs, VAEs are

relatively easier and more stable to train (Kingma, 2017), but vanilla VAEs tend to generate

blurry images (Higgins et al., 2017; Hu et al., 2018). To improve VAEs, recent studies have

devoted to conquer the statistical challenges, including formulating tighter bounds (Alemi

et al., 2018; Burda et al., 2016; Masrani et al., 2019), specifying more flexible approxi-

mate posterior distributions (Cremer et al., 2018; Gregor et al., 2015; Kingma et al., 2016;

Rezende and Mohamed, 2015; Vahdat et al., 2020), addressing the latent variable collapse

problem (Bowman et al., 2015; Lucas et al., 2019; Razavi et al., 2018), and training VAEs

with discrete latent variables (Rolfe, 2016; Tucker et al., 2017; Vahdat et al., 2018), etc.

Besides, some recent work focuses on improving the interpretability of VAEs via learning

disentangled representation (Chen et al., 2018; Higgins et al., 2017; Locatello et al., 2019)

and generating high-quality images using deeper (hierarchical) architectures (Child, 2020;

Maaløe et al., 2019; Vahdat and Kautz, 2020).

Inspired by the success of deep generative modeling in computer vision and natural

language processing, some deep generative models have been introduced in weather and

climate modeling as well. For example, deep generative models have been used for precipi-

tation nowcasting (Ravuri et al., 2021), downscaling (Cheng et al., 2021), and wind speed

prediction (Fanfarillo et al., 2021), etc. In this chapter, we investigate the performance of

deep generative models for synthetic climate data generation. We propose a novel Vision

Transformer-based variational autoencoder model (ViT-VAE) which combines the state-of-

the-art computer vision model with VAE. In addition, we carefully compare the proposed

model with another popular type of generative model, i.e., WGAN-GP. The experimental

results illustrate that, with proper adjustment, both models are able to generate synthetic
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tmp2m anomalies that match the ground truth distribution closely.

6.2 Generative Models

In this section, we describe the two generative models that we have designed for synthetic

climate data generation. A climate variable on a given date and spatial region can be seen

as a two-dimensional (2D) image. The generative models target generating synthetic images

of a climate variable, which can be connected to image modeling in computer vision.

6.2.1 ViT-based VAE

Figure 6.1: Architectures of the proposed model. The model consists of five modules: feature
extraction, Transformer-based encoder, latent variables reparameterization, decoder, and
reconstruction.

Inspired by the successful applications of the Visual Transformer (Dosovitskiy et al.,

2020) in computer vision, we design a ViT-based VAE model for generating synthetic climate

data. Figure 6.1 depicts the overview of the proposed model. The input of the model is the

2 meter temperature anomalies over the western U.S., which can be seen as a 2D image with

the resolution as (H,W ). More specifically, we reshape the image x ∈ RH×W into a sequence

of 2D patches [x1; · · · ; xr; · · · , ; xR] based on the climatically consistent regions identified by

climate scientists from National Centers for Environmental Information (Figure 5.4). The
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output of the model is the reconstruction of x, which is denoted as x̂. The model consists

of five modules, that is feature extraction, Transformer-based encoder, (latent variables)

reparameterization, decoder, and reconstruction.

Feature extraction. We consider features from two levels of spatial resolutions, i.e, local

features and global features. Local features are extracted from the (high-resolution) temper-

ature anomalies within each region, while global features represent the mean temperature

anomalies of each region. For local features, we flatten the temperature anomalies over

each region (denoted as xr ∈ RDr) and map the vector to De dimensions with a trainable

projection. For the r-th region, the output of the projection is referred to as the patch

embedding,

x̃r = ReLU(xrE
r
l1)Erl2 + Erpos , (6.1)

where Erl1 ∈ RDr×Dh and Erl2 ∈ RDh×De are the weight matrices, Erpos ∈ RDe is the position

embedding, and Rectified Linear Unit (ReLU) is used as activation function. We add each

position embedding Erpos to its corresponding patch embedding for maintaining positional

information. The global feature x̃g is a trainable linear projection of the regional mean

xg ∈ RR,

x̃g = xgEg + Egpos , (6.2)

where Eg ∈ RR×De is the weight matrix, and Egpos is the position embedding for the global

features. To create the input sequence xe0 for the Transformer-based encoder, we con-

catenate global features and local features and pass them through a dropout layer, that is

xe0 = Dropout([x̃g; x̃1; · · · ; x̃r; · · · ; x̃R]) , (6.3)

where R = 5 represents the number of regions in the western U.S. and R + 1 serves as the

effective input sequence length for the Transformer-based encoder.

Transformer-based encoder. The encoder (Vaswani et al., 2017) is composed of multi-

headed self-attention (MHSA) and multilayer perceptron (MLP) blocks. Layernorm (LN)

is applied for the input of each block and there is residual connection for the output of each

block. More specifically, the module is computed as

x′el = MHSA(LN(xel−1
)) + xel−1

and xel = MLP(LN(x′el)) + x′el , (6.4)

where L is the number of layers (l = 1, · · · , L). The MLP contains two fully-connected

layers with Gaussian Error Linear Unit (GELU) as activation function.

Reparameterization. There is one latent variable zr for each region (seen as the local
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features) and one latent variable zg for the global features. The module estimates the mean

and variance of each latent variable as

µr = xreLW
r
µ and log var(zr) = xreLW

r
var , (6.5)

where Wµ,Wvar ∈ RDe×Dz and r = 0, · · · , R. We reparameterize the latent variables using

a differentiable transformation,

zr = µr + ε� σr = µr + ε� exp(0.5 ∗ log var(zr)) , (6.6)

where ε ∼ N (0, I). The global latent variable zg = z0 has the index as r = 0.

Decoder. The decoder has two components, one for local latent variables xd0 = [z1; · · · ; zR],

and one for global latent variable zg. The local decoder is a Transformer model with the

same layer as the Transformer-based encoder. The input sequence length is R and dimen-

sion is Dz. The output of the local decoder is xdL = [x1
dL

; · · · ; xRdL ]. The global decoder is

a MLP with batch normalization, that is

xdg = BatchNorm(zgWd1)Wd2 , (6.7)

with Wd1 ∈ RDz×Dh and Wd2 ∈ RDh×R.

Reconstruction. The output of the decoder is used for reconstructing x. For each re-

gion, the reconstruction is computed as the summation of local reconstruction and global

reconstruction,

x̂r = x̃rec
r + x̃gr � IDr , (6.8)

where x̃gr is the r-th element in xdg representing the regional mean for r-th region, and

IDr ∈ RDr is a vector with only 1 as elements. The local reconstruction x̃rec
r is computed

as

x̃rec
r = ReLU(xrdLWrec1)Wrec2 (6.9)

with Wrec1 ∈ RDz×Dh and Wrec2 ∈ RDh×Dr . The reconstruction x̂ ∈ RH×W is constructed

by mapping x̂r from each region to the corresponding spatial locations.

Loss function. The loss function for one data point consists two parts: the reconstruction

loss `rec and the Kullback–Leibler divergence (KL) loss `KL,

` = `rec + β ∗ `KL , (6.10)
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where β is a hyperparameter. (During the model training, β is annealing from 0 to 1.) The

reconstruction loss is the summation of MSE over all regions, which is computed as

`rec =
R∑
r=1

Dr∑
i=1

(x(i)
r − x̂(i)

r )2 , (6.11)

where x
(i)
r and x̂

(i)
r are the i-th element in xr and x̂r respectively. We assume all the latent

variables, including zr (r = 1, · · · , R) and zg, are drawn from a prior N (0, IDz). Therefore

the KL loss is computed as

`KL =
1

R+ 1

R∑
r=0

`rKL =
1

R+ 1

R∑
r=0

−0.5 ∗
Dz∑
i=1

(1 + log((σ(i)
r )2)− (µ(i)

r )2 − (σ(i)
r )2) , (6.12)

where µ
(i)
r and σ

(i)
r are the i-th element in µr and σr.

6.2.2 Gradient Penalty (WGAN-GP)

There are two networks in GANs, a generator and a discriminator. The generator G takes

a noise variable as input and projects it to synthetic samples, while the discriminator D is a

classifier to distinguish between the generated synthetic samples and the samples from the

input dataset. The generator G is optimized to produce “realistic” samples that are capable

of confusing the discriminator D. Therefore, the objective function of GANs is formulated

as

min
G

max
D

Ex∼Pr [logD(x)] + Ex̃∼Pg [log(1−D(x̃))] , (6.13)

where Pr is the data distribution over real data x and Pg is the distribution over generated

samples x̃ = G(z). z is the input noise variable (z ∼ Pz). If the discriminator is optimal, the

objective function is equivalent to minimize the Jensen-Shannon (JS) divergence between Pg
and Pr (Weng, 2019). However, the JS divergence are not continuous (differentiable) w.r.t

the parameters in G. Thus, to stabilize the GAN training, Arjovsky et al. (2017) propose

to use Wasserstein-1 distance instead of JS divergence in the objective function. Based on

the Kantorovich-Rubinstein duality (Villani, 2009), the objective function is formulated as

min
G

max
‖fD‖L≤1

Ex∼Pr [fD(x)]− Ex̃∼Pg [fD(x̃)] , (6.14)

where fD (the “discriminator” in WGAN) is in the set of 1-Lipschitz functions. To enforce

the 1-Lipschitz continuity of fD, after each gradient update, the weights in fD are clipped
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Table 6.1: Loss of all three models on the test set.

KL loss Reconstruction loss Loss

CNN-VAE 79.36 234.06 313.43

ViT-VAE (CNN) 67.63 150.18 217.80

ViT-VAE 75.12 129.22 204.34

to a small window [−c, c], which results in a compact weight space. Even though clipping

is an easy and practical trick for preserving a Lipschitz constraint, the training of WGAN

is unstable. WGAN still suffers from generating poor samples and struggles to converge.

Gulrajani et al. (2017) propose gradient penalty (WGAN-GP) to substitute weight clipping,

which penalizes the norm of the gradient of the “discriminator” fD with respect to its input.

In this work, the generator consists of multiple fully-connected linear layers. Each

hidden layer is followed by batch normalization and a leaky ReLU as activation function.

The generator takes a standard normal random vector as input and generated samples as

output. The discriminator contains three fully-connected linear layers with leaky ReLU as

activation function.

6.3 Experimental Setup and Results

6.3.1 Experimental Setup

We focus on average 2-meter temperature (tmp2m) anomalies over the western U.S. with

the spatial resolution as 1 ◦ latitude by 1 ◦ longitude. The raw data is extracted from

NOAA’s Climate Prediction Center (CPC) Global Gridded Temperature dataset (Fan and

Van den Dool, 2008). We first compute daily tmp2m anomalies at each grid point by

Figure 6.2: RMSE at each grid point using VAE-CNN, ViT-VAE (CNN), and the proposed
ViT-VAE (without CNN). The proposed model on average achieves the best reconstruction
performance.
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subtracting the climatology from the observed daily tmp2m, where the climatology is the

long-term average over 1986 - 2015, one for each month-day combination and grid point.

The (weeks 3-4) average tmp2m anomalies computed for each date and grid point is the

average of daily tmp2m anomalies for the immediate 14 days (2 weeks). The training set

is constructed by the average tmp2m anomalies from 1986 to 2010 (∼ 9000 samples), while

the validation set and test set consist of the data from 2011 to 2015 and the data from 2016

to 2020 respectively. The hyper-parameters are determined by the best performance over

the validation set.

6.3.2 Results of ViT-based VAE

(a) The reconstruction results for tm2pm anomalies on Sep 27, 2018.

(b) The reconstruction results for tm2pm anomalies on April 4, 2016.

Figure 6.3: Two examples of tmp2m anomalies (◦C) reconstruction over the western U.S.
from the test set.

In this section, we show the performance of reconstruction using the ViT-based VAE

(ViT-VAE) model and compare it with two baselines, VAE-CNN and ViT-VAE (CNN).

VAE-CNN is a vanilla VAE model with CNN layers as its encoder and transposed CNN

layers as its decoder. ViT-VAE (CNN) is a variant of the ViT-VAE model, which uses

CNN layers as feature extraction and transposed CNN layers for reconstruction. Both

VAE-CNN and ViT-VAE (CNN) treat the whole tmp2m anomalies image as input and

do not explicitly distinguish between different regions. The loss over the test set of each

model and its corresponding decomposition are listed in Table 6.1. The Vit-VAE model
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achieves the lowest loss on the test set and the lowest reconstruction loss as well. We also

illustrate the test RMSE at each grid point in Figure 6.2. Consistent with the results on the

test loss, the proposed Vit-VAE model has the best reconstruction performance with the

smallest RMSE for most of the grid points compared to the two baselines. In addition, we

show two anecdotal examples of reconstruction from the test set. As shown in Figure 6.3,

ViT-VAE can reconstruct the spatial pattern of the ground truth tmp2m anomalies, as well

as preserve some minor details and spatial smoothness, whereas VAE-CNN only roughly

reconstructed the spatial pattern and lack of spatial smoothness. The experimental results

indicate that significant performance gains are obtained from using the region-level feature

extraction and Transformer for encoding and decoding. Nevertheless, the CNN layers are

not as useful in improving the reconstruction performance as expected.

6.3.3 Synthetic Samples Generation

(a) Synthetic samples generated by ViT-VAE.

(b) Synthetic samples generated by WGAN-GP.

(c) Groundtruth tmp2m anomalies.

Figure 6.4: Synthetic samples generated by ViT-VAE and WGAN-GP, and the groundtruth
tmp2m anomalies from the training set.

Both ViT-VAE and WGAN-GP can be used for generating synthetic samples. For

ViT-VAE, we sample the latent variables from a multivariate normal distribution with
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independent zero mean and unit-variance components and feed them to the decoder for

generating synthetic samples. Similarly, for WGAN-GP, we use unit-variance Gaussian noise

as input, and the generator can produce synthetic samples. 1000 samples are generated using

the two models separately. We show four randomly-selected generated samples from each

model in Figure 6.4 to analyze and discuss the performance of each model. For comparison,

we also present four examples of ground truth tmp2m anomalies. Visually, it is hard to

distinguish the generated synthetic samples from the ground truth tmp2m anomalies, which

indicates that both deep learning models are able to simulate realistic spatial patterns in

tmp2m anomalies.

(a) Density of generated samples using the ViT-VAE model and the adjusted ViT-VAE.

(b) Density of generated samples using the WGAN-GP model.

Figure 6.5: Probability density function comparison between the grountruth data and the
generated samples. Figure (a) and the top row in Figure (b) present the results on the same
four grid points. In addition, the bottom row in Figure (b) presents the results for another
four randomly-selected points.
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Figure 6.6: Generated synthetic samples using the adjusted ViT-VAE model.

However, the synthetic samples generated by ViT-VAE have much smaller values, mainly

from −2◦C to 2◦C, compared to the synthetic samples from WGAN-GP and the ground

truth samples that contain values varying from −6◦C to 6◦C. In Figure 6.5(a), we compare

the probability density function of all generated samples using ViT-VAE and the training

samples at four grid points. The results also verify that the variance of generated samples

using ViT-VAE model is much smaller than the ground truth tmp2m anomalies. Never-

theless, as shown in Figure 6.5(b), WGAN-GP is able to generate synthetic samples that

match the variance and tail distributions of the ground truth for most of the grid points. We

suspect that the sampled latent variables in ViT-VAE are close to zero, which leads to the

small variance of generated samples. Therefore, to fix the variance issue for ViT-VAE, in-

stead of sampling the latent variables from a unit-variance normal distribution, we increase

the variance of prior distribution to a larger constant and name it adjusted ViT-VAE. The

probabilistic density functions of the newly generated samples using the adjusted ViT-VAE

are shown in Figure 6.5(a) (the bottom row). By adopting the change, we have observed

a significant improvement, that the density function of the newly generated samples (using

the adjusted ViT-VAE) can match the ground truth distribution more closely. Four exam-

ples of the new synthetic samples are presented in Figure 6.6 for comparison. The newly

generated samples match the general magnitude of ground truth tmp2m anomalies.

Since the decoder in the ViT-VAE model produces the synthetic samples on the region

level, there exist some non-smooth changes over the boundaries between two adjacent re-

gions. For future work, some improvements on preserving spatial smoothness are needed.

Besides, the distribution of tmp2m anomalies varies over seasons. For example, the vari-

ances of tmp2m anomalies in winter are usually higher than the variances in summer for

the central U.S. Therefore, it is worth exploring the idea of generating synthetic samples

for each season separately.
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6.4 Discussions

In this chapter, we focus on generating synthetic 2-meter temperature anomalies using

deep generative models. We propose a novel ViT-based variational autoencoder (ViT-

VAE) model which combines the state-of-the-art computer vision model with variational

autoencoder. The proposed model can learn latent representations of tmp2m anomalies for

each climatically consistent region and generate synthetic climate data. The experimental

results illustrate that the proposed model can outperform baseline models and generate

more accurate reconstruction on the test set. In addition, we carefully compare the pro-

posed model with another popular type of generative model, i.e., WGAN-GP. With proper

adjustment, both models are able to generate synthetic tmp2m anomalies that match the

ground truth distribution closely. Further, we discuss the potential directions to improve

the proposed ViT-VAE model for generating more realistic synthetic samples.



Part IV

Concluding Remarks
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Chapter 7

Conclusions

In this dissertation, we aim on developing machine learning models for tackling two funda-

mental problems in climate science, which are (a) understanding the dependencies among or

within key components in the Earth’s climate system and (b) forecasting climate variables

on sub-seasonal time scales. We propose novel machine learning models for each problem

and perform rigorous empirical evaluations on synthetic and real-world climate data.

We begin with Part II, which covers two particular applications in understanding the

dependencies among or within ocean, land, and atmosphere. In Chapter 2, we consider

the use of structure learning methods for probabilistic graphical models to identify statisti-

cal dependencies in high-dimensional physical processes. We propose ACLIME-ADMM, an

efficient two-step algorithm for adaptive structure learning, which decides a suitable edge-

specific threshold in a data-driven statistically rigorous manner. We compare the proposed

ACLIME-ADMM with baseline structure learning approaches on both synthetic data sim-

ulated by PDEs, and real data of daily global geopotential heights. ACLIME-ADMM is

shown to be efficient, stable, and competitive, especially can outperform the baselines in

challenging scenarios from synthetic data. On the real-world dataset, ACLIME-ADMM is

able to recover the underlying structure of global atmospheric circulation, including switches

in wind directions at the equator and tropics entirely from the data.

In Chapter 3, we focus on identifying predictive relationships between land and ocean

climate variables. More specifically, we consider the problem of predicting monthly desea-

sonalized land temperature at different locations worldwide from sea surface temperatures.

We introduce a weighted Lasso model for the problem which yields interpretable results

while being highly accurate. In addition, we establish finite sample estimation error bounds

for weighted Lasso, and illustrate its superior empirical performance and interpretability
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over some complex models, such as Deep nets and GBT. We also present a detailed empiri-

cal analysis of what has been wrong with Deep Nets for the problem, which may serve as a

helpful guideline for applying Deep nets to other small sample problems in climate science.

In Part III, we shift focus towards a specific forecasting problem, sub-seasonal climate

forecasting. In Chapter 4, we carefully investigate 10 machine learning approaches to sub-

seasonal temperature forecasting over the contiguous U.S. Our results indicate that suitable

machine learning models, e.g., XGBoost, to some extent, capture the predictability on sub-

seasonal time scales and can outperform the climatological baselines, while deep learning

models barely manage to match the best results with carefully designed architectures. Be-

sides, our analysis and exploration provide insights on important aspects to improve the

quality of sub-seasonal forecasts, e.g., feature representation and training set construction.

In Chapter 5, we extend our attention to existing climate models for SSF. We perform

a fine-grained comparison of a suite of modern machine learning models with state-of-the-

art physics-based dynamical models from the SubX project for SSF over the western U.S.

Empirical results indicate that, on average, machine learning models outperform dynamical

models while the machine learning models tend to generate forecasts with conservative

magnitude compared to the SubX models. Further, we explore mechanisms to enhance the

machine learning models and show that suitably incorporating dynamical model forecasts

as inputs to machine learning models can substantially improve the forecasting performance

of the machine learning models.

In Chapter 6, to compensate for the limited availability of high-resolution climate data

for SSF, we seek to generate synthetic tmp2m anomalies using deep generative models.

We propose a novel ViT-based VAE model which uses the state-of-the-art computer vision

model as the encoder and decoder of VAE. The proposed model can learn latent represen-

tations of tmp2m anomalies for each climatically consistent region, and generate synthetic

climate data over the western U.S. In addition, we carefully compare the proposed model

with another popular type of generative model, i.e., WGAN-GP. Empirical results illus-

trate that both models are capable of generating synthetic tmp2m anomalies that match

the ground truth distribution closely.

In summary, this dissertation presents empirical and theoretical work on tackling critical

problems in climate science using machine learning techniques. We hope that the presented

work will lead to continued progress in integrating machine learning into climate science for

improving the interpretability in climate modeling and advancing the quality of sub-seasonal

climate forecasts.
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monthly climate data for finland: comparing the performance of kriging and general-

ized additive models. Theoretical and Applied Climatology, 112(1-2):99–111.

Alemi, A., Poole, B., Fischer, I., Dillon, J., Saurous, R. A., and Murphy, K. (2018). Fixing

a broken elbo. In International Conference on Machine Learning, pages 159–168.

An, J. and Cho, S. (2015). Variational autoencoder based anomaly detection using recon-

struction probability. Special Lecture on IE, 2(1):1–18.

Arcomano, T., Szunyogh, I., Pathak, J., Wikner, A., Hunt, B. R., and Ott, E. (2020).

A machine learning-based global atmospheric forecast model. Geophysical Research

Letters, 47(9).

Arjovsky, M. and Bottou, L. (2017). Towards principled methods for training generative

adversarial networks. arXiv preprint arXiv:1701.04862.

Arjovsky, M., Chintala, S., and Bottou, L. (2017). Wasserstein generative adversarial net-

works. In International conference on machine learning, pages 214–223. PMLR.

Badr, H. S., Zaitchik, B. F., and Guikema, S. D. (2014). Application of statistical models

to the prediction of seasonal rainfall anomalies over the sahel. Journal of Applied

meteorology and climatology, 53(3):614–636.

Bahdanau, D., Cho, K., and Bengio, Y. (2015). Neural machine translation by jointly learn-

ing to align and translate. In International Conference on Learning Representations.

Banerjee, O., Ghaoui, L. E., and d’Aspremont, A. (2008). Model selection through sparse

maximum likelihood estimation for multivariate gaussian or binary data. Journal of

Machine Learning Research, 9:485–516.

Barnston, A. G., Tippett, M. K., L’Heureux, M. L., Li, S., and DeWitt, D. G. (2012).

Skill of real-time seasonal enso model predictions during 2002–11: Is our capability

increasing? Bulletin of the American Meteorological Society, 93(5):631–651.

Bendito, E., Carmona, A., Encinas, A. M., and Gesto, J. M. (2007). Estimation of fekete

93

https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php
https://www.ncdc.noaa.gov/monitoring-references/maps/us-climate-regions.php


94
points. Journal of Computational Physics, 225(2):2354–2376.

Bengio, Y. (2012). Practical Recommendations for Gradient-Based Training of Deep Archi-

tectures, pages 437–478. Springer Berlin Heidelberg, Berlin, Heidelberg.

Bickel, P. J., Ritov, Y., and Tsybakov, A. B. (2009). Simultaneous analysis of lasso and

dantzig selector. The Annals of Statistics,, pages 1705–1732.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2015).

Generating sentences from a continuous space. arXiv preprint arXiv:1511.06349.

Bowman, S. R., Vilnis, L., Vinyals, O., Dai, A. M., Jozefowicz, R., and Bengio, S. (2016).

Generating sentences from a continuous space. In 20th SIGNLL Conference on Com-

putational Natural Language Learning, CoNLL 2016, pages 10–21. Association for

Computational Linguistics (ACL).

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed opti-

mization and statistical learning via the alternating direction method of multipliers.

Foundations and Trends® in Machine Learning, 3(1).

Braman, L. M., van Aalst, M. K., Mason, S. J., Suarez, P., Ait-Chellouche, Y., and Tall,

A. (2013). Climate forecasts in disaster management: Red cross flood operations in

west africa, 2008. Disasters, 37(1):144–164.

Buchmann, P. and DelSole, T. (2021). Week 3-4 prediction of wintertime conus temperature

using machine learning techniques. Frontiers in Climate, 3:81.

Burda, Y., Grosse, R. B., and Salakhutdinov, R. (2016). Importance weighted autoencoders.

In International Conference on Learning Representations.

Butler, A. H., Seidel, D. J., Hardiman, S. C., Butchart, N., Birner, T., and Match, A. (2015).

Defining sudden stratospheric warmings. Bulletin of the American Meteorological

Society, 96(11):1913 – 1928.

Cai, L., Gao, H., and Ji, S. (2019). Multi-stage variational auto-encoders for coarse-to-fine

image generation. In Proceedings of the 2019 SIAM International Conference on Data

Mining, pages 630–638. SIAM.

Cai, T., Liu, W., and Luo, X. (2011). A constrained L1 minimization approach to

sparse precision matrix estimation. Journal of the American Statistical Association,

106(494):594–607.

Cai, T. T., Liu, W., Zhou, H. H., et al. (2016). Estimating sparse precision matrix: Optimal

rates of convergence and adaptive estimation. The Annals of Statistics, 44(2):455–488.

Chandrasekaran, V., Recht, B., Parrilo, P. A., and Willsky, A. S. (2012). The convex

geometry of linear inverse problems. Foundations of Computational mathematics,,

12(6):805–849.

Chatterjee, S., Steinhaeuser, K., Banerjee, A., Chatterjee, S., and Ganguly, A. (2012).

Sparse group lasso: Consistency and climate applications. In Proceedings of the 2012

SIAM International Conference on Data Mining (SDM), pages 47–58.



95
Chen, R. T., Li, X., Grosse, R. B., and Duvenaud, D. K. (2018). Isolating sources of dis-

entanglement in variational autoencoders. Advances in neural information processing

systems, 31.

Chen, S. and Banerjee, A. (2015). Structured estimation with atomic norms: General

bounds and applications. In Advances in Neural Information Processing Systems,

pages 2908–2916.

Chen, T. and Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining (SIGKDD), pages 785–794.

Chen, X.-W., Anantha, G., and Wang, X. (2006). An effective structure learning method

for constructing gene networks. Bioinformatics, 22(11):1367–1374.

Cheng, J., Liu, J., Kuang, Q., Xu, Z., Shen, C., Liu, W., and Zhou, K. (2021). Deepdt: Gen-

erative adversarial network for high-resolution climate prediction. IEEE Geoscience

and Remote Sensing Letters, 19:1–5.

Child, R. (2020). Very deep vaes generalize autoregressive models and can outperform them

on images. In International Conference on Learning Representations.

Chollet, F. (2015). Keras. https://github.com/fchollet/keras.

Chu, T., Danks, D., and Glymour, C. (2005). Data driven methods for nonlinear granger

causality: Climate teleconnection mechanisms. Technical report, Carnegie Mellon

University.

Cofıno, A. S., Cano, R., Sordo, C., and Gutiérrez, J. M. (2002). Bayesian networks for

probabilistic weather prediction. In In Proceedings of the 15th Eureopean Conference

on Artificial Intelligence (ECAI), pages 695–699.

Cohen, J., Coumou, D., Hwang, J., Mackey, L., Orenstein, P., Totz, S., and Tziperman,

E. (2019). S2s reboot: An argument for greater inclusion of machine learning in

subseasonal to seasonal forecasts. Wiley Interdisciplinary Reviews: Climate Change,

10(2):e00567.

Colombo, D. and Maathuis, M. H. (2014). Order-independent constraint-based causal struc-

ture learning. Journal of Machine Learning Research, 15(1):3741–3782.

Cremer, C., Li, X., and Duvenaud, D. (2018). Inference suboptimality in variational autoen-

coders. In International Conference on Machine Learning, pages 1078–1086. PMLR.

Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., and Bharath,

A. A. (2018). Generative adversarial networks: An overview. IEEE Signal Processing

Magazine, 35(1):53–65.

Daniel, W. W. (1978). Applied nonparametric statistics. Houghton Mifflin.

de Perez, E. C. and Mason, S. J. (2014). Climate information for humanitarian agencies:

Some basic principles. Earth Perspectives, 1(1):11.

DelSole, T. and Banerjee, A. (2017). Statistical seasonal prediction based on regularized

https://github.com/fchollet/keras


96
regression. Journal of Climate,, 30(4):1345–1361.

Delsole, T. and Tippett, M. (2017). Predictability in a changing climate. Climate Dynamics.

DelSole, T. and Tippett, M. K. (2016). Forecast comparison based on random walks.

Monthly Weather Review, 144(2):615–626.

DelSole, T., Trenary, L., Tippett, M. K., and Pegion, K. (2017). Predictability of week-3–4

average temperature and precipitation over the contiguous united states. Journal of

Climate, 30(10):3499 – 3512.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Li, F.-F. (2009). Imagenet: A large-

scale hierarchical image database. In 2009 IEEE conference on computer vision and

pattern recognition, pages 248–255. Ieee.

Deng, Y. and Ebert-Uphoff, I. (2014). Weakening of atmospheric information flow in a

warming climate in the community climate system model. Geophysical Research Let-

ters, 41(1):193–200.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). Bert: Pre-training

of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805.

Domeisen, D. I. and Butler, A. H. (2020). Stratospheric drivers of extreme events at the

earth’s surface. Communications Earth & Environment, 1(1):1–8.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,

Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth

16x16 words: Transformers for image recognition at scale. In International Conference

on Learning Representations.

Drton, M. and Maathuis, M. H. (2017). Structure learning in graphical modeling. Annual

Review of Statistics and Its Application, 4:365–393.

Dueben, P. D. and Bauer, P. (2018). Challenges and design choices for global weather

and climate models based on machine learning. Geoscientific Model Development,

11(10):3999–4009.

Ebert-Uphoff, I. and Deng, Y. (2012). A new type of climate network based on probabilistic

graphical models: Results of boreal winter versus summer. Geophysical Research

Letters, 39(19).

Ebert-Uphoff, I. and Deng, Y. (2014). Causal discovery from spatio-temporal data with

applications to climate science. In International Conference on Machine Learning

and Applications, pages 606–613. IEEE.

Edwards, P. N. (2011). History of climate modeling. Wiley Interdisciplinary Reviews:

Climate Change, 2(1):128–139.

Fan, Y. and van den Dool, H. (2004). Climate prediction center global monthly soil mois-

ture data set at 0.5 resolution for 1948 to present. Journal of Geophysical Research:

Atmospheres, 109(D10).



97
Fan, Y. and Van den Dool, H. (2008). A global monthly land surface air temperature

analysis for 1948–present. Journal of Geophysical Research: Atmospheres, 113(D1).

Fanfarillo, A., Roozitalab, B., Hu, W., and Cervone, G. (2021). Probabilistic forecasting

using deep generative models. GeoInformatica, 25(1):127–147.

Flato, G. M. (2011). Earth system models: an overview. Wiley Interdisciplinary Reviews:

Climate Change, 2(6):783–800.

Fogli, P. G., Manzini, E., Vichi, M., Alessandri, A., Patara, L., Gualdi, S., Scoccimarro, E.,

Masina, S., and Navarra, A. (2009). Ingv-cmcc carbon (icc): A carbon cycle earth

system model. CMCC Research Paper,, 61:31.

Francis, R. and Renwick, J. (1998). A regression-based assessment of the predictability of

new zealand climate anomalies. Theoretical and Applied Climatology,, 60(1):21–36.

Frederik Nebeker (1995). Calculating the weather: Meteorology in the 20th century. Elsevier.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation

with the graphical lasso. Biostatistics, 9(3):432–441.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.

Annals of statistics, pages 1189–1232.

Funahashi, K.-i. and Nakamura, Y. (1993). Approximation of dynamical systems by con-

tinuous time recurrent neural networks. Neural networks, 6(6):801–806.
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Meinshausen, N. and Bühlmann, P. (2010). Stability selection. Journal of the Royal Sta-

tistical Society: Series B (Statistical Methodology), 72(4):417–473.

Metz, L., Poole, B., Pfau, D., and Sohl-Dickstein, J. (2016). Unrolled generative adversarial

networks. arXiv preprint arXiv:1611.02163.

Mouatadid, S., Orenstein, P., Flaspohler, G., Oprescu, M., Cohen, J., Wang, F., Knight,

S., Geogdzhayeva, M., Levang, S., Fraenkel, E., et al. (2021). Learned benchmarks

for subseasonal forecasting. arXiv preprint arXiv:2109.10399.

Nair, V. and Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann

machines. In Proceedings of the 27th international conference on machine learning,

pages 807–814.

National Academies of Sciences, Engineering, and Medicine (2016). Next generation earth

system prediction: strategies for subseasonal to seasonal forecasts. National Academies

Press.

National Research Council (2010). Assessment of intraseasonal to interannual climate pre-

diction and predictability. National Academies Press.

Negahban, S. N., Ravikumar, P., Wainwright, M. J., and Yu, B. (2012). A unified frame-

work for high-dimensional analysis of m-estimators with decomposable regularizers.

Statistical Science, 27(4):538–557.

NIDIS (2019). Forecast Rodeo II Leaderboard. https://www.drought.gov/forecast

-rodeo-ii-leaderboard.

NOAA (2021). Billion-Dollar Weather and Climate Disasters. https://www.ncdc.noaa

.gov/billions/events.

O’Brien, G., O’Keefe, P., Rose, J., and Wisner, B. (2006). Climate change and disaster

management. Disasters, 30(1):64–80.

Olivieri, A. C. (2018). Introduction to Multivariate Calibration: A Practical Approach.

Springer.

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., Church,

J. A., Clarke, L., Dahe, Q., Dasgupta, P., et al. (2014). Climate change 2014: synthesis

report. Contribution of Working Groups I, II and III to the fifth assessment report of

the Intergovernmental Panel on Climate Change. IPCC.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufman, 2nd edition.

Pearl, J. (2009). Causality: Models, Reasoning, and Inference. Cambridge university press.

Pegion, K., Kirtman, B. P., Becker, E., Collins, D. C., LaJoie, E., Burgman, R., Bell,

R., DelSole, T., Min, D., Zhu, Y., Li, W., Sinsky, E., Guan, H., Gottschalck, J.,

Metzger, E. J., Barton, N. P., Achuthavarier, D., Marshak, J., Koster, R. D., Lin,

H., Gagnon, N., Bell, M., Tippett, M. K., Robertson, A. W., Sun, S., Benjamin,

S. G., Green, B. W., Bleck, R., and Kim, H. (2019). The subseasonal experiment

https://www.drought.gov/forecast-rodeo-ii-leaderboard
https://www.drought.gov/forecast-rodeo-ii-leaderboard
https://www.ncdc.noaa.gov/billions/events
https://www.ncdc.noaa.gov/billions/events


103
(subx): A multimodel subseasonal prediction experiment. Bulletin of the American

Meteorological Society, 100(10):2043–2060.

Pomeroy, J., Gray, D., Hedstrom, N., and Janowicz, J. (2002). Prediction of seasonal snow

accumulation in cold climate forecasts. Hydrological Processes, 16(18):3543–3558.

Poole, B., Alemi, A. A., Sohl-Dickstein, J., and Angelova, A. (2016). Improved generator

objectives for gans. arXiv preprint arXiv:1612.02780.

Pu, Y., Gan, Z., Henao, R., Yuan, X., Li, C., Stevens, A., and Carin, L. (2016). Variational

autoencoder for deep learning of images, labels and captions. Advances in neural

information processing systems, 29:2352–2360.

Racah, E., Beckham, C., Maharaj, T., Ebrahimi Kahou, S., Prabhat, M., and Pal, C.

(2017). Extremeweather: A large-scale climate dataset for semi-supervised detec-

tion, localization, and understanding of extreme weather events. Advances in neural

information processing systems, 30.

Radhika, Y. and Shashi, M. (2009). Atmospheric temperature prediction using support

vector machines. International journal of computer theory and engineering, 1(1):55.

Raff, D., Nowak, K., Cifelli, R., Brekke, L. D., and Webb, R. S. (2017). Sub-seasonal climate

forecast rodeo. In AGU Fall Meeting.

Ravuri, S., Lenc, K., Willson, M., Kangin, D., Lam, R., Mirowski, P., Fitzsimons, M.,

Athanassiadou, M., Kashem, S., Madge, S., et al. (2021). Skilful precipitation now-

casting using deep generative models of radar. Nature, 597(7878):672–677.

Razavi, A., van den Oord, A., Poole, B., and Vinyals, O. (2018). Preventing posterior

collapse with delta-vaes. In International Conference on Learning Representations.

Reichle, R. H. and Liu, Q. (2014). Observation-corrected precipitation estimates in geos-5.

Technical Report Series on Global Modelling and Data Assimilation, 35:24.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., et al.

(2019). Deep learning and process understanding for data-driven earth system science.

Nature, 566(7743):195–204.

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh,

P. J., Lander, E. S., Mitzenmacher, M., and Sabeti, P. C. (2011). Detecting novel

associations in large data sets. science, 334(6062):1518–1524.

Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.

(2007). Daily high-resolution-blended analyses for sea surface temperature. Journal

of Climate, 20(22):5473–5496.

Rezende, D. and Mohamed, S. (2015). Variational inference with normalizing flows. In

International conference on machine learning, pages 1530–1538. PMLR.

Rolfe, J. T. (2016). Discrete variational autoencoders. arXiv preprint arXiv:1609.02200.

Rolnick, D., Donti, P. L., Kaack, L. H., Kochanski, K., Lacoste, A., Sankaran, K., Ross,

A. S., Milojevic-Dupont, N., Jaques, N., Waldman-Brown, A., et al. (2019). Tackling



104
climate change with machine learning. arXiv preprint arXiv:1906.05433.

Romm, J. (2018). Climate Change: What Everyone Needs to Know®. Oxford University

Press.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,

A., Khosla, A., Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015). Imagenet large scale

visual recognition challenge. International Journal of Computer Vision,, 115(3):211–

252.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T.,

Chuang, H.-y., Iredell, M., et al. (2014). The ncep climate forecast system version 2.

Journal of climate, 27(6):2185–2208.

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016).

Improved techniques for training gans. Advances in neural information processing

systems, 29.

Scher, S. and Messori, G. (2019). Weather and climate forecasting with neural networks:

using general circulation models (gcms) with different complexity as a study ground.

Geoscientific Model Development, 12(7):2797–2809.

Schneider, T., Lan, S., Stuart, A., and Teixeira, J. (2017). Earth system modeling 2.0:

A blueprint for models that learn from observations and targeted high-resolution

simulations. Geophysical Research Letters, 44(24):12–396.

Shepard, D. (1968). A two-dimensional interpolation function for irregularly-spaced data.

In Proceedings of the 1968 23rd ACM National Conference, ACM ’68, page 517–524,

New York, NY, USA. Association for Computing Machinery.

Shi, X., Gao, Z., Lausen, L., Wang, H., Yeung, D.-Y., Wong, W.-k., and Woo, W.-c.

(2017). Deep learning for precipitation nowcasting: A benchmark and a new model.

In Advances in neural information processing systems, pages 5617–5627.

Simmons, A. J. and Hollingsworth, A. (2002). Some aspects of the improvement in skill of

numerical weather prediction. Quarterly Journal of the Royal Meteorological Society,

128(580):647–677.

Spirtes, P. and Glymour, C. (1991). An algorithm for fast recovery of sparse causal graphs.

Social science computer review, 9(1):62–72.

Spirtes, P., Glymour, C. N., and Scheines, R. (2000). Causation, prediction, and search.

MIT press.

Srinivasan, V., Khim, J., Banerjee, A., and Ravikumar, P. (2021). Subseasonal climate

prediction in the western us using bayesian spatial models. Conference on Uncertainty

in Artificial Intelligence (UAI).

Srivastava, N., Mansimov, E., and Salakhudinov, R. (2015). Unsupervised learning of video

representations using lstms. In International conference on machine learning, pages

843–852.



105
Stan, C., Straus, D. M., Frederiksen, J. S., Lin, H., Maloney, E. D., and Schumacher, C.

(2017). Review of tropical-extratropical teleconnections on intraseasonal time scales.

Reviews of Geophysics, 55(4):902–937.

Steinhaeuser, K., Chawla, N., and Ganguly, A. (2011a). Comparing predictive power in

climate data: Clustering matters. Advances in Spatial and Temporal Databases,,

pages 39–55.

Steinhaeuser, K., Chawla, N. V., and Ganguly, A. R. (2011b). Complex networks as a

unified framework for descriptive analysis and predictive modeling in climate science.

Statistical Analysis and Data Mining,, 4(5):497–511.

Stevens, A., Willett, R., Mamalakis, A., Foufoula-Georgiou, E., Tejedor, A., Randerson,

J. T., Smyth, P., and Wright, S. (2021). Graph-guided regularized regression of

pacific ocean climate variables to increase predictive skill of southwestern us winter

precipitation. Journal of Climate, 34(2):737–754.

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels,

A., Xia, Y., Bex, V., and Midgley, P. M. (2013). Climate change 2013: The physical

science basis. Intergovernmental Panel on Climate Change, Working Group I Con-

tribution to the IPCC Fifth Assessment Report (AR5)(Cambridge University Press,

Cambridge, United Kingdom and New York, NY, USA.).

Strobach, E. and Bel, G. (2016). Decadal climate predictions using sequential learning

algorithms. Journal of Climate, 29(10):3787–3809.
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Appendix A

Interpretable Predictive Modeling

for Climate Variables with

Weighted Lasso

A.1 The Restricted Error Set

To prove Theorem 1, Lemma 1 is proposed to characterize the set to which the error vector

∆ = θ̂ − θ∗ belongs.

Lemma 1. Assuming

λ ≥ O(max{
√
m

√
n‖w↑1:m‖2

,

√
log p√
nw̃min

}) , (A.1)

where w̃min is the minimum element in M⊥(w↑), the error set is

Er = {∆ ∈ Rp|R(M⊥(∆)) ≤ β‖w↑1:m‖2‖M(∆)‖2} , (A.2)

where β > 1 is a constant and R(θ) =
∑p

i=1wi |θi| is the regularizer of weighted Lasso.

Proof. By the optimality of θ̂ = θ∗ + ∆, we have

L(θ∗ + ∆) + λR(θ∗ + ∆)− {L(θ∗) + λR(θ∗)} ≤ 0 , (A.3)

where L is loss function.
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Further, since L(θ) = 1

2n‖y −Xθ‖
2
2, we have

L(θ∗ + ∆)− L(θ∗) ≥ − 1

n
〈XT ε,∆〉

≥ − 1

n
〈M(XT ε),M(∆)〉 − 1

n
〈M⊥(XT ε),M⊥(∆)〉

≥ −‖ε‖2
n
〈M(XTu),M(∆)〉 − ‖ε‖2

n
〈M⊥(XTu),M⊥(∆)〉

≥ − c√
n
〈M(XTu),M(∆)〉 − c√

n
〈M⊥(XTu),M⊥(∆)〉 ,

(A.4)

where c > 0 is a constant, ‖ε‖2 = O(
√
n) with high probability since ε ∈ Rn has i.i.d.

centered unit-variance sub-Gaussian entries and u ∈ Sn−1 is unit vector on Sn−1. By

generalized Holder’s inequality, we have

L(θ∗ + ∆)− L(θ∗) ≥ − c√
n
‖M(XTu)‖2‖M(∆)‖2 −

c√
n
〈M⊥(XTu),M⊥(∆)〉 (A.5)

Considering the first term in the RHS of (A.5), if X has isotropic sub-Gaussian rows, then

XTu is a sub-Gaussian vector with covariance matrix as an identity matrix Ip×p. Therefore,

we have ‖M(XTu)‖2 = O(
√
m). Then, for the second term in the RHS of (A.5),

c√
n
〈M⊥(XTu),M⊥(∆)〉

=
cR(M⊥(∆))√

n
〈M⊥(g),

M⊥(∆)

R(M⊥(∆)
〉

=
cR(M⊥(∆))√

n
G(Ω2) ,

(A.6)

where Ω2 = {u ∈ R(p−m)|R(u) ≤ 1}. G(A) is Gaussian width Gordon (1988) of set A. It is

defined as G(A) = Eg[supt∈A〈g, ti〉], where the expectation is over g ∼ N(0, Ip×p).
Note R(u) norm can be viewed as the atomic norm induced by set Aawl = ∪1≤i≤qAi =

∪1≤i≤q{± ei
wi
}, where q = p −m, {ei}qi=1 is the canonical basis of Rq and |Aawl|, the car-

dinality of Aawl, is equal to 2q. According to Lemma 2 in Chen and Banerjee (2015), the
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Gaussian width of the norm ball Ω2 can be bounded by the atomic norm as follows

G(Ω2) = G(Aawl)

≤ max
1≤i≤2q

G(Ai) + 2 sup
z∈Aawl

‖z‖2
√

log(2q)

= 0 +
2

w̃min

√
log(2q)

= O(

√
log q

w̃min
) = O(

√
log p

w̃min
) ,

(A.7)

where w̃min is the minimum element in M⊥(w↑). Substituting G(Ω2) from (A.7) to (A.6),

we have
1√
n
〈M⊥(XTu),M⊥(∆)〉 ≤ cR(M⊥(∆))

√
log p√

nw̃min
. (A.8)

Combining (A.4), (A.5) and (A.8), we have

L(θ∗ + ∆)− L(θ∗)

≥ −c1

√
m

n
‖M(∆)‖2 − c2

R(M⊥(∆))
√

log p√
nw̃min

,
(A.9)

where c1; c2 > 0 are constants. Also, since R(θ) is a decomposable norm and θ∗ ∈M, with

triangle inequality, we have

R(θ∗ + ∆)−R(θ∗)

= R(θ∗ +M(∆) +M⊥(∆))−R(θ∗)

= R(θ∗ +M(∆)) +R(M⊥(∆))−R(θ∗)

≥ R(θ∗)−R(M(∆)) +R(M⊥(∆))−R(θ∗)

≥ R(M⊥(∆))−R(M(∆)) ,

(A.10)

whereM⊥ is the orthogonal subspace ofM. Combining (A.3), (A.9) and (A.10), we have

L(θ∗ + ∆)− L(θ∗) + λ(R(M⊥(∆))−R(M(∆))) ≤ 0 (A.11)

⇒ −c1

√
m

n
‖M(∆)‖2 − c2

R(M⊥(∆))
√

log p√
nw̃min

≤ λ(R(M(∆))−R(M⊥(∆)))

(A.12)
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⇒ −c1

√
m

n
‖M(∆)‖2 − c2

R(M⊥(∆))
√

log p√
nw̃min

≤ λ(‖w↑1:m‖2‖M(∆)‖2 −R(M⊥(∆)))

(A.13)

⇒ R(M⊥(∆))(λ− c2
R(M⊥(∆))

√
log p√

nw̃min
)

≤ (c1

√
m

n
+ λ‖w↑1:m‖2)‖M(∆)‖2 .

(A.14)

Since λ ≥ O(max{
√
m

√
n‖w↑1:m‖2

,
√

log p√
nw̃min

}),

R(M⊥(∆)) ≤ β‖w↑1:m‖2‖M(∆)‖2. (A.15)

Thus, we complete the proof.

A.2 Estimation Error of Weighted Lasso

Below we provide the proof of Theorem 1.

Proof. The weigthed Lasso estimator is of the form

θ̂ = argminθ∈Rp
1

2n
‖y −Xθ‖2 + λ

p∑
i=1

wi|θi| , (A.16)

where θ̂ is the estimated parameter vector and λ is the regularization parameter.

For λ in Lemma 1, the error vector ∆ = θ̂ − θ∗ belongs to the restricted error set

Er = {∆ ∈ Rp|R(M⊥(∆)) ≤ β‖w↑1:m‖2‖M(∆)‖2}. (A.17)

Furthermore, the loss function L(θ) = 1
2n‖y −Xθ‖

2
2 is assumed to satisfy the restricted

eigenvalue (RE) condition Bickel et al. (2009). Define δL(∆, θ∗) as

δL(∆, θ∗) , L(θ∗ + ∆)− L(θ∗)− 〈∇L(θ∗),∆〉 , (A.18)

then there exists a suitable constant κ > 0 such that, with high probability,

δL(∆, θ∗) =
1

2n
‖X∆‖22 ≥ κ‖∆‖22, ∀∆ ∈ Er. (A.19)
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From (A.4) and (A.9) in Lemma 1, we have

〈∇L(θ∗),∆〉 = − 1

n
〈XT ε,∆〉

≥ −c1

√
m

n
‖M(∆)‖2 − c2

R(M⊥(∆))
√

log p√
nw̃min

(A.20)

Further, from triangle inequality, we have

R(θ∗ + ∆)−R(θ∗) ≥ −R(∆) . (A.21)

Deriving from (A.18) and (A.19), we have

L(θ∗ + ∆)− L(θ∗) = 〈∇L(θ∗),∆〉+
1

2n
‖X∆‖22

≥ 〈∇L(θ∗),∆〉+ κ‖∆‖22 .
(A.22)

Adding (A.21) and (A.22), we have

F(∆) = L(θ∗ + ∆)− L(θ∗) + λ(R(θ∗ + ∆)−R(θ∗))

≥− c1

√
m

n
‖M(∆)‖2 − c2

R(M⊥(∆))
√

log p√
nw̃min

+ κ‖∆‖22 − λR(∆).

(A.23)

Since F(∆) ≤ 0, we have

κ‖∆‖22 ≤ c1

√
m

n
‖M(∆)‖2 + c2

R(M⊥(∆))
√

log p√
nw̃min

+ λR(∆). (A.24)

Also, from Lemma 1, we have

R(∆)

‖∆‖2
≤ R(M(∆)) +R(M⊥(∆))

‖M(∆)‖2

≤ (β + 1)‖w↑1:m‖2‖M(∆)‖2
‖M(∆)‖2

≤ (β + 1)‖w↑1:m‖2 ,

(A.25)

where β is a constant.
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Then, dividing (A.24) by κ‖∆‖2, we get

‖∆‖2 ≤ c1

√
m‖M(∆)‖2
κ
√
n‖∆‖2

+ c2
R(M⊥(∆))

√
log p

κ
√
nw̃min‖∆‖2

+
λR(∆)

κ‖∆‖2

≤ c1

√
m

κ
√
n

+ c2
‖w↑1:m‖2

√
log p

κ
√
nw̃min

+ c3
λ‖w↑1:m‖2

κ
,

(A.26)

where c1, c2, c3 > 0 are constants.

Then, by substituting value for λ from Lemma 1, we obtain

‖∆‖2 ≤
c√
nκ

(
√
m+

‖w↑1:m‖2
√

log p

w̃min

)
, (A.27)

where c > 0 is a constant. The proof is completed.



Appendix B

Sub-Seasonal Climate Forecasting

via Machine Learning: Challenges,

Analysis, and Advances

B.1 Difficulty of the Problem

B.1.1 Dependence Between Historical Data and Forecasting Target

In section 4.3, the dependence between the most recent historical data (the residualized

average temperature of week -2 & -1) and the forecasting target (the residualized average

temperature of week 3 & 4) is measured by maximum information coefficient (MIC). Here

we show the results measured by Pearson correlation coefficient Wasserman (2013), and

Spearman’s rank correlation coefficient Wasserman (2013) (Figure B.1). Small values (≤0.2)

of Pearson correlation and Spearman’s rank correlation at a majority of locations, which

verify that there is little information shared between the most recent date and the forecasting

target, once again, demonstrate how difficult SSF is.

B.1.2 Relative R2

In Chapter 4, we introduce cosine similarity, which is widely used in weather prediction

evaluation, as an evaluation metric. Here we formally define the other evaluation metric,

namely relative R2 as

Relative R2 = 1− Relative MSE = 1−
∑n

i=1(y∗i − ŷi)
2∑n

i=1(y∗i − ȳtrain)2
, (B.1)
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Figure B.1: Pearson correlation, Spearman’s rank correlation and MIC between 2m tem-
perature of week -2 & -1 and week 3 & 4. Small values (≤0.2) of Pearson correlation
and Spearman’s rank correlation at a majority of locations verify the fact, as we illustrate
using MIC, that there is little information shared between the most recent date and the
forecasting target.

where ŷ denotes a vector of predicted values, and y∗ be the corresponding ground truth.

We use relative R2 to evaluate the relative predictive skill of a given prediction ŷ compared

to the best constant predictor ȳtrain, the long-term average of target variable at each date

and each target location computed from training set. A model which achieves a positive

relative R2 is, at least, able to predict the sign of y∗ accurately. The results of temporal and

spatial relative R2 over the US mainland of ML models discussed in section 4.4 are shown

in Table B.1 and Figure B.3 respectively.

B.2 Data and Experimental Setup

B.2.1 Data Sources

The data described in Table 4.1 were downloaded from the following sources:

• Temperature (tmp2m): https://www.esrl.noaa.gov/psd/data/gridded/data.cpc

.globaltemp.html

• Soil moisture (sm): https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil

.html

• Sea surface temperature (sst): https://www.ncdc.noaa.gov/oisst

• Relative humidity (rhum), sea level pressure (slp), and geopotential height (hgt): ftp://

ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/

https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globaltemp.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.esrl.noaa.gov/psd/data/gridded/data.cpcsoil.html
https://www.ncdc.noaa.gov/oisst
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/
ftp://ftp.cdc.noaa.gov/Datasets/ncep.reanalysis/surface/
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(a) Sequential feature set for Mar 1, 2018 (b) Evaluation pipeline

Figure B.2: (a) Sequential feature set: to construct feature set at Mar. 1, 2018, we concate-
nate covariates from Mar. 1 in 2018, 2017, and 2016, their corresponding 7th, 14th, and 28th

days in the past, and 7th, 14th, and 28th “future” days in 2017 and 2016. (b) Evaluation
pipeline: to test SSF in Jan 2017, the training set covers historical 30 year ends at Dec 4,
2016 (the last available date). 5 validation sets include dates from each Jan between 2012
to 2016, with the corresponding training sets generated by applying a moving window of 10
years and a stride of 365 days on data start from 2000.

• Multivariate ENSO index (MEI): https://psl.noaa.gov/enso/mei/

• Niño indices: https://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for

• North Atlantic Oscillation (NAO) index: ftp://ftp.cpc.ncep.noaa.gov/cwlinks/

norm.daily.nao.index.b500101.current.ascii

• Madden Julian Oscillation (MJO) phase & amplitude: http://www.bom.gov.au/climate/

mjo/graphics/rmm.74toRealtime.txt

B.2.2 PCA Prepossessing

As mentioned in section 4.5, one way for feature extraction is to apply PCA to spatial-

temporal variables. To do so, let’s consider sst of Pacific ocean as an example. Daily sst

of Pacific ocean is originally stored in a matrix, of which each element represents the sea

surface temperature at each grid point of Pacific ocean. The covariance matrix can be

computed by flattening each matrix into a 1-D vector, viewing each element in the matrix

as a feature and each date as one observation. Such covariance matrix captures spatial

connection among grid points of Pacific ocean. By considering all dates from 1986 to 2016,

we can extract the top 10 principal components (PCs) as features based on PC loadings

computed from the corresponding covariance.

https://psl.noaa.gov/enso/mei/
https://www.cpc.ncep.noaa.gov/data/indices/wksst8110.for
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
ftp://ftp.cpc.ncep.noaa.gov/cwlinks/norm.daily.nao.index.b500101.current.ascii
http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt
http://www.bom.gov.au/climate/mjo/graphics/rmm.74toRealtime.txt


119
B.2.3 Feature Set Construction

To better utilize historical information, we construct a sequential feature set by including

not only covariates of the target date, but also covariates of the 7th, 14th, and 28th day

previous from the target date, as well as the day of the year of the target date in the past 2

years and both the historical past and future dates around the day of the year of the target

date in the past 2 years. Such selection of historical dates mainly bases on the temporal

correlation. Figure B.2(a) provides a detailed example on how to construct feature set

for Mar 1, 2018: we concatenate covariates from Mar. 1 in 2018, 2017, and 2016, their

corresponding 7th, 14th, and 28th days in the past, and 7th, 14th, and 28th “future” days in

2017 and 2016. In total, we include H = 18 historical days in our feature set for each date.

B.2.4 Evaluation Pipeline

Predictive models are created independently for each month in 2017 and 2018. To mimic a

live forecasting system, we generate 105 test dates during 2017-2018, one for each week, and

group them into 24 test sets by their month of the year. Given a test set, our evaluation

pipeline consists of two parts (Figure B.2(b)):

• “5-fold” training-validation pairs for hyper-parameter tuning, based on a “sliding-window”

strategy designed for time-series data. Each validation set uses the data from the same

month of the year as the test set. For instance, if the test set is Jan 2017, the corre-

sponding 5 validation sets are Jan 2012, Jan 2013, Jan 2014, Jan 2015, and Jan 2016

respectively. Each validation set corresponds to a training set containing 10 years of data

and ending 28 days before the first date in the validation set. Specifically, if the validation

set starting from Jan 1, 2016, the training set is from Dec 4, 2005 to Dec 4, 2015. Such

construction is equivalent to apply a sliding-window of 10-year with a stride of 365 days

on data from 2002.

• The training-test pair, where the training set, including 30-year data in the past, ends 28

days before the first date in the test set. For example, to test SSF in Jan 2017, i.e., Jan

1, Jan 8, Jan 15, Jan 22, and Jan 29, the training set starts from Dec 4, 1986 and ends

at Dec 4, 2016, which is the 28th day before Jan 1, and the last date we have the ground

truth for the target variable.
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Table B.1: Comparison of relative R2 of tmp2m forecasting for test sets over 2017-2018. A
positive relative R2 indicates a model predicting the sign of the target variable correctly.
XGBoost achieves the highest relative R2.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

Temporally Global Set

XGBoost - one day 0.0760(0.03) 0.0974(0.03) -0.0449(0.03) 0.2434(0.03)
Lasso - one day 0.0552(0.02) 0.0321(0.02) -0.0309(0.01) 0.1295(0.02)

Encoder (LSTM)-Decoder (FNN) -0.0353 (0.05) 0.0596(0.05) -0.2409 (0.06) 0.2426 (0.05)
FNN -0.5777(0.29) -0.0183(0.15) -0.0794(0.13) 0.0213(0.13)
CNN -0.0564(0.03) 0.0284(0.02) -0.0266(0.02) 0.0570(0.02)

CNN-LSTM -0.1164(0.05) 0.0263(0.03) -0.0862(0.03) 0.0698(0.03)

LS with NAO & all nino - daily 0.0418(0.01) 0.0535(0.01) -0.0078(0.01) 0.0949(0.01)
Damped persistence 0.0266(0.01) 0.0414(0.02) -0.0542(0.02) 0.1354(0.02)

MultiLLR -0.0571 (0.02) 0.0034 (0.02) -0.1156 (0.03) 0.0797 (0.02)
AutoKNN 0.0181 (0.01) 0.0260 (0.02) -0.0531 (0.02) 0.1041 (0.01)

Temporally Local Set

XGBoost - one day -0.0337(0.03) 0.0396(0.03) -0.1310(0.04) 0.1873(0.03)
Lasso - one day -0.0028(0.02) 0.0327(0.02) -0.0613(0.02) 0.0996(0.02)

Encoder (LSTM)-Decoder (FNN) -0.2333 (0.06) -0.1116 (0.06) -0.4694 (0.09) 0.1808 (0.06)

B.2.5 Hyperparameters Tuning

We largely use standard hyperparameters for each of the methods. To be specific, we per-

form hyperparameter tuning for the models and their hyperparameter(s) described below:

• Lasso: the penalty parameter λ.

• XGBoost: learning rate, number of gradient boosted trees, maximum depth of a tree,

and other parameters related to sub-sampling.

• Encoder-Decoder style models: learning rate, number of hidden layers (depth), and

number of hidden nodes (width).

• CNN-based models: learning rate, kernel size, stride, number of fully connected layers,

and number of hidden nodes (width).

The optimal hyperparameters are selected based on the average performance on valida-

tion sets.

B.3 Additional Results

B.3.1 Temporal and Spatial Results of Relative R2

Table B.1 lists the mean, the median, the 0.25 quantile, the 0.75 quantile, and their corre-

sponding standard errors of relative R2 for all models. A positive relative R2 indicates a
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Figure B.3: Temporal relative R2 over the US mainland of ML models discussed in section
4.4 for temperature prediction over 2017-2018. Large positive values (green) closer to 1
indicates better predictive skills.

model can at least predict the sign of the target variable correctly. Again, XGBoost achieves

the highest predictive skill in terms of both the mean and the median, demonstrating its

predictive power. Linear regression, like Lasso, with a proper feature set has good predic-

tive performance. Both XGBoost and Lasso have larger positive relative R2 in terms of the

mean, and can still outperform climatology and two climate baseline models, i.e., LS with

NAO & Niño, and damped persistence. Even though Encoder (LSTM)-Decoder (FNN) has

a slightly negative mean relative R2, it has the second largest median and 0.75 quantile

among all models, showing its potential for further improvement.

Figure B.3 shows the spatial relative R2 of all methods. XGBoost and Lasso are able

to achieve positive relative R2 for most of the target locations. Encoder (LSTM)-Decoder

(FNN) shows better predictive skill over the southern US compared to other regions. Mul-

tiLLR and AutoKNN manages to obtain non-negative relative R2 for the coastal area in

the western US but their predictive performance drops in the rest of locations. All other

baseline methods struggle to reach positive relative R2 for most of the target locations.
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(a) XGBoost (b) Lasso

Figure B.4: Feature importance scores computed from (a) XGBoost and (b) Lasso. Darker
color means a covariate is of the higher importance. The first 8 rows contains the top 10
principal components (PCs) extracted from 8 spatial-temporal covariates respectively, and
the last row includes all the temporal indices. Land component, e.g., soil moisture (3rd

row from the top) and ocean components, e.g., sst (Pacific and Atlantic) and some climate
indices are the most commonly selected covariates.

B.3.2 Analysis on Feature Importance

Besides SHAP values, we also study which covariate(s) are important, considered by ML

models, based on the feature importance score. In particular, we compute the feature

importance score from 2 ML models, XGBoost and Lasso (Figure B.4). For XGBoost, the

importance score is computed using the average information gain across all tree nodes a

feature/covariate splits, while for Lasso, we simply count the non-zero coefficients of each

model. The reported feature importance score is the average over 24 models (one per month

in 2017-2018). What we observe, based on feature importance scores, once again verifies

our observations in Chapter 4: ML models pick up ocean-based covariates, some land-based

covariates, and almost entirely ignore the atmosphere-related covariates.

To emphasis the importance of the land-based covariates, e.g., soil moisture and the

ocean-based covariates, e.g., NAO and Niño indices, we compare the prediction performance

among (1) the model trained with all covariates, (2) the model trained without soil moisture,

and (3) the model trained without NAO and Niño indices (Table B.2 and Table B.3).

Most models experience a performance deterioration when we exclude certain “important”

covariates.
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Table B.2: Comparison of cosine similarity of tmp2m forecasting for test sets over 2017-2018
using different feature set. Excluding soil moisture or climate indices (NAO & Niño) leads
to a deterioration in the predictive performance.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

XGBoost - one day 0.3044(0.03) 0.3447(0.05) 0.0252(0.05) 0.5905(0.04)
XGBoost - one day (w/o soil moisture) 0.2685(0.03) 0.2797(0.05) 0.0703(0.04) 0.5492(0.05)

XGBoost - one day (w/o nao & all nino) 0.2081(0.03) 0.1640(0.05) -0.0588(0.04) 0.5246(0.05)

Lasso - one day 0.2499(0.04) 0.2554(0.06) -0.0224(0.05) 0.5604(0.06)
Lasso - one day (w/o soil moisture) 0.2638(0.04) 0.2912(0.05) 0.0032(0.06) 0.5655(0.05)

Lasso - one day (w/o nao & all nino) 0.1956(0.04) 0.2573(0.07) -0.1657(0.06) 0.5533(0.05)

Encoder (LSTM)-Decoder (FNN) 0.2616 (0.04) 0.2995 (0.07) -0.0719 (0.06) 0.6310 (0.05)
Encoder (LSTM)-Decoder (FNN)(w/o soil moisture) 0.2157 (0.04) 0.2909 (0.07) -0.1106 (0.07) 0.5443 (0.07)

Encoder (LSTM)-Decoder (FNN)(w/o nao & all nino) 0.2236 (0.04) 0.2395 (0.06) -0.1527 (0.07) 0.5989 (0.06)

Table B.3: Comparison of relative R2 of tmp2m forecasting for test sets over 2017-2018.
Excluding soil moisture or climate indices (NAO & Niño) leads to a smaller or even negative
relative R2, showing that it becomes harder for the model to predict the sign of the target
variable correctly.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

XGBoost - one day 0.0760(0.03) 0.0974(0.03) -0.0449(0.03) 0.2434(0.03)
XGBoost - one day (w/o soil moisture) 0.0370(0.03) 0.0322(0.03) -0.0564(0.03) 0.2225(0.03)

XGBoost - one day (w/o nao & all nino) -0.0161(0.03) -0.0079(0.04) -0.1618(0.03) 0.2426(0.04)

Lasso - one day 0.0552(0.02) 0.0321(0.02) -0.0309(0.01) 0.1295(0.02)
Lasso - one day (w/o soil moisture) -0.0161(0.03) -0.0079(0.04) -0.1618(0.03) 0.2426(0.04)

Lasso - one day (w/o nao & all nino) 0.0003(0.02) 0.0457(0.02) -0.1113(0.03) 0.1641(0.02)

Encoder (LSTM)-Decoder (FNN) -0.0353 (0.05) 0.0596(0.05) -0.2409 (0.06) 0.2426 (0.05)
Encoder (LSTM)-Decoder (FNN)(w/o soil moisture) -0.1083 (0.05) 0.0314 (0.05) -0.3022 (0.08) 0.2252 (0.05)

Encoder (LSTM)-Decoder (FNN)(w/o nao & all nino) -0.0802 (0.04) 0.0124 (0.05) -0.3032 (0.06) 0.2446 (0.05)

B.3.3 The Influence of Feature Sequence Length

We compare the prediction performance under 3 different settings, referred to as “one day”,

“four days”, and “all days” respectively. For feature set construction, “one day” includes

covariates at the target date only, “four days” also covers the 7th, 14th, and 28th days

previous to the target date, and “all days” uses the exact feature sequence we use for

LSTM-based models. Comparison of predictive skills under each setting, measured by both

cosine similarity and relative R2, can be found in Table B.4 and Table B.5. Both XGBoost

and Lasso enjoy a performance boost using “one day” values. Especially for XGBoost, the

performance of “one day” is approximately 50% better than using “all days”. A possible

explanation for such performance degradation as we increase the feature sequence length is

that both models weight covariates from different dates exactly the same without considering

temporal information, thus more noise has been introduced.
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Table B.4: Comparison of spatial cosine similarity for tmp2m forecasting over 2017-2018
using various length of feature sequence. Including longer historical sequence leads to a
deterioration in the predictive performance of XGBoost and Lasso.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

XGBoost - all days 0.2080(0.03) 0.1582(0.05) -0.0466(0.05) 0.5383(0.05)
XGBoost - four days 0.2433(0.03) 0.2203(0.05) 0.0561(0.04) 0.5168(0.06)

XGBoost - one day 0.3044(0.03) 0.3447(0.05) 0.0252(0.05) 0.5905(0.04)

Lasso - all days 0.2160(0.04) 0.2258(0.07) -0.1381(0.06) 0.5384(0.06)
Lasso - four days 0.2247(0.04) 0.1952(0.07) 0.0572(0.06) -0.5700(0.06)
Lasso - one day 0.2499(0.04) 0.2554(0.06) -0.0224(0.05) 0.5604(0.06)

Table B.5: Comparison of relative R2 (with training set mean) for tmp2m prediction for
test set over 2017-2019 using different length of feature sequence. Including longer historical
sequence leads to a smaller or even negative relative R2 for both XGBoost and Lasso.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

XGBoost - all days -0.0200(0.03) -0.0010(0.04) -0.1499(0.04) 0.2304(0.04)
XGBoost - four days 0.0242(0.03) 0.0193(0.03) -0.0786(0.03) 0.1882(0.04)

XGBoost - one day 0.0760(0.03) 0.0974(0.03) -0.0449(0.03) 0.2434(0.03)

Lasso - all days -0.0167(0.03) 0.0367(0.03) -0.0639(0.02) 0.1588(0.03)
Lasso - four days 0.0518(0.02) 0.0266(0.02) -0.0542(0.02) 0.1653(0.03)
Lasso - one day 0.0552(0.02) 0.0321(0.02) -0.0309(0.01) 0.1295(0.02)

B.3.4 Discussion on Deep Learning Models

Results of DL models. Table B.6 and Table B.7 compare the predictive skills of 5 DL

models discussed in section 2.6, measured by both cosine similarity and relative R2. Signif-

icant improvements can been observed as we evolve from the standard Encoder (LSTM)-

Decoder (LSTM), to Encoder (LSTM)-Decoder (FNN)-last step, where “last step” indicates

that FNN Decoder only uses the last step of the output sequence from LSTM Encoder, and

finally to Encoder (LSTM)-Decoder (FNN) with FNN Decoder uses every step of the output

sequence from LSTM Encoder.

One issue with Encoder (LSTM)-Decoder (FNN) is that the input features are shared

by all target locations, which requires the model to identify the useful information for each

locations without any help from the input.

Autoregressive (AR) component. Currently, the Encoder(LSTM)-Decoder(FNN) clearly

considers climate covariates on a global scale, which are shared by all target locations. Nev-

ertheless, SSF depends on not only global climate condition but also local weather change.

Therefore, we seek a way to improve the model by adding an autoregressive (AR) com-

ponent to capture the “local” information from historical data. We consider two variants
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Table B.6: Comparison of cosine similarity of tmp2m forecasting for test sets over 2017-2018
using different deep learning architectures.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

Encoder (LSTM)-Decoder (LSTM) 0.0740 (0.03) 0.0358 (0.04) -0.1569 (0.03) 0.2584 (0.04)
Encoder (LSTM)-Decoder (FNN)-last step 0.1614 (0.05) 0.2061 (0.08) -0.2590 (0.08) 0.5720 (0.08)

Encoder (LSTM)-Decoder (FNN) 0.2616 (0.04) 0.2995 (0.07) -0.0719 (0.06) 0.6310 (0.05)
Encoder (LSTM)-Decoder (FNN)+AR 0.1733 (0.04) 0.1922 (0.06) -0.0863 (0.07) 0.5225 (0.06)

Encoder (LSTM)-Decoder (FNN)+AR (CI) 0.1852 (0.04) 0.1986 (0.05) -0.0838 (0.06) 0.5164 (0.05)

Table B.7: Comparison of relative R2 of tmp2m forecasting for test sets over 2017-2018. A
positive relative R2 indicates a model predicting the sign of the target variable correctly.

Model Mean(se) Median (se) 0.25 quantile (se) 0.75 quantile (se)

Encoder (LSTM)-Decoder (LSTM) -0.3947 (0.05) -0.2999 (0.05) -0.6606 (0.08) -0.0537 (0.05)
Encoder (LSTM)-Decoder (FNN)-last step -0.1709 (0.06) 0.0217 (0.06) -0.4569 (0.11) 0.2278 (0.06)

Encoder (LSTM)-Decoder (FNN) -0.0353 (0.05) 0.0596(0.05) -0.2409 (0.06) 0.2426 (0.05)
Encoder (LSTM)-Decoder (FNN)+AR -0.0414 (0.04) -0.0041 (0.05) -0.3027 (0.07) 0.2309 (0.05)

Encoder (LSTM)-Decoder (FNN)+AR (CI) -0.0563 (0.03) -0.0380 (0.05) -0.2365 (0.05) 0.1951 (0.04)

of Encoder (LSTM)-Decoder (FNN). The first variant contains an AR component with

the input as historical temperature at each target location, denoted as Encoder (LSTM)-

Decoder (FNN)+AR. The second one includes both historical temperature and historical

temporal climate variables, i.e., climate indices, as input features, denoted as Encoder

(LSTM)-Decoder (FNN)+AR (CI). For both models, the final forecast is computed as a

linear combination of the prediction from Encoder (LSTM)-Decoder (FNN) and the pre-

diction from AR component for each location. Unexpectedly, as shown in Table B.6 and

Table B.7, simply adding the AR component to our Encoder(LSTM)-Decoder(FNN) does

not help the model to perform better. However, we believe there is a better way to involve

local information, and such modification is a promising direction that worth investigation

in the future.

Table B.8: Average spatial cosine similarity for temperature forecasting over western US
from 2017 to 2018.

Model XGBoost Lasso
Encoder(LSTM)-
Decoder(FNN)

AutoKNN MultiLLR

2017 0.2707 (0.05) 0.3401 (0.05) 0.3067 (0.06) 0.2529 (0.05) 0.0751 (0.06)

2018 0.2997(0.05) 0.2495(0.06) 0.2618(0.06) 0.1833(0.05) 0.0761(0.06)
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Table B.9: Average skills of XGBoost and Lasso using SubseasonRodeo Dataset Hwang et al.
(2019) for temperature forecasting of week 3 & 4. The historical forecast periods follow the
description provided in Section 5.3 of Hwang et al. (2019). The results of MultiLLR and
AutoKNN are from Table 2 in Hwang et al. (2019). Top two winners at each year are
highlighted.

Model 2011 2012 2013 2014 2015 2016 2017 Average

XGBoost 0.2332 0.2056 0.1932 0.1119 0.4164 0.2405 0.2962 0.2424

Lasso 0.3178 0.2436 0.1860 0.2546 0.3606 0.2841 0.3261 0.2818

MultiLLR 0.2695 0.1466 0.1031 0.1973 0.3513 0.2654 0.3079 0.2344

AutoKNN 0.3664 0.3135 0.2011 0.2775 0.3885 0.3502 0.2807 0.3111

B.3.5 Comparison on Western U.S.

Table B.8 shows the average spatial cosine similarity of 5 ML models for temperature

forecasting over Western U.S. AutoKNN was run following Hwang et al. (2019) except the

data are normalized by z-scoring rather than just removing the long-term mean. For 2017,

the results reported on Western U.S. is similar to Hwang et al. (2019). For MultiLLR,

since all spatial-temporal variables are represented by PCs, some local information for each

location is lost, which may lead to a drop of forecasting performance. We need to emphasize

the influence of data prepossessing and feature set construction.

B.3.6 Comparison on SubseasonalRodeo Dataset

Table B.9 compares the average skills (Eq. (1) in Hwang et al. (2019)) of XGBoost and

Lasso with SOTA baselines (Table 2 in Hwang et al. (2019)). For the year 2017 only,

both XGBoost and Lasso perform relatively well. Overall, Lasso and AutoKNN are always

the top 2 winners. We speculate that data preprocessing, hyperparameter tuning, feature

construction, and even the test set span can all impact the predictive performance.
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