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Abstract 

Psychosis proneness has been linked to heightened Openness to Experience and to 

cognitive deficits. Openness and psychotic disorders are associated with the default and 

frontoparietal networks, and the latter network is also robustly associated with 

intelligence. We tested the hypothesis that functional connectivity of the default and 

frontoparietal networks is a neural correlate of the openness-psychoticism dimension. 

Participants in the Human Connectome Project (N = 1003) completed measures of 

psychoticism, openness, and intelligence. Resting state functional magnetic resonance 

imaging was used to identify intrinsic connectivity networks. Structural equation 

modeling revealed relations among personality, intelligence, and network coherence. 

Psychoticism, openness, and especially their shared variance, were related positively to 

default network coherence and negatively to frontoparietal coherence. These associations 

remained after controlling for intelligence. Intelligence was positively related to 

frontoparietal coherence. Research suggests psychoticism and openness are linked in part 

through their association with connectivity in networks involving experiential simulation 

and cognitive control. We propose a model of psychosis risk that highlights roles of the 

default and frontoparietal networks. Findings echo research on functional connectivity in 

psychosis patients, suggesting shared mechanisms across the personality-

psychopathology continuum. 
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Functional Brain Networks and the Openness-Psychosis Continuum 

Psychosis refers to a set of symptoms marked by loss of contact with reality, 

which are present in a range of disorders, most prominently schizophrenia. Schizophrenia 

symptoms can be divided into positive (hallucinations and delusions), negative 

(anhedonia and social withdrawal), and disorganized (confused thought, speech, and 

behavior) clusters1,2. In addition to studying psychosis in its severe manifestations, one 

can also study symptoms in the general population. Psychotic-like experiences 

(hallucinations and delusions) occur throughout the general population, even in the 

absence of disorder, and are distributed dimensionally3,4. Persistent psychotic-like 

characteristics, in the absence of severe mental illness, are often described as schizotypy, 

which has been conceptualized as part of schizophrenia’s extended phenotype5. 

Schizotypy can also be divided into positive, negative, and disorganized traits. Positive 

schizotypy presents a promising phenotype for studying mechanisms of risk for psychosis 

and has been referred to as psychoticism6. (This construct should not be confused with 

Eysenck’s Psychoticism, a misleadingly named trait reflecting impulsive nonconformity, 

low agreeableness, and low conscientiousness, but not psychosis proneness7,8.) 

Advantages of studying psychoticism include sampling a broader range of the variables 

of interest, greater capacity of the target population to participate, and fewer confounds 

stemming from comorbidity and medications. 

Studying normal personality traits in relation to psychoticism can give us a fuller 

picture of mechanisms and risk factors for psychosis. One promising approach integrates 

psychoticism with the Five Factor Model or Big Five, a well-established, empirically 
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based model describing personality in terms of Extraversion, Neuroticism, 

Agreeableness, Conscientiousness, and Openness/Intellect9. Major dimensions of risk for 

psychopathology correspond structurally and conceptually to the Big Five, suggesting 

that mental disorders typically involve extreme and maladaptive forms of normal 

personality traits10,11. Psychoticism has historically been the psychopathology dimension 

most difficult to locate within the Big Five12,13,14,15,16, but recent research demonstrates 

that this is due to differential associations with the subfactors of Openness/Intellect. 

Psychoticism is specifically associated with openness but unrelated or even negatively 

related to intellect17,18,19. Though often also positively related to Neuroticism, 

psychoticism loads onto a separate factor with openness, especially when measured 

separately from intellect20,21,22,23. Openness encompasses artistic and aesthetic interests, 

fantasy proneness, and individual differences in perceptual engagement, whereas Intellect 

reflects intellectual confidence and engagement with abstract or semantic information and 

is positively associated with IQ18,19. The positive association between psychoticism and 

openness may arise from the fact that both involve sensitivity of pattern detection, with 

features like unusual perceptual experiences and magical ideation representing a tendency 

toward false positives, also known as “apophenia”18,24,25. As a maladaptive form of 

openness, apophenia (and hence psychoticism) reflects “openness to implausible 

patterns”18. Although evidence is beginning to emerge that the neurocognitive 

mechanisms of psychosis risk overlap with those of openness24,25, further research is 

critical. In the current work, we investigated patterns of functional connectivity 

associated with psychoticism and openness.  
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A substantial literature relates psychotic symptoms to abnormal patterns of 

structural and functional connectivity26,27. Whereas structural connectivity refers to the 

state of the brain’s white matter pathways, functional connectivity refers to patterns of 

temporal synchrony among brain regions28,29,30. Measuring patterns of functional 

connectivity in concert with clinical or subclinical assessments may provide a useful 

mechanistic approach for understanding both full-blown psychosis and psychosis risk 

throughout the population.  

Many studies examining functional connectivity in the psychosis spectrum report 

atypical connectivity in the default network (DN). Central hubs of the DN are in medial 

prefrontal cortex and posterior cingulate cortex, with additional nodes in the 

hippocampus and the parietal and temporal cortices31. The DN is involved in many 

cognitive operations, including episodic memory, future-directed thought, and 

understanding the mental states of others—in short, anything that requires simulation of 

experience rather than attention to sensory input. Increased connectivity and activity of 

the DN has been observed in schizophrenia and in people at high risk for psychosis, in 

resting-state designs32,33,34,35,36,37 and tasks36,38,39,40. Other studies, however, have reported 

decreased DN connectivity in psychosis41,42,43. Nonetheless, comprehensive reviews 

suggest that a majority of studies report increased connectivity44.  

Importantly, the relation of schizophrenia to DN connectivity appears to be 

specifically linked to positive symptoms36,38. Relatives of those with schizophrenia show 

increased DN connectivity33, which is also seen among individuals who report higher 

levels of mind-wandering45 and creativity46,47. Perhaps not surprisingly, then, DN 
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connectivity is also positively related to multiple facets of openness, even after 

controlling for intelligence25,48,49. This positive association has been found for global 

efficiency and connectivity of the DN25,48,49, but more specifically with connectivity in its 

core subsystem, consisting of posterior cingulate and medial prefrontal cortex49,50. 

Although the DN is perhaps the most studied network in relation to psychosis and 

openness, portions of the network originally conceptualized as its counterpart—the task 

positive network—have also been investigated. One neural network is particularly 

associated with cognitive control and intelligence and is known as the frontoparietal 

control network (FPCN). The FPCN has primary nodes in dorsolateral prefrontal cortex, 

lateral parietal cortex, and dorsal anterior cingulate cortex, appears to be responsible for 

voluntary control of attention, and exhibits reduced connectivity in psychosis51. A more 

substantial literature has linked psychosis to disrupted function of the dorsolateral 

prefrontal cortex52,53,54. Intelligence shows positive relations to FPCN connectivity55,56 

and prominent frameworks for conceptualizing the neural basis of intelligence, such as 

Parieto-Frontal Integration Theory, underscore the importance of the FPCN57. Though 

intellect has been linked to greater performance-related activity in the FPCN58, possible 

relations with openness remain unclear.   

When studying the neural correlates of traits involved in risk for disorder, it is 

important to consider intelligence, so as to ensure patterns of connectivity are not merely 

corresponding to broader deficits25. Low intelligence is a common risk factor for 

psychopathology, including psychosis59,60. As noted above, psychoticism also tends to be 

weakly inversely associated with intelligence and specific cognitive domains (e.g., social 
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cognition, attention, and working memory) 18,19,61,62,63,64,65,66,67. Working memory, the 

ability to manipulate information in short-term memory, is thought to be a core 

mechanism underlying intelligence, a theory supported both by their strong correlation 

and shared neural correlates68,69. In the current research, we examined whether the neural 

correlates of intelligence were related to those of psychoticism and openness.  

A large number of studies have identified the DN and FPCN as implicated in 

psychosis. Other research has connected psychoticism to openness, but few studies have 

investigated psychoticism and normal-range personality together with their neural 

correlates. The current study examined functional networks associated with psychoticism, 

openness, and intelligence, using resting state fMRI data from the Human Connectome 

Project (HCP). We hypothesized that psychoticism and openness would be associated 

positively with DN coherence and negatively with FPCN coherence. Further, we 

anticipated intelligence would be positively associated with FPCN coherence.  

Methods  

Participants 

Our sample included 1003 participants (534 females), from the HCP, between 

ages 22 and 37 (M = 28.7, SD = 3.7). Participants completed self-report measures and 

underwent four resting state fMRI scans (for one-hour total scan time). Exclusion criteria 

included a history of severe psychiatric, neurological, or medical disorders. However, 

participants were not excluded on the basis of mild psychopathology. Given population 

estimates, 15-20% of participants would likely warrant a DSM-5 diagnosis70. Informed 

consent was obtained71, and study protocols were approved by the Institutional Review 
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Board of Washington University in St. Louis (IRB # 201204036; “Mapping the Human 

Connectome: Structure, Function, and Heritability”).  

Self-report Measures 

 NEO Five-Factor Inventory (NEO-FFI)72. The NEO-FFI is a measure of the Big 

Five. It consists of 60 items taken from the longer NEO Personality Inventory, Revised 

(NEO PI-R)72 and uses a five-point Likert scale. The NEO-FFI does not include subscales 

for openness and intellect; in order to create an openness aspect scale, correlations of 

items from the NEO-FFI Openness to Experience scale were examined in relation to 

openness and intellect from the Big Five Aspect Scales (BFAS)73. Previous work has 

been done to extract a similar openness aspect scale using the full NEO PI-R, based on 

item-associations with BFAS in three samples74; this latter scale has been used in 

previous research examining relations of openness and intellect with psychoticism17. 

Items from this NEO PI-R openness scale that are also included in the NEO-FFI were 

selected to create our FFI openness scale. Items included “Sometimes when I am reading 

poetry or looking at a work of art, I feel a chill or wave of excitement,” “I am intrigued 

by the patterns I find in art and nature,” “I don't like to waste my time daydreaming 

(reversed),” and “Poetry has little or no effect on me (reversed).” In the current research, 

validation was done using the Eugene Springfield Community Sample, where all items in 

our FFI openness scale had a correlation with BFAS openness greater than .30 and this 

correlation was at least .15 greater than for Intellect. There was a very strong positive 

correlation between latent variables indicated by FFI and BFAS openness items (r = 1.0, 
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p < .001), and the latent correlation between FFI openness and BFAS intellect was 

significantly smaller (r = .41, p = < .001). 

At the request of reviewers, who were concerned about our use of a nonstandard 

openness scale, we additionally ran all models involving openness using an Openness 

latent variable that included all 12 items from the NEO-FFI. Because the NEO-FFI 

Openness to Experience scale is tilted toward openness rather than intellect to begin with, 

this latent variable should still be informative for our hypotheses. Direction and 

significance of all effects remained the same in these analyses, indicating that our 

measurement model was not unduly influencing results.  

 Achenbach Self-Report (ASR)75. To measure psychoticism, participants were 

administered 123 items from the ASR, an instrument used to assess dimensions of 

psychopathology and uses a three-point Likert scale. Items used in the current study 

include those corresponding to psychoticism74: “I hear sounds or voices that other people 

think aren’t there,” “I see things that other people think aren’t there,” “I do things that 

other people think are strange,” and “I have thoughts that other people would think are 

strange.”  

 Despite limited breadth, these items are thought to provide an adequate measure 

of psychotic-like experiences in the general population and have previously been linked 

to increased psychosis risk, altered functional connectivity, cannabis use, and suicidal 

ideation76,77,78,79,80,81. In the current dataset, these ASR items predict family history of 

schizophrenia diagnosis (β = .15, p = < .001), social cognitive deficits, and behavioral 
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metrics of apophenia—false positive cognitions and perceptions22—above variance in 

these constructs explained by IQ.  

Intelligence Measures 

Intelligence measures were taken from two batteries: the NIH Toolbox82 and Penn 

Computerized Neurocognitive Battery83. In a Picture Vocabulary test, participants 

selected which picture from multiple-choices most closely matched the meaning of a 

presented word. In a Matrix Reasoning test, participants completed a set of visual 

patterns (matrices) using one image from a set of multiple-choice options. For a List 

Sorting working memory test, participants were required to remember and sort a list of 

items presented verbally or visually. 

Neuroimaging and Derivation of Networks 

Resting state fMRI data was collected using a 3T Siemens Skyra scanner. After 

preprocessing84, artifacts were removed using ICA+FIX85,86. Mean head movement was 

also calculated and included as a covariate, as this index can correlate with variables of 

interest87,88. Inter-participant registration of the cortex was carried out using areal feature-

based alignment and the Multimodal Surface Matching algorithm89,90. Each dataset was 

temporally demeaned and underwent variance normalization91. Data were entered into a 

Group-PCA91,92, the results of which were fed into group-ICA using FSL's 

MELODIC91,93, applying spatial-ICA at a dimensionality of 50.  

After components were derived, we examined their association with canonical 

networks, by computing percentage of overlap with networks derived by Yeo30, focusing 

on the DN and FPCN. Of note, ICA components can overlap, whereas Yeo’s maps were 
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nonoverlapping parcellations. This provides a more realistic depiction of brain 

organization, as many regions are involved in multiple networks94. Despite showing 

larger local extent due to overlap, our components were smaller than Yeo’s due to the 

higher dimensionality (50 vs. 7). Components with the highest overlap were visually 

inspected (further described in our supplement) to make sure they were centered on the 

correct networks. This yielded seven DN components (Figure 1) and five FPCN 

components (Figure 2).  

Computation of Network Coherence Variables 

After identifying networks, we used two-stage dual regression to compute 

network coherence for each ICA component, for each participant95,96. Coherence 

quantifies connectivity within each ICA component and corresponds to the average 

correlation of each voxel within a network with the time-series of that network. Previous 

studies have linked coherence to personality traits (both pathological and normal-

range)97,98,99.  

First, node-timeseries were estimated using the standard “dual-regression stage-1” 

approach, in which the full set of ICA maps were used as spatial regressors against 

participants’ full time-series data, estimating one timeseries per ICA map95. Next, in 

stage-2 dual regression, participant-specific timeseries were used as temporal regressors 

onto each participant’s resting state data. This allowed us to derive a set of participant-

specific spatial maps. Network coherence was then computed for each ICA component: 

group-level component maps (thresholded at zmax > .30) were binarized and applied as 

masks to each participant-level map96, and the mean correlation between each voxel 
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within each participant-level spatial map and the mean time-series for all voxels in that 

component was calculated for each participant, for each component, giving coherence 

values for each of our 12 components. Finally, overall coherence scores for FPCN and 

DN were computed by averaging scores from corresponding components (further 

explained in our supplement). 

Statistical Approach 

Descriptive statistics were calculated for self-report measures and intelligence. 

Variables with skewness > 2.0 (which included only the psychoticism items) were 

logarithmically transformed. Structural equation modeling (SEM) was used to assess 

relations among latent factors. In each model, corresponding items or tasks were allowed 

to load onto latent variables for Psychoticism, Openness, and Intelligence. Due to the 

semantic similarity of two psychoticism items—“I do things that other people think are 

strange” and “I have thoughts that other people would think are strange”—and their high 

degree of correlation (r = .61, p < .001), we made an a priori decision to allow their 

residuals to correlate, which significantly improved model fit (Δχ2 = 265.1, p < .001).  

SEMs with full information maximum likelihood estimation were used to test 

associations of Psychoticism, Openness, and Intelligence with DN and FPCN coherence. 

First, a model was fit to examine the relation between Openness and Psychoticism. For 

subsequent models, behavioral or self-report latent variables were used as criterion 

variables that were predicted by a set of observed variables: gender, age, head movement, 

DN coherence, and FPCN coherence. Predictors were allowed to correlate. Five models 

were created to examine effects of DN and FPCN coherence on 1) Psychoticism, 2) 
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Openness, 3) shared variance of Openness and Psychoticism, and 4) Intelligence. For the 

first three models, a second iteration was fit with latent Intelligence as a covariate. 

Finally, scatter plots were used to visualize the relations of our Openness-psychoticism 

latent variable with DN and FPCN coherence (residualized by regression on coherence of 

the other network).  

Results 

Descriptive statistics are presented in Table 1 and zero-order correlations are 

presented in Table 2. SEM fit indices are presented in Table 3 and model results are 

presented in Table 4. For all models, all manifest variables had significant loadings on 

corresponding latent variables. All models showed acceptable fit, as indicated by 

RMSEA values less than .070 and CFI values above .930. Latent Psychoticism was 

significantly positively correlated with latent Openness (r = .14, p = .005).  

In our first neural model, psychoticism was negatively related to FPCN coherence 

but positively related to DN coherence (Table 4). Similarly, DN coherence positively 

predicted and FPCN coherence negatively predicted openness (Table 4). These 

associations remained significant when controlling for intelligence. The same patterns of 

association appeared, with even stronger regression weights, when testing associations of 

coherence with shared variance of openness and psychoticism (Figures 3 and 4). Scatter 

plots showing relations of latent openness-psychoticism to residualized coherence 

variables are presented in Figures 5 and 6. Intelligence was positively associated with 

FPCN coherence but not associated with DN coherence. All regression paths from DN 
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and FPCN coherence variables to criterion variables remained significant after estimation 

using robust (Huber-White) standard errors100 and false-discovery-rate corrections101. 

Discussion 

As hypothesized, openness, psychoticism, and their shared variance were 

associated with increased DN coherence and decreased FPCN coherence. Intelligence 

showed a positive relation to FPCN coherence but no relation to DN coherence. 

Controlling for intelligence did not eliminate significant associations of coherence with 

openness and psychoticism. These findings suggest similar biological mechanisms may 

underlie psychosis-proneness across traditional risk indicators and associated normal-

range personality traits. Findings are in line with schizophrenia research, as a number of 

studies have demonstrated increased DN activity and connectivity in psychosis patients44, 

as well as decreased FPCN function51. To our knowledge, however, this is the first study 

to examine associations between network coherence, psychoticism, and openness in a 

large community sample.  

Although our results are in line with patterns of functional connectivity reported 

in the existing literature, it is worth discussing them in the context of two preliminary 

studies using HCP data76,79. Using subsamples of 229 and 468 participants, respectively, 

one study found increased visual connectivity and decreased DN connectivity among 

participants endorsing psychoticism items76, and the other found psychoticism was 

negatively associated with global efficiency of the cingulo-opercular network and DN79. 

Our finding of positive association between DN and psychoticism may at first seem 

contradictory, but several factors may account for this discrepancy. One explanation is 
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that these earlier studies did not control for variance shared among networks, which is 

likely artifactual87. Indeed, our results did not show a significant zero-order relation 

between DN coherence and psychoticism, but controlling for FPCN coherence revealed a 

significant positive association. This is an example of statistical suppression102, and it can 

be interpreted as meaning that if one examined individuals with equivalent levels of 

FPCN coherence, one would expect to find that individuals higher in openness or 

psychoticism would have higher DN coherence. Further, our use of a larger sample and 

latent variable modeling will have improved our statistical power, relative to those earlier 

studies.  

Our findings suggest that psychoticism and openness reflect heightened coherence 

in the DN but lower levels of FPCN coherence, possibly reflecting a tendency toward 

spontaneous self-generated thought coupled with reduced cognitive control. Such patterns 

are also reflected in studies showing that DN connectivity is positively related to positive 

symptoms, among patients with psychosis43. In terms of FPCN function, psychosis is not 

only linked specifically to dysfunction of prefrontal cortex, but it is also associated with 

broad cognitive deficits that have directly been tied to FPCN dysfunction103. Taken 

together, these neurocognitive associations with psychosis-proneness may suggest an 

increased default-network tendency toward erroneous thoughts and perceptions (false 

positives), coupled with diminished reality testing to screen out false positives. Future 

research including more comprehensive measurement of psychotic symptoms would be 

useful to confirm these speculations.  
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Importantly, the pattern of FPCN coherence that emerged for psychoticism and 

openness was also present, in the opposite direction, for intelligence. Given the 

prevalence of intelligence and working memory deficits in psychosis and its extended 

phenotype, it is not surprising similar patterns of connectivity would underlie these 

constructs. Mind wandering and related processes associated with openness, 

psychoticism, and the DN may directly compete with demands of intelligence and 

working memory, leading to an inverse association with FPCN coherence. Indeed, 

research suggests disrupted connectivity of the FPCN is associated with positive 

symptoms and working memory deficits among psychosis patients104. In short, impaired 

cognitive function and associated neural correlates may play an important role in the 

broader mechanisms of psychosis and its extended phenotype. 

The current study provides important novel insights into the measurement of 

neurobehavioral characteristics of the openness-psychoticism dimension, a key step in 

better characterizing possible mechanisms underlying risk factors for psychosis. Because 

psychotic symptoms are transdiagnostic features seen across a number of disorders, 

elucidating their neural mechanisms may eventually help facilitate more effective 

methods for assessment and treatment. Such an approach is in line with the National 

Institute of Mental Health’s Research Domain Criteria initiative105, the Hierarchical 

Taxonomy of Psychopathology’s conceptualization of psychiatric illness11, and a new 

theory that psychopathology is typically caused by extremity in normal personality 

mechanisms that interferes with goal-directed functioning10. Investigation of 

psychoticism, openness, and their relation to individual differences in functional brain 
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networks and cognitive symptoms is a promising avenue for continued research into the 

etiology of risk for psychosis. Of particular relevance are theories positing psychosis and 

autism as diametrical disorders, involving divergent patterns of FPCN-DN coordination 

and associated cognitive processes106,107,108.  

Limitations 

 Although the current study had multiple strengths, some limitations are worth 

noting. First, although the Achenbach Self Report is a reliable, well-established measure, 

its items measuring psychoticism are limited. Use of more extensive measures of 

psychoticism—such as the Personality Inventory for DSM-5—could allow more robust 

testing of associations with neural variables. Second, our measures of openness and 

psychoticism were self-reported and could be usefully supplemented by clinician ratings 

or peer-reports. Finally, although the current study demonstrates links between neural and 

behavioral metrics in a population without severe mental illness, we cannot tell how well 

they would generalize to clinical populations. Further research should be undertaken to 

examine the roles of functional connectivity and cognitive deficits in those with active 

psychosis.  

Conclusion 

 Current findings suggest that psychoticism and openness are linked in part through 

their association with altered connectivity in neural networks associated with experiential 

simulation and cognitive control. It is increasingly recognized that risk for psychosis is 

distributed throughout the population dimensionally and that understanding subclinical 

indicators of risk in the general population is crucial to developing better models of 
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psychosis etiology3,4,109. Assessing the coherence of intrinsic connectivity networks may 

provide a useful transdiagnostic approach to elucidating cognitive and neural mechanisms 

involved in psychosis and related phenomena. Our results advance understanding of the 

neural mechanisms of psychoticism that are shared with openness, a personality trait that 

appears to contribute specific risk for psychosis. This study adds to a growing body of 

research characterizing the underlying biology of transdiagnostic psychiatric features 

through the use of large, non-patient samples and also underscores the continuity between 

normal personality variation and risk for psychopathology.  
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Tables 
 

Table 1. Descriptive statistics for individual difference and intelligence measures 
  

Mean (SD) Skew [Minimum, Maximum] 

Openness 2.2 (0.8) 0.1 [0, 4] 

Psychoticism 0.4 (0.9) 2.5 [0, 6] 

Picture Vocab  116.6 (9.9) 0.1 [90.7, 153.1] 

List Sorting  110.9 (11.3) 0.2 [80.8, 144.5] 

Matrix Reasoning 16.7 (4.9) -0.6 [4, 24] 
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Table 2. Pearson correlations of personality, IQ, demographics, and functional coherence variables 
 

   
O-1 O-2 O-3 O-4 P-1 P-2 P-3 P-4 PMAT Vocab List Gender Age DN FPCN HM 

O-1 1.0                

O-2 .18 1.0               

O-3 .14 .40 1.0              

O-4 .12 .49 .67 1.0             

P-1 .02 .05 .06 .07 1.0            

P-2 .02 .02 .06 .07 .48 1.0           

P-3 .08 .11 .12 .16 .18 .15 1.0          

P-4 .12 .15 .12 .16 .16 .18 .61 1.0         

PMAT .14 .13 -.02 .01 -.04 -.07 -.01 .05 1.0        

Vocab .25 .19 .02 .04 -.08 -.10 -.03 .03 .50 1.0       

List .11 .10 -.04 -.04 .00 -.06 -.06 .01 .36 .34 1.0      

Gender .03 .09 -.10 -.07 .02 .02 .00 .10 .11 .14 .15 1.0     

Age -.09 -.04 -.03 -.03 -.01 -.01 -.11 -.10 -.08 -.05 .06 -.21 1.0    

DN .06 -.02 .05 .03 .03 .01 -.05 -.04 .15 .05 .08 -.10 -.30 1.0   

FPCN .09 -.04 -.01 -.03 -.02 -.04 -.08 -.04 .18 .13 .10 -.06 -.29 .85 1.0  

HM -.05 -.02 -.04 -.01 .04 -.02 .04 -.05 -.15 -.13 -.08 -.02 .14 -.26 -.33 1.0 
Notes. O 1-4 = Openness items, P1-4 = Psychoticism items, PMAT = Matrix Test, Vocab = Picture Vocabulary, List = List 
Sort, DN = Coherence of the default network, FPCN = Coherence of the frontoparietal network, HM = Head movement. 
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Table 3. Fit statistics for structural equation models 
 

Models χ2 p RMSEA 95% C.I. TLI CFI 
Model 1(Psychoticism and O) 71.2 < .001 .050 [.038, .062] .960 .974 

Model 2a (Psychoticism, DN, FPCN) 49.8 < .001 .048 [.035, .061] .962 .983 

Model 2b (Psychoticism, DN, FPCN, IQ) 131.5 < .001 .046 [.038, .055] .948 .971 

Model 3a (O, DN, FPCN) 75.5 < .001 .053 [.041, .066] .955 .979 

Model 3b (O, DN, FPCN, IQ) 244.5 < .001 .067 [.059, .075] .898 .941 

Model 4a (O-Psychoticism, DN, FPCN) 186.2 < .001 .046 [.039, .054] .947 .964 

Model 4b (O-Psychoticism, DN, FPCN, IQ) 384.7 < .001 .054 [.049, .060] .907 .934 

Model 5 (IQ, DN, FPCN) 55.7 < .001 .062 [.046, .078] .943 .980 

Notes. O = Openness, O-Psychoticism = Shared variance of Openness and Psychoticism, DN = Functional 
coherence of the default network, FPCN = Functional coherence of the frontoparietal control network. 
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Table 4. Structural equation models using aggregate DN and FPCN coherence variables 
 

 

 

 Model 1 Model 2 
Models z β p z β p 
Psychoticism       
     Gender 0.4 .01 .715 0.9 .04 .385 
     Age -2.3 -.09 .023 -2.1 -.08 .039 
     Head Movement -0.4 -.02 .681 -0.8 -.04 .422 
     DN Coherence 2.8 .25 .006 2.2 .24 .031 
     FPCN Coherence -3.6 -.32 < .001 -2.7 -.29 .007 
     Intelligence    -2.3 -.13 .021 
Openness        
     Gender -2.2 -.08 .030 -2.5 -.10 .013 
     Age -1.7 -.06 .089 -1.9 -.07 .053 
     Head Movement -1.2 -.04 .245 -0.8 -.03 .415 
     DN Coherence 2.7 .21 .008 2.7 .21 .006 
     FPCN Coherence -3.0 -.25 .003 -3.2 -.28 .001 
     Intelligence    1.9 .09 .056 
Psychoticism-Openness  
(Shared Variance) 

   
  

 

     Gender -1.4 -.10 .176 -0.6 -.07 .578 
     Age -2.3 -.20 .019 -2.3 -.20 .019 
     Head Movement -1.1 -.09 .263 -1.0 -.09 .310 
     DN Coherence 3.0 .60 .003 2.4 .61 .015 
     FPCN Coherence -3.3 -.75 .001 -2.8 -.76 .005 
     Intelligence    -0.3 -.06 .762 
Intelligence       
     Gender 5.7 .21 < .001    
     Age 2.6 .10 .010    
     Head Movement -3.4 -.14 .001    
     DN Coherence -0.8 -.07 .410    
     FPCN Coherence 3.7 .27 < .001    
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Figures 

Figure 1. Visualizations of default network components 
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Figure 2. Visualizations of frontoparietal network components 
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Figure 3. Structural equation model of Openness-psychoticism predicted by default and frontoparietal coherence 
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Figure 4. Structural equation models of Openness-psychoticism predicted by default and frontoparietal coherence and intelligence 
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Figure 5. Scatter plots of Openness-psychoticism and residualized default network coherence  
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Figure 6. Scatter plots of Openness-psychoticism and residualized frontoparietal network coherence  
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Appendix 

Network Selection  

After components were derived, we examined the association of these 

components with canonical networks established in the neuroscience literature. 

Specifically, we compared our current networks to the 7-network parcellated resting 

functional connectivity maps derived from 1000 participants by Yeo and colleagues30. To 

compare our networks with their 7-network parcellation, we calculated the percentage of 

cortical overlap of our components with their masks for the DN and FCPN. The 

components with the highest overlap as denoted by association indices (percentage 

overlap) were retained, giving us eight components corresponding with the DN and six 

components corresponding with the FPCN. Finally, visual inspection was used to 

compare HCP components to the 7-network parcellation. One identified FPCN 

component was centered directly over regions of the ventral attention network rather than 

over FPCN (despite having a higher percentage overlap with FPCN due to a broader 

extent around the central node). One of the identified DN components overlapped nearly 

equally with the DN and FPCN networks. Thus, these components were excluded from 

further analyses, leaving us with a total of five FPCN components and seven DN 

components. 

Computation of Composite Coherence (Dimension Reduction) 

In order to examine the underlying factor structure of network coherence data, 

Velicer’s Minimum Average Partial (MAP) tests were used110, conducting separate tests 
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on ICA-network coherence variables for the DN and FPCN. The MAP tests indicated 

single-factor solutions best represented the coherence variables for each of these two 

networks. Thus, composite coherence scores for the FPCN and DN were computed by 

averaging coherence scores (of the five FPCN and of the seven DN ICA network 

coherence variables, respectively), yielding composite coherence scores for the FPCN 

and DN. 

Description of the Eugene-Springfield (Openness Scale Validation Sample) 

 Participants in our scale validation sample included 481 members of the Eugene-

Springfield community sample (281 women and 200 men)111. Participants ranged in age 

from 20 to 85 years (M = 52.5, SD = 12.6). Participants completed the Big Five Aspect 

Scales (BFAS)73, as well as the full version of the NEO Personality Inventory, Revised 

(NEO PI-R)72. The NEO Five Factor Inventory, used in our main study, includes a subset 

of items from the full NEO PI-R (the questionnaire administered in this validation 

sample). Participants were recruited by mail from lists of homeowners and agreed to 

complete questionnaires, delivered by mail, for pay, over a period of many years, 

beginning in 1994.  

Scale Validation Method  

 In order to extract and validate subscales for openness and intellect from overall 

Openness to Experience scale from the NEO-FFI, we calculated the correlations of FFI 

items with both the openness and intellect scales from the BFAS. Using these individual 

correlations, a latent variable correlation was calculated to determine the association 

between shared variance of the 4 NEO-FFI openness items and the shared variance of the 
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10 items from the BFAS openness scale. A similar latent variable was computed for the 

10 BFAS Intellect items, and the latent correlation with our NEO-FFI openness scale was 

calculated, in order to demonstrate the specificity of our new openness scale as a measure 

indicating the openness aspect. 


