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Abstract

Hyperplane arrangements dissect Rn into connected components called chambers,

and a well-known theorem of Zaslavsky counts chambers as a sum of nonnegative

integers called Whitney numbers of the first kind. His theorem generalizes to count

chambers within any cone defined as the intersection of a collection of halfspaces

from the arrangement, leading to a notion of Whitney numbers for each cone. This

thesis concerns cones of hyperplane arrangement in two ways.

First we consider cones within the braid arrangement, consisting of the reflecting

hyperplanes xi = xj inside Rn for the symmetric group, thought of as the type

An−1 reflection group. Here,

– cones correspond to posets,

– chambers within the cone correspond to linear extensions of the poset,

– the Whitney numbers of the cone interestingly refine the number of linear

extensions of the poset.

We interpret this refinement explicitly for two families of posets: width two

posets, and disjoint unions of chains. In the latter case, this gives a geometric

re-interpretation to Foata’s theory of cycle decomposition for multiset permutations,

and leads to a simple generating function compiling these Whitney numbers.
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Second, we give an interpretation of the coefficients the Poincaré polynomial of a

cone of an arbitrary arrangement via the Varchenko-Gel’fand ring, which is the ring

of functions from the chambers of the arrangement to the integers with pointwise

addition and multiplication. Varchenko and Gel’fand gave a simple presentation

for this ring for an arbitrary arrangement, along with a filtration and associated

graded ring whose Hilbert series is the Poincaré polynomial. We generalize these

results to cones and prove a novel result for the Varchenko-Gel’fand ring of an

arrangement: when the arrangement is supersolvable the associated graded ring of

the arrangement is Koszul.
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1 Introduction

In this thesis, I will collect discrete data that tells me about a continuous setting.

I will begin with a question about hyperplane arrangements, but the mathematics

of the two central chapters (Chapters 3 and 4) will focus on the computation of a

certain polynomial called the Poincaré polynomial.

This project, which was initially proposed to me by my advisor Victor Reiner, was

largely inspired by the work of Regina Gente. In her thesis, she extendedVarchenko’s

determinant theorem to cones, i.e. intersections of open halfspaces defined by some

of the hyperplanes of an arrangement [30]. Cones of arrangements have been

studied by various authors including Aguiar-Mahajan [2], Alexanderson-Wetzel

(using the more general context of “convex bodies") [3], Brown [16], Zaslavsky [65],

and, in Type A, the author together with Kim and Reiner [22]. Gente did not

invent cones nor is her thesis the first place where cones arise. Her work, however,

spawned the following question:

Question 1.1. What theorems about hyperplane arrangements extend to cones?

In this thesis, I will answer that question for a couple of theorems and pursue a

number of adjacent questions. In the remainder of this chapter, I will give a more

technical overview of the results in this thesis. For this reader’s convenience, the

chapter consists of two sections. Section 1.1 gives some context for our results,

using a theorem of Zaslavsky, and Section 1.2 briefly summarizes the main results
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1 Introduction

of this thesis.

1.1 Hyperplane Arrangements and a Theorem of

Zaslavsky

This thesis concerns arrangements A = {H1, . . . ,Hm} of hyperplanes Hi, which

are affine-linear codimension one subspaces of V = Rn. Each such arrangement

dissects V into the connected components of its complement V \
⋃m
i=1Hi, called

chambers. Let C(A) denote the collection of all such chambers.

The theory of hyperplane arrangements is rich and well-explored, with connections

to reflection groups, braid groups, random walks, card-shuffling, and discrete

geometry of polytopes and oriented matroids; see [40,56]. In particular, the number

of chambers #C(A) has a famous formula due to Zaslavsky [64], expressed in

terms of the intersection poset L(A), which consists of all intersection subspaces

X = Hi1 ∩Hi2 ∩ · · · ∩Hik , ordered via reverse inclusion. This poset is known to

have the property that every lower interval

[V ,X] := {Y ∈ L(A) : V ≤ Y ≤ X}

from its unique bottom element V to any intersection space X forms a geometric

lattice. In particular, each such [V ,X] is a ranked poset, where the rank of X is

codim(X) := n− dim(X). Zaslavsky’s result says that

#C(A) =
∑

X∈L(A)

|µ(V ,X)| =
n∑
k=0

ck(A) = [Poin(A, t)]t=1 , (1.1)

where µ(−,−) denotes the Möbius function of L(A), while the nonnegative integers

ck(A) :=
∑

X∈L(A):
codim(X)=k

|µ(V ,X)|,

2



1 Introduction

are often called the (signless) Whitney numbers of the first kind for A, and their

generating function

Poin(A, t) :=
∑
k≥0

ck(A) tk

is called the Poincaré polynomial1.

Our starting point is a less widely-known generalization of equation (1.1), also

due to Zaslavsky [65]. More generally, it allows us to to count the chambers of A

that lie within a cone K, defined to be the intersection of any collection of open

halfspaces for hyperplanes of A; said differently, a cone K of A is a chamber in

C(A′) for some subarrangement A′ ⊆ A. Results on the set C(K) of all chambers

of A inside a cone K have appeared more recently in work of Brown on random

walks [16], and in work of Gente on Varchenko determinants [30, Section 2.4], and

independently in work of Aguiar and Mahajan [2, Theorem 8.22]. Define the poset

of interior intersections for K to be the following order ideal in L(A):

Lint(K) = {X ∈ L(A) | X ∩ K 6= ∅}.

Zaslavsky observed in [65, Example A, p. 275] that (1.1) generalizes to cones K,

asserting

#C(K) =
∑

X∈Lint(K)

|µ(V ,X)| =
n∑
k=0

ck(K) = [Poin(K, t)]t=1 . (1.2)

Here we again define nonnegative integers, the (signless) Whitney numbers of the

first kind for the cone K

ck(K) :=
∑

X∈Lint(K):
codim(X)=k

|µ(V ,X)|,

1This is because it is the generating function for the Betti numbers of the complexified complement

Cn \ A; see [40, Chap. 5].
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1 Introduction

with generating function Poin(K, t) :=
∑

k ck(K) tk, which we call the Poincaré

polynomial of K.

For example, inside A = {H1,H2,H3,H4,H5} in R2 shown below on the left,

we have shaded one of four possible cones K defined by the subarrangement

A′ = {H4,H5}, containing #C(K) = 5 chambers of A:

H4

H1

H2

H3

H5

H4

H1

H2

H3

H5

Zaslavsky’s formula (1.2) computes this as follows. The poset of interior intersections

Lint(K) has Hasse diagram:

V

H1 H2 H3

H2 ∩H3

Here µ(V ,X) = (−1)codim(X) for all X, so that (c0(K), c1(K), c2(K)) = (1, 3, 1), and

Poin(K, t) = c0(K) + c1(K)t+ c2(K)t2 = 1 + 3t+ t2,

#C(K) = [Poin(K, t)]t=1 = c0(K) + c1(K) + c2(K) = 5.

In Chapter 3, we give several interpretations of the Poincaré polynomial of a cone

of a special family of arrangements called Type A reflection arrangements (also

called the braid arrangements). In Chapter 4, we interpret the Poincaré polynomial

of a cone of an arbitrary arrangement as the Hilbert series of an associated graded

of the Varchenko-Gel’fand Ring.

4



1 Introduction

1.2 Summary of Results

The remainder of this thesis is divided into four chapters. Now we give a brief

summary of the main results of each of these four chapters.

2. Background. In Chapter 2, we review some general background regarding

hyperplanes, cones, posets, oriented matroids.

3. Reflection Arrangements. In Chapter 3 we give a combinatorial descrip-

tion for the coefficients of the Poincaré polynomial of the the Type A reflection

arrangement (Theorems 3.1 and 3.2), as well as a number of interesting in-

terpretations of the coefficients of the Poincaré polynomial for special cones

of the Type A reflection arrangement (Theorems 3.3, 3.4, and 3.5). We also

include some details regarding a general reflection arrangements heuristic.

The results from this chapter are also contained in the author’s paper with

Kim and Reiner [22].

4. Varchenko-Gel’fand Ring. Chapter 4 consists of results pertaining to both

the Varchenko-Gel’fand ring and associated graded of the Varchenko-Gel’fand

ring with the degree filtration of a cone. The two main theorems of this

chapter are (1) a Gröbner basis-like presentation of the Varchenko-Gel’fand

ring and its associated graded ring (for the degree filtration), given in Theorem

4.1, and (2) a proof that every supersolvable arrangement admits a Koszul

associated graded algebra, see Theorem 4.4. The material in this chapter

appears in the author’s recent paper [21].

5. Questions and Remarks. The final chapter, Chapter 5, is a compilation of

a number of questions and results. We first collect some of the questions from

previous chapters. Then we explore two other families of questions: (i) two

5



1 Introduction

questions regarding the broken circuit complex of a cone (and the fact that it

may not be shellable), and (ii) two questions regarding Shi arrangements.

In particular, the main theorems of this thesis are

– Theorem 3.1

– Theorem 3.2

– Theorem 3.3

– Theorem 3.4

– Theorem 3.5

– Theorem 4.1

– Theorem 4.4

6



2 Background

In this chapter, we will go over some of the background needed for the main

results. The first part reviews hyperplane arrangements and cones. The second

part concerns oriented matroids.

2.1 Hyperplane Arrangements and Cones

We begin with some background regarding hyperplanes, cones, and linear algebra

then give a gentle introduction to oriented matroids. We will use the braid

arrangement as our running example, but state a number of more general results.

Good references include [40], [56], [57, §3.11], [43, §3.3].

Definition 2.1. A hyperplane in V = Rn is an affine linear subspace of codimension

one. An arrangement of hyperplanes in Rn is a finite collection A = {H1, . . . ,Hm}

of distinct hyperplanes. A chamber of A is an open, connected component of

Rn\
⋃
H∈AH. The set of all chambers of A is denoted by C(A).

To each hyperplane H we can associated a (not unique) normal vector v. When

H passes through the origin, this vector satisfies v · x = 0 for all x ∈ H. An

analogous definition holds for affine hyperplanes. We omit that definition here, but

note that we will be useful later to specify H by a choice of normal vector.

7



2 Background

Example 2.2. The type A reflection arrangement, An−1, also called the braid

arrangement, consists of the
(
n
2

)
hyperplanes of the form

Hij = {(x1, . . . ,xn) ∈ Rn | xi − xj = 0}

for integers 1 ≤ i < j ≤ n. There are n! chambers Kσ = {x ∈ Rn : xσ1 < · · · < xσn}

of An−1, naturally indexed by the permutations σ = [σ1,σ2, . . . ,σn] of [n], that give

the strict inequalities ordering the coordinates within the chamber, as in (3.1). For

example, when n = 4,

K1243 = {x ∈ R4 : x1 < x2 < x4 < x3},

K4213 = {x ∈ R4 : x4 < x2 < x1 < x3}

are two out of the 4! = 24 chambers of C(A4−1).

Definition 2.3. Let A be a hyperplane arrangement in Rn. An intersection

of A is a nonempty subspace of the form X = Hi1 ∩ Hi2 ∩ · · · ∩ Hik where

{Hi1 ,Hi2 , . . . ,Hik} ⊆ A. Here the ambient vector space V = Rn is considered to

be the intersection
⋂
H∈∅H of the empty set of hyperplanes. We denote the set of

intersections of A by L(A).

Example 2.4. The intersections of An−1 are described by equalities between the

variables.

– For all n ≥ 1, the line x1 = x2 = · · · = xn is the intersection of all the

hyperplanes of An−1.

– When n = 4 the intersection of H12 and H34 in the subspace of R4 in which

x1 = x2 and x3 = x4. On the other hand, the intersection of H12 and H13 is

the subspace of R4 in which x1 = x2 = x3.

8



2 Background

More generally, there is a bijection π 7→ Xπ between the collection Πn of all set

partitions π = {B1, . . . ,Bk} of [n] = {1, 2, . . . ,n} and the set of all intersections of

An−1. The bijection sends the set partition π to the subspace Xπ where one has

equal coordinates xi = xj whenever i, j lie in a common blockBk of π. We sometimes

denote the set partition π = {B1, . . . ,Bk} with the notation π = B1|B2| · · · |Bk,

and may or may not include commas and set braces around the elements of each

block Bi. For example, 1 | 23 | 456 and {{1}, {2, 3}, {4, 5, 6}} represent the same

set partition of [6].

– For example, the set partition 1|2| · · · |n in which all elements appear as

singletons corresponds to X1|2|···|n = V = Rn, the empty intersection, which

is the ambient space.

– For all n ≥ 1, the set partition 123 · · ·n having all the elements in the same

block corresponds to the line X123···n defined by x1 = x2 = · · · = xn.

– When n = 4, one has X12|34 = H12 ∩H34 and X123|4 = H12 ∩H13.

The collection L(A) of all intersections of an arrangement A will be partially

ordered by reverse inclusion, and called the intersection poset of A. It has a unique

minimal element, namely the intersection⋂
H∈∅

H = V = Rn.

For any hyperplane arrangement A, each of the lower intervals

[V ,X] := {Y ∈ L(A) : V ≤ Y ≤ X}

forms a geometric lattice [57, Prop. 3.11.2], meaning that:

9



2 Background

– (Upper Semi-Modularity) For all X,Y ∈ L(A), the codimensions of X and

Y satisfy

codim(X) + codim(Y ) ≥ codim(X ∨ Y ) + codim(X ∧ Y )

where X ∨ Y is the intersection X ∩ Y , and X ∧ Y denotes the lowest-

dimensional subspace Z ∈ L(A) containing both X and Y .

– (Atomicity) Every X ∈ L(A) is an intersection of some of the hyperplanes of

A.

In particular, this implies that each such lower interval is a ranked poset, with rank

function given by the codimension codim(X) = dim(V )−dim(X). Furthermore this

implies that its Möbius function values µ(V ,X), defined recursively by µ(V ,V ) := 1

and µ(V ,X) := −
∑

Y :V≤Y <X µ(V ,Y ), will alternate in sign in the sense that

(−1)codim(X)µ(V ,X) ≥ 0.

Definition 2.5. Let A be an arrangement of hyperplanes in Rn. For 0 ≤ k ≤ n,

the kth signless Whitney number of L(A) of the first kind is

ck(A) =
∑

X∈L(A):
codim(X)=k

|µ(V ,X)| = (−1)k
∑

X∈L(A):
codim(X)=k

µ(V ,X).

Henceforth, we call ck(A), 0 ≤ k ≤ n, the Whitney numbers of A. One of

the standard ways to compile them into a generating function is their Poincaré

polynomial Poin(A, t) :=
∑n

k=0 ck(A) tk; see [40, §2.3].

We aim to understand the chambers, intersections, and Whitney numbers for

cones in A; the chambers, intersections, and Whitney numbers for A are a special

case.

10



2 Background

Figure 2.1: An arrangement of hyperplanes in in R2. A cone defined by two of the

hyperplanes is shaded. Alternatively, we can view this as an affine slice

of a central arrangement of hyperplanes in R3.

Definition 2.6. Let A be an arrangement of hyperplanes in V = Rn. A cone1

K of an arrangement A is an intersection of halfspaces defined by some of the

hyperplanes of A.

Unless otherwise stated we will assume that A is oriented so that K is an

intersection of positive halfspaces and thus a coneK can be specified by a (potentially

redundant) set of walls W ⊆ [n] where

K =
⋂
i∈W

H+
i .

For example, in the arrangement given in Figure 2.1, there are four cones defined

by the dashed hyperplanes and one such cone is shaded. When dealing with the

cone in Figure 2.1, we will assume that A is oriented so that K is an intersection

of two positive halfspaces.

Each cone K of A has its collection of chambers, namely those chambers in C(A)

that lie inside K:

C(K) = {C ∈ C(A) : C ⊂ K}.
1Aguiar and Mahajan [2] call these objects top-cones.

11



2 Background

The poset of interior intersections of the cone K is the following order ideal within

the poset L(A):

Lint(K) = Lint
A (K) = {X ∈ L(A) | X ∩ K 6= ∅}.

For each X in Lint
A (K), its lower interval [V ,X] is still a geometric lattice, with

same rank function codim(X), so that one can define the kth (signless) Whitney

number of K by

ck(K) =
∑

X∈Lint(K):
codim(X)=k

|µ(V ,X)| = (−1)k
∑

X∈Lint(K):
codim(X)=k

µ(V ,X),

along with their generating function Poin(K, t) :=
∑n

k=0 ck(K) tk, the Poincaré

polynomial for K.

Chapter 4 concerns another interpretation of the Poincaré polynomial, this time

in terms of certain data associated to the oriented matroid of A (the no broken

circuit sets). We will introduce these sets in Section 2.2, where we also give the

NBC-interpretation of the Poincaré polynomial.

For now, we big our study with the following result of Zaslavsky [65], which

counts the number #C(K) of chambers of an arrangement A lying inside one of its

cones K.

Theorem 2.7 ( [65, Example A, p. 275]). Let K be a cone of an arrangement A

in V = Rn. Then

#C(K) =
∑

X∈Lint(K)

|µ(V ,K)| = c0(K) + c1(K) + · · ·+ cn(K) = [Poin(K, t)]t=1 .

Zaslavsky proved in his doctoral thesis [64] the better-known special case of Theorem

2.7 for the full arrangement, that is, where K = V = Rn.

The following few examples illustrate Theorem 2.7 for various type A cones.

12



2 Background

Example 2.8. Consider the arrangement in R2 below on the left with the given

orientation. The cone K = H+
1 with W = {1} is the shaded region below on the

right.

H1

H3

H2

H1

H3

H2

Below we draw the Hasse diagrams of L(A) (left) and Lint(K) (right). The circled

value next to X is µ(V ,X).

V+1

H1-1 H2-1 H3-1

H1 ∩H2 ∩H3+2

V+1

H2-1 H3-1

The associated Poincaré polynomials are

Poin(A, t) = 1 + 3t+ 2t2 and Poin(K, t) = 1 + 2t,

respectively. It is easy to see from the pictures in Example 2.8 that the arrangement

has 1 + 3 + 2 = 6 chambers and that the cone has 1 + 2 = 3 chambers.

Example 2.9. Consider the arrangement A = A4−1 = {H12,H13,H14,H23,H24,H34}

inside V = R4. On the left below we have drawn a linearly equivalent picture

of its intersection with the hyperplane where x1 + x2 + x3 + x4 = 0, isomorphic

to R3, and depicted the intersection of the hyperplanes with the unit 2-sphere in

this 3-dimensional space. Here we pick the cone K to be the one defined by the

halfspace x3 < x4 for the hyperplane H34, and draw the intersection of H34 with the

13



2 Background

unit sphere as the equatorial circle, with the other five hyperplanes Hij depicted as

great circles intersecting the hemisphere where x3 < x4. On the right below the

non-hyperplane interior intersection subspaces Xπ are labeled.

H14

H13

H23

H12

H24

H34

X13|24

X124
X14|23

X123

Therefore the intersection poset Lint(K) of this cone is

V = R4

H12 H23 H13 H24 H14

X123 X124 X13|24 X14|23

We have ( c0(K) , c1(K) , c2(K) ) = (1, 5, 6) and thus Poin(K, t) = 1 + 5t + 5t2.

Summing the Whitney numbers gives 1 + 5 + 6 = 12, and a quick visual verification

assures that there are 12 chambers in this cone.

Example 2.10. Consider the cone K of A3 in which x3 < x4 and x1 < x2. On the left

below we have drawn the same picture as Example 2.9 with the cone corresponding

to K shaded. We depict Lint(K) on the right.

H14

H13

H23
H24

H12H34

V = R4

H23 H13 H24 H14

X13|24

14



2 Background

We have ( c0(K) , c1(K) , c3(K) ) = (1, 4, 1), and thus Poin(K, t) = 1 + 4t + t2.

Summing the Whitney numbers gives 1 + 4 + 1 = 6 = #C(K).

2.2 Oriented Matroids

The collection of normal vectors {v1, . . . , vn} of A naturally gives rise to an oriented

matroid. The theory of (oriented) matroids arising from hyperplane arrangements

is well-studied and there are many excellent sources on this topic including [9], [40,

Section 2.1], and [56, Lecture 3]. We briefly review some basics but refer the reader

to the preceding sources for a more detailed discussion.

Let E be a finite set. A signed set D = (D+,D−) of E is a disjoint, ordered pair

of subsets D+,D− ⊆ E. For a signed subset D of E and e ∈ E and D, define

De :=


+ if e ∈ D+

− if e ∈ D−

0 else.

The collection D := {e ∈ E : De 6= 0} is called the (unsigned) support set of

E. Each signed set D has an “opposite" signed set −D with the same (unsigned)

support set but (−D)e = −(De) for all e ∈ D. For an arbitrary pair C,D of signed

sets, we use their separating set to keep track of the places where their signs are

opposite, i.e. if C,D are signed sets of E then the separating set of C and D is

S(C,D) := {e ∈ E | Ce = −De 6= 0}.

Its easy to see that the separating set of D and −D is D.

Finally we define the composition product of two signed sets C,D with the same
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ground set E. The composition of C with D is the signed set C ◦D where

(C ◦D)e =

Ce if Ce 6= 0

De else
for e ∈ E.

Definition 2.11. Let E be a finite set and D a collection of signed subsets of E.

We say that D is the set of dependencies2 of an oriented matroid on E if D satisfies

the dependence axioms :

V0. 0 ∈ D, where 0 denotes the signed set with (0)e = 0 for all e ∈ E,

V1. If D ∈ D, then −D ∈ D,

V2. If C,D ∈ D, then C ◦D ∈ D,

V3. If C,D ∈ D and e ∈ S(C,D) then there exists F ∈ D with

Fe = 0

Ff = (C ◦D)f for f ∈ E\S(C,D).

The proof of the main result of Chapter 4 concerns the connection between an

oriented matroid and its dual. For an oriented matroid M = (E,D), there is a

unique oriented matroid M∗ = (E,D∗) with vectors

D∗ = {(F+,F−) | D ⊥ F for all D ∈ D}

where F ⊥ D if F and D are orthogonal. By orthogonal, we mean that if · is our

2In the study of oriented matroids, these are often referred to as “vectors.” Here we use the

nonstandard terminology of “dependencies” to avoid confusion.

16



2 Background

usual multiplication on {+,−, 0} with

a · b =


+ if a = b 6= 0

− if a, b 6= 0 and a 6= b

0 if a = 0 or b = 0

then {Fe ·De | e ∈ E} either equals {0} or contains {+,−} [32, §6.2.5]. We call

M∗ the dual matroid to M and call D∗ the covectors of M . One can show that

the covectors of M also satisfy the dependence axioms so that the dual oriented

matroid is in fact an oriented matroid.

We will be concerned with oriented matroids defined by sets of vectors {v1, . . . , vn}

in Rd, which naturally come equipped with signed dependencies given by linear

combinations. Whenever
∑

v∈D λvv = 0, one has a signed dependency D =

(D+,D−) where

Dv =


+ if λv > 0

− if λv < 0

0 else.

In this context, one can think of the composition product of as a sum of dependencies

where the second dependency is multiplied by a small, positive number.

That is, suppose C,D yield dependencies∑
v∈C

λvv = 0 and
∑
v∈D

γvv = 0.

Then we can choose some ε > 0 so that λv + εγv is greater than zero if v ∈ C+ and

less than zero if v ∈ C−. Thus the signed dependency given by

∑
v∈C

λvv + ε

∑
v∈D

γvv

 = 0.

satisfies the definition of C ◦D given above.
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Proposition 2.12. For E = {v1, . . . , vn}, the set of signed dependencies satisfies

the dependence axioms.

Proof. Let D be the set of signed dependencies of E. Axioms zero and one are

trivially satisfied from the definition of a signed dependency. The second follows

from the definition of the circle product and the fact that 0 + 0 = 0. For the final

axiom, we use the same procedure as the setup for the circle product construction,

but we engineer some cancellation by taking ε = −λe
γe
. Since e ∈ S(C,D), it follows

that λe and γe have opposite signs and thus ε > 0. We take F to be the signed

dependency given by the coefficients of∑
v∈C

λvv +

(
−λe
γe

)∑
v∈D

γvv = 0.

By our construction, we guarantee that the coefficient of ve will be zero. Note:

since −λe
γe
> 0, the only possible cancellation comes from g ∈ S(C,D).

The covectors of this oriented matroid also have a well-known geometric interpre-

tation via nonempty intersections of halfspaces defined by some of the hyperplanes

of A, see [2, Section 1.1.3] for example. We will use the fact that if an intersection⋂
iH

εi
i is nonempty for {εi}i, then there is a covector F ∈ D∗ such that Fi = εi for

all i ∈ F .

The inclusion-minimal (inclusion of the underlying sets) , nonempty signed

dependencies of an oriented matroid are called signed circuits and we denote the

set of all signed circuits of D by C, i.e.

C := {C ∈ D | C is minimal under inclusion, C 6= 0}.

A theorem of Bland-Las Vergnas and Edmonds-Mandel [9, Theorem 3.7.5] says

that every vector D ∈ D is a composition of signed circuits, i.e. there is some
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k ∈ Z and collection C(1), . . . ,C(k) ∈ C such that

D = C(1) ◦ C(2) ◦ · · · ◦ C(k).

Furthermore, one can select the circuits of this composition so that they conform

to D, meaning that for all i = 1, . . . , k and e ∈ D: if C(i)
e is nonzero then

C
(i)
e = De [9, Proposition 3.7.2]. We will use a weaker version in the proof of our

main theorem: every signed dependence D can be written as a composition of

circuits D = C(1) ◦ C(2) ◦ · · · ◦ C(k) and it is easy to see that the first circuit C(1)

always conforms to D.

In order to simplify notation, we will hereafter conflate a vector vi with its index

i. We take E = [n], so that C is a collection of signed subsets of [n]. For C ∈ C, we

say that C −{i} is a broken circuit if i is the smallest index (under the usual order

on [n] in which 1 < 2 < 3 < · · · < n) such that i ∈ C. We will also consider the no

broken circuit sets of A, denoted NBC(A), which are the subsets of [n] containing

no broken circuits. A no broken circuit set N ∈ NBC(A) of A is a K no broken

circuit set or K-NBC set if ⋂
i∈N

H0
i ∈ Lint(K).

If we take our cone to be the intersection of no halfspaces, i.e. the wall set W is

empty , then we recover the full arrangement, and the K-NBC sets are precisely

the usual NBC sets of the arrangement. We will denote the set of K-NBC sets by

NBC(K).

These sets naturally arise when one studies the Poincaré polynomial of the cone.

Since every lower interval [V ,X] of Lint(K) is isomorphic to the corresponding lower

interval [V ,X] in L(A), a theorem of Rota [50, Section 7] (see also [51, Theorem

1.1]) allows us to compute the Möbius function of the interval [V ,X] in Lint(K) via
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the K-NBC sets, i.e., for all X ∈ Lint(K)

µ(V ,X) = (−1)codim(X) ·#

{
N ∈ NBC(A)

∣∣∣ ⋂
i∈N

Hi = X

}
.

As a result, the Poincaré polynomial of a cone also has an expression in terms of

K-NBC sets:

Poin(K, t) =
∑

N∈NBC(K)

t#N

Taking t = 1, gives

#C(K) = #NBC(K). (2.1)

This equality will be useful for the results in Chapter 4.
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3 Type A Reflection

Arrangements

In this section we discuss results for reflection arrangements. The results for Type A

and the aside on reflection arrangements were discussed in the author’s collaborative

paper with Jang Soo Kim and Victor Reiner [22].

3.1 The Results

The object of this section is to understand the distribution of the signless Whitney

numbers as a refinement of #C(K) as in equation (1.2), for cones K in the braid

arrangement. The braid arrangementAn−1 = {Hij}1≤i<j≤n is the set of
(
n
2

)
reflecting

hyperplanes

Hij = {(x1, . . . ,xn) ∈ V = Rn | xi − xj = 0}

for the symmetric group Sn on n letters, thought of as the reflection group of type

An−1. There is a well-known and easy bijection between the chambers C(An−1) and

the permutations σ = [σ1,σ2, . . . ,σn] in Sn, sending σ to the chamber:

Kσ := {x ∈ V = Rn : xσ1 < xσ2 < · · · < xσn}. (3.1)
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More generally, one has an easy bijection, reviewed in Section 3.2, between posets

on the set [n] := {1, 2, . . . ,n} and cones in the braid arrangement An−1, sending a

poset P to the cone

KP := {x ∈ V = Rn : xi < xj for i <P j}.

It is readily checked that the chamber Kσ lies in the cone C(KP ) if and only if σ is

a linear extension of P , meaning that i <P j implies i <σ j, regarding σ as a total

order σ1 < σ2 < · · · < σn on [n]. Letting LinExt(P ) denote the set of all linear

extensions of P , this shows that #C(KP ) = # LinExt(P ), and hence equation (1.2)

becomes

# LinExt(P ) =
∑
k≥0

ck(P ) = [Poin(P , t)]t=1 (3.2)

abbreviating ck(P ) := ck(KP ) and Poin(P , t) := Poin(KP , t) from now on.

A motivating special case occurs when P = Antichainn is the antichain poset on

[n] that has no order relations. In this case LinExt(Antichainn) = Sn itself, and

the signless Whitney number cn−k(Antichainn) of the first kind is well-known [57,

Prop. 1.3.7] to be the signless Stirling number of the first kind c(n, k) that counts

the permutations in Sn having k cycles. Consequently, (3.2) becomes the easy

summation formula

n! = #Sn =
∑
k≥0

c(n, k). (3.3)

The main results of this chapter generalize three well-known expressions for

Poin(Antichainn, t), explained below:

Poin(Antichainn, t) =
∑
k≥0

c(n, k)tn−k =
∑
σ∈Sn

tn−cyc(σ) (3.4)

=
∑
σ∈Sn

tn−LRmax(σ) (3.5)

= 1(1 + t)(1 + 2t) · · · (1 + (n− 1) t). (3.6)

22



3 Type A Reflection Arrangements

Equation (3.4) comes from the definition of c(n, k) mentioned above, where

cyc(σ) is the number of cycles of σ. This interpretation of the Poincaré polynomial

will be generalized to all posets in Theorem 3.1, and generalized in a different way

to posets which are disjoint unions of chains in Theorem 3.3.

Equation (3.5) arises from a well-known bijection τ 7→ σ from Sn to itself, called

the fundamental bijection1, such that cyc(τ) = LRmax(σ), see [57, Proposition

1.3.1]; here LRmax(σ) is the number of left-to-right maxima of σ = σ1σ2 . . . σn,

i.e., the number of integers 1 ≤ j ≤ n such that σj = max{σ1,σ2, . . . ,σj}. This

bijection and interpretation of the Poincaré polynomial will be generalized to all

posets in Theorem 3.2.

Equation (3.6) is well-known [57, Proposition 1.3.7], and will be generalized to

a generating function compiling the Poincaré polynomials of all posets which are

disjoint unions of chains in Theorem 3.4 below.

The remainder of this paper is organized as follows.

Section 3.2 gives preliminaries on the intersection lattice and cones in braid

arrangements. In particular, for a poset P on [n], it gives an explicit combinatorial

description of the interior intersections Lint(KP ) for a poset cone KP , as the subset

Πt(P ) of P -transverse partitions inside the lattice Πn of set partitions of [n];

roughly speaking, these are the set partitions π for which the quotient preposet

P/π does not collapse any strict order relations i <P j into equalities. With this

in hand, it defines the subset St(P ) of P -transverse permutations inside Sn as

those permutations σ whose cycles form a P -transverse partition, in order to prove

the following generalization of equation (3.4).

1This bijection, often called Foata’s first fundamental transformation, seems to have appeared

also in work of Rényi [49, §4].
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Theorem 3.1. For any poset P on [n], one has

Poin(P , t) =
∑

σ∈St(P )

tn−cyc(σ).

In particular, # LinExt(P ) = #St(P ).

This result even generalizes to a statement (Theorem 3.64) about cones in any real

reflection arrangement.

In light of Theorem 3.1, one expects bijections between St(P ) and LinExt(P ).

One such bijection is the goal of Section 3.3, which defines a notion of P -left-to-right

maximum for a linear extension of P , and then generalizes the fundamental bijection

τ 7→ σ and equation (3.5) as follows.

Theorem 3.2. For any poset P on [n], one has a bijection

St(P )
Φ−→ LinExt(P )

τ 7−→ σ

such that cyc(τ) = LRmaxP (σ), where LRmaxP (σ) is the number of P -left-to-right

maxima of σ. Therefore,

Poin(P , t) =
∑

σ∈LinExt(P )

tn−LRmaxP (σ).

Section 3.4 examines posets P which are disjoint unions of chains, and produces

a second interesting bijection St(P ) → LinExt(P ). Given any composition a =

(a1, . . . , a`) of n, meaning that a ∈ {0, 1, 2, . . .}` and |a| :=
∑`

i=1 ai = n, let ai

denote a chain (totally ordered) poset on ai elements, and then

Pa := a1 t a2 t · · · t a`

is a disjoint union of incomparable chains of sizes a1, a2, . . . , a`. Here one can

identify elements in LinExt(Pa) with multiset permutations of {1a1 , 2a2 , . . . , `a`}.
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Section 3.4 reviews the beautiful theory of prime cycle decompositions for such

multiset permutations due to Foata [24], and then reinterprets it as giving a bijection

LinExt(Pa)→ St(Pa), and the following (second) generalization of equation (3.4).

Theorem 3.3. For any composition a of n, the disjoint union Pa of chains has a

bijection
LinExt(Pa) −→ St(Pa)

σ 7−→ τ

with cyc(τ) = pcyc(σ), the number of prime cycles in Foata’s unique decomposition

for σ. Thus

Poin(Pa, t) =
∑

σ∈LinExt(Pa)

tn−pcyc(σ).

Foata’s theory is then used to prove the following generating function, generalizing

equation (3.6).

Theorem 3.4. For ` = 1, 2, . . ., one has∑
a∈{1,2,...}`

Poin(Pa, t) · xa =
1

1−
∑`

j=1 ej(x) · (t− 1)(2t− 1) · · · ((j − 1)t− 1)
,

where xa := xa11 · · ·x
a`
` and ej(x) :=

∑
1≤i1<···<ij≤` xi1 · · ·xij is the jth elementary

symmetric function.

Section 3.6 then examines posets of width two, that is, posets P decomposable

as P = P1 ∪ P2 where the subposets P1,P2 are chains (i.e. totally ordered subsets)

inside P . Here the Whitney numbers ck(P ) are interpreted by a descent-like

statistic on σ in LinExt(P ):

desP1,P2(σ) := #{i ∈ [n−1] : σi ∈ P2, σi+1 ∈ P1, with σi,σi+1 incomparable in P}.
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Theorem 3.5. For a width two poset decomposed into two chains as P = P1 ∪ P2,

one has

Poin(P , t) =
∑

σ∈LinExt(P )

tdesP1,P2 (σ).

Theorem 3.5 will be used to show (Corollary 3.57) that, for certain very special width

two posets P , the Poincaré polynomial Poin(P , t) coincides with the P -Eulerian

polynomial, ∑
σ∈LinExt(P )

tdes(σ) (3.7)

which counts linear extensions σ of P according to their number of (usual) descents

des(σ) := #{i ∈ [n− 1] : σi > σi+1},

assuming that P has been naturally labeled in the sense that the identity permutation

σ = [1, 2, . . . ,n] lies in LinExt(P ). In particular, Example 3.58 uses this to deduce

that for P = 2 × n, the Cartesian product of chains having sizes 2 and n, the

Whitney numbers ck(2 × n) are Narayana numbers, counting 2 × n standard

tableaux according to their number of descents. This P -Eulerian polynomial

has many interpretations, e.g., as the h-polynomial of the order complex for the

distributive lattice J(P ) of order ideals in P , or of the P -partition triangulation of

the order polytope for P ; see [48, Proposition 2.1, Proposition 2.2] and [57, Sections

3.4, 3.8, 3.13] for more on this. Unfortunately, in general the P -Eulerian polynomial

differs from the Poincaré polynomial Poin(P , t) considered here. For example, when

P is an antichain with three elements, the P -Eulerian polynomial is 1 + 4t + t2,

while Poin(P , t) = 1 + 3t+ 2t2.

Lastly, we note that the cone KP associated to a poset P has appeared in

many places in the literature, for example, implicitly in Stanley’s theory of P -

partitions [57, §3.15] and related work of Gessel on quasisymmetric functions [31],
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more explicitly in work of Björner and Wachs [10–12], and as the ranking COMs of

Bandelt, Chepoi and Knauer [7]. A pointed version of this cone, called an order

cone is discussed in Beck and Sanyal [8, Chapter 6]. When the underlying Hasse

diagram of P is a tree, results on the number of chambers #C(KP ) = # LinExt(P )

in these cones appear in work of K. Saito [52].

3.2 Intersections, Set Partitions, and Proof of

Theorem 3.1

In this section, we review this correspondence and some useful results regarding

the structure of the lattice of set partitions.

Let Πn denote the lattice of set partitions on [n], ordered via refinement: π1 ≤ π2

if π1 refines π2. For the braid arrangement An−1, the intersection poset L(An−1) is

isomorphic to Πn. This isomorphism will be useful for our work in Chapter 3, so

we include the formal statement below, as a proposition:

Proposition 3.6 ( [56, pp. 26-27]). The map π 7→ Xπ in Example 2.4 is a poset

isomorphism Πn
∼= L(An−1).

In the case of the braid arrangement, these Möbius function values have a simple

expression.

Proposition 3.7 ( [57, Example 3.10.4]). For any set partition π = {B1, . . . ,Bk}

in Πn, one has

µ(V ,Xπ) = (−1)n−k
k∏
i=1

(#Bi − 1)! ( = µ( 1|2| · · · |n , π ) )

with the convention 0! := 1. Here µ(V ,Xπ),µ(1|2| · · · |n, π) are µ(−,−) values in

L(An−1), Πn, respectively.
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For the sake of our later discussion, we point out a re-interpretation of this

formula involving permutations. Given a permutation σ in Sn, when considered

as acting on V = Rn, its fixed space V σ := {x ∈ Rn : σ(x) = x} will be the

intersection subspace V σ = Xπ, where π = {B1,B2, . . . ,Bk} is the set partition in

Πn given by the cycles of σ. Consequently, one can re-interpret

|µ(V ,Xπ)| =
k∏
i=1

(#Bi − 1)!

= #{σ ∈ Sn with cycle partition π}

= #{σ ∈ Sn : V σ = Xπ},

(3.8)

since each block Bi of π has (#Bi − 1)! choices of a cyclic orientation.

It is well-known (see [43, §3.3], for example) and easy to see that such cones

correspond bijectively with posets P on [n] via this rule: one has xi < xj for all

points in the cone K if and only if i <P j. We will denote the cone associated to P

by KP , and abbreviate ck(P ) := ck(KP ) and Poin(P , t) := Poin(KP , t).

Example 3.8. The cone inside A3 in Example 2.9 given by the inequality x3 < x4

on V = R4 has defining poset P1 with order relation 3 <P1 4 on [4] = {1, 2, 3, 4},

while the cone in Example 2.10 given by the inequalities x1 < x2 and x3 < x4 has

defining poset P2 with order relations 1 <P2 2 and 3 <P2 4. These posets P1,P2 are

shown here:

P1 =
1 2 3

4
P2 =

1

2

3

4
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3.2.1 A cone-preposet dictionary and the interior

intersections of a poset cone

By Theorem 3.6, the intersection poset L(An−1) is isomorphic to the set partition

lattice Πn, and hence for each cone KP in An−1, one should be able to identify the

interior intersection poset Lint(KP ) as some order ideal inside Πn. This is our next

goal, which will be aided by recalling some facts about preposets, posets, binary

relations, and cones.

Definition 3.9. Recall that a preposet Q on [n] is a binary relation Q ⊆ [n]× [n]

which is both

– reflexive, meaning (i, i) ∈ Q for all i, and

– transitive, meaning (i, j), (j, k) ∈ Q implies (i, k) ∈ Q.

If in addition Q is antisymmetric, meaning (i, j), (j, i) ∈ Q implies i = j, then Q is

called a poset on [n]; in this case, we sometimes write i ≤Q j when (i, j) ∈ Q.

A set partition π ∈ Πn is identified with an equivalence relation π ⊆ [n] × [n]

having (i, j) ∈ π when i, j appear in the same block of π. That is, π is reflexive,

transitive, and symmetric, meaning (i, j) ∈ π implies (j, i) ∈ π. We will sometimes

write this binary relation as i ≡π j when (i, j) ∈ π.

The union Q1 ∪Q2 ⊆ [n]× [n] of two preposets will be reflexive, but possibly

not transitive, so not always a preposet. However, the transitive closure operation

Q 7→ Q lets one complete it to a preposet Q1 ∪Q2.

We will use a slight rephrasing of the folklore cone-preposet dictionary, as discussed

by Postnikov, Reiner, andWilliams in [43, Section 3.3]. This dictionary is a bijection

between preposets Q on [n] and closed cones of any dimension that are intersections
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in V = Rn of closed halfspaces of the form {xi ≤ xj}. Under this bijection, any

such closed cone C corresponds to a preposet QC via

C 7→ QC := {(i, j) | xi ≤ xj for all x ∈ C}.

Conversely, any preposet Q on [n] corresponds to a closed cone CQ via

Q 7→ CQ :=
⋂

(i,j)∈Q

{xi ≤ xj} = {x ∈ Rn | xi ≤ xj for all (i, j) ∈ Q}.

For a subset A ⊆ Rn, denote its interior and relative interior by int(A), relintA.

Then for a preposet Q,

relintCQ =

x ∈ Rn :
xi < xj if (i, j) ∈ Q but (j, i) 6∈ Q,

xi = xj if both (i, j), (j, i) ∈ Q

 . (3.9)

Also, one has the following assertions, using the notation of this dictionary:

– for π in Πn, the subspace denoted Xπ is the (non-pointed) cone Cπ, regarding

π as a preposet, and

– for any poset P on [n], the open n-dimensional cone denoted KP earlier is

relintCP (= int(CP ).

We will need one further dictionary fact from the Type A case.

Proposition 3.10 ( [43, Proposition 3.5]). For preposets Q,Q′, one has

CQ ∩ CQ′ = CQ∪Q′ .

The following definition will help to characterize the set partitions π having Xπ

in Lint(KP ).
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Definition 3.11. Given a poset P on [n] and a set partition π = {B1, . . . ,Bk} in

Πn, define a preposet P/π on the set {B1, . . . ,Bk} as the transitive closure of the

(reflexive) binary relation having (Bi,Bj) ∈ P/π whenever there exist p ∈ Bi and

q ∈ Bj with p ≤P q.

Proposition 3.12. For P a poset on [n] and π = {B1, . . . ,Bk} a set partition in

Πn, the following are equivalent.

(i) Xπ ∈ Lint(KP ), that is, one has a nonempty intersection Xπ ∩ KP 6= ∅.

(ii) If i <P j, meaning that i ≤P j and i 6= j, then (j, i) 6∈ P ∪ π.

(iii) Every block Bi ∈ π is an antichain of P , and the preposet P/π is actually a

poset.

We give a proof of Proposition 3.12 toward the end of this section, after some

discussion and examples.

Definition 3.13. Let P be a poset on [n]. A set partition π of P is called a P -

transverse partition if it satisfies one of the equivalent conditions in Proposition 3.12.

We denote by Πt(P ) the induced subset of Πn consisting of P -transverse partitions.

Remark 3.14. Aguiar and Mahajan [2, p.230] have a similar concept, which they

call a prelinear extension of P . A prelinear extension of P is equivalent to a

P -transverse partition π together with a linear ordering on the blocks of π that

extends the partial order P/π from Proposition 3.12(iii).

Proposition 3.12 and Corollary 3.7 immediately imply the following corollary.

Corollary 3.15. Let P be a poset on [n]. Then Πt(P ) and Lint(KP ) are isomorphic

as posets. Consequently,

Poin(P , t) =
∑

π∈Πt(P )

|µ(V ,Xπ)| · tn−#blocks(π) =
∑

π={B1,...,Bk}
in Πt(P )

k∏
i=1

(#Bi − 1)! · tn−k.
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Example 3.16. Let P := P2 be the second poset from Example 3.8, with x1 <P x2

and x3 <P x4. Then

– π = 13|24 is P -transverse.

– π = 12|3|4 is not P -transverse as it fails condition (ii): 1 <P 2, but (2, 1) ∈

π ⊂ P ∪ π.

– π = 14|23 is not P -transverse, failing condition (ii): 1 <P 2, but (2, 1) ∈

P ∪ π, though (2, 1) 6∈ P ∪ π.

The six P -transverse partitions give this subposet Πt(P ) of Π4 isomorphic to

Lint(KP ), as in Example 2.10:

1|2|3|4

1|23|4 13|2|4 1|24|3 14|2|3

13|24

It happens that here |µ(V ,Xπ)| = 1 for all π in Πt(P ), so that Poin(P , t) =

1 + 4t+ t2.

Example 3.17. Let P be the following poset:

1

2

3

4

5

6

7

8

9

10

Then π = {{1, 4, 7}, {2, 5, 10}, {3, 6, 8}, {9}} in Π10 is P -transverse, represented

here by shading the blocks:
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Viewed in this way, Proposition 3.12(iii), roughly speaking, states that π is

P -transverse if and only if its blocks are antichains that can be “stacked without

crossings” with respect to the Hasse diagram for P .

Proof of Proposition 3.12. We will show a cycle of implications: (i) ⇒ (ii) ⇒ (iii)

⇒ (i).

(i) implies (ii):

Assume (i), so that there exists some x in Rn lying in the nonempty set

Xπ ∩ KP = Xπ ∩ int(CP ) = relintXπ ∩ CP = relintCP∪π

=

x ∈ Rn :
xi < xj if (i, j) ∈ P ∪ π but (j, i) 6∈ P ∪ π,

xi = xj if both (i, j), (j, i) ∈ P ∪ π

 ,

where the first equality comes from the definition of KP and CP , the second from

the fact that KP ,CP are full n-dimensional, the third from Proposition 3.10, and

the fourth from equation (3.9) above. Now to see that (ii) holds, given any pair

i, j with i <P j, then xi < xj since x ∈ KP , but then since (i, j) ∈ P ⊆ P ∪ π, the

conditions above imply (j, i) 6∈ P ∪ π, as desired for (ii).

(ii) implies (iii):

Assume (ii) holds. Then every block B of π must be an antichain in P , else there

exists i 6= j in B with i <P j, and then (j, i) ∈ π ⊆ P ∪ π, contradicting (ii).

Now suppose for the sake of contradiction that P/π is not a poset. Since P/π is

a preposet, it can only fail to be antisymmetric, that is, there are blocks B 6= B′
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of π having both (B,B′), (B′,B) in P/π. Since both P , π are transitive binary

relations, this means there must exist a (periodic) sequence of elements of the form

· · · ≡π p1 <P p2 ≡π p3 <P p4 ≡π · · · <P pm−2 ≡π pm−1 <P pm ≡π p1 <P p2 ≡ · · ·

alternating relations (pi, pi+1) lying in P and in π. Then p1 <P p2 and (p2, p1) ∈

P ∪ π, contradicting (ii).

(iii) implies (i):

Assume (iii), that is, the blocks of π are antichains of P , and P/π is a poset. One

can then reindex the blocks of π such that (B1,B2, . . . ,Bk) is a linear extension of

P/π. Use this indexing to define a point x ∈ Rn whose pth coordinate xp = i if p

lies in block Bi of π.

We claim x lies in Xπ ∩ KP , verifying (i). By construction x lies in Xπ, since its

coordinates are constant within the blocks of π. To verify x ∈ KP , given p <P q,

one must check that xp < xq. Assume that p, q lie in blocks Bi,Bj of π, so that

xp = i and xq = j. Since the blocks of π are antichains in P and p <P q, one has

i 6= j, and since (B1,B2, . . . ,Bk) is a linear extension of P/π, one must have i < j,

that is, xp < xq.

It will help later in identifying P -transverse partitions to also have the following

recursive characterization.

Proposition 3.18. Let P be a poset on [n], and π a set partition of [n]. Then π

lies in Πt(P ) if and only if it contains a block B with these two properties:

(a) B is a subset of the minimal elements of P , and

(b) if π̂ := π\{B} and P̂ is the poset on [n]\B obtained from P by removing the

elements in B, then π̂ ∈ Πt(P̂ ).
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Proof. For the forward implication, assume π ∈ Πt(P ) and B ∈ π is a minimal

block. We use Proposition 3.12(iii) to show that (a) and (b) hold. For (a), assume

there exists some x ∈ B which is not minimal in P , i.e., there is some y ∈ P with

x >P y. The block B is an antichain, so necessarily y 6∈ B and so y lies in a block

B′ 6= B of π. But then B >P/π B
′ contradicts the minimality of B in P/π.

For (b), note that the blocks of π̂ are a subset of the blocks of π, so they are

antichains in P and necessarily also antichains in P̂ . Furthermore, the preposet

P̂ /π̂ on the blocks of π̂ must be a poset, else if B′,B′′ were two blocks of π̂ having

B′ ≥P̂ /π̂ B′′ and B′′ ≥P̂ /π̂ B′, then these same two blocks B′,B′′ in π and would

have have B′ ≥P/π B′′ and B′′ ≥P/π B′, a contradiction.

For the backward implication, assume π in Πn has a block B satisfying properties

(a), (b). We use Proposition 3.12(i) to show that π ∈ Πt(P ). Since π̂ ∈ Πt(P̂ ),

there is a point x̂ ∈ R[n]\B in the (nonempty) set Xπ̂ ∩ KP̂ , i.e., the coordinates

of x are constant within each block of π̂, and x̂p < x̂q whenever p <P̂ q. Let

m := minR{x̂p : p ∈ [n] \ B} be the smallest coordinate of x̂, and then extend

x̂ ∈ R[n]\B to a point x ∈ Rn by assigning all of the new coordinates xp for p ∈ B

to have the same value, but strictly smaller than m, e.g., xp := m− 1 for all p ∈ B.

One then checks that this x lies in Xπ ∩KP : it lies in Kp due to the fact that B is

a subset of the minimal elements of P , and it lies in Xπ because it is constant on

the new block B of π not already in π̂, as well as constant on the blocks of π̂.

3.2.2 More examples of Πt(P )

Example 3.19. Given a poset P on [n], its dual or opposite poset P opp has the

same underlying set [n], but with opposite order relation: i ≤P j if and only if

j ≤P opp i. One can readily check that conditions (ii) and (iii) in Proposition 3.12 are

self-dual in the sense that π in Πn is P -transverse if and only if it is P opp-transverse.
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Consequently, Πt(P opp) = Πt(P ), and hence Poin(P opp, t) = Poin(P , t).

Example 3.20. Given posets P1,P2, respectively, their ordinal sum P1 ⊕ P2 is the

poset whose underlying set is the disjoint union P1 tP2, and having order relations

x ≤P1⊕P2 y if either

– x, y ∈ Pi and x≤Piy for some i = 1, 2, or

– x ∈ P1 and y ∈ P2.

If the underlying sets for P1,P2 are [n1], [n2], one can readily check from either of

Proposition 3.12 (ii) or (iii) that a partition π of [n1] t [n2] is P1 ⊕ P2-transverse

if and only if it is of form π = {A1, . . . ,Ak,B1, . . . ,B`} where π1 = {Ai}ki=1

and π2 = {Bj}`j=1 are P1-transverse and P2-transverse partitions of [n1] and [n2],

respectively. Bearing in mind that V = Rn1+n2 = V1 ⊕ V2 where Vi = Rni for

i = 1, 2, this gives isomorphisms

Πt(P ⊕ P2) ∼= Πt(P1)× Πt(P2)

[V ,Xπ] ∼= [V1,Xπ1 ]× [V2,Xπ2 ]

and therefore also

Poin(P1 ⊕ P2, t) = Poin(P1, t) · Poin(P2, t).

3.2.3 Proof of Theorem 3.1

We recall here the bijection between the chambers of braid arrangement An−1

inside a cone KP and the linear extensions of P . We then define P -transverse

permutations and use them to combinatorially re-interpret Poin(P , t).

Definition 3.21. Given two posets P ,Q on [n], say that Q extends P if i ≤P j

implies i ≤Q j, that is, P ⊆ Q as binary relations on [n], or equivalently, their
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cones satisfy KQ ⊆ KP . When Q is a total or linear order σ1 < · · · < σn on [n], we

identify it with a permutation σ = σ1 . . . σn, and call σ a linear extension of P . Let

LinExt(P ) denote the set of all linear extensions of P .

Example 2.2 noted that chambers of the braid arrangement An−1 are of the form

Kσ for permutations σ. Then Kσ is a chamber lying in the cone C(KP ) if and only

if σ lies in LinExt(P ), giving a bijection

LinExt(P ) −→ C(KP )

σ 7−→ Kσ.

See also [56, Example 1.3]. Consequently, as noted in (3.2) one has

# LinExt(P ) =
∑
k≥0

ck(P ) = [Poin(P , t)]t=1 .

Example 3.22. The poset P defined by 1 <P 2 and 3 <P 4 from Example 2.10 has

six linear extensions, shown here labeling the chambers in C(KP ):

3412

3124 3142

1234H12 1324
1342

H34

Recall our goal of finding combinatorial interpretations for Poin(P , t). Comparing

the expression for Poin(P , t) given by Corollary 3.15 in terms of P -transverse

partitions π, and the interpretation of µ(V ,Xπ) in terms of permutations given in

(3.8) motivates the following definition.
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Definition 3.23. Given a poset P on [n], a P -transverse permutation is a permuta-

tion σ in Sn for which the set partition π given by the cycles of σ is a P -transverse

partition. Denote by St(P ) the set of all P -transverse permutations.

Corollary 3.15 and equation (3.8) then immediately imply this interpretation for

Poin(P , t).

Thereom 3.1. For any poset P on [n], one has

Poin(P , t) =
∑

σ∈St(P )

tn−cyc(σ).

In particular, setting t = 1, one has # LinExt(P ) = #St(P ).

3.3 Proof of Theorem 3.2

The goal in the next few subsections is to define mutually inverse bijections

St(P )
Φ−→ LinExt(P )

LinExt(P )
Ψ−→ St(P )

along with the notion of P -left-to-right maxima for σ in LinExt(P ), to prove this

result from the Introduction.

Theorem 3.2. For any poset P on [n], one has a bijection Φ : St(P )→ LinExt(P )

sending the number of cycles to the number of P -left-to-right-maxima. Therefore,

Poin(P , t) =
∑

σ∈LinExt(P )

tn−LRmaxP (σ)

where LRmaxP (σ) denotes the number of P -left-to-right maxima of σ.

To this end, we first recall the special case the antichain poset P = Antichainn

on [n], where Φ is known as the fundamental bijection [57, Proposition 1.3.1]. A

permutation τ in Sn sending i 7→ τ(i) may be written

38



3 Type A Reflection Arrangements

– in a one-line notation as τ = [τ(1), τ(2), . . . , τ(n)], or

– in a two-line notation τ =

 1 2 · · · n

τ(1) τ(2) · · · τ(n)

, or

– in various cycle notations that list the τ -orbits on [n], called its cycles, in

some arbitrarily chosen order, with each cycle listed as (j, τ(j), τ 2(j), . . .) for

some arbitrary choice of the first element j.

One way to make the choices non-arbitrary and put the cycle notation in standard

form insists that the first element j listed within each cycle τ (i) is the maximum

element of the cycle, and then insists that the cycles τ (1), τ (2), . . . are listed with

their maximum elements in increasing order as integers, that is, j1 <Z j2 <Z · · · .

The fundamental bijection Sn → Sn sends τ to Φ(τ) := σ = [σ1,σ2, . . . ,σn] by

erasing the parentheses around the standard form cycle notation for τ .

Example 3.24. The permutation τ = [7, 5, 9, 4, 2, 8, 3, 6, 1] in S9 in one-line notation

can also be written in two-line notation and factored according to its τ -orbits or

cycles

τ =

1 2 3 4 5 6 7 8 9

7 5 9 4 2 8 3 6 1

 =

1 3 7 9

7 9 3 1

2 5

5 2

4

4

6 8

8 6

 .

Its cycle notation in standard form and image σ = Φ(τ) are then

τ = (4)(5, 2)(8, 6)(9, 1, 7, 3)

Φ(τ) = σ = [4, 5, 2, 8, 6, 9, 1, 7, 3].

The inverse map Ψ starts with σ = [σ1, . . . ,σn] in one-line notation, and de-

termines where to re-insert the parenthesis pairs in the sequence to obtain the

standard form for the cycles of τ . One only needs to know the locations of the left

parentheses, since then the right parenthesis locations are determined. There will
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be one left parenthesis just to the left of each σj which is a left-to-right maximum (or

LR-maximum for short) in σ, meaning σj = maxZ{σ1,σ2, . . . ,σj}. It is not hard to

check that Φ, Ψ are mutual inverses, and if σ = Φ(τ), one has cyc(τ) = LRmax(σ),

the number of LR-maxima of σ.

3.3.1 The map Φ : St(P )→ LinExt(P )

To define the map Φ : St(P ) → LinExt(P ) on a P -transverse permutation τ ,

we will first use the P -transverse partition π whose blocks are the cycles of τ to

separate the blocks of π and the elements of P into levels, and then define a notion

of essential elements. Recall that because σ lies in St(P ), meaning π lies in Πt(P ),

the quotient preposet P/π on the blocks of π is actually a poset. This leads to the

following definition:

Definition 3.25. Say that a block of π which is minimal in P/π is of Level 1. For

k ≥ 2, the blocks of π of Level k are the minimal ones in the poset obtained from

P/π by removing all blocks of Level less than k.

In other words, a block B of π is of Level k if and only if

k = max{` : there exists a chain B =: B1 >P/π B2 >P/π · · · >P/π B`},

or even more concretely, k is the maximum among integers ` with the property

that there exist blocks B =: B1,B2, . . . ,B` of π and elements xi >P yi+1 with

xi ∈ Bi, yi+1 ∈ Bi+1 for each i = 1, 2, . . . , `− 1.

For an element x in [n], define the Level of x to be the Level of the unique block

of π containing x.

Definition 3.26. An element x is essential if x has Level k and there exists some

y of Level k − 1 with x >P y; by convention, all Level 1 elements x are essential.
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In order to define the map Φ : St(P )→ LinExt(P ), we first introduce a standard

form for a P -transverse permutation τ . Let τ have cycle partition π = {B1, . . . ,Bm},

lying in Πt(P ). List the cycles of τ in order τ (1), τ (2), . . . , τ (m), with the blockBi of π

corresponding to the cycle τ (i), and write the cycle τ (i) as τ (i) = (xi, τ(xi), τ
2(xi), . . . )

for some xi in Bi. Then this listing is the standard form of τ if and only if it has

the following properties:

– If blocks Bi,Bj have Levels k, k + 1 in π, respectively, then their indices

satisfy i ≤Z j.

– For each i, the first element xi listed in the cycle τ (i) = (xi, τ(xi), τ
2(xi), . . . )

is the maximal essential element of Bi; by Lemma 3.28(b), below, every block

Bi contains an essential element.

– If Bi,Bj are blocks of Level k with i <Z j then xi <Z xj.

Following the fundamental bijection, the map Φ : St(P )→ LinExt(P ) is defined

by putting τ ∈ St(P ) into standard form and erasing parenthesis. The following

example illustrates this process.

Example 3.27. Let P be the following poset on [13]:

13 1 9 11

6 7 2 5

3

10

4

12

8

Let

τ = (4)(6, 3)(9)(10)(11, 7)(12, 5, 8, 2)(13, 1) ∈ St(P ), so that

π = {{4}, {3, 6}, {9}, {7, 10}, {2, 5, 8, 12}, {1, 13}} ∈ Πt(P ),

and the poset P/π, drawn as a poset on the cycles of τ , looks as follows:
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(13, 1) (9)

(11, 7)

(12, 5, 8, 2)(6, 3)

(10)

(4)

One can check that

– the Level 1 cycles are (13, 1), (9), (4), with essential elements 1, 4, 9, 13,

– there is one Level 2 cycle (11, 7), with one essential element 7,

– the Level 3 cycles are (6, 3), (12, 5, 8, 2), with essential elements 2, 3, 5,

– there is one Level 4 cycle (10), with one essential element 10.

Here is τ in standard form, with essential elements overlined, and Levels separated

by bars:

τ = (4)(9)(13, 1)
∣∣ (7, 11)

∣∣ (3, 6)(5, 8, 2, 12)
∣∣ (10),

Removing the parentheses (and bars), one obtains its image under Φ:

Φ(τ) = σ = [4, 9, 13, 1, 7, 11, 3, 6, 5, 8, 2, 12, 10] ∈ LinExt(P ).

The next lemma is used to prove the image of Φ lies in LinExt(P ), and St(P )
Φ→

LinExt(P ) is bijective.

Lemma 3.28. Let P be a poset on [n] and τ ∈ St(P ). Then the following

properties hold:

(a) For each k ≥ 1, the Level k elements of [n] form an antichain in P .

(b) Every cycle contains at least one essential element.
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(c) The image Φ(τ) of τ is a linear extension of P .

Proof. For (a), assume that there were two comparable elements x <P y with x, y

both of Level k. Either x, y lie in the same block of π, contradicting P -transversality,

or they lie in different blocks of π, which would be comparable in P/π, contradicting

both blocks being of Level k.

For (b), note that our most concrete description of a block B having Level k

shows that there exist blocks B =: B1,B2, . . . ,Bk of π and elements xi >P yi+1

with xi ∈ Bi, yi+1 ∈ Bi+1 for each i = 1, 2, . . . , k − 1. But then this shows that the

block B2 must be of Level k − 1, and x1 >P y2 shows x1 is essential in B1(= B).

For (c), one can show via induction on k that the restriction of Φ(τ) to the order

ideal of elements of P having Level at most k is a linear extension. In both the base

case k = 1, and in the inductive step, one notes that one can add in the elements

of Level k in any order, because they form an antichain by part (a).

3.3.2 The inverse map Ψ

To define the inverse map Ψ = Φ−1 on a linear extension σ, we proceed similarly to

the previous subsection. We first cut σ into consecutive strings, suggestively called

Levels, define a notion of essential elements of σ, and a notion of P -left-to-right-

maximum.

Definition 3.29. Given σ = [σ1, . . . ,σn] in LinExt(P ), we recursively break σ into

disjoint contiguous sequences [σi,σi+1, . . . ,σi+j ], each forming an antichain of P , and

each maximal in the sense that the slightly longer sequence [σi,σi+1, . . . ,σi+j ,σi+j+1]

is not an antichain of P :

– Let [σ1,σ2, . . . ,σr] be the longest initial segment of σ whose underlying set

{σ1,σ2, . . . ,σr} is an antichain of P ; call {σ1,σ2, . . . ,σr} the Level 1 elements
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of σ.

– The Level 2 elements of σ are {σr+1,σr+2, . . . ,σs}, where [σr+1,σr+2, . . . ,σs]

is the longest initial segment of [σr+1,σr+2, . . . ,σn] that forms an antichain

in P .

– Similarly, for k ≥ 3, the Level k elements of σ are defined as follows: if the

union of all elements of Levels 1, 2, . . . , k − 1 are {σ1,σ2, . . . ,σt}, then the

set of Level k elements is the underlying set of the longest initial segment in

[σt+1,σt+2, . . . ,σn] that forms an antichain in P .

Definition 3.30. As in the previous section, say x in σ is essential if x has Level

k in σ and there exists an element y of Level k − 1 in σ with x >P y; again by

convention, Level 1 elements of σ are all essential.

Definition 3.31. Say that an element x is a P -left-to-right-maximum of σ, or P -

LR-maximum for short, if x is essential in σ, and x appears as a LR-maximum in the

usual sense among the subsequence of essential elements of σ having the same Level

as x. In other words, if x has Level k, it is a P -LR-maximum if the subsequence of

essential Level k elements is [σi1 ,σi2 , . . . ,σir ] for some indices i1 < i2 < · · · < ir,

and there is some j with 1 ≤ j ≤ r for which σij = x = max{σi1 ,σi2 , . . . ,σij}. We

denote the number of P -LR maxima of σ by LRmaxP (σ).

A map Ψ : LinExt(P )→ Sn can now be defined in much the same way as for

the fundamental bijection: starting with σ = [σ1, . . . ,σn] in LinExt(P ), one must

determine where to re-insert the parenthesis pairs in the sequence to recover the

cycles of τ . In fact, one only needs to know the locations of the left parentheses,

since then the right parenthesis locations are determined, and there will be one left

parenthesis just to the left of each x = σj which is a P -LR maximum.
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Example 3.32. Let P be the poset in Example 3.27 and let

σ = [4, 9, 13, 1, 7, 11, 3, 6, 5, 8, 2, 12, 10] ∈ LinExt(P ),

which is Φ(τ) from Example 3.27. The Level decomposition of σ, with essential

elements overlined, looks like

4, 9, 13, 1
∣∣ 7, 11

∣∣ 3, 6, 5, 8, 2, 12
∣∣ 10.

Now create cycles by placing left parentheses just before each P -LR maximum:

(4)(9)(13, 1)
∣∣ (7, 11)

∣∣ (3, 6)(5, 8, 2, 12)
∣∣ (10).

The resulting cycle structure gives the P -transverse permutation Ψ(σ):

Ψ(σ) = (4)(9)(13, 1)(7, 11)(3, 6)(5, 8, 2, 12)(10),

which is the P -transverse permutation τ in Example 3.27.

Note that it is not yet clear that the image of Ψ lies in St(P ), but it will follow

from the proof of Theorem 3.2. First we need a technical lemma.

Lemma 3.33. Let σ ∈ LinExt(P ) and τ ∈ St(P ) such that σ = Φ(τ). Then the

set of Level k elements of τ is precisely the set of Level k elements of σ.

Proof. We prove this by induction on k. For the base case (k = 1), note that the

Level 1 elements of τ will form an initial segment {σ1,σ2, . . . ,σ`} of σ = [σ1, . . . ,σn],

by the definition of Φ. These Level 1 elements of τ will also form an antichain of P

by Lemma 3.28(a). On the other hand, we claim that the longer initial segment

{σ1,σ2, . . . ,σ`,σ`+1} cannot form an antichain in P , because σ`+1 is of Level 2 in

τ by definition of Φ, and it is also essential in τ because it is leftmost in its cycle

in the standard form for τ , and all such elements are essential. Thus σ`+1 >P σi
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for some i = 1, 2, . . . , `, showing that the longer segment is not an antichain of P .

By definition of Ψ, this means that the Level 1 elements of σ will be those in the

shorter segment {σ1,σ2, . . . ,σ`}.

For the inductive step (k ≥ 2), we perform the same argument as in the base

case, but replace P , τ ,σ with their counterparts P̂ , τ̂ , σ̂ in which the elements of

Level 1, 2, . . . , k − 1 have been removed. One must check that τ̂ lies in St(P̂ ),

but this is straightforward, because if σ, σ̂ have cycle partitions π, π̂, then P̂ /π̂ is

obtained from P/π by removing its minimal blocks.

Proof of Theorem 3.2. Note #St(P ) = # LinExt(P ) by Theorem 3.1, and Φ maps

St(P ) → LinExt(P ) by Lemma 3.28(c). We therefore claim that it suffices to

check Ψ(Φ(τ)) = τ for all τ in St(P ). This will imply that Φ is injective, hence

bijective, with Ψ its inverse bijection, and thus the image of Ψ is St(P ). Note that

by construction, if Ψ(σ) = τ , then LRmaxP (σ) = cyc(τ), so Theorem 3.2 would

follow.

By Lemma 3.33, we have if σ = Φ(τ), then the sets of Level k elements of σ and

τ coincide. It follows immediately from Lemma 3.33 that the essential elements

in σ and τ coincide, since in each case, their definition uses only the order P and

the partition by Levels. Therefore, we can focus our attention on each Level k

separately, where the definition of Φ and Ψ coincides almost exactly with their

definition in the fundamental bijection, ignoring the non-essential elements carried

along in each Level. It then follows that Ψ(Φ(τ)) = τ via the same argument as

for the fundamental bijection.
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3.4 Proofs of Theorems 3.3 and 3.4

The goal of this section is to understand Poin(P , t) for a poset P that is a disjoint

union of chains. Although Theorem 3.2 applies to any poset, when P is a disjoint

union of chains, there turns out to be another elegant expression for Poin(P , t)

stemming from Foata’s theory of multiset permutations, generalizing equation (3.6)

for the antichain poset P .

In Subsection 3.4.1 we review Foata’s theory of multiset permutations, in par-

ticular his work with the intercalation product and prime cycle decompositions.

Subsection 3.4.2 reviews its relation to partial commutation monoids. Subsection

3.4.3 shows how the results in Section 3.3 can be rephrased in terms of multiset per-

mutations when P is a disjoint union of chains. Theorem 3.3 is also proved in this

subsection. Finally Subsection 3.5 employs Foata’s theory to give a generalization

of MacMahon’s Master Theorem which specializes to Theorem 3.4, a generating

function compiling the Poincaré polynomials for disjoint unions of chains.

3.4.1 Multiset Permutations

This subsection gives background on the theory of multiset permutations as in-

troduced by Foata in his PhD thesis [24, Section 3.2], and extended in later

publications [25, Chapters 3-5]. It also appears in Knuth [35, Section 5.1.2].

Definition 3.34. Recall that a (weak) composition a = (a1, . . . , a`) of n is a

sequence of nonnegative integers having sum |a| :=
∑

i ai = n. We will regard a as

specifying the multiplicities in a multiset M(a) := {1a1 , 2a2 , . . . , `a`}, that is, a set

with repetitions

M(a) = {1, 1, . . . , 1︸ ︷︷ ︸
a1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
a2 times

, . . . , `, `, . . . , `︸ ︷︷ ︸
a` times

}.
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A multiset permutation σ = [σ1, . . . ,σn] is a rearrangement of the elements of

M(a), which we will often write in a two-line notation that generalizes that of

permutations:

σ =

 1 · · · 1 2 · · · 2 · · · ` · · · `

σ1 · · · σa1 σa1+1 · · · σa1+a2 · · · σa1+···+a`−1+1 · · · σn

 .

We denote the set of all multiset permutations of M(a) by SM(a). For any

σ ∈ SM(a), we call M(a) the support of σ, and write M(a) = supp(σ).

Example 3.35. The composition a = (2, 3, 2, 3) gives the multiplicities of the multiset

M(a) = {12, 23, 32, 43} = {1, 1, 2, 2, 2, 3, 3, 4, 4, 4}.

Then the following multiset permutation σ is an element of SM(a):

σ =

1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2

 .

Foata [24, §3.2] defined an associative intercalation product operation on multiset

permutations (σ, ρ) 7→ σ ᵀ ρ. Knuth [35, §5.1.2] describes it algorithmically: think

of σ, ρ in two-line notation as sequences of columns
(
i
j

)
, and juxtapose these

sequences of columns. Then perform swaps to sort the columns according to their

top entries, never swapping two with the same top entry. For example,2 3 4

4 2 3

 ᵀ
1 1 2 2 3 4 4

2 4 3 1 1 4 2

 =

 2 3 4 1 1 2 2 3 4 4

4 2 3 2 4 3 1 1 4 2


=

1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2

 .

Definition 3.36. For each `, the intercalation monoid Int` is the submonoid of

all multiset permutations σ whose support M = {1a1 , 2a2 , . . . , `a`} involves only
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the letters in {1, 2, . . . , `}. The empty permutation () is the identity element for ᵀ,

since () ᵀ σ = σ = σ ᵀ ().

Note that, just as permutations in the symmetric group Sn do not commute in

general, the monoid Int` is not commutative. For example1 2

2 1

 ᵀ
1 3

3 1

 =

1 1 2 3

2 3 1 1

 6=
1 1 2 3

3 2 1 1

 =

1 3

3 1

 ᵀ
1 2

2 1

 .

However, one can check that σ ᵀ ρ = ρ ᵀ σ when σ, ρ are disjoint, that is,

supp(σ) ∩ supp(ρ) = ∅.

Definition 3.37. Say σ in Int` is prime if the only factorizations σ = ρ ᵀ τ have

either ρ = () or τ = ().

Example 3.38. The permutation

2 4 5 7

5 7 4 2

 is prime. However,

1 1 2 3

2 3 1 1


is not prime, since 1 1 2 3

2 3 1 1

 =

1 2

2 1

 ᵀ
1 3

3 1

 .

On the other hand

2 4 5 7

5 7 2 4

 is not prime, even though its support is multi-

plicity free, since2 4 5 7

5 7 2 4

 =

2 5

5 2

 ᵀ
4 7

7 4

 =

4 7

7 4

 ᵀ
2 5

5 2

 .

It is not obvious, but turns out to be true that σ is prime if and only if both

– supp(σ) = M is multiplicity free, that is, M is a set not a multiset, and
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– σ has only one cycle when considered as an ordinary permutation of the set

M .

We therefore call prime elements prime cycles. More generally, one has the following.

Theorem 3.39 (Foata, 1969 [25, 35]). Let σ be a multiset permutation. Then σ

has a decomposition into a product of prime cycles. That is, there exist k ≥ 0 prime

cycles σ(1), . . . ,σ(k) such that

σ = σ(1) ᵀ σ(2) ᵀ · · · ᵀ σ(k). (3.10)

Further, this cycle decomposition of σ is unique up to successively interchanging

pairs of adjacent prime cycles with disjoint support. In particular k is unique.

Definition 3.40. Call pcyc(σ) := k the number of prime cycles in the decomposi-

tion of σ from Theorem 3.39.

Example 3.41. The element σ from Example 3.35 has pcyc(σ) = 4 and two prime

cycle decompositions1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2

 =

2 3 4

4 2 3

 ᵀ
1 2 3

2 3 1

 ᵀ
4

4

 ᵀ
1 2 4

4 1 2


=

2 3 4

4 2 3

 ᵀ
4

4

 ᵀ
1 2 3

2 3 1

 ᵀ
1 2 4

4 1 2

 .

We describe here an algorithm to find a prime cycle decomposition of a multiset

permutation, which can be deduced from [35, §5.1.2], and illustrate how it produces

the first of the two decompositions in Example 3.41. Encode a multiset permutation

σ in SM(a) as two pieces of data:

– a directed graph Dσ on vertex set {1, 2, . . . , `} having one copy of the directed

arc i→ j for each occurrence of the column
(
i
j

)
in its two-line notation, along

with
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– specification for each vertex x in {1, 2, . . . , `} the linear ordering of the

arcs x → y emanating from x, indicating the left-to-right ordering of the

corresponding columns in the two-line notation.

The resulting digraphs are those with the outdegree equal to the indegree equal

to ai for each i. E.g., the σ from Example 3.41 has this directed graph Dσ, with

linear orderings indicated on the arcs out of each vertex:

1

1st
��2nd

��

2

2nd ��

1st

��

3rd

VV

42nd 99 1st
//

3rd

@@

3

1st
gg

2nd

ii

With this identification, one factors σ recursively. First produce a prime cycle

σ(1) for which

σ = σ(1) ᵀ σ̂ (3.11)

via the following algorithm that takes a directed walk in Dσ.

– Start at the smallest vertex i0 in {1, 2, . . . , `} with outdegree ai0 ≥ 1, and

follow its first outward arc i0 → i1. Then follow i1’s first outward arc i1 → i2,

follow i2’s first outward arc i2 → i3, etc.

– Repeat until first arriving at a previously-visited2 vertex is, say is = ir with

r < s; possibly r = s− 1.

2During the process, when one enters a new vertex ij along an arc ij1 → ij , there will always be

at least one outward arc ij → ij+1 leaving ij , because each vertex started with its indegree

matching its outdegree.
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– The directed circuit C of arcs ir → ir+1 → ir+2 → · · · → is−1 → is(= ir)

corresponds to a prime cycle σ(1) that one can factor out to the left as in

(3.11): by construction, each of its corresponding columns
(
it
jt

)
occurs as the

leftmost column of σ having it as its top element.

– Complete the factorization recursively, replacing σ by σ̂, removing the arcs

C from Dσ to give Dσ̂.

Example 3.42. The multiset permutation

σ =

1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2


factors as follows. A graphical depiction of that factorization process is given in

Figure 3.1, where dotted arrows showing the directed walks in Dσ.1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2


=

2 3 4

4 2 3

 ᵀ
1 1 2 2 3 4 4

2 4 3 1 1 4 2


=

2 3 4

4 2 3

 ᵀ
1 2 3

2 3 1

 ᵀ
1 2 4 4

4 1 4 2


=

2 3 4

4 2 3

 ᵀ
1 2 3

2 3 1

 ᵀ
4

4

 ᵀ
1 2 4

4 1 2

 .

3.4.2 Partial Commutation Monoids

It will be helpful to view the intercalation monoid Int` as a partial commutation

monoid. We briefly review some relevant facts about partial commutation monoids.
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1

1st
��2nd

��

2

2nd ��

1st

��

3rd

VV

42nd 99 1st
//

3rd

@@

3

1st
gg

2nd

ii 1

1st
��2nd

��

2

1st ��

2nd

VV

41st 99

2nd

@@

3

1st

ii 1

1st

��

2

1st

VV

41st 99

2nd

@@

3

1

1st

��

2

1st

VV

4
1st

@@

3

Figure 3.1: An illustration of the decomposition algorithm for multiset permutations

for σ in Example 3.42. Dotted arrows represent the directed walks in

Dσ.

Definition 3.43. Given a set A, which we call an alphabet and a subset of its pairs

C ⊆
(A

2

)
, the associated partial commutation monoid M is defined to be the set of

equivalence classes on words α1α2 . . . αk in the alphabet A under the equivalence

relation

α1α2 . . . αiαi+1 . . . αk ≡ α1α2 . . . αi+1αi . . . αk (3.12)

if {αi,αi+1} ∈ C.

From this perspective, Foata’s Theorem 3.39 asserts that Int` is a partial com-

mutation monoid, whose associated alphabet A is the set of all prime cycles, and

C the pairs of prime cycles with disjoint supports.

For later use, we point out the following (nontrivial) proposition, see [35, §5.1.2,

Exercise 11] and [57, Exercise 3.123]. Given a factorization of an element α =

α1α2 . . . αk inM a partial commutation monoid, define a poset Pα on [k] as the

transitive closure of the binary relation containing (i, j) ∈ Pα when i <Z j and

either αi = αj or αiαj 6≡ αjαi.
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Proposition 3.44. Given a factorization of α = α1α2 . . . αk in M a partial

commutation monoid,

1. Pα does not depend on the choice of factorization of α, and

2. there is a bijection between LinExt(Pα) and the factorizations of α given by

(i1, . . . , ik) 7→ αi1 . . . αik .

Example 3.45. The multiset permutation σ from Example 3.41 had two prime cycle

factorizations
σ = σ(1) ᵀ σ(2) ᵀ σ(3) ᵀ σ(4)

= σ(1) ᵀ σ(3) ᵀ σ(2) ᵀ σ(4)

corresponding to the two linear extensions of the poset Pσ on [4] with this Hasse

diagram:

1

2 3

4

3.4.3 Connection with linear extensions and P -transverse

permutations

We wish to use Foata’s prime cycle decomposition to define a bijection LinExt(Pa)→

St(Pa), and use this to prove Theorem 3.3.

We begin with an easy identification of LinExt(Pa) with SM(a). For this purpose,

given any weak composition a = (a1, . . . , a`) of n, consider two labelings of Pa,

one by the elements {1, 2, . . . ,n} which we will call the standardized labeling, and

the second by the elements of the multiset M(a), which we will call the multiset
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labeling. The standardized labeling labels the first chain a1 by 1, 2, . . . , a1 from

bottom-to-top, then the second chain a2 by a1 + 1, . . . , a1 + a2 from bottom-to-top,

and so on. The multiset labeling labels the elements in the first chain a1 all by 1,

the second chain a2 all by 2, etc.

Example 3.46. For n = 10 and a = (2, 3, 2, 3), the standardized and multiset

labelings of Pa are

1

2

3

4

5

6

7

8

9

10

1

1

2

2

2

3

3

4

4

4

With this in hand, the following proposition is a straightforward observation.

Proposition 3.47. For any weak composition a of n, one has a bijection

LinExt(Pa) −→ SM(a)

λ = [λ1, . . . ,λn] 7−→ σ = [σ1, . . . ,σn]

replacing λi by its corresponding multiset label σi, that is, if λi lies on the jth chain

aj in Pa, then σi := j.

Proof. The inverse map recovers λ from σ by labeling the aj occurrences of the

value j within σ from left-to-right with the integers in the interval [a1 + a2 + · · ·+

aj−1 + 1, a1 + a2 + · · ·+ aj−1 + aj].

Example 3.48. For a = (2, 3, 2, 3), this bijection maps λ = [3, 8, 9, 6, 1, 4, 2, 7, 10, 5]

in LinExt(Pa) to

σ = [2, 4, 4, 3, 1, 2, 1, 3, 4, 2] =

1 1 2 2 2 3 3 4 4 4

2 4 4 3 1 2 1 3 4 2

 .
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We can now define a map ϕ : LinExt(Pa) → Sn, which will turn out to be a

bijection onto St(Pa).

Definition 3.49. Fix a weak composition a of n. Given λ in LinExt(Pa),

– let σ ∈ SM(a) be its corresponding multiset permutation from Proposi-

tion 3.47,

– label the entries in the top line of σ’s two-line notation with subscripts

1, 2, . . . ,n from left-to-right,

– use Foata’s Theorem 3.39 to decompose σ = σ(1) ᵀ · · · ᵀ σ(`) into prime cycles

σ(i), carrying along the subscripts in the top line, and finally

– replace each prime cycle σ(i) with the cyclic permutation τ (i) of the subscripts

of its top line.

Then ϕ(λ) := τ = τ (1) · · · τ (`) in Sn.

Example 3.50. We continue Example 3.48. Let a = (2, 3, 2, 3) and λ = [3, 8, 9, 6, 1, 4, 2, 7, 10, 5]

in LinExt(Pa). Subscript the top line of its corresponding σ in SM(a), and factor

as in Theorem 3.39, carrying along subscripts:

σ =

11 12 23 24 25 36 37 48 49 410

2 4 4 3 1 2 1 3 4 2


=

23 36 48

4 2 3

 ᵀ
11 24 37

2 3 1

 ᵀ
49

4

 ᵀ
12 25 410

4 1 2


= (23, 48, 36) ᵀ (11, 24, 37) ᵀ (49) ᵀ (12, 410, 25)

= σ(1) ᵀ σ(2) ᵀ σ(3) ᵀ σ(4)
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Replacing each prime cycle σ(i) with the cycle τ (i) on its subscripts gives ϕ(λ) =

τ ∈ S10:

ϕ(λ) = τ = τ (1)τ (2)τ (3)τ (4) = (3, 8, 6)(1, 4, 7)(9)(2, 10, 5).

We can now prove Theorem 3.3, whose statement we recall here.

Theorem 3.3. For any composition a of n, the disjoint union Pa of chains has a

bijection
LinExt(Pa) −→ St(Pa)

σ 7−→ τ

with cyc(τ) = pcyc(σ), the number of prime cycles in Foata’s unique decomposition

for σ. Thus

Poin(Pa, t) =
∑

σ∈LinExt(Pa)

tn−pcyc(σ).

Proof. We claim that the above map ϕ : LinExt(Pa)→ Sn is the desired bijection.

Since Theorem 3.1 showed # LinExt(Pa) = #St(Pa), it suffices to show that the

image of ϕ lies in St(Pa), and that ϕ is injective.

To see that every λ in LinExt(Pa) has ϕ(λ) = τ lying in St(Pa), we will induct

on the number ` of cycles in τ = τ (1) · · · τ (`), which is also the number of prime

cycles in the decomposition σ = σ(1) ᵀ · · · ᵀ σ(`). By definition of St(Pa), we must

check that the cycle partition π = {B1, . . . ,B`} of τ lies in Πt(Pa), where Bi is the

set underlying the cycle τ (i). To this end, assume that we produce the factorization

σ = σ(1) ᵀ · · · ᵀ σ(`) according to the algorithm presented in Subsection 3.4.1, and

let us check that the block B = B1 underlying τ (1) satisfies the two properties (a),

(b) in the recursive characterization of Πt(Pa) from Proposition 3.18:
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– For (a), the elements of B are all minimal in Pa because, in the initial

factorization step σ = σ(1) ᵀ σ̂, each column
(
i
j

)
in the two-line notation of

σ(1) is the leftmost column of σ having i as its top element, so it corresponds

to the bottom element in the ith chain ai of Pa.

– For (b), note that after that initial factorization step, the poset P̂a and

partition π̂ = {B2, . . . ,B`} will correspond to σ̂ in the above factorization,

coming from a λ̂ in LinExt(P̂a) with ϕ(λ̂) = σ̂ for which the result holds by

induction on `.

To show that ϕ is injective, we must give an algorithm to recover λ from τ = ϕ(λ).

It would be equivalent to recover τ ’s multiset labeled image σ in SM(a) from the

bijection in Proposition 3.47. Factoring τ lets us recover its unordered set of cycles

{τ (1), . . . , τ (`)}, and hence also the unordered set of prime cycles {σ(1), . . . ,σ(`)}

that will appear in an intercalation factorization of σ. We would like to know

how to properly index {σ(i)}i=1,...,`, up to interchanging commuting elements, so

that we could recover σ as their intercalation product σ = σ(1) ᵀ · · · ᵀ σ(`). We

claim that this (partial) ordering is already contained in the information of the

unordered set of cycles {τ (i)}i=1,...,` as follows. When two prime cycles σ(r),σ(s) do

not commute, it is because they share a common element i, so there must exist two

elements x, y in [n] that come from the ith chain ai in the standardized labeling of

Pa, with x ∈ τ (r), y ∈ τ (s). If x <Z y, then σ(r) must occur to the left of σ(s) in the

intercalation product.
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3.5 Proof of Theorem 3.4

Our goal here is to find a generating function compiling the Poincaré polynomials

Poin(Pa, t) for all compositions a of length `. This uses more of Foata’s theory

for the intercalation monoid Int`, similar to his deduction of MacMahon’s Master

Theorem.

Since each multiset permutation σ has only finitely many intercalation factor-

izations σ = ρ ᵀ τ , one can define a convolution algebra on the set of functions

φ : Int` → Z with pointwise addition:

(φ1 ∗ φ2)(σ) :=
∑
ρᵀτ=σ

φ1(ρ) · φ2(τ).

Let ζ : Int` → Z denote the zeta function defined by ζ(σ) = 1 for all σ in Int`.

The zeta function has a unique convolutional inverse µ, called the Möbius function.

Foata proved that the Möbius function can be expressed by the following explicit

formula

µ(σ) =

(−1)pcyc(σ) if σ is simple,

0 else,

where σ ∈ Int` is simple if all the letters of σ are distinct, that is, supp(σ) is

a set, not a multiset. This may be formulated as an identity in a completion

Z[[Int`]] :=
{∑

σ∈Int`
zσσ : zσ ∈ Z

}
of the monoid algebra Z[Int`], allowing infinite

Z-linear combinations of elements of Int` (see [25, Théorème 2.4]):

1 =

(∑
σ∈Int`

σ

)(∑
σ∈Int`

µ(σ)σ

)
=

(∑
σ∈Int`

σ

)( ∑
simple σ∈Int`

(−1)pcyc(σ)σ

)
. (3.13)

Now introduce an ` × ` matrix B := (bij)i,j=1,2,...,` of indeterminates, and let

Z[[bij , t]] be the (usual, commutative) power series ring in {bij}`i,j=1 along with one
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further indeterminate t. One can then define a ring homomorphism

Z[[Int`]]
ut−→ Z[[bij, t]]

σ 7−→ tpcyc(σ) · bσ

where if σ =

 i1 i2 · · · in

σ1 σ2 · · · σn

 then bσ :=
∏n

k=1 bikσk .

Applying the homomorphism ut to both sides of (3.13) gives a t-version of

MacMahon’s Master Theorem.

Theorem 3.51. In Z[[bij, t]] one has the identity

∑
σ∈Int`

tpcyc(σ)bσ =

( ∑
simple σ∈Int`

(−t)pcyc(σ)bσ

)−1

=

∑
H⊆[`]

∑
σ∈SH

(−t)pcyc(σ)bσ

−1

.

Remark 3.52. Setting t = 1 in Theorem 3.51 gives an identity in Z[[bij]]:

∑
σ∈Int`

bσ =

∑
H⊆[`]

∑
σ∈SH

(−1)pcyc(σ)bσ

−1

, (3.14)

which is equivalent to an identity in Foata’s proof of the (commutative) MacMa-

hon Master Theorem, as we recall here. Introduce two sets of ` variables x =

(x1, . . . ,x`),y = (y1, . . . , y`) related by the matrix B of indeterminates as follows:

y = Bx, that is, yi =
∑

j bijxj . Then MacMahon’s Master Theorem is this identity

in Z[[bij]]: ∑
a∈{0,1,2,...}`

(
coefficient of xa in ya

)
= det(I` −B)−1, (3.15)

where xa := xa11 · · ·x
a`
` . It is not hard to check that the left sides and right sides of

(3.15) and (3.14) are the same: the left side of (3.14) needs to be grouped according

to the multiplicity vector a giving the support supp(σ), and the right side must be

reinterpreted in terms of the permutation expansion of a determinant.
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Remark 3.53. Theorem 3.51 is similar in spirit to Garoufalidis-Lê-Zeilberger’s

quantum MacMahon Master Theorem [28, Theorem 1] (see also Konvalinka-Pak [36,

Theorem 1.2]). Their quantum version inserts a (−q)−inv(σ) in order to produce a

q-determinant, but inv(σ) 6= pcyc(σ).

We now specialize bij = xj in Theorem 3.51 to deduce Theorem 3.4, whose

statement we recall here.

Theorem 3.4. For ` = 1, 2, . . ., one has∑
a∈{1,2,...}`

Poin(Pa, t) · xa =
1

1−
∑`

j=1 ej(x) · (t− 1)(2t− 1) · · · ((j − 1)t− 1)
,

where ej(x) :=
∑

1≤i1<···<ij≤` xi1 · · ·xij is the jth elementary symmetric function.

Proof. Setting bij = xj in Theorem 3.51 gives

∑
σ∈Int`

tpcyc(σ)
∏
k

xσk =

∑
H⊆[`]

∑
σ∈SH

(−t)pcyc(σ)
∏
k∈H

xk

−1

. (3.16)

Let us manipulate both sides of equation (3.16). On the left side, grouping terms

according to supp(σ) gives

∑
a∈{0,1,2,...}`

xa
∑

σ∈SM(a)

tpcyc(σ).

On the right side of (3.16), any subset H ⊆ [`] of cardinality j ≥ 1 satisfies∑
σ∈SH

(−t)pcyc(σ) =
∑
σ∈Sj

(−t)cyc(σ) = (−t)(1− t)(2− t) · · · (j − 1− t)

by (3.6). Therefore grouping according to j = #H, and noting
∑

H⊆[`]:
#H=j

∏
k∈H xk =

ej(x) lets one rewrite the sum inside the parentheses on the right side of (3.16) as

this:

1 +
∑̀
j=1

(−t)(1− t)(2− t) · · · (j − 1− t) · ej(x).
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So far this gives

∑
a∈{0,1,2,...}`

xa
∑

σ∈SM(a)

tpcyc(σ) =

(
1 +

∑̀
j=1

(−t)(1− t)(2− t) · · · (j − 1− t) · ej(x)

)−1

.

Now perform two more substitutions: first replace t by t−1, giving this

∑
a∈{0,1,2,...}`

xa
∑

σ∈SM(a)

t−pcyc(σ) =

(
1 +

∑̀
j=1

(−t−1)(1− t−1)(2− t−1) · · · (j − 1− t−1) · ej(x)

)−1

,

and then replace xi by txi for i = 1, 2, . . . , `, so that xa 7→ t|a|xa and ej(x) 7→ tjej(x),

giving this

∑
a∈{0,1,2,...}`

xa
∑

σ∈SM(a)

t|a|−pcyc(σ) =

(
1−

∑̀
j=1

(t− 1)(2t− 1) · · · ((j − 1)t− 1) · ej(x)

)−1

.

Comparison of the left side with Theorem 3.3 shows that this last equation is

Theorem 3.4.

Remark 3.54. We justify here the claim from the Introduction that Theorem 3.4

generalizes the formula (3.6):

Poin(Antichain`, t) = 1(1 + t)(1 + 2t) · · · (1 + (`− 1)t).

Since Antichain` = Pa where a = (1, 1, . . . , 1), we seek to explain why the coefficient

of x1 . . . x` in the power series on the right side in Theorem 3.4 should be 1(1+t)(1+

2t) · · · (1 + (`− 1)t). Introducing the abbreviation 〈t〉j := (t− 1)(2t− 1) · · · ((j −

1)t− 1), the right side in Theorem 3.4 can be rewritten and expanded as

1

1−
∑`

j=1 ej(x)〈t〉j
=
∑
n≥0

(∑̀
j=1

ej(x)〈t〉j

)n

. (3.17)

If we let A` denote the coefficient of x1 · · ·x` in this series, then it suffices to explain

why

A`+1 = (1 + `t) · A`. (3.18)
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For this coefficient extraction, it is safe to replace each ej(x) = ej(x1,x2, . . . ,x`)

in (3.17) with an infinite variable version ej(x) = ej(x1,x2, . . .). Extracting the

coefficient of x1 · · · x` on the right side in (3.17) shows

A` =
∑

ordered set partitions
π=(B1,...,Bn) of [`]

w(π), where w(π) :=
∏
Bi∈π

〈t〉|Bi|.

To explain (3.18), note that each ordered set partition π̂ of [`+ 1] can be obtained

from a unique ordered set partition π = (B1, . . . ,Bn) of [`] as follows: either π̂

has added ` + 1 into one of the preexisting blocks Bi of π, or π̂ has a singleton

block {`+ 1}, inserted into one of the n+ 1 locations in the sequence (B1, . . . ,Bn).

Thus having fixed an ordered set partition π of [`], the sum of w(π̂) over π̂ which

correspond to π is this sum:

w(π) · (|B1|t− 1) + · · ·+ w(π) · (|Bn|t− 1) + w(π) + w(π) + · · ·+ w(π)︸ ︷︷ ︸
n+1 times

= w(π)

(
n∑
i=1

(|Bi|t− 1) + n+ 1

)
= w(π) (`t− n+ n+ 1) = w(π) · (1 + `t).

Summing this over all possible π gives (3.18).

3.6 Proof of Theorem 3.5

The width of a poset P is the maximum size of an antichain in P . A famous result of

Dilworth from 1950 (see [57, Ch 3, Exer 77(d)]), asserts that the width d of P is the

minimum number of chains required in a chain decomposition P = P1∪P2∪· · ·∪Pd,

that is, where each Pi is a totally ordered subset Pi ⊆ P .

Consequently, a poset P of width two can be decomposed into two chains

P = P1 ∪ P2, possibly with some order relations between elements of P1 and P2.
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Recall that in the Introduction we defined a descent-like statistic on σ =

[σ1, . . . ,σn] in LinExt(P ), as the cardinality desP1,P2(σ) := #DesP1,P2(σ) of this set,

DesP1,P2(σ) := {i ∈ [n− 1] : σi ∈ P2, σi+1 ∈ P1, with σi,σi+1 incomparable in P},

(3.19)

in order to state the following result.

Theorem 3.5. For a width two poset decomposed into two chains as P = P1∪P2,

one has

Poin(P , t) =
∑

σ∈LinExt(P )

tdesP1,P2 (σ).

To prove this, we start with the following observation.

Corollary 3.55. For posets P of width two, one has

Poin(P , t) =
∑

π∈Πt(P )

tpairs(π)

where pairs(π) is the number of two-element blocks Bi in π. In particular, setting

t = 1,

# LinExt(P ) = #Πt(P )(= #St(P )).

Proof. Antichains in P have at most two elements, so Proposition 3.12(iii) implies

that P -transverse permutations have only 1-cycles and 2-cycles. But then this

implies that the map St(P )→ Πt(P ) sending a P -transverse permutation τ to

the set partition π given by its cycles is a bijection, with pairs(π) = n − cyc(τ).

The result then follows from Theorem 3.1.

Example 3.56. Let P = a t b be a poset which is a disjoint union of two chains

a, b having a, b elements respectively. One can check that a P -transverse partition
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having pairs(π) = k is completely determined by the choice of a k element subset

x1 <P · · · <P xk from a and a k element subset y1 <P · · · <P yk from b to

constitute the two-element blocks, as follows: {x1, y1}, . . . , {xk, yk}. This implies

Poin(a t b, t) =

min(a,b)∑
k=0

(
a

k

)(
b

k

)
tk.

This is consistent with # LinExt(a t b) =
(
a+b
a

)
, since setting t = 1 in the equation

above gives (
a+ b

a

)
=

min(a,b)∑
k=0

(
a

k

)(
b

k

)
which is an instance of the Chu-Vandermonde summation.

In light of Corollary 3.55, to prove Theorem 3.5, one would need a bijection from

LinExt(P ) to Πt(P ) (orSt(P )) that sends the statistic des(P1,P2)(−) to the number

of pairs or number of 2-cycles. Unfortunately, there does not seem to be a consistent

labeling of a width two poset P = P1 ∪P2 to make the bijection Ψ from Section 3.3

play this role. Nevertheless, having fixed the chain decomposition3 P = P1 t P2,

we provide in the proof below such a bijection Ω : LinExt(P )→ Πt(P ).

Proof of Theorem 3.5. We describe Ω and Ω−1 recursively, via induction on n :=

#P . There are two cases, based on whether P has one or two minimal elements.

Case 1. There is a unique minimum element p0 ∈ P .

In this case, given σ = [σ1, . . . ,σn] in LinExt(P ), we must have σ1 = p0, so that

{p0} should be a singleton block of π = Ω(σ), and one produces the remaining

blocks of π by applying Ω recursively to [σ2, . . . ,σn]. This is depicted schematically

here:

3So we assume here that P1 ∩ P2 = ∅, but there may be order relations between elements of P1

and P2.
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p0

...
...

(P , [σ1,σ2, . . . ,σn])

p0

...
...

(P , [p0,σ2 . . . ,σn])

...
...

(P − {p0}, [σ2, . . . ,σn])

For the inverse map Ω−1, given a P -transverse partition π, since the blocks of π

are antichains in P , the unique minimum element p0 of P must lie in a singleton

block {p0} in π. So make Ω−1(π) = σ have σ1 = p0, and construct [σ2, . . . ,σn] by

applying Ω−1 recursively to the (P − {p0})-transverse partition obtained from π

by removing the block {p0}.

Case 2. There are two minimal elements of P .

Label these two minimal elements p1, p2 of P so that pi ∈ Pi for i = 1, 2. Note

that this implies that every σ = [σ1,σ2, . . . ,σn] in LinExt(P ) has either σ1 = p1 or

σ1 = p2. Note also that any P -transverse partition π only has blocks of cardinality

1 or 2, which yields two subcases for defining Ω and Ω−1:

– The Subcase 2a for

– defining Ω occurs when σ1 = p1,

– defining Ω−1 occurs when {p1} appears as a singleton block within π.

– The Subcase 2b for

– defining Ω occurs when σ1 = p2,

– defining Ω−1 occurs when p1 appears in a two-element block within π.

Subcase 2a.

When defining Ω, if σ1 = p1, then make {p1} a singleton block of π = Ω(σ), and

produce the remaining blocks of π by applying Ω recursively to [σ2, . . . ,σn].
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p1 = σ1 p2 6= σ1

...
...

(P , (σ1,σ2, . . . ,σn))

p2 6= σ1

...
...

(P − {p1}, (σ2, . . . ,σn))

To define Ω−1, if {p1} is a singleton block of π, make Ω−1(π) = σ have σ1 = p1,

and construct [σ2, . . . ,σn] by applying Ω−1 recursively to the (P −{p1})-transverse

partition obtained from π by removing the block {p1}.

Subcase 2b.

When defining Ω, if σ1 = p2, then p1 appears elsewhere in σ, say p1 = σi+1

where i ≥ 1. Because σ lies in LinExt(P ) and σi+1 = p1 is the minimum element

of P1, this forces σ1,σ2, . . . ,σi to all be elements of P2. In this case, add to

π the singleton blocks {σ1}, {σ2}, . . . , {σi−1} along with the two-element block

{σi,σi+1} = {σi, p1}, and compute the rest of Ω(σ) = π recursively by replacing

(P ,σ) with (P−{σ1,σ2 . . . ,σi+1}, [σi+2,σi+3, . . . ,σn]). Here is the schematic picture:

p1 = σi+1 p2 = σ1

...

σi

...
...

(P , (σ1,σ2, . . . ,σn))

...
...

(P − {σ1, . . . ,σi}, (σi+1,σi+2, . . . ,σn))

When defining Ω−1(π), if p1 appears in some two-element block of π, then it

appears in some block {p1, p
′
2} for some p′2 in P2. We claim that π being P -
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transverse then forces any elements p <P p
′
2 in P2 to lie in singleton blocks {p} of

π. To see this claim, assume not, so that some such p lies in a two-element block

of π, necessarily of the form {p′1, p} for some p′1 in P1 with p1 <P p
′
1. This leads to

a contradiction of Proposition 3.12(ii), since (p′1, p1) would then be a relation in

P ∪ π via this transitive chain of relations: p′1 ≡π p <P p
′
2 ≡π p1.

In this subcase, list the totally ordered (and possibly empty) collection of all

elements p in P2 with p <P p
′
2 at the beginning of σ as σ1,σ2, . . . ,σi−1, followed by

σiσi+1 = p′2p1. Then compute the rest of Ω−1(π) = σ recursively, by applying Ω−1

to the (P − {σ1,σ2, . . . ,σi+1})-transverse partition obtained from π by removing

the singleton blocks {σ1}, {σ2}, . . . , {σi−1} and the two-element block {σi,σi+1} =

{p′2, p1}.

It is not hard to check that the two maps Ω, Ω−1 defined recursively in this way

are actually mutually inverse bijections. By construction, Ω has the property that

the two-element blocks of π = Ω(σ) are exactly those containing P -incomparable

pairs {σi,σi+1} for which σi ∈ P1 and σi+1 ∈ P2, as claimed.

Recall from the Introduction that the number of usual descents of a permuation

σ is defined as des(σ) = #Des(σ) where

Des(σ) := {i ∈ [n− 1] | σi > σi+1}.

This was used to define the P -Eulerian polynomial in equation (3.7) as
∑

σ∈LinExt(P ) t
des(σ),

assuming that P is naturally labeled, that is, LinExt(P ) contains the identity per-

mutation σ = [1, 2, . . . ,n].

Corollary 3.57. When P is a width two poset having a chain decomposition P1∪P2

with P1 an order ideal of P , then the Poincaré polynomial for P coincides with the
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P -Eulerian polynomial:

Poin(P , t) =
∑

σ∈LinExt(P )

tdes(σ).

Proof. Let #Pi = ni for i = 1, 2, so that n = #P = n1 + n2. One can then

choose a natural labeling for P by [n] such that the elements of the order ideal

P1 are labeled by the initial segment [n1] = {1, 2, . . . ,n1}, and P2 is labeled

by {n1 + 1,n1 + 2, . . . ,n}. We claim that with this natural labeling, one has

Des(P1,P2)(w) = Des(w). This is because the labeling renders one of the conditions

in the definition (3.19) of Des(P1,P2)(σ) superfluous: assuming that σi ∈ P2 and

σi+1 ∈ P1, then σi,σi+1 must already be incomparable in P , because otherwise

σi <P σi+1 (since σ was a linear extension of P ) and then P1 being an order ideal

would force σi ∈ P1, a contradiction. Now since P1,P2 are totally ordered in P ,

and σ lies in LinExt(P ), one has σi ∈ P2 and σi+1 in P1 if and only if σi >Z σi+1.

That is Des(P1,P2)(w) = Des(w).

Example 3.58. An interesting family of posets to which Corollary 3.57 applies are

the posets P (λ/µ) associated with two-row skew Ferrers diagrams λ/µ. A Ferrers

diagram associated to a partition (of a number) λ = (λ1, . . . ,λ`) has λi square cells

drawn left-justified in row i. A skew Ferrers diagram λ/µ for two partitions λ,µ

having λi ≥ µi is the diagram for λ with the cells occupied by the diagram for µ

removed. There is a poset structure P (λ/µ) on the cells of λ/µ in which a cell (i, j)

in row i and column j has (i, j) ≤P (λ/µ) (i′, j′) if both i ≤ i′ and j ≤ j′.

When λ/µ has only two parts, we will call it a two-row skew Ferrers diagram.

Three examples of such λ/µ and their associated P (λ/µ) are shown below.

69



3 Type A Reflection Arrangements

λ/µ: (5, 3)/(1, 0) (5, 3)/(3, 0) (4, 4)/(0, 0)

Diagram:

P (λ/µ):

The decomposition P (λ/µ) = P1 ∪ P2 where Pi correspond to the cells in row i

of λ/µ shows that P (λ/µ) has width two, and furthermore P1 forms an order ideal.

Therefore Corollary 3.57 implies that for any two-row skew Ferrers diagram λ/µ

one has

Poin(P (λ/µ), t) =
∑

σ∈LinExt(P (λ/µ))

tdes(σ). (3.20)

On the other hand, there is a well-known bijection between linear extensions σ

of P (λ/µ) and the standard Young tableaux Q of shape λ/µ, which are (bijective)

labelings of the cells of the diagram by [n] where n =
∑

i λi −
∑

i µi, with the

numbers increasing left-to-right in rows and top-to-bottom in columns; see [55, §7.10].

There is also a notion of descent set Des(Q) for such tableaux, having i ∈ Des(Q)

whenever i+ 1 labels a cell in a lower row of Q than i. However, in general when

σ corresponds to Q, one does not have des(σ) = des(Q), so that Poin(P (λ/µ), t)

differs from the generating function
∑

Q t
des(Q) of standard tableaux Q shape λ/µ by

des(Q). For example, there are two standard tableaux of shape λ/µ = (2, 1)/(0, 0)

Q1 = 1 2

3
Q2 = 1 3

2
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both having des(Qi) = 1, however Poin(P (λ/µ), t) = 1 + t.

In two special cases, however, they (essentially) coincide.

– When Pλ/µ = a t b is a disjoint union of two chains, as in Example 3.56, one

can check that, if one (naturally) labels a t b so that the elements of the

order ideal b are labeled 1, 2, . . . , b while a is labeled b+ 1, b+ 2, . . . , b+ a,

then one does have des(σ) = des(Q), and hence∑
Q

tdes(Q) = Poin(Patb, t) =
∑
k

(
a

k

)(
b

k

)
tk.

– When λ/µ is a 2× n rectangle, so that Pλ/µ = 2× n is a Cartesian product

poset, then σ in LinExt(P ) and standard Young tableaux Q of shape 2× n

can both be identified with Dyck paths of semilength n, that is, lattice paths

from (0, 0) to (2n, 0) in Z2 taking steps northeast or southeast and staying

weakly above the x-axis. One can check that

– Des(σ) corresponds to valleys (i.e. southwest steps followed by a north-

east step), while

– Des(Q) correspond to peaks (i.e. northeast steps followed by a southwest

step).

In general, such a Dyck path has one more peak than valley [55, Exercises

6.19(i, ww, aaa)]. Hence one has

Poin(2× n, t) =
1

t

∑
Q

tdes(Q) =
n−1∑
k=0

1

n

(
n

k

)(
n

k + 1

)
tk,

which is the generating function for the Narayana numbers N(n, k) :=

1
n

(
n
k−1

)(
n
k

)
(see [15, p.2] and [55, Exer. 6.36(a)]). Upon setting t = 1, the

Naryana numbers sum to the Catalan number

# LinExt(2× n) =
1

n+ 1

(
2n

n

)
.
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n Poin(3× n, t)

2 1 + 3t+ t2

3 1 + 9t+ 19t2 + 11t3 + 2t4

4 1 + 18t+ 92t2 + 174t3 + 133t4 + 40t5 + 4t6

5 1 + 30t+ 280t2 + 1091t3 + 1987t4 + 1746t5 + 731t6 + 132t7 + 8t8

6 1 + 45t+ 665t2 + 4383t3 + 14603t4 + 25957t5 + 25064t6 + 12965t7 + 3413t8 + 404t9

7 1 + 63t+ 1351t2 + 13475t3 + 71305t4 + 213539t5 + 373651t6 + 385578t7 + 232310t8

+79023t9 + 14174t10 + 1168t11 + 32t12

8 1 + 84t+ 2464t2 + 34608t3 + 266470t4 + 1206826t5 + 3343958t6 + 5782699t7

+6275503t8 + 4240489t9 + 1743730t10 + 417622t11 + 53884t12 + 3232t13 + 64t14

Table 3.1: Computations of Poin(3× n, t) for 2 ≤ n ≤ 8.

Note that for any (non-skew) partition λ, the celebrated hook-length formula of

Frame, Robinson and Thrall [55, Corollary 7.21.6] gives a simple product formula

for # LinExt(P (λ)) = [Poin(P (λ), t)]t=1 .

Open Problem 3.59. Combinatorially interpret Poin(P (λ), t) for other partitions

λ, and in particular, for m × n rectangular partitions, where P (λ) = m × n is a

Cartesian product of chains.

In Table 3.1, we give Poin(3× n, t) for 2 ≤ n ≤ 8.

Remark 3.60. Since equation (3.6) shows that the Poincaré polynomial Poin(P , t)

for the antichain poset P = P(1n) = Antichainn has only real roots, one might wonder

whether this holds for some more general class of posets. It does not hold for all

posets, and not even for all disjoint unions of chains Pa, since

Poin(P(2,2,2), t) = 1 + 12t+ 43t2 + 30t3 + 4t4
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has a pair of non-real complex roots. It can fail even for rectangular Ferrers posets,

e.g., λ = (3, 3, 3) has Poin(P (λ), t) = Poin(3× 3, t) = 1 + 9t+ 19t2 + 11t3 + 2t4 in

the above table, with two non-real complex roots.

On the other hand, computations show that Poin(P , t) is real-rooted for all

posets P of width two having at most 9 elements. This leads to the following

question.

Question 3.61. Is Poin(P , t) real-rooted when the poset P has width two?

3.7 An aside on cones in reflection arrangements

We digress here to generalize Theorem 3.1 from posets P parametrizing cones in

the type An−1 reflection arrangement, to any real reflection arrangement.

We start first at the level of generality of a complex reflection group W acting on

V = Cn. This means that W is a finite subgroup of GL(V ) ∼= GLn(C) generated

by (complex, unitary, pseudo-) reflections, which are elements w in W whose fixed

space V w = H is a hyperplane, that is, a codimension one (C−)linear subspace.

Let AW denote the arrangement of all such reflecting hyperplanes, and L(AW ) its

poset of intersections, as before. This generalizes the type An−1 setting, where

W = Sn and L(AW ) ∼= Πn is the poset of set partitions of [n]. There is also a

well-known generalization of the map Sn → Πn that sends a permutation σ to the

set partition π = {B1,B2, . . . ,Bk} whose blocks Bi are the cycles of σ, given by

W −→ L(AW )

w 7−→ V w.
(3.21)

Orlik and Solomon proved [39, §4] the following facts about this map.

Proposition 3.62. For any finite complex reflection group W , the map defined in

(3.21) has these properties:
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(a) The map is well-defined: V w is an intersection of reflecting hyperplanes, so

it lies in L(AW ).

(b) The map surjects W � L(AW ).

(c) The Möbius function values for lower intervals [V ,X] in L(AW ) can be

expressed via this map as

µ(V ,X) =
∑

w∈W :V w=X

det(w).

Proof. Parts (a) and (b) are rephrasings of [39, Lemma (4.4)] and part (c) is [39,

Lemma (4.7)]. However, we include here a shorter proof, due to C. Athanasiadis4.

Recall that the values µ(V ,X) are uniquely determined by the identity δX,V =∑
Y :V⊇Y⊇X µ(V ,Y ) where δX,V = 1 if X = V and 0 otherwise. It therefore suffices

to check these equalities:

∑
Y :V⊇Y⊇X

( ∑
w∈W :V w=Y

det(w)

)
=

∑
w∈W :V w⊇X

det(w) =
∑
w∈WX

det(w) = δX,V

where hereWX denotes the subgroup ofW that fixes X pointwise. The last equality

follows from Steinberg’s Theorem [58, Thm. 1.5]: he showed WX is generated by

the reflections whose hyperplane contains X, so that WX = {1} when X = V

(implying
∑

w∈WX
det(w) = det(1) = 1), and otherwise if X 6= V , summing the

(nontrivial) character det(−) over WX yields
∑

w∈WX
det(w) = 0.

For real reflection groups, part (c) above has the following reformulation, generalizing

equation (3.8) above; see [2, Lemma 5.17], [37, §2, pp. 413-414], and [47, Prop.

7.2].

4A version of this proof for real reflection groups appears (in Greek) within the proof of Theorem

5.1 on pages 33-34 in the Masters Thesis of Athanasiadis’ student C. Savvidou.
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3 Type A Reflection Arrangements

Corollary 3.63. Let W be a finite real reflection group acting on V = Rn. For

any X in L(AW ), one has

µ(V ,X) = (−1)n−dim(X)#{w ∈ W : V w = X}.

Proof. Note W acts orthogonally. We claim that any w acting orthogonally on

Rn has det(w) = (−1)n−dim(V w); given this, Lemma 3.62(c) would finish the proof.

To see this claim, note that the eigenvalues λ of w lie on the unit circle in C , so

λλ = 1. If the eigenvalue λ has multiplicity mλ, then mλ = mλ. Thus

det(w) =
∏
λ∈C

λmλ = (+1)m1(−1)m−1

∏
pairs{λ6=λ}

(λλ)mλ = (−1)m−1 .

Modulo two, however, we have

m−1 = n−
∑
λ 6=−1

mλ = n−m+1 −
∑
λ 6=λ

2mλ = n−m+1 = n− dim(V w),

and so det(w) = (−1)n−dim(V w).

We specialize now to real reflection groups W . Here it is known (see, e.g., [34,

Chapter 1]) that W permutes the chambers C(AW ) simply transitively. Thus by

fixing a choice of base chamber C0, every other chamber wC0 has a unique label by

some w in W , giving a bijection C(AW )↔ W .

Cones K inside the reflection arrangement AW correspond to what were called

parsets by the third author [45, Chapter 3], or Coxeter cones by Stembridge [59],

where they were studied as well-behaved generalizations of posets P on [n]. In

particular, the set of chambers C(K) inside K generalizes the set LinExt(P ) of

linear extensions of P . For a cone K in AW , we consider as before the subposet

Lint(K) of intersection subspaces interior to K, playing the role of the P -transverse
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3 Type A Reflection Arrangements

set partitions Πt(P ) in type An−1. Generalizing the P -transverse permutations

St(P ), define the subset

W t(K) := {w ∈ W : V w ∈ Lint(K)}.

The real reflection group generalization of Theorem 3.1 is the following.

Theorem 3.64. Any cone K in the reflection arrangement AW for a finite real

reflection group W has

Poin(K, t) =
∑

w∈Wt(K)

tn−dim(V w).

In particular, setting t = 1, one has #C(K) = #W t(K).

Proof.

Poin(K, t) =
∑

X∈Lint(K)

|µ(V ,X)| · tn−dim(X)

=
∑

X∈Lint(K)

#{w ∈ W : V w = X} · tn−dim(X) =
∑

w∈Wt(K)

tn−dim(V w)

where the second equality used Corollary 3.63, and the last equality used the

definition of W t(K).
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4 The Varchenko-Gel’fand Ring

This chapter concerns a ring called the Varchenko-Gel’fand1 ring of A, a ring

consisting of maps C(A)→ Z under pointwise addition and multiplication. The

material from this chapter is also discussed in the author’s arXiv preprint “The

Varchenko-Gel’fand ring of a cone” [21].

This ring, which we denote V G(A), was first introduced by Gel’fand and

Varchenko [61], who proved that it has a Z-basis of monomials indexed by no

broken circuit sets of the oriented matroid and showed that the degree filtration of

V G(A) yields an associated graded ring with Hilbert series completely determined

by L(A). Since then, Cordovil [19], Gel’fand-Rybnikov [29], Moseley [38], Proud-

foot [44], and others have studied the Varchenko-Gel’fand ring of an arrangement

as well as generalizations of this structure.

One can show that the Varchenko-Gel’fand ring V G(K) of a cone is generated

(as a ring) by Heaviside functions associated to the hyperplanes of A. This endows

V G(K) with a degree filtration F = {Fd}, where Fd is the Z-span of products of

1In Russian, Varchenko comes first (alphabetically speaking).
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4 The Varchenko-Gel’fand Ring

g ∈ G indeg(g) in≺(g)

For all i ∈ [n],

Idempotent

e2
i − ei e2

i e2
i

For all i ∈ W ,

Unit ei − 1 ei ei

For all circuits C = (C+,C−)

with ∅ 6= W ∩ C+ = W ∩ C,

Cone

Circuit eC+\W ·
∏
j∈C−

(ej − 1) eC\W eC\W

(similarly if ∅ 6= W ∩ C− = W ∩ C)

For signed circuits C = (C+,C−)

with ∅ = W ∩ C,

Circuit (eC+)
∏
j∈C−

(ej − 1)− (eC−)
∏
j∈C+

(ej − 1) +
∑
i∈C+

eC\{i} −
∑
j∈C−

eC\{j} eC\{i0}

where i0 := min≺(C)

Table 4.1: The relations g in G, along with their degree-initial form indeg(g) and their

initial term in≺(g) for any monomial order ≺ that satisfies e1 ≺ · · · ≺ en.

78



4 The Varchenko-Gel’fand Ring

such Heaviside functions of degree at most d. The associated graded ring2 is

V(K) := grFV G(K) =
⊕
d≥0

Fd/Fd−1

and its Hilbert series is

Hilb(V(K), t) :=
∑
d≥0

rankZ(Fd/Fd−1) td

where rankZ(Fd/Fd−1) denotes the rank of Fd/Fd−1 as a Z-module. WhenK contains

the full arrangement, the graded algebra V(A) is also called the Cordovil algebra.

Varchenko and Gel’fand proved that when the cone K is the full arrangement, then

V(A) is torsion-free and Hilb(V(A), t) = Poin(A, t) [61]. We will show the same

equality for cones and, specializing to the full arrangement, obtain a novel proof of

Varchenko and Gel’fand’s original result.

Our proof comes from giving a generating set G of relations that plays the role

of a Gröbner basis presentation for V G(K) and V(K) as quotients of Z[e1, . . . , en];

when working over a field instead of Z, they are honest Gröbner bases. The

relations in G ⊆ Z[e1, . . . , en] are summarized in Table 4.1, where we have made

the (harmless) assumption that K is an intersection of (open) positive halfspaces,

i.e. K =
⋂
i∈W H+

i where W ⊆ [n] and H+
i := {x ∈ R` | vi · x > 0} for some choice

of normal vector vi to Hi. For a subset of [n], we use the notation eS :=
∏

i∈S ei

to describe a squarefree monomial indexed by S in the variables e1, . . . , en. Our

main theorem will assert that the elements of G (given in the second column of

Table 4.1) and {indeg(g) | g ∈ G} (given in the third column) give presentations for

V G(K) and V(K), respectively.

2In the case of the full arrangement, this associated graded ring is sometimes also called the

Cordovil algebra of the arrangement. In this thesis, we will occasionally call V(K) the Cordovil

algebra of the cone K.
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4 The Varchenko-Gel’fand Ring

The most interesting polynomials in this Gröbner basis G are defined by signed

circuits (broken circuits were defined in Chapter 2). Our Gröbner basis presentations

for V G(K) and V(K) concerns signed circuits C = (C+,C−), which are signed

dependencies for which C is minimal under inclusion.

In the main theorem of this chapter, our presentations of V G(K) and V(K) will

give a Z-basis for both rings in terms of a certain family of monomials indexed by

K-no broken circuit sets, which introduced in Chapter 2.

Theorem 4.1. Let K be a cone of an arrangement A, and choose a monomial order

≺ on Z[e1, . . . , en] which refines the ordering by degree. Then both V G(K),V(K)

have presentations
V G(K) ∼= Z[e1, . . . , en]/(G),

V(K) ∼= Z[e1, . . . , en]/(indeg(G)),

and free Z-modules bases given by the images of the K-NBC monomials {eN}N∈NBC(K).

In particular,

Hilb(V(K), t) =
∑

N∈NBC(K)

t#N = Poin(K, t).

Example 4.2. Consider the cone K of a central arrangement in in R3 of which an

affine slice is drawn below on the left. We can compute the Poincaré polynomial of

the cone from Lint(K) (below, on the right): Poin(K, t) = 1 + 3t+ t2.

H4

H1

H2

H3

H5

0̂

H1 H2 H3

H2 ∩H3

For some choice of orientation of A, the set of relations G is given in Table 4.2.
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4 The Varchenko-Gel’fand Ring

g ∈ G indeg(g) in≺(g)

For all i ∈ [5]

(Idempotent) e2
i − ei e2

i e2
i

(Unit) e4 − 1, e4, e4,

e5 − 1 e5 e5

(Circuit) (none) (none) (none)

(Cone-Circuit) e1e2 − e2, e1e2, e1e2,

e1e2e3 − e2e3, e1e2e3, e1e2e3,

e1e3 − e3 e1e3 e1e3

Table 4.2: The elements of G for the cone in Example 4.2. To save space, we

omit the the redundant Cone-Circuit relations for which the opposite

orientation is already given.

81



4 The Varchenko-Gel’fand Ring

Our main theorem says that V G(K) ∼= Z[e1, e2, e3, e4, e5]/(G) and the associated

graded ring has presentation V(K) ∼= Z[e1, e2, e3, e4, e5]/(indegG). Furthermore

V(K) ∼= Z · {1} ⊕ Z · {x1,x2,x3} ⊕ Z · {x2x3}

which makes it very easy to see that Hilb(V(K), t) = 1 + 3t+ t2.

Corollary 4.3. V G(K) ∼= Z[e1, . . . en]/IK where IK is generated by

– (Idempotent) e2
i − ei for i ∈ [n],

– (Unit) ei − 1 for i ∈ [n] such that Hi is a wall of K,

– (Circuit) (eC+)
∏
j∈C−

(ej − 1) − (eC−)
∏
i∈C+

(ei − 1) for signed circuits C =

(C+,C−).

Theorem 4.1 has an algebraic interesting consequence when A is a supersolvable

arrangement : we obtain a Varchenko-Gel’fand ring analogue of a result on Koszul

algebras3 proven by Peeva for the Orlik-Solomon algebra of A. In order to state

this result, we work with coefficients in a field F, and consider the ring V GF(A) of

maps from the chambers of A to a field F, denoting the associated graded ring by

VF(A).

Theorem 4.4. If A is a supersolvable arrangement, then VF(A) is a Koszul algebra.

Unfortunately, not every cone of a supersolvable arrangement yields a Koszul

VF(K). In Section 4.4, we provide an example of a cone K of a supersolvable

arrangement whose VF(K) is not Koszul.

The remainder of this chapter is devoted to proving Theorems 4.1 and 4.4. In

Section 4.2, we give some background on commutative algebra. In Section 4.3, we
3See Section 4.4 for a definition of a Koszul algebra.
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4 The Varchenko-Gel’fand Ring

show that the set G lies in the kernel of ϕ and prove that the NBC(K) monomials

are the in≺(G)-standard monomials, which gives Theorem 4.1 as a consequence.

Finally, in Section 4.4 we review Koszulity and prove Theorem 4.4.

4.1 Definition of the Varchenko-Gel’fand Ring

The Varchenko-Gel’fand ring of an arrangement A is the ring of maps f : C(A)→ Z

under pointwise addition and multiplication [61]. Similarly, we define the Varchenko-

Gel’fand ring of a cone K to be the ring with underlying set

V G(K) = {f : C(K)→ Z}

under pointwise addition and multiplication. We can represent elements of V G(K)

as a labelling of the chambers of K with integers.

Example 4.5. Consider the cone from Example 2.8. Below are several elements of

V G(K):

x1 =

H1

H3

H2

1

1
1

x2 =

H1

H3

H2

0

1
1

x3 =

H1

H3

H2

0

0
1

In this example, the elements are suggestively labelled x1,x2, and x3 to represent

Heaviside functions (defined below) given by some orientation of the hyperplanes

H1,H2, and H3. The Heaviside functions associated to H4 and H5 are not included

as they would both be 1 on every chamber of the cone. In Varchenko and Gel’fand’s

original paper [61], they observe that V G(A) is generated as a Z-algebra by
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4 The Varchenko-Gel’fand Ring

Heaviside functions

xi(C) =

1 if C ⊆ H+
i

0 else
for C ∈ C(A).

for each hyperplane Hi ∈ L(A). It suffices to check that f : C(A)→ Z is

f =
∑

C∈C(A)

f(C)
∏
i∈WC

C⊆H+
i

xi
∏
j∈WC

C⊆H−j

(1− xi)

where WC is the set of indices of hyperplanes which are the linear spans of the

codimension 1 faces of C. Their proof extends without modification to the cone

case, where xi(C) is 1 when both C ⊆ H+
i and C ∈ C(K), and 0 otherwise. In

particular this means that xi ≡ 1 for each Hi ∈ W .

Remark 4.6. We will usually view the Varchenko-Gel’fand ring of a cone as a

ring of functions C(K) → Z. However, it is also a quotient of V G(A): one has

a surjective restriction map res : V G(A) � V G(K) sending f 7→ f |K defined by

f |K(C) := f(C) for C ∈ C(K).

In the previous section, we introduced oriented matroids and defined a family of

sets called the K-NBC sets. By the definition of the Varchenko-Gel’fand ring, we

have V G(K) ∼= Z#C(K). Combining this isomorphism with Equation (2.1) implies

V G(K) ∼= Z#C(K) = Z#NBC(K).

This chain of equivalences will be crucial in the proof of the main theorem, which

provides an explicit basis for V G(K) in terms of the K-NBC monomials eN =∏
i∈N ei for N ∈ NBC(K).

84



4 The Varchenko-Gel’fand Ring

4.2 Some Commutative Algebra

This section reviews some commutative algebra material on polynomial rings over

Z and and their quotients. For more details, see [1, 6, 23].

4.2.1 Monomial orders

A polynomial in Z[e1, . . . , en] is a sum

f =
∑

a=(a1,...,an)

ca e
a1
1 · · · eann

where ca ∈ Z. When ca 6= 0, one calls ca ea11 · · · eann a term of f , and ea11 · · · eann a

monomial of f . Define deg(f) := max{
∑

i ai : ca 6= 0} and then the degree-initial

form of f is

indeg(f) :=
∑
a∑

i ai=deg(f)

ca e
a1
1 · · · eann .

A monomial ordering is a total (= linear) order ≺ well-ordering on the set of all

of monomials m in Z[e1, . . . , en] which respects multiplication in the sense that

m ≺ m′ implies m ·m′′ ≺ m′ ·m′′. Define the ≺-leading monomial in≺(f) to be

the ≺-highest monomial of f . Say that ≺ is a degree order if it is compatible with

indeg in the sense that in≺(f) = in≺(indeg(f)) for all f ; see Sturmfels [60, Chapter

1] for more on these notions. Given a collection G = {gi}i∈I of polynomials, say

that a monomial m is a in≺(G)-standard if it is divisible by none of {in≺(gi)}i∈I .

4.2.2 Filtrations and Associated Graded Rings

Let R be a commutative ring with unit. An (ascending) filtration of R is a sequence

F0 ⊆ F1 ⊆ F2 ⊆ . . . of nested Z-submodules of R with the property that if f ∈ Fc
and g ∈ Fd, then f · g ∈ Fc+d. In this paper, we consider the degree filtration

85



4 The Varchenko-Gel’fand Ring

{Fd}d≥0 for quotient rings R = Z[e1, . . . , en]/I, where I is an ideal of Z[e1, . . . , en]:

define Fi to be the image within R of the polynomials in Z[e1, . . . , en] having degree

at most d. Define the associated graded ring

gr(R) := grF(R) :=
⊕
d≥0

Fd/Fd−1

where we define F−1 := 0.

Recall that the rank of a Z-module M is rankZ(M) := dimInt` (Int`⊗ZM) ,

see [23, Section 11.6]. In the setting of a degree filtration, each Fd is a finitely

generated Z-module, allowing us to define the Hilbert series of the associated graded

ring:

Hilb(gr(R), t) :=
∑
d≥0

rankZ(Fd/Fd−1) td.

For example, we will wish to consider the associated graded ring of the Varchenko-

Gel’fand ring with its degree filtration V(K) := gr(V G(K)), with Hilbert series

Hilb(V(K), t).

The proof of Theorem 4.1 in Section 4.3 uses a certain general lemma, which we

state and prove now. Experts may recognize this lemma as a standard fact from

Gröbner basis theory when the polynomial rings are defined over a field, but the

modification here relates to polynomial rings over Z; see Remark 4.8 below.

Lemma 4.7. Assume one has a Z-algebra surjection S := Z[e1, . . . , en]
ϕ
� R in

which R is a free Z-module of rank r, and G = {gi}i∈I ⊂ S has these properties:

(i) G ⊂ kerϕ.

(ii) Each gi is �-monic, meaning in≺(gi) has coefficient ±1 in gi.

(iii) The set of in≺G-standard monomials N = {m1, . . . ,mt} has cardinality t ≤ r.
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4 The Varchenko-Gel’fand Ring

Then one has these implications:

(a) ker(ϕ) = (G), so that ϕ induces a Z-algebra isomorphism S/(G) ∼= R.

(b) The cardinality #N = t = r, and R has ϕ(N ) = {ϕ(m1), . . . ,ϕ(mr)} as a

Z-basis.

If � is also a degree-ordering, then one has two further implications:

(c) The map S ψ→ gr(R) sending ei 7→ x̄i in F1/F0 is surjective, with ker(ψ) =

(indeg(G)), so that it induces a Z-algebra isomorphism

S/(indeg(G))
ψ→ gr(R)

(d) For d ≥ 0, each Fd/Fd−1 is a free Z-module on the basis {mi ∈ N : deg(mi) =

d}, so that

Hilb(gr(R), t) =
r∑
i=1

tdeg(mi).

Proof. Note since each gi in G is ≺-monic, the usual multivariate division algorithm

with respect to G using the order ≺ (see Cox, Little and O’Shea [20, §2.3, Theorem

3]) shows that every f in S lies in Zm1 + · · ·+ Zmt + (G). Therefore, if one defines

a Z-module map Zt → S that sends the ith standard basis element of Zt to the

in≺(G)-standard monomial mi, then the composite Z-module map Zt → S �

S/(G) is surjective. This composite is the map α in this sequence of Z-module

surjections/isomorphisms

Zt
α
� S/(G)

β
� S/ ker(ϕ) ∼= R ∼= Zr, (4.1)

where β comes from our assumption (i) above. It is well-known (see [6, Chapter 2,

Exercise 12], for example) that if M is a Z-module with rankZ(M) = r ≥ t, then
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any surjection Zt → M must in fact be an isomorphism, with t = r. It follows

that the composite of all maps in (4.1) is an isomorphism. Thus β and β ◦ α are

isomorphisms, proving assertions (a) and (b), respectively.

Now assume further that ≺ is a degree ordering. Since in≺(indeg(gi)) = in≺(gi),

replacing G with indeg(G), we conclude as in the above proof that the composite

map

Zr → S � S/(indeg(G))

is surjective. The fact that S
ϕ
� R is surjective implies that S

ψ
� gr(R) is also

surjective. Furthermore, the definitions of indeg(−) and gr(R), together with

G ⊂ ker(S
ϕ→ R), imply

indeg(G) ⊂ ker(S
ψ
� gr(R)).

Hence we again have a sequence of surjections and isomorphisms:

Zr
γ
� S/(indeg(G))

δ
� S/ ker(ψ) ∼= gr(R). (4.2)

Note that rank(gr(R)) = rankR = r, since rank(−) is additive along short exact

sequences and direct sums. Thus we can again conclude that the composite of the

surjections in (4.2) is an isomorphism. Hence δ is an isomorphism, proving (c).

Then (d) follows from δ ◦ γ being an isomorphism, upon noting that a monomial

m in S has ψ(m) lying in Fd/Fd−1 where d = deg(m).

Remark 4.8. Replacing Z by a field F, and replacing rank(−) with dimF(−), the

proof of Lemma 4.7 shows G and indeg(G) give Gröbner bases for the ideals presenting

the rings R and gr(R).
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4.3 Proof of Theorem 4.1

Given a cone K in an arrangement A, let G be the elements shown in the second

column of the table in Table 4.1. In this section, we give two propositions regarding

G, which together prove Theorem 4.1. First we show that the polynomials G lie in

the kernel of the map ϕ : Z[e1, . . . , en] −→ V G(K) which sends the variable ei to

the Heaviside function xi for each i ∈ [n]. After that, we fix a monomial order ≺

on Z[e1, . . . , en] whose restriction to the variables is e1 ≺ · · · ≺ en. We will show

that the K-NBC monomials are exactly the in≺(G)-standard monomials. In fact,

since Equation (2.1) implies V G(K) ∼= Z#C(K) = Z#NBC(K), using Lemma 4.7 it

suffices to show that the in≺(G)-standard monomials are a subset of the K-NBC

monomials.

Proposition 4.9. Every polynomial in G lies in kerϕ.

Proof. This holds for Idempotent relations e2
i − ei since Heaviside functions xi have

xi(C) ∈ {0, 1}. It holds for Unit relations ei − 1 with i ∈ W , since then H+
i ⊇ K,

so xi(C) ≡ 1 for all C in C(K).

To understand the Circuit and Cone Circuit relations, note that the existence of a

signed circuit C = (C+,C−) implies that these two intersections are empty, and

hence contain no chambers:⋂
i∈C+

H+
i ∩

⋂
j∈C−

H−j = ∅ =
⋂
i∈C−

H+
i ∩

⋂
j∈C+

H−j

Consequently, if one writes the Circuit relation as the difference f+ − f− of these

two products

f+ := eC+ ·
∏
j∈C−

(ej − 1) and f− := eC−
∏
j∈C+

(ej − 1), (4.3)

one finds that both f+, f− lie in kerϕ, and hence so does the Circuit relation f+−f−.

89



4 The Varchenko-Gel’fand Ring

For a Cone Circuit relation, assume without loss of generality that the signed

circuit C = (C+,C−) has ∅ 6= W ∩ C+ = W ∩ C. Then since kerϕ contains the

product f+ defined in (4.3) along with the Unit relations ei − 1 for i ∈ W ∩ C+, it

also contains the Cone Circuit relation eC+\W ·
∏

j∈C−(ej − 1).

Remark 4.10. Note that if the signed circuit C = (C+,C−) has W ∩ C+ 6= ∅,

the element f− is divisible by Unit relations ei − 1 for i ∈ W ∩ C+, and hence is

superfluous in generating kerϕ. Similarly, if W ∩ C− 6= ∅, then f+ is a redundant

generator. Combining these: if both W ∩ C− 6= ∅ and W ∩ C+ 6= ∅, then both

f+, f− are redundant and so is the corresponding Circuit relation.

Also note, when Hi ∈ A is neither a wall hyperplane nor cuts through the cones,

the union W ∪ {i} contains a signed circuit C = (C+,C−). Furthermore, one can

show that i ∈ C and that the Cone-Circuit relation does not vanish, i.e. one of

ei − 1 or ei is in G.

Proposition 4.11. The in≺(G)-standard monomials are (a subset of the) K-NBC

monomials.

Proof. Let m ∈ Z[e1, . . . , en] be any in≺(G)-standard monomial. We show that m

is a K-NBC monomial in several reduction steps.

Reduction 1. Since e2
i ∈ in≺(G) for 1 ≤ i ≤ n, we may assume that m = eN for

some N ⊆ {1, . . . ,n}.

Reduction 2. Since ei ∈ in≺(G) for i ∈ W , we may assume that m = eN with

W ∩N = ∅.

Reduction 3. We can assume that m = eN where N contains no broken circuits, i.e.

N ∈ NBC(A). To see this, suppose N contains a signed circuit C with i0 = min(C)

such that the corresponding broken circuit C\{i0} is contained in N .
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Since W ∩N = ∅ (from Reduction 2) and C\{i0} ⊆ N , either i0 ∈ W or W ∩ C

is empty. We obtain a contradiction in both cases. First, if W ∩ C = {i0}, then

N ⊇ C \ {i0} = C \W ,

forcing eN to be divisible by eC\W , and contradicting that eN is in≺(G)-standard.

On the other hand, if #W ∩C = ∅, then eN is divisible by eC\{i0} which contradicts

the assumption that eN is in≺(G)-standard.

Reduction 4. Assuming that m = eN where N is in NBC(A), we will show that

it also lies in NBC(K), that is, X := ∩j∈NH0
j has K ∩ X 6= ∅. For the sake of

contradiction, assume

K ∩X =
⋂
i∈W

H+
i ∩

⋂
j∈N

H0
j = ∅.

It is easy to see that there is a choice of signs ε ∈ {+,−}N for which⋂
i∈W

H+
i ∩

⋂
j∈N

H
εj
j = ∅ (4.4)

(see Observation 4.12, below, for details). Translating Equation (4.4) into the

language of oriented matroids, we have that there is no covector F = (F+,F−) of

the matroid on E = W ∪N with

Fj =

+ if j ∈ W

εj if j ∈ N .

From Observation 4.13 (below) or, equivalently, Gordan’s Theorem [33], the fact

that no such F exists, means that there does exist a (nonzero) signed dependence

D = (D+,D−) ∈ D with D ⊆ W ∪N and (W ∩D) ⊆ D+.
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Recall from Section 2.2 that every signed dependence D is a composition of

circuits and that at least one of these circuits 4 must conform to D. Let C be such

a circuit conforming to D. Then C has has C ⊆ W ∪N and (W ∩C) ⊆ C+. Since

N is an NBC set, the corresponding collection of vectors {vi}i∈N is independent

and we can assume that W ∩ C is nonempty. Thus its Cone-Circuit relation has

initial form eC\W dividing eN , contradicting eN being in≺(G)-standard.

Combining the preceding proposition with Lemma 4.7 gives a proof of Theorem

4.1. For completeness, we now state two observations about oriented matroids, which

were used in the preceding proof. The first concerns the geometric interpretation of

covectors as faces of hyperplane arrangements and the second observation connects

the non-existence of a covectors to the existence of a vector.

Observation 4.12. If K ∩X =
⋂
i∈W H+

i ∩
⋂
j∈N H

0
j = ∅ then there some choice of

signs (εj)j∈N in {+,−}N such that

K ∩X =
⋂
i∈W

H+
i ∩

⋂
j∈N

H
εj
j = ∅.

In particular, the signed set F ε = ((F ε)+, (F ε)−) with

F ε
i =

+ if i ∈ W

εi if i ∈ N .

is not a covector of the oriented matroid on ground set E = W ∪N .

Another way to phrase X ∩ K = ∅ is: there are no covectors F having Fi = +

for all i ∈ W and Fj = 0 for all j ∈ N . With that in mind, the observation holds

because if no such choice of signs (εj)j∈N existed, one would obtain a family of

4As mentioned in Section 2.2, there is always a choice of composition for which every circuit

conforms to D but we only need one conformal circuit, see [9, Proposition 3.7.2].
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covectors {F ε}ε∈{+,−}N to which one could repeatedly apply the elimination axiom

V3 and reach such a covector F having Fj = 0 for j ∈ N .

Observation 4.13 ( [66, Section 6.3]). From the definition of an oriented matroid

dual, we know that every F ∈ D∗ is orthogonal to every vectorD ∈ D. In particular

if there is a signed set F on [n] that is not in D∗, then there is some D ∈ D such

that {Fe ·De | e ∈ E} contains exactly one of + or −.

Remark 4.14. The crux of the preceding proof only uses statements about vectors

and covectors valid for oriented matroids. Hence our results remain valid in that

setting, as in the generalization by Gel’fand and Rybnikov [29] of the work by

Gel’fand and Varchenko [61] to oriented matroids.

4.4 Proof of Theorem 4.4

In this section we prove Theorem 4.4, asserting that when one works over a field F,

the associated graded ring VF(A) is Koszul whenever A is a supersolvable arrange-

ment. Some of the most well-studied hyperplane arrangements are supersolvable,

and supersolvable arrangements are interesting, for example, because their Poincaré

polynomial Poin(A, t) factors into linear factors5 [56, Corollary 4.9]. Koszulity, on

the other hand, is also interesting from an algebraic perspective. Koszul algebras

come equipped with a natural Koszul dual quadratic algebra A!, and the relationship

between A,A! has implications for the coefficients of the Hilbert series of A.

Let F be a field. Recall that V GF(K) is the collection of maps {f : C(K) →

F} with pointwise addition and multiplication. Theorem 4.1 extends without

modification to V GF(K), and in fact some of the proofs are easier since G forms an

honest Gröbner basis (see Remark 4.8).
5This does not hold for cones of supersolvable arrangements, see [22, Remark 5.6].
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Before beginning the proof of Theorem 4.4, we remind the reader of some

standard results relating to supersolvable lattices and Koszul algebras. For a more

detailed reference on Koszul algebras, we point the reader toward [26]. Let R be

a commutative standard graded F-algebra, i.e. R ∼= F[e1, . . . , en]/I where I is a

homogeneous ideal and each ei has degree exactly 1. Suppose

F• : · · · ϕ3−→ Rβ2 ϕ2−→ Rβ1 ϕ1−→ R −→ F

is a minimal free resolution of the R-module F = R/R+ where R+ is the maximal

homogeneous ideal, consisting of all elements of positive degree. For details on free

resolutions, see [23]. We say R is Koszul if the nonzero entries of each ϕi matrix

are homogeneous of degree 1. Say that an ideal is monomial if it is generated by

monomials. A monomial ideal is G-quadratic if it has a Gröbner basis of monomials

of degree two. It is well-known (see [18], [23, Chapter 15], [26, Section 4], for

example) that:

Proposition 4.15. If I a homogeneous ideal in F[e1, . . . , en] is generated by a

Gröbner basis G consisting of quadratic elements for some monomial order ≺, then

R = F[e1, . . . , en]/I is Koszul.

We are now prepared to define a supersolvable arrangement.

Definition 4.16 ( [54, Definition 1.1], [56, Definition 4.13]). A lattice L is super-

solvable if there exists a maximal chain ∆ satisfying: for every chain K of L, the

sublattice generated by ∆ and K is distributive. An arrangement A is supersolvable

if L(A) is supersolvable.

The following result and its proof are analogous to a result of Peeva [41, Thm.

4.3].

Theorem 4.4. If A is a supersolvable arrangement, then VF(A) is Koszul.

94



4 The Varchenko-Gel’fand Ring

Proof. A theorem of Björner and Ziegler [14, Theorem 2.8] tells us that when A is

a supersolvable arrangement, one can choose a linear ordering of the hyperplanes

H1, . . . ,Hn such that every broken circuit C \ {i0} contains some broken circuit of

size two. Choose ≺ a degree monomial order on Z[e1, . . . , en] which restricts to the

same linear order on the variables e1 ≺ · · · ≺ en.

We wish to use the presentation VF(A) = F[e1, . . . , en]/I where I = (indeg(G))

that comes from Theorem 4.1. From Remark 4.8, the generators indeg(G) form

a Gröbner basis for I ⊆ F[e1, . . . , en]. Because A is a full arrangement, not a

cone, indeg(G) will contain only indeg(g) for Idempotent and Circuit relations g. The

Idempotent relations correspond to generators indeg(g) = e2
i that are all quadratic.

Each Circuit relation corresponds to a generator indeg(g) which may not be

quadratic: its degree is the size of the broken circuit C \ {i0}, with in≺(g) = eC\{i0}.

Since each is a squarefree monomial, it suffices to consider the monomials who

indexing set is minimal under inclusion. The Björner-Ziegler result [14, Theorem

2.8] implies that the minimal (under inclusion) broken circuits all have cardinality

2. From Proposition 4.15, it follows that VF(A) is Koszul.

One might ask if Theorem 4.4 has a cone analogue. Sadly there are cones K

of supersolvable arrangements whose VF(K) are not Koszul as we demonstrate by

example. A particularly well-studied family of supersolvable arrangements are the

Type A reflection arrangements or braid arrangements ; see [56, Cor. 4.10, Example

4.11(c)]. The braid arrangement An−1, consists of the
(
n
2

)
hyperplanes

Hij = {(x1,x2, . . . ,xn) ∈ Rn | xi − xj = 0}

for each pair {i, j}.

We wish to exhibit a cone K inside a braid arrangement for which V(K) is not

Koszul. One way to prove something is not Koszul uses the following.
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Theorem 4.17 ( [27, Section 4]). Let A be a Koszul algebra. Then there is an-

other algebra A!, the quadratic dual of A, whose Hilbert series is Hilb(A!, t) =

1/Hilb(A,−t). In particular, if A is Koszul, then 1/Hilb(A,−t) has positive coeffi-

cients when considered as a power series in Z[t]].

Example 4.18. The cone of A5 given by

K = {x ∈ R6 | x1 ≤ x2, x3 ≤ x4, x5 ≤ x6}

does not yield a Koszul VF(K). The Hilbert series of VF(K) is

Hilb(VF(K), t) = 1 + 12t+ 43t3 + 30t3 + 4t4.

The first few terms of 1/Hilb(VF(K),−t) are
1

1− 12t+ 43t3 − 30t3 + 4t4
= 1 + 12t+ 101t2 + 725t3 + 4725t4 + 28464t5 + 159769t6

+ 832122t7 + 3950417t8 + 16302972t9 + 50092317t10

+ 15264030t11 − 1497513779t12 + · · ·

The coefficient of t12 is negative, meaning that 1/Hilb(VF(K),−t) is not the Hilbert

series of a ring.

Given this counterexample, one might ask if there are certain families of cones

K for which VF(K) is Koszul.

Question 4.19. Is there some simple, combinatorial condition on Lint(K) (for a cone

K) in the spirit of supersolvability for the full lattice L(A) of the arrangement, that

implies Koszulity of VF(K)?

Even in the arrangement case, the connection between supersolvable arrangements

and Koszul VF(A) remains opaque. Fröberg tells us that the converse to Proposition

4.15 is false in general [27, Note on p.39], but one might ask: if VF(A) is Koszul,

is A supersolvable? The analogous question is famously open for Orlik-Solomon

algebras [41, Example 4.5], [63, Example 6.22].
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There are a number of other interesting questions regarding hyperplane arrange-

ments, which I have not yet investigated. Some of these questions were discussed

in earlier chapters of this thesis. In this chapter, we collect some of those questions.

This chapter is divided into three sections. The first section consists of some

questions from previous chapters, the second section concerns a simplicial complex

called the nbc-complex of a cone (defined in that section), and the third section

concerns a family of affine arrangements called Shi arrangements.

5.1 Some Questions from Previous Chapters

In Chapter 3, we saw that the Poincaré polynomial Poin(P , t) for the antichain

poset P = P(1n) = Antichainn has only real roots (see equation (3.6)). One might

wonder whether this holds for some more general class of posets. It does not hold

for all posets, and not even for all disjoint unions of chains Pa, since

Poin(P(2,2,2), t) = 1 + 12t+ 43t2 + 30t3 + 4t4

has a pair of non-real complex roots. Incidentally, this poset’s cone defines a

Varchneko-Gel’fand ring whose associated graded is not Koszul, see Example 4.18.

Real-rootedness can even fail even for rectangular Ferrers posets, e.g., λ = (3, 3, 3)
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has Poin(P (λ), t) = Poin(3× 3, t) = 1 + 9t+ 19t2 + 11t3 + 2t4 in Table 3.1, with

two non-real complex roots.

On the other hand, computations show that Poin(P , t) is real-rooted for all

posets P of width two having at most 9 elements, so we ask the following question.

Question 3.61. Is Poin(P , t) real-rooted when the poset P has width two?

On a more algebraic note, in Chapter 4, we use Gröbner bases to show that when

a hyperplane arrangement is supersolvable, a certain associated graded ring of the

Varchenko-Gel’fand ring, denoted VF(A), is supersolvable. One might hope that

this result extends to cones of supersolvable arrangements. Unfortunately it does

not, and in Section 4.4, we provide a cone K of the Type A reflection arrangement

(a supersolvable arrangement) whose associated graded ring VF(K) is not Koszul.

This is somewhat disappointing but leads to an interesting open question.

Question 4.19. Is there some simple, combinatorial condition on Lint(K) (for a cone

K) in the spirit of supersolvability for the full lattice L(A) of the arrangement, that

implies Koszulity of VF(K)?

5.2 The (Sometimes) Non-Shellability of the

Broken Circuit Complex of a Cone

An (abstract) simplicial complex ∆ on ground set E is a finite collection of subsets

of E satisfying the following two conditions

– ∅ ∈ ∆, and

– If F ∈ ∆ and G ⊆ F , then G ∈ ∆.
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We call the elements of ∆ the faces of the simplicial complex. The dimension of a

face F of ∆ is dimF = #F − 1. A complex is pure if the facets all have the same

dimension. For each face F of ∆, we define the simplex of F by

F = {G | G ⊆ F}

Definition 5.1 ( [13, Definition 2.1]). Let ∆ be a simplicial complex. We say that

∆ is (nonpure) shellable if its facets can be arranged in a linear order F1,F2, . . . ,Ft

in such a way that the subcomplex(
k−1⋃
i=1

F i

)
∩ F k

is pure and has dimension dim(Fk)− 1 for each k = 1, . . . , t.

Intuitively, a (possibly nonpure) complex ∆ is shellable if we can build ∆ by

successively gluing on facets in a well-behaved way. In the case when ∆ is a pure

simplicial complex, the following definition agrees with the definition of a shellable

simplicial complex. In particular, if a complex is pure and not shellable, then it is

not nonpure shellable.

5.2.1 The nbc-complex of a cone

Recall that a no broken circuit set of a matroid M on ground set E, is a subset

N ⊆ E such that N does not contain any broken circuit sets of M . The collection

of all such sets, NBC(M), naturally forms a simplicial complex, as no subset N ′

of a no broken circuit set N can contain a broken circuit; see [62, Chapter 7] for

details. We call this complex the nbc-complex 1 of a matroid M on E and denote

it by BC(M), where E is implicitly imbued with some linear order e1 < · · · < en.

The following classical result will be of particular interest for us:
1In the case of the full arrangement, this sometimes also called the bc-complex.
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Theorem 5.2 ( [62, Theorem 7.4.3]). If M is a loopless matroid, then BC(M) is

pure and shellable.

Using the definition of K-nbc set introduced earlier, we can naturally define the

broken circuit complex of a cone K to be the complex of K-nbc. We denote the

broken circuit complex of K by BC(K). One might hope that Theorem 5.2 extends

to cones, but it does not. Recall, for example, that the (4− 1)st braid arrangement

A3 has hyperplanes Hij = {x ∈ R4 | xi − xj = 0} for all pairs i 6= j in {1, 2, 3, 4}.

Consider the cone K = H+
34 ∩H+

12 of this arrangement. Under the linear order

H34 < H23 < H24 < H12 < H13 < H14,

the nbc-complex of K has two facets {23, 14} and {24, 13}. It is a pure complex,

but not shellable. There are also cones K for which BC(K) is not pure, but is

shellable. In A5, for example, the cone given by

K = H12 ∩H24 ∩H56

has a nonpure nbc-complex with facets {1}, {5}, {2, 4}. This complex is shellable

with shelling order F1 = {2, 4}, F2 = {1}, F3 = {5}. Given these examples, one

might ask the following question:

Question 5.3. Is there a simple property on K guaranteeing that BC(K) is (nonpure)

shellable?

5.3 Dominant Cones of Shi Arrangements

This section concerns an irreducible crystallographic root system Φ with choice of

positive roots Φ+ and Weyl group W . We will use the Cartan type classification

of irreducible crystallographic root systems and have included some relevant data
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W Roots Φ Degrees

An−1 ±(ei − ej) for 1 ≤ i < j ≤ n 2, 3, 4, . . . n+ 1

Bn ±ei ± ej for 1 ≤ i < j ≤ n 2, 4, 6, . . . 2n

and ±ei for 1 ≤ i ≤ n

Cn ±ei ± ej for 1 ≤ i < j ≤ n, and 2, 4, 6, . . . 2n

±2ei for 1 ≤ i ≤ n

Dn ±ei ± ej for 1 ≤ i < j ≤ n n, 2, 4, 6, . . . 2n− 2

E6 ±ei ± ej for 1 ≤ i < j ≤ 5 and 2, 5, 6, 8, 9, 12

±1
2
(e8 − e7 − e6 +

∑5
i=1±ei) (odd number of - signs)

E7 ±ei ± ej for 1 ≤ i < j ≤ 6 2, 6, 8, 12, 14, 18

±(e7 − e8)

±1
2

(
e7 − e8 +

∑6
i=1±ei

)
(odd number of - signs)

E8 ±ei ± ej for 1 ≤ i < j ≤ 8 and 2, 6, 8, 12, 14, 18, 20, 24, 30

1
2

(±e1 ± · · · ± e8) (even number of + signs)

F4 ±ei ± ej for 1 ≤ i < j ≤ 4, and 2, 6, 8, 12

±ei for 1 ≤ i ≤ 4,
1
2

(±e1 ± e2 ± · · · ± e4).

G2 ±(ei − ej) for 1 ≤ i < j ≤ 3, and 2, 6

±(2ei − ej − ek) for {i, j, k} ∈ {1, 2, 3}

Table 5.1: Root systems for Weyl groups by their Cartan type. For more detailed

descriptions of these root systems, see [34, Section 2.10].
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for this classification in Table 5.1. Whenever possible, we will identify specific

references, but we recommend Humphreys [34] as a general resource concerning

reflection groups and Coxeter groups.

For a root system Φ and choice of positive roots Φ+, the Shi arrangement of Φ is

ShiΦ := {Hα,t | α ∈ Φ+, t = 0, 1}

where Hα,t := {x ∈ V | x · α = t} [53]. The choice of positive roots gives an

orientation of ShiΦ by

H+
α,t := {x ∈ V | x · α > 0} for α ∈ Φ+, t = 0, 1.

The dominant cone K+ of ShiΦ is the intersection of positive haflspaces

K+ :=
⋂
α∈Φ+

H+
α,0.

The Coxeter-Catalan number of W is

Cat(W ) :=
n∏
i=1

di + h

di

where d1, . . . , dn are the degrees of W and h := dn is the Coxeter number of

W [4, Equation 1.1]. In Type A, this number reduces to the usual definition of a

Catalan number

Cat(An−1) =
n∏
k=1

k + n

k
.

More generally, when we specialize W , we obtain more specialized formulas, see

Petersen [42, Table 12.2] for a comprehensive list.

The following theorem was conjectured by Postnikov [46, Remark 2] and proved

(independently) by Athanasiadis [5, Corollary 1.3] and Cellini-Papi [17, Theorem 1

& Section 4.2].
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Theorem 5.4. Let Φ be an irreducible crystallographic root system and W its Weyl

group. The number of chambers of the dominant cone of ShiΦ is Cat(W ).

Applying Zaslavsky’s theorem gives the following corollary.

Corollary 5.5. Let Φ be an irreducible crystallographic root system and W its

Weyl group. Then the Whitney numbers ck(K+) of the dominant cone of ShiΦ sum

to Cat(W ), i.e.

Cat(W ) =
∑
k≥0

ck(K+) .

Given the topic of this thesis, we ask: what are these Whitney numbers? Prelim-

inary data, collected using SageMath, suggests that the Whitney numbers agree

with the W -Narayana numbers, which we define now.

Let Φ be a crystallographic root system and Φ+ a choice of positive roots. Then

the root poset of Φ is a poset on ground set Φ+ with the order relations α ≺ β if

β − α is a linear combination of positive roots with nonnegative coefficients. Let

W be the Weyl group of Φ. Then the kth W -Narayana number is

Nar(W )(k) := #

A ⊆ Φ+

∣∣∣∣∣∣A is an antichain of the

root poset and #A = k

 .

Just as in the Catalan case, the W -Narayana coincide with the usual Narayana

numbers in Type A and there are more specialized formulas when we specialize to

specific W , see Armstrong [4, Figure 3.4] for a comprehensive list.

Conjecture 5.6. The Whitney numbers of the dominant cone of ShiW are the

W-Narayana numbers, i.e. ck(K+) = Nar(W )(k).

We can see by direct computation that this conjecture is true in rank 2 (see

Section 5.3.1 for a stronger statement in rank 2). Using SageMath, we verified for

Type A up to rank n = 6, Type B up to n = 4, D4, and F4.
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5.3.1 Extended Shi arrangements and Fuss-Narayana

Numbers

Given the previous discussion, it is natural to consider the m-extended Shi ar-

rangements. For t ∈ Z, define Hα,t := {x ∈ V | x · α = 1}. The m-extended Shi

arrangement associated to a crystallographic root system Φ is

Shi
(m)
Φ := {Hα,t | α ∈ Φ+, t = 0, . . . ,m}.

In [5, Corollary 1.3], Athanasiadas proved that the number of chambers in the

dominant cone of the m-extended Shi arrangements is the Fuss-Catalan number

(= Fuß-Catalan)

Cat(m)(W ) :=
n∏
i=1

di +mh

di
.

We ask: are the Whitney numbers of the dominant cone of the m-extended Shi

arrangement given by the Fuss-Narayana numbers (given in Armstrong [4, Figure

3.4])? In rank 2, the only Weyl groups are A2, B2, and G2. It is easy to compute

the Whitney numbers of the dominant cones of the m-extended Shi arrangements

for A2, B2, and G2 for all m. The Whitney numbers are

c0(K+) = 1

c1(K+) = #(Φ+) ·m

c2(K+) = Cat(m)(W )− c0(K+) − c1(K+) .

This pattern is precisely the Fuss-Narayana distribution. Unfortunately, this

observation does not continue in higher ranks for m ≥ 2. In B3 for example,

the dominant cone of the 3-extended Shi arrangement has Whitney sequence

(1, 18, 47, 18) but the Fuss-Narayana numbers are (1, 18, 45, 20). Thus we propose

the following open problem:
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Open Problem 5.7. Give a combinatorial description for the Whitney numbers

of the m-extended Shi arrangement for ranks ≥ 3 and m ≥ 2.
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