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Thesis Abstract 

Functional interactions between the mu opioid receptor (MOR) and the 

metabotropic glutamate receptor 5 (mGluR5) in pain and analgesia have been 

well established. MMG22 is a bivalent ligand containing MOR agonist 

(oxymorphamine) and mGluR5 antagonist (MPEP) pharmacophores tethered by 

a 22-atom linker. MMG22 has been shown to produce potent analgesia in 

several models of chronic inflammatory and neuropathic pain. This study 

assessed the efficacy of systemic administration of MMG22 at reducing pain 

behavior in the spared nerve injury (SNI) model of neuropathic pain in mice, as 

well as its side effect profile and abuse potential. MMG22 reduced mechanical 

hyperalgesia and spontaneous ongoing pain after SNI, with greater potency early 

(10 days) as compared to late (30 days) after injury. Systemic administration of 

MMG22 did not induce place preference in naïve animals, suggesting absence of 

abuse liability when compared to traditional opioids. MMG22 also lacked the 

central locomotor, respiratory, and anxiolytic side effects of its monomeric 

pharmacophores. Evaluation of mRNA expression showed the transcripts for 

both receptors were co-localized in cells in the dorsal horn of the lumbar spinal 

cord and dorsal root ganglia. Teased nerve fiber recordings from the sural nerve 

of SNI mice show that MMG22 reduces the firing rate of C and Aδ fiber 

nociceptors evoked by suprathreshold stimuli. Thus, MMG22 reduces 

hyperalgesia after injury in the SNI model of neuropathic pain by decreasing 

nociceptor activity without the typical centrally mediated side effects associated 

with traditional opioids. 
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Chapter 1 

 

Pain and its pathways 

 

 

Pain and its manifestations 

The IASP defines pain as: 

“An unpleasant sensory and emotional experience associated with actual or 

potential tissue damage, or described in terms of such damage” [619]. 

A study in 2016 found that ~20% of Americans suffer from chronic pain 

[164], costing approximately $560 billion dollars annually in direct medical costs, 

lost productivity and disability programs [327]. Pain has both sensory and 

affective components; the purely sensory components of pain (such as intensity 

and location) are referred to as nociception, while the emotional component is 

often referred to as the distress or suffering associated with a painful stimulus. 

Chronic pain conditions are commonly associated with comorbid physical and 

emotional/affective disorders including decreased mobility, increased incidence 

of anxiety and depression, and an overall reduced quality of life [276,277]. The 

following thesis will deal with the purely nociceptive components of pain. 

The different types of pain 

Although pain is a nearly universal experience; pain itself can manifest in 

a variety of patterns. We categorize different types of pain in several ways 

including duration (acute vs chronic) and pathophysiology (nociceptive, 

inflammatory or neuropathic). Acute pain can be provoked by disease or injury 

and is generally self-limited. Acute pain serves a biological function and is 

necessary to avoid/limit injury and promote healing after tissue damage [78]. The 

importance of acute pain for survival is highlighted by the numerous pathologies 

seen in individuals who suffer from congenital insensitivity to pain (CIP) [712]. 

Patients with CIP are unable to perceive pain, this results in repeated injuries 
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including: oral self-mutilation, biting of the fingertips, bone fractures, and burns 

[712]. Clinically the transition from acute to chronic pain happens if pain persists 

for three months after onset [589]; however, this definition is purely operational 

and not based on pathophysiology. While acute pain is a biological necessity, 

chronic pain serves no clear biological purpose and has no recognizable 

endpoint. 

With regard to the pathophysiology, most pain conditions fall into one of 

three categories: nociceptive, inflammatory or neuropathic (although the 

categories are not mutually exclusive). Nociceptive pain is defined as pain that 

arises from actual or threatened damage to non-neural tissue [619] and is due to 

the activation of peripheral nociceptors. Nociceptive pain can be acute and self-

limited (e.g. pain after stubbing your toe, pain from a paper cut) or chronic (e.g. 

osteoarthritis). Inflammatory pain is caused by inflammatory mediators 

sensitizing nociceptors and can also be acute (e.g. pain from an acute infection) 

or chronic (e.g. rheumatoid arthritis). Neuropathic pain is caused by a lesion or 

disease of the somatosensory system itself [619]. 

Neuropathic pain (NP) is associated with a variety of etiologies, all of 

which lead to the increased excitability of neurons along the sensory neuroaxis 

which causes sensations of pain. NP can be further separated into central and 

peripheral subtypes. Central neuropathic pain results from damage to pathways 

or nuclei in the central nervous system that relay and process nociceptive signals 

(e.g. post stroke pain, spinal cord injury, and multiple sclerosis) [853]. Peripheral 

neuropathic pain results from damage to the primary afferent fibers that transmit 

information about painful stimuli to the CNS and is associated with numerous 

conditions including: post herpetic neuralgia, phantom limb pain, diabetic NP 

(DNP), and chemotherapy induced peripheral NP (CIPN) and trauma [268,340]. 

The most common symptoms of NP include ongoing burning pain, paroxysmal 

electric shock-like pain and brush-evoked pain [159,819]. Peripheral 

neuropathies caused by generalized damage to peripheral nerves (such as in 

DNP and CIPN) typically present in a “glove and stocking” distribution, primarily 

affecting the distal extremities including feet, calves and hands. This pattern is 
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characteristic of a progressive dying-back, length-dependent, process of distal to 

proximal sensory loss and pain. The prevalence of NP in the general population 

is estimated to be between 7 and 10% [81,293], and is expected to increase 

along with the incidence of diabetes [141]. Compared to other chronic pain 

etiologies, NP is associated with increased drug prescriptions and healthcare 

visits [26,141,811].  

Allodynia and hyperalgesia 

Acute and chronic pain may be accompanied by hyperalgesia and or 

allodynia. Hyperalgesia is defined as an increased perception of pain to a 

normally painful stimulus, whereas allodynia is a perception of pain to a normally 

non-painful stimulus (Fig. 1.1). Examples of allodynia include the pain caused by 

light touch to sun-burned skin, or the intense pain caused by clothing brushing 

over the skin of people with peripheral neuropathies.  

Hyperalgesia is increased pain felt from a normally painful stimulus. 

Examples of hyperalgesia include the exaggerated pain response generated 

when someone with painful peripheral neuropathy steps on a Lego, or the pain of 

a sharp object that pokes a blister. Hyperalgesia can be primary (at the site of 

injury and caused by peripheral sensitization) or secondary (in non-injured 

tissues surrounding an injury and caused by sensitization of central pain 

pathways). The mechanisms underlying primary and secondary hyperalgesia will 

be addressed later. Functionally allodynia and hyperalgesia serve to aid in 

healing by creating a state of hypervigilance surrounding the injured area (i.e. 

avoid the pain that accompanies walking on a sprained ankle to prevent further 

damage and promote healing). The enhanced sensitivity for pain may outlast the 

initial injury. At this point pain becomes a disease in and of itself, instead of 

merely a symptom of an underlying process. 
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Figure 1.1 Allodynia and hyperalgesia 

An introduction to the somatosensory pathway 

Form and function of primary afferent neurons innervating skin 

The cutaneous somatosensory pathway begins in the periphery when the 

primary afferent terminals in the epidermis and underlying dermis are activated 

by various sensory stimuli.  These cutaneous nerve projections arise from the 

peripherally extending branches of neurons with a unique pseudo-unipolar 

morphology. Upon leaving the dorsal root ganglia (DRG), one branch extends 

peripherally to innervate the end organ while the other projects to the CNS 

(spinal cord or brainstem). Cutaneous stimuli (mechanical, thermal or chemical) 

directly or indirectly activate ion channels/receptors on the peripheral terminals of 

primary afferent neurons. Ion channel activation causes membrane 

depolarization and, if the stimulus is of sufficient intensity, this in turn activates 

voltage gated ion channels leading to the generation of action potentials. 

Mutations in genes encoding voltage gated sodium channels underlie 

several genetic disorders that cause altered pain sensation cue to nociceptor 

hyperexcitability. There are two main families of voltage gated sodium channels 

involved in the initiation and generation of action potentials; channels sensitive to 

Figure 1.1 Allodynia and hyperalgesia. Injury causes a left shift in 

the stimulus response curve from the blue line (normal) to the red line 

(injured). Stimuli that did not elicit pain become painful (allodynia: 

teal) and noxious stimuli elicit more pain than they normally would 

(hyperalgesia: purple). 
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inactivation by tetrodotoxin (TTX-S: Nav1.1, Nav1.6, and Nav1.7) and channels 

resistant to tetrodotoxin (TTX-R: Nav1.8 and Nav1.9). TTX-S channels are found 

on myelinated and unmyelinated primary afferents, while TTX-R channels are 

found primarily on unmyelinated fibers [11] (both of which will be discussed 

further below). Mutations in the gene encoding for Nav1.7 can result in two very 

distinct heritable pain disorders: congenital insensitivity to pain (as discussed 

earlier [152]) and primary erythromelalgia (characterized by recurring episodes of 

extreme pain [904]) (for review see [281]). 

The ability of a given primary afferent fiber to respond to a specific 

mechanical, thermal, or chemical stimulus depends on the end organs 

associated with the afferent’s terminal branches (for Aβ afferents) and the 

receptors/ion channels expressed on the nerve ending (for all afferents). Once 

generated, action potentials conduct down the axon, bypassing the neuron’s cell 

body, transmitting information from the periphery to the CNS. 

The form and function of low threshold Aβ mechanoreceptors 

Cutaneous sensory fibers are broadly categorized into Aβ, Aδ, and C 

fibers based on their degree of myelination, and how fast they conduct action 

potentials [7]. Aβ fibers are heavily myelinated, with action potential conduction 

velocities between 51-77 m/s in man [813], and 13.8-40 m/s in mouse [97] (Table 

1-1). Aβ fibers mechanical thresholds are low (generally < 2mN [97,394,554]), 

innervate mechanoreceptors including Merkel disks (SA-I), Meissner corpuscles 

(RA-I), Ruffini endings (SA-II) and Pacinian corpuscles (RA-II) in skin, and make 

up around 22% of primary afferent fibers. Aβ fibers relay information about light 

touch and vibration. Merkel disks are located in the basal layer of the epidermis 

and are innervated by Aβ fibers. These primary afferents have a pinpoint 

receptive field and can detect displacement of the skin of less than 1µm. 

Activation of a Merkel complex via low threshold mechanical stimulation induces 

a slowly adapting response that relays information about pressure and texture 

with high spatial resolution [2]. Meissner corpuscles are located in the dermal 

papillae and consist of elongated Schwann cells, a connective tissue capsule and 

a central axon. With small receptive fields, activation of this complex leads to a 
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rapidly adapting response from the associated Aβ fiber and transmits information 

on texture, low frequency vibration and skin movement. Ruffini endings are 

spindle-shaped cylinders composed of layers of Schwann cells and collagen 

fibers with an inner core of nerve terminals surrounded by a fluid filled space. 

Ruffini endings respond to lateral stretching of the skin, are slowly adapting and 

have large receptive fields. Deep in the dermis, Pacinian corpuscles are 

composed of interdigitating lamellar cells surrounding a central Aβ fiber. Pacinian 

corpuscles are extremely sensitive, responding to movement in the nanometer 

range. Despite this sensitivity, they have large receptive fields and hence poor 

spatial resolution. These fibers respond to high frequency vibration up to 1000hz. 

These receptors are also present in hairy skin in touch dome complexes or 

innervating hair follicle shafts [934]. 

Figure 1.2 Trace of electrically stimulated Aβ, Aδ and C fiber wave forms.  

The form and function of C and Aδ low threshold mechanoreceptors in hairy skin 

A subset primary afferent C and Aδ fibers are activated by weak forces, 

and slowly moving mechanical stimuli across the skin, and contribute to touch 

sensation as well as emotional responses to touch [62,63,322,349,402,605,606] 

(for review see [449,502]). Human psychophysical studies have shown low 

threshold C (LTHC) fibers in the hairy skin of the arm, but not the glabrous skin of 

Figure 1.2 Trace of electrically stimulated Aβ, Aδ and C fiber wave forms. Aβ 

fibers are heavily myelinated have fast conduction velocities (51-77 m/s). Aδ fibers 

are thinly myelinated and have intermediate conduction velocities (1.4–35 m/s). C 

fibers are unmyelinated and slowly conducting fibers (0.5-1.4 m/s).  

Aβ

Aδ

C

5ms

1V
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the palm [440,464,828]. These fibers have thresholds between 0.3-2.5mN [828], 

adapt to continuous stimulation, display fatigue and fire after discharges [586]. 

LTHC fibers express VGLUT3 [719] and tyrosine hydroxylase [440], make up 

about 10% of the neurons in the DRG [420,457,719] and innervate the hair shafts 

of zigzag and awl/auchene hairs. Aδ-LTH fibers, or D-hair fibers make up a small 

group of non-peptidergic fibers that express TrkB and respond to low threshold 

mechanical stimuli, bending of hair shafts and cooling of the skin [88,427,440]. 

Other non-noxious fibers in skin include Aδ cooling fibers and C warm fibers that 

signal non-noxious cool and warm stimuli, respectively (Table 1-1). 

Support for the role of TLH-C fibers in emotional touch comes from a 

study that looked at patients after anterolateral cordotomies (a procedure that 

severs the ascending axons carrying nociceptive information to alleviate pain in 

terminal patients). Investigators noted that in addition to loss of pain and 

temperature sensation, patients also reported a lack of erotic touch [409], but this 

finding has not been replicated [495]. Other psychophysical studies have shown 

that patients with congenital loss of C-fibers exhibit altered perception of low 

threshold stimuli [480,547], whereas patients lacking Aβ afferents are able to 

detect soft brush stroking of the forearm [139,604]. 
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Table 1-1 Characteristics and response properties of fibers that encode non-
noxious stimuli 

LTM 

Conduction 

velocity 

(m/s) 

Sensory 

modality 

(Threshold) 

End organ 

(RF size) 

Response 

properties 

SA-I 16-96 [2] 
Skin indentation, 

pressure 

Merkel cell 

RF: 11 mm2 [347] 

 

SA-II 20-100 [2] Skin stretch 
Ruffini ending 

RF: 60 mm2 [347] 

 

RA-I 26-91 [2] 
Skin movement, 

flutter 

Meissner 

corpuscle 

RF: 3-13 mm2 

[249,347] 

 

RA-II 30-90 [2] 
Vibration            

(40-1000 hz) 

Pacinian corpuscle 

RF: 100 mm2 [347] 

 

Aδ LTM/ 

D-hair 
16-96 [2] 

Hair follicle 

deflection and 

cooling 

TH: ≤8.8mN [6] 

Free nerve ending 

RF: single hair to 

20 mm2 [6] 

Slowly or rapidly 

adapting 

Aδ 

Cooling 
5-30 [167] 

Innocuous cool 

Dynamic range: 

10°C - 42°C 

[338] 

Free nerve ending 

RF: 3-10 mm2 

[167] 

 

C-LTM 
0.8-1.2 

[860] 

Low threshold 

mechanical 

TH: 0.3-2.5mN 

[860] 

Free nerve ending 

RF: 1-35 mm2 

[860] 

Slowly or rapidly 

adapting 

C 

Warming 

0.5-2m/s 

[338] 

Non-noxious 

heat  

(30°C -48°C) 

[338] 

RF: <1 mm2 [412] 
 

RF, receptive field size. RA, rapidly adapting. SA, slowly adapting 

0°C

30°C

30°C

35°C

48°C

30°C
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Form and function of nociceptors 

A majority of Aδ and C fibers respond specifically to and encode noxious 

stimuli. These fibers are called “nociceptors”, a term coined in the beginning of 

the 20th century when Charles Sherrington theorized the existence of a special 

set of nerve endings in the skin that respond to “stimuli that do the skin injury, 

stimuli that in continuing to act would injure it still further” [729]. Nociceptors 

respond to a variety of noxious stimuli including noxious cold, noxious heat, high 

threshold mechanical stimuli (>10 mN) in humans [554,828] and mice [97] and a 

variety of algesic chemicals including inflammatory mediators. The response 

frequency of nociceptors to peripheral stimulation is proportional to stimulus 

intensity. Electrophysiology studies have shown that around 70% of cutaneous 

nociceptors respond to more than one stimuli and are termed “polymodal” 

[97,424,640]. Nociceptors are not a homogenous population and can be grouped 

based on several characteristics including conduction velocity, response patterns 

to peripheral stimulation and expression of molecular markers. 

Aδ fibers are thinly myelinated with conduction velocities of 1.5-30 m/s in 

humans [6,97,752] and 1.4-13.0 m/s in mice [97]. C fibers are unmyelinated and 

have slower conduction velocities (0.4-1.4 m/s in mice [97] and <1.5 m/s in man 

[279,294]). Because some Aδ and C fibers can be activated by noxious stimuli, 

the differences in their conduction velocities translates into two temporally distinct 

perceptions of pain termed “first pain” and “second pain” respectively [61,158]. 

Experiments using nerve block have shown that the nociceptive sensations 

associated with activation of Aδ nociceptors are qualitatively different from those 

associated with C fiber activation [72,348,418,481,665,808]. The more rapidly 

conducted signal transmitted by the Aδ fiber called “first pain” and is associated 

with a high spatial resolution and a “pricking” quality [98]. The sensation following 

C fiber activation is slower in onset, poorly localized, and described as burning 

[72]. Unlike Aβ fibers, Aδ and C fibers lack the specialized receptor complexes 

and terminate as free nerve endings in glabrous skin. Peripherally, Aδ fibers 

terminate in 5-20 discrete sensitive spots covering an area of about 4 mm2 

[702,810], whereas most C fibers have only one small but continuous RF 
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between 1-10 mm2 [294,708,807]. RFs are larger on the trunk and proximal limbs 

and smaller in the fingers [708]. 

C and Aδ nociceptors can also be subcategorized by their response 

properties to peripheral stimulation. C fibers can be divided into two groups 

based on the timing of their peak response to thermal stimuli. Quick C (QC) 

fibers exhibit their maximum response during the ramp phase of a heat stimulus, 

while slow C (SC) fibers reach maximum firing rate during the plateau phase of a 

heat stimulus [517]. Aδ fibers likewise can be grouped based on their responses 

to heat and mechanical stimuli. Aδ type-I have a slowly increasing firing pattern 

and have higher heat thresholds whereas Aδ type-II have lower heat thresholds 

and adapt rapidly to continued stimulation [517]. The response properties of 

these neurons will be discussed further in chapter 7. 

Peptidergic and Non-peptidergic Nociceptors 

The two main groups of molecularly defined nociceptors include 

peptidergic and non-peptidergic [536,557]. Early in development, all nociceptors 

depend on nerve growth factor (NGF) signaling for survival and express the NGF 

receptor tyrosine kinase (TrkA) as well as the runt domain transcription factor 

Runx1. Later, about ½ lose their dependence on NGF, but continue to express 

Runx1 and Ret, the receptor for glial cell-derived growth factors (GDNF) [115]. 

Ret+ neurons develop into non-peptidergic nociceptors [536,537]. Non-

peptidergic C-fibers express the enzyme fluoride-resistant acid phosphatase 

(FRAP) and bind Griffonia simplicifolia lectin IB4 [135]. Most non-peptidergic C-

fibers also express the ATP gated ion channel P2X3 [84,838], and a variety of 

Mas-related GPCRs (Mrgpr) involved in transduction of stimuli including chemical 

mediators like neuropeptides [207]. Non-peptidergic C- fibers primarily innervate 

the epidermis [649,791] and are thought to be important for mechanical pain 

[110,919]. Unlike C fibers, non-peptidergic Aδ nociceptive fibers do not bind IB4 

[195]. 

Primary afferents which maintain their dependence on NGF/TrkA signaling 

lose Runx1 expression [115] and become peptidergic nociceptors [536,537]. 

Peptidergic fibers (~50 % of C nociceptors and ~20% of Aδ nociceptors) stain 
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positively for the peptides substance P (SP) and/or Calcitonin Gene Related 

Peptide (CGRP) [29,426,427]. Peptidergic C fibers are believed to be involved 

mainly in transmitting heat pain information [110,919] while peptidergic Aδ fibers 

that express the receptor for neuropeptide Y (Npy2r) are involved in pinprick 

sensation and ablation of these neurons selectively impairs behavioral response 

to pinprick [21]. Peptidergic neurons innervate both skin and deeper structures 

including viscera and muscle [54,642]. Expression of IB4 and/or the peptides 

CGRP and SP is not mutually exclusive as there is some overlap between these 

two populations (more so in rat than in mouse) [667]. 

The function of Aβ nociceptors 

Traditionally, Aβ fibers were thought to be involved in the conduction of 

low threshold sensory information; however, there is a growing body of evidence 

to suggest the existence of a small population of high threshold Aβ fiber 

nociceptors [91,200,425,554]. Previous studies have shown that 18% of A fiber 

nociceptors in monkey [816], and 12% in human [554] had CVs in the Aβ range. 

Contribution of these fibers to the perception of pain is still debated. 

Molecular characteristics of nociceptive neurons 

The particular combination of high threshold receptors and ion channels 

expressed by an individual nociceptor sets up the sensory specificity for that cell. 

Many of these channels are members of a group of Transient Receptor Potential 

(TRP) transmembrane proteins. Humans express 27 different TRP channels that 

are grouped into 6 families including: vallinoid (TRPV), melastatin (TRPM), and 

ankyrin (TRPA) [582]. Many of these channels are activated by thermal stimuli. 

For instance, sensitivity to heat is conferred by a combination of TRPV1, TRPV2, 

TRPV3 and TRPV4 expression [187]. Since it was first cloned in the late 1990s 

[107], TRPV1 is one of the most studied channels in pain literature. TRPV1 is 

activated by heat ~43°C  (around the pain threshold for heat stimuli in humans 

and animals [113,412]) and capsaicin [107]. TRPV1 is found in both peptidergic 

and non-peptidergic nociceptors [274,333,667,803] in rats, but is confined to 

peptidergic fibers in mice [109,667,719,938]. In mice, TRPV1 is selectively 

expressed in a group of mechanically insensitive C fibers [424] as well as a small 
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population of Aδ fibers [558,559]. TPRV2 is activated by heat >52°C and 

expressed by a group of polymodal and mechanically sensitive fibers [424] 

presumably Aδ MH I [106]. 

The role of TRPV1 and TRPV2 in basal heat thresholds has recently been 

questioned as mice lacking TRPV1 have only minor changes in heat sensitivity 

[105], and primary afferents lacking both receptors have normal heat thresholds 

and responses [876]. However, ablating the central terminals of all TRPV1+ fibers 

causes a profound loss of heat sensitivity [110]. TRPV3 and TRPV4 are both 

activated by temperatures around 30°C [273,751] and their expression is seen 

mostly in keratinocytes, suggesting a role for these cells in the transduction of 

heat stimuli [130,636]. 

Transduction of cold stimuli is similarly complex. Temperatures below 

15°C cause pain sensations in glabrous skin [124,740]. TRPM8 is activated by 

cold temperatures with a threshold for activation around 23°C [635]. Expression 

of TRPM8 is seen in about 10-20% of all C and Aδ fibers [386,506,635] and loss 

of this channel dramatically reduces behavioral responses to cold [48,137,186]. 

When Aδ input is blocked, noxious cold stimuli are perceived as “hot”  

[243,481,843], suggesting that C-fiber input evoked by cold is normally 

modulated by simultaneous activation of  Aδ cold-sensitive fibers. Below 18°C 

TRPA1 is activated on a small group of peptidergic fibers, 30% of which also 

express TRPV1 [772]. The involvement of TRPA1 in transduction of cold stimuli 

is debated as primary afferents from TRPA1 KO mice show normal responses to 

cold and [406] and loss of the central terminals that express TRPV1 does not 

decrease behavioral responses to cold [110]. 

TRPA1 has also been implicated in transduction of other stimuli including 

mechanical, heat, and certain chemicals [260]. Regarding mechanical 

transduction, mice lacking TRPA1 have decreased responses to punctate tactile 

stimuli [405], and primary afferents lacking TRPA1 are less responsive to 

mechanical stimuli [406]. TRPA1 is also activated by allyl isothiocyanate, the 

pungent ingredient in mustard and wasabi [350].  

 The mechanisms by which mechanical stimuli are detected and 
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transduced has been heavily investigated and until recently was still unknown. 

Piezo2 is a mechanically activated cation channel [147,148] expressed by a 

variety of DRG neurons [920]. Conditional deletion of piezo2 in sensory neurons 

impairs light touch sensation in mice [783,920]. Another mechanically activated 

ion channel, TACAN, is believed to be important for the detection of high 

threshold tactile stimuli and deleting this channel in non-peptidergic Mrgprd+ C 

fibers decreases nocifensive behaviors to painful mechanical stimuli [49]. These 

studies support earlier results suggesting that Mrgprd+ non-peptidergic C fibers 

are necessary for the transduction of high threshold mechanical stimuli and the 

development of inflammatory mechanical hyperalgesia [110]. 

As noted earlier, nociceptors express a variety of voltage gated sodium 

channels including Nav1.7 and Nav1.8. The electrophysiological properties of 

these channels, along with voltage sensitive and insensitive potassium channels 

and calcium channels, regulate neuronal excitability. Nav1.7 is expressed in 

DRG and sympathetic neurons [73] including 85% of nociceptors [201], 

and loss of Nav1.7 in nociceptors results in decreases in acute thermal and 

mechanical pain responses [569]. Nav1.8 is seen in 80-90% of nociceptors 

[198,822], and Nav1.8 KO mice display reduced responses to noxious 

mechanical [11] and cold stimuli [935]. There are many other receptors and 

channels involved in the transduction of physical/thermal/chemical stimuli, for a 

more thorough review see [43,177,472]. 

Nociceptor sensitization 

Inflammation and primary hyperalgesia 

Peripherally, inflammation causes primary afferent nociceptors to become 

sensitized, lowering the threshold for activation and increasing the firing rate of 

nociceptors causing primary hyperalgesia [235,416,417,515]. Chemical 

mediators released from activated nociceptors as well as non-neuronal cells in 

the vicinity of peripheral nerve endings sensitize nociceptors. These mediators, 

collectively known as “inflammatory soup” include: protons (H+) [65,764], ATP 

[193], peptides (substance P [562], CGRP [437], bradykinin [532]), eicosanoids 

[337], neurotrophins [734], cytokines [753], and chemokines [862] (for review see 
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[43,774,881]). These mediators bind receptors or channels on the ends of 

nociceptors and activate multiple signaling cascades which modulate cellular 

excitability. 

For example, TNF, a prototypical inflammatory cytokine produced by 

macrophages [755] and Schwann cells [724,842] is involved in nociceptor 

sensitization [161,852]. Expression of TNF, and its receptors (TNFR1 and 

TNFR2) are elevated in various pain models including bone cancer pain [925], 

inflammatory pain [325,443,623,879], and nerve injury induced pain (for review 

see [433]). The involvement of TNF in peripheral sensitization is supported by 

evidence that exogenous application of TNF, can activate and sensitize 

nociceptors [306,352,703,757]. Potential mechanisms of TNF induced 

sensitization of primary afferents include increasing expression of TRPV1 [296] 

and COX [223], enhancing voltage gated sodium channel currents [120,345], 

inhibiting sustained potassium currents via prostaglandin synthesis/release [454] 

and increasing cytosolic calcium [655]. 

TRPV1 is essential for the development of thermal hyperalgesia due to 

inflammation and TRPV KO animals develop less thermal hyperalgesia after 

inflammatory insult [105,169,851]. Moreover, TRPV1 itself appears to be 

sensitized by inflammation. Sensitization of TRPV1 is mediated in several ways 

including activation of PLC by bradykinin or nerve growth factor (NGF). PLC 

activation causes breakdown of PIP2  and TRPV1 disinhibition [90]. TRPV1 can 

also be sensitized by direct phosphorylation via protein kinase A (PKA) [465,645] 

or protein kinase C (PKC) [66,465,663,738,832]. Other studies have shown that 

low pH (frequently seen during inflammation [65,764]) can sensitize TRPV1 and 

lower its thermal activation threshold [803]. Bradykinin signaling and subsequent 

breakdown of PIP2 also sensitizes TRPA1 channels on primary afferents 

[375,850], and TRPA1 KO mice do not develop hypersensitivity after mustard oil 

or bradykinin treatment [47,405]. 

Voltage gated sodium channels also play a role in the sensitization of 

primary afferent neurons [407]. In models of inflammatory pain, Nav1.7 and 1.8 

are upregulated in primary afferents [74,345,773] and rodents lacking Nav 1.7 or 
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Nav1.8 in nociceptive C fibers develop less inflammatory mediated hyperalgesia 

[11,529,569]. Modulation of Nav channels by inflammatory mediators is believed 

to be important for peripheral sensitization [74,190,407]. 

In addition to increasing excitability of normally responsive nociceptors, 

inflammatory mediators can also sensitize so called “silent nociceptors”. About 

half of all Aδ and 30% of C fibers nociceptors are mechanically insensitive 

[170,262,287,518]. Mechanically insensitive fibers develop sensitivity to 

mechanical stimuli after injury [707] are believed to be involved in sensitization 

and hyperalgesia after injury or inflammation [706,720]. 

LTH Aδ and C fibers sensitization 

Low threshold C (CLTH) and Aδ (Aδ LTH) fibers are thought to contribute 

to mechanical allodynia in rodents and humans [555,719]; however, the extent of 

their involvement is still unclear [466]. Studies inhibiting transmitter release from 

CLTH neurons by knocking out VGLUT3 have shown reduced behavioral 

sensitization after inflammation and injury [719]; however, these results were not 

replicated when VGLUT3 was specifically knocked out in unmyelinated 

nociceptors [466].  Aδ LTH fibers (including D-hair cells and cooling fibers) make 

up about 30-40% of all Aδ fibers innervating mouse hairy skin [97]. In human 

microneurography recordings, LTH fibers represent around 45% of the total Aδ 

population [6]. 

Neurogenic Inflammation 

C fiber nociceptors are also capable of efferent signaling by releasing 

chemical mediators in the periphery, this process is called neurogenic 

inflammation. Activation of TRPV1+ terminals in the periphery can promote the 

release of bioactive substances that then act on other cell types in the vicinity 

including immune cells and vascular smooth muscle cells [305,334]. The reaction 

in the skin to activation of TRPV1 terminals is three fold, 1: reddening of the skin, 

2: local edema (wheal) caused by substance P induced plasma protein 

extravasation, and 3: arteriolar vasodilation (flare) caused by CGRP induced 

vasodilation [305,855]. Substance P also causes mast cell degranulation and 

histamine release [42]. The spread of the flare reaction but not the local edema is 
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dependent on action potential generation [335] and is probably mediated by 

“axon reflex” [784]. 

How nerve injury causes pain 

Wallerian degeneration 

After peripheral axotomy, distal axon segments undergo Wallerian 

degeneration beginning at the proximal end of the cut axon. This degeneration 

begins within the first 24 hours after injury [50] and continues for 1-2 weeks [252]. 

The peak of the inflammatory response occurs around 4-7 days after injury [252]. 

Schwann cells are the ensheathing glial cells in the peripheral nervous 

system and provide trophic support for axons. Myelinating Schwann cells form 

multilayered membranous sheaths of myelin around large and medium sized 

axons. In contrast Remak cells (non-myelinating Schwann cells) loosely surround 

bundles of unmyelinated axons in groups named Remak bundles. After injury, 

both types of Schwann cells begin to proliferate, secrete cytokines and actively 

phagocytose axonal debris. 

The cytokines secreted by Schwann cells recruit circulating macrophages 

which help clear myelin and axonal debris [802]. Recruited macrophages also 

release inflammatory mediators including IL-1b, IL-6, TNFα and NGF [241,724]. 

These cytokines and neurotrophic factors increase the excitability of primary 

afferent neurons as discussed earlier. The contribution of Wallerian degeneration 

to the development of neuropathic pain is supported by studies showing 

decreased neuropathic pain behaviors in mice where this process is reduced or 

slowed [674,840]. 

Wallerian degeneration provides a favorable microenvironment for axonal 

regrowth by eliminating the myelin sheaths and clearing myelin associated 

factors that inhibit axon growth (for review see [252,693]). Despite providing this 

favorable environment for axon regeneration, not all neurons survive axotomy. 

Studies have shown that around 30% of injured DRG neurons undergo apoptosis 

after peripheral nerve injury [24,300,504,730,833,864,907]. In addition, if 

peripheral regrowth is blocked by nerve ligation, or the mal-approximation of the 
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cut ends of the nerve sheath, the axons will sprout and a neuroma will form at the 

site of injury [180]. 

The involvement of injured fibers in neuropathic pain 

After nerve injury, there is a rapid volley of action potentials sent from the 

site of injury to the spinal cord but this activity is short lived [849]. Injured primary 

afferents develop ectopic activity over a period of hours to days 

[179,282,455,459]. Ectopic firing can originate from both the neuroma that 

develops at the site of injury, as well as neuron cell bodies in the DRG 

[354,455,847]. The development of spontaneous discharge parallels the onset 

tactile allodynia and spontaneous pain behaviors in animal models 

[282,459,778]. 

The involvement of uninjured fibers in neuropathic pain 

The inflammatory milieu induced by the Wallerian degeneration of injured 

axons [597] also induces ectopic activity in uninjured afferents 

[181,182,598,887,888,912]. Pain following nerve injury has also been shown to 

correlate with spontaneous C fiber firing in uninjured fibers [199]. Uninjured 

nociceptors become sensitized to peripheral stimulation [731,749,887] and 

peripheral terminals of intact fibers sprout into denervated territories [183,381] 

increasing the size of their receptive fields. Ectopic activity in one neuron can be 

increased by stimulating the axons of neighboring neurons (more readily in 

myelinated vs unmyelinated fibers) in a process called cross excitation which 

occurs in the DRG [184].In patients, studies have shown that ectopic activity in 

intact primary afferents correlates with pain ratings [103,266,600]. 

Molecular changes after peripheral nerve injury 

After nerve injury, both injured and uninjured fibers show changes in gene 

expression and cell signaling. For example, expression for TRPV1 is increased in 

uninjured fibers [245,317]. However, the involvement of TPRV1 in nerve injury 

induced pain is unclear as TRPV1 KO animals still developed thermal 

hyperalgesia after nerve injury [105]. Other studies looking at the expression of 

Piezo2 suggest that this channel is necessary for the development of tactile 

allodynia after nerve injury [552]. Cytokines, including TNFα, are also 
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upregulated after nerve injury and are involved in the generation of neuropathic 

pain (for review see [433,754]. TNFα increases Nav1.7 expression [479], 

increasing nociceptor excitably. 

In contrast to their involvement in inflammatory pain, expression of Nav1.7 

and Nav1.8 is reduced in injured axons after nerve injury [190,263,408,924]. 

However, uninjured axons show increased Nav currents [263,924] and 

knockdown of Nav expression has been shown to decrease pain phenotype after 

injury [411,659]. Some studies suggest that channel redistribution, instead of up 

or down regulation, may play a role in the development of neuropathic pain [263]. 

However, results from double knock out studies suggest that expression of 

Nav1.7 and Nav1.8 does not affect the development of pain caused by nerve 

injury [568]. A recent case study has demonstrated the development of 

neuropathic pain like symptoms in a patient with congenital insensitivity to pain 

(CIP) caused by a null mutation of Nav1.7 [861], and other clinical studies have 

shown an increase in Nav expression in human neuromas [218]. The conflicting 

evidence around the contribution of Nav 1.7 and Nav1.8 in neuropathic pain, 

suggests more work needs to be done [263,281,339,411,434,503,923]. 

A variety of voltage gated calcium channels (VGCCs), including N, P/Q 

and T types, are also expressed by primary afferent neurons. The 2 auxiliary 

subunit of VGCCs, is upregulated in the DRG after peripheral nerve injury 

[473,926]. This channel is the target of gabapentinoids which will be discussed 

later. 

Nerve injury modulates expression of hundreds of genes in primary 

afferents (for review see [58,441,643]). These changes alter neuronal excitability 

in general and can change the responsiveness of individual fibers to various 

peripheral stimuli. 

Sensitization of high threshold Aβ fibers 

Although, pain has traditionally been thought of as being transduced by 

unmyelinated or thinly myelinated fibers, the properties of Aβ afferents are also 

changed in pathological states. After nerve injury, Aβ fibers develop lower 

mechanical thresholds and prolonged discharge to stimulation [931]. Recently, a 
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study using optogenetic activation of Aβ fibers found that nerve injured animals 

responded with pain like behaviors upon paw illumination [789] supporting a role 

for these fibers in nerve injury induced pain. 

Peripheral glia after nerve injury 

Glial cells of the PNS include satellite glial cells (SGCs) and Schwann 

cells (SCs). Satellite glial cells (SGCs) tightly surround the cell bodies of sensory 

neurons and are connected via gap junctions [285]. Peripheral nerve injury 

causes activation of SGCs [463] that is dependent of neuronal activity [682]. 

Activated SGCs proliferate [467,468], increase expression of GFAP [602], TNF 

[603] and other effectors/receptors involved in nociceptive signaling. 

Inflammation and nerve injury also increase gap junction coupling between SGCs 

and neurons [210,284,286]. ATP is a major signaling molecule between neurons 

and SGCs in sensory ganglia [270,922]. ATP release from neurons activates 

P2X receptors on SGCs [270] causing TNFα release. 

Organization and processing of pain in the CNS 

Form and function of the spinal dorsal horn 

The dorsal horn of the spinal cord is a complex neural circuit involving the 

central projections of primary afferent neurons, intrinsic interneurons (neurons 

whose axons do not project out of the spinal cord), projection neurons whose 

axons ascend to the brain, and the terminals of descending axons from the brain 

which modulate pain transmission. The dorsal horn not only transmits 

information, but also functions to modulate nociceptive signaling. The dorsal horn 

is traditionally divided into discrete layers called Rexed’s layers [683]. The 

superficial dorsal horn consists of the marginal zone (lamina I) and the substantia 

gelatinosa (lamina II), whereas laminae III-VI are considered the deep dorsal 

horn. 

Central projections of primary afferents 

Although primary afferents involved in detection of noxious and non-

noxious stimuli run together in peripheral nerves, their pathways diverge once 

their central processes enter the spinal cord. Central projections from low 

threshold Aβ fibers bifurcate; one branch will ascend to the brainstem in the 
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ipsilateral dorsal columns (cuneate and gracile fasciculi), the other branch will 

enter the dorsal horn and synapse on neurons in the deep dorsal horn (laminae 

III-V). Central terminals of primary afferent Aβ sensory neurons in the dorsal horn 

label with VGLUT1 [800]. 

The central projections of low threshold C fibers (expressing VGLUT3) 

terminate in laminae I and II and overlap with PKCγ but not IB4+ terminals in 

layer IIi [420,719]. Aδ low threshold terminals are located in lamina III and IV 

[440,447]. 

Nociceptive primary afferent dorsal horn projections 

Fibers carrying information about noxious stimuli enter Lissauer’s tract, 

exiting to synapse in the dorsal horn within 1-3 spinal segments of their dorsal 

root entry point. From there, the message is relayed through interneurons to 

projection neurons in laminae I and III-V, whose axons ascend through the 

contralateral spinal thalamic tract (STT) and other tracts. 

The two groups of peptidergic and non-peptidergic fibers have distinct 

projections into the dorsal horn. Peptidergic C fibers terminate in lamina I-II, while 

peptidergic Aδ fibers terminate in laminae I, IIo, and V [259,303,304,320]. 

Peptidergic terminals release glutamate as well as SP and/or CGRP onto second 

order neurons. Non-peptidergic IB4+ C fibers terminate mostly in the dorsal part 

of lamina IIi [86,136,160,557]. Non-peptidergic Aδ fibers terminate in laminae I 

and V [446]. 

Intrinsic spinal neurons 

Over 90% of neurons in the superficial dorsal horn are interneurons [760], 

including excitatory (glutamatergic) (75%) and inhibitory (GABAergic) (25%) [651] 

subtypes. Lamina I neurons have two distinct response patterns to peripheral 

stimulation. The first group responds almost exclusively to noxious stimuli, and 

are called high threshold (HT) or nociceptive specific neurons [127]. A second 

group of neurons responds in a graded fashion to innocuous and noxious stimuli 

are called wide dynamic range neurons (WDR) [511,867]. WDR neurons are also 

found in laminae IV-V where they receive low and high threshold inputs (directly 

or indirectly) through their superficial dendritic arbors [43]. 
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A subpopulation of lamina II neurons expressing PKCγ which receives 

input from CLTH vglut3+ [3,420,578] responds preferentially to slow brushing of 

the skin [448]. These cells are necessary for the development of tactile allodynia 

[23,484,530] (for a review see [798]).  

Labeled lines vs population coding? 

The polymodality of nociceptors has sparked a debate in pain research 

regarding the decoding of sensory input: how does the brain differentiate 

between different stimuli that activate the same primary afferent neurons? The 

answer to this question is beyond the scope of this thesis, but new research 

highlights the importance of cross talk between different primary afferents in the 

dorsal horn and population coding of sensory input [474,859]. 

Nociceptive signaling in the dorsal horn 

Glutamate is the major neurotransmitter released by primary afferent 

neurons onto second order dorsal horn neurons [69,525]. Glutamate binds to two 

different receptor subtypes on postsynaptic cells, ionotropic and metabotropic. 

Ionotropic receptors include α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) receptors, N-methyl-D-aspartate (NMDA) receptors, and kainate 

receptors. There are several groups of metabotropic glutamate receptors 

including group I (mGluR1 and mGluR5), group II (mGluR2 and mGluR3), and 

group III (mGluR4 and mGluR6-8) based on the intracellular trimeric G proteins 

they recruit. Normally, low threshold stimuli cause the release of glutamate from 

the central terminals of primary afferents onto second order neurons. Fast 

excitatory synaptic transmission is accomplished by glutamate binding to and 

opening of AMPA receptor channels (calcium permeable and impermeable 

[805]). A stimulus with a higher firing rate can cause the additional release of 

neuropeptides like substance P and CGRP from peptidergic neurons. Substance 

P binds and activates NK-1 receptors on second order neurons. 

Prolonged AMPA stimulation and postsynaptic depolarization can trigger 

the removal of the Mg2+ block from NMDA receptors on the postsynaptic 

membrane. Glutamate binding to NMDA combined with the removal of the Mg2+ 
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block causes activation of this ionotropic receptor and a subsequent influx of 

calcium into the second order neuron [250]. 

The involvement of central sensitization in chronic pain 

In addition to the peripheral mechanisms promoting hyperalgesia, 

increased synaptic strength between primary afferents and their dorsal horn 

targets (central sensitization) has also been shown to play a role in the 

pathophysiology of hyperalgesia and allodynia [132,163,211,342,698,880]. 

Electrophysiologically, central sensitization is seen as increased spontaneous 

activity, hyperexcitability and increased receptive field sizes of dorsal horn 

neurons and can be induced by tissue or nerve damage [208,866]. There are two 

main mechanisms that have been shown to increase neuronal excitability of 

dorsal horn neurons in an activity dependent manor. 

The first, windup is caused by repetitive, low frequency application of a C 

fiber strength stimulus to the periphery. This causes dorsal horn neurons to fire 

an increased number of action potentials in response to the same stimulus [512] 

and the development of after discharges. Windup is primarily observed in WDR 

neurons [713] and is dependent on temporal summation of C fiber evoked 

synaptic potentials [745] and NMDA receptor activation [168,192,297,512]. 

Temporal summation of pain (the behavioral correlate of windup [215]) has also 

been documented in human subjects [393,666]. 

Windup may lead to the development of the second form of activity 

dependent increase in neuronal excitability, central sensitization. Central 

sensitization is an increase in neuronal excitability following a high frequency 

conditioning stimulus of sufficient strength [878,885], and is considered to be the 

spinal equivalent of long term potentiation (LTP) [698]. LTP between primary 

afferent C fibers and second order dorsal horn neurons can be induced following 

high frequency stimulation [676], as well as noxious stimulation or nerve injury 

[323,699]. Spinal LTP results in reduced activation threshold, increased 

responsiveness to peripheral input and changes in receptive field sizes [143]. 

LTP of synapses in the dorsal horn requires the release of a combination of 

excitatory amino acids (like glutamate) and peptides (such as SP and CGRP) 
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onto dorsal horn neurons [208,577,678,795,824]. Like windup, LTP is driven by 

activation of C-fiber inputs [460,461,781,884] and NDMA receptor activation 

[462,676]. Unlike windup, LTP increases the response of dorsal horn neurons to 

both A and C fiber inputs [741,782,883]. 

NK-1 neurons are essential for the development of central sensitization 

[372,461]. Studies have shown that chemically ablating NK-1 neurons (using 

substance P-saporin conjugate) prevents the development of hyperalgesia in 

models of neuropathic and inflammatory pain [489,580,780]. Studies using NK-1 

KO mice have shown similar results [487]. More recently, LTP has also recently 

been shown to require group I mGluRs [30,257,444].  

Allodynia and secondary hyperalgesia 

Peripheral sensitization can explain the onset of heat allodynia and 

hyperalgesia (caused by sensitization of heat activated ion channels which 

lowers the threshold for activation of heat responsive nociceptors [313]), and  

primary mechanical hyperalgesia (caused by increased firing of nociceptors to 

suprathreshold stimuli [36,731,749]). However, mechanical allodynia cannot be 

explained by the sensitization of primary afferent neurons, as mechanical 

thresholds for Aδ and C fiber afferents rarely drop so low that they would be 

activated by low threshold stimuli [36,37,749]. In patients, compression nerve 

block to inhibit Aβ conduction reduces tactile allodynia [100,395,414,809,933]. 

Other studies have shown that electrical stimulation of Aβ afferents reproduces 

allodynia in patients [664]. Collectively, this evidence strongly suggests that Aβ 

input is responsible for the sensation of allodynia. Recently, a study done in mice 

showed that optogenetic activation of Aβ fibers in the periphery elicited allodynic 

like responses in mice after nerve injury [789]. Peripheral sensitization also 

cannot explain secondary hyperalgesia (pain in areas surrounding injury) as 

primary afferent nociceptors innervating these areas are not sensitized [46,413]. 

To explain these phenomena we invoke non-Hebbian plasticity and 

heterosynaptic potentiation [561]. Central sensitization and synaptic potentiation 

is not only seen at activated synapses (homosynaptic) but on neighboring 

synapses as well (heterosynaptic) [561]. Potentiated synapses may be found on 
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neurons that also receive input from low threshold afferents with receptive fields 

that overlap those of the activated C fibers. Heterosynaptic potentiation allows 

low threshold input from Aβ afferents to drive activation of nociceptive and WDR 

dorsal horn neurons and is thought to be the basis of allodynia. 

Heterosynaptic sensitization is also thought to be the basis for secondary 

hyperalgesia (hyperalgesia in areas distant to, but surrounding an injury). The 

development of secondary hyperalgesia is believed to be due to increased 

excitability of dorsal horn neurons that receive input from primary afferents with 

receptive fields in and surrounding the injury site [414,741,866,878]. This non-

Hebbian LTP serves to increase dorsal horn responses to stimuli in the area 

surrounding the primary site of activation (secondary hyperalgesia). 

Nerve injury and the induction and maintenance of central sensitization 

Injured vs uninjured primary afferent drive in central sensitization 

Research suggests that pain after nerve injury is caused by increased 

activity in both the injured and uninjured axons, as well as altered connectivity in 

the dorsal horn (for review see [99,509]. Immediately after injury, the firing rate of 

dorsal horn neurons increases dramatically, and this is dependent on peripheral 

input [759]. We have previously reviewed how peripheral nerve injury can cause 

the development of ectopic activity in and sensitization of primary afferent 

neurons. Studies have shown that ectopic discharge of primary afferents causes 

sensitization of spinal HT and WDR neurons [422,646–648,697,759]. These 

neurons also have expanded receptive fields [647,785]. 

However, there is ongoing debate as to the importance of injured vs 

uninjured fibers in the development and maintenance of central sensitization. 

Results from several studies have led to the development of two distinct 

hypotheses: the first maintains that activity from injured fibers drives central 

sensitization, the second insists that activity from uninjured fibers is more 

important. Proponents of the injured afferent hypothesis maintain that central 

sensitization is triggered by ectopic activity from axotomized neurons [179,459]. 

This belief stems from studies that have shown that eliminating the central input 

from injured fibers after PNI decreases pain behaviors [659,727,912]. 
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However, there is a paradox here. The incidence of spontaneous activity 

in injured Aδ and C fibers is very low [80,282,431,459,520] and the overwhelming 

source of ectopic activity in injured axons comes from myelinated Aβ fibers 

[80,282]. Studies have also suggested the majority of this activity is from muscle 

afferents [521], and that damage to nerves with muscle but not cutaneous 

afferents is necessary for nerve injury induced pain [924]. However, it is well 

known that C fiber input is necessary for central sensitization [393,884,885]. 

Because of this, some groups have focused on and the development of ectopic 

activity in, and sensitization of, uninjured neighboring axons 

[179,442,598,887,888]. 

Many studies have shown that uninjured nociceptors develop low 

frequency ectopic activity after nerve injury [80,122,196,197,199,731,887], and 

pain following nerve injury correlates with spontaneous C fiber firing in uninjured 

fibers [199]. Uninjured nociceptors also become sensitized to peripheral 

stimulation [122,731,749,887]. One study was able to induce behavioral 

sensitization following low frequency stimulation of C fiber afferents, suggesting 

that low frequency C fiber firing (like that seen in uninjured C fibers after nerve 

injury) can induce central sensitization [888]. Support for the involvement of 

uninjured fibers comes from studies that, in contrast to those mentioned earlier, 

showed eliminating central input from injured axons does not decrease pain 

behaviors [219,442], whereas cutting off input from uninjured fibers does [442]. 

Because the overwhelming source of ectopia after nerve injury comes 

from myelinated Aβ afferents in the injured nerve, multiple avenues of research 

have sought to examine the role of Aβ fibers in the development of central 

sensitization [179,877,878]. Studies have shown that myelinated Aβ fibers 

undergo phenotypic switching, as they begin to express neuropeptides like SP 

and CGRP that are normally restricted to nociceptors [475–

477,483,524,579,584,647,857], but this has been challenged [318]. Support for 

Aβ input in central sensitization comes also from studies showing that ablating C 

fibers fails to prevent the development of nerve injury induced pain behaviors 

[371,556,612]. 
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However, these studies all used the TRPV1 agonist resiniferatoxin (RTX) 

to ablate unmyelinated primary afferent neurons, but as 70% of primary afferents 

are C fibers and only 30% of all neurons in the DRG express TRPV1 

[105,109,667], there would be a significant number of C fibers remaining after 

RTX treatment in the adult. One study looking at electrophysiologically defined C 

fibers found that only 11 out of 88 stained positive for TRPV1 [424]. Hence, RTX 

treatment in adult animals would only ablate between 25 and 50% of C fibers and 

would not be expected to eliminate hyperalgesia in mice. 

The role of phenotypic switching of myelinated Aβ fibers in the induction of 

central sensitization has been supported by evidence showing central sprouting 

of Aβ terminals into the more superficial layers of the dorsal horn after nerve 

injury [389,432,486,563,882,932]. This sprouting would allow low threshold input 

access to the nociceptive circuitry. However, others studies insist that central 

sprouting of low threshold fibers does not happen [38,319,728,806], or that Aβs 

already have projections into the superficial dorsal horn [77,875]. 

Although the ability of injured Aβ afferents to induce or maintain central 

sensitization is still incompletely understood, the ability to induce neuropathic 

pain in mice after elimination of all Nav1.8 expressing primary afferents brings 

into question the necessity of C fiber input for central sensitization [1]. 

Regardless of their role in central sensitization, the evidence that residual 

(uninjured) Aβ afferents are responsible for transmitting stimuli that produce  

tactile allodynia is well established [100,143,266,393,664,809]. 

Ectopic activity of injured afferents correlates with tactile allodynia early, 

but not late after nerve injury [459,778] suggesting that this activity may be 

important for the development but not the maintenance of neuropathic pain 

[459,778,894]. The relative importance of activity in injured vs uninjured fibers in 

the development and maintenance is still heavily debated and the development 

of tactile allodynia after PNI probably involves both [261,336,516,686] (for review 

see [99]). 
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Sympathetically maintained pain 

There is some evidence that certain neuropathic pain conditions are 

maintained through the involvement of the sympathetic nervous system. Studies 

have shown that peripheral nerve injury induces noradrenergic sprouting into 

local DRGs [507]. However, sympathectomy has had varied effects on 

neuropathic pain [685,911]. Recent studies looking at the role of various Nav 

channels have shown that mice lacking Nav1.7 in sensory neurons develop 

neuropathic pain normally [529,569] while mice lacking Nav1.7 in sensory and 

sympathetic neurons show reduced nerve injury induced pain behaviors [529]. 

The role of central glia in neuropathic pain 

Activation of glia (astrocytes and microglia) within the dorsal horn of the 

spinal cord and the subsequent production of cytokines (including TNFα), plays 

an important role in the development of chronic pain [205,527,711]. Centrally, 

TNFα is secreted primarily by activated microglia [288]. Exogenous TNFα can 

induce LTP at C fiber synapses only after nerve injury, indicating enhanced 

responsiveness of dorsal horn neurons to inflammatory cytokines [463]. Inhibiting 

microglial activation can attenuate the development but not the maintenance of 

neuropathic pain [673] (for review see [341]). 

Gate theory of pain 

In 1965, Melzack and Wall developed a theory involving input from low 

threshold mechanoreceptors activating inhibitory interneurons that would then 

“close the gate” by presynaptically inhibiting nociceptive terminals in the dorsal 

horn [510,846]. Conversely, high threshold input would act to disinhibit 

nociceptive projection neurons to “open the gate”. The balance between 

excitation and inhibition in the dorsal horn is thus essential for maintaining normal 

sensory processing in the dorsal horn. Under pathological conditions, the “gate” 

would falter leading to the sensitization of dorsal horn neurons such that low 

threshold input could over-ride the parallel inhibitory signals to activate 

nociceptive spinal neurons. 

 Contemporary views of this gate mechanism implicate two populations of 

interneurons; PKCγ expressing excitatory interneurons in inner lamina II [23,85] 
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and inhibitory interneurons in the superficial dorsal horn. The PKCγ population of 

neurons receives low threshold input and are necessary for injury induced 

allodynia [3,484,530]. Loss of tonic inhibition of these neurons may open the pain 

“gate” and allow low threshold input access to the nociceptive circuitry [85,469]. 

The mechanism by which this loss of inhibition might occur is still unclear but 

may involve inhibitory cell loss or decreased inhibitory tone in the dorsal horn. 

Several studies have shown that peripheral nerve injury results in the loss of 

inhibitory interneurons in the dorsal horn [213,321,482,587,744] or a decrease in 

inhibitory tone [329,540,744] however, other studies have not shown this 

[652,653] (for review see [267]).  

Characteristics of dorsal horn projection neurons 

Projection neurons are located primarily in laminae I with a second 

population scattered throughout laminae III-VIII. These neurons make up the 

spinothalamic tract [153]. Although only 5% of neurons in lamina I are projection 

neurons, 80% of those express NK-1, the receptor for substance P [496,801] and 

may correspond to HT neurons [372], whereas only 30% of projection neurons 

from deeper laminae express NK-1 [496,801].  

Form and function of supraspinal pain pathways 

Some non-noxious information is relayed to the brain through the dorsal 

column medial lemniscus pathway. After ascending through the dorsal columns, 

primary afferent neurons synapse in the dorsal column nuclei in the brainstem. 

From there, secondary afferents cross the midline in the medulla forming the 

medial lemniscus which projects to several nuclei in the thalamus including the 

ventral posterior medial (VPM), ventral posterior lateral (VPL), central lateral (CL) 

and intralaminar nuclei. From the thalamus, information is relayed to several 

cortical areas including the primary somatosensory cortex, insular cortex and 

cingulate cortex (for review see [43,870]). From the dorsal horn through to the 

cortex, information in this pathway maintains a somatotopic arrangement. 

The spinal thalamic tract (STT) is the main relay of nociceptive information 

from the spinal cord to the brain and is more developed in primates than other 

vertebrates [869]. In primates, about half the STT neurons come from lamina I, 
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while ¼ come from lamiae IV-V and the other ¼ from laminae VII-VIII [869]. 

Functionally, about 55% of STT neurons are WDR, 32% of NS, 11% respond to 

stimulation of deep tissues and 2% are activated exclusively by innocuous tactile 

stimulation [61]. Projection neurons cross the midline through the anterior white 

commissure and ascend in the anterolateral spinal cord white matter. As STT 

axons ascend through the brainstem towards the thalamus they send collaterals 

to reticular and mesencephalic nuclei including the dorsal reticular nucleus, 

lateral parabrachial nucleus, and the periaqueductal gray (PAG)  

[14,15,654,760,801] (for review see [613,799]) sites important for descending 

modulation of pain. 

Projection neurons from laminae I, IV and V synapse in the lateral 

thalamus (VPL and VPM), have discrete receptive fields and are thought to carry 

information on the sensory-discriminative aspects of pain [867,869,870]. 

Whereas, projection neurons from deep dorsal horn terminate more medially in 

the thalamus (CL and intralaminar), have very large receptive fields [260] and are 

thought to carry information related to the motivational-affective components of 

pain [870]. 

The role of the thalamus and cortex in pain signaling 

Lateral thalamocortical afferents project to the primary somatosensory 

cortex (SI) where sensory information from the contralateral body is 

somatotopically organized [637,638]. From there, information is passed to other 

cortical areas involved in sensory processing including the secondary 

somatosensory cortex (SII). Medial thalamocortical afferents project to the insular 

cortex, and anterior cingulate cortex [815]. The somatosensory cortex is believed 

to be involved in processing the sensory/discriminative aspects of pain, while the 

anterior cingulate cortex and other limbic structures respond more to the 

affective/motivational components of pain perception [92,615].  

The periaqueductal gray (PAG) / rostral ventromedial medulla (RVM) in 

descending modulation 

Spinal processing of nociceptive signals is modulated by descending 

facilitatory and inhibitory projections from the brainstem. Early studies found that 
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electrical stimulation in the PAG caused antinociception in animals [684]. 

Neurons in the PAG receive input from the cortex and ascending STT collaterals 

and in turn project to the rostral ventromedial medulla (RVM). 

The RVM also gets input from the thalamus, parabrachial area, and the 

locus coeruleus [615]. There are two main populations of neurons in the RVM 

that are involved in the descending modulation of pain: on-cells and off-cells. Off-

cells tonically active GABAergic cells [230,544] and are turned off by noxious 

stimulation, whereas on-cells are constitutively silent and turned on by noxious 

stimulation [230]. Both populations project to the superficial spinal dorsal horn 

[44]. On-cells enhance spinal nociceptive transmission whereas off-cells 

suppress it [295]. Studies have suggested that an imbalance between the 

inhibitory and facilitatory activity within the RVM may underlie pathological pain 

states (For review see [295]).  
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Chapter 2 

 

MMG22, a novel bivalent ligand for the treatment of chronic 

pain  

 

 

Current and future treatments for neuropathic pain 

Currently, pharmacological treatments available to treat neuropathic pain 

are largely ineffective and plagued by adverse CNS side effects [231]. First line 

therapies for neuropathic pain include calcium channel blockers (like Gabapentin 

and Pregabalin) as well as antidepressants including SNRIs (like duloxetine or 

venlafaxine) and Tricyclics. Second line therapies include 8% capsaicin patches, 

lidocaine patches, and tramadol. Subcutaneous botulinum toxin A injections and 

strong opioids are considered third line therapies (for review see [231]).  

Of the first line treatments for neuropathic pain, gabapentin and pregabalin 

seem to have the most efficacy. As calcium channel blockers, these drugs have 

high affinity for the 2-1 subunit of several voltage gated calcium channels 

[253,492]. The expression of this subunit is fairly ubiquitous but importantly it is 

found presynaptically in the dorsal horn on the central terminals of primary 

afferent neurons [45,435,436,792]. The 2-1 subunit is upregulated in ipsilateral 

DRG after nerve injury [45], and hyperalgesia is delayed in KO animals after 

nerve injury [627]. However, in clinical trials only ~35% of patients reported 

substantial pain relief [541,865]. 

Various antidepressants including tricyclics, selective serotonin reuptake 

inhibitors (SSRIs), and serotonin norepinephrine reuptake inhibitors (SNRIs) 

have been used in the treatment of neuropathic pain. These drugs are believed 

to reduce pain by enhancing descending inhibitory controls in the brainstem, but 

probably work through other mechanisms as well [328,743]. Meta-analysis has 

shown that tricyclics and SNRIs reduce pain in around 45% of pain patients with 
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peripheral neuropathy, where SSRIs are much less effective, reducing pain in 

less than 15% patients with painful diabetic neuropathy [743]. Side effects like 

dry mouth, seating, dizziness, fatigue, nausea and vomiting limit the clinical utility 

of antidepressants for the treatment of neuropathic pain. Despite our increasing 

knowledge about the pathophysiology of neuropathic pain, less than 50% of 

patients receive adequate pain relief from pharmacological treatments [231,357].  

The effects of opioids on nociception  

Opium, extracted from poppies, was the originate opiate from which all 

natural opioids are derived (including morphine and codeine). Opium has been 

used for various purposes including pain relief beginning some six to eight 

thousand years ago [87,937]. Traditional opioids act as agonists at the  opioid 

receptor (MOR). MOR is one of a family of opioid receptors including δ opiate 

receptors (DOR), and κ opiate receptors (KOR) [52]. Endogenous ligands for 

these receptors include β-endorphin, enkephalins and dynorphins, respectively 

(for review see [52]). While potent analgesics,  opioid agonists also induce 

respiratory depression, nausea, sedation, constipation, tolerance, and can be 

incredibly addictive [56] which limits their clinical utility. Mirroring their efficacy in 

patients, MOR agonists have been shown to decrease pain behaviors in various 

rodent models including bone cancer pain [363,471,528,550], inflammatory in 

[343,471], arthritis pain [290,526], peripheral neuropathies like CIP and DIPN 

[149,625] and nerve injury induced NP [272,820]. 

However, recent research has shown that opioids have reduced analgesic 

efficacy in neuropathic pain patients [22,53,123,403] as well as in rodent models 

of neuropathic pain, including nerve injury [378,491,565,594–596,614,679,779], 

diabetic neuropathy [35,116,149,226,360,551], and chemotherapeutic induced 

peripheral neuropathy [237]. Previously, opioids were considered first or second 

line therapies for the treatment of chronic pain, the demotion of strong opioids to 

third line therapies was in large part due to their decreased efficacy over time 

[500,548,906], the increasing awareness of the risk of addiction [696,837], and 

the recent epidemic of opioid misuse and overdose related deaths [111,231]. The 
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efficacy and use of opioids for patients with NP is still debated [144,364,508], 

while their efficacy in the treatment of acute pain is well known. 

 opioid receptor signaling pathways 

 opioid receptors are G-protein coupled receptors that couple with 

inhibitory trimeric G proteins (Gi/o) when activated [189]. The Gα subunit inhibits 

adenylyl cyclase [121] resulting in a decrease in the production of cyclic 

adenosine monophosphate (cAMP). Reduced cAMP causes a decrease in the 

activity of PKA, which in turn decreases the ion conduction of membrane 

channels including TRPV1 and ASIC [96,217]. The βγ subunit of the trimeric G 

protein has been shown to open G-protein-gated inwardly rectifying K+ (GIRK) 

channels [324,423], and inhibit N-type, P/Q-type and L-type calcium channels 

[535,620,715,716,890] (for review see [423]). Together these actions decrease 

neuronal excitability and neurotransmitter release. 

MOR agonists can also engage a β-arrestin dependent pathway, which 

mediates receptor desensitization, internalization, and activation of mitogen-

activated protein kinase (MAPK) signaling cascades [13,185]. Individual MOR 

agonists may preferentially induce one signaling pathway over another in what is 

referred to as biased agonism (for review see [367]). 

Expression of MOR and effects of opioids in the CNS 

MOR is expressed at various sites in the central nervous system, and its 

expression patterns parallel the various effects of opioids [176]. For example 

MOR is expressed at various levels of the pain neur-axis including the dorsal 

horn of the spinal cord, RVM, and PAG [44,176], which account for the analgesic 

effects of  agonists administered in those locations. Opioids (endogenous or 

exogenous) disinhibit off-cells in the RVM indirectly by inhibiting GABAergic cells 

in the PAG. Disinhibition of RVM off-cells leads to suppression of dorsal horn 

nociceptive transmission[228–230,868]. Opioids directly inhibit on-cells in the 

RVM, reducing their normally facilitatory effect on the dorsal horn neurons (for 

review see [227,295,421]).   

Intrathecal (i.t.) morphine has been shown to decrease pain behaviors in 

rodent models [900]. In the spinal cord, 30% of MOR expression is localized 
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postsynaptically on excitatory interneurons [368] and projection neurons while 

70% is located presynaptically on the central terminals of primary afferent 

nociceptors [60]. In the dorsal horn, activation of presynaptic MORs decreases 

the release of glutamate, SP, and CGRP from primary afferent neurons 

[31,118,119,307,396,400,786,899] and decreases the excitability of A and C 

fiber terminals [104,700,796]. Postsynaptically, MOR agonists decrease GIRK 

channel potassium conductance to hyperpolarize dorsal horn neurons 

[265,493,494,913]. Electrophysiologically, i.t. morphine reduces the firing of 

nociceptive dorsal horn neurons [191]. Studies have shown that opioids do not 

affect the development of windup or maintenance of LTP [191,694]. However, in 

MOR KO mice lower levels of electrical stimulation are able to induce windup in 

WDR neurons, suggesting opioids may modulate the development of central 

sensitization [271].  

Studies have shown that peripherally restricted MOR antagonists do not 

greatly reduce the analgesia provided by systemically administered opioids 

[522,794], (however see [767]) which suggests that spinal and supraspinal sites 

of action are the major mediators of opioid analgesia. However, this does not 

exclude peripheral opioid receptors from mediating analgesia.  

MOR is also expressed in the nucleus of the solitary tract, nucleus 

ambiguous, and parabrachial nucleus [176]. These sites are all involved in the 

control of respiration [238] and the locations underlying opioid induced 

respiratory depression. MOR expression in the dopaminergic mesolimbic system, 

including the ventral tegmental area (VTA) has been implicated in both natural 

reward and addictive behaviors [872,873], emphasizing the addictive properties 

of opioid agonists. 

Expression of MOR and effects of opioids in the PNS 

Although it is believed that most of the analgesic activity of  opioid 

agonists occurs in the CNS, MOR is also found in the peripheral nervous system. 

Activation of peripheral MORs has been shown to contribute to opioid analgesia 

in rodents models of pain [133,134,365,769,770] and in patients [194,356,793]. 

Peripherally restricted opioids have also been shown to produce anti-
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hyperalgesia in rodent models of inflammatory pain [174,858] and neuropathic 

pain [129,272,595,709,797]. Recent studies using conditional KO of the OPMR1 

gene in specific sets of primary afferent neurons have generated conflicting 

results regarding the role of MOR on primary afferents in opioid mediated 

analgesia [145,777,854]. 

MOR expression is observed in approximately 20-30% of primary afferent 

neurons [133,343,854]. The receptors are trafficked to both the central and 

peripheral terminals [343] of mainly unmyelinated peptidergic fibers [670,704]. 

Peripherally, MOR agonists decrease the excitability of primary afferents in 

response to noxious stimuli [400,796,858] and inhibit the calcium dependent 

release of proinflammatory compounds from peripheral nerve endings [909,910]. 

Systemic and intrathecal opioid actions are dependent on MOR expression by 

primary afferent neurons [776] and by Nav1.8+ nociceptors in particular 

[721,854]. MOR agonists can also decrease TRPV1 currents in primary afferent 

neurons [217].  

MOR expression is also seen in the enteric nervous system where it acts 

to inhibit peristalsis and cause constipation. It is by this mechanism that 

loperamide (a peripherally restricted MOR agonist) is used as an anti-diarrheal.   

The effects of injury on MOR expression and opioid analgesia 

It is well known that disease states modify gene expression. Because 

clinical and pre-clinical studies have shown MOR agonists to have decreased 

efficacy in NP, researchers have looked into possible mechanisms. Several 

studies have shown that inflammation increases the analgesic efficacy of opioids 

[766,770,825,858,936], whereas the exact opposite has been found in NP 

models [119,595]. Loss of opioid receptor expression by primary afferent neurons 

is believed to be the cause of decreased opioid efficacy/potency after nerve 

injury [593,679](for review see [400]). Previous work has shown that MOR 

expression is decreased in the DRG [429,593,650,679,889,921,929] and spinal 

cord [429,650,661,921,929] after nerve injury. The opposite pattern is seen in 

models of inflammatory pain where MOR expression is increased in the DRG 

[343,936] and spinal cord [901]. Increasing the expression of MOR on Nav1.8 
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primary afferent fibers reduces neuropathic pain behaviors and restores the 

analgesic efficacy of MOR agonists [383]. Functionally, the decrease of MOR 

expression after nerve injury results in agonists being less able to decrease SP 

release in the dorsal horn after noxious peripheral stimulation [119]. 

Analgesic tolerance, opioid dependence, and opioid induced hyperalgesia 

Repeated administration of opioids leads to the development of tolerance 

to its analgesic effects, such that higher doses are needed to attain a similar level 

of pain relief. Mechanisms of analgesic tolerance involve changes at the 

molecular, cellular, and circuit level. Acute tolerance can be seen as a decrease 

in the ability of MOR agonists to decrease cAMP production and is most likely 

caused by receptor desensitization, via GPCR Kinase (GRKs) phosphorylation 

and subsequent β-arrestin dependent internalization [423,768,937]. Not all 

agonists induce receptor internalization, and internalization has been shown to 

reduce opioid tolerance suggesting that this process may enable resensitization 

of receptors after phosphorylation [387,388]. The involvement of internalization in 

tolerance is not fully understood and is likely agonist dependent [555]. 

Downregulation of receptor expression also plays a role in the development of 

tolerance [763]. High efficacy opioids induce opioid downregulation more readily 

than low efficacy opioids and hence are more likely to induce tolerance via this 

mechanism [626,632]. 

Continuous use of opioids over long periods of time produces physical 

dependence. Once dependence is manifest, cessation of opioid use leads to 

withdrawal symptoms including anxiety, restlessness, diarrhea, and alternating 

hot flashes and shaking chills [216]. Under some conditions opioids can 

paradoxically cause activation of pronociceptive systems and lead to increased 

pain sensitivity in a process known as opioid induced hyperalgesia (OIH) [258]. 

Long term opioid use has been linked to dysregulation in the balance between 

descending inhibition and facilitation tipping the scales towards the latter 

[513,829]. A recent study has also suggested a role for MOR expression in 

primary afferent neurons in the development of OIH [777]. 
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Analgesic tolerance in the CNS 

Studies have shown that the PAG/RVM and spinal cord are involved in the 

development of  opioid induced analgesic tolerance [175,222,470]. The 

development of opioid tolerance in the spinal cord, but not the PAG/RVM, is 

dependent on NMDA and NOS signaling [222,470,543]. In the PAG/RVM 

tolerance has been linked to cholecystokinin and microglial signaling 

[379,514,689,892].  

Analgesic tolerance in the PNS  

The contribution of peripheral MOR signaling to analgesic tolerance is still 

debated. Using Nav1.8 Cre mice to delete MOR expression in primary afferent 

nociceptors, two groups have demonstrated opposing results regarding the role 

of peripheral opioid receptors in the generation of tolerance [145,854]. However, 

studies showing that repetitive use of peripherally restricted opioid loperamide 

promotes the development of tolerance, suggest that the peripheral system is 

also susceptible to tolerance [291]. 

Glutamate signaling as an analgesic target 

Recently there has been an increase in research surrounding the role of 

glutamate in nociceptive signaling and the use of glutamate receptor 

agonists/antagonists as potential analgesics (for review see [75,610]). 

Metabotropic glutamate receptors have received a lot of attention, specifically the 

role of the metabotropic glutamate receptor 5 (mGluR5) in peripheral and spinal 

nociceptive pathways [391,575,844,916,930]. 

The role of mGluR5 in nociception  

mGluR5 (a group I mGluR) is a GPCR and its activation initiates signaling 

cascades that modulate cellular excitability. Early studies using the mGluR5 

agonist CHPG showed that mGluR5 activation induces pain behaviors in rodents 

when injected into the paw [351,844] or intrathecally [280,452,681]. Contrastingly, 

mGluR5 antagonists have been shown to decrease pain behaviors in various 

rodent models including: CCI [203,233,234,385,758,930], SNL 

[316,451,830,928,930], CFA [456,844,930], the second phase of the formalin test 
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[330,362,538,701,930], visceral pain [68,157,312,453,917], chemotherapeutic 

induced peripheral neuropathy [930], and Bone cancer pain [681]. 

A novel photoactivatable mGluR5 antagonist was able to decrease CCI 

induced mechanical hyperalgesia upon paw illumination [239]. Despite its anti-

nociceptive properties, mGluR5 antagonists do not alter responses to acute 

noxious stimuli in naïve animals [722,844]. Similarly, mGluR5 KO animals exhibit 

decreased inflammatory bladder pain [157], and decreased formalin evoked pain 

behaviors [311,392,538] but display normal baseline thresholds [311,895].  

The expression of mGluR5 in the pain neuraxis  

mGluR5 expression is seen in the dorsal horn of the spinal cord post 

synaptic to primary afferent fibers [16,59,344,690,788,827,834], in small diameter 

DRG neurons [155,827], as well as in the central and peripheral terminals of 

primary afferent nociceptors [362,377,844,891]. Pre-treatment of the skin with 

capsaicin prevents the hyperalgesia caused by intraplantar administration of the 

mGluR5 agonist CHPG, suggesting that the receptor is expressed by TRPV1+ 

primary afferents [351].  

The expression of mGluR5 in pain conditions 

mGluR5 expression is upregulated in the dorsal horn in animal models of 

bone cancer pain [681], inflammatory pain [204,648], chemotherapeutic pain 

[891], diabetic pain [804,927], and in models of nerve injury induced pain 

including: CCI [592,611], and SNL [308,410,450]. In the DRG mGluR5 expression 

is also upregulated in models of chemotherapeutic neuropathy [891], diabetic 

neuropathy [439], CCI [385], SNI[316], and after painful whiplash injury [206]. 

Local extracellular concentrations of glutamate, the endogenous ligand for 

mGluR5, have also been shown to be increased in the spinal cord 

[12,202,326,401,747,891,903] and peripherally [173,345,608] in various pain 

conditions. Stimulation of presynaptic mGluR5 itself increases glutamatergic input 

in the spinal cord [891], and receptor antagonists prevent the induction of LTP at 

primary afferent synapses [444]. The upregulation of receptor expression 

combined with the increased concentration of endogenous ligand in conditions of 
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pain may explain why mGluR5 antagonists do not decrease behavioral responses 

to acute noxious stimuli in naïve animals [722,844]. 

mGluR5 signaling pathways 

mGluR5 is a GPCR which couples to a Gq/11 trimeric G protein and 

activates several pathways including activation of phospholipase C (PLC). PLC 

activation promotes the hydrolysis of phosphoatidylinositol-4,5-bisphosphate 

(PIP2) to form inositol-1,4,5-triphosphate (IP3) and diacylglycerol (DAG) [188]. 

The subsequent reduction of PIP2 disinhibits TRPV1 channel, increasing its 

excitability [128]. IP3 can also bind calcium release channels on the endoplasmic 

reticulum opening the channel and causing an increase in cytosolic calcium. 

Indeed, mGluR5 activation causes calcium transients in cultured DRG neurons 

[155]. Increased cytosolic calcium combined with DAG both serve to activate 

protein kinase C (PKC) which directly phosphorylates AMPA and NMDA 

channels, increasing their conductance [76,275,577]. PKC also directly 

phosphorylates MORs leading to receptor desensitization and TRPV1 causing 

decreased thresholds and increased membrane expression of this receptor 

[66,131,154,310,542,663,738]. In 2009, Kim et al. was able to show that TRPV1 

is transactivated by mGluR5 via DAG in the presynaptic terminals of primary 

afferents in the spinal cord [377]. mGluR5 activation also leads to the activation of 

ERK (via PKC), and ERK in turn decreases Kv4.2 A-type potassium currents, 

further increasing cell excitability [5,309]. 

It has also been shown that inflammation induced central sensitization is 

dependent on group I mGluR-NMDAR coupling [275,902]. mGluR5 is structurally 

linked to the NMDA receptor via a protein scaffold [560] and functional 

interactions have been demonstrated between the two receptors [27]. Allosteric 

interaction of mGluR5 via a covalent linkage with the NR2 subunit of the NMDAR 

has been shown to modulate neuronal excitability [76,83,641].  

Behavioral and cellular interactions between MOR and mGluR5  

Earlier studies demonstrated that co-administration of MOR agonists with 

mGluR5 antagonists enhances the antinociceptive effects of opioids 

[609,644,928] and reduces the development of analgesic tolerance 
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[246,398,567,750,897,898,928]. Similarly, mGluR5 KO mice do not develop 

analgesic tolerance to the same extent as normal animals [314], and knockdown 

of mGluR5 reduces development of analgesic tolerance [896]. 

Given the pharmacological interaction between MOR and mGluR5, 

Schroder and colleagues investigated the potential for these two receptors to 

interact on a cellular level. They found that, in cells expressing both receptors, 

mGluR5 antagonists reduce opioid induced MOR desensitization, 

phosphorylation and internalization. They also discovered that delivering both 

pharmacophores increased the physical association between the two receptors 

[714].  

Given the pharmacological interaction between MOR and mGluR5, 

Schroder and colleagues investigated the potential for these two receptors to 

interact on a cellular level. They found that, in cells expressing both receptors, 

mGluR5 antagonists reduce opioid induced MOR desensitization, 

phosphorylation and internalization. They also discovered that delivering both 

pharmacophores to these cells increased the physical association between the 

two receptors [714]. 

MMG22 

The functional interaction between MOR and mGluR5, and evidence that 

MOR/mGluR5 can form heteromers [714], led to the development of MMG22. 

MMG22 is a bivalent ligand that combines a MOR agonist: oxymorphamine, with 

an mGluR5 antagonist: 2-methyl-6-(phenylethynyl)-pyridine (MPEP) [9]. The two 

pharmacophores of MMG22 are tethered together with a 22-atom linker and is 

designed to bind the putative MOR/mGluR5 heteromer (Figure 2.1).  
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Figure 2.1 Structure of MMG22 and heteromer binding 

Purpose and Organization of this Thesis 

The purpose of this thesis is to demonstrate the potential clinical utility of 

bivalent ligands for the treatment of disease in general, and MMG22 in particular 

for the treatment of neuropathic pain. Discoveries presented in this thesis 

address several critical pieces of information regarding, the efficacy of 

systemically administered MMG22 for the treatment of nerve injury induced 

neuropathic pain, the potential site of action of systemically administered 

MMG22, the potential for abuse and addiction to MMG22, possible side effects 

including hyper-locomotion, respiratory depression, constipation, and anxiolysis, 

and finally we examine the effects of MMG22 on the response properties of 

primary afferent nociceptors. I compare the results from MMG22 to morphine (the 

gold standard centrally acting opioid), loperamide (a peripherally restricted 

opioid) and MPEP (an mGluR5 antagonist).  

The significance of these studies is twofold: first, the potential therapeutic 

benefits of an effective analgesic which lacks the abuse potential and side effects 

of traditional opioids could revolutionize the way chronic pain is treated. Second, 

identifying the cellular target engaged by a compound targeting a GPCR 

Figure 2.1 Structure of MMG22 and 

theoretical heteromer binding. On the Top is 

a picture of MMG22 with oxymorphamine on the 

left and MPEP on the right, tethered with a 22 

atom linker. On the right is an illustration of 

MMG22 binding to a putative MOR/mGluR5 

heteromer.   
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heteromer would add to the current understanding of how GPCR heteromers 

work and support the development of bivalent ligands targeting GPCR 

heteromers in drug design.  
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Chapter 3 

 

 

The anti-hyperaglesic potency of systemic MMG22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter reprinted with permission from PAIN, modified from:  

 

Speltz, Rebecca, Lunzer, Mary M., Shueb, Sarah S., Akgün, Eyup, Reed, Rachelle, Kalyuzhny, 

Alex, Portoghese, Philip S., Simone, Donald A. 2020.  The bivalent ligand, MMG22, reduces 

neuropathic pain after nerve injury without the side effects of traditional opioids. PAIN. (in press) 
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Introduction: Research on pain and analgesia 

Previous research with MMG22 

Previous studies have shown that intrathecal (i.t.) but not 

intracerebroventricular administration of MMG22 was orders of magnitude more 

potent at reducing hyperalgesia in mice with inflammatory pain and bone cancer 

pain than compounds with shorter or longer linker lengths [9,748] or a mixture of 

the monovalents [9]. Inflammation also causes a dramatic left shift in the dose 

response curve of MMG22 [9]. The importance of linker length to the potency of 

MMG22 may depend on several factors including the pain model and its 

underlying mechanisms, and route of administration. For example, i.t. 

administration of the MMG bivalent with 10 or 22 atom linker lengths were 

equipotent in the spared nerve injury (SNI) model of neuropathic pain [644]. The 

potency of MMG22 was significantly greater in mice with inflammatory pain, than 

in naïve mice, suggesting the importance of pain and or inflammation in its 

mechanism of action [9,10]. Importantly, repeated administration of MMG22 did 

not promote the development of acute [748] or chronic [735] analgesic tolerance. 

Because of its exceptional potency, the total amount of MMG22 that 

needs to be given in order to obtain optimal efficacy is unusually small (in LPS 

mice the ED50 for MMG22 and morphine are ~9 femtomoles and ~35,000 

femtomoles respectively). The ability to give such small doses of MOR agonist 

and get such a robust analgesic response decreases the likelihood of off-target 

effects like respiratory depression, constipation, and sedation.  

Animal models of neuropathic pain 

Animal models have been created to study neuropathic pain conditions 

including diabetic neuropathy [240,549], chemotherapy induced peripheral 

neuropathy [28,108,302,656], and injury induced neuropathies. A majority of the 

peripheral nerve injury models involve damage to the sciatic nerves or its 

branches. The spinal nerve ligation (SNL) model involves ligating and cutting of 

L5 (and L6) spinal nerves of the rat or mouse [376]. In the chronic constriction 

injury (CCI) model, 3-4 chromic gut ligatures are loosely placed around the 
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sciatic nerve [55]. The spared nerve injury (SNI) model (where the common 

peroneal and tibial branches of the sciatic nerve to ligated and cut, sparing the 

sural nerve) has recently gained favor as it creates a long lasting hyperalgesia 

that does not resolve over time [172]. For review of the various neuropathic pain 

models see [331]. These models induce changes in rodent behavior that are 

thought to correspond to spontaneous pain, allodynia and hyperalgesia- the 

dominant symptoms experienced by patients with neuropathic pain. 

Behavioral assessment of pain in animals 

Direct assessment of pain in rodents is problematic, so researchers use a 

variety of measures behavior to indirectly assess spontaneous pain as well as 

hyperalgesia and allodynia. Spontaneous pain behaviors that can be observed 

and quantified include spontaneous foot lifting [199], autotomy [848], and facial 

grimace [533]. Mechanical hyperalgesia and allodynia can be measured in 

several ways. Dynamic mechanical allodynia can be asses by brushing the skin 

with a cotton swab or paintbrush to elicit withdrawal. Punctate hyperalgesia and 

allodynia are commonly tested by applying calibrated von Frey hairs to the 

affected area in order to evoke a withdrawal response [114]. Randall-selitto [677] 

test is used to assess mechanical hyperalgesia. Tests of heat sensitivity include 

the tail flick test [162], hot plate test [591,886], and Hargreaves [289]. A drop of 

acetone applied to the skin can be used to assess cold allodynia [911] (for review 

see [419]). 

An earlier study examined the effects of intrathecal MMG22 in mice after 

SNI [644], however; we wanted to see if systemically administered MMG22 

would be effective. We assessed the ability of different doses of subcutaneously 

administered MMG22 to decrease mechanical hypersensitivity in mice after 

nerve injury. We also compared how the effects of MMG22 compared to the 

effects of the traditional monovalent opioid morphine, the peripherally restricted 

opioid loperamide, as well as the monovalent mGluR5 antagonist MPEP.  
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Methods 

Animals 

Adult (5-8 months) male and female C57/B6 mice (Charles River) were 

housed 4 (males) or 5 (females) to a cage and maintained on a 12-hour light/dark 

cycle with ad libitum access to food and water. An equal number of male and 

female mice were used for each experiment and no sex differences were seen 

for any of the parameters measured. All procedures were carried out during the 

light cycle.  8-12 mice (an equal number of male and female mice) were used for 

each experiment unless otherwise specified. All procedures were approved by 

the Institutional Animal Care and Use Committee of the University of Minnesota. 

Spared nerve injury 

Mice were anesthetized with 2.5 % isoflurane. Spared nerve injury (SNI) to 

the sciatic nerve was performed as described previously [82,172,644]. Briefly, 

after exposing the three branches of the sciatic nerve, the tibial and common 

peroneal branches were tightly ligated with 5.0 silk suture and cut 2 mm distal to 

the suture. Care was taken not to disturb the sural nerve. Sham surgeries 

followed the same procedure without manipulation of the sciatic nerve or distal 

branches. 

Drugs 

 The bivalent ligand MMG22 was synthesized as described previously [9]. 

MMG22, morphine, 2-methyl-6-(phenylethynyl)pyridine (MPEP), (Mallinckrodt 

Inc, Hazelwood, MO) and loperamide (Sigma, St. Louis, MO) were diluted in 1% 

DMSO (vehicle). Loperamide was diluted in near boiling 1% DMSO daily. All 

drugs were administered subcutaneously in a volume of 250 µl, between the 

shoulders. 

Behavior 

In SNI, sensitivity seen in territory of non-injured sural nerve on the lateral 

hind paw [82,172,644]. Mechanical hyperalgesia was defined as an increase in 

frequency of paw withdrawal evoked by a von Frey monofilament as we 

described previously [373,374]. Mice were placed on an elevated mesh platform 

under glass enclosures and allowed to habituate for 30 minutes prior to initial 
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testing. A calibrated von Frey monofilament with a bending force of 5.9 mN (0.6g) 

(StoeltingCo, Woodale, IL) was applied to the lateral portion of the plantar 

surface of each hind paw 10 times, with an interval of approximately 10 seconds 

between applications, and the frequency of withdrawal responses were 

determined. Mice were tested a minimum of three times prior to surgery. After 

surgery, mice were tested once a day for 3 days starting on day 7 to establish a 

stable post-surgical baseline before testing any of the analgesics. Drug-induced 

reduction of mechanical hyperalgesia was assessed early (10 days) and late (30 

days) after surgery. 10 days was chosen as the early time point because full 

development of hyperalgesia occurs around 7 days after nerve injury [82,172] 

and 3 days of stable post-surgical baselines were desired prior to analgesic 

testing. We chose 30 days for the late time point because at this time, the 

inflammatory response to nerve injury has subsided [17,523]. 

Dose response curves 

 To determine dose-response functions, mice were injected with escalating 

doses of MMG22, morphine, loperamide or MPEP (s.c.). Separate groups of 

mice were used for each drug and time point. Starting dose of MMG22, morphine 

and loperamide was 0.1mg/kg, starting dose of MPEP was 1mg/kg. Doses were 

increased as follows: 0.1mg/kg, 0.3mg/kg, 1mg/kg, 3mg/kg and so on. The 

frequency of withdrawal evoked by 10 applications of a von Frey monofilament 

was determined 30 minutes after each injection. Mice were returned to their 

home cage after each injection and placed back on the mesh platform 10 

minutes prior to testing. The percent maximal possible effect (%MPE) was 

calculated using the following standard formula: 

%𝑀𝑃𝐸 =
(𝑃𝑜𝑠𝑡 𝐷𝑟𝑢𝑔 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒 𝐷𝑟𝑢𝑔 𝑉𝑎𝑙𝑢𝑒)

(𝑃𝑟𝑒 𝑆𝑢𝑟𝑔𝑖𝑐𝑎𝑙 𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 𝑉𝑎𝑙𝑢𝑒 − 𝑃𝑟𝑒 𝐷𝑟𝑢𝑔 𝑉𝑎𝑙𝑢𝑒)
 × 100 

Only doses that resulted in a behavioral response >0% were included in the 

analysis, The final dose included in the analysis was either the first dose to give a 

100% MPE or the largest dose tested. The dose that reduced the withdrawal 

frequency by 50% compared to baseline (ED50) was determined by non-linear 

regression of the %MPE data carried out in Prism 8.00 (GraphPad Software, San 
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Diego, CA). Data collectors were blinded to drug and absolute (but not relative) 

dose by a third party 

Data analysis 

Data are expressed as mean ± SEM, except where otherwise noted. 

GraphPad Prism 8.0 (Graphpad software Inc. La Jolla, CA, USA) was used for 

statistical analyses and calculation of ED50 values. All behavioral data were 

analyzed via one- or two-way ANOVA with repeated measures. Post-hoc 

comparisons were done with Bonferroni tests. A P value of <0.05 was considered 

significant. 
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Results 

SNI induces sustained hyperalgesia in mice 

Consistent with earlier reports [82,172,644] SNI produced robust 

mechanical hyperalgesia. We compared the percent withdrawal frequency to von 

Frey in SNI and sham operated mice before and after surgery (two-way ANOVA; 

time: [F(3,16)=75; P<0.0001], surgery: [F(1,16)=476; P<0.0001], time × surgery: 

[F(3,16)=54, P<0.0001]. Before surgery the groups were not different (P>0.999), 

but on days 10, 20 and 30 after surgery, SNI mice had withdrawal frequencies 

higher than sham mice (P<0.0001) (Fig. 3.1). 

 

Figure 3.1 Hyperalgesia after nerve injury 

Figure 3.1 Hyperalgesia after spared nerve injury. The percent 

withdrawal frequency increased in mice after SNI surgery (open circles) 

but not in mice after sham surgery (closed circles). Data presented as 

mean ± SEM, n=5 per group. ****P<0.0001 compared to sham. 
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MMG22 decreased mechanical hyperalgesia dose-dependently in neuropathic 

mice when delivered subcutaneously 

We evaluated the ability of MMG22, morphine, and loperamide to 

decrease mechanical hyperalgesia early (10 days after surgery / during the 

initiation phase) and late (30 days after surgery / during the maintenance phase) 

after nerve injury. MMG22 did not alter percent withdrawal frequency of naïve 

animals or animals after sham surgery at any of the doses tested (data not 

shown). Subcutaneous administration of MMG22, morphine, and loperamide 

dose-dependently reduced mechanical hyperalgesia in nerve-injured mice (Fig. 

3.2A-C). Data are shown separately in mg/kg and nmoles/mouse for ease of 

comparison, but all data were analyzed together. We compared the ED50s of 

MMG22, morphine, and loperamide early and late after nerve injury (two-way 

ANOVA; drug: [F(2,183)= 4.8; P=0.0095], time: [F(1,183) = 27.88; P<0.0001], time 

× drug: [F(2,183)=12.54; P<0.0001] n=8-14). The potency of MMG22 was 

decreased late after nerve injury compared to early after nerve injury (P<0.0001), 

causing a rightward shift in the dose response curve (Fig. 3.2A, Table 3-1). 

Morphine did not exhibit the same shift in potency and was equipotent at 

reducing mechanical hyperalgesia early and late after nerve injury based on ED50 

values (Fig. 3.2B). 

As discussed earlier, MOR expression is known to decrease in the DRG 

following peripheral nerve injury [429,438,593,650,679,889,929] and this 

reduction has been linked to a concomitant loss of  opioid responsiveness of 

DRG neurons [390]. To determine if loss of peripheral MOR expression after 

nerve injury was involved in the decrease in potency for MMG22, we repeated 

this experiment with the peripherally restricted MOR agonist loperamide. 

Loperamide does not penetrate the blood brain barrier at the doses tested 

[32,174,588,725], but has been shown to decrease hyperalgesia after systemic 

administration [129,272,732]. Consistent with previous data [272], there was no 

decrease in potency late after nerve injury as compared with the earlier time 

point (Fig. 3.2C). It has been shown that the bulk of MOR downregulation in the 

DRG occurs within the first week after nerve injury [429,889] which suggests that 
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any effects of MOR down-regulation on peripheral opioid potency would already 

be completed 10 days after nerve injury. 

We converted the mg/kg doses into nmoles per mouse for direct 

comparison between drugs. Early after nerve injury, MMG22 was 40 times as 

potent as morphine or loperamide at reducing mechanical hyperalgesia (Fig. 

3.2D, Table 3-1). Late after nerve injury however, all agonists were equipotent 

(Fig. 3.2E). 

As one of the pharmacophores of MMG22 is MPEP, an mGluR5 

antagonist, we evaluated the ability of MPEP to decrease mechanical 

hyperalgesia early and late after nerve injury. At the highest dose, MPEP was 

unable to decrease mechanical hyperalgesia more than 50% early after nerve 

injury (Fig. 3.2F). This is consistent with previous reports showing that mGluR5 

antagonists alone have little effect [234,830,930] or no effect [316,330,844] on 

mechanical hyperalgesia after nerve injury. The ED50 for MPEP was increased 

late after nerve injury compared to the earlier time point (unpaired t-test; t=2.73, 

P<0.01, n=8-12) (Fig. 3.2F, Table 3.1). The change in potency of MPEP over 

time after nerve injury suggests that this may contribute to the similar decrease in 

potency seen with MMG22.  

In this study MMG22 also did not alter the responses in naïve or sham 

animals (data not shown). Results from previous studies with LPS mice used 

radiant tail flick assay to create their dose response curve, MMG22 did increase 

tail flick latency in naïve mice, but was much less potent than in LPS mice [9].  

Using percent withdrawal frequency to mechanical stimuli, MMG22 did not 

decrease the percent withdrawal in naïve mice. We used a light filament that 

gives an average of 1-2 withdrawals per 10 applications in naïve mice, but 8-10 

withdrawals in SNI mice in order to increase the dynamic range of the assay. 

Because of this, there may be a floor effect prohibiting us from seeing any 

MMG22 induced analgesia in naïve mice
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Figure 3.2 Dose response curves for MMG22, morphine, loperamide and MPEP 

 

Figure 3.2 Cumulative dose response functions for reducing tactile hyperalgesia after 

spared nerve injury. Mice were given subcutaneous injections of drug in increasing doses, 

early (10 days/open circles) or late (30 days/filled circles) after nerve injury. Paw withdrawal 

frequency to a 5.9 mN (0.6g) von Frey hair was measured 30 minutes after each injection 

and %MPE calculated based on pre-surgical baseline values. (A) MMG22 (blue) dose 

dependently reduced mechanical hyperalgesia in mice. The dose response curve is right 

shifted late after nerve injury compared to the earlier time point. (B,C) Morphine (red) and 

loperamide (purple) also dose dependently reduced mechanical hyperalgesia after nerve 

injury; however, no change in potency was observed over time. (D) Early (10 days) after 

nerve injury, MMG22 is more potent at reducing mechanical hyperalgesia than similar doses 

of morphine or loperamide. (E) Late (30 days) after nerve injury, the dose response curves 

for MMG22, morphine, and loperamide are overlapping. (F) MPEP (green) weakly reduced 

mechanical hyperalgesia early after nerve injury. There is a rightward shift in the dose 

response curve late after nerve injury. Data are presented on graphs as means ± SEM, n = 

8-14 per group.
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Table 3-1 ED50 values for MMG22, Morphine, Loperamide and MPEP early and 

late after nerve injury 

 

Table 3-1 All drugs given subcutaneously in a volume of 250ul. a p<0.0001 compared to 

morphine and loperamide (early and late) and MMG22 late. Two-way ANOVA b p<0.01 

compared to MPEP late. Unpaired t-test. Data presented as mean (95% C.I.), n = 8-14 per 

group.

ED50 (95% CI)

nmol/mouse mg/kg

Drug Early Late Early Late

MMG22 3.5 (1.4 – 6.6)a 219 (130 – 388) 0.12 (0.05 – 0.22)a 7.5 (4.5 – 13.3)

Morphine 139 (107 – 178) 232 (167 – 321) 1.6 (1.2 – 2.0) 2.6 (1.9 – 3.7)

Loperamide 146 (122 – 174) 141 (114 - 173) 2.7 (2.3 – 3.1) 2.7 (2.2 – 3.3)

MPEP 5144 (3933 – 8210)b 28028 (16857 - 97792) 39.7 (30.4 – 63.4)b 216 (130 – 755)
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Discussion 

Our results show that, in agreement with previous studies [644], MMG22 

potently reduced mechanical hyperalgesia after nerve injury. For the first time, 

we show that MMG22 was able to reduce spontaneous pain, and importantly that 

systemic MMG22 lacked the rewarding properties and other centrally mediated 

side effects associated with traditional opioids. The bivalent design of MMG22 

was intended to activate MOR and to inhibit mGluR5 and to target a putative 

MOR-mGluR5 heteromer. mGluR5 has been characterized as a promising new 

target for chronic pain [575,576,844,845]. Activation of mGluR5 produces pain 

[280,681,845] and mGluR5 antagonists reduce pain behaviors in various pain 

models [203,233,362,539,830,844,930] without altering responses to acute 

noxious stimuli in naïve animals [722,844]. 

The exceptionally potent antinociception produced by MMG22 is due to 

the activation of MOR combined with antagonism of the mGluR5 and its co-

receptor, NMDAR. Allosteric interaction of mGluR5 via a covalent linkage with the 

NR2 subunit of the NMDAR has been shown to modulate neuronal excitability 

[76,83,641]. Pre-treatment of inflamed mice with an irreversible MOR antagonist 

(β-FNA) or the NMDAR antagonist (MK801) reduces the antinociception of 

MMG22 [10] indicating a contribution of both pharmacophores of MMG22. 

MMG22 was designed to target a putative MOR-mGluR5 heteromer, which 

was supported by the relation between its linker length and optimal potency 

[9,748]. Both MOR and mGluR5 can form heteromers with other GPCRs 

[94,225,787] and MOR-mGluR5 heteromers have been reported in vitro [714]. 

Bivalent ligands have increased affinity and selectivity for their targets [485,662], 

and antagonizing one receptor can enhance agonist-induced signaling at its 

heteromeric protomer [283]. Research has also shown that heteromer formation 

can be modulated by pathological states [264], and the formation of heteromers 

can alter signal transduction [299]. 

Early after nerve injury, MMG22 was 40 times more potent than morphine, 

whereas late after nerve injury the two were equipotent. Contrastingly, in a bone 

cancer pain model the potency of MMG22 increased in parallel with tumor growth 
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and hyperalgesia [735,748]. The differences in potency of MMG22 may be 

explained by the timing and duration of the inflammatory response following 

nerve injury or tumor implantation. After nerve injury, there is an early pro-

inflammatory response that is rapidly resolved after 2-3 weeks [17,523,812], 

whereas the inflammatory response after tumor implantation remains elevated 

over time [269,458,488,905]. The potency of MMG22 to decrease hyperalgesia 

mirrors the time course of inflammation in bone cancer pain [735,748] and after 

nerve injury (in this study). A study using i.t. MMG22 after nerve injury did not 

report any statistically significant differences in potency over time after nerve 

injury; however, the ED50 was lowest at 7 and 17 days after injury and higher at a 

later time point, and also parallel to the time course of inflammation [644]. The 

combination of transient inflammation and persistent pain after nerve injury, 

allowed us to demonstrate that the potency of MMG22 induced analgesia is 

almost certainly dependent on ongoing inflammation, and not on ongoing pain. 

The decrease in potency of MPEP late after injury also agrees with previous 

studies that suggest MPEP is a more potent analgesic in inflammatory pain 

models vs neuropathic models [316,330,639,844].  

The importance of inflammation in the development of neuropathic pain is 

supported by several studies showing that neonatal rats do not develop nerve 

injury induced pain phenotypes until the default neuroimmune response switches 

from anti-inflammatory to pro-inflammatory around P28 [156,236,505]. Prior to 

this, nerve injury promotes an anti-inflammatory response instead of the typical 

pro-inflammatory response seen in the adult [505]. Blockade of the anti-

inflammatory cytokines or exogenous application of TNFα reveals neuropathic 

like pain behaviors after nerve injury in the neonatal rat [505]. 

A recent study showed a connection between the pro-inflammatory 

cytokine, tumor necrosis factor α (TNFα), and mGluR5 upregulation after nerve 

injury [410]. TNFα contributes to pain hypersensitivity [705,756,757,841]. A 

decrease in TNFα levels reduced mGluR5 expression and hyperalgesia, while 

intrathecal administration of TNFα had the opposite effect [410]. The importance 

of TNFα for the development of neuropathic pain is consistent with previous 
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studies showing a transient increase in TNFα in the lumbar DRG 

[430,519,601,695] and spinal cord [430] after nerve injury. Upregulation of 

mGluR5 may follow a similar timeline; with peak expression around 1-2 weeks 

post injury [385,592]. The potential involvement of inflammation in the potency of 

MMG22 is consistent with previous data showing that blocking astrocytes 

reduced the potency of intrathecal MMG22 [10]. The involvement of central 

astrocytes in the intrathecal potency of MMG22 suggests that MMG22 has the 

ability to promote analgesia through central route, by modulating central 

neuroinflammation.  

Although our results show reduced potency for MMG22 late after nerve 

injury, many neuropathic pain conditions area accompanied by more chronic 

inflammatory changes [657,754], suggesting that MMG22 may be a viable 

therapeutic for such conditions. For example,  a recent study done by the 

Portoghese lab has shown that MMG22 reduced hyperalgesia produced by 

chemotherapy, which has a persistent inflammatory component [918], with no 

change in potency over time (manuscript in preparation),. Future studies are 

needed to determine the types of neuropathic pain conditions that best respond 

to MMG22. 

Conclusion 

Previous research has shown that MMG22 is potent at reducing 

hyperalgesia when given intrathecally in models of bone cancer pain, 

inflammatory pain, and nerve injury induced neuropathic pain. Systemic 

administration has also shown MMG22 to be effective in reducing bone cancer 

induced pain. However, whether systemic administration is capable of reducing 

neuropathic pain is not yet known. As neuropathic pain is thought to be less 

opioid sensitive than other forms of pain, we decided to investigate whether 

systemic administration of MMG22 would decease pain caused by nerve injury. 

MMG22 was able to reduce hyperalgesia early but not late after nerve injury. The 

reduction in potency of MMG22 late as compared to early after nerve injury 

parallels the loss of potency for the mGluR5 antagonist MPEP over the same time 

period, whereas neither morphine nor loperamide showed the same reduction in 
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potency. This pattern of potency is opposite from what has been shown for bone 

cancer pain, suggesting the differing pathophysiology involved in these two types 

of pain may play a part in the analgesia produced by MMG22.  
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MMG22 Site of Action 
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neuropathic pain after nerve injury without the side effects of traditional opioids. PAIN. (in press)
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Introduction: Potential site of action for MMG22 within the pain neuroaxis 

Heteromer formation  

Opioid receptors have been shown to form heteromers with a number of 

different GPCR receptor sub-types [146,244]. The ability for GPCRs to form 

heteromers has been well established over the last 30 years [278]. Although 

controversial, evidence for the existence and physiological significance of such 

hetromers in vivo is mounting [224]. Receptor dimerization can affect receptor 

function, ligand pharmacology, signal transduction, and cellular trafficking [299]. 

Targeting GPCR dimers with bivalent ligands may result in more potent and 

selective compounds that act selectively on cells that express both receptors 

[315] minimizing potential off-target effects [553]. It has also been suggested that 

the propensity for different GPCRs to form heteromers may be modulated in 

pathological states [264], making the targeting of GPCR heteromers not only cell 

specific, but potentially disease state specific as well. 

In order for a bivalent ligand to target a receptor heteromer, both receptors 

must be expressed on individual neurons. Previous research has shown that 

both receptors are expressed by primary afferent neurons as well as neurons in 

the dorsal horn (as previously outlined), but it has never been shown that both 

receptors are expressed by individual cells. Therefore, we set out to investigate 

this possibility.  
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Methods 

Animals 

Adult (5-8 months) male and female C57/B6 mice (Charles River) were 

housed 4 (males) or 5 (females) to a cage and maintained on a 12-hour light/dark 

cycle with ad libitum access to food and water, except as otherwise noted for 

constipation studies. All procedures were carried out during the light cycle.  All 

procedures were approved by the Institutional Animal Care and Use Committee 

of the University of Minnesota. 

Spared nerve injury 

Mice were anesthetized with 2.5 % isoflurane. Spared nerve injury (SNI) to 

the sciatic nerve was performed as described previously [82,172,644]. Briefly, 

after exposing the three branches of the sciatic nerve, the tibial and common 

peroneal branches were tightly ligated with 5.0 silk suture and cut 2 mm distal to 

the suture. Care was taken not to disturb the sural nerve. Sham surgeries 

followed the same procedure without manipulation of the sciatic nerve or distal 

branches. 

RNAScope 

 RNAscope® in situ hybridization (ISH) (a probe based non-radioisotopic 

RNA ISH approach for detecting target RNAs in tissue) was used to determine 

whether MOR and mGluR5 transcripts co-localized in dorsal root ganglia (DRG) 

or spinal neurons. Ten days after SNI surgery, mice were given an intraperitoneal 

injection of Euthasol (sodium pentobarbital, 390 mg/mL and phenytoin sodium, 

90 mg/mL) and transcardially perfused with saline followed by 4% 

paraformaldehyde. L3-L5 DRGs and L3-L5 spinal cord segments were collected, 

post fixed in 4% paraformaldehyde for 3 hours and then placed in 30% sucrose 

in phosphate-buffered saline overnight at 4°C. Isolated and fixed DRGs and 

spinal cord segments were embedded into a tissue microarray using OTC media, 

frozen in dry ice and methanol, sectioned (7-10um thickness) with a cryostat, and 

thaw mounted onto slides. Sections were stored at -80°C. 

RNAscope® ISH was performed on fixed, frozen sections of DRGs and 

lumbar spinal cord with probes for mouse Oprm1 (Cat No. 315848) and Grm5 
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(Cat No. 423631) purchased from ACD Bio. RNAscope®. ISH for sections was 

performed following manufacturer’s written protocol with only one modification to 

the protease digestion (ACD, RNAscope® Multiplex Fluorescent Detection 

Reagents v2, Cat No. 323110). Tissue digestion with Protease IV was done for 

15 min at room temperature. Probes were hybridized for 2 h at 40 °C and washed 

twice in wash buffer (RNAscope® Wash Buffer Reagents, 310091). Amplification 

steps were performed by incubating with v2Amp1 (30 min), v2Amp2 (30 min) and 

v2Amp3 (15 min) at 40 °C with washes of 2 × 2 min in between steps. Sections 

were incubated with v2-HRP-C1 for 15 min at 40 °C and washed twice in wash 

buffer for 2 min. Tyramide signal amplification (TSA)-conjugated fluorophores 

were diluted 1:1,500 in TSA buffer (RNAscope® Multiplex TSA Buffer, 322809) 

and incubated for 30 min at 40 °C followed by 2 washes of 2 min and HRP 

blocker incubation for 30 min at 40 °C. The last steps were performed 

subsequently for v2-HRP-C2. Images were collected on Olympus FluoView 

FV1000 confocal microscope. 
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Results 

Previous studies have shown the MOR and mGluR5 are expressed in 

primary afferent neurons [67,134,362], as well as in superficial dorsal horn 

neurons in the spinal cord [16,344,546,771,826,834]. To examine if both 

receptors are expressed together in the same neurons, we performed an 

RNAScope assay on lumbar spinal cord and DRG sections. Ten days after SNI 

surgery there was good expression of both MOR (OPMR1) and mGluR5 (GRM5) 

mRNAs in the lumbar dorsal horn (Fig. 4.1A). Higher magnification images show 

that individual cells in the superficial (Fig. 4.1B) and deep (Fig. 4.1C) dorsal horn 

express both receptors. Individual cells in the DRG (Fig. 4.1D) also expressed 

the mRNAs for both receptors. High-resolution examination of the nuclear 

morphology (dapi stained) suggested the cells in question were neuronal (large 

nuclei, prominent nucleolar fading and folded nuclear membranes [248]; 

however, co-staining with cell type specific markers is needed for confirmation. 
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Figure 4.1 Colocalization of grm5 and opmr1 in the dorsal horn and DRG 

 

 Figure 4.1 MOR (Opmr1) and mGluR5 (Grm5) mRNAs co-expressed in dorsal horn and 

DRG 10 days after SNI. (A-C) Examples of staining in the dorsal horn of SNI mice. Nuclei 

are stained using dapi (blue). (A) Low magnification image of the lumbar dorsal horn stained 

for MOR (OPRM1, right/red) and mGluR5 (GRM5, middle/green), and overlay (right). Dashed 

line shows the grey-white matter boundary of the dorsal horn. (B) Higher magnification 

image of the superficial dorsal horn; OPMR1 (left/red), GRM5 (middle/green), overlay (right). 

Arrows indicate individual cells that co-express MOR and mGluR5. (C) Higher magnification 

image of the deep dorsal horn; OPMR1 (left/red), GRM5 (middle/green), and overlay (right). 

Arrow indicates a cell that highly expresses both receptors. (D) High magnification image of 

a lumbar DRG; OPMR1 (left/red), GRM5 (middle/green) and overlay (right). Nuclei are 

stained using dapi (blue). Arrows indicate individual cells that express both receptors. Scale 

bar: 50 um for all images.  
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Discussion 

MMG22 was designed to target a putative MOR-mGluR5 heteromer. 

Heteromer binding is supported by the relationship between linker length and 

optimal anti-hyperagesic potency [9,748]. Both MOR and mGluR5 can form 

heteromers with other GPCRs [94,225,787] and MOR-mGluR5 heteromers have 

been reported in vitro [714]. Bivalent ligands are hypothesized to have increased 

affinity and selectivity for their targets [315,662], and it has been shown that 

antagonizing one receptor can enhance agonist-induced signaling at its 

heteromeric protomer [283]. Heteromer formation can be modulated by 

pathological states [264], and can alter signal transduction [299].  

For the first time, we have shown that mRNAs for both MOR and mGluR5 

are co-expressed in neurons in the lumbar spinal cord and DRG early after nerve 

injury; suggesting potential targets for i.t. and systemic administration of MMG22 

respectively. The co-expression of both receptors supports the potential for 

MOR-mGluR5 heteromer formation in vivo.  Previously, a non-overlapping pattern 

of MOR and mGluR5 expression in the dorsal horn was found 8 weeks after 

nerve injury [644]. Once translated, the receptors may be trafficked to different 

cellular compartments. However, the pre and postsynaptic location of the 

individual receptors would argue against this [25,60,344,788,834].  Alternatively, 

consistent with the 60-fold decrease in potency of MMG22 from early to late after 

injury (Table 3.1), the co-localization of its target receptors, and their 

heteromerization, may be transient and not present late after nerve injury. These 

possibilities may not be mutually exclusive, as studies have demonstrated that 

axonal targeting of mGluR5 is dependent on the expression of Homer1a (an 

immediate early gene) [20], which is only transiently upregulated early after nerve 

injury [531]. More research is needed to quantify the degree of colocalization 

over time after nerve injury.   

This is the first study to demonstrate the colocalization of mRNAs for both 

target receptors in vivo. Co-localization by itself does not prove that the receptors 

form heteromers, but previous research has shown that the two receptors 

physically associate in HEK cells [714]. Further support for the existence of 
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heteromers comes from pharmacological studies showing that MMG ligands with 

shorter (10) or longer (24) linker lengths are less potent than MMG22 [9,748].   

Conclusion 

 In order for MMG22 to target and bind heteromers, the two receptors must 

be expressed in the same cells.  Previous research has shown the receptors are 

both expressed in the spinal dorsal horn and dorsal root ganglia, but little 

research has been done to look at both receptors simultaneously. Here we show 

that mRNAs for both receptors are expressed together in cells of the dorsal horn 

and dorsal root ganglia early after nerve injury.  
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Chapter 5 
 

 

Rewarding properties of MMG22: abuse liability vs relief 

from spontaneous pain 
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Alex, Portoghese, Philip S., Simone, Donald A. 2020.  The bivalent ligand, MMG22, reduces 

neuropathic pain after nerve injury without the side effects of traditional opioids. PAIN. (in press)
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Introduction: A brief overview of reward and addiction 

Addiction and the brain 

Addiction is a chronic, relapsing brain disease characterized by loss of 

control regarding the use of a substance, compulsive use despite negative 

consequences, and the emergence of a negative emotional state upon withdrawn 

[397,823]. Drugs that are associated with addiction in humans include cocaine 

(and other psychostimulants), alcohol, nicotine, and opioids. All of these drugs 

directly or indirectly cause dopamine release in the nucleus accumbens (NAc) 

[836]. 

Generally, addiction is thought to consist of three stages: 

binge/intoxication, withdrawal/negative affect, and preoccupation/anticipation. 

The brain regions believed to be involved in these stages include the basal 

ganglia, amygdala, and prefrontal cortex (respectively) [397]. During the 

binge/intoxication stage, positively reinforcing stimuli work by activating 

dopaminergic neurons in the ventral tegmental area (VTA) [572]  and the 

subsequent release of dopamine into the NAc [397]. The withdrawal/negative 

affect stage involves a cessation of the positive reinforcement which results in a 

decrease in the activity in the mesolimbic dopamine projection, which causes a 

decrease in dopamine release, an elevation of reward thresholds, and increased 

anxiety. Removal of the withdrawal associated negative affect becomes the basis 

for negative reinforcement and drug seeking behavior [397]. The 

preoccupation/anticipation stage of addiction involves glutamatergic projections 

from the prefrontal cortex (PFC) to the ventral striatum. The PFC is an area of 

the brain that mediates executive function and decreased activity in this area 

interferes with decision making and inhibitory control. Animal models of the 

positive reinforcing effects of drugs include self-administration and conditioned 

place preference [397]. 
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Opioid addiction 

One of the most prominent disadvantages regarding the use of opioids to 

treat chronic pain is the abuse and addiction liability associated with these drugs. 

Over the last few decades the incidence of opioid abuse and addiction has 

skyrocketed leading to what many are calling an “opioid epidemic” [746]. In 2017, 

the US department of Health and Human Services declared the opioid crisis a 

public health emergency [178]. Prescriptions for opioids have increased 

dramatically since 1999, peaking in 2012 with more than 255 million opioid 

prescriptions written [112]. Over the same time period, the number of opioid 

related overdose deaths has increased 200% [616], and opioids now kill more 

people than motor vehicle accidents in the US [570]. The number of patients 

prescribed opioids for non-cancer pain who misuse them is estimated to be as 

high as 30%, with around 10% developing opioid use disorders [723]. Withdrawal 

from opioids causes feelings of dysphoria, anxiety, and irritability, a combination 

of symptoms collectively termed “kyperkatifeia” [736]. Opioid withdrawal can also 

cause hyperalgesia and physical malaise [397]. 

There is evidence suggesting that chronic pain patients develop addiction 

at a lower rate than the general population [232] and animal studies indicate that 

chronic pain is accompanied by reduction in opioid induced reward  

[64,220,221,499,617,618,839]. However, the use of prescription opioids for 

chronic non-cancer pain is a strong risk factor for the development of opioid use 

disorders [214,837,871]. Nearly half of pain patients with a diagnosed substance 

use disorder involving opioids were first prescribed opioids for pain control [332] 

and 1 in 10 patients receiving opioids for chronic pain will develop an opioid 

addiction [837].  

Effects of mGluR5 antagonists on addiction 

mGluR5 has been shown to be involved in the reward pathway for many 

drugs of abuse, and antagonizing mGluR5 reduces reward seeking behavior for 

alcohol [70,151,301,717], nicotine [370,445,628], ketamine [359] and cocaine 

[369,370]. mGluR5 KO mice show decreased reward to cocaine [125], and do not 
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exhibit cocaine mediated LTP in the VTA (known to be important for the 

acquisition of reward seeking behavior) [71]. 

Regarding opioids, mGluR5 antagonists have been shown in previous 

studies to inhibit morphine induced conditioned place preference [658,691,831] 

and decreased self-administration of morphine [89] and heroin [359], although 

there are conflicting reports [298,358]. 

Animal models of addiction 

The conditioned place preference (CPP) assay is used to evaluate the 

rewarding properties of drugs in animals [39,821]. A typical CPP assay involves 

differentially pairing contextual cues with stimuli of interest. Conditioning involves 

repeated administration of a stimulus of interest (unconditioned stimulus / US) in 

a particular environment (conditioned stimulus / CS), intermixed with exposure to 

a different environment without the US. Following conditioning is a choice test 

where the animal has access to both environments without the US. An increase 

in time spent in the environment previously paired with the US vs the unpaired 

environment is taken as evidence that the US is rewarding (for review see [39]) 

Research has shown that using drugs known to be addictive in people as the US 

reliably produces CPP in mice and rats including morphine [40,607], cocaine 

[585], nicotine [733], and alcohol [680]. 

Another tool used to assess the rewarding properties of drugs is self-

administration. In this assay, animals are given access to a drug of abuse 

(generally administered when the animal pushes a lever) and their intake is 

monitored. There are two main variations of this assay, continuous and 

intermittent reinforcement. In the continuous administration paradigm drug is 

given every time the animal pushes a lever. For intermittent reinforcement, the 

animal must push the lever a certain number of times before drug is given. For a 

more in depth look at various parameters used in self-administration see [621]. 

Most drugs that promote self-administration, also promote conditioned place 

preference [39].  
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Interactions between pain and Reward 

Negative reinforcement from pain relief also involves the activation of 

dopaminergic neurons in the VTA and dopamine release in the NAc [573]. Pain 

relief has been shown to be rewarding in animal models [571,572,660]. A 

variation on the traditional CPP assay has been developed to take advantage of 

this analgesic CPP (aCPP). This assay can be used to measure the relief from 

ongoing spontaneous pain that is otherwise difficult to measure. Previous studies 

have shown that in the context of pain animals will show place preference when 

paired with normally non-rewarding analgesics like MPEP [428,835], lidocaine 

[292,380], bupivacaine [165], clonidine [171,292,380], and loperamide [797]. 

Analgesics including clonidine [498] and suprofen [142] have also been shown to 

promote self-administration in animal models of pain.   

The incredible potency of MMG22 is concerning when it comes to the 

potential for abuse and addiction. In the following studies we used a conditioned 

place preference assay in naïve and nerve injured animals to determine if 

MMG22 was rewarding in naïve animals and if MMG22 could decrease 

spontaneous pain in nerve injured animals.  
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Methods:  

Animals 

Adult (5-8 months) male and female C57/B6 mice (Charles River) were 

housed 4 (males) or 5 (females) to a cage and maintained on a 12-hour light/dark 

cycle with ad libitum access to food and water. An equal number of male and 

female mice were used for each experiment and no sex differences were seen 

for any of the parameters measured. All procedures were carried out during the 

light cycle.  All procedures were approved by the Institutional Animal Care and 

Use Committee of the University of Minnesota. 

Spared nerve injury 

Mice were anesthetized with 2.5 % isoflurane. Spared nerve injury (SNI) to 

the sciatic nerve was performed as described previously [82,172,644]. Briefly, 

after exposing the three branches of the sciatic nerve, the tibial and common 

peroneal branches were tightly ligated with 5.0 silk suture and cut 2 mm distal to 

the suture. Care was taken not to disturb the sural nerve. Sham surgeries 

followed the same procedure without manipulation of the sciatic nerve or distal 

branches. 

Drugs 

 The bivalent ligand MMG22 was synthesized as described previously [9]. 

MMG22, morphine, 2-methyl-6-(phenylethynyl)pyridine (MPEP), (Mallinckrodt 

Inc, Hazelwood, MO) and loperamide (Sigma, St. Louis, MO) were diluted in 1% 

DMSO (vehicle). Loperamide was diluted in near boiling 1% DMSO daily. All 

drugs were administered subcutaneously in a volume of 250 µl. 

Conditioned place preference  

 The CPP apparatus consisted of a two chambered box (28 x 28 x 20 cm) 

made from Plexiglas lined with 16 infrared photobeam emitters and detectors 

(Med Associates, St. Albans, VT). Alternate sides of the box were lined with 

vertical or horizontal black and white stripes (1.2 cm thick) but were otherwise 

identical. The two sides of the box were separated by one of two plexiglass 

partitions; a closed partition, or an open partition with a centrally located opening 

to allow access to both chambers. Both partitions had the same black and white 
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striped patterns. On day 1, mice were placed into the middle of the box (with the 

open partition) and allowed to move freely between the two chambers for 30 

minutes. Movement was tracked by software (Med Associates, activity monitor) 

that recorded infrared beam interruptions to locate the mouse position in the box. 

The program recorded the time spent in each chamber on days 1 and 5 of 

testing. 

 Day 1 established if mice exhibited a preferred side of the chamber at 

baseline. Mice that spent more than 70% of the 30 minutes in one chamber were 

excluded to avoid preconditioning bias (1 mouse). On days 2-4 the remaining 

mice were subjected to two separate 30 minute chamber/treatment pairings per 

day. In the morning, mice were given a s.c. injection of vehicle and then placed in 

one side of the chamber 30 minutes later. In the afternoon, the same mice were 

given a s.c. injection of drug (at the same volume) and placed in the alternate 

(drug-paired) side of the chamber 30 minutes later. The drug paired chamber 

was pseudo-randomly assigned to each mouse such that some mice received 

drug in the chamber with vertical stripes, and some in the chamber with 

horizontal stripes, while maintaining a baseline average of ~40% of time spent in 

-in the drug paired chamber (biased design). During these sessions, the closed 

partition was used to separate the two chambers so that mice only had access to 

one side of the box. On day 5 (post-conditioning) the open partition replaced the 

closed partition and the mice were allowed to move freely between to two 

chambers for 30 minutes. The time spent on each side was again recorded. 

Preference scores were generated by subtracting the amount of time (sec) mice 

spent in drug paired chamber during pre-conditioning from the time mice spent in 

the drug paired chamber post-conditioning. Each mouse was only used for one 

conditioning experiment. Data collectors were blinded to drug by a third party. 

Data analysis 

Data are expressed as mean ± SEM, except where otherwise noted. 

GraphPad Prism 8.0 (Graphpad software Inc. La Jolla, CA, USA) was used for 

statistical analyses and calculation of ED50 values. All behavioral data were 

analyzed via one- or two-way ANOVA with repeated measures. Post-hoc 
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comparisons were done with Bonferroni tests. A p value of <0.05 was considered 

significant. 
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Results 

CPP in naïve and nerve injured animals 

To determine the potential rewarding properties of MMG22 we used the 

traditional CPP assay in naïve mice [39,821]. To examine the ability of MMG22 to 

promote reward by decreasing spontaneous ongoing pain, we used the variant 

aCPP assay in nerve-injured mice (both early and late after nerve injury) 

[171,292,380,775]. As a known drug of abuse, morphine was used as a positive 

control for naïve and nerve-injured mice. Loperamide and MPEP were used as 

positive controls for aCPP as they have both been shown to produce preference 

in nerve-injured animals but not in naïve or sham control animals [428,797,835]. 

Although SNI has been shown to decrease motor coordination in mice, it does 

not decrease overall motility [726] and therefore would not affect the ability of 

mice to develop a preference for one chamber or another. 

Figure 5.1 Conditioned place preference experimental timeline 

 

We tested the ability of 10 mg/kg s.c. MMG22 to induce CPP in naïve 

mice and aCPP in mice early and late after nerve injury. We compared the time 

mice spent in the drug paired chamber before and after conditioning (two-way 

ANOVA with repeated measures: injury: [F(2,21)=5.39; P<0.05], conditioning: 

[F(1,21)=5.77; P<0.05], injury X conditioning: [F(2,21)=11.94; P<0.001], n=8-12). 

After 3 days of pairing with MMG22, naïve mice showed no preference for either 

chamber (P=0.73). The inability for MMG22 to induce place preference in naïve 

mice suggests that MMG22 may lack the addictive properties of traditional 

Day 0

SNI

6

Pre
-

Conditi
onin

g

te
st

7-9

Conditi
on

AM: V
ehicle

PM: D
ru

g

10

Post-

Conditi
onin

g 

te
st

Early Group

26

Pre
-

Conditi
onin

g 

te
st

27-29

Conditi
on

AM: V
ehicle

PM: D
ru

g

30

Post-

Conditi
onin

g

te
st

Late Group



 
 

75 

opioids. Early after nerve injury, mice spent more time in the drug paired 

chamber after conditioning with MMG22 (10 mg/kg) (P<0.0001). The ability for 

MMG22 to produce aCPP was limited to early after nerve injury as mice 

conditioned with MMG22 late after injury showed no increase in time spent in the 

drug paired chamber (P>0.99) (Fig. 5.2A). The ability of MMG22 to induce aCPP 

early after nerve injury, but not late, mirrors its decrease in anti-hyperalgesic 

potency over the same time period. A dose of 10 mg/kg MMG22 was also unable 

to induce place preference in sham operated animals early (10 days) after 

surgery (data not shown). Comparing the preference scores (one-way ANOVA; 

[F(2,25)=12.41; P<0.001]) indicated that mice conditioned with 10 mg/kg MMG22 

early after nerve injury had higher preference scores than naïve mice (P<0.001) 

as well as mice late after nerve injury (P=0.01) (Fig. 5.2B). There was no 

difference between the preference scores of naïve mice and mice tested late 

after nerve injury (P=0.24). The ability of MMG22 to induce aCPP only early after 

nerve injury suggests it is able to reduce spontaneous/ongoing pain early, but not 

late after nerve injury. The results parallel the decrease in potency of MMG22 for 

reducing mechanical hyperalgesia late after nerve injury. 

Unlike MMG22, morphine at 10 mg/kg induced CPP in naïve mice 

(P<0.0001), as well as early (P<0.0001), and late (P<0.0001) after nerve injury 

(Fig. 5.2C) (two-way ANOVA with repeated measures; conditioning: [F(1,21) = 

0.11; P<0.0001], injury: [F(2,21)=0.62; P=0.55], injury × conditioning: [F(2,21)=0.32; 

P=0.73]). Comparison of the preference scores also showed no difference 

between morphine’s ability to produce place preference in naïve or nerve-injured 

mice (one-way ANOVA; [F(2,22)=0.22; P=0.81]) (Fig. 5.2D). That morphine 

produced place preference equally well in naïve and nerve-injured mice (both 

early and late), suggests that at 10 mg/kg, the rewarding properties of morphine 

overshadow any increased reward the mice might get from the reduction of 

spontaneous ongoing pain. 

We also compared the ability of MPEP and loperamide to induce CPP in 

naïve mice and aCPP in nerve-injured mice. The ability of MPEP to induce place 

preference differed between naïve and nerve-injured mice conditioned early and 
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late after injury (two-way ANOVA with repeated measures; conditioning: 

[F(1,24)=6.77; P<0.05], conditioning × injury [F(2,24)=3.84; P<0.05], injury: 

[F(2,24)=1.86; P=0.188]). Similar to previous studies [428, 835], 30 mg/kg MPEP 

produced aCPP in mice conditioned early after nerve injury (P<0.01), but not 

CPP in naïve mice (P>0.99). Interestingly, 30mg/kg MPEP was also unable to 

produce aCPP in mice tested late after nerve injury (P>0.99) (Fig. 5.2E). 

Preference scores (one-way ANOVA; [F(2,28)=5.9; P<0.01]) were higher for mice 

early after nerve injury than for naïve mice (P<0.05), or for mice late after nerve 

injury (P<0.05) (Fig. 5.2F). There was no difference between the preference 

scores of naïve mice and mice late after nerve injury (P>0.99). The temporary 

ability of MPEP to induce analgesic place preference after injury is consistent 

with the dose response data showing a significant decrease in potency of MPEP 

late after injury compared to the earlier time point. 

The ability of loperamide (10 mg/kg) to induce place preference also 

differed among the groups (two-way ANOVA with repeated measures; 

conditioning: [F(1,24)=10.47; P<0.01], injury: [F(2,24)=0.13; P=0.88], conditioning × 

injury: [F(2,24)=3.04; P=0.07]). Loperamide produced aCPP in mice tested early 

after nerve injury (P<0.05) as well as mice tested late after nerve injury (P<0.05). 

The same dose of loperamide was unable to produce CPP in naïve mice 

(P>0.99) (Fig. 5.2G). Comparing the preference scores (one-way ANOVA; 

[F(2,29)=4.82; P<0.05]) revealed a difference between naïve mice and both groups 

of injured mice (P<0.05) but no difference between groups of mice after nerve 

injury (P>0.99) (Fig. 5.2H). The inability for loperamide to induce CPP in naïve 

mice is consistent with previous results [8]. Loperamide has also been shown to 

induce aCPP two weeks after nerve injury in rats [797]. That loperamide retained 

its ability to produce aCPP late after nerve injury also mirrors behavioral data 

showing no change in analgesic potency early vs late after nerve injury. 
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Figure 5.2 CPP and aCPP in naïve and nerve injured animals

 

Figure 5.2 Traditional and analgesic conditioned place preference in naïve and nerve-

injured mice. (A) Naïve mice show no difference in the time spent in the chamber paired 

with 10 mg/kg MMG22 before and after conditioning (pre: 837±66s vs post: 1183±89s; 

P=0.73). When paired with the same dose, nerve-injured mice spent significantly more time 

in the drug-paired chamber when conditioned early after nerve injury (pre: 788±40s vs post: 

709±56s; P<0.0001) but not late after nerve injury (pre: 840±48s vs post: 1843±81s; 

P>0.99). (B) Mice had higher preference scores when paired with MMG22 early after nerve 

injury (322±56s) than naïve mice (-115±82; P<0.001), and mice late after nerve injury 

(49±52; P=0.01). Preference scores for naïve mice and mice conditioned late after nerve 

injury were not different (P=0.24). (C) Naïve mice spent more time in the drug paired 

chamber after conditioning with 10 mg/kg morphine (pre: 821±57s vs post: 1224±71s; 

P<0.0001). Nerve-injured mice also spent more time in the drug paired chamber after 

conditioning with 10 mg/kg morphine both early (pre: 802±58s vs post: 1147±54s; P<0.0001) 

and late (pre: 776±52s vs post: 1122±40s; P<0.0001) after nerve injury. (D) There is no 

difference between the preference scores of mice paired with morphine regardless of injury 

or timing (naïve: 403±62, early: 379±68, late: 346±48; P<0.99 for all comparisons). (E) Early 

after nerve injury, mice paired with 30 mg/kg MPEP mice spent more time in the drug paired 

chamber (pre: 795±71s vs post: 1045±40s, P<0.01). Naïve mice (pre: 854±40s vs post: 

888±57s), and mice conditioned late after nerve injury (pre: 784±65s vs post: 799±68s) spent 

equal time in both chambers when conditioned with 30 mg/kg MPEP (P>0.99 for both). (F) 
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Mice conditioned early after nerve injury (247±68) show higher preference scores for the 

drug paired chamber than naïve mice (-12±65; P<0.05) or mice conditioned late after nerve 

injury (5±39; P<0.05). There was no difference in preference scores between naïve mice and 

mice conditioned late after nerve injury (P>0.99). (G) Mice spent more time in the chamber 

paired with 10 mg/kg loperamide when conditioned early (pre: 757±31s vs post: 1025±76s; 

P<0.05) and late (pre: 774±43 vs post: 1001±51s; P<0.05) after nerve injury.  Naïve mice 

showed no preference for the loperamide paired chamber (pre: 873±33s, vs post: 862±79s; 

P>0.99). (H) Mice conditioned early (268±84) and late (257±55) after nerve injury had larger 

preference scores for loperamide paired chamber than naïve mice (4±66; P<0.05 for both). 

Preference scores were not different for mice paired early or late after nerve injury (P>0.99). 

Data are presented as means ± SEM, n=8-12 per group.
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Dose dependency of analgesic place preference 

We also examined the ability of different doses of MMG22 and morphine 

(1, 3 and 10 mg/kg) to induce analgesic place preference early after nerve injury. 

We first compared the time spent in the drug paired chamber before and after 

conditioning with MMG22 (two-way ANOVA with repeated measures; dose: 

[F(2,21)=9.25; P=0.001], conditioning: [F(1,21)=21.03; P<0.001], dose × conditioning: 

[F(2,21)=8.29; P<0.01]). Early after nerve injury, mice paired with 3 mg/kg or 10 

mg/kg MMG22 spent more time in the drug paired chamber (P=0.01, P<0.001 

respectively). Mice paired with 1mg/kg MMG22 showed no preference for either 

chamber (P>0.99) (Fig. 5.3A). Similarly, preference scores also differed with 

dose (one-way ANOVA; [F(2,23)=8.13; P<0.01]. Preferences scores of mice given 

3 mg/kg MMG22 and 10 mg/kg MMG22 - were greater than those produced by 1 

mg/kg MMG22 (P<0.05 and P<0.01 respectively). There was no significant 

difference between preference scores of mice given 3 and 10mg/kg MMG22 

(P>0.99) (Fig. 5.3B). 

Morphine at doses of 1, 3, and 10 mg/kg also produced place preference 

early after nerve injury (two-way ANOVA with repeated measures; dose: 

[F(2,21)=0.15; P=0.87], conditioning: [F(1,21)=53.7; P<0.0001], dose ×  conditioning: 

[F(2,21)=0.25; P=0.79]). (Fig. 5.3C). Morphine increased the time mice spent on 

the drug paired chamber at 10 mg/kg (P<0.001) as well as at 3mg/kg (P<0.01). 

At 1mg/kg (~1/2 the ED50) morphine was also equally effective (P=<0.01) at 

producing place preference in mice early after nerve injury. Examining the 

preference scores (one-way ANOVA: [F(2,22)=0.61; P=0.55]) revealed no 

differences in preference scores between mice paired with any of the doses of 

morphine tested (P>0.99 for all comparisons) (Fig. 5.3D).
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Figure 5.3 Dose dependent aCPP in nerve injured animals 

Figure 5.3 Analgesic place preference is dose dependent for MMG22, but not for 

morphine early after nerve injury. (A) Early after nerve injury, mice spent more time in the 

drug paired chamber after conditioning with 3 mg/kg (pre: 895±31s vs post: 1173±75s; 

P=<0.01) or 10 mg/kg (pre: 837±66s vs post: 1182±89s,; P<0.001) or MMG22. Mice paired 

with 1 mg/kg MMG22 showed no preference for either chamber (pre: 757±72s vs post: 

711±57s; P>0.99). (B) Mice paired with 3 mg/kg (278±82) and 10 mg/kg (322±56) MMG22 

showed higher preference scores than mice paired with 1 mg/kg MMG22 (-46±73; P<0.05 

and P<0.01 respectively). Preference scores for mice paired with 3 and 10 mg/kg MMG22 

were not different from each other (P>0.99). (C) Early after nerve injury, mice spent more 

time in the drug paired chamber after conditioning with 1 mg/kg (pre: 829±7s vs post: 

1106±6s; P=<0.01), 3 mg/kg (pre: 857±61s v post: 1149±58s; p<0.01), or 10 mg/kg 

morphine (pre: 802±58s vs post: 1147±54; p<0.001) (D) There were no differences in 

preference scores of mice paired with 1, 3, or 10 mg/kg of morphine (276±57, 292±88, 

379±68 respectively; P>0.99 for all comparisons). Data presented as means ± SEM, n = 8-

12 for all groups. 
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Discussion 

The conditioned place preference assay, which assesses the rewarding 

attributes of a drug, is used as an initial screening tool for the addictive potential 

of drugs [10,145,146]. Morphine, but not MMG22, MPEP or loperamide, 

produced place preference in naïve animals. This strongly suggests that MMG22 

may not have the abuse potential associated with traditional opioids. This is the 

first study to show that MMG22 is not rewarding in naïve mice. Recent data from 

the Graves lab (department of neuroscience) indicates that MMG22 also does 

not induce self-administration in naïve mice (unplublished data).  

MMG22 did produce analgesic place preference in animals conditioned 

early after nerve injury. The ability for an analgesic to produce place preference 

in injured animals is thought to indicate its ability to decrease ongoing, 

spontaneous pain [171,292,380,775], which may be caused by spontaneous 

activity in the injured nerves [671]. The minimum dose of MMG22 required to 

produce aCPP was 3 mg/kg, a much higher dose than its ED50 for reducing 

mechanical hyperalgesia (0.12 mg/kg), indicating that a higher dose of MMG22 is 

needed to decrease spontaneous pain as compared to evoked pain. MMG22 

was also unable to produce aCPP late after nerve injury, when MMG22 showed 

a marked decrease in anti-hyperalgesic potency. The ability of MMG22 to 

produce place preference only early after nerve injury, when it is most potent at 

reducing hyperalgesia, supports MMG22 being an effective pain reliever that 

lacks abuse potential. That MMG22 only induced aCPP when its anti-

hyperalgesic potency was high, strongly suggests that the development of place 

preference for analgesics is related to the negative reinforcement of pain relief 

[380,775]. 

Unlike MMG22, morphine (at the doses tested) produced place preference 

in nerve-injured and naïve mice equally well. Some studies have shown that low 

doses of morphine can induce aCPP in nerve injured animals but are unable to 

produce CPP in naïve animals [95,775]. Other studies suggest that chronic pain 

decreases the rewarding properties of opioid analgesics in animal models 

[64,500,839]. These studies propose that chronic pain suppresses the ability of 
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the endogenous reward system to respond to opioids [41]. In support of this, 

chronic pain has been shown to decrease opioid induced dopamine release in 

the VTA [581]. However, the use of prescription opioids by patients with chronic 

non-cancer pain is a strong risk factor for the development of opioid use 

disorders [214,837,871]. Whether chronic pain patients have an increased or 

decreased risk of opioid abuse and addiction than the general population is still 

debated; however, between 35 and 75% of chronic non-cancer pain patients 

receive opioid prescriptions [138,668] and one factor that is an absolute pre-

requisite for opioid addiction is opioid exposure.  

Studies in mice have shown conflicting results regarding the role of pain in 

opioid addiction. Several studies have shown that pain reduces the rewarding 

properties of opioids in ICR mice [566,618,839], whereas other studies have 

shown no changes or even enhancement of opioid reward in C57/BL6 mice 

[353,574,590]. The possibility that there are inherent strain differences in the 

processing of reward signals under conditions of pain warrants further 

exploration. 

MMG22 induced dose dependent aCPP early after nerve injury but did not 

promote place preference in naïve mice. Given the current opioid crisis, novel 

non-addictive treatments for chronic pain are more urgent than ever. Previous 

studies have also shown that MMG22 does not induce development of acute 

[748] or chronic [735] analgesic tolerance, which is paramount for treatment of 

chronic pain.  

Conclusion 

The rewarding properties of opioids causes these drugs to be abused and 

detracts from their powerful analgesic effects. Previous studies have shown the 

MMG22 is incredibly potent at reducing hyperalgesia but have not characterized 

its properties with regards to abuse and addiction. Here we show that MMG22 is 

not rewarding in naïve animals but does produce negative reinforcement as 

shown by the acquisition of place preference in the setting of pathological pain, 

suggesting its ability to reduce spontaneous pain. MMG22’s ability to produce 

negative reinforcement from pain relief parallels its ability to reduce tactile 
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hyperalgesia, in that it no longer induces place preference when given to animals 

later after nerve injury.



 
 

84 

 

 

 

 

 

Chapter 6 

 

 

Potential side effects of MMG22 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter reprinted with permission from PAIN, modified from:  
 

Speltz, Rebecca, Lunzer, Mary M., Shueb, Sarah S., Akgün, Eyup, Reed, Rachelle, Kalyuzhny, 

Alex, Portoghese, Philip S., Simone, Donald A. 2020.  The bivalent ligand, MMG22, reduces 

neuropathic pain after nerve injury without the side effects of traditional opioids. PAIN. (in press)



 
 

85 

Introduction: Side effects associated with MOR agonists and mGluR5 antagonists 

Off-target effects of MOR agonists 

 Abuse and addiction are not the only deterrents to the use of opioids to 

manage chronic pain, and other off-target effects include the development of 

analgesic tolerance, constipation, sedation, respiratory depression, as well as 

nausea and vomiting [57]. Results from a meta-analysis of 11 different double-

blinded, placebo controlled, randomized trials looking at the use of opioids in 

chronic non-cancer pain patients reported that over 80% of patients treated with 

opioids experienced at least one adverse event including constipation (41%), 

nausea (32%), somnolence (29%), dizziness (20%), vomiting (15%) and itching 

(15%), significantly more than patients treated with placebo [355]. While side 

effects were prevalent, the average reduction in pain scores was only 30%  [355]. 

Respiratory depression (RD) is the main cause of opioid related overdose 

death [863]. Opioids induce changes in breathing patterns such that respiration 

becomes slow and irregular. A decrease in minute and tidal volume results in 

hypercapnia and hypoxia (for review see [630]). RD is mediated by inhibition of 

rhythm generating respiratory centers in the CNS including the pre-Bötzinger 

complex in the ventrolateral medulla [490,675,718]. Unfortunately, tolerance to 

the respiratory effects of opioids develops more slowly than tolerance to the 

analgesic effects [534], leaving those for whom analgesic tolerance has 

developed in a dangerous situation: as increasing the dose of opioid in order to 

gain pain relief comes with the risk dying from respiratory depression.  

It is well known that high doses of MOR agonists induce hyperlocomotion 

[51,126,564,629] and thigmotaxis or “wall hugging” [19] in mice, while they 

produce sedation and somnolence in patients [914]. While hyperlocomotion is not 

a clinically relevant behavior, it is a centrally mediated effect that is often used as 

a behavioral marker in addiction studies [765]. Opioid induced sedation in 

patients is also a centrally mediated effect [914] and not seen with peripherally 

restricted opioids [404].  

Opioid receptors expressed by enteric neurons in the gastrointestinal tract 

are responsible for most of the consitpatory effects of systemic opioids [545]. 
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MOR agonists delay transit through the small and large intestine by stimulating 

tonic contraction of smooth muscle and inhibiting peristaltic contractions [874]  

causing constipation. Tolerance to these effects develops in the small intestine, 

but not the colon [692]. A similar but more severe effect of opioids can lead to 

opioid bowl dysfunction (OBD). The symptoms of OBD can be severe and can 

cause patients to discontinue opioid therapy despite the recurrence of pain 

[57,622].  

Off-target effects of mGluR5 antagonists 

The mGluR5 antagonists, including MPEP and fenobam, readily pass the 

blood brain barrier and produce centrally mediated effects on rodent behavior 

[34,251,330]. While there are conflicting data regarding the ability of mGluR5 

antagonists to alter locomotor behavior [501,538,930], they are generally 

considered to be anxiolytic [330,538,761,762,790,830] in rodents, with mixed 

results in clinical trials [242,633,634]. Other central effects of mGluR5 antagonists 

include deficits in hippocampal dependent spatial learning [330]; however, there 

are conflicting reports (for review see [742]). 

In the following studies we investigated the potential locomotor effects of 

MMG22 and compare them to the effects of morphine, loperamide and MPEP. 

We also compare the effects MMG22 and morphine on respiratory function and 

constipation.  
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Methods 

Animals 

Adult (5-8 months) male and female C57/B6 mice (Charles River) were 

housed 4 (males) or 5 (females) to a cage and maintained on a 12-hour light/dark 

cycle with ad libitum access to food and water, except as otherwise noted for 

constipation studies. An equal number of male and female mice were used for 

each experiment and no sex differences were seen for any of the parameters 

measured.  All procedures were carried out during the light cycle.  All procedures 

were approved by the Institutional Animal Care and Use Committee of the 

University of Minnesota. 

Drugs 

 The bivalent ligand MMG22 was synthesized as described previously [9]. 

MMG22, morphine, 2-methyl-6-(phenylethynyl)pyridine (MPEP), (Mallinckrodt 

Inc, Hazelwood, MO) and loperamide (Sigma, St. Louis, MO) were diluted in 1% 

DMSO (vehicle). Loperamide was diluted in near boiling 1% DMSO daily. All 

drugs were administered subcutaneously in a volume of 250 µl. 

Locomotor activity, sedation and anxiety 

 To determine if treatment with MMG22 shared any of the motor side 

effects common to centrally acting opioids we measured the effects of MMG22 

on motor behavior. Mice were placed in an activity chamber box 30 minutes after 

drug administration and motor activity was recorded for the subsequent 30 

minutes. Total distance traveled, average velocity, and total ambulatory time 

were recorded and analyzed. 

 Antagonists to mGluR5 are known to decrease basal measures of anxiety in 

mice [330,762,830]. To determine if MMG22 shared any of these effects we used 

an open-field assay to look for center avoidance. Center avoidance is considered 

anxiety-like behavior in rodents [669]. Pharmacological studies have supported 

this interpretation as anxiolytics have been shown to increase both the total time 

mice spend in the center area as well as the number of entries mice will make 

into the center area during a given time [669,737,818]. Data sets were analyzed 

by defining a central area to be one-half the size of the full chamber, with 



 
 

88 

identical central coordinates. Total time spent in the center, time spent 

ambulatory in the center, distance traveled in the center, and the number of 

entries into the center zone were recorded and analyzed. Data collectors were 

blinded to drug by a third party. 

Drug-induced constipation 

 The colonic bead expulsion test [692] was used to compare the effects of 

chronic MMG22 and morphine on constipation, a common side effect of opioids. 

Mice were given twice daily s.c. injections of vehicle or drug (MMG22 or 

morphine at 1 or 10 mg/kg) for 8 days. At 24 hours before testing, mice were 

placed in cages with raised mesh wire to suspend them above their bedding and 

prevent ingestion of feces or bedding. Mice were then fasted for 24 hours with 

free access to water; to maintain caloric intake and to avoid hypoglycemia, mice 

had access to a sugar water solution of 5% dextrose for the first 8 h of the fasting 

period. 30 minutes prior to testing, mice were given a final s.c. injection of vehicle 

or drug (MMG22 or morphine at 1 or 10 mg/kg). 30 min after injection, mice were 

anesthetized with 2.5% isoflurane (1–2 min) and a single 2 mm glass bead was 

inserted 3 cm into the distal colon. Bead insertion was accomplished by pushing 

the bead into the end of a 10 cm long piece of 2 mm plastic tubing. The tubing 

was inserted into the rectum 3 cm and then an internal plunger was advanced 

just past the tip of the tube to ensure bead ejection. After bead insertion, mice 

were placed in large glass beakers and the time to bead expulsion was recorded. 

Mice were monitored for a maximum of 5 hours. Data collectors were blinded to 

drug by a third party. 

Respiratory depression 

Whole body plethysmography experimental setup was adapted from 

Young et al. to determine the effects of morphine (3, 10 and 30 mg/kg) and 

MMG22 (3, 10, 30 mg/kg) on respiratory function [915]. Mice were allowed to 

acclimate for two days in the same room as the plethysmography before testing. 

Mice were habituated to the testing environment by placing them in the chambers 

for 30 minutes for two consecutive days before testing. The mice were observed 

by the experimenter outside the room via camera for any adverse effects. On 
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testing day, baseline respiratory data was collected for 30 minutes. Mice were 

given drug or vehicle and placed back in the chamber. Measurements of 

respiratory function were taken every 10 minutes for 60 minutes. Each mouse 

was utilized for three measurements on three separate days: Day 1: mice were 

injected with vehicle, Day 2: mice were given the lowest dose of either MMG22 or 

morphine, Day 3: mice received a higher dose of either MMG22 or morphine. 

Data collectors were blinded to drug by a third party. 

Data analysis 

Data are expressed as mean ± SEM, except where otherwise noted. 

GraphPad Prism 8.0 (Graphpad software Inc. La Jolla, CA, USA) was used for 

statistical analyses and calculation of ED50 values. All behavioral data were 

analyzed via one- or two-way ANOVA with repeated measures. Post-hoc 

comparisons were done with Bonferroni tests. A p value of <0.05 was considered 

significant. 
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Results 

MMG22 did not alter locomotor activity in mice 

It is well known that MOR agonists induce hyper-locomotion 

[51,126,564,629] and thigmotaxis or “wall hugging” [19] in mice. However, there 

are conflicting data regarding the ability of mGluR5 antagonists to alter locomotor 

behavior [501,538,930] and anxiolytic behavior [330,538,762,830] in rodents. We 

investigated whether s.c. MMG22 (10 mg/kg) altered either locomotor behavior or 

anxiety-like behavior in naïve mice and compared its effects to vehicle, morphine 

(10 mg/kg), MPEP (30 mg/kg) and loperamide (10 mg/kg). General locomotor 

activity indicated by the distance mice traveled during a 30 minute period in an 

activity chamber differed between groups (one-way ANOVA; [F(4,35)=100.2; 

P<0.0001], Bonferroni post hoc pairwise against vehicle). Morphine caused an 

increase in distance traveled (P<0.0001) while loperamide had the opposite 

effect (P<0.05). Neither MMG22 nor MPEP had a significant effect on distance 

traveled (P>0.99, P=0.11 respectively) (Fig. 6.1A). The reverse pattern was 

observed for velocity (one-way ANOVA; [F(4,40)=28.32; P<0.0001]) where 

morphine caused a decrease in velocity (P<0.0001) and loperamide increased 

velocity (P<0.05). Average velocities for mice after MMG22 and MPEP were not 

different from vehicle (P>0.99 for both) (Fig. 6.1B). We also examined the total 

time mice spent ambulatory during the same 30-minute sessions. Comparing 

treatments (one-way ANOVA; [F(4,40)=116.3; P<0.0001]), morphine increased the 

total time mice spent ambulatory (P<0.0001) whereas loperamide had the 

opposite effect (P<0.05) (Fig. 6.1C). Total time spent ambulatory after MMG22 or 

MPEP were not different from vehicle (P>0.99, P=0.22 respectively). 

We next examined the effect of each treatment on normal (non-

pathological) anxiety-like behavior. Anxiolysis produced by drug treatment can be 

evaluated via the open-field test; anxiolytics will increase the amount of time 

rodents spend in the center region of an open field [669,739], as well as the 

number of entries made into the center region [669,737]. Because mGluR5 

antagonists have been shown to reduce anxiety like behavior in rodents 

[93,330,366,384,538,762,830], we determined if MMG22 produced anxiolytic 
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activity. The amount of time mice spent in the central zone of the activity 

chamber differed among the treatment groups (one-way ANOVA; [F(4,40)=27.30;  

P<0.0001]). Morphine reduced the time mice spent in the center of the chamber 

(P<0.001) as did loperamide (P<0.01). In agreement with previous studies, 

MPEP increased the amount of time mice spent in the center of the chamber 

(P<0.0001). Treatment with MMG22 did not differ from vehicle (P=0.32) (Fig. 

6.1D). The number of times mice entered into the center zone of the chamber 

(one-way ANOVA; [F(4,40)=24.25; P<0.0001]) was also decreased by morphine 

(P<0.001) and increased by MPEP (P=0.0001). Center zone entries after 

treatment with MMG22 or loperamide were not different from vehicle treated mice 

(P=0.3, P=0.06 respectively) (Fig. 6.1E). 

Finally, to control for effects of hyper- or hypo-locomotion on the time 

spent in the center zone we compared the distance mice traveled in the center 

zone as a percent of total distance traveled after drug treatment (one-way 

ANOVA; [F(4,40)=60.40, P<0.0001]). Compared to vehicle, morphine decreased 

the percentage of total distance traveled in the center of the chamber 

(P<0.0001). MPEP has the opposite effect and increased the percentage of total 

distance mice traveled in the center (P<0.0001). Treatment with MMG22 and 

loperamide were not different from control (P>0.99 for both) (Fig. 6.1F). The time 

mice spent ambulatory in the center zone (as a percent of total ambulatory time) 

followed the same pattern (data not shown). 

Previous studies evaluating the effects of opioids on open field activity 

have shown that morphine does induce thigmotaxis “wall hugging” [19]; however, 

the confounding hyper-locomotion induced by this dose of morphine makes 

interpreting this behavior difficult. The decrease in time spent in the central zone 

after loperamide was also unexpected. However, loperamide did not affect the 

distance mice traveled in the center area (as a percent of total distance traveled), 

suggesting that the decreased time spent in the center zone after loperamide 

may reflect the reduction in total time spent ambulatory and total distance 

traveled as opposed to anxiety related behavior. A representative trace of 

ambulatory data is shown in Fig. 6.1G. Over the course of the experiments it was 
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also noted that MMG22, unlike morphine, did not induce Straub tail at any dose 

tested (data not shown). Cumulatively, the data suggests that MMG22 (at 10 

mg/kg s.c.) does not affect locomotor behavior like traditional opioids, nor does it 

have the anxiolytic activity of mGluR5 antagonists. 
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Figure 6.1 Locomotor effects of MMG22 

 

Figure 6.1 Drug effects on locomotor activity and anxiety related behavior. (A) 

Morphine increased the total distance traveled by mice over 30 minutes when compared to 

vehicle (P<0.0001). Loperamide had the opposite effect, decreasing the distance traveled by 

mice when compared to vehicle (P<0.001). Administration of MMG22 or MPEP had no effect 

on distance mice traveled compared to vehicle (P>0.99, P=0.11). (B) Morphine decreased 

the average velocity of mice compared to mice treated with vehicle (P<0.0001), whereas 

loperamide increased the average velocity slightly (P<0.05). The average velocity of mice 

treated with MMG22 and MPEP was not different than control mice (P>0.99 for both). (C) 

Morphine increased the amount of time mice spent ambulatory over a 30 minute period when 

compared to vehicle treated mice (P<0.0001). Treatment with loperamide had the opposite 

effect, showing a reduction in time mice spent ambulatory (P<0.05). MMG22 and MPEP had 

no effect of the time mice spent ambulatory (P>0.99, P=0.22 respectively). (D) Both 

morphine and loperamide decreased the time mice spent in the center zone of the chamber 

compared to vehicle treated animals (P<0.001 and P<0.05 respectively). MPEP increased 

the time mice spent in the center zone (P<0.0001). Treatment with MMG22 was not different 

MorphineVehicle MMG22 MPEP Loperamide
V
eh

ic
le

M
M

G
22

M
or

ph
in

e

M
P
E
P

Lo
pe

ra
m

id
e

0

5

10

15

20

25

T
im

e
 A

m
b

u
la

to
ry

 (
m

in
)

✱✱✱✱

✱

C

V
eh

ic
le

M
M

G
22

M
or

ph
in

e

M
P
E
P

Lo
pe

ra
m

id
e

0

5

10

15

20

25

D
is

ta
n

c
e

 (
m

)

✱✱✱✱

✱

A

V
eh

ic
le

M
M

G
22

M
or

ph
in

e

M
P
E
P

Lo
pe

ra
m

id
e

0

10

20

30

40

50

V
e

lo
c
it
y
 (

c
m

/s
e

c
)

✱✱✱✱

✱

B

D

V
eh

ic
le

M
M

G
22

M
or

ph
in

e

M
P
E
P

Lo
pe

ra
m

id
e

0

2

4

6

8

T
im

e
 i
n

  
C

e
n

te
r 

(m
in

)

✱✱✱✱

✱✱✱✱

E

V
eh

ic
le

M
M

G
22

M
or

ph
in

e

M
P
E
P

Lo
pe

ra
m

id
e

0

50

100

150

200

250

E
n

tr
ie

s
 i
n

to
 C

e
n

te
r

✱✱✱

✱✱✱ F

V
eh

ic
le

M
M

G
22

M
or

ph
in

e 
M

P
E
P

Lo
pe

ra
m

id
e

0

10

20

30

40

50

D
is

ta
n

c
e

 t
ra

v
e

le
d

 i
n

 c
e

n
te

r

(%
 o

f 
to

ta
l)

****

****

G



 
 

94 

from vehicle with respect to the amount of time mice spent in the center zone of the chamber 

(P=0.32). (E) When compared to vehicle, morphine caused a significant decrease in the 

number of entries mice made into the center zone (P<0.01). MPEP increased the number of 

times mice entered the center zone (P<0.001). Mice treated with MMG22 or loperamide 

entered the center zone the same number of times as vehicle treated mice (P=0.3, P=0.06 

respectively). (F) Compared to vehicle, morphine decreased the distance traveled in the 

center zone (as a percentage of total distance traveled) (P<0.0001) while MPEP increased it 

(P<0.0001). Neither MMG22 nor loperamide had any effect on the distance mice traveled in 

the center zone (P>0.99 for both). (G) Representative traces of the locomotor behavior of 

mice over a 30 minute period after s.c. injection of vehicle, 10mg/kg MMG22, 10mg/kg 

morphine, 30mg/kg MPEP, or 10mg/kg Loperamide. Data presented as mean ± SEM, n = 9 

per group. 
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MMG22 does not cause respiratory depression 

Whole body plethysmography was used to examine the effects of 3, 10 

and 30 mg/kg of s.c. MMG22 and morphine on minute volume, respiratory 

frequency, and tidal volume in naïve mice (Fig. 6.2A-C, Table 6-1). Analysis of 

the AUC for minute volume normalized to baseline showed a significant effect of 

drug treatment (one-way ANOVA; [F(6,35)= 4.77; P=0.001]). Post hoc comparison 

(pairwise against vehicle) showed a decrease in minute volume after systemic 

administration of 30 mg/kg morphine (P<0.05) (Fig. 6.2C). No other doses or 

treatments were different from vehicle. We also compared the effects of each 

drug on respiratory frequency (two-way ANOVA with repeated measures; drug: 

[F(6,35)=10.53; P<0.0001], time: [F(1,35)=29.03; P<0.0001], drug ×  time: 

[F(6,35)=4.12; P=0.003]). Morphine decreased respiratory frequency at 3 mg/kg 

(P<0.05), 10 mg/kg (P<0.001) and at 30 mg/kg (P<0.001). Neither vehicle nor 

MMG22 had any effect on respiratory frequency (P>0.99 for vehicle and all doses 

of MMG22) (Table 6-1). Along with a decrease in respiratory frequency, 

morphine also caused a compensatory increase in tidal volume at 10mg/kg 

(P<0.001) and 30 mg/kg (P<0.001), but not at 3 mg/kg (P=0.24). MMG22 and 

vehicle had no effect on tidal volume (P>0.5) (two-way ANOVA with repeated 

measures; drug: [F(6,35)= 1.77; P=0.15], time: [F(1,35)=0.39; P=0.54], drug × time: 

[F(6,35)=9.05; P<0.0001]) (Table 6-1). 
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Figure 6.2 Effects of MMG22 on respiratory minute volume 

Figure 6.1 MMG22 did not decrease respiratory minute volume.  (A) Minute volume 

(frequency x tidal volume) before and after s.c. administration of 3, 10 and 30 mg/kg 

morphine or MMG22. (B) Minute volume normalized to pre-drug baseline. Morphine dose 

dependently decreases minute volume in naïve mice. (C) AUC for minute volume is reduced 

after 30 mg/kg morphine (*p<0.05), but not MMG22. (n = 6 per group, data presented as 

mean ± SEM.) BL, baseline; AUC, area under the curve; s.c., subcutaneous. 
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Table 6-1 Effects of MMG22 on respiratory function  

 

*p<0.05, ***p<0.001 compared to pre-drug baseline values (two-way ANOVA with repeated 

measures). BPM, breaths per minute. Data presented as mean ± SEM, n = 6 per group. 

Pre-drug baseline 20-30 min post-injection

Drug / Dose Frequency Tidal Volume Frequency Tidal Volume n
(bpm) (ml/breath) (bpm) (ml/breath)

Vehicle 318.05 ± 31.2 0.25 ± 0.02 294.91 ± 20.7 0.22 ± 0.02 6

MMG22 3 mg/kg 295.20 ± 31.1 0.28 ± 0.04 331.64 ± 19.4 0.25 ± 0.02 6

MMG22 10 mg/kg 350.19 ± 13.1 0.31 ± 0.02 356.16 ± 15.3 0.28 ± 0.02 6

MMG22 30 mg/kg 308.92 ± 32.8 0.23 ± 0.01 284.60 ± 14.6 0.23 ± 0.01 6

Morphine 3 mg/kg 345.13 ± 9.0 0.29 ± 0.03 326.69 ± 21.1* 0.30 ± 0.01 6

Morphine 10 mg/kg 288.51 ± 27.4 0.23 ± 0.01 200.92 ± 13.0*** 0.28 ± 0.01*** 6

Morphine 30 mg/kg 267.66 ± 16.8 0.22 ± 0.01 152.59 ± 4.3*** 0.26 ± 0.01*** 6
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Constipation produced by MMG22 and morphine 

After 8 days of twice daily s.c. injection with either MMG22 (1 or 10 

mg/kg), morphine (1 or 10 mg/kg) or vehicle we examined the effects of drug 

treatment on colonic motility. There was a significant difference between 

treatment groups in the time to bead expulsion (one-way ANOVA; [F(4,25)=29.05; 

P<0.0001]). Both 1 and 10 mg/kg of MMG22 increased the time to bead 

expulsion compared to vehicle injection (P<0.05 and P<0.01 respectively) (Fig. 

6.3). 10 mg/kg morphine greatly increased time to bead expulsion (P<0.0001 

compared to all other treatments). 

Figure 6.3 Effects of MMG22 on colonic motility  

Figure 6.3 MMG22 and morphine decrease colonic motility. MMG22 at 1 mg/kg and 10 

mg/kg caused an increase in time to bead expulsion compared to vehicle (p<0.05, p<0.01 

respectively). These effects were not different from 1 mg/kg of morphine. 10 mg/kg morphine 

decreased colonic motility significantly more than any other drug/dose combination 

(p<0.0001 vs vehicle, 1 mg/kg MMG22, 1 mg/kg morphine and 10 mg/kg MMG22). Data 

presented as mean ± SEM, n = 6 per group.
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Discussion 

Systemic administration of MMG22 produced robust analgesia without the 

centrally mediated side effects of traditional opioids, including hyper-locomotion 

[51,629] and respiratory depression [79,631]. Earlier studies demonstrated that 

MMG22 had no effect on locomotor coordination, and mice treated with MMG22 

did not display naloxone precipitated withdrawal symptoms frequently seen with 

centrally acting opioids [735]. MMG22 also did not produce anxiolytic behavior 

seen with the mGluR5 antagonist MPEP. That MMG22 does not affect 

hippocampal dependent spatial learning can be inferred from its ability to induce 

aCPP in nerve injured mice (chapter 5). However, more studies need to be done 

regarding MMG22 and spatial learning as MPEP was equally able to induce 

aCPP early after nerve injury.  

Like traditional opioids, MMG22 caused constipation, a peripherally 

mediated side effect [874]. That MMG22 induced constipation, but none of the 

centrally mediated side effects associated with monovalent MOR agonists or 

mGluR5 antagonists suggests that MMG22 may not pass the blood brain barrier 

when given systemically, and hence may be working peripherally to decrease 

mechanical hyperalgesia. A similar efficacy vs. side effect profile was also seen 

for the combination of the peripherally restricted MOR agonist loperamide and 

the  opioid agonist oxymorphindole [90], also supporting the possibility that 

MMG22 targets peripheral over central receptors. A simple reason for s.c. 

administration of MMG22 targeting peripheral rather than spinal or supraspinal 

receptors is its relatively high molecular weight (852 Daltons [9]) and a high 

hydrogen bond capacity (>20). Lipid-mediated diffusion across the BBB is limited 

by size (<400daltons) and low hydrogen bond capacity (<7) [624]. Recent studies 

done by Henry Wong at the University of Minnesota have demonstrated that 

levels of MMG22 in the brain and spinal cord after systemic delivery are around 

8% of plasma levels, supporting the behavioral evidence that MMG22 is 

minimally centrally available (unpublished data). For comparison, levels of 

morphine in the brain after systemic administration are around 50% of plasma 

levels [893].  
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Another potential mechanism by which MMG22 might confer the anti-

hyperalgesic effects of traditional opioids while lacking the less desirable off-

target effects could involve heteromer based biased agonism [247]. It is known 

that heteromer formation can alter the signaling pathways engaged by particular 

ligands [299]. It is believed that the analgesic effects of MOR agonists are due to 

the engagement of trimeric G protein signaling pathway, while the development 

of constipation, and respiratory depression may primarily be mediated by 

recruitment of the β-arrestin dependent pathways [166,367]. This is supported by 

the decrease in opioid mediated respiratory depression and constipation in β-

arrestin KO mice [672]. The high potency of MMG22 suggests that even at 8% or 

plasma levels, the amount of MMG22 getting to the CNS may be enough to 

produce analgesia. In which case, the lack of centrally mediated side effects may 

instead be due to biased agonism. Cell signaling assays will be required to 

explore this possibility. 

Conclusion 

The use of opioids is plagued with off-target effects including respiratory 

depression, constipation, nausea and vomiting, sedation (in patients), and 

hyperlocomotion (in rodents). mGluR5 antagonists have also been shown to 

reduce anxiety like behavior in rodents. The side effects from systemic MMG22 

have not been fully characterized. Here we have shown that MMG22 does not 

induce respiratory depression or hyperlocomotion in rodents (both centrally 

mediated side effects of opioids). MMG22 does induce a degree of constipation 

in rodents, although less than morphine at the same concentration (a largely 

peripherally mediated side effect). MMG22 also does not produce anxiolysis (a 

central action of mGluR5 antagonists. The absence of centrally mediated side 

effects combined with the presence of a peripherally mediated side effect, 

suggests a predominantly peripheral mechanism of action for systemically 

administered MMG22.  
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Chapter 7 

 

 

Effects of MMG22 on the response properties of primary 

afferents nociceptors 
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Introduction: Electrophysiology of primary afferent nociceptors 

Response properties of A fiber nociceptors 

Aδ fibers are thinly myelinated and conduct action potentials at a speed 

ranging from 1.4 – 35 m/s in man [61] and from 1.4 – 13.6 in mice [97]. Aδ fibers 

can respond to either high threshold or low threshold mechanical stimulation 

(HTM and LTM respectively). In the mouse, about 35% of cutaneous Aδ fibers 

are LTM and 65% are HTM [97,394]. In human the numbers are similar with 47% 

being LTM, and 53% being HTM [6]. Aδ fibers terminate as free nerve endings in 

glabrous skin with receptive field sizes ranging from pinpoint to 255 mm2 in the 

primate [256] and pinpoint in mice [97].  

There are two main types of nociceptive Aδ mechanoheat receptors 

(AMH) which respond to both mechanical and heat stimuli applied to their 

receptive fields [349,515,687,817]. Type I AMH receptors exhibit an delayed but 

sustained response to noxious heat, where type II AMH receptors respond to 

noxious heat with an initial burst of activity that is noticed in hairy skin as a fast 

“pricking” sensation [817]. In addition to heat and mechanical stimuli, type I and II 

AMHs also sometimes respond to cold stimuli [97,256] and are considered 

polymodal (see Table 7-1). 

 Heat sensitivity in type I AMHs is probably mediated by TRPV2 since this 

channel has a similar high heat activation threshold of ~52°C and 80% of cells 

expressing this channel also stain positive for neurofilament, a marker of 

myelinated neurons [106]. Type I AMH fibers also sensitize when repeatedly 

activated by a heat stimulus and after burn injury [515,814].  

Type II AMH have lower thermal thresholds, similar to the activation 

threshold of TRPV1 channels and may contribute to pain caused by cutaneous 

application of capsaicin to the skin [687]. Lack of type II receptors in glabrous 

skin correlates with the lack of first heat pain sensation in the human hand 

[98,814]. Other populations of Aδ nociceptors include fibers only responsive to 

mechanical stimulation (Aδ-M) and those responsive to mechanical and cold 

stimuli (Aδ-MC). Most Aδ fibers also respond to extreme cold [740].  
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The average size of an Aβ HTMR receptive field is ~25 mm2 in human 

skin [554]. These fibers make up about 12% of A fibers and may be involved in 

the perception of noxious stimulation [554].  
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Table 7-1 Characteristics and response properties of A fiber nociceptors 

 
Sensory modality 

(approximate thresholds) 
Response properties 

Aδ MH(C)- I 

Noxious mechanical, heat (and cold) 

Primate: 51 mN (2.4-51 mN), >53°C [816] 

Mouse: 10 mN (0.1-100 mN), >53°C [97,425] 

 

Aδ MH(C)- II 

(hairy skin 

only) 

Noxious mechanical, heat (and cold) 

Primate: 510 mN, 47°C [687,816] 

Mouse: 10 mN (0.1-100 mN), 42°C (39 - 45°C)  

[97,425] 

 

Aδ M 

Noxious mechanical 

Primate: >720 mN [816] 

Mouse: 30mN (14-100 mN) [97,425] 

 

Aδ MC 

Noxious mechanical and cold 

Primate: 10°C (0 - 31°C [256] 

Mouse: 5°C (-8 - 20°C) [97] 

 

Aβ-HTM 
Noxious mechanical 

Primate: 4-60 mN [554] 

 

Primate (human or non-human primate) 

30°C

53°C

0°C

30°C

30°C

53°C
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Response properties of unmyelinated C fiber nociceptors 

Unmyelinated fibers (including autonomic and C fibers) outnumber 

myelinated fibers by about 4:1 [599]. C fibers have conduction velocities between 

0.5 and 1.4 in man [294] and <1.4 in mouse [97]. C fiber nociceptors respond 

either to one, or a combination of noxious mechanical, thermal, and chemical 

stimuli, the majority being polymodal [63,361]. Several groups have 

electrophysiologically recorded from primary afferent C fibers and categorized 

them based on their response profiles to different stimuli delivered to their 

receptive fields. C fibers terminate in the skin as free nerve ending with receptive 

fields between 1 mm2 – 500 mm2 in human skin (smallest in the finger tips, and 

larger on the trunk) [4,294,708,807] while those in mice are typically pinpoint in 

the paws [97]. 

Psychophysical studies on human subjects puts the thermal pain 

threshold between 41 and 49°C [416]. This corresponds well to the heat 

activation threshold for cutaneous C fibers which is between 37 and 49°C 

[416,708,856], in this range the response intensity increases monotonically with 

temperature. C fibers respond to non-noxious heat with low frequency discharge, 

suggesting that temporal summation of C fiber responses are involved in the 

conscious perception of heat pain [294]. CMH fibers can be separated into 

groups based on their responses to heat, quick C (QC) fibers respond maximally 

early during the heat ramp, whereas slow C (SC) fibers have a peak discharge 

during the plateau phase [346,515]. QC fibers also have lower mechanical and 

heat thresholds than SC fibers [515] (see Table 7-2). 

The pain threshold for cold is between 15 and 20°C in humans [102,478] 

and cold sensation is relayed via a combination of Aδ and C fiber activity [908]. 

Some polymodal C fibers respond both to heat and cold stimuli [97,101,102,822] 

and are responsible for the burning sensation caused by cold stimuli during A 

fiber compression block [243,481,843].  

25% of C fiber nociceptors are mechanically insensitive [170,518,707] 

under physiological conditions. These fibers develop responsiveness to stimuli 

upon sensitization with algogens or under conditions of inflammation, and are 
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believed to be involved in hyperalgesia [150,399,518,707]. In general, fibers for a 

given stimulus, the discharge rates are lower for C-fibers than for A-δ [6]. The 

discharge rate of C-fibers is also subject to saturation and fatigue with high 

intensity and long-lasting stimulation [807].
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Table 7-2 Characteristics and response properties of C fiber nociceptors 

 
Sensory modality 

(approximate threshold) 
Response properties 

CMHC 

(polymodal) 

Noxious mechanical, heat and cold 

Primate: 30 mN (3-750 mN) [61,209,294] 

Mouse: 20 mN (1-175 mN) [97,209,425] 

 

 

 

CMH/CMiH 

Noxious heat (± mechanical) 

Primate: 41°C (37-49°C) [708,855] 

Mouse: 42°C (37-49)°C [97,424] 

 

CMC/CC 

Noxious Cold (± mechanical) 

Primate: 19°C (10-26°C) [415] 

Mouse: 10°C (-12-16°C) [97] 

 

CM 

Noxious mechanical only 

Primate: 30 mN [209] 

Mouse: 20 mN (1-175 mN) [97,209,425] 

 

C-MiHi 
“Silent”  [856] 

Very high mechanical threshold, chemical 

 

Primate (human or non-human primate) 

0°C

30°C

30°C

53°C

30°C

53°C

Quick C

Slow C
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Effects of MOR agonists on primary afferent nociceptors  

MOR expression is observed in approximately 20-30% of primary afferent 

neurons [133,343,854]. Peripherally, MOR agonists decrease the excitability of 

primary afferents in response to noxious stimuli [18,400,688,710,796,858]. 

Opioids have been shown to inhibit the calcium dependent release of 

proinflammatory compounds from peripheral nerve endings [909,910] and 

decrease TRPV1 currents in primary afferent neurons [217] (for review see 

[768]). 

Effects of mGluR5 agonists and antagonists on pain signaling 

The effects of mGluR5 agonists/antagonists on primary afferent responses 

have not been studied directly, however it has been shown that intraplantar 

administration of mGluR5 agonists increases the firing of WDR neurons in the 

dorsal horn [844] suggesting that activation of mGluR5 excites the peripheral 

terminals of primary afferents. When applied to the cord, mGluR5 agonists mimic 

the response pattern of high frequency stimulation induced LTP at C fiber 

synapses [444]. Contrastingly, mGluR5 antagonists like MPEP prevent the 

induction of LTP at C fiber synapses [444]. 

DHPG (a group I mglur agonist) increases the frequency of miniature 

excitatory post synaptic currents (EPSCs) and reduces the paired pulse ratio of 

evoked EPSCs in lamina II neurons in rats, suggesting enhanced excitability of 

primary afferents. These effects were blocked by MPEP, demonstrating the 

involvement of mGluR5 [891]. MPEP also normalizes the frequency of mEPSCs, 

and the amplitude of monosynaptically evoked EPSCs in the dorsal horn of rats 

with paclitaxel-induced neuropathy  [891], and diabetic neuropathy [439]. These 

results suggest that glutamatergic input from primary afferents is modulated by 

mGluR5 signaling in these conditions.  

Effects of nerve injury on the electrophysiological properties of primary afferent 

nociceptors  

Nerve injury causes sensitization of neighboring primary afferent 

nociceptors. Previous studies of nerve injury induced neuropathic pain have 
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shown that uninjured fibers develop spontaneous activity, have reduced 

thresholds, and increased firing to suprathreshold stimuli [80,117,199,731,887].  

If MMG22 works peripherally to reduce hyperalgesia, it should decrease 

the responsiveness of primary afferent fibers. To test this, we decided to record 

from sural nerve axons in nerve injured animals before and after systemic 

administration of MMG22. 
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Methods 

Animals 

Adult (5-8 months) male and female C57/B6 mice (Charles River) were 

housed 4 (males) or 5 (females) to a cage and maintained on a 12-hour light/dark 

cycle with ad libitum access to food and water, except as otherwise noted for 

constipation studies. All procedures were carried out during the light cycle.  All 

procedures were approved by the Institutional Animal Care and Use Committee 

of the University of Minnesota. 

Spared nerve injury 

Mice were anesthetized with 2.5 % isoflurane. Spared nerve injury (SNI) to 

the sciatic nerve was performed as described previously [82,172,644]. Briefly, 

after exposing the three branches of the sciatic nerve, the tibial and common 

peroneal branches were tightly ligated with 5.0 silk suture and cut 2 mm distal to 

the suture. Care was taken not to disturb the sural nerve. Sham surgeries 

followed the same procedure without manipulation of the sciatic nerve or distal 

branches. 

Drugs 

 The bivalent ligand MMG22 was synthesized as described previously [9]. 

MMG22, oxymorphamine, and 2-methyl-6-(phenylethynyl)pyridine (MPEP), 

(Mallinckrodt Inc, Hazelwood, MO) were diluted in 1% DMSO (vehicle). All drugs 

were administered subcutaneously in a volume of 250 µl. 

Teased fiber electrophysiology  

The surgical procedure to isolate and record for teased nerve fibers of the 

sural nerve in vivo has been described in rat [117]. 7-15 days after SNI, mice 

were anesthetized using inhaled isoflurane (2.5% induction, 1-2% maintenance) 

and placed on a feedback controlled heated stage to maintain core temperature 

at 37°C. The level of anesthesia was monitored by toe pinch on the contralateral 

side. A cutaneous incision was made at the level of the mid thigh, and the 

quadriceps femoris and biceps femoris were separated using blunt dissection to 

expose the previously ligated tibial and common peroneal nerves as well as the 

spared sural nerve. Part of the biceps femoris muscle was carefully removed 
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down to the where the sural nerve enters the gastrocnemius muscle. The skin 

around the incision was loosened from the muscle below by blunt dissection and 

sutured to a ring platform to create a small basin. To prevent leakage of oil from 

the recording basin, and fix the hind limb in position, a rubber-based polysulfide 

impression material (COE-FLEX, GC America) was applied around the ring to the 

skin of the hind limb and allowed to set. The sural nerve was then dissected from 

connective tissue, delicately separated from its vascular bundle, and placed on a 

small, mirrored platform for separation of nerve fibers. The epineurium of the 

sural nerve was opened using a miniature scalpel, and small fascicles were cut 

to allow the proximal ends to be spread out on the platform for separation with 

fine jewelers forceps. Nerve fascicles were teased apart, and fine filaments were 

placed on a silver-wire recording electrode maneuvered by a micromanipulator. 

Extracellular recordings were obtained only from single fibers that could be easily 

discriminated according to amplitude and shape. Action potentials from individual 

fibers were amplified, audiomonitored, and visualized on an oscilloscope and 

personal computer using Spike 2.0 software (CED, Cambridge, UK). Evoked 

responses were analyzed off-line using a data analysis program (Spike 2). An 

amplitude window discriminator was used to separate action potentials of the 

fiber under study from those of other fibers and/or from background noise. 

However, recordings usually consisted of one afferent fiber. 

Identification of primary afferent fibers 

The receptive fields (RFs) of cutaneous afferent fibers were identified 

using mechanical stimuli. Mechanical stimulation proceeded by a graduated 

approach beginning with large and soft stimulation with a cotton swab or the 

experimenter’s fingers, followed by mild pinching with forceps. Once a fiber was 

isolated, the location of its RF was identified using a suprathreshold von Frey 

monofilament. The RF location was then marked on the skin with a felt-tip pen 

and reconstructed on a drawing of the mouse hind paw. 

Conduction velocity 

The conduction velocity of each fiber was determined by electrically 

stimulating the RF, before recording the conduction latency between the RF and 
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the recording electrode. Two fine needle electrodes (32 gauge acupuncture 

needles) were inserted into the skin on opposite sides adjacent to the RF. 

Square-wave pulses (duration, 0.2 ms, 0.5 Hz) were delivered at a stimulating 

voltage 1.5 times the voltage required to evoke a threshold response. Fibers with 

CV of 1.2 m/s or less were classified as C-fibers, whereas those with CV 

between 1.2 and 13.6 m/s were classified as Aδ-fibers and those with CV >13.6 

were classified as Aβ-fibers. C- and Aδ-fiber nociceptors were preferentially 

studied. 

Electrophysiological responses of nociceptors 

For each nociceptor, the rate of spontaneous activity was determined for a 

period of 2 min before any testing. Mechanical response threshold (mN) was 

obtained using von Frey monofilaments. The RF was stimulated multiple times 

with von Frey filaments of increasing force. Response threshold was defined as 

the lowest force eliciting a response on at least ½ of the trials. Responses 

evoked by suprathreshold mechanical stimuli were determined using a single 

suprathreshold von Frey monofilament that delivered a force of 147 mN. This 

monofilament was applied three times, each for 5 seconds with an inter-stimulus 

interval of 60 seconds, and the evoked response was defined as the mean 

number of impulses from the three trials. 

A Peltier device (contact area 25 mm2) was used to deliver cold and heat 

stimuli to the skin. The probe was maintained at a base temperature of 32°C, and 

cold stimuli from 28°C to 0°C was applied for 10 seconds, with a 60 second 

interstimulus interval. Heat stimuli from 34°C to 50°C was applied for 5 seconds 

with at least 5 minutes between applications. Each fiber was tested before and at 

30 and 60 minutes after subcutaneous delivery of vehicle or 10mg/kg MMG22. 

Data analysis 

Data are expressed as mean ± SEM, except where otherwise noted. 

GraphPad Prism 8.0 (Graphpad software Inc. La Jolla, CA, USA) was used for 

statistical analyses. Mean CVs, mean baseline mechanical thresholds, and the 

average number of days post surgery were compared using independent t-tests, 

The mean number of impulses evoked by the 147-mN von Frey stimulus before 
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and after drug treatment were compared using repeated-measures ANOVA. The 

number of recordings from nociceptors that responded to thermal stimuli was not 

large enough for statistical analysis. Post-hoc comparisons were done with 

Bonferroni tests. A P value of <0.05 was considered significant. All evoked 

responses were determined by subtracting spontaneous activity that occurred 5–

10 s before the onset of the stimulus.  
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Results 

MMG22 reduces the firing of C fiber nociceptors to suprathreshold stimuli 

Previous work has shown that peripherally restricted opioids can reduce 

pain [595,688] and opioids can directly decrease the excitability of primary 

afferent nociceptors [18,688,710,796,858] (for review see [400]). To see if 

MMG22 works similarly, we used the teased nerve fiber primary afferent 

electrophysiology set-up to record from nociceptors in the sural nerve after SNI. 

Baseline thresholds F(19,19)=1.42, P=0.26), conduction velocities (F(19,19)=2.59, 

P=0.43), and the number of days post surgery (F(19,19)=1.31, P=0.44) were not 

different between groups (Table 7-3). We compared the response of single C 

fibers to suprathreshold mechanical stimuli before and after s.c. MMG22 (10 

mg/kg) or vehicle (two-way ANOVA with repeated measures: Time: [F(2,38)=21.54; 

P<0.0001], Drug: [F(1,19)=1.74; P=0.203], time X drug: [F(2,38)=19.18; P<0.0001], 

n=20 per group). C fiber responses were significantly reduced 30 (BL: 75±10 

impulses, vs 30min: 57±10 impulses, P=0.0071) and 60 minutes (BL vs 47±8 

impulses, P<0.0001) after MMG22 (Fig 7.1). That corresponds to a reduction of 

24% and 36% from baseline respectively.  

 Vehicle had no effect at any time point (BL: 75 ± 10 impulses, vs 30min: 

74±9 impulses, P<0.999; BL vs 60min: 71±10 impulses, P=0.31). Mechanical 

thresholds were not altered by MMG22 or vehicle (data not shown). Before drug 

application, the response properties were not different between groups 

(P>0.999). Similar to previous studies, we did not see an abundance of C fibers 

with spontaneous activity [710,749].  

Table 7-3 Properties of C fibers used in recordings

 
Table 7-3 No significant differences between fibers used for vehicle or MMG22 recordings. 
Unpaired T-test, P>0.05 for all comparisons.  

Drug

Conduction
velocity 

(m/s)

(mean ± SEM)

Baseline 
threshold 

(g)

(mean ± SEM)

Baseline 
threshold (mN)

(mean ± SEM)

Baseline threshold 
(mN)

(median [range])

Days post 
surgery

(mean ± SEM)

n

Vehicle 0.75 ± 0.05 1.2 ± 0.2
10.7 ± 1.4

9.8 [3.9,19.6] 7.9 ± 0.6 20

MMG22 0.82 ± 0.08 1.4 ± 0.1 13.4 ± 1.34 13.7 [5.9,19.6] 8.7 ± 0.7 20
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Figure 7.1 Effects of MMG22 on C fiber nociceptor responses 

 

Figure 7.1 Effects of MMG22 on C fiber responses to suprathreshold mechanical stimuli. 

(A) Primary afferent teased nerve fiber electrophysiology set up. (B) 30 and 60 minutes after 

injection, MMG22 (10mg/kg s.c.) but not vehicle caused a decrease in the number of 

impulses evoked from C fibers by a 15g (147mN) von Frey hair applied to their receptive 

fields for 5 seconds. (C) Representative example of C fiber firing before and after application 

of vehicle. Trace on left shows the latency to electrical stimulation, foot inset shows receptive 

field. (D) Representative example of C fiber firing before and after application of MMG22 

(10mg/kg) **P<0.01, ****P<0.0001, data presented as mean ± SEM, n = 20. CV, conduction 

velocity. BL, baseline. 
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MMG22 reduces the firing of Aδ fiber nociceptors to suprathreshold stimuli 

We repeated these experiments with Aδ fiber nociceptors. Conduction 

velocities (F(9,9)=2.5, P=0.6), baseline mechanical thesholds (F(9,9)=1.9, P=0.4) 

and number of days post surgery (F(9,9)=1.6, P=0.6) also did not differ between 

groups (unpaired T-test) (Table 7-4). We tested the ability of MMG22 (10 mg/kg) 

to decrease Aδ responses to  suprathreshold mechanical stimuli compared to 

vehicle (two-way ANOVA, Time: [F(2,18)=2.32; P=0.13], Drug: [F(1,9)=0.41; P=054], 

time X drug: [F(2,18)=4.1; P<0.034], n=10 per group). MMG22 decreased the 

suprathreshold responses of Aδ nociceptors at 30 (BL: 84.2±18.8 impulses vs 30 

min: 66.5±15.5 impulses, P=0.016) and 60 minutes after treatment (BL vs 60 

min: 66.8±18.2 impulses, P=0.018) (Figure 7.2). That corresponds to a 20% 

reduction in firing at both time points.  

Vehicle had no effect at any time point (BL: 83.5 ±17.3 impulses, vs 30 

min: 86.2±16.9 impulses; BL vs 60 min: 87.7±18.6 impulses, P>0.99 for all). 

Thresholds were not changed after vehicle of MMG22 (data not shown). Baseline 

responses were not different between groups (P>0.99).

Table 7-4 Properties of Aδ fibers used in recordings 

 

Table 7.4 No significant differences between the Aδ fibers used for vehicle or MMG22 

recording. Unpaired T-test, P>0.05 for all comparisons. 

  

Drug

Conduction
velocity 

(m/s)

(mean ± SEM)

Baseline 
threshold

(g)

(mean ± SEM)

Baseline threshold 
(mN)

(mean ± SEM)

Baseline threshold 
(mN)

(median [range])

Days post 
surgery

(mean ± SEM)
n

Vehicle 3.25 ± 0.77 2.0 ± 0.5 19.8 ± 5.5 19.6 [1.6,39.2] 7.3 ± 0.9 10

MMG22 4.02 ± 1.21 1.5 ± 0.4 16.8 ± 4.5 19.6 [3.9,39.2] 8.1 ± 1.1 10
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Figure 7.2 Effects of MMG22 on Aδ nociceptor responses 

Figure 7.2. Effects of MMG22 on Aδ fiber responses to suprathreshold mechanical 

stimuli. (A) Primary afferent teased nerve fiber electrophysiology set up. (B) 30 and 60 

minutes after injection, MMG22 (10mg/kg s.c.) but not vehicle caused a decrease in the 

number of impulses evoked from Aδ fibers by a 15g (147nM) von Frey hair applied to the 

receptive field for 5 seconds. (C) Representative example of an Aδ fiber firing before and 

after application of vehicle. Trace on left shows the latency to electrical stimulation, foot inset 

shows location of the receptive field. (D) Representative example of Aδ fiber firing before 

and after application of MMG22 (10mg/kg). *P<0.05, data presented as mean ± SEM, n = 10. 

CV, conduction velocity. BL, baseline. 
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MMG22 may also reduce the firing of nociceptors to noxious heat and cold 

stimuli 

Nerve injury has also been shown to sensitize nociceptors to thermal 

stimuli [731], and opioids can also reduce the responses of sensitized 

nociceptors to noxious heat and cold stimuli [858]. In an attempt to determine if 

MMG22 would do the same we also tested the heat and cold evoked responses 

from several isolated fibers. Not all fibers responded reliably to heat or cold 

stimuli but we were able to record from a few thermally responsive fibers 

(Figures 7.3 and 7.4). Vehicle did not decrease the response of a C fiber evoked  

by a 5 second heat ramp from 32°C to 50°C, but MMG22 (10 mg/kg) reduced the 

firing of one C fiber by 30% and one Aδ fiber by 65% to the same heat stimulus 

(Figure 7.3).  

We also tested a few cold responsive C fibers (Figure 7.4). Vehicle did 

not decrease the number of action potentials evoked by a 10 second cold ramp 

from 32°C to 0°C, while MMG22 (10 mg/kg) reduced the firing of one C fiber 70% 

compared to baseline (Figure 7.4). As we were only able to reliably record from 

1 fiber in each condition no statistical evaluation was possible.  
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Figure 7.3 MMG22 may reduce heat responsiveness of primary afferent 
nociceptors 

Figure 7.3 MMG22 may also reduce the heat and cold responsiveness of primary 

afferent nociceptors after SNI. (A) Heat responsive C fiber at baseline (top trace) fired 

51.7±3.8 action potentials during a 5 second heat from 32°C to 50°C, 30 and 60 minutes 

after vehicle treatment, the cell fired 54±4 and 28±3 impulses in response to the same 

stimulus. (B) A heat responsive Aδ fiber as well as a heat responsive C fiber with 

overlapping receptive fields fired 23±4 and 45±4 action potentials at baseline respectively. 30 

minutes after MMG22 the Aδ fiber fired 8.5±2 action potentials while the C fiber fired 36.3±2. 

60 minutes after MMG22 the Aδ continues to respond to the heat ramp with 10±3 action 

potentials while the C fiber fired 36±2. Data presented as mean ± SEM, n=1 for each fiber. 

BL, baseline, CV, conduction velocity.  
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Figure 7.4 MMG22 may reduce cold responsiveness of primary afferent 
nociceptor

 
Figure 7.4 MMG22 reduced the cold responsiveness of a C fiber nociceptor. At baseline 

a cold sensitive C fiber fired 14.5±2 action potentials in response to a 10 second cold ramp.  

30 and 60 minutes after vehicle this fiber responded with 17±1 and 16±1 action potentials 

respectively. (B) A cold sensitive C fiber responded to the cold ramp with 14±1 action 

potentials at baseline. 30 and 60 minutes after MMG22 this C fiber responded to the same 

heat from with 7±2 and 3±1 action potentials respectively. Data presented as mean ± SEM, 

n=1 for each fiber. BL, baseline, CV, conduction velocity.  

0°C

32°C

0°C

32°C

0°C

32°C

a

0°C

32°C

0°C

32°C

0°C

32°C

Distance 20 mm

Latency 27 s

CV 1.35 m/s

Distance 32 mm

Latency 29 s

CV 1.1 m/s

A B
Vehicle MMG22

BL
BL

30 min
30 min

60 min

60 min



 
 

121 

Discussion 

Similar to the results obtained with other nerve injury models 

[122,197,731], uninjured primary afferents show enhanced responsiveness to 

suprathreshold stimuli after SNI [749]. In a study done by Smith et al., C and Aδ 

and fibers in SNI animals fired an average at of 28% and 22% more action 

potentials per second to mechanical stimuli compared sham operated animals 

[749]. In the experiments just reviewed, MMG22 decreased suprathreshold firing 

of C and Aδ fibers by 30% and 20% respectively, very similar to the increase in 

firing shown by Smith et al. Previous research has shown that MMG22 is 

incredibly less potent in naïve animals [9,748], and in our studies MMG22 did not 

alter baseline thresholds in naïve mice (unpublished observations). The ability of 

MMG22 to decrease the suprathreshold mechanical responses of C and Aδ 

nociceptors after injury to the same extend that they were seen previously to be 

elevated confirms MMG22 possess anti-hyperalgesic activity without causing 

frank analgesia. Preliminary studies suggest that MMG22 may decrease the heat 

and cold responses of C and Aδ nociceptors but more studies are needed to 

confirm this finding.  

As mentioned earlier, the behavioral methods employed by this study 

were not suited to study analgesia beyond anti-hyperalgesia (the dynamic range 

of our assay was maximally sensitive to detect a return to baseline, and unlikely 

to detect any further reduction in responsivity). More studies looking at the effects 

of MMG22 on acute nociceptive responses (both behaviorally and via 

electrophysiology) would be worth pursuing. Mechanistically, the low basal 

expression of mGluR5 in the spinal cord and DRG [206,308,410,681] compared 

to expression levels in animal with chronic pain, may be involved.  

Similar to previous studies, we did not observe a large amount of 

spontaneous firing in uninjured primary afferent nociceptors after SNI [117,749]. 

In contrast, most studies using other models of nerve injury suggest that injured 

and uninjured afferents do develop spontaneous activity and uninjured afferents 

show reduced thresholds compared to control animals [122,197,516,731,887]. 

Spontaneous activity in nociceptors is thought to cause spontaneous pain 
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sensations and microneurography studies have shown that nociceptors from 

patients with neuropathic pain have an increased amount of ectopic activity [382]. 

Most models of nerve injury induced pain have shown that injured fibers develop 

ectopic activity [179,282,455,459,778]. So, although the uninjured axons of the 

spared sural nerve do not develop spontaneous activity after SNI [117,749], it is 

probable that the injured fibers in the tibial and common peroneal nerves do. 

Studies have shown that ectopic activity in injured fibers is highest early after 

nerve injury and decreases steadily over time [179,282,455,459,778]. The 

development of spontaneous activity after nerve injury has been ascribed to the 

inflammatory milieu produced by Wallerian degeneration [888]. Like spontaneous 

activity, the inflammatory response after nerve injury is transient and resolves 

rapidly after 2-3 weeks [17,523,812]. Early after nerve injury (when both 

inflammation and spontaneous activity are high), MMG22 was able to reduce 

both evoked and spontaneous pain. The decreased potency of MMG22 4 weeks 

after nerve injury parallels the decrease in the inflammatory response 

[254,255,430](for review see [241]).  

Lack of spontaneous firing in uninjured fibers after SNI has been ascribed 

to the minimal co-mingling of injured and non-injured fibers compared to other 

nerve injury models [117,749]. The portion of the injured tibial and common 

peroneal nerves that undergo Wallerian degeneration in the SNI model are distal 

to the trifurcation where the sural nerve exits the sciatic. This means that a large 

portion of the inflammatory response to axon degeneration is physically 

separated from the spared axons in the sural nerve. However, other studies have 

found that spontaneous activity originates in the DRG [354], where there is 

considerable comingling of injured and uninjured fibers in the SNI model [408]. In 

our studies, the portion of the axon connecting the peripheral terminals to the 

DRG was acutely cut prior to recording. Thus, any spontaneous activity coming 

from the proximal axon or DRG would not have been detected.  
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Conclusion 

 Systemic delivery of MMG22 reduces evoked responses of C and Aδ 

nociceptors to suprathreshold mechanical stimuli after nerve injury. The degree 

to which MMG22 reduced these responses was similar to increased responsivity 

of C and Aδ fibers in SNI animals found in a previous study [749]. The ability of 

MMG22 to reduce the excitability of primary afferent nociceptors in the periphery, 

supports the peripheral action of systemically delivered MMG22. MMG22 given 

intrathecally may also decrease the responsiveness of dorsal horn neurons. 

Although the central availability of systemically delivered MMG22 has been 

shown to be quite low (~8%), the incredibly potency of MMG22 may enable it to 

accumulate in sufficient amounts to have an effect on dorsal horn neurons as 

well. Studies looking at this possibility are currently underway.  
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General discussion: summary and conclusions 

 Chronic pain is a prevalent and disabling condition which has far reaching 

consequences for those who suffer with it [212,276]. Current pharmacological 

therapies offer suboptimal pain relief [497] and neuropathic pain is particularly 

difficult to manage [231]. Opioids are the most potent and effective analgesics 

available today; however, neuropathic pain is considered less sensitive to opioid 

management [22,53,123,403,500]. In addition, many chronic pain patients will 

discontinue opioid use due to inadequate pain control or an inability to tolerate 

the side effects [583]. The decreased efficacy in reducing neuropathic pain 

combined with the need for long term management for these patients increases 

the risk of addiction to opioids as higher doses are needed to manage 

neuropathic pain and long term use is associated with the development of 

analgesic tolerance, which also leads to dose escalation [33,140]. 

Pre-clinical research has shown that mGluR5 antagonists enhance the 

analgesic effects of opioids  [609,644,928], reduce the development of opioid 

induced analgesic tolerance [246,398,567,750,897,898,928], and decrease 

opioid reward seeking [89,359,658,691,831]. In vitro studies have shown mGluR5 

antagonists reduce opioid induced MOR desensitization, phosphorylation and 

internalization, and suggest that the receptors may physically associate in the 

form of a heteromer [714].  

A novel bivalent ligand, MMG22, was synthesized in an attempt to take 

advantage of the unique pharmacological and signaling interactions 

demonstrated between MOR and mGluR5 [9]. Previous studies have shown that 

MMG22 is orders of magnitude more potent at reducing hyperalgesia in mice 

with inflammatory pain and bone cancer pain than compounds with shorter or 

longer linker lengths [9,748] or a mixture of the monovalents [9]. The importance 

of linker length for anti-hyperalgesic potency supports the idea that MMG22 binds 

to a MOR-mGluR5 heteromer; however, another study using the same nerve 

injury model employed here was unable to replicate this [644]. The studies 
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described here were aimed at characterizing both the potency and potential side 

effects of systemically administered MMG22.  

We have shown that MMG22 reduces pain (evoked and spontaneous) 

early after nerve injury. The transient inflammatory response after nerve injury 

may be responsible for loss of potency late after nerve injury. In support of this, 

previous studies have shown that the potency of MMG22 increases over time 

after tumor implantation [9,735] in parallel with the development of inflammation 

[269,458,488,905]. A recent study in the Portoghese lab, using chemotherapy 

induced peripheral neuropathy has shown that the potency of MMG22 does not 

change over time (manuscript in preparation), again reflecting the long lasting 

inflammatory response in this condition [657,754,918]. So, while MMG22 may not 

be the best therapeutic option for the treatment of traumatic neuropathies, it may 

provide significant pain relief to patients with pain conditions that promote long 

lasting inflammation.  

Using RNAScope, we were able to show that early after nerve injury, the 

target receptors for MMG22 were co-expressed in dorsal horn neurons as well as 

primary afferent DRG neurons. That the receptors are found together supports 

their ability to form heteromers in vivo. Further research looking at the temporal 

dynamics of inflammation and mGluR5 expression in various pain conditions in 

relation to the potency of MMG22 would further support the importance of 

inflammation for MMG22 mediated analgesia.  

 We have also shown that MMG22 does not induce place preference in 

naïve mice, suggesting a reduced risk for abuse and addiction compared to 

traditional opioids. MMG22 also lacks the respiratory depressant effects of 

traditional opioids, reducing the risk of overdose death. Other centrally mediated 

side effects of either monovalent (mGluR5 antagonist or MOR agonist) including 

hyperlocomotion and anxiolysis were also not exhibited by MMG22 treated 

animals. Peripherally, MMG22 did cause constipation, although to a lesser extent 

than morphine. That MMG22 was able to slow colonic transit supports that 

systemically delivered MMG22 is pharmacologically active.  
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 Finally, we show that systemic MMG22 decrease the responses of primary 

afferent nociceptors to suprathreshold stimuli. That MMG22 can act directly on 

nociceptors, proves that at least part of the anti-hyperalgeisc effects of MMG22 

are peripherally mediated.  

MMG22 potently reduces hyperalgesia with none of the centrally mediated 

effects of monovalent MOR agonists or mGLuR5 antagonists. A potent, non-

addictive pain medication that does not promote the development of analgesic 

tolerance has the potential to be a game changer for pain management. Future 

clinical trials will show if MMG22 can fill that role.  
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