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1. Introduction 
	 Paleomagnetic studies improve our understanding of 
a myriad of geologic processes. Laboratory methods to 
acquire paleomagnetic information are well established 
and often used without questioning their effectiveness. 
These decades-old methods (e.g., three-axis static alter-
nating field [AF] demagnetization) were adopted accord-
ing to the technical capabilities of the time. However, 
since the 1960-1980s, the capabilities of instrumentation 

have substantially advanced, which provides an opportu-
nity for implementation of more useful laboratory meth-
ods. 
	 A notable improvement to instrumentation is the 
Schillinger AF demagnetizer (Schillinger et. al. 2016), 
which employs a Metglas core with coils wound around 
it (Figure 1a & b). This works like an electromagnet 
except that Metglas has almost zero remanence (unlike 
the steel used in electromagnets), so it can still produce 
a pure AF signal in the air gap to demagnetize rocks 
without imparting anhysteretic remanence (ARM). The 
advantage over air-core based AF systems is that much 
lower currents are required to produce a given field, so 
the Schillinger design can achieve a peak AF field at 
least two to three times larger than conventional sys-
tems without overheating (Figure 1c). Because the field 
lines are largely confined within the gap, two nested mu-
metal shields are sufficient to prohibit stray AC fields 
from leaking into the local environment and, within a 
shielded room, to reduce DC fields to a few tens of nan-
oteslas. Another feature of the design is that it applies 
the AF orthogonal, rather than parallel, to the demagne-
tizer’s sample access (i.e., the borehole). This enables 
substantial improvements to some common laboratory 
measurements by allowing for any arbitrary AF or ARM 
orientation to easily be obtained. We will elaborate on 
advantages to various applications in the article that fol-
lows the main body of this IRM issue. 

A case for adopting the magnetic core 
alternating field demagnetizer

Figure 1. Schillinger Metglas magnetic-core design for (a) the alternating field demagnetizers at UCSC and (b) that implemented on the SushiBar at 
LMU-Munich. (c) Comparison of NRM demagnetization of two sister samples collected from the strongly welded and rheomorphic basal vitrophyre 
of a Snake River (SR-type) Ignimbrite (Data from Schillinger et al. 2016).
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Introduction
	 For gas to exsolve from a silicic melt, significant su-
persaturation pressures are required. This supersatura-
tion pressure is minimized via the presence of a nucle-
ation substrate (heterogeneous nucleation; <25 MPa) and 
maximized if no nucleation substrate is present (homo-
geneous nucleation; >100 MPa; Shea, 2017; Figure 1). 
Conventionally, erupted rhyolite pumice is assessed for 
the presence of a crystal phase that is equal to or great-
er than the bubble number density (BND) found in the 
pumice. If no such phase can be identified, the eruption 
is assumed to result from homogenous bubble nucle-
ation. However, many crystal-poor eruptions have come 
from magma chambers that are too shallow to generate 
the required pressures. This inconsistency necessitates a 
reevaluation of how the process of bubble nucleation oc-
curs in these high silica systems. 
	 The methods conventionally used to determine the 
presence of a potential nucleation substrate (petrograph-
ic microscope, electron microscopy, X-ray tomography) 
suffer from limited spatial resolutions, severely limit-
ing the ability to detect sub-µm crystals (Sahagian and 
Proussevitch, 1992; Shea et al., 2010; Shea, 2017). As 
such, sub-µm crystals go undetected, and their number 
densities are unknown. Titanomagnetite is a relatively 
common and early forming mineral in these high silica 
systems. Magnetic analyses can therefore be applied to 
determine if titanomagnetite is present in these systems 
on the nanometer scale, and estimate the titanomagnetite 
number densities (TND) it which they occur. This allows 
the investigation into nanometer scale titanomagnetite as 
a previously overlooked nucleation mechanism in other-
wise crystal poor rhyolite. 
	 Magnetic methodologies (like those of Worm and 
Jackson, 1999) can be used to investigate the presence, 

abundance, and mineralogy of magnetic minerals pres-
ent in rhyolite pumice and obsidian from the 1100 AD 
Glass Mountain eruption (California, USA, subplinian 
eruption, ~3% phenocrysts, 73% SiO2, 1-3 km depth; 
Grove et al., 1997). This eruption generated ~1km3 
(dense rock equivalent) of crystal poor obsidian flows 
and pumice fall deposits used for this project. If titano-
magnetite crystals are present on the nanometer scale, 
and in number densities greater than bubble number den-
sities, then titanomagnetite may have been a substrate 
for heterogenous nucleation in these systems (Shea et al., 
2016, 2017; McCartney et al., 2020, 2021). 

 Experiments  
	 Preliminary rock magnetic analyses were conducted 
at Montclair State University to confirm the presence of 
titanomagnetite in both the pumice and obsidian using 
mass normalized susceptibility (χ, subsequently convert-
ed to volume-normalized k), frequency dependence of 
susceptibility (%χFD), anhysteretic remanent magnetiza-
tion (ARM), Curie temperature analysis, and hysteresis 
behavior (McCartney et al., 2020, 2021). We approxi-
mated grain size by comparing the grain size-sensitive 
ratio χ/χARM for the pumice and obsidian to published χ/
χARM values of natural and synthetic (titano)magnetite’s 
with known grain sizes (Maher, 1988; Till et al., 2011). 
Both pumice and obsidian are consistent with χ/χARM val-
ues measured on 10-30 nm magnetite crystals, though 
larger multidomain crystals cannot be ruled out (Figure 
2). Due to the lack of abundant conventionally observ-
able micron scale particles, it is likely that the majority 
of titanomagnetite particles present are on the nanometer 
scale.
Work done at the IRM consisted of low temperature 

Figure 1: Nucleation style determines the efficiency of degas-
sing in rhyolite melt. The purple region designates the path of 
solubility of a rhyolite system at 850 °C from 250 MPa to 0 
MPa. The path followed by the system is dependent on the style 
of nucleation, with heterogeneous nucleation (green) returning 
the system to equilibrium sooner than homogeneous nucleation 
(blue). Modified after: Shea, 2017; Mangan and Sisson 2000.
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magnetic characterization conducted on a Quantum De-
sign Magnetic Properties Measurement System (MPMS-
3) in order to investigate the presence of superpara-
magnetic particles. We measured hysteresis loops at 5 
K and 20 K, and observed the behavior of a saturation 
isothermal remanent magnetization during warming. In 
a field cooled-zero field cooled (FC-ZFC) experiment,  
a saturation isothermal remanent magnetization (MR (5 
K)) was imparted during cooling from 300 K in the pres-
ence of a 2.5 T field (FC = field cooled), and again at 5 K 
in a 2.5 T field after cooling from 300 K in zero applied 
field (ZFC = zero field cooled), in both cases measuring 
the remanent magnetization on warming. These mea-
surements may reveal order-disorder transitions related 
to mineral composition and/or behaviors suggestive of 
single domain and multidomain grains (e.g., Moskow-
itz, 1993; Jackson et al., 1998; Moskowitz et al., 1998; 
Carter-Stiglitz et al., 2006). Our goal was to identify 
samples with SP characteristics and ultimately apply 
the methods of Worm and Jackson, 1999, to calculate a 
grain size distribution. We then measured susceptibility 
vs. temperature at 3 frequencies to look for signatures of 
SP particles. 

Results
	 χ/χARM  values for the pumice and obsidian are con-
sistent with 10-30 nm or 1-10 µm titanomagnetite. As-
suming a single particle size with cubic shape allows for 
the number density of titanomagnetite crystals to be es-
timated by dividing the total volume of titanomagnetite, 
estimated from magnetic susceptibility, by the individual 
crystal volume. If only nm scale crystals are present, then 
TND is on the order of ~1*1018-1020 m-3 for the pumice 
and obsidian. If only µm scale crystals are present, then 
TND is on the order of 1*1010-1014 m-3. Reported average 
BND for Glass Mountain pumice is 4*1014 m-3. Thus, 
TND > BND by several orders of magnitude if the ma-
jority of titanomagnetite particles are on the nm scale 
(Figure 2).
	 Low temperature hysteresis loops (not shown) on our 
pilot sample did not show the expected dramatic change 
from SP at room temperature to SSD at low temperature. 
We speculate that in the samples we analyzed, the MD 
particles dominated the low temperature signal. 
	 FC-ZFC curves are similar for both the pumice and 
obsidian samples. We observed three types of results: (1) 
samples for which the ZFC curve is stronger than the 
FC curve, consistent with low temperature observations 
of multidomain titanomagnetites described by Carter-
Stiglitz et al., 2006; (2) samples for which the ZFC and 
FC curves are nearly the same and which display a tit-
anomagnetite order-disorder transition at ~55-65 K; (3) 
samples that do not have a prominent order-disorder tran-
sition (Figure 3). While the pumice and obsidian samples 
likely contain nm titanomagnetite, results of type 1 and 
2 indicate samples whose low temperature behavior is 
dominated by µm-sized and larger particles.  Samples 
that exhibit behavior #3, interpreted as thermal unblock-
ing only, are targets for future experiments that seek to 
confirm the presence of SP particles using low tempera-

ture hysteresis and FORC techniques. These samples 
will be used for particle distribution calculations.
	  The culmination of this evidence indicates that tit-
anomagnetite is present in large number densities at 
the nm scale and outnumbers bubble number densities 
by upwards of 3-5 orders of magnitude within both the 
pumice and obsidian samples. This indicates that bubble 
nucleation in crystal poor silicic eruptions may be gener-
ated via heterogeneous nucleation on abundant nm scale 
titanomagnetite crystals.
 

Figure 3: FC-ZFC curves (A and C) of the pumice (GMC2-6) and obsidian 
(GM7) lack the magnetite Verwey transition. GM7’s ZFC curve shows an 
order-disorder transition at ~55-65K which is consistent with titanomagnetite. 
χ (fT) (B and D) curves are dominated by paramagnetic behavior.

Figure. 2: Left: χ/χARM values for natural and synthetic magnetite of known 
sizes plotted vs. crystal size form a rough parabola. Vertical lines show grain 
size transitions between superparamagnetic (SP), stable single domain (SSD), 
pseudo single domain (PSD), and multidomain (MD) magnetite. The range of 
Glass Mountain χ/χARM values are encompassed by the blue crosshatched 
region, which intersect the parabola and provide two possible grain size solu-
tions (nm and μm scale). Right: Calculated TNDs for the nm and μm scale 
grain size solutions are represented by the vertical bars, and represent the 
range of ND possible for the range of crystal size diameters. Calculated values 
fall above and below the average BND, with the true TND likely falling nearer 
the nm estimate, as the majority of particles are likely on the nm scale. 
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Current Articles
A list of current research articles dealing with various topics in 
the physics and chemistry of magnetism is a regular feature of 
the IRM Quarterly. Articles published in familiar geology and 
geophysics journals are included; special emphasis is given to 
current articles from physics, chemistry, and materials-science 
journals. Most are taken from ISI Web of Knowledge, after 
which they are  subjected to Procrustean culling for this news-
letter. An extensive reference list of articles (primarily about 
rock magnetism, the physics and chemistry of magnetism, 
and some paleomagnetism) is continually updated at the IRM. 
This list, with more than 10,000 references, is available free of 
charge. Your contributions both to the list and to the Current 
Articles section of the IRM Quarterly are always welcome. 
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with the magnetic-core design is identification of higher 
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can impart an ARM on higher coercivity particles, which 
is particularly important since most of the higher coer-
civity portion of a typical ARM is of limited use for an-
isotropy of magnetic remanence, coercivity distribution, 
and relative paleointensity (RPI). A condition to strive 
to meet for most measurements of laboratory imparted 
remanence is full activation, so that all magnetic grains 
in the sample or in a discrete coercivity or unblocking 
temperature range have the ability to contribute to the 
magnetization. Full activation is important because it’s a 
requirement (1) for a set of directional measured ARMs 
or TRMs to be describable with a tensor, (2) for a valid 
comparison between ARMs and NRMs for relative pa-
leointensity, and (3) for comparison of ARMs in differ-
ent coercivity ranges to estimate magnetic grain size dis-
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	 The case for TRM is simple. Regardless of their ori-
entations, all particles in a rock with blocking tempera-
ture Tb are fully activated when the temperature is above 
Tb because they all have the potential of contributing to 
the remanence as they cool below Tb. For ARM, howev-
er, the activation of a particle is dependent on coercivity 
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easy axis. In consequence, the condition of full activa-
tion may only be achieved with an applied field signifi-
cantly larger than the particle coercivity. The property of 
full activation is rooted in the nature of switching-field 
angular dependence. Aharoni’s (1986) switching-field 
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vortex state), describes reasonably well the behavior of 
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2020, and references therein). For our purposes, consid-
ering an ensemble of such magnetic grains with long (= 
easy) axes distributed in all directions over the sphere, it 
is most usefully expressed as

Cm(ϴ) = AF (1 – α sin2(ϴ))1/2                              Equation 1 

where Cm(ϴ) is the maximum coercivity particle orient-
ed with its easy axis at an angle ϴ to the AF that can be 
switched (i.e., activated) by that AF. Experimental esti-
mates of the parameter α fall mainly between 0.80 and 
0.95 (Stephenson and Shao 1994; Madsen 2002; 2003; 
2004), larger values requiring higher peak-AF ARMs to 
fully activate grains of a given coercivity. For the upper 
limit α= 1 full activation would not be possible at all 
because it would require an infinite AF to switch grains 
with long axes perpendicular to the AF direction.
	 The higher the AF used to impart an ARM, the higher 
the activation line dividing fully from partially activated 
particles (Figure 2b). Another way to look at this phe-

cont’d. from pg. 1...
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nomenon is that an ARM will only be fully activating 
over a given coercivity range when the peak-AF that 
generated it is sufficiently large so that its resolved 
easy-axis component can exceed the coercivity of par-
ticles oriented at high angles to the AF. In addition, this 
switching effect also results in a range of particle coer-
civities locking in during any given small segment of AF 
decay, ∆AF. Because of this, the magnetization acquired 
by turning the direct bias on for only a small window of 
the AF decay (i.e., pARM) will be carried by particles 
with a wide range of coercivities extending far below the 
pARM window.
	 Figure 3 shows the expected influence of change in 
activation degree on relative paleointensity measure-
ments for various kinds of samples. Figure 3a utilizes 
3-axis AF demagnetization in a Sapphire SI-4 instrument 
in 10 mT steps up to 160 mT of an ignimbrite sample’s 
NRM (almost entirely TRM) and of two ARMs given to 
the same sample as the AF decayed from a peak of 175 
mT in the Sapphire and from 450 mT in the Schillinger 
demagnetizer. The 160 mT demagnetization step was 
subtracted from the NRM, ARM175 and ARM450 to ensure 
the same remanence coercivity portion is compared from 
each demagnetization. The ratio of NRM remaining to 
ARM remaining during progressive demagnetization is 
plotted in Figure 3a for both ARMs tested. As expected, 
the NRM/ARM175 ratio is initially larger and proceeds 
to skyrocket as AF demagnetization progresses beyond 
the range of full activation (e.g., 55 mT for α= 0.9, from 
equation 1) where less ARM was activated. ARM450, 
however, is fully activated over a much larger coerciv-
ity range, so the NRM/ARM450 ratio in Figure 3a does 
not blow up, and we conclude that the 450 mT ARM is 
inherently more suitable for RPI estimation.
	 We further suggest that the large dispersion in Yu’s 
(2010) ARM RPI determinations on synthetic SD mag-

netite samples may also have been because of partial ac-
tivation (Figure 3b). We find similar large rises in NRM/
ARM during AF demagnetization in a range of other rock 
types (Figure 3c and d). Yu (2010) observed that the ra-
tio of TRM to saturation isothermal remanence (SIRM) 
was more stable and reliable as a paleofield proxy than 
the TRM/ARM ratio. This observation may have been 
in large part due to the SIRMs (ARMs) being fully (par-
tially) activating, rather than an inherent closer similarity 
between IRMs and TRMs. Furthermore, calibration of 
TRM to ARM for a given direct bias intensity requires 
both remanences are fully activating. This condition was 
satisfied in a seminal paper on TRM/ARM calibration 
through clever application of a static direct bias in the 
presence of a tumbling AF (Stephenson and Collinson 
1974).

3. Model description
	 The modelling that follows compares the incoherent 
switching field behavior described by Aharoni (1986) 
with the classic Stoner-Wohlfarth (SW) behavior (Stoner 
& Wohlfarth 1948). The primary differences are that SW 
behavior is characterized by the field being most effec-
tive at a 45° to the particle long axis, while incoherent 
switching is most effective with a field aligned parallel 
to the particle long axis. Importantly, a given field appli-
cation is far closer to fully activating when an ensemble 
of SW is considered rather than incoherently switching 
particles. 
	 The model contains 1000 orientations that uniaxial 
particles could have (termed particle orientations). Each 
particle orientation can be considered to have an infinite 
number of particles with an even coercivity distribution 
that, depending on which model is shown, may be vari-
ably restricted to a certain coercivity range.  Whether an 
individual particle within a particle orientation gets acti-

Figure 2. Coercivity and orientation distribution of particles activated by a 100 mT AF. These particles are available to be biased by 
the presence of weak direct field when imparting an ARM. The curve in (a) uses the incoherent switching field angular dependence 
proposed by Aharoni (1986) to plot the maximum coercivity particle (Cm) activated as a function of angle made between the AF 
and particle long axis (Finn and Coe 2020). A switching field parameter α= 0.9 is used which is thought to be representative of a 
wide range of magnetite particle sizes. Particles below this line are activated by the 100 mT ARM, and those above the line are 
untouched. The plot in (b) shows the activated region under the curve (shaded) divided into partially and fully activated zones. 
The condition of full activation requires that all particles of a given coercivity range are activated regardless of their orientation.
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vated by a given AF depends on the particle’s coercivity, 
orientation of its long axis relative to the AF, and on the 
strength of the AF. If a uniaxial particle is activated by 
a pure AF, it’s moment gets set to zero. In contrast, if 
it is activated by an AF in the presence of a small bias-
ing field, then the probability of that particle’s moment 
choosing the stable position closer to the field direction 
is proportional to the resolved component of the direct 
biasing field along the particle’s long axis (Stephenson 
1983). 

4. Aharoni (incoherent) vs Stoner-Wohlfarth (coherent) 
switching behavior
	 The angular dependence of coercivity is an impor-
tant property that needs consideration in designing pa-
leomagnetic instruments and laboratory experiments, 
and interpreting results. To this end, the classic Stoner-
Wohlfarth switching behavior is commonly utilized for 
modelling and interpretation of a variety of experiments 
such as IRM acquisition curves, FORCs, NRM demag-
netization, etc. However, the last ~30 years have seen 
occasional and mostly overlooked reports of experimen-

tal results that cannot be explained by the SW theory 
and, instead, are better reproduced assuming incoherent 
switching behavior (Stephenson and Shao 1994; Mad-
sen 2002; 2003; 2004; Milne and Dunlop 2006; Finn and 
Coe 2020). 
	 Similarly, though we don’t model it here, the dramatic 
rise in NRM/ARM ratio documented in Figure 3 is better 
explained by incoherent Aharoni-like switching (equa-
tion 1) than by the more fully activating SW behavior. 
Instead, we present an even more robust test of switching 
behavior by comparing the progressive demagnetization 
of two variably sized ARMs. Figure 4a depicts the strong 
triaxial ARM anisotropy measured on the ignimbrite 
sample. Note that the principal anisotropy directions co-
incidentally, and for our demonstration, fortunately align 
near the sample axes. To test for switching behavior, we 
applied and progressively demagnetized in turn an ARM 
of 175 and 450 mT given along each sample axis (i.e., x, 
y, and z). 
	 Figure 4b shows for each sample axis the ratio of 
ARM450 / ARM175 removed in 10 mT windows from 0 to 
160 mT. The dramatic increase in ARM450 / ARM175 ratio 

Figure 3. Effect of partial activation on ARM relative paleointensity determinations (see text, section 2). (a) Ratios of NRM (domi-
nantly a TRM) vs ARM during progressive demagnetization are shown for a SR-type glassy ignimbrite sample. Two ARMs were 
compared, one given to a peak field of 175 mT and another to 450 mT using the Schillinger demagnetizer. The 160 mT step was 
initially subtracted off all data to remove the contribution from higher coercivity particles (160+ mT). The large ARM450 provided 
by the Schillinger demagnetizer eliminates the unrealistic rise in the ratio due to incomplete activation, enabling more reliable RPI 
estimates. (b) The TRM/ARM100 ratio for a synthetic sample created from magnetite powder with a mean grain size of 0.065 μm 
(Yu, 2010). NRM/ARM175 ratio for (c) a Maui basalt lava sample and (d) a Mono Lake sediment sample. The dramatic rise in ratios 
in b, c and d are also consistent with the expectation that the ARM is less activated at higher coercivities, whereas TRM and detrital 
remanence are fully activating throughout the entire coercivity range.
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relates directly to the decreasing activation in ARM175, 
and is strongly dependent on ARM orientation relative 
to the sample anisotropy (Figure 4b). The largest and 
smallest rises occur when the ARMs are given near the 
minimum (K3) and maximum (K1) anisotropy directions, 
respectively. This observation relates to the anisotropy 
of activated grain concentration (Finn and Coe 2020), 
whereby the ARM175 given along K3 is less activated then 
the exact same ARM175 given along K1. This explanation 
pertains most directly to the incoherent switching be-
havior. The SW behavior, in contrast, suffers less from 
partial activation and would see far less of a difference 
between ARM450 and ARM175.
	 We modelled the exact experiment shown in Figure 
4b using incoherent and SW switching, an even coerciv-
ity distribution from 0 – 175 mT and the input anisotropy 
from Figure 4a. We found the incoherent switching mod-
el (Figure 4c) using an α equal to 0.8 matches the results 
well, while as expected, the SW model doesn’t agree at 
all. Note that the sample has a coercivity dependent de-
gree of anisotropy, where the model input we used (P= 
3.4) is on the high end of the range of measured results. 
Reduction of the degree of modelled input anisotropy re-

sults in the best fit α (Figure 4c) migrating from 0.8 to 
closer to 1. So our estimate of α= 0.8 is probably on the 
low end. Furthermore, assuming a single alpha value for 
all particles in a sample is likely an oversimplification. 
Not surprisingly, we can better match these results (not 
shown) if we assume a distribution of α with an average 
of ~0.8 or 0.85, rather than a single α value for all par-
ticles. 

5. Benefit of the transverse AF 
	 We can also apply the concept of full activation to the 
removal of remanence. In this case, the best practice for 
separating magnetic components during demagnetiza-
tion is to progressively remove only fully activated por-
tions of remanence at each demagnetization step, which 
is best done with a tumbling AF. When restricted to using 
only a static AF, one can approximate a tumble by apply-
ing the AF in a larger number of orientations. One of the 
major benefits of the Schillinger design is the transverse 
orientation of the AF relative to the demagnetizer bore-
hole. With this transverse field, a simple two-rotation 
axis sample handler can position the sample such that 
any arbitrary field orientation is obtainable. This flex-

Figure 4. (a) Stereonet showing the measured ARM anisotropy of the SR-Type ignimbrite sample from Figure 3a. Size (P= 3.4), 
shape (T= -0.179) and orientation information are represented by a set of particle axes (black dots) that are associated with an 
orientation tensor (Jezek and Hrouda 2002) identical to the measured ARM anisotropy. Note the coincidentally close proximity of 
the sample and anisotropy axes. (b) Ratio of ARM450 removed to ARM175 removed in 10 mT windows from 0-10 mT up to 150-160 
mT. ARMs were imparted in the x, y, and z sample directions, and each demagnetized with a 3-axis static AF (see text for more 
detail). (c & d) The exact experiment from (b) was modelled using the input anisotropy from (a) with an incoherent (c) or coherent 
(d) switching field behavior. The incoherent switching angular dependence (c) does a significantly better job at reproducing the 
measured results when compared to the coherent (Stoner-Wohlfarth model) switching behavior. Improvement to the fit shown can 
be obtained by consideration of a range of switching behaviors, rather then a single behavior as shown in (c).
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ibility in AF direction is essential if one wishes to em-
ploy more than three AF directions at each step level, 
and better approximate a tumbling AF in an automated 
measuring system. In the section that follows we explore 
through simple modelling the benefits of increasing the 
number of AF directions used during progressive de-
magnetization of remanence. 

5.1 How Many AF axes should be used for demagnetiza-
tion?
	 Figure 5a shows the model results of demagnetizing a 
fully activating ARM using various AF demagnetization 
schemes, each time with a peak AF intensity of 100 mT. 
The Y-axis plots the percentage of the total magnetiza-

tion removed from a set of AF applications, and the X-
axis lists the number of AF axes used in the procedure. 
The model is isotropic, has an even coercivity distribu-
tion restricted to the 90-100 mT, and following the semi-
nal earlier treatment of this multi-axis AF demagnetiza-
tion problem by McFadden (1981), uses an α equal to 1.  
	 Magnetization-orientation (M-O) plots are shown for 
the undemagnetized ARM and partially demagnetized 
ARM using various numbers of applied AF directions 
(Figures 5b-5e). The color-shading in the M-O plots con-
tour the net magnetization (summed over all coercivi-
ties) of each of the 1000 particle orientations in the mod-
el. It is notable that the 3-axis static AF method removes 
<20% of the sample’s magnetization, which means that 

Figure 5. Modelled results comparing demagnetization efficiency with number of AF axes used per step. (a) Plot showing percent-
age of total ARM removed using a 100 mT AF and various demagnetization schemes (i.e., number of AF axes). The modelled 
uses an incoherent switching behavior with a switching parameter (α) equal to 1. It is isotropic with an even coercivity distribution 
entirely contained within the 90-100 mT range. Particle magnetization-orientation plots (see text) show the original magnetiza-
tion state (b) and that after various demagnetization procedures (b-e). (f-i) Modelled demagnetization of two-component ARMs, 
where the lower and higher coercivity components are contained between 0-80 mT and 80-100 mT, respectively. Results in (a-i) 
collectively suggest it is worthwhile to use more than three AF axes for routine demagnetization, and perhaps 10’s of AF axes for 
important specimens (i.e. Lunar samples).
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>80% of the magnetization carried by particles in the 90-
100 mT coercivity range, would smear into a higher AF 
(>100 mT) segment of a progressive demagnetization. 
	 Figure 5f-i compare models of progressive AF de-
magnetizations of a sample containing two orthogonal 
components of fully activating ARM within the 0-80 and 
80-100 mT coercivity ranges, respectively (see Figure 
5 caption for more details). Increase in the number of 
AF axes considerably improves the separation of mag-
netic components. Collectively, these results suggest one 
should choose ~9 AF axes (time permitting) for regular 
demagnetization on typical samples, and a scheme in-
volving a much larger number of AF axes (e.g., n = 36) 
for more important specimen such as Lunar samples. 
	 It is worth noting that real tumble AF demagnetizers 
are far from ideal. They do not fully account for unwant-
ed ARM bias in the AF waveform. Additionally, unless 
they employ the important self-reversing rotation feature 
described by Wilson and Lomax (1972), they may suf-
fer from unwanted rotational remanence acquisition. At 
least with the static AF method, these unwanted rema-
nence acquisitions are predictable, their origin can be 
uniquely determined (e.g., ARM or GRM), and they can 
be excluded with careful experimental design and pos-
sibly utilized for a free estimate of magnetic anisotropy 
(Stephenson 1993; Finn et al 2021).

6. Path forward 
The take-home message is that there is great potential 
for improving our everyday paleomagnetic methods by 
adopting the Schillinger demagnetizer design along with 
a two-rotation axis sample handler. This is particularly 
true given the recent recognition of the importance of 
fully activating ARMs. Additionally, most magnetite 
particles experience incoherent switching behavior, and 
thus are more difficult to fully activate then SW parti-
cles. The upgrade to the Schillinger design, however, is 
not available for purchase off the shelf, and most paleo-
magnetic laboratories do not have the capability to build 
their own instruments. As with other major infrastructure 
projects, this improvement to paleomagnetic instrumen-
tation could benefit from a community, rather than indi-
vidually led effort. 
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