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The main objective of this paper is to prove the existence of

al attractors for nonlinear wave equations with locally

distributed damping. More specifically, for a bounded regular domain

Q <R

(E)
(B)

(1)

(G1)

3 we consider the problem

ug, * d(x) g(ut) - Au+ f(u) =0, u=ulxt), xeQ, t
+

u=20 on 4 QxR

w0 =’ w0 =

€ R

The functions f € CZ(RI) , & € CI(RJ) satisfy the conditions

g(o) =0 , g strictly increasing ,

+



(G2) 0 < g, < lim inf g’(z) < lim sup g (z) < g, < o,

HEX: FAEX')
(F1) | £7(2)] <c 1+ |z LD p<l,
(F2) lim inf 122 5 -
z 1
|z] >

where Al is the optimal constant in the Poincaré inequality

2
I vuly

v

2 1
Al | u "2 for all u € HO(Q) .

We denote by || “q the standard norm on the space L%(Q).
We assume that the damping mechanism is effective along the

boundary 48Q , i.e. d e Cl(ﬁ) ,

(D1) dl > d(x)

v

0 , xeQ, d(x)2d>0 for xeuw

0

where w=0nQ , 0 a neighbourhood of 48Q in R?

It is well known that the solution operator St(uo,ul) = (u(t),ut(t)),

t 20 generates a Co-semigroup on the associated energy space

X

I

Hé(Q) X LZ(Q) . Moreover, if d =const >0, p< 1 and g linear,

there is a global atthacton 4 for St on X , i.e. 4 1is compact,

invariant ( St(ﬁ) =4, t>0) and dist( St(B)’ 4d) >0 as t 5w

for any bounded set B € X ( cf. HALE [4], HARAUX [6], and the

monographs BABIN-VISHIK (2] , HALE (5], TEMAM [12]). For nonlinear



damping, the method of  CERON-LOPES [3] (cf. also HALE [ 5] )

provides the same result on condition that

1

(0.1) 0<g,< g (z) g, <w for all z e R™.

A

The critical case d = const, p =1, g linear is treated in
ARRIETA-CARVALHO-HALE [1] and BABIN-VISHIK [2], the former approach
being based on the nonlinear variation-of-constants formula , the
latter taking advantage of regularity results for the linearized
equation. For g nonlinear, RAUGEL [10] proves the existence of a
global attractor provided that (0.1) holds with & large enough.

On the other hand, the asymptotic behavior of St
for d localized on a subset of Q and f nonlinear seems to be
a more delicate problem. In the one-dimensional case, LOPES [9]
showed that any solution approaches an equilibrium as time goes
to infinity. The exponential decay to zero was proved by ZUAZUA [13],

[14] under some geometrical constraints imposed on the nonlinearity f .

The main result of this paper may be stated as follows.

THEOREM 1 Unden the conditione (G1), (G2), (F1), (F2), and (D1),

thene exioto a global attracton 4 S X fon the prabilem (E), (B), (I).

REMARK : Theorem 1 generalizes the results of

ARRIETA-CARVALHO-HALE [1] and BABIN-VISHIK [2] to the case of



nonlinear locally distributed damping. In particular, we remove

the hypothesis concerning the constant & postulated in RAUGEL [10].

The proof of Theorem 1 is based on the unique continuation
property proved recently by RUIZ [11] ( cf. Section 1) combined with
a decomposition technique presented in Section 3.

The first step is to show the existence of a bounded absorbing set

for St ( Section 2 ). The standard theory (see HALE[5], TEMAM [12])

suggests to treat the problem as a compact pertunkation

of a conthaction oemigraup (cf . also ARRIETA-CARVALHO-HALE [1],
CERON-LOPES [3 ] , RAUGEL [10 ] etc.). This approach in the present
setting, however, seems to lead to severe restrictions concerning
the nonlinearity f ( cf. ZUAZUA [13] ) as well as the constant g,
( cf. RAUGEL [10] ).

For this reason, it is more convenient to deal with a
conthactine pentunkation of a  campact mapping ( Section 3).
The proof of Theorem 1 1is then completed by means of a

priori estimates in the Sobolev scales (Section 4).

1. PRELIMINARIES

PROPOSITION 1 ( the unique continuation principle - see RUIZ [11] )
fot w be ao abase , m = m(x,t) € L°( 9 x (0,T) ) and

Ve L2 @ x (0,T)) a weak oolutian to the problem



(1.1) V. -AV+mV=0 , V| 0

tt a0x(0,T)

that saniches on w x (0,T) with T > TO(Q,w)= diam (Q \ w ).

Jhen V = 0 almast esenywhene an Q x (0,T).

2. THE EXISTENCE OF AN ABSORBING SET

We start with a priori estimates for the equation with a

general damping term.

LEMMA 1 vot h e CA(R!) be a function oatiofying (F1), (F2).

Jon a fixed 8 > 0 amall, denate

(2.1) L(8,H) = - inf { —— 2" + H(z) }

zelRl 2

z
whene H(z) = [ h(s) ds. Oboaewe that L(8,H) 1 finite fon 98
0

oufficiently omall in wiew of (F2). Zet D=D(x,t,Wt) ke a (damping)

function auch that



(2.2) D(x, t,W )W, >0 .
Then any (athong) oolution W of the prablem

W,, + D(x,t,Wt) - AW+ h(W) =0 an Qx [0,T],

tt
(2.3)
WIsaxro,T) = °
tiofies the eotd
2 2 T 2
(2.4) | W (T) |5 + || v W(T) I, < cf g é D + D W, + |W| +
) T
W i*ax dt + § W dxdt v L(8,H) )
0

W

for any T > 0 oufficiently lange

Proof of Lemma 1: The proof follows the arguments of the linear theory
(cf. LIONS [7)}, ZUAZUA [13] ).

We start with two useful identities. The former is obtained

by multiplying (2.3) by q(x).VW with qe [ Wl’m(Q)]3 :

T
T 1 . 2 2
(2.5) [ f W, qWdx 1, + > J Jdivg (W, |" - |[W[|" -2 HW +
t 0 2 t
Q 0
Q

aq, 8 W 8 T
y —& — + D q.W)dx dt = é I f(q.v) |g§|2 dr dt
K, j axj axk axj 0

a0



where v is the outer normal vector to 4q.

Now, we multiply by €&(x) W , € € Vl'm(Q) to obtain

T

(2.8) [ Jew wax ]g + S0 EDW dx dt =
Q 0
Q
T 2 2
FIECIAT =W - h) W) v woveow  ay dt .
0
Q

We set q = m(x) = x - xO , xO € R 3 in (2.5) and € =1

in (2.6) to deduce the estimate

r T
(270 T EJHIC) dt < = [ S mww + w) ay T - f FD(mW+w)+
W = t 0
0 0 Q
Q
1 T oW, 2
4 HW) - h(W) W dx dt + - f (m.v) [=]1° dr dt
2 0 dv

Z(xo)

with Z(xo) ={ xed| (x - xo).v >0},

where we have denoted by EW[H] the energy functiona]

1 2 2
(2.8) E[HI(t) = 30wt I5 + || wwee) 5 7+ 75 Hwet)) ax

Q
Now we have
T
T 2 2
PSS D (mvw + w) dx dt | <€ |l WIS + ce> £ 1 0% dx ar , €2>0
0 0

Q Q



along with

T

|  J H(W) dx dt| + |

q

and thus
T

(2.9) [ EW[H] (t) dt
0

4

|W| + |W| dx dt +

As the next step,
(2.9). Following LIONS

cl( Z(XO)) such that

and apply the identity

T
T
P8 ohGDW dx dt] < e § 5w+ jwl? dx at
0 q 0Q
r T
<ct T wt(m.vw + W) dx ]0 + JJ D+
Q 0 Q
T
;s w1 % ar at
0 1
Z(XO)

we have to dominate the surface integral in

{71 we construct a neighbourhood w’ of

cl{ w)nQcw

(2.5) with g =C € [Wl’m(Q)]3 where

=v on Z(xo) ) C.v i 0 a.e. on N
(2.10)
=0 on Q-uw
T T T
(2.11) f J |6——"/|2 dr dt < J J (L.v) |ﬂ"|‘2 dr dt < c { J [ W
0 8 v ) dv - 0 t
Z(XO) a0 w’

0?4 v W o+ (Wl

e W ax dt) + o2l 7 W, .9 W dx ]g

Q



T
Thus, finally, we have to dominate the term [ [ IVWIZ dx dt in
0 w
(2.11). To this end, we construct a function n e Wl’m(Q) ,
nme [0,1] , n=1 on w ,
(2.12) n=20 on Q- w ,

| vnl%/ n e L%uw)

(cf. LIONS [7] ). Applying the identity (2.6) with € =17 we get

T T

(2.13) S P (widedt <c ( S00% + (W o+ Wit daxdr
0, 0,
T T
I wf dx dt + [fn W, Wax 1] J.
0
w (9]

Combining (2.9) with (2.11),(2.13) we obtain the estimate

T T 2 4
(2.14) JEJH] () dt <c { J 5 0%+ (W + W ax de +

0 0Q

SN

I Wf dx dt +
w

[J W(Cm+ 200+ (1+m) W) dx 1)),
Q

In accordance with the energy equality

T
(2.15) Ew[H](T) - EW[H](O) =-JJDW

%9

¢ dx dt < 0

and by virtue of (F2), we get

2 2
(2.18)  E [HI(t) > cl | W5+ "VW(t)"Z] - L(8,H) w(Q) , t=o0,T.
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Thus the last term in (2.14) may be estimated as follows

(A7) LS W ((n+ 20. %W + (1 + ) W) ax 1] ¢
! <

2 2 2 2
cC | Wt(T)"Z + ||VW(T)||2 + ||wt(o)||2 + ||VW(0)||2 ) <

T
c( EW[H](T) + I J D Wt + L(8,H) dx dt ) .
0
Q
T
Finally, (2.15) yields T EW[H](T) <J Ew[H](t) dt and, consequently,
0

(2.14),(2.17) give rise to (2.4) for T large enough.
Q.E.D.

From now on, the value of T will be fixed so large that the

conclusions of Lemma 1, Proposition 1 hold. At this stage, we are

ready to prove the main result of this section.

PROPOSITION 2  ( the ultimate dissipativity)

The salutian semignoup St o ultimate dissipatine, i.e.
thene exioto a bounded oet B, € X ,st(BO)gBO for t >
and far any B bounded thene io a time t,(B) ouch that

v
S

(2.18) S,(B) S B, {or atl t

ItV
~

Proof of Proposition 2 : As the problem is autonomous and the



11

energy is bounded from below (cf. (F2)) , nonincreasing , the
images of bounded sets by St remain bounded for all t >0 and

Proposition 2 results from the following lemma :

LEMMA 2 Thene in a piced baounded oet 801 auch that fon any ficed

B ¢ X bounded thene exito a otnictly paoitine canstant K(B) auch
that

z
(2.19) EU[F](T) - EU[F](O) < - K(B) , F(z) =7J f(s) ds

0
whenesen the initial data (uC,ul) belong ta B and

(2.20) (u(T),ut(T) ) € B\ 801

The desired absorbing is then given as

B, =U S.(B,).
0 £50 t 01

Proof of Lemma 2 : We argue by contradiction, i.e. we suppose that
for arbitrary M > 0 there is a bounded set B and a sequence of

solutions (un,u?) such that

(2.21) (u”(O),u’:(O) )eB ,

2

(2.22) M P

A

ey 15+ 1w |

and E n[F](T) - E n[F](O) >0, i.e.
u u
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(2.23)

ST

L dix) g(u?) u? dx dt 50 , n oo .
Q

Passing to subsequences if necessary we may assume that

(2.24) BN weakly star in L%(0,T, Hé(Q) )

(2.25) u? s U weakly star in L%(0,T, %) ) |

and, by virtue of the embedding Hé(Q) C LB(Q),
n . 2 2
(2.28) f(u') > f(U) weakly in L°(0,T, L°(Q)) .
Consequently, the limit function U solves the problem

(2.27) U,, -AU+ f(U) =0 , U

tt 8x(0,71° O+ Utlugro.1) = 0 -

The unique continuation principle (Proposition 1) applied to

V= Ut yields

(2.28) Ut = 0 1identically on Q x (0,T)

and thus

(2.29) U=U is a stationary solution of (E), (B).

On the other hand, we can apply the conclusion of Lemma 1

to (E), (B) to obtain the relation
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n 2 n 2
(2.30) Mo | ug (M5 + | YD <
T 2 np2 n, n n n 4 T 2
cf J [ d7gluy)” + dgluy) up + |u”] + |u| dx dt + J [ (u?) dx dt +L(8,F)}
0 0w
Q

By virtue of (G1),(G2) , we have the inequalities

(2.31) g(z)?

(2.32) zZ

A

c g(z) z ,

for all € > O.

A

e + c(e) g(z)

N

Combining (D1) , (2.23) together with (2.30)- (2.32) we get

T
(2.33) M <c{lim [ J |u
T e 0 Q

Moy ™ v dax dt v L8, F)Y =

AT £ (0] + |0)F ax + L8, P}
0

in view of (2.24),(2.25) and compactness of the embedding Hé(ﬂ)c L4(Q).
As the set of stationary solutions to (E),(B) is bounded

and M was arbitrary, we have arrived at contradiction.

Q.E.D.
3. THE DECOMPOSITION

We start with the decomposition of the nonlinearity f

LEMMA 3 : (ARRIETA-CARVALHO-HALE [1]).
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Unden the acoumptiona (F1),(F2) , the nonbineanity f
can b&e decompased f = f1 + f2 whene fl € C2(R1), fze CI(RI) and

(3.1) z fl(z) 20 fon all =z

(3.2)  1(£1(2)] < el + |2])  for att z,

3.3) 1)) < o1+ 12178 with 5§50 poraw z
2

(3.4)  1limine L2,
z 1

[z] 5

The key to the proof of Theorem 1 is to decompose the solution

u=v+w where

(E1) Vip * d(x) ( g(ut) - g(ut - Vt) ) - Av + fl(v) =0 on Qx R

vi =0, v =% vio)=ul |
d0xR
and
(E2) Wip ¥ d(x) g(wt) -Aw+ fl(v + w) - fl(v) = - fz(u) on QxR
w] =0 s w(0) = w,(0) =0
BOR" t

The behavior of v 1is determined by the following lemma.

’
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LEMMA 4 : There is a function B : R' 5 R' |

(3.5) B(t) >0 as t 5w |,

auch that

(3.8) | v, l, + I} vwvct) I, ¢ BCt) for all 't >0

for any oolution v of (E1) atanting {ram B, . In panticulan,
B i» independent of u, .

Proof of Lemma 4 : The idea of the proof is the same as in

Proposition 2. Applying the energy equality to (E1) we obtain

BT g3 zlIvlz+lvv)y + I F(v) ax ]+
T 1 :
+ f f d(x) ( g(ut) - g(ut - Vt)) Vt dx dt = 0 , F (z) = f f (S) ds
0 0
Q

It suffices to show that

(3.8) EJFNICT) - E(F11C0) < - k) < o

whenever (uO,ul) € B and

0
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(3.8) O0<HM

A

2 2
I Vt(T) “2 + ] Vv "2 < c(BO)

for all M > 0 .

Reasoning by contradiction we obtain a bounded sequence ( Vn,V?)

such that
n 2 n 2 .
(3.10) M< v (T) u2 + || v v, (T) M2 for a certain M > 0
T n n n n
(3.11) J Sd(x ) (glu, ) - glu,-v,)) v, dxdt > O as no-> o
0 Q t t t t

Now we can repeat the arguments of the proof of Lemma 2,

specifically the steps (2.24)-(2.29) to conclude that

(3.12) v" 50 weakly star in L%(0,T, Hé(n) ),

(3.13) v? 50 weakly star in L%0,T, L%(q)) .

We have used the fact that due to the structural properties of f1

(cf. (3.1)) the only stationary solution to the equation (2.27)
(with f replaced by f1 ) is zero.
Applying Lemma 1 to (E1) and using (3.10)- (3.13)

along with compactness of Hé(Q) C L4(Q) we obtain an inequality

T 2 n n n,.2 T 2
(3.14) M < lim of J J d%(g(u)) - glu] - vI)* + 7 J‘(v;’) dx dt}.
T oo 0 Q 0 w

Observe that L(6,F1) =0 for &8 small

Our ultimate goal is to show that (3.11) implies that the
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right-hand side of (3.14) is zero. In view of (G1), (G2), we obtain

(3.15) | &(s) - g(s - z) | < c |z | for all s ,z € R

which yields the convergence to zero for the first term.
By virtue of the hypothesis (D1) , the second term in (3.14) will
tend to zero ( provided (3.11) holds) as soon as we are able to

estimate the quantity 22 in terms of (g(s) - g(s-z))z . We claim that

(3.18) 22 e+ cle) g(s) - g(s-z) ) z for all € >0 and s, z € RI.

Indeed, (3.16) holds for all |z | < Ve and for |z| > Ve we

have to show

(3.17) inf J g'(z) dz >0
J

length(J) > Ve

which is true due to (G1), (G2).
Thus (3.14) implies M = 0 1in contrast with (3.10).

Q.E.D.

4. COMPACTNESS OF THE TRAJECTORIES OF (E2)

To complete the proof of Theorem 1, we want to show that the

the solution couple (w(t),wt(f) ) of (E2) belongs to a compact
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subset of X for any fixed t as soon as (uo,ul) € BO

Following ARRIETA-CARVALHO-HALE [1 ] we introduce

the intermediate Sobolev spaces Ha(Q), a € (0,1) with the norm

|v(x) - v(y)|2

3+ 2a dx dy J

@1 v ni=cgviy ¢ 01
lx - yl
QQ

(cf. LIONS-MAGENES [8 ] ). We recall the embedding relations

(4.2) %) HB(Q) compactly if o > B
and

1 1 a
(4.3) ) ¢ 9  if - =- - -

q 2 3

Finally , we make use of the spaces D(AB) , B2 0 where

A 1is the L2—realisation of the operator

Av=-Av on Q |, v|aQ = 0.

We have the relation
o

(4.4) Hg(Q) e D 4% ) c N

where Hg(Q) is the closure of C;(Q) in Ha(Q).

LEMMA 5 : Faranyg t 20, the sobutian (w(t),wt(t)) af the

problem (E2) belang to a ficed baunded oet in
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(4.5) ) « W) . B>0 (oman enaugh)

whenesen the functione u , v ane detemined by (E), (E1) with

the data (uo,ul) € BO .

Proof of Lemma 5 : To begin with, observe that the couple w=u - v ,

Wy =u, - vy is uniformly bounded in Hé(Q) x LZ(Q) by virtue of

Proposition 2 and Lemma 4.

As the next step, we multiply the equation (E2) by the

2a
w

expression A P > 0 and integrate by parts to obtain

1
« 2 a+2 2
(4.6) | 4 Wi CONS + | A7 wee) I5 <

et I 10l vt) + wit) ) - fluce)) ) 42%, (t)] dx +
Q

Fofw)) 2% wit) | ax
Q

1 1

I R R I B I
Q

ST
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1 1 1 1
L e e, A8 T e P a7

| A“(d(x)g(wt)) A“wt| dx dt }.

First of all, observe that

(4.7) T flev v w) - flovy ) A% (1)) dx < e (B,)
! <

(4.8) Py £%wt) | ax g e(By)
Q

if

I~

(4.9) a <

Next, we use the embedding relation (4.3),(4.4) along with

(F1) to estimate

1
1,, 1,, a+2
(4.10) || (£ (v + w) = (£)(v)) v, ||q < e(By) | A7 v |,
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1., o

(4.11) | (£7) (v + w) W, “q < c(BO) | 4 W, "2 ,
and
(a.12) | (£2rw u, | g e(By
where

11,1, 1 2a+1,_ 1 ,1_ 2 6
(4.13) & =5 + > + ( 3 3 ) 3 + ( 5 3 ), s>
Moreover,

1 1 1

-2 ,a+2 ot 2 1 1 1 - 2«

(4.14) " A A w "r < ¢ " A w "2 , ==3- 3 =1 -

Finally, for « satisfying (4.9) ,we have HZa = Hga hence

o 2 2
(4.18) | A7(d(xglw,)) |, < e(d) (1 glw) 11, =

2

3+4a

QQ | x -y |

Q=
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2 o 2
c(d, g) [l Wy ]]Za < c(d,g) | 4 W, "2

Applying the Gronwall lemma to (4.8) and using the above
estimates we get the conclusion of the lemma for o > O small enough.

Q.E.D.

The proof of Theorem 1 follows from Proposition 2 and Lemmas 4 , 5

by means of the standard theory of the dissipative systems (cf. HALE
[5 1.
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