
Efficient and Reliable In-Memory Computing Systems
Using Emerging Technologies: From Device to Algorithm

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Masoud Zabihi

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Sachin S. Sapatnekar, Advisor

November, 2021

© Masoud Zabihi 2021

ALL RIGHTS RESERVED

Acknowledgements

I would like to thank my academic advisor, Prof. Sachin S. Sapatnekar, for giving me

the chance to work on various projects and learn from him. I appreciate his elaborated

feedback on manuscripts. I have experienced academic research with him for over five

years, and I am extremely grateful that I had such a rewarding experience.

This thesis is an interdisciplinary effort. I was fortunate to have the guidance and

feedback of Prof. Ulya Karpuzcu, Prof. Jian-Ping Wang, and Prof. Chris Kim. Their

comments stemming from their respected field have enriched my research works. Sa-

lonik Resch, Zamshed Chowdhury, Husrev Cilasun, Zhengyang Zhao, DC Mahendra,

Thomas Peterson, Yang Lv, Arvind Sharma, Meghna Mankalale, Ibrahim Ahmed, Vidya

Chhabria, and Kishor Kunal were my colleagues and collaborators. I am genuinely

grateful for having all those technical discussions and weekly meetings with them.

I would like to thank the graduate school at UMN for the doctorate dissertation

fellowship for 2020-2021. I am very grateful to the NSF, which was the major funding

source of my works. I would like to acknowledge the funding support from SRC and

DARPA on the CSPIN project.

I would like to thank all my family members who have always been there for me and

have encouraged me throughout my academic endeavors.

Finally, I am grateful for having wonderful friends in my life who have supported

me on various occasions during my Ph.D.

i

Dedication

To my ”Kherza Ha”:

Ava and Nila

ii

Abstract

Big data applications are memory-intensive, and the cost of bringing data from the

memory to the processor involves large overheads in energy and processing time. This

has driven the push towards specialized accelerator units that can perform computations

close to where the data is stored. Two approaches have been proposed in the past:

(1) near-memory computing places computational units at the periphery of memory for

fast data access, and (2) true in-memory computing uses the memory array to perform

computations through simple reconfigurations. Although there has been a great deal of

recent interest in the area of in-memory computing, most solutions that are purported

to fall into this class are really near-memory processors that perform computation near

the edge of memory arrays/subarrays rather than inside it.

This thesis discusses several years of effort in developing various true in-memory

computation platforms. These computational paradigms are designed using different

emerging non-volatile memory technologies such as spin transfer torque (STT) mag-

netic tunnel junction (MTJ), spin Hall effect (SHE) MTJ, and phase change memory

(PCM) device. The proposed platforms in this thesis effectively eliminate the energy

and delay overhead associated with data communication. Our approach is digital, unlike

prior analog-like in-memory/near-memory solutions, which provides more robustness to

process variations, particularly in immature technologies than analog schemes.

The thesis covers alternatives at the technology level, followed by a description of

how the in-memory computing array is designed, using the basic non-volatile unit (such

as MTJ) and some switches, to function both as a memory and a computational unit.

This array is then used to build gates and arithmetic units by appropriately intercon-

necting memory cells, allowing high degrees of parallelism. Next, we show how complex

iii

arithmetic operations can be performed through appropriate scheduling (for adders,

multipliers, dot products) and data placement of the operands. We demonstrate how

this approach can be used to implement sample applications, such as neuromorphic in-

ference engine and a 2D convolution, presenting results that benchmark the performance

of these CRAMs against near-memory computation platforms. The performance gains

can be attributed to (a) highly efficient local processing within the memory, and (b)

high levels of parallelism in rows of the memory. For our in-memory computing plat-

forms, wire resistances and variations are a substantial source of non-ideality that must

be taken into account during the implementations. To ensure the electric correctness of

implementations, we have developed different frameworks to analyze the parasitic effects

of wires based on actual layout considerations. We have demonstrated that interconnect

parasitics have a significant effect on the performance of the in-memory computing sys-

tem and have developed a comprehensive model for analyzing this impact. Using this

methodology, we have developed guidelines for the physical parameters such as array

size and numbers of rows and columns.

iv

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 Motivation . 1

1.2 Thesis contributions . 3

2 In-Memory Processing on the Spintronic CRAM: From Hardware De-

sign to Application Mapping 7

2.1 Introduction . 7

2.2 CRAM Architecture . 9

2.2.1 MTJ Devices . 9

2.2.2 The CRAM Array . 9

2.2.3 Performing Logic Operations Across Rows 12

v

2.2.4 Peripheral Circuitry . 13

2.3 Designing Arithmetic Functions . 14

2.3.1 Device-level Models . 14

2.3.2 Gate-level Design . 16

2.3.3 Functional-level Design . 19

2.4 Scheduling CRAM Operations . 21

2.5 CRAM Applications . 25

2.5.1 2D Convolution for Image Filtering 25

2.5.2 A Neural Inference Engine . 27

2.6 Evaluation and Results . 31

2.6.1 Execution Time . 33

2.6.2 Energy . 37

2.6.3 Comparison between CRAM and NMP 38

2.7 Related Work . 41

2.8 Conclusion . 43

3 Analyzing the Effects of Interconnect Parasitics in the STT CRAM

In-Memory Computational Platform 45

3.1 Introduction . 45

3.2 Overview for Derivation of Bias Voltages of Different Gates Considering

Resistances of Access Transistors . 46

3.3 Impact of Wire Parasitics . 49

3.4 Layout Modeling . 52

3.4.1 Layout of a CRAM Cell . 53

3.4.2 Layout of the CRAM Array . 55

3.4.3 Impact of Layout Choices on (Acell, ARcell, RT) 55

3.4.4 Metal Layer Configurations and Specifications 56

vi

3.5 Thevenin Modeling for Each CRAM Row 57

3.6 Results and Discussion . 59

3.6.1 Impact of CRAM Parameters on NM 59

3.6.2 An Optimal Design for Each Gate 63

3.7 Conclusion . 64

4 Using Spin-Hall MTJs to Build an Energy-Efficient In-memory Com-

putation Platform 65

4.1 Introduction . 65

4.2 SHE CRAM Structure . 66

4.3 SHE CRAM Detail . 70

4.3.1 Device-level design . 71

4.3.2 Gate-level design . 71

4.3.3 Optimization of spin-Hall channel dimensions 75

4.3.4 Functional-level design . 76

4.4 Application-Level Analysis . 81

4.5 Conclusion . 82

5 Using 3D XPoint as an In-Memory Computing Accelerator 84

5.1 Introduction . 84

5.2 Background . 86

5.3 Realization of In-Memory Computing 89

5.3.1 Implementation of TMVM . 89

5.3.2 Implementation of NN . 93

5.4 Enabling More Complex Implementations 94

5.4.1 3D XPoint with Four Stacked Levels of PCM Cells 94

5.4.2 Scalability of 3D XPoint to Large Computations 95

vii

5.4.3 Multi-Layer NN Implementation in a Two-Level PCM Stack . . 96

5.5 Analyzing Interconnect Parasitic Effects 97

5.6 Results and Discussion . 101

5.6.1 NM Evaluation . 101

5.6.2 Implementing NNs on the 3D XPoint Substrate 104

5.7 Conclusion . 105

6 Conclusion 106

Bibliography 109

Appendix A. Thevenin Models of Current Paths in STT CRAM 125

Appendix B. STT CRAM Parasitics 131

Appendix C. Thevenin Model for TMVM in 3D XPoint 133

Appendix D. TMVM in 3D XPoint 136

viii

List of Tables

1.1 Communication vs. computation energy, adapted from [1]. 1

2.1 MTJ specifications . 15

2.2 Bias voltage ranges and output preset values 18

2.3 The energy cost for various CRAM gate types and preset operations

under the advanced MTJ technology. 38

2.4 Comparison between the execution time, t, and energy, E, in CRAM and

NMP based computations for the 2D convolution application. The size

of the CRAM subarrays in this evaluation is 128×128. 39

2.5 Comparison between the execution time, t, and energy, E, in CRAM and

NMP based computations for neuromorphic digit recognition. 40

3.1 Bias voltage ranges and output preset values [2] 49

3.2 Parameters in the motivational example 50

3.3 IR drop differential between the BSL voltage for the first row and the

last row, and the RC delay of the transition 53

3.4 Analyzing the effect of RT . 62

3.5 Analyzing the effect of ARcell . 62

3.6 Optimal design options for arrays with different functionalities 63

4.1 Status of lines and transistors in the SHE-CRAM during memory and

logic modes. 69

ix

4.2 SHE-MTJ specifications [3–5]. 70

4.3 Bias voltage ranges, and output preset value. 74

4.4 Counts of gates and their corresponding energy values for the calculation

of the energy required for the implementation of the 4-bit ripple carry

adder in the SHE-CRAM. 80

4.5 Comparison between execution time and energy of NMP, SHE-CRAM,

and STT-CRAM. The CMOS-based NMP data is based on the calcula-

tions in [2]. 82

5.1 Different configurations of metal lines in the 3D XPoint subarray based

on ASAP7 design rules. 101

5.2 Evaluation of different subarray sizes for digit recognition application. . 105

B.1 MTJ specifications [2, 6] . 132

B.2 Specification of metal layers in ASAP7 [7,8] 132

B.3 Specification of vias in ASAP7 [7,8] . 132

D.1 PCM cell parameters and values [9, 10] 136

D.2 Specification of metal layers in ASAP7 [7,8] 137

D.3 Specification of vias in ASAP7 [7,8] . 137

D.4 Status of 3D XPoint lines for two different configurations. 138

D.5 Evaluation of implementation energy and area for multi-bit TMVM using

area efficient and low power schemes. 140

x

List of Figures

1.1 Taxonomy of in- and near-memory computing. Computation happens in

the modules colored in yellow [11]. 3

2.1 Overall structure of the CRAM. 10

2.2 Performing a logic operation in a row of the CRAM array. 11

2.3 Switches between rows for inter-row transfers. 12

2.4 Bitline driver circuitry. 13

2.5 A comparison of the noise margin for various gate types, implemented in

a CRAM today’s MTJs and advanced MTJs, as defined in Table B.1. . 18

2.6 (a)The full adder implementation based on MAJ logic (b) scheduling

CRAM operations on the adder. For simplicity, the output preset before

each step is not shown in the schedule above. 20

2.7 4-bit ripple carry adder using bubble-pushing. 21

2.8 Scheduling table for the 4-bit CPA from t = 1 to 9. 22

2.9 Dot notation representation [12]: (a) Addition of two 4-bit digits, (b)

Multiplication of two 4-bit digits. 23

2.10 (a) Schematic and (b) dot notation representation for a 4 × 4 Wallace

tree multiplier. 23

2.11 Scheduling table for the Wallace tree adder. 24

xi

2.12 Using the average (mean) filter to denoise an image: (a) the noisy image

with numerous specks, and (b) the denoised version. 25

2.13 The implementation of convolution using CRAM: (a) a 512×512 image,

with 4 bit per pixel, is filtered using a 3×3 filter, with 2 bits per word,

and (b) the addition of nine six-bit partial products to compute the dot

product that evaluates the output image pixel using a 4-level tree adder. 26

2.14 An inference engine for the digit recognition problem. 27

2.15 The implementation of each of the ten outputs, Yi, of the inference engine,

illustrating the (a) zigzag scheme for assigning addition operations to

CRAM rows, and (b) the inter-row data transfers and the computation

footprint of Yi along the rows of the CRAM. 28

2.16 (a) The distributions of the number of FAs in each level of Wallace tree.

(b) The distribution of the total number of moves required in the data

transfer phases. 31

2.17 Each CRAM unit includes four CRAM subarrays and one predecoder. A

predecoder block is at the center of the CRAM unit, and fans out to four

CRAM column decoders. 32

2.18 Distribution of energy and delay of the driver and CRAM array for

CRAM with the subarray size of 1024× 1024. 41

2.19 Distribution of energy and delay of the driver and CRAM array for

CRAM with subarray size of 128× 512. 42

3.1 Structure of STT-CRAM array, highlighting the current paths during a

logic operation with two inputs and one output. 47

3.2 Circuit model of the current path for the implementation of BUFFER

gates in CRAMs of various sizes. 51

xii

3.3 The layout of FinFET devices with (a) 1 fin, 1 finger, (b) 4 fins, 1 finger,

and (c) 2 fins, 2 fingers. 54

3.4 CRAM cell: (a) schematic, and (b) layout. 54

3.5 The layout of four adjacent CRAM cells in ASAP7. 55

3.6 Configuration of BSLs and LLs. The green and red lines correspond to

BSLs, and LLs, respectively. 56

3.7 Required voltage ranges for implementations of the same gate in the first

row and the last row. 58

3.8 Separating lines of implementation for the AND gate in today’s CRAM

and the advanced CRAM. 59

3.9 NM for an AND gate in today’s and advanced CRAM, varying (a) Nrow,

(b) dcolumn, (c) RT , and (d) ARcell. 61

3.10 Increasing Nrow by inserting (a) 2× drivers in the middle of the array,

and (b) two 1× drivers at either end. 64

4.1 (a) Schematic of a 3-terminal SHE-MTJ. (b) SEM image taken at 60°from

the perpendicular direction showing an MTJ pillar (with resist) fabricated

on the W spin Hall channel. 66

4.2 Overall structure of the SHE-CRAM. 67

4.3 Current flow during: (a) memory write operation, (b) memory read op-

eration, and (c) logic mode. 68

4.4 (a) Performing a logic operation in a row of SHE-CRAM, and (b) the

equivalent circuit model. 69

xiii

4.5 Demonstration of SHE switching with ultra-low JSHE in a Hall bar de-

vice [3]. The SH layer is composed of BiSex (5) /Ta (0.5), and the per-

pendicular magnetic layer is composed of CoFeB (0.6) /Gd (1.2) /CoFeB

(1.1) (all thicknesses in nm). (a) The out-of-plane hysteresis loop show-

ing the two magnetization states of the device. (b) SHE switching loop

of the device with a very low switching current. 72

4.6 Comparison of noise margin between gates implemented using STT-CRAM

and SHE-CRAM. 75

4.7 Comparison of energy between gates implemented using STT-CRAM and

SHE-CRAM. 75

4.8 Impact of SHM geometry on NM and energy. 76

4.9 FA based on majority logic, where Cout = MAJ3(A,B,C) and Sum =

MAJ5(A,B,C,Cout, Cout). 77

4.10 Four required steps for the implementation of the FA based on majority

logic in a row. 78

4.11 4-bit ripple carry adder using 4 FAs. 78

4.12 Scheduling table for a 4-bit ripple carry adder. 78

4.13 Inter-row transfer between cells in two adjacent rows (shown by the blue

arrow) using switches inserted between rows. The current path is high-

lighted in orange. 79

4.14 Data layout of the SHE-CRAM, implementing the 4-bit ripple carry

adder, at the end of step 10. 79

4.15 Energy distribution for the implementation of 4-bit ripple carry adder

using SHE-CRAM. Energy for preset is the dominant component. 80

5.1 The structure of a 3D XPoint subarray. The CMOS peripheral circuitry

is located underneath the memory subarray. 87

xiv

5.2 PCM model: (a) the transition between amorphous and crystalline phases

by applying SET and RESET pulses across a pillar type PCM device, and

(b) PCM cell can be modeled using a resistive circuit with two voltage

control switches [13]. 89

5.3 (a) Using 3D XPoint as an in-memory computing engine for TMVM of

GV . (b) The equivalent circuit model for the implementation of a dot

product (to calculate O0). 91

5.4 NN implementation: (a) A single-layer neuromorphic inference engine.

(b) Data layout for the NN implementation. 94

5.5 Multi-layer NN with an input, hidden, and output layer. 95

5.6 Two configurations for communication between 3D XPoint subarrays:

(a) switches connect BLs of subarray 1 to BLs of Subarray 2, and (b)

switches connect BLs of the subarray 1 to WLT s of subarray 2. 96

5.7 Data layout for the implementation of 3-layer NN. 96

5.8 The equivalent circuit model for the TMVM implementation with con-

sidering wire parasitics. 98

5.9 (a) Thevenin equivalents can be observed from the last row, (b) effects

of Nrow on Rth, (c) and on αth. 100

5.10 (a) Calculated voltage ranges for the first and last rows. (b) Acceptable

and unacceptable regions in the (αth, Rth) plane. 100

5.11 Multi-metal layer configuration can be utilized for the design of WLT s,

BLs, and WLBs of 3D XPoint subarray. 101

xv

5.12 NMs of the three metal line configurations: (a) changing Nrow (while

Ncolumn = 128, Lcell = 4Lmin, and Wcell = Wmin), (b) changing Lcell

(while Ncolumn = 128, Nrow = 128, and Wcell = Wmin), (c) changing

Wcell (while Ncolumn = 128, Nrow = 64, and Lcell = 4Lmin), and (d)

changing Ncolumn (while Nrow = 256, Lcell = 4Lmin, and Wcell = Wmin). 102

A.1 (a) The circuit model for 1-input gates, showing the observation point

for calculating Thevenin equivalents; Notations used in the chain of rows

for defining the (b) Thevenin resistance (Rth), and (c) Thevenin voltage

(Vth). 127

C.1 Notations used for calculating Thevenin resistance (Rth) and Thevenin

voltage (Vth) shown on the circuit model for the implementation of TMVM

in the worst case scenario. 134

D.1 The equivalent circuit model for the worst case 138

D.2 Reconfiguration and simplification of equivalent circuit model. 139

D.3 Two implementations with multi-bit operations: (a) area-efficient imple-

mentation, (b) low-power implementation. 140

xvi

Chapter 1

Introduction

1.1 Motivation

Today’s computational engines are inadequately equipped to handle the demands of

future big-data applications. With the size of data sets growing exponentially with

time [14], the computational demands for data analytics applications are becoming even

more forbidding, and the mismatch between application requirements and evolutionary

improvements in hardware is projected to become more extreme. Current hardware

paradigms have moved towards greater specialization to handle this challenge, and spe-

cialized units that enable memory-centric computing are a vital ingredient of any future

solution.

Table 1.1: Communication vs. computation energy, adapted from [1].

Technology Node 40nm 10nm HP 10nm LP

Energy of 64-bit
data communication 1.55× 5.75× 5.77×
versus computation

However, key bottlenecks for large-scale data analytics applications, even in state-of-

the-art technology solutions, are the memory capacity, communication bandwidth, and

1

2

performance requirements within a tight power budget. Technology scaling to date has

improved the efficiency of logic more than communication, and communication energy

dominates computation energy [15, 16]. Table 1.1 compares the cost of computation (a

double-precision fused multiply add) with communication (a 64-bit read from an on-

chip SRAM). The ratio of communication energy to computation energy increases from

1.55× at 40nm to approximately 6× at 10nm, for both the high performance (HP) and

low power (LP) variants. Even worse, transferring the same quantity of data off-chip,

to main memory, requires more than 50× computation energy even at 40nm [1]. Such

off-chip accesses become increasingly necessary as data sets grow larger, and even the

cleverest latency-hiding techniques cannot conceal their overhead. At the same time, the

inevitable trend of higher degrees of parallel processing hurts data locality and results

in increased execution time, power, and energy for data communication [15].

Moreover, general-purpose processors are often inefficient in computing for emerging

applications: this has motivated a trend towards specialized accelerator units, tailored to

specific classes of applications that they can efficiently execute. The trend of increasing

data set sizes, coupled with the large cost (in terms of both energy and latency) of

transporting data to the processor, have prompted the need for a significant departure

from the traditional model of CPU-centric computing. An effective way to overcome

the memory bottleneck and maintain the locality of computing operations is to embed

compute capability into the main memory. In recent years, two classes of approaches

have been proposed (see Fig. 1.1):

• near-memory computing places computational units at the periphery of memory

for fast data access.

• true in-memory computing uses the memory array to perform computations through

simple reconfigurations.

3

Although there has been a great deal of recent interest in the area of in-memory

computing, most solutions that are purported to fall into this class are really near-

memory processors that perform computation near the edge of memory arrays/subarrays

rather than inside it. In this thesis, we discuss the design of true in-memory computation

platforms using different emerging non volatile device technologies such as spin transfer

torque (STT) magnetic tunnel junction (MTJ), spin Hall effect (SHE) MTJ, and phase

change memory (PCM). In addition, the feasibility of implementations and electric

correctness of our designs are studied in this thesis.

True In-Memory ProcessingNear Memory Processing

Figure 1.1: Taxonomy of in- and near-memory computing. Computation happens in
the modules colored in yellow [11].

1.2 Thesis contributions

This thesis develops an approach that is a true in-memory computational platform. The

underlying spintronics technology used in most of the propose solutions eliminates the

problems of other substrates that have been proposed for true in-memory computation

4

as it is more robust (high-endurance, easier to manufacture), accurate, and can be

used to build noise-resilient circuits. The approach is based on the concept of the

Computational Random Access Memory (CRAM) [17], which proposed an outline of

an in-memory computation model. However, many issues have had to be tackled to

move this idea from concept to practice. Our works shows that CRAM approach has

significant potential of benefiting variety of applications [2, 18–31]. This thesis answers

questions such as: (a) How can the practical issues involved in integrating this system

in a silicon chip be resolved? (b) How can the primitive computational structures

(logic gates) in [17] be extended to build larger structures (adders, multipliers, signal

processing units, neural networks), which must perform the function of thousands to

millions of gates? (c) How can operations be scheduled in the CRAM to achieve high

levels of parallelism? (d) Given that the switching speed of the core switching device

of the CRAM can be slower than today's CMOS technology, does the CRAM really

deliver energy and power improvements over today's technologies? (e) What are the

effects wire variations and non-idealities on the proposed CRAM implementations (f)

How can other spintronic-based three terminal devices be integrated to build a CRAM-

like architecture? (g) How can other non-spintronics-based technologies (e.g., PCM)

perform true in-memory computation similar to CRAM?

Traditional solutions of in-memory computing have been circumscribed by disci-

plinary boundaries, primarily driven by computer architecture researchers [32,33]. Find-

ing effective answers to the questions requires an interdisciplinary effort that breaks

down such boundaries. This thesis research provides a strong bridge from novel mate-

rials/devices that can be used to build the CRAM, to circuit design methods that can

build larger building blocks such as adders, multipliers, and neurons on the CRAM, to

system-level and computer-architecture-level issues such as CRAM operation scheduling

5

and the design of peripheral circuitry for the CRAM array. The thesis research is con-

ducted by considering state-of-the-art device properties which working in close collab-

oration with experts in physics and materials science and understanding the available

capabilities and translating them into usable circuit structures. At the circuit level,

many innovations have been present to pave the way for further system-level investi-

gations. In addition, a clear strategy for the design of core CRAM functionalities for

smaller computation blocks was required to ensure the viability of CRAM at the appli-

cation levels. This work revolves around building this robust interdisciplinary bridge to

make a practical implementation of the CRAM possible. The specific contributions of

this thesis are:

• Developing STT MTJ based CRAM (Chapter 2): The overall architecture of STT

CRAM is obtained by modification of the STT MRAM architecture and includ-

ing additional access transistors and lines to enable within array computation.

Scheduling tables and algorithms for the implementations for various computa-

tional blocks such as multiplier and adders are developed. Using these computa-

tional blocks, methods for the implementations of more complex applications such

as neuromorphic digit recognition and 2D convolution are proposed. It is demon-

strated that STT CRAM can outperform a near memory processing unit in terms

of energy and execution time of orders of magnitude. A bottom-up approach is

followed where the proposed designs include considerations from material/device

level, to the circuit level, to architecture and application levels.

• Constructing a framework for analyzing parasitic effects of wires (Chapter 3): The

parasitic effects of wires are considered on the proposed STT CRAM implemen-

tations. In in-memory computing systems, wire non-idealities are a major cause

of the failure of the implementations. In Chapter 3, a framework to study the

6

effect of the parasitics on CRAM performance is developed. The framework is

constructed based on realistic layout considerations based a 7nm technology node

that is suitable for the STT MTJ integration. Electrical correctness of the pro-

posed implementations is ensured by determining optimal layout specifications

(e.g., FinFET sizes and aspect ratio) as well as CRAM subarray sizes.

• Developing SHE MTJ based CRAM (Chapter 4): A redesigned CRAM around a

new MTJ based on the spin-Hall effect (SHE) is proposed, providing greatly im-

proved energy efficiency. Similar to the development of STT CRAM, scheduling

tables and implementation methods for various computational blocks are pro-

posed, and the energy and execution time for the implementation of applications

on SHE CRAM are compared with those of a near-memory processing system.

• 3D XPoint as a true in-memory computation platform (Chapter 5): Beyond

spintronics-based devices, we study how utilization of other emerging memory

technologies (such as PCM) can help in performing true CRAM-like in-memory

processing. 3D XPoint is a new class of memory technology that fills a unique

place in the memory hierarchy [34]. The storage element in 3D XPoint is based

on PCM non-volatile device technology. We demonstrate the feasibility of true

in-memory processing computation on 3D XPoint array. We implement a neuro-

morphic engine on the 3D XPoint subarray and perform a threshold matrix-vector

multiplication (TMVM) operation. Analysis considers effect of the variation and

parasitics effects to ensure the electric correctness of our implementations.

Chapter 2

In-Memory Processing on the

Spintronic CRAM: From

Hardware Design to Application

Mapping

2.1 Introduction

In this chapter, an approach is presented based on the spintronics-based computa-

tional random access memory (CRAM) paradigm. The CRAM concept [17] uses a

small modification to the MTJ-based memory cell that enhances its versatility and en-

ables logic operations through reconfiguration that enables the use of current-steered

logic. Unlike many other approaches, this method fits the description of true in-memory

computing, where computations are performed natively within the memory array and

massive parallelism is possible, e.g., with each row of the memory performing an inde-

pendent computation. The CRAM-based approach is digital, unlike prior analog-like

7

8

in-memory/near-memory solutions [35, 36], which provides more robustness to varia-

tions due to process drifts, particularly in immature technologies than analog schemes.

This sensitivity implies that digital implementations can achieve superior recognition

accuracy over analog solutions when the full impact of errors and variations are factored

in.

Our solution is based on spintronics technology, which is attractive because of its

robustness, high endurance, and its trajectory towards fast improvement [6, 37]. The

outline of the CRAM approach was first proposed in [17], operating primarily at the

technology level with some expositions at the circuit level. The work was developed

further to show system-level applications and performance estimations in [38]. In this

work, we bridge the two to provide an explicit link between CRAM technology, circuit

implementations, and operation scheduling. We present technology alternatives and

methods for building gates and arithmetic units, study scheduling and data placement

issues, and show how this approach can be used to implement a sample application,

which is chosen to be a neuromorphic inference engine for digit recognition.

The rest of the chapter is organized as follows. Section 2.2 discusses CRAM archi-

tecture. In Section 2.3, we present an approach for designing arithmetic function at the

device, gate, and functional levels. Given this design, a more detailed elaboration on

scheduling CRAM operations is discussed in Section 2.4. We elaborate on two example

applications, corresponding to implementations of 2D convolution and a neural infer-

ence engine, in Section 2.5. We discuss the evaluation and results in Section 2.6, related

work in Section 2.7, and then conclude the chapter in Section 5.7.

9

2.2 CRAM Architecture

2.2.1 MTJ Devices

The unit storage cell used in a typical STT-MRAM is an MTJ, which is composed of

two ferromagnetic layers – a fixed polarizing layer and a free layer – separated by an

ultrathin nonconductive MgO barrier [39]. We consider perpendicular MTJ (PMTJ)

technology, where both the free layer and the fixed layer are magnetized perpendicular

to the plane of the junction. When the magnetization orientations of the two layers are

parallel to each other (referred to as the P state), applying a voltage across the MTJ

causes electrons to tunnel through the ultrathin nonconductive layer without being

strongly scattered, as a result of which we have high current flow and relatively low

resistance, RP [40]; when the magnetization orientations of two layers are anti-parallel

to each other (referred to as the AP state), the MTJ has a higher resistance, RAP . In

this way, an MTJ can store logic 1 and 0 depending on its resistance state, and we

define logic 1 and 0 for the AP and P states, respectively [41]. A critical attribute of

an MTJ is the tunneling magnetoresistance ratio (TMR), defined as

TMR =
RAP −RP

RP
(2.1)

With an electrical current flowing through the MTJ, the magnetization direction of

the free layer can be reversed due to the spin-transfer-torque (STT) effect, and thus the

MTJ can be switched between P state and AP state. To flip the magnetization direction

of the free layer, the current density should be larger than a threshold switching current

density, Jc, which is technology-dependent.

2.2.2 The CRAM Array

The general structure of the spintronic CRAM is illustrated in Fig. 2.1. The overall

configuration of the CRAM array is very similar to the standard 1-transistor 1-MTJ

10

WL0
LL0

WL1
LL1

MTJ00 MTJ01 MTJ02 MTJ03

MTJ10 MTJ11 MTJ12 MTJ13

BS
L0

BS
L1

BS
L2

BS
L3

LB
L0

LB
L1

LB
L2

LB
L3

M
BL

0

M
BL

1

M
BL

2

M
BL

3

WL2
LL2

MTJ20 MTJ21 MTJ22 MTJ23

Bitline Driver Bitline Driver Bitline Driver Bitline Driver

WE LBL D WE LBL D WE LBL D WE LBL D

Figure 2.1: Overall structure of the CRAM.

(1T1MTJ) STT-MRAM, except that the CRAM uses a 2T1MTJ bit-cell, with one

additional transistor. Like the standard STT-MRAM memory array, the MTJ in each

bit-cell is addressed using the memory word line (WL). The second transistor in the

bit-cell, which enables logic operations, is enabled by selecting the logic bit line (LBL)

for the transistor while turning off WL. The array can operate in two modes:

Memory mode: When the WL is high, it turns on an access transistor in each column

and enables data to be read from or written into the MTJ through the memory

bit line (MBL). The second transistor is turned off during this mode by holding

down LBL, and the configuration is effectively identical to a bit cell in a memory

array.

Logic mode: Turning on the LBL allows the MTJ to be connected to a logic line (LL)

in each row. In the logic mode, several MTJs in a row are connected to the

11

logic line. To realize a logic function with multiple inputs and one output, an

appropriate voltage is applied to the bitlines. Since the states of the input MTJs

are expressed in terms of their resistance, the current through the output MTJ

depends on the input MTJ resistances, and if it exceeds the critical switching

current, Ic, the output MTJ state is altered.

Inputs

BSL1 BSL2 BSL3
VBSL VBSL Ground

I1 I2

LL I1 + I2I =

I

Output

R1 R2 Ro

R1 R2 Ro, , and
are state variables

Figure 2.2: Performing a logic operation in a row of the CRAM array.

To understand the logic mode more clearly, consider the scenario where three MTJ

devices are connected to the logic line, as shown in Fig. 2.2. The state variables are

expressed in terms of the MTJ resistance, where resistances R1 and R2 correspond to the

states of the two inputs, and Ro is the output MTJ resistance. Before the computation

starts, the output MTJ state is set to a preset value. The bit select lines (BSLs) of the

input MTJs are connected to a pulse voltage, while that of the output MTJ is grounded.

This configuration corresponds to the application of a voltage VBSL across a resistance

of (R1 || R2) in series with Ro. As a result, a current I flows through the logic line:

I = VBSL

/[(
R1R2

R1 +R2

)
+Ro

]
(2.2)

If I > Ic, where Ic is the critical threshold current required to switch the output MTJ

from it preset value, the output state changes; otherwise it remains the same.

12

LL

BSL 3BSL 2BSL 1

Inputs Output

R1 R2 Ro

Threshold
Detector
(I > Ic?)

R1, R2, Ro
are state
variables

I =I1+I2

I1 I2

VBSL VBSL Ground

I
S01

S12

S02

LL0

LL1

LL2
S23

S34

S24

S13

S35

LL3

LL4(a) (b)

Figure 2.3: Switches between rows for inter-row transfers.

2.2.3 Performing Logic Operations Across Rows

The scheme in Fig. 2.2 shows how logic operations can be carried out between MTJs

in the same row. However, it is important at times to perform logic operations that

traverse multiple rows. To enable inter-row communication, we augment the array of

Fig. 2.2 by inserting switches between logic lines which, when turned on, allow MTJs

in different rows to communicate. It is unrealistic to allow every row to communicate

with every other row, and nor is this required in typical computations.

To maintain the simplicity of the architecture, an LL in row i is connected through

switches to the LLs in its two nearest adjacent rows, i.e., as illustrated in Fig. 2.3,

the LL in row i − 2, i − 1, i + 1, and i + 2, if they exist. In performing in-memory

computations, it is important to ensure that an internal data traffic bottleneck is not

introduced: in fact, the best solutions will perform very local data movement. This is

the reason why our CRAM architecture only allows direct movement to the two nearest

adjacent rows. Data movement to more distant rows is not prohibited, but must proceed

in sequential hops of one or two rows. In principle, it is possible to connect every row

to every other row. However, for n rows, such a scheme would add C(n, 2) = O(n2)

transistors, and would also introduce significant routing overheads. In contrast, our

scheme adds 2n transistors, and these local connections can be made quite easily. To

13

illustrate the use of this structure, let us consider a very common operation where the

output of an operation in row N must be moved to row M for the next operation. Each

such operation requires the implementation of a BUFFER gate, which copies a value

from one row to another. To move from row N to row M , the data can “jump” two rows

at a time to reach its destination, except when the destination is one row away, where

it “jumps” one row. For example, to copy a value from row 0 to row 7, for example,

one could move first to row 2, then row 4, then row 6, and then finally to row 7. It is

easy to see that in general the number of steps required to transfer one bit from row M

to row N is
⌈
|M−N |

2

⌉
.

Other interconnection schemes may also be possible and could reduce the communi-

cation overhead, depending on application characteristics. The scheme described above

is built on the assumption that energy considerations dictate that most inter-row com-

munication must be local.

2.2.4 Peripheral Circuitry

D W
E

LB
L

GND

VMBL

MBL

V0

BSL

S 0S 1

V1V2V3
00

S1

VBSL

S0

S0S1

S0S1

S0S1

V3

V2

V1

V0

011011

S0
S1

GND

Figure 2.4: Bitline driver circuitry.

The voltages on BSL, LBL, and MBL are set by the bitline drivers. While LBL takes

14

on normal Vdd values, required to turn on the access transistor, the chosen voltage on

BSL depends on the logic function being implemented. As we will show in Section 2.3.2,

this voltage is on the order of 100s of mV in today’s technologies and 10s of mV in

advanced technologies. The bitline drivers are illustrated in Fig. 2.4: the inputs are

WE, D, and LBL, and the outputs BSL and MBL are generated using the circuitry

shown in Fig. 2.4.

The generation of the MBL and BSL signals in Fig. 2.2 is illustrated in Fig. 2.4.

In memory mode, LBL is grounded and line D is used to control the direction of the

current. In case of a write operation, WE is set to Vdd, and if D is also at Vdd, then

current is injected from MBL to BSL; otherwise, if D is grounded, the current direction

is reversed. For a read operation, WE is grounded and both drivers are off; in this case,

MBL is separately driven and connected to the sense amplifier. In logic mode, WL and

WE are grounded, and LBL is at Vdd. If D is also at Vdd, then the driver connects BSL

to ground, while if D is grounded, then BSL is connected to VBSL.

2.3 Designing Arithmetic Functions

2.3.1 Device-level Models

In evaluating the performance of the CRAM, we consider two sets of device-level models

whose parameters are listed in Table B.1: (i) Today’s MTJ technology, corresponding

to a mainstream process today, and (ii) Advanced MTJ technology, corresponding to a

realistic future process. The value of the latter point is that due to the rapid evolution of

MTJ technology, using only today’s node is likely to be pessimistic. Moreover, by using

technology projections, the evaluation on an advanced MTJ technology provides a clear

picture of design issues and bottlenecks for this method. For each technology, the table

provides specifics of the MTJ materials and dimensions, the TMR, the resistance-area

15

(RA) product, the critical switching current density, Jc, the critical switching current,

Ic, the write time, twr, as well as the MTJ resistance in each state.

Table 2.1: MTJ specifications

Parameters Today’s MTJ Advanced MTJ

MTJ type Interfacial PMTJ Interfacial PMTJ

Material system CoFeB/MgO/ CoFeB (SAF)/MgO/

CoFeB CoFeB

MTJ diameter 45nm 10nm

TMR 133% [42] 500%

RA product 5Ωµm2 1Ωµm2 [43]

Jc 3.1× 106A/cm2 106A/cm2

Ic 50µA 0.79µA

twr 3ns [44] 1ns [42]

RP 3.15KΩ 12.73KΩ

RAP 7.34KΩ 76.39KΩ

In general, for the CRAM application, a higher TMR is beneficial since this helps

differentiate between the 0 and 1 states more effectively. To select the parameters for

the Advanced MTJ technology, we consider various roadmaps and projections, as well as

consultations with technology experts. Today, the largest demonstrated TMR is 604% at

room temperature for an MTJ built using a material stack of CoFeB/MgO/CoFeB [6,45].

However, this MTJ uses a thick MgO layer, which results in a large RA product; more-

over, it uses in-plane magnetization, which requires larger area due to its need for shape

anisotropy in the plane, and is less preferred over perpendicular MTJ magnetization.

While the best TMR for perpendicular MTJs in the lab today is about 208% [46], there

are pathways to much higher TMRs. Accordingly, we set the TMR for the Advanced

MTJ to 500%. This is further supported by predictions that show that a TMR of 1000%

at room temperature will be attainable by 2024 [6]. The RA product can be tuned us-

ing new tunneling barrier materials (e.g., MgAlO), or reducing the MgO thickness while

maintaining crystallinity.

16

2.3.2 Gate-level Design

When MTJs are connected together in logic mode, the type of gate functionality that

results from the connection can be controlled by two factors: (i) the voltage applied

on the BSL lines, which appears across the connected MTJ devices, and (ii) the logic

value to which the output MTJ is preset. The corresponding bias voltage range and the

preset value to implement each gate are summarized in Table 3.1. The output preset

for each gate is unique and depends on the gate type rather than on MTJ technology

parameters.

Consider the case where the configuration in Fig. 2.2 is used to implement a NAND

gate. Since RAP = (TMR+1)RP , and a logic 0 corresponds to RP , from Eq. (4.1), we

have:

I00 = VBSL

/(
RP
2

+Ro

)
I01 = I10 = VBSL

/((
TMR + 1

TMR + 2

)
RP +Ro

)
I11 = VBSL

/(
(TMR + 1)RP

2
+Ro

)
(2.3)

The requirements for the NAND gate is that the first two cases should result in logic

1 at the output MTJ, but the last case should keep the output value at logic 0. Using

the fact that TMR > 0, it is easy to verify that the current monotonically decreases as

I00 > I01 = I10 > I11. Therefore, if the output is preset to logic 0, then by an appropriate

choice of VBSL, the first two cases can result in a current that exceeds Ic, thus switching

the output while the last can result in a current below Ic, keeping the output at logic

0. A similar argument can be made to show that if the output is preset to 1, the gate

will not function correctly because it requires the first two cases (higher currents) not

to induce switching, while the last case (lowest current) must induce switching. The

17

same arguments can be used to argue that an AND implementation should be preset

to logic 1, allowing switching in the 00 and 01/10 cases, but not the 11 case.

It can further be seen that an XOR cannot be naturally implemented in a single

gate under this scheme: depending on the preset value, it requires switching for the 00

and 11 cases but not 01/10, or vice versa. Neither case follows the trends by which

the current I increases. Therefore, like CMOS, an XOR must be implemented using

multiple stages of logic.

For the NAND gate, for a preset output value of 0, Ro = RP . Therefore the results

for the three cases are:

I00 =
VBSL
RP

(
2

3

)
I10 = I01 =

VBSL
RP

(
TMR + 2

2TMR + 3

)
I11 =

VBSL
RP

(
2

TMR + 3

)
(2.4)

The requirements for the NAND gate is that the first two cases should induce switch-

ing to logic 1, but the last case should keep the output value at logic 0. Therefore,(
TMR + 2

2TMR + 3

)
VBSL
RP

> Ic >

(
2

2TMR + 3

)
VBSL
RP

,

i.e.,

(
2TMR + 3

TMR + 2

)
IcRp < VBSL <

(
2TMR + 3

TMR + 2

)
IcRP . (2.5)

From the values of RP , TMR, and Ic provided in Table B.1 and the requirement that

the 00 and 10/11 cases should switch, while the 11 case should not, we can obtain the

values in Table 3.1. For NAND gate, 270.0mV < VBSL < 354.5mV for today’s MTJs,

and 18.6mV < VBSL < 40.2mV for advanced MTJs. Similar methods are used for other

gates. From the table, it can be seen that the voltage VBSL required to implement

each gate type using today’s MTJ technology is higher than that for the advanced MTJ

technology.

18

Table 2.2: Bias voltage ranges and output preset values

Gate Bias voltage range Output

Today’s MTJ Advanced MTJ preset

NOT 315.0 – 551.5mV 20.1 – 70.4mV 0

BUFFER 551.5 – 788.0mV 70.4 – 120.6mV 1

AND 506.5 – 591.0mV 68.9 – 90.5mV 1

NAND 270.0 – 354.5mV 18.6 – 40.2mV 0

OR 472.7 – 506.5mV 65.3 – 68.9mV 1

NOR 236.2 – 270.0mV 15.0 – 18.6mV 0

MAJ3 459.6 – 481.5mV 64.9 – 67.8mV 1

MAJ3 223.1 – 245.0mV 14.6 – 17.5mV 0

MAJ5 435.4 – 443.2mV 63.3 – 64.3mV 1

MAJ5 198.9 – 206.7mV 13.0 – 14.0mV 0

For a NAND gate, the lower end and upper of the bias voltage (VBSL) is shown in

Eq. (2.5). For each gate type, if we denote the lower and upper ends of the bias voltage

range as Vmin and Vmax, respectively, then we can define the noise margin, NM , as:

NM = (Vmax − Vmin)/Vmid (2.6)

where Vmid = (Vmax + Vmin)/2 (2.7)

This metric provides a measure of the range of the voltage swings, normalized to the

mean.

Figure 2.5: A comparison of the noise margin for various gate types, implemented in a
CRAM today’s MTJs and advanced MTJs, as defined in Table B.1.

Fig. 2.5 shows the noise margin for various gate types. It can be seen that for

Advanced MTJs, the noise margin in most cases is about 2X larger than those of today’s

19

MTJ. This noise margin is intended to capture the level of resilience of each gate type to

shifts in parameter values due to process variations, supply voltage variations, thermal

noise, etc. While it is difficult to know the level of such drifts, since these technologies

are still evolving and are in a high state of flux. In this work, we choose a threshold for

the minimum acceptable noise margin in this work as NM = 5%. From the figure, it

can be seen that the MAJ3, MAJ5, and OR gates for both technologies and the MAJ5

gate for today’s technology fall below this threshold, and are not used here.

2.3.3 Functional-level Design

In [17], NAND based logic was applied to implement a full adder (FA) using CRAM. A

NAND-based implementation of FA requires 9 stages of logic. As shown in [17], Carry

and Sum can, respectively, be generated after 9 and 8 CRAM computation steps. This

large number of sequenced operations for an addition can can incur high delays. FAs

can be implemented more efficiently using majority logic [47] instead of NAND gates.

While such implementations can reduce the number of steps required to implement a FA

in the CRAM, MAJ3 and MAJ5 have low NM values (Fig. 2.5), but MAJ3 and MAJ5

gates have sufficient NM for advanced MTJs. Therefore, we adapt the MAJ-based FA

designs to use complementary MAJ logic for advanced MTJs, and stay with NAND

gates for today’s MTJs.

We propose a modification of the MAJ-based FA using the MAJ-based logic structure

shown in Fig. 2.6(a) to implement the complement of a FA. It can easily be verified that

this correctly produces the outputs S and Cout based on input bits A, B, and C. We

will defer the precise set of scheduling operations to our discussion in Section 2.4.

To demonstrate how this complemented FA can be used to build an n-bit adder, we

show a 4-bit ripple carry adder in Fig. 2.7. The LSB (zeroth bit) uses the logic in Fig. 2.6

to generate the complemented output carry, which is the complemented input carry C1

20

M
A

J
3

M
A

J
5

CoutA
B
C

S

A B C C
ou
t

D S

A B C C
ou
t

S

A B C C
ou
t

S

D
=
C
ou
t

D
=
C
ou
t

Step 1

Step 2

Step 3

(a) (b)

M
A

J
3

M
A

J
5

CoutA
B
C

S

A B C C
ou
t

D S

A B C C
ou
t

S

A B C C
ou
t

S

D
=
C
ou
t

D
=
C
ou
t

Step 1

Step 2

Step 3

(a) (b)

A
B
C

(b)

(a)

Figure 2.6: (a)The full adder implementation based on MAJ logic (b) scheduling CRAM
operations on the adder. For simplicity, the output preset before each step is not shown
in the schedule above.

of the first bit, and to generate the complemented sum bit S0. The latter is taken

through an inverter to generate S0. Instead of inverting C1, we use “bubble-pushing”

to implement the first bit, based on the observation that:

Cout = MAJ3(A,B,C) (2.8)

S = MAJ5(A,B,C,Cout, Cout) (2.9)

Thus, we invert A1 and B1, which are not on the critical path, instead of inverting C1,

to generate S1 and C2, and so on. In general, for an n-bit adder, alternate bits use true

and complemented inputs to the MAJ-based FA. In this proposed scheme inversions are

not required for any Cout bits (except for the MSB for an n-bit adder where n is odd

– but it is unusual for n to be odd in real applications). Explicit inversions (i.e., NOT

gates) are only required for the Sum outputs of alternate FAs in the n-bit adder.

21

!"#"!$#$!%#%!&#&

'"

("

($

(&

()

'$

("(&

'%'&'*+,
!$#$!&#&

MAJ
Adder

MAJ
Adder

MAJ
Adder

MAJ
Adder

Figure 2.7: 4-bit ripple carry adder using bubble-pushing.

2.4 Scheduling CRAM Operations

Scheduling an n-bit addition on the CRAM: We begin with the implementation

of single-bit addition in the CRAM and then move to multibit additions. The FA

structure involves multiple steps that implement MAJ3, MAJ5, NOT, and BUFFER,

and these computational steps are shown in Fig. 2.6(b). For each step, it is assumed that

initializations (output presets) are performed before the shown computational steps.

Step 1 For the FAs corresponding to odd-numbered bits in n-bit addition, the input is

not complemented. In Step 1, we initialize the Cout cell to 0, and then compute

Cout ← MAJ3(A,B,C) by activating the BLL transistor, after initializing the

Cout cell to 0.

Step 2 We copy the computed Cout using D← BUFFER(Cout). The register D is used

to store the value of Cout, as two Cout operands are required for the next step.

Step 3 We compute S ← MAJ5(A,B,C,Cout, Cout).

In principle, this would have to be followed by Steps 4 and 5 (not shown in the fig-

ure), which use the NOT function to obtain the uncomplemented S and Cout outputs.

However, bubble-pushing makes it unnecessary to invert a rippled carry output, and

alternate output bits need no inversion on the sum bits, but need input inversions.

22

However, for odd-numbered FAs, we require a Step 4 to invert the Sum output, and for

even-numbered bits, we add a “Step 0” that inverts the input bits A and B; note that

neither of these is typically on the critical path.

The computation for even-numbered bits is analogous. We compute Cout using

Equation (2.8), then copy it to another location D, and finally use Equation (2.9) to

compute S.

We consider data placement and scheduling for an n-bit carry-propagate adder

(CPA) using n = 4 to illustrate the idea, based on Fig. 2.7. Each of the four MAJ-

based FAs in this structure is implemented within a separate row of the CRAM, and the

computation in each row is performed in separate steps that capture data dependencies.

MAJ

Adder

B0A0

S0

Cin
MAJ

Adder

B1A1

MAJ

Adder

B2A2

S2

MAJ

Adder

B3A3

S1S3

C1C2C3

Cout

Figure 5: 4-bit ripple carry adder using the bubble-pushing technique.
In each MAJ FA complement of sum and carry are achieved after 3

steps.

Time 1 2 3 4 5 6 7 8 9

Row 0 C1 – D0 S0 S0

Row 1 – C1 C2 – D1 S1

Row 2 – – – C2 C3 D2 S2 S2

Row 3 – – – – – C3 Cout D3 S3

Table III: Scheduling table for the 4-bit CPA from t = 1 to 9.

The computational steps are shown in Fig. 4(b). For odd-numbered
bits, where the input is not complemented, in Step 1, we compute
Cout ← MAJ3(A,B,C) by activating the BLL transistor, after
initializing the Cout cell to 0. Next, in Step 2, we copy this computed
value to its adjacent cell by performing D ← BUFFER(Cout).
Finally, in Step 3, we compute S ← MAJ5(A,B,C,Cout, Cout).
The computation for even-numbered bits is analogous.

In principle, this would have to be followed by Steps 4 and 5
(not shown in the figure), which use the NOT function to obtain the
uncomplemented S and Cout outputs. However, as explained in the
previous section, the bubble-pushing approach makes it unnecessary
to invert a rippled carry output, and alternate output bits need no
inversion on the sum bits, but need the input bits to be inverted
instead. Therefore, for odd-numbered FAs, we require a Step 4 to
invert the Sum output, and for even-numbered bits, we add a “Step
0” that inverts the input bits A and B; note that neither of these is
typically on the critical path.

B. Scheduing an n-bit addition on the CRAM
Next, we consider data placement and scheduling for an n-bit

addition operation, using the example of n = 4 to illustrate the idea,
based on Fig. 5. Each of the four MAJ FAs in this structure is
implemented within a separate row of CRAM, and the computation
in each row is performed in separate steps that capture the sequential
data dependency of the computation.

The scheduling table of the 4-bit carry ripple adder is shown in
Fig. III, where the ith bit-slice is implemented in row i of the CRAM.
Once a carry in row i is generated, it is transferred to row i+1. Thus,
at t = 1, C1 is generated and is transferred to row 1 at t = 2; at
t = 3, C2 is generated in row 1 and transferred to row 2 at t = 4, and
at t = 5, C3 is generated and transferred to row 3 at t = 6. Now that
all inputs to the MSB are available, using the schedule described in
Fig. 4(b), three time units later, at t = 9, the computation is complete.

C. Multiplications and Dot Products
The dot notation is a useful tool to represent arithmetic oper-

ations [16]. The notation is intuitive and is illustrated in Fig. 6
for the addition and multiplication of two 4-bit binary digits. Each
dot represents a place significance, and dots representing each input
number correspond to its four bits, with weights of 1, 2, 4, and 8,
respectively, from right to left. Fig. 6(a) shows that the sum of these
two 4-bit numbers is a 5-bit number represented with five dots. The
multiplication of two 4-bit numbers, shown in Fig. 6(b), generates
a set of four shifted partial products that are added to generate the
8-bit product.

Breaking down the product computation further by mapping it to
FA operations, a fast method for adding the partial products of a

Figure 6: Dot notation representation [16]: (a) Addition of two 4-bit
digits, (b) Multiplication of two 4-bit digits

Figure 7: 4× 4 Wallace tree multiplier: (a) The schematic, (b) The dot
notation representation.

multiplication is to use Wallace/Dadda trees [17]. The schematic of
4× 4 Wallace tree multiplier is shown in Fig. 7, annotated with the
intermediate computations Cij and Sij for various values of i and
j. At each level of the computation, we use a FA to reduce 3 (or
sometimes 2, using a half-adder (HA)) bits of the partial products
to a sum bit and a carry bit that is propagated to the next column.
For instance, in Level 1, A2, B1, and C0 are added to produce S11

and C11, which are added to similar terms in Level 2. Each such
FA/HA is shown by a red dotted rectangle containing 2 or 3 dots. The
numbered label at the bottom left corner of the rectangle represents
the CRAM row number that implements the FA operation. It can be
seen that each column of the computation, which corresponds to a
place significance, maps to the same CRAM row in each Level (e.g.,
the third-last column in Level 1 that adds A2, B1, and C0 maps to
CRAM row 2. The resultant sum output S11 remains in that row and
is added with with other operands in Level 2, while the carry output
is transferred to the next higher row).

Another view of the scheduling of these computations is presented
in Table IV. The implementation of each level requires 5 steps,
and computations related to FAs within each level are performed
in parallel. As in the case of the ripple carry adder, the first three
steps for each FA at Level 1 involve computing the complement of
the output carry, cloning the computed carry complement to another
cell, and then computing the complement of the sum at t = 1, 2, 3,
respectively. As before, bubble-pushing is used so that the inverted

Level 1 Transfer Level 2 CPA
Time 1 2 3 4 5 6 7 8

Row 0 C10 D1 S10

Row 1 C11 D2 S11 C10 C20 D5 S20

Row 2 C12 D3 S12 C11 C21 D6 S21 CPA
Row 3 C13 D4 S13 C12 C22 D7 S22

Row 4 C13 C23 D9 S23

Table IV: Scheduling table for the Wallace tree adder.

4

Figure 2.8: Scheduling table for the 4-bit CPA from t = 1 to 9.

The scheduling table of the 4-bit ripple carry adder is shown in Fig. 2.8, where the

ith bit-slice maps to CRAM row i. Once a carry in row i is generated, it is transferred

to row i + 1. Thus, at t = 1, C1 is generated and is transferred to row 1 at t = 2; at

t = 3, C2 is generated in row 1 and transferred to row 2 at t = 4, and at t = 5, C3

is generated and transferred to row 3 at t = 6. Now that all inputs to the MSB are

available, using the schedule described in Fig. 2.6(b), three time units later, at t = 9,

the computation is complete.

Multiplication: The dot notation is a useful tool to represent arithmetic opera-

tions [12]. The notation is illustrated in Fig. 2.9 for the addition and multiplication

of two 4-bit binary digits. Each dot represents a place significance, and dots repre-

senting each input number correspond to its four bits, with weights of 1, 2, 4, and 8,

23

from right to left. Fig. 2.9(a) shows that the sum of these two 4-bit numbers is a 5-bit

number. The multiplication of two 4-bit numbers (Fig. 2.9(b)), generates a set of four

shifted partial products that are added to generate the 8-bit product.

Figure 2.9: Dot notation representation [12]: (a) Addition of two 4-bit digits, (b) Mul-
tiplication of two 4-bit digits.

Figure 2.10: (a) Schematic and (b) dot notation representation for a 4× 4 Wallace tree
multiplier.

Breaking down the product computation further by mapping it to FA operations, a

fast method for adding the partial products of a multiplication is to use Wallace/Dadda

trees [48]. The schematic of 4×4 Wallace tree multiplier is shown in Fig. 2.10, annotated

with the intermediate computations Cij and Sij for various values of i and j. At each

level of the computation, we use a FA to reduce 3 (or sometimes 2) bits of the partial

products to a sum bit and a carry bit that is propagated to the next column. For

24

instance, in Level 1, A2, B1, and C0 are added to produce S11 and C11, which are added

to similar terms in Level 2. Some FAs can be implemented as simpler half adders (HAs)

since they have only two inputs. Each such FA/HA is shown by a red dotted rectangle

containing 2 or 3 dots. The numbered label at the bottom left corner of the rectangle

represents the CRAM row number that implements the FA operation. It can be seen

that each column of the computation, which corresponds to a place significance, maps

to the same CRAM row in each Level (e.g., the third-last column in Level 1 that adds

A2, B1, and C0 maps to CRAM row 2. The resultant sum S11 remains in that row and

is added with other operands in Level 2, while the carry-out goes to the next row).

MAJ

Adder

B0A0

S0

Cin
MAJ

Adder

B1A1

MAJ

Adder

B2A2

S2

MAJ

Adder

B3A3

S1S3

C1C2C3

Cout

Figure 5: 4-bit ripple carry adder using the bubble-pushing technique.
In each MAJ FA complement of sum and carry are achieved after 3

steps.

Time 1 2 3 4 5 6 7 8 9

Row 0 C1 – D0 S0 S0

Row 1 – C1 C2 – D1 S1

Row 2 – – – C2 C3 D2 S2 S2

Row 3 – – – – – C3 Cout D3 S3

Table III: Scheduling table for the 4-bit CPA from t = 1 to 9.

The computational steps are shown in Fig. 4(b). For odd-numbered
bits, where the input is not complemented, in Step 1, we compute
Cout ← MAJ3(A,B,C) by activating the BLL transistor, after
initializing the Cout cell to 0. Next, in Step 2, we copy this computed
value to its adjacent cell by performing D ← BUFFER(Cout).
Finally, in Step 3, we compute S ← MAJ5(A,B,C,Cout, Cout).
The computation for even-numbered bits is analogous.

In principle, this would have to be followed by Steps 4 and 5
(not shown in the figure), which use the NOT function to obtain the
uncomplemented S and Cout outputs. However, as explained in the
previous section, the bubble-pushing approach makes it unnecessary
to invert a rippled carry output, and alternate output bits need no
inversion on the sum bits, but need the input bits to be inverted
instead. Therefore, for odd-numbered FAs, we require a Step 4 to
invert the Sum output, and for even-numbered bits, we add a “Step
0” that inverts the input bits A and B; note that neither of these is
typically on the critical path.

B. Scheduing an n-bit addition on the CRAM
Next, we consider data placement and scheduling for an n-bit

addition operation, using the example of n = 4 to illustrate the idea,
based on Fig. 5. Each of the four MAJ FAs in this structure is
implemented within a separate row of CRAM, and the computation
in each row is performed in separate steps that capture the sequential
data dependency of the computation.

The scheduling table of the 4-bit carry ripple adder is shown in
Fig. III, where the ith bit-slice is implemented in row i of the CRAM.
Once a carry in row i is generated, it is transferred to row i+1. Thus,
at t = 1, C1 is generated and is transferred to row 1 at t = 2; at
t = 3, C2 is generated in row 1 and transferred to row 2 at t = 4, and
at t = 5, C3 is generated and transferred to row 3 at t = 6. Now that
all inputs to the MSB are available, using the schedule described in
Fig. 4(b), three time units later, at t = 9, the computation is complete.

C. Multiplications and Dot Products
The dot notation is a useful tool to represent arithmetic oper-

ations [16]. The notation is intuitive and is illustrated in Fig. 6
for the addition and multiplication of two 4-bit binary digits. Each
dot represents a place significance, and dots representing each input
number correspond to its four bits, with weights of 1, 2, 4, and 8,
respectively, from right to left. Fig. 6(a) shows that the sum of these
two 4-bit numbers is a 5-bit number represented with five dots. The
multiplication of two 4-bit numbers, shown in Fig. 6(b), generates
a set of four shifted partial products that are added to generate the
8-bit product.

Breaking down the product computation further by mapping it to
FA operations, a fast method for adding the partial products of a

Figure 6: Dot notation representation [16]: (a) Addition of two 4-bit
digits, (b) Multiplication of two 4-bit digits

Figure 7: 4× 4 Wallace tree multiplier: (a) The schematic, (b) The dot
notation representation.

multiplication is to use Wallace/Dadda trees [17]. The schematic of
4× 4 Wallace tree multiplier is shown in Fig. 7, annotated with the
intermediate computations Cij and Sij for various values of i and
j. At each level of the computation, we use a FA to reduce 3 (or
sometimes 2, using a half-adder (HA)) bits of the partial products
to a sum bit and a carry bit that is propagated to the next column.
For instance, in Level 1, A2, B1, and C0 are added to produce S11

and C11, which are added to similar terms in Level 2. Each such
FA/HA is shown by a red dotted rectangle containing 2 or 3 dots. The
numbered label at the bottom left corner of the rectangle represents
the CRAM row number that implements the FA operation. It can be
seen that each column of the computation, which corresponds to a
place significance, maps to the same CRAM row in each Level (e.g.,
the third-last column in Level 1 that adds A2, B1, and C0 maps to
CRAM row 2. The resultant sum output S11 remains in that row and
is added with with other operands in Level 2, while the carry output
is transferred to the next higher row).

Another view of the scheduling of these computations is presented
in Table IV. The implementation of each level requires 5 steps,
and computations related to FAs within each level are performed
in parallel. As in the case of the ripple carry adder, the first three
steps for each FA at Level 1 involve computing the complement of
the output carry, cloning the computed carry complement to another
cell, and then computing the complement of the sum at t = 1, 2, 3,
respectively. As before, bubble-pushing is used so that the inverted

Level 1 Transfer Level 2 CPA
Time 1 2 3 4 5 6 7 8

Row 0 C10 D1 S10

Row 1 C11 D2 S11 C10 C20 D5 S20

Row 2 C12 D3 S12 C11 C21 D6 S21 CPA
Row 3 C13 D4 S13 C12 C22 D7 S22

Row 4 C13 C23 D9 S23

Table IV: Scheduling table for the Wallace tree adder.

4

Figure 2.11: Scheduling table for the Wallace tree adder.

Another view of the scheduling of these computations is presented in Fig. 2.11. The

implementation of each level requires 5 steps, and computations related to FAs within

each level are performed in parallel. As in the case of the ripple carry adder, the first

three steps for each FA at Level 1 involve computing the complement of the output

carry, cloning the computed carry complement to another cell, and then computing the

complement of the sum at t = 1, 2, 3, respectively. As before, bubble-pushing allows the

inverted sum and carry outputs to be used directly in the next bit slice.

To begin the computations at Level 2, the computed carry values in row i must be

sent to row i + 1, and this is accomplished at t = 4, 5. Note that due to the structure

of the CRAM, this must be performed in two steps: when row i is connected to i + 1,

we cannot simultaneously connect row i+ 1 to i+ 2, otherwise we create an inadvertent

25

path from i to i+ 2. Therefore, transfers from all even-numbered rows to the next row

occur in one time slot, and transfers from all odd-numbered rows in another. Three

more steps are required to perform the FA computation at Level 2, which completes at

t = 8, and the results then go to a CPA, implemented as in Section 2.4.

2.5 CRAM Applications

In this section, we present two applications of the CRAM: a two-dimensional (2D)

convolution operation for image filtering using images and filters represented by multiple

bits, and a binary neuromorphic inference engine for digit recognition.

100 200 300 400 500

100

200

300

400

500

(a)

100 200 300 400 500

100

200

300

400

500

(b)

Figure 2.12: Using the average (mean) filter to denoise an image: (a) the noisy image
with numerous specks, and (b) the denoised version.

2.5.1 2D Convolution for Image Filtering

Convolution is a building block of many image processing applications, such as image

filtering for sharpening and blurring. Fig. 2.12(a) shows an input image with 512×512

pixels that is convolved by a 3×3 filter to yield an output image with the same number

of pixels, shown in Fig. 2.12(b). The output pixel in location (i, j) is computed as

26

follows, as illustrated in Fig. 2.13(a):

Oi,j =

3∑
k=1

3∑
l=1

fk,l · Ii−k+2,j−l+2 (2.10)

where f represents a matrix associated with the 3×3 filter, and I is the matrix of input

pixels. The image I is represented using 4 bits, and the filter f uses two bits. Thus,

each partial product (fk,l · Ii−k+2,j−l+2) has six bits.

Input Image
(512×512)

Output Image
(512×512)

Filter (3×3)

(a)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

16

15

17

18

25

36

811

9

14

12

1718

15

5811141718

8
1819

111417

Level 1

Level 2

Level 3

Level 4

6-bit CPA

(b)

Figure 2.13: The implementation of convolution using CRAM: (a) a 512×512 image,
with 4 bit per pixel, is filtered using a 3×3 filter, with 2 bits per word, and (b) the
addition of nine six-bit partial products to compute the dot product that evaluates the
output image pixel using a 4-level tree adder.

To compute O(i, j), the result of the dot product representing a pixel of the output

image, nine six-bit partial products are added together using a tree adder, as shown in

Fig. 2.13(b). The tree adder has four levels, and uses a six-bit ripple carry adder at

the final stage. As illustrated in the figure, the total number of rows required for the

implementation of one dot product is 19. Similar to the adder and multiplier, it is easy

to build a scheduling table for the implementation of the dot product: for conciseness, it

27

is not shown here. The total number of steps for the implementation includes all steps

for multiplication, additions within the rows, inter-row transfers, and the final CPA.

The convolution for each output pixel can be computed in parallel.

2.5.2 A Neural Inference Engine

11 Pixels

11
 P

ix
el

s

0 1 2 3 4 5 6 7 8 9

1

2

10

Y0
Y1

Y9

1

2

3

121

X1

X2

X3

X121

W1,1

W2,1

W10,1

W1,3

W2,3

W10,3
W1,121

W2,121
W10,121

Input Image Classifier Layer Output

Figure 2.14: An inference engine for the digit recognition problem.

Using the building blocks described above, we show how the CRAM can be used to

implement a neuromorphic inference engine for handwritten digit recognition using data

from the MNIST database [49]. The neural network architecture from [50] (Fig. 2.14)

is used to implement the recognition scheme. Each of the MNIST images is scaled to

11×11 as in [50], a transformation that maintains 91% recognition accuracy and reduces

computation. Note that using the full image, or using a more complex neural engine with

higher recognition accuracy, does not fundamentally change our approach or conclusions.

This data is provided to the neural net with a set of one-bit inputs, Xi, 1 ≤ i ≤ 121,

corresponding to each image bit, and fires one of 10 outputs, corresponding to the digits

0 through 9. In principle, this network can also be implemented using a larger number

of bits, as in the previous application, rather than as a binary neural network; the unit

operations for n bits have been described in Section 2.4. As in [50], the synaptic weights

Wij have three bits and are trained using supervised learning.

28

X1W1,1:
X2W1,2:
X3W1,3:
X4W1,4:
X5W1,5:
X6W1,6:
X7W1,7:
X8W1,8:
X9W1,9:

X121W1,121:

1

2

3

4

5

6

8

9

12

7

2

10

4

19

5

8

13

9

17

and so on till Level 10
Le

ve
l 1

Le
ve

l 2
(a)

Adder 1
Adder 2
Adder 3
Adder 4
Adder 5
Adder 6
Adder 7
Adder 8
Adder 9

Adder 10
Adder 11
Adder 12
Adder 13

Row 1
Row 2

Adder 120

Row 3
Row 4
Row 5
Row 6
Row 7
Row 8
Row 9
Row 10
Row 11
Row 12
Row 13

Row 120

Adder 1Carry

Adder 2
Adder 3

Adder 4
Adder 5

Adder 7

Sum

Adder 8

Adder 6

Adder 1

Adder 2
Adder 3

Adder 4

Data Transfer 1 Data Transfer 2Level 1 Level 2 Level 3

So
 o

n
til

l L
ev

el
 1

0
an

d
C

PA

(b)

Figure 2.15: The implementation of each of the ten outputs, Yi, of the inference engine,
illustrating the (a) zigzag scheme for assigning addition operations to CRAM rows, and
(b) the inter-row data transfers and the computation footprint of Yi along the rows of
the CRAM.

29

The outputs of the neural network are computed as the inner product:

Yi =

121∑
j=1

Wi,jXj (2.11)

The inner product Yi is computed as a sum of 121 partial products. Fig 2.15(a) uses the

dot notation to represent the implementation of Yi. Each partial product is a bitwise

multiplication of a three-bit Wi,j with a one-bit Xj , and this can be implemented using

a bitwise AND operation. The resulting three-bit partial products, shown in each row

at Level 1 in Fig. 2.15(a), are added together using a Wallace tree adder. Note that

one can also use a Dadda tree adder or any other similar tree adder without changing

the overall delay significantly. This is because the overall delay does not depend on the

number of FAs in a level, as all FAs within a level act in parallel. As long as the number

of tree levels (and the length of final ripple carry adder) is the same, the overall delay

is quite similar.

Recall that each group of three dots in the figure is a FA computation performed in

a row, after which the sum and carry are propagated to the next level of computation.

In this case, the computation requires 9 levels. The choice of row assignments for the

FA computations is critical in maintaining latency. In principle, it is possible to assign

rows sequentially by column, e.g., the dots in the last column are assigned to rows 1

through d121/3e, then the second last column gets row d121/3e + 1 onwards, and so

on. However, this would mean large communication latencies (e.g., the carry from row

1 may have to be sent to row 42 or higher). We use an approach that performs a zigzag

assignment of rows, as shown in Fig. 2.15(a). After the computation in each row, the

sum output is sent to the median row and the carry output to the largest row number.

For example, the first three FAs in the right column are in rows 1, 2, and 4, according

to the diagonal pattern. Their three sums are sent to the median row, row 2, and their

carries are sent to the maximum row number, row 4. At Level 2, the same process

30

repeats: the FAs in the first three groups, now in rows 2, 10, and 19, send their three

sums to row 10 and three carrys to row 19, and so on. The Wallace tree has 9 levels in

all, followed by a CPA stage.

Fig. 2.15(b) shows the footprint of computations, where the y-axis is the row number

and the x-axis is time. Each colored block is an adder computation, which takes three

steps if we use majority complementary logic (for advanced MTJ technology) or nine

steps for NAND-based logic (using today’s MTJ technology). As described above, once

a computation in one level is complete, we transfer the sums to the median row number

(as shown by blue arrows) and carrys to the largest row number (as shown by red

arrows). For example, after Level 1, the Sum outputs for Rows 1 and 4 are transferred

to Row 2, to set up the Level 2 computation that adds these to the Sum output produced

in Row 2. Such inter-row transfers correspond to BUFFER operations that are carried

out by activating the switches described in Section 2.2.3.

The span of rows involved in the computation shrinks from level to level. Fig. 2.16

shows the number of FA computations at each level of the Wallace tree and the number

of inter-row data transfers involved before the beginning of the full adder computation

at each level. Due to the scheme for moving sums and carrys across rows, as the

computation proceeds, the span of rows that contain active data shrinks. For example,

Level 1 involves all 120 rows, but fewer rows are involved at Level 2, starting from Row

2; at Level 3, the number reduces further, and the first active row is Row 5.

Our approach is shown on a binary neural network, a family of structures that has

recently attracted great attention for low-energy deep learning on embedded platforms.

However, the general concept and procedure for implementing our design can be applied

to other neural inference engines, including multibit neural networks. In general, when

the number of bits per pixel (for the same application) increases, the computation will

employ unit operations with a greater number of bits (e.g., a tree adder with more

31

1 2 3 4 5 6 7 8 9 10
Level

0

20

40

60

80

100

120

of

 F
As

(a)

1 2 3 4 5 6 7 8 9 10
Transferring Phase

0

100

200

300

400

500

600

700

800

of

 M
ov

es

(b)

Figure 2.16: (a) The distributions of the number of FAs in each level of Wallace tree.
(b) The distribution of the total number of moves required in the data transfer phases.

levels and more FAs). This increases the number of steps and the size of the CRAM

array for implementation. The fundamental operation in many neural computation

models is a convolution of the form Equation (2.10) or a dot product of the form of

Equation (2.11). As shown in Section 2.3, the CRAM architecture can perform the unit

operations (addition and multiplication) for either. For example, the convolution layer

in a convolutional neural network (CNN) involves dot product operations, and then a

summation over the results of these dot products. Computations in other CNN layers,

such as pooling and ReLU, also require simple arithmetic or Boolean operations that

can be implemented on the CRAM substrate.

2.6 Evaluation and Results

We evaluate the performance of the CRAM for two applications: (a) performing 2D

convolution to filter a 512×512 image, and (b) digit recognition, used to analyze 10,000

handwritten digit images from the MNIST database. In both applications, the execution

time and energy of the CRAM are compared with those of a near-memory processing

(NMP) system, where a processor is available at the edge of the memory array. We do

not explicitly show comparisons between NMP and processor-based computing, where

32

the data is taken from memory to a processor or coprocessor for computation, and the

results are transported: it is well-documented [1,16,51] that this method is vastly infe-

rior to the NMP approach due to the communication bottleneck described in Section 5.1.

For example, [51] reports a 6.5× improvement through the use of NMP, as compared

to processor-based computing. Note that this communication overhead limits the ef-

fectiveness of any processor or coprocessor that requires communication to and from

memory, including specialized accelerator cores (e.g., neuromorphic units or GPUs).

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

CRAM
Subarray

Decoder Decoder

Decoder Decoder

Predecoder
CRAM Array

1024 (or 512) Columns

1024 (or 128) R
ow

s

CRAM Unit

Figure 2.17: Each CRAM unit includes four CRAM subarrays and one predecoder. A
predecoder block is at the center of the CRAM unit, and fans out to four CRAM column
decoders.

The organization of the CRAM array is shown in Fig. 2.17. For the 2D convolution

application, a 256Mb [512Mb] CRAM array is enough to compute all output pixels of

a 512×512 image with 4 bits per pixel in parallel using the advanced [today’s] MTJ

device. For the digit recognition application, we require a 1Gb memory, where each

image can be processed in parallel within a subarray. The overall array is divided into

subarrays as shown in the figure. The operations in the CRAM array are scheduled by

activating the appropriate LBL and BSL lines. In memory mode, the predecoder and

decoder modules drive the selection of WL (see Fig. 2.1), while in logic mode, they drive

the selection of LBL. The predecoder at the center of the CRAM unit fans out to a set

of decoders in our evaluations: here, we show four decoders, but if a larger number of

subarrays is used, this number can be different.

33

To calculate the energy and delay of the CRAM system, we considered the energy

and delay components in both peripheral circuitry and the CRAM array. To determine

the impact of the size of CRAM on execution time and energy, we considered two cases

for the size of CRAM subarrays: 1024 rows × 1024 columns, and 128 rows × 512

columns.

2.6.1 Execution Time

CRAM: We assume that the data is placed in the appropriate CRAM array location.

The execution time, tCRAM , is:

tCRAM = tMTJ + tDr, (2.12)

where tMTJ and tDr are delay related to computations in the MTJ array and in the

bitline drivers of Fig. 2.4, respectively. The total array delay is dominated by the MTJ

delay,

tMTJ = Nsteptwr, (2.13)

where Nstep and twr are, respectively, the number of computation steps and the MTJ

write time per computation. Here,

Nstep = NMul +NLNFA +
∑NL

i=1 Ii−→i+1 + tCPA (2.14)

where NMul is the number of steps required to generate partial products for the first level

of the tree adder. The second term indicates total number of intrarow computation steps

required for the implementation of the neural network, where NL the number of levels

in the implementation tree adder, and NFA the number of steps for the implementation

of a FA. The third term corresponds to the total number of steps for transferring data

between rows of the CRAM array: at each level i of the tree, the number of such transfers

is denoted by Ii−→i+1. Finally, tCPA is the time required for the carry propagation

34

addition step at the end of the Wallace tree computations. The preset adds no execution

time overhead and can be performed either during the write operation when CRAM is in

the memory mode, or online during the computation when CRAM is in the logic mode.

In the latter case, the output MTJs are preset in parallel with the logic computation of

the previous step, adding no overhead to the compute time. During the logic operation

LBLs, and BSLs are engaged in computation, and current flows through LLs (see Fig. 2.1

and Fig. 2.2). Simultaneously, one can also write the preset value for the next step, as

only MBL and BSL (of another column) are involved in the writing operation, and there

is no overlap between current path related to computation and that to output preset.

For the 2D convolution application, we have:

• From Section 2.5.1, NMul = 9 and NL = 4.

• Based on Section 2.3.3, NFA = 3 using the MAJ gates, with bubble-pushing, in

advanced MTJ technologies, and NFA = 9 using NAND-based logic in today’s

technology (where MAJ gates do not provide sufficient noise margin, as shown in

Section 2.3.2).

• We count all number of steps in the inter-row communication phases, and find

that
∑NL

i=1 Ii−→i+1 = 14.

• Extending the argument from the four-bit adder in Section 2.3.3, tCPA = 13 for

the six-bit adder.

From (2.14), we obtain Nstep = 48 (for the advanced CRAM with MAJ3 based logic)

and Nstep = 72 columns (for today’s CRAM with NAND-based logic). Thus, the com-

putation for each pixel of the output image requires an array of 19 rows (Section 2.5.1)

and Nstep columns. By rounding the column counts to the nearest power of 2, and con-

sidering all 512×512 pixels of the output image, a CRAM array size of 256Mb is required

35

for the computation on the advanced MTJ; the corresponding number for today’s MTJ

is 512Mb.

For the digit recognition application:

• From Section 2.5, NMul = 6, and NL = 10.

• As before, NFA = 3 using the advanced CRAM, and NFA = 9 using today’s

technology.

• The number of steps in the inter-row communication phases is determined to be∑NL
i=1 Ii−→i+1 = 247.

• From Section 2.3.3, tCPA = 9 for the four-bit adder.

Therefore, Nstep = 292 for the advanced MTJ technology (using MAJ logic), andNstep =

352 using today’s MTJs (using NAND logic). The computation of each image requires

an array of 121 rows (corresponding to the partial products) times 10 outputs, and 292

or 352 columns (corresponding to the steps in the computation), depending on the type

of MTJ used. Therefore, rounding 292 (or 352) to the nearest higher power of 2, in

a 1024 × 1024 memory subarray, we can fit 18 images (9 images along the rows and 2

images along the columns). The entire set of 10,000 images thus requires 10,000/18 =

556 such arrays; rounding this up to 1024, we see that we require 1024 such subarrays,

providing a total memory size of 1Gb, as listed earlier.

To incorporate the delay of bitline drivers in the CRAM, an overhead delay estimated

in each step by considering the delay components of a DRAM array with the same

physical size. We use the parameters and models in the NVSim memory simulator [52]

at 10nm and 45nm to consider a subarray of this size and use the underlying parameters

to obtain these delays. We tailor the NVSIM models to the specifics of the CRAM

computation. Specifically, in logic mode, each computation step requires LBLs to be

36

driven, similar to driving wordlines, but does not require bitline or sense amplifier

circuitry. The load seen by the column drivers in logic mode can be modeled in the

same way as the load seen by row drivers in memory mode: instead of driving a wordline

transistor as in memory mode, the LBL drives the access transistor that connects a cell

to the LL. For each step of computation, we calculate the sum of the delay of the decoder

and predecoder using similar models as NVSim, and this value is multiplied by Nstep to

find the total overhead corresponding to tDr. The size of the bit-cell is also altered to

reflect the increased size of the CRAM bit cell over that for an STT-MRAM cell.

NMP System: The near-memory processing (NMP) system takes data from the mem-

ory to a processor and performs its computation outside the memory system. We assume

that the operation is based on a DRAM structure, with better performance characteris-

tics than a spintronic memory. For the digit recognition application, to process all 10K

images of the MNIST database, 10,000 images, each of size 121 bits, must be fetched

from DRAM, for computations in the near-memory processor. The delay for this sce-

nario is estimated using CACTI [53]. A similar approach is used for the 2D convolution

application.

Computing one of the outputs, Yi, of the neural net requires 121 MAC operations.

To find the processing time of each block of data, it is assumed that the processor

uses instruction pipelining technique and that it can perform the multiply-accumulator

(MAC) operation in one clock cycle. In case multiple processing units are available on

the processor, we appropriately scale the execution time by the number of processors.

We pessimistically assume maximum parallelism, where each fetched image is processed

in parallel, and the level of parallelism is only limited by the data rate from memory. The

clock frequency of the processor is 1GHz, but due to the assumption above, the precise

computing speed of the processor does not affect the evaluation of NMP execution time.

37

2.6.2 Energy

Analogous to delay, the CRAM energy is computed as:

ECRAM = EMTJ + EDr (2.15)

where EMTJ and EDr are the energy related to computations in the MTJ array and for

the bitline drivers, respectively. The energy in the MTJ array is given by

EMTJ = EPreset + EMul + Erow + Etransfer + ECPA (2.16)

in which EPreset is the preset energy before the logic operation starts; EMul is the

energy for multiplication to produce partial products in Level 1 of the tree adders;

Erow is the energy for intrarow computation, and can be obtained by enumerating all

FAs working in parallel in the 9 levels of the implementation trees; Etransfer is the

energy for transferring data across rows between various levels of computation, and

can be obtained by enumerating all inter-row moves and multiplying the count by the

energy of BUFFER gate; ECPA is the energy for the implementation of the final ripple

carry adders. For the advanced MTJ technology using MAJ3 gates, Eq. (2.16) can be

rewritten as follows (a similar equation can be derived for today’s MTJ):

EMTJ =NpreEpre +NNOTENOT +NBUFEBUF+

NMAJ3EMAJ3 +NMAJ5EMAJ5

(2.17)

Here, Epre is the energy for preset the output of one gate; Eg and Ng are the energy for

the implementation of a single gate g and the number of gates of type g, g ∈ {NOT,

BUFFER, MAJ3, MAJ5}. Note that Npre is equal to the sum of counts of all gates, as

we need to preset the outputs of all gates. colorredAs an example, the energy values

and counts for gates and the output preset for the digit recognition application using

advanced CRAM are listed in Table 2.3.

38

The value of driver energy, EDr, for the CRAM is estimated using NVSim, using

analogous analysis techniques as for the delay computation. Since multiple columns may

be driven in each step, we multiply the energy cost of driving each column by Neff , the

average number of columns driven in any part of the computation. The energy within

each CRAM unit is the sum of energy of four CRAM subarrays and one decoder. This

value is multiplied by Nstep to obtain the total overhead corresponding to EDr.

For the near memory processing system, the energy consists of two components: (i)

memory access energy and (ii) computation energy. The estimated cost for accessing

256 bits of the operand from memory is estimated using [1], normalized to CACTI.

Table 2.3: The energy cost for various CRAM gate types and preset operations under
the advanced MTJ technology.

Gate NOT BUFFER MAJ3 MAJ5 Preset

Energy/gate(aJ) 30.7 73.8 7.6 6.3 26.1

Count(×105) 365 3017 657 294 4333

2.6.3 Comparison between CRAM and NMP

The results for execution time and energy for CRAM (at 10nm and 45nm) and NMP

(at 16nm and 45nm) are evaluated for both applications (10nm data for CMOS/NMP

was not available).

The evaluation result for the 2D convolution application is listed in Table 2.4. Based

on the result, today’s CRAM is 620× faster, and 23× more energy efficient than the

NMP system. The advanced CRAM is 1500× faster, and 750× more efficient than a

NMP system.

For the digit recognition application, the results for execution time and energy for

CRAM (at 10nm and 45nm) and NMP (at 16nm and 45nm) are shown in Table 2.5

(10nm data for CMOS/NMP was not available). The value of EMTJ is 53.8µJ for

today’s MTJ technology, and 35.4nJ for advanced MTJs, three orders of magnitude

39

Table 2.4: Comparison between the execution time, t, and energy, E, in CRAM and
NMP based computations for the 2D convolution application. The size of the CRAM
subarrays in this evaluation is 128×128.

CRAM NMP
10nm 45nm 16nm 45nm

t 54.0ns 231.2ns 84.3µs 144.4µs

E 252.1nJ 16.5µJ 189.2µJ 388.6µmJ

lower. While the driver energy also reduces from 45nm to 10nm, the reduction is more

modest. As a result, the energy for advanced MTJs is dominated by the driver delay.

The improvements shown in the table can be attributed to (a) high locality of the

operations and (b) large amounts of parallelism as each row computes in parallel. We

see that

• For the 1024×1024 subarray, the CRAM energy is about 40× better than NMP at

45nm, and improves to over 2500× lower at 10nm. The execution time is 1400×

better at 45nm, and about 1700× better at 10nm.

• The execution time [energy] for the 45nm CRAM are, respectively, over 500×

[20×] better than 16nm NMP.

• The 10nm CRAM execution time [energy] is over 3× [80×] better than the 45nm

CRAM.

• Further improvements are seen using the smaller subarray. The energy overhead

associated with smaller subarrays is small at 45nm, but is magnified at 10nm,

where the driver energy dominates the subarray energy.

The distributions of energy and delay for the CRAM, both using today’s MTJs and

advanced MTJs, with subarrays of 1024 rows × 1024 columns, and 128 rows × 512

columns, are shown in Fig. 2.18 and Fig. 2.19, respectively. For the 1024 × 1024 case,

under today’s technology, the MTJ array in the CRAM consumes a dominant component

40

Table 2.5: Comparison between the execution time, t, and energy, E, in CRAM and
NMP based computations for neuromorphic digit recognition.

CRAM
NMP

1024 × 1024 128 × 512
10nm 45nm 10nm 45nm 16nm 45nm

t 434ns 1381ns 338ns 1105ns 0.74ms 1.96ms

E 0.49µJ 60.3µJ 0.75µJ 63.8µJ 1.27mJ 2.57 mJ

of the energy. However, for advanced MTJs, due to the greatly improved energy of future

MTJs, the energy bottleneck will be in the driver circuitry. By decreasing the size of

the subarray to 128 rows×512 columns, the total execution time decreases due to a

reduction in the driver circuitry delay. As a result, the execution time is dominated

more strongly by the MTJ array. However, the driver circuitry plays a slightly more

prominent role in determining the energy than for the larger subarray in Fig. 2.18. Thus,

tradeoffs between energy and delay can be obtained by altering subarray sizes.

These result clearly shows that for both applications, CRAM outperforms the NMP

system in both energy and execution time. In the NMP system, it is necessary to fetch

the data from memory and process it in processor units. Even with the maximum level

of parallelism in NMP by using multiple processor units, and exploiting hidden latency

techniques, the delay overhead of fetching data to the NMP at the edge of the memory is

a major bottleneck. In contrast, the CRAM does not face this delay penalty. Moreover,

the CRAM computation model enables a very high degree of parallelism as each row

can perform its computations independently.

For example, in the 2D convolution application, all dot products generating output

pixels can be computed in parallel. In contrast, the NMP system faces a serial bottleneck

in the way that data is fetched from the memory. Moreover, the energy cost of the cost

of data transfers cannot be hidden in the NMP system as data must be taken along long

lines to the edge of memory. In contrast, all communication in the CRAM is inherently

41

Execution Time - Today's CRAM

67.7%

32.3%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

89.3%

10.7%

Execution Time - Advanced CRAM

68.5%

31.5%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
7.2%

92.8%

Figure 2.18: Distribution of energy and delay of the driver and CRAM array for CRAM
with the subarray size of 1024× 1024.

local within the subarray, providing large energy savings.

2.7 Related Work

Methods for addressing the communication bottleneck through distributed process-

ing of data at the source have been proposed in [54,55]. Such techniques feature a rich

design space, which spans full-fledged processors [55, 56] and co-processors residing in

memory [57,58]. However, until recently, the promise of these approaches could not be

translated to designs due to the incompatibility of the state-of-the-art logic and memory

technologies.

This changed somewhat with the emergence of 3D-stacked architectures [59, 60],

where a processor is placed next to the memory stack, has enabled the emergence of

42

Execution Time - Today's CRAM

92.8%

7.2%

Today's MTJ Array
45nm Driver Circuit

Energy - Today's CRAM

85.3%

14.7%

Execution Time - Advanced CRAM

87.9%

12.1%

Advanced MTJ Array
10nm Driver Circuit

Energy - Advanced CRAM
4.7%

95.3%

Figure 2.19: Distribution of energy and delay of the driver and CRAM array for CRAM
with subarray size of 128× 512.

several approaches for near-memory computing [61–63]. However, building true in-

memory computing has been difficult. In CMOS-based technologies: the computing

engine is overconstrained as it must use the same technology as memory, and typically,

methods that are efficient for computation may not be so for memory. As a result,

techniques that attempt in-memory computation must necessarily draw the data out to

the periphery of the memory array, e.g., to a sense amplifier or auxiliary computational

unit, to perform the computation and then write the result back to memory as needed.

There are several examples of such platforms. The work in [64] performs search opera-

tions for content-addressable memory functionalities, which need no write-back but are

less general than full in-memory computing; methods in [65] place a computational unit

at the edge of memory; logic functionalities in [66] perform bitwise operations through

the sense amplifier.

43

Post-CMOS technologies open the door to new architectures. The method in [67]

presents a logic-in-memory platform that combines magnetic tunneling junctions (MTJs)

with MOS transistors, and embeds computing elements within a memory array. How-

ever, this breaks the regularity of the array so that while it is efficient for computation,

it may not be ideal for use as a memory module. SPINDLE [68], a spintronics-based

deep learning engine proposes a tiered architecture of processing elements with a neu-

ral computing core and memory scratchpad at the edge, communicating with off-chip

memory. The Pinatubo [69] processing-in-memory architecture performs bulk bitwise

operations through redesigned read circuitry that performs computations at the periph-

ery of a phase change memory array. A spintronics-based solution in [70] proposes a

spin-transfer torque magnetic random access memory (STT-MRAM) approach that also

performs bitwise computation at the periphery of the array by modifying the peripheral

circuitry in a standard STT-MRAM module. Unlike CRAM, these methods perform

computation at the edge of the memory array. Another architecture [71] builds a four-

terminal domain wall device based on the spin-Hall effect, but incurs a significant area

overhead. A memristor-based approach [72] shows the ability to perform logic functions

in an array, but does not show larger applications.

2.8 Conclusion

This chapter presents a detailed view of how the CRAM in-memory computation plat-

form can be designed, optimized, and utilized. As opposed to many of the approaches

proposed so far to solve the memory bottleneck by bringing processing closer to memory,

CRAM implements a true in-memory computing paradigm that performs logic opera-

tions within the memory array. Methods for implementing specific logic functions have

been presented and have been used to perform basic arithmetic operations, namely,

adders and multipliers. At the application level, the problems of 2D convolution on

44

multibit numbers, and an inference engine for binary neuromorphic digit recognition,

have been mapped to the CRAM. An evaluation of these methods shows that for the task

of evaluating the entire MNIST benchmark suite, the CRAM achieves improvements of

over three orders of magnitude in the execution time. For today’s MTJ technology,

improvements of about 40× in the energy are seen, a figure that improves to > 2500×

for future generations of MTJs.

Chapter 3

Analyzing the Effects of

Interconnect Parasitics in the

STT CRAM In-Memory

Computational Platform

3.1 Introduction

This chapter studies of the impact of interconnect parasitics in the spin transfer

torque (STT) computational random access memory (CRAM), a true in-memory pro-

cessing platform [2,17,18]. Only a few prior works [73,74] have attempted to incorporate

the parasitic effects of interconnects in their analysis on in-memory computing, but their

models did not consider all contributing factors based on realistic layout considerations.

As described in chapter 2, CRAM uses a small modification to the high-endurance

MTJ-based [75] memory cell to enable true in-memory logic operations. In the CRAM,

the per unit resistances of wires that carry the current are significantly smaller than the

45

46

MTJ resistances. This can falsely lead to this conclusion that the interconnect parasitic

effects are negligible. In reality, the accumulative resistances of these wires can be

significant. This work develops an analytical method based on layout considerations

that is used to study the effects of design parameters on parasitics and performance,

in order to build a robust CRAM design. The method considers multiple contributing

factors simultaneously, e.g., reducing the access transistor resistance can potentially

enhance the performance, but it also require larger size of unit cells, which increases the

area of the array and increases interconnect lengths. Together, these effects can harm

performance.

In Section 5.2, we provide an overview for derivation of bias voltages of different

gates considering resistances of access transistors. We then motivate the problem in

Section 3.3. Next, in Section 3.4, we develop a layout model for the CRAM in a FinFET

technology, considering the both the cell level and array level while also specifying metal

layer usage. We develop models for the impact of parasitics in Section 3.5, evaluate the

results of our analysis in Section 5.6, and conclude in Section 5.7.

3.2 Overview for Derivation of Bias Voltages of Different

Gates Considering Resistances of Access Transistors

The core storage unit in an STT-CRAM is the STT-MTJ, which consists of a fixed

layer, with a fixed magnetization orientation, and a free layer whose magnetization can

be in one of two possible states – parallel (P) and anti-parallel (AP) [39]. The two states

have different electrical resistances: the parallel state resistance, RP < RAP , the anti-

parallel state resistance. We denote the P and AP states as logic 0 and 1, respectively.

The MTJ state can be altered by passing a critical current of magnitude Ic through it

in the appropriate direction.

47

WLi

LLi

WLi-1

LLi-1

MTJ00 MTJ01 MTJ02
MTJ03

MTJ10 MTJ11 MTJ12 MTJ13

B
S

L
0

B
S

L
1

B
S

L
2

B
S

L
3

L
B

L
0

L
B

L
1

L
B

L
2

L
B

L
3

M
B

L
0

M
B

L
1

M
B

L
2

M
B

L
3

WLi-2

LLi-2

MTJ20 MTJ21 MTJ22 MTJ23

Input Columns Output Column

Inputs

BSL0 BSL1 BSL3

Vb Vb Ground

I1 I2

LL I1 + I2I =

I

Output

R1 R2 Ro

R1 R2 Ro, , and
are state variables

RTRTRT

Figure 3.1: Structure of STT-CRAM array, highlighting the current paths during a logic
operation with two inputs and one output.

Fig. 3.1 shows the structure of an STT-CRAM array, which uses a 2T1MTJ bit-

cell [2, 17, 38]. The configuration of the array is very similar to that of a standard

1T1MTJ STT-MRAM, and as in the case of the STT-MRAM, each bit-cell is addressed

using a memory word line (WL). The additional transistor in the STT-CRAM is used

for logic operations, and is turned on by selecting the corresponding logic bit line (LBL).

The array can thus function in memory or logic mode. In memory mode, by applying

48

an appropriate voltage to the bit select lines (BSLs) of the input bit-cells and grounding

the BSL of the output, a state-dependent current, whose value depends on the resistance

of MTJs and transistor resistance (RT), flows through the output MTJ. If this current

exceeds Ic, the output state (the resistance of the output) is altered; otherwise, it

remains the same.

Different logic functions can be realized in the STT-CRAM by altering two pa-

rameters [2, 17, 38]: (a) the bias voltage (Vb) applied to the BSLs of the input MTJs,

and (b) the output preset state. In chapter 2.3, for each gate a range for Vb without

considering non-idealities is calculated.

Next, we show how chapter 2.3 derives an allowable range for Vb for a 2-input AND

gate, ignoring the parasitic effects of lines and transistors. An AND gate in each row can

be realized by the configuration shown in the upper side of Fig. 3.1, which highlights the

path of current through the MTJs. Current I can be calculated by dividing Vb by the

equivalent resistance ((R1 +RT)||(R2 +RT)) +Ro, where “||” represents the equivalent

resistance of parallel resistors. If RA = RP +RT , RB = RAP +RT , the current for each

input state is:

I00 = Vb/(0.5RA +RB) I11 = 2Vb/(3RB)

I01 = I10 = Vb/((RA||RB) +RB)

Since RP < RAP , RA < RB, implying that

I11 < I01 = I10 < I00. (3.1)

The output MTJ is preset to logic 1. For an AND gate, I01 = I10 > Ic, switching the

output state from 1 to 0. From (3.1),

Vb > (RA||RB +RB)Ic (3.2)

On the other hand, Vb cannot be too large; if it is, the output is switched regardless of

the states of inputs, i.e., we must ensure that I11 must not be larger than Ic, i.e., from

49

(3.1),

Vb < 3RBIc/2 (3.3)

Considering these two constraints, we can present a bias voltage range for the AND

gate. The voltage ranges and preset values for other logic functions can be obtained in

a similar manner and are summarized in Table 3.1. The precise range of Vb is technology-

dependent. To account for anticipated advances in spintronics [6], this work considers

MTJ specifications in today’s technology and an advanced near-future technology [2]. In

the rest of the chapter, we use today’s and advanced MTJ parameters listed in Table B.1

(see appendix B) for our calculations and evaluations.

Table 3.1: Bias voltage ranges and output preset values [2]

Gate (Preset) Vmin = Minimum Vb Vmax = Maximum Vb

BUFFER(1) (RA +RB)Ic 2RBIc
NOT(0) 2RAIc (RA +RB)Ic
AND(1) (RA||RB +RB)Ic 1.5RBIc
NAND(0) (RA||RB +RA)Ic (0.5RB +RA)Ic
OR(1) (0.5RA +RB)Ic (RA||RB) +RB)Ic
NOR(0) 1.5RAIc (RA||RB +RA)Ic
MAJ3(1) (0.5RA||RB +RB)Ic (RA||0.5RB +RB)Ic
MAJ3(0) (0.5RA||RB +RA)Ic (RA||0.5RB +RA)Ic
MAJ5(1) ((1/3)RA||0.5RB +RB)Ic (0.5RA||(1/3)RB +RB)Ic
MAJ5(0) ((1/3)RA||0.5RB +RA)Ic (0.5RP ||(1/3)RB +RA)Ic

3.3 Impact of Wire Parasitics

To show the impact of parasitics in a CRAM array, we consider a scenario where each

row of the CRAM performs a BUFFER operation between Column 1 and Column 10.

The CRAM array can be built using either today’s technology (today’s CRAM) or

using advanced technology (advanced CRAM). An electrical model of the current path

is shown in Fig. 3.2: the bias voltage is appied between BSL 1 and BSL 10, and in

50

each row, the current path goes through input and output MTJs, two access transistors

and a segment of LL. The model includes parasitic capacitances associated with each

line segment and as well as the transistor resistance. For the motivational example in

Section 3.3, built around Fig. 3.2, the transistor Nfin and Nfinger are specific to the

example and lead to the computed values of Wcell and Lcell. The remaining parameters

are used throughout the rest of the chapter. The parameters used in the following

motivational example, are listed for both today’s and advanced CRAMs in the Table 3.2.

Table 3.2: Parameters in the motivational example

Parameter Description Today’s CRAM Advanced CRAM

Nfin Number of fins 4 2
Nfinger Number of fingers 8 4
Wcell Cell width 189nm 135nm
Lcell Cell length 1323nm 675nm
RT Transistor resistance 0.178Ω 0.713Ω
dcolumn Input-output distance 9 9
Rx LL segment resistance 33.300Ω 25.100Ω
Ry BSL segment resistance 0.026Ω 0.032Ω
Cx LL segment capacitance 11.240fF 4.223fF
Cy BSL segment capacitance 816aF 341aF
Cgd Transistor g-d capacitance 320aF 320aF
Csg Transistor g-s capacitance 330aF 330aF
Vb Applied bias voltage 670mV 96AmV

In the absence of wire parasitics and process variations, the bias voltage range for the

implementation of a BUFFER gate can be obtained from Table 3.1. In [2], we reported

numerical values of bias voltages for different gates. For the BUFFER gate, under

today’s technology and advanced technology the voltage ranges are 552mV to 788mV

and 70mV to 121mV, respectively [2]. To maximize noise margin, we would choose the

mid-point of the interval, Vb = 670mV for today’s CRAM and Vb = 96mV for advanced

CRAM, to implement the BUFFER. This voltage is applied through drivers at the edge

of the CRAM array, where each driver has a resistance RD. The CRAM rows in Fig. 3.2

are numbered from 1 (the nearest row to the driver) to Nrow (the farthest row). When

parasitics are accounted for, it can be seen that the path to row 1 encounters the fewest

parasitics, and that to row Nrow the most, due to IR drop along the line. Thus, the

51

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝐷

𝑉 𝑏

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑁
𝑟
𝑜
𝑤

𝑀
𝑇
𝐽 1

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑁
𝑟
𝑜
𝑤
−
1

𝑀
𝑇
𝐽 1

𝑅
2𝑀
𝑇
𝐽 1

𝑅
1𝑀
𝑇
𝐽 1

𝑅
𝐷

𝐶
𝑦

𝐶
𝑦

𝐶𝑑𝑔 𝐶𝑠𝑔 𝐶𝑥
2

𝐶𝑥
2

𝐶𝑑𝑔 𝐶𝑠𝑔

𝐶𝑑𝑔 𝐶𝑠𝑔 𝐶𝑥
2

𝐶𝑥
2

𝐶𝑑𝑔 𝐶𝑠𝑔

𝐶𝑑𝑔 𝐶𝑠𝑔 𝐶𝑥
2

𝐶𝑥
2

𝐶𝑑𝑔 𝐶𝑠𝑔

𝐶𝑑𝑔 𝐶𝑠𝑔 𝐶𝑥
2

𝐶𝑥
2

𝐶𝑑𝑔 𝐶𝑠𝑔

𝐶
𝑦

𝐶
𝑦

𝐶
𝑦

𝐶
𝑦

𝐶
𝑦

𝐶
𝑦

Row 1

Row 2

Row 𝑁𝑟𝑜𝑤 − 1

Row 𝑁𝑟𝑜𝑤

B
S

L
 1

B
S

L
 1

0

Drivers

Figure 3.2: Circuit model of the current path for the implementation of BUFFER gates
in CRAMs of various sizes.

voltage Vb = 670mV in today’s CRAM (and Vb = 96mV in advanced CRAM) may not

be significantly changed as it reaches the first row, but the voltage at row Nrow may be

significantly degraded.

Given the fixed voltage range (552–788mV for today’s CRAM and 70–121mV for

advanced CRAM) within which the BUFFER operates correctly, the entire array will

operate correctly when the BSL voltage for Row 1 is at the maximum Vb value, and

the BSL voltage for Row i is at the minimum allowable Vb for the BUFFER. Thus, the

maximum allowable voltage drop is the difference between the maximum and minimum

Vb, i.e., 226mV in today’s CRAM and 51mV in advanced CRAM for BUFFER, and a

similarly calculated value from Table 3.1 for any other gate. In practice, the drop must

be even smaller to allow for noise margins.

We consider six CRAM array configurations, each with a different number of rows,

52

and use Table 3.3 to show the degradation of Vb as it reaches the farthest row for each

of these configurations. If each row performs an identical operation in the worst case,

it should carry an equal current, Irow, and the total voltage drop to the last row is

nIrowRy + (n− 1)IrowRy + · · · IrowRy = n(n+ 1)/2IrowRy

i.e., the IR drop increases quadratically with the number of rows. For the 64-row array

(in both CRAMs), Table 3.3 shows that this IR drop is not large, but for arrays with

256 rows and larger in today’s CRAM (and for 2048 rows in advanced CRAM), the

IR drop is a significant fraction of Vb. The quadratic trend is seen between the first

few rows, but the trend becomes subquadratic in the last few rows: this is due to the

high voltage drop, the current supplied to that row is significantly less than supplied

to the first row (e.g., for Nrow = 2024, the voltage level at the last row is about 20mV

for today’s CRAM (and 30mV for advanced CRAMA), far less than Vmin for a buffer).

This invalidates the assumption in the above derivation that an equal current of Irow is

supplied to each row.

Next, we compute the impact of RC parasitics on the CRAM delay. Defining the

transition time as the time to 90% of the final value, Table 3.3 shows that this time is

negligible in comparison to the ns-range MTJ switching time. Thus, wire parasitics do

not impact the delay, but only the IR drop.

3.4 Layout Modeling

The key parameters that affect the IR drop are the:

• number of rows, for reasons illustrated in Table 3.3.

• transistor resistance, RT , which is in series with the MTJ resistance; a higher

value reduces the noise margin (the value of RT can be reduced by increasing the

transistor width, which may increase the cell area).

53

Table 3.3: IR drop differential between the BSL voltage for the first row and the last
row, and the RC delay of the transition

Today’s CRAM Advanced CRAM
rows IR drop RC delay IR drop RC delay

64 5.8mV 87fs 0.2mV 52fs

128 22.4mV 346fs 0.6mV 210fs

256 82.3mV 1.3ps 2.3mV 798fs

512 250.0mV 4.1ps 8.5mV 3.1ps

1024 507.9mV 10.3ps 38.0mV 10.6ps

2048 650.3mV 18.4ps 75.6mV 26.1ps

• cell area, Acell = WcellLcell (where Wcell and Lcell are the cell width and length,

respectively), which impacts the BSL and LL lengths, thus affecting IR drop.

• cell aspect ratio, ARcell = Wcell
Lcell

, which determines the BSL and LL lengths (a

larger ARcell makes the BSLs longer, causing increasing parasitics on them, while

shortening LLs and reducing their parasitics).

• configuration of BSLs and LLs, whose resistance can be reduced using a multi-

metal layer structure, and whose length and width depend on other parameter

choices.

3.4.1 Layout of a CRAM Cell

Designing an STT-MRAM with a FinFET access transistor can reduce the cell area and

improve leakage power and reliability [76]. The design in this work is based on ASAP

7nm Predictive PDK [7]. Fig. 3.3(a) shows the layout of a FinFET using a single fin.

By applying the proper voltage to the gate (G), the current flows from drain (D) to the

source (S) through the fin. By increasing the number of fins, the ON current increases

and the drain-source resistance of the of FinFET decreases, at the cost of an increase in

FinFET area. Such transistors can be drawn in multiple ways: a 4× FinFET is shown

in Fig. 3.3(b) with 4 fins, or alternatively, in Fig. 3.3(c), using two fingers with 2 fins

54

each. For the same transistor ON resistance, one can change the aspect ratio of the

FinFET device by varying the numbers of fins and fingers.

Poly M1

D S

G G

S S

G

D

1

D S
G

(a) (b) (c)

Fin

Figure 3.3: The layout of FinFET devices with (a) 1 fin, 1 finger, (b) 4 fins, 1 finger,
and (c) 2 fins, 2 fingers.

WL

LL

B
S

L

L
B

L

M
B

L

T1

T2

(a)

MBL BSLWL LBL

Active Poly

M1
M2

MTJContact

LL

M3

Fin

T1 T2

(b)

Figure 3.4: CRAM cell: (a) schematic, and (b) layout.

Fig. 3.4 shows the schematic and layout of the CRAM cell using a 1-fin 1-finger

FinFET. The source of T1 is connected to MBL and M1 is allocated for MBL routing;

the poly in T1 is used for WL; the drain of T1 is connected to the MTJ, which is

physically placed between M2 and M3. For T2, the drain is connected to LL, the

poly is used locally for LBL, and the source is connected to the MTJ. In the layout,

a horizontal M2 stripe is used for LL routing, and a vertical M3 stripe is used for

BSL. Larger transistor sizes can be achieved by using multiple fins and fingers for each

transistor, changing the cell dimension in the vertical and horizontal directions.

55

MBLj-1 BSLj-1

WLi-1

MBLj
BSLj

WLi

LLi

LLi-1

LBLj-1
LBLj

Active Poly

M2

MTJContact

M3

Fin GCUT

M1

54𝑁𝑓𝑖𝑛𝑔𝑒𝑟 54𝑁𝑓𝑖𝑛𝑔𝑒𝑟25

81
20 20

25

27𝑁𝑓𝑖𝑛

81

27𝑁𝑓𝑖𝑛

10 10 54𝑁𝑓𝑖𝑛𝑔𝑒𝑟

Celli,j-1

Celli-1,j-1

Celli,j

Celli-1,j

73 73

M4

Figure 3.5: The layout of four adjacent CRAM cells in ASAP7.

3.4.2 Layout of the CRAM Array

The CRAM cell can be tessellated into an array. Fig. 3.5 shows the layout of four

adjacent CRAM cells (2×2), again using a 1-fin 1-finger FinFET, under ASAP7 design

rules [7,8]. For example, the minimum allowable active width is 27nm; the poly length

and pitch are 20nm and 54nm, respectively; the minimum active to active distance in

our design can be 54nm: under these constraints, the size of the smallest 1-fin, 1-finger

CRAM cell is 108nm×189nm. The addition of each fin increases the cell width (vertical

dimension) by 27nm, keeping the cell length (horizontal dimension) fixed, while adding

each finger increases the cell length by 108nm, leaving the width fixed. The width and

length for a cell with Nfin fins and Nfinger fingers are:

Wcell = 108 + 27(Nfin − 1) (3.4)

Lcell = 189 + 162(Nfinger − 1) (3.5)

3.4.3 Impact of Layout Choices on (Acell, ARcell, RT)

The choice of Wcell and Lcell can impact the cell area, Acell = Wcell ×Lcell, and the cell

aspect ratio, ARcell = Wcell/Lcell. From Eqs. (3.4), and (3.5), the following trends can

56

be inferred as the numbers of fins and fingers are changed:

• By increasing Nfin and Nfinger, both Wcell and Lcell increase, increasing Acell.

• For a fixed Nfin, the largest ARcell has the lowest Lcell, i.e., Nfinger = 1. If we

fix Nfinger, then by increasing Nfin, Wcell increases; thus, ARcell increases.

Next, we study the impact of the numbers of fins and fingers on the transistor

resistance, RT , for both advanced CRAM and Today’s CRAM. We apply the nominal

voltage of ASAP7 (0.7V) to the FinFET gate, and for this value of gate-to-source

voltage, Vgs, we use the transistor I-V curve to determine the resistance corresponding

to the drain-to-source current Ids = Ic (Table B.1) required to switch an MTJ. Today’s

MTJ requires larger Ic than the advanced MTJ: hence, for the same Nfin and Nfinger,

RT is larger for today’s CRAM. The Nfin = Nfinger = 1 case can deliver Ic for the

advanced MTJ, but not for today’s MTJ: larger sizes must be used for the latter. As

expected, as Nfin and Nfinger are increased, RT reduces.

M7

M5

M3

M7

M5

M3

M9

M2

M2

M4

M4
M5 M5

M9 M9

M7 M7

𝑡𝑀9

𝑊𝑀9
M9

𝑊𝑐𝑒𝑙𝑙

M7

M8

V89

V78

𝑡𝑀7

𝑊𝑀7

𝑊𝑐𝑒𝑙𝑙

Figure 3.6: Configuration of BSLs and LLs. The green and red lines correspond to
BSLs, and LLs, respectively.

3.4.4 Metal Layer Configurations and Specifications

As seen in Section 3.3, parasitics in the BSLs and LLs play a large part in limiting

the allowable size of the CRAM array. To overcome this, we use a multi-metal layer

57

architecture for BSLs and LLs, illustrated in Fig. 3.6 for the four adjacent CRAM cells

of Fig. 3.5. Here, metal layers M3, M5, M7, and M9 are allocated to the BSLs, and

M2 and M4 are allocated to LLs, with vias connecting each type of line across layers.

The interconnect specifications – the metal thickness (tM), resistivity (ρM), minimum

spacing (Smin), minimum width (Wmin), and via parameters – are taken from [7,8].

3.5 Thevenin Modeling for Each CRAM Row

From Section 3.3, Vb is degraded by IR drops as it reaches the last row. We use a

Thevenin model to model the Thevenin voltage, Vth and resistance, Rth, at the last row

of the CRAM (prior work [2] that neglects wire parasitics is a special case of our model

where Vth = Vb, Rth = 0). We denote:

αth = Vth/Vb. (3.6)

Clearly, αth ≤ 1 because Vth is a degraded version of Vb due to the voltage drop across

the wire parasitics. We propose recursive expressions (see appendix A) for Rth and αth

as functions of array parameters.

Fig. 3.7 illustrates the voltage ranges for implementations of the same gate in the

first row and the last row. For the first row, the effect of parasitics is negligible and

the allowable voltage range lies within the minimum and maximum values specified in

Table 3.1: we denote these as Vmin and Vmax, respectively. However, for an implementa-

tion of the same gate in the last row, we must consider Rth in series with the equivalent

resistance across the MTJ devices in the last row, and an applied voltage of Vth.

For example, for a BUFFER in the first row, the range of Vb is provided in Table 3.1.

The last row is driven by with Vth in series with Rth, and the corresponding range is:

(RA +RB +Rth)Ic ≤ Vth ≤ (2RB +Rth)Ic

i.e., (RA +RB +Rth)
Ic
αth
≤ Vb ≤ (2RB +Rth)

Ic
αth

(3.7)

58

where the latter expression follows from (3.6). Since αth < 1, this implies that both the

lower and upper bound for Vb are higher in the last row than in the first row.

For each gate type, expressions for V
′
min and V

′
max can be modified from the parasitic-

free cases of Table 3.1 as follows:

V
′
min =

Vmin +Rth × Ic
αth

; V
′
max =

Vmax +Rth × Ic
αth

(3.8)

𝑉𝑏

𝑉𝑏

𝑉𝑚𝑖𝑛

Last Row

𝑉𝑚𝑎𝑥

Unacceptable Acceptable Unacceptable

𝑉′𝑚𝑖𝑛
𝑉′𝑚𝑎𝑥

First Row

Figure 3.7: Required voltage ranges for implementations of the same gate in the first
row and the last row.

For the gate to function correctly in all rows, the allowable range of Vb is the inter-

section of the intervals [Vmin, Vmax] and [V
′
min, V

′
max]: this is marked as the acceptable

region for Vb in Fig. 3.7. Clearly, for correct functionality, these two intervals must have

nonzero intersection, i.e., V
′
min < Vmax

For each gate type, this leads to a boundary (“separating line”) between a functional

and nonfunctional implementation. From Eq. (3.8), the separating line constraint is

Rth < (Vmax × αth − Vmin)/Ic (3.9)

Fig. 3.8 shows the separating lines for today’s and advanced MTJ technology in a

Rth vs. αth plot, while Eq. (3.8) shows the equation for the separating line for each

gate. The separating line demarcates the unacceptable region, where the gate functions

incorrectly, from the acceptable region. It can be observed that the acceptable region

of advanced CRAM is larger that of today’s CRAM (note that the y-axis scale in the

plots is different), providing more choices for designing parameters in advanced CRAM.

59

Acceptable

Unacceptable

(a)

Acceptable

Unacceptable

(b)

Figure 3.8: Separating lines of implementation for the AND gate in today’s CRAM and
the advanced CRAM.

We define the noise margin, NM , as the range of allowable values for Vb. When all

wire parasitics are zero, NM = (Vmax − Vmin)/Vmid, where Vmid = (Vmax + Vmin)/2,

but in the presence of parasitics, this changes to

NM = (Vmax − V
′
min)/V

′
mid (3.10)

where V
′
mid = (Vmax + V

′
min)/2. Clearly, we desire NM > 0.

3.6 Results and Discussion

3.6.1 Impact of CRAM Parameters on NM

Effect of Nrow: To examine how NM changes when the number of rows is altered, we

fix the transistor configuration by choosing Nfin = 2, Nfinger = 4. This corresponds

to an RT of 570Ω for today’s CRAM and 597Ω for the advanced CRAM. We also

fix ARcell = 0.26 and set dcolumn = 10, i.e., we consider the worst-case NM when

dcolumn = 10.

We analyze eight different cases with different Nrow values (16, 32, 64, 128, 256,

512, 1024, and 2048) in today’s and advanced CRAM. Each case corresponds to a point

in the Rth-αth plane. For today’s CRAM, the points corresponding to Nrow ≤ 128 are

60

located in the acceptable area, i.e., the maximum allowable Nrow under this choice of

{RT , ARcell, dcolumn} is 128. For the advanced CRAM, the acceptable points correspond

to Nrow ≤ 512. The noise margins are graphically depicted in Fig. 3.9(a).

Effect of dcolumn: By increasing the relative distance between input columns and the

output column (dcolum), the parasitics associated with the LL in each row (Rx) increase.

Fig. 3.9(b) shows NM for different cases with different dcolumn values in today’s and

advanced CRAM. For the advanced CRAM, the value of dcolumn does not affect NM

significantly for the shown values because the LL parasitic resistance, Rx � RMTJ , the

MTJ resistance to which it is connected in series. For today’s CRAM, only dcolumn ≤ 64

provide a positive NM , because Rx is comparable to RT for today’s MTJs. High values

of dcolumn create a large drop across the parasitics, causing Vb to be infeasible.

Similar trends are seen for the BUFFER, where the range of a copy operation is lim-

ited using today’s CRAM. Thus, copy operations over large distances must be performed

in multiple steps, adding to the energy and computation time.

Effect of RT : To analyze the effect RT , we must consider that Acell changes accordingly

if we vary RT . The choice of RT can affect NM through two mechanisms: (a) directly,

since a reduction in RT increases the noise margin for an array of constant size, and

(b) indirectly, since a reduction in RT increases the cell size, and hence the array size,

thereby increasing line parasitics Rx and Ry.

In Table 3.4, we present eight cases where RT gradually decreases from case 1 to

case 8. For both advanced and today’s CRAM, case 1 has the smallest RT (the largest

Acell), and case 8 has the largest RT (the smallest Acell). We choose Wcell and Lcell so

that the ARcell values are roughly constant (it is not possible to ensure equality since

RT is changed over a discrete space by altering Nfin and Nfinger). We set Nrow to 128

and 512, respectively, for today’s and advanced technologies, and set dcolumn = 10 for

both cases.

61

(a) (b)

(c) (d)

Figure 3.9: NM for an AND gate in today’s and advanced CRAM, varying (a) Nrow,
(b) dcolumn, (c) RT , and (d) ARcell.

Fig. 3.9(c) shows the NM for each of these cases. For today’s technology, large

RT values (Cases 1, 2, and 3) cause negative NM , as in these cases, RT values are

comparable to today’s MTJ resistances, and reducing RT further improves NM . The

direct mechanism is dominant here, and reducing RT improves NM monotonically. In

contrast, for advanced MTJs, there is a nonmonotone relationship as RT is reduced.

At first, NM improves due to the first mechanism, and then it worsens due to the

second mechanism. Part of the nonmonotonicity (e.g., between Cases 5 and 6) can be

attributed to the fact that ARcell is not strictly constant in Table 3.4 (in fact, for Case

62

Table 3.4: Analyzing the effect of RT

Today’s CRAM Advanced CRAM
RT Acell ARcell RT Acell ARcell

1 5.99KΩ 0.020µm2 0.4 5.73KΩ 0.020µm2 0.57

2 1.72KΩ 0.038µm2 0.31 2.87KΩ 0.029µm2 0.40

3 1.04KΩ 0.047µm2 0.38 1.90KΩ 0.038µm2 0.31

4 0.76KΩ 0.058µm2 0.31 0.95KΩ 0.047µm2 0.38

5 0.49KΩ 0.067µm2 0.37 0.63KΩ 0.057µm2 0.41

6 0.36KΩ 0.082µm2 0.43 0.48KΩ 0.067µm2 0.38

7 0.29KΩ 0.096µm2 0.36 0.35KΩ 0.081µm2 0.43

8 0.23KΩ 0.110µm2 0.42 0.23KΩ 0.110µm2 0.42

Table 3.5: Analyzing the effect of ARcell

Today’s CRAM Advanced CRAM
ARcell Acell RT ARcell Acell RT

1 0.80 0.058µm2 0.59KΩ 1.14 0.041µm2 1.14KΩ

2 0.54 0.066µm2 0.49KΩ 0.60 0.044µm2 0.95KΩ

3 0.38 0.069µm2 0.49KΩ 0.38 0.047µm2 0.95KΩ

4 0.26 0.069µm2 0.59KΩ 0.21 0.055µm2 1.14KΩ

1 for the advanced CRAM, the FinFET has Nfin = Nfinger = 1, and the corresponding

AR = 0.57 is the only option). Over the eight choices, one can choose Case 3 as the

optimal point that provides the best NM .

Effect of ARcell: We now vary ARcell by changing Nfin and Nfinger, while keeping

RT and Acell relatively fixed. As before, we set Nrow to 128 and 512, respectively, for

today’s CRAM and the advanced CRAM; dcolumn = 10, and RT and Acell are kept

roughly constant, to the extent possible in the discrete space of Nfin and Nfinger.

Fig. 3.9(d) shows the results for the four cases Table 3.5. Cases with smaller ARcell,

which have shorter BSLs with lower parasitic resistances (Ry), have a larger NM . Thus,

an appropriate choice of ARcell can improve the performance of the CRAM without

area overhead. For example, in advanced CRAM, the NM for case 1, with the smallest

ARcell, is negative, but NM improves as ARcell is increased.

63

3.6.2 An Optimal Design for Each Gate

Table 3.6 evaluates the implementations of three types of arrays using both today’s and

advanced CRAMs with various degrees of versatility: Array 1 implements a basic set of

combinational logic gates (INV, BUFFER, AND/NAND, OR/NOR); Array 2 adds the

MAJ3 and MAJ3 gates to this set; Array 3 further adds MAJ5 and MAJ5. It is easily

seen that for more versatile arrays, the array size is more constrained. The improvement

from today’s CRAM to the advanced CRAM is also visible: e.g., today’s CRAM cannot

implement Array 3, regardless of array size [2].

To obtain the largest allowable size of Nrow we change the locations of the BSL

drivers. As compared to the previous analysis where a driver was placed at one end of

the array, we effectively double Nrow by using a 2× driver in the middle of the array, or

by using two 1× drivers at either end of the array (Fig. 3.10). The area overheads are

modest.

Table 3.6: Optimal design options for arrays with different functionalities

Nfin,
Nfinger

RT

(KΩ)
Acell (µm2),
ARcell

Nrow,
dcolumn

Subarray
Size

1
Advanced 4, 4 0.357 0.127, 0.280 512, 512 32KB
Today’s 5, 7 0.113 0.251, 0.186 128, 64 1024KB

2
Advanced 2, 6 0.476 0.135, 0.134 256, 256 4KB
Today’s 4, 9 0.101 0.281, 0.127 128, 16 256KB

3
Advanced 3, 9 0.171 0.267, 0.098 256, 64 2KB
Today’s - - - - -

Note that the constraint on Nrow limits the array size but not the CRAM size: the

overall CRAM consists of a tiled set of arrays, each with Nrow rows, and all controlled

by the same set of control signals. The choice of dcolumn, however, does not constrain

the tile size, but merely the computation distance. If the operands of a computation

are at a distance > dcolumn from each other, then they must be copied to new cells that

are within the dcolumn limit. This is often not a problem: all of the computations shown

in [2] lie within the dcolumn constraint listed in Table 3.6. For this reason, practically,

64

Nrow is much more constraining than dcolumn.

CRAM Subarray

B
SL

1

B
SL

2

La
st

 B
SL

(a)

CRAM Subarray

B
SL

1

B
SL

2

La
st

 B
SL

(b)

Figure 3.10: Increasing Nrow by inserting (a) 2× drivers in the middle of the array, and
(b) two 1× drivers at either end.

3.7 Conclusion

We have presented a methodology based on actual layout considerations for analyzing

the parasitic effects in STT-CRAM. We have demonstrated that interconnect parasitics

have a significant effect on CRAM performance and have developed a comprehensive

model for analyzing this impact. Using this methodology, we have developed guidelines

for the array size, Nrow, and the maximum distance between columns for an operation.

We show that for both today’s and advanced technologies, CRAM cell layouts with

smaller aspect ratios are desirable, as this helps control critical BSL parasitics. Reducing

access transistor resistance is important for today’s technology but is not a significant

factor for advanced technologies. For the SHE-CRAM [19], a similar analysis shows

that interconnect parasitics are not significant as the current values are much smaller.

Chapter 4

Using Spin-Hall MTJs to Build

an Energy-Efficient In-memory

Computation Platform

4.1 Introduction

To further improve previous CRAM efficiency, this chapter uses a novel 3-terminal

MTJ, whose write mechanism is based on the spin-Hall effect (SHE). The SHE-MTJ

delivers improved speed and energy-efficiency over the traditional 2-terminal STT-MTJ

[13], and recent research on novel spin-Hall materials, e.g., sputtered BiSex [3], which

experimentally demonstrates very high spin-Hall angles, will lead to further gains over

today’s SHE-MTJs. Moreover, the separation of write and read paths in the 3-terminal

SHE-MTJ makes this device more reliable than the STT-MTJ [4].

However, due to differences between the SHE-MTJ and the STT-MTJ (e.g., in

the number of terminals and in the operation mechanism), building a SHE-CRAM is

more complex than simply replacing STT-MTJs in the STT-CRAM with SHE-MTJs.

65

66

In this chapter, we show how the STT-CRAM architecture must be altered for SHE-

MTJs, and that these changes require alterations to operation scheduling schemes. We

propose a double-write-line array structure for the SHE-CRAM, and present new data

placement and scheduling methods for the implementation of computational blocks in

the SHE-CRAM. By evaluating computations on representative applications, we show

that, in comparison with the STT-based CRAM, the SHE-CRAM demonstrates an

overall improvement in latency and energy.

4.2 SHE CRAM Structure

(a) (b)

T2

T3

L
W

t

D

T1

78 nm

525 nm

Spin Hall
channel

Figure 4.1: (a) Schematic of a 3-terminal SHE-MTJ. (b) SEM image taken at 60°from
the perpendicular direction showing an MTJ pillar (with resist) fabricated on the W
spin Hall channel.

The structure of 3-terminal SHE-MTJ is shown in Fig. 4.1(a). It is composed of a

conventional perpendicular MTJ (pMTJ) stack seated on a spin-Hall (SH) channel,

where the free layer of MTJ is directly contacted with the channel. Depending on the

free layer orientation, the MTJ can have one of two resistance states: parallel (RP ,

logic 0), and anti-parallel (RAP , logic 1), where RAP > RP . The free layer orientation

is controlled by the direction of the current through the SH channel (between T2 and

T3 in Fig. 1(a)). Due to the SHE, when the current density exceeds the threshold

current density JSHE , the magnetization of the free layer of the MTJ is set according

to the current direction [77]. The read operation measures the current between T2 and

67

T3, which depends on the MTJ state. Fig. 4.1(b) shows a fabricated SHE-MTJ with a

diameter of 78 nm over a 525 nm wide SH channel; miniaturization to 10nm geometries

is possible.

Fig. 4.2 shows the architecture of the SHE-CRAM array, which can operate in mem-

ory or logic mode. At the bitcell level, this structure is quite different from the STT-

CRAM. The 2T1MTJ bitcell accommodates the 3-terminal SHE-MTJ: each cell has one

SHE-MTJ with two terminals gated by access transistors. Each row has two select lines

(SLs), ESL and OSL − which select the even and odd columns, respectively − and a

logic line (LL); each column has a read and write word line (WLR, WLW). At the array

level, the arrangement of wires must accommodate the connections required by the 3-

terminal SHE-MTJ. Conventionally, the word line in a memory is drawn as a horizontal

line, but we show a rotated array where the word lines run vertically. We make this

choice for convenience so that we can compactly show the sequence of computations in

later figures.

LL 0

ESL 0
OSL 0

LL 1

ESL 1

W
LR

 0

OSL 1

W
LW

 0

W
LR

 1

W
LR

 2

W
LW

 2

W
LW

 1

MTJ00 MTJ01 MTJ02

MTJ10 MTJ11 MTJ12

LL: Logic Line

ESL:

OSL:

WLR:

WLW:

Word Line
for Read

Word Line
for Write

Odd-column
Select Line

Even-column
Select Line

Column 0 Column 1 Column 2

Row 0

Row 1

Figure 4.2: Overall structure of the SHE-CRAM.

In memory write mode (Fig. 4.3(a)), the transistor connected to WLR is off, WLW

is high, turning on the write access transistor, and the SL is either positive or negative

(i.e., one of two current directions is applied) depending on whether a 0 or 1 is to be

68

written. This current through the SH channel writes to the MTJ. In memory read

mode (Fig. 4.3(b)), WLR is set high to turn the read transistor on. A current is passed

through the MTJ between LL and the SL to sense its resistance, i.e., the memory state,

by connecting the SL to a sense amplifier.

In logic mode (Fig. 4.3(c)), a logic operation can be performed between cells in a

CRAM row. For input cells, transistors connected to their WLR lines are turned on,

and for the output cell, the WLW access transistor is turned on to allow current to flow

through the spin-Hall channel. The LL is left floating, the SL for the inputs is set to a

specified voltage, and the SL for the output is grounded. This implies that a current,

whose value depends on the states of the inputs, passes through the spin-Hall channel

of the output MTJ.

LL 1

ESL 1

W
LR

 0OSL 1

W
LW

 0

W
LR

 1

W
LW

 1

MTJ10 MTJ11 MTJ10 MTJ11

MTJ10 MTJ11 MTJ12 MTJ13

I2I1 I 1+
I 2

(a) (b)

(c)

In
pu

t 1

In
pu

t 2

O
ut

pu
t

LL 1

ESL 1

W
LR

 0OSL 1
W

LW
 0

W
LR

 1

W
LW

 1
LL 1

ESL 1

W
LR

 0OSL 1

W
LW

 0

W
LR

 1

W
LW

 1

W
LR

 2

W
LW

 2

W
LR

 3

W
LW

 3

Figure 4.3: Current flow during: (a) memory write operation, (b) memory read opera-
tion, and (c) logic mode.

Fig. 4.4(a) isolates the part of the array involved in a logic operation with two inputs,

and shows its equivalent circuit in Fig. 4.4(b), where the resistor values depend on the

state variables (MTJ resistances) and transistor resistances. Before the computation

starts, the output MTJ is initialized to a preset value. By applying bias voltage Vb

69

across the input and output cell SLs, current I1 +I2 flows through the spin-Hall channel

of the output, where the magnitude of each current depends on the input MTJ state (i.e.,

resistance). If I1+I2 > ISHE , where ISHE is the SHE threshold current, then depending

on the current direction, a value is written to the output MTJ state; otherwise, the preset

output state remains intact. As explained in Sec. 4.3B, by appropriately choosing the

voltages and output preset, different logic functions can be implemented.

Input1 Input 2 Output

!" !#

! = !" + !#

&'()
2

&'()
2

&+,-! &+,-"
&'()

./

!" !#

! = !" + !#

././
Is !" + !# greater than !'() ?

(a) (b)
&,&,

&,

Figure 4.4: (a) Performing a logic operation in a row of SHE-CRAM, and (b) the
equivalent circuit model.

Table 4.1: Status of lines and transistors in the SHE-CRAM during memory and logic
modes.

Operation BLW BLR
Transistor
Connected

to BLW

Transistor
Connected

to BLR
WLA WLB LL

Memory
Mode

Write High Low ON OFF WLA active (cell in even column)
WLB active (cell in odd column) Ground

Read Low High OFF ON WLA active (cell in even column)
WLB active (cell in odd column) Ground

Logic
Mode

Inputs
Cells Low High OFF ON

Both WLA and WLB are active,
|VWLA - VWLB | = Vb

Float
Outputs

Cells High Low ON OFF

Note that in the logic mode, all input operands must be in even-numbered columns,

and the output must be in an odd-numbered column – or vice versa. This is unlike

the STT-CRAM, where no such limitation is necessary, and is a consequence of the

3-terminal structure of the SHE-MTJ.

70

Table 4.2: SHE-MTJ specifications [3–5].

Parameters Value

MTJ type CoFeB/MgO p-MTJ

Spin Hall channel material Sputtered BiSex

MTJ diameter (D) 10 nm

Spin Hall channel length (L) 30 nm

Spin Hall channel width (W) 15 nm

Spin Hall channel thickness (t) 4 nm

Spin Hall channel sheet resistance (𝑅𝑆ℎ𝑒𝑒𝑡) 32 kΩ

Spin Hall channel resistance (𝑅𝑆𝐻𝐸) 64 kΩ

MTJ RA product 20 Ω∙μm2

MTJ TMR ratio 100%

MTJ Parallel resistance (𝑅𝑃) 253.97 kΩ

MTJ Anti-parallel resistance (𝑅𝐴𝑃) 507.94 kΩ

STT critical current density (𝐽𝑆𝑇𝑇) 5×106 A/cm2

SHE threshold current density (𝐽𝑆𝐻𝐸) 5×106 A/cm2

STT threshold current (𝐼𝑆𝑇𝑇) 3.9 µA

SHE threshold current (𝐼𝑆𝐻𝐸) 3 µA

SHE pulse width (𝑡𝑆𝐻𝐸) 1 ns

Transistor Resistance (𝑅𝑇) 1 kΩ

The three modes – memory read/write and logic mode – are summarized in Ta-

ble 4.1.

4.3 SHE CRAM Detail

Table 4.2 defines the parameters of the SHE-MTJ and provides typical values, to be

used in the rest of this chapter. The dimensions of the SHE-MTJ in Table 4.2 are

appropriately chosen to (a) provide an optimal margin window (see next sections), (b)

provide a low ISHE , and (c) avoid unwanted STT switching during logic operations.

71

4.3.1 Device-level design

The specifications of the SHE-MTJ in the SHE-CRAM are shown in Table 4.2. For our

evaluation, the novel sputtered BiSex is used as the SH channel, due to its high spin-

Hall efficiency [3]. Fig. 4.5 demonstrates the SHE switching of such a structure which

requires a very low switching current density. The device is a micron-size Hall bar, which

is composed of BiSex (5nm) / Ta (0.5 nm) as the SH channel and CoFeB (0.6nm) /Gd

(1.2nm) /CoFeB(1.1nm) as the magnetic layer. The easy-axis of the magnetic layer is

along the out-of-plane direction. Two magnetization states (up or down, corresponding

to the positive or negative Hall resistance) are revealed from the loop in Fig. 4.5(a). The

magnetization can be switched between the two states by injecting a current through

the SH channel, as shown in Fig. 4.5(b). The threshold switching current density JSHE

is determined to be 4.4 × 105 A/cm2, which is two orders lower than normal spin-Hall

structures with metal like Ta, W, or Pt as the SH channel. In Table 4.2, JSHE is set to 5

× 106 A/cm2, based on [5]. Note that although an external magnetic field is applied to

assist spin-Hall switching in Fig. 4.5(b), the external field is not necessary under field-

free strategies [78,79]. Note that the choice for L, W , and t is based on an optimization

described in Sec. 4.3C.

4.3.2 Gate-level design

In logic mode, the configuration of the SHE-CRAM into various gate types is controlled

by two factors: (a) output preset value, (b) bias voltage, Vb (Fig. 4.4(a)). By modeling

the current path of each gate as in Fig. 4.4(b), we can determine the conditions for

implementing each gate type. The voltage Vb applied across the MTJ interconnections in

logic mode falls across ESL and OSL. This voltage, applied across (RSHE/2+RMTJ1)+

RT)||(RSHE/2+RMTJ2 +RT) in series with (RSHE+RT), is shown in Fig. 4.4(b). Here,

|| represents the equivalent resistance of resistors in parallel. For the configuration in

72

(a) (b)

-10 -5 0 5 10

-8

-4

0

4

8

-80 -40 0 40 80

-8

-4

0

4

8

 JSHE = 4.4 x105 A/cm2

 Hx = -200 Oe

H
al

l R
es

is
ta

nc
e

(W
)

Current (mA)

 1 mA

H
al

l R
es

is
ta

nc
e

(W
)

Out-of-plane Field (Oe)

Figure 4.5: Demonstration of SHE switching with ultra-low JSHE in a Hall bar device [3].
The SH layer is composed of BiSex (5) /Ta (0.5), and the perpendicular magnetic layer
is composed of CoFeB (0.6) /Gd (1.2) /CoFeB (1.1) (all thicknesses in nm). (a) The
out-of-plane hysteresis loop showing the two magnetization states of the device. (b)
SHE switching loop of the device with a very low switching current.

Fig. 4.4(b), the current I through the logic line is

I = Vb/([(RSHE/2 +RMTJ1 +RT)||(RSHE/2 +RMTJ2 +RT)] +R3) (4.1)

If Vb is too low, I < ISHE , and the current is insufficient to switch the output; if it

is too high, I > ISHE , and the output is switched regardless of the input state. The

resistance of the MTJ may take on one of two values, RP or RAP . For conciseness, we

define R1, R2, and R3 as:

R1 = RSHE/2 +RP +RT (4.2)

R2 = RSHE/2 +RAP +RT (4.3)

R3 = RSHE +RT (4.4)

Consider the case where the gate in Fig. 4(a) is used to implement a 2-input AND

gate. For each of the input states (00 through 11), we can calculate the currents flowing

through the spin-Hall channel of the output MTJ as:

I00 = Vb/(R1/2 +R3) (4.5)

73

I01 = I10 = Vb/((R1||R2) +R0) (4.6)

I11 = Vb/(R2/2 +R3) (4.7)

For the AND gate the preset output value is 1. For correct AND operation, we

must choose Vb appropriately so that I00 > ISHE and I01 = I10 > ISHE (i.e., both

cases, the preset output is switched to 0), and I11 < ISHE (i.e., the output stays at

1). Since RP < RAP , R1 < R2. Therefore, from eq. (4.5), eq.(4.6) (as we discussed in

section 2.3.1), and eq.(4.7),

I11 < I01 = I10 < I00. (4.8)

Thus, if we chose Vb to be large enough so that I01 = I10 > ISHE , then I00 > ISHE

must always be true. From eq. 4.6, the following constraint must be obeyed.

Vb > ((R1||R2) +R3)ISHE (4.9)

However, to ensure the correctness of the 11 input case, Vb cannot be too large.

Specifically, from eq. 4.7, it is required that I11 < ISHE , which leads to the second

constraint,

Vb < (R2/2 +R3)ISHE . (4.10)

These two constraints limit the range of Vb for the AND gate. A NAND gate is

identical to the AND, except that a preset value of 0 is used; the range of Vb is identical

to the AND. Similar constraints can be derived for other logic gates, and the bias voltage

ranges to implement other gates can be calculated similarly. Table 4.3 summarizes the

bias voltage ranges and the preset value for various gate types using the parameters of

Table 4.2 for the SHE.

For each gate, we can define Noise Margin (NM) of Vb, which is defined as [2]:

NM = (Vmax − Vmin)/Vmid;Vmid = (Vmax + Vmin)/2 (4.11)

74

Table 4.3: Bias voltage ranges, and output preset value.

Gate Preset Closed form formula for bias voltage range Numerical
value (Volt)

NOT 0 ("! + "")%#$% < '&< ("' + "")%#$% 1.065 – 1.827
Buffer 1

NAND 0 "!"'
"! + "'

+ "" %#$% < '& <
"'
2 + "" %#$% 0.768 – 1.017

AND 1

NOR 0 "!
2 + "" %#$% < '& <

"!"'
"! + "'

+ "" %#$% 0.636 – 0.768
OR 1

MAJ3 0 "!"'
"! + 2"'

+ "" %#$% < '& <
"!"'

2"! + "'
+ "" %#$% 0.546 – 0.624

MAJ3 1

MAJ5 0 "!"'
2"! + 3"'

+ "" %#$% < '& <
"!"'

3"! + 2"'
+ "" %#$% 0.418 – 0.446

MAJ5 1

where Vmax and Vmin are, respectively, the upper and lower limits on Vb, and Vmid is

the midpoint of the bias voltage range. To maximize noise immunity, we chose Vmid as

the actual applied voltage. The energy, E, dissipated by each gate, is

E = VmidISHEtSHE . (4.12)

Using the values listed in Table 4.3, the NM and energy for various SHE-CRAM

based logic implementations are computed. We compare the noise margin and energy

of logic operations in the STT-CRAM for todayâs STT-MTJs as reported in [2], and

the SHE-CRAM. From Fig. 4.6, the SHE-CRAM always results in higher noise mar-

gins compared to STT-CRAM. This can be attributed to the fact that the resistances

(RMTJ) associated with the logic inputs are significantly higher than the resistance

RSHE associated with the output, which provides a larger allowable interval for Vb.

In contrast, the inputs and outputs for the STT-CRAM are both correspond to MTJ

resistances. A comparison of energy-efficiency shows that in all cases, the SHE-CRAM

has lower switching current and faster switching time than the STT-CRAM, resulting

in better E (Fig. 4.7).

75

No
ise

 M
ar

gi
n

(%
)

0

15

30

45

60

BUFFER NOT AND NAND OR NOR MAJ3 /MAJ3 MAJ5 /MAJ5

SHE-CRAM
STT-CRAM

Table 1

SHE-CRAM STT-CRAM

BUFFER 53 31

NOT 53 48

AND 28 15

NAND 28 25

OR 19 6

NOR 19 14

MAJ3 13 5

/MAJ3 13 7

MAJ5 7 1.5

/MAJ5 7 3

Minimum Noise Margin

�1

Figure 4.6: Comparison of noise margin between gates implemented using STT-CRAM
and SHE-CRAM.

Figure 4.7: Comparison of energy between gates implemented using STT-CRAM and
SHE-CRAM.

4.3.3 Optimization of spin-Hall channel dimensions

To further improve device performance, we can optimize the dimensions of spin-Hall

channel in the SHE-MTJ device with respect to NM and E. The spin-Hall channel

resistance is

RSHE = RSheet(L/W) (4.13)

where L ≥W . For a NAND (or AND) gate, from eq. 5.7,

NMNAND = (R2(1−R1/(R1 +R2)))/(R2/2 + (R1R2)/(R1 +R2) + 2R3). (4.14)

Similarly, energy for the implementation of a NAND (or AND) gate is rewritten by:

ENAND = (WtJSHE)2(R2/4 + (R1R2)/(2(R1 +R2)) +R3)tSHE (4.15)

In Fig. 4.8, the corresponding noise margin and energy of a NAND (or AND) gate is

76

shown. In Fig. 4.8(a), by reducing the length to width ratio (L/W) of the SH channel,

RSHE decreases. In each case, the optimal Vb that maximizes the noise margin NM

is found as the midpoint of the allowable interval of Vb. While NM depends on RP

and RAP as well as RSHE , it can be shown (by examining the sensitivity of NM to

RSHE) that NM is most sensitive to the reduction in RSHE (details omitted due to

space limitations). This causes NM to decrease with increasing (L/W). Increasing

the channel thickness t reduces RSheet, thus decreasing RSHE : as before, this increases

NM .

(a) (b)

Figure 4.8: Impact of SHM geometry on NM and energy.

In Fig. 4.8(b), by increasing L/W (or t), the energy increases. To maximize noise

margin and minimize energy, L/W should be as small as possible (due to fabrication

considerations the ratio is considered 2 rather than 1). For the choice of t, a balance

between NM and energy must be found. Although a larger thickness increases NM ,

it increases the energy. As a compromise, based on Fig. 4.8, we choose a near middle

point of t = 4 nm (providing 32% energy improvement with 3% degradation in NM

compared to the middle point of 5 nm).

4.3.4 Functional-level design

Full adders: The original STT-CRAM [17] built a NAND based implementation of full

adder (FA) using 9 steps. Using majority logic one can implement a FA, as shown in

77

Fig. 4.9, and this requires only 3 steps [38]. STT-CRAM technology has very limited NM

for majority gates; in contrast, the NM in SHE-CRAM is sufficiently high that majority

implementations are realistic. However, SHE-CRAM array in Fig. 4.2 is limited by the

fact that all input operands must be in even columns, and the output must be in an

odd column, or vice versa. This affects multi-step operations where some intermediate

results, which act as operands for the next step, may be in even columns, while others

may be in odd columns. This requires additional steps to move some operands.

M
A
J3

M
A
J5

A
B
C

Cout

Sum

Figure 4.9: FA based on majority logic, where Cout = MAJ3(A,B,C) and Sum =
MAJ5(A,B,C,Cout, Cout).

Fig. 4.10 shows that the implementation of a majority logic based FA in a row of

the SHE-CRAM requires 4 steps. In step 1, Cout ← MAJ3(A,B,C) is calculated: the

inputs are in even columns (0, 2, 4) and the output is in odd column 1. In steps 2 and

3, Cout is copied, D ← BUFFER(Cout), to two different even-numbered columns (6

and 8). Finally, in step 4, with all operands in even-numbered columns, we compute

Sum←MAJ5(A,B,C,Cout, Cout).

Note that due to the SHE-CRAM structure, Cout computed in step 1 cannot be used

directly for computation of Sum and must be copied twice to proper locations at Step 2

and Step 3, meaning that this operation requires 4 steps, unlike the STT-CRAM, which

would require 3 steps; however, as stated earlier, SHE-CRAM provides better NM than

STT-CRAM.

Multibit adders: Using the majority logic based FA, we show the implementation

of a 4-bit ripple carry adder (Fig. 4.11), with the computations scheduled as shown in

78

Step 1 (Computation of Carry Out):
! " #

$%

&'() = +,-3(,, 1, &)

LL 0

WLA 0
WLB 0

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

Step 2 (First Copy Operation): 34 ← &'()

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

Step 3 (Second Copy Operation): 36 ← &'()

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

$7

Step 4 (Computation of Sum):
! " #

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

!"#

LL 0

WLA 0
WLB 0

LL 0

WLA 0
WLB 0

LL 0

WLA 0
WLB 0

#89:

&'()

&'()

#89: #89:
;<= = +,-5(,, 1, &, &'(), &'())

Step 1 (Computation of Carry Out): $%&' =)*+3(*, /, $)
* / $$%&'

Step 2 (First Copy Operation): 12 ← $%&' 12$%&'

Step 3 (Second Copy Operation): 14 ← $%&' 14$%&'

* / $!"# $%&' $%&'
Step 4 (Computation of Sum): !"# =)*+5(*, /, $, $%&', $%&')

LL 0

ESL 0
OSL 0

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

LL 0

ESL 0
OSL 0

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

LL 0

ESL 0
OSL 0

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

LL 0

ESL 0
OSL 0

MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ05 MTJ06 MTJ07 MTJ08

Figure 4.10: Four required steps for the implementation of the FA based on majority
logic in a row.

!"#"!$#$!%#%!&#&

'"

($() ("(&

'%'*+, FAFAFAFA
'$'$

Figure 4.11: 4-bit ripple carry adder using 4 FAs.

Row 0 !" #" #$ %&
Row 1 !" !' #' #(%"
Row 2 !' !) #) #* %'
Row 3 !) !+,- #. #/ %)

Step 1 2 3 4 5 6 7 8 9 10

Figure 4.12: Scheduling table for a 4-bit ripple carry adder.

79

Fig. 4.12. At step 1, C1 is generated in row 0. At step 2, C1 is transferred to row 1.

LL 0

ESL 0
OSL 0

LL 1

ESL 1
W

LR
 0

 OSL 1

W
LW

 0

W
LR

 1

W
LR

 2

W
LW

 2

W
LW

 1

MTJ00 MTJ01 MTJ02

MTJ10 MTJ11 MTJ12

In
te

r-r
ow

Sw
itc

he
s

Figure 4.13: Inter-row transfer between cells in two adjacent rows (shown by the blue
arrow) using switches inserted between rows. The current path is highlighted in orange.

Similarly, the generated Carrys from the second FA (implemented in row 1) and

third FA (implemented in row 2) are transferred to rows 2 and 3 at steps 4 and 6,

respectively. Once all Carrys are generated in their corresponding rows, we can copy

Carrys twice to proper locations (D1 to D8), and then compute Sums (recall that input

operands are required to be in all-even or all-odd columns). We transfer the Carry from

one row to its adjacent row using inter-row switches (Fig. 4.13).

!" #" $"
MTJ00 MTJ01 MTJ02 MTJ03 MTJ04 MTJ06 MTJ07 MTJ08

MTJ10 MTJ11 MTJ12 MTJ13 MTJ14 MTJ16 MTJ17 MTJ18

!% #%
MTJ20 MTJ21 MTJ22 MTJ23 MTJ24 MTJ26 MTJ27 MTJ28

MTJ30 MTJ31 MTJ32 MTJ33 MTJ34 MTJ36 MTJ37 MTJ38

!& #&

!' #'

$&

$%

$'

$()*

$&

$'

$%

+&

+%

+'

+,

+-

+.

+/

+0

1"

1&

1%

1'

MTJ05

MTJ15

MTJ25

MTJ35

Column
0

Column
1

Column
2

Column
3

Column
4

Column
5

Column
6

Column
7

Column
8

Row 0

Row 1

Row 3

Row 2

Figure 4.14: Data layout of the SHE-CRAM, implementing the 4-bit ripple carry adder,
at the end of step 10.

80

Table 4.4: Counts of gates and their corresponding energy values for the calculation
of the energy required for the implementation of the 4-bit ripple carry adder in the
SHE-CRAM.

BUFFER /MAJ3 /MAJ5 PRESET
Total

Energy (fJ)
Number of gates 11 4 4 19

Energy/gate (fJ) 4.34 1.76 1.30 3.74

Total Energy (fJ) 47.74 7.04 5.12 71.06 130.96

Fig. 4.14 shows the data layout of the 4-bit ripple carry adder at the end of step 10.

The location of each cell can be specified by (Row number, Column number). Initially,

4-bit numbers A3A2A1A0 and B3B2B1B0 are stored in (0 to 3, 0) and (0 to 3, 2),

respectively, and Carry-in C0 is stored in (0, 4). At step 1, C1 is calculated in (0, 1),

and at step 2 it is transferred to (1, 4).

Similarly, C2 and C3 are generated and transferred between step 3 and 6. At step

7, Cout is calculated in (3, 1). The content of (0 to 3, 1) is then copied to (0 to 3, 6)

and (0 to 3, 8) based on the abovementioned schedule. Finally, at step 10, S0, S1, S2,

and S3 are calculated in (0 to 3, 3).

The execution time is determined by counting the number of steps and multiply-

ing them by the logic delay for a majority function, which is dominated by the MTJ

switching time. The energy is calculated by considering numbers of gates and their cor-

responding energy (Table 4.4). The dominant energy component of this implementation

is related to the output presetting of gates (see Fig. 4.15).

Figure 4.15: Energy distribution for the implementation of 4-bit ripple carry adder using
SHE-CRAM. Energy for preset is the dominant component.

81

More complex building blocks: Similar principles can be used to implement struc-

tures such as multipliers and dot products, which can be integrated to implement ap-

plications using SHE-CRAM; details are omitted due to space limitations.

4.4 Application-Level Analysis

To benchmark SHE-CRAM performance at the application level, we study its perfor-

mance when it is deployed on two applications that were analyzed for the STT-CRAM

in [2]: (a) 2-D convolution, where a 512×512 image is filtered using a 3×3 filter, and

(b) neuromorphic digit recognition using 10K testing images in the MNIST database.

For both applications, we compare the energy and execution time using SHE-CRAM,

STT-CRAM, and a near-memory processing (NMP) system (representative of current

state-of-the-art). The NMP system places a processor at the periphery of a memory,

and is superior to a system in which data is fetched from memory to processor (or

coprocessor) [1] [16] [80]. Also, note that in evaluations of STT-CRAM and SHE-

CRAM, the effect of peripheral circuitry is considered.

The results of the comparison are presented in Table 4.5. SHE-CRAM outperforms

STT-CRAM in both execution time and energy, and both SHE-CRAM and STT-CRAM

beat the NMP system in term of energy and execution time. In both applications, SHE-

CRAM is at least 4× more energy efficient, and 3× faster than STT-CRAM. For 2-D

convolution, SHE-CRAM is over 2000× faster, and 130× more energy-efficient than an

NMP system. The corresponding numbers for the neuromorphic application are over

4000× and 190×, respectively.

The improvements in SHE-CRAM over the STT-CRAM can be attributed to the

speed and energy-efficiency of the SHE-MTJ device. Note that the ratio of speed im-

provement is almost the same as the 3× improvement of the SHE-MTJ over the STT-

MTJ, but the energy improvement is less than the ratio of STT-MTJ to SHE-MTJ

82

Table 4.5: Comparison between execution time and energy of NMP, SHE-CRAM, and
STT-CRAM. The CMOS-based NMP data is based on the calculations in [2].

Application Parameters NMP STT-CRAM SHE-CRAM

2-D
Convolution

Execution Time 144.4 µs 231 ns 63 ns
Energy 388.6 µJ 16.5 µJ 2.9 µJ

Digit
Recognition

Execution Time 1.96 ms 1105 ns 408 ns
Energy 2.57 mJ 63.8 µJ 13.5 µJ

switching energy, primarily because of the significant energy overhead of the peripheral

driver circuitry of the memory array. Using larger subarrays in the memory can provide

up to 25% energy improvements, while degrading the speedup from 3× to just over 2×.

The superiority of both CRAMs over the NMP system can be attributed to the low

memory access time of the in-memory computing paradigm, and high levels of available

parallelism in CRAM. In contrast, in the NMP system, the energy and execution time

consists of two components: (a) fetching data from the memory unit, and (b) processing

data in processor units. We can have maximum parallelism in a NMP systems by using

multiple processor units and latency hiding techniques, but energy and execution time

cost of fetching data from the memory are a severe bottleneck. This bottleneck does

not exist in the CRAM due to data locality.

4.5 Conclusion

SHE-CRAM leverages the speed and efficiency of the 3-terminal SHE device, and we

demonstrate a new in-memory computing architecture using this device. We propose

a design method which contains consideration in device, gate, and functional levels.

At the device level, the 3-terminal SHE-MTJ integrated with highly efficient spin-Hall

material is served as the unit cell of CRAM. At the gate level, we show that energy and

noise margin of implementation of a gate using SHE-CRAM is always superior to those

83

of STT-CRAM. Moreover, we optimize the dimensions of the spin-Hall channel with

respect to the noise margin and the implementation energy of a gate. At the functional

level, we illustrate how a FA can be implemented in SHE-CRAM, principles that can be

extended to more complex structures. Finally, at the application level, we have analyzed

the SHE-CRAM performance for 2-D convolution and neuromorphic digit recognition.

We show a large improvement in speed and energy over both the STT-CRAM and a

NMP system.

Chapter 5

Using 3D XPoint as an

In-Memory Computing

Accelerator

5.1 Introduction

The substrate that we work on is 3D XPoint [34], a class of memory technology

that fills a unique place within the memory hierarchy between solid state storage drive

(SSD) and the system main memory. In comparison with the NAND-based SSD (which

is the most ubiquitous storage device available today [81]), it has the advantage of

being faster, denser, and more scalable. Its nonvolatility differentiates it from com-

peting technologies such as NAND-based SSDs and dynamic random access memories

(DRAMs), although NAND-based SSDs are more cost-effective today and DRAMs are

faster. Other emerging nonvolatile technologies face limitations: stand-alone PCM must

deal with resistance drift, where the cell resistance increases over time [82]; FeFET is

84

85

handicapped by its large operating voltage and limited endurance [83]; MRAMs require

an access transistor (unlike 3D XPoint), leading to a larger cell size than 3D XPoint;

ReRAM is not commercially viable to the level of 3D XPoint and MRAM.

The operation and performance of 3D XPoint as a memory unit are discussed in [9,

10, 13, 84, 85]. In our work, rather than focusing again on the memory aspects of 3D

XPoint, we explore the possibility of exploiting 3D XPoint arrays to perform in-memory

computation. This means not only that 3D XPoint can function as a storage unit,

but also that it can perform computation inside its array without the need for the

data to leave the array [86]. Therefore, unlike conventional computational systems, the

information can be processed locally rather than being sent to a processor through the

memory hierarchy.

The analysis in this chapter considers wire non-idealities and physical design of

3D XPoint subarray. We first show the implementation of thresholded matrix-vector

multiplication (TMVM), which is a building block for neural networks (NNs) and deep

learning applications. Second, using this core operation, we discuss the implementation

of a neural network inference engine. Finally, we discuss how to enable 3D XPoint for

more complex versions of these implementations (e.g. multi-bit operations and multi-

layer NNs).

For in-memory computing platforms, wire resistances are a substantial source of non-

ideality that must be taken into account during the implementations [87]. Some works

attempt to analyze the parasitic effects of wires but do not consider all contributing

factors with realistic layout considerations [73,74]. In [88], a framework is presented to

incorporate the effects of nonidealities in 2D resistive crossbar performance. In [89], an

analytical approach is developed to study the effects of the parasitic of wires for the

implementation on spintronics computational RAM.

We discuss the feasibility of using 3D XPoint as an in-memory computing engine for

86

neuromorphic applications, and evaluate its performance for MNIST digit recognition.

We present novel methods for the implementation of TMVM and NN on 3D XPoint.

We use 3D-stacked PCM memory layers in the 3D XPoint subarray to compute and

store the computation results entirely inside the array, without sending the data to the

periphery of the array. Our method is scalable by using multiple arrays to handle a

large computational workload. In addition, multi-bit operations are supported in our

methodology. We evaluate a realistic size of the 3D XPoint subarray and metal features

(based on the ASAP7 7nm technology [7, 8]) for accurate electrical correctness. We

develop a comprehensive method to analyze the impact of wire parasitics of wires in the

3D XPoint subarray and devise a methodology to determine the maximum size of a 3D

XPoint subarray that ensures electrically correct operation.

Next, we discuss the structure of 3D XPoint in Section 5.2. In Section 5.3, we

describe the implementation of TMVM, and NN. In Section 5.4, we explore the meth-

ods for more complex implementations. We develop the models for the effect of wire

parasitics in Section 5.5, evaluate the results of our analysis in Section 5.6, and then

conclude the chapter in Section 5.7.

5.2 Background

Some recent works study the implementation of logic operations using a 3D crossbar

array architecture. In [90], a double layer Pt/HfO2−x/TiN ReRAM crossbar array is

used and it is experimentally shown that the array can implement MVM and CNN.

Additional peripheral circuitry (e.g., AND gates) is required for obtaining the compu-

tation results. In [91], it is shown that stateful logic operation can be performed on

a memristive TiO2-based 3D crossbar array. The adverse effects of wire non-idealities

are not incorporated in the implementations. Similarly in [92], the authors map logic

operations on a memristive 3D crossbar without considering wire parasitic or technology

87

design rules. In [93], the authors use 3D memristive crossbars for neuromorphic com-

putation. For the implementation of a neuron, additional amplifier circuitry is required

at the periphery of the crossbar.

Fig. 5.1 shows the overall structure of a 3D XPoint subarray. A two-level PCM stack

is integrated at the top of CMOS peripheral circuitry. The storage device is based on

phase-change memory (PCM) technology, which is connected to a compatible ovonic

threshold switch (OTS) made of AsTeGeSiN [94–96]. Word lines at the top (WLT s),

word lines at the bottom (WLBs), and bit lines (BLs) in the middle provide the current

path to each individual memory cell [97]. The compatibility of the junction of PCM and

OTS devices is a key factor in allowing access to individual cells without facing sneak

path problems [98]. The total number of PCM cells in the 3D XPoint subarray with

Nrow rows and Ncolumn columns is (2Nrow ×Ncolumn), with half in the top PCM level

and half in the bottom PCM level, as shown in the figure.

Phase Change

Memory (PCM)

Ovonic

Threshold

Switch (TS)

𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2
𝑊𝐿𝐵3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3

Memory

Subarray

Peripheral

Circuitry

𝑁𝑐𝑜𝑙𝑢𝑚𝑛

Bottom PCM

Level

Top PCM

Level

Figure 5.1: The structure of a 3D XPoint subarray. The CMOS peripheral circuitry is
located underneath the memory subarray.

PCM is a non-volatile memory technology exploiting GeSbTe (GST) alloys (e.g.,

Ge2Sb2Te5) as the storage medium [99]. PCM has two states: a crystalline phase with

high conductance (GC) and an amorphous phase with low conductance (GA). The GST

alloy transition between amorphous and crystalline states is triggered by changing the

88

temperature level [100, 101]. In early explorations of PCM technology (1970s–early

2000s), the temperature level was changed using a laser source [102]. The state-of-the-

art research on PCM is focused on using electrical impulses to change the temperature,

and hence the state, of the PCM device by applying an electric current (or voltage)

pulse across the PCM device [103].

Fig. 5.2(a) shows that applying a fast high-amplitude current pulse of amplitude

IRESET (called the RESET pulse) heats up the GST material to the melting tempera-

ture Tmelt (∼600◦C or higher [101]), erasing the previous periodic and ordered atomic

arrangement. After quenching, the new disordered atomic structure will be frozen, mak-

ing the transition from high conductance crystalline state to low conductance amorphous

state possible. To change the state of the GST from amorphous to crystalline, a slow,

relatively low amplitude current pulse of amplitude ISET (called the SET pulse) must

pass through the GST material. The SET current pulse causes the GST material to

heat up to crystalline temperature Tcryst (∼400◦C [101]). Over a long SET time of

several tens of nanoseconds, this is a high enough temperature (still lower than Tmelt)

for the reconfiguration and crystallization of the previous amorphous atomic region to

the crystalline state. The desirable PCM characteristics are a lower amplitude of the

RESET current and a shorter SET time. A RESET current as low as 10µA and a

SET time as low as 25ns for individual PCM devices is already demonstrated with sub-

20nm scalability, high endurance 1012 cycles, and a projected 10-year retention time at

210◦C [82].

Fig. 5.2(b) shows the electrical model of PCM cell. The resistance across the PCM

cell can be modeled by two voltage controlled switches [13]. Depending on the status of

switches S1 and S2, different currents flow between two lines connected to the terminals

of the PCM cell, determined by GA and GC . The ON/OFF states of the memory cell

are determined by OTS: If the voltage level across the OTS of a cell is larger than

89

a threshold, the cell is considered to be ON, and it is OFF otherwise. In today’s

technologies, the OTS conductance for the OFF state is up to 108× smaller than for

the ON state.

The value stored in the PCM device can represent either logic 1 (crystalline phase) or

logic 0 (amorphous phase). Three memory operations available in 3D XPoint: write logic

1 (using the fast high-amplitude SET pulse), write logic 0 (using long low-amplitude

RESET pulse), and read. For the memory read operation, since it is undesirable to

change the state of the PCM cell, a pulse with relatively very small amplitude will be

applied, increasing the temperature slightly above the ambient temperature but below

Tcryst (and of course Tmelt).

Insulator
Heater

Crystalline State Amorphous State

Electrode

timecu
rr

en
t

cu
rr

en
t

time

SET

RESET

(a)

O
T

S

𝑆1

𝐺𝐴
𝐺𝐶

𝑆2P
C

M

(b)

Figure 5.2: PCM model: (a) the transition between amorphous and crystalline phases
by applying SET and RESET pulses across a pillar type PCM device, and (b) PCM
cell can be modeled using a resistive circuit with two voltage control switches [13].

5.3 Realization of In-Memory Computing

5.3.1 Implementation of TMVM

TMVM is a fundamental step in the implementation of many applications, and is a

fundamental computational kernel in machine learning (ML) applications. Using 3D

90

XPoint as the TMVM computation engine can tremendously decrease the ML compu-

tational workload, as the data does not need to leave the 3D XPoint array during the

computation.

To show how the first step of a TMVM, let us multiply, without thresholding, matrix

G ∈ R(Nx+1)×(Ny+1) and vector V = [V0V1V2...VNx]T ∈ R(Nx+1), where G is given by:

G =



G0,0 G0,1 ... G0,Ny

G1,0 G1,1 ... G1,Ny

.

.

GNx,0 GNx,1 .. GNx,Ny


(5.1)

This computes O =
[
O0O1O2, ...ONy

]T ∈ R(Ny+1)) where each element of vector O is a

dot product. For example,

O0 = G0,0V0 +G1,0V1 + ...+GNx,0VNx (5.2)

This is computed in the 3D XPoint array by applying voltages across a set of conduc-

tances to produce a current O0.

Today’s PCM cells can only store binary values. Hence, we assume that elements of

matrix G and vector V are binary. To implement a neuron-like operation using TMVM,

the O0 value and computed Oi values are followed by a thresholding operation. In (5.2),

if the sum of products exceeds the current required to flip the output bit, then logic 1 is

stored as the conductance, GO0 , of the PCM cell O0; otherwise, the stored logic value is

0. Similarly, for other Ois, the values after thresholding are stored as the conductance

states, GOi .

Fig. 5.3(a) shows the implementation of the TMVM on a 3D XPoint subarray with

(2Nrow ×Ncolumn) PCM cells ((Nrow ×Ncolumn) cells each at top PCM level and bottom

PCM level) where Ncolumn = Nx + 1 and Nrow = Ny + 1. For clarity, as compared to

91

𝑉3𝑉2𝑉1𝑉0

𝐺𝑁𝐷

𝐺3,0𝐺2,0𝐺1,0𝐺0,0

𝐺3,1𝐺2,1𝐺1,1𝐺0,1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛 Cells

(a) (b)

𝐺𝑂0

𝐺𝑂1

𝐺𝑂𝑖

Figure 5.3: (a) Using 3D XPoint as an in-memory computing engine for TMVM of GV .
(b) The equivalent circuit model for the implementation of a dot product (to calculate
O0).

Fig. 5.1, only the lines and PCM cells engaged in the computation are shown, and the

rest of the lines and the PCM cells (at the bottom) are removed from the figure. All

elements of O will be calculated simultaneously and are stored in the same column with

Nrow PCM cells. Considering that today’s 3D XPoint cannot store multiple values in a

cell, we assume that elements of vector V and G are binary.

The conductances G are first programmed in the top PCM level by memory write

operations or by previous computation.

• Before the computation starts, cells that store GOis at the bottom are preset to

logic 0.

• Then, voltages Vi, 0 ≤ i ≤ Nx are applied to the word lines WLT s connected

to input cells located at top. If Vi represents logic 1, voltage VDD is applied

(Vi ← VDD) to the WLTi and the current that flows through the corresponding

input cell is proportional to G0,iVDD.

• If Vi represents logic 0, WLTi is floated (Vi ← float) and no current passes through

the corresponding PCM cell.

• The summation of currents (IT) from input cells flows through the GO0 in a time

92

interval tSET . Based on the values of Vi and Gi,0, different currents pass through

the input cells that store Gi,0. If IT > ISET , the state of GO0 changes to logic 1.

However, we require IT < IRESET to avoid erroneous computation.

To calculate the minimum and maximum allowable applied voltage (VDD) to the

lines, we consider a simplified electrical model for the implementation of a dot product

(e.g., for O0) shown in Fig. 5.3(b). Current IT can be written as follows

IT = GO0

∑Nx
i=0 ViGi,0∑Nx

i=0Gi,0 +GO0

(5.3)

When the computation begins, GO0 ≈ GA since the preset is 0, and IT (t = 0)

is small (of the order of few hundred nAs). However, by the passage of time, the

amorphous region near the heater in the output PCM starts to turn crystalline, resulting

in increasing GO0 (and consequently IT) and heat (generated by the flow of more electric

current). If the applied voltage VDD is large enough to provide a current larger than

ISET , crystallization repeats until a threshold point where the whole amorphous region

in the output PCM turns into a crystalline region with high conductivity, representing

logic 1. On the other hand, the VDD must not be so large that the generated temperature

exceeds Tmelt, causing erroneous computation.

To calculate the VDD range for the accurate implementation of the described dot

product, we analyze the two cases corresponding to Vmin (the minimum acceptable

voltage) and Vmax (the maximum acceptable voltage). For the Vmin case, we assume

that all Vis, and all Gi,0s represent logic 1, i.e., VDD voltages are applied to all WLT s

and the conductances of input cells are in the high conductance state corresponding to

GC . In this case, from (5.3), IT =
(
Nx+1
Nx+2

)
GCVDD. Since ISET ≤ IT ≤ IRESET , the

Vmin requirement implies a first constraint, requiring that VDD to lie in the range:

R1 =

[(
Nx + 2

Nx + 1

)(
ISET
GC

)
,

(
Nx + 2

Nx + 1

)(
IRESET
GC

)]
(5.4)

93

For the Vmax case, all Vis are set to logic 1, while all Gi,0s are set to logic 0. Since

the result of the dot product should be at logic 0, we expect that the preset value of

PCM stored O0 remains intact. At the maximum voltage possible, we hypothetically

assume that the applied voltage pulse should be below the level required to change the

output state from logic 0 to logic 1, even if conductances of all input cells are GA. In

other words, IT =
(

(Nx+1)GAGC

(Nx+1)GA+GC

)
VDD < ISET , i.e., the output state cannot be altered.

Therefore, the second set of constraints require VDD to lie in the range

R2 =

[
0,

(
(Nx + 1)GA +GC

(Nx + 1)GAGC

)
ISET

]
(5.5)

The acceptable range for VDD is R1 ∩ R2. Therefore, the minimum and maximum

acceptable voltages are Vmin = min(R1) and Vmax = min(max(R1),max(R2)), respec-

tively.

5.3.2 Implementation of NN

Using the TMVM implementation, we implement a neuromorphic inference engine.

Fig. 5.4(a) shows a single-layer NN with N inputs and P outputs. Fig. 5.4(b) shows

the data layout for the NN implementation on a 3D XPoint subarray. The top PCM

cells are allocated for storing the weights (Wi,js), similar to Gi,js in TMVM that were

stored in the top PCM cells, and the bottom PCM cells are allocated for storing the

outputs (Yis), similar to Ois in TMVM. The inputs (Xis) are applied to WLTis as

voltage pulses (similar to Vis in TMVM).If N ≤ Ncolumn and P ≤ Nrow, then all Yjs

can be determined simultaneously in one step. The output elements of the NN can be

stored in any column at the bottom (here, we choose column 1). In Fig. 5.4(b), all other

cells at the bottom patterned by diagonal stripes are not engaged in the computation

of Yis, i.e., WLBs connected to these cells are floated.

An application for the proposed NN implementation is handwritten digit recognition

of MNIST dataset with 10K test images [49]. Analyzing each MNIST test image can

94

𝑋1

𝑋2

𝑋𝑁

𝑌1

𝑌2

𝑌𝑃

Input Layer Output Layer

(b)(a)

𝑊1,1

𝑊1,2

𝑊2,2

𝑊2,1

𝑊𝑁,1 𝑊𝑁,2

𝑊𝑁,𝑃

𝑊1,𝑃

𝑊2,𝑃

𝑋1 𝑋2 𝑋𝑁

𝑊1,1 𝑊2,1 𝑊𝑁,1

𝑊2,1 𝑊2,2 𝑊2,𝑀

𝑊𝑁,1 𝑊𝑁,2 𝑊𝑁,𝑀

𝑌1

𝑌2

𝑌𝑀

1 𝑁𝑐𝑜𝑙𝑢𝑚𝑛

1

2

𝑁𝑟𝑜𝑤

2

Figure 5.4: NN implementation: (a) A single-layer neuromorphic inference engine. (b)
Data layout for the NN implementation.

be performed using a similar NN shown in Fig. 5.4(a). Here P = 10, as in MNIST each

image represents a digit (from 0 to 9). In each computational step, bNrow
P c images can

be processed and stored in a column.

5.4 Enabling More Complex Implementations

In this section, we discuss three concepts that enable more complex computations. Then,

we provide the implementation of a multi-layer NN as an example. Our approach can

also be extended to perform multi-bit computation directly using the principles in [104].

5.4.1 3D XPoint with Four Stacked Levels of PCM Cells

Industry projections show that the next generation of 3D XPoint will have four-level

stacked PCM cells [105]. If the number of PCM levels increases, then the volume of

stored information per footprint area increases, and more complex implementations are

possible. Although a two-level subarray of PCM cells is sufficient to implement any NN

(see Section 5.4D), we will illustrate how we can use a four-level subarray of PCM cells

to implement a multi-layer NN by exploiting the extra PCM levels. The NN in Fig. 5.5

95

has three layers: an input layer, a hidden layer, and an output layer. At the top PCM

level, the first set of weights are stored. In the next PCM level, the hidden layer data is

calculated, and by applying the second set of weights as voltage pulses, we obtain the

outputs Yi of the NN at the third PCM level.

𝑋1

𝑋2

𝑋𝑁

𝑌1

𝑌2

𝑌𝐿

Input Layer Output LayerHidden Layer
𝐻1

𝐻2

𝐻𝑁

First Set of

Weights

Second Set of

Weights

Figure 5.5: Multi-layer NN with an input, hidden, and output layer.

5.4.2 Scalability of 3D XPoint to Large Computations

We can connect multiple 3D XPoint subarrays to create a larger array to handle com-

putations with higher matrix dimensions. In Fig. 5.6(a), switches connect BLs of sub-

array 1 to those of subarray 2, enabling current flow from the BLs of subarray 1 to

those of subarray 2. The WLB of subarray 2 that is scheduled to store the compu-

tation results will be connected to ground, while all other WLBs not engaging in the

computation (in both subarrays 1 and 2) are floated. Hence, the computation results

in subarray 1, are being calculated and stored at the bottom PCM level of subarray 2

(BL-to-WLT). In Fig. 5.6(b), switches connect BLs of the subarray 1 to WLT of sub-

array 2. In this configuration, the results are being calculated at the top PCM level of

subarray 2. The status of lines during the computation for these two configurations are

listed in appendix D.

96

𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3
𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3

BL-to-BL Configuration

for Switches

𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3
𝑊𝐿𝐵0 𝑊𝐿𝐵1 𝑊𝐿𝐵2 𝑊𝐿𝐵3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3

BL-to-WLT

Configuration for

Switches

Subarray 1 Subarray 2

Subarray 2Subarray 1

(a)

(b)

Figure 5.6: Two configurations for communication between 3D XPoint subarrays: (a)
switches connect BLs of subarray 1 to BLs of Subarray 2, and (b) switches connect
BLs of the subarray 1 to WLT s of subarray 2.

𝑋1 𝑋2 𝑋𝑁

𝑊1,1 𝑊2,1 𝑊𝑁,1

𝑊2,1 𝑊2,2 𝑊2,𝑀

𝑊𝑁,1 𝑊𝑁,2 𝑊𝑁,𝑀

No related data is stored in the bottom

PCM cells of subarray 1

𝐻1
𝑖𝑚1 𝐻2

𝑖𝑚1
𝐻𝑁
𝑖𝑚1

𝑌1
𝑖𝑚1 𝑌2

𝑖𝑚1

Subarray 1 Subarray 2

𝐻1
𝑖𝑚2 𝐻2

𝑖𝑚2 𝐻𝑁
𝑖𝑚2

𝐻1
𝑖𝑚𝑀 𝐻2

𝑖𝑚𝑀 𝐻𝑁
𝑖𝑚𝑀

𝑌𝐿
𝑖𝑚1

𝑌1
𝑖𝑚2 𝑌2

𝑖𝑚2 𝑌𝐿
𝑖𝑚2

𝑌1
𝑖𝑚𝑀 𝑌2

𝑖𝑚𝑀 𝑌𝐿
𝑖𝑚𝑀

step 1

step 2

step M

Input variables are applied to WLTs

from step 1 to step M

First set of weights is stored at top PCMs

Second set of weights is applied to WLTs

from step M+1 to step M+L

Figure 5.7: Data layout for the implementation of 3-layer NN.

5.4.3 Multi-Layer NN Implementation in a Two-Level PCM Stack

We now illustrate how a multi-layer NN can be implemented using a three-layer PCM

stack. As an example, we discuss the implementation of the three-layer NN (shown in

Fig. 5.5) using two two-level 3D XPoint subarrays. Let us assume that the NN is required

to analyze 10K images of the MNIST dataset. The data layout of this implementation

97

is illustrated in Fig. 5.7 using two subarrays connected with BL-to-WLT configuration

(see Fig. 5.6(b)). The first set of weights is stored at the top PCM cells of subarray 1.

The inputs (X0, X1, ..., XN) are applied as the voltages to the WLT s of subarray 1. We

assume that at each time step, the hidden layer values (H1, H2, ...,HN) for a specific

image from MNIST are being processed. For example, the hidden layer values of the

second image (H im2
1 , H im2

2 , ...,H im2
N) is calculated in step 2. Assuming that we calculate

the hidden layer values of M(= Nrow) images in each set of computation, we require M

steps to calculate and store the hidden layer values of M images at the top PCM cells of

subarray 2. In each of these steps, the corresponding BL in subarray 2 is connected to

GND, and the remaining BLs in subarray 2 are floated. After all hidden layer values

are stored at the top PCM cells of subarray 2, we apply the second set of the weights

(as voltage pulses) to the WLT s of subarray 2. At each column at the bottom PCM

cells of subarray 2, the outputs (Yis) of M images are calculated and stored.

5.5 Analyzing Interconnect Parasitic Effects

To ensure the electrical correctness of the implementations in in-memory computing

platforms, we must consider non-idealities due to wire parasitic effects [87, 89]. As an

example, we consider the implementation of a TMVM illustrated in Fig. 5.3(a). In thhe

equivalent circuit model shown in Fig. 5.8, the WLT s, BLs, and WLBs have nonzero

parasitics that cause a voltage drop in the current path across the 3D XPoint subarray,

that may potentially lead to errors in the results of TMVM. Let Gx and Gy be the con-

ductances of the segments of BLs and WLs, respectively. The conductances for WLT

and WLB are considered equal (both Gy) due to the symmetry and equal allocation of

metal resources to WLT s and WLBs. We use Gi,j to denote the conductance of PCM

cell (i, j) at the top level, and GOj s to denote conductances of a column of PCM cells

at the bottom level. In the worst case, each row performs an identical operation, and

98

carries an equal current Irow. The total voltage drop to the last row is

Irow
Gy

+
2Irow
Gy

+ ...+
NrowIrow

Gy
=
Nrow(Nrow + 1)Irow

2Gy
(5.6)

where the first, second, and last terms on the left side of the equation are for voltage

drops of SegmentNrow , SegmentNrow−1, and Segment1, respectively. The voltage drop

of the last row increases quadratically with the number of rows, and this causes a

significant limit on the accuracy of the implementations [87,89]. Hence, it is important

to find the maximum allowable subarray size in which the voltage drop does not impair

the electrical of implementations.

𝑉1 𝑉2

𝐺𝑦

𝐺𝑦

𝐺𝑦 𝐺𝑦

𝐺𝑦

𝐺𝑦 𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑥

𝐺𝑥

𝐺𝑥

𝐺𝑥

𝐺𝑥

𝐺𝑥
𝐺𝑁𝐷

𝑉0

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑥

𝐺0,0

𝑉3

𝐺1,0 𝐺2,0 𝐺3,0

𝐺0,1 𝐺1,1 𝐺2,1 𝐺3,1

𝐺0,𝑁𝑦
𝐺1,𝑁𝑦 𝐺2,𝑁𝑦

𝐺3,𝑁𝑦

𝐺𝑥

𝐺𝑥

The computation in the last row Segment
𝑁𝑟𝑜𝑤

Segment
𝑁𝑟𝑜𝑤 − 1

Segment1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛

Figure 5.8: The equivalent circuit model for the TMVM implementation with consider-
ing wire parasitics.

During the computation, the resistive network shown in Fig. 5.8 can have different

configurations based on the applied voltage to WLT s. For example, if V2 ← float, then

all G2,js and their connected parasitics must be removed from the equivalent circuit

model of Fig. 5.8. To analyze parasitic effects, we consider the corner case for voltage

99

drop, where only V0 ← VDD and the rest of the Vis are floated, resulting in minimum

equivalent conductance for inputs and wire parasitics. Moreover, for the corner case,

we assume that inputs and outputs are located Ncolumn columns away from each other

(the farthest possible distance). The value of all inputs assumed to be 1, and therefore,

the current flows from the inputs of the TMVM computation must be sufficient enough

to change the state of the output of the TMVM computation. An excessive voltage

drop across the input and output cells causes a failure in the TMVM implementation

discussed earlier.

The rows far from the drivers have larger parasitics between them and the driver. In

particular, for the last row (farthest from the driver, see Fig. 5.8), the voltage drop is the

worst. If the electrical correctness for the last row does not hold up, the implementations

would be unacceptable. We observe the rest of the circuit from the last row and calculate

(for the worst case) the Thevenin resistance (Rth) and Thevenin voltage (Vth) (see

Fig. 5.9(a)). We define the Thevenin coefficient, αth = Vth
VDD

, and its value is between

0 and 1. Both Rth and αth can be obtained analytically using a recursive approach

explained in Appendix C. Both are functions of parameters such as Nrow, Ncolumn,

PCM cell width (Wcell) and length (Lcell) as well as other parameters of PCM and

wire devices. Fig. 5.9(b) and (c) shows Rth and αth for different Nrow values. For the

smaller Nrow, PCM resistances are the dominant resistances, and the parasitic effect

of wires is minimum. When the Nrow increases the values of the collective parasitic

resistances become comparable to those of PCM devices and hence can degrade the

electric correctness of the subarray. The configuration of lines are based on configuration

1 that will be discussed in Table 5.1 in the next Section.

There are negligible parasitics between the first row and the driver, and the voltage

range that ensures accuracy of computing in the first row is closer to [Vmin, Vmax] (dis-

cussed in Section 5.3) than that of the last row. For the last row, values of αth and Rth

100

(b) (c)(a)

+
− α𝑡ℎ𝑉𝐷𝐷

𝑅𝑡ℎ
C

o
m

p
u

ta
ti

o
n

 i
n

th
e

L
as

t
R

o
w

Figure 5.9: (a) Thevenin equivalents can be observed from the last row, (b) effects of
Nrow on Rth, (c) and on αth.

For the

First Row

For the

Last Row

𝑉𝐷𝐷

𝑉𝐷𝐷

𝑉𝑚𝑎𝑥𝑉𝑚𝑖𝑛

Acceptable

Not

Acceptable

Not

Acceptable

(a) (b)

𝑉𝑚𝑖𝑛
′ 𝑉𝑚𝑎𝑥

′

R
th
(K
Ω

)

0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

14

Figure 5.10: (a) Calculated voltage ranges for the first and last rows. (b) Acceptable
and unacceptable regions in the (αth, Rth) plane.

are significantly affected by parasitics. Let us assume that the new voltage range ensures

electrical correctness of the last row is [V
′
min, V

′
max]. The voltage ranges for the first row

and last row are shown in Fig. 5.10(a). We use the voltage ranges of first row and last

row as two corner cases (with least and most voltage drops, respectively), and we find a

voltage range the satisfy both corner cases; the obtained voltage range guarantees the

electrical correctness for intermediate rows as well. The final acceptable voltage range

is the overlap between two voltage ranges shown in Fig. 5.10(a), [V
′
min, Vmax], ensuring

all of the rows from first row to the last row receiving the proper voltage.

The noise margin (NM) in implementations is defined by

NM =
Vmax − V

′
min

Vmid
(5.7)

101

M3

M2

M5 M5

𝑡𝑀9

𝑊𝑀9
M9

𝐿𝑐𝑒𝑙𝑙

M7

M8

V89

V78

𝑡𝑀7

𝑊𝑀7

𝑊𝑐𝑒𝑙𝑙

M1

M4

M9 M9

M7 M7

𝑊𝑐𝑒𝑙𝑙

𝑊𝑐𝑒𝑙𝑙

M5

Figure 5.11: Multi-metal layer configuration can be utilized for the design of WLT s,
BLs, and WLBs of 3D XPoint subarray.

Table 5.1: Different configurations of metal lines in the 3D XPoint subarray based on
ASAP7 design rules.

Config WLT WLB BL Wmin×Lmin

1 M3 M1 M2 36nm×36nm

2 M3, M6, M8 M1, M7, M9 M2, M4, M5 48nm×80nm

3 M2 36nm×80nmM1, M4, M7, M9M3, M5, M6, M8

where Vmid = (Vmax + V
′
min)/2. Clearly, we desire NM ≥ 0. In Fig. 5.10(b), the

acceptable and unacceptable regions in the (αth, Rth) plane is shown. The NM on

the separating line is 0, above it NM is negative (unacceptable), and below it NM is

positive (acceptable). Our goal is to choose wire configurations so that the corresponding

(αth, Rth) of the design falls into the acceptable region with maximum NM possible.

5.6 Results and Discussion

5.6.1 NM Evaluation

To realistically analyze the effect of the parasitics, we assumed that metal layers in 3D

XPoint are constructed based on ASAP7 design rules [7,8] (see Fig. 5.11). We can create

102

(a) (b)

(c) (d)

Figure 5.12: NMs of the three metal line configurations: (a) changing Nrow (while
Ncolumn = 128, Lcell = 4Lmin, and Wcell = Wmin), (b) changing Lcell (while Ncolumn =
128, Nrow = 128, and Wcell = Wmin), (c) changing Wcell (while Ncolumn = 128, Nrow =
64, and Lcell = 4Lmin), and (d) changing Ncolumn (while Nrow = 256, Lcell = 4Lmin,
and Wcell = Wmin).

different configurations for allocating metal lines to WLT s, WLBs, and BLs. Table 5.1

lists three possible configurations. In configuration 1, only M1, M2, and M3 (the first

three metal lines) in ASAP7 are exploited for 3D XPoint, and they are allocated to

WLB, BL, and WLT , respectively. For configurations 2 and 3, we assume that other

than M1, M2, and M3, the other metal layers (M4 to M9) can also be allocated to the

3D XPoint lines. In configuration 2, we allocate M4 and M5 to the BLs, and M6 to M9

103

are allocated equally between WLT s and WLBs. In configuration 3, we assume that

all metals from M4 to M9 are allocated equally between WLT s and WLBs; no extra

top metal lines are allocated to BLs. We report the minimum cell width (Wmin) and

length (Lmin) for each configuration based on the minimum required width of a line and

space between adjacent lines in each layer. The values of parameters for metal lines and

PCM devices are available in appendix D.

NM improves with increasing Nrow: Fig. 5.12(a) shows NMs of different Nrow

values. NM is significantly sensitive to Nrow. For Nrow as large as 2048, the implemen-

tations are not valid due to excessive voltage drop, and hence negative NM . Configu-

ration 3 provides the best NM , because more metal resources dedicated to WLT and

WLB causes smaller parasitics in the current path across rows.

NM improves with increasing Lcell: Fig. 5.12(b) shows the NMs for different Lcells

(for each configuration, values are normalized to Lmin listed in Table 5.1). By increasing

Lcell, the width of the WLT s and WLBs increase, decreasing the parasitic resistances

related to WLT s and WLBs.

NM decreases with increasing Wcell: Fig. 5.12(c) shows the NMs for different Wcell

(for each configuration, values are normalized to Wmin listed in Table 5.1). By increasing

Wcell, the length of the WLT s and WLBs increase, and consequently, parasitics related

to WLT s and WLBs considerably increase. Therefore, for all cases, smaller Wcell causes

larger NM .

NM remains unchanged with increasing Ncolumn: Fig. 5.12(d) shows that the

increase in Ncolumn does not affect NM significantly. By increasing Ncolumn, parasitics

of BLs increase. However, since the BL resistances are in series with those of PCM

devices with orders of magnitude larger resistance, the increase in BL resistance does

not affect NM .

104

5.6.2 Implementing NNs on the 3D XPoint Substrate

We list the performance of various 3D XPoint subarrays of various sizes for the digit

recognition of MNIST dataset in Table 5.2. Each MNIST test image is scaled to 11×11

as in [106], a transformation that maintains 91% recognition accuracy and reduces

computation. We use configuration 3 in all cases, as it provides the best NM among

all alternatives. For the smallest subarray with size 64 × 128, NM is the maximum

among all cases. For the largest subarray with size 1024 × 1024, we increase Lcell

by 2.6× (compare to that of 64 × 128 subarray) to decrease the parasitics of lines.

Consequently, we achieve acceptable NM of 34.5%. With this relatively large subarray,

we have more parallelism that allow to process a larger number of MNIST images in

each computational step, reducing the total execution time (17× faster than that of

64×128 subarray). The energy per image is similar for all cases because the subarray

sizes listed in Table 5.2 are large enough to allow fully processing an 11×11 MNIST

image locally without extra data movement between subarrays or peripheral circuitry.

The table also shows the impact of 10% process variation on NM . In the second

to the last column, interconnect resistances are changed by 10%. For small arrays,

the change in NM is negligible because the resistance of the PCM element and OTS

dominate wire resistance. For larger arrays, this effect becomes more noticeable (but is

still not significant). In the last column, PCM device parameters as well as interconnect

resistances are simultaneously varied by 10% to find the worst NM due to variations of

all parameters. NMs for all arrays are still positive and acceptable (between 12.4% for

the largest subarray and 46.6% for the smallest subarray).

105

Table 5.2: Evaluation of different subarray sizes for digit recognition application.

64×128 36×240 6 21.5pJ 62.9 133.3 1.25 636.2 65.1% 64.9%

128×256 36×320 12 21.5pJ 335.5 66.7 1.25 650.6 63.1% 62.7%

256×512 36×400 25 20.7pJ 1677.7 32.0 1.25 681.0 58.9% 58.1%

512×1024 36×480 51 20.3pJ 8053.0 15.7 1.25 732.5 52.2% 50.8%

1024×2048 36×640 102 20.3pJ 42949.6 7.8 1.25 882.2 34.5% 31.5%

#Image

per

Step

Energy

per

Image

Subarray

Area

(µm2)

Subarray

Size

Cell Size

(nm×nm)

Execution

Time

(µs)

NM
𝑉𝑚𝑎𝑥

(V)

NM

w/ 10%

Var.

𝑉𝑚𝑖𝑛
′

(mV)

5.7 Conclusion

We have presented methods for the implementations of TMVM, NN, and 2D convolu-

tion on 3D XPoint. To ensure the accuracy of the implementations, we considered wire

parasitics in our implementations. We have demonstrated that interconnect parasitics

have a significant effect on the implementations performance and have developed a com-

prehensive model for analyzing this impact. Using this methodology, we have developed

guidelines for the 3D XPoint Subarray size and configurations based on ASAP7 tech-

nology design rules. We used different size 3D XPoint subarrays for digit recognition

of MNIST dataset. Using the our methodology methodology, we design a relatively

large subarray of 2 Mb with acceptable NM of 34.5%, providing the opportunity for

processing more images per step without any energy overhead.

Chapter 6

Conclusion

The first contribution of this work is a method for building an in-memory computing

platform, incorporating considerations in device, gate, and functional block levels. After

evaluating the alternatives, we chose the Spin Transfer Torque (STT) Magnetic Tunnel

Junction (MTJ) as the memory device technology, for its high endurance, robustness,

and nonvolatility (ability to store data when the power is turned off). Next, a method is

developed for building the reconfigurable memory array, which can act as a memory or a

computational unit. In addition, all peripheral circuitry is designed for an STT-CRAM

in-memory platform. Methods are developed for implementing and scheduling elemen-

tary computational operations, such as additions, multiplications, and dot-products, on

the CRAM array. The set of underlying computational operations was carefully chosen

so that it would not only leverage the underlying STT-RAM technology, but also map

on to big data computations. It is demonstrated that for a set of data-intensive applica-

tions in image processing and artificial intelligence, CRAM shows energy improvements

of > 2500× over todayâs technologies.

The effectiveness of the CRAM can be attributed to (1) the large number of opera-

tions that can be simultaneously performed within the CRAM array, leading to massive

106

107

parallelism and short computation times, and (2) the removal of the data access bot-

tleneck by obviating the need to move data outside the memory. Analysis techniques

are created for a more detailed analysis of the practical limitations that might prevent

the CRAM structures from being successful. Specifically, it is discovered that wire

resistance in the lines that provide the power supply to the CRAM array could be

significantly limit the size of the CRAM array, thus limiting the available parallelism

and overall efficiency. A method is devised to choose and engineer an optimal physical

size and chip layout for the in-memory platform that maximizes the array size while

guaranteeing robust, error-free operation inside the platform. It is shown that through

careful design, the gains predicted earlier can be delivered.

A novel architecture for CRAM-based computational platform based on SHE MTJ

is proposed to improve the performance. SHE MTJ device has three terminals (as

compared to the two terminals of the STT MTJ), and required a complete redesign of the

fundamental memory âbitcellâ as well as the memory array. New scheduling tables and

techniques for the implementation of computational blocks (e.g., adder and multiplier)

are proposed. For two specific applications (2-D convolution and neuromorphic digit

recognition), we show that SHE-CRAM is 3× faster and has over 4× lower energy than

a prior STT-based CRAM implementation, and is over 2000× faster and at least 130 ×

more energy-efficient than state-of-the-art near-memory processing

We show that how 3D XPoint memory arrays can be used as in-memory computing

accelerators. We first show that thresholded matrix-vector multiplication (TMVM), the

fundamental computational kernel in many applications including machine learning, can

be implemented within a 3D XPoint array without requiring data to leave the array for

processing. Using the implementation of TMVM, we then discussed the implementation

of a binary neural inference engine. We discussed the application of the core concept

to address issues such as system scalability, where we connected multiple 3D XPoint

108

arrays, and power integrity, where we analyzed the parasitic effects of metal lines on

noise margins. To assure power integrity within the 3D XPoint array during this im-

plementation, we carefully analyzed the parasitic effects of metal lines on the accuracy

of the implementations. We quantified the impact of parasitics on limiting the size and

configuration of a 3D XPoint array, and estimated the maximum acceptable size of a

3D XPoint subarray.

Bibliography

[1] S. W. Keckler, W. Dally, B. Khailany, M. Garland, and D. Glasco. GPUs and the

future of parallel computing. IEEE Micro, 31:7–17, Nov 2011.

[2] M. Zabihi, Z. Chowdhury, Z. Zhao, U. Karpuzcu, J.-P. Wang, and S. Sapatnekar.

In-memory processing on the spintronic CRAM: From hardware design to appli-

cation mapping. IEEE Transactions on Computers, 68:1159–1173, Aug 2019.

[3] M. DC, R. Grassi, J. Chen, M. Jamali, D. Hickey, D. Zhang, Z. Zhao, H. Li,

P. Quarterman, Y. Lv, M. Li, A. Manchon, K. Mkhoyan, T. Low, and J.-P.

Wang. Room-temperature high spin orbit torque due to quantum confinement in

sputtered BixSe films. Nature Materials, 17, 09 2018.

[4] G. Prenat, K. Jabeur, P. Vanhauwaert, G. D. Pendina, F. Oboril, R. Bishnoi, M.

Ebrahimi, N. Lamard, O. Boulle, K. Garello, J. Langer, B. Ocker, M.-C. Cyrille,

P. Gambardella, M. Tahoori, and G. Gaudin. Ultra-fast and high-reliability SOT-

MRAM: From cache replacement to normally-off computing. IEEE Transactions

on Multi-Scale Computing Systems, 2(1):49–60, 2016.

[5] C. Zhang, S. Fukami, H. Sato, F. Matsukura, and H. Ohno. Spin-orbit torque

induced magnetization switching in nano-scale Ta/CoFeB/MgO. Applied Physics

Letters, 107(1):012401, 2015.

109

110

[6] A. Hirohata, H. Sukegawa, H. Yanagihara, I. Zutic, T. Seki, S. Mizukami, and R.

Swaminathan. Roadmap for emerging materials for spintronic device applications.

IEEE Transactions on Magnetics, 51(10):1–11, October 2015.

[7] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline, C. Rama-

murthy, and G. Yeric. ASAP7: A 7-nm FinFET predictive process design kit.

Microelectronics Journal, 53:105–115, July 2016.

[8] L. T. Clark, V. Vashishtha, D. M. Harris, S. Dietrich, and Z. Wang. Design

flows and collateral for the ASAP7 7nm FinFET predictive process design kit.

In Proceedings of the IEEE International Conference on Microelectronic Systems

Education, pages 1–4, June 2017.

[9] K. Son, K. Cho, S. Kim, S. Park, G. Park, S. Kim, T. Shin, and J. Kim. Modeling

and verification of 3-dimensional resistive storage class memory with high speed

circuits for core operation. In IEEE Asia-Pacific Microwave Conference, pages

694–696, March 2019.

[10] K. Son, K. Cho, S. Kim, S. Park, D. H. Jung, J. Park, G. Park, S. Kim, T.

Shin, Y. Kim, and J. Kim. Signal integrity design and analysis of 3-D X-Point

memory considering crosstalk and IR drop for higher performance computing.

IEEE Transactions on Components and Packaging Technologies, 10(5):858–869,

May 2020.

[11] D. Fujiki, X. Wang, A. Subramaniyan, and R. Das. In-/Near-Memory Computing.

Morgan Claypool, San Rafael, CA, USA, 2021.

[12] L. Dadda. Some schemes for parallel multipliers. Alta Frequenza, 34:349–356,

March 1965.

111

[13] K. Son, K. Cho, S. Kim, G. Park, K. Song, and J. Kim. Modeling and signal

integrity analysis of 3D XPoint memory cells and interconnections with memory

size variations during read operation. In IEEE Symposium on Electromagnetic

Compatibility, Signal Integrity and Power Integrity, pages 223–227, July 2018.

[14] A. McAfee, E. Brynjolfsson, and T. H. Davenport. Big data: The management

revolution. Harvard Business Review, October 2012.

[15] K. Bergman, S. Borkar, D. Campbell, W. Carlson, W. Dally, M. Denneau, P. Fran-

zon, W. Harrod, J. Hiller, and S. Karp. Exascale computing study: Technology

challenges in achieving exascale systems. DARPA Information Processing Tech-

niques Office (IPTO) Sponsored Study, 2008. www.cse.nd.edu/Reports/2008/TR-

2008-13.pdf.

[16] M. Horowitz. Computing’s energy problem (and what we can do about it). In

Proceedings of the IEEE International Solid-State Circuits Conference, pages 10–

14, February 2014.

[17] J. P. Wang and J. D. Harms. General structure for computational random access

memory (CRAM), December 29 2015. US Patent 9,224,447 B2.

[18] M. Zabihi, Z. Zhao, Z. I. Chowdhury, S. Resch, M. DC, T. Peterson, U. R.

Karpuzcu, J.-P. Wang, and S. S. Sapatnekar. True in-memory computing with

the CRAM: From technology to applications. In Proceedings of the ACM Great

Lakes Symposium on VLSI, pages 379–379, 2019.

[19] M. Zabihi, Z. Zhao, Z. I. Chowdhury, M. Resch, T. Peterson, Mahendra DC, , J.-

P. Wang, U. R. Karpuzcu, and S. S. Sapatnekar. Using spin-Hall MTJs to build

an energy-efficient in-memory computation platform. In Proceedings of the IEEE

International Symposium on Quality Electronic Design, pages 52–57, March 2019.

112

[20] H. Cilasun, S. Resch, Z. I. Chowdhury, E. Olson, M. Zabihi, Z. Zhao, T. Peterson,

K. K. Parhi, J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. Spiking neural

networks in spintronic computational RAM. ACM Transactions on Architecture

and Code Optimization, 2021.

[21] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, H. Cilasun, J.-

P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. MOUSE: Inference in non-volatile

memory for energy harvesting applications. In Annual IEEE/ACM International

Symposium on Microarchitecture, pages 400–414, October 2020.

[22] J.-P. Wang, S. S. Sapatnekar, U. R. Karpuzcu, Z. Zhao, M. Zabihi, S. Resch, Z. I.

Chowdhury, and T. Peterson. Computational random access memory (CRAM)

based on spin-orbit torque devices, September 2020. US Patent 20,200,279,597

A1.

[23] H. Cilasun, S. Resch, Z. I. Chowdhury, E. Olson, M. Zabihi, Z. Zhao, T. Peterson,

J.-P. Wang, S. S. Sapatnekar, and U. Karpuzcu. CRAFFT: High resolution FFT

accelerator in spintronic computational RAM. In ACM/IEEE Design Automation

Conference, pages 1–6, October 2020.

[24] Z. I. Chowdhury, M. Zabihi, S. K. Khatamifard, Z. Zhao, S. Resch, M. Razaviyayn,

J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. A DNA read alignment

accelerator based on computational RAM. IEEE Journal on Exploratory Solid-

State Computational Devices and Circuits, 6(1):80–88, 2020.

[25] Z. I. Chowdhury, S. K. Khatamifard, Z. Zhao, M. Zabihi, S. Resch, M. Razaviyayn,

J.-P. Wang, S. Sapatnekar, and U. R. Karpuzcu. Spintronic in-memory pattern

matching. IEEE Journal on Exploratory Solid-State Computational Devices and

Circuits, 5(2):206–214, 2019.

113

[26] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, J.-P. Wang,

S. S. Sapatnekar, and U. R. Karpuzcu. PIMBALL: Binary neural networks in

spintronic memory. ACM Transactions on Architecture and Code Optimization,

16(4), October 2019.

[27] S. Resch, S. K. Khatamifard, Z. I. Chowdhury, M. Zabihi, Z. Zhao, H. Cilasun,

J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. A machine learning accelerator

in-memory for energy harvesting, August 2019. arXiv: 1908.11373[cs].

[28] Z. I. Chowdhury, M. Zabihi, S. K. Khatamifard, Z. Zhao, S. Resch, M. Razaviyayn,

J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. Computational RAM to

accelerate string matching at scale, December 2018. arXiv:1812.08918.

[29] H. Cilasun, S. Resch, Z. I. Chowdhury, M. Zabihi, Z. Zhao, T. Peterson, J.-P.

Wang, S. S. Sapatnekar, and U. R. Karpuzcu. Seeds of SEED: H-CRAM: In-

memory homomorphic search accelerator using spintronic computational RAM. In

International Symposium on Secure and Private Execution Environment Design,

pages 70–75, 2021.

[30] Z. I. Chowdhury, S. Resch, H. Cilasun, Z. Zhao, M. Zabihi, S. S. Sapatnekar, J.-P.

Wang, and U. R. Karpuzcu. CAMeleon: Reconfigurable B(T)CAM in Computa-

tional RAM. June 2021.

[31] H. Cilasun, S. Resch, Z. I. Chowdhury, E. Olson, M. Zabihi, Z. Zhao, T. Peterson,

K. K. Parhi, J.-P. Wang, S. S. Sapatnekar, and U. R. Karpuzcu. An inference

and learning engine for spiking neural networks in computational RAM (CRAM),

June 2020. arXiv:2006.03007.

[32] D. Fujiki, S. Mahlke, and R. Das. In-memory data parallel processor. ACM Special

Interest Group on Programming Languages, 53(2):1–14, March 2018.

114

[33] M. Imani, S. Gupta, and T. Rosing. Digital-based processing in-memory: A

highly-parallel accelerator for data intensive applications. In Proceedings of the

International Symposium on Memory Systems, pages 38–40, September 2019.

[34] Y. LeCun. 3D XPoint technology. https://www.intel.com/content/www/us/

en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html.

[35] X. Liu, M. Mao, B. Liu, H. Li, Y. Chen, B. Li, Y. Wang, H. Jiang, M. Barnell, Q.

Wu, and J. Yang. Reno: A high-efficient reconfigurable neuromorphic computing

accelerator design. In Proceedings of the ACM/ESDA/IEEE Design Automation

Conference, 2015.

[36] L. Fick, D. Blaauw, D. Sylvester, S. Skryniarz, M. Parikh, and D. Fick. Analog

in-memory subthreshold deep neural network accelerator. In Proceedings of the

IEEE Custom Integrated Circuits Conference, pages 1–4, July 2017.

[37] J.-P. Wang, S. S. Sapatnekar, C. H. Kim, P. Crowell, S. Koester, S. Datta, K. Roy,

A. Raghunathan, X. S. Hu, M. Niemier, A. Naeemi, C.-L. Chien, C. Ross, and

R. Kawakami. A pathway to enable exponential scaling for the beyond-CMOS

era. In Proceedings of the ACM/IEEE Design Automation Conference, pages 1–6,

June 2017.

[38] Z. Chowdhury, S. K. Khatamifard, M. Zabihi, J. D. Harms, Y. Lv, A. P. Lyle, J.-

P. Wang, S. Sapatnekar, and U. Karpuzcu. Efficient in-memory processing using

spintronics. IEEE Computer Architecture Letters, 17(1):42–46, June 2018.

[39] J. Kim, P. A. Crowell, S. J. Koester, S. S. Sapatnekar, J.-P. Wang, and C. H.

Kim. Spin-based computing: Device concepts, current status, and a case study

on a high-performance microprocessor. Proceedings of the IEEE, 103(1):106–130,

2015.

https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html
https://www.intel.com/content/www/us/en/architecture-and-technology/intel-micron-3d-xpoint-webcast.html

115

[40] F. Ren and D. Markovic. True energy-performance analysis of the MTJ-based

logic-in-memory architecture (1-bit full adder). IEEE Transactions on Electron

Devices, 57(5):1023–1028, 2010.

[41] A. Lyle, J. Harms, S. Patil, X. Yao, D. J. Lilja, and J.-P. Wang. Direct communi-

cation between magnetic tunnel junctions for nonvolatile logic fanout architecture.

Applied Physics Letters, 97(152504), 2010.

[42] G. Jan, L. Thomas, S. Le, Y.-J. Lee, H. Liu, J. Zhu, R.-Y. Tong, K. Pi, Y.-

J. Wang, D. Shen, R. He, J. Haq, J. Teng, V. Lam, K. Huang, T. Zhong, T.

Torng, and P.-K. Wang. Demonstration of fully functional 8Mb perpendicular

STT-MRAM chips with sub-5ns writing for non-volatile embedded memories. In

Proceedings of the IEEE International Symposium on VLSI Technology, 2014.

[43] H. Maehara, K. Nishimura, Y. Nagamine, K. Tsunekawa1, T. Seki, H. Kubota,

A. Fukushima, K. Yakushiji, K. Ando, and S. Yuasa. Tunnel magnetoresistance

above 170% and resistance-area product of 1Ω(µm)2 attained by in situ annealing

of ultra-thin MgO tunnel barrier. Applied Physics Express, 4(03300), 2011.

[44] H. Noguchi, K. Ikegami, K. Kushida, K. Abe, S. Itai, S. Takaya, N. Shimomura,

J. Ito, A. Kawasumi, H. Hara, and S. Fujita. 3.3ns-access- time 71.2µW/MHz

1Mb embedded STT-MRAM using physically eliminated read-disturb scheme and

normally-off memory architecture. In Proceedings of the IEEE International Solid-

State Circuits Conference, pages 1–3, March 2015.

[45] S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M.

Tsunoda, F. Matsukura, and H. Ohno. Tunnel magnetoresistance of 604% at

300K by suppression of Ta diffusion in CoFeB / MgO/ CoFeB pseudo-spin-valves

annealed at high temperature. Applied Physics Letters, 93(8(082508)), 2008.

116

[46] H. Almasi, M. Xu, Y. Xu, T. Newhouse-Illige, and W. G. Wang. Effect of Mo

insertion layers on the magnetoresistance and perpendicular magnetic anisotropy

in Ta/CoFeB/MgO junctions. Applied Physics Letters, 109(3(032401)), 2016.

[47] H. M. Martin. Threshold logic for integrated full adder and the like, 1971. US

Patent 3,609,329.

[48] E. E. Swartzlander. Recent results in merged arithmetic. In SPIE Proceedings,

volume 3461, pages 576–583, 1998.

[49] Y. LeCun. The MNIST database of handwritten digits. http://yann.lecun.

com/exdb/mnist/.

[50] M. Liu, L. R. Everson, and C. H. Kim. A sable time-based integrate-and-fire

neuromorphic core with brain-inspired leak and local lateral inhibition capabilities.

In Proceedings of the IEEE Custom Integrated Circuits Conference, 2017.

[51] J. Jeddeloh and B. Keeth. Hybrid memory cube new DRAM architecture increases

density and performance. In Proceedings of the IEEE International Symposium

on VLSI Technology, pages 87–88, June 2012.

[52] X. Dong, C. Xu, Y. Xie, and N. Jouppi. NVSim: A circuit-level performance,

energy, and area model for emerging nonvolatile memory. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 31(7):994–1007, July

2012.

[53] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: A tool

to model large caches. Technical Report HPL-2009-85, HP Laboratories, 2009.

[54] H. S. Stone. A logic-in-memory computer. IEEE Transactions on Computers,

C-19(1):73–78, January 1970.

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

117

[55] D. Patterson, T. Anderson, N. Cardwell, R. Fromm, K. Keeton, C. Kozyrakis, R.

Thomas, and K. Yelick. A case for intelligent RAM. IEEE Micro, 17(2):34–44,

1997.

[56] S. Rixner, W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Matt-

son, and J. D. Owens. A bandwidth-efficient architecture for media processing.

In IEEE International Symposium on Microarchitecture, pages 3–13, December

1998.

[57] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik, and J. Tor-

rellas. FlexRAM: Toward an advanced intelligent memory system. In Proceedings

of the IEEE International Conference on Computer Design, pages 192–201, 1999.

[58] J. B. Brockman, P. M. Kogge, T. L. Sterling, V. Freeh, and S. K. Kuntz. Mi-

croservers: a new memory semantics for massively parallel computing. In Pro-

ceedings of the 16th International Conference on Supercomputing, 1999.

[59] J. T. Pawlowski. Hybrid memory cube (HMC). In Proceedings of the IEEE

HotChips Symposium, 2011.

[60] J. Macri. AMD’s next generation GPU and high bandwidth memory architecture:

FURY. In Proceedings of the IEEE HotChips Symposium, 2015.

[61] R. Nair, S. F. Antao, C. Bertolli, P. Bose, J. R. Brunheroto, T. Chen, C. Y.

Cher, C. H. A. Costa, J. Doi, C. Evangelinos, B. M. B. M. Fleischer, T. W. Fox,

D. S. Gallo, L. Grinberg, J. A. Gunnels, A. C. Jacob, P. Jacob, H. M. Jacobson,

T. Karkhanis, C. Kim, J. H. Moreno, J. K. O’Brien, M. Ohmacht, Y. Park,

D. A. Prener, B. S. Rosenburg, K. D. Ryu, O. Sallenave, M. J. Serrano, P. D. M.

Siegl, K. Sugavanam, and Z. Sura. Active memory cube: A processing-in-memory

118

architecture for exascale systems. IBM Journal of Research and Development,

59(2/3):17:1–17:14, 2015.

[62] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and M. Igna-

towski. TOP-PIM: Throughput-oriented programmable processing in memory.

In Proceedings of the International Symposium on High-performance Parallel and

Distributed Computing, pages 85–98, 2014.

[63] J. Ahn, S. Yoo, O. Mutlu, and K. Choi. PIM-enabled instructions: A low-

overhead, locality-aware processing-in-memory architecture. In Proceedings of the

ACM International Symposium on Computer Architecture, pages 336–348, June

2015.

[64] S. Jeloka, N. B. Akesh, D. Sylvester, and D. Blaauw. A 28 nm configurable

memory (TCAM/BCAM/SRAM) using push-rule 6T bit cell enabling logic-in-

memory. IEEE Journal of Solid-State Circuits, 51(4):1009–1021, April 2016.

[65] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,

J. Shin, C. Chen, C. W. Kang, I. Kim, and G. Daglikoca. The architecture of

the DIVA processing-in-memory chip. In Proceedings of the 16th International

Conference on Supercomputing, pages 14–25, 2002.

[66] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim, M. A. Kozuch,

O. Mutlu, P. B. Gibbons, and T. C. Mowry. Ambit: In-memory accelerator for

bulk bitwise operations using commodity dram technology. In IEEE International

Symposium on Microarchitecture, 2017.

[67] A. Matsunaga, J. Hayakawa, S. Ikeda, K. Miura, T. Endoh, H. Ohno, and T.

Hanyu. MTJ-based nonvolatile logic-in-memory circuit, future prospects and is-

sues. In Proceedings of Design, Automation & Test in Europe, pages 433–435,

119

June 2009.

[68] S. G. Ramasubramanian, R. Venkatesan, M. Sharad, K. Roy, and A. Raghu-

nathan. SPINDLE: SPINtronic Deep Learning Engine for large-scale neuromor-

phic computing. In Proceedings of the ACM International Symposium on Low

Power Electronics and Design, 2014.

[69] S. Li, C. Xu, Q. Zhou, J. Zhao, Y. Lu, and Y. Xie. Pinatubo: a processing-in-

memory architecture for bulk bitwise operations in emerging non-volatile mem-

ories. In Proceedings of the ACM/ESDA/IEEE Design Automation Conference,

2016.

[70] W. Kang, H. Wang, Z. Wang, Y. Zhang, and W. Zhao. In-memory processing

paradigm for bitwise logic operations in STT-MRAM. IEEE Transactions on

Magnetics, 2017.

[71] S. Angizi, Z. He, N. Bagherzadeh, and D. Fan. Design and evaluation of a spin-

tronic in-memory processing platform for non-volatile data encryption. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017.

(in press).

[72] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky. Logic design within memris-

tive memories using Memristor Aided loGIC (MAGIC). IEEE Transactions on

Nanotechnology, 15(4):635–650, July 2016.

[73] Y. Jeong, M. A. Zidan, and W. D. Lu. Parasitic effect analysis in memristor-array-

based neuromorphic systems. IEEE Transactions on Nanotechnology, 17(1):184–

193, Jan 2018.

120

[74] Naveen Murali G., F. Lalchhandama, K. Datta, and I. Sengupta. Modelling and

simulation of non-ideal MAGIC NOR gates on memristor crossbar. In Proceed-

ings of the International Symposium on Embedded Computing and System Design,

pages 124–128, Dec 2018.

[75] J.-P. Wang, S. S. Sapatnekar, C. H. Kim, P. Crowell, S. Koester, S. Datta, K. Roy,

A. Raghunathan, X. S. Hu, M. Niemier, A. Naeemi, C.-L. Chien, C. Ross, and

R. Kawakami. A pathway to enable exponential scaling for the beyond-CMOS

era. In Proceedings of the ACM/IEEE Design Automation Conference, pages 1–6,

June 2017.

[76] A. Shafaei, Y. Wang, and M. Pedram. Low write-energy STT-MRAMs using

FinFET-based access transistors. In Proceedings of the IEEE International Con-

ference on Computer Design, pages 374–379, Oct. 2014.

[77] L. Liu, C.-F. Pai, Y. Li, H.-W. Tseng, D. Ralph, and R. Buhrman. Spin-torque

switching with the giant spin hall effect of tantalum. Science (New York, N.Y.),

336:555–8, 05 2012.

[78] S. Fukami, C. Zhang, S. DuttaGupta, A. Kurenkov, and H. Ohno. Magnetization

switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system.

Nature Materials, 15(5):535–541, May 2016.

[79] Z. Zhao, A. K. Smith, M. Jamali, and J.-P. Wang. External-field-free spin hall

switching of perpendicular magnetic nanopillar with a dipole-coupled composite

structure, 2017, 1603.09624.

[80] J. Jeddeloh and B. Keeth. Hybrid memory cube new dram architecture increases

density and performance. In 2012 Symposium on VLSI Technology (VLSIT),

pages 87–88, 2012.

121

[81] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis, M. Manasse, and R. Pani-

grahy. Design tradeoffs for SSD performance. In USENIX 2008 Annual Technical

Conference, page 57â70, June 2008.

[82] M. Le Gallo and A. Sebastian. An overview of phase-change memory device

physics. Journal of Physics D Applied Physics, 53(21):213002, May 2020.

[83] S. Beyer, S. Dunkel, M. Trentzsch, J. MÃ¼ller, A. Hellmich, D. Utess, J. Paul, D.

Kleimaier, J. Pellerin, S. MÃ¼ller, J. Ocker, A. Benoist, H. Zhou, M. Mennenga,

M. Schuster, F. Tassan, M. Noack, A. Pourkeramati, F. Muller, M. Lederer, T. Ali,

R. Hoffmann, T. Kampfe, K. Seidel, H. Mulaosmanovic, E. T. Breyer, T. Mikola-

jick, and S. Slesazeck. FeFET: A versatile CMOS compatible device with game-

changing potential. In Proceedings of the IEEE International Memory Workshop

(IMW), 2020.

[84] Q. Lou, W. Wen, and L. Jiang. 3DICT: A reliable and QoS capable mobile

process-in-memory architecture for lookup-based CNNs in 3D XPoint ReRAMs.

In Proceedings of the IEEE/ACM International Conference on Computer-Aided

Design, pages 1–8, Jan. 2018.

[85] J. Yang, L. Bingzhe, and D. Lilja. Exploring performance characteristics of the

optane 3D XPoint storage technology. ACM Transactions on Modeling and Per-

formance Evaluation of Computing Systems, 5(1), Feb. 2020.

[86] M. Zabihi, S. Resch, H. Cilasun, Z. I. Chowdhury, Z. Zhao, U. R. Karpuzcu, J.-P.

Wang, and S. S. Sapatnekar. Exploring the feasibility of using 3-D XPoint as

an in-memory computing accelerator. IEEE Journal on Exploratory Solid-State

Computational Devices and Circuits, 7(2):88–96, 2021.

122

[87] D. Ielmini and G. Pedretti. Device and circuit architectures for in-memory com-

puting. Advanced Intelligent Systems, 2(7):2000049–1–2000040–19, May 2020.

[88] S. Jain, A. Sengupta, K. Roy, and A. Raghunathan. RxNN: A framework for

evaluating deep neural networks on resistive crossbars. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 40(2):326–338, 2021.

[89] M. Zabihi, A. K. Sharma, M. G. Mankalale, Z. I. Chowdhury, Z. Zhao, S. Resch,

U. R. Karpuzcu, J. Wang, and S. S. Sapatnekar. Analyzing the effects of inter-

connect parasitics in the STT CRAM in-memory computational platform. IEEE

Journal on Exploratory Solid-State Computational Devices and Circuits, 6(1):71–

79, June 2020.

[90] Y. Kim, J. Kim, S. S. Kim, Y. J. Kwon, G. S. Kim, J. W. Jeon, D. E. Kwon,

J. H. Yoon, and C. S. Hwang. Kernel application of the stacked crossbar array

composed of self-rectifying resistive switching memory for convolutional neural

networks. Advanced Intelligent Systems, 2(2):1900116, 2020.

[91] N. Xu, T. G. Park, H. J. Kim, X. Shao, K. J. Yoon, T. H. Park, L. Fang, K. M.

Kim, and C. S. Hwang. A stateful logic family based on a new logic primitive

circuit composed of two antiparallel bipolar memristors. Advanced Intelligent

Systems, 2(1):1900082, 2020.

[92] N. G. Murali, P. S. Vardhan, F. Lalchhandama, K. Datta, and I. Sengupta. Map-

ping of boolean logic functions onto 3d memristor crossbar. In Proceedings of the

International Conference on VLSI Design, pages 500–501, 2019.

[93] B. R. Fernando, Y. Qi, C. Yakopcic, and T. M. Taha. 3d memristor crossbar archi-

tecture for a multicore neuromorphic system. In Proceedings of the International

Joint Conference on Neural Networks, pages 1–8, 2020.

123

[94] M. Lee, D. Lee, H. Kim, H. Choi, J. Park, H. G. Kim, Y. Cha, U. Chung, I.

Yoo, and K. Kim. Highly-scalable threshold switching select device based on

chaclogenide glasses for 3D nanoscaled memory arrays. In IEEE International

Electronic Devices Meeting, pages 2.6.1–2.6.3, Dec. 2012.

[95] G. W. Burr, R. S. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, and

H. Hwang. Access devices for 3D crosspoint memory. Journal of Vacuum Science

& Technology B, 32(4):040802–1–040802–23, July 2014.

[96] DerChang Kau, S. Tang, I. V. Karpov, R. Dodge, B. Klehn, J. A. Kalb, J. Strand,

A. Diaz, N. Leung, J. Wu, Sean Lee, T. Langtry, Kuo-wei Chang, C. Papagianni,

Jinwook Lee, J. Hirst, S. Erra, E. Flores, N. Righos, H. Castro, and G. Spadini.

A stackable cross point phase change memory. In IEEE International Electronic

Devices Meeting, pages 1–4, March 2009.

[97] W. Chien, C. Yeh, R. L. Bruce, H. Cheng, I. T. Kuo, C. Yang, A. Ray, H. Miyazoe,

W. Kim, F. Carta, E. Lai, M. J. BrightSky, and H. Lung. A study on OTS-PCM

pillar cell for 3-D stackable memory. IEEE Transactions on Electron Devices,

65(11):5172–5179, Nov. 2018.

[98] L. Shi, G. Zheng, B. Tian, B. Dkhil, and C. Duan. Research progress on solutions

to the sneak path issue in memristor crossbar arrays. Nanoscale Advances, 2:1811–

1827, March 2020.

[99] J. Y. Wu, M. Breitwisch, S. Kim, T. H. Hsu, R. Cheek, P. Y. Du, J. Li, E. K. Lai,

Y. Zhu, T. Y. Wang, H. Y. Cheng, A. Schrott, E. A. Joseph, R. Dasaka, S. Raoux,

M. H. Lee, H. L. Lung, and C. Lam. A low power phase change memory using

thermally confined TaN/TiN bottom electrode. In IEEE International Electronic

Devices Meeting, pages 3.2.1–3.2.4, Jan. 2011.

124

[100] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran, M.

Asheghi, and K. E. Goodson. Phase change memory. Proceedings of the IEEE,

98(12):2201–2227, Dec. 2010.

[101] G. W. Burr, M. J. Brightsky, A. Sebastian, H. Cheng, J. Wu, S. Kim, N. E. Sosa,

N. Papandreou, H. Lung, H. Pozidis, E. Eleftheriou, and C. H. Lam. Recent

progress in phase-change memory technology. IEEE Journal on Emerging and

Selected Topics in Circuits and Systems, 6(2):146–162, June 2016.

[102] M. Wuttig and N. Yamada. Phase-change materials for rewriteable data storage.

Nature Materials, 6(11):824â832, Nov. 2007.

[103] Q. Zheng, Y. Wang, and J. Zhu. Nanoscale phase-change materials and devices.

Journal of Physics D: Applied Physics, 50(24):243002, May 2017.

[104] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and Y. Xie. Prime:

A novel processing-in-memory architecture for neural network computation in

reram-based main memory. In isca, pages 27–39, August 2016.

[105] 3D XPoint with four-level PCM cells. https://www.anandtech.com/show/15972/intel-

previews-4layer-3d-xpoint-memory-for-secondgeneration-optane-ssds.

[106] M. Liu, L. R. Everson, and C. H. Kim. A scalable time-based integrate-and-fire

neuromorphic core with brain-inspired leak and local lateral inhibition capabilities.

In Proceedings of the IEEE Custom Integrated Circuits Conference, pages 1–4, July

2017.

Appendix A

Thevenin Models of Current

Paths in STT CRAM

Thevenin Model for 1-Input Gates

We derive recursive expressions for Rth and αth for each row in the CRAM array. The

exposition here derives an expression for Vth, and αth is trivially obtained from Eq. (3.6).

Within the footprint area of a CRAM cell, we define Ry, Rx, and RV ia as lumped

resistances for BSL segment, LL segment, and vias, respectively. Fig. C.1 shows the

equivalent simplified circuit of the path for the implementation of BUFFER (or NOT)

gates on CRAM rows. Row i is separated from its predecessor by resistances Ry at

each end, and is connected through Rvia to an input MTJ cell, represented by RMTJ1
i

and RT . The input cell is connected to the output cell, dcolumn rows away, through a

resistance Rx, and the output cell is represented by a transistor resistance RT in series

with a preset MTJ resistance, RMTJ2 . The resistances in the last row are rearranged

to create a two-port structure consisting of the MTJ resistances, so that the rest of the

network can be modeled using Thevenin Equivalents (Rth and Vth).

125

126

Depending on the states of the inputs in different rows, which are application-

dependent, the resistances of the MTJs, and hence the Thevenin parameters, change

and typically vary in different rows. To provide a robust design, we consider the worst

case in which the combination of the values of inputs in different rows results in the

worst voltage drop across the MTJs of the last row. This worst case corresponds to the

worst-case current, which is drawn when all inputs MTJs in all rows are in the parallel

state, creatingÂ Nrow − 1 paths with the lowest possible resistance possible between

input and output BSLs.

As explained in Section 3.4.4, the BSL and LL lines have a multi-layer structure.

The metal layer resistances are considered to be in parallel, and Ry and Rx are expressed

by:

R−1
y = R−1

M3
+R−1

M5
+R−1

M7
+R−1

M9
(A.1)

R−1
x = d−1

column

(
R−1
M2

+R−1
M4

)
(A.2)

where dcolumn is the number of wire segments between the input and output columns.

The resistance, RMk
, is given by: RMk

=
ρMk

LMk
tMk

WMk
, where ρMk

, LMk
, tMk

, and WMk

are, respectively, the resistivity, length, thickness, and width in metal layer k. The

equivalent resistance of the vias, RV ia, depends on the configuration of the CRAM cell:

a larger CRAM cell contains more vias in its footprint area, as a consequence of which

RV ia is smaller. The number of vias between two metal layers in the footprint area of

a CRAM cell can be calculated based on the via characteristics in Table D.3, as the

parallel resistance of the available number of vias.

The above equivalent resistive introduces a minor simplification because the parallel

wires do not coincide at a single point but the vias are a small distance apart. HSPICE

simulations show that causes less than 0.5% error.

To calculate Rth and Vth, we derive recursive expressions. For conciseness, we define

127

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝐷

𝑉 𝑏

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑁
𝑟𝑜
𝑤

𝑀
𝑇
𝐽 1

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

Row 𝑁𝑟𝑜𝑤

𝑅
𝑁
𝑟𝑜
𝑤
−
1

𝑀
𝑇
𝐽 1

Row 𝑁𝑟𝑜𝑤 − 1

Row 2

Row 1

𝑅
2𝑀
𝑇
𝐽 1

𝑅
1𝑀
𝑇
𝐽 1

𝑅
𝐷

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

Thevenin

Equivalents

(a)

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝐷

𝑉 𝑏

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑥

𝑅
𝑁
𝑟
𝑜
𝑤
−
1

𝑀
𝑇
𝐽 1

𝑅
2𝑀
𝑇
𝐽 1

𝑅
1𝑀
𝑇
𝐽 1

𝑅
𝐷

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅𝑁𝑟𝑜𝑤−1

𝑅2

𝑅1

𝑅0

𝑅𝑡ℎ

(b)

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝐷

𝑉
𝑏

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑇

𝑅
𝑥

𝑅
𝑀
𝑇
𝐽 2

𝑅
𝑇

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑦

𝑅
𝑥

𝑅
𝑁
𝑟
𝑜
𝑤
−
1

𝑀
𝑇
𝐽 1

𝑅
2𝑀
𝑇
𝐽 1

𝑅
1𝑀
𝑇
𝐽 1

𝑅
𝐷

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅
𝑉
𝑖𝑎

𝑅𝑁𝑟𝑜𝑤−1
′

𝑅2
′

𝑅1
′

𝑉𝑡ℎ+
_

𝑉𝑁𝑟𝑜𝑤−1+
_

𝑉2+
_

𝑉1+
_

(c)

Figure A.1: (a) The circuit model for 1-input gates, showing the observation point for
calculating Thevenin equivalents; Notations used in the chain of rows for defining the
(b) Thevenin resistance (Rth), and (c) Thevenin voltage (Vth).

128

the resistance, Rrowi , of row i as:

Rrowi = 2(RV ia +RT) +Rx +RMTJ1
i +RMTJ2 (A.3)

The input logic value depends on the application, i..e, RMTJ1
i can be either RP and

RAP . For each gate, the output resistance is a known preset value: for a Buffer (NOT)

gate implemented across all rows, the preset is 1 (0). Therefore, RMTJ2 for the Buffer

and NOT gates are RAP and RP , respectively.

We can obtain Rth, using the notations in Fig. C.1(b), as:

Rth = 2(Ry +RV ia) +Rx +RNrow−1 (A.4)

where RNrow−1 is calculated using the recursive expression:

Ri =
Rrowi(Ri−1 + 2Ry)

Rrowi +Ri−1 + 2Ry
(A.5)

The base case corresponds to the driver row that precedes the first row, and isR0 = 2RD,

as seen in Fig. C.1(a).

To compute Vth, as illustrated in Fig. C.1(c), we first compute the intermediate

variable R′j , which corresponds to the effective downstream resistance (away from the

source) seen from node j. The computation proceeds in a recursive fashion from the

last row towards the first as:

R′j−1 =
Rrowj−1(R′j + 2Ry)

Rrowj−1 +R′j + 2Ry
(A.6)

with the base case R′Nrow−1 = RrowNrow−1 .

Having computed R′j , we may now compute Vth = VNrow , using a recursive compu-

tation on Vi:

Vj =
R′j

2Ry +R′j
Vj−1 (A.7)

in which 2 ≤ j ≤ Nrow − 1 and the base case is:

V1 =
R′1

R′1 + 2Ry + 2RD
Vb (A.8)

129

Thevenin Model for N-input Gates

The 1-input model can easily be extended for the case where the number of inputsN > 1.

For this case, we have N columns of input MTJs that connect to an output MTJ in

each row: the worst case corresponds to the scenario where all inputs are adjacent to

each other and dcolumn columns away from the output. As a simplification, we assume

that all units are equally far and that the resistance to the output for each is Rx: this

is reasonable because the horizontal resistance between adjacent columns is negligible.

In this case, in column i, N parallel structures, each consisting of series connections of

Ry, Rvia, R
MTJ1
i , and RT , connect through Rx to the output cell, modeled as a series

connection of RT and RMTJ2 . We generalize Equation (C.1) to

RRowi =

(
1 +

1

N

)
(RV ia +RT) +Rx +

RMTJ1
i

N
+RMTJ2 (A.9)

Proceeding similarly to the 1-input case, we generalize Equation (C.2) to compute Rth

as:

Rth =

(
1 +

1

N

)
(Ry +RV ia) +Rx +RNrow−1 (A.10)

where RNrow−1 can be obtained using the recursion:

Ri =
RRowi(Ri−1 +

(
1 + 1

N

)
Ry)

RRowi +Ri−1 +
(
1 + 1

N

)
Ry

(A.11)

where 1 ≤ i ≤ Nrow − 1 and the base case is R1 =
(
1 + 1

N

)
RD, corresponding to the

fact that each input line is driven by a source Vb with a series resistance RD to the first

via.

Similarly, one can recursively compute Vth. Analogously to Equation (C.4), we first

compute R′j recursively, from the last row to the first, as:

R′j−1 =
RRowj−1(R′j +

(
1 + 1

N

)
Ry)

RRowj−1 +R′j +
(
1 + 1

N

)
Ry)

(A.12)

where the base case is RNrow−1 = RRowNrow−1
.

130

We can then compute Vth = VNrow recursively using the following recursion for Vj :

Vj =
R′j(

1 + 1
N

)
Ry +R′j

Vj−1 (A.13)

in which 2 ≤ j ≤ Nrow − 1 and the base case is:

V1 =
R′1

R′1 +
(
1 + 1

N

)
Ry +

(
1 + 1

N

)
RD

Vb (A.14)

Appendix B

STT CRAM Parasitics

MTJ Parameters

We consider two sets of models for MTJs: (a) today’s MTJ where parameters are typ-

ical values for today’s STT MTJ technology, (b) advanced MTJ in which parameters

are corresponding to the realistic near-future process. With the fast development of

MTJ technology, only considering today’s MTJ in our analysis could soon be obsolete.

Moreover, analyzing the method for advanced MTJ technology provide a superior un-

derstanding of future bottlenecks, design issues, and opportunities. The parameters for

today’s and advanced near-future technologies are listed in Table B.1.

Interconnect specifications for ASAP7

The interconnect specifications are listed in Table D.2, which shows the metal thick-

ness (tM) and resistivity (ρM), the minimum line spacing (Smin), minimum line width

(Wmin), and Table D.3, which shows the via parameters [7, 8].

131

132

Table B.1: MTJ specifications [2, 6]

Parameters Today’s MTJ Advanced MTJ

MTJ type Interfacial PMTJ Interfacial PMTJ
Material CoFeB/MgO/CoFeB CoFeB(SAF)/MgO/CoFeB
MTJ diameter 45nm 10nm
TMR 133% [42] 500%
RA product 5Ωµm2 1Ωµm2 [43]
Jc 3.1× 106A/cm2 106A/cm2

Ic 50µA 0.79µA
twr 3ns [44] 1ns [42]
RP 3.15KΩ 12.73KΩ
RAP 7.34KΩ 76.39KΩ

Table B.2: Specification of metal layers in ASAP7 [7,8]

Metal tM Smin Wmin ρM

M1(V) 36nm 18nm 18nm 43.2Ω.nm

M2(H) 36nm 18nm 18nm 43.2Ω.nm

M3(V) 36nm 18nm 18nm 43.2Ω.nm

M4(H) 48nm 24nm 24nm 36.9Ω.nm

M5(V) 48nm 24nm 24nm 36.9Ω.nm

M6(H) 64nm 32nm 32nm 32.0Ω.nm

M7(V) 64nm 32nm 32nm 32.0Ω.nm

M8(H) 80nm 40nm 40nm 28.8Ω.nm

M9(V) 80nm 40nm 40nm 28.8Ω.nm

Table B.3: Specification of vias in ASAP7 [7,8]

Via RV Via Size Minimum Spacing

V12 (M1 and M2) 17Ω 18nm×18nm 18nm

V23 (M2 and M3) 17Ω 18nm×18nm 18nm

V34 (M3 and M4) 17Ω 18nm×18nm 18nm

V45 (M4 and M5) 12Ω 24nm×24nm 33nm

V56 (M5 and M6) 12Ω 24nm×24nm 33nm

V67 (M6 and M7) 8Ω 32nm×32nm 45nm

V78 (M7 and M8) 8Ω 32nm×32nm 45nm

V89 (M8 and M9) 6Ω 40nm×40nm 57nm

Appendix C

Thevenin Model for TMVM in

3D XPoint

We derive recursive expressions for calculating Rth and Vth of a (Nrow ×Ncolumn) sub-

array of 3D XPoint.

Within the footprint area of a cell (Wcell × Lcell), we define Gy (representing the

conductance forWLT andWLB segments) andGx (representing the conductance ofBL

segment). Fig. C.1 shows the equivalent simplified circuit model for the implementation

TMVM in the corner case. Row i is separated from its predecessor by conductance Gy

at each end. The input cell is connected to the output cell, Ncolumn columns away. The

conductances in the last row are rearranged to create a two-port structure consisting of

the PCM conductances so that the rest of the network can be modeled using Thevenin

Equivalents (Rth and Vth).

For configuration 1 (listed in Table 5.1), Gy = GM1 = GM3 (assuming similar

wire conductance for WLT s and WLBs) and Gx = GM2 in which the conductance,

GMk
, is given by: G−1

Mk
=

ρMk
LMk

tMk
WMk

, where ρMk
, LMk

, tMk
, and WMk

are, respectively,

the resistivity, length, thickness, and width in metal layer k (see the Supplementary

133

134

(𝐺𝑂1)
−1

𝑅𝐷𝑅𝐷

𝑅𝑡ℎ

𝑅𝑁𝑦−1

𝑅𝑁𝑦−2

𝑅1

𝑅0

(𝐺𝑦)
−1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛 𝐺𝑥
−1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛 𝐺𝑥
−1𝐺𝐶

−1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛 𝐺𝑥
−1𝐺𝐶

−1

𝑁𝑐𝑜𝑙𝑢𝑚𝑛 𝐺𝑥
−1𝐺𝐶

−1

(𝐺𝑦)
−1

(𝐺𝑦)
−1

(𝐺𝑦)
−1

(𝐺𝑦)
−1

(𝐺𝑦)
−1

(𝐺𝑂2)
−1

(𝐺𝑂𝑁𝑟𝑜𝑤−1)
−1

Row 1

Row 𝑁𝑟𝑜𝑤-1

Row 𝑁𝑟𝑜𝑤

Row 𝑁𝑟𝑜𝑤-2

+ -
𝑉𝐷𝐷

𝑉1

𝑉𝑁𝑦−2

𝑉𝑁𝑦−1

Driver

𝑉𝑡ℎ+
_

𝑅1
′

𝑅𝑁𝑟𝑜𝑤−2
′

𝑅𝑁𝑟𝑜𝑤−1
′

+

+

+

_

_

_

Figure C.1: Notations used for calculating Thevenin resistance (Rth) and Thevenin
voltage (Vth) shown on the circuit model for the implementation of TMVM in the worst
case scenario.

Material). For configurations 2 and 3, the equivalent conductance of the wire segment

must be calculated based on the multi-metal layer configuration of a given segment.

For example, in configuration 2, Gy (representing a segment conductance of WLT) is

obtained by Gy = GM3 +GM6 +GM8 .

To calculate Rth and Vth, we derive recursive expressions. For conciseness, we define

the resistance, Rrowi , of row i as:

Rrowi = Ncolumn (Gx)−1 + (GC)−1 +
(
GONrow−i

)−1
(C.1)

We can obtain Rth, using the notations in Fig. C.1, as:

Rth = 2 (Gy)
−1 +Ncolumn (Gx)−1 +RNrow−1 (C.2)

where RNrow−1 is calculated using the recursive expression:

Ri = (Rrowi) ||
(
Ri−1 + 2 (Gy)

−1
)

(C.3)

135

The base case corresponds to the driver row that precedes the first row, and isR0 = 2RD,

as seen in Fig. C.1.

To compute Vth, as illustrated in Fig. C.1, we first compute the intermediate variable

R′j , which corresponds to the effective downstream resistance (away from the source)

seen from node j. The computation proceeds in a recursive fashion from the last row

towards the first as:

R′j−1 =
(
Rrowj−1

)
||
(
R′j + 2 (Gy)

−1
)

(C.4)

with the base case R′Nrow−1 = RrowNrow−1 . Having computed R′j , we may now compute

Vth = VNrow , using a recursive computation on Vi:

Vj =
R′j

2 (Gy)
−1 +R′j

Vj−1 (C.5)

in which 2 ≤ j ≤ Nrow − 1 and the base case is:

V1 =
R′1

R′1 + 2 (Gy)
−1 + 2RD

Vb (C.6)

Appendix D

TMVM in 3D XPoint

PCM parameters

The conductance values of parameters in a PCM cell listed in Table D.1. In this work,

we adopt the RESET current (IRESET) of 100µA with RESET Time (tRESET) of 15ns,

and SET time (tSET) of 80ns with the assumption of SET current (ISET) of 50µA

(= IRESET
2) [9, 10].

Table D.1: PCM cell parameters and values [9, 10]

Parameters Description Value

GA
PCM conductance in the

amorphous state
660 nΩ−1

GC
PCM conductance in the

crystalline state
160µΩ−1

S1
Voltage control switch

for OTS
100nΩ−1(<0V) and

10Ω−1(>0.3V)

S2
Voltage control switch for
PCM in crystalline state

10Ω−1(<0.8V) and
100nΩ−1(>1V)

136

137

Interconnect specifications for ASAP7

The interconnect specifications are listed in Table D.2, which shows the metal thick-

ness (tM) and resistivity (ρM), the minimum line spacing (Smin), minimum line width

(Wmin), and Table D.3, which shows the via parameters [7, 8].

Table D.2: Specification of metal layers in ASAP7 [7,8]

Metal tM Smin Wmin ρM

M1(V) 36nm 18nm 18nm 43.2Ω.nm

M2(H) 36nm 18nm 18nm 43.2Ω.nm

M3(V) 36nm 18nm 18nm 43.2Ω.nm

M4(H) 48nm 24nm 24nm 36.9Ω.nm

M5(V) 48nm 24nm 24nm 36.9Ω.nm

M6(H) 64nm 32nm 32nm 32.0Ω.nm

M7(V) 64nm 32nm 32nm 32.0Ω.nm

M8(H) 80nm 40nm 40nm 28.8Ω.nm

M9(V) 80nm 40nm 40nm 28.8Ω.nm

Table D.3: Specification of vias in ASAP7 [7,8]

Via RV Via Size Minimum Spacing

V12 (M1 and M2) 17Ω 18nm×18nm 18nm

V23 (M2 and M3) 17Ω 18nm×18nm 18nm

V34 (M3 and M4) 17Ω 18nm×18nm 18nm

V45 (M4 and M5) 12Ω 24nm×24nm 33nm

V56 (M5 and M6) 12Ω 24nm×24nm 33nm

V67 (M6 and M7) 8Ω 32nm×32nm 45nm

V78 (M7 and M8) 8Ω 32nm×32nm 45nm

V89 (M8 and M9) 6Ω 40nm×40nm 57nm

138

Status of lines during communications between subarrays

The status of 3D XPoint lines during the communications with each other is listed in

Table D.4.

Table D.4: Status of 3D XPoint lines for two different configurations.

Line Subarray
Configuration

BL-to-BL BL-to-WLT

WLT s
1 Vis are applied Vi are applied
2 all float all active

BLs
1 all active all active

2 all active
all float -{output row

connect to the ground}

WLBs
1 all float all float

2
all float-{output column
connect to the ground} all float

Corner case circuit

The corner case circuit is shown in Fig. D.1. In the Appendix C, we simplified the

circuit even further and calculate the Thevenine equvalents observed from the last row.

In Fig. D.2, we show the reconfiguration and simplification of circuit shown in Fig. D.1.

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑥 𝐺𝑥

𝐺𝑁𝐷

𝑂0

𝑂1

𝑉𝐷𝐷

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑥

𝐺0,0 ≈ 𝐺𝐶

𝐺0,1 ≈ 𝐺𝐶

𝐺0,𝑁𝑦 ≈ 𝐺𝐶

𝑂𝑁𝑦

𝐼1

𝐼𝑁𝑦

𝐼0

𝐺𝑥𝐺𝑥

𝐺𝑥𝐺𝑥

𝐺𝑥𝐺𝑥

𝐺𝑥
𝐺𝑥

𝐺𝑥

𝐼0

𝐺 𝑥
𝑁𝑥

Figure D.1: The equivalent circuit model for the worst case

139

𝑂0 𝑂1

𝐺0,0

𝐺𝑦

𝐺 𝑥
𝑁𝑥

𝐺 𝑥
𝑁𝑥

𝐺𝐶

𝑂1

𝐺 𝑥
𝑁𝑥

𝐺𝐶

𝐺𝑦

𝐺𝑦𝐺𝑦𝐺𝑦

𝑂1

𝐺 𝑥
𝑁𝑥

𝐺𝐶

𝐺𝑦

𝐺𝑦

𝐺𝑦

𝐺𝑦 𝑉𝐷𝐷

𝐺𝑁𝐷

Input and
output PCMs of
the Last row

𝑂0

𝐺0,0 𝐼𝑙𝑎𝑠𝑡

+
−

1/𝑅𝑡ℎ

𝑉 𝑡
ℎ
=
α
𝑡ℎ
𝑉
𝐷
𝐷

Figure D.2: Reconfiguration and simplification of equivalent circuit model.

Multi-bit operations

Thus far, we have discussed the implementations of operations with binary digits. We

introduce two methods that enable us to implement operations with multi-bit digits.

For brevity, we explain the principle using two-bit digits, where each digit consists an

MSB (most significant bit) and an LSB (least significant bit). Let us assume that we

want to perform TMVM of G2bitV where G2bit is a (Nx + 1) × (Ny + 1) matrix with

two-bit elements, meaning the element located in row i and column j of the matrix G2bit

is GMSB
i,j GLSBi,j .

Fig. D.3 illustrates two ways to implement 2-bit operations on a 3D XPoint subarray.

Fig. D.3(a) shows an area-efficient approach. For example, to calculate O0, we need to

calculate (GLSB0,0 + 2GMSB
0,0)V0 + (GLSB1,0 + 2GMSB

1,0)V1 + ... + (GLSBNx,0
+ 2GMSB

Nx,0
)VNx . To

do so, we can apply V0 to the WLT0 (connected to the PCM storing GLSB0,0 bit), and

we can apply 2V0 to WLT1 (connected to the PCM storing GMSB
0,0 bit). Therefore, the

current flowing through the MSB cell is two times larger than that of the LSB cell.

Another more area-intensive approach, which does not require multiple voltage levels,

is shown in Fig. D.3(b) where we copy the MSB in pair of adjacent cells, and we apply

the same voltage to their corresponding WLT s. The current through the MSB cell is

weighted to be twice that of the current through the LSB cell.

We analyze the energy and area for the implementation a multi-bit TMVM using

two schemes that we introduced in Section 5.4. We listed the results in Table D.5. As

140

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3

𝐵𝐿0

𝐵𝐿1

𝐵𝐿2

𝐵𝐿3

(b)(a)

𝑉0 2𝑉0

𝑂0

𝑂1

𝑂𝑁𝑦

𝐺0,0
𝐿𝑆𝐵

𝐺0,0
𝑀𝑆𝐵 𝐺1,0

𝐿𝑆𝐵 𝐺1,0
𝑀𝑆𝐵

𝑉1 2𝑉1
𝑉0 𝑉0 𝑉0 𝑉1

𝐺0,0
𝐿𝑆𝐵

𝑂0

𝑂1

𝑂𝑁𝑦

𝐺0,0
𝑀𝑆𝐵 𝐺0,0

𝑀𝑆𝐵 𝐺1,0
𝐿𝑆𝐵

Figure D.3: Two implementations with multi-bit operations: (a) area-efficient imple-
mentation, (b) low-power implementation.

Table D.5: Evaluation of implementation energy and area for multi-bit TMVM using
area efficient and low power schemes.

Parameters
Implementation

Scheme

Number of Bits for each G element

1 2 3 4 5 6

TMVM

Energy

(pJ)

Area Efficient 2.0 5.0 13.1

Low Power 2.0 2.2 2.4 2.5 2.6 2.6

TMVM

Area

(µm2)

Area Efficient 0.2 0.4 0.6

Low Power 0.2 0.6 1.3 2.8 5.7 11.6

we increase the number of bits for the Gi,js, the allocated area for both implementations

increases. However, while for area-efficient scheme, the area increases linearly, for the

low-power scheme, the area increases exponentially. The implementation energy in the

low-power scheme slightly increases with increasing the number of bits, while for the

area-efficient schemes, energy increases rapidly. For the area-efficient scheme, we do not

list the energy and area values beyond 3 bits, because it requires applying a large voltage

level (>5V) within the subarray, making the implementation infeasible and unrealistic.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Motivation
	Thesis contributions

	In-Memory Processing on the Spintronic CRAM: From Hardware Design to Application Mapping
	Introduction
	CRAM Architecture
	MTJ Devices
	The CRAM Array
	Performing Logic Operations Across Rows
	Peripheral Circuitry

	Designing Arithmetic Functions
	Device-level Models
	Gate-level Design
	Functional-level Design

	Scheduling CRAM Operations
	CRAM Applications
	2D Convolution for Image Filtering
	A Neural Inference Engine

	Evaluation and Results
	Execution Time
	Energy
	Comparison between CRAM and NMP

	Related Work
	Conclusion

	Analyzing the Effects of Interconnect Parasitics in the STT CRAM In-Memory Computational Platform
	Introduction
	Overview for Derivation of Bias Voltages of Different Gates Considering Resistances of Access Transistors
	Impact of Wire Parasitics
	Layout Modeling
	Layout of a CRAM Cell
	Layout of the CRAM Array
	Impact of Layout Choices on (Acell, ARcell, RT)
	Metal Layer Configurations and Specifications

	Thevenin Modeling for Each CRAM Row
	Results and Discussion
	Impact of CRAM Parameters on NM
	An Optimal Design for Each Gate

	Conclusion

	Using Spin-Hall MTJs to Build an Energy-Efficient In-memory Computation Platform
	Introduction
	SHE CRAM Structure
	SHE CRAM Detail
	Device-level design
	Gate-level design
	Optimization of spin-Hall channel dimensions
	Functional-level design

	Application-Level Analysis
	Conclusion

	Using 3D XPoint as an In-Memory Computing Accelerator
	Introduction
	Background
	Realization of In-Memory Computing
	Implementation of TMVM
	Implementation of NN

	Enabling More Complex Implementations
	3D XPoint with Four Stacked Levels of PCM Cells
	Scalability of 3D XPoint to Large Computations
	Multi-Layer NN Implementation in a Two-Level PCM Stack

	Analyzing Interconnect Parasitic Effects
	Results and Discussion
	NM Evaluation
	Implementing NNs on the 3D XPoint Substrate

	Conclusion

	Conclusion
	Bibliography
	 Appendix A. Thevenin Models of Current Paths in STT CRAM
	 Appendix B. STT CRAM Parasitics
	 Appendix C. Thevenin Model for TMVM in 3D XPoint
	 Appendix D. TMVM in 3D XPoint

