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Introduction 

Climate change modeling tailored to Minnesota projects warmer and wetter conditions by the 

end of the century.1 However, infrastructure planning requires information on the spatial 

distribution, magnitude, and frequency of extreme precipitation events. Whether the additional 

precipitation falls in a few extreme events in already wet years, or gradual increases spread 

evenly between and within years has major implications for water management planning.  

The de facto standard for predicting the frequency of extreme precipitation events in the United 

States is the National Oceanic and Atmospheric Association’s (NOAA) Atlas-14. Atlas-14 uses 

historical precipitation records and statistical extrapolation of extreme values to estimate the 

frequency of precipitation events, ranging in duration from 5 minutes to 60 days, for any location 

in the country. For every combination of duration and location, estimates of the depth of 

precipitation in inches are created for nine recurrence intervals, ranging from two to 1,000 years. 

Recurrence intervals, also expressed as an annual exceedance probability, represent the 

probability a storm will exceed a given depth (e.g., an event with a 100-year recurrence interval 

has an annual exceedance probability of 1/100 or 1%). These estimates are provided as maps, 

tables, and graphical depth-duration-frequency (DDF) curves. While Atlas-14 is widely used for 

infrastructure planning, a known limitation is that it assumes climate stationarity, and thus does 

not incorporate the effects of climate change. Considering that some of the precipitation records 

it uses began in the 1800s, there is growing demand for estimates that reflect a changing 

climate. 

While demand is high, NOAA’s Atlas-14 has been inconsistently funded. Recent Federal 

infrastructure spending has earmarked funds for updating Atlas-14, but in the interim, 

practitioners are seeking updated estimates2. Although there are many global climate models 

quantifying trends in precipitation, using them to predict extreme events presents several unique 

challenges. First, analyzing climate models typically involves averaging several models into an 

ensemble and looking at average values over many years. While these techniques have proved 

useful for predicting broad trends, they also reduce the variability that is needed to identify and 

extrapolate extreme events. Second, validating projections benefits from minimizing differences 

between historical observations and modeled historical data. The long time series, pieced 

together from inconsistent historical records, used to create Atlas-14 is not replicated in global 

models. Last, the coarse resolution required to run climate models globally is unable to 

represent the convection found in extreme events such as thunderstorms.  

Our work addresses these challenges by using dynamically downscaled climate changes 

projections. This overcomes the coarse resolution of global models by using the global models 

as an input to a weather research simulation model, which can better simulate extreme events 

such as thunderstorms. However, the computational effort required to dynamical downscale 

models limits length of time series that can be practically produced. This is especially 

challenging for assessing changes in the probability of rare events, which depend on long time 

series to capture and extrapolate rare events. Given the limited times series in our source data, 

our objective was to produce a proof-of-concept application of Atlas-14 methods to dynamically 
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downscaled climate change projections rather than authoritative estimates. We sought to 

address the questions: 

• Can NOAA values be approximated with short time series climate change projections? 

• What are the challenges of applying Atlas-14 methods to climate change projections? 

• What approach produces the best alignment between NOAA values and modeled 

historical data? 

• How similar is the amount of precipitation depth in our modeled historical results to 

NOAA Atlas-14 across space, duration, and frequency? 

• How is precipitation intensity projected to change in the future? 

 

Objective 1: Develop methods, data, and model processes 

for performing Atlas-14 depth-duration-frequency 

calculations on climate change projections 

Climate change projections 

Our work builds on previously created dynamically downscaled projections3. That work 

downscaled eight CMIP-5 models that were selected for the quality of their performance in the 

upper Midwest. The outputs of these models were independently dynamically downscaled using 

the Weather Research and Forecasting model (WRF) at five arcminute (approximately 10km) 

resolution. Because of the high processing requirements, downscaling was limited to four 20-

year scenarios; modeled historical (HIST) 1980-1989, mid-century (MID) 2040-2059, end-

century moderate emissions (END4.5), and end-century high emissions (END8.5), both 2080-

2099. The mid-century scenario was only modeled for moderate emissions (RCP 4.5) because 

at that point the scenario is not different enough from high emissions (RCP 8.5) to warrant the 

additional modeling. In this work, we focus on the two end-century scenarios because the 

greater changes are more appropriate for resiliency planning. For detailed description of 

modeling methods see Liess et al1.  

 

Depth-Duration-Frequency estimate calculations 

Following the methods described in NOAA Atlas-14 Volume 84. We first calculated an Annual 

Maximum Series (AMS) for standard Atlas-14 durations (1, 2, 3, 4, 7, 10, 20, 30, 45, and 60 

days). We limited our analysis to durations of one day or above because it was outside of the 

scope of this project to develop new tools to process hourly data. Daily AMS values used by 

NOAA can be either constrained or unconstrained. Constrained indicates that a station reports 

the maximum value at regular intervals (e.g., every 24-hours at midnight the total resets), while 

unconstrained indicates the maximum value was calculated from any interval that matches the 

duration of interest (e.g., the 24-hour total from 9 pm to 9pm capturing an overnight storm). 

Because constrained data cannot capture events that happen over the time when the interval 

resets, they tend to underestimate short duration (e.g., less than seven days) events. NOAA 
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applies correction factors to durations of seven days or less. Our data was summarized at a 

daily timestep, which is the equivalent to a constrained AMS, therefore we applied the same 

correction factors used by NOAA4.  

We used the Python L-moments5 package to calculate the L-moments of each series and fit 

them to a Generalized Extreme Value (GEV) function to produce depth-duration-frequency 

(DDF) curves. We then identified the projected precipitation depth on the resulting curves that 

correspond with standard Atlas-14 recurrence intervals (2, 5, 10, 25, 50, and 100 years). We 

omitted the 200-, 500-, and 1,000-year recurrence intervals because they are less frequently 

used in municipal infrastructure planning, and we did not feel the length of our time series would 

support projections of such rare events.  

To confirm that our calculations were replicating NOAA’s methods accurately, we downloaded 

observed AMS data for the Minneapolis-St. Paul area6 and generated DDF curves for them 

using our code. We compared the outputs to the values published by NOAA and found they 

were very similar, and remaining differences were likely due to interpolation and regionalization 

methods developed by NOAA to created gridded data products from station data. Because our 

source data were already gridded, we did not replicate these steps.  

 

Alternative approach testing 

While the calculations described above attempted to replicate NOAA’s methods as closely as 

possible, in some cases their methods were not applicable to our data, or we believed an 

alternative approach could produce better agreement between our modeled historical values 

and NOAA’s estimates. We tested four major variations:    

• 17- vs. 20-year AMS length 

• Ensemble vs. independent model AMS 

• Spatial aggregation timing 

• Short duration extrapolated using smoothing function 

Testing the agreement between our outputs and NOAA faces two fundamental challenges. First, 

NOAA data products have elements that we cannot replicate. Foremost is their use of a longer 

time series; NOAA only uses stations with 30 or more years of data. The length of NOAA’s time 

series improves its ability to capture rare events but is confounded by climate change. 

Additionally, their use of interpolation and regionalization to translate station data to gridded 

data have the potential to introduce variation that is difficult or unnecessary to match. Despite 

only overlapping from 1980-1997, and the unknown influence of climate change and 

interpolation, we attempted to match NOAA’s gridded estimates as closely as possible because 

it is the best reference data available for precipitation intensity estimates.  

The second fundamental challenge is the multi-dimensional nature of Atlas-14 estimates. 

Precipitation depth estimates are specific to a place, duration, and recurrence interval, meaning 

that for every grid cell, there are 60 values to attempt to match. Methods that improve 
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agreement in one dimension often change others, and it is difficult to visualize and measure 

changes across dimensions simultaneously. 

To address the second challenge, we simplified the spatial dimension by aggregating results to 

the county level. This resulted in dimensions of 87 spatial units, 10 durations, and six recurrence 

intervals, or 5,220 values total. We visualized these values in a spreadsheet and color-coded 

value ranges to make biases in individual dimension stand out. We also calculated the absolute 

value of the percent difference between our estimates and NOAA and averaged these values 

across all 5,220 comparison points to estimate if an approach was improving our agreement 

with NOAA. We calculated standard deviation to ensure that broad improvements did not come 

at the expense of large disagreement in specific places or other dimensions. While many other 

tests are possible, we used this process because it allowed us to consistently compare multiple 

dimensions and visualize potential biases.  

17- vs. 20-year AMS length 

In the process of analyzing the data we discovered a WRF modeling artifact that resulted in 

exaggerated precipitation values in some places beginning in the 17th year of the scenarios. 

These values had little influence on the long-term averages but given that we would be applying 

methods that are designed to extrapolate from extreme values, we tested their influence using 

the procedures described above. We found that the 17-year series better matched NOAA 

estimates than the 20-year series and opted to use the reduced series for this analysis.  

Ensemble vs. independent model AMS 

Interpreting climate change projections is often performed using an ensemble of many models 

with their values averaged together. Typically, the ensemble step is performed after all other 

calculations (e.g., calculating differences between models). However, our application had 

unique features that prompted us to examine the effects of when and if to create ensemble 

averages. Specifically, we questioned whether it would be best to average all of the model AMS 

into a single 17-year AMS, or if we should treat the models as separate observations and create 

a ‘136-year’ (17 years x eight models) AMS. The latter has the advantage of producing a longer 

AMS, although because the same WRF model was used to downscale all the global models, the 

outputs are not completely independent. The former has the advantage of moderating the 

extreme values before they are input into a function that would amplify their effects. Keeping 

other assumptions constant, we found that treating the models independently resulted in an 

average error of 13.9%, compared to 21.8% when averaging the AMS values first. Treating the 

models as separate observations also has the advantage of being able to approximate a long 

time series needed to create DDF curves, but to represent a short enough period that it is 

possible to assume climate stationarity.  

Spatial aggregation timing 

Like ensemble models, it is generally best practice to wait until after calculations are complete to 

perform spatial aggregation. However, given the short length of our AMS we explored using 

spatial aggregation to the county level as a means of increasing the amount of data provided to 
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the GEV function. While the overall agreement was better when performing spatial averaging 

last, we observed that that method systematically underestimated 1-day and other short 

duration events when compared to estimates based on county AMS averages.  

Short duration extrapolated using smoothing function 

Given the systematic nature of the underestimate in our outputs, we investigated if extrapolating 

the short duration values based on a cubic spline function fit to the more accurate longer 

duration values would improve the overall agreement with NOAA values. We selected a cubic 

spline because NOAA applies the same function to its estimates for the purpose of creating 

smooth curves from independently estimated durations4. We replicated this step, but instead of 

basing it on the values for all durations, we tested basing it on all except for the first one to four 

durations. We found that extrapolating short duration events improved the overall agreement 

with NOAA in our tests. After testing several variations of extrapolation (detailed in the 

discussion), we chose to use values extrapolated from the cubic spline function for 1-, 2-, and 3-

day duration events in this analysis.  

 

Results and Discussion 

The full set of outputs from this work comprises hundreds of maps and reports summarizing the 

results for every county in Minnesota. To summarize the results for this report, we focus on two 

simplifications. In Table 1 we aggregate the data into eight regions of the state so that all 

durations and recurrence intervals can be visualized for the entire state. Supplementary county 

reports and gridded projections provide greater detail and are more appropriate for local studies. 

Figures 1-4 visualize a small subset of duration-recurrence interval combinations at the 

resolution of the underlying data. We omit end century moderate emissions scenario (RCP 4.5) 

results from this report and county reports because the changes to duration, frequency, and 

spatial distribution are similar to the high emissions scenario, but slightly lower in magnitude. 

Supplementary gridded data and grid-level comparisons to NOAA data are available for all 

duration-recurrence interval combinations for the modeled historic and end century moderate 

and high emissions scenarios.    
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Table 1. Percent difference between NOAA and our modeled historic values for all duration-recurrence interval combinations aggregated to eight regions of 

Minnesota. Regional aggregation for illustrative purposes in report, generally county or grid level data is a more appropriate scale of analysis. Individual columns 

represent durations, groups of columns represent recurrence intervals. Cell values are the percent difference rounded to whole numbers. These values represent 

the error of modeled historic estimates when compared to NOAA. Rare events (50- and 100-year recurrence intervals had the most error, potentially because our 

limited time series did not contain enough rare events. Although our time series should have been able to represent 2-year recurrence interval events, we tended 

to underestimate them. Performance for 5-, 10-, and 25-year recurrence intervals was the best. Differences between -15% and 15% are shaded white, 15% to 

30% light blue, 30% to 60% blue, and >60% dark blue. The shading intervals are reversed using shades of orange for negative values. 

 

 

Table 2. Percent difference between our modeled historic and end century high emissions scenarios for all duration-recurrence interval combinations aggregated 

to eight regions of Minnesota. The largest increases were observed in northern Minnesota, especially the northwest and Red River Valley. Projections for 5- and 

10-year recurrence intervals, which had the best agreement between NOAA values and our modeled historic data, show a more uniform approximately 20% 

increase, except for southern Minnesota. Comparisons between modeled historic data and a future scenario is the preferred way to interpret results, however, note 

that large overestimates in southern Minnesota in the modeled historic data can mask the magnitude of values in the end century scenario when comparing 

relative differences. Users should consider NOAA values, modeled historic data, and end century projections together and use assumptions appropriate for their 

use case.  

 

1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60

Northwest -7 -12 -13 -13 -13 -13 -11 -11 -10 -8 4 -1 -2 -2 -1 0 -1 -2 -2 -1 9 4 4 4 7 8 5 3 2 2 14 10 10 12 17 18 12 9 7 6 21 16 16 18 24 26 17 13 11 9 31 24 24 25 32 35 21 18 15 11

North Central -7 -10 -11 -11 -11 -11 -11 -11 -11 -9 3 -1 -1 -1 1 1 -1 -2 -3 -2 8 3 4 5 7 8 5 2 0 0 14 9 9 11 15 16 10 7 4 3 24 16 14 15 20 22 13 10 7 5 37 24 21 20 24 28 16 13 9 6

Northeast -6 -11 -12 -12 -11 -10 -11 -12 -12 -10 2 -2 -3 -3 -1 0 -2 -4 -6 -4 5 1 1 2 5 6 3 0 -3 -1 10 6 6 7 10 12 7 3 0 1 16 11 10 10 14 16 9 5 2 3 24 17 15 14 17 19 11 7 4 5

West Central -19 -22 -23 -23 -22 -21 -19 -17 -15 -13 -13 -15 -15 -15 -13 -12 -9 -8 -8 -7 -10 -12 -12 -11 -8 -6 -3 -3 -4 -4 -4 -7 -7 -6 -2 1 4 3 1 -1 3 -2 -3 -3 2 6 9 7 4 2 12 4 1 1 6 12 14 12 8 4

Metro -10 -14 -15 -16 -14 -13 -12 -12 -11 -10 -2 -4 -4 -4 -3 -3 -2 -2 -3 -3 1 1 1 2 3 4 4 3 2 2 6 6 8 9 10 12 11 10 8 7 11 11 12 13 15 17 16 14 12 11 17 16 17 18 21 23 22 18 16 14

Southwest -25 -27 -27 -27 -25 -23 -20 -19 -17 -14 -15 -17 -17 -16 -14 -12 -10 -10 -9 -8 -9 -11 -10 -9 -6 -5 -4 -4 -4 -3 0 -2 -1 1 4 5 4 3 3 2 7 6 7 9 12 13 11 8 8 6 15 14 16 18 21 21 18 15 14 11

South Central -14 -17 -18 -18 -16 -14 -13 -13 -12 -10 -2 -5 -4 -4 -2 0 0 -1 -1 -1 4 3 4 5 8 9 8 7 6 5 12 12 14 16 20 21 20 17 15 12 18 20 22 25 29 30 29 25 22 18 26 28 31 34 39 39 38 33 29 25

Southeast -4 -8 -10 -11 -11 -11 -10 -10 -10 -8 7 5 4 4 3 3 2 1 1 2 13 13 13 13 13 12 11 9 8 8 18 21 23 24 25 25 22 18 17 16 20 26 30 33 35 35 32 26 24 22 22 31 38 42 47 45 41 34 31 29

2 year 5 year 10 year 25 year 50 year 100 year

1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60 1 2 3 4 7 10 20 30 45 60

Northwest 17 16 15 15 13 13 12 11 11 11 24 23 22 21 20 19 20 20 20 21 31 30 29 28 27 27 29 30 30 31 44 42 41 40 38 38 44 46 46 49 54 53 52 52 49 48 59 60 61 65 63 64 65 65 62 61 78 77 79 84

North Central 16 15 14 13 11 10 8 8 8 8 22 20 19 18 17 16 16 16 17 18 28 27 25 24 23 23 24 25 27 29 33 34 34 34 34 33 38 39 43 47 27 35 40 43 44 42 51 52 58 63 19 35 46 53 57 53 67 68 75 82

Northeast 19 17 16 15 13 12 11 12 12 12 24 22 20 19 18 17 18 20 21 21 26 25 24 23 22 21 25 27 30 30 21 25 27 28 28 28 35 40 43 44 14 23 29 33 35 33 46 51 55 57 5 21 31 38 42 40 58 64 69 72

West Central 15 15 16 16 16 17 17 16 15 15 17 16 16 16 15 15 17 17 18 19 18 17 16 15 13 13 15 17 19 21 15 15 14 13 10 9 12 16 20 24 12 12 12 11 8 6 10 14 20 25 7 9 9 9 5 2 7 12 20 26

Metro 19 19 19 19 20 21 22 21 20 20 20 19 19 20 20 21 23 24 24 24 19 18 18 18 18 19 23 24 25 26 18 16 15 14 14 16 21 23 26 27 19 15 13 11 11 13 20 22 26 27 19 14 10 8 7 9 17 21 25 27

Southwest 5 7 9 10 13 15 16 15 15 15 3 5 7 8 11 13 16 16 17 19 2 3 4 5 7 9 14 15 17 21 -3 -2 -1 -1 1 3 10 13 15 21 -7 -6 -6 -5 -4 -2 5 10 14 21 -11 -11 -10 -10 -9 -8 1 8 11 21

South Central 8 9 10 11 13 14 15 15 15 16 5 6 7 8 10 12 15 15 16 18 4 4 4 4 5 7 12 13 14 17 3 0 -2 -2 -2 0 6 9 11 15 1 -3 -6 -8 -8 -6 1 5 8 12 -1 -7 -11 -13 -14 -12 -4 1 4 9

Southeast 0 1 2 2 4 6 10 11 11 11 -2 -2 -1 -1 1 3 8 10 11 11 -4 -4 -4 -4 -2 -1 5 8 8 10 -5 -7 -8 -9 -8 -7 -1 3 4 6 -6 -10 -11 -12 -13 -12 -6 -1 1 2 -5 -12 -15 -16 -18 -17 -11 -5 -3 -1

2 year 5 year 10 year 25 year 50 year 100 year



 

10 

 

 

  

Figure 1. Maps comparing 60-day duration, 5-year recurrence interval estimates from NOAA to the 

modeled historic scenario (left) and comparing the modeled historic scenario to end century high 

emissions scenario (right). This duration-recurrence interval combination had the lowest error (5%) when 

averaged across all Minnesota counties. Our 60-day duration estimates matched NOAA values better 

than other durations across all recurrence intervals. A possible explanation for this is that climate models 

are better suited to estimating long term trends rather than episodic events. Because the error was 

minimal and uniform across the state, it is possible to interpret the projection on the right as an 

approximation of change from NOAA values. This projection indicates that the amount of precipitation 

over a 60-day period with a 20% probability of occurring will be 15-30% higher at the end of the century 

with high emissions. Depending on the location and recurrence interval, a 15% increase is often enough 

to go up one recurrence interval (i.e., a 100-year event happens twice as often, becoming a 50-year 

event). 
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Figure 2. Maps comparing 10-day duration, 100-year recurrence interval estimates from NOAA to the 

modeled historic scenario (left) and comparing the modeled historic scenario to end century high 

emissions scenario (right). This duration-recurrence interval combination had the highest error (30%) 

when averaged across all Minnesota counties. Our 100-year recurrence intervals had the highest error 

when compared to NOAA, potentially because of our short time series used to create the estimates, or 

because our reference period included more climate change than NOAA’s record. Apparent decreases in 

southern Minnesota values should be considered in conjunction with the larger overestimate of historic 

values in the same area.  
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Figure 3. Maps comparing 1-day duration, 25-year recurrence interval estimates from NOAA to the 

modeled historic scenario (left) and comparing the modeled historic scenario to end century high 

emissions scenario (right). 1-day duration events are of particular interest to stormwater planners, but it 

was difficult to reproduce NOAA’s 1-day duration values using our modeled historic data. The 1-day 

duration values shown here are extrapolated from a spline function fit to the 4- through 60-day duration 

values. This drastically improved the agreement with NOAA values for 2- through 25-year recurrence 

intervals but made 50- and 100-year recurrence interval estimates less accurate.  
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Figure 4. Maps comparing 3-day duration, 50-year recurrence interval estimates from NOAA to the 

modeled historic scenario (left) and comparing the modeled historic scenario to end century high 

emissions scenario (right). Similar to other maps, the projected decrease in southern Minnesota is paired 

with large errors in the reference period. The Red River Valley was a hotspot for high precipitation values 

both in the reference period and end century. Further modeling is needed to investigate the origin of 

extreme precipitation values in that region.  

 

 

Suitability of these data for precipitation intensity and frequency projections 

Our work tested if dynamically downscaled climate change projections 20-years or less in length 

could be used to estimate precipitation depth, duration, and frequency using similar methods as 

NOAA’s Atlas-14. While the daily timestep and high-resolution nature of our data are similar to 

the inputs used in Atlas-14, there are few examples of this approach in the literature. We found 

that it was possible to replicate NOAA values using our modeled historical data that overlaps 

with NOAA inputs by only 17-years, from 1980 to 1997. Although the length of our time series 

was shorter than NOAA’s criteria for inclusion, we were able to reduce the impact of this 

limitation by treating the eight models as separate time series. This increased the effective 

length of our time series from 17 to 136 years and resulted in the biggest improvement in 

agreement between our estimates and NOAA values of the approaches we tried.  
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Challenges in replicating NOAA estimates 

Despite good overall agreement, there are remaining challenges in interpreting these data. 

Treating the eight models as separate time series improved our ability to match the shape and 

magnitude of Atlas-14 curves, however, that approach does not account for the influence of 

using the same model to downscale the inputs. We used bias-adjusted outputs of WRF and 

eliminated three years of each series when we discovered an artifact of the WRF modeling 

process in those years, but it is possible unexamined biases remain, especially in future 

projections where there are no validation data available.  

Of particular interest are some extreme precipitation values in the Red River Valley that appear 

in some of the underlying models, in both the moderate and high emissions end of century 

scenarios. Their influence is moderated when using ensemble averages of climate projections. 

However, this project required maintaining variability throughout our calculations, which reduces 

the moderating effect of using a model ensemble. Updated global climate models and refined 

downscaling techniques are needed to assess if these extreme values continue to appear in 

climate projections.  

Our values tended to underestimate precipitation depths for 2-year recurrence intervals, and 

overestimate depths for 50- and 100-year recurrence intervals. Alternative approaches tended 

to trade-off between errors at either ends of these tails, potentially because the variability in our 

data was less that of the observational record. An alternative explanation is that climate change 

influenced our 1980-1997 reference period more than the entirety of NOAA’s observational 

record, resulting in an apparent inaccuracy in some of our values.  

Extrapolating short duration values 

Our methods also struggled to match NOAA’s short duration event estimates. For most 

recurrence intervals, our 1-day duration estimates were approximately 30% lower than NOAA’s. 

Further research is needed to understand if this phenomenon is the result of using WRF for 

downscaling or from the short length of our AMS data. Given the importance of 1-day and other 

short duration events to planners, we developed an approach that adapted NOAA’s smoothing 

step as means of extrapolating short duration values from the more accurate long duration 

values. This approach improved overall agreement by 1%, but more importantly, drastically 

improved 1-day duration estimates.  

We examined several variations of extrapolating short durations to understand the influence of 

the technique and to select the best fit. Extrapolating only the 1-day duration values decreased 

the overall error from 13.9% to 13.2%. Extrapolating 1- and 2-day durations decreased the 

overall error the most, to 12.7%, however, it increased the standard deviation due to large errors 

in a subset of counties. Extrapolating 1-, 2-, and 3-day events produced similar error, 12.9%, 

with lower standard deviation, and without errors concentrated in some counties. Extrapolating 

1-, 2-, 3-, and 4-day duration events increased the overall error and produced warnings of 

poorly fitting spline functions. The drawback of this approach is that it increased the error for 

short duration, long recurrence interval (50 and 100 years) events. Our systematic 

underestimate of short duration events was ameliorated by an overall overestimate of 
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precipitation values for 50- and 100-year recurrence intervals; extrapolating those values with 

longer duration estimates increased their error.  

Interpretation and use suggestions 

The tools developed in this analysis can be applied to future iterations of dynamic downscaling 

to provided needed perspective on the reliability of our projections. In the interim, users should 

interpret the modeled precipitation depth values with caution. In general, analysis looking at the 

relative difference between modeled historical data and future scenarios is the most reliable way 

to interpret these projections. However, in many instances, small or negative changes between 

the modeled historical data and the end of century projections coincide with overestimates in the 

modeled historical data. Users should consider NOAA values, our modeled historical data, and 

our end of century projections together. While users must interpret our values using 

assumptions appropriate for their use case, this analysis demonstrates that it is possible to 

approximate the shape and magnitude of Atlas-14 curves using a short time series of 

dynamically downscaled climate change projections.  

 

Implications for green infrastructure  

While traditional ‘gray’ infrastructure (i.e., storm sewers, gutters, and other forms of concrete 

water conveyance or storage systems) will always be needed to manage stormwater in dense 

urban environments, alternative systems such as bioswales, retention ponds, and natural 

vegetation may be useful for supplementing these systems as precipitation events become 

larger and more frequent. These interventions are particularly valuable in cities with combined 

storm and sanitary sewer, as green infrastructure can reduce the likelihood of sewage 

overflows. In cities with municipal separate storm sewer systems, green infrastructure can 

provide the only treatment for stormwater before it reaches surface water7. The primary 

obstacles green infrastructure faces are the costs and the much greater area required to provide 

the same level of management as gray infrastructure. Despite these challenges, some 

programs such as Portland’s downspout disconnection program had an excellent return on 

investment compared to gray infrastructure8, and the space requirement is less burdensome 

when multiple benefits such as urban green space and air quality improvements are 

considered9.  

Small scale green infrastructure such as permeable pavement, rain barrels, and cisterns enable 

the capture and re-use of rainfall on-site. This reduces the volume of water sent to storm water 

systems, and can provide aesthetic value in an urban environment10. Tools such as bioswales, 

infiltration trenches, and rain gardens provide infiltration and filtration benefits, but are 

challenged by variable flow regimes and must be resilient to contaminants in urban 

environments such as road salt9. Urban trees can increase the efficiency of green infrastructure 

technologies through enhance infiltration and transpiration11,12. However, others have noted that 

careful design and management of urban landscapes is important because trees can be a 

source of nutrient pollution to the surface water13.  
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Large scale green infrastructure typically consists of wetland complexes or large networks of 

other green infrastructure tools that provide filtration and storage capacity. However, their size 

and spatial configuration requirements make them difficult to implement in moderately dense 

urban environments8. While difficult to implement at a large scale, networks of strategically citied 

green infrastructure have the potential to provide multiple benefits. Researchers modeled 

tradeoffs between citing green infrastructure for stormwater management and five other benefits 

such as habitat connectivity and air quality in Detroit, Michigan10. They found that although 

green infrastructure improves habitat quantity, there was a negative relationship between 

performance for stormwater management and habitat connectivity, indicating that the ideal 

locations for stormwater management were not aligned with ideal locations for improving wildlife 

habitat. Conversely, they found a positive relationship between stormwater management and 

improvements in urban heat island and air quality. This study suggested that when multiple 

benefits are considered, supplemental green infrastructure for stormwater management can be 

comparable to gray infrastructure in terms of performance and cost10. 

 

Objective 1: Produce and disseminate precipitation intensity 

data products customized to Minnesota communities 

The motive for developing the tools to apply NOAA’s Atlas-14 methods to climate change 

projections, was to create updated precipitation frequency and intensity metrics for communities 

in Minnesota. However, the data’s complexity makes it difficult for non-specialists to interpret. 

To reach as broad an audience as possible, we created two data products: county-level reports, 

and gridded data at the highest resolution of our underlying climate change projections.  

County-level reports 

We created a two-page report summarizing our main depth-duration-frequency data products 

for every county in the state. To summarize future projections, the report includes a graphical 

depth-duration-frequency curves and a table comparing our values derived from modeled 

historical climate conditions to values derived from modeled end century high emissions climate 

conditions. To summarize the ability or our data and methods to replicate NOAA’s values, we 

include a color-coded table that summarized the differences between our values derived from 

modeled historical climate conditions and NOAA’s values. Taken together, end-users without 

specialized software or expertise can both assess the capabilities of our methods and visualize 

the outputs for their county. 

Our initial proposal called for the creation of graphical reports specific to every community with a 

Municipal Separate Storm Sewer System (MS4). However, after reviewing the size and 

distribution of MS4 communities, we opted to generate these reports for every county in the 

state instead. Switching to county-level averages as opposed to municipal-level boundaries has 

two major advantages; first, averaging over multiple grid cells produces a value more 

representative of the area of concern rather than a single grid cell that falls within the municipal 

boundaries. This is especially relevant given how upstream precipitation outside of municipal 
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boundaries still has the potential to impact the municipality. Second, municipalities are often 

clustered in dense urban areas. Creating reports for municipal boundaries would over represent 

urban areas of the state and not provide spatially relevant data products for rural areas.  

Grid-level data (maps) 

Advanced users such as stormwater engineers, planners, or researchers, might want to explore 

data more specific to their decision context. To serve this audience, we produced our results at 

the highest resolution possible, approximately 10km, which is the same as the climate change 

projection resolution. This approach gives total control to the end-user to aggregate and analyze 

the data however they wish, but because the results are stored as 540 separate maps, they are 

more difficult to analyze. Despite the challenge, for end-users interested in a subset of duration-

frequency combinations, these maps provide they best way to analyze the data because it can 

be aggregated to a municipality, sub-watershed, or any other spatial unit. Combined with the 

county-level reports, these data products offer both accessibility and flexibility for a broad range 

of audiences. 

 

Data product distribution 

Links to all data products are available on the project homepage: 

https://z.umn.edu/atlas-14-update 

 

The final report describing our methods and summary conclusions is available at: 
https://z.umn.edu/atlas-14-update-final-report 

 

County-level reports (.pdf files) can be downloaded at: 
https://z.umn.edu/atlas-14-update-county-reports 

 

Grid-level data (.tif maps) for all duration-frequency combinations are available at: 
https://z.umn.edu/atlas-14-update-gridded-data 

 

 

Objective 2: Community engagement  

Plans for engagement with pilot communities were hindered by the covid-19 pandemic. In 

person meetings were not possible and municipal staff had limited capacity to engage on new 

projects. Despite this, some of our virtual engagement efforts with communities and other 

stakeholders are described below. These engagements informed the design of our final data 

products and established relationships with communities and other networks to help distribute 

our findings.  

Early in the project we had several meetings with a consultant tasked with updating master 

planning documents for the cities of Staples and Hackensack. While the timeline of their 

https://z.umn.edu/atlas-14-update
https://z.umn.edu/atlas-14-update-final-report
https://z.umn.edu/atlas-14-update-county-reports
https://z.umn.edu/atlas-14-update-gridded-data
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planning process meant that we would not have Atlas-14 style depth-duration-frequency curves 

available for this planning cycle, we were able to produce changes in monthly precipitation 

averages from our climate change projections.  

Collaborators at The Nature Conservancy (TNC) met with The Environmental Coordinator and 

the Stormwater Coordinator for the City of Elk River in November 2020. They discussed climate 

resiliency and shared climate change projections from this project. While there was interest in 

this work and collaboration generally, a suitable project was not identified. They will be notified 

of the finished products. TNC collaborators also reached out to the cities of Little Falls and 

Grand Rapids but did not receive a response. 

Also in November 2020, TNC collaborators met with City of Alexandria staff and city engineers 

from Widseth. They discussed nature-based solution for increasing resilience to climate change 

and shared climate change projections from this project. Beginning in early 2021, TNC 

collaborators worked to identify a project that will improve community resiliency to climate 

change. They identified a nature trail that would protect and enhance a series of wetlands in the 

eastern sub-watershed of Alexandria, a natural area at high risk of being developed. This 

proactive stormwater management project will focus on finding ways to expand protection in this 

area, with approaches including expanded easements and restoration of degraded habitat. 

These nature-based solutions provide multiple benefits to nature and the community, including 

clean water, clean air, flood, fire, and drought risk reduction. 

To advance this work, TNC collaborators presented to and engaged with several stakeholder 

groups, including to the City Council, Storm Water Management Committee, Park Board, 

Alexandria Public School staff, Kiwanis, and the Viking Sportsmen. On January 22nd, 2022, the 

Alexandria City Council passed a motion to direct staff to partner with TNC to advance the 

Southeast Stormwater Nature-Based Solution Trail Project. Following City Council approval, a 

working group including staff from TNC, Widseth, City of Alexandria, Douglas County, and 

Alexandria Public Schools formed and have continued to meet bi-monthly. 

In October 2021, Ryan Noe presented preliminary results at the Minnesota Water Resources 

Conference to an audience of over 200 practitioners. The presentation attracted the interest of 

engineering consultants and communities considering applying for an upcoming Minnesota 

Pollution Control Agency (MPCA) grant. The MPCA grant provided funds for communities to 

assess their vulnerabilities to climate change, and specifically how to increase resilience to 

stormwater and reduce localized flood risk. In response to this grant, engineering consulting 

firms and other stakeholders proposed using the updated Atlas-14 estimates in their grant 

applications. Because applicants did not need to request preliminary data from us to write their 

application, we do not know how many applicants proposed using our data.  

In direct communications with stakeholders applying for the grant, we produced preliminary 

results for the City of Austin. We also discussed the use of our data for proposals being 

prepared by a stormwater engineering consultant for the cities of Owatonna, Byron and St. 

Charles in southeast Minnesota. Discussions with the engineering consultant indicated they 

would use our estimates for 1-day, 100-year events as inputs into XP-SWMM models and use 
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them to estimate stream flows based on design rainfall events in HEC-RAS for river restoration 

and floodplain modeling. 

In February 2022, reviewers for the MPCA Community Resilience grant invited Ryan Noe to 

speak at the Minnesota Climate Adaptation Team meeting to describe the capabilities and 

availability of work produced from this project. The presentation raised awareness for the work 

and described its appropriateness for use in the grants they were reviewing.  

During the project, Ryan Noe connected with Randy Neprash, a stormwater regulatory specialist 

with extensive contacts in the stormwater community. He volunteered to help distribute the final 

report and data to his networks which include the Minnesota Cities Stormwater Coalition, 

League of Minnesota Cities, City Engineers Association of Minnesota, Minnesota Association of 

Watershed Districts, and Minnesota Erosion Control Association. 

 

Conclusions 

Our work creates a proof-of-concept application of NOAA’s Atlas-14 methods to dynamically 

downscaled climate change projects. We demonstrate that it is possible to approximate the 

magnitude and shape of NOAA’s estimates, even with only 17 years of input data. Agreement 

between NOAA estimates and our modeled historical values was particularly good for 5- and 

10-year recurrence intervals. Focusing on the duration-recurrence interval combinations with the 

best agreement with NOAA and examining the difference between modeled historic and end 

century high emissions scenarios shows a 20 to 30% increase in precipitation depth for central 

and northern Minnesota (Tables 1, 2).  

This work also illuminated many challenges, especially 100-, 50-, and 2-year recurrence 

intervals. We tested several assumptions to try to improve agreement with NOAA values. The 

most notable improvement came from treating the individual models as separate time series, 

effective increasing the length of our AMS, which decreased our overall error by eight 

percentage points. We also found the 1-day and other short duration estimates were 

systematically underestimated in our outputs. We developed a novel way of applying NOAA’s 

smoothing function to better estimate these values. Further research using more refined climate 

models downscaling techniques is needed to examine if the more extreme values we estimated, 

such as those in the northwestern region of the state, can be attributed to our modeling 

techniques or changes in climate. 

Despite the challenges, this work helps to address the growing demand for precipitation 

intensity estimates that incorporate climate change. Until authoritative estimates from NOAA are 

available, some groups are using arbitrary increases. This work offers an informed interim 

estimate, but more importantly, creates new tools and techniques for addressing the question of 

climate change in precipitation intensity measurements.  
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