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Abstract 

 

Perturbations of the magnetic order, known as spin-waves or magnons, within a 

ferri- or ferromagnet can exhibit nonlinear properties. The nonlinearity of the magnons can 

be exploited for information processing applications and for understanding fundamental 

aspects of nonlinear processes. When using insulators such as Yittrium iron garnet (YIG), 

various functionalities such as signal processing can be realized in the absence of Ohmic 

losses. Moreover, the small wavelengths of spin waves can also help with the 

miniaturization of devices. Such advantages have made magnons attractive for a wide 

variety of applications ranging from communications to logic circuits.  

Although magnons have been studied in the past, precise understanding and the 

details of various nonlinear processes are still largely lacking.  Device design is often based 

on trial-and-error approaches with regard to magnonic properties. Efficient and robust 

design, however,  requires a deterministic understanding of material behavior. Moreover, 

given the long experimental cycles involved in device design, the ability to predict 

properties accurately is crucial. In this thesis, I will discuss the development of a high-

speed CUDA-GPU (graphics processing unit)-based parallel platform to study magnons 

that are created by microwave excitation of magnetic materials. The goal is twofold: to 

enable a better understanding of nonlinear properties and to improve device design 

capabilities.  

Device characteristics of magnet-based frequency-selective limiters (FSLs) used 

for microwave signal processing are studied using simulations involving rigorous 
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calculations of dipolar-, exchange-, and thermal-magnetic fields. These studies offer 

beneficial insights into the role of physical processes like higher-order scattering on the 

device behavior. A key requirement in many applications is the dynamic control of the 

threshold field -the minimum microwave field needed to turn on the nonlinear behavior in 

a magnetic sample. The ability to dynamically vary the threshold field using an additional 

microwave is explained analytically and demonstrated using simulations. The importance 

of magnon-phase in the nonlinear processes is also explicitly demonstrated. Despite the 

crucial role of magnon-phase in nonlinear physics, few studies focus on the impacts of 

magnonic phase-noise. I have developed an analytical theory to understand the impacts of 

magnon phase noise. The conclusions of the theory are verified using micromagnetic 

simulations. 

Magnetic recording comprises highly nonlinear processes that, unlike perturbative 

effects, involve the reversal of magnetization. Using micromagnetic simulations, I 

designed a high-density magnetic recording scheme employing state-of-the-art heat-

assisted and bit-patterned techniques. Even after considering noise factors such as jitter and 

track misregistration, the design provides an extremely high density of 16 Terabits per 

square centimeters (Tbpsi).  
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Chapter 1 Introduction 

Due to the ever-improving understanding of nonlinear magnetic physics, is 

increasingly becoming popular for a wide variety of applications. In this thesis, we study 

the interaction of electromagnetic waves with magnetic materials. Such interactions can be 

broadly divided into three categories: (1) Low magnetic field-intensity studies, e.g., FMR 

studies that are largely linear.  These studies employ microwave or radio-frequency (RF) 

intensities approximately in the range of deci-Oersteds. (2) Moderate field-intensity 

studies, e.g., microwave-magnet interactions in communication devices like radars. These 

lead to lower-degree nonlinear processes in magnetic materials, e.g., three- and four-

magnon processes. These are also termed high-power studies when compared to (1) with 

RF intensities around a few Oersteds (Oe). (3) Extremely high magnetic field-intensity 

studies, e.g., magnetic hard disk recording application. These lead to highly nonlinear 

processes in the magnetic material involving magnetization reversal. The intensity of 

magnetization is often thousands of Oersteds. 

For the first two, a strong DC bias field is used to saturate the magnetic material 

and the microwave excitation with a field intensity of up to a few Oe acts as a perturbation. 

The material, consequently, remains magnetically saturated. In the last case, however, the 

magnetic field is strong enough to exceed the coercivity of the magnetic material. The goal 

is to switch the magnetic state of the material- a highly nonlinear process. Such recording 

studies are often performed in the near-field approximation of electromagnetic 

propagation.  The first two studies should ideally be carried out in the far-field 

approximation; however, due to the relatively small dimensions of the magnetic samples 
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involved (a few 10s of micrometers) when compared with the wavelength of the microwave 

involved (a few centimeters), we make use of the quasi-static approximation while setting 

up simulations, wherein the propagation effects are ignored, and a uniform field 

distribution is assumed throughout the sample at any instant.  

The high-power studies are capable of giving rise to interesting nonlinear 

interactions that are important not just from a fundamental physics perspective but also 

from the point of view of applications. In this thesis, I will discuss aspects of nonlinear 

processes in magnetic materials from both viewpoints.  

 

1.1 Magnetic nonlinear phenomena: Overview and Significance 

Due to its nonlinear characteristics, magnetics has been predicted to be capable of 

providing unprecedented technological advancement to diverse fields like communication 

(mobile phones, GPS, satellite, radars) [1-4], computation [5], [6], information transfer [7], 

[8], cavity magnonics [9], [10], etc. The widespread applications are due to the ability of 

magnons or quantized spin waves to carry, transport, and process information similar to 

electrons in electrical/electronic circuits. A spin wave is a ‘perturbation’ in the magnetic 

ordering of a material that can propagate in the form of a wave. Wave-particle duality 

allows us to consider this wave as a quasiparticle known as a magnon. (In this thesis, I use 

the two terms - spin-wave and magnon, interchangeably. Although initially, the term spin 

wave was reserved for exchange modes.)  

Magnons in insulators are free of ohmic losses, thereby providing a highly efficient 

paradigm by minimizing energy dissipation compared with the traditional charge-based 
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paradigm. Moreover, spin-wave-based applications can take advantage of nonlinear wave 

interactions, leading to smaller footprints than conventional electron-based devices.  In 

addition, their nonlinear properties can be controlled using material parameters (e.g., film 

thickness, magnetization, magnetic damping, etc.) and external stimuli (e.g., microwave 

signal, electric currents, etc.), making them suitable for nonlinear frequency-sensitive 

applications. Magnons have opened new perspectives and are being used to solve hitherto 

intractable problems [5], [11]. 

Experimentally, the recent research interest in magnonics can be attributed to the 

developments in the growth and characterization techniques for magnetic materials. There 

has been a concomitant increase in computational research due to the availability of 

modern-day advanced computational prowess. The use of parallel programming languages 

like CUDA [12], [13] on Graphics Processing Units (GPU) [14] provides unprecedented 

compute capabilities that allow detailed studies of magnon processes. Such studies were 

unreasonable in the past due to the overwhelming resource and time requirements. The 

CUDA-GPU-based parallel programming has allowed speed up of computations of 

approximately 100x, allowing results that would have needed close to a year to be obtained 

in a few days. Such parallel programming approaches have allowed studies to be performed 

with significantly improved spatial and temporal resolution. In Chapter 2, I will describe 

the construction of such a scientific computational tool for studying the behavior of 

magnons under microwave excitation. It is to be noted that there are aspects of magnon 

studies that are still inaccessible using laboratory-based experiments, making simulation-
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based studies beneficial for understanding magnon behavior. Such considerations make 

accurate computational capabilities even more important.  

Exciting phenomena have been discovered due to research improvements leading 

to a better understanding of the physical principles involved in magnetics. This has resulted 

in the proposal of various interesting magnon-based technologies. Some of the major 

examples include magnon spintronics [15], [16], microwave signal processing devices 

[17]-[21], novel computational paradigms (like reservoir [22] and neuromorphic 

computation [23], [24], etc.).  However, be it from the perspective of magnetics-based logic 

devices that can aid the traditional CMOS technology or from the perspective of more 

exotic applications like quantum devices [25], significant challenges exist in nonlinear 

magnetics at a fundamental level.  

One of the major limiting factors is the lack of understanding of nonlinear processes 

and the consequent inability to predict the behavior of the magnetic system under external 

inputs, e.g., microwave or radio-frequencies, lasers, etc. The overall goal of this thesis is 

to enable and develop a better understanding of the physics of such nonlinear processes 

from the perspective of engineering applications. Mathematically, nonlinearity can be 

brought about by the higher-order terms in the Taylor expansion of a physical parameter. 

For example, consider the Talyor expansion of the energy Hamiltonian, ℋ, in terms of, as 

yet, abstract variables 𝑏∗ and 𝑏. (These variables will be introduced later as the magnon 

creation and annihilation operators.) 

 ℋ = ∑ 𝜔𝑘𝑏𝑘𝑏𝑘
∗

𝑘 +
1

2
∑ ℎ𝑉𝑘𝑏𝑘

∗𝑏−𝑘
∗

𝑘 cos(𝜔𝑝𝑡) + ⋯ (1.1) 
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The 𝜔𝑘 in the first term identifies the energy of the kth mode. The inclusion of the higher-

order terms provides a more accurate description of the energy by providing successive 

corrections. Another notion closely related to nonlinearity is the parametric excitation 

wherein an external agency, e.g., a microwave field of a particular frequency, excites in a 

ferromagnet, oscillations of the magnetic moments at a different frequency. This is shown 

schematically in Fig. 1.1. 

  Nonlinearity and parametric excitation will be recurring themes in much of this 

thesis; however, they are not just limited to the field of magnetics. Nonlinearity is an 

 

unavoidable facet of many natural processes. It often governs crucial processes in multiple 

fields of science and engineering, e.g., hydrodynamics [26], oceanic waves [27], weather 

patterns [28], optics [29], plasma physics [30], electronic circuits [31]-[33], liquid crystals 

[34], chemical reactions [35], etc. At the heart of all such fields is the ability to excite 

parametrically the oscillations of some order parameter using an external agency. The 

Fig 1.1. Schematic of parametric process. (a) An incoming particle of frequency, 𝜔𝑝, giving rise to two 

particles of half the energy with opposite wave-vectors. (b) Two incoming particles of frequency, 𝜔𝑝, 

giving rise to two particles of the same energy with opposite wave-vectors. 
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excited modes can further interact amongst each other, giving rise to interesting nonlinear 

and scattering phenomena. For example, sea/oceanic waves during extreme weather 

conditions like hurricanes, storms, etc., can give rise to very destructive rogue waves in 

oceans [36]. Not accounting for nonlinear ~1 Hz oscillations (1/2 of the human walk 

frequency of ~2 Hz) while designing the Millienium Bridge (U.K, 2000) lead to strong 

oscillations when the number of people on the bridge exceeded a certain threshold. 

(Subsequently, it was closed down for two years before reopening in 2002 after a further 

expenditure of several million Pounds [37], [38].) Nonlinearity can hence be a boon or a 

bane depending on the application; it is worthwhile to understand such effects for efficient 

design.  Thanks to the underlying mathematical similarity, results obtained in a field can 

motivate discoveries in other fields. An example of this is described in Chapter 6, wherein 

I have used principles from hydrodynamics to understand phase-noise in ferromagnets. 

Historically though, it is often the studies in magnetism that have led to insights and 

discoveries in other fields, e.g., weather [39], hydrodynamics [40], chaos theory [41], [42], 

etc. 

 

1.2 Frequency Selective Limiter: A Nonlinear Application 

Nonlinear behavior is much sought after in many electrical applications, as 

mentioned earlier. In this thesis, we try to understand the governing physical principles of 

nonlinear processes that arise when ferro(ferri)magnetic materials are subjected to 

microwave signals. We will explore these processes in the light of practical applications; 

specifically, I would use the example of the Frequency Selective Limiter (FSL), a 
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frequency-sensitive device used in communication. FSLs are devices used at the front end 

of communication receivers to selectively reduce the incoming high-power noise. 

Applications such as radars must handle undesired high-power microwave signals while 

distinguishing them from information signals. Other applications of FSL include filter bank 

receivers for signal spectrum identification, multi-channel satellite communication, and 

anti-jamming receivers.  

a) FSL functionality 

The input to the FSL can be thought of as a sequence of microwave frequencies of 

various strengths. The signals above a certain preset strength threshold must be limited in 

order to protect the receiver. Fig. 1.2 shows a schematic input to the FSL and the 

corresponding output signal. The 𝑃𝑡ℎ represents the power threshold beyond which the 

signals are limited.  The limiting of strong signals can be achieved using a transfer function 

that dynamically develops notches corresponding to those frequencies that exceed the 

threshold; the goal is hence to realize such a transfer function. 

 

b) FSL basic model  

Next, let us look at a basic functional model that illustrates qualitatively the role 

played by the nonlinear ferromagnetic material in the realization of the FSL. Consider two 

resonant tanks with frequency 𝜔𝑝 and 𝜔𝑝/2. The latter tank contains a nonlinear element. 

The schematic is shown in Fig. 1.3. When the input signal at the frequency 𝜔𝑝 is below the 

threshold power (𝑃𝑡ℎ), it appears without any attenuation at the output. However, if the  
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incoming frequency has strength above the threshold, oscillations at the frequency 𝜔𝑝/2 

are excited by the nonlinear element in the subsidiary tank. Consequently, part of the input 

energy is coupled to the subsidiary tank to maintain the subharmonic oscillation, thereby 

reducing the strength of the signal that makes it to the output. It is primarily this mechanism 

that restricts or limits the signal strength in Fig. 1.2. As the input strength increases, the 

subharmonic oscillations increase, maintaining the output power constant.  

 

The nonlinear element, in our case, is basically a parametric oscillator wherein the 

incoming high-power microwave initiates oscillations of magnetizations leading to the 

absorption of microwave power. 

Fig. 1.2. Frequency Selective Limiter (FSL) functionality. Signals at frequencies 𝜔1, 𝜔𝑘,   and 𝜔𝑘′ that 

exceed the threshold power, 𝑃𝑡ℎ , are limited by the FSL. 
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It would be appropriate to discuss the notion of spin waves and magnons at this 

point. However, let us briefly discuss ferromagnetic resonance, for it not only introduces 

the need and significance of spin waves but would also serve to establish basic 

terminologies and concepts involved in the study of spin waves and magnons that will be 

used throughout this thesis.  

 

 

1.3 Ferromagnetic Resonance (FMR) 

Ferromagnetic resonance (FMR) constitutes one of the widely studied and used 

magnetic characterization techniques. The first FMR studies were performed by V. K. 

Arkad’ev in 1912 [43]. However, it was in the 1940s that rapid development of this 

technique was first observed. FMR was actively employed for radar and radio-frequency 

Fig. 1.3. A simple subharmonic oscillator model of FSL. The main tank has a resonant frequency of 𝜔𝑝, 

while the subsidiary tank has a parametric oscillator at 
𝜔𝑝

2
, that dissipates away part of the energy of the 

high-power signal. 
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(RF) spectroscopy applications. To understand the phenomenon of FMR, we begin with 

the classical equation of motion of magnetization proposed by Landau and Lifshitz [44] in 

1935: 

𝑑𝑴

𝑑𝑡
= −𝛾𝑴×𝑯                                                    (1.2) 

Where M is the magnetization; 𝑴 =
∑ 𝓜𝚫𝑽

𝚫𝑽
,  ∑ 𝓜𝚫𝑽  is the magnetic moment of a small but 

macroscopic volume, 𝚫𝑽, H represents the net magnetic field, and 𝛾 is the gyromagnetic 

ratio. (The equation does not allow for losses which will be phenomenologically introduced 

later.) Multiplying both sides of Eq. (1.2) by M gives 
𝑑𝑀2

𝑑𝑡
= 0. This shows an important 

feature of the Landau Lifshitz equation – the amplitude of the magnetization, i.e., M= |M| 

is conserved. Hence, with one end of the vector M fixed, the other can be visualized to be 

moving on the surface of a sphere. This observation of M conservation is very useful for 

computational studies to be discussed in later chapters. 

A rigorous treatment of the considerations involved in the analysis of the Landau 

Lifshitz equation can be found in [45], [46]. We assume the magnetic field H to be 

comprised of two fields: a bias magnetic field, 𝐻0, to saturate the magnetic material and 

the RF (microwave) field, ℎ𝑟𝑓. We can then write: 

                                    𝑯 = 𝑯𝟎 + 𝒉𝒓𝒇;𝑴 = 𝑴𝟎 +𝒎𝒓𝒇                                                       (1.3) 

 and assume that ℎ𝑟𝑓 ≪ 𝐻0 and 𝑚𝑟𝑓 ≪ 𝑀0.  
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Using Eq. (1.3) in Eq. (1.2) and retaining only the steady-state quantities, we get: 

𝑴𝟎 × 𝑯𝟎 = 0. In the first approximation, neglecting the product of ac quantities, i.e., 

linearizing, gives: 

𝑑𝒎𝒓𝒇

𝑑𝑡
+ 𝛾𝒎𝒓𝒇 ×𝑯𝟎 = −𝛾𝑴𝟎 × 𝒉𝒓𝒇                                             (1.4) 

If we assume ℎ𝑟𝑓  to be harmonic in time, the linearity of Eq. (1.4) implies 𝑚𝑟𝑓to be 

harmonic as well, i.e., 𝒉𝒓𝒇 ≡ 𝒉 cos (𝑖𝜔𝑡) and 𝒎𝒓𝒇 ≡ 𝒎 cos (𝑖𝜔𝑡), using this in Eq. (1.4), 

we have: 

   𝑖𝜔𝒎+ 𝛾𝒎 × 𝑯𝟎 = −𝛾𝑴𝟎 × 𝒉                                                     (1.5) 

In Cartesian coordinates, with z-axis along 𝑯𝟎 (or 𝑴𝟎) we get: 

         𝑖𝜔𝑚𝒙+ 𝛾𝑚𝑥𝐻0 = 𝛾𝑀0ℎ𝑦;  𝑖𝜔𝑚𝒚- 𝛾𝑚𝑥𝐻0 = −𝛾𝑀0ℎ𝑥; and  𝑖𝜔𝑚𝑧 = 0                  (1.6) 

The solution of Eq. (1.6) is: 

                            𝑚𝒙= 𝜒ℎ𝑥 + 𝑖𝜒𝑎ℎ𝑦; 𝑚𝒚= 𝜒ℎ𝑦 − 𝑖𝜒𝑎ℎ𝑥; 𝑚𝒛 = 0                                (1.7)                                

                        𝜒 =
𝛾𝑀0𝜔𝐻

𝜔𝐻
2 −𝜔2

;  𝜒𝑎 =
𝛾𝑀0𝜔

𝜔𝐻
2 −𝜔2

  with  𝜔𝐻 = 𝛾𝐻0                                (1.8) 

The quantities 𝜒 and 𝜒𝑎 represent the susceptibilities or simply the response of the magnetic 

system to the microwave: 

                                          𝒎 = 𝜒𝒉 with 𝜒 = [
𝜒 𝑖𝜒𝑎 0
−𝑖𝜒𝑎 𝜒 0
0 0 0

]                                            (1.9) 

A few important observations can be made from the case of a lossless ferromagnet 

considered above. First, the longitudinal component of the microwave field does not 
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produce any ac magnetization. Second, the transverse component of the microwave field 

excites a time-varying magnetization component parallel to the field and also a component 

perpendicular to the field but with a phase difference of 𝜋/2, as indicated by Eq. (1.7) and 

Eq. (1.9). This property of non-symmetry is called gyrotropy. Most importantly, it can be 

noted that the susceptibilities exhibit a resonant dependence with respect to 𝜔 and 𝐻0 as 

indicated by the denominators in Eq. (1.8), i.e., when 𝜔 = 𝜔𝐻 =  𝛾𝐻0.  It is this resonant 

dependence that gives rise to the phenomenon of ferromagnetic resonance. It is to be kept 

in mind that in the treatment above, we had linearized the equation of motion by ignoring 

the terms involving the product of ac terms.  

a) Accounting for dissipation: Landau Lifshitz Gilbert equation 

Gilbert [47] introduced a dimensionless damping parameter, 𝛼, to account for the 

losses. The original Landau Lifshitz equation now becomes the Landau Lifshitz Gilbert 

(LLG) equation: 

        
𝑑𝑴

𝑑𝑡
= −𝛾𝑴×𝑯+

𝛼

𝑴
𝑴×

𝒅𝑴

𝒅𝒕
                                               (1.10) 

The LLG equation represents one of the most important equations in magnetics-based 

theoretical studies. It is the workhorse equation for micromagnetics, a numerical paradigm 

wherein a magnetic material is divided into multiple cells, each assigned with certain 

magnetization; the LLG equation is then solved for each of the cells to understand various 

static and dynamic properties of the system. Chapter 2 will discuss in detail the setup of a 

parallel-computation-based micromagnetics solver.   
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It can be shown that we can determine the new susceptibilities using the following 

substitution in Eq. (1.8): 𝜔𝐻 → 𝜔𝐻 + 𝑖𝜔𝛼. Using 𝜒 ≡ 𝜒′ − 𝑖𝜒′′ and 𝜒𝑎 ≡ 𝜒𝑎
′ − 𝑖𝜒𝑎

′′:   

𝜒′ =
1

𝐷
𝛾𝑀0𝜔𝐻[𝜔𝐻

2 − (1 − 𝛼2)𝜔2];  𝜒′′ =
1

𝐷
𝛾𝑀0𝜔𝐻[𝜔𝐻

2 + (1 + 𝛼2)𝜔2] 

𝜒𝑎
′ =

1

𝐷
𝛾𝑀0𝜔[𝜔𝐻

2 − (1 + 𝛼2)𝜔2];  𝜒𝑎
′′ = 2𝛼𝛾𝑀0𝜔𝐻𝜔

2 

                                         𝐷 = [𝜔𝐻
2 − (1 + 𝛼2)𝜔2]2 + 4𝛼2𝜔𝐻

2𝜔2                                      (1.11) 

Certain crucial observations can be made. First of all, the damping constant prevents 

divergences at resonance in Eq. (1.8), giving the more familiar FMR curves. It can be seen 

from equations Eq. (1.11) that when closer to the resonance, the smaller the damping, the 

higher is the absorption of microwave energy. However, when far from the resonance, the 

smaller the damping, the smaller the absorption. 

Note that in the mathematical analysis considered above, we have linearized the 

LLG equation. But in doing so, we set up equations that fail to capture nonlinear 

phenomena. Later, in this thesis (Chapter 3), we will take into account the pertinent higher-

order terms in order to capture and better understand the nonlinear behavior of the system. 

It must be pointed out, however, that there exist a large number of studies and/or 

applications where a linear model is all that is needed. Further, the only magnetic fields 

considered in this section were the bias and the microwave fields. This leads to a uniform 

precession of the magnetization units within the magnetic material. In the description so 

far, we have ignored two of the important fields, namely, the exchange and 
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demagnetization fields, which can lead to non-uniform precession, thereby leading to spin 

waves.  

The most widely used materials are ferrimagnets (dielectrics), as ferromagnetic 

metals result in strong skin effects. In almost all my studies, I use Yttrium iron garnet (YIG) 

as the material of choice unless mentioned otherwise. YIG has been shown to possess the 

lowest magnetic damping of all known materials. This leads to spin-wave modes with 

longer lifetimes as well as larger propagation distances, making YIG interesting from a 

technological standpoint.  

 

1.4 Spin-Wave and Magnon 

During the operation of an FSL, the nonlinear element, ferro(i)-magnet, can absorb 

energy from the high-power microwave signal by creating spin waves or magnons. As 

described earlier, these are perturbations in the otherwise saturated magnetic material. The 

concept of spin waves was introduced by Bloch in 1930 [48]. For simplicity, consider a 

linear chain of magnetic moments biased (using an external magnetic field) to point along 

the same direction, as shown in Fig. 1.4. If, to this chain, we apply an external excitation, 

e.g., a microwave frequency, we can bring about perturbations of the magnetic moments 

in the form of precession. We can identify a wave with the resulting response of the chain, 

which is termed the spin-wave. Like any wave, we can associate with it-  a wavevector, k, 

and a frequency, 𝜔.  (It can be seen that any given spin of the chain is out of step with the 

next by a certain angle, thereby defining a wavelength, 𝜆 = 1/𝑘.)  
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When 𝑘 = 0, the spin-wave mode is called a uniform mode, wherein all the spins 

precess coherently. When 𝑘 ≠ 0, the waves constitute the non-uniform modes. The 

precessional frequency, 𝜔, of the spins defines the frequency of the spin-wave. The second 

quantization allows waves to be interpreted as particles; these quantized spin waves are 

termed magnons. The pivotal role of the spin waves necessitates their studies both for 

understanding their properties from a physics perspective and for the development of 

Fig. 1.4. Oscillations of the magnetic moments in a chain constitutes a wave known as spin wave, with 

wavevector, k, and frequency, 𝜔. This wave can be interpreted as a quasi-particle known as magnon. 

Fig. 1.5. Sample (thin film of ferri(ferro)magnet) and field configuration. ℎ𝑟.𝑓
||

 (ℎ𝑟.𝑓
⊥ ) used for the parallel 

(perpendicular)-pump configuration studies in which the microwave (or RF) field is applied parallel 

(perpendicular) to the bias magnetic field 𝐻𝑑.𝑐 .  
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design rules for engineering applications. Understanding the static and dynamic behavior 

of spin waves using simulation-based studies and analytical formulation is one of the main 

objectives of the thesis.  It is to be noted that the description above is a simplistic view of 

the magnons. Magnetic moments in higher dimensions would similarly lead to higher 

dimensional spin waves. A real magnetic system would allow a wide variety of magnon 

modes depending on its sample size and geometry and external conditions like the magnetic 

bias field and temperature. In other words, the magnetic dispersion relation can be altered 

easily, unlike the electronic bandstructure, thus allowing for a larger degree of 

controllability.  

 

1.5 Pumping Configurations 

Fig. 1.6. The frequency of oscillation along z-direction is twice that of the in-plane direction, in a parallel 

pumping. Source: [51]. 
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The first resonance studies carried out used perpendicular pump configuration, 

which still remains the most used pumping configuration. In this configuration, the 

microwave field is polarized in a direction perpendicular to the direction of the applied bias 

field. The other configuration, known as parallel pumping, was predicted independently in 

1960 by Morgenthaler [49] and Schlomann et al. [50]. In this thesis, I make use of the latter 

for studying magnon properties. Fig. 1.5 shows the two configurations.   

Parallel pumping allows for direct excitation of non-uniform spin-waves without 

the need for the intermediary uniform modes, as is usual in perpendicular pumping. In Fig. 

1.6, both the bias-field and the microwave field are along the z-direction; this leads to 

magnetization precession, as shown therein. The precession of the magnetization is such 

that the frequency along the z-direction, 𝜔𝑧, is twice that of the in-plane precession 

frequency (𝜔𝑦 or 𝜔𝑥) [51].  To see this, let us follow the trajectory from 1 to 4 as marked 

in Fig. 1.6. Since the length of the magnetization vector is constant during the precession, 

it can be seen that during the half-cycle of elliptical in-plane precession, the z-component 

executes a complete cycle.  

 

1.6 Microwave-Magnet High-Power Interaction Studies: A Review 

In this section, I include a brief list indicating some of the important nonlinear 

studies relevant to the current work. I must, however, mention that this by no means is a 

complete list.  



18 
 

The research of Bloembergen and Damon in 1952 [52] and that of Bloembergen 

and Wang in 1954 [53] on FMR at high microwave powers revealed unexpected energy 

absorption when the microwave strength exceeded a well-defined threshold. This was later 

explained theoretically by Suhl in 1957 [54], ushering in a new age of nonlinear magnetics 

studies. In 1959, Schlomann et al. [55] demonstrated that it was necessary to take into 

account the nonlinear interaction of parametrically generated spin waves amongst each 

other. He suggested that the main contribution to such interactions was through 4-magnon 

interactions. As mentioned before, in 1960, Morgenthaler [49] and Schlomann et al. [50] 

independently predicted parallel pumping. The parametric excitation of spin waves by a 

microwave parallel to the bias-field was soon demonstrated experimentally in YIG. In the 

late 60s the research of V.E. Zakharov, V. S. L’vov, and S. S. Starobinets [56], [57] lead 

to the development of S-theory, which shed new insights into the nonlinear phenomena 

involved with the microwave-based parametric excitation of spin waves in ferromagnets 

[58], [59]. Many of the claims of the S-theory were verified in the experimental works of 

V. Zautkin [60], [61], G. Melkov [62], and others [63]-[66]. Auto-oscillations discovered 

in the experiments of Hartwick, Peressini and Weiss [67] in 1961 were also explained by 

the S-theory. As seen earlier, there has been a tremendously increasing interest in magnon-

based applications since the late 90s. The magnon-based paradigm of applications—

magnonics—has emerged as one of the promising candidates for information transfer and 

data-processing technology; with the magnon phase playing an important role in 

notable novel applications like spin-wave-based logic circuits [68], reservoir computing & 

machine learning [22], spin-wave conduits for interconnects [69], spin-wave lens [70], 
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spin-based majority gate [71], and other waveguide applications [8]. They are also valuable 

for spintronic applications. e.g., spin-torque oscillators (STO) [72]  and neuromorphic 

computing [23]. Conventional applications like telecommunication, satellite 

communication, and radar also use nonlinear magnetic devices to reduce energy 

consumption. Devices used in these applications, e.g., magnetics-based FSLs, Signal to 

Noise ratio Enhancers (SNEs), parametric amplifiers, etc., rely on nonlinear absorption of 

microwave signals. Among the linear spin-wave-based devices are delay lines, filters, 

resonators, directional couplers, multi-channel receivers, and Y-circulators, etc. [73]. A 

Bose Einstein condensate (BEC) of magnons was first demonstrated by S. O. Demokritov 

et al. in 2006 [74]. Similarly, cavity magnonics is another frontier of physics that relies on 

magnon-based phenomena [9, 75]. 

YIG-based spin-wave explorations peaked during the time frame of 1960 to 1980. 

YIG is still the material of choice for spin-wave-based studies, so much so that C. Kittel 

once said YIG is to ferromagnetic research what the fruit fly is to genetics research. It is 

primarily the low damping of YIG and the consequent long spin-wave (or magnon) 

lifetimes that allow detailed study of magnonic phenomena. 

 

1.7 The Initial Problem 

The realization of the importance of nonlinear studies in the field of magnetics is 

not new, and in fact, the earliest such studies date back to the times of World War II. At 

the time, resonance-based studies were being pursued primarily for radar, radio-frequency 
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spectroscopy, and radio-astronomy applications. Most of these studies were performed 

with low-power microwave signals. The results of high-power studies carried out in the 

early 50s confounded the researchers. Let us now briefly look at the results of some of the 

first high-power experiments [52]. These studies are pertinent even today as the exact 

details of some of the phenomena involved continue to remain areas of active research. 

Even though the materials and their geometries used in modern experiments may have 

changed, the results from the earliest studies are still highly relevant. This section would 

hence serve as an introduction to the general theme of research discussed in this thesis.  

FMR studies conventionally assume small precession amplitudes of the 

magnetization; the response of the magnetization to the microwave under such 

circumstances is proportional to the strength of the microwave field. However, under high 

microwave power, the assumption of linearity is found to break down, resulting in 

nonlinear or instability effects. Phenomenological equations proposed by Bloch (similar to 

the Landau Lifshitz Eq. (1.2)) were successful in explaining the resonance experiments on 

paramagnets. The imaginary part of permeability, 𝜇′′, and the longitudinal component of 

magnetization, 𝑀𝑧, were expressed as [20], [76]: 

𝜇′′ =
𝜇0
′′

1 + 0.25 𝛾2ℎ𝑟𝑓
2 𝑇1𝑇2

;  𝑀𝑧 =
𝑀𝑧0

1 + 0.25 𝛾2ℎ𝑟𝑓
2 𝑇1𝑇2

 

Quantities with a 0-subscript indicate the values at low microwave powers, ℎ𝑟𝑓 is the 

amplitude of the microwave field, 𝛾 is the gyromagnetic ratio and 𝑇1 and 𝑇2 are the 

longitudinal and transverse relaxation times, respectively.  
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Fig. 1.7. (a) The variation of permeability (imaginary part) and magnetization ratio with the microwave 

field strength, H1, at resonance for paramagnet MnSO4. 4H2O at two different temperatures. (b) Similar 

curves for Nickel ferrite crystals.(Source: [20].) 
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As shown in Fig. 1.7, while a good agreement was found for paramagnetic materials 

(Fig. 1.7(a)), it was not the case for ferromagnetic materials (Fig. 1.7(b)). It is found that 

while the ratios 𝜇′′/𝜇0
′′ and 𝑀𝑧/𝑀𝑧0 decrease with increasing microwave power; they do 

not coincide for the case of ferrimagnets as expected from the theory. Also, the absorption 

saturates at powers much lower than that needed to produce an appreciable change in 𝑀𝑧 .   

Finally, an unexpected broad absorption maxima was also observed in the 

experiments at lower fields. These abnormalities were later explained by the theories 

developed by Suhl and Anderson [54], [77]-[79]. An explanation of the disparity as 

developed by Suhl would be given in Chapter. 3, before leading to the application of the 

theory to FSL devices. These early studies lead to subsequent discoveries of numerous 

other physical phenomena; understanding these phenomena is vital not just from a physics 

perspective but also from the perspective of engineering applications.  

 

1.8 Extreme Nonlinearity: Magnetic Recording, An Application 

Most discussions up to now were based on perturbations induced in saturated 

magnets using microwave excitation. It was found that a high-power microwave can lead 

to nonlinear effects. At the extreme end of nonlinearity is switching, wherein the 

magnetization of the magnetic medium reverses. Deterministic switching of magnetization 

forms the basis of information storage using hard disk drives (HDDs).  

The data storage needs of the world continue to increase, with the pace pushed even 

higher recently thanks to the growth of cloud-based services. The total stored data of the 
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world is expected to be ~160 ZB by 2025 [80]. In order to efficiently meet the ever-

increasing data storage needs, the data density of the HDDs must increase. Numerous state- 

 

of-the-art magnetic recording technologies are being explored as suggested by the ASTC 

[80], as shown in Fig. 1.8.  

 Attempts to increase the data density with good data stability and signal-to-noise 

ratio (SNR), however, lead to a trilemma (Fig. 1.9). A bit can be defined as a collection of 

magnetic grains that defines a 0 or 1, also called a magnetic domain. It can be thought of 

as the smallest unit of information. As SNR is proportional to the number of grains, the 

need for a sufficiently high SNR would imply a large number of grains per bit. In order to 

Fig. 1.8. Technology roadmap for HDD industry issued by Adavnced Storage Technology 

Consortium (ASTC). (Source: [80]) 
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increase the data density while maintaining a high SNR would imply that the size of the 

grains be reduced so that more bits can be packed per unit area. However, a reduction in 

the size of grains makes them susceptible to switching under thermal fluctuations. In order 

to prevent the resulting noise, a high anisotropy media can be chosen that is more resistant 

to such thermal fluctuations. The problem now is that the high anisotropy media would 

need extremely high magnetic fields to switch the domains.  

 

A. Heat Assisted Magnetic Recording (HAMR) 

In order to address the trilemma, a heat pulse, for example, from a laser, can be  

employed to locally heat the magnetic media momentarily reducing its anisotropy [81]. 

This would allow the use of a smaller magnetic field to write the bits while enabling high 

data-densities (> 3 Tbpsi (Terabits per square inch)). This novel technology is called heat 

Fig. 1.9. Design Trilemma captures the challenges faced as the areal density of hard disks is increased.  
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assisted magnetic recording (HAMR) [82], [83]. Fig. 1.10 illustrates the principle of 

HAMR, schematically. 

Understanding heat flow through the various layers of the media would be crucial 

for designing robust HAMR-based media. One of the major problems is the adjacent track 

erasure (ATE) wherein bits on the tracks adjacent to the track being written can be 

unintentionally erased due to the diffusion of the heat away from the heat spot.  

In this thesis, I present a realistic calculation of heat flow by first employing a finite 

difference time domain (FDTD)-based optical calculation to determine the optical power 

input the media (code due to A. Ghoreyshi [84]). The optical power from FDTD is then 

used in a heat equation solver (self-developed code) to determine the realistic temperature 

profiles for recording-media design.  

 

Fig. 1.10. Heat Assisted Magnetic Recording (HAMR) uses laser to enable easier writing of the magnetic 

media. The magnetic material is heated to reduce its coercivity. (Source: [82]) 
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B. Bit Patterned Media Recording (BPMR) 

 

Traditional magnetic recording media consists of a thin-film of magnetic recording 

layer, which comprises single-domain grains. The grains, however, are neither arranged in 

a regular pattern nor are they of the same size owing to the variabilities in the 

manufacturing process. The recording process deals with the randomness in the grain size 

and grain growth pattern by defining a bit to be a collection of such grains so that properties 

Fig. 1.11. (a) Traditional granular media records individual bits as a collection of grains. (b) BPM records 

bits in the form of magnetic islands or dots. (Source: [85]) 

Fig. 1.12. BPM Schematic. Bits are recorded on magnetic islands. A write pole is used to switch the 

magnetic dot and reading is performed by a sensor. (Source: [92]) 
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are averaged over a number of grains. An improvement would be to use a single but 

relatively bulkier grain (sometimes called a dot) to define a bit. This is called bit patterned 

media recording (BPMR) [85]-[88]. Fig. 1.11 compares traditional granular and BPM and 

Fig. 1.12 shows BPMR schematically. Since the bit edge is defined by the physical edge 

of the dot, BPM leads to lower jitters (a type of noise based on the location of the bit). BPM 

can resolve the ATE problems associated with HAMR recording to some extent by using 

a matrix with a low-conductivity heat material, which can help to reduce heat diffusion to 

the adjacent tracks [86].  

Exchange coupled media (ECC) uses two layers of magnetic material for recording 

[86], [89]-[91]. A magnetically soft layer helps to switch the magnetically hard layer which 

stores the data. Such an arrangement helps to reduce the writing field. The efficiency of 

such a scheme goes down due to the exchange coupling amongst the grains and also due 

to the grain size distribution, both of which are unavoidable in traditional media. BPM is 

ideal for exchange-coupled media since it can provide magnetic isolation between the dots. 

Together, HAMR and BPMR constitute the heated dot magnetic recording 

(HDMR). Although the nonlinear magnetic processes play an important role in HDMR, 

the nature of this nonlinearity is very different from that involved in resonance studies, 

where the nonlinearities were largely perturbative. In other words, while the material 

remains saturated in resonance studies, it is forced to switch in recording applications. Such 

higher degrees of nonlinearities are very difficult to be studied theoretically, and most 
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studies are often simulation-based. In Chapter 8, I explore the simulation-based design of 

HDMR for high-density data recording.  

 

1.8 Challenges and Research Outline 

Much of the potential of magnons, either as exploratory tools in uncovering 

fundamental physics or as additional degrees of freedom in engineering applications, 

remain under-utilized. The bottleneck, as mentioned earlier, is often the lack of 

understanding of the nonlinear scattering mechanisms involving magnons and their 

dynamics. For example, the miniaturization of devices like magnetics-based FSLs needs a 

deeper understanding of magnon scattering phenomena and their dependence on material 

parameters. From a fundamental physics perspective, the dynamics of the interaction 

between magnons and cavity photons is still not well understood; these are important for 

cavity-based quantum information research. These are just two of the myriads of active 

problems in the research field. I intend to develop a deeper understanding of the nonlinear 

magnon scattering processes both by developing analytical formulations and by 

constructing computational tools that provide qualitative and quantitative modeling 

capabilities.  The projects described in this thesis make use of the two theoretical 

approaches to varying degrees. 

The immense computational resource requirement has stymied micromagnetic 

investigations of microwave-magnet interactions in the past. In micromagnetics, the 

magnetic system is divided into multiple cells. The LLG is then solved for each cell of the 
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system under the influence of short-range (e.g., exchange) and long-range (e.g., dipolar or 

demagnetization) magnetic fields. The wavelengths of spin waves are of the order of 100s 

of nm, while the spatial dimensions of devices exceed 100s of micrometers. To accurately 

capture the behavior of the magnetic system, cell dimensions should be lower than the 

dominant magnon wavelength. This leads to a large number of cells, increasing the 

computational complexity. Moreover, while the time-step of simulations is restricted to a 

few 100s of fs (due to solver stability issues), the total simulation time required could be 

as high as a few microseconds to enable steady-state studies. This often leads to a large 

number of time steps leading to extremely long code runtimes. For example, many of the 

simulations in the current work require about 5 𝜇𝑠 of simulation time, at a time step of 500 

𝑓𝑠, needing about 10 million time-steps. Such a system when employed with 16384 cells 

needs a runtime of about 3-5 days on a CPU-only machine.  A usual project would need 

hundreds of such simulations, thereby making traditional sequential studies unreasonable. 

Computational paradigms based on graphics processing units (GPUs) and a parallel 

language (e.g., CUDA) can offer tremendous benefits to micromagnetics. It is primarily 

the inherent nature of the physical parameters being computed using micromagnetics that 

allows for such parallelizations. More details will be described in Chapter 2. 

Micromagnetic simulations are performed using GPUs (NVIDIA K40, K80, P100, V100, 

etc.) at various supercomputers. Local workstations used consumer-grade GPUs like GTX 

980, 1080, and P5000. MATLAB-based tools have also been developed to help analyze 

data from the solver. 
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Using the propagation direction of spin waves, I have also implemented an 

additional layer of optimization to specifically enable parallel-pump-based micromagnetics 

studies. This has allowed vital physical phenomena to be captured using a resource-

conserving 2D simulation system instead of a full-fledged 3D system. For example, this 

has provided the ability to successfully capture nonlinear phenomena like the three- and 

four-magnon scattering using the simulation system. These processes govern the nonlinear 

characteristics of materials used in devices like FSLs. The simulations also allowed 

accurate predictions of the threshold microwave field, ℎ𝑡ℎ. The threshold microwave field 

is the minimum field that triggers the onset of nonlinearity. The quantitative knowledge of 

the threshold-field is vital for designing various crucial characteristics, e.g., in the case of 

FSLs – the bandwidth of operation, frequency selectivity, etc. Further details will be 

discussed in detail in Chapter 2, 3, and 4.  

An important issue addressed in this thesis is the dynamic control of the threshold 

field. Threshold field (ℎ𝑡ℎ) plays an important role in the physics of instability processes. 

However, the ability to vary the ℎ𝑡ℎ dynamically is not well understood. In Chapter 5, I 

provide a comprehensive explanation of the considerations involved in dynamically 

altering the threshold field using a subsidiary signal. This technique is highly desirable as 

the secondary microwave frequency needs only be a few MHz in order to enable sufficient 

dynamic control. The dependence of this phenomenon on the damping factor of the 

magnetic material and secondary field intensity is also studied.  

Another important quantity studied is the phase-noise. The phase of the magnons 

plays a key role in magnon-magnon interactions. Due to its direct involvement in nonlinear 
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properties, the phase is also significant from a practical viewpoint, more so as the magnon-

based devices become increasingly miniaturized. In fact, numerous applications that 

rely directly on the magnon phase have been proposed in the recent past. The operations of 

novel applications like magnon transistors, spin-wave lens, and logic circuits strongly 

depend on the phase of the dominant magnons.  In other devices, the magnon-phase 

indirectly controls essential phenomena that determine the device functionality. Magnon-

based devices such as FSLs, Signal to Noise ratio Enhancers (SNEs), etc., used in 

conventional applications like - telecommunication, rely on magnon-phase governed 

interaction phenomena to reduce unwanted microwave frequencies.  Despite the 

importance of the magnon phase, the physical effects of magnon phase-noise remain 

relatively unexplored in the larger context of magnon-based magnetics. Studies of noise in 

the past are largely based on thermal noise, where phase noise is often considered only in 

terms of macro-spin models or as a by-product of thermal noise in the context of specific 

applications, e.g., spin torque oscillators (STO). A direct study of the phase-noise is, hence, 

timely. In Chapter 6, I present a more general and fundamental treatment of the 

consequences of phase noise, which is applicable across multiple magnon-based nonlinear 

applications.  

In Chapter 7, I discuss the secondary interactions amongst the parametrically 

excited magnons. Above the threshold field, the number of magnons is so high that we can 

no longer assume that the excited magnons are non-interacting. These secondary 

interactions can lead to interesting phenomena like microwave-based hysteresis effects. A 

discussion of such phenomena and the underlying analytical considerations are presented.  
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Finally, in Chapter 8, I present some of the design considerations in Shingled 

BPMR for data storage applications. The study involves highly nonlinear processes that 

result in switching the magnetic grain (of FePt) during the process of data recording. The 

theoretical limits of data-density possible using BPMR are explored under noise 

considerations like jitter and track misregistration.     
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Chapter 2 Parallel Program-based Micromagnetics Solver and Data-

Analysis Tools 

 

 Computational research has earned its pedestal when it comes to scientific research 

and is now seen as the third leg of exploration in addition to traditional analytical and 

experimental research [93]. This is true for magnetics research, wherein ground-breaking 

physical phenomena have been discovered and/or studied using simulations [5], [94]-[97]. 

The use of a high-speed computational tool has become indispensable for exploring 

microwave-induced magnon physics due to the complexity of the processes involved. 

Simulations are made even more important due to the fact that even state-of-the-art 

experimental techniques fall short when it comes to probing/studying certain aspects, e.g., 

the ability to track individual magnon modes, high-resolution studies of magnon scattering 

processes such as confluence and splitting, etc. The lack of such capabilities in the past has 

prevented crucial research into magnonic phenomena, including nonlinear processes. 

In this chapter, I describe the construction of the high-speed micromagnetics solver 

used for simulation-based studies discussed in this thesis. The solver is realized using 

parallel programming and helps to address the computational limitations of the past [107]. 

Special attention is paid to code optimization details, especially regarding the parallel code 

for the GPU. The techniques used by some of the important tools that I developed to 

analyze the solver data are also described. The solver and tools have helped us uncover 

important aspects of magnon behavior that are presented later in the thesis. The 

micromagnetics solver is ~100x faster than sequential micromagnetics tools and ~1.5 to 2 

times faster and more accurate than certain other GPU-based implementations. Together 
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with the GPUs and other computational resources at various supercomputers, these tools 

have made possible studies that would have been otherwise very unreasonable timewise. 

 

2. 1 Landau Lifshitz Gilbert Equation 

The Landau Lifshitz Gilbert (LLG) equation governs the magnetization dynamics 

and therefore is the fundamental equation for simulation-based studies: 

 
𝑑𝑀

𝑑𝑡
= −

𝛾

1+𝛼2
[𝑀 × 𝐻 −

𝛼

|𝑀𝑆|
×𝑀(𝑀 × 𝐻)] (2.1) 

𝛼,  𝛾 and  𝑀𝑆  represent the three constants involved in the LLG. 𝛼, represents the 

dimensionless Gilbert damping constant; 𝛾 is the gyromagnetic ratio with a 

magnitude 1.76 × 107
𝑟𝑎𝑑

𝑠𝑂𝑒
 ; 𝑀𝑆 is the saturation magnetization of the magnetic system. The 

two terms of physical importance that are evaluated during the process of solving the LLG 

are the magnetization, M, and the effective magnetic field, H. The first term within the 

brackets in Eq. (2.1) determines the precession of M, while the second controls its damping, 

i.e., the rate at which energy is lost. Together the two determine the dynamics of M, under 

the influence of H.  Perhaps not directly evident from the above form is the nonlinear nature 

of the LLG - a torque equation.  

Furthermore, thermal fluctuations due to the ambient temperature can lead to an effective 

magnetic field that contributes to H. The presence of a noise-term inside H makes LLG a 

Fokker-Planck equation (a stochastic equation).  LL and/or LLG is, hence, often a suitable 

tool to study a wide variety of mathematical aspects, e.g., stochastic properties and 

behavior [98], [99], chaos [41], solitons [100], etc. to name a few. The mathematical 

richness of LLG perhaps is suggestive of the plethora of physical phenomena exhibited by 
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magnetic materials, which in turn make comprehensive analytical studies of such materials 

very challenging. 

 

 

 

 

 

 

 

 

 

 

 

2.2 Micromagnetics Solver Implementation 

The technique of micromagnetics involves the discretization of the magnetic 

system into multiple cells. To each cell, I assign a magnetization, as shown in Fig. 2.1. This 

is in contrast to the macroscale approach in which the magnetization of a device or a sample 

is assumed to be uniform. The whole of the magnetic sample is consequently treated in a 

macroscopic treatment by a single magnetization. While the macroscopic treatments can 

be very useful for certain applications, they miss out on the details of the processes at 

smaller spatial scales. In other words, processes that involve non-uniform magnetization 

across the sample cannot be studied properly using macroscale approaches. In 

Fig. 2.1 Micromagnetics involves dividing the magnetic system to be studied into multiple cells. To 

each cell a magnetization is assigned, the evolution of which is then determined under the influence of 

the net magnetic field experienced by the cell.  
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micromagnetics, discretization is often determined by the process under investigation. The 

possibility of higher resolution makes micromagnetics highly suitable for studying 

phenomena involving domain walls, vortices, skyrmions, magnons, etc. It must also be 

pointed out that micromagnetics while providing higher resolution when compared with 

macroscopic approaches, is still a classical/semiclassical approach and does not capture 

true quantum phenomena. Quantum mechanical calculations, e.g., electronic structure 

calculations, need to be employed in order to study quantum phenomena. 

From a computational point of view, we can associate with each cell of the 

micromagnetic system a set of static and dynamic properties. The main dynamic properties 

of each cell that need to be evaluated are the 3 components (one for each Cartesian 

direction) of:- the magnetization and the various magnetic fields. Since the net magnitude 

of the M in the LLG is not allowed to vary (Chapter 1, Section 1.3), the degrees-of-freedom 

are the polar (𝜃) and azimuth (𝜙) angles such that: 𝑀𝑧 = 𝑀𝑆cos𝜃,𝑀𝑦 = 𝑀𝑆 sin𝜃 sin𝜙 and 

𝑀𝑥 = 𝑀𝑆  sin𝜃 cos𝜙. In this work, we consider the following magnetic-field intensities that 

together comprise the effective intensity H: exchange field ℎ𝑒𝑥, demagnetization field ℎ𝑑 , 

thermal field ℎ𝑡, externally applied fields: 𝐻𝑑𝑐 (magnetic bias-field), and ℎ𝑟𝑓 (microwave-

field).  

 

A. Parallelisms in magnetic system 

The magnetic system, from a computational perspective, is a highly parallel system. 

We can identify two levels of parallelisms, which can be exploited to design a high-speed 

parallel micromagnetic solver.  
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(a) Intracellular parallelism: Various attributes of a cell, e.g., the magnetic fields, can be 

computed independently of each other.  

(b) Intercellular parallelism: Most attributes of a cell are independent of the other cells 

of the system. For example, except for the exchange and demagnetization fields (which 

exhibit short and long-range dependence, respectively), the other fields can be computed 

independently of other cells.  

The parallelisms inherent in the magnetic system can be leveraged to provide 

independent tasks to a suitable parallel computational device, e.g., the graphics processing 

units - that have been optimized both at the hardware and software levels to perform 

parallel tasks. Such accelerators can help in achieving enormous computational speeds 

when compared with traditional CPU (central processing unit)-only solvers. The 

subsequent sections will provide more details on the use of graphics processing units 

pertinent to micromagnetic simulations. 

 

B. Graphics Processing Units (GPUs) 

GPUs have played a pivotal role in the simulations studies described in this thesis. 

Fig. 2.2. Graphics processing unit (NVIDIA V100). (Source: [102]) 
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GPUs are high-throughput devices that were originally developed for gaming and image 

processing applications that need identical computations to be performed on large data sets. 

The idea is to employ a large number of processors, each of which, although slower than 

traditional CPU cores, can lead to increased throughput.  The ability of GPUs to process 

large blocks of data in parallel makes them more efficient than general-purpose central 

processing units (CPUs) in performing large parallelizable tasks [101]. The applicability 

of GPUs to scientific computations that involved a large number of parallel tasks was soon 

realized.  

The inherent computational parallelizability of the magnetic system makes GPUs 

highly suitable for accelerating micromagnetic simulations, especially in investigations 

that involve a large system-size to cell-size ratio and/or simulation-time to timestep ratio. 

The GPUs have a large number of compute-cores compared to CPUs, as shown in Fig. 2.3;  

even though each compute-core of the GPU may be slower than that of the CPUs, the sheer 

number of GPU cores can provide unprecedented speed-up for data-intensive parallel 

applications. It is to be noted that if the amount of data to be processed (or the number of 

parallel tasks) falls below a certain threshold, the use of GPUs can be highly inefficient. 

In our micromagnetics solver, a GPU is employed alongside the host CPU, forming 

a heterogeneous computing environment. It is the CPU, also referred to as the host, that 

performs the tasks in succession, assigning the parallel tasks to the GPU (also referred to 

as the device).  Such a paradigm aims to make the best possible use of the two 

computational devices. As indicated earlier, microwave-magnon interaction effects (e.g., 
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ferromagnetic resonance) can be qualitatively  and quantitatively well studied using such 

a computational paradigm. It is also suitable for magnetic recording [103] and other 

magnetic-storage device simulations [104]. 

 

 

C. Computational Process Flow 

We use RK4 numerical integration for our LLG computations. (Previous studies 

have shown the predictor-corrector methods to be inaccurate in the presence of thermal 

fields [105, 106].) 𝑁𝑍, 𝑁𝑌, and 𝑁𝑋 represent the number of cells along the z-, y- and x-

Cartesian directions, respectively, such that 𝑁 = 𝑁𝑍𝑁𝑌𝑁𝑋, with N representing the total 

number of cells. For performing the simulations, first the boundary and initial conditions 

are established. In this work, I have used periodic boundary conditions. The initial 

magnetizations are usually assumed to be random. (Provisions are also made to start the 

simulation from uniform or random magnetization or from a configuration that can be 

loaded externally from a file. Other boundary conditions can also be easily included.) 

Fig. 2.3. CPU vs GPU; GPU has more ALU compared with CPU with relatively low cache memory. 

GPU is as such optimized for high throughput calculations. (Source: [101]) 
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A brief description of the computational process is shown in Fig.2.4. At first, all 

the necessary constants, initial conditions, and the demagnetization kernel (in the case of 

dipolar fields) are loaded into the device (GPU) memory. The host primarily controls the 

process flow and, therefore, maintains the iteration count and initiates the tasks that are to 

be performed by the GPU. After a task that is assigned to the GPU is accomplished, the 

control is returned to the CPU, which then initiates the next task. Various magnetic field 

intensities (discussed in Section 2.3) are computed by the GPU for the given timestep. The 

angles 𝜃 and 𝜙 are then determined and used to calculate the magnetizations at each of the  

cells. The magnetization and/or other useful data at the given timestep can then be 

transferred back asynchronously to the host memory if needed. The host then proceeds to 

Fig. 2.4. CPU-GPU-based process flow in a heterogeneous environment for micromagnetic calculations 

described in the thesis. The dashed box represents the GPU wherein the various computations are 

performed in parallel for increased throughput. Outside of the box represents the host (CPU) 

environment. Source: [107] 
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initiate the next iteration, and this process is continued till an end condition is met (e.g., a 

preset simulation time). In the following sections, we describe in detail the calculations of 

the various field intensities. 

 

 

D. Data Arrangement in the GPU global memory 

For efficient data access to/from the GPU global memory [Dynamic Random 

Access Memory (DRAM)], coalesced access is ensured through the proper arrangement of 

data. This is crucial as improper data arrangement can reduce the speed of execution. When 

the GPU accesses data from its DRAM, it does so in such a way that the data placed in 

nearby locations are accessed together and returned on the data-bus. This process is called 

the bursting of the data [101]. In bursting, it would be to our advantage if all (or most of) 

the data returned is relevant.  

Irrespective of the dimensionality of the system being simulated (3D, 2D or 1D), 

as far as any attribute is concerned (e.g., 𝑀𝑋), its data arrangement in memory is sequential. 

While implementing parallel code, the cells of, say, a 3D system are accessed as per user-

defined serial indices. In case the data is not arranged correctly, nearby cells may have their 

data scattered far apart in the memory. If so, the GPU would have to reach into the DRAM 

multiple times to retrieve the data it needs to complete a step, i.e., multiple burstings. By 

ensuring the proper arrangement of data, we can ensure coalesced data access and 

maximize the speed of execution. In my implementation, separate channels (or arrays) are 

used for each attribute. The arrangement of various dynamic attributes in properly laid out 
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separate channels helps to make efficient use of the data-bursts in the GPU memory.  

Shared- and private memories that have faster access (compared to DRAM) are 

also employed appropriately to reduce the access times. However, these memories have 

significantly smaller capacities, thereby limiting their use.  

 

2.3 Magnetic Field Intensity Determination 

In this section, I describe the determination of the magnetic field intensities that are 

fundamental to the LLG equation. The computations were carried out on NVIDIA GTX-

980 GPU card and Intel Xeon (R) ES-2630 CPU in a Linux environment. For each field, I 

briefly describe the physics and its significance before moving on to the mathematical and 

implementation details. Essential code optimization techniques are then provided. 

 

A. Thermal Field 

At first, I discuss the computation of the effective magnetic field arising from 

thermal fluctuations in the magnetic system. This field arises due to the non-zero 

temperature of the magnetic sample (usually the ambient room temperature). The effective 

magnetic noise is responsible for the instabilities in the recording media used in magnetic 

storage. Thermal field leads to random switching of grains that ultimately results in bit 

corruption given sufficient time. The field also plays an important role in microwave-

magnon interactions. Thermally generated magnons can increase the noise in a magnonic 

system. Furthermore, they help to create the initial magnons, which can then be pumped 

by the microwave to very large numbers. They can also scatter with the parametrically 
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excited magnons (from microwave pumping) to give rise to interesting phenomena.   

Since the random thermal field contribution to the field intensity multiples the 

magnetization, it makes LLG a Fokker-Planck equation of the multiplicative kind. The 

computational realization relies on the use of a random number generator. Following  

 

Brown [108], the noise is assumed to have zero mean < ℎ𝑡 >= 0; also, at two different 

cells located at 𝑟 and 𝑟′ for distinct times 𝑡 and 𝑡′, < ℎ𝑡(𝑟, 𝑡) > and < ℎ𝑡(𝑟
′, 𝑡′) >, a 

correlation exists only for time intervals much shorter than the time required for an 

appreciable change in M. (Angular brackets denote statistical average.) Accordingly, we 

have 𝛿-correlations in space and time: 

 

 < ℎ𝑡(𝑟, 𝑡)ℎ𝑡(𝑟
′, 𝑡′) > =

2𝐾𝐵𝑇𝛼

𝑀𝑆𝛾′𝜏𝜗
𝛿(𝑡′ − 𝑡)𝛿(𝑟′ − 𝑟) (2.2) 

Where Boltzmann constant 𝐾𝐵 = 1.38 × 10
−16 𝑒𝑟𝑔

𝐾
, 𝑇 is the temperature, 𝛾′ =

𝛾

1+𝛼2
. 𝜏 is 

Fig. 2.5. Comparison of iteration time for thermal field computation using sequential (CPU) and 

heterogeneous (CPU+GPU) approach. An average of 5000 iterations is taken to compute the time. 

(Source: [107]) 
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the timestep used in the simulation and 𝜗 is the unit-cell volume.  

The 𝛿-correlations have special significance in a parallel computational 

environment as they allow for maximum parallelizations by eliminating dependency from 

other cells. Fig. 2.5 compares the time taken in a sequential CPU paradigm (no GPU is 

used) to that in a heterogeneous (CPU+GPU) paradigm for a single iteration of thermal 

field computation as the number of cells in the system is varied. It can be noted that for 

small cell numbers (in our studies for 𝑁 < 28), the CPU performs faster. This is due to the 

insufficient amount of parallel tasks available. Even though all tasks are parallel, there are 

Fig. 2.6. (a) 7-point stencil showing the nearest neighbors used in the exchange field intensity 

computations for a cell 𝑐𝑖,𝑗,𝑘, in 3D identified by the Cartesian indices i, j, k. (b) Comparison of iteration 

time for exchange field computation using sequential (CPU) and heterogeneous (CPU+GPU) approach. 

An average of 5000 iterations is taken to compute the time. (Source: [107]) 
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not enough tasks to keep all the GPU-cores busy at a given time, leading to some of the 

GPU-cores remaining idle. There is always an overhead associated with using GPUs (e.g., 

the overhead of launching various GPU kernels, CPU-GPU communication, etc.) [101]. 

For data-intensive simulations (i.e., a large number of parallel tasks), this is offset by the 

high throughput, so we get an overall speed-up, but for low amounts of data, the overhead 

exceeds any gain in speed-up. 

As the number of cells increases, however, a GPU-based system can be orders of 

magnitude faster than a CPU-only system as demonstrated in 𝑁 > 28 in Fig. 2.5. 

 

B. Exchange Field  

The exchange interaction arises due to the quantum-mechanical nature of electrons, 

requiring the electron wave functions to be anti-symmetric. Since the electrons at the 

adjacent site have the maximum probability of exchange, this field is strongest between the 

nearest neighbors. Exchange is a quantum phenomenon and attributes the semiclassical 

nature to LLG. In general, it is the dominant field at short ranges. In this context, materials 

are characterized by their exchange constant, 𝐴𝑒𝑥. Due to the short-ranged influence, the 

exchange field results in exchange-magnons that have smaller wavelengths (or large wave-

vectors). These are important from the perspective of miniaturization of the magnonic 

devices. In simple terms, the exchange energy is such that 𝐸𝑒𝑥 = 𝐷𝑘
2, where (𝐷 =

𝟐𝜸𝑨𝒆𝒙

𝑴𝒔
) 

is an exchange parameter, and k is the wave-vector of the spin-wave. This is important as 

it is the exchange interactions that lead to the parabolic energy dependence of spin-waves 
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w.r.t.  their wave-vectors. A more detailed description of the exchange phenomenon can 

be found in [109, 110]. The exchange field can be written as [109]: 

 ℎ𝑒𝑥 =
2𝐴𝑒𝑥

𝑀𝑆
2 [∇

2𝑀𝑧�̂� + ∇
2𝑀𝑦�̂� + ∇

2𝑀𝑥�̂�] (2.3) 

and is obtained by taking the derivative w.r.t the magnetization, of the exchange energy 

density: 

 𝐸𝑒𝑥 =
𝐴𝑒𝑥

𝑀𝑆
2 [|∇𝑀𝑧|

2 + |∇𝑀𝑦|
2
+ |∇𝑀𝑥|

2] (2.4) 

where, ∇ is the gradient operator. 

In this implementation, I consider only the nearest-neighbor interactions. Eq. (2.3) 

amounts to a 7-point stencil computation for each cell (Fig. 2.6(a)) in a 3D system. Due to 

the dependence on other cells, the parallelization is reduced when compared with, say, the 

thermal field. However, data reuse using shared, and private memory reduces the number 

of data fetches needed from GPU DRAM, resulting in an overall speed improvement. Fig. 

2.6(b) shows the time taken as we vary the cell numbers. As in the case of thermal field 

computation, we can observe that the CPU gets significantly slower as the number of cells 

increases. The use of private variables has been observed to increase speed-up, although it 

must be pointed out the number of private variables allowed is determined by the number 

of cells and the GPU.  

 

C. Dipolar field 

Dipolar and demagnetization fields arise on account of the magnetic dipole-dipole 

interactions in the material. Due to their long-range nature, dipolar interactions are the most 
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difficult to compute, as computation for a given cell must take into account all the other 

cells present in the system. The significance of demagnetization fields in resonance 

experiments was first explained by Kittel [111]. He pointed out that the resonance 

frequencies can be affected by the sample shape and geometry. Uniform precession of the 

magnetic-moments in a material (the so-called uniform mode in terms of magnons) is a 

natural mode only to the first order in the presence of dipolar fields. The addition of the 

dipolar field couples various magnon modes. Demagnetization interactions lead to 

magnons of larger wavelengths. These interactions play an important role in many 

applications, e.g., RF devices [112], cavity experiments [9], [113], etc. In my 

implementation, I make use of the magnetostatic assumption. Due to the small size of the 

magnetic sample, propagation effects can be ignored. The effects of dipolar fields are felt 

across the sample instantly. In contrast, the exchange field effects propagate at a finite 

speed. 

Mathematically, the demagnetization field intensity computation for a cell amounts 

to the evaluation of the convolution between the Green's function and the magnetization 

configuration of the material, e.g., for a general unit cell at the location, 𝑟(𝑧, 𝑦, 𝑥), the 

demagnetization field intensity experienced can be written as: 

 ℎ𝑑(𝑧, 𝑥, 𝑦) = ∭𝐺(𝑧 − 𝑧′, 𝑦 − 𝑦′, 𝑥 − 𝑥′) 𝑀(𝑧, 𝑦, 𝑥)𝑑𝑧′𝑑𝑦′𝑑𝑥′ (2.5)        

where, 𝐺 is the Green's function of the system in real-space.  

𝐺 = [

𝐺𝑥𝑥 𝐺𝑥𝑦 𝐺𝑥𝑧
𝐺𝑦𝑥 𝐺𝑦𝑦 𝐺𝑦𝑧
𝐺𝑧𝑥 𝐺𝑧𝑦 𝐺𝑧𝑧

]                                                                  (2.6) 
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Each entry determines how a field intensity along the direction indicated by the first 

subscript would affect magnetization along the second. Note that each entry has N 

components, one for each of the cells, leading to the requirement of 9N units of storage for 

𝐺. Since the determination of 𝐺 depends on the geometry of the system, it can be computed 

deterministically at the start of the simulations, allowing it to be stored in a faster memory 

for repeated access later, e.g., the constant memory of GPUs (depending on the number of 

cells and the storage capacity of the GPU).  

Direct determination of 𝐺 in real-space coordinates leads to accuracy issues [106]. 

Hence, we use Fast Fourier Transform (FFT) techniques to determine 𝐺 for simulations. 

This also helps in avoiding the complicated magnetostatic integrals involved in a direct 

computational scheme. 

ℎ𝑑(𝑘𝑧 , 𝑘𝑦, 𝑘𝑥) = 𝐺(𝑘𝑧 , 𝑘𝑦, 𝑘𝑥).𝑀(𝑘𝑧 , 𝑘𝑦, 𝑘𝑥)                                  (2.7) 

Computation of the demagnetization effects for the case of a generalized cuboid 

cell has been considered by Newell et al. [114]. We use the demagnetization Green's 

functions developed therein for our numerical calculations. The implementation is highly 

efficient because the 𝐺 needs to be computed just once, to be reused in all the following 

time-iterations.  

Many of the investigations require periodic boundary conditions, especially those 

involving studies of the fundamental magnonic phenomena under the influence of 

microwave excitation(s). To enable periodic conditions, we repeat the magnetization 

configuration in all the Cartesian directions. This increases the number of cells used in 

demagnetization calculations to 𝑁𝑑 = 2𝑁𝑍. 2𝑁𝑌 . 2𝑁𝑋 = 8𝑁 in 3D.  
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To summarize, there are 4 steps involved in the computation of demagnetization 

field intensity: 

 

(1) Compute 𝐺(𝑧, 𝑦, 𝑥) from which 𝐺(𝑘𝑧 , 𝑘𝑦, 𝑘𝑥) is obtained. 

(2) Compute FFT of the magnetization distribution.  

(3) Evaluate ℎ𝑑(𝑘) = 𝐺(𝒌).𝑀(𝒌) 

(4) Compute the inverse FFT to obtain ℎ𝑑(𝑧, 𝑦, 𝑥). 

Step 1 is performed in the host CPU system and moved to a suitable memory of the 

GPU device. While in the GPU, the CuFFT API (Application Programming Interface) is 

employed for the FFT computations involved in steps 2 and 4. Tiled matrix multiplications 

[101] are employed in step 3 to improve the computational speed. The computations may 

also be spread across multiple GPUs if need be. However, the ensuing GPU-to-GPU 

communication slows down the computations due to the associated communication 

overhead. Due to their long-ranged nature, the demagnetization field computations 

Fig. 2.7 Comparison of iteration time for demagnetization field intensity computation using sequential 

(CPU) and heterogeneous (CPU+GPU) approach. Data is averaged over 5000 iterations. (Source: [107]) 
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consume the most computational resources and, consequently, are the least parallelizable 

of all fields. In Fig. 2.7, we can see the drastic reduction in speeds when compared with 

the thermal field intensity computations of Fig. 2.5. Interestingly, the overheads associated 

with the use of the respective FFT libraries (CuFFT for CUDA and FFTW for Fortran) and 

the matrix multiplication algorithms are such that heterogeneous computations are faster, 

even for small N. 

 

D. Applied Microwave Field  

A magnetic bias-field is often employed to saturate the magnetic material. Exciting 

the system with a microwave can then initiate spin waves in accordance with the resonance 

conditions. With respect to the microwave signal, I assume that the microwave field 

intensity is the same throughout the magnetic sample at any given instant. Often for state-

of-the-art devices, where the goal is miniaturization, the assumption turns out to be 

reasonable. It is assumed that we have a perfectly linearly polarized microwave signal. It 

has been demonstrated in the past with experimental agreement that we can reasonably 

capture the nonlinear behavior brought about by the microwave signal in a magnetic 

sample, under the above-mentioned assumptions [112, 115].   

In order to simulate the time-varying microwave field intensity, I use ℎ𝑟𝑓 =

ℎ0 cos(𝜔𝑝𝑡) along the appropriate direction (along z for parallel pumping and along y for 

perpendicular pumping in Fig. 2.1), with 𝜔𝑝 as the frequency of the microwave. This field 

needs to be added to each cell of the system at runtime due to the time-dependence of the 
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microwave signal. Nevertheless, the absence of dependency on other cells ensures high 

parallelization.  

A comparison of the speed-ups obtained for various cell numbers under GPU 

acceleration is provided in Fig. 2.8. Overall, using a sequential code for small cell numbers 

gives higher throughput when compared with a parallel solver due to the overhead 

associated with the GPU usage. However, at large cell numbers, the use of GPU is more 

advantageous. 

 

As mentioned earlier, due to the large number of iterations involved, we use double 

(datatype) for our parallel solver. While this may preclude the use of the GPU functions 

optimized specially for the float (datatype) operations, it helps to improve the accuracy 

when a large number of iterations are involved (e.g., for simulations with long runtimes). 

For short simulations, the solver can, however,  be easily converted to work with the float 

datatype in order to take advantage of the float-specific hardware/software optimizations 

in the GPU.  

Fig. 2.8. Speed-up obtained by using a GPU accelerator for micromagnetics computations for varying 

cell numbers. (Source: [107])  
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2.4 Data Analysis 

The micromagnetic system can provide various dynamics attributes, e.g., the 

magnetization and magnetic fields at each cell location at each time-iteration. Important 

information from the perspective of fundamental physics and applications, e.g., dispersion 

relation, magnon dynamics, magnon phase, etc., can be obtained using this data. Below we 

describe the procedure for obtaining the dispersion relation and magnon dynamics using 

simulation data.  

 

A. Dispersion relation 

Dispersion relation can be understood to be a map of all the magnon modes that are 

allowed in the magnetic system. It is a plot of wave-vectors versus the energy of the 

magnons. Similar to the vital role played by the electronic bandstructure in the design and 

understanding of semiconductor-based devices, it is the magnon-dispersion relation that is 

crucial to understanding the magnetic response of the material in the realm of magnetics. 

However, unlike the electronic bandstructure of semiconductors, the magnon dispersion 

can be altered using parameters such as bias-field, sample-thickness, sample-geometry, etc.  

In terms of applications, the magnon dispersion relation is indispensable in 

determining the external conditions that the magnetic sample should be subjected to in 

order to obtain the necessary functionalities [116]-[119]. For our study, we consider the 

thin film geometry as commonly desired in applications. By using micromagnetic 
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simulations, we are able to predict magnon processes and the radio-frequency (RF) 

response of YIG samples accurately due to our rigorous calculation of magnetostatic 

interactions and dispersion relations. Studies in the past [1], [120], [121] have typically 

relied on approximate calculations of dispersion and/or ignored the details of the 

magnetostatic interaction between magnons; such assumptions produce an inaccurate 

prediction of the vital magnon processes that control the behavior of the sample.  

During simulations, the magnetization profile at regular time intervals (determined 

by the energy range of interest) is written out from the GPU to the host memory. In other 

words, a snapshot of the magnetization of the system is taken at specific time intervals, 𝑡𝑖, 

such that i represents a natural number. (Writing out data at specific time intervals instead 

of all reduces the data transfers between the host and the GPU, thereby helping to reduce 

the runtime; it also helps in lowering the storage- requirements.)  

For calculating the dispersion relation, we begin with a randomized distribution of 

magnetization and allow the system to attain the steady-state under the applied magnetic 

Fig. 2.9. Dispersion relations for a 5.1 𝜇𝑚 thick YIG sample for a bias field of 100 Oe. (Source: [112]) 
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bias field. (No microwave excitation needs to be applied for the determination of dispersion 

relations.) The magnetization components 𝑀𝑦, and 𝑀𝑥 are used to determine the dispersion 

relation. A 2D spatial Fourier transform of these components is taken at each 𝑡𝑖. Finally, a 

temporal Fourier transform (F.T) yields the dispersion relation. Mathematically, this can 

be represented as the following: 

 𝑀(𝑦, 𝑥; 𝑡)
𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐹.𝑇
→       ℳ(𝑘𝑦, 𝑘𝑥; 𝑡)   

𝑇𝑒𝑚𝑝𝑜𝑟𝑎𝑙 𝐹.𝑇
→         𝒟(𝑘𝑦, 𝑘𝑥; 𝜔𝒌) (2.7) 

𝒟(𝑘𝑦, 𝑘𝑥; 𝜔𝒌) is the dispersion relation of the system, also referred to as the spin-wave 

manifold. 𝑘𝑦, and 𝑘𝑥 are the wave-vectors along x and y, with 𝒌 = (𝑘𝑦, 𝑘𝑥).   

Next, let us compute the dispersion relation of a magnetic film of YIG. The sample 

is 5.1 𝜇𝑚 thick with lateral dimensions of 100 𝜇𝑚 x 1250 𝜇𝑚. The sample is divided into 

128 x 128 x 1 cells along the directions measuring 5.1 𝜇𝑚 x 100 𝜇𝑚 x 1250 𝜇𝑚 

respectively. Note the special geometry for simulation. (The simulations are carried out in 

a configuration that best captures the relevant physics for parallel pump configuration. A 

rigorous justification for using such a configuration will be provided in Chapter 4.) Other 

parameters used are: intrinsic magnetic damping constant 𝛼 =0.0028, saturation 

Fig.  2.10.  The YIG sample with the field directions for parallel pump configuration. 

y 

x 
z 

𝐻𝑑𝑐 

ℎ𝑟𝑓 
5.1 𝜇𝑚  
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magnetization, Ms = 1.3 × 105  A/m (=130 emu/cm3 in electromagnetic units), and the 

gyromagnetic ratio of electron, 𝛾 = 1.76 × 1011 rad s−1T−1 (= 1.76 × 107 s−1Oe−1) 

are used.  The temperature of the sample, T = 300 K. A bias field of 100 Oe is used. Periodic 

boundary conditions are assumed in the lateral directions. The dispersion relation 

calculated is shown below. 

 

B. Magnon number calculations 

In the process of determining the dispersion relations, we also obtain ℳ(𝑘𝑦, 𝑘𝑥; 𝑡) 

as an intermediary result (Eq. 2.7) which is a measure of the magnon amplitude with wave-

vector (𝑘𝑦, 𝑘𝑥) at the time instant, t. This can provide crucial information about magnon 

dynamics. It is possible to track magnons with specific wave-vector and/or energies. Below 

we show magnons resolved in frequency and wave-vector. 

Next, I present some results obtained for the parallel pumping configuration 

wherein both the magnetic bias field as well as the microwave field (ℎ𝑟𝑓) are applied 

parallel to each other (along the z-direction) as depicted in Fig. 2.10. This usually leads to 

magnon modes in a plane perpendicular to the z-direction. (The same configuration as was 

used to obtain the dispersion relation shown in Fig. 2.9.) The simulations are performed in 

this plane for increased resolution of the significant magnon modes [112]. The 

discretization used is 128x128x1 along x-, y- and z-directions with dimensions 5.1 um x 

100 um x 1250 um, respectively. I use 𝑀𝑠 = 145 𝑒𝑚𝑢 𝑐𝑚
3,   𝛼 = 0.007⁄  and 𝐴𝑒𝑥 =

3.77 × 10−7 𝑒𝑟𝑔𝑠/𝑐𝑚. A 6 GHz microwave is turned on at 100 ns.  
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In Fig. 2.11 (a), I demonstrate that the 𝜔𝑝/2 modes are excited when a microwave 

frequency of 𝜔𝑝 is used for pumping. Modes with other frequencies hardly show an 

increase in their numbers. It is also demonstrated that 𝑘 ≠ 0 modes can be directly excited 

by the microwave (Fig. 2.11 (b)) (More discussions can be found in [41], [110].) To the 

best of our knowledge, this was the first micromagnetics-based demonstration of the 

phenomenon at the time of publication [107]. Since the wave-vector-based resolution is 

Fig. 2.11. Demonstration of the selectivity during the magnon growth process. (a) Magnon numbers 

resolved in frequency. Turning on a 6 GHz microwave frequency with an intensity of 24.4 Oe, leads to 

an exponential growth in the number of 3 GHz magnons. The rest of the magnons do not show this growth 

and remain close to the equilibrium values. (b) Magnon numbers resolved in wave-vectors. Wave-vector 

based analysis suggest that the magnons with their wavevectors 𝑘 ≠ 0 can be directly excited (i.e., 

without involving the 𝑘 = 0 modes). (c) Magnon number growth of two of the most dominant magnon-

modes resolved in both frequency and wave-vectors. Wave-vectors of the two modes are such that  𝐤𝟏 =
−𝐤𝟐, with |𝑘1𝑥| = |𝑘2𝑥| = 19.7 × 10

4rad/cm and |𝑘1𝑦| = |𝑘2𝑦| = 1.26 × 10
4rad/cm and the 

frequency of the modes, 𝜔𝑘 = 3 GHz.  These two modes exhibit identical numbers through the entirety 

of the simulation time, indicating pair interaction of the magnons. Oscillations are due to the interplay 

between the pumping and the various relaxation processes. Source: [107] 
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hard to obtain experimentally, this demonstration represents a micromagnetic proof 

supporting the direct excitation of non-uniform magnons by microwave photons.  

 

In Fig. 2.11 (c), we plot the two most dominant magnon modes and find that these 

occur in pairs (±𝒌), which is not surprising given the wave-vector conserving nature of 3- 

and 4- magnon interactions. It is interesting to note, however, that the numbers remain 

identical for the two components (±𝒌) even under higher-order interactions (beyond 1000 

ns) that arise naturally in the magnetic-material, e.g., the phase-mismatch mechanism 

(discussed in Chapter 7), to which the modes are eventually subjected. This indicates that 

the two modes act as though they are a single unit, similar to the notion of Cooper pairs in 

superconductors [57, 110], i.e., the interacting unit is a magnon-pair. Although we 

discussed only some of the phenomena here, other magnon-based processes can also be 

captured using our heterogenous micromagnetics tool. 

 

2.5 Conclusions 

In this chapter, I have described the implementation of the CUDA-GPU-based 

micromagnetics tool that would be used to investigate various aspects of magnons in the 

chapters to follow. The computation of various magnetic fields: thermal, exchange, dipolar 

or demagnetization, and applied -is discussed. The procedure for dispersion relation and 

magnon dynamics calculation from micromagnetic simulation data is also described. In 

terms of runtime, a 5000 ns long run with a timestep of 500 fs computing a 16384-celled 

system takes about 7.5 hours on a V100 GPU and about 14 hours on P100 GPU.  
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Chapter 3 

Spin-Wave Theory and Frequency Selective Limiter Functionality 
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In this chapter, I develop and discuss spin-wave theory for parallel pump 

configuration that could enable a better understanding and design of magnetics-based 

microwave devices. For this, I make use of the mathematical mechanics of second 

quantization that interprets spin waves as particles. Similar use has been made of the 

Holstein-Primakoff (HP) transformation [122], as was done, for example, in prior works 

of Suhl [54] and Schlomann [123]. One of the key differences is that my theory is for thin 

films while the prior theories considered spherical samples.  In addition, I discuss aspects 

of HP parameters that were not explicitly considered in the original works; physical 

interpretation of the mathematical equations is also provided. The theory developed herein 

would form the basis for further chapters of this thesis. 

I will then demonstrate the functionality of frequency selective limiters (FSLs) in 

light of the developed spin-wave theory using micromagnetic simulations. Important 

nonlinear device characteristics with respect to absorption, bandwidth, etc., are discussed. 

Three- and four-particle scattering processes are shown to be the cause of such 

nonlinearities. The nonlinear properties have a strong dependence on the magnetic bias 

field, microwave frequency, and applied power, etc. Predictions are calculated using a 

large-scale micromagnetic simulation executed on GPUs [107], [112]. 

 

 

3.1 Spin-Wave Equation of Motion 

Let us define the following frequencies: 𝜔𝐻 ≡ 𝛾𝐻𝑑𝑐;  𝜔𝑀 ≡ 𝛾4𝜋𝑀𝑆;  𝜔𝑑 ≡

𝛾ℎ𝑑;  𝜔𝑒𝑥 ≡ 𝛾ℎ𝑒𝑥; and 𝜔𝑠 ≡ 𝛾ℎ𝑟𝑓, where ℎ𝑑 represents the dipolar field. The fields- 𝐻𝑑𝑐, 
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ℎ𝑟𝑓 and 4𝜋𝑀𝑆  (magnetic saturation induction, an effective field component) can be 

assumed to have a linear polarization. Also, I have ignored the effective thermal field in 

the analytical theory.  

Let us make the following definitions: 
𝑴

𝑀𝑠
≡ 𝒎, with components (𝑚𝑥, 𝑚𝑦,𝑚𝑧) and 

𝑚+ ≡ 𝑚𝑥 + 𝑖𝑚𝑦, and 𝑚− = (𝑚+)∗ ≡ 𝑚𝑥 − 𝑖𝑚𝑦, where i is imaginary. From which, we 

can write: 𝑚𝑧 = √1 −𝑚+𝑚− ≈ 1 −
1

2
𝑚+𝑚− (∵ |𝒎| = 1 ⟹ 𝑚𝑥

2 +𝑚𝑦
2 +𝑚𝑧

2). Further, 

we have in the transform space: 𝑎𝑘 = 𝑚𝑘𝑥 + 𝑖𝑚𝑘𝑦;  𝑎−𝑘
∗  = 𝑚𝑘𝑥 − 𝑖𝑚𝑘𝑦. 𝑎𝑘, 𝑎−𝑘

∗  can also 

be considered as the magnon creation and destruction operators with wave-vector +k and -

k, respectively. 

Consider the Landau-Lifshitz equation normalized w.r.t the saturation 

magnetization, 𝑀𝑆: 

 
𝑑𝒎

𝑑𝑡
= −𝛾(𝒎 ×𝐻𝑒𝑓𝑓) (3.1) 

where, 𝐻𝑒𝑓𝑓 represents the effective field experienced by m; separating into Cartesian 

components, we get: 

𝑑𝑚𝑥
𝑑𝑡

= −𝛾(𝑚𝑦𝐻𝑍 −𝑚𝑧𝐻𝑦); 
𝑑𝑚𝑦

𝑑𝑡
= −𝛾(𝑚𝑧𝐻𝑋 −𝑚𝑥𝐻𝑧)  

where, 𝐻𝑍, 𝐻𝑌, 𝐻𝑋 represent the effective field components along the Cartesian directions. 

 
𝑑𝑚𝑥

𝑑𝑡
+ 𝑖

𝑑𝑚𝑦

𝑑𝑡
= �̇�+ = 𝑖𝛾𝑚+(𝐻𝑧) − 𝑖𝛾𝑚𝑧(𝐻𝑥 + 𝑖𝐻𝑦) (3.2) 

Therefore, 

�̇�+ =  𝑖𝑚+[𝜔𝑧 +𝜔𝑑𝑧 +𝜔𝑒𝑥𝑙
2∇2𝑚𝑧] − 𝑖𝑚𝑧[𝜔𝑠 cos(𝜔𝑝𝑡) + 𝜔𝑒𝑥𝑙

2∇2𝑚+ +𝜔𝑑𝑥 + 𝑖𝜔𝑑𝑦] (3.3) 

Taking the spatial Fourier transform, we obtain: 
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 −𝑖�̇�𝑘 = 𝐴𝑘𝑎𝑘 + 𝐵𝑘𝑎−𝑘
∗ + 𝜔𝑠 cos(𝜔𝑝𝑡) 𝑎𝑘  (3.4) 

where, 𝐴𝑘 = 𝜔𝐻 + 𝜔𝑒𝑥𝑙
2𝑘2 + 𝜔𝑀(𝑇𝑘

𝑥𝑥 + 𝑇𝑘
𝑦𝑦
); 𝐵𝑘 = 𝜔𝑀(𝑇𝑘

𝑥𝑥 − 𝑇𝑘
𝑦𝑦
)   

with, 𝑇𝑘
𝑥𝑥 ≡ −4𝜋[1 − 𝐺(𝑘𝐷)]; 𝑇𝑘

𝑖𝑗
≡ −4𝜋𝐺(𝑘𝐷)

𝑘𝑖𝑘𝑗

𝑘2
; 𝐺(𝑥) = 1 −

1−𝑒−𝑥

𝑥
                                

The demagnetization factors 𝑇𝑘’s are explained in [115]. The physical significance 

of the above Eq. (3.3) is that it leads to the “first-order” spin-wave instability effect, which 

is an important physical phenomenon that will be discussed at length in this chapter and 

used widely in this thesis.               

 

A. HP Transformation and dispersion relations   

One of the classical mathematical tools developed in the study of magnetics is the 

Holstein and Primakoff (HP) transformation [122]. This transformation allows us to 

diagonalize the matrix equations corresponding to Eq. (3.4): 

 
𝑑

𝑑𝑡
(
𝑎𝑘
𝑎−𝑘
∗ ) = 𝑖 [

𝐴𝑘 𝐵𝑘
−𝐵𝑘

∗ −𝐴𝑘
] (
𝑎𝑘
𝑎−𝑘
∗ ) (3.5) 

Eq. (3.5) represents two coupled oscillators 𝑎𝑘 and 𝑎−𝑘
∗ : the normal modes and the 

corresponding frequencies can be obtained using a suitable linear transformation.  

Let us first define (
𝑏𝑘
𝑏−𝑘
∗ ) to be the basis which diagonalizes Eq. (3.5) such that: 

 (
𝑏𝑘
𝑏−𝑘
∗ ) ≡ [

𝜆𝑘 𝜇𝑘
𝜇𝑘
∗ 𝜆𝑘

] (
𝑎𝑘
𝑎−𝑘
∗ ) (3.6) 

The above is called the Holstein-Primakoff transformation. The idea is to get a 

linear transformation that will decouple the coupled (𝑎𝑘, 𝑎−𝑘
∗ ) modes. 𝜆𝑘, 𝜇𝑘 are the HP 

parameters. 
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As was pointed out during the discussion of dipolar fields in Chapter 1 (Section 

2.3(C)), the uniform mode is an eigenmode only to the first order in the presence of dipolar 

fields. In general, we must consider the nonuniform modes. Physically, the HP 

transformations allow the conversion from a circular basis to an elliptical basis, which 

diagonalizes the above matrix equations. Bogoliubov transformations, encountered in the 

study of superconductors, mathematically perform the same function [124]. The goal of 

this section is to study the various parameters involved that are important for spin-wave 

investigations but have not been detailed in the original work [122].  

The equation (3.6) implies: 

 (
𝑎𝑘
𝑎−𝑘
∗ ) =

1

𝜆𝑘
2−|𝜇𝑘|

2
[
𝜆𝑘 −𝜇𝑘
−𝜇𝑘

∗ 𝜆𝑘
] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.7) 

Using (3.7) in (3.5) gives: 

1

𝜆𝑘
2−|𝜇𝑘|

2
[
𝜆𝑘 −𝜇𝑘
−𝜇𝑘

∗ 𝜆𝑘
]
𝑑

𝑑𝑡
(
𝑏𝑘
𝑏−𝑘
∗ ) = 𝑖 [

𝐴𝑘 𝐵𝑘
−𝐵𝑘

∗ −𝐴𝑘
] [
𝜆𝑘 −𝜇𝑘
−𝜇𝑘

∗ 𝜆𝑘
] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.8) 

 ⇒
𝑑

𝑑𝑡
(
𝑏𝑘
𝑏−𝑘
∗ ) = [

𝜆𝑘 𝜇𝑘
𝜇𝑘
∗ 𝜆𝑘

] [
𝐴𝑘 𝐵𝑘
−𝐵𝑘

∗ −𝐴𝑘
] [
𝜆𝑘 −𝜇𝑘
−𝜇𝑘

∗ 𝜆𝑘
] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.9) 

=[
𝜆𝑘
2𝐴𝑘 − 𝜇𝑘𝜆𝑘𝐵𝑘−𝜇𝑘

∗𝜆𝑘𝐵𝑘 + |𝜇𝑘|
2𝐴𝑘 −𝜇𝑘𝜆𝑘𝐴𝑘 + 𝜇𝑘

2𝐵𝑘+𝜆𝑘
2𝐵𝑘 − 𝜇𝑘𝜆𝑘𝐴𝑘

2𝜇𝑘
∗𝜆𝑘𝐴𝑘 − 𝜆𝑘

2𝐵𝑘 − 𝜇𝑘
∗2𝐵𝑘 −|𝜇𝑘|

2𝐴𝑘 + 𝜇𝑘𝜆𝑘𝐵𝑘 + 𝜇𝑘
∗𝜆𝑘𝐵𝑘−𝜆𝑘

2𝐴𝑘
] (
𝑏𝑘
𝑏−𝑘
∗ ) 

 (3.10) 

By definition (
𝑏𝑘
𝑏−𝑘
∗ ) diagonalizes Eq. (3.5). One can, therefore, find the eigenvalue 𝜔𝑘 as: 

 |
𝐴𝑘 − 𝜔𝑘 𝐵𝑘
−𝐵𝑘

∗ −𝐴𝑘 − 𝜔𝑘
| = 0  (3.11) 

 ⇒ 𝜔𝑘 = √𝐴𝑘
2 − |𝐵𝑘|2  (3.12) 
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Physically, 𝜔𝑘 is the frequency of the spin-wave with the wave-vector, k. (Since the 

corresponding energy is ℏ𝜔𝑘, 𝜔𝑘 can also be considered as the normalized energy. We 

keep only the positive solution in Eq. (3.12)) In fact, Eq. (3.12) represents the dispersion 

relation of magnons (discussed in Chapter 2, Section 2.4 (A)) and represents a key result 

from the spin-wave theory. 

Also,  
𝑑

𝑑𝑡
(
𝑏𝑘
𝑏−𝑘
∗ ) = 𝑖 [

𝜔𝑘 0
0 𝜔𝑘

] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.13) 

Eq. (3.13) has simple uncoupled solutions of the form: 

 𝑏𝑘(𝑡) = 𝑏𝑘0𝑒
𝑖𝜔𝑘𝑡  (and 𝑏−𝑘

∗ (𝑡) = 𝑏−𝑘0
∗ 𝑒−𝑖𝜔𝑘𝑡) (3.14) 

Using Eq. (3.10) and Eq. (3.13), gives: 

−𝜇𝑘𝜆𝑘𝐴𝑘 + 𝜇𝑘
2𝐵𝑘+𝜆𝑘

2𝐵𝑘 − 𝜇𝑘𝜆𝑘𝐴𝑘 = 0  

2𝜇𝑘
∗𝜆𝑘𝐴𝑘 − 𝜆𝑘

2𝐵𝑘
∗ − 𝜇𝑘

∗2𝐵𝑘 = 0 

 ⇒ 𝜇𝑘
2𝐵𝑘

∗+𝜆𝑘
2𝐵𝑘 = 2𝜇𝑘𝜆𝑘𝐴𝑘    (3.15(a)) 

 𝜆𝑘
2𝐵𝑘

∗ + 𝜇𝑘
∗2𝐵𝑘 = 2𝜇𝑘

∗𝜆𝑘𝐴𝑘 (3.15(b)) 

Solving for 𝜇𝑘
∗  in Eq. (3.15) gives: 

 𝜇𝑘
∗ = 𝜆𝑘 (

𝐴𝑘±√𝐴𝑘
2−|𝐵𝑘|

2

𝐵𝑘
)  (3.16) 

In addition, the H.P transformation also requires: 

  𝜆𝑘
2 − |𝜇𝑘|

2 = 1  (3.17) 

Using Eq. (3.16) and Eq. (3.17): 

 (|
𝜆𝑘

𝜇𝑘
∗ |) =

|𝐵𝑘|

|𝐴𝑘−𝜔𝑘|
⇒

|𝜆𝑘
2|

|𝜇𝑘
∗2|
− 1 =

|𝐵𝑘|
2−𝐴𝑘

2−𝜔𝑘
2+2𝐴𝑘𝜔𝑘

|𝐴𝑘−𝜔𝑘|
2  ⇒

1

|𝜇𝑘
∗2|
=

2𝜔𝑘

𝐴𝑘−𝜔𝑘
  (3.18) 
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which gives, 

 𝜇𝑘 = √
𝐴𝑘−𝜔𝑘

2𝜔𝑘

𝐵𝑘

|𝐵𝑘|
 (= √

𝐴𝑘−𝜔𝑘

2𝜔𝑘
 for 𝐵𝑘 real) 

 ⇒ 𝜆𝑘 = √
𝐴𝑘+𝜔𝑘

2𝜔𝑘
  

Therefore, for real 𝐵𝑘: 

 𝜇𝑘 = √
𝐴𝑘−𝜔𝑘

2𝜔𝑘
 & 𝜆𝑘 = √

𝐴𝑘+𝜔𝑘

2𝜔𝑘
  (3.19) 

However, the above form is not unique; one can, e.g., by choosing 
𝐴𝑘

𝜔𝑘
= cos (𝜓𝑘) and 

𝐵𝑘

𝜔𝑘
= sin (𝜓𝑘) satisfy Eq. (3.17), giving: 

 𝜇𝑘 = sinh (
𝜓𝑘

2
)& 𝜆𝑘 = cosh (

𝜓𝑘

2
) (3.20(a)) 

Using Eq. (3.15) and Eq. (3.19): 

 |𝜆𝑘𝜇𝑘
∗ | =

𝜆𝑘
2𝐵𝑘
∗+𝜇𝑘

∗2𝐵𝑘

2𝐴𝑘
=

𝐴𝑘+𝜔𝑘
2𝜔𝑘

𝐵𝑘+
𝐴𝑘−𝜔𝑘
2𝜔𝑘

𝐵𝑘

2𝐴𝑘
=

𝐵𝑘

2𝜔𝑘
 (3.20(b)) 

Equation (3.20) gives an important relationship between the HP parameters and physical 

parameters of the magnetic system. 

 

B. Equation of motion Parallel pump configuration  

Next, let us revisit the equation of motion with the aim of framing it in the language of spin 

waves, specifically suited for parallel pump configuration. This is different from Suhl’s 

analysis which considered the perpendicular pumping case. Spin-wave instability 

processes, which are central to the research described in the thesis, would also be discussed 

mathematically.  
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Solving for 𝑎𝑘 and 𝑎−𝑘
∗  in terms of 𝑏𝑘 and 𝑏−𝑘

∗ , we get: 𝜇𝑘
∗  

 𝑎−𝑘
∗ = 𝜆𝑘𝑏−𝑘

∗ − 𝜇𝑘
∗𝑏𝑘   

  𝑎𝑘 = 𝜆𝑘𝑏𝑘 − 𝜇𝑘𝑏−𝑘
∗   (3.21) 

Using Eq. (3.21) in Eq. (3.4) gives 

𝜆𝑘𝑏�̇� − 𝜇𝑘�̇�−𝑘
∗ = 𝑖[𝐴𝑘𝜆𝑘𝑏𝑘 − 𝐴𝑘𝜇𝑘𝑏−𝑘

∗ + 𝐵𝑘𝜆𝑘𝑏−𝑘
∗ − 𝐵𝑘𝜇𝑘

∗𝑏𝑘 + 𝛾ℎ𝑟𝑓𝜆𝑘𝑏𝑘 cos(𝜔𝑝t) −

𝛾ℎ𝑟𝑓𝜇𝑘𝑏−𝑘
∗ cos(𝜔𝑝t)] (3.22(a)) 

𝜆𝑘�̇�−𝑘
∗ − 𝜇𝑘

∗𝑏�̇� = −𝑖[𝐴𝑘𝜆𝑘𝑏−𝑘
∗ − 𝐴𝑘𝜇𝑘

∗𝑏𝑘 + 𝐵𝑘
∗𝜆𝑘𝑏𝑘 − 𝐵𝑘

∗𝜇𝑘𝑏−𝑘
∗ + ℎ𝑟𝑓𝜆𝑘𝑏−𝑘

∗ cos(𝜔𝑝t) −

𝛾ℎ𝑟𝑓𝜇𝑘
∗𝑏𝑘 cos(𝜔𝑝t)]       (3.22(b)) 

Or in other words,  

[
𝜆𝑘 −𝜇𝑘
−𝜇𝑘

∗ 𝜆𝑘
] (
�̇�𝑘
�̇�−𝑘
∗
) =

𝑖 [
𝐴𝑘𝜆𝑘 − 𝐵𝑘𝜇𝑘

∗ + 𝛾ℎ𝑟𝑓𝜆𝑘cos(𝜔𝑝t) −𝐴𝑘𝜇𝑘 + 𝐵𝑘𝜆𝑘 − 𝛾ℎ𝑟𝑓𝜇𝑘 cos(𝜔𝑝t)

𝐴𝑘𝜇𝑘
∗ − 𝐵𝑘𝜆𝑘 + 𝛾ℎ𝑟𝑓𝜇𝑘

∗ cos(𝜔𝑝t) −𝐴𝑘𝜆𝑘 + 𝐵𝑘𝜇𝑘
∗ − 𝛾ℎ𝑟𝑓𝜆𝑘cos(𝜔𝑝t)

] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.23) 

(
�̇�𝑘
�̇�−𝑘
∗
)

= 𝑖 [
𝐴𝑘𝜆𝑘

2 − 𝐵𝑘𝜇𝑘𝜆𝑘 − 𝐵𝑘𝜇𝑘
∗𝜆𝑘 + 𝐴𝑘|𝜇𝑘|

2 −𝐴𝑘𝜇𝑘𝜆𝑘 + 𝐵𝑘𝜇𝑘
2 + 𝐵𝑘𝜆𝑘

2 − 𝐴𝑘𝜆𝑘𝜇𝑘
𝐴𝑘𝜇𝑘

∗𝜆𝑘 − 𝐵𝑘𝜆𝑘
2 − 𝐵𝑘𝜇𝑘

2 + 𝐴𝑘𝜇𝑘
∗𝜆𝑘 −𝐴𝑘|𝜇𝑘|

2 + 𝐵𝑘𝜇𝑘𝜆𝑘 + 𝐵𝑘𝜇𝑘
∗𝜆𝑘 − 𝐴𝑘𝜆𝑘

2] 

+[
(|𝜇𝑘|

2 + 𝜆𝑘
2)𝛾ℎ𝑟𝑓cos(𝜔𝑝t) −2𝜇𝑘𝜆𝑘𝛾ℎ𝑟𝑓cos(𝜔𝑝t)

2𝜇𝑘
∗𝜆𝑘𝛾ℎ𝑟𝑓cos(𝜔𝑝t) (|𝜇𝑘|

2 + 𝜆𝑘
2)𝛾ℎ𝑟𝑓cos(𝜔𝑝t)

] (
𝑏𝑘
𝑏−𝑘
∗ ) (3.24) 

Along with Eq. (3.10), the above equation implies: 

 �̇�𝑘 = 𝑖𝜔𝑘𝑏𝑘 − 𝑖2𝜇𝑘𝜆𝑘𝛾ℎ𝑟𝑓cos(𝜔𝑝t)𝑏−𝑘
∗    

 �̇�𝑘 = 𝑖[𝜔𝑘𝑏𝑘 − 𝜌𝑘cos(𝜔𝑝t)]𝑏−𝑘
∗   (3.25) 
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Where using Eq. (3.20), we have: 𝜌𝑘 ≡ 2𝜇𝑘𝜆𝑘𝛾ℎ𝑟𝑓 =
𝐵𝑘

𝜔𝑘
𝛾ℎ𝑟𝑓  (3.26) 

Eq. (3.25) is the equation of motion for parallel pump excitation of magnons 

(ignoring 4- (and higher) particle processes). Apart from its significance in helping us 

understand the physics of magnon dynamics, it is also of immense significance from the 

perspective of applications, as will be seen in the subsequent discussions.  

Spin-wave instabilities can show up due to terms that are first order in 𝑏𝑘’s and 

contain ℎ𝑟𝑓, e.g., the second term of Eq. (3.25). Note that in the absence of the second term, 

the equation is that of a simple harmonic oscillator. The additional term can hence be seen 

as an external force applied to the oscillator. It is this term that can lead to the parametric 

coupling and growth of spin waves. However, there remains to be considered one final part 

of the puzzle- the dissipation.  

To study the first-order instability effects, it is necessary to introduce dissipation 

into the magnetic system. This will be done phenomenologically, as was done by Suhl 

[125], [126], Schlomann [127], and others [41, 121, 128]. From a material perspective, real 

magnetic systems like ferrimagnets (or ferromagnets) are complex materials with a 

plethora of physics at play, involving multiple dissipation channels. Phenomenologically, 

the dissipation of the spin-wave with wave-vector, k, is represented by an effective loss 

term, 𝜂𝑘 such that 𝐷𝑘 = 𝜔𝑘 + 𝑖𝜂𝑘. Eq. (3.25) now becomes: 

 �̇�𝑘 = 𝑖𝐷𝑘𝑏𝑘 − 𝑖2𝜇𝑘𝜆𝑘ℎ𝑟𝑓cos(𝜔𝑝t)𝑏−𝑘
∗  (3.27) 

To identify the frequency of importance, without loss of generality, we can assume 

  𝑏𝑘 to vary as:  𝑏𝑘~exp(𝑖 𝜛𝑘𝑡 − 𝜉𝑘𝑡). By definition of  𝐷𝑘 , when ℎ𝑟𝑓 = 0,   𝑏𝑘~ exp 
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(𝑖 𝜔𝑘𝑡 − 𝜂𝑘𝑡). The forcing term on the right-hand side (RHS) of Eq. (3.27) can initiate 

resonance if the net frequency on the right (−𝜛𝑘 ± 𝜔𝑝) equals that on the left, 𝜛𝑘, implying 

(𝜔𝑝 being the pump frequency): 

 |𝜛𝑘|=𝜔𝑝/2  (3.28) 

This result, although relatively simple, is due to one of the most important scattering 

processes: the 3-particle scattering process. Herein, the onset of instability is brought about 

by magnons with energy: ℏ𝜔𝑝/2, i.e., half the energy of the RF (or microwave) photon. 

Such processes will be explained in Section 3.3. 

 

3.2 Microwave Threshold for Instability 

Now that we have determined the relationship between the frequencies of the pump 

and the unstable mode, let us look into the conditions that would lead to the growth of the 

unstable mode. Using  𝑏𝑘~exp(𝑖 𝜛𝑘𝑡 − 𝜉𝑘𝑡) in Eq. (3.27) gives: 

 [(𝜔𝑘 −𝜛𝑘) − 𝑖(𝜉𝑘 − 𝜂𝑘)]𝑏𝑘 = 𝜌𝑘𝑏−𝑘
∗ cos(𝜔𝑝t) (3.29) 

Now, to find the threshold field set 𝜛𝑘 =
𝜔𝑝

2
. Keeping only the resonant term, gives: 

 

 𝜉𝑘 = −𝜂𝑘 + [
1

4
|𝜌𝑘|

2 − (ωk − 𝜔𝑝/2)
2]
1

2  (3.30) 

 

At the threshold of instability 𝜉𝑘 = 0 (physically this implies no dissipation of the 

corresponding mode allowing it to grow exponentially), giving |𝜌𝑘|
2 = 4[𝜂𝑘

2 + (ωk −

𝜔𝑝/2)
2]. Consequently, the relation between threshold microwave field for an arbitrary 

spin wave frequency, ωk,  and other material parameters is: 
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 ℎ𝑡ℎ𝑔 =
2𝜔𝑘[𝜂𝑘

2+(ωk−𝜔𝑝/2)
2]
1
2

𝛾𝜔𝑀(𝑇𝑘
𝑥𝑥−𝑇𝑘

𝑦𝑦
)   

 (3.31)       

The threshold field required to initiate the most unstable mode can be obtained by 

minimizing the above expression with respect to wave-vector, k for 𝜔𝑘 =
𝜔𝑝

2
: 

 ℎ𝑡ℎ =
𝜔𝑝𝜂𝑘

𝛾𝜔𝑀(𝑇𝑘
𝑥𝑥−𝑇

𝑘
𝑦𝑦
)
𝑚𝑎𝑥.

   
  (3.32)              

where k in the denominator is chosen to minimize ℎ𝑡ℎ. 

The threshold field at a given microwave frequency represents the minimum field 

required to overcome the magnon dissipation and trigger the instability processes. In a large 

number of cases, the instability process of interest is the 3-particle scattering. However, in 

cases where 3-particle scattering processes are not allowed in the system, e.g., due to the 

unavailability of the relevant half energy states in the dispersion, the dominant scattering 

processes are the 4-particle scattering.   

 

3.3 Nonlinear Processes 

A. Three Particle Scattering  

Three-particle scattering (or three-wave scattering) is one of the most important 

parametric nonlinear processes to occur in magnon-microwave interactions [54, 110]. This 

interaction involves the creation of two magnons at the expense of a microwave photon 

(characterized by energy ℏ𝜔𝑝). 

   In such processes, a photon is absorbed to produce two quanta of magnetic 

excitation (magnons) such that: 
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 𝜔𝑝(𝑘𝑝) = 𝜔𝑚1(𝑘𝑚1) + 𝜔𝑚2(𝑘𝑚2) with 𝜔𝑚1 = 𝜔𝑚2 =
𝜔𝑝

2
  (3.33) 

 𝑘𝑝 = 𝑘𝑚1 + 𝑘𝑚2 = 0 ⟹ 𝑘𝑚1 = −𝑘𝑚2   (3.34) 

where the subscripts p, m1, m2 stand for the photon and the two magnons, respectively. 

Thus, it was no coincidence that in Eq. (3.28), the energy of the magnons turned out to be 

𝜔𝑝 2⁄ . There are two conditions that must be met in order to initiate the 3-particle 

scattering: 

(i) As can be inferred from Eq. (3.31), half energy states (w.r.t the microwave 

pump frequency) must be present in the magnon dispersion relation so that the 

magnons can scatter to this mode upon excitation.  Mathematically, this requires 

the relevant 𝜔𝑘 [Eq. (3.12)] to be real, if not, the three-wave processes are 

forbidden. 

(ii) As mentioned earlier (Section 3.2), the strength (magnetic field intensity) of the 

microwave signal must exceed a certain threshold intensity (ℎ𝑡ℎ) for such 

processes to occur. 

 

A typical 3-magnon process is illustrated in Fig. 3.1(a), where a 𝜔𝑝 microwave 

photon (with ℎ > ℎ𝑡ℎ0) can be seen to excite two 𝜔𝑝/2 magnons.  
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B. Four-particle scattering 

Three magnon processes, however, are not allowed to occur when the magnetic 

system does not possess states corresponding to half the energy of the pump microwave. 

The simplest scattering processes in such cases are the 4- particle scattering processes [110, 

121, 130]. Herein, as shown in (Fig. 3.1 (b)), two photons with energy 𝜔𝑝, are absorbed by 

the magnetic material to produce two magnons with the same energy (𝜔𝑝) while conserving 

the net momentum during the interaction. The conservation conditions in such cases are: 

 2𝜔𝑝(𝑘𝑝) = 𝜔𝑚1(𝑘𝑚1) + 𝜔𝑚2(𝑘𝑚2)  (3.35) 

 2𝑘𝑝 = 𝑘𝑚1 + 𝑘𝑚2 = 0 ⟹ 𝑘𝑚1 = −𝑘𝑚2  (3.36) 

Due to the involvement of four particles, this process is called four-particle 

scattering. Again, we see that the dispersion relation plays a decisive role in determining 

and governing the decay process. 

In general, processes higher than four-particle processes are possible, e.g., they 

Fig. 3.1. Schematic showing the 3- and 4-magnon processes. (a) Three particle scattering process involves 

3 particles: a photon and two magnons. Absorption of a photon at 𝜔𝑝 results in the creation of two 

magnons with half the energy, 𝜔𝑝/2. (b) Four particle scattering process involves the absorption of two 

microwave photons at 𝜔𝑝 to create two magnons with the same energy 𝜔𝑝. (Source: [129]) 
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occur in physical systems like plasma. However, as a certain scattering process is triggered, 

most of the incident microwave energy goes into this scattering process, thereby preventing 

still higher-order processes from occurring. For example, once three-particle processes are 

initiated, they dominate the scattering mechanism, and only a weak 4-magnon scattering 

may be produced with a further increase in microwave power [107]. In general, as the order 

increases, the threshold field requirement increases. This can be seen as a consequence of 

the increasing difficulty of bringing together the said number of particles for the scattering 

to occur.  

The three and four-particle scattering processes are crucial for the design of the 

various applications mentioned in Chapter 1. In this chapter, we specifically consider the 

case of frequency selective limiters. 

At this point, we have established some key qualitative results by means of which 

we can understand the high-power experiments performed by Bloembergen-Wang, and 

Damon et al. mentioned earlier (Chapter 1 Section 1.6). There are some differences from 

the current discussion, as the experiments were performed in perpendicular pump 

configuration. Apart from the change in the directions in which various quantities change, 

the qualitative description developed above can be applied to understand these 

experiments.  

In the case of ferri(ferro)magnets, for small microwave excitation, the modes are 

independent of each other, but nonlinearities may lead to coupling between the modes. For 

example, in Eq. (3.25) (or even Eq. (3.27)), the second term of the right-hand side indicates 

coupling between 𝑏−𝑘
∗  and ℎ𝑟𝑓. It is this coupling that led to the three-particle scattering. 
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In the case of perpendicular pumping instead of ℎ𝑟𝑓 , it is the directly excited uniform 

mode, 𝑏0, that is coupled with the 𝑘 ≠ 0 magnons, resulting in nonlinear effects like three-

magnon scattering (all the three particles involved are magnons). The microwave photon 

excites the uniform mode, which then leads to the nonuniform modes. (In perpendicular 

pumping, therefore, all the 3 particles are magnons, i.e., a k=0 magnon with energy, 𝜔𝑝, 

gives rise to 2 magnons of energy 𝜔𝑝/2 and wave-vectors +k and -k.) 

In the case of paramagnets, the 𝑚𝑧 and 𝜇′′were found to decrease together. The 

energy from the microwave was absorbed in the magnetic material, and this reduced the 

saturation, bringing down 𝑚𝑧. This is because the spins, or more appropriately, the 

magnetic moments of a paramagnetic material, are not tightly bound as in the case of 

ferri(ferro)magnets. In the case of the ferrimagnets, however, while the energy is absorbed, 

it largely goes to create nonuniform modes (i.e., modes with 𝑘 ≠ 0 are created) instead of 

reducing the magnitude of 𝑚𝑧. This explains why the permeability curve shows a decrease 

while the 𝑚𝑧 curve does not, in Fig. 1.7(b). The saturation of the main peak observed in 

the experiments was attributed to 4-magnon scattering, while the subsidiary peaks at lower 

bias fields were attributed to 3-magnon scattering at these fields. 

 

3.4 Frequency Selective Limiter Design Considerations 

The nonlinear magnetic response of ferrites (e.g., YIG) makes them a good candidate for 

frequency-sensitive microwave (RF) devices like FSLs, wherein the magnetic response is 

used to effect changes in the strength of the incoming RF signal [17], [19]. Furthermore, 
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in RF applications, the low intrinsic magnetic damping of ferrites like YIG improves the 

efficiency with which the microwave signals interact with the material [131], making 

magnetics useful even for low RF power scenarios. State-of-the-art devices often employ 

doped YIG to further tune device properties like bandwidth and threshold for FSL based 

applications [1].  

 In this section, we look at some of the design considerations from the perspective 

of spin-waves using the micromagnetics solver developed in Chapter 2.    

 

A. Simulation Details 

A magnetic bias field (𝐻𝑑𝑐) is applied in the plane of the film along the z-direction. A 

linearly polarized RF signal with angular frequency 𝜔𝑝 and amplitude ℎ0 Oe [ℎ𝑟𝑓 =

ℎ0cos (𝜔𝑝𝑡)] is applied parallel to the bias field. Fig. 2.10 shows the designation of 

directions used in the parallel pump configuration as well as a typical sample used in this 

work. Constants used are: intrinsic magnetic damping constant, 𝛼 =0.0028; saturation 

magnetization, Ms = 1.3 × 105  A/m (=130 emu/cm3 in electromagnetic units); the 

gyromagnetic ratio of electron, 𝛾 = 1.76 × 1011 rad s−1T−1 (= 1.76 × 107 s−1Oe−1).  

The system is allowed to relax for 300 ns under the application of thermal field ℎ𝑡 [132] 

(temperature T=300 K) and applied bias field 𝐻𝑑𝑐, before the linearly-polarized RF field is 

turned on. The demagnetization fields are computed using Newell’s algorithm, as 

explained in Chapter 2. The dominant spin-wave wavelengths observed are ~0.1 μm to 

10 μm in length. This helps justify the rather large cell sizes used in our simulations 

compared to the exchange length (~20 nm) [133]. The ferrimagnet YIG is modelled as a 



74 
 

ferromagnet [110]. We work under the magnetostatic approximation: 𝛻 × 𝑯 = 0, where H 

is the internal magnetic field of the material. 

C. Power Dependence 

I begin my study of the role of spin waves in FSLs by determining the threshold 

field at different microwave frequencies. I also look at magnetic susceptibility (imaginary 

part, χ”, a measure of the absorption of the RF signal by the material) of RF signals at 

various frequencies. Fig. 3.2 and Fig. 3.3 show the corresponding results.  

The curves of Fig. 3.2 can be seen to exhibit the transfer characteristics needed for 

FSLs as discussed in Fig 1.2 (Chapter 1). Let us specifically look at the 5 GHz curve in 

Fig. 3.2. At low microwave power, the susceptibility (χ”) and hence the absorption of the 

microwave by the magnetic material is low. This allows almost all of the input microwave 

power to reach the output of the FSL. The curve displays a knee at about ~1.0 × 10−2 Oe, 

which represents the threshold field for the 5 GHz signal. Beyond this field strength, there 

occurs an abrupt increase in absorption. This is the much sought-after nonlinear behavior 

required for the FSL functionality, responsible for the dips or notches in the transfer 

function. Similar nonlinear behavior is seen at other frequencies as well.  Hence, we have 

demonstrated that we can indeed capture and study the crucial nonlinear properties that are 

essential for FSLs, using micromagnetic simulations. At the time of the study [112], this 

was the first micromagnetic study on FSLs. 

The Kittel equation [41, 134, 135] gives the resonance frequency of the system, 

𝑓0,  to be: 𝑓0 = (𝛾/2𝜋)√𝐻𝑑𝑐(𝐻𝑑𝑐 + 4𝜋𝑀𝑠). Neglecting the crystalline anisotropy of YIG 
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[110], for an applied field of 100 Oe,  𝑓0 = 1.2 GHz for the thin film. It was discussed in 

Chapter 1 (Section 1.5) that in the case of parallel pumping, the component of 

magnetization parallel to the bias field (𝑚𝑧) oscillates at a frequency twice that of the in- 

plane components (𝑚𝑥 and 𝑚𝑦). Consequently, the system is most sensitive when 

a pump frequency (𝑓𝑝) of 2.4 GHz is applied, which gives an in-plane precession frequency  

 

of  
𝑓𝑝

2
= 𝑓0 = 1.2 GHz.  

The power dependence, as shown in Fig. 3.2, has some interesting characteristics 

as the system moves from the linear to nonlinear regime. Particularly notable are:  

Fig.  3.2. Susceptibility (𝜒”) vs. RF magnetic field intensity plots for various frequencies, all calculated 

at 100 Oe. (Source: [112]) 
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(i) Dependence of threshold for nonlinearity (caused by magnon scattering) on the RF 

frequency. 

(ii) Asymmetry in response w.r.t sign of frequency detuning relative to 2𝑓0  (2.4 GHz).  

  It can be observed that the system is most sensitive at 2.4 GHz as shown by ℎ𝑡ℎ 

(given by the corresponding knee values in the curves of Fig. 3.2), and that the ℎ𝑡ℎ increases 

as we move away from 𝑓𝑝 = 2𝑓0(= 2.4 GHz at 100 Oe). The frequencies further away from 

2𝑓0 need a higher power before the nonlinear processes could be triggered, e.g., an RF field 

of  ~5.0 × 10−3 Oe is sufficient to give rise to nonlinear response at 3 GHz, while 

relatively higher power is needed for 5 GHz. It is only around ~1.0 × 10−2 Oe that the 

latter signal invokes a nonlinear response in the material. These observations can be 

understood in the light of Eq. (3.31) developed earlier. In other words, mathematically, the 

observed behavior is a consequence of the threshold being a function of the dispersion 

relation, illustrating the importance of magnon dispersion for device design.  

There exists an asymmetry displayed by the 2 GHz curve w.r.t the other curves in 

Fig. 3.2. As we move away from the central frequency (2.4 GHz) the threshold is found to 

increase (as indicated by Eq. (3.31)). The curve of 3 GHz and 2 GHz were expected to have 

relatively similar ℎ𝑡ℎ  as they are nearly equidistant in frequency from 2.4 GHz. However, 

this is not found to be the case, and 2 GHz shows a much higher ℎ𝑡ℎ.The asymmetry is due 

to the dominant four-particle processes [136] at 2 GHz, unlike the 3-particle processes 

generating most of the rest of Fig. 3.2. As mentioned earlier in Section 3.2, three-wave 

processes are not always allowed. It will be shown later that the lowest frequency on the 

dispersion relation is a little less than 1.0 GHz for a 10 μm thick sample at 100 Oe, and 
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hence signals with frequency ≤ 2.0 GHz are disallowed from decaying via three-particle 

processes. Therefore, when the pump frequency is 2.0 GHz, the simplest scattering 

mechanism is 4-wave and not the 3-wave process. The 4-wave processes, as explained 

earlier, have a higher threshold, and this explains the observed asymmetry in Fig.3.2.   

B. Frequency Response  

Often vital for engineering applications is the frequency response of the device. In 

order to study this, we sweep the RF pump power applied to the sample under a bias field 

of 100 Oe at various pump frequencies and obtain ℎ𝑡ℎ.  

From our simulation (results in Fig. 3.3), we see that the susceptibility shows a peak 

around 2.4 GHz, thereafter, unlike the case of perpendicular pumping, the response remains 

finite up to about 4.2 GHz giving a rather large bandwidth of ~ 2.0 GHz. This is in 

qualitative agreement with the results of Adam et al. [137], where similar frequency 

Fig. 3.3. The bandwidth of FSL. Imaginary part of susceptibility (χ”) - a measure of absorption vs. RF 

(microwave) frequency for a bias field of 100 Oe at RF power of -15 dBm (ℎ0 = 0.0028 Oe). (Source: 

[112]) 
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characteristics have been observed for strip-line FSL devices with 100 μm thick YIG 

sample. The higher attenuation seen in [137] is potentially due to the larger volume of YIG 

seen by the RF field. It would be of importance at this point to realize that the large 

bandwidth, as can be seen from the data above, is a consequence of magnon scattering. 

 

C. Bias Field Dependence and Butterfly Curve 

An important aspect of frequency-sensitive nonlinear devices is what is now known 

as the “butterfly curve” [22], [26] as shown in Fig. 3.4. It is a plot of the threshold field at 

various bias fields for a fixed microwave frequency. The data is shown for a frequency of 

4 GHz as a function of the bias field for the same geometry as before. 

Note that there is a kink in the diagram at about 268 Oe, beyond which the threshold 

field increases and below which it remains fairly constant. The position of the kink 

corresponds to that bias-field which gives 
𝑓𝑝

2
 (= 2 GHz) as the natural frequency, i.e., 268 

Fig.  3.4.  Butterfly curve for an applied pump frequency of 4.0 GHz, showing the two scattering regimes. 

Source: [112] 
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Oe, as evaluated using Kittel resonance equation. I would like to point out that the butterfly 

curve can be understood to be comprised of two different regimes, separated by a threshold 

bias-field, each dominated by a different scattering mechanism. For 𝐻𝑏𝑖𝑎𝑠 < 306 ±2 Oe, 

simulations show that the dispersion relation is such that it allows three magnon processes 

(lowest frequency mode allowed is ~ 2 GHz) and consequently, the dominant frequency 

mode is found to be 2 GHz. However, beyond such a field, the lowest point in the dispersion 

relation is greater than 2 GHz preventing any scattering into 2 GHz modes, i.e., three-

magnon processes, in this case, are disallowed by the dispersion relation. The nonlinearity 

that occurs now can be attributed to four-particle scattering, wherein the dominant mode 

has the same frequency as the pump frequency (= 4 GHz in this case).  

 

3.5 Conclusions 

A mathematical framework for understanding magnon dynamics under the parallel 

pumping configuration for thin films has been developed. The method used in the 

analytical development uses ideas from second-quantization wherein a wave (in this case 

spin-wave) is treated as a particle (in this case magnons). This technique, alongside the H.P 

formalism, is a powerful and elegant mathematical tool for understanding magnon-based 

nonlinear processes, especially when the degree of nonlinearity is low. In this study, I 

consider low nonlinearity to be the case when the sample remains largely magnetized in 

the direction of the bias field (𝑀𝑧 ≥ 0.8𝑀𝑠). At higher nonlinearities, chaos [121] ensues 

and the resulting processes are beyond the scope of this work. 
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A mathematical expression for the dispersion relation has also been obtained.  

Dispersion relations play a crucial role in determining the behavior of the magnetic material 

under microwave excitation. The dispersion relation, as will be shown in the subsequent 

chapters, can be tailored using film thickness and bias field.  

The behavior of magnetic insulators, such as YIG, under high microwave power, 

such as that found in FSLs, has long been poorly understood. In particular, quantitatively 

accurate predictions for susceptibility as a function of material properties and microwave 

characteristics have been lacking. In this chapter, the ability to make quantitative 

predictions about the nonlinear response of magnet-based FSLs has been demonstrated. It 

is found that microwave absorption can be due to 3-particle or 4-particle scattering 

depending on the dispersion relation of the system. 
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Chapter 4 Two-dimensional Simulation Paradigm 

In Chapter 2, I described the development of a high-speed simulation tool to 

perform microwave-magnon studies. However, the large number of cells of the magnetic 

system remains a significant computational challenge even after employing GPU-based 

acceleration. It was also demonstrated in Chapter 2 that as the number of cells increases, 

the computational time taken increases exponentially. While the successive new 

generations of GPUs offer significant speed-ups, much more can be done by employing 

physics-based optimization to reduce the computational load. In this chapter, I investigate 

such an optimization that involves reduced dimensional simulations for real magnetic 

systems, specifically for the parallel pump configuration. 

A two-dimensional simulation paradigm is proposed for reducing the 

computational resource requirements while capturing the qualitative and quantitative 

behavior of the significant microwave-ferromagnet interactions. Under microwave 

excitation, the system behavior is largely controlled by a few dominant modes. The idea is 

to be able to capture the dominant spin-wave modes as these are the modes that govern the 

nonlinear behavior of the magnetic system. The resolution of these modes is increased at 

the expense of modes that do not play any major role in the scattering process. 

I will first establish the physics behind the 2D simulation technique and then 

demonstrate the crucial processes of three and four magnon scattering processes using 2D 

simulations. The dependence of the dispersion relation on film thickness will also be 

demonstrated using simulations. Finally, I compare the threshold predicted from 

simulations with experimental values. The simulated predictions for high power 
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(nonlinear) microwave excitation are in close agreement with the experiment even though 

the material parameters are only taken from low power (linear) data [112].  

 

4.1 2D Simulations 

Due to microwave pumping, spin waves are created that dissipate the RF energy in 

the magnetic sample. These spin-wave modes can be characterized by their energy (ℏ𝜔𝑘) 

and propagation vector �⃗⃗� , and in general can be surface or bulk waves [138], [139].  The 

nature of nonlinearity is such that at ℎ𝑡ℎ there exists a mode that dominates over all the 

other modes, governing the scattering process and the resulting nonlinearity. This mode 

grows exponentially until it gets limited by further decay into other modes. To look at the 

mode which goes unstable first, I present Table. 4.1, which shows dominant �⃗⃗�  for different 

pump frequencies at the threshold of nonlinearity. 

 

Pump frequency 

(𝑓𝑝, GHz) 

Threshold power 

(dBm) 
�⃗⃗� (𝑘𝑥 , 𝑘𝑦, 𝑘𝑧)

a Dominant spin-

wave frequency 

(GHz) 

2 -2 (3,6,0) 2.0 

2.2 -24 (1,2,1) 1.1 

2.4 -28 (6,1,0) 1.2 

3 -18 (6,1,0) 1.5 

4 -12 (5,11,0) 2.0 

4.5 -10 (3,10,0) 2.25 

5 -2 (2,15,0) 2.5 

6 13 (4,13,0) 3.0 

Table 4.1: Dominant Mode Details for Input Pump Frequencies. (Source: [112]). aThe amplitudes of 𝑘𝑥, 𝑘𝑦 

and, 𝑘𝑧 need to be scaled with 𝑆𝑖 =
2𝜋

𝐿𝑖
 (𝑖 = 𝑥, 𝑦, 𝑧) for conversion to cm−1. 𝐿𝑖 is the cell-size in the respective 

direction. 𝑆𝑧 = 50.26;  𝑆𝑦 = 628.32; 𝑆𝑥 = 6.8 × 10
3 (for all the units are in cm−1). 
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An important aspect of such waves is that they have small wave-vectors along z-

direction i.e., 𝑘𝑧 is much smaller than 𝑘𝑥 and 𝑘𝑦.  Hence, for most of the dominant modes, 

resulting from the RF pumping, propagation takes place in the plane perpendicular to the  

 

applied DC bias field (𝜃𝑘 = 90°, where 𝜃𝑘 is the angle between the direction of the bias 

field and �⃗⃗� ). This is in accordance with observations made experimentally [41], [140], 

[141]. Based on the data, we can employ a two-dimensional (2D) model to capture the 

essential physics that governs the behavior of such magnetic devices once the system enters 

the nonlinear regime under an applied RF field. The two directions of importance are the 

in-plane perpendicular to 𝐻𝑑𝑐  direction (�̂�) and the thickness direction (�̂�). 

Fig.  4.1.  Comparison of 3D and 2D models. 2D uses 64x64x1 and 128x128x1 grids, while the 3D  model 

use 30x30x20 grids. Imaginary part of susceptibility (𝜒”)  is plotted against the microwave magnetic field 

intensity. (Source: [112]) 
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In Fig. 4.1, at low power levels, the spin-wave amplitude remains at a thermal level 

due to relaxation losses. At high power levels, the spin-wave amplitude increases 

exponentially, leading to increased absorption. More importantly, it can be seen that we 

can capture the device behavior using a system comprising of just 64x64x1 cells (2D 

system with 4096 cells) instead of a full-fledged 30x30x20 system (3D system with 18000 

cells), i.e., leading to a reduction in the number of cells by a factor ~4.4. In this case, a 

system comprising 128x128x1 cells can be used to perform high-resolution studies 

specifically on the dominant modes. For a given gridding, this helps to discern more 

information about the modes that play a crucial role in nonlinear magnon scattering. Such 

a 2D model could hence help conserve hardware resources and simulation run-time.  

A. Comparison to 3D Simulations 

The susceptibilities calculated using 2D grids of 128 x 128 x 1 as well as 64 x 64 x 

1 agree well with the 3D calculations for the same configurations (Fig. 4.1). Notice that we 

not only are able to obtain the same ℎ𝑡ℎ within an acceptable degree of error but also a 

similar discontinuity at the onset of nonlinearity. A 128 x 128 x 1 takes approximately the 

same time (~9 hours on P100 GPU) as 30 x 30 x 20 grids, for a 300-ns run, due to similarity 

in the number of cells, while the 64 x 64 x 1 takes just ~3 hours on the same GPU for the 

same run. Furthermore, the reduced simulation also eases the stress on the number of cores 

and clock-speed available on the system, making such computations feasible even on 

sequential CPU-only systems, especially with regards to code run-times.  

Both the 3D as well as 2D simulation schemes are independent of the specific 

nature of the device and, in principle, can be used to study any parallel-pumped 
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ferromagnet-based system. With respect to simulations, the cell sizes are chosen to be of 

the order of several micrometers for investigating the demagnetization dominated regime 

which best captures the susceptibility behavior of interest for such parallel pumped 

configurations (especially suitable for FSL design [137]). As far as the practicalities of 

simulation are concerned, the hardware used for computation often determines the choice 

of grids, in the sense that while a highly refined grid is desired for more accurate 

computations, it could substantially increase the simulation run-times. In many cases, there 

are strict limits specified by the available hardware systems w.r.t threads, arithmetic and 

control units (ALU), memory available, etc., preventing the use of denser gridding. A 

system employing 18000 cells takes 9 hours on an NVIDIA P100 GPU while 36000 

increases the run time to a day, both for a 300-ns run. Code performance in conventional 

sequential computers (CPU-only systems) is even more drastically affected. 2D 

simulations developed here can be highly advantageous for both GPU-based and CPU-only 

machines in aiding the design of devices that need accuracy beyond that offered by simple 

analytic models. 

 

4. 2 Thickness Dependence of Dispersion Relation 

All computational results described in Chapter 2 were based on 3D simulations. 

Going forward, I make use of 2D simulations exclusively. At first, the thickness 

dependence of magnon dispersion relations is simulated.  

One of the physical parameters that determine the spin-wave manifold or simply 

the dispersion relation is the thickness of the sample, D. The thickness, in addition to the 
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magnitude of absorption, also determines the bandwidth of operation. For an applied bias 

field of 100 Oe, we vary the thickness: 5 μm, 15 μm, 20 μm, and 50 μm. In Fig. 4. 2, we 

show the dependence of 2D dispersion relation on sample thickness for the cases above 

using micromagnetic simulations.  

 

4.3 Three and Four Magnon Scattering Processes 

The response of the YIG material can be explained based on magnon dynamics taking 

place within the sample. As mentioned earlier, unless disallowed by the dispersion relation, 

Fig.  4.2.  2D magnon dispersion relation for a bias field of 100 Oe for a sample of thickness (a) 5 μm (b) 

15 μm (c) 20 μm and (d) 50 μm. (Source: [ 112]) 
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the most dominant scattering mechanism is the three-magnon process. In the case of a 

parallel pump, the energy associated with a microwave photon gets distributed between 

two magnons so as to conserve energy and wave-vector. It is this coupling mechanism that 

dissipates the RF energy in the magnetic material.  In this section, we try to understand 

such processes from the perspective of the dispersion relation. The microwave field is 

turned on after relaxing the system (for ~300 ns). When the strength of the RF is above the 

threshold, it leads to a nonlinear response in the material. Fig. 4.3(a) shows the 2D 

Fig.  4.3.   (a) Dispersion relation of 128 x 128 x 1 cells for the system size 10 μm x 100 μm x 1250 μm. 

(b) Number (N) of magnons during the transient, when pumped with an RF signal of:  (b) 2.4 GHz at -25 

dBm  with magnon number determined at 56 ns after RF field is turned on; (c) 3 GHz at -18 dBm with 

magnon number determined similarly at 71.5 ns; (d) 4 GHz at -8 dBm with magnon number evaluated at 

61 ns. Note that modes showing large populations are close to the corresponding half frequencies. 

(Source: 112) 
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dispersion relation of the 10 μm sample obtained using a 128 x 128 x 1 grid for 10 μm 

× 100 μm × 1250 μm.  

At first, we apply a pump frequency of 2.4 GHz at -25 dBm to the YIG sample. 

Note that this leads to the appearance of 1.2 GHz modes at the onset of nonlinearity: the 

magnon numbers (N) are plotted in Fig. 4.3(b). Similarly, 1.5 GHz modes (Fig. 4.3(c)) and 

2.0 GHz modes (Fig. 4.3(d)) appear in the magnon number plot when the sample is pumped 

with 3.0 GHz (at -18 dBm) and 4.0 GHz (at -8 dBm) microwave frequencies, respectively. 

Three magnon processes, however, are not always allowed. The lowest frequency 

on the dispersion relation is slightly above 1.0 GHz for a 10 μm sample at 100 Oe, and 

hence signals with frequency less than 2.0 GHz are disallowed from decaying via a three-

particle process. When pumping at a frequency of 2 GHz, there is no nonlinearity till about 

~1 × 10−2 Oe and the nonlinearity thereafter led to magnons with the same frequency as 

the pump signal, giving magnon distribution nearly identical to that in Fig. 4. 3(d) where 2 

GHz modes appear. Note that this is a 4-particle scattering process where two photons at 2 

GHz gave rise to two magnons at 2 GHz. This explains the behavior at 2 GHz in Fig. 3.2 

(Chapter 3) and the resulting asymmetry w.r.t frequency detuning. The physics of both the 

three and four-particle processes was discussed in Chapter 3 (Section 3.2).  

 

4.4 Experimental Comparison 

In order to validate my findings in the previous sections, I determine the butterfly 

curve (plot of the microwave threshold-field vs. bias-field) and compare it with the parallel 
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pump results in [140]. A 0.5 mm wide 50 Ohm microstrip transmission line is used for the 

studies, with an applied pump frequency of 8.2 GHz. The YIG sample used is 5.1 μm thick.  

For the simulations, we use a sample of size 5.1 μm x 100 μm x 1250 μm. A total 

of 16384 (128 x 128 x 1) cells, corresponding to the 2D simulation model, were used for 

the simulations. 

 Simulations were performed for 1500 ns with a time step of 50 fs on NVIDIA 

P5000 and P100 GPUs. Intrinsic damping (𝛼) of 3 × 10−5 [142] along with an exchange 

constant of 3.77 × 10−7  
ergs

cm
 is used (the exchange field is implemented similar to [143]).  

The experimental data, along with the simulated data points are shown in Fig. 4.4. 

 

 

As can be seen from the figure, the simulated predictions for the microwave 

threshold field agree with the experiment within ~1 dBm. The discrepancies can be 

Fig.  4.4.  Comparison of simulated threshold RF power with experimental data [140] for the butterfly 

curve for 5.1 um thick YIG sample in parallel configuration. Source: [ 112]. 
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attributed to non-intrinsic scattering mechanisms like 2-magnon scattering and the 

presence of inhomogeneities in the experimental sample [144], [145].  As noted earlier, the 

kink occurring around 800 Oe corresponds to the Kittel equation for 4.1 GHz (= 
𝜔𝑝

2
). The 

frequency of the dominant magnons is found to be 4.1 GHz in accordance with the 3-

magnon scattering process. The agreement between the experiment and simulation results 

is remarkable, given that low power results are used to predict high power behavior without 

additional parameters. Furthermore, this agreement also demonstrates that 2D simulations 

could indeed capture the essential physics needed to explain the FSL functionality.  

4.5 Conclusions 

The physical processes described by the second quantization mathematical 

formalism discussed previously (Chapter 3) are now demonstrated using high-speed 2D 

simulation results. I have demonstrated that a 2D simulation (in the plane perpendicular to 

the magnetization) yields good agreement with a 3D simulation while being 

computationally more efficient than the 3D calculations. Good agreement between high 

power experimental and simulation results has been obtained for 3-magnon scattering using 

low power parameters over a wide range of bias fields without the use of additional fitting 

parameters. The computational ease of 2D simulations make the otherwise computationally 

unreasonable microwave-magnet simulations feasible on CPU-only machines as well. 

However, the 2D simulation technique developed in this chapter is specific for parallel 

pump studies. (2D simulations can also be used for studying perpendicular pumping [115]) 
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I have demonstrated using micromagnetic simulations the two main intrinsic 

scattering mechanisms: three- and four-particle processes. If three magnon processes are 

allowed by the dispersion relation, the magnons that dominate are of half the pump 

frequency, else they have the same frequency as the pump signal, all provided the RF signal 

strength exceeds the necessary threshold.  

Most importantly, the results demonstrate that micromagnetic simulations can play 

an important role in the understanding and, hence, in the design of magnetics-based 

nonlinear microwave devices. This is of special significance since, currently, the design of 

such devices is not based on physics-based deterministic rules but rather on 

phenomenological [1] and circuit-based analysis [146], which fail to account for accurate 

magnon physics. The simulation paradigm developed herein can, therefore, serve as an 

immensely useful modeling tool for magnet-based devices. 
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Chapter 5 Modulation-based Nonlinearity Suppression  

 

In the previous chapters, parametric phenomena that govern the behavior of the 

magnetic material under microwave excitation were introduced and demonstrated.  I also 

discussed the role of the threshold field in parametric processes. The threshold microwave 

field represents the strength of the microwave needed to initiate nonlinear processes.  In 

linear applications, the knowledge of this field is essential to avoid the nonlinear regime 

by design. In contrast, nonlinear devices such as magnetics-based signal processing devices 

rely on nonlinearity to realize their functionalities, e.g., noise absorption. The dynamic 

controllability of the threshold field is, hence, of immense interest to a large number of 

applications. Traditionally, in order to change the threshold field, one would have to 

replace the magnetic sample with another that has a different thickness/geometry/material 

[147].  This is clearly inconvenient and represents a major disadvantage of magnetics-based 

nonlinear devices. Apart from device applications, fundamental physics explorations also 

need the ability to vary the threshold dynamically. For example, cavity-based studies in the 

past have often used multiple samples in order to achieve different nonlinear configurations 

for their investigations [9].  

In this chapter, I discuss the dynamic control of threshold using a secondary 

microwave frequency. This technique allows in-situ control of nonlinearity and hence is of 

fundamental interest to a wide range of applications. The governing principle of the 

technique is explained analytically and demonstrated using simulations. The modified 

threshold field in the presence of the secondary microwave frequency is quantitatively 
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predicted. Fine structures, appearing in the threshold field upon variation in the frequency 

of the secondary frequency, have been demonstrated using simulations. Further, both the 

position and magnitude of such fine structures are also accurately explained.  The impact 

of the magnon-phase is quantitatively determined. Finally, the dependence of the threshold 

field intensity on intrinsic damping and secondary microwave signal is discussed to aid 

practical device design considerations [116]. The results discovered in this chapter make 

strong contributions towards improving the parameters and expanding the functionality of 

magnetics-based electronic systems. 

 

 

5.1 Additional Excitation-based Modification of Parametric Instability 

Parametric magnon-scattering processes have contributed immensely towards the 

understanding and exploration of the nonlinear processes involved in magnetic materials. 

A question of importance for fundamental and practical interests concerns the modification 

of the parametric resonance under pumping that is subjected to additional excitation(s). 

Parametric instability studies in the presence of noise have been considered in liquid 

crystals [34], electronic oscillators [32], [148] and in hydrodynamics [149]; the central 

theme underlying the variety of physics considered in these studies is the modification of 

some deterministic property by controlling the degrees of freedom present in the system 

using additional excitation(s). Magnetic systems have degrees of freedom by way of the 

numerous available magnon modes and hence present an interesting case for the study of 

parametric instability (magnon scattering) under the influence of additional excitations 
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and/or noise. Modulation-based suppression of nonlinearity in magnetics was first 

theoretically proposed by Suhl [150] and experimentally demonstrated by Hartwick, 

Peressini, and Weiss [151]. This theory was later improved by Morgenthaler [152]. Similar 

efforts were also undertaken by Zautkin [153] and reported in [110]. However, for 

sinusoidal modulation input, the theories mentioned above did not thoroughly address the 

frequency dependence. The aim of this chapter is to present a theory applicable to all values 

of the secondary frequency. 

As mentioned earlier, depending on the application, the nonlinear scattering could 

be undesirable, e.g., cause of noise in spin-wave based computing [154] that makes use of 

specific spatial-temporal magnon modes, or it might be useful, e.g., microwave devices 

like FSLs, signal-to-noise ratio enhancers, etc., [1], [155] that depend on such 

nonlinearities for microwave absorption in order to achieve their functionalities. Proper 

understanding of the consequences of modification of the nonlinearity by additional 

excitations, hence, would be beneficial to improve the design and/or performance of a 

multitude of magnetic devices, in addition to revealing interesting physical phenomena. 

 

5.2 Micromagnetic Simulation 

A thin film of YIG is saturated using a bias field, 𝐻𝑑𝑐 = 200 𝑂𝑒, applied in the 

plane of the magnetic sample (along the z-axis). The sample thickness of 5.1 𝜇m is 

measured along the x-direction. The microwave field is applied along the z-direction, 

parallel to 𝐻𝑑𝑐 (the parallel scheme of pumping). The sample schematic is shown in Fig. 

5.1(a). We assume periodic boundary conditions for the sample. The sample dimensions 
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of 5.1 𝜇𝑚 × 100 𝜇𝑚 × 1250 𝜇𝑚  are discretized into 128 x 128 x 1 cells along the 

respective directions as done in the previous chapters.  We employ the 2D simulation 

paradigm as described in Chapter 4 for this study. 

Saturation magnetization, 𝑀𝑆 = 145 𝑒𝑚𝑢/𝑐𝑚
3, uniform exchange constant, 

𝐴𝑒𝑥 = 3.77 × 10
−7𝑒𝑟𝑔𝑠/𝑐𝑚, gyromagnetic ratio, 𝛾 = 1.76 × 107𝑟𝑎𝑑/(𝑠 𝑂𝑒)  and  

 

realistic damping constant of 0.0007 (unless mentioned otherwise) are used for the sample. 

Demagnetization fields are computed using Newell’s algorithm as before, and thermal 

fields are also taken into consideration in order to account for the thermal magnons at T = 

300 K. The micromagnetic simulations were carried out using graphics processing units 

(GPUs) [93] at various supercomputing institutes -Minnesota Supercomputing Institute 

(MSI), San Diego Supercomputer Center (SDSC)’s Comet and Pittsburgh Supercomputing 

Center (PSC)’s Bridges. 

 

Fig. 5.1. (a) Parallel pump configuration with the secondary field (ℎ𝑟𝑓2). (b) Magnon growth (average) 

upon excitation close to the threshold illustrating the direct excitation of the k ≠ 0 modes. The pump 

frequency is 6 GHz and the excited magnons have a frequency of 3 GHz with k ≠ 0. (Source: [116]) 
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5.3 Threshold Modification 

 
The micromagnetic system relaxed under a bias-field of  𝐻𝑑𝑐 = 200 𝑂𝑒 is 

subjected to a microwave field of 6 GHz (ℎ𝑟𝑓 = ℎ cos(𝜔𝑝𝑡), with 𝜔𝑝 = 6 𝐺𝐻𝑧). The 

Kittel frequency corresponding to 200 Oe being ~1.78 GHz, the microwave pump chosen 

amounts to an off-resonance parallel-pumping scheme with regards to the 𝐻𝑑𝑐 .  Fig. 5.1(b) 

shows the magnon number growth at a microwave field-intensity, h, of 2.8 Oe, slightly 

above the threshold-field, ℎ𝑡ℎ,  2.7 Oe. The dispersion relation and the pumping conditions 

are such that the absorption of microwave-photons creates parametric-magnons with half 

the energy of the pump-photon (3-particle process). Above the threshold field, there occurs 

Fig. 5.2.  Effect of secondary microwave signal on magnon number growth for a YIG sample with 

𝛼 =0.0007 and 𝐻𝑑𝑐 = 200 𝑂𝑒. The sample is subject to a microwave field of 6 GHz at a field-

intensity of 6.1 Oe with (a) no secondary frequency (b) secondary frequency of 1 MHz at 5 Oe (c) 

secondary frequency of 1 MHz at 10 Oe (d) secondary frequency of 10 MHz at 10 Oe. (Source: 

[116]) 
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an exponential increase mainly in the number of 3 GHz magnons; furthermore, momentum-

resolved calculation of magnons demonstrates that direct excitation of the 𝑘 ≠ 0 magnons 

occurs while only a negligible excitation occurs for the magnons with 𝑘 = 0. These 

observations are in accordance with previous discussions (Chapter 1 (Section 2.4)), [49], 

[41]. The dominant spin-wave mode has a wave-vector, 𝑘 ≈ 1.975 × 105 𝑟𝑎𝑑/𝑐𝑚. In this 

work, we use primary frequency field strengths close to the corresponding threshold values. 

Next, I turn on an additional secondary signal which is linearly polarized parallel 

to the 𝐻𝑑𝑐. It can be observed that in the presence of this signal, there is an overall reduction 

in the number of magnons, as shown in Fig. 5.2(b-d). A reduction in the number of 

magnons indicates a decrease in the nonlinear behavior. Secondary frequency and field-

intensity-dependent modulation of the number of magnons could also be observed in Fig. 

5.2. By increasing the strength of the secondary frequency, we can even completely quench 

the nonlinearity (Fig. 5.2(d)). These observations are in line with experiments in [151]. 

Next, we present a theory to explain the threshold field dependence over an arbitrary range 

of frequencies.  

The threshold field, ℎ𝑡ℎ , for a spin-wave of frequency 𝜔𝑘 can be expressed as [using 

3.31, for simplicity ℎ𝑡ℎ𝑔 is represented now as ℎ𝑡ℎ]: 

 ℎ𝑡ℎ
2 =

𝜂𝑘
2+(𝜔𝑘−𝜔𝑝/2)

2

𝑉𝑘
2  (5.1) 

where 𝜔𝑝 is the angular frequency of the primary pump excitation, 𝜂𝑘 is the relaxation rate 

of the magnons and 𝑉𝑘 is the coupling factor between the photons from the primary-pump 

and the magnons. For 𝜔𝑘 = 𝜔𝑝/2, the threshold-field would be simply 𝜂𝑘/𝑉𝑘. Using this 
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along with the Eqn. (5.1), we can estimate the effective microwave intensity seen by the 

𝜔𝑘 magnons (when excited with rf field of intensity h Oe) to be: 

 ℎ𝑒𝑓𝑓 = ℎ [
𝜂𝑘
2

𝜂𝑘
2+(𝜔𝑘−

𝜔𝑝

2
)
2]

1

2

 (5.2) 

The influence of the secondary excitation (of angular-frequency, 𝜔2 rad/s and field-

intensity, ℎ2 Oe): ℎ2 cos(𝜔2𝑡), can be interpreted as a change in the energy of the magnons: 

 𝜔𝑘
′ = 𝜔𝑘 + ℎ2

𝜕𝜔

𝜕𝐻
cos (𝜔2𝑡) (5.3) 

The original magnon operator 𝑏𝑘 = 𝑏0exp (𝑖𝜔𝑘𝑡) now becomes: 𝑏𝑘
′ = 𝑏𝑘exp {𝑖(𝜔𝑘𝑡 +

ℎ2𝜕𝜔

𝜔2𝜕𝐻
sin(𝜔2𝑡))}. Resonances would now be such that 𝜔𝑝/2 = 𝜔𝑘

′ . In other words, we can 

re-write the effective primary-field as seen by the magnons as: ℎ 𝑐𝑜𝑠{(2𝜔𝑘𝑡 +

2
ℎ2

𝜔2

𝜕𝜔

𝜕𝐻
sin(𝜔2𝑡))}.  In order to understand the spectral nature, we can express this periodic 

modulated wave using the complex representation of Fourier series that on further 

simplification, yields Bessel functions as the coefficients of expansion as shown in Eq. 

(5.4). Defining 𝛿 ≜  |𝜔𝑘 −𝜔𝑝/2|, 𝜉 ≜ 2
ℎ2

𝜔2

𝜕𝜔

𝜕𝐻
, and ℎ𝑡ℎ0 as the threshold-field intensity in 

the absence of the secondary signal, we can express the new threshold-field (ℎ𝑡ℎ𝑛) in terms 

of Bessel function coefficients as: 

 (
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
)
2

= [∑ 𝐽𝑛
2( 𝜉)∞

𝑛=−∞ . 
𝜂𝑘
2

𝜂𝑘
2+(𝛿−

𝑛𝜔2
2
)
2]
−1 (5.4) 

This series with Bessel function coefficients can be physically interpreted to be exciting a 

multitude of magnon modes with different frequencies.   
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Fig. 5.3 shows a normalized plot of the new threshold-field (ℎ𝑡ℎ𝑛) obtained under 

the influence of the secondary frequency. The analytical curve is obtained by minimizing 

the right-hand side of Eq. (5.3) using properly chosen 𝛿.  There exists an optimum 

frequency that lowers nonlinearity the most and consequently corresponds to the highest 

threshold-field intensity. This optimum frequency coincides with the longitudinal 

relaxation frequency 𝜂𝑧(= 2𝜂𝑘) of the magnetization.  The decrease on either side can be 

considered to be due to the relatively slower overall decay of the magnons as the secondary 

Fig. 5.3. Normalized threshold field for a 6 GHz microwave signal (ℎ𝑡ℎ𝑛, ℎ𝑡ℎ0 are threshold-field 

intensities in the presence and absence of the secondary, respectively) in the presence of 10 Oe of 

secondary frequency.  It can be seen that the threshold field is maximum around 2.1 MHz. Magnon 

relaxation rate, 𝜂
𝑘
, of  1.0 × 10−6 𝑠 and 

𝜕𝜔

𝜕𝐻
= 1.23𝛾 are used for the analytical calculation. 𝛼 =0.0007 is 

used in the simulations. (Source: [116]) 

 



100 
 

frequency moves away from the relaxation rate, 𝜂𝑧. At very high secondary frequencies, 

the ratio ℎ𝑡ℎ𝑛/ℎ𝑡ℎ0 tends to 1, indicating a relatively lower degree of mixing between the 

two frequencies. We estimated the relaxation rate of the longitudinal component of 

magnetization using [156]:  

  𝜏 =
1

𝜂𝑧
=
ℏ𝜔𝑝Δ𝑀𝑧

𝛾ℏ𝑃
  (5.5) 

where P is the power absorbed in the magnetic material, and Δ𝑀𝑧 the change in the 

longitudinal magnetization. Relaxation rate of the magnons, 𝜂𝑘 = 1.0 × 10
6 𝐻𝑧, is used to 

obtain the theoretical curve in Fig. 5.3 which predicts the relaxation rate of the longitudinal 

magnetization, 𝜂𝑧(= 2𝜂𝑘) to be 2.0 × 106 𝐻𝑧, that agrees well with the peak of the 

simulated data.  A direct computation using the simulated data of Eq. (5.5) also yields 𝜂𝑧 =

2.1 × 106 𝐻𝑧, not unlike the expectations. 

In Fig. 5.4, I have plotted the ratio of threshold field intensities as a function of the 

secondary frequency using Eq. (5.4). At a given secondary frequency, the threshold is 

determined in the case of simulated data by sweeping the primary field intensity. The 

secondary field intensity used is 10 Oe, and the system 𝛼 = 0.00035. It can be shown that 

the cusps correspond to change in the index of the dominant Bessel coefficient in Eq. (5.4); 

index n in Fig. 5.4 is such that the following holds: 

 (
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
)
2

= min (
1

𝐽𝑛
2( 𝜉)
) (5.6)         

where the function min() picks the minimum of the argument with respect to varying n. 

The index n at each secondary frequency that minimizes the function is plotted in Fig. 5.4. 

This demonstrates the role of higher-order Bessel functions in the stabilization process, 
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especially at smaller secondary frequencies; the coefficient of 𝐽𝑛
2 in (2) then determines the 

magnitude of the ratio.  

      It is, therefore, possible by controlling the frequency and strength of the secondary 

signal to completely extinguish the nonlinearity. This phenomenon, hence, allows the 

controllability of the nonlinear processes, which can be helpful for nonlinear applications. 

For example, it can be used to increase the power handling capability in RF devices, 

wherein it is desirable to reduce the nonlinear effects. 

 

5.4 Magnonic Loss Channels and Significance of Magnon Phase 

 
The magnon-modes excited in the presence of the secondary differ from the original 

3-GHz magnon-modes by multiples of half the secondary frequency, 𝑓2/2, where 𝑓2 = 

𝜔2/2𝜋  (or in terms of 𝑚𝑧 they differ from the 6 GHz spectral components by multiples of 

Fig. 5.4. Plot of the ratio of threshold field intensities in the presence (ℎ𝑡ℎ𝑛) and absence (ℎ𝑡ℎ0) of the 

secondary signal with respect to secondary signal frequency. The theoretical (blue starred curve) is a plot 

Eq. (5.4) for 10 Oe of secondary signal for a magnetic sample with an intrinsic damping, 𝛼 = 0.00035. 

Red curve with circles shows the changes in the index n of the dominant Bessel coefficient, computed 

using Eq.(5.6). It can be seen that the change in n corresponds with the occurrence of cusps in the 

threshold ratio. (Source: [129]) 
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the secondary frequency). This can be seen from Fig. 5.5, which is a frequency-spectrum 

plot of the average value of the longitudinal magnetization, 𝑚𝑧. The frequency-resolved 

magnon growth in the presence of the secondary excitation explicitly shows one such 

additional mode alongside the 3 GHz modes in Fig. 5.6(a). It can be seen that the dominant 

mode is 2.952 GHz as opposed to the original 3 GHz.  

Further, as 𝜉 decreases (or 𝑓2 increases) fewer harmonics of the secondary 

frequency are relevant, consequently reducing the number of dominant magnon-modes. 

This can be seen in Fig. 5.5(c)-(d). Mathematically, this can be seen as a consequence of 

the decay of the Bessel functions with increasing 𝜉. Physically, this reflects the requirement 

of a higher number of modes as an increasingly smaller fraction of energy gets assigned to 

each of these modes with increasing 𝜉. This is required to ensure energy conservation 

during magnon excitation by the photons.  At lower 𝜉, a few high amplitude modes carry 

most of the energy, while at higher 𝜉 the energy is distributed across a larger number of 

components. By choosing 𝜉 to correspond with zeros of 𝐽0( 𝜉) we can set the magnetic 

system such that no 3 GHz magnons are present and the microwave energy is carried 

instead entirely by the components: 3 GHz ± 𝑛𝜔2/2. It was observed, for example, at 12 

MHz secondary frequency that the 3 GHz magnons remained close to the equilibrium 

values while 2.994 GHz modes are observed to be much higher in numbers. 
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It follows from Eq. (5.3), that the phase 𝜓𝑚 of the magnons is 𝜉 sin(𝜔2𝑡). The 

nature of threshold-field ratio in each cusp is governed by 𝑠𝑖𝑛(𝜓𝑝 − 𝜓𝑚) where 𝜓𝑝 and 

𝜓𝑚 are the phase of the pump and the net magnon phase, respectively. For a constant pump-

phase 𝜓𝑝, the quantity of interest becomes sin(𝜉sin(𝜔2𝑡)), from which we can recover the 

Bessel-function pre-factors encountered earlier. Using, cos{𝜔𝑝𝑡 + 𝜉 sin(𝜔2𝑡)} =

Fig. 5.5. Frequency spectrum of the z-component of magnetization under a primary excitation of 6 GHz 

with (a) no secondary frequency. 10 Oe secondary excitation of (b) 7 MHz (c) 24 MHz (d) 40 MHz; 

successive peaks differ by integer multiples of secondary frequency.  Power leakage into other spin modes 

can be clearly seen. Also, the number of dominant peaks decreases as the secondary excitation frequency 

increases. 𝛼 =0.0007 is used in the simulations. Source: [116]. 
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𝑅𝑒[𝑒𝑖𝜔𝑝𝑡. 𝑒𝑖𝜉 sin(𝜔2𝑡)], the Fourier series expansion (ℱ) of 𝑒𝑖𝜉 sin(𝜔2𝑡) can be written as: 

ℱ = ∑ 𝑐𝑛
∞
𝑛=−∞ 𝑒𝑖𝑛𝜔2𝑡, with 𝑐𝑛 =

1

2𝜋
∫ 𝑒𝑖(𝜉 sin(𝑥)−𝑛𝑥)𝑑𝑥 = 𝐽𝑛( 𝜉), where 𝑥 = 𝜔2𝑡. 

This allows us to interpret the cusps seen earlier as consequences of the relative phase 

change between the primary RF and the dominant magnon modes. Within each cusp, the 

peaks in ℎ𝑡ℎ𝑛/ℎ𝑡ℎ0 occur for those frequencies that have the least favorable phase-match 

condition for coupling to magnons. This is demonstrated using simulations by the plot of  

sine values for different frequencies (Fig. 5.6(b)). The secondary frequency, hence, 

modulates the phase relationship between the dominant magnon modes and the microwave. 

In the absence of the secondary frequency, it is found that the sine of this phase difference 

is maximum for the dominant modes, which in our case are the 3 GHz modes (as observed 

in Fig. 5.1). 

Megahertz modulation may develop in the magnetic system under parametric 

pumping without explicit secondary pumping. Auto-oscillation [110] and chaotic 

Fig. 5.6. (a) Magnon numbers resolved in frequency when a 6 GHz pump frequency is used at 𝐻𝑑𝑐 =

200 𝑂𝑒 for a YIG sample with 𝛼 =0.0007. For a secondary signal at 24 MHz, one of the dominant modes 

is 2.952 GHz. In the absence of the secondary, the dominant mode is 3 GHz. (b) Magnon phase with 

respect to that of the pump is such that coupling is maximized at 40 MHz and minimized at 26 MHz and 

48 MHz. The frequencies- 26 MHz and 48MHz correspond to the presence of cusps Fig. 5.3. (Source: 

[116]) 
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phenomena [157] that can produce such MHz oscillations in the system make the low-

frequency modulation effects worthy of consideration for magnonic applications. In 

addition, the cuspid features (of Fig. 5.3) might also need consideration during the robust 

design of magnonic devices, as they represent singularities in otherwise monotonous 

functional dependence between the threshold ratio and the secondary frequency. 

Another interesting observation is that the slope of the growth rate of magnons with 

the primary field intensity remains nearly the same as the strength of the secondary 

excitation is varied (Fig. 5.7(a)), secondary frequency remaining the same. This indicates 

that the photon-magnon coupling efficiency 𝑉𝑘𝑠𝑖𝑛(𝜓𝑝 − 𝜓𝑚) remains the same. Also  

 

noticeable is the increase in the threshold-field intensity. (The results of Fig. 5.7(a) are 

obtained using simulations that use intrinsic damping constant, 𝛼 = 0.007.)  

Fig. 5.7. (a) Growth rate of parametric magnons in the vicinity of the corresponding threshold under 

various secondary excitation field intensities when excited with 6 GHz microwave at 200 Oe. YIG sample 

with 𝛼 =0.007 is used in this case. (b) Comparison of the minimum secondary-field intensity (ℎ
2𝑚
) 

needed to suppress non-linear effects as predicted by: Suhl [150], Morgenthaler [152] (also, L’vov [110]), 

and current theory, for an 
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
 ratio of 4 as per Eqs. (5.7), (5.8), and (5.4), respectively. (Source: [116]) 
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5.5 Comparison with Previous Theories 
 

Suppression of absorption by employing frequency modulation of microwave-field 

was initially suggested by Suhl [150] to follow: 

 (
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
)2 =

1

𝐽0
2(𝜉)

 (5.7) 

 

This treatment was later enhanced by Morgenthaler [152] and in the work of L’vov [110]: 

 

 (
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
)2 = min (

1

𝐽𝑛
2( 𝜉)
) (5.8) 

 

It can be shown that for a constant 
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
 ratio, the above theories predict straight-line 

behavior for the minimum secondary field intensity (ℎ2𝑚) needed to suppress nonlinear 

effects, down to zero Hz. In the current theory, however, below the relaxation rate, an 

increased ℎ2𝑚 is observed. The minimum value of ℎ2 that restricts the nonlinearity ℎ2𝑚, 

for an 
ℎ𝑡ℎ𝑛

ℎ𝑡ℎ0
= 4, is compared in Fig. 5.7(b). This nonlinearity is in accordance with the 

experimental observations in [151]. 

 

5.6 Modulation Dependence on Intrinsic Damping and Secondary Signal 

Strength 

While the previous sections gave advanced insights from a physics perspective, the 

physical parameters involved in the secondary frequency-based nonlinear suppression have 

not yet been investigated. Such investigations are vital from the perspective of engineering 

design. In this section, we discuss the dependence of the nonlinear behavior on parameters 

such as intrinsic damping and secondary signal strength. The intrinsic damping of magnetic 
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materials can vary from sample to sample, depending on the growth techniques and 

conditions. It, hence, constitutes an important parameter whose impacts need to be studied 

for any phenomena.  The strength of the secondary signal is an external parameter that can 

be easily altered to control the nonlinearity. 

A. Intrinsic Damping 

The requirement of threshold field intensity arises due to the loss mechanisms that 

must be overcome before the 3-magnon interaction can lead to the growth of the magnons. 

Even in a defect-free and ordered magnetic system, there can be mechanisms that lead to 

the energy introduced into the magnetic system (say by microwave pumping) to ultimately 

dissipate into the lattice. An important parameter in this context is the phenomenologically 

introduced damping constant (𝛼), which determines the rate of energy loss from the 

magnetic system. As the name suggests, 𝛼 plays the important role of dampening out the 

spin-wave modes and, thus, has an essential role in the magnon-based nonlinear properties.  

From a practical viewpoint, different samples of the magnetic materials may have 

different 𝛼 depending on the growth techniques and conditions. In order to understand its 

effect on ℎ𝑡ℎ0, we provide Table. 5.1, from which it can be seen that it varies directly with 

the damping constant, i.e., ℎ𝑡ℎ0 ∝ 𝜂𝑘, where 𝜂𝑘 is the relaxation rate of the magnetic 

system [112]. Under similar pumping conditions with just the damping constant varying, 

we have 𝜂𝑘 ∝ 𝛼. 
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Intrinsic damping, 

𝛼 

ℎ𝑡ℎ0 (Oe) ℎ𝑡ℎ0
/(ℎ𝑡ℎ0 @ 0.0007) 

𝛼/0.0007 

0.00035 1.4 0.52 0.5 

0.00070 2.7 1.0 1.0 

0.00175 6.3 2.3 2.5 

0.007 25 9.3 10 
Table. 5.1. Dependence of threshold field intensity, ℎ𝑡ℎ0 on the intrinsic damping constant, 𝛼. Source [129]. 

 

The role of 𝛼, however, extends beyond the simple threshold-field control when the 

additional signal is applied. The 𝛼, controls the secondary frequency, 𝑓𝑚, at which the 

maxima of the threshold-field ratio occurs. This is demonstrated using simulations in Fig 

5.8. Firstly, for 𝛼 = 0.0007 the 𝑓𝑚 = 2.1 MHz, and when it is changed to 0.00035 (= 𝛼/2) 

and 0.00175 (= 2.5𝛼), we observe the corresponding 𝑓𝑚 to be ~1.0 MHz and ~5.0 MHz, 

respectively. Thus, in all the cases 𝑓𝑚 scales linearly with 𝛼,  and 𝑓𝑚 = 𝜂𝑧. Secondly, a 

lower 𝛼 is seen to result in a larger fractional increase in the threshold. The increase in the 

threshold, in general, is attributed to the creation of additional magnons. The energy that 

entered the magnon mode 𝜔𝑘, in the presence of the secondary signal gets distributed to 

neighboring frequencies 𝜔𝑘 ± 𝑛𝜔𝑠/2, where 𝑛 is an integer.  The reduction in damping 

makes easier the creation of additional magnons (i.e., 𝜔𝑘 ± 𝑛𝜔𝑠/2 magnons with 𝑛 ≠ 0). 

These additional magnons can hence be seen as loss channels that divert the energy away 

from the 𝜔𝑘-mode. As observable in Fig. 5.8, the reduction in damping leads to an increase 

in the threshold ratio. Mathematically, this is a consequence of the growing importance of 

the higher-order Bessel functions (i.e., those with higher n) as 𝜉 approaches 0 (i.e., as the 

secondary frequency decreases).  
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In short, microwave energy now gets channeled into multiple neighboring magnon 

modes much more likely due to the increased lifetime (or higher stability) of these modes. 

For the same reason, it is also observed that the number of cusps has also increased with 

decreasing 𝛼. It can also be observed that with the change in 𝛼, it is the behavior at the 

lower secondary frequencies that is most affected, while the threshold at higher frequencies 

is relatively unchanged.  It is important to note that while intentional changes in damping 

can be used to effect changes in the threshold field intensity, the inadvertent modification 

of other magnetic properties, e.g., 𝑀𝑆, stochiometry, etc., may lead to unexpected effects. 

 

B. Secondary Signal field intensity 

The secondary signal plays a crucial role in altering the nonlinear phenomena as 

well; dynamic control of the nonlinear properties that can be important from an application 

perspective can be effected through the secondary microwave signal.  

Fig. 5.8. Dependence of the normalized threshold-field intensity on intrinsic damping constant, 𝛼, as a 

function of the frequency of the secondary signal. The symbols represent micromagnetically simulated 

data and the lines are from Eq. (5.4). For all the plots  ℎ𝑠 = 10 𝑂𝑒. (Source: [129]) 
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In this context, we first discuss the role of the secondary signal intensity, ℎ2. In Fig. 

5.9, we plot the suppression curves for various ℎ2 (ℎ2 is represented by ℎ𝑠 in Fig.5.9); it 

can be observed that the threshold field increases with an increase in secondary field 

intensity. No significant changes in 𝑓𝑚 are observed. Also, it can be seen that the curves 

display a larger number of oscillations for higher ℎ2. The impact of the secondary signal is 

to modulate the dispersion relation of the magnons, which can be seen from the argument 

of the Bessel function: 𝜉 =
2

𝜔2
(ℎ2

𝜕𝜔𝑘

𝜕𝐻
), as discussed earlier. Higher ℎ2, therefore, makes 

it increasingly difficult for the magnons to respond to the primary microwave signal by 

sweeping their instantaneous frequencies (as per ℎ cos{𝜔𝑝𝑡 + 𝜉 sin(𝜔2𝑡)}). No magnons 

would satisfy the necessary frequency condition for long enough to allow non-trivial 

increase in its numbers, and this results in increased threshold field values with an increase 

Fig. 5.9. Variation of the threshold-field intensity with different secondary microwave strength as a 

function  of the frequency of the secondary signal. The symbols represent micromagnetically simulated 

data and the lines represent Eq. (5.4). For all the plots  𝛼 = 0.0007. (Source: [129]) 
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in ℎ2. This can, hence, also be interpreted to be due to an increased phase-mismatch 

between the pumping microwave signal and the dominant spin-wave mode. 

The qualitative and quantitative agreement in Fig. 5.8 and Fig. 5.9 over both the 

field intensity and the frequency of the secondary signal indicates the robustness and 

suitability of the analytical theory and micromagnetics-based simulation techniques 

towards device design. (The lower density of datapoints is due to the computationally 

expensive nature of the simulations.)  

 

 

5.7 Conclusions 

The key consideration in many of the magnon-based applications is often 

controllable nonlinearity, compared to the situation, for example, in magnetic storage 

applications where the complete switching of the magnetization – a highly nonlinear 

process - is desired. Magnon-based applications require lower degrees of nonlinearities, 

which can be controlled to bring about deterministic changes in the input signal without 

inducing switching of the magnetic material [34, 71, 110, 152, 153, 154]. An important 

consideration in such cases is the feasibility of dynamic control of the nonlinear behavior. 

In this chapter, I illustrated a technique to achieve the dynamic control of the nonlinear 

behavior of ferri(ferro)magnets under microwave excitation using an additional microwave 

signal. 

Secondary signal-based nonlinear control: Specifically, I have shown that a 

secondary excitation with a frequency close to the longitudinal relaxation rate (𝜂𝑧) causes 

the most significant increase of the nonlinearity threshold. It is shown that the phase 
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decorrelation of the magnons at frequencies above 𝜂𝑧 , gives rise to oscillatory features in 

the threshold-field intensity as the secondary frequency is varied. Magnon modes differing 

in frequency from that of the usually excited dominant mode by multiples of half of 

secondary frequency (𝜔2/2) are found to dominate in the presence of the secondary signal 

(with frequency, 𝜔2). Further, it is observed that with variation in the field intensity of the 

secondary excitation (ℎ2), the rate of change of magnon growth rate remains the same. 

However, with an increase in ℎ2, the threshold-field increases. 

Significance of damping constant: The role of damping, in general, in nonlinear 

modulation was discussed. It is shown that the threshold field is proportional to the intrinsic 

damping, 𝛼. The 𝛼 also plays an important role in threshold modification in the presence 

of a secondary microwave signal through the longitudinal relaxation rate, 𝜂𝑧. Ferrites, e.g., 

YIG, are often employed in RF applications due to their low damping, which allows higher 

magnon lifetimes, thereby leading to an increased likelihood of microwave-magnon 

interaction.  

Significance of magnon-phase: Magnon-phase has long been a less understood and 

studied parameter. The crucial role of magnon-phase in nonlinear interactions, as 

demonstrated in this chapter, illustrates its significance in physical processes and hence 

also in potential applications. From this study, we can surmise that the magnon-phase-

based phenomena are important considerations for a myriad of potential applications that 

propose to make use of the nonlinearity for information processing, encoding, or 

transmission [6].  
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The intensity and frequency of the secondary microwave provide external methods 

of dynamic threshold control. While additional circuitry may be needed to handle the 

secondary signal, its frequency as required for nonlinear control is orders of magnitude 

lower than the frequency of the primary signal. The potential of using a low-frequency 

secondary signal (~MHz) to modify magnon dynamics produced by a microwave field 

(~GHz) can be appealing to many engineering applications that require a dynamic control 

of nonlinearity. In the study, I have additionally demonstrated that general higher-order 

magnonic processes can indeed be captured and studied using micromagnetics. 

Compared to a system with low degrees of freedom, e.g., electronic oscillator, the 

higher number of magnon modes (degrees of freedom) allowed in the magnetic material 

can lead to increased possibilities by which noise signals can interact with the material. In 

the current study, I considered a single deterministic additional signal that resulted in 

interesting interactions amongst various magnon modes. More elaborate noise sources 

could therefore present a wide variety of magnonic phenomena in these materials. In the 

next chapter, I will demonstrate the impact of magnon-phase-noise on nonlinear processes. 
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Chapter 6: Effective Phase Noise Considerations 

In the last chapter, I demonstrated the significance of magnon-phase in parametric 

processes. Despite the crucial role of magnon-phase, the general qualitative and 

quantitative consequences of phase-noise on nonlinear properties remain far from 

understood. In this chapter, using analytical techniques usually employed in 

hydrodynamics, I explore the direct impact of phase-noise on nonlinearity. The analytical 

theory is then compared with simulated data from micromagnetics to understand the effects 

of phase-noise in nonlinear phenomena. Specifically, the behavior of the threshold field 

and growth rate of the magnons in the presence of Gaussian phase-noise is predicted [173].  

6.1 Magnon-Phase: An Overview 

Apart from the obvious interest from a fundamental physics perspective due to its 

direct involvement in nonlinear properties, the phase is also significant from a practical 

viewpoint, more so as the magnon-based devices become increasingly miniaturized. In 

fact, a myriad of applications that rely directly on the magnon phase have been proposed 

in the recent past. The magnon-based paradigm of applications -magnonics- has emerged 

as one of the promising candidates for information transfer and data-processing 

technology, with the magnon phase playing an important role in notable novel applications 

like spintronic applications, e.g., spin torque oscillators (STO) [72], spin-wave conduits for 

interconnects [7], spin-wave-based logic circuits [6], [68], [158], and spin-wave lens [70], 

etc. to name a few. 

Devices used in conventional applications like telecommunication, radar, etc., for 
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example, magnetics-based FSLs, Signal to Noise ratio Enhancers (SNEs), phase shifters, 

etc. [2, 18] that rely on the nonlinear absorption of microwave signals are invariably 

affected by the magnon phase. Often working in noisy radio-frequency (RF) environments, 

these devices have to process/reject noisy signals impinging on them. However, magnon 

phase-noise is rarely given any consideration in the design of such applications, and noise 

studies are often at the circuit level and phenomenological in approach [146]. However, as 

the demand for miniaturization grows, magnon phase-based nonlinear aspects and thereby 

the phase-noise itself will have increasingly significant roles to play.  

 

A. Phase-noise Sources 

Phase noise has multiple sources; while the traditional magnet-based RF devices 

that operate in high-noise environments are likely to encounter temporal phase-noise, 

newer magnonics applications employing smaller volumes of magnetic materials are also 

likely to be affected by process variations that result in spatial phase-noise. Effective spatial 

phase-noise in parametric processes may be attributed collectively to the presence of 

inhomogeneities, local impurities [26], [159], domains [160]-[163], etc. In addition, the 

process of generation of the input microwave/spin-polarized current and the process of 

amplification of spin-waves can add temporal phase-noise into the magnetic system. Apart 

from the external sources, the distribution of k-vectors, that is unavoidable owing to the 

nonlinear nature of microwave excitation. can lead to potential decoherence of spin waves 

intrinsically [164].  However, this is usually neglected in nonlinear studies [51], [54,] and 

often, assumptions of a single dominant mode are made.  
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Studies of noise in the past are largely based on thermal noise where phase noise is 

often considered only in terms of macro-spin models and as a by-product of thermal-noise 

in the context of specific applications, e.g., STO [165]-[171]. A direct study of the phase-

noise is, hence, timely. In this work, we present a more general and fundamental treatment 

of the consequences of phase noise, which is applicable across multiple magnon-based 

nonlinear applications.  We verify the analytic conclusions from our studies with GPU-

based micromagnetic simulations that allow the phase to be directly accessed, manipulated, 

and analyzed.  

 

6.2 Consequences of Phase-noise 

A. Analytical theory  

In this section, I develop a theory for understanding the consequences of phase-

noise, specifically on the threshold field and the growth rate of magnons. While the former 

determines the beginning of nonlinearity, the latter controls the transient response and 

hence the response time of the magnetic sample to external microwave excitation.  

A.1. Magnon growth  

A parallel-pump based microwave-excitation configuration is used wherein both 

the DC magnetic field and the microwave pump signal, ℎ𝑐𝑜𝑠(𝜔𝑝𝑡) (microwave field 

intensity, ℎ𝑟𝑓 = ℎ and 𝜔𝑝 is the angular pump frequency), are applied parallel to each 

other.  The set-up schematic is shown in Fig. 5.1(a).  As noted in Chapter 3, when the 

strength of the microwave field intensity exceeds a certain threshold (ℎ = ℎ𝑡ℎ), nonlinear 
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processes are initiated in the magnetic material wherein magnons are excited due to the 

absorption of photons. In our case, it is the three-particle scattering process that leads to 

the selective growth of the magnons. To understand the magnon growth process 

analytically, we start with the Landau-Lifshitz equation (Eqn. 3.1): 

 
𝑑�⃗⃗� 

𝑑𝑡
= −𝛾[𝑀 × 𝐻] (6.1) 

Where, H is the effective magnetic field, and M is the magnetization vector.  We can write, 

using Eq. 3.25 (Chapter 3), the equation of motion for magnetization in terms of magnon 

operators: 

 
𝑑𝑏𝑘

𝑑𝑡
− 𝑖𝜔𝑘𝑏𝑘 = −𝑖ℎ𝑉𝑘𝑏−𝑘

∗ cos(𝜔𝑝𝑡) (6.2)                                                                                                              

𝑉𝑘 (≡ 2𝜇𝑘𝜆𝑘𝛾) is the coupling factor between the microwave and the dominant magnon 

mode. Note that Eq. (6.1) ignores the phenomenological damping that is usually added to 

the Landau-Lifshitz equation to account for the losses. We introduce to the microwave-

phase a Gaussian temporal phase-noise, �̃� of zero-mean and standard deviation, 𝜎: 

 
𝑑𝑏𝑘

𝑑𝑡
= 𝑖𝜔𝑘𝑏𝑘 − 𝑖ℎ𝑉𝑘𝑏−𝑘

∗ cos(𝜔𝑝𝑡 + �̃�) (6.3) 

A.2   Method of scales 

Next, we use the method of scales [26] to gain insights into the equation of 

dynamics (Eq. (6.3)). We start by making the following definitions: 𝛿 ≡ |𝜔𝑘 −
𝜔𝑝

2
| such 

that, 𝛿 ≡ 𝜖Δ and 𝑇 ≡ 𝜖𝑡, where 𝛿 represents the detuning of the dominant spin-wave 

frequency from half the pump-frequency and T represents a smaller time-scale that would 

be useful in obtaining the amplitude equation of the magnon mode; 𝜖 represents a small 

parameter (𝜖 ≪ 1). Also, under normal pumping conditions, ℎ𝑉𝑘 ≪ 𝜔𝑘, 𝜔𝑝 so that we can 
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define ℎ𝑉𝑘 ≡ 𝜖 𝜔𝑝𝐹, such that F is proportional to the input excitation.  

In view of the above definitions, we have 
𝑑

𝑑𝑡
=

𝜕

𝜕𝑡
+ 𝜖

𝜕

𝜕𝑇
. We make an ansatz that 

𝑏𝑘 has the following perturbation expansion: 

𝑏𝑘 = 𝑢0(𝑡, 𝑇) + 𝜖𝑢1(𝑡, 𝑇) + ⋯ (6.4) 

  

wherein, 𝑢1, can be interpreted as a higher harmonic correction to the principal term, 𝑢0. 

We can write up to order 𝜖1: 

 
𝑑𝑏𝑘

𝑑𝑡
=
𝜕𝑢0

𝜕𝑡
+ 𝜖 (

𝜕𝑢0

𝜕𝑇
+
𝜕𝑢1

𝜕𝑡
)  (6.5) 

The right-hand side of Eq. (6.2), evaluates to: 

𝑑𝑏𝑘

𝑑𝑡
= 𝑖

𝜔𝑝

2
𝑢0 +  𝜖 (𝑖

𝜔𝑝

2
𝑢1 + 𝑖Δ𝑢0 − 𝑖𝜔𝑝𝐹𝑢0

∗ cos(𝜔𝑝𝑡 + �̃�)) + 𝑂(𝜖
2) (6.6) 

Using Eqs. (6.5) and (6.6) above, the equation of 𝑢0: 
𝜕𝑢0

𝜕𝑡
− 𝑖

𝜔𝑝

2
𝑢0 = 0 or ℒ. 𝑢0 = 0 where  

ℒ ≡ (
𝜕

𝜕𝑡
− 𝑖

𝜔𝑝

2
), has a plane-wave solution:  

 𝑢0(𝑡, 𝑇) = 𝐴(𝑇)𝑒
𝑖
𝜔𝑝

2
𝑡
 (6.7) 

with A(T) being the complex amplitude of  𝑢0. At the next order 𝜖1, we have 

 ℒ. 𝑢1 = −
𝜕𝑢0

𝜕𝑡
+ 𝑖Δ𝑢0 − 𝑖𝜔𝑝 𝐹𝑢0

∗ cos(𝜔𝑝𝑡 + �̃�) (6.8) 

Using Eq. (6.7) above, we have Eq. (6.8) as: 

 ℒ. 𝑢1 = [−
𝑑𝐴(𝑇)

𝑑𝑇
+ 𝑖ΔA(T) −  𝑖

𝜔𝑝

2
𝐹𝐴∗(𝑇) < 𝑒�̃� >] 𝑒𝑖

𝜔𝑝

2
𝑡
 

 −[− 𝑖
𝜔𝑝

2
𝐹𝐴∗(𝑇) < 𝑒�̃� >] 𝑒−𝑖

3𝜔𝑝

2
𝑡
  (6.9) 

Note that 𝑒𝑖
𝜔𝑝

2
𝑡 is a solution of the homogeneous equation: ℒ. 𝑢1 = 0. Therefore, if in (6.9), 
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𝑒𝑖
𝜔𝑝

2
𝑡  has non-zero coefficients, it would lead to solutions of 𝑢1(𝑡, 𝑇) that are secular in t, 

which would eventually diverge, leading to 𝑢1 exceeding 𝑢0. We avoid the secularity by 

suppressing the resonant term [172], i.e., by requiring that 𝐴(𝑇) satisfies the following: 

 −
𝑑𝐴(𝑇)

𝑑𝑇
+ 𝑖ΔA(T) −  𝑖

𝜔𝑝

2
𝐹𝐴∗(𝑇) < 𝑒�̃� >= 0 (6.10) 

Finally, using the property of Gaussian functions < 𝑒�̃� > =  𝑒−
𝜎2

2 , we have the amplitude 

equation:  

 
𝑑𝐴(𝑇)

𝑑𝑇
= (Γ + 𝑖Δ)A(T) −  𝑖

𝜔𝑝

2
𝐹𝐴∗(𝑇)𝑒− 

𝜎2

2   (6.11) 

Since ℎ ∝ 𝐹, this implies ℎ𝑡ℎ𝑛 ∝ ℎ𝑡ℎ0𝑒
𝜎2

2 , where ℎ𝑡ℎ0 and ℎ𝑡ℎ𝑛  represent the threshold 

field intensities in the absence and presence of phase-noise, respectively. In Eq. (6.11), Γ 

is a phenomenological loss parameter. Hence, as far as the nonlinear behavior is concerned, 

in the presence of a temporal Gaussian phase-noise, the threshold-field depends 

exponentially on the noise variance. Another important result is the dependence of the 

slope of the growth rate (𝑔𝑟) w.r.t the microwave intensity (ℎ). It is deducible using Eq. 

(6.11) that 
𝑑𝑔𝑟𝑛

𝑑ℎ
=
𝑑𝑔𝑟0

𝑑ℎ
𝑒−

𝜎2

2 . While the threshold is an important parameter, especially for 

conventional applications, as discussed earlier, the growth rate plays a crucial role in the 

transient-state dynamics. 

 

B. Simulation Results and Discussions 

The simulations employed a parallel pump configuration, as discussed earlier; the 

geometry, discretization, and other conditions were the same as in Chapter 5, with bias 
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field of 𝐻𝑑.𝑐 = 200 Oe, microwave pump frequency of  
𝜔𝑝

2𝜋
= 6 GHz and damping constant 

𝛼 = 0.0007. The simulation conditions are such that the 3-magnon scattering dominates. 

Fig. 6.1 illustrates the exponential growth of 3 GHz magnons for pumping slightly above 

the microwave threshold-field for a pump frequency of 6 GHz and a bias-field of 200 Oe. 

This growth eventually saturates due to the phase-mismatch between the photons and the 

magnons. The phase-match, sin(𝜓𝑝 − 𝜓𝑚), between the dominant magnon phase, 𝜓𝑚, and 

the pump microwave phase, 𝜓𝑝, controls the energy transferred from the microwave to the 

magnons. However, 4-magnon interactions amongst the exponentially growing 3 GHz 

magnons can cause sin(𝜓𝑝 − 𝜓𝑚) to differ from 1, reducing the coupling and eventually 

Fig. 6.1. Number of magnons, N, resolved in frequency for a pump-frequency of 6 GHz at 2.8 Oe and a 

bias-field of 200 Oe. 𝜓𝑝 and 𝜓𝑚 are the phases of the microwave pump and the dominant magnon mode, 

respectively.  An exponential rise in numbers occurs only for magnons with frequency, 
𝜔𝑘

2𝜋
= 3𝐺𝐻𝑧, i.e., 

half the pump frequency while the other magnons with 
𝜔𝑘

2𝜋
≠ 3𝐺𝐻𝑧 remain close to their thermal 

equilibrium numbers. (Source: [173]) 
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resulting in magnon growth saturation [110]. (Some interesting results on such processes 

will be discussed in Chapter 7.) As the pump phase is deterministic and constant, it is the 

magnon-phase that plays a key role in this process. The phase-mismatch mechanism is 

intrinsic; nevertheless, it points to the important role of the magnon phase in governing the 

nonlinear behavior of the magnetic system.  As mentioned earlier, the simulation results in 

Fig. 6.1 show the selective excitation of the 𝜔𝑘/2𝜋 = 3 𝐺𝐻𝑧 mode while the rest of the 

modes (thermally generated and shown as a colored band in Fig. 6.1 with 𝜔𝑘/2𝜋 ≠ 3 𝐺𝐻𝑧 

hardly shown any increase. 

As discussed earlier, however, the phase mismatch can also be extrinsically induced 

by phase-noise, 𝜙(𝑡). In line with the theory developed in the previous section, we study 

the effects of Gaussian phase noise on the magnetic system. Compared to the mean, it is 

the standard deviation, 𝜎, of the phase-noise, 𝜙(𝑡), that has a dominant impact on the 

nonlinear behavior of the system; this has been verified in the simulations as well. 

Fig. 6.2.  Selective property of parametric pumping. When a 6 GHz microwave signal is employed in the 

presence of phase-noise with zero mean and standard deviation of 80∘, there occurs noise-rejection at 

frequencies other than 6 GHz in the absorption. (a), (b) represent the Fourier transform of the microwave 

input signal and the longitudinal component of magnetization (𝑚𝑧) respectively.  A microwave field of 

7.5 Oe is used. (Source: [173]) 
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Consequently, we set the mean of the phase-noise to zero and vary the 𝜎. In Fig. 6.2, we 

plot the Fourier transform of the spatially averaged longitudinal component, 𝑚𝑧, and that 

of the noisy microwave signal with a mean of 0 and 𝜎 = 80°.  It can be observed, as 

indicated earlier, that the selective nature of parametric resonance largely amplifies only 

the 6 GHz component of 𝑚𝑧. (Note that 𝑚𝑧 oscillates at twice the frequency of 𝑚𝑦 (or 𝑚𝑥) 

[Chapter 1, Section 1.5].) It is observed, however, that the threshold field increased from 

2.7 Oe in the absence of phase-noise to 6.6 Oe in its presence 

The modified threshold-fields can be obtained from the x-intercepts of the growth 

rate (of the magnons) versus the microwave-field plots, as shown in Fig. 6.3. The growth 

rate for the various simulation conditions can, in turn, be determined from the slope of the 

logarithmic plots of the magnon number against time, e.g., using data for t < 2500 ns in 

Fig. 6.1.  (Beyond a standard deviation of  ~100° for the phase noise, the threshold field 

becomes unreasonably high.) Physically, one can see this behavior to be a consequence of 

the direct relationship between the phases of the external excitation agency and the 

magnons. As mentioned earlier, threshold-field plays an important role in governing the 

nonlinear behavior of the magnetic material [11], [18], [115], [147].  

The other important inference from Fig. 6.3 is the reduction in the slope of the 

growth rate (
𝑑𝑔𝑟𝑛

𝑑ℎ
) of the magnons with an increase in 𝜎, as was also deduced from the 

analytical equations earlier. This is proportional to the coupling factor, 𝑉𝑘 (using Eq. (6.2)) 

and thereby determines the energy coupling from the microwave into the magnetic 

material. The threshold field increment and the decrement in the slope of the growth rate 

as obtained from the simulation and theory are shown in Fig. 6.4. The growth rate is a 
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crucial quantity involved in the determination of the response time of the magnetic system. 

It constitutes part of the transient state duration before the magnon growth is limited by 

higher-order processes (phase-mismatch mechanism), as shown in Fig. 6.1. The 
𝑑𝑔𝑟𝑛

𝑑ℎ
 and 

hence, 𝑉𝑘, plays an especially important role in the mechanics of ferromagnet-based 

microwave cavity experiments [9], [174], [175]. The impact of the phase noise on 
𝑑𝑔𝑟𝑛

𝑑ℎ
 is 

non-trivial, since, in our earlier parametric studies (Fig. 5.7(a)), performed in the presence 

of an additional secondary frequency, we did not observe such an effect, although we did 

predict and demonstrate an increase in the threshold field.  These results are important for 

Fig. 6.3. Growth rate of magnons vs. the primary r.f field intensity for various phase-noise standard 

deviations. ‘T’ refers to temporal noise, ‘S’ to spatial noise. The black solid lines with hollow symbols 

correspond to temporal noise, while the red dotted lines with filled symbols correspond to spatial noise. 

The quantity in degrees indicates the standard deviation, 𝜎, of the phase noise. Source: [173]. 
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both the traditional and novel classes of applications discussed earlier since device 

performance characteristics often strongly depend on threshold-field as well as the 

transient-time. This is evident, e.g., in the ongoing efforts to miniaturize nonlinear 

magnetic RF device - FSL, especially for autonomous automobile applications [2].  

We also computed, using our simulation system, the shift in the threshold field in 

the presence of Gaussian spatial phase noise 𝜙(𝑥), where 𝑥 represents the spatial location 

𝑥 in the magnetic sample. Mathematically, we can consider the effective microwave-field 

at the location 𝑥: ℎ(𝑥) = ℎ cos (𝜔𝑝𝑡 + 𝜙(𝑥)).  The simulation results are nearly identical 

to the curves obtained using the temporal noise (Fig. 6.3).  As before, the mean of spatial 

phase noise is kept zero in all the cases.  Hence, it is interesting that the threshold-field 

Fig. 6.4. Comparison of simulated data and theoretical prediction of threshold-fields and the slope of 

growth rate,
𝑑𝑔𝑟

𝑑ℎ
 w.r.t microwave field intensity. Source: [173]. 
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shift and the slope-reduction effect caused by the spatial noise turn out to be nearly identical 

to that in the case of temporal noise. This points to the importance of process variations 

and microstructural quality in the production of magnetic samples.  

 

6. 3 Conclusions 

To summarize this work: a new way of understanding the consequences of phase 

noise is presented. The methodology described helps us to gain new insights into the 

behavior of magnons under phase-noise. The results are general and are independent of the 

mode of pumping (parallel or perpendicular) and the magnetic material (applies to 

insulators, e.g., YIG as well as metals, e.g., NiFe). In fact, the results could be used to 

understand the nonlinear properties of other parametric systems that involve three-particle 

processes.  

It is observed that both the threshold-field intensity and the growth rate of magnons 

scale exponentially with the variance of the effective phase-noise in the system. Moreover, 

both the spatial and temporal variance can contribute to the changes in the nonlinear 

properties. It should be stated that noise need not necessarily be a nuisance, but it can make 

possible system behavior that does not exist in the absence of noise. For example, from the 

results, it can be noted that the threshold field can be deterministically increased by adding 

phase-noise into the magnetic system.  Clearly, a proper understanding of the consequences 

of magnon phase-noise is not just interesting from a physical perspective for revealing new 

phenomena but also crucial from an application perspective in order to elicit desired 

functionalities in magnon-based devices.  
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Chapter 7 Higher-Order Scattering Processes 

The research discussed in chapters until now focused mainly on the details of three-

particle processes wherein two magnons are created at the expense of an absorbed photon. 

As the pumping continues, more and more magnons are created. Eventually, these magnons 

start to interact amongst each other via secondary four-magnon interactions. Since such 

processes represent interactions amongst the parametrically excited magnons, they can be 

considered to be due to higher-order terms in the perturbative expansion of the energy 

Hamiltonian that were ignored in the previous treatment. Such 4-magnon processes have 

been attributed to limiting the further growth of the magnons. In this chapter, I discuss the 

mathematical underpinnings of such processes and, using simulations, demonstrate some 

of the interesting higher-order phenomena, including microwave-induced hysteresis. 

Susceptibilities are also obtained using micromagnetic simulations and compared with the 

analytical model. The role of nonlinear damping in the amplitude limitation of magnons is 

highlighted. I have also demonstrated nonlinear negative damping in the magnetic system 

using simulations [176].  

 

7.1 Theory of Higher-Order Nonlinearities  

In order to understand higher-order nonlinear processes, I begin the study by 

considering the Hamiltonian of the magnetic system, which for the case of parallel-

pumping of ferromagnets can be written as [110]: 

 ℋ = ∑ 𝜔𝑘𝑏𝑘𝑏𝑘
∗

𝑘 + {
1

2
∑ ℎ𝑉𝑘𝑏𝑘

∗𝑏−𝑘
∗

𝑘 cos(𝜔𝑝𝑡) + c. c} + ℌ𝑖𝑛𝑡 (7.1) 
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where the complex numbers 𝑏𝑘’s are the classical analogs of Bose-operators introduced in 

Chapter 3, and c.c represents complex conjugate. Let the energy due to microwave 

pumping be represented by ℋ𝑝 ≡
1

2
∑ ℎ𝑉𝑘𝑏𝑘

∗𝑏−𝑘
∗

𝑘 cos(𝜔𝑝𝑡) + c. c. In Eq. 7.1, the first term 

gives the dispersion relation, while the second corresponds to the energy which gets 

coupled from the applied microwave or RF field into the magnetic system. In my earlier 

treatment, the higher-order interaction term of the Hamiltonian, ℌ𝑖𝑛𝑡, was ignored. As long 

as the pump power from the microwave is close to the threshold, this approximation is 

largely accurate; however, at higher microwave powers, the higher-order correction cannot 

be ignored without incurring non-trivial inaccuracies. 

To study the resulting higher-order nonlinear effects, one must consider the 

contributions from, ℌ𝑖𝑛𝑡. It has been shown in the earlier chapters that the parallel RF 

pumping can directly excite magnons (or parametric spin-waves) such that both the energy 

and momentum are conserved: 𝜔𝑝 = 𝜔𝑘 + 𝜔−𝑘, where 𝜔𝑝 is the energy of the photon 

while 𝜔𝑘 and, 𝜔−𝑘 refer to that of the spin-waves (of wave-vector k and -k respectively), 

such that 𝜔𝑘 = 𝜔−𝑘 =
𝜔𝑝

2
 (provided such half energy states are allowed by the dispersion-

relation). Since all the excited magnons have energies close to 
𝜔𝑝

2
, we can as an 

approximation at the next-order, retain in the interaction Hamiltonian only the terms 

involving 4-magnon processes. These processes are governed by the following 

conservation considerations:   

 𝜔𝑘1 + 𝜔𝑘2 = 𝜔𝑘3 + 𝜔𝑘4 with 𝑘1 + 𝑘2 = 𝑘3 + 𝑘4  (7.2) 
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It has been shown in the past [110] (also pointed out in Fig. 2.11) that the significant 4-

magnon interactions are of form 2↔2 as above, i.e., 2-magnons interacting to produce 2-

other magnons. Other 4-magnon processes of the form 1↔3 are usually such that they 

cannot satisfy the energy-momentum conservation for the available states. In accordance 

with the nonlinear pair-interactions theory of  [110], [177], [178], the interaction 

Hamiltonian, ℌ𝑖𝑛𝑡. can be written as: 

 ℌ𝑖𝑛𝑡. = ∑ 𝕋(𝑘1, 𝑘2;  𝑘3, 𝑘4)𝑏𝑘1
∗

𝑘1,𝑘2,𝑘3,𝑘4 𝑏𝑘2
∗ 𝑏𝑘3𝑏𝑘4Δ(𝑘1 + 𝑘2 − 𝑘3 − 𝑘4) (7.3) 

where 𝕋 is the four-magnon interaction factor; 𝑏𝑘 = |𝑏𝑘|𝑒
−𝑖𝜙𝑘  is the complex-amplitude 

of the spin-wave; Ψ𝑘 ≡ 𝜙𝑘 + 𝜙−𝑘 represents the total phase of the interacting pair of 

magnons.  

By keeping only those parts that are diagonal w.r.t wave pairs, Eq. 7.2 can be 

written as [110]: 

 ℌ𝑖𝑛𝑡. = ∑ (𝑇𝑘𝑘′𝑘,𝑘′ 𝑏𝑘𝑏𝑘
∗𝑏𝑘′𝑏𝑘′

∗ +
1

2
𝑆𝑘𝑘′𝑏𝑘𝑏𝑘′

∗ 𝑏−𝑘𝑏−𝑘′
∗ ) (7.4) 

where 𝑇𝑘𝑘′ ≡ (𝑘, 𝑘
′; 𝑘, 𝑘′) and 𝑆𝑘𝑘′ ≡ (𝑘,−𝑘; 𝑘

′, −𝑘′). In terms of slow variables, 𝑐𝑘 =

𝑏𝑘𝑒
−𝑖𝜔𝑝𝑡/2, the equation of motion (Eqn. 7.1): 

 
𝜕𝑐𝑘

𝜕𝑡
+ (𝜂𝑘 + 𝑖�̃�𝑘)𝑐𝑘 = −𝑖𝑃𝑘𝑐−𝑘

∗   (7.5) 

where �̃�𝑘 = 𝜔𝑘 − 𝜔𝑝/2 + 2∑ 𝑇𝑘𝑘′𝑐𝑘′𝑐𝑘′
∗

𝑘′  and 𝑃𝑘 = ℎ𝑉𝑘 + ∑ 𝑆𝑘𝑘′𝑐𝑘′𝑐𝑘′
∗

𝑘′ . (In the 

absence of factors 𝑇𝑘𝑘′  and 𝑆𝑘𝑘′, we recover Eq. 3.27 with �̃�𝑘 = 𝜔𝑘 and 𝑃𝑘 = ℎ𝑉𝑘) The 

factor 𝜂𝑘 represents the relaxation rate of the spin-wave mode with wave-vector, k. 

Next, let us look at the energy that gets pumped into the magnon system from the 

RF signal: 
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 𝑊 =
𝜕ℋ𝑝

𝜕𝑡
= 𝑖𝜔𝑝(ℎ𝑉𝑘𝑐𝑘𝑐−𝑘

∗ − 𝑐. 𝑐) = ℎ𝑉𝑘|𝑐𝑘|
2 sin(Ψ𝑝 −Ψ𝑘) (7.6) 

For maximum energy transfer, this implies, sin(Ψ𝑝 −Ψ𝑘) = 1 or Ψ𝑝 −Ψ𝑘 =
𝜋

2
. (We have 

already seen the implications of this in Fig 6.1, where the modification of sin(Ψ𝑝 −Ψ𝑘) 

away from 1 lead to the saturation of the magnon numbers. While in Fig. 5.6(b), it was the 

secondary microwave frequency that caused sin(Ψ𝑝 −Ψ𝑘) to be different from 1, making 

it harder for the nonlinearity to occur.) 

Let us define correlation functions [110], 𝑛𝑘 ≡< 𝑐𝑘𝑐𝑘
∗ >= |𝑐𝑘|

2 and 𝜎𝑘 ≡<

𝑐𝑘𝑐−𝑘 > whereby 𝜎𝑘 = 𝑛𝑘exp (𝑖Ψ𝑘). 𝑛𝑘 can be interpreted as the number of magnons. As 

seen earlier, for a given bias field, when the RF field exceeds the threshold (ℎ𝑡ℎ) parametric 

magnons are excited. On the resonance surface where such parametric excitation occurs, 

for not so high excesses in the RF power above the threshold [110]: ℎ𝑉𝑘 sin(Ψ𝑘) = 𝜂𝑘 and 

ℎ𝑉𝑘 cos(Ψ𝑘) = −𝑆𝑁 (N is the number of magnons) from which:  

 𝑁 =
√ℎ2𝑉𝑘

2−𝜂𝑘
2

|𝑆|
  (7.7) 

where, 𝑁 = ∑ 𝑛𝑘𝑘 .  

The 4-magnon interactions can cause the angular difference between the pump and 

magnon-pair phases to be different from 𝜋/2, leading to amplitude limitation. This is 

characterized by 4-magnon interaction parameter, S, which can be seen as a measure of 

phase-mismatch-dependent amplitude-limitation. 
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There exists yet another mechanism that can bring about the amplitude limitation 

of spin waves- nonlinear damping [45], [58], [179]. In general, the magnon number 

dependent damping can be approximated as: 

       𝜂𝑘 = 𝜂𝑘
0 + ∫𝜇𝑘𝑘′𝑛𝑘′𝑑𝑘

′  (7.8) 

where 𝜂𝑘
0 is the linear damping, and 𝜇𝑘𝑘′  is the damping coefficient. The equation above 

suggests that an increase in the number of magnons can result in an increase in the effective 

relaxation rate of the magnetic system. Intrinsic sources of such damping can be the various 

scattering processes within the magnetic material, e.g., three-magnon processes such as 

confluence (two magnons combine to produce a different magnon) and splitting (a magnon 

splits into two different magnons) [180], [181]. As the number of magnons increase, the 

effective damping is altered. For small excesses above the RF field threshold (ℎ𝑡ℎ), 

assuming narrow wave-packets, i.e., a dominant spin-wave mode, we can write (by 

suppressing wave-vector, k) 𝜂 = 𝜂0 + 𝜇𝑁, so that: 

 𝑁 =
𝜂0

|𝑆|

−𝜉+√𝑝(𝜉2+1)−1

𝜉2+1
 (7.9) 

where, 𝑝 = (
ℎ

ℎ𝑡ℎ
)
2

[For ℎ > ℎ𝑡ℎ , p is a measure of the overdrive beyond threshold]; 𝜉 =
𝜇

|𝑆|
, 

i.e., the ratio of the nonlinear factor: 𝜇 and the four-magnon correlation factor, S. The 

energy entering the magnetic system from the RF field (seen in Eq. 7.6) can also be written 

as: 𝑊 =
𝜕ℋ𝑝

𝜕𝑡
=
1

2
𝜔𝑝𝜒

′′ℎ2, from which we can obtain 𝜒′′(𝜔) = −
2

ℎ
∑ Im(𝑉𝑘

∗𝜎𝑘)𝑘  giving: 

 𝜒′′ =
2𝑉2

|𝑆|
[
𝑝𝜉(𝜉2+1)+(1−𝜉2)√𝑝(𝜉2+1)−1−2𝜉

𝑝(𝜉2+1)2
] (7.10) 
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7.2. Number of Magnons and Magnetic Susceptibility 

Simulations are performed for bias fields of 200 Oe and 540 Oe, with a microwave 

excitation of 6 GHz, using the 2D micromagnetic solver discussed in Chapter 4. The 

simulations employed the same parallel configuration as before with parameters:  𝑀𝑠 =

145 
𝑒𝑚𝑢

𝑐𝑚3
, 𝐴𝑒𝑥 = 3.77 × 10

−7 𝑒𝑟𝑔𝑠

𝑐𝑚
 and the intrinsic damping factor, 𝛼 = 7 × 10−3. The 

higher damping is chosen to keep the simulation run times reasonable as these studies 

investigate the steady-state behavior of the system and lower the damping the longer it 

takes to attain the steady-state.  

At first, I compute the number of magnons in the steady-state for a 6 GHz pump 

near the threshold for two cases of bias-fields: 200 Oe and 500 Oe. Fig. 7.1 shows the 

behavior of the magnon number, (𝑁) and imaginary part of the susceptibility ( 𝜒′′) w.r.t 

to the microwave field intensity. As can be seen, the characteristics of the simulated data  

Fig. 7.1. (a) Total number of magnons evaluated during the steady state for a pump frequency of 6 GHz 

at 200 Oe and 540 Oe at various RF intensities above the threshold. Theoretical curves use Eq. (7.9) with 

𝜉 = 𝜇/|𝑆| =+0.25 and -0.3 for 200 Oe and 540 Oe respectively. Numbers have been normalized w.r.t 

corresponding values at 𝜒′′ = 𝜒′′
𝑚𝑎𝑥

. (b) Magnetic susceptibility, 𝜒′′ vs. ℎ/ℎ
𝑡ℎ

 for an RF frequency of 6 

GHz at 200 Oe and 540 Oe. Same 𝜉 values as in (a) are used for the theoretical plots in (b), which uses 

Eq. (7.10). (Source:[176]) 
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are well captured by the theoretical model with 𝜉 = 𝜇/|𝑆| =+0.25 and -0.3 for 200 Oe and 

540 Oe, respectively. More importantly, for a given bias field, the same numerical value of 

𝜉 captures the behavior of both N and 𝜒′′. Note that the developed theoretical model 

accurately predicts the abrupt initial jump in 𝜒′′ in the case of 540 Oe. It is observed that 

the abruptness of the jump could not be reduced by weakening the RF power. At 200 Oe, 

the increase in 𝜒′′ is relatively gradual. The position of the maximum in 𝜒′′ is also well 

predicted by the theory.  

 

7.3 Hysteresis 

Fig. 7.2. Effect of switching the RF field from a super-critical (h > ℎ𝑡ℎ) value to a value below the threshold 

for 200 Oe, and 540 Oe. The RF field is turned on at 100 ns in all cases. Pumping is below threshold 

(h/ℎ𝑡ℎ<1) with bias-fields (i) 200 Oe and (ii) 540 Oe. (Curves (i) and (ii) are nearly coincident.) Between 

100 ns and 700 ns the pumping is allowed to exceed the corresponding threshold in cases (iii) and (iv) 

with bias fields 200 Oe and 540 Oe, respectively. (Source: [176]) 
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An interesting case of nonlinear damping occurs when the factor 𝜉 is negative (or 

equivalently the factor 𝜇 in Eq. 7.8 is negative). At 540 Oe, for the 6 GHz pump used, we 

demonstrate in Fig. 7.2 that reducing the RF power at 700 ns to a value lower than the 

threshold does not take the longitudinal component of magnetization, 𝑀𝑧, back to 

saturation (Fig. 7.2 (iv)). Instead, 𝑀𝑧 settles around 0.87 𝑀𝑆, with 𝜒′′ = 7.48 × 10−5 from 

its value of ~10−12 otherwise. However, at 200 Oe, such a reduction in RF power, to 

howsoever small a value below the threshold, always returns 𝑀𝑧 to saturation (Fig. 7.2(iii)).  

In other words, an unexpected hysteresis is exhibited in Fig. 7.2(iv) but not in Fig. 7.2(iii), 

both of which have the same lowering of 𝑀𝑧 in the time-range 𝕀 (=100ns < t < 700ns). 

When the simulations were performed for similar 𝜒′′ in 𝕀, yet again, the bistability was 

found only for 540 Oe.  

 The results in Fig. 7.2 (iv) can be interpreted in terms of the nonlinear damping theory 

with a negative value of 𝜉 = −0.3 at 540 Oe. The effective negative damping means that 

the magnons created (before 700 ns) do not undergo the same relaxation as those created 

in the case of 200 Oe. Since a reduction in 𝑀𝑧 corresponds to the number of magnons 

present, this also means the possibility of two different magnon numbers for the same RF 

intensity, i.e., the availability of bistability at 540 Oe. 

 The negative nonlinear damping is attributed to three-magnon confluence 

processes [179]. Next, I would like to recount a theoretical explanation for the above 

observation based on [58], [182]. A parametrically excited spin-wave with wave-vector, 𝑘, 

can combine with a thermal spin-wave with wave-vector,𝑘1, to produce a 𝑘2 spin-wave, 
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i.e.,  𝑘 + 𝑘1 = 𝑘2 (wave-vector conservation) and 𝜔𝑘 + 𝜔𝑘1 = 𝜔𝑘2(energy-conservation). 

The relaxation contribution from the confluence, 𝜂𝑘
𝑐 : 

 𝜂𝑘
𝑐 ∝ ∫(𝑛𝑘1 − 𝑛𝑘2)𝛿(𝑘 + 𝑘1 − 𝑘2) × 𝛿(𝜔𝑘 +𝜔𝑘1 − 𝜔𝑘2)𝑑𝑘1𝑑𝑘2     (7.10) 

where 𝑛𝑘1 , 𝑛𝑘2 represent the number of thermal magnons with wave-vectors: 𝑘1, 𝑘2,  

respectively. In general, near thermal equilibrium, the relaxation due to confluence 

processes, 𝜂𝑘
𝑐,𝑒𝑞 = 𝛽(𝑛𝑘1 − 𝑛𝑘2) with a proportionality constant, 𝛽. The difference is such 

that this leads to a positive relaxation. Under the parametric pumping, however, the 

confluence processes increase the number of  𝑘2 spin-waves and reduce the 𝑘1 spin-waves, 

thereby reducing the difference (𝑛𝑘1 − 𝑛𝑘2). Hence, there are two competing processes: 

(1) confluence involving parametric magnons trying to reduce the difference and (2) 

thermal relaxation, which tries to maintain the equilibrium number of magnons. One can 

set up the following rate equations: �̇�𝑘1 = −𝜂𝑘1(𝑛𝑘1 − 𝑛𝑘1) − 𝜂𝑘
𝑐𝑛𝑘 and �̇�𝑘2 =

−𝜂𝑘2(𝑛𝑘2 − �̅�𝑘2) + 𝜂𝑘
𝑐𝑛𝑘.  In equilibrium, i.e., �̇�𝑘1 = �̇�𝑘2 = 0, for 𝛽/[

𝜂𝑘
𝑐

𝜂𝑘1
+

𝜂𝑘
𝑐

𝜂𝑘2
] ≪ 1 we 

recover: 𝜂𝑘
𝑐 = 𝜂𝑘

0 − 𝜇𝑘𝑛𝑘; in the case of a dominant mode, we simply have 𝜇𝑘 = 𝜇 =

𝜂𝑘
0𝛽 (

1

𝜂𝑘1
+

1

𝜂𝑘2
).  

Hysteresis is an interesting effect both from the viewpoint of physics and 

applications as it can be used to enable bistable states. It is interesting to note that the 

thermal magnons have an important role to play in such phenomena through 3-magnon 

scattering processes. This underscores the importance of thermal magnons as they can 

affect the higher-order scattering processes apart from acting as a source of background 

noise. In the light of these discussions, from a computational perspective, it becomes 
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imperative to consider the effective-magnetic field due to thermal fluctuations accurately. 

It must be pointed out, however, that a direct demonstration of such theoretical 

considerations remains to be carried out (experimentally or computationally). 

 

7.4 Conclusions 

The non-zero value of 𝜉 is suggestive of the importance of the phase-mismatch 

mechanism and nonlinear damping in magnon interactions above the microwave threshold. 

The higher the microwave power beyond the threshold, the higher is the importance of the 

two processes. It has been shown that the two processes can significantly influence 

magnetic susceptibility, often the quantity of interest for many of the magnetics-based 

applications. In addition, the role played by the negative nonlinear damping in bringing 

about hysteresis effects has been demonstrated. The unconventional hysteresis effects 

based on parametric processes can be useful for enabling dynamic bistability. The results 

discussed in the chapter, although rather short, provide crucial insights into higher-order 

magnonic processes, where few studies have been performed historically. These help to 

advance the understanding of the magnon mechanics for precision magnonic devices.  The 

theoretical results are in excellent agreement with the predictions from simulations. In this 

chapter, only a limited study involving higher-order has been performed. There remain a 

lot of interesting and useful phenomena to be explored, especially regarding the confluence 

and splitting of magnons and their potential applications. Additional factors contributing 

to relaxation also remain to be investigated. The temperature dependence of hysteresis 

would be another potentially useful study for the future. 
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Chapter 8 Heat Assisted Bit Patterned Shingled Recording 
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As mentioned in Chapter 1, magnetic recording can be considered as an application 

that involves the interaction of magnetic-material with high-frequency electromagnetic 

fields [103]. The goal of such an interaction is to locally switch the magnetization in the 

material - a highly nonlinear process. The process of switching the magnetization is called 

writing the media. The primary difference from the studies in the previous chapters lies in 

the strength of the magnetic field. The write fields involved in recording can be a few 

thousands of Oe as opposed to a few Oe (or even sub-Oe) in the case of microwave-based 

excitation. In parametric pump studies discussed earlier, the magnetic material remained 

largely saturated; consequently, the microwave fields were treated as perturbations (e.g., 

Eq. 7.1). However, now the magnetic fields are high enough to switch the magnetization 

and, therefore, involve extremely high nonlinearities. The other major difference from the 

previous chapters lies in the material used. While the microwave-based studies employed 

YIG- an insulator with low anisotropy, magnetic recording employs the alloy iron platinum 

(FePt) that is metallic and has relatively high anisotropy. The high anisotropy helps in 

stabilizing the magnetization of the dots of the bit patterned media (BPM) against thermal 

fluctuations. This is important since it is the dots of the BPM that represent a bit. 

Magnetic recording continues to be the prominent means of data storage, especially 

when high storage capacities are needed. The exponentially growing demand for data 

storage in the digital age has continuously pushed the magnetic-recording research frontiers 

towards higher data densities. State-of-the-art hard disks employing Heat Assisted 

Magnetic Recording (HAMR) carry a miniature laser to enable data writing while helping 

achieve higher data densities. Apart from such novel techniques, new storage media and/or 
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schemes are also being explored to make the hard disks competitive compared to solid-

state-based technologies. Important in this context is the BPM, in which dots or islands of 

magnetic material are used to store information. BPM, as opposed to the continuous media, 

has shown the capability of offering high data densities exceeding 5 Tbpsi (Terabits per 

square inch) when used with HAMR [183]-[186]. Such schemes can be employed to 

increase the storage capacity in the band write/overwrite schemes of recording like 

shingled recording. In this article, I study and design a shingled writing scheme for BPM 

to improve writability and Bit Error Rate (BER). Shingled magnetic recording refers to a 

scheme of recording where the newly written tracks overlap part of the previously written 

tracks, allowing for higher data density.   

In this chapter, I investigate the writing of dots that are not directly under the laser 

pulse. Such a shifted scheme of writing allows higher densities when used with shingled 

recording. A further increase in the recording density can be obtained by using composite 

structures, comprising a super-paramagnetic writing layer and a (doped) FePt storage layer. 

Effect of head velocity, Curie-temperature variation, track mis-registration, and dot-

position jitter on the standard deviation of switching distribution are studied to evaluate the 

designs that offer data densities as high as ~16 Tbpsi. 

8.1 Methodology 

The goal here is to design and optimize shingled BPM, which uses HAMR. The 

basic layout of BPM is shown in Fig. 8.1. A near field transducer (NFT) is used to optically 

heat the recording layer of the media. The dots are arranged along the cross- and down- 
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track directions, as shown in Fig. 8.1 (b).  The optical head heats up local regions of the 

recording region, momentarily reducing their anisotropy. A sufficiently strong magnetic 

field is then applied to the heated dot as it cools down using a write-head (not shown in 

Fig. 8.1), in order to change its magnetization. The simulation of the recording process, 

hence, can be thought to be comprised of three steps:  

(1) Determination of the optical power input to the recording layer from the NFT.  

(2) Calculation of temperature across the recording stack that comprises a recording 

layer, an insulator, and a heat sink.  

(3) Determination of the state of the target bit or dot using atomistic and 

renormalization simulations. Temperature, as determined from Step 2 along with 

an applied magnetic field, is used to study the switching probability of the dot. 

 

 

Fig. 8.1. Schematic of Bit Patterned Media (BPM). (a) Side view showing the recording stack comprising 

various layers. A near field transducer (NFT) flown above the recording layer provides the optical heat 

pulse. (b) Top view showing the arrangement of magnetic dots along cross-track and down-track 

directions. 
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8.2 Temperature Profile Evaluation 

A. Optical power calculation 

The optical energy is transferred from the NFT to a small spot on the recording 

media. The resulting power absorption in the media is evaluated by employing Finite 

Difference Time Domain (FDTD) calculations as described in [187]. Maxwell’s equations 

are solved to predict the propagation of electromagnetic waves. Different components of 

the HAMR system are comprised of different optical properties increasing the 

computational complexity. A lollipop near-field-transducer (NFT) is flown above the 

storage media at a velocity of 20 m/s. The waveguide consists of 𝑇𝑎2𝑂5 core (refractive 

index = 2.15) wrapped by 𝐴𝑙2𝑂3  cladding (refractive index =1.65). The lollipop, made up 

of Gold (Au), is at a distance of 20 nm from the waveguide. The radius of the lollipop is 

100 nm with the peg dimensions of 20 nm along the down-track and 24 nm along the cross-

track, at the air bearing surface (ABS). The fly height is 7.5 nm.  

 

B. Heat Equation 

The heat equation with due consideration to thermal boundary resistance (TBR) 

was then solved to calculate the heat profile ([91], [188], [189]) of various dots of interest. 

The heat Fourier equation, shown in Eq. 8.1, describes the heat dissipation and temperature 

change with time:  

 
𝜕𝑇

𝜕𝑡
= 𝐷∇2𝑇 +

𝑃

𝑐
 (8.1) 

where D (=𝜅/𝑐) is the diffusion coefficient, κ is thermal conductivity, and c is the specific 
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heat capacity. The power absorption, P, is obtained from FDTD simulations. As mentioned 

earlier, the recording stack comprises multiple layers. Effective thermal conductivity is 

accordingly considered at each interface to account for the interfacial effect and thermal 

boundary resistance: 

 
1

𝜅𝑒
=
1

2
(
1

𝜅1
+

1

𝜅2
) +

𝑇𝐵𝑅

𝑑
  (8.2) 

 in which 𝜅1 and 𝜅2 are the thermal conductivity of the two materials that form the 

interface, and d is the thickness of the interface. 

 

8.3 LLG-based Simulations 

The second part of the investigation involves magnetic simulations to study 

switching probability distribution when a magnetic field is switched at different times as 

the head moves over the media. At first, I use atomistic simulations to determine the 

magnetization state of the dot. Similar to the approach taken in earlier works, atomic spin 

evolution is modeled using the LLG ([188], [190]). The dimensions of the dots involved in 

BPM are so small (a few nm) that these can be considered to be largely single domain 

particles. The magnetic fields of importance are the exchange, anisotropy, and thermal 

fields; the weaker dipolar fields are ignored in the interest of computational simplicity. 

BPM is often studied using atomistic simulations that provide a more rigorous treatment 

of the short-range exchange fields by using realistic exchange constants [191], [192]. For 

FePt, five different exchange constants are used [193].  

In addition to the atomistic simulations, I also make use of renormalization 

simulations. These simulations try to capture the magnetization state near the Curie 
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temperature using renormalization theory [194] (Nobel prize, 1982). Although the theory 

strictly applies only at the Curie temperature, we assume it to be applicable in a temperature 

range around the Curie temperature. The usual LLG based micromagnetic models for 

HAMR are based on assumptions that are too simplified to capture the magnetization 

dynamics, especially at temperatures close to 𝑇𝐶, where long-range correlations can 

develop in the magnetic material.  In the renormalization simulations, the system is divided 

into multiple blocks, and for each block, I assign renormalized parameters for anisotropy, 

exchange constant, damping constant, etc. Such simulations have been shown to accurately 

predict the behavior of the magnetic system at high temperatures [195, 196]. 

 

8.4 Offset Shingled Writing 

In this work, I use an offset shingled scheme [103], wherein the target track, i.e., 

the track being written, is offset w.r.t the laser. Traditionally, one would write the track 

directly beneath the laser beam; however, using an offset track can allow higher data 

densities. In Fig. 8.2, the traditional writing scheme is shown by the laser-pulse (in red) 

with the smaller peak temperature, wherein it is the on-track dot (directly beneath the laser) 

that gets written. In the new scheme, I employ a different laser pulse – with a higher peak 

but the same full width at half maxima (FWHM) (in blue) as the former laser pulse, to write 

an offset track (in red). The idea is to arrange the offset track at a position where the 

temperature gradient is the highest. This would ensure the highest difference in temperature 

between the adjacent dots, thus reducing adjacent track erasure (ATE) – a form of noise 

wherein inadvertent writing occurs on the adjacent tracks.  
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Using a laser beam, which is offset by a distance X-peak with respect to the dot 

being written, as shown in Fig. 8.2, allows one to make use of the higher temperature 

differences that appear between consecutive cross-tracks. The design problem, in this case, 

aims to find the optimum track pitch (Xtrack-pitch) for an optical pulse of given FWHM such 

that the temperature difference between the track desired to be written and the previously 

written adjacent track is enough to ensure a sufficiently small ATE. Further, Bit Aspect 

Ratio (BAR, i.e., the aspect ratios of the dot) optimization was done to increase the areal 

storage density. It is evident that the higher the temperature, the closer the tracks can be 

placed. However, keeping in mind the practical limitations, the highest temperature used 

in this study is limited to 775 K.  

 

8.5 Media Designs 

Fig. 8.2. An offset X-peak between the heat-pulse and desired dot  allows the dots to be placed closer 

together compared to the zero offset case. (Source: [103]) 
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In the next section, possible media designs are explored. At first, I consider the 

recording layer to be composed of single-layered FePt dots. Thereafter, a composite 

recording layer with two layers – a magnetically soft layer to aid switching and a 

magnetically hard storage layer, is studied. 

A. FePt Media 

A three-layered media comprising a 12 nm FePt (storage layer), 16.5 nm MgO 

(insulator) and 30 nm of Au (heat sink) is considered (as in Fig. 8.1). The thermal 

conductivities used are 50, 6 and 200 W/mK, along with specific heat capacities of 3, 2 and 

3 MJ/mK, respectively for the three layers [197]. Dimensions of the bits are 10.5 nm 

(down-track) x 4.5 nm (cross-track) with 6 nm x 3 nm dots. A TBR of 10−8 𝑚2K/W is 

used. The moving head is centered on the track. The evaluated temperature profile for five 

adjacent tracks along with that of the on-track, is shown in Fig. 8.3(a).  

Two parameters, as described in prior work [188], are of importance in the BPM 

write process analysis: On-Track bit error rate (BER) and adjacent track BER. On-track 

BER is determined by using an error-function fit to the switching probability distribution 

as given in [198]. Note that the probability of error is given by: 

 𝑃(𝐸) = ∫ 𝑝(𝑡)𝑑𝑡
−𝑡𝑤
2
+∆

−∞
+ ∫ 𝑝(𝑡)𝑑𝑡 

∞
𝑡𝑤
2
+∆

=  
1

2
[𝑒𝑟𝑓𝑐 (

𝑡𝑤
2
−∆

𝜎𝑡√2
) +  𝑒𝑟𝑓𝑐 (

𝑡𝑤
2
+∆

𝜎𝑡√2
)] (8.3) 

where ∆ denotes the jitter in the position of the dot along the down-track direction. Initially, 

I assume no jitter (∆= 0) for the designs. 𝑡𝑤 represents the writing window (obtained as 

the ratio of bit length and head velocity) and 𝜎𝑡 is the standard deviation of the switching 
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distribution. P(E) represents the probability of error or the on-track BER. For a maximum 

BER of 10−3, the critical (maximum) value of standard deviation,  𝜎𝑐, equals 0.079 ns. 

       Adjacent track erasure is often studied by considering the magnetic decay ratio 𝜂−1 of 

a dot of volume V: 

 𝜂−1 = 𝑓0𝜏 exp [−
𝐾(𝑇)𝑉

𝐾𝐵𝑇
(1 −

𝐻𝑎

𝐻𝑘(𝑇)
)
3

2] (8.4) 

𝐾𝐵 = 1.38 𝑥10
−16 𝑒𝑟𝑔𝑠/𝐾, T = temperature in K. In Eq. (8.4) 𝑓0 and 𝜏 are the exposure 

time and attempt frequency, respectively. K is the anisotropy,  𝐻𝑎 is the applied field and 

Fig. 8.3. (a) Temperature profile for FePt dots [Bit dimensions 10.5 nm(down-track) x 4.5 nm(cross-

track)] (b) Error function (Red curve) fitted to the switching probability, which upon differentiation 

yields SFD (blue dotted curve) of 0.069 ns. (Source: [103]) 

 

(a) 

(b) 
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𝐻𝑘 is the anisotropy field. Even for our most stressful condition that represents a successful 

system (temperatures of ~750 K and applied field of 12 kOe), the adjacent track BER was 

found to be less than ~3𝑥10−6. 

I chose adjacent-track 2 (AT2) (shown in Fig. 8.3) as the target track because the 

highest difference in temperature exists between AT2 and AT3. This difference helps to 

prevent over-write of previously written tracks. However, note that this approach sacrifices 

the down track thermal gradient that affects the linear density of the system, thus negating 

part of the gain.  For an applied field of 12 kOe and an on-track peak temperature of 750K, 

𝜎𝑡 = 0.069 ns as shown in Fig. 8.3(b) with 0% variation in Tc [as has been done in ([199], 

Fig. 8.4. (a) Temperature profile for composite media dots [Bit dimensions 9 nm(down-track) x 4.5 

nm(cross-track)]. (b) Error function fit to the switching probability raw data for applied field Ha=8 kOe, 

10 kOe and 12 kOe. (Source: [103]) 

 

(a) 

(b) 
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[200])]. Near zero switching probability at the adjacent tracks ensures sufficiently low 

adjacent-track BER. The temperature difference at the peak between AT2 and AT3, as seen 

from the figure, is approximately 20 K/nm.  Allowing 3% variation in critical temperature 

(Tc) increases the standard deviation of SFD to 0.079 ns while offering an areal density of 

~14 Tbpsi. 

Also, it can be noted from Fig. 8.3 that except for the bit directly under the laser, 

the peak temperature for none of the adjacent tracks exceeds the known Curie temperature 

(~𝑇𝑐 =710 K). However, these bits do switch when magnetic fields switch at appropriate 

times. This effect has been observed in earlier works on BPM [190]. The bit reversal 

Fig. 8.5. (a) Temperature evolution of composite media dots of dimensions 6 nm (down-track) x 3 nm 

(cross-track) with a head velocity of 10m/s. (b) Corresponding Switching distribution for applied fields 

Ha = 8 kOe, 10 kOe, 12 kOe. Also shown is the non-zero switching probability at Ha=12 kOe for the 

third adjacent track. (Source: [103]) 

 

(a) 

(b) 
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governed by exp (-∆𝜀/𝐾𝐵𝑇) depends on ∆𝜀 (the energy barrier between external-field-

dependent favorable and un-favorable orientations). Hence, under-heated (< 𝑇𝑐 ) switching 

is explained by a reduction in anisotropy at high temperatures. 

 

B. Composite Media 

Composite media uses a superparamagnetic writing layer (corresponding 

parameters denoted by a subscript wl) and a FePt storage layer (parameters denoted by a 

subscript sl) [91].  I use the following atomistic values at 0 K: 𝐾𝑠𝑙=7e7 𝑒𝑟𝑔𝑠/𝑐𝑚3, 

𝑀𝑠𝑙=1100 𝑒𝑚𝑢/𝑐𝑚3, 𝐾𝑤𝑙=11e6 𝑒𝑟𝑔𝑠/𝑐𝑚3, 𝑀𝑤𝑙=620 𝑒𝑚𝑢/𝑐𝑚3, 𝑇𝑐,𝑤𝑙=900 K and 

𝑇𝑐,𝑠𝑙=710 K. The exchange constants are assumed to obey:    𝐽𝑤𝑙= (𝐽𝑠𝑙)*( 𝑇𝑐,𝑤𝑙/𝑇𝑐,𝑠𝑙). 

Temperature profile calculations and atomistic simulations are done as before in order to 

obtain the switching profiles. The temperature evolution for a peak temperature of 750 K 

is as shown in Fig 8.4. A design with an aspect ratio similar to that with FePt gives the 

standard deviation of SFD as 0.057 ns with 0%Tc variation and 0.063 ns with 3%Tc 

variation.  I now place the bits closer together with bit size of 9 nm (down-track) x 4.5 nm 

(cross-track) and dot size of 6 nm (down--track) x 3 nm (cross-track) x 9 nm (depth), other 

layers remaining the same. For a peak on-track temperature of 750K, application of 12 kOe 

gives standard deviation of 0.05 ns that increases to 0.061 ns when a 3% variation in Tc is 

allowed. The results are presented in Table 8.1. The DC noise is excluded to ~8 x10−3  as 

only 125 simulations were performed for each configuration. Any designs that suffered 

from DC noise beyond the transition region have been marked not good. I have also 
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excluded the designs which showed non-zero switching probability in the nearest adjacent 

track (adjacent track 3). 

 Next, the effect of velocity (30 m/s and 10 m/s) on the standard deviation of SFD 

is studied. The temperature evolution for the two cases for the same distance covered by 

the head on the media is as shown in Fig. 8.5 and Fig. 8.6, respectively. Note that 𝜎𝑐 takes 

on new values 0.045 ns and 0.135 ns with velocities of 30 m/s and 10 m/s, respectively. 

For 10 m/s, peak OTT of 750 K was found to cause overwriting of the adjacent 

track. Hence a lower peak temperature of 700 K was used. Even though 12 kOe gives a 

better standard deviation, it results in adjacent track erasure, owing to the increased time 

interval in which the adjacent bits are heated. Use of 8 kOe instead of 12 kOe, hence, is 

found to be more viable at a head velocity of 10 m/s. Results for both velocities are shown 

in Table 8.1. 

Head-velocity → 

 Magnetic field 

↓ 

v=10 m/s 

𝜎𝑐 = 0.135 

(700 K) 

v=20 m/s 

𝜎𝑐 = 0.068 

(750 K) 

v=30 m/s 

𝜎𝑐 = 0.045 

(750 K) 

8 kOe 0.112* (0.125) 0.083** 0.066 

10 kOe 0.082** 0.058** 0.047 

12 kOe 0.068**(0.080) 0.051*(0.061) 0.031*(0.045) 

Table 8.1: Details of simulation results (standard deviation,𝜎) for different velocities, on-track peak 

temperatures and applied fields. Values within brackets show 𝜎 allowing 3% variation in Tc (for cases in 

which 𝜎 (0% 𝜎𝑇𝑐) < 𝜎𝑐). Source: [103]. * Designs which met the BER criteria with no DC noise beyond the 

transition region. **Designs that met the BER criteria but showed DC noise beyond the transition region.  

***Design with adjacent track erasure issues.  
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The computationally expensive nature of atomistic simulations prevents one from 

performing a large number of simulations. Renormalization calculations were subsequently 

performed to look at the same. This technique relies on LLG similar to atomistic  

 

simulations; however, the dynamics considered here are of block-spins as opposed to 

atomistic spins. The block size considered is 1.5 nm x 1.5 nm x 1.5 nm. Temperature-

dependent parameters like saturation magnetization, anisotropy energy, damping 

parameter, and exchange parameters were obtained from previous studies [85]. At least 

Fig. 8.6. (a) Temperature evolution of composite media dots of dimensions 6 nm (down-track) x 3 nm 

(cross-track) with a head velocity of 30 m/s, respectively. (b) Corresponding Switching distribution for 

applied fields Ha = 8 kOe, 10 kOe, 12 kOe. (Source: [103]) 

(a) 

(b) 



151 
 

1000 renormalized simulations were performed for each data point.  

As shown in Table 8.2, renormalized results agree well with the earlier results 

obtained using atomistic simulations; this ensures BER of less than 10−3. Next, the effect 

of Track Mis-Registration (TMR) is studied. The laser peak, which was centered on-track 

is now displaced and standard deviations were evaluated. More simulations with higher 

absolute displacements as in the third row of Table 8.2 were performed. It was found that 

TMR with a standard deviation of up to 7% is admissible while keeping the BER below 

10−3. Finally, I studied the effect of jitter with respect to the positioning of the dots in the 

down-track direction. BERs evaluated using Eq. (8.3) were 0.91 × 10−3, 0.98 × 10−3 and 

0.84 × 10−3 for the velocities 10 m/s, 20 m/s and 30 m/s, respectively. Calculations 

corresponded to the three cases mentioned in Table 8.2 (renormalized) and were performed 

using position jitters within a standard deviation of 7% of the bitlength.  

 

Simulation 

v=10 m/s 

Peak OTT = 700 K 

Ha= 8 kOe 

𝜎𝑐 = 0.135 

v=20 m/s 

Peak OTT = 750 K 

Ha= 10 kOe 

𝜎𝑐 = 0.068 

v=30 m/s 

Peak OTT = 750 K 

Ha= 12 kOe 

𝜎𝑐 = 0.045 

Atomistic 0.112(0.125) 0.051(0.061) 0.031(0.045) 

Renormalized 0.102(0.119) 0.049(0.059) 0.029(0.039) 

TMR(%) 0.123(0.131) 0.059(0.062) 0.033(0.045) 

Table 8.2   Standard deviations calculated from atomistic and renormalization simulations (v=head 

velocity, OTT=on track temperature, Ha=Applied field. Values within brackets show standard deviation 

allowing 3% variation in Tc). Source: [103]. 
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8.6 Conclusions 

It has been demonstrated through simulations that shingled writing with bit 

patterned HAMR can substantially increase storage capacity relative to conventional 

shingled and to non-shingled HAMR ([183], [201]) (both on BPM). The desired bits herein 

switch at temperatures lower than the Curie temperature because of reduced anisotropy. 

Bits of size 9 nm x 4.5 nm with dots of area 6 nm x 3 nm allow a significant increase in 

density to ~16 Tbpsi. The design is demonstrated to tolerate both TMR and position jitter. 

The designed density is theoretically the highest data density demonstrated to be possible 

with due consideration of noise sources like jitter and track mis-registration. Successful 

realization of BPM, however, would involve overcoming a number of practical challenges. 

Media fabrication with a track pitch of < 10 nm, would pose a great challenge [202], [85]. 

In addition, tracking would be another issue that needs to be addressed before data densities 

as designed herein could be achieved in practice. But nevertheless, the study points out the 

immense capability of heated dot magnetic recording in achieving extremely high data 

densities. 
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Chapter 9 Summary 

 

In this final chapter, I would like to summarize the main conclusions of the 

research. A state-of-the-art micromagnetics tool has been developed, which allows us to 

explore the impact of magnon-based nonlinearity. Abstract parametric processes like the 

three- and four-particle processes have been demonstrated, and their impact on microwave 

absorption is understood in the context of frequency-selective limiters. It is found that the 

strength of the microwave should exceed a certain threshold before such processes can be 

triggered. External and material properties like intrinsic damping, film thickness, 

microwave field strength, bias field strength, etc., can be used to tailor nonlinear 

interactions and thereby the desired nonlinear functionality.  

A secondary signal near the relaxation rate of the magnetic system is highly 

efficient in increasing the threshold field.  This can also be seen as the modulation of the 

magnonic phase such that the coupling between the microwave and the dominant magnon 

is reduced. The significance of the magnon phase in nonlinear processes was demonstrated. 

Further studies on magnon-phase noise revealed that Gaussian noise leads to an 

exponential increase in the threshold field. The growth rate of magnons, however, 

experiences an exponential decrease. It was shown through simulations that spatial and 

temporal Gaussian phase noises have the same effect on the threshold field. These results 

can be useful for applications that involve nonlinear processes, as the magnon-phase is 

found to have a crucial role in such interactions.  
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Heat-assisted bit patterned media optimization was performed using atomistic and 

renormalization simulations. A realistic calculation of the optical power incident on the 

media was performed. Temperature profiles of the dots in the media were determined by 

solving the heat equation and switching probabilities were calculated using micromagnetic 

simulations. It was shown that a 9 nm × 4.5 nm bit with a dot size of 6 nm × 3 nm would 

allow an areal density of ~16 Tbpsi under jitter and track misregistration of up to 7%. The 

design is for shingled heat-assisted bit-patterned media. Such high densities show the 

immense capabilities of magnetic recording in enabling high-density data storage. 
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