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Abstract

Drop impact is ubiquitous and relevant to many important natural phenomena and

industrial applications. Although the kinematics of drop impact has been extensively

studied through simulations and high-speed imaging, the understanding of drop impact

is still far from fully understood. The studies of dynamics such as the impact force and

the stress distribution of drop impact are still relatively scarce. The impact force and

the stress distribution lead to the most important consequence throughout the industrial

processes and are crucial factors to erosion on substrates or waterjet cutting. Here, we

systematically investigate the impact force and the stress distribution of drop impact

through experimental studies.

To measure the impact force of drop impact, we synchronize the high-speed camera

and the piezoelectric force sensor to obtain the temporal evolution of the impact force

and the morphology of drop impact over several orders of magnitudes of Re. We verify

the force-time scaling proposed by the self-similar theory at the high Re regime. In the

finite Re regime, we consider the effects from the viscosity of liquids and analyze the

scaling by using a perturbation method, which matches our experimental results very

well. The influence of viscoelasticity is also discussed.

To obtain the temporal evolution of the stress distribution, which has not been mea-

sured experimentally, we develop a novel technique “high-speed stress microscopy.” We

confirm the propagation of the self-similar non-central maximum pressure and shear

stress predicted by theories, and the shear force is also quantified. Moreover, we dis-

cover the impact-induced surface shock waves, which are crucial to the origin of erosion

induced by drop impact.

Furthermore, we measure the shear stress distribution of drop impact on micropat-

terned surfaces with high-speed stress microscopy. We investigate the influence of mi-

cropillars on substrates to the displacement distribution, the shear stress distribution,

and the shear force. We hypothesize that the change of shear stress distribution may

result from the formation of vortices. Finally, the results show that on the micropat-

terned surface, the maximum shear stress is suppressed, which is helpful for mitigating

erosion to substrates.
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Our studies provide the experimental results for understanding the dynamics of

drop impact. In addition to the pioneering works of measuring the stress distribution,

high-speed stress microscopy can be applied to complicated conditions such as non-

Newtonian drop impact and varying the ambient pressure. Besides, it opens the door for

experimental exploration of the detailed information inside an impacting drop, including

the patterns of the flow and the boundary layer.
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Chapter 1

Introduction and Motivation

• Chapter 1 introduces the background of drop impact.

• Chapter 2 shows the dynamic analysis of the impact force of drop impact.

• Chapter 3 studies the pressure and the shear stress distribution of drop impact

by applying the technique “high-speed stress microscopy.”

• Chapter 4 discusses the change of the shear stress distribution of drop impact on

micropatterned surfaces.

• Chapter 5 summarizes the whole research and provides the outlook on potential

future works.

1.1 Background of Drop Impact

Drop impact is ubiquitous in our daily lives. It is relevant to a large number of natural

phenomena, such as soil erosion [1], aerosol generated by raindrops [2, 3], formation

of granular craters [4, 5, 6], meteorite impact [7], and dispersal of microorganisms by

splashing of raindrops [8]. Drop impact also widely encounters in many technical ap-

plications, including ink-jet printing [9, 10, 11], spray printing and coating [12, 13], fire

suppression by sprinklers [14], solder-drop dispensing in electric circuits [15], and foren-

sic study of blood strain [16, 17], as shown in Figure 1.1. Therefore, understanding the
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2

Figure 1.1: Natural phenomena and industrial applications of drop impact. (a) The
raining drops on leaves. (b) Soil erosion. (c) Crater by meteorite impact. (d) Spray
coating. (e) Ink-jet printing. (f) Plasma spraying. The figures are reproduced from
Ref. [18, 19, 20, 21, 22, 23].
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mechanism of drop impact is not only for the exploration of fundamental science but

also for practical applications in industries.

Due to the importance of drop impact, drop impact has been studied for a long time.

The history of studying drop impact can be traced back to 140 years ago. Worthington

was one of pioneers to investigate drop impact systematically [24]. He designed an

ingenious setup where the spark illumination was triggered by a falling drop, and then

he sketched the snapshots of an impacting drop with his flash-illuminated visions. The

drawings showed an impacting drop splashing with the fingering and the spreading

lamella (Figure 1.2(a)). In the recent 20 years, thanks to the development of high-

speed imaging and the advance of stronger numerical calculation [25, 26], the mystery

of drop impact is gradually solved via looking into the spatiotemporal structures of drop

impact events (Figure 1.2(b),(c)). Nevertheless, in spite of the more than 140 years of

research, the omnipresent phenomena of drop impact are still far from fully understood

due to the complexity of dynamics behind them.

The complexity of dynamics of drop impact arises from the interplay of various

parameters and circumstances. Different parameters of drop impact include the impact

velocity of drops (supersonic versus subsonic), shapes of drops (spherical versus elliptic

due to oscillation), properties of drops (solid, liquid, or non-Newtonian fluid), types of

surfaces (deep liquid pool, thin liquid film, or dry solid surface), directions of impact

(normal versus oblique impact), etc [16, 27, 28]. In addition, liquid drops may be

miscible or immiscible with pool or film [29]. Whether the liquid film is shallow or deep

also matters. Solid surfaces can also be soft or hard, yielding or unyielding, and plane or

curved [30]. Furthermore, if the surface of substrates is heated above the boiling point

of liquid drop, the liquid would evaporate so fast and that causes the drop floating on

a layer of vapor, which acts as a thermally insulating film [31, 32]. Surprisingly, the

surrounding pressure and the gas composition can significantly influence the occurrence

of splash [33]. Additionally, the dynamics of retract and rebound can be controlled by

varying the wettability, or microstructures of solid surfaces [34, 35, 36].

For this research, we mainly emphasize spherical drops normally impacting on solid
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Figure 1.2: Time series of snapshots of drop impact. (a) Worthington’s sketches of an
impacting drop on a solid surface. (b) Snapshots of drop impact captured by a high-
speed camera. (c) Process of an impacting drop through simulation. The kinematic
features of an impacting drop including the lamella, the turning point, and the rim are
indicated. Reproduced from Ref. [24, 37, 25]. Courtesy of Annual Reviews, American
Physical Society, and Royal Society of Chemistry.
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Figure 1.3: Overview of different parameters of drop impact. Generally the parameters
can be categorized into three different groups: (1) The composition and the situation of
a liquid drop. (2) The impacting angle to the substrate. (3) The properties of substrate
such as impacting on a liquid pool or a solid surface. Reproduced from Ref. [16].
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surfaces. Typically, the outcomes of drop impact events depend on the following dimen-

sionless groups [26, 27]:

Re =
ρDV

µ
, We =

ρDV 2

µ
, Fr =

V 2

gD
, Ma =

V

C
, (1.1)

where the diameter, the viscosity, the density, and the surface tension of drops are D,

µ, ρ, and γ, respectively. The normal impact velocity is V , and the speed of sound

is C. Gravity denotes g. Reynolds number (Re) and Weber number (We) represent

the ratio of the inertia to the viscous force and capillary force, respectively. Froude

number (Fr) is the ratio of the inertia to gravity. Usually for drop impact Fr � 1,

which means that the effect from gravity can be neglected. If Mach number Ma ≈ 1, it

implies that the effect of compressibility of the liquid drop should be considered [38]. In

each drop impact event, these dimensionless numbers, especially for Re and We, may

change several orders of magnitude during the impact of a single drop. It is difficult

to categorize the drop impact process in a single fluid regime (e.g. low Re flow or

incompressible flow) due to the fast non-stationary nature of drop impact. As a result,

all the factors mentioned above lead to extremely diverse dynamics of drop impact,

making drop impact an epitome of the entire field of fluid dynamics.

1.2 Regimes of a Drop Impact Event

Let’s consider the case of liquid drops impacting on solid surfaces. Generally, one single

event of drop impact can be divided into three regimes over time: the initial impact

regime, the spreading regime, and the outcomes at the final stage.

Surprisingly, before a falling drop contacting a surface, the interplay of the drop

and surroundings happens. Under the atmospheric condition, when a drop approaches

a solid surface, the air pressure below the drop becomes higher and starts to deform the

bottom of the drop [39] (Figure 1.5). Then, the air disk is entrapped between the drop

and the solid surface, and it rapidly contracts into a central bubble on the substrate to

minimize the surface energy [40, 41, 42]. Recently, the clear patterns of how an initial

air disc contracts into a bubble were observed through ultra-high-speed imaging and

X-ray imaging [43] (Figure 1.6).
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Figure 1.4: Regimes of a liquid drop impacting on a solid surface. The initial impact
regime begins as the contact between a impacting drop and a surface. After reaching to
the maximum impact force of drop impact, it enters to the spreading regime. Depending
on the circumstances, an impacting drop can have different outcomes such as deposition
or rebound. Reproduced from Ref. [51]. Courtesy of Begell House Inc.
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Figure 1.5: Air cushioning effect before the contact of a drop and a substrate. Snapshots
from simulations show the temporal evolution of (a) the deformation of the bottom of an
impacting drop and (b) the gas pressure within the air layer. Reproduced from Ref. [39]
Courtesy of Cambridge University Press.
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Figure 1.6: The X-ray imaging of the entrapment of an air disc and its contraction into
an air bubble over time. Reproduced from Ref. [43]. Courtesy of American Physical
Society.
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1.2.1 Initial Impact Regime

When a drop falls and just contacts a solid surface, it is the beginning of the initial

impact regime. The consideration of the compressibility of the liquid of the drop is

important in this regime. The pressure inside the drop rises immediately. The acoustic

limit of the pressure equals to the so-called water hammer pressure ρCV over a time

duration of RV/C2, where R is the radius of the drop [38, 44]. Here we mainly focus on

drop impact at moderate impact velocities, where impacting drops can be considered

as incompressible. Initially, the shape of the drop deforms axisymmetrically. The first

contact is nearly like a point, and then the circular wetted contact zone develops. At the

very early stage, the drop just looks like a truncated sphere. After that, a thin lamella

starts to eject radially along the solid surface, and then the turning point appears

(Figure 1.7). The radius of the lamella rlm and the turnung point rc grow as the

scaling
√
V Rt, which is proposed by Wagner in the context of the water entry of solid

objects [45]. Recently, this scaling has been verified with the theoretical prediction and

experimental measurements, showing that rc(t) =
√

3V Rt [46, 30, 47, 48]. The motion

of the lamella propagates roughly with rlm(t) =
√

4.2V Rt fitted by the experimental

results [49]. The initial impact regime lasts until the impact force of drop impact reaches

the maximum value, and the side wall of the impacting drop is normal to the impacted

surface [50], which will be introduced in Section 2. In this regime, merely the base of

the drop is deformed. The upper hemisphere of the drop still remains the shape of the

dome. The effects of the viscous and capillary force of the drop have not entered this

regime.

1.2.2 Spreading Regime

In the spreading regime, the liquid of the drop is still pushed out to spread over the

surface. The upper part of the drop begins to deform now, and the liquid expands

radially into the lamella until reaching the maximum spreading diameter Dmax. Besides,

a rim is formed at the end of the lamella. At this moment, the inertia competes with

the surface tension and the viscosity of the drop. The surface tension tries to pull back

the liquid, and the viscosity dissipates the energy. Both of them limit the final Dmax.

It is reported that Dmax/D ∼ We1/4 if the inertia balances with the surface tension,
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and Dmax/D ∼ Re1/5 if the viscous dissipation balances with the kinetic energy [52].

If the kinetic energy of an impacting drop is small, which implies that the impact

velocity is very small, the drop just smoothly spreads over the surface. As the impact

velocity increases and passes the splashing threshold, the drop would start to splash

in this regime eventually. Splashing is defined as the formation of secondary droplets

after the impact, and these secondary droplets disintegrate from the rim of the spreading

drop. Classically, the splashing threshold can be categorized by the splashing parameter

Ks = We
√
Re, which includes the viscosity, the surface tension, and the impact velocity

of the drop [53]. Splashing is expected to happen if Ks ≥ 3, 000. However, the splashing

threshold not only depends on the impact velocity, but also depends on the surface

properties and the ambient pressure, unexpectedly. Xu et al. found that reducing

the air pressure could suppress splashing [33, 35]. Moreover, splashing also can be

suppressed by dropping onto the softer surfaces [30].

1.2.3 Outcomes after Spreading

With the interplay of parameters including Re, We, and the surface properties, there

are several outcomes of drop impact [51]. In Section 1.2.2, it has been mentioned that if

the kinetic energy of the impacting drop is low, the drop spreads smoothly, and finally

it will deposit and stay on the surface. The splashing is promoted by increasing the

impact velocity. Then, depending on the surface properties, the drop would retract after

reaching the maximum spreading diameter. Particularly, if the substrate is hydropho-

bic or even superhydrophobic, the retraction would lead to partial rebound, complete

rebound, or even jet formation [54, 55, 56] (Figure 1.4).

1.3 Dynamics of Drop impact

So far, drop impact attracts attention progressively, and recent studies have gradually

revealed the mystery behind it. Nevertheless, most experiments, theories, and simu-

lations mainly focus on the kinematic features of drop impact, such as the maximum

spreading diameter, the splashing threshold, the fingering, and thickness of the expand-

ing sheet, which are mentioned in Section 1.1. Comparably, fewer studies investigate
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Figure 1.7: The position of the kinematic features of an impacting drop during spread-
ing. (a) Sketch shows a drop spreading on a solid surface. The turning point rc increases
with rc =

√
3RV t proposed by Wagner [45]. (b) The experimental data of the radius of

the lamella rlm and the turning point rc with respect to time. rc follows
√

3RV t. The
inset shows the ratio χ/

√
3, where χ is the coefficient from the fitting of rc = χ

√
RV t.

Reproduced from Ref. [46, 48]. Courtesy of American Physical Society and Cambridge
University Press.
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Figure 1.8: Effects of ambient atmosphere pressure to splashing. Drop splashes in the
normal atmospheric pressure. As the background pressure decreases, the splashing is
suppressed. As the pressure is much lower, no secondary droplets are emitted from the
impacting drop. Reproduced from Ref. [33]. Courtesy of American Physical Society.

.
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the dynamics of drop impact, especially for the impact force and the stress distribu-

tion of drop impact. The impact force and pressure distribution of drop impact play

a crucial role in erosion and wear damage, including wear of turbine blades, impact

damage to aircraft under rainy condition, surface cleaning, and water cutting [57, 58].

Therefore, understanding the mechanism of the impact force and the stress distribution

is important for mitigating the erosion problem during the processes. In addition, the

shear stress distribution of drop impact also reveals the development of boundary layer

and the change of the flow inside an impacting drop, which are difficult to access by

other experimental methods [59, 60, 61, 47].

1.3.1 Impact Force

Impact force is the most studied dynamic quantity of drop impact. Recent theories

and simulations propose that the dynamics of drop impact may be controlled by the

self-similar process, and deduce the scaling of impact force induced by a liquid drop at

the initial impact regime [62, 61, 47]. Recall that initial impact occurs when a liquid

drop falls and contacts a surface near t = 0+ with high Re. In this regime, impact

of a liquid drop is dominated by inertia. When a drop impacts on a solid surface, the

strong pressure gradients develop near the bottom of the drop. The bottom of a drop is

deformed rapidly and strongly due to the strong pressure gradients, which also drive the

redirection of the flow in the droplet. The direction of the flow changes suddenly from

the downward vertical z-direction to the outward radial r-direction in the cylindrical

coordinate [63, 47].

Inspired by the classical impact theory, Josserand and Zaleski, Eggers et al., and

Philippi et al. proposed that the high pressure region occupies a volume with the same

radius as the contact area of the drop with the surface, where the self-similar pressure

and velocity field establish [62, 61, 47]. The self-similar field propagates within the

impacting drop as the impact proceeds. When the front of the self-similar structure

reaches the top of the drop, the high-pressure region spreads over the whole drop. The

top of the drop would start to decelerate from the original impact velocity. That means,

the propagation of the self-similar structure can be examined from the shape of drop. If

the front of the self-similar pressure has not reached the top of the drop, the upper part

of the drop would remain its original shape as if it does not “feel” the impact. Such a
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Figure 1.9: Propagation of the self-similar pressure field inside an impacting drop at
early times from simulations. In this initial impact regime, the upper part of the drop
remains the shape of hemisphere until the pressure field propagates to the apex of the
drop. Reproduced from Ref. [61]. Courtesy of AIP Publishing.
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counterintuitive prediction can be observed in Figure 1.9.

In addition to the shape of an impacting drop, the self-similar theory also predicts

an instantaneous impact force F of drop impact. Philippi and co-workers proposed a

model to derive analytical solutions of the impact force induced by drop impact at early

times and at the high Re regime. Based on the assumption of inviscid flow motion

of a drop, the scalar potential, the structure of the velocity field, and the self-similar

pressure can be derived via the analytical derivations [47]. In the high Re limit, the

total normal force F by an impacting drop at the early time t → 0+ is deduced from

integrating the pressure on the surface:

F (t) =
3

2

√
6ρV 5/2D3/2t1/2. (1.2)

In the aspects of experiments, piezoelectric force sensors are frequently used to

measure the temporal evolution of the normal impact force of drop impact. Furthermore,

with the support of high-speed imaging, the force measurements are synchronized with a

high-speed camera in order to simultaneously capture the morphology of the impacting

drop and obtain the force signal [64, 65, 66, 50].

In Section 2, we report the verification of the predicted square-root temporal scaling

of the impact force through the experiments. Furthermore, the modification of the

impact force in the finite Re and the viscoelastic regime is also discussed [66].

1.3.2 Stress Distribution

Although the impact force, which quantifies the average impact pressure, is an important

factor in drop impact erosion, the pressure distribution is the determined role in studying

damage to substrates. If the total impact force concentrates on a certain small area,

the pressure would be high enough and easily damage the substrates. Conversely, if the

pressure is distributed more uniform on the substrates, which can minimize the local

maximal pressure, the erosion to the substrates can be alleviated. Therefore, depending

on different conditions, we can tune the pressure distribution of drop impact based on

the needs, i.e. higher pressure induced by drop impact for waterjet cutting, or lower

pressure of drop impact for preventing erosion to substrates in spray coating. Therefore,

measuring and controlling the pressure distribution of drop impact are necessary and
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Figure 1.10: Pressure distribution of drop impact. Time series showing the development
of the pressure field (top panels), as well as the pressure exerted by the impacting drop
on the solid surface (bottom panels). Reproduced from Ref. [47]. Courtesy of Cambridge
University Press.
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vital for industrial applications of drop impact.

The pressure distribution of drop impact in early time was first identified by Josserand

and Zaleski [62], who showed a pressure field developed inside a drop. The self-similar

scaling in the early impact regime shows that p ∼ ρV 3/2D1/2t−1/2. Recently, with the

progress of simulation, the detailed structure of the pressure field near the contact zone

is revealed [62, 47]. As shown in Figure 1.10, the simulations show the complex struc-

tures of the pressure fields inside a drop impacting on a solid surface at early times. The

pressure distribution counterintuitively exhibits the sharp maxima near the contact line

r(t) =
√

3RV t during the impact. The singular structure of the pressure distribution

over the contact area shows

p(t) =
3
√

2

2π

ρV 2D√
3V Dt− 2r2

. (1.3)

It reveals a finite-time singularity at the turning line rc away from the impact axis, and

it predicts an annular ring of divergent pressure propagating radially with the turning

line.

At high Re and We, the viscous boundary layer is thin, and the thickness of the

boundary layer lv scales as lv ∼
√
t/Re. Pressure gradients across this thin viscous

boundary layer are small. Hence, to the first order, the pressure distribution is not

affected by the viscous boundary layer. Nevertheless, the boundary layer plays the

essential role for the shear stress on impacted surfaces. Ignoring the viscous boundary

layer would lead to zero shear stress and significantly reduce the erosion capability of

impacting drops [67].

In the initial impact regime, Philippi et al. hypothesized that the structure of the

viscous boundary layer of drop impact is similar to that of the shock-wave-induced

boundary layer [47]. Here, the turning line of an impacting drop is analogous to a

shock front with a growing viscous boundary layer trailing behind. Based on the classic

shock-wave solution [68], they obtained the velocity profile within the boundary layer

and calculated the shear stress distribution along the contact surface:

τ(r, t) = µ
∂vr(r, z = 0, t)

∂z
=

√
6ρ1/2V 3/2D1/2µ1/2

π3/2

2r

3V Dt− 2r2
, (1.4)
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where vr is the radial velocity of the flow inside an impacting drop. Similar to the pres-

sure distribution (Equation 1.3), the shear stress also exhibits a finite-time singularity

at the turning line rc(t). The formula agrees well with numerical simulations away from

the singularity. A small cutoff ∆ was found near the turning line, below which the 1/r

singularity is screened. By integrating the shear stress over the contact area, they also

derived the magnitude of the drag force Fd induced by drop impact in the early impact

regime:

Fd(t) =

∫ 2π

0

∫ r0−∆

0
τ(r, t)rdrdθ = 5.35µ1/2ρ1/2V 2Dt1/2, (1.5)

where ∆ = 0.02
√
V Dt is chosen based on numerical findings at different Re.

Experimental measurements on the transient pressure and shear stress distribution

underneath millimeter-sized drops with micron spatial resolutions and sub-millisecond

temporal resolutions are clearly difficult. There are only few studies that experimentally

measured the stress distribution of drop impact. At an earlier time, Hartley et al. used

hot-film anemometry to experimentally measure the shear stress of drop impact on the

bottom surface of a water flume [69, 70]. A slow horizontal base flow has to be imposed

in the flume in order to maintain a constant fluid temperature over the hot-film sensor

in their experiments (Figure 1.11(a)). The result qualitatively agrees with the empirical

relations from their numerical simulations. However, this method restricts the condition

that there should be a layer of water on the substrates.

In recent years, Thanh-Vinh et al. introduced a method to obtain the pressure dis-

tribution by using a cantilever array of force sensors (Figure 1.11(b)) [71, 72]. Although

the rough patterns of pressure distribution can be measured, the spatial resolution is

not quite enough to observe the detailed structures near the contact line because of

the finite sizes of the force sensors. In addition, the cantilever array of piezoresistors

results in microstructure surfaces, limiting the possibility of exploring drop impact on

surfaces with different controlled surface textures. Based on the discussions above, it

is desirable to develop another technique which can be widely applied to measure the

stress distribution of drop impact under any condition.

In Section 3, we conduct the novel technique “high-speed stress microscopy.” By

combing the ideas from laser sheet microscopy, high-speed photography, and traction
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Figure 1.11: (a) Experimentally measured the shear stress of drop impact on the bot-
tom surface of a water flume by using using hot-film anemometry. (b) Experimental
measurements of the pressure distribution of drop impact through an array of mirco-
piezoelectrical force sensors Reproduced from Ref. [71, 70]. Courtesy of Taylor & Francis
and 2016 IEEE.
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force microscopy, we can map the temporal evolution of the shear stress and the pres-

sure distribution of drop impact—the key dynamic factors responsible for erosion to

substrates.

Moreover, the development of high-speed stress microscopy helps us to investigate

more advanced and complicated conditions of the stress distribution of drop impact. In

Section 4, we synthesize the solid substrate with arrays of micropillars on its surface.

How the microstructure would affect the shear stress and shear force is a crucial issue,

and this problem has never been approached through any experiment.



Chapter 2

Impact Force of Drop Impact

This chapter is based on the publication: Leonardo Gordillo, Ting-Pi Sun, and Xiang

Cheng. Dynamics of drop impact on solid surfaces: evolution of impact force and

self-similar spreading. Journal of Fluid Mechanics, 840:190-214, 2018. [66]

Leonardo Gordillo and Xiang Cheng designed the project and conducted the theo-

ries. Leonardo Gordillo also conducted the experimental measurements. Ting-Pi Sun

discussed and analyzed the experimental data.

2.1 Introduction

The elegant and ephemeral dynamics of liquid-drop impacts on solid surfaces have at-

tracted scientists for generations. Since Worthington’s first sketches [24], this deceiv-

ingly simple phenomenon have unfolded into one of the richest fields in fluid mechanics

[16, 27, 25, 26]. Thanks to the rapid development of high-speed imaging and numerical

simulation techniques in the last 15 years, a clear picture on liquid-drop impacts grad-

ually emerges. Different regimes during drop impacts have been resolved, each describ-

ing a specific spatiotemporal feature. Processes such as lamella ejection and splashing

[33, 46], maximum spreading [36, 52, 73], receding and rebound [74, 4], corona fingering

[75, 76] and air cushioning [77, 78, 79] have been extensively studied. Among all these

features, the impact force of liquid drops leads to arguably the most important conse-

quence of impact events. This mechanical outcome of impacts is directly responsible

for numerous natural and industrial processes including soil erosion [80], the formation

22
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of granular craters [4, 6] and atmospheric aerosols [2] and the damage of engineered

surfaces [81, 82]. The impact force of raindrops is also of vital importance to many

living organisms exposed to the element [83, 84, 85]. Nevertheless, compared with the

large number of studies on the morphology of impacting liquid drops, comparatively

fewer experiments have been conducted to investigate the impact force of liquid drops.

Most of the existing works have focused on the maximum impact force of liquid drops

[80, 86, 64, 65, 87]. The temporal evolution of impact forces during impacts remains

largely unexplored.

The complexity of drop-impact dynamics, with the evolution of impact forces as a

specific example, arises from the interplay of various competing factors and the rapid

and continuous change of their relative importance during a drop impact. Dimension-

less numbers such as Mach (impact velocity/sound speed), Reynolds (inertial/viscous

forces), Weber (inertial/capillary forces) and Froude (inertial/gravity forces) numbers

may change several orders of magnitude in a single drop-impact event, making it a

miniature of many branches of fluid mechanics [88, 59, 47, 89]. In spite of this com-

plexity, pioneering theories have shown that drop-impact dynamics over a wide range of

dimensionless numbers may be controlled by simple self-similar processes [59, 61, 47].

Identifying these self-similar processes will not only reduce mathematical difficulties at

localised spatiotemporal scales, but also bridge separate impacting regimes into a co-

herent structure [90]. Unfortunately, exact or even approximate self-similar solutions

are hard to spot in drop impacts. Most of studies rely on simple dimensional analyses

[16, 27, 26], which are useful in determining asymptotic scaling relations but fail to

reveal the underlying self-similar mechanisms in play.

In this section, we conduct systematic experiments on the temporal evolution of

impact forces over a wide range of Reynolds numbers (Re). Built on the recent self-

similar theory by Philippi and co-workers [47], we develop a quantitative understanding

of the early-time scaling of impact forces over five decades of Re across inertial, viscous

and viscoelastic regimes. Through this study, we experimentally verify the existence of

an upward propagating self-similar structure during the initial impact of liquid drops at

high Re [61, 47]. Our quantitative analysis on the temporal variation of impact forces

also predicts the maximum impact force and the associated peak time as a function of

Re, which have been extensively studied in experiments [80, 86, 64, 65, 87]. As such,
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our experiments on the temporal evolution of impact forces provide a benchmark for

verifying numerical and theoretical models of drop-impact dynamics. Our theoretical

analysis constructs a unifying framework for understanding the early-time evolution of

impact forces in different impact regimes.

2.2 Methods

2.2.1 Experimental Setup

The experimental setup of measuring impact force of drop impact are shown in Fig-

ure 2.1. The drops with a fixed diameter D = 2.2± 0.1 mm was generated by a syringe

pump. The drops were made of silicone oils with a wide range of viscosities ν = 10−1

- 10−6 cSt, and the density ρ = 971 kg/m3 (Sigma-Aldrich). The drops were released

from different heights, yielding different impact velocities U0 ranging from 1.4 to 3.0

m/s. The drops impacted onto the piezoelectric force sensor of the diameter 15 mm

(PCB Piezoelectronics 106B51) with a force resolution of 0.3 mN and a time resolu-

tion of 10 µs. The force signal from the piezoelectric force sensor passed through a

signal conditioner and was recorded by an oscilloscope. To reduce the noises and os-

cillations, we performed the minimal data smoothing with moving averages of three

adjacent data points. The high-speed photography was performed with 50,000 frames

per second (Photron SA-X2). A photo-interrupter was triggered by falling drops in

order to synchronize the high-speed imaging and force measurements. Therefore we can

simultaneously probe the kinematics and dynamics of drop impacts. The light source

for high-speed imaging is provided by the LED with high lumens.

2.2.2 Validation of Impact Force Measurements

To verify the experimental method for measuring impact forces via a piezoelectric force

sensor, we have conducted two independent tests. First, we measure the temporal

evolution of the impact force of elastic solid spheres, a well-known result in contact

mechanism [91]. When a non-adhesive elastic sphere of radius R impacts on an infinite

elastic plane, the impact force F is governed by the classical Hertzian contact:

F =
3

4
E∗R1/2d2/3, (2.1)
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Figure 2.1: Schematic diagram of the experimental setup for measuring the impact force
of drop impact. The force sensor is synchronized with the high-speed camera. Once the
impacting drop passes through the photo-interrupter, the measurement will be activated
automatically.
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where
1

E∗
=

1− ν2
1

E1
+

1− ν2
2

E2
. (2.2)

Here, E1 and E2 are the elastic moduli and ν1 and ν2 are the Poisson’s ratios of the

elastic solid sphere and the surface of the piezoelectric force sensor, respectively. If d is

the displacement of the sphere. At the initial impact t→ 0, d = U0t. Then we replace

d in Equation 2.2 and it becomes

F =
3

4
E∗R

1
2d2/3U

2/3
0 . (2.3)

In this experiment, we used the material of neoprene rubber as the impacting solid

sphere, with the properties of E1 = 12.33 MPa, ρ = 1230 kg/m3, and ν1=0.499. E1 is

measured by using a TA RSA-G2 Solids Analyzer. The radius and impact velocity of

the sphere are R = 2.2 mm and U0 = 0.4 m/s, respectively. Since the surface of the

force sensor which is made of stainless steel is much harder than the neoprene rubber

sphere, which means that (1− ν2
2)/E2 � (1− ν2

1/E1). Equation 2.2 can be reduced to

E∗ = E1/(1− ν2
1). Figure 2.2 shows the experimental temporal evolution of the impact

force of the rubber sphere. At the initial impact regime, the impact force follows the

power law of F ∼ t 23 , which is consistent with the Hertzian contact theory.

Second, we also examine whether the impact process obeys the conservation of mo-

mentum. That is, the change of momentum ∆p equals to the impulse J , which is

obtained by numerically integrating the impact force of liquid drops over time:

∆P = J =

∫ ∞

0
F (t)dt. (2.4)

The results of the change of momentum and the impulse quantitatively matches with

each other (Figure 2.2).
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Figure 2.2: Validation of our experimental method. (a) Temporal evolution of the
impact force of a neoprene rubber ball with D = 4.5 mm and U0 = 0.4 m/s. The
impact force scales as t3/2 near t = 0+ as predicted by the Hertz-contact theory [91].
The shaded area indicates the rise time of the force sensor. (b) The impulse of impacts,
J =

∫∞
0 Fdt, versus the momentum of liquid drops, ∆p = mU0, where m = πρD3/6 is

the mass of liquid drops. The dashed line indicates J = ∆p as requested by momentum
conservation.
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2.3 Results and Discussion

2.3.1 Temporal Evolution of the Shapes of Drops

Figure 2.3 shows a representative data illustrating simultaneous measurements of the

shape and the impact force of drop impacts. A liquid drop impacts on the surface at the

time t = 0. The temporal evolution of the shapes of the impacting drop is quantified by

measuring the height of the drop hmax(t) and the radius of the spreading contact line

r0(t). In the early time, r0 follows a t
1
2 scaling which is indicated by the green dotted

line, which confirms the scaling of previous theoretical studies r ∼ √U0Dt.

In the other hand, the slope of hmax versus t matches with the initial velocity −U0

which is indicated by the blue dashed line. This result supports the theory of the

existence of the propagating self-similar region. Before tmax, which is the time that

the impact force reaches to a maximum, the front of the self-similar region has not

reached to the top of the drop; hence, the motion of the drop’s apex hmax travels with

the initial velocity −U0 without any change, as if it does not feel the impact happens.

The snapshots of Figure 2.3 demonstrates that the shape of the upper part of the drop

remains unchanged before tmax, and it also confirms the previous result of simulation

in Figure 1.9.

2.3.2 Temporal Evolution of the Impact Force at the High Re Regime

Based on the temporal signature of the impact force, the dynamics of the impact force

can be divided into two regimes: (1) the time before tmax called the initial impact regime

and (2) the time after tmax called inertia-driven spreading regime. In the following

discussion of the impact force, we will focus on the initial impact regime.

First, we investigate the dynamics of impacting drops during the time near t→ 0+

at high Reynolds numbers Re, where Re is defined as Re ≡ U0D/ν. In this limit, the

impact of liquid drops is dominated by inertia. Upon the impact, the strong pressure

gradients develop near the contact region of the solid surface. The strong deformation

of the bottom of the drop make the flow inside the drop redirect from the vertical

(z) direction to the radial (r) direction. In analogy to the classical impact theory

[45], simulations and a recent theory have shown that the region of the large pressure

gradients concentrates within a small volume of the impacting drop next to the contact
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Figure 2.3: Simultaneous measurement of the kinematics and dynamics of the impact
of a liquid drop with ν = 20 cSt and U0 = 1.93 m/s (Re = 212). (a) Temporal evolution
of the shape of the impacting drop, quantified by the height of the drop, hmax(t), and
the radius of the spreading contact line, r0(t). The lower axis indicates t in unit of
milliseconds. The upper axis indicates the dimensionless time τ . The thickness of the
boundary layer, δν , is calculated and shown by the curved dash-dotted line near the
bottom. The linear dash-dotted line has a slope of −U0 (or −1 in the dimensionless
form), indicating the trajectory of the drop as if the impact never occurred. The dotted
line indicates the

√
t scaling of r0. (b) Temporal evolution of the impact force of the

impacting drop, F (t). The dash-dotted line on the left is the prediction of the self-
similar theory of initial impacts (Equation 2.5) [47]. The upper dotted line on the right
is the prediction of the self-similar solution of drop spreading by Eggers and coworkers
[61, 92]. The lower dashed line on the right is the prediction of our self-similar solution
of drop spreading. The corresponding snapshots of the impacting drop from high-speed
imaging are shown next to the curve. The regime of the initial impact is indicated by a
shaded area spanning from 0 to tmax. A small DC offset from the force sensor at t� 1
was removed from the raw data.
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area, where self-similar pressure and velocity fields establish [47]. The length scale of

the self-similar fields is given by
√
U0Dt (Section A.1). The self-similar pressure from

the theory gives rise to an instantaneous impact force as the function of time following

[47]:

F (t) =
3

2

√
6ρU

5/2
0 D3/2t1/2. (2.5)

Or in the dimensionless form:

F̃ (τ) =
3

2

√
6τ1/2, (2.6)

where the dimensionless force F̃ ≡ F/ρD2U2
0 , and the dimensionless time τ ≡ t/(D/U0).

Equation 2.5 can also be understood by the following scaling argument. During the

impact, the deformation of the drop is limited in the self-similar pressure region. The

volume of the self-similar occupies the same radius with the contact area between the

drop and the solid surface [61]. Indeed, the previous theories and our experiments all

have confirmed that the radius of the spreading contact line increases as r ∼ √U0Dt at

short times during the initial impact regime (Figure 2.3) [49, 93, 46, 47], quantitatively

similar to the length scale of the self-similar fields shown above. Therefore, we can

approximate the volume of the self-similar pressure region increases with V ∼ (U0Dt)
3
2 .

From the conservation of momentum, in order to balance the impulse of the impact

force and the change of the momentum of the drop, the impact force can be written as

F (t) =
ρV U0

t
∼ ρU5/2

0 D3/2t1/2. (2.7)

We experimentally verify the prediction of the initial-impact self-similar theory by

first plotting the impact forces at different Re in a log-log plot (Figure 2.4). To reveal

the predicted t1/2 scaling at short times, we divide the dimensionless force, F̃ , by τ1/2.

For the sake of clarity, we also multiply the rescaled forces by a time-independent

factor, Re2/5, which shifts the curves vertically to avoid overlap. Figure 2.4 shows that

the early-time evolution of impact forces follows the predicted τ1/2 scaling at high Re,

where F̃ /τ1/2 is independent of τ for about one decade of time.

The data shown in Figure 2.4 represent only a small subset of our more than 200

independent experimental runs at different Re. To quantify all our measurements, we

fit F̃ as a function of τ at short times using a power-law dependence, F̃ = ατβ. The
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Figure 2.4: Impact force of liquid drops. (a) Temporal evolution of the impact force of
liquid drops at different Re. In the order of the maximum impact force, from high to
low, the Reynolds numbers of the curves are 0.10, 0.72, 6.90, 66.18, 665.52 and 3219.29,
respectively. The viscosities of the drops are indicated in the legend. (b) Rescaled
dimensionless force, F̃ /τ1/2, as a function of time, where F̃ and τ are the dimensionless
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the curves vertically for clarity. The grey region indicates the rise time of the force
sensor, which sets the time resolution of our measurements. The Reynolds numbers and
viscosities of the curves are the same as those in (a).
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exponent β as a function of Re for all our measurements is shown in Figure 2.5(b).

β reaches a plateau close to 1/2 when Re > 0.7. The coefficient α also approaches a

constant α∞ = 4.7± 0.7, close to the theoretical prediction 3
√

6/2 in Equation 2.6, but

only when Re > 200 (Figure 2.5(a)). Thus, in combination, our measurements on the

early-time evolution of impact forces quantitatively verify the initial-impact self-similar

theory at high Re above 200.

The existence of upward expanding self-similar fields during the initial impact of a

high-Re liquid drop can also be seen from the shape of the impacting drop. Before the

upper bound of the self-similar high-pressure region, marked by the isobar of some preset

high pressure, reaches the top surface of the liquid drop, the motion of the drop apex

should remain unchanged as if the drop had not experienced any impact at all. Such a

counterintuitive hypothesis has indeed already been implied by Worthington’s original

sketch [24] and quantitatively verified by much more recent simulations [61, 59, 47] and

experiments [36, 92]. Here, our simultaneous measurements of the shape and impact

force of liquid drops provide further evidence that this unusual phenomenon arises from

the finite propagation speed of the self-similar fields. As shown in Figure 2.3, in the

regime where F (t) follows the prediction of Equation 2.5, the apex of the drop, hmax,

keeps traveling at the initial impact velocity U0 without any perceptible changes. Since

the shape of the self-similar region—specifically the isobar of the self-similar pressure

field—does not necessarily conform to the shape of the drop, the pressure field may

touch the upper surface of the drop before reaching the apex. As a result, the impact

force may start to deviate from the prediction of the initial-impact self-similar theory,

when hmax is still outside the self-similar region and maintains its constant-velocity

descent. This is indeed consistent with our observations (Figure 2.3). The impact force

reaches its maximum and begins to decrease before the apex of the drop shows any clear

deviation from U0. Thus, it is more appropriate to use the peak time, τmax, i.e. the

time when F̃ reaches the maximum, to mark the end of the initial impact regime. In

practical terms, the maximum force is easier to identify than the deviation of the drop

apex from its linear descent, which relies on the derivative of hmax(t).

The peak time, τmax, therefore, provides a proper time scale to estimate the average

expanding speed of the self-similar fields. A more quantitative analysis of τmax based on

the propagation of isobars will be provided in Section 2.3.3 below. We plot τmax and the
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Figure 2.6: The maximum impact force and the associated peak time. (a) shows the
dimensionless peak time, τmax ≡ tmaxU0/D, and (b) shows the dimensionless maximum
impact force, F̃max ≡ Fmax/

(
ρD2U2

0

)
, over five decades of Re. The asymptotic values

at the high Re limit, τ∞max and F̃∞max, are indicated by the horizontal dashed lines in each
plot, which are obtained experimentally by averaging all the data with Re > 103. The
dash-dotted lines are our model predictions given by Equation 2.22 and Equation 2.24.
The colour bars on the right indicate the viscosity of liquid drops.
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maximum impact force, F̃max, as a function of Re in Figures 2.6(a),(b), respectively.

The value of τmax approaches a constant τ∞max = 0.18 ± 0.05 at the high Re limit.

Since the drop does not deform significantly during the initial impact, the average

expanding speed of the self-similar fields at the high-Re limit can be simply estimated

as Uself−similar = D/tmax = U0/τmax ≈ 5.5U0, which ranges from 7.7 up to 16.5 m/s

in our experiments. Compared with the speed of sound, this relatively small speed

demonstrates that the boundaries of the self-similar fields are not shock fronts induced

by the compressibility of liquid drops. Accordingly, Fmax should scale with the inertial

force, ρD2U2
0 , instead of the water-hammer force, ρD2cU0, where c is the speed of sound

in the liquid. This argument is indeed supported by both previous studies [86, 65, 87]

and our experiments (Figure 2.6(b)). Thus, the maximum impact force of subsonic

liquid drops at high Re, relevant to most natural and industrial processes, arises from

the development of upward expanding self-similar pressure fields, rather than water-

hammer pressures assumed in several recent studies [94, 95, 71].

Lastly, it is worth discussing the effect of ambient air on impact forces. Air cush-

ioning has been the focus of many recent studies [26]. Although the ambient air can

profoundly affect the dynamics of drop impacts such as the formation of liquid sheets

and splashing [33, 46], the numerical work of Philippi and co-workers showed that the

impact pressure varies smoothly across the air-liquid interface of the air-cushion layer

underneath impacting drops, indicating the transparency of air cushioning to the impact

pressure [47]. Indeed, their study showed that the early-time t1/2 scaling of the impact

force is invariant in the presence of ambient air after they introduced a small time shift,

t∗, to account for the delay of the impact moment due to cushioning. We estimate the

magnitude of t∗ in our experiments as follows. By balancing the air pressure with the

inertial pressure of the impinging drop, Mani and co-workers showed that the charac-

teristic thickness of the air-cushion layer is H = RSt2/3, where R = D/2 is the radius

of the drop and St = µg/(ρU0R) is the inverse of the Stokes number with µg as the

air viscosity [39]. Thus, the air-cushion time t∗ can be estimated as t∗ = H/U0. Using

the relevant parameters of our experiments, we find t∗ = 0.12 ∼ 0.41 µs, consistent

with numerical simulations [39]. Since t∗ is about two orders of magnitude smaller than

the temporal resolution of our force sensor (Figure 2.4(b)), the presence of t∗ should

not affect the early-time scaling of our experiments. Furthermore, it has been shown
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that the impact pressure underneath an impacting drop concentrates near the moving

contact line [47], where air cushioning is weak or absent [77, 78]. Since the impact force

is an integral of the impact pressure over the entire contact area, which is dominated

by the high pressure near the contact line, air cushioning should not strongly affect the

impact force measured in our experiments. Our measurements indeed show the t1/2

scaling predicted by the initial-impact self-similar theory without ambient air, directly

confirming the weak effect of air cushioning on the early-time scaling of impact forces.

It should be noted that although we cannot directly detect the effect of air cushioning

due to the finite time resolution of our force measurements, the existence of the trapped

air layer prevents the formation of water-hammer pressures at the very early time of

impacts within t∗ [39].

2.3.3 Temporal Evolution of the Impact Force at the Finite Re Regime

Next, we investigate the early-time scaling of the impact force of viscous drops, F̃ = ατβ,

near τ = 0+ at finite Re. As shown in Figure 2.5, the coefficient α starts to deviate

from the high-Re plateau when Re < 200, where α increases with decreasing Re. In

contrast, the exponent β maintains at 1/2 until Re ≈ 0.7 and then quickly increases at

even lower Re. In this section, we shall focus on impact forces, F̃ (τ), in the intermediate

Re regime with 0.7 < Re < 200 and leave the discussion of F̃ (τ) at even lower Re < 0.7

in the next section.

Before delving into rigorous calculations, it is instructive to consider a simple scaling

for impact forces at finite Re. At finite Re, viscous forces cannot be ignored when

determining the dynamics of drop impacts. The distance traveled by the centre of an

impacting drop can be approximated as d ≈ U0t at short times. Based on a simple

geometric arguments, the radius of the contact area between the drop and the solid

surface is given by r0 =
√
dD =

√
U0Dt, as we have already confirmed previously

(Figure 2.3(a)). Assume the vertical velocity decreases from the impact velocity U0 to

zero over a length l within the drop above the solid surface. Again, by simply balancing

the impulse of the impact force with the change of the momentum of the deformed drop,

we have

F (t) =
ρV U0

t
∼ ρr2

0lU0

t
, (2.8)
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where V ∼ r2
0l is the volume of the part of the liquid drop that significantly deforms. At

high Re, l is determined by the self-similar velocity field with l ∼ √U0Dt. Equation 2.8

restores to the previous scaling Equation 2.7. At finite Re, the boundary layer developed

at the bottom of the impacting drop introduces a new length scale δν ≈
√
νt, which

competes with the growth of the self-similar field that scales as
√
U0Dt. If we set l ≈ δν

in Equation 2.8, we have F ∼ ρν1/2DU2
0 t

1/2, which gives

F̃ ∼ 1

Re1/2
τ1/2. (2.9)

Equation 2.9 predicts that the exponent of the early-time scaling, β, stays at 1/2,

whereas the coefficient of the scaling, α, increases with decreasing Re, qualitatively

agreeing with our experiments at intermediate Re when 0.7 < Re < 200 (Figure 1.5).

Quantitatively, we fit (α− α∞) as a function of Re from our experiments using

α(Re)− α∞ =
c0

Reγ
, (2.10)

where α∞ = 3
√

6/2 is the asymptotic coefficient at the high-Re limit from the initial-

impact self-similar theory in Section 2.3.2. Our experiments show γ = 0.45 ± 0.4,

consistent with the Re−1/2 scaling of 2.9 (the inset of Figure 1.5(a)). In addition, we

obtain c0 = 4.36± 0.50.

Although the simple scaling of Equation 2.9 successfully explains the early-time scal-

ing of the impact force of viscous drops, the usage of δν as the characteristic length scale

in our argument needs a formal justification. Moreover, the simple scaling only pro-

vides the viscous contribution of the impact force. It is not clear how the viscous impact

force couples with the inertial impact force at finite Re. When fitting experiments using

Equation 2.10, we simply assume the two forces are additive. This simple assumption

also needs to be justified. Lastly, it is certainly relevant to analytically calculate the

coefficient c0 in the scaling Equation 2.10.

Here, we develop an asymptotic perturbation method to calculate the impact force of

viscous drops at finite Re during initial impact [96]. The starting point of our calculation

is the leading-order self-similar dimensionless radial velocity field inside the boundary

layer. The field was obtained by Philippi and coworkers in analogy to the shock-induced
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boundary layers [47], which compares well with the numerical result:

u(0)
r =

2r

π
√
δ2τ − r2

f ′
(
η ≡ δ

2

√
Re

δ2τ − r2
z

)
, (2.11)

where δ =
√

6/2 is a constant, indicating the spreading contact line r0 = δ
√
τ (Fig-

ure 1.3(a)).(Notice that we define dimensionless quantities based on the diameter of

liquid drops, instead of the radius of liquid drops used in [47]), which modifies the con-

stant coefficients in Equation 2.11. The profile f ′ is the erf function and η is introduced

as the dimensionless inner variable of the boundary layer. We assume a perturbation ex-

pansion for the inner velocity field, (ur, uz), in terms of the small parameter ε = Re−1/2.

Thus, the radial velocity field can be expanded as ur = u
(0)
r + εu

(1)
r + ε2u

(2)
r + O

(
ε3
)

and the vertical velocity field as uz = u
(0)
z + εu

(1)
z + ε2u

(2)
z +O

(
ε3
)
. From Equation 2.11

and the mass conservation, we immediately have

u(0)
z = 0 and u(1)

z = − 4

πδ

[
2f +

r2

δ2τ − r2
ηf ′
]
. (2.12)

Likewise, we also expand the dimensionless outer velocity field (η � 1), (Ur, Uz), in

terms of ε. The asymptotic matching condition at the order ε for the vertical velocity

reads [97]

εU (1)
z (z = 0) = lim

η→∞
εu(1)
z − lim

z→0
U (0)
z +O

(
ε2
)
. (2.13)

Using

lim
z→0

U (0)
z = − 2z

π
√
δ2τ − r2

(
2 +

r2

δ2τ − r2

)
, (2.14)

obtained from the mass conservation in the outer flow at z → 0 and expressing z in

terms of η, we obtain

U (1)
z (z = 0) = − 4

πδ
lim
η→∞

[
2 (f − η) +

r2

δ2τ − r2
η
(
f ′ − 1

)]
+O

(
ε2
)
. (2.15)

Since f (η) = η−1/
√
π+O

(
η−2e

−η2)
, we find that, at the first order of ε, the correction
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of the vertical velocity of the outer flow at z = 0 is

U (1)
z (z = 0) =

8
√

6

3π3/2
. (2.16)

Remarkably, the presence of the self-similar boundary layer at finite Re induces at O (ε)

a uniform velocity in the outer flow near z = 0.

With the boundary conditions corrected due to the boundary layer, the outer veloc-

ity field at O (ε) are given by an inviscid problem that can be solved using a potential

velocity field Φ(1), which satisfies Laplace’s equation, ∇2Φ(1) = 0, and the set of bound-

ary conditions:

∂

∂z
Φ(1) = U (1)

z , at z = 0, r < δ
√
τ , (2.17)

Φ(1) = 0, at z = 0, r > δ
√
τ , (2.18)

Φ(1) → 0, at z =∞. (2.19)

The mathematical structure of the problem is the same as the one solved at the zeroth

order after changing the frame of reference (Figure 2.7(a)). Hence, the method used in

Philippi et al. for solving the solution of the outer flow at the zeroth order can be directly

used to obtain the flow field at O (ε) [47]. The uniform asymptotic expansion of the

velocity field at O (ε) can be obtained by matching uz = εu
(1)
z and Uz = U

(0)
z + ε∇Φ(1).

An example of a uniform asymptotic expansion of the vertical velocity profile at r = 0

at O (ε) is depicted for ε = 0.1 and τ = 0.1 and compared with the profile at O (1)

in figure 2.7(b). The smaller vertical velocity at O (ε) at a fixed z indicates a faster

propagation of the self-similar field in the presence of the boundary layer. In other

words, the boundary layer affects the self-similar pressure field, making it propagate

faster than that in the inviscid case at the high Re limit (Figure 2.7(b)).

Conveniently, many results at leading order can be renormalised to obtain results at

the order of O (ε) by simply replacing the impact velocity U0 with U0

(
1 + εU

(1)
z

)
. It is

straightforward to show that in comparison with the impact force at the zeroth order
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Figure 2.7: Flow induced by viscous boundary layer. (a) Velocity potential lines (thick)
and streamlines (thin) in the self-similar frame of reference [47], obtained by calculat-
ing the self-similar potential Φ̃(1) ≡ √τΦ(1) from (2.17)-(2.19). The potential satisfies
Laplace’s equation and the boundary conditions similar to those at O (1) (cf. Figure
8 in [47]). (b) Dimensionless vertical velocity profile at r = 0 in the laboratory frame
with Re = 100 and τ = 0.1. The thick solid line represents the O (1) velocity profile
from [47]. The dash-dotted line is our uniformly asymptotic correction after introducing
the boundary layer. Notice that the dash-dotted line is on the right of the solid line,
indicating a faster expansion of the self-similar field in the presence of the boundary
layer. The inset shows a snapshot of the potential lines (left) and streamlines (right) in
the laboratory frame. The dashed line represents the shape of an isobar far from the
impact point. While the apex of the drop travels downward unperturbed as (1− τ), the
isobar propagates upward as A∗τ1/4 in the lab frame (see the text).
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(Equation 2.5), the dimensionless force at the first order near τ = 0+ is

F̃ =
3
√

6

2

(
1 +

8
√

6

3π3/2

1

Re1/2

)
τ1/2 +O

(
Re−1

)
, (2.20)

which gives the coefficient and the exponent of the early-time scaling in F̃ = ατβ

α =
3
√

6

2

(
1 +

8
√

6

3π3/2

1

Re1/2

)
= α∞ +

24

π3/2

1

Re1/2
and β = 1/2, (2.21)

where α∞ = 3
√

6/2 is the asymptotic value of α when Re→∞ predicted by the initial-

impact self-similar theory Equation 2.6. Equation 2.21 directly confirms the Re−1/2

scaling for α at finite Re and, therefore, verifies the usage of the boundary layer thickness

δν as the relevant length scale in the simple scaling argument. Second, it shows that the

inertial and viscous impact forces are additive as shown in Equation 2.10. Third, it gives

c0 = 24/(π3/2) ≈ 4.31, quantitatively agreeing with our experiments c0 = 4.36 ± 0.50.

As such, Equation 2.11 quantitatively describes the experimental trends of α(Re) and

β(Re) without fitting parameters (the dashed-dotted lines in Figure 2.5).

The simple picture that the viscous boundary layer effectively increases the propa-

gation speed of the self-similar pressure field also allows us to quantitatively predict the

trends of tmax and Fmax as a function of Re. To determine tmax, we first analyze the

propagation of isobars far away from the impact point within an impacting drop. We

find that the isobars travel as
(
U0D

3t
)1/4

at the high Re limit (Section A.1). Notice

that the propagation speed of isobars is different from the length scale of the self-similar

structure. The former indicates the location of constant-pressure contours, whereas the

latter arises from the self-similar arguments when constructing the self-similar pressure

field (Section A.1). When the isobar of a preset high pressure touches the upper surface

of the liquid drop, which moves downward ballistically as (D − U0t), the initial-impact

regime terminates. Hence, tmax, the boundary of the initial-impact regime, can be esti-

mated simply from A
(
U0D

3tmax

)1/4
= (D − U0tmax), where A is a geometric factor that

accounts for the threshold at which the apex starts to be affected by the self-similar pres-

sure field. In the dimensionless form, the condition simply writes as Aτ
1/4
max = (1− τmax)

(see the schematic in Figure 2.3(b)). From the asymptotic value of τmax at the high-Re
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limit, τ∞max ≈ 0.18 ± 0.05, we find A = 1.24 ± 0.10, on the order of one as expected.

At finite Re, we assume that the non-monotonic trend of the impact forces also arises

from the termination of the initial impact. Nevertheless, the propagation of the isobar

should be corrected due to the presence of the boundary layer at finite Re. The isobar

now propagates as A∗τ1/4
max with a renormalised A∗ = A

√
1 + εU

(1)
z . The peak time is

then given by the solution of the polynomial

(1− τmax)4 −A4
(

1 + U (1)
z Re−1/2

)2
τmax = 0. (2.22)

Notice that the ballistic motion of the apex of the drop is not affected by the correc-

tion εU
(1)
z , since the upper surface of the drop has not experienced the impact during

the initial impact and, therefore, is not influenced by the impact-induced boundary

layer. Equation 2.22 successfully predicts the decrease of τmax with decreasing Re,

which quantitatively matches τmax(Re) in three decades of Re (the dash-dotted line in

Figure 2.6(a)).

Although Fmax has been extensively investigated and the scaling of Fmax with the

inertial force ρD2U2
0 has been reported in several previous experiments [86, 64, 65, 87],

to the best of our knowledge, a quantitative description of Fmax as a function of Re

is still not available. Here, we propose a simple model for Fmax(Re). Our calculation

is based on an interesting observation: the overall shape of the rescaled impact force

F/Fmax is invariant when plotted against the rescaled time t/tmax in the regime of

high and intermediate Re. From high to intermediate Re, F (t) is highly asymmetric

with respect to tmax (Figure 2.3(b) and Figure 2.4(a)): the increase of the impact

force is fast before tmax and decays much slower after tmax. In contrast, for low-Re

impacts, F (t) becomes more symmetric (Figure 2.4(a)). The rise and decay of F (t)

show a similar time scale. To quantify the change of the shape of F (t), we define a

symmetry factor, S ≡
∫ tmax

0 F (t) dt/
∫∞
tmax

F (t) dt,(Notice that for the impact force

of very low Re, F (t) oscillates at long times and exhibits negative impact pressures

(figure 2.4a; for explanation see Section 2.3.4). In this case, we replace the upper limit

of the integral in the denominator t =∞ to a finite t0, the time when F (t) first crosses

zero.) which is shown as a function of Re in Figure 2.8(b). Interestingly, S reaches a

plateau S∞ = 3.08 ± 0.01 when Re > 7, showing that the impulse of impacts before
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tmax invariably annihilates a quarter of the total momentum of liquid drops irregardless

Re as long as Re > 7. The constant plateau of S suggests that the shapes of the

rescaled impact force, F (t/tmax)/Fmax, are invariant with changing Re and can be

collapsed into a master curve when Re > 7. We directly confirmed this hypothesis in

our experiments (Figure 2.8(a)). The collapse of F̃ (τ) at high Re without the rescaling

F̃ /F̃max and τ/τmax has also been reported in a recent experiment, where F̃max = F̃∞max

and τmax = τ∞max are constant [87]. Finally, since the integral of the force is equal to the

momentum of the drop, ∫ ∞

0
F̃ (τ) dτ =

π

6
, (2.23)

it is straightforward to show that

F̃max = F̃∞max

τ∞max

τmax
. (2.24)

Using Equation 2.22 and the asymptotic value of F̃max at high Re, F̃∞max ≈ 0.83, Equa-

tion 2.24 quantitatively predicts the trend of F̃max(Re) for over five decades of Re

between 0.3 and 104 (the dash-dotted line in Figure 2.6(b)).

2.3.4 Temporal Evolution of the Impact Force at the Low Re Regime

At even lower Re below 0.7, β increases above 1/2 and deviates from the scaling pre-

dicted for impact forces near τ = 0+ at finite Re. The data also show a strong scatter in

this regime (Figure 2.5(b) and Figure 2.6(a)). To experimentally achieve these low-Re

impacts, we had to use silicone oils of high viscosities above 10, 000 cSt. Silicone oils of

such high viscosities are made of polymerised siloxanes of high molecular weights, which

exhibit obvious viscoelasticity during fast impacts. The increase of β can be attributed

to the increase of elasticity. In the elastic limit, the kinetic energy of an impinging drop

is converted into the elastic potential of the deformed drop. The deformation of the

elastic drop can still be approximated as d ≈ U0t at short times. The elastic strain in

the deformed drop is d/r0 with r0 ≈
√
dD and the volume of the deformed region is

∼ r2
0d. The energy balance in the elastic limit can then be written as

Fd ∼ E d

r0
r2

0d, (2.25)
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Figure 2.8: Shape of impact forces. (a) Rescaled impact forces of the six impacts
shown in figure 2.4(a). F is normalised by the maximum impact force, Fmax, and
t is normalised by the peak time, tmax. The rescaled impact forces collapse into a
master curve for Re > 7. Notice that the curves are the same if plotting in terms of
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horizontal dashed line indicates the asymptotic value at high Re. The thick dash-dotted
line is a fitting as a guide of eyes.
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which gives

F̃ ∼ E

ρU2
0

τ3/2 (2.26)

in the dimensionless form, where E is the elastic modulus of the drop. The τ3/2 scaling

is the well-known result for the impact force of elastic spheres with Hertzian contacts.

A detailed calculation shows

F̃ =
2
√

2

3

E

ρU2
0

τ3/2 (2.27)

(see Section 2.2.2). The large exponent 3/2 in the pure elastic limit qualitatively explains

the increase of β as the elastic effect of high-molecular-weight silicone oils gradually sets

in. In the presence of viscoelasticity, Re is no longer a proper dimensionless number for

scaling the data, which results in the strong scatter of data shown in Figures 2.5(b) and

Figure 2.6(a).

The effect of viscoelasticity of high-molecular-weight silicone oils can also be seen

from the overall shape of impact forces (Figure 2.4(a) and Figure 2.8(a)). While F (t) of

low-viscosity silicone oils are highly asymmetric, F (t) for high-molecular-weight silicone

oils becomes more symmetric with respect to tmax, approaching the symmetric impact

force of elastic spheres. Quantitatively, the symmetry factor, S, of high-Re impacts is

large with S∞ = 3.08±0.01 (Figure 2.8(b)). In contrast, S of the high-viscosity silicone

oils gradually approaches 1, signalling a perfect symmetric curve similar to the impact

force of elastic spheres. The elastic effect becomes even more obvious for silicone oils

of very high viscosity above 30, 000 cSt. The drops made of these oils bounce upward

slightly towards the end of impact processes due to their elasticity, leading to negative

impact pressures and oscillating impact forces (Figure 2.4(a)).

To conclude this result and discussion, we summarise the early-time scaling of impact

forces during initial impact at different regimes in Table 2.1.

2.4 Conclusion

By synchronising force sensory with the high-speed photography, we simultaneously

measured both the kinematics and dynamics of liquid-drop impacts over a wide range

of Re. Our experiments on the early-time scaling of impact forces verified that the
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Impact regime Re α β

Inertial > 200 3
√

6
2 1/2

Viscous 0.7− 200 3
√

6
2

(
1 + 8

√
6

3π3/2
1

Re1/2

)
1/2

Elastic N/A 2
√

2
3

E
ρU2

0
3/2

Table 2.1: Early-time scaling of impact forces, F̃ = ατβ, near τ = 0+ at three different
impact regimes

initial impact of a liquid drop at high Re is governed by upward expanding self-similar

pressure and velocity fields. The expanding speed of the self-similar fields is of the

same order of magnitude as the impact speed of the liquid drop. The prediction of the

initial-impact self-similar theory breaks down when Re . 200, where viscous dissipation

becomes important. Using a perturbation method, we quantitatively analysed the early-

time scaling of the impact force of viscous drops at finite Re. Our calculation provided

a quantitative description of the maximum force (Fmax) and the peak time (tmax) as a

function of Re. Lastly, we also discussed the influence of viscoelasticity on the temporal

evolution of impact forces of high-viscosity silicone oils. In the spreading regime of drop

impacts, we generalised the asymptotic self-similar solution proposed by Eggers and

co-workers [61] and found an exact solution for inertia-driven drop spreading at finite

times at high Re. Our solution quantitatively predicts the height of spreading drops.

The discrepancy between the exact solution and experiments on the temporal evolution

of contact lines and impact forces reveals the limit of the self-similar approach in pre-

dicting drop-spreading dynamics. In summary, our systematic experiments illustrate

the detailed temporal evolution of impact forces across inertial, viscous and viscoelastic

regimes. The corresponding theoretical analysis provides a quantitative understanding

of the early-time scaling of impact forces in these different impact regimes. Finally,

our exact self-similar solution on inertia-driven drop spreading extends the well-known

asymptotic self-similar scaling to finite times and provides a parameter-free description

of the height of spreading drops.

Our work also poses new questions and directions. Theoretically, the logical next

step is to incorporate the exact solution of the Euler equations with the solution of

the boundary layer [61] and quantitatively predict the rim dynamics of liquid lamella

[98] and the temporal evolution of impact forces during spreading. More importantly,
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a theoretical understanding is needed to bridge the two self-similar regimes at high Re,

which should illustrate how the self-similar spreading establishes from the expanding

self-similar fields at the end of initial impacts. This transition is particularly important

given that the maximum impact force occurs during the transition. Experimentally, we

have showed that high-speed imaging and fast force measurement are two complemen-

tary tools. While high-speed imaging can accurately resolve the variation of the shape

of impacting drops during spreading, force measurement reveals the unique signature of

drop dynamics during initial impact. Although the use of high-speed photography has

become a routine in the study of drop impacts [26], the combination of the two has not

been frequently implemented. A broader application of the combined techniques will

certainly deepen our understanding of liquid-drop impacts.



Chapter 3

Shear Stress and Pressure of

Drop Impact

3.1 Introduction

Laozi, the ancient Chinese philosopher in the 6th century BCE, has long noticed that

water, although the softest and weakest material known in his time, is most effectual in

eroding hard substances [99]. The saying of Laozi has often been misinterpreted nowa-

days, the erosion of solid surfaces such as stones eroded by impacting drops is usually

attributed to their virtue of persistence (Figure 3.1(a)), rather than their effectiveness

in erosion because of their fluid nature. To demonstrate the superior ability of drop

impact in erosion, we compare the size of impact craters by liquid drops and those by

solid spheres on both granular media and plaster slabs. The impact craters by liquid

drops are always larger than those by solid spheres under similar impact conditions

(Figure 3.1(b)-(e), Table B.1 in Section B.1). Why are liquid drops so erosive? What

are the key dynamic features that distinguish the erosion of drop impact from that

of solid-sphere impact? Beyond testifying the wisdom of the ancient philosopher, the

answers to these questions are of great importance for a wide range of natural, environ-

mental and engineering processes including soil erosion [100, 101, 4, 67], preservation of

heritage sites [102, 103], wear of wind and steam turbine blades [104], and cleaning and

peening of solid materials (e.g. silicon wafers) [82, 105].

The superior ability of an impacting drop in erosion cannot stem from its impact

48
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Figure 3.1: Surface erosion by drop impact. (a), Dripping water hollows out stone:
Raindrop-induced holes on a stone step underneath the eaves of a historical 300-year-
old house in Yangshuo, China. The holes have a diameter of ∼ 5 cm and a depth of ∼
0.5 cm. (Image credit: Guilin Daily, 23 Sept 2015). (b),(c), Comparison of the craters in
granular media created by the impact of a nylon sphere (left) and a water drop (right)
of the similar size (D ≈ 3 mm) and impact velocity (U = 2.97 m/s). Scale bar: 5
mm. (d),(e), Comparison of the craters in plaster slabs by the repeated impacts of steel
spheres (D = 5.0 mm, U = 1.4 m/s, number of impact N = 235) (left) and water drops
(D = 3.0 mm, U = 2.6 m/s, N = 2500) (right). The total impact energies are the same
at 0.12 J. Scale bar: 5 mm. We also compare impact craters with the same number of
impact and the same impact momentum. Drop-impact craters are larger and deeper in
all cases (Table B.1 in Section B).
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force, as the maximum impact force induced by a millimetric water drop falling near

its terminal velocity is more than an order of magnitude smaller than that generated

by the impact of a solid sphere of similar size, density and velocity [66]. The average

impact pressure of the drop is even smaller due to the large contact area formed by

the spreading drop. Thus, instead of impact force or average impact stress, the erosion

ability of drop impact must originate from the unique spatiotemporal structure of its

impact stress and the response of impacted substrates under the dynamic stress. How-

ever, although the impact force of liquid drops has been recently studied experimentally

[66, 86, 65, 64, 87, 50, 106], quantitative measurements which can measure the stress dis-

tributions of drop impact on solid surface are still not available. Here, we develop a new

experimental method—high-speed stress microscopy—to measure the shear stress and

pressure of drop impact on solid elastic substrates. The method integrates the principles

of three state-of-the-art imaging techniques, i.e., traction force microscopy, laser-sheet

microscopy and high-speed photography, allowing us to map the temporal evolution of

the pressure and shear stress distributions underneath millimeter-sized drops in fast

impact events with a microsecond temporal resolution and a micron-scale spatial reso-

lution. Our measurements using this novel method provide not only first experimental

results on the unusual dynamics of the impact stress distributions but also new insights

into the origin of high erosion efficiency of drop impact.

3.2 Methods

3.2.1 Parameters of Drop Impact

Our drops are made of a sodium iodide aqueous solution (60% w/w), which has a similar

viscosity η and surface tension σ as water but with a density ρ 2.2 times higher. The

diameter of drops is measured by using ImageJ to analyze the snapshots of drops and

fit with spherical shapes. Drops of D = 3.49± 0.19 mm impact normally on the surface

of the PDMS gels at U = 2.97 m/s, giving a Reynolds number Re = ρUD/η = 22, 800

and a Weber number We = ρDU2/σ = 940. Hence, the impact is dominated by fluid

inertia at early times, when the shear stress and pressure of the drop are highest leading

to the strongest erosion [47]. Below, we focus on drop impact at early times and report

positions and times in dimensionless forms using D and D/U as the corresponding
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length and time scales.

3.2.2 Preparation and Characterization of PDMS Substrates

Polydimethylsiloxane (PDMS) elastomers were prepared from two-part Sylgard 184 sil-

icone elastomer kits (Dow Corning). To adjust the Young’s modulus, E, of the cured

PDMS gels, we mixed siloxane monomers with crosslinkers at a controlled mass ratio.

In most experiments reported in this paper, we used a monomer-to-crosslinker mass

ratio of 30:1, which yielded PDMS gels of E = 100 kPa. PDMS gels of E = 250 kPa

(mass ratio 20:1) and E = 420 kPa (mass ratio 18:1) have also been tested to assess the

effect of gel stiffness on the impact pressure and shear stress. Florescent polystyrene

(PS) particles of diameter 30 µm (ThermoFisher) were mixed into the two-part PDMS

mixtures at a controlled volume fraction of 0.23% before curing. The PDMS-particle

mixture was finally vacuumed to remove air bubbles and placed in an oven at 90◦C

overnight for curing. The fully cured gels have a fixed thickness of 6.5 mm and an

area of 24 × 24 mm2. The area is much larger than the maximum spreading area of

impacting drops.

We measured the Young’s modulus of the cured gels by surface indentation. Specif-

ically, we used a steel ball of radius R = 2.5 mm as an indenter. A control weight was

then applied on the top of the sphere to indent the gels. The indentation length d at a

given indentation force F was measured from the side view. The Young’s modulus of

the gels was calculated via the Hertzian contact equation [91]:

F =
3

4
E∗R1/2d2/3, (3.1)

where the reduced Young’s modulus E∗ is defined as

1

E∗
=

1− ν2

E
+

1− ν2
s

Es
≈ 1

2E
. (3.2)

Here, E and ν are Young’s modulus and the Poisson’s ratio of the PDMS gels, and Es

and νs are the Young’s modulus and the Poisson’s ratio of the sphere. Note that E � Es

and ν ≈ 0.5. We also estimated the Young’s modulus by matching the experimental

stress distributions of solid-sphere impact with those from finite element simulations.
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Young’s moduli measured using these two different methods agree well with less than

20% difference. The value of the Young’s moduli thus obtained also agree quantitatively

with previous studies [107, 108]. The Poisson’s ratio of the gels, ν, is more difficult to

measure accurately. We used ν = 0.49 based on previous studies of the mechanical

properties of PDMS gels under small strains [109].

We modified the wettability of the surface of the PDMS gels via plasma modifica-

tion. The PDMS gels were exposed to air plasma for 3 mins with a power of 100 W.

The pressure of a chamber for plasma treatment was 300 mTorr. Without the plasma

modification, the untreated PDMS surface is hydrophobic with a contact angle around

90◦. After the modification, the surface becomes hydrophilic with a contact angle less

than 10◦. Untreated hydrophobic gels were used in all the experiments reported in this

study unless stated otherwise (Figure B.3).

3.2.3 Image Analysis and Data Average

The fluorescent PS particles embedded in the PDMS gels were served as tracers to

track the deformation of the gels under impact. We used standard Particle Image

Velocimetry (PIV) algorithm (PIVlab, Matlab) to track the displacement field of the

gels at different times [110]. An interrogation window of 384 µm × 384 µm with 70%

overlap was adopted in PIV, which gave a spatial resolution of 115 µm. The temporal

resolution is 0.025 ms, which is set by the frame rate of high-speed photography.

To reduce measurement errors, we first averaged the cross-correlation fields of PIV

from five repeated impacts on the same gel at the same location, which were used to

calculate the average shear stress and pressure fields shown in Figure 3.3 and 3.7. The

results such as the position of the maximum shear stress and the drag force shown in

Figure 3.4 and 3.6 were the outcome of a further average over three different average

displacement fields for impacts on different gels or impacts on the same gels at different

impact locations. Thus, one data point in Figure 3.4 and 3.6 is the average result of

total 15 experiments.
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3.2.4 Moving-least Squares (MLS) Method

Stress fields depend on strain fields, which are the derivative of the displacement fields.

A smoothing procedure is necessary in order to reduce the noise of differentiation. We

used the moving-least squares (MLS) interpolation method to obtain a continuously

differentiable displacement field from an experimentally obtained discrete PIV displace-

ment field [111]:

g(x) = PT (x)a(x) (3.3)

where g(x) is the targeted continuous displacement field, PT (x) is a polynomial basis

and a(x) is the corresponding coefficients of the basis. x is the continuous position

vector. Because of the cylindrical symmetry of drop impact geometry, we chose x = (r, z)

with r = 0 and z = 0 at the impact point. The negative z direction points along the

direction of the impact velocity of drops. We adopted a cubic polynomial basis, so

PT (x) and a(x) are

PT (x) = [1, r, z, r2, z2, rz, r3, z3, r2z, rz2], (3.4)

a(x) = [a0(x),a1(x),a2(x), ...,a9(x)]. (3.5)

Noting that a(x) is not constant, and it varies with the different position vectors. The

coefficients of the targeted function at x were obtained by minimizing the weighted

least-square error,

L(x) =

n∑

i=1

f(x− bi)[P
T (bi)a(bi)−w(bi)]

2
(3.6)

where w is the discrete PIV displacement field from experiments. bi indicates the

discrete PIV coordinates with a total n = 540 points in our experiments. f(x − bi) is

the decaying weighted function defined as [112]:

f(x− bi) =





exp(1−d2/d2m)−1
e−1 for d ≤ dm

0 for d > dm

(3.7)
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where d = |x− bi| is the distance between the continuous position x and bi. dm is the

cut-off distance:

dm = 2
m∑

i=1

|x− bi|
m

. (3.8)

m is adjustable and it determines the fitting range. In this study we chose m = 43. By

making the derivative of L with respect to a(x) to be zero in order to minimize L, it

leads to a set of linear equations which can be solved analytically. The solution of the

interpolation function g(x) gives

g(x) = PT (x)a(x) = PT (x)A−1(x)B(x)w (3.9)

where

A(x) =

n∑

i=1

f(x− bi)P(bi)P
T (bi). (3.10)

B(x) = [f(x− b1)P(b1)PT (b1), ..., f(x− bn)P(bn)PT (bn)]. (3.11)

3.2.5 Calculations of Shear Stress and Pressure

Through applying the MLS method in Section 3.2.4, the continuous displacement fields

were obtained, and the strain fields can be calculated by taking the spatial derivative

to the interpolation polynomial functions g(x), where gT = [gr, gz]. Because the de-

formation of the substrate is small in this study, we adopted the assumption of linear

elasticity. The strain-displacement relation is expressed as:

ε =
1

2
((∇g) + (∇g)T ) (3.12)

where ε is the strain tensor. For an axisymmetric case in the cylindrical coordinate, the

strain-displacement relation can be reduced to

εrr =
∂gr
∂r

, εzz =
∂gz
∂z

, εθθ =
gr
r
, εrz =

1

2
[
∂gr
∂z

+
∂gz
∂r

] (3.13)

where εrr, εzz, and εθθ are the normal strains in the r, z, and θ direction, respectively.

εrz is the shear strain. By applying the linear elastic isotropic model, which implies that



55

the properties of the polymer gel are independent of direction and it is in the leaner

elastic regime, the generalized Hooke’s law can be applied. Therefore it follows the

stress-strain relation:

σij = λεbδij + 2Gεij . (3.14)

where λ = 2νG/(1− 2ν) is the Lamé constant, G = E/2(1 + ν) is the shear modulus, ν

is the Poisson’s ratio, and δij is the Kronecker delta. εb is the bulk strain, which is the

sum of the three normal strains εb = εrr + εzz + εθθ. In this study, we define σrz as the

shear stress τ , and σzz gives the pressure p.

The PDMS polymer gels are nearly incompressible with Poisson’s ratio close to 0.5,

which leads to a very large λ. On the other hand, the bulk strain εb is close to 0.

Therefore, the impact pressure cannot be accurately determined from the product of

λεb in Equation 3.14. Instead, we adopted a different approach by using the quasisteady

state assumption [111]. Specifically, we replaced λεb by a term −µ in Equation 3.14.

σij = −µδij + 2Gεij . (3.15)

Under the quasi-steady-state assumption, the stress tensor obeys:

3∑

j=1

∂σij
∂xj

= 0. (3.16)

By substituting Equation 3.14 into Equation 3.15, Equation 3.16 becomes

µ(x) = µ(x0) +G

∫ x

x0

(∇2g) · ds +G[εb(x)− εb(x0)] (3.17)

where x0 sets a reference point for integration. We chose the reference point at the

top layer z = 0 with r as large as possible away from the impact point at short times.

Taking p(x0) = σzz(x0) = 0, we have µ(x0) = 2Gσzz(x0). The integration path goes

from the reference point x0 to x, as shown in Figure B.1. Finally, the pressure can be

obtained

p(x) = −G
∫ x

x0

(∇2g) · ds +G[εb(x)− εb(x0)] + 2G[εzz(x)− εzz(x0)] (3.18)
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For an axisymmetric case, the Laplacian term ∇2g in the cylindrical coordinate can be

calculated by

∇2g = (
∂2gr
∂r2

+
1

r

∂gr
∂r

+
∂2gr
∂z2

− gr
r2

)e1 +
∂2gz
∂r2

+
1

r

∂gz
∂r

+
∂2gz
∂z2

)e2 (3.19)

e1 and e2 are the unit vector also in the direction of the r and z axes, respectively.

To verify the quasi-steady-state assumption used in the pressure calculation, we

compared the ratio of the inertial force to the elastic force per unit volume:

ra = |ρg
∂2gz
∂t2

∂σzz
∂z

| (3.20)

for solid-sphere impact, where ρg is the density of the PDMS gels. ra < 2% near

the impact axis where the impact stress is large enough relevant to our measurements.

Consistent with the estimate, the impact pressure of solid spheres calculated using the

quasi-steady state assumption quantitatively matches that of the finite-element simula-

tions without the assumption (Figure 3.2). It should be emphasized that the calculation

of shear stress—the quantity most relevant to surface erosion—does not rely upon the

quasi-steady-state assumption and therefore is immune to the errors associated with the

assumption.

3.2.6 Finite Element Analysis

To calibrate high-speed microscopy and testify its accuracy (Figure 3.2(b) and (c)), we

used the commercial finite element software ABAQUS to simulate solid-sphere impact,

which has a shorter time scale compared with drop impact at the same impact condi-

tion. The impact geometry was axisymmetric. The element shape for the meshing of

the impacted surface was quadrilateral with adjustable sizes. Near the impact point,

the element size was 0.2 mm. The diameter and the impact velocity of the impacting

solid sphere were 3.16 mm and 0.49 m/s, matching the impact condition of the ex-

periments. Since Young’s modulus of the steel sphere is much larger than that of the

impacted PDMS substrate, the sphere is assumed to be rigid in the simulation. The

substrate is isotropic and linearly elastic. While Poisson’s ratio of the substrate was

fixed at 0.49, Young’s modulus of the substrate was chosen to match the outcome of
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Figure 3.2: High-speed stress microscopy. (a), A schematic showing the principle of
high-speed stress microscopy. Lower left inset: An image of the PDMS gel embedded
with fluorescent particles under the illumination of the laser sheet. (b),(c), Comparison
of (b) the shear stress and (c) the pressure induced by the impact of a steel sphere
obtained from high-speed stress microscopy (left) and from finite element simulations
(right). The impact condition is specified in the text. The impact time is t = 0.25
ms, where t = 0 corresponds to the momentum when the sphere first touches the solid
surface.
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Figure 3.3: Shear stress distribution of solid-sphere impact and drop impact. (a),
(c), The temporal evolution of the shear stress τ(r, z, t) and the spatiotemporal di-
agram of the surface shear stress τ(r, z = 0, t) of the impacting steel sphere. τ is
non-dimensionalized by E4/5(ρU2)1/5, a scaling based on the energy balance (Sec-
tion B.3). (b), (d), The temporal evolution of τ(r, z, t) and the spatiotemporal diagram
of τ(r, z = 0, t) of the impacting drop. τ is non-dimensionalized by ρU2 based on the
self-similar theory with infinitely rigid substrates [47]. The impact conditions are spec-
ified in the text. The red line in (d) indicates the position of the turning point. Scale
bar: 1 mm.
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experiments. Thus, the simulation allowed us to assess Young’s modulus of the PDMS

gels, independent of the indentation measurements discussed above. The two methods

yielded quantitatively similar moduli, which also agree well with the literature value.

To numerically solve the coupled equations of the impact stress of impacting drops and

the deformation of elastic media (Figure 3.9), we used the partial differential equation

toolbox in Matlab. Specifically, we adopted the transient axisymmetric geometry in the

structural mechanics analysis of the toolbox. The pressure and shear stress distributions

of incompressible drops on infinitely rigid substrates (Equation B.10 and B.11 in Sec-

tion B.6) were assigned as the boundary loads on the elastic medium, which has Young’s

modulus and Poisson’s ratio matching those of experiments. We then numerically cal-

culated the radial and vertical displacements of the surface of the elastic medium as

a function of time (Figure B.5). The dimension and the grid size of the medium are

chosen so that the results are convergent independent of these parameters. The de-

tailed discussion of the coupled differential equations and their numerical solutions can

be found in Section B.6.

3.3 Results and Discussion

Figure 3.2(a) shows the idea of experimental setup of high-speed stress microscopy.

Specifically, we embed low-concentration (0.23% v/v) fluorescent polystyrene particles

of diameter 30 µm in a cross-linked polydimethylsiloxane (PDMS) gel as tracers to track

the deformation of the gel under impact (Section 3.2.2). The surface area of the gel is

much larger than the maximum spreading diameter of impacting drops. A thin laser

sheet of 30 µm thickness illuminates the gel from the side and excites the fluorescent

label of tracer particles within the sheet. The laser sheet is finely adjusted to be normal

to the impacted surface and through the center of impacting drops. A high-speed

camera focusing on the sheet is then used to image the motions of fluorescent tracers

at 40,000 frames per second. The resulting tracer displacement fields at different times

are processed to calculate the temporal evolution of the stress distributions within the

gel (Section 3.2.2). The gel surface is hydrophobic with the contact angle∼90◦. We

control the Young’s modulus of the gel at E = 100 kPa in our experiments, so that the

deformation of the gel is large enough to be accurately measured by our image analysis,
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but small enough that the impact process of liquid drops is not strongly affected by the

deformation at the surface. Gels with Young’s modulus up to 420 kPa by changing the

mass ratio of crosslinkers to monomers are also tested. Furthermore, we also examine

the gels with hydrophilic surfaces through applying the plasma treatment (Figure B.3).

As a calibration and the basis of comparison, we first measure the pressure and

shear stress induced by the impact of a solid steel sphere of diameter D = 3.16 mm

at impact velocity U = 0.49 m/s by using Equation 3.14 and 3.18, and compare the

experimental results with those from finite-element (FEM) simulations under the same

condition. Figure 3.2(b) and (c) show the contours of the shear stress τ and pressure p

fields of solid-sphere impacts at t = 0.25 ms, respectively. It shows that experiments and

simulations match quantitatively, verifying the accuracy of high-speed stress microscopy.

3.3.1 Shear Stress of Drop Impact

Figure 3.3(a) and (b) compare the temporal evolution of the shear stress of solid-sphere

impact and drop impact at early times. Upon the impact, spatially non-uniform shear

stresses quickly develop in both cases. However, while the position of the maximum

shear stress of solid-sphere impact is stationary near the impact axis at r = 0.095,

the maximum shear stress of drop impact propagates radially with the spreading drop.

Quantitatively, the spatiotemporal diagrams of the shear stress near the contact sur-

face, τ(r, z = 0, t), of the two impact processes are shown in Figure 3.3(c) and (d),

highlighting further the fast propagation of the maximum shear stress of drop impact.

Besides, Figure 3.3(d) shows that the magnitude of the maximum shear stress increases

in the beginning. After it reaches to the maximum value at t = 0.13, the maximum

shear stress then decreases. Here, t = 0 is defined as the moment when the impacting

drop or sphere first touches the gel surface.

To understand the origin of the maximum shear stress of drop impact, we corre-

late the position of the maximum shear stress rτ with the shape of impacting drops

(Figure 3.4). Two kinematic features are analyzed: the tip of the expanding lamella

rlm and the turning point rc, where the drop body connects to the root of the lamella

(Figure 3.4 inset). While the lamella moves significantly faster than the maximum shear

stress, rτ follows closely behind rc. Hence, the maximum shear stress arises from the

strong velocity gradients near the turning point, where the flow changes rapidly from
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Figure 3.4: Dynamic tracking of the maximum shear stress and the maximum pressure.
The position of the lamellar tip, the turning point, the maximum shear stress and the
maximum pressure as a function of time. The dashed line indicates r =

√
6t/2. Upper

inset: Definition of the kinematic features of an impacting drop.
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Figure 3.5: Self-similar scaling of the shear stress. The rescaled surface shear stress τ/
√
t

as a function of the rescaled radial position r/
√
t. The dashed line is the prediction of

Equation 3.21 with the modified scaling function f(x). Oscillations of shear stress can
be identified above tc = 0.106 at large r.
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Figure 3.6: The shear force on the impacted surface Fd(t). While the inset shows the
dimensionless force Fd scaled by ρU2D2 suggested by the self-similar theory [47], the
main plot shows the dimensionless force Fd scaled by E1/2(ρU2)1/2D2 based on our
theoretical analysis of deformable substrates (Section B.6).
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the downward vertical direction within the drop body to the horizontal radial direc-

tion inside the narrow lamella. Beyond the maximum, the shear stress induced by the

boundary layer of the fast expanding lamella decreases with increasing r [89]. While

rc(t) follows the well-established square-root scaling rc(t) =
√

6t/2 [66, 46], rτ (t) shows

a similar square-root scaling but with a slightly smaller prefactor rτ =
√
t.

Based on an analogy of the structure of the boundary layer in the trail of a shock-

wave, Philippi et al. proposed that the shear stress of incompressible drops on infinitely

rigid substrates possesses a self-similar structure when t→ 0+ [47],

τ(r, z = 0, t) = 2

√
6

π3Re

1√
t
f(

r√
t
) for r ≤ rc(t), (3.21)

where f(x) = x/(3 − 2x2). τ(r, t) is non-dimensionalized by ρU2 and exhibits a finite-

time singularity at rc(t) =
√

6t/2. To verify the self-similar hypothesis, we plot τ
√
t

versus
√
t of our experimental results (Figure 3.5), which shows a good collapse at small

r away from the singular region. With a modified scaling function f(x) = x/(1−x2) to

count the different temporal scalings of rc and rτ =
√
t, the collapsed data quantitatively

agrees with Equation 3.21 (the dashed line in Figure 3.5).

By integrating the shear stress over the contact area, we also obtain the shear force

Fd of drop impact,

Fd(t) = 2π

∫ rlm

0
τ(r, z = 0, t)rdr, (3.22)

which quantifies the erosion strength of drop impact. Fd(t) is independent of the wet-

tability of the impacted surface, but increases with Young’s modulus following a scaling

Fd ∼
√
E within the range of our experiments E = 100 kPa to E = 420 kPa (Fig-

ure 3.6). Fd of the drop impact is substantially larger than that of the solid-sphere

impact at early times at E = 100 kPa (Figure B.4).

3.3.2 Pressure of Drop Impact

Although subject to larger experimental errors due to the nearly incompressibility of

PDMS, the pressure (i.e. normal stress) distribution p(r) underneath impacting drops

is also measured with high-speed stress microscopy. Similar to the shear stress, we

observe a noncentral pressure maximum propagating radially with the spreading drop
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Figure 3.7: Pressure distribution of solid-sphere impact and drop impact. (a), (c),
The temporal evolution of the pressure p(r, z, t) and the spatiotemporal diagram of the
surface pressure p(r, z = 0, t) of the impacting steel sphere. p is nondimensionalized
by E4/5(ρU2)1/5. (b), (d), The temporal evolution of p(r, z, t) and the spatiotemporal
diagram of p(r, z = 0, t) of the impacting drop. p is non-dimensionalized by ρU2. The
impact conditions are specified in the text. The red line in (d) indicates the position
of the turning point. The time when the negative pressure emerges tc = 0.106 is also
indicated. Scale bar: 1 mm.
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(Figure 3.7(b) and (d)). The dynamics are again in sharp contrast to the pressure of

solid-sphere impact, where the maximum impact pressure is fixed at r = 0 (Figure 3.7(a)

and (c)). Thus, our experiments provide unambiguous evidence on the existence of

the counterintuitive noncentral pressure maximum predicted by drop-impact theories

[113, 39, 47]. To the best of our knowledge, our study provides the first experimental ev-

idence on the existence of propagating off-axial pressure maximum during drop impact.

Nevertheless, the maximum pressure falls behind the maximum shear stress (Figure 3.4),

a feature unexpected from the self-similar theory with infinitely rigid substrates [47].

3.3.3 Shock Wave

More interestingly, a negative pressure emerges in front of the turning point rc at tc

= 0.106 (Figure 3.7(b) and (d)). Above tc, both shear stress and pressure show clear

oscillations at large r (Figure 3.5). Consistent with the stress measurements, we also

observe the oscillation of the radial displacement of the gel surface, ur(r, t), at large

r above tc (Figure 3.9(b)), suggesting the formation of a surface acoustic wave in the

gel—the classic Rayleigh wave—driven by the maximum pressure and shear stress near

rc. The speed of the turning point can be calculated through the derivative of rc(t) with

respect to time:
drc
dt

=

√
6

4
t−1/2. (3.23)

Since the speed of the turning point Vc as t→ 0+, the stress maxima spread super-

sonically at short times (Figure 3.8). Thus, a shock front forms near rc on the impacted

surface when t < tc. The surface wave overtakes the turning point above tc, releasing

the Rayleigh wave in front of the spreading drop in an explosion-like process. The speed

of the surface wave can be estimated as 1.88, which quantitatively matches the speed

of the Rayleigh wave [114]

VR =
1

M
[

√
1

2(1 + ν)

0.862 + 1.14ν

(1 + ν)
] = 1.89 (3.24)

Here, the Mach number M ≡ U
√
ρS/E = 0.292. ρS = 0.965 g/cm3 and ν = 0.49 are

the density and Poisson’s ratio of PDMS, respectively. Without the shock process, the

Rayleigh wave of solid-sphere impact is much weaker and inconspicuous in comparison



67

Figure 3.8: (a), (b), The spatiotemporal diagram of the radial displacement of the gel
surface ur(r, t) induced by the impact of the steel sphere (a) and the liquid drop (b).
ur is normalized by the diameter of the impactors D. (c), (d), The numerical solution
of ur(r, t) by the impact of the steel sphere (c) and the liquid drop (d). The red lines in
(b) and (d) indicate the position of the maximum pressure that drives the surface wave,
whereas the white lines in (c) and (d) indicate the propagation of the Rayleigh wave
emitting at t = 0 and tc ≈ 0.1, respectively. For the complete solution of the surface
waves, see Figure B.5.
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Figure 3.9: Competition between the speed of the turning point Vc and the speed of the
Rayleigh wave VR. The supersonic regime before tc, where Vc > VR, is indicated.
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(Figure 3.9(a)).

Encouraged by the agreement between Equation 3.21 and experiments, we couple the

theoretical impact pressure and shear stress of incompressible drops on infinitely rigid

surfaces with the Navier-Lamé equation of semi-infinite elastic media (Section B.6).

After non-dimensionalizing the governing equation and the boundary conditions, the

results become independent of M in terms of the dimensionless variables. Particularly,

the shear force scales as Fd ∼ E1/2(ρU2)1/2D2, agree with our measurements at dif-

ferent E (Figure 3.6). The numerical solution of the coupled equations qualitatively

reproduces the formation of the shock-induced Rayleigh wave in drop impact, where a

sharp surface wave with a well-defined peak emerges at tc ≈ 0.1 and propagates with VR

(Figure 3.9(d)). In contrast, the surface wave of solid-sphere impact emits continuously

from a stationary source and is therefore much smoother and diffusive (Figure 3.9(c)).

3.4 Conclusion

Our high-speed stress microscopy reveals three unique dynamic features of drop impact,

which may contribute to its unusual ability to erode solid substrates. (i) The stress

distributions of impacting drops are spatiotemporally highly non-uniform. The radially

propagating stress maxima simultaneously press and scrub impacted substrates, leading

to a larger erosion area and a higher shear force. (ii) Because of the divergent speed

of the turning point, a shock wave forms on impacted substrates at short times, which

substantially increases the erosion strength. Each impacting drop behaves like a tiny

bomb, releasing its kinetic impacting energy explosively. (iii) A sharp shock-induced

surface wave finally emerges from the explosion process, weakening the cohesion of

surface materials before the arrival of the shear stress maximum.

It is worth of noting that shock propagation including that within impacting drops

and along impacted surfaces has been extensively investigated theoretically for com-

pressible drops with the liquid Mach number U/C ∼ O(1), where C is the speed of

sound in liquid drops [38]. Nevertheless, the shock process of incompressible drops with

U/C � 1 relevant to most natural and industrial processes [67, 65, 25] has not been

realized and discussed heretofore. Thanks to low impact speeds, we are able to exam-

ine the propagation of drop-impact-induced surface shock in real time experimentally,
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crucial for understanding the erosion of drop impact. Finally, the use of high-speed

microscopy demonstrates its potential to measure the impact stress of liquid drops in

diverse situations such as drop impact on patterned substrates, at low ambient pressures

and with non-Newtonian drops [27, 26].



Chapter 4

Drop Impact on Micropatterened

Surfaces

4.1 Introduction

With the advance of technology in recent decades, surfaces with various properties

have been created. Biomimetic materials inspired by lotus leaves, spider silks, butterfly

wings are the typical examples [115]. Studying drop impact on these kinds of surfaces

has lots of potential applications, such as self-cleaning, spray coating, and anti-icing of

airplane wings [26]. The general way of modification is changing topography and varying

wettability of surfaces. So far, the literatures mainly focus on the how the textures affect

the kinematics of drop impact. For examples, the surface roughness plays the role in

splashing [35, 116]. The scaling of the maximum spreading radius is also examined

[117, 118, 52]. In addition, many studies have investigated the characteristics of retract,

rebound, jet of drops impacting on superhydrophobic surfaces at different We, Re,

impact velocities, and surface properties [119, 120, 121, 122, 123, 124, 56, 54, 55]. In

particular, Chen et al. concluded that as Re and We increase, the orders of the regimes

of outcomes would be regular rebound, jetting, partial rebound, and splashing [125].

Patil et al. stated that as the impact velocity of a drop increases, the Cassie to Wenzel

state occurs in which the liquid penetrates the grooves between pillars. The outcomes

of rebound or non-rebound corresponds to non-penetration or complete penetration of

liquids [126].
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Despite these extensive studies, there are still few literatures discussing how the

textures of surfaces affect the stress distribution of drop impact due to the difficulty of

simulations and analytical derivations. The structure of substrates is a crucial parameter

related to erosion or damage on coatings or substrates [127]. Exploring the effects

of desired modifications on stress distribution measurements can finally be achieved

through the experiments. Here, we perform photolithography to synthesize the polymer

gel with arrays of micropillars on its surface. The novel technique“high-speed stress

microscop” is applied to obtain the temporal evolution of displacement fields and shear

stress fields of drop impact at short times. We compare the difference of displacement,

shear stress, and shear force of the micropatterned surface with the smooth surface.

The results help to understand how micropatterns mitigate erosion of drop impact.

4.2 Methods

4.2.1 Preparation of Micropatterned PDMS Substrates

In order to have the micropatterned structure on the surface of substrate, soft lithogra-

phy is one of the most common technique to fabricate the mold. Here, SU-8, an epoxy

negative photoresist, was served as the master mold for the patterned template. Firstly,

a clean 4 inch Si wafer was prepared, and 4 mL of SU-8 2010 was dispensed on the

wafer. The spin coating of SU-8 is processed in two steps: (1) 500 rpm for 10 s and then

(2) 2000 rpm for 30 s. The thickness of the film was 14 µm. The SU-8-coated wafer was

placed on a hotplate for soft baking at 95◦C for 3 mins. A soda lime photomask of ar-

rays of circular shape patterns was used for SU-8 exposure. The circles were 20 microns

in diameter with a 40-micron pitch. The pattern was transferred to sample through

exposure of UV radiation with a mask aligner (K2 Aligner Suss MABA6,) in the soft

contact mode. The dose of exposure energy was 60 mJ. After the exposure, the post

exposure bake was directly applied at 75◦C for 2.5 mins. Afterwards, the sample was

immersed in SU-8 developer (Propylene glycol monomethyl ether acetate) for 3 mins in

order to dissolve the uncrosslinked parts, and then followed by rinsing with isopropyl

alcohol. After the air dry, the hard bake was incorporated at 100◦C. Through these

processes, the structure of arrays of holes with the diameter = 20 µm and the depth =

14 µm was obtained (Figure 4.1).
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Figure 4.1: Schematic diagram of synthesizing micropatterned PDMS. (a), The process
of synthesizing the micropatterned PDMS by applying photolithography to manufacture
the master template on a Si wafer. (b), Optical microscope image of the surface of
micropatterned PDMS. Scale bar: 100 µm.
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Polydimethylsiloxane (PDMS) elastomers were prepared from two-part Sylgard 184

silicone elastomer kits (Dow Corning). To adjust the Young’s modulus, E, of the cured

PDMS gels, we mixed siloxane monomers with crosslinkers at a controlled mass ratio.

In the experiments reported in this paper, we used a monomer-to-crosslinker mass ratio

of 30:1, which yielded PDMS gels of E = 100 kPa. Florescent polystyrene (PS) particles

of diameter 30 µm (ThermoFisher) were mixed into the two-part PDMS mixtures at

a controlled volume fraction of 0.23% before curing. The PDMS-particle mixture was

finally vacuumed to remove air bubbles. Subsequently, the SU-8 coated wafer was placed

on the top of a container of PDMS-particle mixture, and all of them were placed in an

oven at 90◦C overnight for curing of PDMS. The fully cured gels have a fixed thickness

of 6.5 mm and an area of 24 × 24 mm2, and have the micro-patterned pillars with the

diameter = 20 µm and the height = 14 µm. The surface area is much larger than the

maximum spreading area of impacting drops.

4.2.2 Calculations of Displacement Fields and Shear Stress Fields

The fluorescent PS particles embedded in the PDMS gels were served as tracer particles.

Through tracking the motion of tracer particles, the deformation of the gels under

impact can be obtained. We used Particle Image Velocimetry (PIV) algorithm (PIVlab,

Matlab) to obtain the temporal evolution of displacement fields of the gels [110]. An

interrogation window of 384 µm × 384 µm with 70% overlap was adopted in PIV, which

gave a spatial resolution of 115 µm. The temporal resolution is 0.025 ms, which is set by

the frame rate of high-speed photography. The first frame which is at t = 0 was set to be

the reference frame. That means, each frame at different moments was cross-correlated

with the first frame.

The displacement fields derived from the PIV analysis are discrete; furthermore, the

strain fields and the stress fields are the derivative of the displacement fields. Therefore,

it is necessary to apply the smoothing process in order to reduce the effects of noises due

to differentiation. Here, we used the moving least-square (MLS) method to construct

continuous and differentiable displacement fields fitted by polynomial functions:

g(x) = PT (x)a(x) (4.1)
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where the interpolation function g(x) is the fitting displacement fields, PT (x) is a

polynomial basis and a(x) is the corresponding coefficients of the basis. Because of the

geometry of the impact, we set the impact point at (r, z) = (0, 0). In this experiment,

we chose a cubic polynomial basis, so PT (x) and a(x) are.

PT (x) = [1, r, z, r2, z2, rz, r3, z3, r2z, rz2], (4.2)

a(x) = [a0(x),a1(x),a2(x), ...,a9(x)]. (4.3)

Following the same derivation in Reference [111] and Equation 3.6-3.8, The solution of

the interpolation function g(x) gives

g(x) = PT (x)a(x) = PT (x)A−1(x)B(x)w (4.4)

wheres w is the discrete displacement fields obtained from PIV.

With the help of the MLS method, the continuous displacement fields can be ob-

tained, and the strain fields can be calculated by taking the spatial derivative to the in-

terpolation polynomial functions g(x), where the component vectors of gT = [gr, gz, gθ]

are in the r, z and θ direction, respectively. Because the deformation of the substrate

is small in this study, we adopted the assumption of linear elasticity. Because of the

patterned structure on the surface of the substrate, strictly the impact geometry in this

study cannot be regarded as axisymmetry. However, for the plane which passes through

the origin where the center of the impacting drop is, The shear strain-displacement re-

lation still can be expressed as:

εrz =
1

2
[
∂gr
∂z

+
∂gz
∂r

]. (4.5)

Following the linear elastic and isotropic model, the shear stress-shear strain relation

which is also known as the generalized Hooke’s law is:

σrz = 2Gεrz, (4.6)

where G is the shear modulus. In this study σrz is denoted as τ .



76

4.3 Results and Discussion

We adopted the idea of the technique “high-speed stress microscopy” which has been

introduced in Section 3.2. An elastic gel made of cross-linked polydimethylsiloxane

(PDMS) gel is served as the substrate. Dilute fluorescent particles of diameter 30 µm

with the volume percent 0.23% were embedded in the gels during crosslinking, and

these particles are tracer particles to track the deformation of the substrate induced by

drop impact. We prepared two kinds of gels with different surface properties: smooth

surfaces and micropatterned surfaces to compare how microstructures affect the shear

stress distribution. The laser sheet of 30 µm thickness shone from the side of the gel

illuminated the fluorescent tracer particles within the laser sheet plane and the laser

sheet was finely adjusted to go through the center of the impacting drop. A high-speed

camera pointing perpendicular to the sheet focusing on the sheet is then used to image

the motions of tracer particles at 40,000 frames per second. We applied the PIV analysis

to quantify the images to obtain the temporal evolution of the deformation of the gel

under impact. Subsequently, the resulting displacement fields at different moments are

processed to calculate the temporal evolution of the stress distributions within the gel

(Section 4.2.2). The PDMS gel with a smooth surface is intrinsically hydrophobic with

the contact angle ∼ 90◦. With the help of micropillars on the surface, the gels approach

to superhydrophobic. The Young’s modulus of the gel was controlled at E = 100 kPa in

this study, so that the deformation of the gel is large enough to be accurately measured

by the PIV analysis, but small enough that the impact process of liquid drops is not

strongly affected by the deformation at the surface.

In the experiment, we mixed sodium iodide with water as the liquids of drops (60%

in weight concentration) to increase the impact force of drop impact. The viscosity µ

and the surface tension σ of a sodium aqueous solution are the same as water, and the

density ρ, the diameter D, and the impact velocity U are ρ = 2200 kg/m3, D = 3.49

mm, and U = 2.97 m/s, which give a Reynolds number Re = ρUD/µ = 22, 800 and a

Weber number We = ρDU2/σ = 940. Therefore, in this case the impact is dominated

by inertia, and we focus on the discussion in the initial impact regime. In the following

we report the variables in dimensionless forms by using D and D/U to scale the length

and the time, respectively.
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Figure 4.2: Displacement distribution of drop impact on the smooth and the micropat-
terned PDMS. (a), (c), gr near the impacted surface of the smooth and micropatterned
PDMS, respectively. (b), (d), gz near the impacted surface of the smooth and micropat-
terned PDMS, respectively. The solid circles represent the position of the turning point
at different times.
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4.3.1 Displacement Fields of Drop Impact of Patterned Surfaces

Figure 4.2 compares the temporal evolution of the displacement distribution of drop

impact near the impacted surface of the smooth and the micropatterned PDMS at early

times. t = 0 is defined as the moment when an impacting drop contacts with the surface

of gels. We decompose the displacement vector into the vector in the r-direction gr and

in the z-direction gz. For both cases, they have the same trend that the position of

the maximum gr propagates radially with the spreading of an impacting drop, If we

correlate the position of the maximum gr with the kinematic features of the shape of

an impacting drop including the lamella rlm and the turning point rc, it demonstrates

that the the maximum gr of both cases follows rc (Figure C.2). rc is the location where

the large momentum redirects from the vertical direction to the horizontal direction. It

is noted that rlm and rs are independent of the surface properties at the initial impact

regime, and in the both cases rs follows the scaling rs =
√

6t/2, which is consistent

with the theories and experimental results [128, 48] (Figure C.1). Differently, the the

position of the maximum gz is fixed at the r = 0 where is at the impacting point.

However, if we compare the magnitude of the displacement field, although there is

no apparent difference for gz, it shows that gr of the micropatterned surface is larger

than the smooth surface. During the spreading of an impacting drop on the surface of

the gel, the liquid inside the drop flows out radially. Therefore, the bending of pillars

on the patterned surface leads to stretch the substrate outward in r-direction.

4.3.2 Shear Stress of Drop Impact of Patterned Surfaces

Through Equation 4.6, the distribution of the shear stress τ can be derived from the

displacement fields. Figure 4.3(a)(b) compare the temporal evolution of the shear stress

of the smooth surface and the patterned surface. In the early time, the non-uniform

shear stress with a non-central peak develops in both cases. For the case of the smooth

surface, the shear stress profile remains the bell-shaped all over the initial impact regime.

It lasts until entering the spreading regime that the peak splits into two peaks at t = 0.3.

In addition, the magnitude of the maximum shear stress increases and then decreases

monotonically. However, for the case of the micropatterned surface, the shape of the
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Figure 4.3: Shear stress distribution of drop impact on the smooth and micropatterned
PDMS. (a), The shear stress distribution of the smooth surface. The shape of curves
remains bell-shaped until t = 0.3. (b), The shear stress distribution of the micropat-
terned surface. The curve begins to be flatten at t = 0.07, and then splits into several
peaks.
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Figure 4.4: Maximum shear stress of drop impact of the smooth and the micropatterned
PDMS. Before t = 0.07, the growth of τmax is roughly the same for both case. After
that, τmax is smaller of the patterned PDMS.
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Figure 4.5: Dynamics of the maximum shear stress of drop impact on the smooth and
the micropatterned PDMS. For τmax of the smooth surface, the second peak appears at
t = 0.3. For the patterned surface, the second peak emerges at t = 0.07.
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shear stress curve is bell-shaped only in the beginning. After t = 0.07, the peak disap-

pears and the curve becomes flattened even in the initial impact regime. Then it will

finally split into two peaks.

Besides, the trend of the maximum shear stress τmax is also different in both cases.

Initially, the magnitude of τmax grows similarly in both cases. However, after t = 0.07,

the mean value of τmax for drop impact on the micropatterned surface is around 10%

smaller than that on the smooth surface (Figure 4.4). Based on Figure 4.3, we explore

the details of dynamics of τmax shown in Figure 4.5. Initially, the position of τmax of the

smooth surface follows the position of the turning point. After t = 0.3 which is in the

spreading regime, the stress distribution splits into two peaks. One of peaks continues

the propagation and we call it the first peak, and the other peak which is the second

peak stays at the same location. For τmax of the patterned surface, although before

t = 0.07 the trend of τmax is the same as the smooth surface, the formation of the

splitting peaks happens much earlier. After t = 0.07, the first peak propagates with the

turning point until t = 0.17, and then the position of the first peak does not alter. The

position of the second peak is roughly fixed at the same location.

To explain this phenomenon, we propose a hypothesis that the streamlines of the

flow inside an impacting drop are not parellel. Most theories propose that the flow either

in the initial impact regime or in the spreading regime is lamellar on smooth surfaces [61,

47]. However, in this case of micropatterned surfaces, the flow which propagates radially

near the surface is hindered by the micropillars. The flow will change its direction and

vortices would generate subsequently (Figure 4.7)(a). To provide a general idea of the

patterns of the flow inside a drop, we make a conjecture of the effects of vortices based

on the shear stress profiles shown in Figure 4.3(b) and the gz in Figure 4.2(d). From

our measurements, we find that dgz/dr of the gel is the dominant term in Equation 4.5,

either for smooth surfaces or micropatterned surface. The magnitude of G(dgz/dr)

is three times larger than the magnitude of G(dgr/dz) (Figure 4.6). Therefore, the

influence of the pressure and the flow in the vertical direction in an impacting drop

play a role, which are the main sources to deform the substrate in the z-direction. As

a result, the trend of the shear stress curves is linked to the shape of gz versus r curves

because the derivative would give dgz/dr. In Figure 4.2(d), the inflection point shows

up after t = 0.07, and the location of the inflection point corresponds to the valley of
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the shear stress curves shown in Figure 4.3(b).

We propose a simple model to simulate the deformation gz of substrates near sur-

faces, and explain how vortices affect gz. When an impacting drop contacts smooth

surfaces of substrates, the surface deforms in the negative z-direction with a constant

velocity induced by an impacting drop (Figure 4.7)(b). Depending on the position of

the spreading lamella, different positions of surfaces begin to deform in different times.

gz equals to the velocity multiplied by impacting time shown in Figure 4.7(d). However,

when a drop contacts the patterned surface for a short while (t = 0.07), vortices start

to form in an impacting drop. The flow of vortices would affect the velocity of surface

deformation. Therefore, the net velocity of surface deformation equals a constant ve-

locity plus the velocity induced by vortices in the z-direction (Figure 4.7)(c), and the

corresponding gz shown in Figure 4.7(e) agrees with Figure 4.2(d) for the behavior of

curve inflection. We also observe the shear stress of smooth surfaces will split into two

peaks in a late time (t = 0.3), which also implies that even for smooth surfaces, vortices

may form in the spreading regime.

So far, there are very few literatures investigating the flow of drops upon an impact

[63, 52, 129]. Additionally, the studies regarding vortices only focus on drop impact on a

pool, which the vortices are formed between the interface of the lamella and the water of

the pool [130]. Our experimental results of measuring the shear stress shed light on the

mysterious flow patterns inside an impacting drop on a solid substrate. Furthermore,

it implies that the micropillars cause the formation of vortices, and the non-smoothing

flow leads to change the shear stress distribution. It potentially helps mitigate erosion

during drop impact.

4.3.3 Shear force of Drop Impact of Patterned Surfaces

Through integrating the shear stress over the contact area between the spreading drop

and the surface of the gel, the shear force Fd of drop impact can be obtained:

Fd(t) = 2π

∫ rlm

0
τ(r, z = 0, t)rdr. (4.7)

It is interesting that although the shear stress distribution of drop impact varies from

the micropatterned surfaces to the smooth surface, the temporal evolution of the shear
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Figure 4.6: Components of shear stress of drop impact. (a), (c), G(dgz/dr) near the
impacted surface of the smooth and micropatterned PDMS, respectively. (b), (d),
G(dgr/dz) near the impacted surface of the smooth and micropatterned PDMS, respec-
tively.
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Figure 4.7: Model of vortices affecting the deformation of PDMS. (a), flow patterns of
an impacting drop on micropatterned surfaces. (b), (c), the velocity in the z-direction
of surface deformation of smooth PDMS (left) and micropatterned PDMS (right). (d),
(e), gz of impacted surfaces of smooth PDMS (left) and micropatterned PDMS (right)
derived from the velocity in (b), (c).
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force is the same for both cases (Figure 4.8). It means that the area underneath the the

curves of the shear stress is still unchanged. The micropillars can reduce the magnitude

of the local maximum shear stress, but the total shear force exerting on the surfaces are

all the same.

In this experiment both Re and We are very large. Based on the previous studies,

in this condition an impacting drop would contact the surface of patterned gels, which

is regard as the impacting Wenzel state [125]. The liquid of the drop is complete pen-

etration to fill the grooves of patterned surfaces because the dynamic pressure exceeds

the capillary pressure across the interface of liquids and solids [126, 94]. This situation

may be the reason that the shear force of the patterned are the same as that of the

smooth surface. In contrast, if we decrease Re and We of the impacting drop or in-

crease the roughness by making the height of micropillars higher, the liquid would not

penetrate to the grooves, which is the Cassie state. Then there will be a layer of air

between a drop and a substrate, and the contact area between the drop and the surface

of substrate decreases. With an analogy to the leidenfrost drop impact where there is a

vapor layer preventing the drop contacting the substrate [31], the shear stress and shear

force between the drop and the substrate may decrease [131, 132, 133].

4.4 Conclusion

High-speed stress microscopy enables us to measure the stress distribution of drop

impact under complicated conditions. Through photolithography, we manufactured

a polymer gel with micropillars on its surface. We investigate how the dynamic features

including the temporal evolution of the displacement distribution, the shear stress dis-

tribution, and the shear force of substrates varies from drop impact on smooth surfaces

to on micropatterned surfaces at high Re at early times. We found that although some

kinematic features such as the positions of the lamella and the turning point are not

different in both cases, the shear stress distribution varies after a very short time. The

reason may result from that the flow near the substrate inside the drop is not smooth,

and the phenomenon could be caused by the formation of vortices. We hope the conjec-

ture of the vortex structures inside an impacting can be verified through laser induced

fluorescence (LIF) or particle image velocimetry (PIV).
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Our works pose a potential direction on examining the detailed features of the dy-

namics of drop impact. The flow patterns inside an impacting are extremely hard to

be seen and measured directly, and all the statements related to the flows so far are

only proposed by theories. From the experimental measurements of the shear stress,

the results link the relationship among the shear stress, the boundary layer, and the

velocity of the flow inside an impacting drop. Through observing the temporal evolu-

tion of shear stress distribution, we can deduce that whether the flow is smooth or not

and how the incontinuous structures of flows change as function of the time and the

position.
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Figure 4.8: The shear force on the smooth and the micropatterned PDMS. The dimen-
sionless shear force Fd here is scaled by ρU2D2.



Chapter 5

Conclusion and Outlook

5.1 Summary

In summary, dynamics of drop impact have been studied experimentally in this research.

As we state in the beginning, studying drop impact is important to the issue of erosion

in nature and industrial processes. Although extensive studies have been conducted

in probing the kinematics of drop impact across a large control parameter spaces, the

impact force and the stress distribution are still far from fully understood. Firstly,

through synchronizing high-speed imaging and the fast force sensory, we experimentally

measured the temporal evolution of impact force of drop impact over a wide range of Re

by matching the prediction of the impact force. We verified the existence of self-similar

pressure fields at the initial impact regime at high Re. In addition, we also quantitatively

analyzed the early-time scaling of the impact force of drops at the different regimes of

Re and our theories fit the experimental data very well.

The next step is to explore the details of the dynamic features-the pressure and the

shear stress distribution of drop impact. However, to the best of our knowledge, there

is no available setup to measure the stress distribution of drop impact on a smooth

surface. Therefore, we developed the novel technique “high-speed stress microscopy” to

measure the pressure and the shear stress fields of the substrate induced by drop impact.

We observed the non-centered maximum pressure and shear stress propagate radially,

which agrees with the previous arguments from simulations and theories. Moreover, we

also discovered the formation of a shock wave on impacted substrates at short times.
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These two features may contribute to the high erosion efficiency by drop impact.

Furthermore, high-speed stress microscopy finally enables us to probe into the stress

distribution of drop impact under complicated conditions, which is challenging to be

derived through simulations or analytical calculations. We examined drop impact on

patterned substrates, and the results demonstrated that the shear stress distribution

near the impacted surface would be changed. The magnitude of the maximum shear

stress on the micropatterned surface is lower than that on the smooth surface, which

implies that the micropillars on impacted surfaces may mitigate erosion from drop im-

pact. Though the mechanism is still under exploration, we hypothesize that vortices

are generated inside an impacting drop due to micropillars. This research provides a

possibility to map the detailed flow patterns inside an impacting drop, which is very

difficult to be visualized.

5.2 Outlook

We have studied the temporal evolution of the impact force and stress distribution

of drop impact. Despite the progress, the existing studies concerning the dynamics of

drop impact force mainly focus on the most simple type of drop impact: Newtonian drop

impact on smooth solid surfaces. Therefore, it requires further efforts to explore the

impact force and the stress distribution under different impact conditions. For example,

how important parameters including the texture of impacted surfaces, non-Newtonian

drop impact, the impact angle of impinging drops, and the pressure of ambient gases

affect the stress of drop impact have not been systematically studied. Understanding

the influence of these parameters will open a door for manipulating the impact force and

the stress distribution of drop impact in engineering applications, such as polymer drop

impact of inkjet printing and raindrops on superhydrophobic surfaces for self-cleaning.

5.2.1 Ambient Atmosphere Pressure

Since the discovery of the effect of ambient air on the splashing of impacting drops on

solid surfaces [33], air cushioning in drop impact has attracted great research interests

[26]. A thin layer of air underneath an impacting drop induces a sub-micron dimple-like

deformation on the bottom of the drop and delays the contact between the drop and
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the solid surface [41, 77, 78, 43], which is also shown in Figure 1.5. This effect of air

cushioning screens the 1 =
√
t singularity of the pressure at the impact point predicted

by the equation:

p(r = 0, t) =
1

2
ρV 2 +

2ρV

π

dr0

dt
=

1

2
ρV 2 +

√
6

2π
ρV 3/2D1/2t−1/2, (5.1)

as well as the water hammer pressure at the very early moment of impact. Smith et al.

calculated the screened pressure on the impacted surface [134]. Before the drop touches

the surface, a maximum gas pressure first builds up at the impact axis. As the impact

pressure overcomes the gas pressure, an annular pressure maximum develops at later

times along a ring where the distance between the bottom of the deformed drop and

the surface is smallest at hmin. Similar dynamics have also been reported by Mandre

and co-workers (Figure 1.7) [113, 39], who further showed that the air underneath an

impacting drop can either drain out of the thin layer or be compressed depending on

specific impact parameters and the ambient pressure. The compression dynamics are

further divided into two different regimes in their theory: the sub-compressible regime

at large hmin and the super-compressible regime at small hmin. In all the cases, the

pressure distributions near hmin can be described by self-similar solutions. However,

systematic experiments investigating the effect of air cushioning on the impact force

and the stress distribution of drop impact have not been conducted. With our setup for

measuring the stress distribution incorporated with a vacuum chamber, the development

of gas pressure underneath an impacting drop can be unveiled experimentally.

5.2.2 Non-Newtonian Drop Impact

Liquid suspensions, emulsions, and polymer solutions are commonly used in chemical

process, including spray cooling and printing [135]. Therefore, studying the impact of

composite drops and non-Newtonian fluid drops is of great practical importance. For

instance, Boyer et al. stated that compared to Newtonian drops, the shapes of drops

consisting cornstarch suspension are irregular with a breaking of the symmetry [136].

Bartolo et al. demonstrated how non-Newtonian flow properties slow down retraction to

inhibit rebound [28]. Besides, other literatures have analyzed the dynamics of splashing

and retraction [28, 137], the scaling laws of heights of an impacting drop, maximum
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spreading diameters, and dimensionless numbers [137, 138, 139]. Interestingly, Driscoll

et al. showed a drop of dense colloidal suspension impacting on a glass substrate. After

impact, a dimple forms at the top of the drop, indicating that the drop is jammed at the

bottom but still liquid-like at the top [140]. Exploring how the profiles of stress distri-

bution of drops of complex fluids would be changed is helpful for studying compressing

damage to substrates impacted by polymer ink droplets during printing processes.

In the end, it is promising but challenging to study drop impact, especially for the

stress distribution of drop impact which has never been systematically measured through

experiments. We believe the technique “High-speed stress microscopy” we developed will

be a stepping stone for the dynamic analysis of drop impact. For instance, experimental

measurements of the stress distribution can directly provide the information about the

features of the stress distribution under any complicated impact condition. Furthermore,

the measurements of the shear stress may offer insights to the development of a boundary

layer and flow patterns inside an impacting drop though experiments. In addition, we

also explore the dynamics and the morphology of 2D and 3D explosion cratering in

granular media [141, 142]. We expect these works will prepare the way for studying the

analogy of explosion cratering and impact cratering.
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deformation of an impacting drop. Journal of Fluid Mechanics, 517:199, 2004.



98

[53] CHR Mundo, M Sommerfeld, and C Tropea. Droplet-wall collisions: experimental

studies of the deformation and breakup process. International journal of multi-

phase flow, 21(2):151–173, 1995.

[54] Denis Bartolo, Christophe Josserand, and Daniel Bonn. Singular jets and bubbles

in drop impact. Physical review letters, 96(12):124501, 2006.
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Appendix A

Supporting Information to

Section 2

A.1 Propagation of Isobars

We analyze the propagation of isobars within impacting drops based on the self-similar

solution of [47]. The self-similar dimensionless vertical and radial coordinates are defined

as η ≡ z/
√
τ and ξ ≡ r/

√
τ . Consequently, the self-similar velocity potential and

pressure fields can be written as Φ̃(η, ξ) = Φ(r, z, t)/
√
τ and P̃ (η, ξ) =

√
τP (r, z, t),

respectively (cf. Equations (3.1) and (3.2) in [47]). The self-similar arguments of the

pressure and potential fields show that the length scale of the self-similar structure

should scale as z ∼ r ∼ √τ . In the dimensional form, we have z ∼ r ∼ √U0Dt as shown

in Section 2.3.2.

The self-similar pressure along the axis of symmetry (r = 0) in the lab frame is given

by (cf. eq. (3.35b) in [47])

P (r = 0, z, τ) =
3
√

6τ

π (6τ + 4z2)
. (A.1)

Note that we use D, instead of R, as the relevant length scale to construct dimensionless

variables. Thus, equation (A.1) has different prefactors compared with Equation (3.35b)
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in [47]. Correspondingly, in the self-similar frame of reference, we have

P̃ (0, η) =
δ

π

δ2

δ2 + η2
, (A.2)

where δ =
√

6/2. Far away from the impact region, Equation (A.2) can be expanded as

lim
η→∞

P̃ (0, η) =
δ

π

(
δ

η

)2

− δ

π

(
δ

η

)4

+O
[(

δ

η

)6
]
. (A.3)

Thus, the isobar of P̃0 far from the region of impact can be obtained through the

first term of the expansion. In the self-similar frame, it is given by

δ

π

(
δ

η

)2

= P̃0 (A.4)

This yields η =
(
δ3/(πP̃0)

)1/2
∼ τ0 in terms of the self-similar variable and z ∼ √τ

in terms of the lab-frame variable. On the other hand, the isobar of P0 in the lab frame

is given by
δ

π

(
δ

η

)2 1√
τ

= P0, (A.5)

where the additional 1/
√
τ comes from the scaling of the self-similar pressure field P̃ .

Equation (A.5) gives the location of the isobar in the lab frame, η ∼ τ−1/4 in the terms

of self-similar variable and z ∼ τ1/4 in terms of the lab-frame variable. Thus, in the

dimensional form, we have the location of the isobar

z ∼
(
U0D

3t
)1/4

(A.6)

as shown in Section 2.3.3.



Appendix B

Supporting Information to

Section 3

B.1 Comparison of the Impact Craters by Liquid Drops

and Solid Spheres

To demonstrate the efficiency of impacting drops in erosion, we compare the size of

impact craters by water drops and those by solid spheres on both granular media and

plaster slabs.

For granular media, we use a nylon sphere of diameter D = 3.0 mm with impact ve-

locity U = 2.97 m/s, impacting normally onto the at surface of a granular bed composed

of 90 µm glass beads. The water drop used in our experiments has a similar diameter

D = 3.4 mm and impact velocity U = 2.97 m/s. Since the density of nylon ρ = 1.15

g/cm3 is quantitatively similar to the density of water, the water drop and the solid ny-

lon sphere have similar impact momentum and energy. The diameter of the drop-impact

crater is 1.38 cm, which is noticeably larger than that of the solid-sphere-impact crater

at 1.04 cm (Figure 3.1(b) and (c) of Section 3). De Jong and co-workers have compared

the size of impact craters by liquid drops and those by solid spheres over a wide range

of impact velocities [?]. They also found that the diameter of drop-impact craters is

consistently larger than that of solid-sphere-impact craters. Moreover, they showed that

the excavated volume is the same for both drop-impact and solid-sphere-impact craters
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Impact Condition Water-drop Craters Steel-ball Craters Number of Impact
Diameter (mm) Depth (mm) Diameter (mm) Depth (mm)

Same N 8 2.75 5.6 0.59 N = 2500
N = 2500 for drops

Same E 8 2.75 3.1 0.39 N = 235 for balls
N = 2500 for drops

Same P (Inelastic) 8 2.75 3.0 0.38 N = 126 for balls
N = 2500 for drops

Same P (Elastic) 8 2.75 2.6 0.32 N = 63 for balls

Table B.1: Comparison of the size of impact craters by water drops and steel balls.

when plotting against a rescaled deformation energy.

Plaster slabs are much harder than granular media. Hence, we need to repeat impact

many times in order to create noticeable craters. We use water drops of D = 3.0 mm

falling from a height of 35 cm at U = 2:6 m/s, which impact normally onto the initially

at surface of plaster slabs. We repeat impact N = 2500 times and then measure the

resulting crater. The time interval between two impacts is 20 s. Thus, the total time of

the experiment for the erosion of a plaster slab is close to 14 hours. Note that cratering

in plaster slabs by water drops is not due to the dissolution of the slabs by water. We

check that a slab fully immersed in water maintains its mechanical strength after 36

hours. It is difficult to control precisely the impact locations of nylon spheres falling

from a high height of 35 cm over many repeated impacts. Hence, we use steel balls

of D = 5.0 mm falling from a lower height of 10 cm at U = 1.4 m/s instead. To

make meaningful comparisons between water-drop-impact craters and steel-ball-impact

craters, we consider three different impact conditions, i.e., the same number of impact

(N), the same total impact energy (E) and the same total impact momentum (P ). For

the impact momentum, we treat the collisions between steel balls and slabs as either

elastic or perfectly inelastic. In all situations, the diameter and the depth of the impact

craters by water drops are consistently larger than those by steel spheres. The results

are summarized in the table below:

B.2 Integration Path of the Impact Pressure Measure-

ments

Figure B.1 shows the integration path used in our calculation of impact pressure (Sec-

tion 3.2.4).
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Figure B.1: Impact pressure measurements. Red arrows indicate the integration path
for calculating the pressure at point x from the reference point at x0.

B.3 The Scaling Factor for the Impact Stress of Solid-

sphere Impact

The force of solid-sphere impact on an elastic medium follows the Hertzian contact law

[66, 143],

F (x) =
2
√

3

3
E∗D1/2x3/2, (B.1)

where x is the vertical displacement and the reduced Young’s modulus E∗ follows

1

E∗
=

1− ν2

E
+

1− ν2
s

Es
≈ 1− ν2

E
. (B.2)

Here, ν and E are the Poisson’s ratio and the Young’s modulus of the PDMS gel and

νs and Es are the Poisson’s ratio and the Young’s modulus of the steel sphere. Since

Es � E, we ignore the deformation of the steel sphere. Balancing the elastic potential
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with the kinetic energy of the solid sphere,

∫ xmax

0
F (x)dx =

4
√

2

15

E

1− ν2
D1/2x5/2

max =
π

12
ρsD

3U2, (B.3)

we have the maximum displacement into the gel

xmax = [
5
√

2π

32
(
1− ν2

E
)ρsD

5/2U2]2/5, (B.4)

where ρs is the density of the sphere. Thus, the maximum pressure is given by

pmax =
Fmax
πa2

=
4
√

2

3π
(

E

1− ν2
)(
xmax
D

)1/2 = [
4
√

2

3π
(
5
√

2π

32
)1/5 1

(1− ν2)4/5
]E4/5(ρsU

2)1/5,

(B.5)

where Fmax = F (x = xmax) is the maximum force and a =
√
Dxmax/2 is the radius

of the contact area at the maximum force. Ignoring the constant factor of O(1) in

the square bracket, the maximum pressure provides the scale for the impact stress of

solid-sphere impact

σ ∼ E4/5(ρsU
2)1/5. (B.6)

B.4 Effect of the Wettability and the Stiffness of PDMS

Gels

The position of the shear-stress maximum does not depend on the wettability and

stiffness of the PDMS gels (Figure B.2). The contact angle of the hydrophobic gels is

about 90◦, whereas that of the hydrophilic gels is less than 10◦.

B.5 Shear Force of Drop Impact and Solid-Sphere Impact

Figure B.4 compares the shear force of the drop impact and that of the solid-sphere

impact.
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Figure B.2: Position of the shear-stress maximum. The position of the maximum shear
stress of drop impact as a function of time on substrates of different wettabilities and
Young’s moduli.

B.6 Theory and Numerical Solutions

The deformation of an elastic medium at small strains is described by the Navier-Lamé

equation:

(λ+ 2G)∇(∇ · u)−G∇× (∇× u) + F = ρs
∂2

∂2
u, (B.7)

where λ = Eν/[(1 + ν)(1 − 2ν)] is the Lamé coefficient and G = E = [2(1 + ν)] is the

shear modulus. ρs, E and ν are the density, Young’s modulus and Poisson’s ratio of the

medium, respectively. u = (ur;uθ, uz) is the displacement of the medium in a cylindrical

coordinate. F is the body force per unit volume. Since F is small compared with the

impact stress, we ignore the term below. In the cylindrical coordinate, an axisymmetric
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Figure B.3: Wettability of PDMS. (a) PDMS is intrinsically hydrophobic with a contact
angle around 90◦. (b) After the plasma treatment, the surface of PDMS becomes
hydrophilic with a contact angle less than 10◦. The scale bar: 1 mm.

Navier-Lamé equation reduces to

(λ+ 2G)∂r(
1

r
∂r(rur) + ∂zuz) +G∂z(∂ruz − ∂zur) = ρs

∂2

∂t2
ur (B.8)

(λ+ 2G)∂z(
1

r
∂r(rur) + ∂zuz)−G

1

r
∂r[r∂ruz − ∂zur)] = ρs

∂2

∂t2
uz. (B.9)

To determine the deformation of the medium under the impact of a liquid drop,

we adopt the theoretical prediction on the pressure and shear stress distributions of

incompressible drops on infinitely rigid substrates [47]. It should be noted that the

impact stress, in particular the impact pressure of liquid drops, should be modified

due to the deformation of substrates of finite stiffness and deviate from the prediction

based on non-deformable substrates. The interplay between an impacting drop and

a deformable impacted substrate is quite complicated. To the best of our knowledge,

the analytical solutions for the impact stresses of liquid drops on deformable elastic

media are not available. A theoretical investigation of this complicated mathematical

problem is certainly beyond the scope of our current work. The approximation we

take here can be considered as the one-way coupling between the impacting drop and

the impacted substrate, where the substrate deforms under the impact stress of the

liquid drop but does not modify the impact stress. The approximation is justified when

the deformation of the substrate is small as the case of our experiments. The stiffer
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Figure B.4: Shear force of drop impact and solid-sphere impact. Both the shear force
and the time are expressed in dimensional forms. The impact conditions are specified
in the main text. Young’s modulus of the PDMS gel is 100 kPa.

the material, the more accurate the approximation. Indeed, the position of the shear-

stress maximum is independent of Young’s modulus of gels (Figure B.2), indicating the

weak effect of the gel stiffness on the kinematics of impacting drops within the range

of our experiments. Furthermore, the agreement between the measured shear stress

distributions and the theoretical prediction (Equation 3.21 of Section 3) away from the

singular region further suggests that the one-way approximation qualitatively captures

the dynamics of impacted substrates under drop impact.

Under the one-way approximation, we apply the pressure and shear distributions

of incompressible drops on infinitely rigid substrates as the boundary conditions of
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Equation B.8 and B.9:

σrz|z=0 =





√
6
π3

1
ReρU

2 2rD
3UDt−2r2

for r ≤ rc
0 for r > rc

(B.10)

σzz|z=0 =





3
√

2
2π ρU

2 D√
3UDt−2r2

for r ≤ rc
0 for r > rc

(B.11)

where ρ, U and D are the density, the impact velocity and the diameter of the liquid

drop, respectively. rc =
√

6UDt/2 is the position of the turning point, where the

pressure and shear stress diverge and exhibit the finite-time singularity [47].

To make the equations dimensionless, we propose the following scaling, t ∼ DM2/U ,

u ∼ DM2, (r, z) ∼ DM , (λ,G) ∼ E and σ ∼ME ∼ E1/2(ρU2)1/2. Here, we introduce

a Mach number M ≡ U
√
ρs/E, which compares the speed of the impacting drop U

with the characteristic speed of sound of the elastic medium
√
E/ρs. For example, the

speed of the body P wave is vp = C
√
E/ρs, where C =

√
(1− ν)/[(1 + ν)(1− 2ν)] =

4.1 ∼ O(1) for an elastic material with Poisson’s ratio ν = 0.49. M = 0.292 in our

experiments. In comparison, the scaling for the impact stress of solid-sphere impact is

given by σ ∼ E4/5(ρsU
2)1/5 (Equation B.6).

The proposed scaling yields the following boundary value problem of partial differ-

ential equations:

(λ+ 2G)∂r(
1

r
∂r(rur) + ∂zuz) + ∂z(∂ruz − ∂zur) = ρs

∂2

∂t2
ur (B.12)

(λ+ 2G)∂z(
1

r
∂r(rur) + ∂zuz)−

1

r
∂r[r∂ruz − ∂zur)] = ρs

∂2

∂t2
uz, (B.13)

and

σrz|z=0 =





√
6
π3

1
Re

ρ
ρs

2r
3t−2r2

for r ≤ rc
0 for r > rc

(B.14)

σzz|z=0 =





3
√

2
2π

ρ
ρs

1√
3t−2r2

for r ≤ rc
0 for r > rc

(B.15)
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where all the quantities are now dimensionless with the turning point at rc =
√

6t/2.

The resulting equations and boundary conditions are independent of M in terms of the

scaled variables. The scaling suggests that the shear force should scale as Fd ∼ σD2 ∼
E1/2(ρU2)1/2D2, matching our experimental measurements at different E (Figure 3.6).

Note that the density ratio between the liquid and the gel ρ/ρs ≈ 1 in our experiments.

We numerically solve Equation B.12 and B.13 with the boundary conditions Equa-

tion B.13 and B.14 using the finite element method (Section 3.2.6). To avoid the sin-

gularity at rc, we impose a small cut-off δ:

σrz|z=0 =





√
6
π3

1
Re

ρ
ρs

2r
3(1+δ)t−2r2

for r ≤ rc
0 for r > rc

(B.16)

σzz|z=0 =





3
√

2
2π

ρ
ρs

1√
3(1+δ)t−2r2

for r ≤ rc

0 for r > rc

(B.17)

We choose δ = 0.1 for our numerical simulations, as a good convergence of solutions is

achieved for the chosen spatial resolution.

The solutions of the radial and vertical displacements of the surface of the elastic

media, ur(r, z = 0, t) and uz(r, z = 0, t), are shown in Fig. S4a and b. The in-phase

oscillations of ur and uz are the characteristic feature of the surface Rayleigh wave.

The wave emerges beyond rc(t) around tc ≈ 0.1, consistent with experimental observa-

tions. Moreover, the surface wave is sharp and concentrated with a well-defined peak

propagating along the surface radially at a speed VR, agreeing well with the theoretical

prediction of the speed of the Rayleigh wave. The much faster but weaker body P-wave

can be also identified (Figure B.5(a)).

To compare with the surface wave induced by the impact of solid spheres, we apply

the Hertzian contact force (Equation B.1) in the dimensionless form

F =
2
√

2

3

M2

1− ν2
t3/2 (B.18)

over a small region of r0 = 0.1 around the impact axis on the surface of the elastic

medium. Here, we assume that the displacement x = Ut at short times, consistent with

experiments [66]. In comparison with the impact stress of liquid drops, Equation B.18
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is stationary in space and does not exhibit the finite-time singularity associated with

the turning point. Figure S4c and d show the numerical solutions of ur(r, z = 0, 0) and

uz(r, z = 0, 0). Different from the shock-induced sharp surface wave by drop impact, the

Rayleigh wave of solid-sphere impact emits continuously from r = 0 upon the impact

at t = 0 and is much broader and more diffusive in nature.
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Figure B.5: Numerical solutions of the surface wave induced by the impact of liquid
drops and solid spheres.(a),(b), The spatiotemporal diagram of the radial displacement
of the gel surface ur(r, t) and the vertical displacement of the gel surface uz(r, t) induced
by the impact of a liquid drop. (c),(d), The spatiotemporal diagram of ur(r, t) and
uz(r, t) induced by the impact of a solid sphere. ur(r, t) and uz(r, t) are normalized
by the diameter of the impactors D. The red dashed lines in (a) and (b) indicate the
position of the turning points where pressure and shear stress reach maximum. The
white solid lines indicate the propagation of the Rayleigh wave, whereas the red solid
line in (a) indicates the propagation of the body P-wave. Inset of (a) shows ur(r, t) with
a colormap of a much narrower range in order to highlight the presence of the much
weaker P-wave.
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Section 4

C.1 Tracking of Dynamic and Kinematic Features

Based on the theoretical prediction and experimental analysis from Quintero, Riboux

and Gordillo, the positions of the lamella and turning point on smooth surfaces and

structured surfaces are the same at early times, and the scaling of the turning point rc

all follows rc =
√

3t [48, 128]. Figure C.1 and Figure 3.4 shows the consistency between

their works and our experimental results. We also deliver the dynamic tracking of the

position of the maximum gr of both surfaces, and it shows that the position of the

maximum gr correlates with the position of rc (Figure C.2).

C.2 Shear Stress Fields of Smooth Surfaces and Patterned

Surfaces

Figure C.3 shows the temporal evolution of the shear stress fields of smooth surfaces

and patterned surfaces.
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Figure C.1: Position of kinematic features of an impacting drop on the smooth and the
micropatterned PDMS. In the initial impact regime (t < 0.25), there is no significant
difference for the position of the lamella and turning point on the smooth surface or the
patterned surface.
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Figure C.2: Dynamic tracking of the maximum gr of the smooth and the micropatterned
PDMS. The position of the lamella, the turning point, and the maximum gr of the
smooth surface and patterned surface.
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Figure C.3: Shear stress fields of drop impact of the smooth and the micropatterned
PDMS. (a) and (b) show the time series of the shear stress fields of the smooth surface
and the micropatterned surface, respectively. (b), The maximum τ starts to become
flatten at earlier time and then split into several peaks. (a), Differently, the maximum
τ splits into two peaks at the later time. τ is non-dimensionalized by ρU2. Scale bar: 1
mm.
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