
Scalable Model Counting for Program Analysis

A THESIS
SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA
BY

Seonmo Kim

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Stephen McCamant, Advisor

March, 2022

© Seonmo Kim 2022
ALL RIGHTS RESERVED

Acknowledgements

First of all, I would like to express my deepest appreciation to my advisor, Prof. Stephen Mc-

Camant, who was always approachable and gave me valuable feedback during my graduate

program. I learned so many great things from him and he broadened my perspective as a re-

searcher. I also thank my committee members, Prof. Jie Ding, Prof. Nick Hopper and Dr.

Mike Whalen, for their time and feedback to improve my dissertation. I am also thankful to

Prof. Wonhong Nam for giving me the opportunity to do my first research project with him

during my undergraduate degree program. On a personal note, I thank all of my friends and

colleagues, Navid, Vaibhav, Qiuchen, Bowen and Soha, for sharing their ideas and graduate

school life together. I am thankful to my wife, Jinhee Bok, for always being by my side and

taking good care of her immature husband. I am also thankful to my son, Leon, for loving his

busy dad and giving me great joy. I thank my mother-in-law, Chaulsoon Kim, for her prayer

and encouragement. Last but not least, I thank my parents, Larkkyo Kim and Kyunghee Kim,

and my brother, Hyungmo Kim, for their support and prayer.

i

Dedication

To my Lord, Jesus Christ.

ii

Abstract

Various model counting techniques have been proposed to show their scalability for prob-

lem domains such as combinatorics, safety analysis, probabilistic inference and quantitative

information-flow analysis of software. In particular, random hashing-based methods have shown

to be highly successful in computing bounds on the model count of a propositional formula.

These hashing-based algorithms repeatedly check the satisfiability of a formula subject to ran-

dom parity constraints (XOR streamlining) and give an estimate of the model count with a

probabilistic range and confidence. However, these approaches often perform poorly when the

size of parity constraints becomes too large and/or the complexity of the formula increases

because they are highly dependent on the performance of a decision procedure.

In this thesis, we focus on increasing scalability of hashing-based model counting tech-

niques and applying the model counting techniques to analyze programs. This thesis is divided

into three parts. We first describe two efficient approximate model counting tools: SearchMC

and SMC. SearchMC is a hashing-based approximate model counter which uses fruitful SAT

(or SMT) queries to compute a lower bound and an upper bound based on statistical estimation,

and yields results more quickly than existing systems. SMC is a structural model counter which

analyzes the structure of a formula to compute firm lower and upper bounds in polynomial time.

Moreover, we can use SMC to compute a refined initial hypothesis without any solver calls for

SearchMC. Secondly, we explain a divide-and-conquer algorithm, MultiSearchMC, to in-

crease scalability of hashing-based model counting techniques using parallelization. We first

split an input formula into small formulae and run the combination of SMC and SearchMC in

parallel. Then, we conservatively combine all the results to compute an estimate of the model

count. Lastly, we analyze realistic programs using this improved model counting technique.

We show how we can apply model counting techniques to quantitative information flow analy-

sis and uniform sampling for testing. Also, the experimental results illustrate that our approach

is able to handle large-sized input/output data for quantitative information flow analysis and

uniform sampling in certain domains.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables vii

List of Figures viii

List of Algorithms ix

1 Introduction 1
1.1 Motivation . 1

1.2 Background . 4

1.2.1 Boolean Formula . 4

1.2.2 Bit-Vector Formulas . 5

1.2.3 SAT Solving and Model Counting . 5

1.2.4 Quantitative Information-flow Analysis 6

1.2.5 Uniform Sampling . 7

1.3 Overview . 8

2 SearchMC: A Hashing-based Model Counter 10
2.1 Introduction . 10

2.2 Background . 12

2.2.1 XOR Streamlining . 12

iv

2.2.2 Influence . 13

2.2.3 Exhaust-up-to-c query . 13

2.2.4 Particle Filter . 14

2.2.5 ApproxMC . 15

2.3 Design . 19

2.3.1 Updating distribution and confidence interval 19

2.3.2 Algorithm . 21

2.3.3 Variables . 23

2.3.4 Functions . 24

2.3.5 Probabilistic Sound Bounds . 25

2.4 Evaluation . 27

2.4.1 Case Study: Floating Point / Differential Privacy 31

2.5 Related Work . 33

2.6 Chapter Summary . 35

3 SMC: A Structural Model Counter 37
3.1 Introduction . 37

3.2 Algorithm . 38

3.2.1 Per-Assertion Bounds and Analysis 39

3.2.2 Combining Bounds . 43

3.3 Evaluation . 44

3.3.1 Correctness . 44

3.3.2 Experimental Result . 45

3.4 Discussion . 48

3.5 Related Work . 49

3.6 Chapter Summary . 49

4 MultiSearchMC: A Scalable Model Counter using a Divide-and-conquer Approach 50
4.1 Introduction . 50

4.2 Algorithm . 52

4.2.1 Projection / Slicing . 53

4.2.2 Preprocessing . 57

4.2.3 Combining Bounds . 57

v

4.3 Evaluation . 60

4.4 Chapter Summary . 66

5 Applications of Model Counting to Software 67
5.1 Quantitative Information Flow using Model Counting 68

5.1.1 A Symbolic Execution Tool with MultiSearchMC 69

5.2 Uniform Sampling using Model Counting . 71

5.2.1 A Uniform Sampler with MultiSearchMC 71

5.3 Evaluation . 73

5.3.1 QIF Case Study: Error Report System 74

5.3.2 QIF Case Study: Privacy Measurement 76

5.3.3 Uniform Sampling Experiments . 78

5.4 Related Work . 80

5.4.1 Quantitative Information Flow . 80

5.4.2 Uniform Sampling . 82

5.5 Chapter Summary . 83

6 Future Work 85
6.1 A Parallel Solver with Gaussian Elimination 85

6.2 XOR Streamlining Probabilistic Distribution 86

6.3 Precision of SMC . 86

6.4 Portfolio-style Parallelization . 87

7 Conclusion 88

References 90

vi

List of Tables

2.1 Results and performance of model counting (log2 shown) of naive Laplacian

noise in IEEE floating point . 32

3.1 Comparison results of DSHARP P, SearchMC and SMC 46

3.2 Performance of the combination of SMC and SearchMC 47

3.3 Bit-vector operators supported by SMC and FSCB 48

4.1 Rules for combining two bounds . 60

4.2 Performance comparison of ApproxMC4 and MultiSearchMC for a text pro-

cessing program . 62

4.3 Performance comparison of hashing-based model counters using different ver-

sions of CryptoMiniSat . 63

5.1 Performance comparison of MultiSearchMC based on a number of SearchMC

iterations . 75

5.2 Performance of MultiSearchMC for Linux text processing programs 76

5.3 Performance of ApproxMC4 and MultiSearchMC for image processing functions 77

5.4 Sampling experiments with text programs in Section 5.3.1 for generating 500

samples within 2 hours . 81

vii

List of Figures

2.1 SearchMC’s ruler intuition . 24

2.2 Reported lower and upper bounds comparison of SearchMC and ApproxMC2 28

2.3 Performance vs error trade-off of SearchMC and ApproxMC2 29

2.4 Time performance comparison of SearchMC and ApproxMC2 30

2.5 Number of SAT queries comparison of SearchMC and ApproxMC2 31

3.1 A simple SMT-LIB2 formula example for SMC 39

4.1 The implementation overview of MultiSearchMC 53

4.2 Simple SMT-LIB2 formula examples for slicing 55

4.3 An unsliceable formula example . 56

4.4 Performance comparison of SearchMC, MultiSearchMC and ApproxMC4 . . 61

4.5 MultiSearchMC’s ratio measurements parameterized by a number of threads

and iterations for each SearchMC execution 65

5.1 Simple symbolic execution example . 70

5.2 Unigen3 performance comparison of ApproxMC4 and MultiSearchMC as a

back-end model counter . 79

5.3 Uniformity comparison of a uniform sampler and UniGen3 with MultiSearchMC 80

viii

List of Algorithms

2.1 exhaust-up-to-c . 14

2.2 ApproxMC . 16

2.3 ApproxMCCore . 17

2.4 GallopingSearch . 18

2.5 SearchMC . 22

2.6 ComputeCandK . 23

2.7 UpdateDist . 25

3.1 The operation rule of bvadd (f, g) . 42

3.2 The operation rule of = . 43

3.3 The operation rule of mergeBounds . 45

5.1 EstimateParameters . 72

5.2 GenerateSamples . 72

ix

Chapter 1

Introduction

1.1 Motivation

Model counting is the task of determining the number of satisfying assignments of a given for-

mula. Boolean formula model counting, known as #SAT, is a standard model-counting problem,

and it is a complete problem for the complexity class #P in the same way that SAT is complete

for NP. #P is believed to be a much harder complexity class than NP, and exact #SAT solving

is also practically much less scalable than SAT solving. #SAT solving can be implemented as a

generalization of the DPLL algorithm [1] and a number of systems such as Relsat [2], CDP [3],

Cachet [4], sharpSAT [5], DSHARP [6] and countAntom [7] have demonstrated various opti-

mization techniques. However, not surprisingly given the problem’s theoretical hardness, such

systems often perform poorly when formulas are large and/or have complex constraints.

Since many applications do not depend on the model count being exact, it is natural to

consider approximation algorithms that can give an estimate of a model count with a proba-

bilistic range and confidence. Some approximate model counters include ApproxCount [8],

SampleCount [9], MiniCount [10] and so on. One effective category of approximate model

counting techniques is hashing-based model counting [11, 12, 13, 14], which employs XOR

constraints to reduce the solution space [15]. The main contribution of hashing-based model

counting approaches is a good trade-off between computational performance and probabilistic

guarantees, which means these approaches reduce the #P-complete model counting problem to

a polynomial number of NP-complete problems. The basic concept of hashing-based model

1

2

counting techniques is that adding one XOR constraint (generated by universal hashing) re-

duces the model count by a factor of 2 in expectation, therefore k independent constraints are

likely to reduce the model count by 2k. If a formula with extra constraints has n > 0 solutions,

the original formula likely had about n · 2k. If the model count after constraints is small, it

can be found with a few satisfiability queries, so adding XOR constraints reduces approximate

model counting to satisfiability. Existing hashing-based model counting techniques differ how

to choose a value of k when the model count is not known in advance.

We first introduce a hashing-based model counting tool, SearchMC [12], which takes

a statistical estimation approach to compute the most appropriate k for each step. It main-

tains a probability distribution that reflects an estimate of possible model counts: the mean of

the distribution corresponds to our tool’s best estimate, while the standard deviation becomes

smaller as its confidence grows. At each step, we use a particle filter to refine this estimate

by adding k XOR constraints to the input formula, and then enumerating solutions under those

constraints. Hashing-based model counting techniques can be more scalable than exact model

counting techniques by reducing the number of solver calls. However these approaches, in-

cluding SearchMC, still have limited scalability in practice: they require a large number of

satisfiability queries to achieve tight bounds, and hashing can make individual queries much

more expensive, given the complex interactions between hashing constraints and solver opti-

mizations.

Structural model counting techniques are valuable but less developed approximation al-

gorithms which achieve guaranteed efficiency and firm bounds without a solver call. These

techniques analyze the syntactic structure of a formula to compute conservative lower and up-

per bounds that are always correct. We introduce a new structural model counting tool called

SMC [16] for quantifier-free SMT formulas over the theory of bit vectors (SMT-LIB QF BV),

one of the most common theories used to model bounded arithmetic and software semantics.

The results of this structural approximate model counting technique can be used as a prior hy-

pothesis to produce more useful results in SearchMC. Even if we combine structural model

counting and hashing-based model counting techniques, we still face the scalability issue since

this reduces only a small number of satisfiability queries. The performance of hashing-based

model counters highly depends on the performance of decision procedures and there are limiting

factors to improve the performance of solvers practically and theoretically if an input formula

is too large or complex.

3

In order to increase scalability of hashing-based model counting techniques, we introduce

MultiSearchMC to improve performance by extending the idea of computing a prior hypoth-

esis. The key idea is that we split an input formula into multiple sub-formulae and compute a

model count of each sub-formula with a hashing-based model counter in parallel. This is similar

to a “divide-and-conquer” style approach where we solve multiple sub-problems first to solve

the original problem. We first split an input formula using projected model counting [17] which

computes a number of satisfying assignments over a subset of original variables. The length of

each XOR constraint is proportional to the total number of original variables and we observe

that reasoning with long XOR constraints is computationally more expensive than short XOR

constraints. The length of XOR constraints gets decreased as the number of projected variables

gets decreased, and this helps SAT solvers to solve a formula faster. We then run SMC and

SearchMC for each sub-formula in parallel and combine the results. Note that we need to

combine the results conservatively since each result is likely dependent on other results. All

the results are combined to generate a more useful hypothesis than SMC itself and we can use

this result as an initial hypothesis to run SearchMC with the original formula. Moreover, there

are some special cases where applying this idea significantly improves performance. When the

tool can tell that each result is independent, we can apply the multiplication rule to combine

the lower bounds and this makes a more precise result. Consequently, if the combined result is

precise enough, we do not need to run SearchMC to compute the final answer and this leads to

improved runtime performance.

In this thesis, we focus on using this scalable model counting technique to analyze pro-

grams. One application of approximate model counting techniques is to measure the amount of

information revealed by computer programs. Quantitative information flow (QIF) analysis is a

powerful approach to measure the amount of sensitive information leakage. Early information

flow research focused on enforcing observable outputs to be totally independent of the sensitive

inputs. This is highly desirable if it can be applied to any systems that need to guarantee it. But

it is more realistic and typical to weaken this property because the outputs can be dependent on

the sensitive inputs. By measuring the information leakage using model counting techniques, it

is more applicable to provide how much information can be leaked by a program or a function.

Specifically, we use symbolic execution tools to analyze realistic binary executables and apply

quantitative information-flow analysis.

Another application of approximate model counting techniques is uniform sampling for

4

testing [18, 19, 20, 21]. Uniform sample generation for SAT/SMT formulas is widely used in

various areas such as probabilistic reasoning in AI systems, functional verification and so on.

Generating independent uniformly distributed samples over a set of satisfying assignments is a

challenging problem both theoretically and practically. Our work is inspired by Unigen [22],

which uses hashing-based techniques to compute an estimate model count and generate near-

uniform samples. Basically, we apply our approximate model counting approach to increase its

scalability and performance and follow the same sampling process as Unigen. Our experiments

show that our version achieves a greater speed-up than Unigen3 [23], which is the most recent

version of Unigen.

1.2 Background

1.2.1 Boolean Formula

A Boolean formula is a finite expression constructed from a combination of Boolean constants,

variables, operators and parentheses and produces a Boolean value (true or false) when evalu-

ated. Let F be a Boolean formula where the formula is expressed in Boolean variables xi and

Boolean operations such as ∧ (AND), ∨ (OR), ⊕ (XOR) or ¬ (NOT). For example, we have a

Boolean formula F1 as:

F1 = x1 ∧ x2 ∨ ¬x3 (1.1)

where it has three Boolean variables: {x1, x2, x3}. In a Boolean formula, a literal is a

Boolean variable or its negation such as x1, x2 or ¬x3. A clause is an expression generated

from a finite collection of literals that are combined by disjunction. We can evaluate F by

assigning either true or false to each Boolean variable xi. A satisfying assignment or solution

of F is an assignment of all the variables in F such that F evaluates to true under the variable

assignment. For example, a satisfying assignment of F1 is (x1, x2, x3) = (1, 0, 0) where 1 and

0 denote true and false, respectively. We say a formula F is satisfiable if there is at least one

satisfying assignment to F and unsatisfiable if there is no satisfying assignment to F .

A formula F is in Conjunctive Normal Form (CNF) when F is expressed as:

F = C1 ∧ C2 ∧ · · · ∧ Cn (1.2)

where F is a conjunction of one or more clauses where each clause Ci is a disjunction of literals

such as Ci = (li,1 ∨ li,2 ∨ · · ·).

5

1.2.2 Bit-Vector Formulas

A bit-vector is an array of Boolean variables (bits). Here we only consider fixed-width bit-

vectors which have a constant size. We assume that each Boolean variable of a bit-vector is

indexed from 0 through n−1 where 0 is the rightmost bit of a n-width bit-vector. The first-order

logic of bit-vector formulas has been widely studied [24, 25] and formulas arising from software

are more naturally expressed as SMT (satisfiability modulo theories) formulas over bit-vectors

than as plain CNF. The theory of arithmetic and other common operations on bounded-size bit-

vectors has the same theoretical expressiveness as SAT, since richer operations can be expanded

(“bit-blasted”) into larger Boolean formulae. But bit-vector SMT is much more convenient for

expressing the computations performed by software.

1.2.3 SAT Solving and Model Counting

The Boolean satisfiability problem (abbreviated SAT) is the problem of determining if there

exists a satisfying assignment for a given formula. SAT is proven to be a NP-complete prob-

lem [26] which can be solved by a nondeterministic polynomial time algorithm. However, SAT

instances that arise in practice can often be solved in better than exponential time. SAT solvers

compute whether a given formula is either satisfiable or unsatisfiable and gives an example

satisfying assignment when satisfiable. Since any Boolean formula can be translated into an

equisatisfiable CNF formula with only a linear size increase, many SAT solvers take CNF as in-

put. In addition, satisfiability modulo theories (SMT) problem is a decision problem for logical

formulas with combinations of background theories such as floating point arithmetic, arrays,

bit-vectors and so on. An SMT formula over finite theories can be converted to a SAT formula

which has an equivalent satisfiability and we call this conversion “bit-blasting”.

Model counting is the problem of computing the number of satisfying assignments of a

given formula and the model counting problem for a Boolean formula is known as #SAT. Com-

puting the exact model count is a complete problem for the complexity class #P and believed

to be a much harder complexity class than NP. Practically, exact #SAT solving is also much

less scalable than SAT solving. The model count is the number of all satisfying assignments of

F and we denote a model count of F by MC(F). Also, we denote that a model count count

of F over a subset of (or projected) variables P by MC(F, P). The principal and practical

6

way to solve #SAT (and SAT as well) is the Davis-Putnam-Logemann-Loveland (DPLL) algo-

rithm [1]. The DPLL algorithm is a backtracking-based search algorithm for deciding the SAT

problem where as it stops after finding the first satisfying assignment. If the DPLL algorithm

searches the entire solution space to find all the satisfying assignments, it can be used for the

#SAT problem. Many approaches have been motivated by the DPLL algorithm and introduced

various optimizations. Birnbaum and Lozinskii [3] formalized this DPLL idea and introduced

their model counter CDP for counting models of propositional formulas. Based on this idea,

Relsat [2], Cachet [4] sharpSAT [5] and DSHARP [6] showed improvements by using several

optimizations such as component caching, clause learning, etc. Although exact model coun-

ters perform well in small-sized problems, scaling to the larger problem instances remains as a

significant challenge. In order to overcome the limitation of exact model counting techniques,

approximate model counting techniques have been proposed since many applications do not de-

pend on the model count being exact. We will discuss more about approximate model counting

techniques in Chapter 2.

1.2.4 Quantitative Information-flow Analysis

Quantitative information-flow (QIF) measures information leakage of a program. The basic

concept of information-flow analysis was first introduced by Denning [27] and Gray [28] and

many recent works have been proposed in many area such as secure information flow analy-

sis [29], anonymity protocols [30] and side-channel analysis [31]. In this thesis, we are mostly

interested in the problem whether a program/function can leak sensitive information from secret

inputs into public outputs and how to measure the the leakage.

In order to totally protect the confidentiality of sensitive inputs, a standard approach is to

enforce noninterference, which means public outputs are independent of secret inputs hence

there is no way to reveal some information about the secret inputs from observing the outputs.

However, the majority of complex systems depend on the secret inputs and reveal some amount

of input information by the public outputs. For example, the secret inputs (password, credit

card number, etc.) need to be entered into the systems and the systems reveal whether the input

information is correct or not. As an adversary, incorrect information can be gathered mostly

and the probability of finding out the correct information may be slightly increased.

Therefore, it is unavoidable to reveal some information about the secret inputs. The most

7

important question is that how much information is leaked. For example, image data anonymiza-

tion systems hide someone’s identity mostly by blurring his/her visible face, but some informa-

tion such as gender, height or clothes still can be revealed if only the face is blurred. Also,

recent study shows that image recognition methods based on artificial neural networks can re-

veal hidden information from this blurred image [32]. This increases the need of relaxing the

noninterference and developing a quantitative theory of information flow that focuses on how

much information is being leaked and calculating tolerable leakage bounds. We focus on mea-

suring how much information is leaked and apply model counting techniques to measure the

leakage. One of the QIF analysis techniques is the combination of model counting and sym-

bolic execution. We use a symbolic execution tool to analyze binary executables and find a

specific path which might leak some private data. Once the execution path is generated from

the symbolic execution tool, we measure the leakage using model counting techniques.

1.2.5 Uniform Sampling

In the area of testing, the main goal is to generate various inputs for a program and check

possible behaviours of the program. We expect to generate program testing inputs such that

satisfy the program’s requirements for completeness and correctness. Also, we want to reveal

any fault from the testing inputs to properly fix defects. The key success of testing is based on

the quality of input samples with which a program is executed. It is still a challenging problem

to discover hidden faults from the generation of input samples.

There has been a growing interest in generating high-quality samples and this has motivated

constrained random sampling [18, 33, 20, 21], which is designed to generate random samples

satisfying given constraints. The constraints can be added to represent some behaviours of the

program or to describe problematic input areas. In general, the constrained random sampling

problem is to sample randomly from the set of solutions of input constraints and a constraint

solver is called to generate random samples satisfying the constraints. Also, it is desirable to

generate uniformly random samples when we do not have any knowledge about the program

because we want to avoid only generating tests in a way that has a complementary bias that

keeps us from generating fault-revealing inputs.

A good trade-off between scalability and uniformity has been always challenging for uni-

form sampling. Strengthening uniformity eventually loses scalability and increasing scalability

provides weak theoretical guarantees. There have been many efforts to compromise these two

8

extreme problems. In this thesis, we focus on increasing scalability of random sampling and

achieve a near-uniform distribution over samples.

1.3 Overview

The main contribution of this thesis is to increase scalability of hashing-based model counting

techniques and the precision of QIF analysis and uniform sampling. Previous research applied

QIF analysis and uniform sampling on small-sized programs that worked well with existing ap-

proaches since both symbolic execution and model counting are very expensive. We show more

variety of programs to which we can apply QIF analysis and uniform sampling and improve

existing model counting techniques to handle larger and more realistic inputs in this thesis.

This thesis is organized as follows. Chapter 2 introduces a hashing-based model counting

tool, SearchMC, which computes a lower bound and an upper bound with a requested con-

fidence level, and yields results more quickly than existing systems. Chapter 3 introduces a

new structural approximate model counting tool, SMC, for quantifier-free SMT formulas over

the theory of bit vectors (SMT-LIB QF BV). This approach achieves guaranteed efficiency and

sound bounds, at the expense of not providing an accuracy guarantee. In other words, it is a fast

polynomial algorithm which gives firm lower and upper bounds that are always correct but the

precision of results (the distance between lower and upper bounds) are not guaranteed. Chap-

ter 4 explains a method called MultiSearchMC to increase scalability of hashing-based model

counting techniques using parallelization. We first split an input formula into small formulae

and run the combination of SMC and SearchMC in parallel. We conservatively combine all

the results to compute an estimate of the model count. Chapter 5 shows applications of Multi-

SearchMC to software for program analysis and testing. We introduce quantitative information

flow analysis using model counting techniques. We are interested in two basic scenarios of QIF

analysis: measuring input and output. First, we select a program input which reaches to an

interesting state such as a crash and then use symbolic execution to collect the path conditions

while the program executes on that input. We measure the amount of information in the input

to tell how much information can be leaked from the execution path. Secondly, if there is a

program that receives some private input and produces some public output, we want to measure

the number of outputs to quantify the amount of information leakage in the output. We also

present case studies of quantitative information flow analysis with realistic programs. Uniform

9

sampling is another area which is applicable for model counting techniques. Uniform sampling

takes an important role in functional verification of digital systems. When the distribution of

errors is unknown, uniform sampling is desired to discover a bug. The main challenge is a trade-

off between performance and uniformity. Our method, which uses MultiSearchMC, generates

a large number of random samples efficiently and almost uniformly. Chapter 6 discusses some

future directions and Chapter 7 concludes this thesis.

Chapter 2

SearchMC: A Hashing-based Model
Counter

2.1 Introduction

Approximate model counting techniques have been proposed to increase scalability compared

to exact model counting techniques. Specifically, hashing-based model counting techniques

have been successful in giving an estimate of model count with a probabilistic range and con-

fidence. Many hashing-based model counting techniques are based on the approximation tech-

nique of XOR streamlining [15], which reduces the number of solutions of a formula by adding

randomly-chosen XOR (parity) constraints. In expectation, adding one constraint reduces the

model count by a factor of 2, and k independent constraints reduce the model count by 2k. If a

formula with extra constraints has n > 0 solutions, the original formula likely had about n · 2k.

If the model count after constraints is small, it can be found with a few satisfiability queries, so

XOR streamlining reduces approximate model counting to satisfiability. However to have an

automated system, we need an approach to choose a value of k when the model count is not

known in advance.

One application of approximate model counting is measuring the amount of information

revealed by computer programs. For a deterministic computation, we say that the influence [34]

is the base-two log of the number of distinct outputs that can be produced by varying the in-

puts, a measure of the information flow from inputs to outputs. Influence computation is related

to model counting, but formulas arising from software are more naturally expressed as SMT

10

11

(satisfiability modulo theories) formulas over bit-vectors than as plain CNF, and one wants to

count values only of output variables instead of all variables. The theory of arithmetic and

other common operations on bounded-size bit-vectors has the same theoretical expressiveness

as SAT, since richer operations can be expanded (“bit-blasted”) into circuits. But bit-vector

SMT is much more convenient for expressing the computations performed by software, and

SMT solvers incorporate additional optimizations. We build a system for this generalized ver-

sion of the problem which takes as input an SMT formula with one bit-vector variable desig-

nated as the output, and a specification of the desired precision.

Our algorithm takes a statistical estimation approach. It maintains a probability distribu-

tion that reflects an estimate of possible influence values, using a particle filter consisting of

weighted samples from the distribution. Intuitively the mean of the distribution corresponds to

our tool’s best estimate, while the standard deviation becomes smaller as its confidence grows.

At each step, we refine this estimate by adding k XOR constraints to the input formula, and

then enumerating solutions under those constraints, up to a maximum of c solutions (we call

this enumeration process an exhaust-up-to-c query [34]). At a particular step, we choose k and

c based on our previous estimate (prior), and then use the query result to update the estimate

for the next step (posterior). The update from the query reweights the particle filter points ac-

cording to a probability model of how many values are excluded by XOR constraints. We use

a simple binomial-distribution model which would be exact if each XOR constraint were fully

independent. Because this model is not exact, a technique based only on it does not provide

probabilistic soundness, even though it performs well practically. So we also give a variant of

our technique which does produce a sound bound, at the expense of requiring more queries to

meet a given precision goal.

We implement our algorithm in a tool SearchMC1 that wraps either a bit-vector SMT solver

compatible with the SMT-LIB 2 standard or a SAT solver, and report experimental results.

SearchMC can be used to count solutions with respect to a subset of the variables in a formula,

such as the outputs of a computation, the capability that Klebanov et al. call projected model

counting [35], and Val et al. call subset model counting [36]. This capability is also used by

Irvii et al. [37] to accelerate #SAT by not counting over redundant variables. In our case the

variables not counted need not be of bit-vector type. For instance this makes SearchMC to

our knowledge the first tool that can be used to count models of constraints over floating-point
1 The source code is available at https://github.com/seonmokim/SearchMC

https://github.com/seonmokim/SearchMC

12

numbers (counting the floating-point bit patterns individually, as contrasted with computing

the measure of a subset of Rn [38, 39]). We demonstrate the use of this capability with an

application to a security problem that arises in differential privacy mechanisms because of the

limited precision of floating-point values.

Compared to ApproxMC2 [40] and ApproxMC-p [35], concurrently-developed approxi-

mate #SAT tools also based on XOR streamlining, our technique gives results more quickly for

the same requested confidence levels.

In summary, the key attributes of our approach are as follows:

• Our approximate counting approach gives a two-sided bound with user-specified confi-

dence.

• Our tool inherits the expressiveness and optimizations of SMT solvers.

• Our tool gives a probabilistically sound estimate if requested, or can give a result more

quickly if empirical precision is sufficient.

2.2 Background

2.2.1 XOR Streamlining

The main idea of XOR streamlining [15] is to add randomly chosen XOR constraints to a given

input formula and feed the augmented formula to a satisfiability solver. One random XOR

constraint will reduce the expected number of solutions in half. Consequently, if the formula is

still satisfiable after the addition of k XOR constraints, the original formula likely has at least

2k models. If not, the formula likely has at most 2k models. Thus we can obtain a lower bound

or an upper bound with this approach. A random XOR constraint is proven to be a 3-universal

hash function [41], which maps {0, 1}n to {0, 1}k, and defined as follows:

{h|h(y) [i] = ai,0 ⊕ (
n⊕

j=1

ai,j · y[j]), ai,j ∈ {0, 1}, 1 ≤ i ≤ k} (2.1)

h(y) [i] denotes the ith components of the vector h(y) and ⊕ denotes the XOR operation.

Assigning values of ai,j from {0, 1} randomly and independently leads to a random hash func-

tion.

13

In sum, adding k randomly-chosen parity constraints to input formula F reduces the number

of solutions MC(F) to MC(F)/2k in expectation. Moreover, if this augmented formula is

satisfiable, then MC(F) is likely greater than 2k. If the augmented formula is unsatisfiable,

then MC(F) is likely less than 2k. There are some crucial parameters to determine the bounds

and the probability of the bounds and they need to be carefully chosen in order to obtain good

bounds. However, early systems [15] did not provide an algorithm to choose the parameters.

2.2.2 Influence

Newsome et al. [34] introduced the terminology of “influence” for a specific application of

model counting in quantitative information-flow measurement. This idea can capture the control

of input variables over an output variable and distinguish true attacks and false positives in a

scenario of malicious input to a network service. The influence of input variables over an output

variable is the log2 of the number of possible output values.

2.2.3 Exhaust-up-to-c query

Newsome et al. [34] also introduced the terminology of an “exhaust-up-to-c query” and this

query is very crucial to many hashing-based model counting techniques. This query repeats a

satisfiability query up to some number c of solutions, or until there are no satisfying values left.

Suppose we have a Boolean formula F and call the exhaust-up-to-c query where F is given and

c is equal to 3. If the return value is 0, 1 or 2, then F has exactly 0, 1, or 2 satisfying assignments,

respectively. If the return value is 3, then F has 3 or more satisfying assignments. This is a

good approach to find a model count if the number of solutions is small. This functionality can

be easily implemented if a solver supports the incrementality feature, which can push or pop

additional clauses after pre-processing an original formula. This query first asks for a solution

with a satisfying assignment and then pushes blocking clauses, which is a negation of the found

satisfying assignment, to not have the same solution again. It repeats this satisfiability check

and adding its blocking clauses c times or until there are no satisfying assignment found.

Algorithm 2.1 shows the pseudocode of the exhaust-up-to-c query. It takes an input formula

F and a positive integer c as input and returns the number of solutions which is less than or

equal to c. SAT(F) returns F ’s satisfiability and its satisfying assignment if satisfiable. In the

loop, it keeps finding a unique solution by adding blocking clauses and breaks out of the loop

14

Algorithm 2.1: exhaust-up-to-c
Input : F , c

Output: nSat
1 nSat← 0

2 while nSat < c do
3 res,m← SAT(F)

4 if res == unsat then
5 break

6 nSat← nSat+ 1

7 F ← F ∧ ¬m // Adding blocking clauses

8 return nSat

when there is no more solution found.

2.2.4 Particle Filter

A particle filter [42] is an approach to the statistical estimation of a hidden state from noisy

observations, in which a probability distribution over the state is represented non-parametrically

by a collection of weighted samples referred to as particles. The weights evolve over time

according to observations; they tend to become unbalanced, which is corrected by a resampling

process which selects new particles with balanced weights. A particle filtering algorithm with

periodic resampling takes the following form:

1. Sample a number of particles from a prior distribution.

2. Evaluate the importance weights for each particle and normalize the weights.

3. Resample particles (with replacement) according to the weights.

4. The posterior distribution represented by the resampled particles becomes the prior dis-

tribution to next round and go to step 2.

15

2.2.5 ApproxMC

ApproxMC [11] is a well-studied hashing-based model counter and is inspired by MBound [15]

which gives probabilistic bounds on the model counts by adding XOR constraints to an input

formula as we described in Section 2.2.1. The basic idea of MBound is that adding one XOR

constraint reduces the model count by a factor of 2 in expectation, and thus k independent con-

straints are likely to reduce the model count by 2k. However, MBound does not automatically

compute k, and finding the most appropriate k is quite challenging.

The first version of ApproxMC was proposed to compute k automatically, which runs

queries iteratively until it finds the most appropriate k. ApproxMC takes an input formula

F , a precision parameter ϵ and a correctness parameter δ as input. ApproxMC was described as

an (ϵ, δ) counter such that the true model count is within the interval [MC(F)/(1+ϵ),MC(F)·
(1+ϵ)] with a probability of at least 1−δ. The basic idea of ApproxMC was the combination of

MBound and exhaust-up-to-c query. After adding k XOR constraints to an input formula, if an

exhaust-up-to-c query of this augmented formula returns n solutions, which is less than c, the

model count of this input formula is probably 2k ·n. Given the parameter ϵ, c was first computed

and then ApproxMC ran exhaust-up-to-c queries with adding k constraints iteratively. Once the

algorithm found the most appropriate k such that the exhaust-up-to-c query returns n solutions

which is less than c, ApproxMC repeatedly queries the exhaust-up-to-c with these computed c

and k to guarantee the result with a probability of at least 1− δ.

We describe the core algorithms of ApproxMC from the original paper [11] in Algorithm

2.2 and 2.3. Note that they used the function name BoundedSAT and the variable name

thresh, which is equivalent to the exhaust-up-to-c query and the parameter c, respectively.

Algorithm 2.2 is the outer loop of ApproxMC. thresh is a variable which depends on ϵ and

determines a maximum number of SAT calls for nSat. t is a number of iterations to achieve an

estimate to be within the interval [MC(F)/(1 + ϵ),MC(F) · (1 + ϵ)] with a probability of at

least 1− δ. The algorithm runs ApproxMCCore t times to store a set of estimates and returns

a median of C as a final estimate.

Algorithm 2.3 is the inner loop of ApproxMC to find a single estimate. BoundedSAT

returns a number of satisfying assignments if it is less than thresh. If the number of satisfying

assignments is greater than or equal to thresh, BoundedSAT only finds thresh solutions and

stops. The algorithm first checks the number of solutions without adding any constraints. If not,

it computes nSat until nSat is less than or equal to thresh by increasing k sequentially by 1

16

Algorithm 2.2: ApproxMC
Input : F , ϵ, δ

Output: finalEstimate

1 thresh← 1 + 9.84(1 + ϵ
1+ϵ)(1 +

1
ϵ)

2

2 t← ⌈17 log2(3/δ)⌉
3 C ← ∅
4 i← 0

5 while i < t do
6 i← i+ 1

7 nSat← ApproxMCCore(F, thresh)

8 if nSat ̸= ∅ then
9 AddToList(C, nSat)

10 finalEstimate← FindMedian(C)

11 return finalEstimate

and this means the estimate is nSat · 2k.

In order to achieve the correctness of a probability of at least 1− δ, Lemma 2.2.1 shows the

core computation for δ as follows:

Lemma 2.2.1. Let n = |F |, ϵ ∈ [0, 1], k ∈ N, k ≤ ⌊log2(MC(F)) · ϵ2/(r · 3
√
e))⌋ and nSat =

ApproxMCCore(F, thresh) where h ∈ H(n, k, r) which is a randomly chosen r-universal

hash function. It holds:

Pr
[
(0 < nSat < thresh) and (1 + ϵ)−1MC(F) ≤ 2k · nSat ≤ (1 + ϵ)MC(F)

]
> 0.6

(2.2)

The confidence can be raised to at least 1−δ by invoking ApproxMCCore t times to use the

median of the returned counts as the probability of at least a number of heads in t independent

tosses of a biased coin. We refer the reader to [11] for more detailed analysis.

A family of ApproxMC tools has been improved over and over. ApproxMC2 [40] used

a galloping search to reduce linear to logarithmic solver calls and Algorithm 2.4 shows the

pseudocode of this galloping search. The first version of ApproxMC increased a number of

17

Algorithm 2.3: ApproxMCCore
Input : F , thresh

Output: nSat
1 nSat← BoundedSAT(F, thresh+ 1)

2 if nSat < thresh+ 1 then
3 return nSat

4 else
5 n← |F |
6 l← log2(thresh)− 1; k ← l − 1

7 while 1 ≤ nSat ≤ thresh or i = n do
8 k ← k + 1

9 nSat← BoundedSAT(Fh,k, thresh+ 1)

10 if nSat > thresh or nSat = 0 then
11 return ∅
12 else
13 return nSat× 2k−l

XOR constraints incrementally as Line 8 in Algorithm 2.3. ApproxMC2 replaced this search

to a galloping search which multiplies/divides a number of XOR constraints by 2 until a desired

number of XOR constraints gets close. When a desired number of XOR constraints gets close

(Line 11 and Line 22), it increases/decreases a number of XOR constraints by 1.

ApproxMC3 [43] and ApproxMC4 [23] improved the interaction between the algorithm

and its solver calls and optimized CryptoMiniSat [44], a SAT solver which is very suitable

for solving a large number of XOR constraints. We refer the reader to [23, 43] for more de-

tailed explanation of the optimizations. Our approach also uses the same SAT solver, and thus

the improvements of this solver benefit both ApproxMC-family tools and SearchMC. The

main difference between ApproxMC and SearchMC is about the algorithms: how we generate

queries based on previous results and compute a lower and an upper bound. Our comparison

experiments between ApproxMC and SearchMC are based on the same solver infrastructure

to be a fair comparison.

18

Algorithm 2.4: GallopingSearch
Input: F , thresh, prev

Output: k
1 lo← 0; hi← |F | − 1; k ← prev

2 visited[0]← 1; visited[|F | − 1]← 0

3 while true do
4 nSat← BoundedSAT(Fh,i, thresh+ 1)

5 if nSat ≥ thresh then
6 if visited[k + 1] = 1 then
7 return k + 1

8 visited[i]← 1 for i ∈ {1, · · · , k}
9 lo← k

10 if |k − prev| < 3 then
11 k ← k + 1

12 else if 2 · k < |F | then
13 k ← k · 2
14 else
15 k ← (hi+ k)/2

16 else
17 if visited[k − 1] = 1 then
18 return k

19 visited[i]← 0 for i ∈ {k, · · · , |F |}
20 hi← k

21 if |k − prev| < 3 then
22 k ← k − 1

23 else
24 k ← (k + lo)/2

19

2.3 Design

This section describes the approach and algorithms used by SearchMC. It is implemented

as a wrapper around an off-the-self bit-vector satisfiability solver that supports the SMT-LIB2

format [45]. It takes as input an SMT-LIB2 formula in a quantifier-free theory that includes

bit-vectors (QF BV, or an extension like QF AUFBV or QF FPBV) in which one bit-vector is

designated as the output, i.e. the bits over which solutions should be counted. (For ease of

comparison with #SAT solvers, SearchMC also has a mode that takes a Boolean formula in

CNF, with a list of CNF variables designated as the output.) SearchMC repeatedly queries the

SMT solver with variations of the supplied input which add XOR constraints and/or “blocking”

constraints that exclude previously-found solutions; based on the results of these queries, it es-

timates the total number of values of the output bit-vector for which the formula has a satisfying

assignment.

SearchMC chooses fruitful queries by keeping a running estimate of possible values of the

model count. We model the influence (log2 of model count) as if it were a continuous quantity,

and represent the estimate as a probability distribution over possible influence values. In each

iteration we use the current estimate to choose a query, and then update the estimate based on

the query’s results. (At a given update, the most recent previous distribution is called the prior,

and the new updated one is called the posterior.) As the algorithm runs, the confidence in the

estimate goes up, and the best estimate changes less from query to query as it converges on the

correct result. Each counting query SearchMC makes is parameterized by k, the number of

random XOR constraints to add, and c, the maximum number of solutions to count. The result

of the query is a number of satisfying assignments between 0 and c inclusive, where a result that

stops at c means the real total is at least c. Generally a low result leads to the next estimate being

lower than the current one and a high result leads to the estimate increasing. We will describe

the process of updating the probability distribution, and then give the details of the algorithms

that use it.

2.3.1 Updating distribution and confidence interval

We here explain the idea of how we compute a posterior distribution over influence, where both

the prior and posterior are represented by particles. Suppose we have a formula F with a known

influence log2N , and add k XOR random constraints to the formula. If we simulate checking

20

the satisfiability of this augmented formula Fk for different XOR constraints, we can estimate

a probability of sat/unsat on Fk. We expand this idea by applying exhaust-up-to-c approach to

Fk. We count the number of satisfying assignments n up to c and generate the distributions

for each number of satisfying assignments (where n = c means that the number of satisfying

assignments is in fact c or more). Thus under an assumption on the true influence of a formula,

we can estimate the probabilities of each number of satisfying assignments based on k. By

collecting these probabilities across a range of influence, we obtain a probability distribution

over influence for an unknown formula assumed to have less than a maximum bits of influence.

Under the idealized assumption that each XOR constraint is completely independent, adding

k XOR constraints will leave each satisfying assignment alive with probability 1/2k. For any

particular set of n ≥ 0 satisfying assignments remaining out of an original N , the probability

that exactly those n solutions will remain is the product of 1/2k for each n and 1− (1/2k) for

each of the other N − n. Summing the total number of such sets with a binomial coefficient,

we can approximately model the probability of exactly n solutions remaining as:

Pr=n(N, k) =

(
N

n

)
(
1

2k
)n(1− 1

2k
)N−n (2.3)

For the case when the algorithm stops looking when there might still be more solutions,

we also want an expression for the probability that the number of solutions is n or more. We

compute this straightforwardly as one minus the sum of the probabilities for smaller values:

Pr≥n(N, k) = 1−
n−1∑
i=0

Pr=i(N, k) (2.4)

We use XOR constraints that contain each counted bit with probability one half, and are

negated with probability one half. (This is the same family of constraints used in other recent

systems [11, 35, 40]. Earlier work [15] suggested using constraints over exactly half of the bits,

which have the same expected size, but less desirable independence properties.) Our binomial

probability model is not precise in general, because these XOR constraints are 3-independent,

but not r-independent for r ≥ 4. When N ≥ 4, some patterns among solutions (such as

a set of four bitvectors whose XOR is all zeros) lead to correlations in the satisfiability of

XOR constraints, and in turn to higher variance in the probability distribution without changing

the expectation. This effect is relatively small, but we lack an analytic model of it, so we

compensate by slightly increasing the confidence level our tool targets compared to what the

21

user originally requested.

This probability model lets us simulate the probability of various query results as a function

of the unknown formula influence. We use this model as a weighting function for each particle

and resample particles based on each particle’s weight value. Then, we estimate a posterior

distribution from sampled particles that have all equal weights. For instance, given a prior

distribution over the influence sampled at 0.1 bit intervals, we can compute a sampled posterior

distribution by counting and re-normalizing just the probability weights that correspond to a

given query result value n. From the estimated posterior distribution, the mean µ and the

standard deviation σ are computed. Hence, the µ is our best possible answer as our algorithm

iterates and σ shows how much we are close to the true answer. Sequentially, the posterior

distribution will be the next round’s prior distribution. Also, for use in the very first step of the

algorithm we implement a case of the prior distribution as uniform over influence.

Next we compute a confidence interval (lower bound and upper bound) symmetrically from

the mean of the posterior distribution even though the distribution is not likely to be symmetri-

cal. There are several ways to compute the confidence interval but the difference of the results

is negligible as the posterior distribution gets narrower. Therefore, we used a simple way to

compute the confidence interval: a half interval from the left side of the mean and another half

from the right side.

2.3.2 Algorithm

We present our main algorithm SearchMC that runs automatically and always gives an answer

with a given confidence interval. The pseudocode for algorithm SearchMC is given as Algo-

rithm 2.5. Our algorithm takes as input a formula F , a desired confidence level cl (0 < cl < 1),

a confidence level adjustment α (0 ≤ α < 1), a desired range size thres and an initial prior

distribution initDist. F contains a set of bit-vector variables and bit-vector operators. We can

obtain a confidence interval at a confidence level for a given mean and standard deviation. A

confidence level cl is a fraction parameter specifying the probability with which the interval

should contain the true answer, for example, 0.95 (95%) or 0.99 (99%). As we described above,

the binomial probability model does not exactly capture the full behavior of XOR constraints,

which could lead to our results being over-confident. We introduce a confidence level adjust-

ment factor α to internally target a higher confidence level than the user requested, making it

22

Algorithm 2.5: SearchMC
Input: F , thres, cl, α, initDist

1 cl← cl + α(1− cl) // Confidence level adjustment

2 width← getWidth(F) // The width of an output bit-vector

3 prior ← initDist // Initial distribution

4 δ ← width

5 while δ > thres do
6 c, k ← ComputeCandK(prior, width)

7 nSat← MBoundExhaustUpToC(f, vp, k, c)

8 post, ub, lb← UpdateDist(prior, c, k, nSat, cl) // See Sec. 2.3.1

9 δ ← ub− lb

10 if k == 0 then
11 output “Exact Count: ”, nSat

12 else
13 prior ← post

14 output “Lower: ”, lb, “Upper: ”, ub

more likely that the requested confidence can be met. If α = 0, we do not adjust the input con-

fidence level. We have set the value for α to be 1
4 empirically in our experiments. However this

single factor may not ideally capture the control of the confidence level. Further investigation

of the confidence gap will be future work. Our algorithm terminates when the length of our

confidence interval is less than or equal to a given non-negative parameter thres. This param-

eter determines the amount of running time and there is a trade-off. If thres value is small, it

gives a narrow confidence interval, but the running time would be longer. If the value is large,

it gives a wide confidence interval, but a shorter running time. Our tool can choose any initial

prior distribution initDist represented by particles. For example, a generic strategy is to start

with a uniform distribution over 0 to a number of output variables. If we have a better prior

bound on the true influence (for instance 64 bits), a uniform distribution from 0 to that bound

will generally perform better.

23

2.3.3 Variables

There are several variables: prior, post, width, k, c, nSat, ub, lb and δ. prior represents a

prior distribution by sampled particles with corresponding weights. In one iteration, we ob-

tain the updated posterior distribution post with resampled particles based on our probabilistic

model as described above. The posterior becomes the prior distribution for the next iteration.

While our algorithm is in the loop, it keeps updating post. width is the width of the output

bit-vector of an input formula F , which is an initial upper bound for the influence since the

influence cannot be more than the width of the output bit-vector. k is a number of random XOR

constraints and c specifies the maximum number of solutions for the exhaust-up-to-c query. We

obtain c and k using the ComputeCandK function shown as Algorithm 2.6 and discussed be-

low. nSat is a number of solutions from the exhaust-up-to-c query. MBoundExhaustUpToC

runs until it finds the model count exactly or c solutions from formula F with k random XOR

constraints. ub and lb are variables to store an upper bound and a lower bound of the current

model count approximation with a given confidence level as we describe above. δ is the distance

between the upper bound and lower bound. This parameter determines whether our algorithm

terminates or not. If δ is less than or equal to our input value thres, our algorithm terminates.

If not, it runs again with updated post until δ reaches the desired range size thres. An extreme

case k = 0 denotes that our guess is equivalent to the true model count. In this case, we print

out the exact count and terminate the algorithm.

Algorithm 2.6: ComputeCandK
Input: prior, width

Output: c, k
1 µ, σ ←GetMuSigma(prior)
2 c← ⌈((2σ + 1)/(2σ − 1))2⌉
3 k ← ⌊µ− 1

2 log2 c⌋
4 if k ≤ 0 then
5 c← 2width + 1 // In this case, c is effectively infinite

6 k ← 0 // No constraints

7 return c, k

24

2.3.4 Functions

To motivate the definition of the function ComputeCandK, we view an exhaust-up-to-c query

as analogous to measuring influence with a bounded-length “ruler.” Suppose that we reduce

the expected value of the model count by adding k XOR constraints to F . Then, we can use

the “length-(log2 c) ruler” to measure the influence starting at k and this measurement corre-

sponds to the result of an exhaust-up-to-c query: the length-(log2 c) ruler has c markings spaced

logarithmically as illustrated in Figure 2.1. Each iteration of the algorithm chooses a location

(k) and length (c) for the ruler, and gets a noisy reading on the influence as one mark on the

ruler. Over time, we want to converge on the true influence value, but we also wish to lengthen

the ruler so that the finer marks give more precise readings. Based on this idea, we have the

ComputeCandK function to choose the length of and starting point of the ruler from a prior

distribution. Then, we run an exhaust-up-to-c query and call UpdateDist to update the dis-

tribution based on the result of the query.

The pseudocode for algorithm UpdateDist is described as Algorithm 2.7. A prior dis-

tribution prior and a posterior distribution post are represented as a set of sampled particles

(influences). We sampled 500 particles for each UpdateDist function call. Once we have the

updated distribution, we can find out the interval of a given confidence level.

0 1 k w …

log2c

Ruler! (log2c)/2

µ k+1 …

Figure 2.1: SearchMC’s ruler intuition

Since we observe that our running σ represents how much we are close to the true answer,

we use a rational function to satisfy the condition that c increases as σ decreases (i.e., we get

more accurate result as c increases).

The k value denotes where to put the ruler. We want to place the ruler where the expected

value of the prior distribution lies near the middle of the ruler hence our expected value is in

the range of the ruler with high probability. Therefore, we subtract the half length of the ruler

(12 log2 c) from the expected value µ and then use the floor function to the value because k has

to be an nonnegative integer value. The expected value always lies in the right-half side of the

25

Algorithm 2.7: UpdateDist
Input: prior, c, k, nSat, CL

Output: post, ub, lb
1 for t from 1 to nParticles do
2 xt ← priort // A list of sampled particles

/* Updating each weight of each particle */

3 if nSat < c then
4 wt = Pr=nSat(2

xt , k)

5 else
6 wt = Pr≥nSat(2

xt , k)

7 w ← normalize() // Normalizing the weights

8 post← sample(x,w, nParticles) // Resampling based on the

weights

9 ub, lb← getBounds(post, cl)

10 return post, ub, lb

ruler by using the floor function. However, it is not essential which rounding function is used.

Note that there might be a case where k becomes negative. If this happens, we set k = 0 and

c = ∞, because our expected value is so small that we can run the solver exhaustively to give

the exact model count. The formula for c is motivated by the intuition that the spacing between

two marks near the middle of the ruler should be proportional to the standard deviation of the

probability distribution, to ensure that a few different results of the query are possible with rel-

atively high probability; the spacing between the two marks closest to 1
2 log2 c = log2

√
c will

be about log2(
√
c + 1

2) − log2(
√
c − 1

2). Setting this equal to σ, solving for c, and taking the

ceiling gives line 3 of Algorithm 2.6.

2.3.5 Probabilistic Sound Bounds

The binomial model performs well for choosing a series of queries, and it yields an estimate

of the remaining uncertainty in the tool’s results, but because the binomial model differs in an

hard-to-quantify way from the true probability distributions, the bounds derived from it do not

26

have any associated formal guarantee. In this section we explain how to use our tool’s same

query results, together with a sound bounding formula, to compute a probabilistically sound

lower and upper bound on the true influence. As a trade-off, these bounds are usually not as

tight as our tool’s primary results.

The idea is based on Theorem 2 from Chakraborty et al.’s work [11], which in turn is a vari-

ant on Theorem 5 by Schmidt et al. [46]. For convenience we substitute our own terminology

as follows.

Lemma 2.3.1. Let nSat be the return value from MBoundExhaustUpToCwhere 0 < nSat <

c and k ≤ log2(MC(F)). Then,

Pr
[
(1 + ϵ)−1MC(F) ≤ 2kMC(Fh) ≤ (1 + ϵ)MC(F)

]
> 0.6

Chakraborty et al. use pivot for what we call c from an exhaust-up-to-c query and threshold =

1 + 9.84(ϵ
1+ϵ)(1 + 1

ϵ)
2. Since 0 < ϵ < 1, c (pivot) should be always greater than 60

to make the lemma true with a probability of at least 0.6. (The constant 0.6 comes from

(1− e−3/2)2 ≈ 0.6035.)

ApproxMC2, developed concurrently, is the system most similar to SearchMC: its bi-

nary search for k plays a similar role to our converging µ value. However SearchMC also

updates the c parameter over the course of the search, leading to fewer total queries. Ap-

proxMC, ApproxMC2, and related systems choose the parameters of the search at the outset,

and make each iteration either fully independent (ApproxMC) or dependent in a very simple

way (ApproxMC2) on previous ones. These choices make it easier to prove the tool’s proba-

bilistic results are sound, but they require a conservative choice of parameters. By comparison

SearchMC’s approach of maintaining a probabilistic estimate explicitly at runtime means that

its iterations are not at all independent: instead our approach is to extract the maximum guid-

ance for future iterations from previous ones, to allow the search to converge more aggressively.

The runtime performance of SearchMC, like that of ApproxMC(2), is highly dependent on the

performance of SAT solvers on CNF-XOR formulas.

27

2.4 Evaluation

In this section, we present our experimental results. All our experiments were performed on a

machine with an Intel Core i7 3.40Ghz CPU and 16GB memory. Our main algorithm is im-

plemented with a Perl script and UpdateDist function is implemented in a C program called

by the main script. Our algorithm can be applied to both SMT formulas and CNF formulas.

We have tested a variety of SAT solvers and SMT solvers, and our current implementation

specifically supports CryptoMiniSat [44] for CNF formulas and Z3 [47] and MathSAT5 [48]

for SMT formulas. For pure bit-vector SMT formulas, our tool also supports eagerly convert-

ing the formula to CNF first and then using CNF mode. (We implement the conversion using

the first phase of the STP solver [49, 50] with optimizations disabled and a patch to output

the SMT-to-CNF variable mapping.) Performing CNF translation eagerly gives up the bene-

fit of some (e.g., word-level) optimizations performed by SMT solvers, but it can sometimes

be profitable because it avoids repeating bit-blasting, and allows the tool to use a specialized

multiple-solutions mode of CryptoMiniSat.

We run our algorithm with a set of DQMR (Deterministic Quick Medical Reference) bench-

marks [51] and ISCAS89 benchmarks [52] converted to CNF files by TG-Pro [53] and compare

the results of the benchmarks with ApproxMC2 [40] and ApproxMC-p [35]. We used Cryp-

toMiniSat2 as the back-end solver with all the tools for fair comparison. For the parameters

for the tools, we set a 60% confidence level, a confidence level adjustment α = 0.25 and a

desired interval length of 1.7. As described above, SearchMC-sound gives correct bounds

with a probability of at least 0.6. Since the desired confidence level for ApproxMC2 is 1 − δ,

it can achieve a 60% confidence level by setting a parameter δ = 0.4 which corresponds to our

parameter CL = 0.6. Using the same confidence level for ApproxMC-p avoids an apparent

mistake in the calculation of its base confidence pointed out by Biondi et al. [54]. The length of

the interval for ApproxMC2 is computed as log2(|f |× (1+ ϵ))− log2(|f |× (1/(1+ ϵ))) = 1.7

hence we can obtain the interval length 1.7 by setting a parameter ϵ = 0.8, corresponding to our

parameter thres = 1.7. Computing the interval for ApproxMC-p is a little different. The length

of the interval for ApproxMC-p is log2(|f |× (1+ ϵ))− log2(|f |× (1− ϵ)) = 1.7 hence we can

obtain the interval length 1.7 by setting a parameter ϵ = 0.53. Note that SearchMC increases

the c value of an exhaust-up-to-c query as it iterates while the corresponding ApproxMC2 and

28

ApproxMC-p parameters are fixed as a function of ϵ (72 and 46, respectively) in this experi-

ment. Also, we set an initial prior to be a uniform distribution over 0 to 64 bits for SearchMC.

We tested 122 benchmarks (83 DQMRs and 39 ISCAS89s). All the tools were able to solve a

set of 106 benchmarks (83 DQMRs and 23 ISCAS89s) within 2 hours. The benchmarks that

were solved completely by the other tools were also solved completely by SearchMC. Figure

2.2 and 2.5 are based on the benchmarks that were solved by all tools.

10 20 30 40 50 60 70 80 90 100

Benchmarks

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

In
fl
u

e
n

c
e

 B
o

u
n

d
s
 (

b
it
)

ApproxMC2*

ApproxMC-p

SearchMC-sound

Figure 2.2: Reported lower and upper bounds comparison of SearchMC and ApproxMC2

Figure 2.2 compares the quality of lower bounds and upper bounds computed by SearchMC-

sound, ApproxMC-p and ApproxMC2*2. Note that the benchmarks are arranged in increas-

ing order of the true influence in Figure 2.2 and 2.5. The influence bounds are the computed

bounds minus the true influence. Filled markers and empty markers represent reported lower

bounds and upper bounds, respectively. SearchMC-sound, ApproxMC-p and ApproxMC2*

out-perform the requested 60% confidence level. The incorrect bounds are visible as empty

markers below the dotted line and filled markers above the line.

Since ApproxMC2 computes the bounds conservatively by using more queries, ApproxMC2’s

intervals are more closely centered on the true influence, and it out-performs the requested 60%
2 ApproxMC2* refers to our own re-implementation of the ApproxMC2 algorithm. With the version of Ap-

proxMC2 for our experiments we encountered problems in which the SAT solver would sometimes fail to perform
Gaussian elimination, which unfairly hurt the tool’s performance.

29

confidence level. By comparison, our tool and ApproxMC-p compute the bounds more ag-

gressively, and in a few cases the true result is just outside the reported interval (visible as

empty markers below the dotted line), though this still occurs somewhat less often than the 40%

implied by the confidence level. SearchMC-sound tends to give tighter bounds than the Ap-

proxMC algorithms since it stops when the interval length becomes less than thres, while the

interval lengths for the ApproxMCs are fixed by a parameter ϵ. We do not include the result of

SearchMC in this figure to limit clutter. In brief, SearchMC reported 65 correct bounds out

of 106 benchmarks, which is slightly higher than the requested 60% confidence level.

10
1

10
2

10
3

10
4

Number of SAT queries

0

0.05

0.1

0.15

0.2

0.25

0.3

E
rr

o
r

(b
it
)

ApproxMC2* (Disallowed param.)

ApproxMC2* (Allowed param.)

ApproxMC-p

SearchMC-sound

SearchMC

Figure 2.3: Performance vs error trade-off of SearchMC and ApproxMC2

Figure 2.3 shows another perspective on the trade-off between performance and error. We

selected a single benchmark and varied the parameter settings of each algorithm, measuring

the absolute difference between the returned answer and the known exact result. We include

results from running ApproxMC2* with parameter settings outside the range of its soundness

proofs (shown as “disallowed” in the plot), since these settings are still empirically useful, and

SearchMC makes no such distinction. From this perspective the tools are complementary

depending on one’s desired performance-error trade-off. The results from all the tools improve

with configurations that use more queries, but SearchMC performs best at getting more precise

results from a small number of queries.

30

0 10 20 30 40 50 60 70 80 90 100

Number of Solved Benchmarks

10
-1

10
0

10
1

10
2

10
3

T
im

e
 (

s
)

ApproxMC2*

ApproxMC-p

SearchMC-sound

SearchMC

Figure 2.4: Time performance comparison of SearchMC and ApproxMC2

We also compare the running-time performance with ApproxMCs and show the running-

time performance comparison on our 106 benchmarks in Figure 2.4. In this figure the bench-

marks are sorted separately by running time for each tool, which makes each curve non-decreasing;

but points with the same x position are not the same benchmark. Since ApproxMC-p refined

the formulas of ApproxMC, it used a smaller number of queries than ApproxMC2. SearchMC

can solve all the benchmarks faster than ApproxMCs with 60% confidence level. SearchMC-

sound performs faster than ApproxMC-p even though SearchMC-sound computes its confi-

dence interval similarly to ApproxMC-p. The SearchMC’s and SearchMC-sound’s average

running times are 24.59 and 108.24 seconds, compared to an average of 125.48 for ApproxMC-

p. ApproxMC2* requires an average of 298.11 seconds just for the subset of benchmarks all

the tools can complete. We also compare the number of SAT queries on the benchmarks for all

the tools in Figure 2.5. For this figure the benchmarks are sorted consistently by increasing true

model count for all tools. The average number of SAT queries for SearchMC, SearchMC-

sound ApproxMC-p and ApproxMC2* is about 14.7, 83.73, 1256.96 and 733.81 queries, re-

spectively.

31

10 20 30 40 50 60 70 80 90 100

Benchmarks

10
0

10
1

10
2

10
3

10
4

10
5

N
u

m
b

e
r

o
f

S
A

T
 q

u
e

ri
e

s
ApproxMC2*

ApproxMC-p

SearchMC-sound

SearchMC

Figure 2.5: Number of SAT queries comparison of SearchMC and ApproxMC2

2.4.1 Case Study: Floating Point / Differential Privacy

As an example of model counting with floating point constraints, we measure the security of

a mechanism for differential privacy which can be undermined by unexpected floating-point

behavior. The Laplace mechanism achieves differential privacy [55] by adding exponentially-

distributed noise to a statistic to obscure its exact value. For instance, suppose we wish to release

a statistic counting the number of patients in a population with a rare disease, without releasing

information that confirms any single patient’s status. In the worst case, an adversary might

know the disease status of all patients other than the victim; for instance the attacker might

know that the true count is either 10 or 11. If we add random noise from a Laplace distribution

to the statistic before releasing it, we can leave the adversary relatively unsure about whether

the true count was 10 or 11, while preserving the utility of an approximate result. A naive

implementation of such a simple differentially private mechanism using standard floating-point

techniques can be insecure because of a problem pointed out by Mironov [56]. For instance if

we generate noise by dividing a random number in [1, 231] by 231 and taking the logarithm, the

relative probability of particular floating point results will be quantized compared to the ideal

probability, and many values will not be possible at all. If a particular floating point number

could have been generated as 10 + noise but not as 11 + noise in our scenario, its release

32

Problem All noise Intersection

size Expected SearchMC Time (s) SearchMC Time (s)

9e7, 26 5.977 [5.643, 6.499] 52 3.170 138

10e7 26 5.977 [5.872, 6.668] 50 3.459 192

11e7, 26 5.977 [6.153, 7.052] 72 2.000 111

12e7, 26 5.977 [6.047, 6.792] 72 2.000 127

13e7, 27 6.989 [5.757, 6.519] 212 2.585 451

14e7, 27 6.989 [5.757, 7.444] 187 2.000 382

15e7, 28 7.994 [7.374, 8.069] 164 1.000 312

16e7, 29 8.997 [8.566, 9.073] 470 3.322 1585

16e8, 210 9.999 [10.076, 10.844] 279 4.754 5279

18e8, 210 9.999 [9.675, 10.099] 583 1.000 1137

19e8, 211 10.999 [10.825, 11.404] 757 3.585 9848

Table 2.1: Results and performance of model counting (log2 shown) of naive Laplacian noise

in IEEE floating point

completely compromises the victim’s privacy.

To measure this danger using model counting, we translated the standard approach for gen-

erating Laplacian noise, including an implementation of the natural logarithm, into SMT-LIB

2 floating point and bit-vector constraints. (We followed the log function originally by Sun-

Soft taken from the musl C library, which uses integer operations to reduce the argument to

[
√
2/2,
√
2), followed by a polynomial approximation.) A typical implementation might use

double-precision floats with an 11-bit exponent and 53-bit fraction, and 32 bits of randomness,

which we abbreviate “53e11, 232”, but we tried a range of increasing sizes. We measured the

total number of distinct values taken by 10 + noise as well as the size of the intersection of this

set with the 11 + noise set.

The results and running time are shown in Table 2.1. We ran SearchMC with a confidence

level of 80%, a confidence level adjustment of 0.5 and a threshold of 1.0; the SMT solver was

MathSAT 5.3.13 with settings recommended for floating-point constraints by its authors. We

use one random bit to choose the sign of the noise, and the rest to choose its magnitude. The

sign is irrelevant when the magnitude is 0, so the expected influence for n bits of randomness

is log2(2
n − 1). SearchMC’s 80% confidence interval included the correct result in 4 out of

33

5 cases. The size of the intersections is small enough that SearchMC usually reports an exact

result (always here). The size of the intersection is also always much less than the total set of

noise values, confirming that using this algorithm and parameter setting for privacy protection

would be ill-advised. The running time increases steeply as the problem size increases, which

matches the conventional wisdom that reasoning about floating-point is challenging. But be-

cause floating-point SMT solving is a young area, future solvers may significantly improve the

technique’s performance.

2.5 Related Work

In 1962, Davis, Putnam, Logemann and Loveland introduced their SAT solving algorithm called

DPLL algorithm [1], which is a backtracking search algorithm. Their algorithm is one of the

most commonly used algorithms and many efficient SAT solvers have been developed from

its basic ideas. GRASP [57] was proposed in 1996, which summarized and integrated pre-

viously proposed search-pruning techniques to improve the basic DPLL algorithm flow. The

most important contribution of GRASP was the introduction of the Conflict Driven Clause

Learning (CDCL) learning process, which is very effective in narrowing the search space with

the DPLL algorithm. Subsequent development of the technology can be summarized in the

CDCL, including a random restart, heuristic decision-making based on the active value, and ef-

fective reasoning to support the data structure. With the introduction of these new technologies,

a number of more efficient SAT algorithms such as MiniSat [58], Chaff [59], BerkMin [60],

CryptoMiniSat [44], PicoSAT [61], and Lingeling [62] were introduced.

Model counting techniques can be categorized into three areas: exact model counting, ran-

domized approximate model counting and non-randomized approximate model counting. For a

given formula, exact model counters give the exact number of solutions and approximate model

counters provide a lower bound and/or upper bound. Exact model counters do not perform

well as the size/complexity of a problem increases, thus approximate model counters have been

proposed to resolve this scalability challenges. It is often sufficient to provide rough estimates

instead of the exact model counts, especially when this can be done much faster. The main

difference between randomized and non-randomized approximate model counting techniques

is probabilistic soundness. Randomized approximate model counting techniques are likely to

use random sampling and a SAT solver to produce probabilistic bounds with high probability.

34

In contrast, non-randomized approximate model counting techniques generally use approxima-

tions that are more efficient but do not provide probabilistic bounds.

Some of the earliest Boolean model counters used the DPLL algorithm for counting the

exact number of solutions. Birnbaum and Lozinskii [3] formalized this idea and introduced

their model counter CDP for counting models of propositional formulas. Based on this idea,

Relsat [2], Cachet [4] sharpSAT [5] and DSHARP [6] showed improvements by using several

optimizations. Relsat uses component analysis in which the model count of a formula is the

product of the model count of each sub-formula (component). Cachet shows optimizations by

combining component caching and clause learning. sharpSAT introduces an improved caching

technique to reduce the space requirement compared to Cachet. DSHARP is a CNF→ d-DNNF

compiler for efficient reasoning and uses sharpSAT as a back-end. The major contribution of

countAntom [7] is techniques for parallelization, but it provides state-of-the-art performance

even in single-threaded mode.

Randomized approximate model counting techniques perform well on many kinds of a for-

mula for which finding one solution is efficient. Also, there can sometimes be a smooth trade-off

chosen between computational effort and the precision of results. However, this solving is still

relatively expensive, so research to get the best precision for a given cost is still important.

Wei and Selman [8] introduced ApproxCount which uses near-uniform sampling to estimate

the true model count but it can significantly over-estimate or underestimate if the sampling is

biased. SampleCount [9] improves this sampling idea and gives a lower bound with high

probability by using a heuristic sampler. MiniCount [10] is based on a framework to compute

an upper bound under statistical assumptions which is that counting the number d of branch-

ing decisions (except unit propagations and failed branches) can be used to estimate the total

number of solutions by setting a variable to true or false randomly. Specifically, they showed

that the expected value of d is not lower than log2 of the true model count. By estimating the

expected value, they can obtain the upper bound of the true model count. Also, they observed

that d often has a distribution that is close to a normal distribution. Thus, the expected value can

be easily computed under this assumption rather than computing low and high values of d. This

only guarantees the upper bound and they used a different method to compute a lower bound.

MBound [15] is an approximate model counting tool that gives probabilistic bounds on the

model counts by adding randomly-chosen parity constraints as XOR streamlining. Chakraborty

35

et al. [11] introduced ApproxMC, an approximate model counter for CNF formulas, which au-

tomated the choice of XOR streamlining parameters. An improved algorithm ApproxMC2 [40]

uses galloping binary search and saves a starting k value between iterations to make the selection

of k more efficient. Other recent systems that build on ApproxMC include SMTApproxMC [63]

and ApproxMC-p [35]. SMTApproxMC proposes word-level constraints based on modular

arithmetic instead of bit-level XOR constraints, however these will not likely provide com-

parable performance until SMT solvers implement modular-arithmetic Gaussian elimination.

ApproxMC-p implements projection (counting over only a subset of variables), and also gives

more efficient formulas for parameter selection.

Non-randomized approximate model counting using techniques similar to static program

analysis is generally faster than randomized approximate model counting techniques, and such

systems can give good approximations for some problem classes. However, they cannot pro-

vide a precision guarantee for arbitrary problems, and it is not possible to give more effort to

have more refined results. Castro et al. [64] compute an upper bound on the number of bits

about an input that are revealed by an error report. They measure the entropy loss of an error

report by computing the number of bits revealed by subsets of path conditions first and then

combining these partial results to get the final result. Meng and Smith [65] use two-bit-pattern

SMT entailment queries to calculate a propositional overapproximation and count its instances

with a model counter from the computer algebra system Mathematica. Luu et al. [66] propose

a model counting technique over an expressive string constraint language. Their tool computes

the bounds on the cardinality of the valid string set and uses generating functions for reasoning

about the cardinality of string sets.

2.6 Chapter Summary

Closing the gap between the performance of SearchMC and SearchMC-sound is one natural

direction for future research. On one hand, we would like to explore techniques for assert-

ing sound probabilistic bounds which can take advantage of the results of all of SearchMC’s

queries. At the same time, we would like to find a model of the number of solutions remaining

after XOR streamlining that is more accurate than our current binomial model, which should

improve the performance of SearchMC.

36

In sum, we have presented a new model counting approach SearchMC using XOR stream-

lining for SMT formulas with bit-vectors and other theories. We demonstrate our algorithm that

adaptively maintains a probabilistic model count estimate based on the results of queries. Our

tool computes a lower bound and an upper bound with a requested confidence level, and yields

results more quickly than previous systems.

Chapter 3

SMC: A Structural Model Counter

3.1 Introduction

Recent research use hashing to reduce approximate model counting to an adaptive sequence

of satisfiability queries covering subsets of the solution space as we mentioned in the previous

chapter. These algorithms provide probabilistic bounds on the accuracy of their approxima-

tion, and they can take advantage of advances in satisfiability solving (both SAT and SMT).

However these approaches still have limited scalability in practice: they require a large num-

ber of satisfiability queries to achieve tight bounds, and hashing can make individual queries

much more expensive, given the complex interactions between hashing constraints and solver

optimizations. Some roots of the difficulty of this problem have been investigated by Dudek et

al. [67, 68].

Also valuable but less developed are approximation algorithms which achieve guaranteed

efficiency and sound bounds, at the expense of not providing an accuracy guarantee. This

trade-off can be achieved using algorithms similar to ones used in static program analysis that

derive lower and/or upper bounds following the syntactic structure of a formula rather than

using semantic decision procedure queries. We refer to these as “structural” approximate model

counting algorithms.

Previous structural model counting algorithms have been specialized for narrow domains,

or have been built into larger systems in ways that are not easily reusable. In this work, we

build a new structural approximate model counting tool for quantifier-free SMT formulas over

the theory of bit vectors (SMT-LIB QF BV), one of the most common theories used to model

37

38

bounded arithmetic and software semantics. We also provide a commonly useful generalization

known as projected model counting, in which a user can specify a subset of the variables in a

formula over which a model should be counted. Our tool uses algorithms which build on the

partial description of a previous closed-source tool [69], but we needed to develop new structural

rules for cases that were missing or restricted in previous work. We extend the algorithm to

cover a more complete set of bit-vector operators, and to use both the signed and unsigned

orderings of bit vectors. However our current implementation, like Martin’s [69], is limited

to conjunctions and not arbitrary Boolean combinations of bit-vector relations. This matches

the needs, for instance, of typical single-path symbolic execution, where a path condition is a

conjunction of branch conditions, each of which is an equality or inequality over numeric (e.g.

bit-vector) terms.

We have built a standalone tool, SMC, that operates on input in the standard SMT-LIB2

format, and which we have open-sourced1. We have checked the correctness of the propagation

rules for each type of bit-vector expression via bounded exhaustive testing. We empirically

compare SMC’s performance with representative state-of-the-art exact and approximate model

counting tools. The results show that SMC’s performance scales much better than these other

tools, and that the sound upper and lower model-count bounds that it provides are often usefully

accurate. Even if the bounds are very loose, they are still useful for SearchMC [12] to use the

bounds as a more refined initial hypothesis. Recall that the initial hypothesis for SearchMC

is a uniform distribution over 0 to the maximum bit-width of the output bit-vector. If a more

refined prior hypothesis (such as a uniform distribution over a range between a lower and an

upper bounds computed by SMC) is given, this reduces search space; thus, SearchMC is able

to give a desired answer faster. Our experimental results show the performance benefit up to

1.36x speedup.

3.2 Algorithm

SMC (Structural Model Counter) takes as input an SMT-LIB2 formula which consists of vari-

ables and assertions and it outputs lower and upper bounds on the number of satisfying assign-

ments that make a given formula true. First, we describe how this structural model counting

technique works with a simple example in Figure 3.1. Since x and y are 8-bit variables, the
1 The source code and benchmarks are available at: https://github.com/seonmokim/smc

https://github.com/seonmokim/smc

39

(dec lare−fun x () (Bi tVec 8))

(dec lare−fun y () (Bi tVec 8))

(a s s e r t (= y (bvadd (bvand x 15) 4)))

Figure 3.1: A simple SMT-LIB2 formula example for SMC

model counts of two variables are both 256 when they are declared. Then we parse an assertion

to analyze the structure of the formula. (bvand x 15) has the minimum 0 and the maximum

15. This generates 16 distinct values. Adding 4 makes the minimum 4, the maximum 19 and

still 16 distinct values. This is equal to y thus y has 16 distinct values. The model count of

this formula (x and y) is 256 since x has 256 distinct values and x determines y. This shows

a simple process of the structure model counting. In this section, we describe this algorithm in

detail, its correctness, some current limitations and differences from the previous work.

The main algorithm is mostly inspired by Martin’s FSCB (Fast Solution Count Bounder)

algorithm [69]. He proposed this idea to be a fast algorithm that can handle complex expressions

such as standard arithmetic or bit shifts. However, FSCB does not consider signed data types

and the source code is not available. We extend FSCB to handle both unsigned and signed data

types and cover more operators including signed division, signed less-than, signed greater-than

and so on. Also, we improve the idea to compute tighter bounds and verify its correctness using

small-sized unit tests exhaustively. In this section, we describe two steps of our algorithm. It

first computes the bounds for each individual assertion, and then merges them for the model

count of a given formula.

3.2.1 Per-Assertion Bounds and Analysis

When a variable is declared or an expression is generated, we create a corresponding node to

represent this variable or expression. Each node contains elements as [ul, uh, sl, sh,

lc, hc, hom, vars]. Since we only consider bit vectors in SMT-LIB2 format, we com-

pute both cases, unsigned and signed representations, in a node. ul, uh, sl and sh are the

unsigned minimum (low), the unsigned maximum (high), the signed minimum and the signed

maximum of the node, respectively. lc and hc are the low cardinality (lower bound), the high

cardinality (upper bound) of the node, respectively. We select the bounds which have a shorter

40

interval between the unsigned and signed bounds since both the bounds are sound and tighter

bounds give a better precision. hom is a flag such that a node is homogeneous only if every

image has the same number of preimages. For example, (bvand x 15) is homogeneous

since it generates 16 distinct values and each value (image) has the same number of preim-

ages (16 cases if x is 8-bit). This flag is useful when computing bounds more precisely with

a constant value. For example, let us assume that we have (= (bvand x 15) 0) and x

is 8-bit. (bvand x 15) should be zero to satisfy this assertion and one value of (bvand

x 15) maps to 16 preimages of x. Therefore, this can be computed easily as x has exactly

16 distinct values to satisfy this assertion. vars is a set of variables which are present in an

assertion. As we described above, we represent signed and unsigned values in a single node.

One reason that we need both representations is that we want to handle signed operators such as

signed division, signed less-than, signed greater-than and so on. Another reason is the ways of

computing signed values and unsigned values are different. For example, the minimum value

of adding two unsigned values is 0 but we need to consider negative values when we add two

signed values. Therefore, we maintain both representations in every operation and a user can

select more appropriate bounds as a final answer.

SMC first replaces each constant or variable from an expression with the corresponding

node. If it is a constant c, the node can be represented as [c, c, c, c, 1, 1, true,

{}]. Note that if c is a binary or hexadecimal number, we convert the number using the two’s

complement for sl and sh. If it is a 8-bit variable x, the node can be represented as [0, 255,

-128, 127, 256, 256, true, {x}]. The next step is that SMC breaks down an ex-

pression tree and generates a node based on the expression rules starting from sub-expressions.

SMC determines how to compute the node values from the expression rules for each supported

operation. We can extend SMC to support additional operations by adding new operation rules.

We only describe a subset of the operation rules here.

Pseudocode for bvadd is shown in Algorithm 3.1. When the tool reaches a bvadd op-

eration, it first checks whether the variables are both constant values. This checking applies

to other operations as well and we can easily compute all the values if they are both constant

values. Next we check that the answer might be an arithmetic positive or negative overflow. If

this occurs, we set ul and uh as the minimum and the maximum of the variable, respectively,

based on its bit-width unless the variables are both constants. This applies to sl and sh to be

the negative minimum and positive maximum, respectively. lc can be computed as the sum

41

of two variable’s minimum cardinality minus 1. In order to generate the smallest set of adding

two sets, one value has to be generated in multiple ways. For example, adding {1, 2, 3} and

{2, 3} makes {3, 4, 5, 6} which has 4 elements. If the function has variables in common (for

example, (x&1)+(¬x&1)), the minimum cardinality could be 1. The maximum cardinality

hc can be computed as the multiplication of each variable’s maximum cardinality. Note that

the cardinalities must be less than the distance between its high value and low value. The ad-

dition is homogeneous if one variable is homogeneous and another is a constant or they do not

have variables in common and both are permutations. We say a variable is a permutation if all

elements of the variable have not been modified from its declaration such as a node with [0,

255, -128, 127, 256, 256, true, {x}].
Let us go back to the example in Figure 3.1 and proceed with the SMC algorithm. When x

and y are declared, two corresponding nodes are generated. Initial values of x node would be

[0, 255, -128, 127, 256, 256, true, {x}] and initial values of y node would

be the same except vars={y}. If we have the expression (= y (bvadd (bvand x 15)

4)), we parse the expression and generate a node from the expression. First, (bvand x 15)

generates a node temp1 with [0, 15, 0, 15, 16, 16, true, {x}] and then we re-

place the sub-expression (bvand x 15) with temp1. The expression becomes (bvadd

temp1 4) and this returns a node with [4, 19, 4, 19, 16, 16, true, {x}]. When

there is an equality or inequality check in an assertion, SMC computes a lower bounds and up-

per bound of variables in the assertion. We denote lb and hb which are the lower and upper

bounds of a set of variables, respectively. Algorithm 3.2 shows the crucial part to compute the

bounds.

This equal rule computes the cardinalities of the left-hand side and the right-hand side and

then the cardinality of the intersection between the left-hand side and the right-hand. Depending

on the homogeneity of the variable, we compute the low and high density of the variable so we

can compute the lower bound and upper bound. We also apply the same procedure to signed

values and select the bounds that has a smaller interval. In this example, SMC computes the

lower bound as 256 and the upper bound as 256 and we can know 256 is precise because the

upper and lower bounds are the same, even if we didn’t know the right answer already.

42

Algorithm 3.1: The operation rule of bvadd (f, g)
Input: f , g

Output: res
1 if isConstant(f) and isConstant(g) then
2 ul = uh = (f.ul + g.ul)%2f.width

3 sl = sh = (f.sl + g.sl)%2f.width

4 return ul, uh, sl, sh, 1, 1, true, [f.vars ∪ g.vars]

5 if f.uh+ g.uh > umax then
6 ul = umin

7 uh = umax

8 else
9 ul = f.ul + g.ul

10 uh = f.uh+ g.uh

11 if f.sl + g.sl < smin or f.sh+ g.sh > smax then
12 sl = smin

13 sh = smax

14 else
15 sl = f.sl + g.sl

16 sh = f.sh+ g.sh

17 if isCommon(f, g) then
18 lc = 1

19 else
20 lc = min(f.lc+ g.lc− 1,abs(uh− ul),abs(sh− sl))

21 hc = min(f.hc ∗ g.hc,abs(uh− ul),abs(sh− sl)

22 hom = (f.hom and isConstant(g)) or (isConstant(f) and g.hom)

23 or (not isCommon(f, g) and isPerm(f) and isPerm(g))

24 return ul, uh, sl, sh, lc, hc, hom, [f.vars ∪ g.vars]

43

Algorithm 3.2: The operation rule of =
Input: f, g
Output: lb, ub

1 leq ← max(f.ul, g.ul)

2 heq ← min(f.uh, g.uh)

3 minlhit← f.lc− max(f.uh− heq, leq − f.ul)

4 minlhit← min(minlhit, heq − leq + 1)

5 minrhit← g.lc− max(g.uh− heq, leq − g.ul)

6 minrhit← min(minrhit, heq − leq + 1)

7 inter ← max(1,minlhit+minrhit− (heq − leq + 1))

8 ic← 2f.width+g.width

9 if f.hom then
10 ldf = 2f.width/f.hc

11 hdf = 2f.width/f.lc

12 else
13 ldf = 1

14 hdf = 2f.width − f.lc+ 1

15 if g.hom then
16 ldg = 2g.width/g.hc

17 hdg = 2g.width/g.lc

18 else
19 ldg = 1

20 hdg = 2g.width − g.lc+ 1

21 lb = max(1,min(inter ∗ ldf ∗ ldg, ic))
22 ub = min(inter ∗ hdf ∗ hdg, ic)
23 return lb, ub

3.2.2 Combining Bounds

The second step is to combine per-assertion bounds. For each assertion with comparison oper-

ators such as equal, greater-than or less-than, we compute the lower and upper bounds on the

number of solutions to variables in the assertion. Recall that lb and hb are the bounds of a set

44

of variables. We use vars to denote the set of variables in an assertion. Given two such bounds,

we can merge per-assertion bounds into bounds that apply to both equations together. We re-

cursively merge the bounds pairwise until the bounds represent all the variables in the system.

For example, if two bounds are independent, we can simply multiply each lower bound and

upper bound. We present pseudocode for merging bounds in Algorithm 3.3. “Bound” contains

a lower bound lb, an upper bound ub and corresponding variables vars. We first check whether

two bounds are independent or not. If they are independent, we can just simply multiply two

bounds. If they have variables in common, then we consider four cases: they are identical, one

is subset of another (or vice versa) and they are overlapping sets. We compute the bounds con-

servatively based on the case. The bounds can be more precise based on the order of merging

such as merging similar variables first. This needs an extra running time and we left this for the

future work.

3.3 Evaluation

3.3.1 Correctness

We have tested the correctness of the operation rules of bit-vector expression using bounded

exhaustive checking. We set each variable to be a bit-vector of width 4 and executed each

operator with the power set of each variable. We checked whether ul, uh, sl, sh, lc and hc

from our operation rules are sound. We verify unary operators and binary operators. First, we

compute ul, uh, sl, sh, lc and hc based on our operation rules. We generate the power set

of one variable which has 216 sets and execute an operation which generates 232 sets for binary

operators. The same procedure is applied to unary operators. We verify that (1) the unsigned

smallest value of each set is greater than or equal to ul, (2) the unsigned largest value of each

set is less than or equal uh, (3) the signed smallest value of each set is greater than or equal to

sl, (4) the signed largest value of each set is less than or equal to sh and (5) the number of

elements of each set is less than or equal to hc and greater than or equal to lc. However, we

have not checked the correctness of merging bounds due to the state explosion problem since

we need to test the case where bounds contain multiple variables.

45

Algorithm 3.3: The operation rule of mergeBounds
Input: Bound a, Bound b

Output: Bound res

1 vars = a.vars ∪ b.vars

2 inter vars = a.vars ∩ b.vars

3 inter max = min(2width,math.gcd(a.ub, b.ub))

4 inter min = min(2width,math.gcd(a.lb, b.lb))

5 if a.vars and b.vars are in common then
6 if set(a.vars) == set(b.vars) then
7 la = min(a.lb, b.lb)

8 ha = min(a.ub, b.ub)

9 else if a.vars ⊂ b.vars then
10 lb = b.lb

11 ub = b.ub

12 else if b.vars ⊂ a.vars then
13 lb = a.lb

14 ub = a.ub

15 else
16 lb = a.lb× b.lb

17 ub = a.ub× b.ub

18 return Bound(lb, ub, vars)

3.3.2 Experimental Result

In this section, we show our experimental results and all our experiments were performed on a

machine with an Intel Core i7 3.40Ghz CPU and 16GB memory. We implement our algorithm

with Python and use our own SMT-LIB2 parser. Our algorithm supports SMT-LIB2 format [45]

and can be extended to support more formats. We compare our algorithm with state-of-the-art

model counters: SearchMC [12] and DSHARP P [17]. SearchMC is an approximate model

counter using XOR hashing constraints to estimate a lower bound and upper bound of the model

count. It is a randomized algorithm and gives a desired level of distance between a lower bound

and upper bound with a probability of at least 0.6. On each benchmark, we ran SearchMC

46

DSHARP P SearchMC SMC

Benchmark #Bits log2(MC) Time Bounds Time Bounds Time

coloring 4 32 30.75 0.82 [30.15, 31.05] 1088.5 [29.61, 32.00] 0.001

FINDpath1 32 21.96 0.09 [20.90, 22.17] 3.99 [4.00, 32.00] 0.001

getopPath1 8 7.92 0.003 [7.50, 8.25] 0.21 [7.92, 7.94] 0.001

queue 16 6.39 0.006 [5.66, 6.97] 0.17 [4.62, 10.78] 0.001

calDate 10 36 16.95 0.002 [16.13, 17.49] 0.30 [16.95, 16.95] 0.001

5 10 1 160 12.02 123.1 [11.34, 12.31] 20.73 [7.24, 24.77] 0.003

5 20 1 160 8.44 351.6 [7.69, 8.88] 29.6 [7.24, 24.77] 0.004

Table 3.1: Comparison results of DSHARP P, SearchMC and SMC. Runtime is measured in

seconds.

until it gave an answer with a desired confidence (60%) and repeated 10 times to compute the

average of the results. DSHARP P is an exact model counter and is implemented on top of

DSHARP [6] to support projection. We collected various SMT BV benchmarks from previous

works [13, 70].

Here we show partial results of some representative benchmarks. Table 3.1 shows a com-

parison on performance and approximation. The second column shows the number of bits we

want to count over. Since DSHARP P is an exact model counter, we take log2 of the answer

which shows in the third column and the running times (in seconds) of DSHARP P are shown

in the fourth column. We also show the bounds (log base 2) computed from SearchMC and

SMC following with their running times. DSHARP P performs well on a small-sized problems

and its performance decreases as the size and the complexity of formula increases. In these ex-

periments, SearchMC used the state-of-the-art SMT(BV) solver Z3 [47] and its performance

was highly dependent on the performance of the solver.

SMC shows a good precision on some benchmarks if the structure of the formula is well-

organized. However, it gave very loose bounds on some benchmarks which SMC was not

able to analyze the formula well. For example, 5 10 1 and 5 20 1 are the volume computation

problems of convex bodies and consist of a number of inequality constraints. This type of

problems show very loose bounds since SMC computes the bounds very conservatively on

inequality constraints. The main benefit of SMC is the running times. This shows that our

47

SearchMC SMC+SearchMC

Benchmark #Bits Bounds Time #Loops Bounds Time #Loops

coloring 4 32 [30.15, 31.05] 1088.5 6.3 [30.16, 31.53] 830.9 4.9

FINDpath1 32 [20.90, 22.17] 3.99 8.2 [21.24, 22.42] 3.55 7.7

getopPath1 8 [7.50, 8.25] 0.21 4 - - -

queue 16 [5.66, 6.97] 0.17 6.1 [5.60, 6.78] 0.15 4.8

calDate 10 36 [16.13, 17.49] 0.30 8.3 - - -

5 10 1 160 [11.34, 12.31] 20.73 8.9 [11.20, 12.44] 18.3 6.4

5 20 1 160 [7.691, 8.88] 29.62 8.4 [7.42, 8.85] 21.83 5.3

Table 3.2: Performance of the combination of SMC and SearchMC. Runtime is measured in

seconds.

approach is faster than others and it is a trade-off chosen between computational effort and the

precision of results in some benchmarks.

Hashing-based model counting techniques like SearchMC rely on prior hypotheses to pro-

duce more useful results and start an initial hypothesis from zero knowledge. The initial hy-

pothesis for SearchMC is a uniform distribution over 0 to the maximum bit-width of the output

bit-vector. If we gather results from SMC and use them as the initial hypothesis for SearchMC,

SearchMC is able to give a desired answer faster. For example, in order to solve coloring 4

the initial hypothesis for SearchMC is a uniform distribution over 0 to 32. If the initial hy-

pothesis for SearchMC is a uniform distribution over 29.61 to 32 which is computed by SMC,

SearchMC needs a smaller number of queries to find a desired result.

Table 3.2 shows the performance of the combination of SMC and SearchMC. The results

for plain SearchMC are equivalent to the results in Table 3.1. We also measured the average

number of iterations (loops) in SearchMC and the results show that the number of iterations

was decreased when we used SMC and SearchMC together. Since SMC already computed

tight bounds on gettoPath1 and calDate 10, we did not run SearchMC on the benchmarks.

This experimental results show that using SMC as a preprocessor of SearchMC gives the

performance benefit up to 1.36x speedup.

48

3.4 Discussion

In this section, we discuss the contributions and the limitations of our current implementation.

Our contributions of this work are that we support more operators in SMT-LIB2 format and

compute a better precision than FSCB. First, we cover a more complete set of bit-vector opera-

tors for both the signed and unsigned orderings of bit vectors. Table 3.3 shows which bit-vector

operators are supported by FSCB and SMC. The author of FSCB provided pseudocode of the

operation rules in his tech report and we implemented our own SMT-LIB2 version based on the

pseudocode. Also, we added more edge cases in operators and fixed some operators to compute

a better precision. For example, bvadd in SMC computes the low cardinality as max(f.lc,

g.lc) but we empirically find out that f.lc+g.lc-1 gives a better result.

FSCB bvadd, bvsub, bvmul, bvand, bvor, bvxor, bvshl, bvlshr, distinct,

=, ult, ugt

SMC bvadd, bvsub, bvmul, bvand, bvor, bvxor, bvshl, bvlshr, distinct,

=, ult, ugt, ule, uge, slt, sgt, sle, sge, bvudiv, bvsdiv, extract,

concat, sign extend

Table 3.3: Bit-vector operators supported by SMC and FSCB

However, some of SMT-LIB2 operators are still not supported in SMC and we are currently

working on handling the whole SMT-LIB2 format standard. Also, some operators compute the

cardinalities very conservatively due to the limitation of the node representation, hence those

operators lead to less precise results (loose bounds). This is for the future work to have more

coverage of SMT-LIB2 format standard and design more precise rules.

Lastly, the order of assertions and merging bounds affects precision. For example, let say

we have two variable v1 and v2 and one constant c. If we have assertions (= v1 v2) and (= v2

c), the results are computed differently depending on which assertion is processed first. For

example, (= v1 v2) computes the bounds [256, 256] and (= v2 c) computes the bounds [1, 1] if

all the variables are 8-bit. If we merge the two bounds, the final bound would be [256, 256].

But if we flip the order which (= v2 c) computes the bounds first, then (= v1 v2) computes

the bounds [1, 1] since we know that v2 is a constant value this time. This can be resolved

by recursively computing the bounds until the bounds do not change but we do not have any

proof about its time complexity. This means the bounds can be more precise by merging the

49

per-assertion bounds in a better order. We believe finding more efficient way to merge bounds

will improve the performance and this is for the future work.

3.5 Related Work

Structural approaches to approximate model counting that can provide non-probabilistic bounds

(but not guaranteed precision) have seen relatively less tool development. The most direct

predecessor of our work in this paper is the FSCB (Fast Solution Count Bounder) algorithm of

Martin [69], which as far as we are aware was applied only as part of symbolic execution system

to estimate the amount of information revealed by bug reports [64]. Martin’s implementation

was not available, but we used the description in his technical report as a starting point for

the system we developed, as described in more detail in Section 3.2. Other previous structural

model-counting systems have been specialized for other domains. Luu et al. [66] build a model

counter for string constraints such as arise in symbolic execution of high-level languages like

JavaScript; their approach is based on generating functions. Aydin et al.’s MT-ABC [71] uses a

combination of structural and automaton-based algorithms for constraints that can include a mix

of strings and linear arithmetic. Meng and Smith’s two-bit-pattern technique [65] is a hybrid of

structural and exact counting approaches to #SAT. It structurally over-approximates the model

count by determining, for every pair of bits in a formula, what values they can have in isolation

(using many small satisfiability queries). Then the combination of these constraints is a 2CNF

formula, which the authors found could be model-counted efficiently in practice (though general

2CNF model counting is still #P-hard).

3.6 Chapter Summary

We propose a structural approximate model counting algorithm, SMC, to compute the lower

and upper bound of solutions to a given SMT formula. This is a fast polynomial algorithm

compared to other state-of-the-art approximate model counters and it runs in O(n + m) where n

is the number of variables and m is the number of assertions. We extend the FSCB algorithm

to cover a more complete set of SMT-LIB2 standard operators and to use both the signed and

unsigned representations of bit vectors. Our evaluation results illustrate that our technique is

most beneficial when time performance is a tight requirement.

Chapter 4

MultiSearchMC: A Scalable Model
Counter using a Divide-and-conquer
Approach

4.1 Introduction

Hashing-based model counting techniques have been efficient model counting techniques which

provide probabilistic guarantees and acceptable precisions. Previous work [11, 14] has shown

that they can be more scalable than exact model counting techniques. The hashing-based model

counting techniques use SAT or SMT solvers as we add a large number of random XOR con-

straints to an input formula and count the number of solutions up to a given number. Therefore,

a solver for hashing-based model counting techniques needs to be optimized for solving XOR

constraints efficiently and enumerating solutions up to a specified number (possibly a huge

number). However, solving a formula with a large number of XOR constraints is still a com-

plicated task both theoretically and practically. Also, the length of an XOR constraint becomes

larger as the size of an input formula gets larger and this can increase the complexity of solving

an XOR constraint.

The main idea of this chapter is to reduce the runtime of solver calls (of model counting)

by splitting an input formula into small sub-formulae. We apply projected model counting,

which determines the number of satisfying assignments of a formula over a subset of variables,

50

51

to reduce the number of variables that we count over. The projected model counting problem

is #P-complete as the model counting problem [72]. However, projected model counting with

a small set of variables becomes less complex practically since a small number of projected

variables means a small maximum number of solutions which can be easily enumerated. For

example, suppose we have a formula with n variables and we want to compute the number of

solutions over n variables. Rather than counting the number of solutions over the total vari-

ables, we count the number of solutions over the first half and the second half of n variables

separately. Once we have the model counts over two different subsets of variables, we combine

the model counts to generate the final bounds conservatively. Since we do not know how satis-

fying assignments from each subset are connected, we compute the lower and the upper bounds

from each model count and the bounds can be very loose. Note that we are not able to compute

the exact model count for the final result unless two subsets of variables are totally indepen-

dent. We apply this idea to hashing-based model counting techniques to reduce the amount

of time spent in a solver. We first apply the technique to called slicing to find a sub-formula

that is totally separable from an input formula. We denote that a sub-formula is sliceable if

the sub-formula is separable (independent) from an input formula. When we have a sliceable

formula, the final bounds become more precise thus we can expect a huge speed-up when we

have many sliceable formulae. If a formula is unsiceable, we apply projected model counting

to each sub-formulae. As we reduce the size of the input formula, the complexity of solving

XOR constraints becomes smaller since the length/number of XOR constraints become smaller.

Also, another advantage of this approach is that this can be parallelized since each sub-formula

can be computed separately for the final answer.

In this chapter, we introduce MultiSearchMC which is a divide-and-conquer algorithm for

hashing-based model counting techniques and this can be parallelized to achieve the perfor-

mance improvement. Our tool focuses on reducing the total computation time of a decision

procedure by dividing an input formula into smaller formulae. We use projected model count-

ing techniques to split an input formula into small formulae and apply a divide-and-conquer

approach to hashing-based model counting techniques in order to use fewer and shorter XOR

constraints. Fewer and shorter XOR constraints reduce the complexity of simplifying XOR

constraints (Gaussian elimination) thus the total computation time of a decision procedure can

be decreased. We can also expect this approach to be parallelized for solving each sub-formula

by hashing-based model counting techniques. Once all the model counts from the sub-formulae

52

are estimated, we combine the results to compute the final bounds for the original formula. Sec-

tion 4.2 explains MultiSearchMC’s algorithm which is based on a projected model counting

approach to divide an input formula into small pieces. We also explain how we combine each

result to calculate the final bounds. Section 4.3 shows the experimental results and we also want

to show that there is a huge performance improvement in certain problem domains such that an

input formula can be split into many sliceable formulae. Section 4.4 summarizes this chapter.

4.2 Algorithm

In this section, we introduce MultiSearchMC’s algorithm which is a divide-and-conquer model

counting algorithm for hashing-based model counting techniques. The key idea of Multi-

SearchMC is to apply a projected model counting approach to reduce the complexity of XOR

hashing constraints. The expected length of one XOR hashing constraint is a half of the total

number of an original variables and adding numerous XOR hashing constraints to an input for-

mula results in poor performance of SAT solving. Our intuition is that if the total number of

variables are reduced, then the (expected) length of XOR hashing constraints becomes shorten

and the complexity of an augmented formula is decreased. Therefore, we apply a projected

model counting approach to divide the total variables into multiple subsets and run a model

counter with each subset of projected variables. The main advantage of this approach is paral-

lelization which is to execute each model counter in parallel. Once we compute all the model

counts of each run, we need to combine the results to compute the bounds for an original for-

mula. Since combining bounds is a problematic task, we need to combine them conservatively

as described in Section 4.2.3. If the final bounds are not precise enough, we use this result as

an initial hypothesis for a hashing-based model counting technique to generate more precise

bounds.

The implementation overview of MultiSearchMC is described in Figure 4.1. Given a

SAT/SMT formula, we first apply projection/slicing to the formula in order to split into multi-

ple sub-formulae. We keep the original formula and only divide the total variables. Note that a

number of projected variables are determined by n threads used in MultiSearchMC. We explain

this in more detail in Section 4.2.1. Next, we run the combination of SMCn and SearchMCn

(as described in Section 3.3.2) for each sub-formula to compute the bounds for the correspond-

ing subset of projected variables. Note that SMC only takes input as an SMT formula and it is

53

Combining

Bounds

SearchMC1

SearchMC2

...

SearchMCn

SMC1

SMC2

...

SMCn

Projection/

Slicing
SearchMC

Preprocessing1

Preprocessing2

Figure 4.1: The implementation overview of MultiSearchMC

bypassed if an input formula is in CNF. There are two rounds of preprocessing and we denote

preprocessing as generating a more refined initial distribution for SearchMC. In the prepro-

cessing1 step, an SMCn’s result may be used as an initial hypothesis of SearchMCn but we

do not need to run SearchMCn if the SMCn’s result is precise enough. In the preprocessing2

step, combining bounds generates the combined bounds from each result and this result may

be used as an initial hypothesis of the final SearchMC. If the combining bounds’s result is

precise enough, we do not need to run the final SearchMC like preprocessing1. We discuss

this preprocessing in Section 4.2.2. Once we obtain all the results from each SearchMC’s run,

we combine the results conservatively to generate the first round of lower and upper bounds as

described in 4.2.3. The final step is to run SearchMC taking input as an original formula with

a refined initial hypothesis.

4.2.1 Projection / Slicing

Projected model counting is to determine the number of satisfying assignments of a formula

over a subset of variables. Let F be a Boolean formula, X be a set of variables in F and Xp

be a subset of variables in F such that Xp ⊂ X . We denote Xp as projected variables and a

projected model counter computes the number of unique satisfying assignments for Xp. The

projected model counting problem is #P-complete as the model counting problem [72] since

the worst case is when |Xp| = |X|. However, projected model counting with a small set of

variables becomes less complex practically since a small number of projected variables means a

54

small maximum number of solutions which can be easily enumerated. Projected model counting

techniques have been widely used in various areas such as AI, verification, and so on [17, 73].

In this projection/slicing procedure, we first simplify an input formula, especially an SMT

formula. When a formula contains some variables which are constant, we rather not consider

those variables for the total model count since the variables only have 1 solution. If we leave

those variables, then this increases the size of XOR constraints and a solver might perform

poorly. Therefore, we first check if there is any variable which has a constant value and then we

replace the variable with its constant value if there is any.

We denote the projection procedure as we divide variables X into n subsets such as Xp1 ,

Xp2 , · · · , Xpn where n is a number of threads. Also, note that any variable should not be over-

lapped between subsets. Then we generate n sub-formulae differentiated by projected variables

and note that the size of each sub-formula is equivalent to the original one since we replicate the

original formula. For example, let F be a Boolean formula with X = {b1, b2, · · · , b8} and one

way to use 2 threads is to divide X into 2 subsets: Xp1 = {b1, · · · , b4}, Xp2 = {b5, · · · , b8}.
The number of projected variables for each sub-formula is determined by the total number of

variables divided by a number of threads. If the total number of variables is not divisible by

a number of threads, then we can round the number and the last sub-formula takes the rest of

variables.

We denote the slicing procedure to split a formula when there are some independent vari-

ables. This is a special case when some projected variables are independent of other variables

and a formula can be actually separated into smaller sub-formulae in this case. From a given

variable, we check the reachability from this variable to other variables and operators. The

reachability procedure starts from one variable and marks any variables and assertions that are

associated with the starting variable. If the reachability does not include any new variables or

assertions and the marked variables and assertions are not equivalent to an input formula, we

detach this independent formula (consists of the marked variables and assertions) from the in-

put formula. The input formula becomes smaller and we repeat this procedure checking until

marked variables and assertions are equivalent to this new input formula. Note that this slicing

currently supports the SMT-LIB2 format only in our implementation and we believe that this

can be applied to the CNF format similar to finding disconnected components in SAT solving.

Figure 4.2 illustrates the basic idea of the slicing with a simple example. Starting from the

variable x, we search any assertions and variables that affect the satisfiability of x and there

55

(dec lare−fun x () (Bi tVec 8))

(dec lare−fun y () (Bi tVec 8))

(dec lare−fun z () (Bi tVec 8))

(a s s e r t (bvuge x 4))

(a s s e r t (= z (bvadd (bvand y 15) 4)))

(a) Original formula

(dec lare−fun x () (Bi tVec 8))

(a s s e r t (bvuge x 4))

(b) Sub-formula 1

(dec lare−fun y () (Bi tVec 8))

(dec lare−fun z () (Bi tVec 8))

(a s s e r t (= z (bvadd (bvand y 15) 4)))

(c) Sub-formula 2

Figure 4.2: Simple SMT-LIB2 formula examples for slicing

is only one assertion such that (= x 4). Since there are no other variables or assertions that

constrain x, we can successfully detach the sub-formula (Figure 4.2b) from the original formula

(Figure 4.2a). Next, we search assertions and variables that affect the satisfiability of y and one

assertion and one variable z are found to be related to y. Then, since the new variable z is

included, we search assertions and variables that affect the satisfiability of z and repeat this

until a new variable is found. Since no new variable is found, we end the slicing procedure and

generate the second sub-formula as described in Figure 4.2c.

We say a formula is sliceable if the formula contains at least one independent variable

determined by the reachability thus the formula can be sliced into multiple sub-formulae as we

described above. Note that a formula is unsliceable when the formula cannot be sliced since

we do not know whether there is any independent variable in the formula. Figure 4.3 illustrates

an unsliceable formula where the formula is unsliceable even though x and y are independent.

The assertion x+ y ≥ 0 is always true since x and y are unsigned 8-bit variables based on the

56

(dec lare−fun x () (Bi tVec 8))

(dec lare−fun y () (Bi tVec 8))

(a s s e r t (bvuge (bvadd x y) 0))

Figure 4.3: An unsliceable formula example

unsigned-greater-than-or-equal-to operator bvuge (x ≥ 0 and y ≥ 0). Thus we can say that

x and y are independent since either one variable does not restrict another variable. However,

they become dependent if the assertion were x + y ≥ c where 0 < c < 28. The reachability

does not check the semantic of the formula therefore we say that the formula is unsliceable.

Checking the semantic of a formula efficiently is a complicated task and we leave this for future

work.

In the projection / slicing procedure, we first check whether an input formula is sliceable

and we apply the projection to a sub-formula if its size is still large. Also, we can directly

apply projection to the input formula based on a given number of threads when the formula is

unsliceable. The main goal of this procedure is to generate multiple sub-formulae in order to

take the advantage of parallelization.

There is another procedure called grouping after this slicing procedure which groups iso-

morphic formulae such that two formulae are semantically equivalent except the names of vari-

ables and have the same number of solutions. Given two formulae, we first check whether

the lengths of two formulae are equal and then replace the names of variables appeared in the

formula to temporary variables in order. For example, if we read one formula and found the

first variable’s declaration, then we replace this variable’s name to temp1 wherever it is used

including the declaration. After replacing all the variables, we can check whether two formulae

are identical. We sort all the sliced formulae based on their text in alphabetical order and group

them by checking whether two adjacent formulae are isomorphic formulae or not. The reason

why we find isomorphic formulae is that we do not need to compute its model count again if we

already have the model count of the same formula.

57

4.2.2 Preprocessing

The preprocessing computes a prior hypothesis to produce more useful results for SearchMC.

The initial hypothesis for SearchMC is a uniform distribution over the interval from 0 to the

maximum bit-width of the output bitvector which indicates zero knowledge about the model

count. In Chapter 3, we discussed that a refined initial hypothesis helps SearchMC to find an

estimate of the model count faster. Since SMC computes a lower and upper bounds without

any solver calls, we use SMC to generate a refined initial hypothesis in polynomial time.

In the preprocessing1 procedure, we feed sub-formulae, generated from the projection/s-

licing procedure, to SMC and the main advantage of this procedure is parallelization. SMC

computes the firm bounds, which are 100% correct, in polynomial time and SearchMC uses

the bounds as a refined initial hypothesis. The performance can be maximized when an input

formula is sliceable and SMC is able to compute the exact model counts for some sub-formulae.

SMC performs well on finding the exact model counts for well-structured formulae such as un-

constrained formulae or formulae with many constant values. If the results of SMC are precise

enough, we do not need to run SearchMC. Also, note that SMC can be bypassed if an input

formula is in CNF since SMC only supports an SMT-LIB2. We can also expect one more round

of preprocessing after combining results. If the result from combining bounds is not precise as

desired, we can feed the result as a refined hypothesis to the final run of SearchMC. In the pre-

processing2 procedure, we generate a refined initial hypothesis from combining all the results

from the sub-formulae. Unlike the preprocessing1 procedure, the preprocessing2 procedure

produces the probabilistic bounds. The probability for the bounds might be low but we consider

them as a uniform distribution since SearchMC is able to correct the probability distribution

over iteration. Another reasonable approach would be using a different distribution other than

a uniform distribution and we leave this as future work. If the combined bounds are precise

enough, the final SearchMC can be bypassed as well. We discuss how we combine the results

from the sub-formulae in the next section.

4.2.3 Combining Bounds

MultiSearchMC is a divide-and-conquer style approach where small pieces of results are gath-

ered and combined into one final result. In order to combine small results, we need to calculate

the final bounds conservatively. We can think of two different cases where a formula is either

58

sliceable or unsliceable when we combine the results. Recall that a formula is sliceable if we

can detach a sub-formula from an original formula.

Lemma 4.2.1. Let F be a sliceable formula which can be sliced into F1 and F2 by the slicing

procedure. Let al and au be a lower and upper bounds of the model count of F1 with a prob-

ability of at least p1, respectively, and let bl and bu be a lower and upper bounds of the model

count of F2 with a probability of at least p2, respectively. Then, the lower bound of F is al · bl
and the upper bound of F is au · bu with a probability of at least p1 · p2.

Proof. Let us denote that F is a sliceable formula when F can be split into two independent

formulae F1 and F2 (no assignment in F1 is determined by any assignment in F2 and vice versa)

by the slicing procedure. For simplicity, we assume that F has N variables such that X =

{x1, x2, · · · , xN}. Also, we assume that F1 has m variables such that X1 = {x1, x2, · · · , xm}
and F2 has n variables such that X2 = {xm+1, xm+2, · · · , xN} where n = N − m. Since

they are independent, one satisfying assignment of F1 with any satisfying assignment of F2

is still satisfiable in F . Therefore, the number of cases for satisfying assignments in F is the

multiplication of the model count of F1 and the model count of F2. If the model counts of

F1 and F2 are approximate, the multiplication rule applies to bounds since the approximate

model counts are non-negative. The lower bound of F is the multiplication of the lower bound

of F1 and the lower bound of F2 and the upper bound of F is the multiplication of the upper

bound of F1 and the upper bound of F2. Also, the probability of the combined result is the

multiplication of each probability because of the multiplication rule of independent event such

that P (A ∩B) = P (A) · P (B).

Lemma 4.2.2. Let F be a unsliceable formula, determined by the slicing procedure, with N

variables such that X = {x1, x2, · · · , xN}. Let X1 = {x1, x2, · · ·xm} and X2 = {xm+1, xm+2,

· · · , xN} be two non-overlapped subsets of variables from X such that n+m = N . Let al and

au be a lower and upper bounds of the model count of F over X1 with a probability of at least

p1, respectively, and let bl and bu be a lower and upper bounds of the model count of F over

X2 with a probability of at least p2, respectively. Then, the lower bound of F is max(al, bl) and

the upper bound of F is au · bu with a probability of at least p1 · p2.

Proof. Let us denote that F is a unsliceable formula when F cannot be split into two indepen-

dent formulae F1 and F2 (no assignment in F1 is determined by any assignment in F2 and vice

59

versa) by the slicing procedure. For simplicity, we assume that F has N variables such that

{x1, x2, · · ·xN}. Also, we assume that F1 has m variables such that {x1, x2, · · ·xm} and F2

has n(= N −m) variables such that {xm+1, xm+2, · · ·xN}. Since F is unsliceable, then we

cannot determine X1 and X2 are independent or not. Thus, one satisfying assignment of F1

with some satisfying assignment of F2 is satisfiable in F . If we assume they are independent,

the upper bound of the model count of F is the multiplication of au · bu. If they are dependent,

the upper bound of the model count is less than au · bu. Therefore, we can assure that the model

count of F is less than or equal to au · bu. For the lower bound, we consider the case where

X1 and X2 are dependent. It is straightforward that the model count of F has to be greater than

equal to both the model counts of F over X1 and X2 since all the satisfying assignment of F1

has to pair with at least one satisfying assignment of F2. Also, the probability of the combined

result is the multiplication of each probability because it is the minimum probability of two

events.

We can think of this problem as a mapping two sets F1 and F2 and computing the minimum

and the maximum mappings. Suppose each set has either an exact number of elements or an

approximate number of element (lower/upper bound) and combining results follows the com-

bining rules to compute a lower/upper bound conservatively as described in Table 4.1. If the

model counts of F1 or F2 are exact, then we consider the value as al = au = a or bl = bu = b,

respectively. Note that if the model count of a sub-formula is exact, then the probability of the

model count is 1. The result generated from combining results might be sufficient enough when

an input formula can be divided into independent formulae. If they are not independent, the

precision could be extremely poor so we can run another round of SearchMC using the result

as an initial hypothesis.

One of main challenges for combining results is the decrement of combined probability.

We want to address the problem where the probability of all the independent events is the

multiplication of each event’s probability. For example, if we slice an input formula into 10

independent formulae and the probability of one computed (approximate) model count is at

least 0.6, then the combined probability would be true at least 0.610 = 0.006. There is a huge

gap between the proven probability and practical probability because some over-estimations

and under-estimations would be cancelled out. Therefore, we need to provide better ways of

computing probabilities. One possible approach is finding many conservative results efficiently.

If the exact model counts of some formulae can be computed very quickly, we can increase the

60

MC(F1) MC(F2) MC(F)

sliceable

a b a · b
[al au] b [al · b au · b]

a [bl bu] [a · bl a · bu]

[al au] [bl bu] [al · bl au · bu]

unsliceable

a b [max(a, b) a · b]
[al au] b [max(al, b) au · b]

a [bl bu] [max(a, bl) a · bu]

[al au] [bl bu] [max(al, bl) au · bu]

Table 4.1: Rules for combining two bounds. A model count can be either an exact value or an

interval. A square bracket and a parenthesis represent a closed interval and an open interval,

respectively.

refined probability. For example, if the model count is a small number or the formula is uncon-

strained, it is likely that we can compute the model count exactly by SMC with probability of

100%. This does not lower the final probability after the multiplication. Practically, if we ap-

ply our techniques to word-level problems such as image processing or document benchmarks,

many pixel or character data would be easy to analyze; each data representation have same or

similar constraints. Computing more applicable probability of combining results is for future

work.

4.3 Evaluation

In this section, we present our experimental results of MultiSearchMC. All our experiments

were performed on a machine with an Intel Core i7 3.40Ghz CPU and 16GB memory. Our

main algorithm is implemented with a Perl script and SMC and SearchMC are called by the

main script. Our algorithm can be applied to both SMT formulas and CNF formulas.

We first want to compare the performances among SearchMC, MultiSearchMC and Ap-

proxMC4 [23] and use CryptoMiniSat5 as the back-end solver with all the tools for fair com-

parison. For the parameters for the tools, we measured the running time to reach a 60% confi-

dence level which corresponds to the first round of ApproxMC4 and generates provable sound

61

Number of Solved Benchmarks

0

100

200

300

400

500

600
T

im
e

 (
s
)

20 40 60 80 450 500 550 600 650

ApproxMC4

SearchMC

MultiSearchMC

Figure 4.4: Performance comparison of SearchMC, MultiSearchMC and ApproxMC4

bounds for SearchMC and MultiSearchMC. We also set a desired interval length of 1.7 which

is equivalent to ϵ = 0.8 for ApproxMC4 and thres = 1.7 for SearchMC and MultiSearchMC.

We ran our algorithm with the whole benchmarks from [23] representing a wide range of ap-

plication areas including probabilistic reasoning, plan recognition, Bayesian networks, combi-

natorial circuits, quantified information flow, program synthesis, functional synthesis, logistics,

and so on. For MultiSearchMC, we use 4 threads to run SearchMC with 2 iterations in parallel

to generate a refined hypothesis and then run a single-threaded SearchMC to compute the final

bounds.

Figure 4.4 shows the performance comparison over a subset of benchmarks. The experi-

mental results show the number of benchmarks was solved in a given amount of time. Multi-

SearchMC, SearchMC and ApproxMC4 were able to solve 654, 653, and 646 benchmarks

within 600 seconds, respectively. In this figure the benchmarks are sorted separately by run-

ning time for each tool, which makes each curve non-decreasing; but points with the same x

position are not the same benchmark. Although, some benchmarks were solved faster with a

single-threaded ApproxMC4 or SearchMC than MultiSearchMC, the figure demonstrates the

speed up achieved through MultiSearchMC mode.

Table 4.2 shows more drastic performance results. We built a program, called pwdstr, to

62

log2 ApproxMC4 MultiSearchMC

Benchmark #Vars #Cls (MC) Bounds Time (s) Bounds Time (s)

pwdstr 8 9577 22319 39.10 [38.33, 39.93] 0.57 39.10 0.15

pwdstr 16 19153 44639 76.52 [75.81, 77.41] 70.01 76.52 0.49

pwdstr 24 28601 66599 114.4 [113.6, 115.2] 483.95 114.4 0.82

pwdstr 28 33341 77624 130.8 [130.1, 131.7] 2615.7 130.8 0.87

pwdstr 32 38081 88649 151.3 n/a - 151.3 1.38

pwdstr 64 75953 176714 294.9 n/a - 294.9 5.79

pwdstr 128 152001 353699 595.4 n/a - 595.4 23.19

pwdstr 256 303985 707354 1191.4 n/a - 1191.4 94.05

Table 4.2: Performance comparison of ApproxMC4 and MultiSearchMC for a text processing

program. ’-’ indicates timeout after 7200 seconds.

check strength of password in C code, which was inspired by [74]. Given a password, the pro-

gram checks the following conditions: it contains at least one lowercase, one uppercase, one

digit, and one special character and its length is at least 8. This program checks each character

from an input password with the conditions and turns on a corresponding flag if a condition is

satisfied. If the password satisfies all the five conditions, then the program says the password is

strong. If not, it says the password is weak. This is related to quantitative information-flow anal-

ysis such as we want to measure how many inputs can be considered as a strong password in a

given length. We generated random strings from the length of 8 to 256 (which is shown next to

pwdstr in the first column) and fed these strings to pwdstr to measure the number of passwords

which satisfied the identical sequence of conditions as the input string. We used FuzzBall [75],

a symbolic execution tool, to generate the path conditions (an SMT formula) following the same

execution for a given string and treating an input string symbolic. Each character (an 8-bit vari-

able) is independent of others and has 26 solutions for one lowercase or uppercase, 10 solutions

for one digit and 32 solutions for one special character. We used STP [50] to convert the SMT

formula into the corresponding CNF formula with its projected variables. The second and the

third column of the table represents the total number of variables and clauses, respectively, from

this conversion. We ran each benchmark with ApproxMC for a 60% confidence level but Ap-

proxMC was not able to compute the estimate from a password with 32 characters in length.

63

ApproxMC4 SearchMC MultiSearchMC

CMS5 CMS5 CMS2 CMS5 CMS2

Benchmark Time (s) Time (s) Time (s) Time (s) Time (s)

or-70-5-1-UC-20 1.05 6.98 1.57 5.81 1.66

or-100-5-6-UC-20 967.51 - 300.14 - 243.47
tire-3 56.49 - 748.74 - 138.409

blasted case107 64.71 - 5.12 - 23.825

min-8 15.16 4.14 - 2.56 -

min-16s 10.05 3.27 - 3.19 -

prod-4 2.52 14.28 1.13 7.99 86.46

s15850a 15 7 130.80 17.78 - 31.93 -

sort.sk 8 52 5.99 75.72 17.39 132.23 30.86

parity.sk 11 11 917.70 470.69 657.27 759.00 1802.08

04B-2 265.35 - 399.10 - 407.81

karatsuba.sk 7 41 - 1755.57 - - -

signedAvg.sk 8 1020 481.58 775.84 - 753.45 -

prod-28 631.12 756.65 - 633.77 -

leader sync4 11 17.11 14.16 - 9.20 -

leader sync6 64 28.99 12.65 - 24.04 -

Table 4.3: Performance comparison of hashing-based model counters using different versions

of CryptoMiniSat. ’-’ indicates timeout after 2000 seconds.

For MultiSearchMC, slicing was applied to each character since they were all independent.

For example, pwdstr 8 was sliced into 8 SMT sub-formulae successfully. Then, we converted

each SMT formula into the CNF formula for MultiSearchMC experiments. SearchMC was

able to compute the exact model count for each sliced sub-formula with SMC and 5 iterations

of SearchMC. Since we were able to compute the exact model counts of independent sub-

formulae, we did not need to run the final round of SearchMC. In this experiment, we wanted

to show the performance of MultiSearchMC in more extreme cases. Therefore, we computed

the exact model count for each sliced sub-formula and MultiSearchMC handled the large-sized

problems well when a given formula was sliceable.

64

We experienced that the optimization of a decision procedure highly affected the running

time in the same algorithm. Table 4.3 shows that the running-time comparison based on the

different version of CryptoMiniSat. Note that some benchmarks in Table 4.3 are not presented

in Figure 4.4 due to the timeout. We set up the parameters and a number of threads as same

as previous experiment. We only differentiate the back-end solver. We highlighted the best

performances for each benchmark and it is clear that there is no algorithm which is always

dominant to others. This is caused by different optimization techniques from CryptoMiniSat2

and CryptoMiniSat5. In order to achieve the best performance result, we need to first select the

most suitable decision procedure for a given benchmark. We can resolve this issue by running

a portfolio-style parallel approach so we can select the result whichever computed the first. We

leave this as future work and we refer a detailed discussion in Section 6.4.

For MultiSearchMC, there are some factors that affect the performance other than a deci-

sion procedure. In the preprocessing procedure, we have two parameters: a number of threads

and a number of iterations. The number of threads represents some facts such as how many

threads you use and how small a sliced formula is. If you increase the number of threads, the

sliced formulae become less expensive but the combined result gives less precision. Also, you

can control the number of iterations for each SearchMC’s run. As you iterate more, you can

get more precise answers but you do not get fruitful results if you iterate too many times. Fig-

ure 4.5 shows the heatmaps of ratio measurements based on the different settings of a number

of threads and a number of SearchMC iterations when you have 8 threads at maximum. We

selected 10 random benchmarks and measure the average-times spent for preprocessing. For

(a), (b), and (d), the shortest running time is 1 and we compute ratio compared to the shortest

running time. For (a) and (b), we measure the preprocessing time and it is clear that you in-

crease the running time as you increase the number of threads and the number of iterations. In

(c), it shows the computed bound interval (upper bound minus lower bound) for preprocessing

and the shortest interval is represented as 1 and we also compute ratio compared to others. As

you can see, using 2 threads and 10 iterations gives the most tight bounds but we know this

takes a lot of time from other experiments. (d) shows the comprehensive results such that we

measure the total running time to achieve a 60% confidence level based on different number of

threads and iterations. This graph shows using 4 threads with 2 iterations gives the best result.

However, we believe that the best parameter setting can differ from various factors such as the

type of benchmarks, the maximum number of cores, etc.

65

2 4 8 16

Number of Threads

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

CPU Time

1

1.863

2.765

3.396

4.389

5.557

6.601

8.527

11.12

16.79

2.254

4.085

5.845

7.325

9.412

12.13

15.38

19.46

20.95

19.12

6.93

11.63

16.13

20.29

29.31

29.91

29.59

29.39

29.83

29.67

20.96

39.16

59.01

89.05

89.94

90

88.93

87.36

88.55

90.01

10

20

30

40

50

60

70

80

90

(a) CPU time ratio

2 4 8 16

Number of Threads

1

2

3

4

5

6

7

8

9

10

N
u

m
b

e
r

o
f

It
e

ra
ti
o

n
s

Wall Time

1

1.788

2.624

3.23

4.199

5.522

6.622

8.64

10.69

1.335

2.12

2.845

3.54

4.41

5.82

7.444

9.31

10

9.143

2.057

2.985

3.997

4.856

6.792

6.979

7.132

7.095

7.165

7.267

3.59

5.481

7.751

11.03

11.1

11.03

11.01

11.02

11.03

11.0115
2

4

6

8

10

12

14

(b) Wall-clock time ratio

2 4 8 16

Number of Threads

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Pre-computed Interval

1.456

1.304

1.177

1.117

1.093

1.073

1.049

1.035

1.045

1

1.714

1.69

1.624

1.586

1.561

1.552

1.575

1.524

1.521

1.517

1.932

1.865

1.829

1.811

1.798

1.8

1.795

1.795

1.795

1.795

1.998

1.962

1.94

1.926

1.926

1.926

1.926

1.926

1.926

1.926

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

(c) Interval ratio

2 4 8 16

Number of Threads

1

2

3

4

5

6

7

8

9

10

N
u
m

b
e
r

o
f
It
e
ra

ti
o
n
s

Total Time

1.193

1.049

1.186

1.079

1.184

1.146

1.35

1.382

1.38

1.216

1

1.038

1.119

1.246

1.313

1.498

1.55

1.006

1.053

1.039

1.087

1.211

1.174

1.145

1.146

1.147

1.15

1.099

1.054

1.187

1.209

1.211

1.208

1.208

1.209

1.208

1.2111.864

1.668

1.646

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

(d) Total running time ratio

Figure 4.5: MultiSearchMC’s ratio measurements parameterized by a number of threads and

iterations for each SearchMC execution. Smaller ratios represent faster results for the time

measurements and more precise results for the interval measurements.

66

4.4 Chapter Summary

We introduced MultiSearchMC to improve the scalability of hashing-based model counting

techniques and compared the performances with ApproxMC4 in this chapter. The performance

of hashing-based model counting techniques is highly dependent on the performance of a de-

cision procedure (SAT or SMT solver) and adding numerous hashing constraints to a formula

might cause a solver to perform poorly. The key idea of improving the scalability for Multi-

SearchMC is to apply a divide-and-conquer approach that can be parallelized. This is achieved

by dividing an input formula into smaller pieces, feeding them into SearchMC algorithm in

parallel and combining their results. Once we obtain all the results from each SearchMC’s run,

we combine the results conservatively to generate a final lower and upper bounds. We showed

the scalability for MultiSearchMC compared to other existing approaches and our experimental

result showed MultiSearchMC performed well in large-sized programs.

Chapter 5

Applications of Model Counting to
Software

This chapter shows the applications of model counting techniques to software for program anal-

ysis and testing. We first explain quantitative information flow analysis using model counting

techniques and show how we generate path conditions with a symbolic execution tool to mea-

sure potential information leakage. From the path conditions, we compute the model count of

input/output data to quantify the information leakage. The experimental results show that our

approach scales to analyze large/complex programs.

We also show uniform sampling using model counting techniques. Uniform sampling are

fundamental problems in computer science with a wide range of applications ranging from con-

strained random simulation, probabilistic inference to network reliability and beyond. Recently,

random hashing-based techniques have been proposed and UniGen [22] is a near-uniform sam-

pler which provides the scalability and strong theoretical guarantees of the uniformity as well.

UniGen uses ApproxMC to estimate the model count and compute the most appropriate num-

ber of XOR constraints. Since MultiSearchMC outperforms ApproxMC, we replace the model

counting algorithm of UniGen to MultiSearchMC. The technical and mathematical details are

based on Unigen3 [23], a state-of-the-art hashing-based sampler, and we compare our approach

with Unigen3 and show that our tool outperforms Unigen3.

67

68

5.1 Quantitative Information Flow using Model Counting

Quantitative information flow (QIF) analysis is a powerful approach to measure the amount

of secret information revealed to the public outputs by a program or a function. QIF can be

applied to measure the information flow over variables of the program. An unexpected large (or

small) flow of information can be interpreted as a potential leakage. Practically, the maximum

flow which can be revealed from a program (known as channel capacity) is log2 of number

of possible output values. Newsome et al. [34] proposed the terminology of “influence” for a

specific application of model counting in quantitative information-flow measurement. Based

on this channel capacity, influence can capture the control of input variables over an output

variable and distinguish true attacks and false positives in a scenario of malicious input to a

network service.

Recently, QIF approaches are based on program analysis techniques such as symbolic exe-

cution or model checking to generate a SAT/SMT formula representing the program’s behavior

and apply model counting to measure the information flow. While program analysis scales to

large and complex programs, the formulae generated by a symbolic execution or model check-

ing tool are too complex for exact model counting. Therefore, approximate model counting

techniques are often used for analyzing a large/complex program or handling a large size of

inputs. In this chapter, we show that MultiSearchMC is able to provide a large performance

increase for a very small loss of precision, allowing the analysis of SAT/SMT formulas pro-

duced from complex programs. Our approach is based on the combination of model counting

and symbolic execution such that we obtain a execution path which might leak some private

data from symbolic execution tools and measure the leakage using model counting techniques.

Here we are interested in two basic scenarios of QIF analysis: input and output measure-

ments. The first scenario is to measure the amount of inputs which cause a specific behaviour

of a program. For example, when a program crashes, you might want to send an error report to

developers to fix bugs. This raises privacy concerns such that error reports may contain sensitive

user data. One solution to not reveal any private input data is that you can send an execution

path that leads to a crash. However, this is still in danger to reveal some of input data if the

number of possible inputs that cause a crash is very small. The worst case is that you can reveal

the exact original input by observing a reported execution path if only one input reaches a crash.

By measuring the amount of information in the input, we can tell how much information can be

69

leaked in an error report and you can decide whether to submit this report or not.

Secondly, if there is a program that receives some private input and produces some public

output, we want to measure the information leakage by counting the number of outputs. The

basic idea is that an adversary might be able to guess something about the input by observing

this output. We would like to quantify the amount of information in the output to measure

the information leaked as the number of possible outputs. For example, you want to apply an

image processing technique such as pixelation, blurring or swirling to hide your identity from

a picture. Some image processing functions could hide your identity from an image by looking

at it with your eyes but the output image still preserved a quite amount of the original image

data so the original image was retrievable as much as you could be identified. We can measure

image processing functions how much information it preserves after conversion and tell which

function is more secure to protect your identity.

5.1.1 A Symbolic Execution Tool with MultiSearchMC

Symbolic execution is a program analysis technique to explore all the paths generated by a pro-

gram and observe interesting behaviours of the program. We can find out which input values

cause a program to execute a certain path or reach a undesirable state such as NULL pointer

dereference, division by zero, etc. We can reach a undesirable state by testing a program on a

concrete input value (without symbolic value) and repeat this until a violation is found. How-

ever, testing only explores a single path and exposes a single input value which leads to the

undesirable state. The main concept of symbolic execution is to execute a program on symbolic

input values rather than concrete values, which means that single execution path is explored with

multiple inputs. Therefore, we can find out all the input values that cause a specific execution

path.

Symbolic execution maintains each explored control flow path which contains a path con-

dition (satisfied by the branches taken along that path) and a symbolic memory store that maps

variables to symbolic expressions or values. Branch execution keeps adding conjuncts to the

formula, while assignments update the symbolic store. An SMT solver is used to verify whether

there are any violations of the property along each explored path and if the path itself is realiz-

able, i.e., if its formula can be satisfied by some assignment of concrete values to the symbolic

arguments. Suppose we have a simple example shown as Figure 5.1. Here we want to determine

whether x is equal to y and this program fails if x is equal to y. We take a and b as symbolic

70
1: void foo (int a , int b) {

2: int x = 4, y = 0;

3: if (a > 0) {

4: y = 2 + x;

5: if (b > 0)

6: x = 2*(a + b);

7: }

8: assert (x != y);

9: }

Figure 5.1: Simple symbolic execution example

inputs which can take 232 distinct integer values for a single variable. There exists 3 possible

condition paths: ¬(a > 0), (a > 0) ∧ ¬(b > 0) and (a > 0) ∧ (b > 0). First, if

¬(a > 0) is true, then x = 4 and y = 0. Therefore, the program does not fail. Second, if

(a > 0) ∧ ¬(b > 0) is true, then the program executes y = 2 + x. This makes x = 4

and y = 6 and the program also does not fail. Lastly, if (a > 0)∧(b > 0) is true, then the

program executes y = 2 + x and x = 2*(a + b). Since y = 6, the program would fail

if (b > 0) ∧ (a > 0) ∧ (a + b = 3). An SMT solver determines whether there is

a satisfying assignment for a and b and gives a satisfying assignment such as a = 2, b =

1 or a = 1, b = 2.

FuzzBALL [76] is an open-source symbolic execution tool [75] which determines what

inputs cause certain behaviors of a program. FuzzBALL executes the program (binary exe-

cutable) and generates path conditions by replacing concrete values by symbolic variables. The

STP[50] decision procedure finds satisfying assignments to those symbolic variables whenever

any branch is found and explores feasible execution paths. We use FuzzBALL to generate the

SMT file of the execution path in a certain program and we run MultiSearchMC with the SMT

file over the input/output variables to measure how much information is leaked.

71

5.2 Uniform Sampling using Model Counting

As the model counting problem has been widely studied, uniform sampling are fundamental

problems in computer science with a wide range of applications ranging from constrained ran-

dom simulation, probabilistic inference to network reliability and beyond. The past few years

have witnessed the rise of hashing-based approaches that use XOR-based hashing and employ

SAT solvers to solve the resulting CNF formulas conjuncted with XOR constraints. Since most

of the runtime of hashing-based techniques is spent inside the SAT queries, improving CNF-

XOR solvers has emerged as a key challenge. As we discussed in Chapter 4, improving the

scalability of hashing-based model counting techniques lead to solving large-sized and realistic

problems.

5.2.1 A Uniform Sampler with MultiSearchMC

Constraint random sampling has been emerging in industrial problems such as functional verifi-

cation of digital systems. Recently, random hashing-based techniques have been proposed and

UniGen [22] is a near-uniform sampler which provides the scalability and strong theoretical

guarantees of the uniformity as well. The idea of UniGen is to divide the solution space of an

input formula into small pieces using random hashing functions and select one piece randomly.

If this piece has the acceptable number of solutions based on input parameters, then select one

random solution from this piece and return this solution as a sample. Unigen2 [77] was in-

troduced to show the performance improvement compared to UniGen. The key difference is

that Unigen2 generates multiple samples in a single piece and preserves strong guarantees of

the uniformity with generated samples. This feature allows Unigen2 to outperform UniGen

by approximately 10 times faster. Unigen3 [23] improved the performance of the solver and

reduced the running time by reusing the results of SAT queries. We refer the reader to [77] for

the proofs of the guarantees of the uniformity.

Here we explain the two stages of Unigen3. The first stage (Algorithm 5.1) performs a

preprocessing step for a given F and ϵ to compute parameters before the sampling process.

These parameters determine the scalability and the theoretical guarantees of the uniformity.

‘loThresh’ and ‘hiThresh’ represent the acceptable number of solutions in a single piece that is

divided by the XOR-based hashing function. κ is the tolerance parameter, computed from ϵ, to

determine a low and high thresholds for the size of each piece. ‘pivot’ is the ideal size of each

72

Algorithm 5.1: EstimateParameters
Input : F , ϵ

Output: k, loThresh, hiThresh

1 Compute κ such that ϵ = (1 + κ)(7.44 + 0.392
(1−κ)2

)− 1

2 pivot← 4.03(1 + 1
κ)

2

3 hiThresh← 1 +
√
2(1 + κ)pivot

4 loThresh← 1√
2(1+κ)

pivot

5 count← ApproxMC(F, 0.8, 0.8)

6 if count == ⊥ then
7 return ∅

8 return log 1.8count
pivot , loThresh, hiThresh

Algorithm 5.2: GenerateSamples
Input : F , k, loThresh, hiThresh

Output: loThresh number of samples

/* k, loThresh, hiThresh are returned values from

EstimateParameters */

1 foreach i ∈ {k − 2, k − 1, k} do
2 Sols← MBoundExhaustUptoC(F , i, hiThresh)

3 if loThresh ≤ |Sols| ≤ hiThresh then
4 return Pick loThresh distinct elements of Sols randomly

5 return ∅

piece and loThresh and hiThresh are computed by κ and pivot. k is the number of XOR hashing

constraints to represents the most appropriate value to generate samples and is computed by a

hashing-based model counter such as ApproxMC.

Algorithm 5.2 illustrates the second stage of Unigen3 where the sample generation is per-

formed. Given k computed from Algorithm 5.1, MBoundExhaustUptoC is executed with

k − 2, k − 1 and k XOR hashing constraints in order to find an applicable piece where its so-

lutions are greater than or equal to loThresh and less than or equal to hiThresh. If the chosen

73

piece meets the condition, it returns loThresh number of samples by selecting loThresh ele-

ments randomly from the piece. Unigen3 provides a theoretical analysis of the uniformity and

defer all proofs to the original work [77]. Unigen3 has shown that the failure probabilities of

EstimateParameters and GenerateSamples.

Theorem 5.2.1. EstimateParameters and GenerateSamples return ∅ with probabil-

ities at most 0.009 and 0.38 respectively.

This shows that ApproxMC returns the estimate with a probability at least 0.991 and one

invocation of GenerateSamples generates loThresh number of samples with a probability at

least 0.62. Also, Unigen3 has shown that a single invocation of GenerateSamples provides

guarantees nearly as strong as those of an almost-uniform generator.

Theorem 5.2.2. For given F , and ϵ, let L be the set of samples generated using Unigen3 with

a single call to GenerateSamples. Then for each sample y in F , we have
loThresh

(1 + ϵ)MC(F)
≤ Pr[y ∈ L] ≤ 1.02 · (1 + ϵ)

loThresh
MC(F)

(5.1)

For example, when ϵ is 16 and loThresh is 11, the probability of generated sample is greater

than or equal to (11/17)p ≈ 0.647p and less than or equal to 1.02 · 17 · 11 · p = 190.74p

where p = 1/MC(F), which is the ideal probability. Decreasing ϵ gains more uniformity but

loses scalability since loThresh also decreases and GenerateSamples generates less num-

ber of samples per iteration. As we discussed in Chapter 4, we showed that MultiSearchMC is

more scalable than ApproxMC, thus we replace ApproxMC with MultiSearchMC for our ex-

periments. We also optimize this sampling process where if an input formula is independently

sliceable, we generate samples from each slice and combine them. This optimization shows the

performance improvement significantly in some problem domains.

5.3 Evaluation

Here we present our experimental results. We provide our experiments on a machine with an In-

tel Core i7 3.40Ghz CPU and 16GB memory. We show QIF case studies using MultiSearchMC

where it can scale up to large-sized input/output data. We also show uniform random sampling

using MultiSearchMC to speed up the model counting process and generate samples based on

the model count. In some problem domains, our approach generates random samples signifi-

cantly faster than Unigen3.

74

5.3.1 QIF Case Study: Error Report System

This experiment is inspired by [64] where generating a bug report with path conditions might

leak some private information. If the amount of inputs (which caused the bug) is too small,

then this is still in danger to reveal some of input data. We assume that a normal execution path

has the same complexity as a buggy one so that we explore some normal execution paths and

measure how many inputs cause these execution paths. We used FuzzBall [75], a symbolic

execution tool, to generate the path conditions (an SMT formula) following the same execution

for a given string and treating an input string symbolic.

In Section 4.3, we used pwdstr to show the scalability of MultiSearchMC. Given a pass-

word, pwdstr is a password strength checker program that checks the following four condi-

tions: it contains at least one lowercase, one uppercase, one digit, and one special character.

Table 5.1 shows that MultiSearchMC performs differently based on the setting of SearchMC

iterations for preprocessing. Note that our tool was able to slice the input formula and group

sub-formulae into the equivalent formula in the slicing procedure. We differentiated the number

of SearchMC iterations in the preprocessing procedure and measured the time performances

and the computed bounds. ‘Prob’ represents the proven probability based on Lemma 2.2.1.

Note that we ran MultiSearchMC with 5 SearchMC iterations and SearchMC gave the exact

model count of each sub-formula shown as Table 4.2 in Section 4.3. Therefore, it computed

the exact model count of the input formula which guarantees a 100% correctness. When we

ran MultiSearchMC with 4 SearchMC iterations, SearchMC was able to compute the exact

model counts for a character containing one digit, one lowercase or one uppercase. Since the

model count for a character containing a special character was estimated, the proven correct-

ness of the final bounds is at least 60%. SearchMC with 3 pre-iterations gave none of the

exact model counts. Since pwdstr 8 contained three types of character, the correctness of the

final bounds is at least 0.63 ≈ 0.22. From pwdstr 16, the input string contained three types of

characters, the correctness of the final bounds is at least 0.64 ≈ 0.13. The computed bounds be-

come loosen as the number of SearchMC iterations gets decreased and it shows there is a huge

gap between the proven probability and the actual probability of the bounds . The experiments

showed that using more preprocessing time might help the precision and the correctness.

Table 5.2 shows more realistic text programs for QIF analysis. The input file was a sample

text file generated by a test data generator[78] which is 930 Bytes with 17 lines. head is a Linux

command-line program which mainly prints out a given number of lines from the beginning of

75

MultiSearchMC MultiSearchMC

with 4 SearchMC iterations with 3 SearchMC iterations

Benchmark Bounds Time (s) Prob Bounds Time (s) Prob

pwdstr 8 [24.1, 54.1] 0.14 0.6 [16.8, 63.2] 0.13 0.22

pwdstr 16 [49.5, 103.5] 0.37 0.6 [34.4, 121.5] 0.36 0.13

pwdstr 24 [84.4, 144.4] 0.79 0.6 [48.2, 183.0] 0.83 0.13

pwdstr 32 [115.3, 187.3] 1.32 0.6 [64.7, 240.9] 1.27 0.13

pwdstr 64 [243.9, 345.9] 5.31 0.6 [132.0, 462.6] 4.81 0.13

pwdstr 128 [478.4, 712.4] 22.01 0.6 [262.7, 940.2] 19.66 0.13

pwdstr 256 [951.4, 1431.4] 88.23 0.6 [528.1, 1882.5] 78.18 0.13

Table 5.1: Performance comparison of MultiSearchMC based on a number of SearchMC

iterations

a file. We ran the head command to print out 1, 5 and 10 lines from the beginning of this input

file. FuzzBall generated the path conditions such that the printed characters were concrete and

others were symbolic. For example, head 1 prints out the first line of the input file which is

101 Bytes and the rest of file is symbolic. This makes 829 bytes (6632 bits) unconstrained

therefore log based 2 of the model count is 6632. Our tool was able to slice the input formula

and group unconstrained sub-formulae to reduce the running time. When the head benchmarks

were sliced, there are one type of formulae where an input variable is constant and another

type of formulae where an input variable is unconstrained. SMC computed the exact model

counts for the unconstrained formulae and MultiSearchMC with 5 SearchMC’s pre-iterations

gave the exact model counts for the formulae that has only one solution. We also ran the

tail command to print out 1, 5 and 10 lines from the end of the same input file. In the tail

experiments, our tool was able to slice the input formula into three types of formulae: formulae

with one solution, unconstrained formulae and one unsliceable formula. Due to the behaviour

of tail, some input bytes were concatenated and unsliceable. Therefore, we ran SearchMC to

compute the estimate of this unsliceable formula. We ran the grep command to print out 2, 10

and 16 lines from the beginning of this input file. From the investigation of the path conditions

for grep, the generated path conditions were not sliceable since the path conditions constrained

some bytes to not contain the target string. Since the path conditions for grep were not sliceable

76

MultiSearchMC

Benchmark #Vars #Cls log2(MC) Time (s) Bounds

head 1 51158 108854 6632 101.53 6632

head 5 73236 175160 3904 93.68 3904

head 10 88661 221555 1976 92.37 1976

tail 1 50129 102671 7160 99.87 [7159.31, 7160.47]

tail 5 70518 152510 6048 99.13 [6046.94, 6048.60]

tail 10 94764 211736 4640 97.66 [4639.65, 4640.28]

grep 2 512089 1349483 n/a 30.04* [837, 5970]

grep 10 772622 2070233 n/a 49.41* [654.91, 4592.87]

grep 16 568215 1452206 n/a 150.20* [798.44, 799.33]

Table 5.2: Performance of MultiSearchMC for Linux text processing programs. ’*’ indicates

the running time of the first round of MultiSearchMC and did not complete the second round.

at all, we applied the projection procedure using 8 threads. Once we computed the combined

bounds and we ran SearchMC for the final bounds. SearchMC was able to compute the

final bounds for grep 16 so the running time represents the combination of the preprocessing

procedure and the final SearchMC run. However, we were not able to compute the final bounds

for grep 2 and grep 10 within 2 hours and the running times only represents the preprocessing

procedure. The exact model counts for head and tail were computed by hands and DSHARP [6]

was not able to compute the exact model counts of grep benchmarks within 2 hours. Note that

ApproxMC was not able to compute the estimates of head, tail and grep benchmarks within 2

hours.

5.3.2 QIF Case Study: Privacy Measurement

This experiment is inspired by [79] which measured the amount of leakage from image pro-

cessing functions. Applying an image processing technique such as pixelation or blurring can

hide your identity from a picture. However, some image processing functions could hide your

identity from an image visually but the output image still preserves a quite amount of the orig-

inal image data so the original image was retrievable as much as you could be identified. The

basic idea is to measure how much information an image processing function preserves after

77

log2 ApproxMC4 MultiSearchMC

Benchmark (MC) Bounds Time (s) Bounds Time (s)

gray 4x4 128 [127.2, 128.8] 3.44 128 0.93

gray 8x8 512 [511.2, 512.8] 92.65 512 9.93

gray 16x16 2048 [2047.2, 2048.8] 4018.1 2048 55.61

gray 32x32 8192 n/a - 8192 482.12

pixelate 4x4 96 [95.2, 96.8] 1.88 96 0.91

pixelate 8x8 384 [383.2, 384.8] 44.63 384 4.06

pixelate 16x16 1536 [1534.2, 1536.8] 1187.1 1536 66.02

pixelate 32x32 6144 n/a - 6144 1134.4

blur 4x4 n/a n/a - [43.4, 363] 59.00*

blur 8x8 n/a n/a - [44.5, 1463.7] 673.95*

blur 16x16 n/a n/a - [44.5, 5877.9] 3856.4*

blur 32x32 n/a n/a - n/a -

Table 5.3: Performance of MultiSearchMC for image processing functions. ’-’ indicates time-

out after 7200 seconds. ’*’ indicates the running time of the first round of MultiSearchMC and

did not complete the second round.

conversion and tell which function is more secure to protect your identity. We implemented our

own image processing functions (in an SMT-LIB 2 formula) based on the OpenCV library [80]

which takes input as an nxn input data and used STP [50] to convert the SMT formula into the

corresponding CNF formula with its projected variables. Each pixel is a 24-bit variable which

contains red, green and blue for 8-bit each, and thus a 4x4 input image file contains 384 bits.

We implemented three different image processing functions: bw, pixelate and blur. bw is the

function which converts a color image to a black-and-white image using the average method.

pixelate is the function that fills every 2x2 areas with the average of pixels in one area. blur is

the box blurring function that takes a 3x3 area of pixels surrounding a central pixel, averages all

these pixels together, and replaces the central pixel with the average. Table 5.3 shows applying

various image processing functions with different input sizes and measuring the possible outputs

to see how much each function preserves input data. Each output pixel of bw is independent of

other output pixels since each output pixel is associated with the input pixel which has the same

78

position as the output pixel thus each pixel has 256 solutions. Also, each 2x2 area of pixelate

is independent of other output areas since each area is computed by the same area of the input.

MultiSearchMC was able to slice bw and pixelate benchmarks and was requested to compute

the exact model count for each sliced formula. ApproxMC4 was requested to compute with a

80% confidence level and ϵ = 0.8. MultiSearchMC was only able to slice blur benchmarks by

a color data since each color data is computed separately. However, each pixel was not sliceable

because all input pixels are connected by a 3x3 filter. We applied the projection procedure to

unsliceable formulae using 8 threads. However, MultiSearchMC was not able to compute for

the final bounds with the combined bounds. The results for blur benchmarks in the table are

before the final SearchMC runs.

Note that the exact model counts for bw and pixelate were computed by hands and DSHARP

was not able to compute the exact model counts of blur benchmarks within 2 hours. The ex-

periments shows that MultiSearchMC scales better than ApproxMC4 and performs well with

some image processing functions.

5.3.3 Uniform Sampling Experiments

Our main algorithm MultiSearchMC is implemented in Unigen3 replacing its model counting

algorithm, ApproxMC. This implies we simply followed all the technical and theoretical details

of Unigen3’s sampling techniques. As we described in Section 5.2, ApproxMC first returns k

(the most appropriate number of XOR constraints) in Unigen3. Based on k, Unigen3 generates

a number of samples based on input parameters. We replaced ApproxMC to MultiSearchMC,

which computed k faster.

Figure 5.2 shows the performance comparison between Unigen3 with ApproxMC and Mul-

tiSearchMC with a timeout of 3600 seconds. We explored over 1800 benchmarks. Unigen3

with ApproxMC was able to solve only 387 benchmarks while Unigen3 with MultiSearchMC

was able to solve 395 benchmarks. Since the majority of running time in uniform sampling is

the sampling process rather than the model counting process, the performance benefit may not

be significant.

We also evaluated the quality of sampling as we compared a uniform sampler with our ap-

proach. We implemented a simple ideal uniform sampler using a random number generator to

pick a number uniformly at random. We refer the reader to [23] for detailed discussion of this

experiment. As described in [23], we also chose the CNF instance blasted case110 where it

79

Number of Solved Benchmarks

0

500

1000

1500

2000

2500

3000

3500
T

im
e

 (
s
)

20 40 60 80 260 280 300 320 340 360 380 400

ApproxMC4+Unigen3

MultiSearchMC+Unigen3

Figure 5.2: Unigen3 performance comparison of ApproxMC4 and MultiSearchMC as a back-

end model counter

has 287 variables and 16384 solutions. We then generate 4,234,928 samples (≈ 222) from both

approaches. In each case, we recorded the number of times various solutions were generated

and represented as a distribution of the counts. Figure 5.3 shows the distributions of frequencies

with the number of each solution generated. The x-axis represents the number of each gener-

ated solutions and the y-axis represents the number of samples appearing the specified number

of times. For example, the point (240,194) represents that each of 194 distinct solutions were

generated 240 times among the 4,234,928 samples. The figure compares the distributions of the

uniform sampler using a random number generator and Unigen3 using MultiSearchMC. The

yellow shaded area represents the binomial distribution of this experiment, which is theoreti-

cally ideal. While UniGen3 provides guarantees of almost-uniformity only, the two distribu-

tions are statistically indistinguishable. In particular, the KL divergence of the distribution by

UniGen3 from that of the uniform sampler is 0.0074.

Table 5.4 shows more drastic results similar to Section 5.3.1. We can also take the advantage

of slicing independent formulae to boost the performance and apply the sampling approach

independently to each slice. Since grep was not able to take the advantage of the slicing

procedure, it was not able to generate 500 samples within 2 hours. This experiment shows that

Unigen3 with MultiSearchMC is able to scale to large-sized input data.

80

Figure 5.3: Uniformity comparison of a uniform sampler and UniGen3 with MultiSearchMC

5.4 Related Work

5.4.1 Quantitative Information Flow

Prior work on QIF has largely followed the paradigm of characterizing the set of a program’s

outputs. Phan et al. [81] encode a full binary search for feasible outputs in a bounded model

checker. This approach is precise, but requires more than one call to the underlying solver for

each feasible output. Specifically, it recursively calls the solver by adding a bit constraint for

finding a single satisfying assignments as DPLL-based search. This search tree approach is

useful when the program verification system does not expose the underlying logical represen-

tation or when the used solver cannot generate models. Klebanov et al.. [73] perform exact

model counting for quantitative information-flow measurement, with an approach that converts

C code to a CNF formula with bounded model checking and then uses exact #SAT solving.

They explore both exhaustive enumeration and the existing DSHARP and sharpSAT tools, but

only counting distinct values of the output variables. Val et al. [36] integrate a symbolic exe-

cution tool more closely with a SAT solver by using techniques from SAT solving to prune the

symbolic execution search space, and then perform exact model counting restricted to an out-

put variable. However, precisely counting solutions is a #P-complete problem and these exact

81

Benchmark #Vars #Cls log2(MC)

Unigen3

+ApproxMC4

Time (s)

Unigen3

+MultiSearchMC

Time (s)

pwdstr 8 9577 22319 39.10 10.31 8.12

pwdstr 16 19153 44639 76.52 321.81 15.24

pwdstr 24 28601 66599 114.42 5321.75 25.39

pwdstr 28 33341 77624 130.77 - 30.11

pwdstr 32 38081 88649 151.25 - 33.56

pwdstr 64 75953 176714 294.89 - 67.22

pwdstr 128 152001 353699 595.42 - 132.54

pwdstr 256 303985 707354 1191.44 - 278.13

head 1 51158 108854 6632 - 879.33

head 5 73236 175160 3904 - 912.10

head 10 88661 221555 1976 - 921.87

tail 1 50129 102671 7168 - 891.17

tail 5 70518 152510 6048 - 905.56

tail 10 94764 211736 4640 - 911.23

Table 5.4: Sampling experiments with text programs in Section 5.3.1 for generating 500 samples

within 2 hours

model counters typically only work well with small-sized problems or ones with only simple

constraints. For many practical problems, it is infeasible to count the exact number of solutions

in a reasonable amount of time. Castro et al. [64] use model counting and symbolic execution

approaches to measure leaking private information from bug reports. They compute an upper

bound on the amount of private information leaked by a bug report and allow users to decide

on whether to submit the report or not. Newsome et al. [34] show how an untrusted input affect

a program and present a compound approach to obtain precise channel capacity measurements

for a set of small, synthetic benchmark programs, and very coarse approximations to large,

real-world programs including x86 binaries. Meng and Smith [65] present a method to ob-

tain empirically good upper bounds on the channel capacity of various small synthetic example

programs, also contributing to standardizing a set of benchmark programs to the field of QIF.

82

Klebanov et al. [73] show how to obtain precise measurements on channel capacity (in addition

to conditional Shannon entropy) for a number of small synthetic programs, in addition to two

examples of real C code on the order of magnitude of 100 lines. McCamant and Ernst [79]

use a coarse upper-bounding approach for channel capacity based on network flows in order to

show how to scale to hundreds of thousands of lines of real code, in addition to contributing

smaller case studies as benchmarks. Phan and Malacaria [82] present a method that is able to

analyze and compute upper bounds on the channel capacity for C implementations of several

well-known protocols and three few-hundred-line case studies including parts of the Linux ker-

nel. Biondi et al. [54] present ApproxFlow, using ApproxMC2, to measure the approximate

channel capacity of deterministic C programs as well as a new case study based on the OpenSSL

Heartbleed bug. While some of the above work has demonstrated that generating SAT formulas

is possible even for large programs, complex program structures such as pointers often result in

SAT formulas that are too difficult for model counting.

Weigl [83] presents a tool sharpPI, which implements different search heuristics for model

counting applied to measurement of Shannon entropy, presenting results for a small, scalable

synthetic C program. Biondi et al. [84] propose a technique to measure Shannon entropy for a

number of scalable case studies expressed in a simple imperative language. Backes et al. [85]

present a technique to analyze small, synthetic programs with respect to various information-

theoretic measures.

5.4.2 Uniform Sampling

Jerrum, Valiant, and Vazirani [86] studied uniform generation of SAT solutions. They showed

that the problem can be solved in probabilistic polynomial time and near-uniform generation

is inter-reducible in a polynomial time with approximate model counting. Bellare, Goldreich,

and Petrank [19] improved this idea but unfortunately, their algorithm fails to scale beyond

few tens of variables in practice [20]. Yuan et al. [87] introduced a different approach which

used a random walk over a weighted binary decision diagram (WBDD) in order to generate

samples. Still, this approach had the limitations of high space requirement and its applicability

in practice.

The interest of constraint random sampling has been emerged in some industrial domains

but earlier approaches worked via heuristic methods which provide very weak or no guarantees

of uniformity. In general, a good trade-off between the scalability and the uniformity has been

83

always challenging for uniform sampling. Strengthening the uniformity eventually loses the

scalability and increasing the scalability provides weak theoretical guarantees. Earlier research

focused on increasing the scalability rather than the uniformity [59, 88, 89, 90].

Recently, several random hashing-based techniques have been proposed to bridge the wide

gap between scalable algorithms and those that give strong guarantees of uniformity when sam-

pling witnesses of propositional constraints [20, 22, 91]. Sipser [92] first introduced the basic

idea of hashing-based sampling techniques and Jerrum et al [86] and Bellare et al [19] im-

proved the idea further. The key idea in hashing-based techniques is to divide the solution space

into small pieces of roughly equal size using an independent hashing function and then select

a random solution from a randomly chosen piece. Chakraborty, Meel, and Vardi [20] showed

UniWit with XOR streamlining [15] to show a scalable near-uniform generator. Further algo-

rithmic improvements [91] and a new algorithm named UniGen [11] were proposed upon the

ideas of UniWit. UniGen provided stronger guarantees of uniformity and showed to scale to

formulae with hundreds of thousands of variables. Several improvements to UniGen [23] have

been applied such as scaling by parallelization to increase the performance.

5.5 Chapter Summary

In this chapter, we first described the combination of symbolic execution and model counting

techniques in quantitative information flow. We used FuzzBall, a symbolic execution tool,

to explore a program path and generate a formula which represents path conditions. In some

program paths, there might be private information leakage so we apply model counting tech-

niques to quantify potential information leakage. Our experimental results showed that Mul-

tiSearchMC was able to provide a precise information leakage from realistic programs in a

reasonable amount of time.

As the uniform sampling based on hashing-based model counting techniques has emerged

since the last few years, previous research showed that this approach generates samples in a

near-uniform distribution. We showed how uniform sampling based on hashing-based model

counting techniques performed. The core of this technique is to apply a hashing-based model

counting technique to find the most appropriate number of XOR constraints first and use this

value to generate a given number of samples. UniGen3 has been a state-of-the-art almost-

uniform sampler using ApproxMC, a hashing-based model counting technique. Since we

84

showed the scalability of MultiSearchMC compared to ApproxMC, we switched Unigen3’s

model counting approach to ours to increase its scalability and performance while we followed

the same infrastructure for generating samples. Our experimental results showed that our ap-

proach was able to generate samples faster than Unigen3 for large input data.

Chapter 6

Future Work

We introduced MultiSearchMC, a scalable model counting technique, which is a divide-and-

conquer algorithm for SearchMC, a hashing-based model counting technique. The gap be-

tween theory and practice in this model counting technique is still more to be explored. Here

we list several open future work that would be critical to improve MultiSearchMC’s perfor-

mance and precision.

6.1 A Parallel Solver with Gaussian Elimination

The performance of a decision procedure is a crucial factor of MultiSearchMC’s performance.

As we discussed in Chapter 4, hashing-based model counters tend to use a SAT solver which

optimizes for handling XOR constraints efficiently by Gaussian Elimination. Also, the solver

requires to support the incrementality feature. CryptoMiniSat [44] is a state-of-the-art SAT

solver which supports Gaussian Elimination and the incrementality feature. Therefore, many

hashing-based model counters use CryptoMiniSat as the back-end SAT solver.

Recently, many parallel SAT solvers have been introduced and can be categorized in in two

approaches mainly: portfolio and divide-and-conquer approaches. The portfolio approaches are

based on running different optimizations and search strategies in parallel and taking the fastest

result [93, 94, 95]. The divide-and-conquer approaches divide an input formula and distribute

the total computation to each thread [96, 97, 98, 99]. However, to the best of our knowledge,

there is no state-of-the-art SAT solver which supports Gaussian Elimination and parallelization

both. Previous research [100] has shown that Gaussian elimination is suitable to solve solutions

85

86

of linear equations in parallel but there has not been any on-going research about this. We

expect that it is worth exploring to build a parallel SAT solver with Gaussian elimination and

beneficial to improve the performance of hashing-based model counters.

6.2 XOR Streamlining Probabilistic Distribution

Most of hashing-based model counters are based on XOR streamlining, which is a 3-universal

hash function. Since it is difficult to formulate the probabilistic distribution of XOR streamlin-

ing precisely, SearchMC uses a binomial-distribution model to update the probability distri-

bution of an expected model count. This probability distribution provides empirical bounds of

the model count and SearchMC requires more queries to achieve the probabilistic soundness.

Also, there is a certain gap between the actual probabilistic soundness and the provable prob-

ability. Section 2.4 showed that SearchMC-sound and ApproxMC2 requested the answers

with a 60% confidence level and they both outperformed the requested level, which was more

than 90% correctness. Therefore, SearchMC would be able to generate probabilistic sound

bounds and achieve a higher confidence level using less number of SAT queries than the current

implementation if a more accurate probabilistic distribution of XOR streamlining is provided.

6.3 Precision of SMC

Currently, some of SMT-LIB2 operators are not supported in SMC and increasing the coverage

of the whole SMT-LIB2 format standard will be very useful. Also, some operators compute the

cardinalities very conservatively due to the limitation of the node representation, hence those

operators lead to less precise results (loose bounds). The precision of SMC can be increased by

having more coverage of SMT-LIB2 format standard and designing more precise rules. Lastly,

the order of assertions and merging bounds can be improved since this affects precision. SMC

recursively computes the bounds until the bounds do not change but we do not have any proof

about its time complexity. This means the bounds can be more precise by merging the per-

assertion bounds in a better order. We expect finding a more efficient way to merge bounds will

improve the performance.

87

6.4 Portfolio-style Parallelization

As we discussed in Section 4.3, the majority of the performance depends on a decision proce-

dure and every decision procedure has different optimization techniques which can affect the

performance. As we described above, CryptoMiniSat is a state-of-the-art SAT solver which

works well on hashing-based model counters. CryptoMiniSat2 and CryptoMiniSat5 have dif-

ferent optimization techniques and there might be the setting of parameters that makes identical

optimizations between two versions. However, it is clear that some SAT instances are more suit-

able for CryptoMiniSat2 even though CryptoMiniSat5 is the most recent version. Also, it is

difficult to determine which optimization technique works best for a given formula in advance.

The analysis of the solvers and SAT instances needs to be further explored and we believe this is

an interesting topic to the SAT community. One possible solution to eliminate this uncertainty

of solver selection is to execute MultiSearchMC in a portfolio-style approach. For example,

we run MultiSearchMC using CryptoMiniSat2 with a half of total cores and CryptoMiniSat5

with another half. The result whichever generated first would be the final result. There might be

more optimization techniques to select a more appropriate solver and use cores more efficiently.

Therefore, an interesting direction of future research would be to study how to determine a

better solver for hashing-based model counters using parallelization.

Chapter 7

Conclusion

Recently, hashing-based model counting techniques have been an emerging area where they

provide precise bounds and reasonable theoretic guarantees. Since the techniques computes

the approximation of model counts, they have shown the scalability compared to exact model

counting techniques. Due to strong theoretical and practical interest in the hashing-based model

counting techniques, many researchers have worked on reducing a huge gap between theory and

practice. Since there is a trade-off between theoretical guarantees on the quality of approxima-

tion and practical scalability at the cost of offering weaker or no guarantees. With the effort of

finding an appropriate spot between guarantees and scalability, we present a new model count-

ing approach SearchMC using XOR streamlining for SMT formulas with bit-vectors and other

theories. We demonstrate our algorithm that adaptively maintains a probabilistic model count

estimate based on the results of queries. Our tool computes a lower bound and an upper bound

with a requested confidence level, and yields results more quickly than previous systems.

We proposed another approximate model counting algorithm, SMC, to compute the lower

and upper bound of solutions to a given SMT formula. We categorize SMC as “structural”

approximate model counting algorithms which analyze the syntactic structure of a formula.

Previous structural model counting algorithms have been specialized for narrow domains, or

have been built into larger systems in ways that are not easily reusable. Our tool uses algorithms

which build on the partial description of a previous closed-source tool [69], but we needed to

develop new structural rules for cases that were missing or restricted in previous work. We

extend the algorithm to cover a more complete set of bit-vector operators, and to use both the

signed and unsigned orderings of bit vectors. The experimental results showed that SMC’s

88

89

performance scales much better than these other tools, and that the sound upper and lower

model-count bounds that it provides are often usefully accurate. Also, the combination of SMC

and SearchMC was useful since SMC provides a more refined hypothesis to reduce a search

space for SearchMC.

However, solving a formula with XOR constraints is still a complicated task as the size/com-

plexity of a formula increases. We proposed MultiSearchMC, a divide-and-conquer algorithm

to increase the scalability of the hashing-based techniques and this approach can be parallelized.

We used projected model counting techniques to split an input formula into small formulae and

ran SearchMC with each formula in parallel. We combined all the results to provide the fi-

nal result and our experimental results showed that the performance of MultiSearchMC scaled

better than a single-threaded SearchMC’s run.

We focused on using this scalable model counting technique to analyze programs in two ar-

eas: quantitative information-flow analysis and uniform sampling for testing. Quantitative infor-

mation flow (QIF) analysis is a powerful approach to measure the amount of sensitive informa-

tion leakage. We used symbolic execution tools to analyze realistic binary files and apply quan-

titative information-flow analysis. Our experimental result showed that MultiSearchMC was

able to provide a precise information leakage from realistic programs in a reasonable amount

of time. Another application of approximate model counting techniques is uniform sampling

for testing. Uniform sample generation for SAT/SMT formulas is widely used in various areas

such as probabilistic reasoning in AI systems, functional verification and so on. Generating

independent uniformly distributed samples over a set of satisfying assignments is a challenging

problem both theoretically and practically. Our work was inspired by Unigen3 [23], which uses

hashing-based techniques to compute an estimate model count and generate near-uniform sam-

ples. Basically, we switched Unigen3’s model counting approach to ours to increase its scala-

bility and performance and we built our approach using the same infrastructure for generating

samples. Our experiments showed that our version achieves a more speed-up than Unigen3.

Overall, we were able to show the scalability of our hashing-based model counting techniques.

References

[1] Martin Davis, George Logemann, and Donald Loveland. A machine program for

theorem-proving. Communications of the ACM, 5(7):394–397, 1962.

[2] Roberto J. Bayardo, Jr. and Robert C. Schrag. Using CSP look-back techniques to solve

real-world SAT instances. In Proceedings of the National Conference on Artificial Intel-

ligence (AAAI), pages 203–208, 1997.

[3] Elazar Birnbaum and Eliezer L. Lozinskii. The good old Davis-Putnam procedure helps

counting models. Journal of Artificial Intelligence Research (JAIR), 10(1):457–477,

1999.

[4] Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and Toniann Pitassi. Com-

bining component caching and clause learning for effective model counting. In Proceed-

ings of the International Conference on Theory and Applications of Satisfiability Testing

(SAT), 2004.

[5] Marc Thurley. SharpSAT: Counting models with advanced component caching and im-

plicit BCP. In Proceedings of the International Conference on Theory and Applications

of Satisfiability Testing (SAT), page 424–429, 2006.

[6] Christian Muise, Sheila A. McIlraith, J. Christopher Beck, and Eric I. Hsu. Dsharp:

Fast d-DNNF compilation with sharpSAT. In Advances in Artificial Intelligence, pages

356–361, 2012.

[7] Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-Faire caching for parallel

#SAT solving. In Proceedings of the International Conference on Theory and Applica-

tions of Satisfiability Testing (SAT), pages 46–61, 2015.

90

91

[8] Wei Wei and Bart Selman. A new approach to model counting. In Proceedings of the

International Conference on Theory and Applications of Satisfiability Testing (SAT), page

324–339, 2005.

[9] Carla P. Gomes, Joerg Hoffmann, Ashish Sabharwal, and Bart Selman. From sampling

to model counting. In Proceedings of the International Joint Conferences on Artificial

Intelligence (IJCAI), pages 2293–2299, 2007.

[10] Lukas Kroc, Ashish Sabharwal, and Bart Selman. Leveraging belief propagation, back-

track search, and statistics for model counting. In Proceedings of the International Con-

ference on Integration of AI and OR Techniques in Constraint Programming for Combi-

natorial Optimization Problems (CPAIOR), pages 127–141, 2008.

[11] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable approximate

model counter. In Proceedings of International Conference on Principles and Practice

of Constraint Programming (CP), pages 200–216, 2013.

[12] Seonmo Kim and Stephen McCamant. Bit-vector model counting using statistical esti-

mation. In Proceedings of the International Conference on Tools and Algorithms for the

Construction and Analysis of Systems (TACAS), pages 133–151, 2018.

[13] Cunjing Ge, Feifei Ma, Tian Liu, Jian Zhang, and Xutong Ma. A new probabilistic

algorithm for approximate model counting. In Proceedings of the International Joint

Conference on Automated Reasoning (IJCAR), 2018.

[14] Jonathan Kuck, Tri Dao, Shengjia Zhao, Burak Bartan, Ashish Sabharwal, and Stefano

Ermon. Adaptive hashing for model counting. In Proceedings of the Uncertainty in

Artificial Intelligence Conference (UAI), pages 271–280, 2020.

[15] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy

for obtaining good bounds. In Proceedings of the National Conference on Artificial

Intelligence (AAAI), pages 54–61, 2006.

[16] Seonmo Kim and Stephen McCamant. Structural bit-vector model counting. In Pro-

ceedings of the International Workshop on Satisfiability Modulo Theories (SMT), pages

26–36, 2020.

92

[17] Rehan Abdul Aziz, Geoffrey Chu, Christian Muise, and Peter Stuckey. #∃SAT: Pro-

jected model counting. In Proceedings of the International Conference on Theory and

Applications of Satisfiability Testing (SAT), pages 121–137, 2015.

[18] Shujun Deng, Zhiqiu Kong, Jinian Bian, and Yanni Zhao. Self-adjusting constrained

random stimulus generation using splitting evenness evaluation and XOR constraints.

In Asia and South Pacific Design Automation Conference (ASP-DAC), pages 769–774,

2009.

[19] Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of NP-witnesses

using an NP-oracle. Information and Computation, 163(2):510–526, 2000.

[20] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scalable and nearly

uniform generator of sat witnesses. In Proceedings of the International Conference on

Computer Aided Verification (CAV), pages 608–623, 2013.

[21] Rina Dechter, Kalev Kask, Eyal Bin, and Roy Emek. Generating random solutions for

constraint satisfaction problems. In Proceedings of the National Conference on Artificial

Intelligence (AAAI), page 15–21, 2002.

[22] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Balancing scalability and

uniformity in SAT witness generator. In Proceedings of the Design Automation Confer-

ence (DAC), page 1–6, 2014.

[23] Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached, and lazy cnf-xor

solving and its applications to counting and sampling. In Proceedings of the International

Conference on Computer Aided Verification (CAV), pages 463–484, 2020.

[24] Roberto Bruttomesso. RTL Verification: From SAT to SMT (BV). PhD thesis, University

of Trento, 2008.

[25] David Cyrluk, Oliver Möller, and Harald Rueß. An efficient decision procedure for the

theory of fixed-sized bit-vectors. In Proceedings of the International Conference on

Computer Aided Verification (CAV), pages 60–71, 1997.

[26] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the

ACM Symposium on Theory of Computing (STOC), page 151–158, 1971.

93

[27] Dorothy Elizabeth Robling Denning. Cryptography and Data Security. Addison-Wesley

Longman Publishing Co., Inc., 1982.

[28] J.W. Gray. Toward a mathematical foundation for information flow security. In Pro-

ceedings of the IEEE Computer Society Symposium on Research in Security and Privacy

(S&P), pages 21–34, 1991.

[29] A. Sabelfeld and A. C. Myers. Language-based information-flow security. IEEE Journal

on Selected Areas in Communications, 21(1):5–19, 2003.

[30] Konstantinos Chatzikokolakis, Catuscia Palamidessi, and Prakash Panan-

gaden. Anonymity protocols as noisy channels. Information and Computation,

206(2–4):378–401, 2008.

[31] Boris Köpf and David Basin. An information-theoretic model for adaptive side-channel

attacks. In Proceedings of the ACM Conference on Computer and Communications Se-

curity (CCS), page 286–296, 2007.

[32] Richard McPherson, Reza Shokri, and Vitaly Shmatikov. Defeating image obfuscation

with deep learning. CoRR, abs/1609.00408, 2016.

[33] Yehuda Naveh, Michal Rimon, Itai Jaeger, Yoav Katz, Michael Vinov, Eitan Marcus,

and Gil Shurek. Constraint-based random stimuli generation for hardware verification.

In Proceedings of the Conference on Innovative Applications of Artificial Intelligence

(IAAI), page 1720–1727, 2006.

[34] James Newsome, Stephen McCamant, and Dawn Song. Measuring channel capacity to

distinguish undue influence. In Proceedings of the ACM SIGPLAN Workshop on Pro-

gramming Languages and Analysis for Security (PLAS), pages 73–85, 2009.

[35] Vladimir Klebanov, Alexander Weigl, and Jörg Weisbarth. Sound probabilistic #SAT

with projection. In International Workshop on Quantitative Aspects of Programming

Languages and Systems (QAPL), 2016.

94

[36] Celina G. Val, Michael A. Enescu, Sam Bayless, William Aiello, and Alan J. Hu. Pre-

cisely measuring quantitative information flow: 10K lines of code and beyond. In Pro-

ceedings of the IEEE European Symposium on Security and Privacy (EuroS&P), pages

31–46, 2016.

[37] Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi. On computing

minimal independent support and its applications to sampling and counting. Constraints,

21(1):41–58, 2016.

[38] Mateus Borges, Antonio Filieri, Marcelo d’Amorim, Corina S. Pasareanu, and Willem

Visser. Compositional solution space quantification for probabilistic software analysis.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI), pages 123–132, 2014.

[39] Dmitry Chistikov, Rayna Dimitrova, and Rupak Majumdar. Approximate counting in

SMT and value estimation for probabilistic programs. In Proceedings of the Interna-

tional Conference on Tools and Algorithms for the Construction and Analysis of Systems

(TACAS), pages 320–334, 2015.

[40] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improve-

ments in approximate counting for probabilistic inference: From linear to logarithmic

SAT calls. In Proceedings of the International Joint Conference on Artificial Intelligence

(IJCAI), page 3569–3576, 2016.

[41] Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform sampling of combi-

natorial spaces using XOR constraints. In Proceedings of the International Conference

on Neural Information Processing Systems (NIPS), page 481–488, 2006.

[42] P. Del Moral. Nonlinear filtering: Interacting particle solution. Markov Processes and

Related Fields, 2(4):555–580, 1996.

[43] Mate Soos and Kuldeep S. Meel. BIRD: Engineering an efficient CNF-XOR SAT solver

and its applications to approximate model counting. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), pages 1592–1599, 2019.

95

[44] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT solvers to crypto-

graphic problems. In Proceedings of the International Conference on Theory and Appli-

cations of Satisfiability Testing (SAT), pages 244–257, 2009.

[45] Clark Barrett, Aaron Stump, and Cesare Tinelli. The SMT-LIB standard: Version 2.0.

In Proceedings of the International Workshop on Satisfiability Modulo Theories (SMT),

2010.

[46] Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds

for applications with limited independence. SIAM J. Discret. Math., 8(2):223–250, May

1995.

[47] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Proceedings of

the International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 337–340, 2008.

[48] Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and Roberto Sebastiani.

The MathSAT5 SMT solver. In Proceedings of the International Conference on Tools

and Algorithms for the Construction and Analysis of Systems (TACAS), page 93–107,

2013.

[49] Vijay Ganesh and David L. Dill. A decision procedure for bit-vectors and arrays. In Pro-

ceedings of the International Conference on Computer Aided Verification (CAV), pages

519–531, 2007.

[50] STP. http://stp.github.io/.

[51] Bayesian-inference as model-counting benchmarks. http://www.cs.rochester.

edu/users/faculty/kautz/Cachet/Model_Counting_Benchmarks/

index.htm.

[52] F. Brglez, D. Bryan, and K. Kozminski. Combinational profiles of sequential benchmark

circuits. In Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS), pages 1929–1934 vol.3, 1989.

[53] Huan Chen and Joao Marques-Silva. TG-Pro: A SAT-based ATPG system. Journal of

Satisfiability, Boolean Modeling and Computation, 8(1-2):83–88, 2012.

http://stp.github.io/
http://www.cs.rochester.edu/users/faculty/kautz/Cachet/Model_Counting_Benchmarks/index.htm
http://www.cs.rochester.edu/users/faculty/kautz/Cachet/Model_Counting_Benchmarks/index.htm
http://www.cs.rochester.edu/users/faculty/kautz/Cachet/Model_Counting_Benchmarks/index.htm

96

[54] Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay, Kuldeep S. Meel, and

Jean Quilbeuf. Scalable approximation of quantitative information flow in programs.

In Proceedings of the International Conference on Verification, Model Checking, and

Abstract Interpretation (VMCAI), pages 71–93, 2018.

[55] Cynthia Dwork. Differential privacy. In Proceedings of the International Colloquium on

Automata, Languages and Programming (ICALP), pages 1–12, 2006.

[56] Ilya Mironov. On significance of the least significant bits for differential privacy. In

Proceedings of the ACM Conference on Computer and Communications Security (CCS),

pages 650–661, 2012.

[57] João P. Marques Silva and Karem A. Sakallah. GRASP-a new search algorithm for

satisfiability. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 220–227, 1996.

[58] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of the In-

ternational Conference on Theory and Applications of Satisfiability Testing (SAT), pages

502–518, 2004.

[59] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering

an efficient SAT solver. In Proceedings of the Design Automation Conference (DAC),

pages 530–535, 2001.

[60] E. Goldberg and Y. Novikov. BerkMin: A fast and robust SAT-solver. In Proceedings

of the Design, Automation and Test in Europe Conference and Exhibition (DATE), pages

142–149, 2002.

[61] Armin Biere. PicoSAT essentials. JSAT, 4:75–97, 2008.

[62] Armin Biere. Lingeling , Plingeling , PicoSAT and PrecoSAT at SAT Race 2010. Tech-

nical report, Johannes Kepler University, 2010.

[63] Supratik Chakraborty, Kuldeep S. Meel, Rakesh Mistry, and Moshe Y. Vardi. Approx-

imate probabilistic inference via word-level counting. In Proceedings of the National

Conference on Artificial Intelligence (AAAI), 2016.

97

[64] Miguel Castro, Manuel Costa, and Jean-Philippe Martin. Better bug reporting with better

privacy. In Proceedings of the International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), pages 319–328, 2008.

[65] Ziyuan Meng and Geoffrey Smith. Calculating bounds on information leakage using

two-bit patterns. In Proceedings of the ACM SIGPLAN Workshop on Programming Lan-

guages and Analysis for Security (PLAS), pages 1:1–1:12, 2011.

[66] Loi Luu, Shweta Shinde, Prateek Saxena, and Brian Demsky. A model counter for con-

straints over unbounded strings. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI), pages 565–576, 2014.

[67] Jeffrey Dudek, Kuldeep S. Meel, and Moshe Y. Vardi. Combining the k-CNF and XOR

phase-transitions. In Proceedings of International Joint Conference on Artificial Intelli-

gence, 2016.

[68] Jeffrey Dudek, Kuldeep S. Meel, and Moshe Y. Vardi. The hard problems are almost

everywhere for random CNF-XOR formulas. In Proceedings of International Joint Con-

ference on Artificial Intelligence (IJCAI), 2017.

[69] Jean-Philippe Martin. Upper and lower bounds on the number of solutions. Technical

Report MSR-TR-2007-164, Microsoft Research, 2007.

[70] Wei Gao, Hengyi Lv, Qiang Zhang, and Dunbo Cai. Estimating the volume of the so-

lution space of SMT(LIA) constraints by a flat histogram method. Algorithms, 11:142,

2018.

[71] Abdulbaki Aydin, William Eiers, Lucas Bang, Tegan Brennan, Miroslav Gavrilov, Tevfik

Bultan, and Fang Yu. Parameterized model counting for string and numeric constraints.

In Proceedings of the ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, (ESEC/SIGSOFT FSE),

pages 400–410, 2018.

[72] L. Valiant. The complexity of enumeration and reliability problems. SIAM Journal on

Computing, 8(3):410–421, 1979.

98

[73] Vladimir Klebanov, Norbert Manthey, and Christian Muise. SAT-based analysis and

quantification of information flow in programs. In Proceedings of the International Con-

ference on Quantitative Evaluation of Systems (QEST), pages 156–171, 2013.

[74] Program to Check Strength of Password. https://www.geeksforgeeks.org/

program-check-strength-password/.

[75] FuzzBALL. http://bitblaze.cs.berkeley.edu/fuzzball.html.

[76] Lorenzo Martignoni, Stephen McCamant, Pongsin Poosankam, Dawn Song, and Petros

Maniatis. Path-exploration lifting: Hi-fi tests for lo-fi emulators. In Proceedings of

the International Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS), page 337–348, 2012.

[77] Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and

Moshe Y. Vardi. On parallel scalable uniform SAT witness generator. In Proceedings of

the International Conference on Tools and Algorithms for the Construction and Analysis

of Systems (TACAS), pages 304–319, 2015.

[78] FHIR Test Data Generator. https://github.com/smart-on-fhir/

sample-patients/blob/master/data/familyhistory.txt.

[79] Stephen McCamant and Michael D. Ernst. Quantitative information flow as network flow

capacity. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI), pages 193–205, 2008.

[80] G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

[81] QuocSang Phan, Pasquale Malacaria, Oksana Tkachuk, and Corina S. Păsăreanu. Sym-

bolic quantitative information flow. SIGSOFT Softw. Eng. Notes, 37(6):1–5, 2012.

[82] Quoc-Sang Phan and Pasquale Malacaria. Abstract model counting: A novel approach

for quantification of information leaks. In Proceedings of the ACM Symposium on Infor-

mation, Computer and Communications Security (ASIACCS), pages 283–292, 2014.

[83] Alexander Weigl. Efficient SAT-based pre-image enumeration for quantitative informa-

tion flow in programs. In Data Privacy Management and Security Assurance, pages

51–58, 2016.

https://www.geeksforgeeks.org/program-check-strength-password/
https://www.geeksforgeeks.org/program-check-strength-password/
http://bitblaze.cs.berkeley.edu/fuzzball.html
https://github.com/smart-on-fhir/sample-patients/blob/master/data/familyhistory.txt
https://github.com/smart-on-fhir/sample-patients/blob/master/data/familyhistory.txt

99

[84] Fabrizio Biondi, Axel Legay, Pasquale Malacaria, and Andrzej Wasowski. Quantifying

information leakage of randomized protocols. In Proceedings of the International Con-

ference on Verification, Model Checking, and Abstract Interpretation (VMCAI), pages

68–87, 2013.

[85] Michael Backes, Boris Kopf, and Andrey Rybalchenko. Automatic discovery and quan-

tification of information leaks. In Proceedings of the IEEE Symposium on Security and

Privacy (S&P), pages 141–153, 2009.

[86] Mark R. Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combi-

natorial structures from a uniform distribution. Theoretical Computer Science, 43:169–

188, 1986.

[87] Jun Yuan, K. Albin, A. Aziz, and C. Pixley. Simplifying Boolean constraint solving for

random simulation-vector generation. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), pages 123–127, 2002.

[88] Nathan Kitchen and Andreas Kuehlmann. Stimulus generation for constrained random

simulation. In Proceedings of the IEEE/ACM International Conference on Computer-

Aided Design (ICCAD), pages 258–265, 2007.

[89] Alexander Nadel. Generating diverse solutions in SAT. In Proceedings of the Inter-

national Conference on Theory and Applications of Satisfiability Testing (SAT), pages

287–301, 2011.

[90] M.A. Iyer. Race: A word-level ATPG-based constraints solver system for smart random

simulation. In Proceedings of the International Test Conference (ITC), pages 299–308,

2003.

[91] Stefano Ermon, Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Embed and

project: Discrete sampling with universal hashing. In Proceedings of the International

Conference on Neural Information Processing Systems (NIPS), page 2085–2093, 2013.

[92] Michael Sipser. A complexity theoretic approach to randomness. In Proceedings of the

ACM Symposium on Theory of Computing (STOC), page 330–335, 1983.

100

[93] Gilles Audemard and Laurent Simon. Lazy clause exchange policy for parallel SAT

solvers. In Proceedings of the International Conference on Theory and Applications of

Satisfiability Testing (SAT), pages 197–205, 2014.

[94] Armin Biere et al. Lingeling, plingeling and treengeling entering the SAT competition

2013. Proceedings of SAT competition, 2013:1, 2013.

[95] Youssef Hamadi, Said Jabbour, and Lakhdar Sais. ManySAT: A parallel SAT solver.

Journal on Satisfiability, Boolean Modeling and Computation, 6(4):245–262, 2010.

[96] Antti E. J. Hyvärinen, Tommi Junttila, and Ilkka Niemelä. Partitioning SAT instances

for distributed solving. In Proceedings of the International Conference on Logic for

Programming, Artificial Intelligence, and Reasoning (LPAR), pages 372–386, 2010.

[97] Marijn J. H. Heule, Oliver Kullmann, Siert Wieringa, and Armin Biere. Cube and con-

quer: Guiding CDCL SAT solvers by lookaheads. In Hardware and Software: Verifica-

tion and Testing, pages 50–65, 2012.

[98] S Plaza, I Markov, and Valeria Bertacco. Low-latency SAT solving on multicore proces-

sors with priority scheduling and XOR partitioning. In International Workshop on Logic

and Synthesis (IWLS), 2008.

[99] Carsten Sinz, Wolfgang Blochinger, and Wolfgang Küchlin. PaSAT-parallel SAT-

checking with lemma exchange: Implementation and applications. Electronic Notes in

Discrete Mathematics, 9:205–216, 2001.

[100] K.N.Balasubramanya Murthy and C.Siva Ram Murthy. A new gaussian elimination-

based algorithm for parallel solution of linear equations. Computers & Mathematics

with Applications, 29(7):39–54, 1995.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Motivation
	Background
	Boolean Formula
	Bit-Vector Formulas
	SAT Solving and Model Counting
	Quantitative Information-flow Analysis
	Uniform Sampling

	Overview

	SearchMC: A Hashing-based Model Counter
	Introduction
	Background
	XOR Streamlining
	Influence
	Exhaust-up-to-c query
	Particle Filter
	ApproxMC

	Design
	Updating distribution and confidence interval
	Algorithm
	Variables
	Functions
	Probabilistic Sound Bounds

	Evaluation
	Case Study: Floating Point / Differential Privacy

	Related Work
	Chapter Summary

	SMC: A Structural Model Counter
	Introduction
	Algorithm
	Per-Assertion Bounds and Analysis
	Combining Bounds

	Evaluation
	Correctness
	Experimental Result

	Discussion
	Related Work
	Chapter Summary

	MultiSearchMC: A Scalable Model Counter using a Divide-and-conquer Approach
	Introduction
	Algorithm
	Projection / Slicing
	Preprocessing
	Combining Bounds

	Evaluation
	Chapter Summary

	Applications of Model Counting to Software
	Quantitative Information Flow using Model Counting
	A Symbolic Execution Tool with MultiSearchMC

	Uniform Sampling using Model Counting
	A Uniform Sampler with MultiSearchMC

	Evaluation
	QIF Case Study: Error Report System
	QIF Case Study: Privacy Measurement
	Uniform Sampling Experiments

	Related Work
	Quantitative Information Flow
	Uniform Sampling

	Chapter Summary

	Future Work
	A Parallel Solver with Gaussian Elimination
	XOR Streamlining Probabilistic Distribution
	Precision of SMC
	Portfolio-style Parallelization

	Conclusion
	References

