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Dissertation Abstract 

 

Foot and mouth disease virus (FMDV) is still endemic in many regions worldwide. Many 

widespread FMDV lineages have emerged from South Asia, and subsequently spread to other 

regions, including Southeast Asia, making these two regions important epicenters for FMDV 

evolution and transboundary transmission. The progressive control pathway (PCP) proposed by 

the World Animal Health Organization and the Food and Agriculture Organization (OIE/FAO) 

provides a framework for countries to reduce the incidence of the disease, with the ultimate goal 

of achieving zonal or country-wide freedom from disease. The PCP pathway is outcome-oriented 

and relies on a self-evaluation process before being accredited by the OIE and obtaining the 

official status for a given stage. Different epidemiological methods are acceptable for evaluation 

of the progress at each stage, yet OIE/FAO does not provide specific guidelines in regard to 

methods for epidemiological evaluation. In this dissertation, the objective was to demonstrate how 

recent and newly developed epidemiological approaches can be applied to support progression 

through PCP stages in South and Southeast Asia. Two countries in those two regions, India and 

Vietnam, both countries in stage 3, were used as case studies to examine how commonly 

available types of epidemiological data, such as reported outbreaks and sequence data, can be 

analyzed to understand the spatial dynamics of FMDV circulation, assess the effectiveness of 

vaccination programs, and delineate high-and low-risk areas. Ultimately, this work will serve as a 

proof-of-concept for novel methods for genomic surveillance, which could be used as a cost-

effective means to generate sequence data needed for surveillance and epidemiological analysis 

and help the countries to move towards stage 4 of the PCP.  

 

The first chapter provides an overview of the PCP with a focus on stages 1-3, epidemiological 

approaches typically used to support PCP activities, and the FMD situation in India and Vietnam. 

The second chapter specifically explores FMD situation in India and applies Bayesian space-time 

regressions to investigate factors underlying the spatial heterogeneity in risk of reported 

outbreaks, including an assessment of how mass vaccination impacted the spatial and temporal 

distribution of disease. However, such spatial models account for population connectivity by 

incorporating spatial autocorrelation amongst contiguous spatial units, which is likely a poor 

representation of population connectivity for highly mobile hosts such as livestock. The third 

chapter explores the ways to improve Bayesian space-time regression models using the 

phylogeography to account for patterns of population connectivity. Finally, monitoring circulating 

virus strains and rapid detection of novel strains is a necessary component of FMD control as part 

of the PCP, and sequence data also enables a number of other epidemiological approaches to 

understand virus circulation in a country. Conventional methods to acquire sequence data in the 

field are not efficient as a means for routing genomic surveillance, and it may be more effective to 
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identify sentinel surveillance points to detect emerging outbreaks, such as slaughterhouses. 

Genomic surveillance at slaughterhouses  was explored in the fourth chapter using FMDV 

sequence data from Vietnam. The final chapter is an overview of demonstrated methods to 

improve FMD control measures and support progression in PCP stages in FMD endemic 

countries in endemic regions of South and Southeast Asia.  
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Chapter 1: Introduction 

Foot and Mouth Disease (FMD) is caused by an RNA virus (Foot-and-mouth disease virus, 

FMDV) in the genus Apthovirus and family Picornaviridae that affects cattle, goats, pigs, and 

other cloven-hoofed ruminants. The disease produces blisters in the mouth, tongue, hoof, and 

udder that cause production loss in the animals (Arzt et al., 2011). Many routes of transmissions 

have been identified for FMDV. The most common route of transmission from one animal to 

another is via direct contact and oral route (Alexandersen et al., 2003,Bravo de Rueda et al., 

2015). Direct contact occurs via saliva and excretion material from the blisters in the mouth and 

hooves. There are seven serotypes of the virus, referred to as type O, A, C, Asia 1, SAT1-3, and 

infection with one serotype does not provide cross-protection for a different serotype. The disease 

is endemic in much of Asia, Africa, and parts of South America, though not all serotypes occur in 

all continents. 

 

The FMDV viral genome contains a single open reading frame (ORF) encoding the entire 

genome, including structural and non-structural proteins. The structural part of the virus is known 

as the VP1-VP4 protein capsid. Although it represents only 8% of the whole genome, FMDV 

serotypes and phylogenetic analyses have traditionally been characterized by sequencing the 

VP1 region (Bachanek-Bankowska et al., 2018,Brito et al., 2017, de Carvalho Ferreira et al., 

2017,Brito et al., 2018).  

 

Like most RNA viruses, FMDV is highly susceptible to mutations during replication. As a result, 

the virus shows high genetic variation and rapid mutation rates that result in different viral 

phenotypes (Elena and Sanjuán, 2005). From a phylogenetic standpoint, FMDV serotypes are 

further divided into topotypes, lineages, sub-lineages, and strains. Viral topotypes are defined as 

groups of viruses that show >85% nucleotide identity (VP1) and typically show a restricted 

geographic distribution (Knowles et al., 2005). Within a topotype, lineages are differentiated 

based on a 5% difference in the genetic distance among viral clades. Sub-lineages and strains 

are nested within the lineages. Because cross-protection amongst strains in the same serotype 

may only be partial, immune-driven interactions among co-circulating strains at the population 

level may lead to the replacement of existing strains with new strains (Gupta et al., 1998). New 

strains can also emerge because the novel strain is more virulent than the existing strains.  

 

The ever-expanding genetic and antigenic diversity of FMDV in Asia presents a challenge to 

disease control and vaccination programs. Recent work has shown that, in the past ten  years 

(2007-2017), there has been at least 23 sub-lineages originating in South Asia that have spread 

to other regions such as North Africa, Middle East, East  and Southeast Asia considering, 

including the  O/MESA/Ind 2001d lineage that appears to have out-competed existing serotype O 
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strains that were circulating (Bachanek-Bankowska et al., 2018). In some countries, the Ind-

2001d lineage gave rise to new and different strains, such as those identified in the Middle East 

(O/BAR/2/2015) and Nepal (O/NEP/1/2014) (Bachanek-Bankowska et al., 2018). Thus, many 

widespread FMD lineages have emerged from Asia, and subsequently spread widely, pose a risk 

to Europe and other FMD-free regions.  This makes the epidemiological dynamics, surveillance, 

and control of this virus in Asia critical for global control efforts.  

 

The Progressive Control Pathway (PCP), introduced by the World Animal Health Organization  

(OIE) and Food and Agriculture Organization (FAO), aims to provide a step-by-step framework for 

the reduction of the risk of FMD in endemic countries. To progress between different stages in the 

PCP, countries are required to provide epidemiological assessments of the current situation 

within the country, such as evaluation of the surveillance measures and vaccination program, as 

well as outline a series of evidence-based plans to control the disease.  Thus, analysis of 

epidemiological data is critical for supporting progress through the PCP, and ultimately controlling 

FMD more effectively.  However, the PCP provides limited guidance on epidemiological analyses, 

particularly on types of spatiotemporal analyses necessary to identify disease hotspots and 

understand patterns of circulation, and the available methods are constantly evolving.  

 

In this dissertation, our objective is to demonstrate how recent and newly developed 

epidemiological approaches can be applied to support progression through PCP stages in 

endemic countries. Focusing on two countries in Asia, India and Vietnam, both countries in stage 

3,  we examine how commonly available types of epidemiological data, such as reported 

outbreaks and sequence data, can be analyzed to understand the spatial dynamics of FMDV 

circulation, assess the effectiveness of vaccination programs, and delineate high-and low-risk 

areas. We also demonstrate a proof-of-concept for novel methods for genomic surveillance, 

which could be used as a cost-effective means to generate sequence data needed for 

surveillance and epidemiological analysis and help the countries to move towards stage 4 of the 

PCP. 

 

1.1 FMD in India and Vietnam  

FMDV is endemic in India. India is the largest dairy producer and consumer globally, and much of 

the country is characterized by high densities of bovine (cattle and water buffalo) and small 

ruminants. There are two regular vaccination programs in India: ASCAD (Assistance to States to 

Control Animal Disease) and the central government vaccination program (FMDCP). FMDCP is a 

biannual vaccination program administered to cattle and buffaloes while ASCAD is an annual 

vaccination program (Hegde et al., 2014). Vaccine production, monitoring, and surveillance are 

conducted by the government of India. The currently used vaccine for FMDV is a trivalent 
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(serotypes O, A, and Asia1) inactivated vaccine that produces immunity for up to 6 -12 months 

duration depending on the adjuvant. Typically, FMDV vaccines reduce clinical signs, protect 

against clinical infection, and reduce the transmission of the live virus to susceptible animals 

(Brito et al., 2011). Monitoring of vaccination programs is done by collecting blood samples before 

and after the vaccination and checking for antibody titers using liquid-phase blocking ELISA 

(Pattnaik et al., 2012). Such monitoring is a critical component of PCP stage 2 and 3.  

 

Most countries in Southeast Asia (SEA), including Vietnam, are FMDV endemic. Vietnam has 

established official FMD control program since 2006 which is implemented in a phase wise 

manner (Lee et al., 2020). Serotypes O and A circulate in the country.  Serotype O lineages 

detected in Vietnam include  O/ME-SA/Mya-98, SEA/PanAsia, O/ME-SA/Ind2001d, and O/Cathy. 

Mya-98 was identified between 1998 and 2014, while PanAsia was first introduced in 2006 and is 

currently dominant (Le et al., 2016). O/ME-SA/Ind2001d was first detected in the Southern part of 

the country in 2015 and is still circulating alongside the PanAsia lineage (Vu et al., 2017). The 

identified Serotype A sequences belong to genotype IX and are closely related to strains 

identified from Laos and Thailand (Vp et al., 2010).  It can be observed that, consecutively, 

different lineages emerge and decline for both serotypes. To decide on appropriate vaccination, it 

is important to identify fluctuations in the prevalence/incidence of various FMDVs  as early as 

possible. 

 

Both countries aim at moving towards zonal freedom with vaccination, a requirement of stage 4 

where official OIE endorsement is given after evaluation of the progress of each country. The 

concept of zones within a country usually applies to countries that have set the objectives for 

zonal freedom and formulated an official control program to eliminate FMD from a distinct 

geographic area (considering the structure of the livestock industry), including animal movement 

patterns at national and regional levels, and fulfil the recommendations of the OIE Terrestrial 

Animal Health Code. 

 

1.2 Progressive Control Pathway 

The FAO/OIE’s PCP framework for the control of FMD is outcome-oriented and acknowledges 

that approaches to achieve key outcomes are different from a country to country. It outlines a 

number of key points that should be fulfilled at each stage.  Stages 1-3 provide a global 

framework that can be applied to control any transboundary animal disease, including FMD, while 

stages 4 and 5 are oriented towards obtaining OIE-endorsed freedom from FMD. For a country to 

be in stage 1, they should have completed a risk assessment of FMD. Common activities in stage 

1 include having a hypothesis of virus circulation, identification of circulating strains, enabling 

an environment to control the disease including supporting regional corporation, evaluating the 
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socio-economic impact of the disease, and completing a value chain analysis. A working 

hypothesis of virus circulation includes various building blocks, such as outbreak reporting and 

outbreak investigations for all the susceptible species, sero-monitoring for FMDV and identifying 

FMD risk hot spots. An enabling environment to control disease includes evaluating the 

veterinary services of the country as part of a Performance of Veterinary Services (PVS) analysis. 

Countries are encouraged to participate in regional roadmap meetings with the intention of 

regional corporation to eliminate FMDV from a given region of the world. Ultimately, the overall 

aim of PCP stage 1 is to identify the current FMD situation in the country. 

Once a country identifies it’s FMD situation by completing various steps of stage 1, it can proceed 

to the stage 2 of the PCP. 

 

By stage 2, a country should have a strategic control plan with an FMD monitoring and evaluation 

system in place. Ongoing monitoring of FMD risk in different husbandry systems such as cattle, 

buffalo, goats, and pigs, monitoring of circulating strains, and implementing risk-based control 

measures in a targeted zone are part of this stage. There should be evidence that risk of FMD 

has declined in at least one of the husbandry systems. Continuing from stage 1,  an 

evaluation of FMD vaccination campaign by targeted serological surveys should continue 

in this stage. There should be a written documentation regarding a risk-based control plan that 

includes all above activities.  

 

By stage 3, countries should have an official control program for FMD control. Once a country 

establishes an official FMD control program, they request for OIE endorsement to reach stage 4. 

Ongoing monitoring activities from stage 1 and 2 should continue in the stage 3. Rapid detection 

of outbreaks at least in a one zone of the country is a requirement at this stage.  There should 

also be evidence of progressive reduction of FMD incidence in domestic animals in at least 

one zone in the country, and that the country is moving towards progressive reduction of FMD in 

the whole country. 

 

In all stages highlighted above, epidemiological analysis is a fundamental component to fulfilling 

the requirements of each stage and providing evidence for advancing through the PCP.   

Many of the activities initiated in stage 1 should continue in later stages, together with optimizing 

surveillance and risk-based control measures with the available resources. This thesis will focus 

on how recent and newly developed epidemiological approaches can be applied to support key 

activities across different stages of the PCP, including identifying FMD risk hotspots, evaluation of 

the impact of vaccination programs, developing a working hypothesis of virus circulation, and 

ongoing monitoring of circulating FMDV strains. 
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1. Identifying FMD risk hotspots 

When FMD is endemic in the country, it is not always feasible or cost effective to 

implement control measures throughout the country. What is economical is to identify 

high risk areas for FMD which also can be a potential source of FMD and focus on those 

areas. Several studies have identified spatial-temporal clusters that identify FMD high-

risk areas in different countries in Asia, including Thailand (Arjkumpa et al., 2020), China 

(Chen et al., 2020), Vietnam (Lee et al., 2020), and Bangladesh (Rahman et al., 2020). 

There are other studies that identify FMD risk hotspots accounting for both outbreak 

numbers and the risk factors using logistic regression models, such as in Bhutan  (Dukpa 

et al., 2011) Japan (Muroga et al., 2013), Afghanistan (Wajid et al., 2020), and Sri Lanka 

(Gunasekera et al., 2017).  

 

While spatio-temporal cluster analysis can be utilized to identify areas where more or less 

outbreaks have been recorded relative to null expectations, regression models are 

typically used to incorporate risk factors and sometimes to show whether FMD risk has 

increased or reduced over time. Commonly identified risk factors for FMD in cattle and 

buffaloes include host density, animal movement-related, and husbandry-related risk 

factors. For example, transmission occurs when animals share resources, such as 

grazing in the same field or being fed with grass cut where an infected animal has been 

grazing. In addition, FMD outbreaks have been  shown to be seasonal in some endemic 

regions (Lee et al., 2020, Arjkumpa et al., 2020). Seasonal, climatic, and environmental 

factors can correlate with husbandry systems, patterns and timing of animal movements, 

and survivability of the virus outside the host. 

 

In India, no studies to our knowledge have been carried out to identify risk hotspots and 

their underlying drivers, which could be important for pursuing zonal freedom. One study 

conducted in Karnataka identified there is a seasonal pattern for FMD occurrence, 

livestock density, infected serotype and agroclimatic zone determines the number of 

outbreaks (Hedge et al.,2014). Several studies have outlined theoretically what should be 

done to control FMD in India (Pattnaik et al., 2012, Biswal et al., 2015), but a quantitative 

understanding of spatial dynamics is not available. In Vietnam, high risk FMD clusters 

have been identified using SatScan analysis, but to our knowledge there are few studies 

to identify risk factors in a spatial framework. In a farm-based study published in 2017 

focusing on north Vietnam, it was identified that FMD risk will change with farm size, age 

of the animals, and type of animals (beef cattle) (Ferreira et al.,2017). 
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Drawbacks of many risk factor studies as well as analyses of the impact of vaccination on 

outbreak numbers  are the fact that they are mainly based on the reported outbreak 

numbers and, importantly here, they do not account for spatial autocorrelation in outbreak 

occurrence and among risk factors. For example, if a high-risk state/province experiences 

high numbers of outbreaks, the adjacent states may also document higher numbers of 

outbreaks based on their proximity to the high-risk area, making it challenging to tease 

apart the risk factors and identify high-risk areas. Bayesian models provide a better 

platform to account for autocorrelated data. When epidemiological risk models for FMD 

are reviewed across the world, however, only 4.1% (2/48) utilized Bayesian models 

(Souley Kouato et al., 2018).  

 

2. Evaluation of the impact of vaccination programs. 

As a part of monitoring the impact of the control measures, it is important to show a 

reduction in the number of outbreaks over time and serologically confirm the number of 

FMD positive animals are reducing with time. In addition, pre- and post-vaccine 

monitoring includes assessing (inferred) protective antibody titers in animals, as 

measured by LPB ELISA (liquid phase blocking enzyme-linked immunosorbent assay) to 

check for structural protein-related antibodies. To differentiate vaccinated animals from 

naturally infected animals, a 3ABC ELISA test is commonly used to detect antibody 

response against nonstructural proteins (de Carvalho Ferreira et al., 2017, Brito et al., 

2017). A highly purified vaccine should not contain the nonstructural proteins. Since the 

serology monitoring is conducted at the field level, there could be several drawbacks to 

evaluate the impact of the vaccination program. According to OIE guidelines, it is 

important to have an animal identification system in place to measure pre- and post-

vaccination antibody titers, with sampling conducted in in an age stratified manner as 

older animals have higher antibody levels. Vaccine monitoring should continue 

throughout different stages of PCP. 

  

Studies have evaluated the impact of the vaccination program in India as field trials   

(Sharma et al., 2014) (Mahapatra et al., 2015). Currently used vaccine strain in India 

against Serotype O,  O/IND/R2/75 was evaluated against the circulating serotype O 

strains in the country using the virus neutralization test  and it was identified as having a 

79% match (Mahapatra et al., 2015). The efficacy of vaccination was identified comparing 

districts with the vaccination program to districts without the vaccination program from a 

longitudinal serological study (Sharma et al 2014). However, a major drawback of these 

studies, as well as similar studies analyzing the relationship of vaccination to outbreak 

data through time, is that they often fail to account for spatial and temporal 
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autocorrelation in the data, which could make it more difficult to quantify the impact of 

vaccination.  As described in (1), Bayesian spatio-temporal models provide a robust 

framework to disentangle the effect of vaccination programs on outbreak numbers 

alongside other spatial and temporal factors. 

 

3. A working hypothesis of the virus circulation 

Because the PCP pathway is outcome-oriented, different countries will determine 

patterns of virus circulation in different manners. Understanding FMDV circulation is 

important to identify where to implement control measures, which is particularly important 

for building the foundations for transitioning from stage 3 into stage 4 of the PCP. 

Serological monitoring of the virus across the country, risk factor analysis, and molecular 

epidemiological analysis for FMDV sequence data isolated from different parts of the 

country can also be used to identify patterns and test hypotheses regarding FMDV 

circulation in the country.  

 

Except for few island nations, most countries in Asia are connected by geographical land 

borders. In addition, three different FMD pools exist in Asia known as pools 1, 2, and pool 

3 based on circulating serotypes and topotypes (Paton et al., 2018). Transboundary and 

trans-pool spread of FMDV has been extensively documented (Bachanek-Bankowska et 

al., 2018, Brito et al., 2017a). Some of the countries have robust border controls in place 

for political reasons (India and Pakistan and China) that may act to limit animal 

movement and segregate these different FMD pools. Otherwise, illegal animal movement 

is common in Asia (Landes et al., 2020.) and plays a significant role in the spread of 

infectious diseases such as FMD. It is important to incorporate the potential for 

transboundary dissemination of FMDV in FMD risk models. Furthermore, tracking both 

transboundary and domestic movements of animals is a critical component for disease 

control and preparedness in many countries (though few in Asia). Undocumented animal 

movement and unavailability of a proper animal identification system in many Asian 

countries have led to difficulties in quantifying population connectivity and identifying 

patterns of FMDV circulation. In such instances, proxies may be used for the purpose of 

modeling, such as road networks and  identifying areas where animals are free ranging. 

Road density may capture aspects of human movement and/or animal trade and animal 

product movements such as meat and milk. Some FMD risk models use human density 

as a proxy for areas where there is no livestock and detect human movement as a risk 

(Chhetri et al., 2010). Even in the absence of a national framework to understand animal 

movement, farm-based studies often collect data about recent introductions of new 

animals to the herd, or other animal movement related information. A majority of FMD 
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risk related studies identified animal movement and animal trade as the most reported 

risk factor (Souley Kouato et al., 2018).   

 

It is important to identify better methods to build and test  hypotheses regarding the virus 

circulation in the country. Recently, phylogeographic analyses have increasingly been 

utilized to reconstruct patterns of FMDV dissemination and can be used to uncover the 

history of both within country spatial and transboundary movement of the virus (Munsey 

et al., 2021,Muwonge et al., 2021,Bertram et al., 2018). Most likely, viral movement 

inferred by such analyses reflect underlying patterns of host movement that ultimately 

drive patterns of population connectivity (Makau et al., 2021, Di Nardo et al., 2011).A new 

horizon of phylogeographic models is to incorporate phylogeographic outputs on viral 

movement with other meta-data to explicitly test how different factors influence rates of 

viral movement (Di Nardo et al., 2021,Munsey 2021). In addition, using outputs of 

phylogeographic models as a proxy for population connectivity may be useful in Bayesian 

space-time models by better accounting for the impact of longer distance animal trade 

networks.  

 

4. Ongoing monitoring of circulating FMDV strains  

When a country advances through different stages of PCP, it is important to detect 

emerging FMD strains to determine appropriate vaccine strains. In addition, generation of 

geo-referenced sequence data can be instrumental to supporting other aspects of PCP, 

for example, to quantify patterns of circulation and test hypotheses related to how the 

virus circulates (as described above). Monitoring of circulating strains can be done via 

active surveillance, or as part of passive surveillance. More generally, surveillance can be 

active, passive or sentinel.  Active surveillance provides us the magnitude of the problem 

and a glimpse of population-level virus circulation. This is important related to FMDV, as 

emerging virulent viral strains are hard to capture by passive surveillance. Passive 

surveillance is the status-quo in India and Vietnam, as well as in many endemic 

countries. Typically, once a clinical outbreak occurs in each area, this will be reported to 

the district level veterinary office and from there, to the central veterinary office. In India, 

sero-surveillance and serotyping FMDV is carried out in regional laboratories. This 

includes serotyping of clinical materials from FMD outbreaks. Vaccine matching is 

performed to circulating field strains and phylogenetic analysis are performed to identify 

the variation in the virus (Subramaniam et al., 2015). A different study monitored  FMDV 

circulation in goats using serological data  (Ranabijuli et al., 2010). Annual reports from 

the Indian Council of Agriculture Research (ICAR) records sporadic active surveillance of 

FMDV in different states of India. According to PVS analysis of Vietnam, there is ongoing 
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active surveillance in Vietnam in selected provinces. As of now, neither of the 

surveillance systems in either country are risk based. Risk based surveillance is to focus 

surveillance on identified FMD high risk areas.  In PCP stage 3, active surveillance 

should be conducted for rapid detection of outbreaks in at least in a one zone of the 

country. Active surveillance of farms can be costly and time consuming, whereas passive 

surveillance is likely to miss subclinical circulation.  However, conducting surveillance at 

points where animals from many farms congregate (such as markets or slaughterhouses) 

may provide  robust and cost-efficient sentinel surveillance that could both a) identify 

circulating strains, and b) provide sequence data for molecular epidemiological studies 

that would support other aspects of the PCP.  

 

1.3 Framework of the research 

In summary,  this dissertation will demonstrate approaches to maximize the utility of 

epidemiological data for supporting different stages 1-3 of the PCP pathway and for tailoring 

control measures in FMD-endemic countries in Asia (Table 1.1).  

 

Table 1.1: Steps of PCP this study target to contribute are highlighted in gray color.  

Progressive Control Pathway Chapter 2 

India 

Chapter 3 

Vietnam 

Chapter 4 

Vietnam 

Stage 1 

 

 

Activities 

to 

understand 

FMD risk 

Implement risk-based approach 

to reduce FMD 

   

Hypothesis of how the FMDV 

circulate in the country including 

currently circulating strains  

   

Value chain analysis    

Socio economic impact of FMD    

Evaluation based on OIE-PVS 

pathway 

   

Regional collaboration     

FMD risk hot spots are identified    

Identify strategies to control FMD  Risk factors identification  

Stage 2 

 

 

    

Ongoing monitoring of the 

circulating strains  

   

Implement risk-based zone 

targeted control measures  

High risk area identification  
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Risk based 

strategic 

plan 

Show impact of FMD reduced 

with control measures  

Evaluation 

of the 

vaccine 

program 

  

Allocation of sufficient resources    

Stage 3  

 

 

 

Reduction 

of outbreak 

incidence 

and virus 

circulation 

in at least 

on zone of 

the country 

    

Evaluate the incursion of new 

serotypes  

  Enhanced 

FMD 

surveillance  

Sustainable veterinary services     

Legal framework for animal 

identification  

   

Analysis of virological and 

outbreak data and analysis of 

serological survey  

   

FMD contingency plan     

Strengthening the veterinary 

service of the country for own 

epidemiological investigations 

   

Rapid detection of outbreaks at 

least in a one zone of the country 

 

  Improved 

surveillance 

Endorsement of the official 

control program by OIE 

   

 

Here, we use data available from India and Vietnam as examples of to apply quantitative tools to 

support PCP. Both India and Vietnam appear to play pivotal roles in FMDV circulation in South 

and Southeast Asia, respectively; as stage 3 countries that may in the future seek to transition to 

stage 4, their example can serve as a roadmap for other countries progressing through stages 1-

3 of the PCP. The first aim applies Bayesian space-time regressions to explore the FMD situation 

in India to factors underlying the spatial heterogeneity in risk of reported outbreaks, including an 

assessment of how mass vaccination impacted the spatial and temporal distribution of disease. 

However, such spatial models account for population connectivity by incorporating spatial 

autocorrelation amongst contiguous spatial units, which is likely a poor representation of 

population connectivity for highly mobile hosts such as livestock.  In most endemic countries, 

databases of livestock transport data are not available. Yet, patterns of viral movement can be 

inferred from phylogeographic models.  Therefore, the second aim focus on Vietnam, where we 

have a rich dataset of FMDV sequences. Here, we apply the same space-time regression 
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approach for modeling reported outbreaks but compare and contrast whether inferences on 

between-province connectivity from phylogeographic models provide a better fit to the outbreak 

space-time regression than using spatial adjacency as the sole metric of population connectivity. 

Finally, understanding FMD viral diversity and the risk factors one can identify how important it is 

to early detection the virus by strengthening the surveillance measures in a country. Monitoring 

circulating virus strains and rapid detection of outbreaks are a necessity in the stage 3 of PCP. 

Conventional methods of surveillance will not be cost effective, and it is important to identify 

sentinel surveillance points to detect emerging outbreaks such as slaughterhouses.  This has 

been explored in the 3rd chapter using data from Vietnam. The final chapter is an overview of 

proposed methods to improve FMD control measures in FMD endemic countries in Asia following 

the PCP pathway. Figure 1.1 provides an overview of the framework of this thesis. 

 

 

Figure 1.1: Framework of the thesis from the chapter 1 to 5.  
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Chapter 2: Spatiotemporal dynamics of foot-and and-mouth disease outbreaks in 

India, 2008-2016 

2.1 Introduction 

Foot-and-Mouth Disease (FMD) is caused by an aphthovirus in the Picornaviridae family that 

affects cattle, buffalo, pigs, and other domestic and wild ungulates. Classical infection produces 

clinical signs of fever and vesicles in the mouth, tongue, hoof, and udder, affecting production and 

leading to economic losses (Arzt et al., 2011). However, FMDV is also known to cause various 

forms of subclinical infection (Stenfeldt and Arzt, 2020) and has been associated with abortion in 

cattle in India (Ranjan et al., 2016). FMD is endemic across many countries or regions of Asia, 

South America, and Africa, where estimated economic losses range from $6.5 to 21 billion USD 

annually (Knight-Jones and Rushton, 2013). Preventing the transboundary spread of FMD into 

disease-free countries, including many countries in Europe and North America, plays a major role 

in shaping international trade policies (Shanafelt and Perrings, 2017). In the past two decades, 

several widespread viral lineages of serotypes O, A and Asia1 have emerged from the Indian 

sub-continent, suggesting that it is a hotspot for viral evolution and subsequent transboundary 

spread (Brito et al., 2017b). For example, the O/PanAsia II lineage of FMD emerged in 2003 in 

the Indian subcontinent, and O/ME-SA/Ind2001d emerged in 2001, re-emerged in 2008 (Knowles 

et al., 2016,Dahiya et al., 2020, Subramaniam et al., 2015), and has spread to adjacent regions 

such as North Africa, Middle East, and Southeast Asia through approximately 13 transboundary 

escape events (Bachanek-Bankowska et al., 2018,Vu et al., 2017). Incidentally some of these 

lineages are first reported from India, possibly due to having a relatively better surveillance 

system in-place among all the countries in the South Asia region. Therefore, understanding the 

epidemiology of FMD in the India is critical and of utmost importance for supporting the regional 

FMD control initiatives and controlling the disease globally. 

 

India has a population of 302.34 million cattle and buffalo (20th livestock census, 2019).The size 

of the bovine population in some of the administrative units or states of India is similar to that of 

individual countries in Africa, Asia and Europe. The country is the largest global producer and 

consumer of dairy, with dairy products contributing ~70% of total livestock income of India, and 

the third largest beef exporter (Kumar, 2012, Hemme et al., 2003).  

 

The total farm-level economic loss projected due to FMD in cattle and buffaloes in India was USD 

3159 million, USD 270 million and USD 152 million, respectively during the severe, moderate and 

mild incidence scenarios (Govindaraj et al., 2021). 

 

Presently, a trivalent vaccine, which confers protection against serotypes O, A, and Asia1 has 

been used in the country. The National FMD Control Program (FMDCP) was started in 54 
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selected districts in 2003-04, and subsequently expanded in a phase-wise manner. Indian states 

are enrolled in either of two regular vaccination programs, namely, the central government 

vaccination program (FMDCP) or the Assistance to States to Control Animal Disease (ASCAD) 

program, with the programs beginning in different years in different states. FMDCP is a biannual 

vaccination program in which the trivalent vaccine is administered to cattle and buffaloes, while 

ASCAD is an annual vaccination program (Hegde et al., 2014). Currently the entire country is 

covered under National Animal Disease Control Programme in which all the susceptible species 

are vaccinated against FMD twice a year. For FMDCP, vaccine production, monitoring, and 

surveillance are conducted by the Indian government. Pre- and post-vaccination monitoring 

includes the determination of antibody titers by ELISA before and after each round of vaccination 

(Pattnaik et al., 2012). At the population-level, it is desirable for 80% of animals to have adequate 

protection (inferred through antibody titers) to minimize the risk of widespread outbreaks 

(Metwally and Münstermann, 2016).  

 

The World Animal Health Organization (OIE) and the World Food and Agriculture Organization 

(FAO) have developed a set of outcome-oriented guidelines for FMD endemic countries to reach 

FMD-free status, which is known as the Progressive Control Pathway (PCP) (OIE/FAO). Most 

countries in Asia, including India, are in stage 1 to 3 of the PCP. In stage 1, risk from FMD and 

available control options will be identified. By stage 2, a country is expected to have a risk-based 

strategic control plan with an FMD monitoring and evaluation system in place. In stage 3, a 

country should continue to monitor disease risk, analyze passive and active surveillance data to 

show progressive reductions in FMDV occurrence, and implement its strategic control plan, which 

may include pursuing FMD-free zones with vaccination within the country. Vaccination plays a 

major role in achieving this task. To date, very few studies have been carried out to identify risk 

factors for FMD and the spatial distribution of risk in the country (Hegde et al., 2014, Sharma et 

al., 2014). In addition, an evaluation of the success of vaccination programs in reducing 

outbreaks is key to understanding the role of such programs in controlling FMD and achieving 

FMD zonal freedom with vaccination. Several studies have recognized the importance of 

optimizing the vaccination program, controlling animal movements, and conducting effective 

surveillance for FMD control in India (Biswal et al., 2019, Pattnaik et al., 2012). Rigorous spatial 

epidemiological methods are yet to be applied to understand how vaccination and other factors 

relate to the spatiotemporal pattern of outbreaks in a changing epidemiological scenario on 

account of increased population immunity. 

 

The objective of the current study was to model the spatiotemporal dynamics of FMD outbreaks 

and assess the contribution of mass vaccination campaigns in reducing FMD outbreaks in India. 

We first assessed vaccination outputs through an evaluation of antibody titer data collected as 
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part of pre- and post-vaccination monitoring. Using a Bayesian space-time model that accounts 

for underlying spatial dependencies often present in disease data (Machado et al., 2019,  

Branscum et al., 2008, Chhetri et al., 2010), we then investigated the impact of mass vaccination 

programs on the occurrence of reported FMD outbreaks over time alongside other factors that 

have the potential to influence spread, such as variables related to animal movement, 

intermingling of animals at grazing areas, proximity to international borders, and environmental 

factors. Results presented here will ultimately contribute to evaluation of progress of India’s mass 

vaccination campaigns and support country progress in the context of the progressive control 

pathway for the control of the disease. 

 

2.2 Materials and Methods 

2.2.1 Study area and data sources 

There are 29 states and seven union territories in India, and each state is further subdivided into 

administrative districts. The first phase (Phase I) of the FMDCP began in 2003 as a pilot study 

(Mahapatra et al., 2015). At the beginning of the FMDCP Phase I, nine states and one union 

territory were part of the mass vaccination program, and not all districts within each state were 

included. In the second phase of FMDCP (starting between 2010 and 2011, depending on the 

state), all districts within the participating states were part of the vaccination program except for 

Uttar Pradesh (an administrative unit in northern India with 50.2 million bovine population). In 

Uttar Pradesh, only 16 of 75 districts participated in the vaccination program as of 2018. By 2018, 

all seven union territories and 11 of 29 states were covered by FMDCP without exceptions. 

During phase 2 of the FMDCP vaccination program, it has been estimated that 38% of the total 

cattle and buffalo population of India were vaccinated (Mahapatra et al., 2015). The 3PD50 

potency trivalent (serotypes O, A, and Asia1) vaccine used in India contains three times the 

protective dose required to protect 50% of the animal population (Pattnaik et al., 2012). 

 

Data on pre- and post-vaccination FMDV antibody titers (see below) and annual reported number 

of outbreaks from each state were obtained from the annual summaries of the Directorate of Foot 

and Mouth Disease of the Indian Council of Agricultural Research (ICAR-DFMD, Ministry of 

Agriculture), which is the national referral center for FMD diagnosis. Outbreak data were 

generated through passive surveillance, where an outbreak was defined as a report of clinically 

FMD-infected animals from the same village/district (OIE) which was further confirmed by 

laboratory tests conducted on referred clinical samples. The number of infected animals was not 

available for a given outbreak. Outbreak data were reported at the state and not the district level. 
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2.2.2 Serological data 

As outlined above, mass vaccination of cattle and buffalo was carried out by the Indian 

government once every six months in the selected states and districts that were part of FMDCP. 

To determine antibody titers pre-vaccination, sera samples were collected at the time of 

vaccination for each biannual round of vaccination. Sera samples were also collected at 21 to 30 

days post-vaccination. Sampled animals were selected at random and the pre- and post-

vaccination samples may or may not come from the same animal. On average, the number of 

animals per state from which samples were collected ranged from 100 to 1000 animals per 

sampling round. 

 

Sera samples were tested for reactivity against FMDV using Liquid Phase Blocking (LPB)-ELISA, 

which was used to infer protective antibody titers against FMDV structural proteins at an inferred 

protection level of log 10 titer of 1.8. Change of log titer values were similar for all three serotypes 

O, A and Asia 1 as vaccination was conducted with a trivalent vaccine. Since serotype O 

accounts for more than 80% of the outbreaks (Britto et al., 2017b), only antibody titer change for 

serotype O are shown in the main text. For this study, antibody titer data was only available from 

states that were part of FMDCP phase I. Because LPB-ELISA cannot discriminate between 

antibody responses induced by vaccination verses natural infection, we could not determine 

whether inferred protection was the sole result of vaccination and not from previous natural 

exposure to FMDV. Data regarding the percent of animals with inferred protection pre- and post-

vaccination were summarized for each six-month round of vaccination.  

 

In contrast to LPB-ELISA, non-structural protein (NSP)-based ELISA differentiates vaccinated 

animals from naturally infected animals based on elicitation of a response to nonstructural 

proteins that should be absent in vaccine preparations. There is evidence that vaccination can 

elicit a transient NSP response in vaccinated animals in India (Mohapatra et al., 2011, Hayer et 

al., 2018). However, the majority of samples by NSP-based ELISA are expected to be from the 

previously infected individuals. Annual information on antibody titers of NSP ELISA were 

available only for certain states/administrative units for some years. Further, the animals sampled 

for NSP ELISA once in a year are not necessarily the same ones as sampled for LPB-ELISA. 

 

2.2.3 Descriptive analysis 

Data from pre- and post-vaccination monitoring obtained through LPB-ELISA from the phase I 

were analyzed to identify whether there was an increase in percent of animals with inferred 

protection before and after each individual round of vaccination, as well as to identify trends in 

inferred protection over time across multiple successive rounds of vaccination. 
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To evaluate whether there was a correlation between population immunity and FMDV circulation, 

the association between the percent of animals in each state over a period of eight years (2008-

2016) with inferred protection via LPB-ELISA (an indicator of population immunity) and percent of 

NSP ELISA-positive animals (an indicator of previous natural exposure) was evaluated using a 

Spearman’s correlation test.  

 

Bovine (cattle and buffalo) population data were obtained from the Department of Animal 

Husbandry and the Dairying census, Government of India, which was available for the years 2008 

and 2012. We averaged the two values to represent bovine population size per state. The 

reported number of outbreaks per state per year along with bovine population size per state was 

used to calculate a standardized incidence ratio (SIR) at the state level for the years 2008 to 

2016. Population size and nationwide outbreak counts were used to calculate the expected 

number of outbreaks per state per year (eit) if the distribution of outbreaks across space and time 

was proportional to population size, such that 

𝑒𝑖𝑡   = 𝑃𝑖𝑡  
∑ 𝑌𝑖𝑡𝑖𝑡

∑ 𝑃𝑖𝑡𝑖𝑡

 

Where Pit is the population of state i in year t, and Yit is the number of FMD cases in state i in year 

t. SIR was defined as the observed to expected ratio (Yit/eit). SIRs were plotted as choropleth 

maps for all years.                 

2.2.4 Conceptual framework of outbreak risk 

A conceptual diagram was created to represent pathways by which hypothesized risk factors 

could influence the reported number of outbreaks per state (Figure 2.1). Details on risk factor 

data are shown in Supplementary Table S2.1. Disease spread is expected to be influenced by 

contact, which is in turn influenced by host density, environmental factors, animal movement, 

organized farming practices, and other community activities like animal fairs. In addition to cattle 

and buffalo, goats and pigs are also affected by FMD and can transmit the virus to cattle and 

buffalo. If transmission is density dependent, then higher host densities are expected to translate 

to rapid spread and more outbreaks via increased contact frequency (Hegde et al., 2014). Under 

Indian socio-ecological conditions, bovine and caprine species are often reared by the same 

households. Livestock population data of goat density and pig density were therefore included in 

our model as categorical variables (high/low, split at the mean). The density of livestock was 

calculated per square km at the state level. 

 

Disease spread is also influenced by transmissibility, which is influenced in part by environmental 

factors that may affect the survivability of the virus outside the host. From previous studies, it has 

been identified that droplet nuclei of the virus can occur to a distance of 20 km and can persist in 

the environment for about a week at a temperature of 200C (Alexandersen et al., 2003). FMDV 
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can survive in temperatures up to 270C, but not extremely high temperatures (Donaldson, 1972, 

Mikkelsen et al., 2003). Temperature may be an important factor not only because of the optimal 

temperature for the survival of the virus outside the host, but also the efficacy of vaccines in the 

field depends on storage temperature (OIE Chapter 2.1.5). Wind speeds between 5 and 10 knots 

have been identified as favorable for FMDV transmission (2.57–5.14 m/s) (Gibbens et al., 2001). 

Therefore, annual averages for wind speed, rainfall, and temperature were included to capture 

environmental factors related to outbreak risk (Abatzoglou et al., 2018). Evaluation of intra-annual 

and seasonal variation was not possible since outbreak reporting was an annual value. However, 

to quantify areas with more extreme seasonality, annual variance (calculated across 12 months) 

of each environmental variable was also included. All environmental variables were centered at 

the mean and standardized. In addition, higher outbreak numbers have been reported in dryer 

agroclimatic zones in some parts of India (Hegde 2014), potentially due to environmental 

conditions within those regions or husbandry practices typical of different climatic conditions. For 

example, communal grazing increases local mixing among livestock herds, and could enhance 

disease spread. Climatic factors in combination with land cover (waterbody and forest density) 

may capture variation in husbandry practices common to different agroclimatic zones (Hegde et 

al., 2014). Thus, these with variables were included in the model (split into high/low categories at 

the mean, Supplementary Table S2.1). 

 

Animal transport within India (represented by road density as a proxy measure) or across 

international borders for trading and slaughter may promote disease spread and the occurrence 

of outbreaks. India is bordered by Pakistan, China, Nepal, Bhutan, Myanmar, and Bangladesh. 

FAO/OIE has categorized India and the surrounding endemic countries into different “pools” of 

FMD based on the predominant circulating serotypes and topotypes in each area (Paton et al., 

2018). The country and its neighbors are categorized into three different pools. Pool 1 includes 

Nepal, Bhutan, Myanmar, and China; pool 2 includes India, Sri Lanka, Bangladesh; and pool 3 

includes Pakistan. Dummy variables were introduced to the analysis indicating whether each 

state was bordered by a pool1, pool2 or pool3 country, or if the state did not have any 

international land borders (Supplementary table S2.1).  

 

For each year, states were categorized into two groups based on whether they were part of the 

FMDCP. In addition, the presence and efficiency of veterinary services within a state may 

influence both vaccination as well as outbreak reporting. The coverage of veterinary services in 

each state was calculated based on the percentage of veterinarians available relative to the 

number of veterinarians required by that state. This value was obtained from the OIE 

Performance of Veterinary Services (PVS) analysis for India. There was no substantial correlation 

between any variables (Supplementary Figure 2.1-2.2). 
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Figure 2.1: Pathways by which hypothesized risk factors may influence the reported number of 

FMD outbreaks per state per year. The outcome of interest is shown in the dark red box and 

measured risk factors in the shaded pale red boxes. Measured risk factors were interpreted as 

proxies for processes, shown in white boxes, that could potentially influence the occurrence of 

outbreaks, and reporting of outbreaks.  

 

2.2.5 Bayesian space-time hierarchical model 

The observed number of outbreaks per state per year was assumed to follow a Poisson 

distribution 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑒𝑖𝑡 , 𝜃𝑖𝑡), with yit  representing the number of FMD outbreaks in state i in 

year t;  𝑒𝑖𝑡 representing the expected number of outbreaks defined as above, and 𝜃𝑖𝑡 is the yearly 

relative risk for each state. This relative risk incorporated both spatially structured (spatial 

correlation amongst neighboring states) and unstructured (i.e., random variation) effects, such 

that: 

log(θi ) = 𝛼 + 𝜐𝑖 + 𝜈𝑖 +  Σꞵ 

Where α is the intercept representing the overall level of risk in country, ʋi is the structured spatial 

effect, and νi is the unstructured spatial effect that functions as a random effect for each state. 

Variables (fixed effects) that modify relative risk are represented by β. This model is known as the 

BYM2 model (Riebler et al., 2016). Penalized priors were used in the Bayesian analysis following 

previous studies (Fuglstad et al., 2019). 

 

Spatial-only model 

Because data for many of the risk factors were only available for a single point in time, a spatial-

only model was initially built to screen important risk factors among potential predictors. Although 



 
 

19 
 

we do not expect substantial annual variation in such variables (i.e., cattle population sizes are 

not expected to change rapidly), the spatial-only model was done so that significance of variables 

was not inflated due to replication of predictor data across years. 

 

For model selection purposes, univariable analyses were first performed separately for each 

variable. Backward selection was then performed from a full multivariable model by removing the 

variables with the widest confidence interval that overlapped zero. From among those different 

models, the simplest model that was <2 ∆DIC from the model with the lowest DIC value was 

considered the best-fit spatial-only model (Spiegelhalter et al., 2002). Risk factors in the best-fit 

spatial-only model were considered as candidate variables in the space-time model alongside 

temporally variable risk factors (in which yearly data were available from 2008-2016). 

 

Space-time model 

To incorporate temporal effects into the model of risk, a BYM2 model was used (Riebler et al., 

2016).  Several possible model structures exist to incorporate the temporal effect (summarized in 

Table 2.1): time (year) can be considered as a random effect (ωt , Equation 1 in Table 2.1), a 

structured effect (γt), in which a random walk is used to account for between-year dependencies 

(ωt + γt, Equation 2) and/or as a random, structured, and space-time interaction (ωt + γt + δit, 

Equation 3).The best model structure was selected from amongst these models using DIC. This 

structure was then used to evaluate the contribution of hypothesized risk factors in shaping 

relative risk. 

 

Table 2.1: Specification of different model structures, including DIC and posterior predictive p-

values. Each model adds additional components to the previous model. * DIC for the spatial-only 

model is not comparable to space-time model.          

Model Specification DIC P-values (lower, 
upper)  

Eq. 1. Spatial only model  log(θ
it
) = α+ v

i 
+ υ

t
  224.99* (15.2,0) 

Eq. 2. Space time model 
(time as an unstructured 
effect) 

log(θ
it
) = α+ v

i 
+ υ

t
 +ω

t
 2765.52 (63.7, 26.1) 

Eq. 3. Space time model 
(time as a structured effect) 

log(θ
it
) = α+ vi + υ

t
 +ω

t
 +ý

t
  2768.51 (63.7, 26.1) 
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Eq. 4. Space time model 
(space-time interaction) 

log(θ
it
) = α + vi +u

t
+ ω

t
 + γ

t 

+δ
it
 

  

1222.6 (33,0.7) 

 

We also calculated how much variability is explained by each component that made up the final 

model structure. Once the best model structure was selected, variable selection was performed 

as described for the spatial-only model, including temporally variable risk factors and spatial-only 

factors from the spatial-only model as candidate fixed effects. Excess risk (ER) for a given state 

was calculated as the proportion of the posterior for each fitted θit that exceeded 0.8. 

 

Prior sensitivity analysis 

We used non-informative penalized complexity priors, which are applicable for a large class of 

hierarchical models (Simpson et al., 2014). Since prior distributions can influence model results, 

we conducted a sensitivity analysis on the priors. Penalized priors consider that there is a base 

model and that the complex model that we obtain is a result of deviation from the base model. For 

Gaussian Random Field distributions, the base model can be given as π(x/ᶓ) where ᶓ=0. The 

objective of using the penalized priors is to make the model similar as possible to the base model. 

It has been identified that penalized priors can also account for model overdispersion (Simpson et 

al., 2014). 

 

The model was refitted with different penalized complexity priors and non-informative priors to 

evaluate the extent to which our results were sensitive to different prior assumptions 

(Supplementary figure S2.3). 

 

Model diagnostics 

The fit of the final model (selected based on DIC, as described above) was evaluated using 

posterior predictive p-values, defined as p(yi* ≤ y𝑖|y), where yi* is the posterior of the predicted 

distribution from the model. Posterior predictive p-values can be interpreted as an approximation 

of the proportion of the predicted distribution for yi that is more extreme than the observed value, 

and values of p (yi* ≤ y𝑖|y) near 0 and 1 indicate poor model fit. If the model is performing well, 

then a greater portion of the posterior of the predicted values should be >0.1 and <0.9 

(Blangiardo and Cameletti, 2015). In addition, the proportion of marginal variance for random 

effects and each model component was checked in the final model. The explained variability from 

the covariates was obtained as a percentage of change of standard deviation from the null model 

to the model with all the selected covariates. We also calculated the correlation between the 

predicted and observed values (Spearman’s correlation).  
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2.2.6 Software 

All analyses were performed in R statistical software. Different packages such as tidyverse 

1.2.123 (Wickham 2017), spdep 0.7–425 (Bivand et al.,2015), dplyr, stringr, and ggplot2 were 

used. For the Bayesian models, INLA 19.09.03 (Rue et al., 2019) was used, and model results 

were processed with INLAOutputs 19.09.03 (Baquero et al., 2018). 

  

2.3 Results 

2.3.1 Descriptive results 

A total of 3282 outbreaks were reported over a period of nine years from 2008 to 2016, with 

substantial heterogeneity in the spatial and temporal occurrence of outbreaks (as shown by SIR 

values) across states and years (Figure 2.2). An outbreak is defined as occurrence of one or 

more cases  in the studied area with the same likelihood of exposure to FMDV (Terrestrial Code, 

OIE). During this time period, we summarize the antibody titer data measured in 1,002,437 

animals via LBP-ELISA. Antibody titer data were only available for states that were part of 

FMDCP phase I. This pre- and post-vaccination monitoring demonstrated that the percent of 

animals with inferred protection for serotype O generally increased after vaccination, but there 

was high variation between states and through years (Figure 2.3). Similar trends were observed 

for serotypes A and Asia1 (Supplementary Figure S2.4). 
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Figure 2.2: Annual standardized incidence ratio (SIR) of reported FMD outbreaks from 2008 to 

2016. 
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Figure 2.3: Percent of animals with inferred protection based on antibody titers pre- and post-

vaccination (A) overall, (B) for each state summarized across all rounds of vaccination, and (C) 

post-vaccination through time by state. In (A) and (B), pre- and post-vaccination values are 

shown in blue and red, respectively, for serotype O. In (C), a Loess smoothed line was plotted to 

visualize an overall increasing trend. States that participated in the FMD PCP phase I are only 

considered. 

 

For years in which NSP-ELISA data were available (2009-2016), there was a statistically 

significant negative correlation between the percent of animals positive to LPB-ELISA and NSP-

ELISA at the state level (σ = -0.39, p<0.01). There was no significant correlation between NSP 

sero-prevalence and the number of outbreaks per state per year (σ = 0.17, p-value=0.10) or SIR 

(σ = 0.11, p-value=0.32). However, the percent of animals with inferred protection via LBP-ELISA 

was negatively correlated with raw outbreak numbers (σ = -0.29, p<0.001) and SIR (σ = - 0.25, p-

value=0.03).  
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2.3.2 Bayesian modeling results 

Selection of best model structure 

Table 2.1 shows the different space-time models that were tested to select the best fitting model 

structure based on DIC. For the selected model structure that best fit the data (Eq 4, Table 2.1), 

the unstructured spatial effect accounted for 62% of the variability, whereas the structured spatial 

effect accounted for only 14.6% of the variability (Supplementary Table S2.2). This means there 

was relatively little correlation in the occurrence of reported outbreaks across neighboring states 

through time. The other factor that accounted for substantial variability was the space-time 

interaction effect.  

 

Univariable analyses of potential risk factors 

Variables for which data were only available for one year were first screened in univariable 

spatial-only models, whereas time-varying variables were screened in univariable spatiotemporal 

models. Variables that were associated with reported outbreaks (credible interval of odds ratio 

does not overlap one) are shown in the Table 2.2. The complete list of variables is included in the 

supplementary materials (Supplementary table S2.3 and S2.4). In the spatial-only models, 

bordering a country of pool 1, having higher pig density and higher forest coverage was 

associated with increased relative risk of outbreaks, whereas states with no international border 

had reduced numbers of reported outbreaks. In the space-time univariable analysis, the risk of 

reported outbreaks decreased if a given state was in the vaccination program. All univariable 

models included the underlying terms that accounted for spatially structured and unstructured 

effects, as well as temporal effects if applicable. 

 

Table 2.2:  Results of the univariable analysis for the a) spatial-only model and b) space-time 

model (coefficients and credible intervals are exponentiated to be on the odds scale). 

 Univariable model DIC Coefficient (Credible Interval) 

A) Spatial-only 

models 
    

No international border 228.35 0.52 (0.06,0.74) 

Bordered by country of FMD pool 1  229.33 6.11 (1.72, 21.93) 

Pig density (reference: low) 229.81 2.23 (1.06, 4.72) 

Forest coverage density 

(reference: low) 
230.25 3.81 (2.07, 7.06) 

               B) Space time model       

Participation in the vaccination 

program    (reference: No) 
1224.01 0.41 (0.22,0.78) 
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Best-fit multivariable model 

Fixed effects identified from the best-fit multivariable spatial-only model were bordering a pool 1 

country, not having an international border, waterbody density, road density, pig density, forest 

coverage, and veterinary service fulfillment percentage at the state level (Supplementary Table 

S2.5).These variables were included as candidates in the multivariable space-time model. Two 

predictors were retained in the final space-time model: No international border and participation in 

the vaccination program (Table 2.3). Fitted relative risk values calculated from the best-fit model 

for each state are shown in Figure 2.4. Most border areas show continuous high risk throughout 

the years. In addition, relative risk increased in some areas while decreased in others. Excess 

risk peaked in many states between 2011 and 2013 (Supplementary figure S2.5). 

The sensitivity analysis of model priors demonstrated that similar DIC and p-values were 

produced regardless of choice of priors. Fitted and observed values have a Spearman’s 

correlation of 0.93. 

Table 2.3: Results from the final Bayesian space-time model. Coefficients and credible intervals 

have been exponentiated to be on the odds scale.  

Fixed effect Coefficient 95% Credible Interval 

Intercept 1.64 (0.72, 3.68) 

No international border 0.27 (0.08, 0.99) 

Participation in the vaccination program 

(reference: No) 
0.45 (0.24, 0.84) 
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Figure 2.4: Fitted relative risk of outbreaks for each state from the best-fit multivariable model. 

 

2.4 Discussion 

In this study, we first conducted a descriptive analysis of epidemiological outcomes of 

governmental FMDV vaccination programs in India. This analysis showed that the states that 

were in the vaccination program had fluctuations in the percent of animals with inferred protective 

antibody titers through each round of vaccination across years and states, but there was a 

general increase in the percent of animals with protective antibody titers after each round of 

vaccination and across time. We then analyzed the distribution of reported FMD outbreaks by 

using a Bayesian space-time model to map high-risk areas and identify factors that influence risk 

in order to inform risk-based control strategies. This model demonstrated that states that were 

included in the vaccination program and did not have an international border experienced 

reduced risk of FMD outbreaks. This result warrants more stringent vaccination and sero-

monitoring and movement restrictions at international borders. 
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India has used FMDV vaccination as a control measure since the 1980s. The trivalent vaccine 

produced in India has a protective effect against the circulating outbreak strains of serotype O, A, 

and Asia1, and studies have been carried out on vaccine safety and efficacy (Mahapatra et al., 

2015, Mohanty et al., 2015, Subramaniam et al., 2015). Approximately one third of India’s cattle 

and buffalo population have been vaccinated through the government’s FMDCP program 

(Pattnaik 2012). At the beginning of the program, only some districts in each state were included 

in the program, but the number of districts and states included has increased through time. 

Following PCP guidelines for stage 3, India has conducted pre- and post-vaccination sero-

monitoring according to OIE guidelines to monitor the population-level immunity since 2008. For a 

given round of vaccination, as expected, antibody titers were higher post-vaccination compared to 

pre-vaccination (Figure 2.3A, Supplementary Figure S2.4). However, there was substantial 

heterogeneity across states and between years (Figure 2.3B and C), and the percentage of 

animals with inferred protection often fell below OIE’s recommendation of >80% coverage 

(Metwally and Münstermann, 2016). 

 

Population demographics, turnover, and waning immunity all may contribute to periodic dips 

below the 80% threshold (Knight-Jones et al., 2016). According to a study conducted in Turkey, 

biannual mass vaccination can leave gaps in population-level immunity. Among other factors, 

young animals may have received insufficient vaccine doses to attain long-lasting immunity, and 

also animals in late pregnancy are sometimes not vaccinated, resulting in declines in population-

level immunity just prior to the subsequent round of vaccination (Knight-Jones et al., 2016). Due 

to herd demographics and semi-intensive management practices, it was concluded that 

vaccination without biosecurity may not be able to control FMD in Turkey (Knight-Jones et al., 

2016). Similar dynamics may also occur in India, as shown by the high spatial and temporal 

variation in the percent of animals with inferred protection, and these spatial and temporal gaps in 

herd immunity may allow for the persistence and spread of FMDV in the country. The proportion 

of animals with inferred protection could also have been influenced by inconsistent vaccine 

administration, delay in re-vaccination, lack of booster doses in the primo-vaccinated calves, 

transboundary introduction of naïve animals, and transport conditions, which could have 

contributed to variable antibody titers. 

 

We also investigated the relationship between the occurrence of FMDV within states and 

vaccination data (i.e., participation in FMDCP or the percent of animals with inferred protection 

via LPB-ELISA). We used two imperfect measures to quantify the extent of FMD circulation: 

standardized incidence ratios (SIR, based on reported outbreaks) and NSP-based sero-

prevalence. Outbreak reporting can be inconsistent and likely provides an incomplete picture of 

FMDV incidence. In contrast, the NSP-ELISA data captured the percentage of animals with an 
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anti-NSP response, which is indicative of natural infection. A naturally infected animal is also 

expected to be positive on LPB-ELISA, thus the percent of animals with inferred protection 

(based on LPB-ELISA) cannot discriminate between immunity due to vaccination or natural 

infection. However, during the period under study, the percent of animals positive on LBP-ELISA 

and NSP-ELISA was negatively correlated. These results suggest that a) LPB-ELISA data can be 

interpreted as an indicator of vaccine coverage rather than natural virus circulation, and b) areas 

with higher vaccine coverage experienced reduced circulation of FMDV (as shown by low NSP 

sero-prevalence and fewer reported outbreaks). These results are in agreement with a study 

conducted in 2014, which identified that the states in the biannual vaccination program performed 

better in terms of reporting lower disease incidence in herds by a series of cross-sectional studies 

(Sharma et al., 2014). In our study, though fewer outbreaks and lower SIRs were reported in 

states with higher LPB seroprevalence. Once we accounted for spatiotemporal dynamics in the 

space-time model, participation in the FMDCP reduced outbreaks by ~55%.  

 

To better understand heterogeneities in outbreak occurrence within India, we developed a 

Bayesian space-time model that allowed us to examine risk factors associated with outbreak risk 

alongside model components that accounted for the spatial interdependency of risk across states. 

Although reported outbreak numbers are likely an underestimate of the true number of outbreaks, 

analyzing patterns of reported outbreak occurrence does advance our understanding about the 

factors that cause outbreaks. An examination of the variance explained by each component 

making up the model’s structural backbone (Supplementary table S2.2) revealed initial insights 

into processes shaping outbreak risk. First, the unstructured spatial effect (which essentially 

operates as a random effect for each state) contributed the most to explaining variability in the 

outcome, which suggests that there were unaccounted for variables at the state level that were 

important in structuring outbreak risk. These could include animal movement for grazing and 

trading, and human movement related to biosecurity of farms, among others. In contrast, the 

structured spatial effect explained relatively little variation, indicating that the outbreak risk in one 

state was not closely correlated with the occurrence of outbreaks in neighboring states. Likely, 

this pattern may be because states in India are large, and a smaller spatial scale would better 

capture the local spatial dynamics of outbreak propagation. Also, this result suggests that 

outbreaks or control programs in one state would not have large impacts on the adjacent state. 

 

From our model, it is evident that relative risk of outbreaks changes through time and space, 

though there are some states that were more consistently at higher risk (Figure 2.4). The two 

variables retained in the final model were participation in the FMDCP vaccination program and 

not having an international border. The relative risk of outbreaks in states that were part of the 

FMDCP during 2008 to 2016 was about one half that of states that were not part of the program. 
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This is consistent with our descriptive analysis on the importance of vaccination. It is also notable 

that we observe a benefit of the FMDCP in the number of reported outbreaks state-wide, despite 

the observed variability in percent of animals with inferred protection and that the FMDCP did not 

always extend to all districts within the state. 

 

The other important risk factor identified by the model was a ~70% reduction in the relative risk of 

outbreaks in states with no international border. Thus, international borders increased the relative 

risk of outbreaks. In a longitudinal study conducted in 2014 to determine serological herd 

immunity, it was identified that for that year, border states such as Assam, Rajasthan, Jammu 

and Kashmir, West Bengal, and Uttar Pradesh were at high risk due to low population immunity. 

There were also instances where high incidence of FMD was observed in border states even 

where herd immunity was high (Sharma et al., 2014). We observed the same pattern of border 

states having greater excess risk (Supplementary Figure S2.5), including the states of 

Meghalaya, Assam, Arunachal, and Jammu & Kashmir. 

 

The potential for transboundary introductions of novel FMDVs into India from neighboring 

countries may in part explain the risks associated with international borders. This may occur 

through movement of subclinically infected animals or fomites (Stenfeldt and Arzt, 2020). 

Alternatively, transboundary value chains may result in high risk in certain border states if animals 

are transported to border states from elsewhere in India prior to exportation. Legal and illegal 

animal movement occurs between neighboring countries, but the extent of such transboundary 

movements depends on the countries involved (Landes et al., 2017). Previous studies have 

identified that cattle and buffaloes are transported from India to Malaysia through Myanmar and 

Vietnam (all pool 1 countries), which may lead to the dissemination of FMDV  (Rweyemamu et 

al., 2008, Smith et al., 2016), and OIE has identified that the virus can spread extensively to the 

Southeast Asia region due to intensive livestock trade (Bartels et al., 2017). Bayesian 

phylogeographic reconstruction has previously effectively demonstrated transboundary and 

within-country movements of lineages of FMDV O/ME-SA/PanAsia (Brito et al., 2017). 

Interestingly, our spatial-only model suggests that bordering a country in pool 1 carried a higher 

risk, which would be consistent with the idea that transboundary movements with pool 1 countries 

shapes FMD risk within India, although this variable was not retained in the space-time model.  

 

Interestingly, excess risk peaked between 2009, 2011 and 2013 in almost all the states 

(Supplementary Figure S2.5). During 2013, widespread FMD outbreaks occurred in India, caused 

by the strain O/ME-SA/Ind2001d within serotype O. This strain also spread to other countries in 

the Middle East and Southeast Asia at this time (Subramaniam et al., 2015, Brito et al., 2017a), 
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suggesting that periods of excess risk in India may also translate to heightened frequencies of 

transboundary transmission.  

 

India is in the stage 3 of the Progressive Control Pathway (PCP) for FMD. Countries within this 

stage should engage in ongoing monitoring of risk and implementation of risk-based strategic to 

define a pathway to obtain freedom from FMD (with vaccination) in at least one geographic zone, 

including analysis of passive/active surveillance data to document epidemiological evidence of 

reductions in FMD incidence. Related to this, our results suggest that a feasible strategy may be 

to continue trying to decrease prevalence in identified high risk areas to mitigate the impact of the 

disease with special focus on states that are part of international borders. Alternatively, low risk 

areas identified from this spatial analysis could help delineate areas in which zonal freedom may 

be more readily attainable. 

 

There are several caveats to the interpretation of the serological data that present limitations to 

this study. First, NSP data were available only from 24 states out of 29 states for six years. In 

addition, transient increases of NSP titers can occur within 21 days of vaccination in up to 15% 

percent of previously uninfected animals, which complicates the interpretation of NSP results 

particularly if vaccination history is not available (Hayer et al., 2018, Mohapatra 2011). Second, 

animals can be positive on an LPB-ELISA from either vaccination or natural infection. The 

negative correlation between NSP-ELISA and LPB-ELISA data suggests that a) rates of LPB-

ELISA positivity likely represented vaccination rather than natural infection, and b) rates of NSP-

ELISA positivity were not coupled with vaccination. However, serial testing and monitoring for 

clinical signs is necessary to identify the changes in antibody titers in infected and vaccinated 

animals to determine whether animals have acquired antibodies due to infection or vaccination 

(Mohanty et al., 2015). Related to this, when pre- and post-vaccination antibody titers were 

compared at the state level, samples were not coming from the same animal which limits the 

conclusions we can draw from this comparison.  

 

Another limitation of this study related to the space-time modeling is that outbreak data come 

from passive surveillance, and there may be substantial under-reporting. If there are spatial 

biases in the extent to which outbreaks are under-reported, then this could introduce spatial 

biases to the SIR data and the data used for the space-time model.  We attempted to partially 

address this by including veterinary service coverage as a potential predictor, though it is unclear 

whether veterinary service coverage is a useful proxy for variable reporting and this factor was 

not retained in the final model. These types of potential bias are common in observational 

epidemiological studies that rely on passive surveillance; however, we believe there is still value 

in describing large-scale patterns of FMD incidence. In addition, we have no information about 
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the number of animals infected in each outbreak, which means that small and large outbreaks 

receive equal weight in our analysis. Finally, no environmental or climatic factors were retained in 

our best-fit model. This may be an artefact and limitation of the state-level spatial and yearly 

temporal scale of our analysis, which did not allow us to capture finer-scale spatial variation or 

seasonal effects. For example, it is suspected viral spread and FMD incidence increases with 

monsoon heavy rains in November through January, and more outbreaks are reported after the 

rains (ICAR reports). Future analyses could overcome the limitations imposed by the spatial and 

temporal resolution of our outbreak data by tabulating outbreak data on a finer spatiotemporal 

scale, thus enabling a better evaluation of the importance of environmental risk factors. The data 

for the year beyond 2016 has not been included in the present study because the country started 

using Solid Phase Competitive ELISA (SPCE) assessment of herd immunity, and this could 

create confusion in the pattern of protection at population level. 

 

Conclusion 

In this study, we have shown that the standardized incidence of FMD outbreaks has reduced over 

time with the implementation of mass vaccination, though the percent of animals with inferred 

protection was highly variable through space and time and often fell below the desired threshold 

of >80%. Over the same time period, the percentage of animals with inferred protection was 

negatively correlated with the number of reported outbreaks in a state. Through implementing a 

Bayesian space-time model, we have demonstrated that states that were part of the FMDCP 

experienced a ~50% reduction in the risk of reported outbreaks. Our results also demonstrate a 

substantial risk of outbreaks associated with international borders, suggesting a role of 

transboundary movements of animals or fomites in shaping FMD incidence. For India to proceed 

with a risk-based strategic control plan, it is important to reinforce surveillance activities and 

animal movement control at states with international borders. This study advances understanding 

of risk factors associated with high risk areas, which will contribute to a better understanding of 

viral circulation and contribute towards efforts to reduce disease prevalence.  

 

Table S2.1. All the variables used in the analysis. 

Variable  Description 

and units 

mean                        

(1
st

 & 3
rd

 

quantile) 

Resolution/ 

calculation  

Source  

Cattle 

density 

  Mean 

95.039 

/Km
2

 

Total cattle 

population in 

the state/ total 

Sq Km area 

of the state  

India Department of Animal Husbandry 

and the Dairying census, India 

(http://www.dahd.nic.in/about-

us/divisions/statistics) 

Pig density 2 Mean 7.60 

(0, 51.44) 

Total pig 

population in 

India Department of Animal Husbandry 

and the Dairying census, India 

http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
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(reference: 

low) 

  

High 7.6 to 

51.44/km
2

 

Low 0 to 

7.6/km
2

 

the state/ total 

Sq Km area 

of the state 

(http://www.dahd.nic.in/about-

us/divisions/statistics) 

  

  

Goat 

density 

  

2 

(reference: 

low) 

Mean 

36.33  

High:  

36.32-

129.64 

/km
2

 

Low: 0.05-

36.32 / 

km
2

 

Total goat 

population in 

the state/ total 

Sq Km area 

of the state 

India Department of Animal Husbandry 

and the Dairying census, India   

http://www.dahd.nic.in/about-

us/divisions/statistics 

Road 

density 

2 

(reference: 

low) 

Mean 0.52 

  

High 0.52-

2.94/km
2

 

Low 0.004 

to 

0.52/km
2

 

  

Total road Sq 

Km in the 

state/ total Sq 

Km area of 

the state 

India Department of Animal Husbandry 

and the Dairying census, India   

http://www.dahd.nic.in/about-

us/divisions/statistics 

Waterbody 

density 

2 

(reference: 

low) 

Mean 

0.0365 

  

High  

3.65E-02 

to 

0.156/Km2 

Low  

1.12E-05 

to 3.65E-

02/Km2 

Total water 

body area Sq 

Km in the 

state/ total Sq 

Km area of 

the state 

India Department of Animal Husbandry 

and the Dairying census, India   

  

http://www.dahd.nic.in/about-

us/divisions/statistics 

Forest 

coverage  

2 

(reference: 

low) 

0.33(0.035

, 0.862) 

  

High 0.33 

to 

0.86/Km2 

  

Low 0.035 

to 

0.33/Km2 

Total forest 

coverage 

area Sq Km in 

the state/ total 

Sq Km area 

of the state 

India Department of Animal Husbandry 

and the Dairying census, India 

  http://www.dahd.nic.in/about-

us/divisions/statistics 

Veterinary 

service 

Percentage   Available 

number of 

veterinarians/ 

Required 

number of 

Veterinarians  

OIE PVS analysis  

  

https://www.oie.int/solidarity/pvs-gap-

analysis/pvs-gap-analysis-reports/ 

  

http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
http://www.dahd.nic.in/about-us/divisions/statistics
https://www.oie.int/solidarity/pvs-gap-analysis/pvs-gap-analysis-reports/
https://www.oie.int/solidarity/pvs-gap-analysis/pvs-gap-analysis-reports/
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Bordered by 

a pool1 

country  

1 or 0     Paton et al., 2018 

Bordered by 

a pool2 

country  

1 or 0     Paton et al., 2018 

Bordered by 

a pool3 

country  

1 or 0     Paton et al., 2018 

No 

international 

border 

1 or 0     Paton et al., 2018 

Vaccination 

program 

 1 or 0   ICAR annual report  

Annual 

windspeed 

average 

Standardized 

based on the 

mean value  

  Monthly 

windspeed 

average 10m 

wind speed 

from raster 

(high-spatial 

resolution 

(1/24°, ~4-

Km)) 

Terra Climate data (Abatzoglou et al., 

2018) 

Annual 

windspeed 

variance  

Standardized 

based on a 

mean value  

    Terra Climate data (Abatzoglou et al., 

2018) 

Annual 

temperature 

average  

Standardized 

based on 

mean value  

  Monthly 

average 

maximum and 

minimum 

temperature 

raster (high 

resolution) 

Terra Climate data (Abatzoglou et al., 

2018) 

Annual 

temperature 

variance  

Standardized 

based on 

mean value  

  Cumulative 

variance of 

each monthly 

average 

temperature  

Terra Climate data (Abatzoglou et al., 

2018) 

Annual 

rainfall 

average  

Standardized 

based on 

mean value  

    India meteorological department 

http://www.imd.gov.in/Welcome%20To%

20IMD/Welcome.php 
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Figure S2.1: Correlation plot for variables used in the spatial only model.  
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Figure S2.2: Correlation plot for variables used in the space time only model. 
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Figure S2.3: Results from the prior sensitivity analysis showing that different prior combinations 

produce similar results. A) Mean, B) Random effect and C) Fixed effects. 
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Figure S2.4: Pre- and post-vaccination percent of animals with inferred protection for serotype 

Asia1 and Serotype A. 
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Table S2.2: Percent contribution of the model’s components to explaining variance in the best 

fitting model. 

Variable  Percentage explained 

Unstructured spatial effect 61.9 

Structured spatial  14.6 

Year random effect  0.5 

Year random walk  0.4 

Year space interaction  22.6 

 

Table S2.3: Results of the univariate analysis from the spatial only model (coefficients and 

credible intervals are exponentiated). 

Model with a single covariate DIC Credible Interval 

Goat density (reference: low) 230.47 1.29 (0.31,5.64) 

Forest area density 

(reference: low) 

230.54 3.81 (2.07,7.06) 

Pig density (reference: low) 229.81 2.23 (1.06,4.72) 

Bordered by a country in pool 1 229.33 6.11 (1.72,21.93) 

Bordered by a country in pool 2 229.51 3.15 (0.81,12.54) 

Bordered by a country in pool 3 230.61 0.47 (0.07,3.13) 

No international border 228.35 0.52 (0.05,0.74) 

Road density (reference: low) 230.68 0.60 (0.18,2.04) 

Percentage of veterinarians  231.12 1.01 (0.97,1.06) 

Water area density 

(reference: low) 

230.06 0.70 (0.19,2.49) 
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Table S2.4: Results of the univariate analysis from the space time model (coefficients and 

credible intervals are exponentiated). 

Model with a single covariate DIC Credible Interval 

Annual rainfall average  1223.19 0.91(0.72,1.16) 

Annual windspeed average 1227.97 1.13(0.92,1.37) 

Annual windspeed variance 1222.66 1.05(0.91,1.21) 

Annual temperature average 1224.12 1.09(0.89,1.32) 

Annual temperature variance  1223.18 0.96(0.84,1.11) 

 

Table S2.5: Fixed effects identified from the best-fit multivariable spatial-only model (coefficients 

and credible intervals are exponentiated). 

Fixed effect Coefficient 95% Credible Interval 

Intercept 0.93 (0.032, 27.66) 

Boarded by a country in pool 1 1.91 (0.34, 10.48) 

No international border 0.36 (0.08, 1.55) 

Waterbody density  
(reference: low) 

0.92 (0.28, 2.94) 

Road density  
(reference: low) 

0.67 (0.21, 2.13) 

Pig density 2(reference: low) 1.26 (0.35, 4.58) 

Forest area density 
 (reference: low) 

5.24 (1.42, 19.64) 

Percentage of veterinarians 0.99 (0.95, 1.03) 
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Supplementary Figure S2.5: Excess risk plot for years 2008-2016 for different states in India. 
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Chapter 3: Using phylogeography as a proxy for population connectivity for 

spatial modeling of reported foot-and-mouth disease outbreaks in Vietnam 

 

3.1 Introduction  

Space-time risk models are often applied to outbreak data in order to understand patterns and 

drivers of pathogen spread. In Bayesian space-time models, risk of disease is considered as a 

spatial process whereby spatial correlations in case counts are captured by accounting for the 

contiguity or adjacency of spatial units (i.e., states, provinces, etc.)(Berliner, 1996). The resulting 

spatial structure is a component of a Bayesian hierarchical model that considers latent variables, 

which include linear predictors and random effects that help account for unexplained variability 

(Lawson, 2018). Such space-time regressions have been widely used in disease mapping studies 

to identify high risk areas for both animal and human diseases  (Machado et al., 2019,Blangiardo 

and Cameletti, 2015,Coly et al., 2021).  

 

From our previous studies utilizing a space-time regression for foot and mouth disease (FMD) in 

India, it was identified that the structured spatial effect only accounted for 14% of variability in 

reported outbreaks in across states, while the unstructured (random) effect accounted for 61% of 

variability. One reason for the relatively small contribution of spatial structure to the relative risk of 

outbreaks may be that spatial adjacency is an imperfect proxy for population connectivity, 

especially for highly mobile populations of livestock that may frequently be transported long 

distances. Unfortunately, livestock movement data is often unavailable in many regions where 

FMDV is endemic, and lack of mobility data is likely a common challenge across many host-

pathogen systems.  However, patterns of viral dissemination (inferred from phylogeographic 

models) could serve as a proxy for the underlying connectivity of the host population.  

  

FMDV is a highly contagious disease that is endemic in Southeast Asia affecting pigs, cattle, and 

buffaloes. The disease is caused by an Apthovirus in the Picornaviridae family, and serotypes O, 

A, and Asia 1 have been identified in the region  (Le et al., 2016). Clinical signs of the disease 

such as blisters and pyrexia cause production losses to the farmers. FMD is challenging to 

control in SEA in part due to diverse animal husbandry practices in the growing economies of the 

region. In addition, the occurrence of FMD outbreaks in SEA is spatially and temporally variable, 

and some countries are free from FMD (Paton et al., 2018). There are no studies to identify what 

exact drivers (ex: human, animal, product) of viral movement, but the virus continues to spread 

across SEA. Lack of measures to track animal movement between and within countries and 

undocumented livestock markets are major obstacles to disease preparedness and hinder 

investigations of patterns of disease occurrence of  contagious livestock diseases in the region, 

including in Vietnam (Rweyemamu et al., 2008,Paton et al., 2018).  
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Matching movement data with phylogenetic data has been identified as a feasible approach to 

identify FMD disease transmission among countries and regions as  substantiated with the 

spread of O-PanAsia-2  and O-Ind 2001e to SEA (Paton et al., 2018). In Bankawoska et al. 

(2017), outbreak strains from SEA were phylogenetically matched to lineages arising from India, 

suggesting that these lineages were introduced from South Asia. Molecular epidemiological 

studies reveal a pattern of FMDV spreading across SEA and travelling through Vietnam. Serotype 

O sequences identified in Vietnam had high similarity with the Mya-98 lineage that had spread 

elsewhere in SEA, and Serotype A sequences from Vietnam belonged to group SEA-97 common 

to SEA (Le et al., 2016,Brito et al., 2017,de Carvalho Ferreira et al., 2017). The O/Cathay strain 

first identified in Hong Kong in the 1970s was reintroduced to Taiwan  in 1997, and in 2002 to 

Malaysia, the Philippines, Taiwan, Thailand, and Vietnam. Later in 2002, Vietnam was identified 

as the recipient of viruses from Malaysia, Thailand, and Hongkong for O/Cathay (Di Nardo et al., 

2014). O/ME-SA/Ind-2001e was first identified in SEA during 2013-2017. One of two lineages that 

evolved from Ind-2001 has been identified in Vietnam, demonstrating the movement of the virus 

from India to Vietnam  (Le et al., 2016,Bachanek-Bankowska et al., 2018,Vu et al., 2017).  Similar 

patterns have identified for O/ME-SA/Pan Asia (2010-2014). Taken together, these studies 

highlight the transboundary nature of FMDV circulation in SEA. 

 

Considering patterns of O/ME-SA/Pan Asia spread within Vietnam, transmission was identified to 

be frequent from the South-Central Coast and Northeast to other parts of the country, presumedly 

due to cattle movement that occurs from central areas of the country to the north and south (Brito 

et al., 2017). These identified viral movements could help to identify possible dissemination 

pathways of FMDV within Vietnam and reveal underlying patterns of host movement.  Such 

information could be used to account for host population connectivity. 

 

For space-time risk models of case counts, we hypothesize that historical patterns of viral 

movement are a better criterion to define population connectedness between spatial units 

compared to spatial adjacency. Using Vietnam as an example, we construct  discrete trait 

phylogeographic models for FMDV serotype O in Vietnam and SEA. We used the inferred 

transition rates between each province as the connectivity matrix in a Bayesian space-time 

regressions and compared this model’s ability to explain spatiotemporal variability in relative risk 

with conventional approaches based on spatial adjacency. We used these models to identify risk 

factors for FMD such as livestock density, international borders, FMD virus movement between 

countries, and delineate high-risk areas for FMD in the country. The outcome risk models can be 

generalized to other infectious diseases that spread in a similar manner that is not present in the 

country.  
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3.2 Materials and Methods  

3.2.1 Population description 

Vietnam is a hub for animal movements in the SEA region, and for that reason, arguably, 

controlling FMD in Vietnam may be considered prerequisite for controlling FMD in the region. The 

country is divided into eight major agriculture zones, referred to as Northwest, Northeast, Red 

River Delta, North Central Coast, South Central Coast, Central Highlands, Southeast, and 

Mekong River Delta. In addition, there are 63 provinces in Vietnam. Vietnam has had an FMD 

control program in place since 2006, and at present, Vietnam is in stage 3 of the OIE/FAO 

progressive control pathway (PCP). Biannual vaccination is conducted free of charge in border 

provinces and for a fee the other areas of the country (Lee et al., 2020). 85% of livestock farms in 

Vietnam are small-scale farms (Pham-Thanh et al., 2020). Pig production supplies 80% of the 

local meat consumption and 74-80% of the total meat production in Vietnam. Although beef 

production stands at 8% of total livestock production, it is more evenly distributed across the 

country (The World Bank’s Agriculture and Environment and Natural Resources Global 

Practices).   

 

3.2.2 Data 

In this study, we utilize two types of data available from Vietnam: a) data on the reported number 

of FMD cases per province per year, and b) FMDV VP1 sequences generated from various 

research and surveillance projects conducted in Vietnam (de Carvalho Ferreira et al., 2017,Di 

Nardo et al., 2014,Le et al., 2016,Van Diep et al., 2020,Brito et al., 2017,Knowles et al., 2005,  

Arzt et al., 2017). Because the majority of reported outbreaks and sequences collected were from 

bovine species (71% of sequences, and 72% of reported clinical cases), we focused our space-

time regression analysis on outbreaks reported in cattle and buffalo. 

 

Reported numbers of clinically-infected cattle, buffalo, pigs, and goats, along with estimated 

outbreak dates, were available from 2007-2017 from the Ministry of Agriculture and Rural 

Development  MARD, Vietnam. Data are collected via passive surveillance at the commune level 

on a daily/weekly basis at the local sub-Department of Animal Health level. Most cases were 

clinically diagnosed while some cases were laboratory-confirmed. For cattle, 49306 cases were 

reported from 1677  outbreaks (2007 -2017) with a mean of 29 (SD 59) infected animals per 

outbreak. For buffaloes, 70118 cases were reported from 1841 outbreaks (2007-2017) with a 

mean of 38 (SD 69) infected animals per outbreak. Province-level livestock population data 

(cattle, buffalo, pigs) for the year 2018 were also available from the General Statistics Office of 

Vietnam. These data were used to calculate standardized incidence ratios, and to construct 

space-time regressions (see details below).  A polygon shapefile of Vietnam provinces was used 



 
 

46 
 

to generate a 0/1 matrix that summarizes which province are adjacent to which (hereafter, 

referred to as the spatial adjacency matrix). 

 

Serotype O sequence data for Vietnam was available from active surveillance of clinical and sub-

clinical bovines conducted by our team and from GenBank. In total, 267 FMDV VP1 sequences 

were available from 53 states representing all eight agriculture zones. 192 sequences collected 

from farms and slaughterhouses by our collaborative team (see below for details). 113 sequences 

were downloaded from GenBank. All Vietnam sequences used in the analysis included location 

(to the state-level) and date meta-data. After removing identical sequences (from the same 

animal, and same location), a total of 306 sequences were used from Vietnam. All available 

sequences with date information from adjacent countries during the period of 2000-2017 were 

also obtained from the GenBank: Thailand (41), Malaysia (37), Laos (32), Cambodia(4), and 

China(19). For Vietnam, 80 sequences were from pigs, 132 sequences from cattle  and 28 

sequences from buffaloes.  These data were used in Bayesian phylogeographic models (see 

details below) to infer rates of viral movement between different agricultural zones, which were 

then used to generate a 0/1 matrix that summarizes which provinces show evidence of population 

connectivity based on patterns of historical viral dispersal (hereafter, referred to as the 

phylogeographic matrix). 

 

3.2.3 Sequence acquisition 

Oropharyngeal fluid (collected by our team from subclinical animals at farms and 

slaughterhouses) and epithelium (outbreak) samples were screened for the presence of FMDV 

using virus isolation (VI), followed by detection of viral RNA in VI supernatant using qRT-PCR as 

previously described (Stenfeldt et al., 2016,Pacheco et al., 2010). Samples that were positive for 

viral RNA were subjected to sequencing using one of several methods. Samples from 2013-2015 

were sequenced using the Sanger method as previously described (de Carvalho Ferreira et al., 

2017) to obtain VP1 sequences, or by next generation sequencing (NGS) to obtain full open 

reading frame (ORF) sequences. For NGS sequences, overlapping RT-PCR amplicons covering 

the full ORF were produced using three sets of primers (Brito et al., 2017), and amplicons were 

sequenced as previously described (Bertram et al., 2019). Samples from 2016-2017 were 

sequenced by NGS of RT-PCR amplicons covering the P1 region  (Xu et al., 2013) as previously 

described (Bertram et al., 2019). Finally, sequences from 2018-2019 were sequenced by NGS 

using random and FMDV-specific primers to obtain the complete genome as previously described 

(Palinski et al., 2019,Bertram et al., 2019). All NGS sequencing was performed using the Illumina 

NextSeq platform. Read quality filtering, de novo assembly, and assembly to previously published 

references of regionally endemic lineages were implemented in CLC Genomics Workbench v12 
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(Qiagen). Sequences of the VP1 region were utilized in this study, as this region was the segment 

available consistently across years and in GenBank. 

 

3.2.4 Phylodynamic analyses 

A total of 397 VP1 sequences from Vietnam and neighboring countries were aligned against the 

reference strain O/LAO/2/2006 (representing O/PanAsia) using Muscle in MEGA-X. Sequences 

were checked for recombination using RDP4, and no recombinants were detected. Initial 

maximum likelihood trees revealed three distinct clades corresponding to lineages O/SEA/Mya-

98, O/ME-SA/PanAsia, and Cathay, with the majority of sequences belonging to O/SEA/Mya-98 

and O/ME-SA/PanAsia. From the total sequences, 146 sequences were classified as Mya-98, 

229 as PanAsia, and 22 sequences as Cathay. 

 

Discrete-space phylogeographic analyses were performed for each lineage separately (O/ME-

SA/PanAsia and O/SEA/Mya-98) and for all sequences combined using Bayesian Evolutionary 

Analysis by Sampling Trees (BEAST v1.10.1.2). A lineage-specific model was not constructed for 

Cathay due to insufficient data. For these analyses, each agriculture zone within Vietnam (eight 

zones) and each neighboring country (four countries) were used as discrete traits.  Agricultural 

zones rather than provinces were used within Vietnam in order to achieve adequate numbers of 

sequences per location for the analysis. Since our intent for this analysis was to identify patterns 

of FMDV movement within and between countries, all available sequences regardless of host 

species were included in this analysis.  

 

Maximum likelihood trees of each lineage and of the combined data were analyzed with Tempest 

(v1.5.3) to establish whether the phylogenies had temporal signals for subsequent analyses, and 

to root-to-tip regression of genetic distance with the sampling time was used to determine an 

approximate age of the phylogenetic trees. The HKY nucleotide substitution model was selected 

as the best nucleotide substitution model using jmodel test (Darriba et al., 2012). The models 

were run with a lognormal uncorrelated relaxed molecular clock and the Bayesian Skygrid  

population model. To infer transition rates between discrete locations, we used an asymmetric 

model with Bayesian Stochastic Variable Selection (BSSVS) to identify non-zero rates of 

transition in the phylogeographic matrix  (Britto et al.,2018). To reconstruct the evolutionary 

history, two replicate MCMC simulations, with a length of 300 million iterations and sampled every 

3000 steps, were performed with computational resources in CIPRES (https://www.phylo.org). 

Convergence of parameter posteriors were assessed using Tracer 1.6, ensuring effective sample 

size (ESS) greater than 200 for all parameters. Tree annotator v10.2.2 was used to create 

maximum clade credibility (MCC) trees, after discarding 10% of iterations as burn-in and using 

LogCombiner to re-sample to a lower frequency (every 6000 steps) to reduce computational 
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complexity. Fig Tree (v1.4.3) and ggtree (Yu et al., 2017) were used to visualize the trees, with 

branches colored according to the country and regions of Vietnam. For discrete traits, Spread3 

(v0.9.7) was used to calculate the Bayes factor after disregarding 10% burn-in.  

 

Calculation of adjusted transition rates between agricultural zones 

When BSSVS is used to infer transition rates between locations, BEAST MCMC chain output 

contains two pieces of information regarding transitions between locations: a) the rate coefficient, 

which is the estimated frequency of transmission between two locations, and b) a 0/1 indicator of 

whether that transition is included in the model as a particular MCMC iteration.  Importantly, when 

the indicator equals 0, then the rate coefficient is of little meaning, given that it was not included in 

the model. We processed the raw BEAST output in R such that summaries of posterior of rate 

coefficients (mean and 95%HPD intervals, summarized by Tracer) were based only on MCMC 

iterations where the indicator equaled 1, which we refer to as the adjusted rate.  

  

Bayes factors were also calculated for all transition rates, with BF>3 interpreted as rates that 

were non-zero transmissions. However, BF should be interpreted with caution as a measure of 

population connectivity, as high BF tended to be achieved when there was a clear ancestral 

location for a discrete transition rate, as might be the case for a rare viral dispersal event between 

different countries. However, the ancestral location may be difficult to determine in situations 

where there is frequent, bi-directional transmission between locations (yielding high adjusted 

transition rates, but low BF support on the ancestral location). For this reason, we utilize adjusted 

transition rates rather than BFs as a proxy for population connectivity in subsequent analyses.     

Heatmaps and networks were used to visualize viral movement between discrete locations 

(based on the adjusted rate), created separately for each lineage and the combined analysis. The 

adjusted rates were used to create the 0/1 phylogeographic matrices (one each for O/ME-

SA/PanAsia,O/SEA/ Mya-98, and combined), thresholded at the median. As the optimal threshold 

value is unknown, an alternative cut-off value (set at 80% of the median) was additionally 

investigated. These matrices were used to describe the population connectivity between zones 

within Vietnam in the space-time regression of reported case counts.  

 

Analysis of interspecific transmission 

While our model focused on outbreaks in bovines, we conducted a phylodynamic analysis (as 

described above) using host-species as a discrete trait to better understand the role of different 

host species. cattle were identified as transmitting FMDV to pigs and buffaloes. The analysis 

used 240 sequences from Vietnam (160 from bovines, 80 from pig), and consisted of 7 Cathay , 

63 Mya 98 and 169 Pan Asia lineage sequences.  
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3.2.5 Bayesian space-time risk models  

Given that bovine numbers accounted for a majority of reported FMD cases and sequences 

available, we focus on FMD in bovines for the space-time regression. We first calculated 

standardized incidence ratios (SIRs) per province per year from 2007 to 2017. Bovine population 

size data was available for the year 2018 only, and we assumed that these numbers were 

reasonable stable across the time period assessed here. Population size and nationwide FMD 

reported case counts were used to calculate the expected number of FMD cases per province per 

year (eit) if the distribution of FMD cases across space and time was proportional to population 

size, such that 

𝑒𝑖𝑡   = 𝑃𝑖𝑡  
∑ 𝑦𝑖𝑡𝑖𝑡

∑ 𝑃𝑖𝑡𝑖𝑡

 

Where Pit is the population of the state i in year t, and yit is the number of FMD cases in province i 

in year t. SIR was defined as the observed to the expected ratio (Yit/eit). SIRs were plotted as 

choropleth maps for all years.  

The observed number of cases per province per year was assumed to follow a Poisson 

distribution 𝑦𝑖𝑡~𝑃𝑜𝑖𝑠𝑠𝑜𝑛 (𝑒𝑖𝑡 , 𝜃𝑖𝑡), with 𝑒𝑖𝑡 representing the expected number of FMD cases 

defined as above, and 𝜃𝑖𝑡 representing the yearly relative risk for each state. This relative risk 

incorporates both spatially structured (spatial correlation amongst connected provinces) and 

unstructured (i.e., random variation) effects, such that: 

log(θi ) = 𝛼 + 𝜐𝑠 + 𝜈𝑠 

Where α is the intercept representing the overall level of risk in the country, ʋs is the structured 

spatial effect, and νs is the unstructured spatial effect that functions as a random effect for each 

province. This model is known as the BYM2 model (Riebler et al., 2016). The structured spatial 

effect incorporates correlations amongst neighboring provinces, conventionally represented by 

0/1 spatial adjacency matrix.  The model that utilized inferred viral movement (instead of spatial 

adjacency) as a proxy for population connectivity mirrored the above space-time model, except 

that the structured effect was designed to account for correlations amongst provinces connected 

phylogeographically (ʋp) rather than spatially (ʋs).  The matrix of inferred movement of the virus 

among the eight agricultural zones inside Vietnam was projected to create a 0/1 matrix for 63 

provinces inside Vietnam (i.e., all provinces within two zones received the same phylogeographic 

transition rate). Six phylogeographic matrices were considered (PanAsia, Mya-98, combined, 

each with two cut-off values for dichotomization of adjusted rates). We also explored whether 

incorporating both spatial and phylogeographic adjacency matrices simultaneous in the same 

model would improve model fit. 

Several model structures exist to incorporate temporal effect: time (year) can be considered as a 

random effect (ωt ), or a structured effect (γt) in which a random walk is used to account for 

between-year dependencies (ωt + γt).  
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The best-fit model structure was selected from amongst these models using DIC. This model was 

then used to evaluate the contribution of hypothesized risk factors in shaping relative risk. 

Penalized priors were used for all models in the Bayesian analysis, following previous studies 

(Fuglstad et al., 2019).  

 

Incorporation of risk factors included as fixed effects 

To further explain spatiotemporal variation in relative risk, we incorporated factors potentially 

associated with viral movement as fixed effects into the best-fit spatial and phylogeographic 

models from above.  These included two approaches for accounting for transboundary 

introductions. The first categorized provinces as to whether they had an international border (0/1). 

Second, we used the inferred adjusted transition rates from the phylogeographic models to 

categorize provinces according to whether there was evidence of FMDV introductions from 

neighboring countries. As before, adjusted transition rates were dichotomized at the median to 

create one dummy variable each for phylogeographic-inferred transition rates from Cambodia, 

Malaysia, Laos, China, and Thailand into Vietnam provinces. Given that slaughterhouses are 

terminal points of supply chains and thus may influence animal movements, the presence of a 

slaughterhouse in a province was also included as a potential 0/1 risk factor in the model. 

Slaughterhouses considered here are slaughterhouses that operate under veterinary control and 

commercial fresh meat establishments registered for export by the national veterinary services.  

Finally, to account for presence of other hosts that can transmit FMDV, such as goats and pig 

(Arzt et al., 2011), goat and pig densities were included as potential risk factors. 

 

Prior to model selection, correlations between variables were checked using Pearson’s 

correlation coefficient for continuous variables and chi-square tests for categorical variables. In 

the latter case, a odds ratio of >8 was considered evidence for collinearity (Dohoo et al., 2009). In 

the case of collinearity, only the variable with the lowest DIC in its respective univariable model 

was retained for the multivariable analysis. Backward selection was then performed from a full 

multivariable model by removing the variables with the widest confidence interval that overlapped 

zero. From among those different models, the simplest model that was <2 ∆DIC from the model 

with the lowest DIC value was considered the best-fit model. 

 

Prior sensitivity analysis and evaluation of model fit 

We used non-informative penalized complexity priors, which are applicable for a large class of 

hierarchical models. The penalized priors aim to incorporate minimal information into the 

inference procedure, and can account overdispersion in the base model (Simpson et al., 2014). A 

sensitivity analysis was conducted using the different priors. We also calculated the correlation 

between the predicted and observed values (Spearman’s correlation) as a measure of model fit. 
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The final best-fit model was also evaluated based on posterior predictive p-values. Posterior 

predictive p -values are defined as p(yi* ≤ y𝑖|y), where yi* is the posterior of the predicted 

distribution from the model. This is interpreted as an approximation of the proportion of the 

predicted distribution for yi that is more extreme than the observed value, and values of p (yi* ≤ 

y𝑖|y) near 0 and 1 indicate poor model fit (Blangiardo and Cameletti, 2015). To better interpret 

correlations in case counts across different areas, we tabulated bovine case counts per 

agricultural zone from 2007 to 2017 and created a heatmap showing the Pearson’s correlation in 

case counts between the eight different agriculture zones across time. 

 

3.2.6 Software for space-time regression 

All analyses were performed in the R statistical software, using packages tidyverse 1.2.123, 

spdep 0.7–425 (Bivand et al.,2015), dplyr, stringr, library(beastio) library(boa) library(viridis) 

library(ggpubr) library(dplyr) library(readr) library(igraph) and ggplot2. For the Bayesian risk 

models, INLA 19.09.03 (Rue et al., 2017) was used, and model results were processed with 

INLAOutputs 19.09.03 (Baquero et al., 2018). 

 

3.3 Results  

3.3.1 Phylogeographic analyses 

We conducted a discrete-space phylogeographic analysis of FMDV serotype O in Vietnam, with 

separate analyses performed for the 229 O/ME-SA/Pan Asia sequences and 146 O/SEA/Mya-98 

sequences, and for the 397 combined serotype O sequences. Across all three phylogeographic 

models, the mean substitution rate was 0.0069 substitutions/site/year (95% HPD interval: 0.0056-

0.0083) for O/ME-SA/Pan Asia, 0.0051 (0.0038-0.0063) for O/SEA/Mya-98, and 0.0062 (0.0053-

0.0071) for the combined serotype O analysis.  We focus on presenting results from the Pan Asia 

phylogeographic model, given that inferred viral movements from this model provided the best-fit 

to the outbreak risk model (see below), but corresponding results for the Mya-98 and combined 

phylogeographic models are shown in Supplement S3.1 and S3.2. The MCC tree created based 

on  Pan Asia sequences is displayed in Figure 3.1. The heatmap depicting adjusted transition 

rates between countries and agricultural zones is shown in Figure 3.2A. Of note, there was 

substantial movement inferred between adjacent zones, as well as more distant zones, such as 

between the South Central Coast and Southeast to the Northeast.  Values were dichotomized at 

the median adjusted rate (0.575  for Pan Asia, 0.666  for Mya98, and 0.409 for combined 

sequences), and used to create the 0/1 matrix utilized in the outbreak risk model.  A network 

representation of this matrix is shown in Figure 3.2B, revealing a combination of local and long-

distance connections between zones. 
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Figure 3.1:Maximum clade credibility FMDV O/ME-SA/PanAsia lineage from agricultural zones of 

Vietnam and surrounding countries China, Laos, Malaysia, Thailand. Nodes and branches of the 

tree are colored by location.  
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Figure 3.2: A) The adjusted rate matrix for Pan Asia sequences lineage from agricultural zones of 

Vietnam and surrounding countries China, Laos, Malaysia, Thailand. B) Network of 

phylogeographically connected zones inside Vietnam. C) Map of agricultural zones in Vietnam.  

 

While the majority of sequence and reported outbreak data came from bovines, we performed an 

additional discrete-trait analysis for host species to further explore the potential role of 

interspecific transmission from pigs in Vietnam. This model showed little evidence that viruses 

circulating in pigs were transmitted into bovine populations in Vietnam (Bayes factor =0.511), 

though there was evidence of viral transmission from bovines to pigs (Bayes factor = 77512.17). 

This result provided additional rationale supporting our decision to focus subsequent space-time 

risk analyses on reported case counts in bovines.  

 

3.3.2 Space time risk model 

The SIR values calculated from 2007 to 2017 are shown in Figure 3.3. Provinces with SIR greater 

than one  can be interpreted as areas with more reported FMD cases than expected given the 

size of their bovine population.  
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Figure 3.3: Map of annual standardized incidence ratios (SIR) for years 2007-2017 for the 

different provinces in Vietnam. 

 

Several different models were tested to select the best model structure for the space-time 

regression (Table 3.1), including different combinations of adjacency matrices (spatial, 

phylogeographic, or both) and temporal effects. The model with the lowest DIC incorporated time 

as a random walk and random effect and utilized the Pan Asia phylogeographic matrix (with the 

threshold for the phylogeographic matrix set at the median adjusted rate, posterior p-values = 

(79.9,19.2), Table 3.1). This model performed better than the risk models based on Mya-98 or the 

combined serotype O sequences.  Models that utilized the spatial adjacency matrix alone or 

phylogeographic and spatial matrices in combination produced the higher DIC values.  

 

The best-fit model structures for the conventional space-time and phylogeogrpahic risk models 

were used as the base of multi-variable models that included additional fixed effects associated 
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with animal movement (i.e., presence of slaughterhouses, presence of an international border, 

evidence of phylogeographic links with neighboring countries, and host densities). Fixed variables 

were screened for correlations using Pearson’s correlation coefficients and Chi-Square tests 

(supplementary table S3.1 and S3.2). If two variables were found to be correlated, we excluded 

the variable that resulted in higher DICs when assessed in univariable models. For the space-

time risk model, viral movement from Laos and China were found to be correlated, and thus only 

viral movement from Malaysia, Cambodia, Thailand, having an international border, having a 

slaughterhouse, goat and pig density were retained in the multivariable model. For the 

phylogeographic risk model, viral movement from Cambodia and Laos were found to be 

correlated, and thus only viral movement from Malaysia, China, Thailand, having an international 

border, having a slaughterhouse, goat and pig density were retained in the final model. The best-

fit multivariable models are shown in Table 3.2 and 3.3. Both the spatial and phylogeographic risk 

models identified having a slaughterhouse and having an international border as significant (95% 

credible intervals do not overlap 0). In the spatial risk model, the inclusion of additional covariates 

did result in lower DIC, suggesting that these factors explain some variability in case counts. 

However, the credible intervals for the additional included factors overlapped 0, though the 

posterior of inferred viral movements from Cambodia only slightly overlapped 0. In the 

phylogeographic risk model, additional significant factors included pig density and inferred viral 

movement from China and Malaysia. Overall, the phygeographic multivariable risk model had a 

lower DIC than the space-time model. High-risk areas identified from both best-fit models are 

shown in the supplementary figure S3.3  and S3.4.  Several areas in north, south, and central 

regions of the country were identified as high-risk areas through time. A heatmap was used to 

visualize correlations in case counts between different zones across time (Figure 3.4). Of note, 

case counts in geographically distant zones, such as the Northeast and the South-Central Coast, 

are sometimes more correlated with each other than closer regions (Figure 3.4).  

  

Table 3.1: Comparison of different model structures utilized for Bayesian space-time regressions 

of reported case counts.  Phylogenetic matrices were tested with two different cutoffs to 

dichotomize the phylogeographic adjusted rate matrices.  The best-fit structure is marked in bold.  

Model group 
Temporal 
effect 

Adjacency 
matrix Lineage Cutoff DIC 

Spatial iid only spatial  NA NA 113457.7 

  
iid and 
random walk spatial  NA NA 112329.1 

Phylogeographic 
iid and 
random walk  Phylo Mya 98 0.67 110658.8 
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iid and 
random walk Phylo Mya 98 0.55 110658.8 

  
iid and 
random walk Phylo PanAsia 0.60 110607.7 

  
iid and 
random walk  Phylo PanAsia 0.47 110623.9 

  
iid and 
random walk  Phylo 

Total 
sequences 0.41 110622.9 

  
iid and 
random walk  Phylo 

Total 
sequences 0.37 110622.9 

Phylo and spatial  
iid and 
random walk  phylo and spatial Mya 98 0.67 112450.0 

  
iid and 
random walk  phylo and spatial Mya 98 0.55 112450.0 

  
iid and 
random walk  phylo and spatial PanAsia 0.60 112710.0 

  
iid and 
random walk  phylo and spatial PanAsia 0.47 112464.6 

  
iid and 
random walk  phylo and spatial 

Total 
sequences 0.41 112631.6 

  
iid and 
random walk  phylo and spatial 

Total 
sequences 0.37 112631.6 

Phylo and spatial 
(joint) 

iid and 
random walk  

phylo and spatial 
joint  Pan Asia NA 110611.3 

 

Table 3.2: Results from the final Bayesian space-time model. (DIC  112300). 

Fixed effect Coefficient (95% Credible Interval) 

Intercept -2.56 (-3.49, -1.65) 
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Slaughterhouse -4.73 (-7.09 , -2.55) 

International border 0.82 (0.18, 1.48) 

Cambodia 1.78 (-0.62, 4.22) 

 

Table 3.3: Results from the final Bayesian phylogeographic risk model. (DIC 109366.1).  

Fixed effect Coefficient 95% Credible Interval 

Intercept -1.35 (-1.53, -1.35) 

Pig density -0.58 (-0.63, -0.53) 

Goat density 0.02 (-0.03, 0.06) 

Slaughterhouse -2.70 (-2.88, -2.51) 

International border 0.38 (0.34, 0.42) 

China -0.57 (-0.68, -0.49) 

Malaysia 0.79 (0.64, 0.94) 
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3.3.3 Model validation 

 

Figure 3.4: Spearman’s correlation matrix  of reported case counts across agricultural zones from 

2007-2017. 

 

Results from the prior sensitivity analysis are included in the supplementary show that results 

were consistent across different penalized complexity priors. Observed SIR to fitted relative risk 

values were compared, and Spearman’s correlation coefficients were highly significant (p =0.9). 

For the selected models, the posterior p-values indicated good fits.  

 

3.4 Discussion  

Here, we demonstrated that accounting for population connectivity through phylogeographic rate 

matrices explains more variability in regressions of the risk of reported FMD cases than spatial 

adjacency amongst provinces.  While population connectivity is fundamental to spread of 

infectious diseases, this finding suggests that it is important for space-time risk models to account 

for potential long-distance connections amongst different host meta-populations. In the absence 

of data on host movement, such long-distance connectivity can be inferred from viral movements 

that are potentially associated with patterns of host movement in the country. Such an approach 

could be adapted for risk modeling in other host-pathogen systems where pathogen sequence 

data is more readily available than host movement data. In addition, provinces with high relative 
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risk of bovine outbreaks were characterized as those with international borders, no bovine 

slaughterhouses, higher rates of transboundary viral introductions from neighboring countries 

(particularly Malaysia and Cambodia to a lesser extent), and lower pig densities. We also 

identified high-risk areas in the northern and southern part of Vietnam where it may be important 

to implement enhanced surveillance and control measures. 

 

In our analysis, the phylogeographic connectivity network inferred from the sequence data was 

best able to explain spatial variation in reported clinical case counts, and hence may better 

capture population connectivity amongst regions than spatial adjacency alone. Similarly, 

pathogen sequence data from bovine tuberculosis was utilized to infer patterns of host movement 

in Cameroon. In this case, they had an observed cattle movement network to which the 

molecular-based network could be compared.  They found that the molecular network was a 

much better approximation of the observed host movements than other methods commonly used 

in the absence of movement data, such as gravity models (Muwonge et al., 2021).  In the United 

States, patterns of spatial diffusion of porcine reproductive and respiratory syndrome virus were 

inferred via discrete-space phylogeographic models, and variability in the rate of sector-to-sector 

diffusion was shown to be associated with the movement of feeder pigs (Makau et al., 2021). 

Taken together, these studies help validate the use of pathogen molecular data as a proxy for 

host movement at relatively fine scales. 

 

Because there was uncertainty about how to quantify the phylogeographic data, we tested 

multiple formulations of the phylogeographic matrix based on different lineages and variable rate 

thresholds. We tested the model for the two most prevalent lineages separately and combined 

serotype O sequences, as well as two cut-off values to infer connectivity among regions. We 

found that the PanAsia phylogeographic matrix provided the best fit in the space-time regression 

of reported clinical cases. This may be unsurprising given that most detected sequences 

circulating in Vietnam belonged to this lineage during this period. Furthermore, previous analysis 

of the phylogeography of PanAsia lineage in Vietnam from 2010-2014 showed  that the FMDV 

circulated throughout the country, with a special emphasize on north and south regions (Brito et 

al., 2017). In this study, we identified high-risk areas (Supplementary figure S3.3  and S3.4)  in 

northern and southern parts of the country. These align well with spatial hotspots of FMD 

outbreaks have been previously identified in the Northwest, Northeast, and Red River Delta areas 

by a Satscan analysis (Lee et al., 2020).  

 

Brito et.al (2017) also demonstrated  FMDV movement from the Northeast region of Vietnam to 

China and Kazakhstan during the period of 2010-2014. We have included older FMDV 

sequences available from adjacent countries before 2010 (Figure 3.1), showing the introduction 
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of O/ME-SA/PanAsia into Vietnam from other SEA countries. Unfortunately, more recent FMDV 

sequences from adjacent countries (after 2010) were not available from GenBank, which 

prevented us from further examining bidirectional transmission patterns in more recent years.  In 

our outbreak risk model, we found a negative effect of inferred movement from China when 

incorporated as a fixed effect. Thus, we should be cautious interpreting results from 

phylogeographic trait analyses. We may hypothesize that there is a positive association between 

inferred movements and risk, but the directionality of the inferred movement is likely important. 

Similar to Brito et al. (2017), we found that Vietnam was more likely to be the origin of viral 

movements into China, rather than the recipient of viral introductions from China, though these 

results could be affected by minimal data availability from China. This may contribute to the 

negative effect of viral movements with China in our risk model. Both bovines and pigs are moved 

north to south in Vietnam and from the north into China  (Polly et al., 2015). Animal movements 

into China are driven by its growing economy increased demand for meat-based diet. From a 

study done in March to August in 2014 in Vietnam using network analysis , it was identified that 

animals from the central areas of the country (North Central coast, Central Highlands, and South-

Central coast) would move in both directions between the north and south. Initially, animals are 

transported from surrounding Laos, Thailand and Cambodia to these areas ). Cao Bang Province 

in northern Vietnam was an area where animals are held before crossing to China (Polly et al., 

2015), and was also identified as a high-risk area in our study. Nghe An Province, where animal 

pass to both China and Hanoi from Laos, was not identified as a risk area in our study. Provinces 

with international borders showed higher relative risk of reported cases, a pattern which held in 

both the space-time and phylo-time regressions. In addition, our previous study also 

demonstrated that closely related FMDV sequences can be identified from different parts of the 

country (Chapter 3), further suggesting epidemiological linkages between distant provinces. For 

example, one cluster of closely related sequences isolated from clinical FMD outbreaks in 

northern Vietnam was first detected in slaughterhouses in the south (Gunasekara et al., 2021). 

This is also demonstrated by correlations in case counts between in geographically distant areas, 

such as the Northeast and the South-Central Coast, suggesting that distant regions may 

experience synchronized outbreaks (Figure 3.4). Such correlations amongst distant regions 

would not be captured by spatial adjacency and are better captured by phylogeographic 

connectivity, as we observe by the high adjusted rates for Northeast and the South Central Coast 

in the phylogeographic analysis (Figure 3.2a). On par with the outbreak matrix, most of the virus 

movement occurred between North West and South-Central Coast. This further indicates that 

some provinces that are not geographically connected may still be connected due to animal 

movement-related activities.  
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Adding additional fixed effects reduced the DIC of both models, indicating that fixed effects were 

able to explain some observed variability in both models. More specifically, having a connection 

with neighboring countries Malaysia would have a positive impact on FMD outbreak. Even pig 

density and bovine density are not highly correlated (ρ 0.45), pig population in Vietnam is higher. 

In our analysis pig density has a negative effect for occurrence of FMD outbreaks  in bovines for 

this reason. Since animals are moved to slaughterhouses from other areas, we would have 

expected to have a positive impact from slaughterhouses to the occurrence of FMD outbreaks. 

Yet, presence of a slaughterhouse in a province had a negative impact on relative risk of clinical 

cases. This could be a result of the definition of slaughterhouses utilized by OIE PVS analysis, 

where we retrieved data for this variable. Having only a few designated slaughterhouses may be 

the reason for the negative effect, particularly if designated slaughterhouses are located in peri-

urban areas where livestock densities are low. According to Lemke et al 2008, such 

slaughterhouses are mainly used for cattle, while pigs are slaughtered in non-designated 

slaughterhouses without veterinary inspection available in all the provinces in the Vietnam.  

 

From discrete trait analysis, it was identified  that  the virus moves from cattle populations into 

buffaloes and pigs, but there was little evidence for transmission in the reverse direction. For pigs, 

it appears from the limited sequence data available that a single transmission event tends to 

occur that jumps the species barrier (from cattle to pig), followed by circulation and evolution 

within the pig population (Supplementary figure S3.5) with relatively little evidence that the virus 

circulating in pigs spills back to cattle. Bovines live longer compared to pigs and can be carriers, 

which may contribute to bovines  playing a more important role in FMDV persistence at the 

population level. Using a slightly reduced dataset focusing on a shorter time range, Brito et al. 

(2017) showed that O/ME-SA/PanAsia could move from pigs to cattle in Vietnam, but this finding 

was not supported in our study that included almost 100 additional sequences. That being said, 

analysis of different serotypes and lineages could yield different results, and more research with 

representative sampling is needed to better quantify cross-species transmission rates. 

Nonetheless, any role of pig outbreaks in perpetuating spread would not have been captured in 

risk model focused on bovine case counts, though we did find that pig densities were negatively 

correlated with the relative risk of bovine case counts.   

 

Limitations 

Bayesian space-time risk models provide some shrinkage and spatial smoothing of relative risk 

compared to raw SIR values (Richardson et al., 2004). One limitation of our approach is that we 

used the number of animals (reported case counts) as our outcome, which may have more over-

dispersion than if we utilized the number of reported outbreaks. That being said, the choice of 

using case counts or outbreak counts both have limitations; case counts may allow a single large 
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outbreak to have too much influence on the results, whereas outbreak counts would treat large 

and small outbreaks equally.  However, we chose to use reported case counts, as it is unclear 

what criteria is used to classify a large group of cases into one large outbreak as opposed to 

several smaller outbreaks. Thus, using the case counts rather than outbreak counts allowed us to 

avoid this issue.  In either case, we used reported numbers of cases and outbreaks, and it is 

likely that reported numbers are an underestimate of the true disease incidence. For example, 

there was a high reported number of cases from the years 2011 and 2012 in Cao Bang province. 

This could be due to a fast-spreading FMD outbreak or because of increased surveillance in the 

area during the period. This could have impacted our model, for example, by flattening the impact 

of the temporal effects in other years with the result of identifying similar predicted risk through 

time. 

 

When creating the phylogenetic adjacency matrix, we used all the available sequences from all 

host species up to 2017, and patterns observed may change with the inclusion of additional 

sequence data. Since sequence data were not available from all provinces, agriculture zones 

were used to infer patterns of viral movement, which was later transferred to the province level. 

Despite these limitations, this study provides compatible results with other studies regarding 

animal and FMDV movement in Vietnam. Although cattle and buffalo production accounts for 8% 

of total livestock production and pig density is far higher than cattle density in Vietnam, most of 

the sequence and most of the reported outbreaks were from the cattle. This may be because 

FMD is severely under-reported and subject to limited surveillance activities in small holder pig 

production. This study may not be representative of what is happening in pig populations. Results 

from the discrete trait analysis where it is identified that the cattle are the transmitter  of the virus 

to pigs and buffaloes can change with availably of more sequence data from the considered 

species as our analysis mainly consist of sequences obtained from cattle.  

 

Conclusions 

We have used  both spatial connectivity and phylogenetic connectivity matrices  to determine  

FMD risk in Vietnam. Due to its ability to account for FMDV movement, we consider using 

phylogenetic data trait analysis created matrix would better account for unexplained variability for 

contagious animal diseases as much as spatial adjacency matrix in Bayesian Poisson regression 

models  considering highly mobile host densities. Vietnam is in stage 3 of the PCP pathway 

where it is necessary to perform zoning based on FMD risk areas in the country with vaccination. 

High-risk areas that exceed the constant relative risk areas were identified  in the north and south 

part of the country through consecutive years in Kon Tum, Lang Son, Cao Bang, and Bac Lieu 

provinces in the south. We also identified having international border and transboundary animal 

movement from some adjacent countries would increase the risk of FMD. To control FMD 
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outbreaks, incorporating genomic surveillance plans when creating a strategic FMD control plan 

would support Vietnam to progress in the PCP pathway. 

 

Table S3.1: Variable selection from the univariate analysis. 

Variable 1 Variable 2 p value Chi Square OR 

Malaysia Cambodia 1.45E-07 27.65 inf 

Malaysia Laos 2.20E-16 366.34 inf 

Malaysia China 1 0 1 

Malaysia Thailand 2.20E-16 283.3 inf 

Malaysia International 

border 

2.20E-16 138.71 NA 

Malaysia Slaughterhouse 2.50E-04 13.36 0.43 

Cambodia Laos 3.71E-13 52.79 inf 

Cambodia China 5.96E-14 56.38 inf 

Cambodia Thailand 2.20E-16 68.5 inf 

Cambodia International 

border 

2.20E-16 82.3 NA 

Cambodia Slaughterhouse 9.60E-04 10.9 0 

Laos China 2.20E-16 70.88 3.85 

Laos Thailand 3.13E-15 62.18 3.53 

Laos International 

border 

2.20E-16 177.12 NA 

Laos Slaughterhouse 0.8142 0.05 0.92 

China Thailand 2.20E-16 92.96 0.2 

China International 

border 

2.20E-16 76.36 NA 

China Slaughterhouse 1.25E-12 50.41 7.97 

Thailand International 

border 

2.20E-16 186.9 NA 

Thailand Slaughterhouse 1.61E-09 3.64E+01 0.22 

International 

border 

Slaughterhouse 6.56E-08 36.27 NA 
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Table S3.2: Results from the univariate analysis.  

Variable Space-time DIC  Phylo-time DIC  

Malaysia 112610.45 110374.64 

Cambodia 112429.72 110446.79 

Laos 112829.54 110547.01 

China 112640.54 110164.08 

Thailand 112580.43 110257.4 

International border 112846.95 110142.43 

Slaughterhouse 112382.32 110074.45 

Goat density 112758.47 110572.4 

Pig density 112537.39 110521.59 
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Figure S3.1: The adjusted rate matrix for Mya 98 sequences from agricultural zones of Vietnam 

and surrounding countries China, Laos, Malaysia, Thailand.  
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Figure S3.2: The adjusted rate matrix for total sequences from agricultural zones of Vietnam and 

surrounding countries China, Laos, Malaysia, Thailand.    
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Figure S3.3 : Fitted relative risk of outbreaks for each state from the best-fit phylo time 

multivariable risk model.  
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Figure S3.4: Fitted relative risk of outbreaks for each state from the best-fit space time 

multivariable risk model.
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Figure S3.5: Species discrete trait analysis Maximum clade credibility FMDV. Branches related to cattle, buffalo and pigs are shown in green, red 

and purple colors.
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Chapter 4: Slaughterhouses as sentinels for genomic surveillance of subclinical 

foot-and-mouth disease virus infections in Vietnam  

4.1 Introduction  

Foot-and-mouth disease (FMD) is a contagious disease affecting cloven-hoofed mammals that 

causes recurrent outbreaks, subclinical infection, and substantial economic losses in infected 

regions (Stenfeldt and Arzt, 2020). Foot-and-mouth disease virus (FMDV) is endemic in many 

developing countries of Asia and Africa, where limited veterinary resources create a need for 

cost-effective surveillance measures. Surveillance for transboundary animal diseases, such as 

FMD, typically relies on passive surveillance through outbreak reporting, which sometimes leads 

to delayed control measures and greater disease spread. Early detection of outbreaks is 

important to enforce preventive measures and mitigate the impact of the disease, particularly for 

rapidly evolving RNA viruses, such as FMDV, that have a broad genetic and antigenic diversity. 

Sampling of animals across the host population to ascertain the prevalence of infection (with or 

without evidence of clinical signs) is referred to as active sampling, and can be performed in 

farms, animal markets, or slaughterhouses  to provide a more timely indicator of infection 

prevalence in a population, particularly if coupled with sequencing to detect emerging variants 

(Cameron et al., 2020,Armson et al., 2020, Thumbi et al., 2019). 

 

Farm-based active surveillance through randomized sampling would be considered the 

benchmark of understanding the prevalence and distribution of diseases. Various studies have 

reported farm-based genomic surveillance of subclinical FMDV strains in endemic regions (de 

Carvalho Ferreira et al., 2017,Bertram et al., 2020,Omondi et al., 2020,Farooq et al., 2018). 

However, routine farm-based surveillance is  often impractical based upon logistical complexity 

and expense, particularly in rural settings with sub-optimal infrastructure. Slaughterhouses are 

concentration points where animals from many farms aggregate, and can potentially serve as a 

convenient, quasi-representative sample of animals from the surrounding host population  

(Innocent et al., 2017,Willeberg et al., 2018,Arguello et al., 2013). This strategy is employed in 

veterinary public health to detect diseases or zoonoses of public health concern, such as Fasciola 

or bovine tuberculosis (Innocent et al., 2017,Kao et al., 2018,Willeberg et al., 2018). 

Slaughterhouse data alone, and in combination with other variables, have also been utilized  for 

determining the risk factors associated with preserving the quality of meat, and evaluating 

antibiotic usage in farm animals (Peterson et al., 2017,Savin et al., 2020). In most countries, only 

visual inspections of carcasses are performed in slaughterhouses, though depending on the 

pathogen, effective disease surveillance can be achieved at slaughterhouses by combining 

laboratory testing with visual inspection (Fertner et al., 2017,Willeberg et al., 2018). For example, 

routine slaughterhouse surveillance and laboratory testing to detect emerging diseases is  



 
 

72 
 

conducted in the European Union (EFSA and ECDC )(Bonardi, 2017) and the USA  (USDA and 

APHI)(Peterson et al., 2017).  

 

Slaughterhouse-based surveillance is typically passive in nature and is employed for diseases 

with poor antemortem diagnostic options, and slow-spreading pathogens and parasites that do 

not require a rapid response; hence it is rarely used for rapidly spreading diseases such as FMD. 

However, there is substantial and often sub-clinical spread of FMD in endemic countries 

(Stenfeldt and Arzt, 2020) that is not captured by passive surveillance of reported outbreaks. 

Active surveillance at slaughterhouses, defined here as the laboratory testing of randomly or 

purposively selected samples at the slaughterhouse, may provide a cost-effective approach to 

identifying undetected viral circulation and identifying prevalent or emerging strains. The utility of 

a slaughterhouse-based genomic surveillance system has not been evaluated for FMDV but 

could be valuable to improve genomic surveillance in endemic regions for early detection and 

selection of appropriate vaccines.  

 

Most countries in Southeast Asia (SEA) are FMDV endemic. In Vietnam, serotypes O and A 

currently circulate in the country (de Carvalho Ferreira et al., 2017).  Serotype O causes 80% of 

outbreaks, with four distinct lineages present: ME-SA (Mya-98), SEA (PanAsia), O-Ind2001, and 

Cathay. The PanAsia lineage is currently dominant, having  been  introduced in 2006 (Le et al., 

2016). O/Ind 2001d was introduced into the Southern part of the country in 2015 and is currently 

circulating along with the PanAsia lineage (Vu et al., 2017). In addition, the Mya-98 lineage was 

first identified in Vietnam in 1998 and continues to cause sporadic outbreaks (Van Diep et al., 

2020). Serotype A FMDVs identified in the country belong to the SEA/97, genotype IX and are 

closely related to strains from Laos and Thailand (de Carvalho Ferreira et al., 2017,Vp et al., 

2010). From these observations, it is apparent that FMDV dynamics within Vietnam are 

characterized by the periodic introduction or emergence of new variants of both serotypes, some 

of which may become widespread within the country. To develop appropriate control measures or 

inform vaccine selection, it is important to identify emerging lineages as early as possible. Active 

surveillance rather than passive outbreak surveillance could provide this opportunity.  

 

The objective of this study was to evaluate sampling of clinically normal ruminant livestock at 

slaughterhouses as a strategy for genomic surveillance of FMDV under endemic conditions. 

Specifically, we investigated the extent to which viruses recovered from slaughterhouses reflect 

the diversity found in the source population (inferred by farm sampling), and whether they can 

serve as sentinels for the early detection of outbreak strains identified through passive 

surveillance.  
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4.2 Methods   

4.2.1 Study populations and sampling design 

Farm-based sampling 

Cattle and buffalo farms from eight provinces in northern (Lang Son, Phu Tho, Bak Kan, Ha Tinh)  

and southern (Ninh Thuan, Dong Thap, Dak Lak, Binh Phuoc)  Vietnam were selected for this 

study based on the recent outbreak history and their identification as FMD hotspots (Lee et al., 

2019,Bertram et al., 2018). Selected provinces bordering China (Bak Kan, Lang Son ), Laos (Ha 

Tinh) and Cambodia (Dak Lak, Binh Phouc, Dong Thap) were selected to capture the potential 

introduction of FMDVs through transboundary movement. A serial cross-sectional study was 

carried out across these provinces. Briefly, in each province, 70 to 450 farms (average herd size 

=3 animals) were serially sampled from 2015 to 2019. Sera and oropharyngeal fluid (OPF) were 

collected from 30 to 250 animals per province per time point (Table 4.1). Animals that were 

seropositive for FMDV non-structural proteins (NSP) on the first round of sampling were re-

sampled in consecutive rounds. The number of animals tested from each farm was variable 

across time, as was the time point in which farms were first initiated into the study.  

 

Table 4.1: Descriptive characterization of longitudinal farm sample screening for FMDV NSP-

serology, detection of FMDV RNA in oropharyngeal fluid (OPF), and sequence isolation.  

 Province Sampling 

Dates 

No. 

of 

farms 

NSP Serology 

(positive/total); 

Percent 

positive 

RNA Detection in 

OPF Samples 

(positive/total); 

Percent positive 

No. VP1 

Seq. 

Obtained 

S
o

u
th

e
rn

 P
ro

v
in

c
e
s

 

Ninh 

Thuan 

Oct 2016 

Jun – Sep 

2017  

Jun – Sep 

2018 

Jan – Feb 

2019 

69 (1010/1290); 

78.3% 

 

(72/1003); 

7.2% 

23 

Dong 

Thap 

Aug 2015 

Oct 2016 

Jun, Sep – 

Nov 2017 

Jun – Aug 

2018 

Jan – Feb 

2019 

135 (888/1965); 

45.2% 

(197/882); 

22.3% 

98 
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Dak Lak Aug 2015 

Aug 2017 

Jun – Oct 

2018 

Jan – Feb 

2019 

212 (1233/2173); 

56.7% 

(97/1230); 7.8% 72 

Binh 

Phuoc 

Sep 2015 160 (84/514); 16.3% (2/80); 2.5% 0 

N
o

rt
h

e
rn

 P
ro

v
in

c
e
s

 

Lang Son 2015 

2016 

Jun – Sep 

2017 

May – Aug 

2018 

227 (208/1387); 

15% 

(3/223); 1.3% 1 

Phu Tho 2015 

2016 

Aug – Nov 

2017 

Jun – Sep 

2018 

Jan – Feb 

2019 

442 (269/1256); 

21.4% 

(2/274); 0.8%  0 

Bak Kan Oct 2016 

Aug – Nov 

2017 

Jun – Sep 

2018 

Jan – Feb 

2019 

303 (1264/2790); 

45.3% 

(73/1241); 5.8% 22 

Ha Tinh Aug 2015 274 (86/500); 17.2% (0/112); 0% 0 

 

Slaughterhouse-based sampling 

Two cattle and buffalo slaughterhouses in Long An and Tay Ninh provinces in southern Vietnam 

were selected as pilot locations for genomic surveillance (Table 4.2).  These slaughterhouses 

were selected partly because of their proximity to Cambodia, in order to investigate 

transboundary movements of FMDVs between these countries and due to animal movement from 

northern to southern Vietnam (Brito et al., 2017). Animals collected from several farmers in 
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surrounding communes were typically brought to the slaughterhouses by middlemen.  Serial 

cross-sectional sampling was carried out from 2017 to 2019 every 15 days. Approximately 30 

animals were sampled (serum and OPF) from each slaughterhouse in each round of sampling.  

 

Table 4.2: Descriptive characterization of slaughterhouse sample screening from two 

slaughterhouses in southern Vietnam. 

Province Sampling Dates NSP Serology 

(positive/total); 

Percent 

positive 

RNA Detection 

in OPF 

Samples 

(positive/total); 

Percent 

positive 

No.VP1 

Sequences 

Obtained 

Long An Oct 2017 – May 

2018 

Jan – Feb 2019 

(179/480); 

37.3% 

(51/480); 10.6% 51 

Tay Ninh Oct 2017 – Jun 

2018 

Jan – Feb 2019 

(277/480); 

57.7% 

(71/480); 14.8% 71 

 

Outbreak virus sequences 

Outbreak sequences from across the country were also included in this study to quantify the 

genetic diversity of FMDV captured by passive surveillance activities. Sampling of outbreaks 

typically occurs after an outbreak (i.e., clinical signs in one or more animals) is reported and 

followed up. Sampling is usually conducted by the Ministry of Agriculture and Rural Development 

(MARD), Vietnam, sometimes in collaboration with the United States  Department of  Agriculture 

(USDA).  Not all outbreaks are reported, and not all reported outbreaks are sampled.  Outbreak 

sequences (VP1 region) from cattle, buffalo and pigs were generally obtained through sampling 

epithelium and oropharyngeal  fluid. 80 and 26 serotype O and A outbreak sequences, 

respectively, were available from 2009 to 2019 from MARD, USDA, and GenBank, which were 

assumed to represent outbreak samples collected as part of passive surveillance. 

 

4.2.2 Laboratory analysis 

Serum samples were screened for the presence of antibodies against FMDV non-structural 

proteins (NSP) using a 3ABC ELISA (Priocheck®, Prionics, Netherland) following manufacturers’ 

instructions as previously described (Fereirra et al., 2017). OPF and epithelium (outbreak) 

samples were screened for the presence of FMDV using virus isolation (VI), followed by detection 

of viral RNA in VI supernatant using qRT-PCR as previously described (Stenfeldt et al., 2016, 

Pacheco et al., 2010). Samples that were positive for viral RNA were subjected to sequencing 
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using one of several methods. Samples from 2013-2015 were sequenced using the Sanger 

method as previously described (de Carvalho Ferreira et al., 2017) to obtain VP1 sequences, or 

by next generation sequencing (NGS) to obtain full open reading frame (ORF) sequences. For 

NGS sequences, overlapping RT-PCR amplicons covering the full ORF were produced using 

three sets of primers (Brito et al., 2017), and amplicons were sequenced as previously described 

(Bertram et al., 2019). Samples from 2016-2017 were sequenced by NGS of RT-PCR amplicons 

covering the P1 region (Xu et al.,2013) as previously described (Bertram et al., 2019). Finally, 

sequences from 2018-2019 were sequenced by NGS using random and FMDV-specific primers 

to obtain the complete genome as previously described (Palinski et al., 2019,Bertram et al., 

2019). All NGS sequencing was performed using the Illumina NextSeq platform. Read quality 

filtering, de novo assembly, and assembly to previously published references of regionally 

endemic lineages were implemented in CLC Genomics Workbench v12 (Qiagen). Sequences of 

the VP1 region were utilized in this study. 

 

4.2.3 Analysis of diagnostic data 

The proportions of NSP-positive and rRT-PCR positive animals were calculated for each province 

for each year for farm-based sampling and for each round of slaughterhouse sampling. To 

determine whether slaughterhouses are a good indicator of infection prevalence in the 

surrounding population, we compared apparent seroprevalence and percent positive on rRT-PCR 

(OPF sampling) at slaughterhouses and from farms in neighboring provinces during the same 

time period.  

 

4.2.4 Phylogenetic analysis 

Identification of circulating clusters 

In order to document the effectiveness of slaughterhouse surveillance as a vehicle for genomic 

surveillance, we first classified sequences into genetic clusters of closely related viruses. 

Delineation of different clusters enabled tabulation of when and where distinct FMDV variants 

were detected.   

 

Using the sequence data for the VP1 region of FMDV, we used a discriminant analysis of 

principle components (DAPC) to find the optimal clustering of sequences that minimized within-

cluster genetic variation and maximized between-cluster distance, following  (Jombart et al., 

2010). Resulting clusters correspond to clades on a phylogenetic tree. Nine principal components 

were able to explain 90% of the variability in the genetic data and were used for the 

discriminatory clustering analysis for both Serotype O and A. The Bayesian information criterion 

(BIC) was used to determine the parsimonious number of clusters.  This analysis was performed 

with the R package adegenet (Jombart, 2008).  
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Sequences from each cluster were blasted against NCBI and WRLFMD prototype lineages to 

identify the lineage to which each cluster belonged. The clusters were also compared with the 

currently used vaccine strains in a maximum-likelihood phylogenetic tree. For large clusters 

identified by DAPC (>10 sequences), the locations and time of appearance of sequences in 

different parts of Vietnam were mapped using ESRI ArcGIS. 

 

Time-scaled phylogenies 

In order to identify the emergence of different viral clusters through time and document the 

timeliness of slaughterhouse surveillance in detecting new clusters, a time-scaled phylogenetic 

analysis was performed using the Bayesian Evolutionary Analysis Sampling Tree (BEAST 

v1.10.4) software for both serotype A (132 sequences) and O (193 sequences). For serotype O, a 

total of 72 sequences from farm-based sampling, 41 sequences from slaughterhouses, and 80 

sequences from outbreaks were included in the analysis. For serotype A, 30 sequences from 

farm-based sampling, 16 sequences from slaughterhouses, and 86 sequences from outbreaks 

were included. Because farm sampling was longitudinal, in some cases, the same animal was 

consecutively sampled at different rounds, resulting in nearly identical sequences from the same 

animal.  In such instances, only the first sequence per animal was included. All available outbreak 

and slaughterhouse sequences were used. Sequences were screened for recombination prior to 

further analysis using RDP4 software (Martin et al., 2015) and aligned using MUSCLE algorithm 

(Edgar, 2004). The best-fit nucleotide substitution model was the HKY model, which was 

identified through JMODEL test (Darriba et al., 2012). 

 

A relaxed uncorrelated log-normal molecular clock was tested with four different population 

models (constant, expansion, exponential, and Bayesian Skygrid), with the marginal likelihood of 

each candidate model compared using path-sampling and stepping-stone estimators  (Baele et 

al., 2016).  Each model was run for 200 million iterations on CIPRES (Miller et al., 2010).  Tracer 

1.7.1 was used to assess the conversion of the chains visually and for effective sample sizes of 

>200 (Rambut et al., 2007). A relaxed clock coalescent Skygrid model was selected for both 

serotype O  and A. A maximum clade credibility (MCC) was constructed from 10,000 posterior 

samples of trees (discarding 10% burn-in), and annotated using ggtree (Rambut et al., 2006, Yu 

et al., 2017). Time to most common recent ancestor (tMRCA) of each cluster and 95% highest 

posterior densities (95%HPD) were obtained from the MCC tree.  
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4.3 Results  

4.3.1 Descriptive data (sample screening) 

A total of 11,875 serum samples and 5,045 OPF samples from farms were tested via NSP-ELISA 

and rRT-PCR, respectively, and 216 VP1 sequences were obtained (Table 4.1). Overall, 42.4% 

(95%CI: 32.2-52.1%) of serum samples were NSP-positive, and 8.8% (95%CI: 3.4-15.1%) of 

OPF were rRT-PCR-positive;  1200 serum samples and 1200 OPF samples were collected from 

slaughterhouses, and 95 sequences were obtained (Table 4.2). Across 16 rounds of sampling, 

37.3% (95%CI:32.9-41.7%) of serum samples were NSP-positive and 10.6% (95%CI: 4.1-16%)  

were rRT-PCR-positive in the Long An slaughterhouse, whereas  51.8% (95%CI: 47.3-56.4%) of 

serum samples were NSP-positive and 16.7% (95%CI: 9.6-24%) were rRT-PCR-positive in the 

Tay Ninh slaughterhouse. Detailed summaries of diagnostic results by year and province are 

reported in Supplementary Tables S4.1-4.7.  

 

The proportion NSP sero-positive in both slaughterhouses had substantial  variability across 

samplings, and confidence intervals were quite wide due to relatively low sample size per time 

point (Figure 4.1a). Thus, it was difficult to pinpoint differences between the two slaughterhouses 

or discern temporal trends. Farm sampling data were available from two provinces (DakLak and 

Ninh Thuan) located in the same region as the slaughterhouses, sampled at approximately 

similar time points. In these provinces, on-farm prevalence was similar to what was determined in 

the slaughterhouses, but confidence intervals were wide (Figure 4.1 b). Amongst NSP-positive 

animals at slaughterhouses (Long An: n = 167; TayNinh: n = 231), 30.5% (95% CI: 20-38%) and 

30.7% (95% CI:22-40%) were rRT-PCR positive, respectively (Figure 4.1 b).  

  



 
 

79 
 

 



 
 

80 
 

 

Figure 4.1: A) Proportion of animals NSP-positive in farms and slaughterhouses from August 

2017 to June 2018. B) rRT-PCR detection rate of FMDV RNA in oropharyngeal fluid from farms 

and slaughterhouses from August 2017 to June 2018. Error bars represent 95% confidence 

intervals. Slaughterhouses were in Long An and Tay Ninh. Farms were in Ninh Thuan and Dak 

Lak. 

 

4.3.2 Cluster analysis 

For both serotypes, the first nine principal components accounted for 90% of the variability in the 

genetic data. Through application of DAPC using these nine components, nine clusters were 

identified based on genetic diversity within serotype O and eight clusters were identified within 

serotype  A. For serotype O, seven clusters belonged to the MESA-PanAsia lineage and two of 

the clusters belonged to Mya-98 and Cathay lineages. For Serotype A, all clusters belonged to 

the SEA/97 lineage (Figure 4.4 and Supplementary Figure S4.2). Six of nine and four of eight 
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serotype O and A clusters, respectively, had >10 sequences, each with an average within-cluster 

genetic distance of 1.0 – 6.6% in the VP1 region. Supplementary tables 8 and 9 show details of 

clusters with more than ten sequences, including the lineage to which they belong, place of 

isolation across years, species, and within- and between-group genetic distances for both 

serotype O and A. An examination of the number of sequences isolated per cluster through time 

reveals a pattern whereby a particular cluster emerges (or is first detected), peaks, and 

subsequently declines in frequency through time (Figure 4.2 A and B).  
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Figure 4.2: Number of sequences isolated per genetic cluster per year for A) serotype O and B) 

serotype A from the year 2010 to 2019. Serotype O cluster 6 and 9 belonged to the Mya-98 

lineage, cluster 7 to the Cathay lineage, and all the other clusters belonged to the Pan Asia 

lineages . All serotype A clusters belonged to the SEA/97 lineage. 

 

Some (17/56, 30.1%) sequences in serotype A-cluster 9 were identified as recombinant 

sequences within a different study analyzing full-length sequences (Bertram et al., 2021). 

Although the VP1 portion of these viruses is not recombinant and belongs to A/Sea-97, other 

parts of the genome belong to O/ME-SA/Pan-Asia. Due to the phylogenetic clustering of these 18 

sequences with other sequences for which full-length genomes were not available, it is likely that 

all sequences within this cluster were the same A-O recombinant.  

 

4.3.3 Phylogenetic data analysis 

To evaluate the utility and timeliness of slaughterhouse surveillance, we focused only on the large 

clusters (>10 sequences per cluster) that were identified in the southern part of the country during 

the time period in which active sampling was conducted at slaughterhouses in this region (2017-

2019). Four and three clusters met these criteria for serotypes O and A, respectively. Of these 

seven serotype O and A clusters circulating in southern Vietnam at this time, six were detected at 
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slaughterhouses, which suggests that slaughterhouse sampling is effective for revealing the 

diversity of circulating FMDVs in the host population (Figures 4.3-4.4, Supplementary Tables 

S4.8-4.9). The one cluster which was not detected at slaughterhouses was one that only 

contained outbreak sequences from pigs (Serotype O-Mya-98  Cluster 6), which were not 

sampled  within  as part of farm-based or slaughterhouse surveillance efforts.   

 

For one of the six clusters detected at slaughterhouses (Serotype O cluster 2), detection through 

active slaughterhouse surveillance preceded passive outbreak surveillance by 4-6 months (Figure 

4.3). Specifically, the serotype O cluster 2 sequences associated with outbreaks in the northern 

Vietnam in 2018 was detected in slaughterhouses in southern Vietnam in 2017 (Figure 4.5). For 

three clusters in serotype O (clusters 8, 9, 10) and one cluster in serotype A (cluster 4), clusters 

were detected in outbreak samples before appearing in active farm and slaughterhouse samples. 

However, the outbreak samples occurred during time periods during which no active surveillance 

was conducted for four of these clusters. 

 

Table 4.3: Summary of clusters with >10 sequences for both serotype O and A. Sequences were 

obtained from outbreaks (OB), farms (FA), and slaughterhouses (SH). Regions of the country are 

divided as northern, central and southern Vietnam. †Clusters that were circulating in southern 

Vietnam during period of slaughterhouse sampling. 

Serotype/ 

cluster ID 

source Number of 

sequences 

per source 

Total 

number of 

sequences  

Region of 

first 

detection 

Earliest date detected 

O-1 OB 1 20 South (FA) 2012-04-13 
 

FA 19    

O-2† OB 9 73 South (SH) 2017-01-10 
 

FA 22    
 

SH 42    

O-6† OB 21 21 South (OB) 2018-02-07 

O-8 OB 25 34 North (FA) 2010-12-22 
 

FA 9    

O-9† OB 10 13 Central (OB) 2013-10-07 
 

FA 2    
 

SH 1    

O-10† OB 2 16 South (OB) 2015-09-10 
 

FA 3    
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SH 9    

A-4† OB 19 21 Central (OB) 2013-10-09 

 FA 1    

 SH 1    

A-5† FA 6 20 Central (FA) 2017-01-08 

 OB 5    

 SH 9    

A-9 FA 5 56 Central (FA) 2017-01-08 

 OB 50    

A-10† FA 6 12 South (FA) 2018-10-03 

 SH 6    
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Figure 4.3: Time-scaled phylogeny for serotype O sequences isolated in Vietnam. Tip color 

indicates the source type of data (slaughterhouse, farm and outbreak). Different branch colors 

shows the region of the country where sequences were isolated.  Small brackets identify the 

clusters and the large brackets identify the lineages each cluster belongs to.  

 

 

 

 

 

Figure 4.4: Time-scaled phylogeny for serotype A sequences isolated in Vietnam. All isolates 

belonged to the SEA-97 lineage. Tip color indicates the source type of data (slaughterhouse, farm 

and outbreak). Different branch colors show the region of the country where sequences were 

isolated.  Small brackets identify the clusters and the large brackets identify the lineage each 

cluster belongs to. 
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Figure 4.5: Spatial distribution of sequences in serotype O cluster 2. Outbreak samples are 

shown in red, slaughterhouse samples in green, and farms samples in orange.  Shape indicates 

year of sampling. 
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4.5 Discussion  

This study provides evidence that, in endemic settings, active surveillance of asymptomatic 

animals at slaughterhouses can be an effective means of genomic surveillance for FMDV.  We 

identified  six distinct serotype O and four serotype A genetic clusters through sequencing 

FMDVs recovered from serial cross-sectional sampling at selected  slaughterhouses in southern 

Vietnam, active surveillance at farms in the same region, and passive surveillance based on 

outbreak reporting throughout the country. The data herein indicate that most (6 out of 7) large 

clusters circulating in southern Vietnam between 2017-19 were detected at least once at 

slaughterhouses.  In addition, our results suggest that slaughterhouse-based surveillance can 

provide more timely information on circulating or emerging FMDV variants as compared to 

passive detection through outbreaks. Specifically, some variants were detected at 

slaughterhouses four to six months prior to their association with reported outbreaks. These 

results demonstrate the potential utility of systematic genomic surveillance across a network of 

slaughterhouses in endemic countries. 

 

While slaughterhouse surveillance was able to capture the underlying diversity documented in 

farms of the same region, proportion positivity for FMDV RNA detection (rRT-PCR) and sero-

reactivity (NSP-ELISA) were highly variable through time which precluded making any 

conclusions about the representativeness of slaughterhouse samples for estimating prevalence. 

This was further complicated by the difference in the time schedule of sampling at 

slaughterhouses and farms, and insufficient sample sizes per time point. Both sampling efforts 

were not truly random. Additionally, because these slaughterhouses were in border provinces, 

some animals may have arrived through transboundary animal movements, which may not be 

representative of seroprevalence in farms in the region. Despite these challenges, this study 

demonstrates that sentinel surveillance at slaughterhouses is convenient and inexpensive, and 

while slaughterhouse-based sampling may not provide precise estimates of prevalence, routine 

genomic surveillance at slaughterhouses may be effective for early detection of novel FMDV 

variants.  

 

Within the scope of this study, circulating viruses in Vietnam were associated with the serotype A 

SEA/97 lineage and the serotype O Cathay, Pan Asia and Mya-98 lineages, with Pan Asia being 

the most common. This finding is consistent with other recent molecular epidemiology studies in 

Vietnam  (de Carvalho Ferreira et al., 2017, Bertram et al., 2019,  Brito et al., 2017). Analysis of 

325 viral sequences collected from slaughterhouses, farms, and outbreaks revealed nine genetic 

clusters within these lineages. These genetic clusters do not correspond to the spatial clustering 

of outbreaks reported in different parts of Vietnam (Lee et al., 2020). For example, the 73 

sequences belonging to serotype O-cluster 2  were found throughout the country (Figure 4.5). 
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Viruses isolated from slaughterhouses clustered together with viruses recovered from farms 

during the same period, indicating that slaughterhouses are representative of FMDV circulation at 

the farm level. Indeed, six out of seven clusters identified in southern Vietnam from 2017-2019 

were detected at least once at these two slaughterhouses. The one cluster not detected in 

slaughterhouses was comprised exclusively of outbreak samples from pigs, demonstrating a 

limitation of the active surveillance schemes in this study (sampling asymptomatic/carrier 

ruminants at slaughterhouses  misses lineages with tropism for pigs). Nonetheless, the diversity 

of FMDVs detected at slaughterhouses was largely representative of the diversity identified in the 

general population, as quantified from farm-based sampling and passive surveillance.  

 

Sequences identified from Vietnam were closely related to viruses isolated from adjacent 

countries, indicating a role of transboundary animal movement for FMDV spread and highlighting 

the importance of regional approach to control FMD in Vietnam (Brito et al., 2017).  In order to 

identify and control incursions of novel FMDV variants promptly, it is important to incorporate 

genomic surveillance as a part of routine surveillance at key locations. Our results demonstrate 

how monitoring slaughterhouses in southern Vietnam, bordering Cambodia, was able to provide 

early detection of novel variants that could potentially have been introduced from neighboring 

countries.  Rather than implementing slaughterhouse surveillance across the entire country, it 

could be cost-effective to employ a “risk-based” approach whereby a network of sentinel 

slaughterhouses could be strategically established with consideration to transboundary animal 

movement and outbreak hotspots (Lee et al.,2015). Our results suggest that  such a network 

could identify new FMDV variants in a similar timeframe and in some cases earlier compared to 

the current status quo of passive surveillance. Such early warning could provide more time for 

authorities to decide on appropriate control measures and vaccine selection.  

 

Slaughterhouse sampling did not result in earlier detection of genetic clusters in all cases. For 

clusters that were detected through outbreak sampling (passive surveillance) prior to subclinical 

detection (active surveillance at slaughterhouses), the outbreak data was not aligned spatially or 

temporally with the period in which slaughterhouse sampling was conducted. Thus, the apparent 

delay in detection at slaughterhouses relative to outbreak reporting may reflect that the cluster 

was not circulating in populations near the slaughterhouses during the period of sampling. 

However, a larger network of slaughterhouse-based surveillance throughout the country may 

have detected such clusters earlier. 

 

Time-scaled phylogenies illustrated that closely related viruses were identified in farms both 

before and after they are detected as associated with an outbreak. Infectious FMDV was isolated 

from OPF samples in animals sampled 6-12 months after the outbreak-associated sequence. 
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These animals sampled in slaughterhouses and farms did not have clinical signs of FMD at the 

time of sampling, and thus detection of virus in such animals represented either persistent 

infections in carrier animals or early (acute) sub-clinical (neoteric) infections (Stenfeldt and Arzt, 

2020). Related to this, the recovery of viruses in OPF samples collected from persistently infected 

carriers introduces some uncertainty in the dating of the incidence of infection, as the sample 

collection date is surely later than the infection date (Bronsvoort et al., 2016,Hayer et al., 

2018,Bertram et al., 2020). This could potentially have impacted the date estimates in the time-

scaled phylogenies, though we do not think that it changes our general conclusions in relation to 

the representativeness and timeliness of slaughterhouse-based surveillance. 

 

It is apparent from our data that genetic clusters emerged and disappeared across time. 

Unfortunately, the nature of this study did not allow for examination of drivers of cluster 

emergence. Because cross-protection amongst related strains may only be partial, immune-

driven interactions among co-circulating viruses at the population level could lead to the 

replacement of existing clusters with new clusters. Cross-protection may result in clinical 

protection from a different strain of the same serotype, but still may allow for viral replication, 

transmission, and immune-mediated selection, thus creating ecological or evolutionary selection 

pressures for viral evolution and cluster turnover. A similar phenomenon of serial subclinical 

infections with distinct heterologous and homologous strains of FMDV was demonstrated in Asian 

buffalo in Pakistan (Farooq et al, 2018). Alternatively, FMDV evolution and circulation of specific 

genetic clusters in endemic settings may be a product of stochastic spatiotemporal processes 

(e.g., founder effects) within heterogeneously structured host populations  (Fournié et al., 2018), 

which combine to generate a pattern of introduction, spread, and fade out of clusters over time. 

 

Active surveillance plays a key role in controlling contagious diseases such as FMD (Henritzi et 

al., 2020,Shapshak et al., 2015). The effectiveness of such surveillance is dependent upon early 

detection of viral variants using appropriate molecular tools combined with sensibly executed 

surveillance systems.  In this study, we demonstrate that active surveillance in sentinel 

slaughterhouses can capture much of the genetic diversity of circulating endemic FMDVs.  Our 

results suggest that routine genomic surveillance in slaughterhouses would provide 

representative and timely data on both established and emerging genetic variants, in some cases 

detecting novel variants four to six months prior to their detection via passive surveillance.  These 

results underscore the potential utility of systematic genomic surveillance for FMDV and other 

pathogens in slaughterhouses in endemic countries. 
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Table S4.1: Serology and OPF screening from farms in each province in 2015. 

Province Serum 

Tested 

Serum 

positive  

Seropositive 

percentage of 

samples 

OPF 

Screened 

(rRT-PCR) 

OPF 

positive 

for 

FMDV 

RNA 

Percentage 

OPF 

positive 

Hà Tĩnh 500 86 17.2 (13,21) 112 0 0 

Lạng Sơn 484 20 4 (2,5) 33 0 0 

Phú Thọ 500 50 10 (7,12) 62 0 0 

Bắc Kạn na na na na na na 

Ninh Thuận na na na na na na 

Đồng Tháp 485  149  31 (26,34) 139 36 25.8 

Bình Phước 514  84  16 (13,19) 80 2 2.5 

Đăk Lăk 504  142  28 (24,32) 142 3 2.1 

TOTAL 2,987  531    568  41  7.2 

 

Table S4.2: Serology and OPF screening from farms in each province in 2016.  

Province Serum 

Tested 

Serum 

positive 

Seropositive 

percentage of 

samples 

OPF 

Screened 

(rRT-PCR) 

OPF 

positive 

Percentage 

OPF 

positive 

Hà Tĩnh na na na na na na 

Lạng 

Sơn 

236 31 13 (8,17) 33 2 6 

Phú Thọ 253 34 13 (9,17) 32 2 6.2 

Bắc Kạn 496 167 34 (29,37) 165 32 19.4 

Ninh 

Thuận 

250 177 71 (65,76) 177 20 11.2 

Đồng 

Tháp 

254 100 39 (33,45) 102 33 32.3 

Bình 

Phước 

na na na na na na 

Đăk Lăk na na na na na na 

TOTAL 1,489  509    509  89  17.4 
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Table S4.3: Serology and OPF screening from farms in each province in 2017.  

Province Serum 

Tested 

Serum 

positive 

Seropositive 

percentage of 

samples 

OPF 

Screened 

(rRT-PCR) 

OPF 

positive 

for 

FMDV 

RNA 

Percentage 

OPF 

positive 

Hà Tĩnh na na na na na na 

Lạng 

Sơn 

316 92 29 (24,34) 92 0 0 

Phú Thọ 177 82 46 (39,53) 77 0 0 

Bắc Kạn 982 447 46 (42,48) 443 33 7.4 

Ninh 

Thuận 

585 467 80 (76,83) 461 49 10.6 

Đồng 

Tháp 

369 210 57 (51,61) 212 85 40 

Bình 

Phước 

na na na na na na 

Đăk Lăk 252  182  72 (66,77) 181 56 31 

TOTAL 2,681  1,480    1,466  223   

 

Table S4.4: Serology and OPF screening from farms in each province in 2018. 

Province 

Serum 
Tested 

Serum 
positive 

Seropositive 
percentage of 

samples 

OPF 
Screened 
(rRT-PCR) 

OPF 
positive 

for 
FMDV 
RNA 

Percentage 
OPF 

positive 

Hà Tĩnh na na na na na na 

Lạng 
Sơn 

351 65 
19 (14,22) 

65 1 
1.53 

Phú Thọ 149 48 32 (24,39) 48 0 0 

Bắc Kạn 752 363 48 (44,51) 347 3 0.8 

Ninh 
Thuận 

319 257 
81 (76,84) 

256 3 
1.1 

Đồng 
Tháp 

540 284 
53 (48,56) 

284 31 
11 

Bình 
Phước 

na na na na na 
na 

Đăk Lăk 942  605  64 (61,67) 605 27 4.4 

TOTAL 3,053  1,622    1,605  65   
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Table S4.5: Serology and OPF screening from farms in each province in 2019.    

Province Serum 

Tested 

Serum 

positive 

Seropositive 

percentage of 

samples 

OPF 

Screened 

(rRT-PCR) 

OPF 

positive 

for 

FMDV 

RNA 

Percentage 

OPF 

positive 

Hà Tĩnh na na na na na na 

Lạng Sơn na na na na na na 

Phú Thọ 117 55 47 (38,56) 55 0 0 

Bắc Kạn 560 287 51 (47,55) 286 5 1.74 

Ninh 

Thuận 

136 109 80 (73,86) 109 0 0 

Đồng 

Tháp 

317 145 46 (40,51) 145 12 8.27 

Bình 

Phước 

na na na na na na 

Đăk Lăk 475  304  64 (59,68) 302 11 3.64 

TOTAL 1,605  900    897  28   

 

Table S4.6: Slaughterhouse Serology and OPF sample collection summary Long An. 

Sampling 

Round 

Serum 

Tested 

Number 

of 

positive 

3ABC 

Percentage 

3ABC ELISA 

positive  

OPF 

Screened  

(rRT-PCR) 

OPF 

positive 

for 

FMDV 

RNA 

Percentage 

OPF 

positive 

1 30 21 70.0 (56,86) 30 7 23.3 

2 30 10 33.3 (16.5, 50) 30 2 6.6 

3 28 4 14.3 (1.3,27) 28 0 0 

4 30 11 36.7 (19,53) 30 1 3.3 

5 32 15 46.9 (29,64) 32 4 12.5 

6 30 10 33.3 (16.5,50) 30 4 13.3 

7 30 7 23.3 (8.2, 38) 30 4 13.3 

8 30 11 36.7 (19.5,53) 30 3 10 

9 30 10 33.3 (16.5, 50) 30 4 13.3 

10 24 13 54.2 (34.3, 74) 24 5 20.8 

11 36 17 47.2 (31,63) 36 6 16.6 
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12 23 9 39.1 (19.2,56) 23 0 0 

13 37 11 29.7 (15,44) 37 3 8.1 

14 30 9 30.0 (13.6,46) 30 1 3.3 

15 20 11 55.0 (33,76 ) 20 4 20 

16 40 10 25.0 (11,38) 40 3 7.5 

Grand Total 480 179 37.3 480 51  

 

Table S4.7: Slaughterhouse Serology and OPF sample collection summary  Tay Ninh. 

Sampling 

Round 

Serum 

Tested 

Number 

of 

positive 

3ABC 

Percentage 

3ABC ELISA 

positive 

OPF 

Screened 

(rRT-PCR) 

OPF 

positive 

for 

FMDV 

RNA 

Percentage 

OPF 

positive 

1 30 28 93.3 (84, 100) 30 9 30 

2 30 14 46.7 (29,64) 30 6 20 

3 30 21 70.0 (53,86) 30 7 23.3 

4 30 10 33.3 (16.5,50) 30 5 16.6 

5 30 14 46.7 (29,64) 30 7 23.3 

6 30 7 23.3 (8,38) 30 1 3.3 

7 30 18 60.0 (42,77) 30 5 16.6 

8 30 21 70.0 (53,86) 30 4 13.3 

9 30 8 26.7 (11,42) 30 5 16.6 

10 30 9 30.0 (13,46) 30 1 3.3 

11 30 17 56.7 (39,74) 30 7 23.3 

12 30 15 50.0 (32,74) 30 2 6.6 

13 30 11 36.7 (19.5, 

53.8) 

30 2 6.6 

14 30 20 66.7 (49.8,83) 30 4 13.3 

15 30 13 43.3 (25.6, 70) 30 2 6.6 

16 30 23 76.7 (61,91) 30 4 13.3 

Grand Total 480 277 57.7 480 71  
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Table S4.8: Large cluster information of serotype O. 

 Type Area 
Dates 
Detected Species MRCA 

Number of 
sequences 

Closest 
lineage  

Within 
Cluster GD 

cluster 1 Farm North 2012-05-09 to  
Cattle, Buffalo 

2010.1 20 
O/ME-
SA/PANASIA  0.034 

      2012-10-11  (2001.77, 2028.89)     

  Farm Central 2012-04-23  
     

  Farm and South  2012-04-13 to   
     

  Outbreak   2017-01-09*  
     

cluster 2† Farm and North 2017-10-01 to 
Pig, Cattle, 

2016.5 73 
O/ME-
SA/PANASIA  0.011 

  Outbreak   2018-11-11 Buffalo, Goat (2014.4,2018.8)     

  Outbreak Central 2018-04-13 Cattle 
     

  Farm and South  2017-01-10 to Cattle, Buffalo 
     

  Slaughterhouse   2018-07-01  
     

cluster 6† Outbreak North 2018-11-13 to  Pig 2017.9 21 Mya-98  0.021 

      2019-01-15  (2017.5, 2019.1)     

  Outbreak Central 2018-12-27 to  
     

      2019-01-05  
     

  Outbreak South  2018-11-13 to   
     

      2019-01-11  
     

cluster 8 Farm and North 2010-12-22 to 
Pig, Cattle, 

Buffalo 2009.5 34 
O/ME-
SA/PANASIA  0.021 

  Outbreak   2014-07-14  (2001.1,2018.9)     

  Farm and Central 2010-12-26 to Pig, Buffalo 
     

  Outbreak   2012-05-23  
     

  Outbreak South  2010-12-21 to Pig, Cattle,  
     

      2014-07-10 Buffalo 
     

cluster 9† Outbreak North 2016-01-16 to   2013.1 11 Mya-98 B 0.066 
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† Clusters that were circulating in southern Vietnam during period of slaughterhouse sampling 

* 2017 sequence does not cluster with other sequences in cluster 1, thus this cluster was not considered to be circulating after 2012. 

 

 

 

 

      2016-11-18 Cattle (2007.2,2019.2)     

  Outbreak Central 2013-10-07  to 
Pig (2016-11-

18)      

      2016-10-14  
     

  Farm and South  2016-08-18 to   
     

  Slaughterhouse   2017-12-15  
     

cluster 
10† Outbreak North 2016-11-16 

Cattle 
Pig (2015-09-

10) 2016.2 16 
O/ME-
SA/PANASIA  0.027 

  
Farm, Outbreak 
and South  2015-09-10 to  

 
(2014.1,2019.6)     

  Slaughterhouse   2017-08-01  
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Table S4.9: Large cluster information for serotype A. 

Name Type Area Dates detected Species MRCA 
Number of 
sequences 

Closest 
lineage 

Within 
cluster 

GD 

cluster9 Farm  North  2017-08-25 to  Cattle 2015.3 56 SEA/97   0.01 

      2018-01-08  (2012.2, 2019.5)     

  Farm and outbreak Central 2017-01-08 to        

      2019-01-05       

cluster5† Outbreak North  2017-08-29 to  Cattle 2015.8 20 SEA/97   0.01 

      2017-09-11  (2013.1,2019.5)     

  Farm and outbreak Central 2017-01-08 to        

      2017-08-05       

  Slaughterhouse South 2017-10-17 to       

     2018-03-29       

cluster4† Outbreak North  2013-12-01 to 

Cattle 
Pig (2014-04-

24) 2012.4 21 SEA/97 0.02 

      2014-04-24  (2006.4,2019.4)     

  Outbreak Central 2013-10-09 to  

Cattle 
Pig (2015-09-

10)      

      2016-10-13       

  Outbreak and  South 2017-10-31 to Buffalo      

  Slaughterhouse   2019-06-01       

cluster10† Farm South 2017-01-06 to   2016.8 12 SEA/97 0.04 

      2019-06-01 Cattle (2015.5,2020.1)     

  Slaughterhouse   2018-01-24 to        

      2019-02-27         
† Clusters that were circulating in southern Vietnam during period of slaughterhouse sampling 
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Figure S4.1: Serotype O clusters with other sequences from South East Asian countries Cambodia, Laos, Malaysia, Thailand. 
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Figure S4.2: Serotype A clusters with other sequences from South East Asian countries Cambodia, Laos, Malaysia, Thailand. 
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Chapter 5: Conclusion 

 

5.1 Overview 

Due to the central locations of Vietnam and India in their respective FMDV pools, control of 

FMDV in these countries is important for broader control of the disease in South and Southeast 

Asia. This situation is exemplified by the emergence of several new transboundary lineages of 

FMDV from India (Bachanek-Bankowska et al., 2018,Di Nardo et al., 2021), as well as the 

detection of many of these lineages in Vietnam, which is a hub for animal movements in 

Southeast Asia (de Carvalho Ferreira et al., 2017,B. Brito et al., 2017,Di Nardo et al., 2011). The 

Progressive Control Pathway (PCP) provides a risk-based approach for FMD endemic countries 

to control FMD. For a given country to move from one stage to the other, as an assessment of 

each step, an epidemiological evaluation is carried out. However, the PCP  provides limited 

guidelines on the types of epidemiological analysis a country can implement. Vietnam and India 

are in stage 3, and I have used data from these two countries to demonstrate the application of 

how these cutting-edge epidemiological approaches can be employed to support PCP. Table 5.1 

shows an overview of what steps of PCP stage 1-3 can be supported by the epidemiological 

approaches utilized in this dissertation. In this dissertation, I have used Bayesian spatio-temporal 

Poisson regression models to identify high risk areas for FMD using available outbreak 

information and elucidate dynamics of virus circulation (Chapter 2 and 3). I also explored the 

possibility of using phylogenetic data to improve Bayesian Poisson regression models (Chapter 

3). In Chapter 4, I have explored the potential use of sentinel genomic surveillance measures in 

Vietnam using molecular data collecting at slaughterhouses. Findings from these studies are 

important for both countries to progress in the PCP pathway to reach towards freedom from FMD. 

Having said that, not every country wants to reach freedom from FMD given the balance between 

cost of control measures versus impact of the disease, and depending on this economic balance, 

ongoing disease management and mitigation may be a desirable position for some endemic 

countries. 

 

5.2 Implications for Policy and Practice 

Since both Vietnam and India are endemic to FMD, it is difficult and potentially not cost-effective 

to implement control measures countrywide (Adamchick et al., 2021). A more feasible approach 

would be a risk-based control plan to gradually and systematically reduce risk and burden of 

disease. As outlined by the PCP, countries in stage 3 are recommended to focus on zonal 

freedom. However, there are a number of stage 1 and 2 activities that continue to need attention 

in stage 3 as well. Stage 1 (“pcp-26012011.pdf,” ) includes a  value chain analysis, estimates of 

the socio-economic impact of the disease, and enabling an environment for regional corporation.  

 



 
 

100 
 

India has achieved most of the steps in the stage1 and stage 2. This include the value chain 

analysis (Singh et al., 2013), stakeholder identification, identification of a hypothesis of virus 

circulation (http://www.pdfmd.ernet.in/index_files/Annual_Reports.html), identification of 

serotypes and topotypes of the virus (Subramaniam et al., 2015,Biswal et al., 2015,Mohanty et 

al., 2015, Mahapatra et al., 2015a), enabling the control environment for control by strengthening 

the veterinary services  (“25022019_India_PVS_Evaluation_report_final.pdf,”) and participation in 

regional corporation programs (OIE/FAO Global network of FMD Reference Laboratory).  

However, prior to this dissertation, the spatio-temporal dynamics of outbreaks had not been 

examined, thus Chapter 2 helped to identify the risk hot spot where the control measures should 

be mainly focused as well as state-level risk factors for FMD outbreaks in India, which will 

contribute to a better understanding of virus circulation. In PCP stage 2, ongoing monitoring of the 

FMD control programs should be conducted. In Chapter 2, we have shown how data from 

ongoing serological and outbreak monitoring can be analyzed in a spatio-temporal framework to 

quantify the extent to which standardized incidence of reported FMD outbreaks have reduced 

over time with the implementation of the control programs.  We also show that relative risk of 

(reported) outbreaks is higher in states with low LPB-ELISA sero-positivity, and in the provinces 

with an international border.  We also document substantial spatiotemporal heterogeneity in the 

percent of animals with inferred protection pre- and post-vaccination, which could lead to gaps in 

population immunity in between biannual vaccination. Which could be related to lack of a prime-

boost vaccine regime, presence of stray cattle, or potential issues with the potency or delivery of 

the vaccine itself. During the time period studied, the vaccination program in India did not follow 

the exact guidelines of OIE whereby animals should be tested in an age stratified manner to 

detect the protective antibody titers, and this made it challenging to interpret the variability in 

sero-prevalence. Age-stratified sampling has since implemented in 2020.  

 

Now in the stage 3, India will continue to develop risk-based strategic plans with the focus on 

high-risk areas. In stage 3, application of risk-based control measures in the targeted zones with 

the target of obtaining freedom from FMD in at least one zone should be conducted. There should 

also be evidence that the control measures have reduced the number of outbreaks. Chapter 2 

provides some evidence that control efforts have reduced outbreaks.   

 

Vietnam is also in the stage 3 of the PCP pathway proposed by OIE. As a part of stage 1 of the 

PCP, the distribution of the virus in the country is well described and understood (B. Brito et al., 

2017,Le et al., 2016,de Carvalho Ferreira et al., 2017). FMD hotspot are identified in northern and 

southern part of the country (Lee et al., 2020), and it is important to continually monitor the 

distribution of the virus as a part of routine surveillance in the official FMD control program. In 

Vietnam, we were unable to obtain any vaccine coverage, vaccination, or serological monitoring 
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data. While Vietnam does have a vaccination program in place, monitoring of protective antibody 

titers of animals (a requirement of PCP stage 2) was not available for our study. Data from such a 

program is key to measuring the progress of the vaccination program. If not for the whole country, 

this monitoring could be implemented in areas where the country plan to achieve zonal freedom. 

One of the major lessons learned from spatio-temporal modeling of FMD outbreaks in Chapter 2 

was that the spatial adjacency between states did not account for a substantial amount of 

variability in the relative risk of outbreaks, suggesting that spatial adjacency (at least at the state-

level scale) was not a strong driver of virus circulation.  An alternative hypothesis of disease 

circulation is that it is driven by population connectivity via animal movements, which was not 

accounted for in the India work.  Unfortunately, many endemic countries do not have digital 

databases tracking animal movements, which limits our ability to incorporate animal movement in 

hypotheses of virus circulation.  However, molecular data combined with phylogeographic 

analysis can help reconstruct past viral movements, which are likely to be correlated with host 

movement.  In Chapter 3, we explored incorporating phylogeographic inference with outbreak 

space-time regressions to  produce information about high-risk areas of reported FMD outbreaks 

in Vietnam. From these models we identified the high-risk areas for reported FMD outbreaks in 

the northern and southern part of the country, including areas where transboundary animal 

movement is common particularly from Cambodia and Malaysia. We also identified  that 

accounting for virus movement through phylogeographic analysis served as a useful proxy for 

population connectivity in spatial-temporal risk models. 

 

According to the PCP pathway, a country aiming towards FMD freedom should have a strategic 

control plan in place by the stage 2. The identified high-risk areas, risk factors and circulation of 

the virus can provide support for establishing and improving strategic control plans for Vietnam 

and India. Since India and Vietnam have porous borders with many other countries, conducting 

country-specific control programs could be more effective for transboundary diseases such as 

FMD if implemented alongside regional control plans proposed by FAO/OIE, sharing resources 

and strengthening collaborations with neighboring countries. In both countries, surveillance in 

border states/provinces would be beneficial, with enforced regulations and record-keeping on 

between-country animal movements. In practical situation, this is difficult due to noncompliance. 

Participatory studies should be conducted to determine the value chains at the border provinces 

to determine best regulations that people are likely to comply with.   

 

Across all stages 1-3 of the PCP, circulating FMD strains in the country should be identified, with 

sampling representative of different production systems and geographic regions and laboratory 

testing conducted locally and by sending samples to the OIE reference laboratories. Chapter 4 of 

this thesis provides a proof-of-concept of genomic surveillance at slaughterhouses to detect 
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circulating strains of the FMDV that might lead to future outbreaks in Vietnam.  Disease 

surveillance is defined as the systematic, active, ongoing observations of occurrence and the 

distribution of the disease (Murray and Cohen, 2017). Surveillance provides us the magnitude of 

the problem and a glimpse of population level virus circulation. This is particularly important for 

viral diseases, as early detection of emerging virulent viral strains is critical for control. In addition, 

as evidenced by the SARS-COV2 pandemic, genomic surveillance has become a much more 

prominent component of epidemic response, with important applications related to the 

immunology/vaccinology of the disease, pathology and clinical practice, and epidemiological 

understanding. 

 

For animal diseases, surveillance can be carried out in farms, slaughterhouses, or other points of 

aggregation. Farm surveillance is not cost-effective due to increased biosecurity hazards, ethical 

aspects, and increased manpower costs. For FMD, clinical signs are not pathognomic and 

farmers may be unaware during the early period of spread in their farms, thus early detection of 

diseases is challenging in farm settings (Schirdewahn et al., 2021). Routine collection of samples 

provides better evidence, though costly. Active molecular surveillance for FMDV is widely used in 

both India and Vietnam (Mahapatra et al., 2015,Gibbens et al., 2001,B. P. Brito et al., 2017,Vu et 

al., 2017,B. Brito et al., 2017), but typically relies on farm-based active surveillance or sampling of 

reported outbreaks on farms. These methods can be further optimized through cost-efficient 

active sampling at points of aggregation, such as slaughterhouses, to determine widely circulating 

or new introduced strains that may cause outbreaks. 

 

With the high rate of emergence of novel FMDVs as well as frequent transboundary introductions, 

early detection of new strains with the help of molecular tools provide better opportunities to 

control the disease. Currently circulating sequences in Vietnam are related to O/ME-SA/Ind-2001, 

O/ME-SA/Pan Asia and O/SEA/Mya-98; O/ME-SA/Pan Asia being most common. Within these 

lineages, our results show that several different genetic clusters emerge, spread, and disappear 

with time. In recent years, the ability to generate and analyze genetic sequence data is 

accelerating, and Chapter 4 explore ways to efficiently collect field samples for the purposes of 

genomic surveillance. We have shown that, in some cases, it’s possible to identify clusters 

associated with outbreak sequences earlier by conducting genomic surveillance at the 

slaughterhouses and that the genetic diversity of FMDVs isolated from apparently healthy 

animals at slaughterhouse are representative of the diversity of FMDVs isolated from the source 

population (i.e., farms) from the same region. This step would be important for rapid outbreak 

detection in FMD free zones when a country in stage 3 transition to stage4 of PCP. 
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Table 5.1: General steps in PCP stage 1-3 that can be supported to be evaluated by 

epidemiological approaches demonstrated in this dissertation. Shaded boxes indicates where 

these proposed interventions would be contributing.  

Progressive Control Pathway Chapter 2 
India 

Chapter 3 
Vietnam 

Chapter 4 
Vietnam 

Stage 1 
 
 
Activities 
to 
understand 
FMD risk 

Implement risk-based approach 
to reduce FMD 

   

Hypothesis of how the FMDV 
circulate in the country including 
currently circulating strains  

   

Value chain analysis    

Socio economic impact of FMD    

Evaluation based on OIE-PVS 
pathway 

   

Regional collaboration     

FMD risk hot spots are identified    

Identify strategies to control FMD  Identify factors 
underpinning high-risk 
areas 

 

Stage 2 
 
 
Risk based 
strategic 
plan 

 

Ongoing monitoring of the 
circulating strains  

   

Implement risk-based zone 
targeted control measures  

High risk area identification  

Show impact of FMD reduced 
with control measures  

Evaluation 
of the 
vaccine 
program 

  

Allocation of sufficient resources    

Stage 3 
Reduction 
of outbreak 
incidence 
and virus 
circulation 
in at least 
on zone of 
the country 

 

Evaluate the incursion of new 
serotypes  

  Enhanced 
surveillance  

Sustainable veterinary services     

Legal framework for animal 
identification  

   

Analysis of virological and 
outbreak data and analysis of 
serological survey  

   

FMD contingency plan    

Strengthening the veterinary 
service of the country for own 
epidemiological investigations 

   

Rapid detection of outbreaks at 
least in a one zone of the country 
 

  Enhanced 
surveillance 

Endorsement of the official 
control program by OIE 

   

 

5.3 Limitations 

General limitations of chapter 2 and 3: As true of many observational epidemiological studies, 

our study has some limitations with data availability and study design. The Bayesian 
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spatiotemporal models that have been used in chapter 2 and 3 used reported outbreak data, 

which may not accurately represent all outbreaks within a country.  Apart from the research 

studies where active sampling is performed, both countries rely on passive surveillance to report 

outbreaks. According to the PVS analysis (“25022019_India_PVS_Evaluation_report_final.pdf,” 

n.d.), India has a paper-based system in place. In Vietnam, there is a need of establishing a 

comprehensive national database for passive surveillance  (Lee et al., 2020) and there is no 

compliance of notification of disease outbreaks. The veterinarians conduct a passive surveillance 

programs, and samples are collected and sent to the laboratories. Thus, reported outbreak data 

are coming from passive surveillance and may depend on many factors such as the quality of the 

veterinary service and the established disease reporting and surveillance systems in the country. 

This could be a particular issue if the reliability or completeness of outbreak reporting varies 

across regions or years. In addition, for India, we did not have the number of infected animals per 

outbreak.  

 

We were also not able to account for structured spatial effects in border state/provinces since we 

do not have outbreak data from the provinces in the surrounding countries. This could influence 

our results by introducing edge effects.  For both the Vietnam and India models, we did introduce 

a fixed effect representing whether a province/state had an international border and found that 

relative risk was generally increased by these borders. However, we could not match case counts 

in such states/provinces with outbreaks occurring in the border regions of the neighboring 

country. For the Vietnam model, this may be somewhat mitigated by the use of the 

phylogeographic adjacency matrix in place of spatial adjacency matrix, as this more explicitly 

accounts for evidence of viral movement from other countries into specific states/provinces, but 

our ability to uncover such linkages is impacted by sequence data availability in both countries. 

  

For both studies, there were limitations related to the spatial scale of available data. Based on the 

available data, we had to focus on macro-scale risk factors such as environmental factors, host 

densities, international borders, etc. However, analyzing these factors at a province/state level 

likely introduced some degree of ecological fallacy. As an example, host densities were 

summarized at the province/state, but there is likely substantial heterogeneity in host density at 

smaller scales; thus, not all hosts equally were equally impacted by a particular risk factor. This 

may be one reason that many of the assessed risk factors were not significant, particularly for the 

India model. However, the lack of significance at the course scale of our analysis cannot be taken 

as a true lack of importance of a particular risk factor given the mismatch in the scale of the 

analysis to the scale of affect. In addition, the scale of analysis also did not allow us to assess 

factors that would be important for risk at a farm-level. As with any contagious disease, adhering 

to the appropriate biosecurity measures at the farm-level would be important for minimizing risk. 
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We did not consider any biosecurity measures or other farm-level factors due to unavailability of 

data and the course scale of the analysis. Conducting farmer-based questionnaires and sampling 

would allow for a more finer scale analysis of risk factors. It would also be beneficial for both 

countries to report FMD outbreaks at a smaller administrative division level, which could 

potentially provide a better identification of spatial risk factors and avoid potential ecological 

fallacies. 

 

Chapter 2 limitations: In India, outbreak reports did not include number of animals affected. In 

addition, outbreak numbers were reported annually at a state level. Thus, this analysis may have 

ecological fallacies, as described more generally above. India is a huge country and states 

consist of many districts. While some areas within a state may have high livestock populations, 

some areas may be highly urban. Outbreak numbers summarized at the whole state would not 

account for the fact that some districts may have zero outbreaks. Even if we see an association 

between outbreaks and a risk factor at the state level, this may not be true for individual districts. 

However, we believe that this would result in a failure to detect the importance of some factors 

(Type II error) rather than the incorrect attribution of risk (Type I error). For example, none of the 

environmental factors were included in the final model, likely because the inclusion of a yearly 

average summarized across the state masked much of the spatiotemporal variability that may 

have impacted transmission on a smaller spatial and shorter time scale. We tried to further 

mitigate this in Chapter 3 by not using environmental risk factors.  

 

Finally, at the time of this study, the most current livestock census in India was conducted in 

2012. When calculating the SIR, we had to use the same value from 2012 for all the years from 

2008-2016. In 2019, the new census data became available to the public, and livestock numbers 

across  the two censuses were not substantially different. We also did not have animal movement 

data, but we did include potential proxy parameters such as road density and the presence of 

grazing areas. In Chapter 3, we attempted to overcome this limitation by including more well-

supported proxies for host movement based on phylogeographic models.  

 

Chapter 3 limitations: For the phylogeographic analysis, we inferred FMDV movement based on 

the phylogeographic trait analysis.  However, there was no data available to substantiate that 

FMDV movement represent the animal movement except using questionnaires, participatory 

approach with the stakeholders (Polly et al., 2013), though one could argue that viral movement 

by any means (movement of animals, fomites, or contaminated products) would be relevant to 

include in space-time models of outbreak data. It may be more appropriate to conceptualize the 

rates of phylogeographic movement as representing viral population connectivity as opposed to 

host population connectivity. 
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For the discrete space phylogeographic analysis, we used all serotype O sequences available 

from Vietnam and surrounding countries. Some of these sequences are from active surveillance 

and may be from carrier animals. There is still uncertainty in regards to how subclinical infections 

relate to clinical outbreaks in our phylogeographic models, since limited evidence exists that that 

subclinical infections spawn FMD outbreaks (Bertram et al., 2018). That being said, sequences 

from subclinical infections may not represent true persistent infections (so-called carriers) but 

rather acute subclinical infections or recently convalescent animals. Furthermore, the presence of 

such animals in our analysis does not mean that they played any role in onward transmission; 

rather, carrier animals may simply harbor persistent infections with viruses that were previously 

circulating and transmitting in an acute form. 

 

In Vietnam, pigs account for the majority of livestock, but limited sequence data and outbreak 

data were available for pigs compared to cattle and buffaloes. We did not find strong evidence for 

pig-to-bovine transmission, which we used as rationale to focus solely on bovine outbreaks, but 

limited data may have affected this result. A model that focuses particularly on pigs would be of 

interest to Vietnam. 

  

For adjacent countries, GenBank data did not include the exact location where a FMDV sequence 

was isolated. Therefore, the center point of the country was used as the origin of the sequence. 

Within Vietnam, sequence data were available for only some of the provinces. Sequence data 

available in GenBank for both Vietnam and adjacent countries could be the result of purposive 

sampling conducted as a part of different research studies, making these regions over-

represented in our analysis and consequently overestimating the role of these regions in viral 

population dynamics. That being said, many research studies (including ours) focus on areas that 

are considered disease hotspots, which means that the greater number of sequences available 

from such regions might actually reflect greater disease circulation, though we cannot confirm 

this. 

 

Chapter 4 limitations: Data for chapter 4 are from a longitudinal study sampling farms and a 

serial cross-sectional study sampling slaughterhouse. Both studies were purposive sampling, 

meaning that the study areas were selected to be areas with known recent FMDV outbreaks and 

transboundary animal movement. To ideally represent what is happening in the population, it 

would have been appropriate to select farms randomly for the longitudinal study or to include 

slaughterhouses from multiple FMD hotspots across the country.  For example, both northern and 

southern Vietnam have been identified as high risk areas (Lee et al., 2020), however our study is 

more reflective of southern Vietnam (both slaughterhouses were located in this part of the 
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country) rather than representing the whole country. That being said, this study demonstrated the 

potential utility of slaughterhouse-based surveillance, and a broader network of slaughterhouses 

could be employed as part of a national-level surveillance strategy. 

 

5.4 Moving from Science to Policy and Practice 

This study was aimed at demonstrating how the epidemiological data can support FMD endemic 

countries to progress in PCP at different stages. For the findings of these particular studies, the 

next step would be to convey our findings to relevant animal health authorities and policymakers.  

Through discussions with these stakeholders, findings from this study become more valuable if 

they are adjusted according to the input from the stakeholders in the respective countries.  One 

step we have taken to ensure that these results reach relevant animal health authorities is the 

inclusion of collaborators and co-authors from each country. However, as true for most 

epidemiological research, efforts should be made to not just publish in scientific journals, but also 

to disseminate findings more locally, for example by contributing  summary reports to  ICAR, India 

and MARD, Vietnam.  In addition, one of the purposes of this dissertation is to outline possible 

epidemiological approaches that can be taken to support PCP.  Possible mechanisms to 

disseminate these approaches more broadly to stakeholders engaged in PCP planning include 

online programs conducted by EuFMD  that are focused on capacity building for veterinarians 

participating from FMD endemic  countries. With a more generalizable approach, findings from 

this study can be incorporated as a part of such outreach activities, including as part of their 

online education platform. There are other programs, at least conducted in Europe (ex: at -risk 

program) (Kostoulas et al., 2019), to train field veterinarians with user friendly tools that have 

been developed to incorporate Bayesian analysis methods to determine FMD risk. As this study 

specifically focus on FMD endemic countries, such methods can be expanded to FMD endemic 

countries by training veterinarians with a similar approached utilized in this research. Another 

method  to share our findings and epidemiological approaches is by presenting to the  FMD 

research community by participating in the research conferences for FMD, such as the Global 

FMD Research Alliance (GFRA) and open session of the EuFMD, both of which attract many 

researchers and professionals from FMD endemic countries meet.  Taken together, these steps 

are necessary to move epidemiological approaches in support of FMD control from the academic 

research arena to policy and practice. 
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