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Abstract

Ordinary cluster algebras were first introduced by Fomin and Zelevinsky in 2002 [24] in order to
provide a concrete combinatorial framework for studying dual canonical bases and total positivity in
semisimple groups. Ordinary cluster algebras have since found applications in a wide array of areas,
including: the representation theory of quivers, algebraic geometry and mirror symmetry, discrete in-
tegrable systems, Poisson geometry, Teichmiiller theory, and mathematical physics. This unexpected
ubiquity has made ordinary cluster algebras a natural object of interest for many mathematicians.
In particular, there has been great interest in understanding their structural properties.

One natural generalization of an ordinary cluster algebra is the generalized cluster algebra, in-
troduced by Chekhov and Shapiro in 2013 [13]. In such algebras, the hallmark binomial exchange
relations are replaced by polynomials of arbitrary degree. Given that there is a significant existing
body of work about the structural properties of ordinary cluster algebras, it is natural to ask the
same questions in the context of generalized cluster algebras. In particular, it is natural to ask if
generalized cluster algebras exhibit positivity and if they have bases which are analogous to the var-
ious known bases for ordinary cluster algebras. In this thesis, we seek to understand these structural
properties.

We begin with the construction of generalized snake graphs, which extend the ordinary snake
graphs of Musiker, Schiffler, and Williams [58] to the setting of triangulated unpunctured orbifolds.
We then use generalized snake graphs to establish cluster expansion formulas which associate cluster
algebra elements to ordinary arcs, generalized arcs, and closed curves on triangulated orbifolds. As
an immediate consequence, we obtain an alternate and explicitly combinatorial proof of positivity
for such generalized cluster algebras. We also establish the notion of a universal snake graph, which
can be used to recover both ordinary and generalized snake graphs.

We then turn to cluster scattering diagrams and extend the cluster scattering diagram construc-
tion of Gross, Hacking, Keel, and Kontsevich to reciprocal generalized cluster algebras. We define
generalized cluster varieties and verify that the definitions of useful objects such as broken lines and
theta functions remain the same in the generalized setting. We then show that when the upper
generalized cluster algebra and generalized cluster algebra coincide, the collection of theta functions
{¥m}meo forms a basis for the generalized cluster algebra. Finally, we explicitly give the fixed
data for the companion algebras associated to a particular generalized cluster algebra and explore

properties of that data and the resulting cluster scattering diagrams.
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Chapter 1

Introduction

This thesis primarily concerns structural properties of generalized cluster algebras, a natural gener-
alization of the ordinary cluster algebras introduced by Fomin and Zelevinsky in 2002 [24]. Ordinary
cluster algebras were introduced as a concrete combinatorial framework for studying dual canonical
bases and total positivity in semisimple groups [24]. They are a type of commutative algebra whose
generators are related by binomial exchange relations. In a generalized cluster algebra, introduced by
Chekhov and Shapiro in 2013 [13], these hallmark binomial exchange relations are replaced by poly-
nomial exchange relations of a specific form. In this thesis, we consider two particular subclasses of
generalized cluster algebras: generalized cluster algebras from orbifolds and the more broad reciprocal

generalized cluster algebras.

1.1 Ordinary cluster algebras

An ordinary cluster algebra A of rank n is a commutative subring of an ambient field F of rational
functions in n variables. One of the hallmark structural properties of an ordinary cluster algebra is
that it can be presented without enumerating its entire set of generators and relations. Instead, an
ordinary cluster algebra can be presented by specifying the data of a cluster seed: a collection of
n distinguished generators x = (z1,...,x,), where the z; are referred to as cluster variables and x
is referred to as a cluster; a collection of coefficient variables y = (y1,-..,yn); and an n X n skew-
symmetrizable exchange matriz B with integer entries that encodes the exchange relations between
cluster variables.

From the seed data, one can generate the remainder of the cluster variables and coefficients via
an involutive process called mutation, which replaces a single cluster variable z; with a uniquely
determined cluster variable xj which was not present in the original cluster. Mutation of cluster

variables occurs via binomial exchange relations encoded by B, which have the general form
xx), = monomial + monomial.

The full set of cluster variables generates A as a subring of F.
Mutation also replaces the collection of coefficient variables y with a new collection y’' =
(Wi, Yk, ---,y,) and replaces B with a modified exchange matrix B’. Details about these muta-

tion relations are given in Section 2.1.



For any choice of initial cluster, mutation sequences can be used to obtain expressions for the
remaining cluster variables in terms of that initial cluster. Remarkably, in a phenomenon known
as the Laurent phenomenon, these expressions are always Laurent polynomials. Moreover, in an
accompanying phenomenon known as positivity, these Laurent polynomials always have strictly
non-negative coefficients.

Although Fomin and Zelevinsky gave a proof for the Laurent phenomenon in their original
paper [24], positivity for arbitrary ordinary cluster algebras remained conjectural until the work of
Gross, Hacking, Keel, and Kontsevich in 2018 [41]. Before this general proof, positivity had been
independently verified for many subclasses of cluster algebras, including: skew-symmetric cluster
algebras [52], cluster algebras of surface type [58, 70, 71], acyclic (quantum) cluster algebras [7, 10,

, 65], and bipartite cluster algebras [60].
An important structural question in the study of ordinary cluster algebras concerns the existence
of bases. Because the original definition of cluster algebras arose from a desire to understand dual
canonical bases, it is natural to wonder if “desirable” bases for cluster algebras exist. In this context,
a “desirable” basis should include the cluster monomials (i.e., monomials in the variables of any
choice of cluster) and should have basis elements whose expansions in terms of any choice of cluster
have strictly non-negative coefficients.

Many subclasses of ordinary cluster algebras have known bases, including: the cluster monomial

basis for finite type, the generic basis for affine type [(], the generic basis for acyclic type [29, 30],
the greedy basis for rank 2 (quantum) cluster algebras [51, 53], and the bangle and bracelet bases
for cluster algebras of surface type [57]. In their 2018 paper, Gross, Hacking, Keel, and Kontsevich

proved the existence of the theta basis for ordinary cluster algebras of geometric type [11].
For technical definitions, more precise statements of the Laurent phenomenon and positivity, and

examples, we refer the reader to Section 2.1.

1.2 Generalized cluster algebras

When considering the definition of an ordinary cluster algebra, one natural question is to ask what
happens when the hallmark binomial exchange relations are replaced by other types of polynomials.
When the exchange relations are replaced by polynomials of a particular form, this question leads to
the definition of generalized cluster algebras (sometimes also referred to in the literature as Chekhov-
Shapiro algebras).

The introduction of generalized cluster algebras was originally motivated by the study of Te-
ichmiiller spaces of Riemann surfaces with holes and orbifold points of arbitrary order [11, 12].
Generalized cluster algebra structures have since been discovered in the representation theory of
quantum affine algebras [35, 30], the representation theory of quantum loop algebras [37], exact
WKB analysis [15], the cyclic symmetry of Grassmannians [28], the study of the Drinfeld double of
GL, [31, 32, 33, 34], and in certain Caldero-Chapoton algebras of quivers with relations [19].

A generalized cluster algebra is presented by specifying a slightly larger set of generalized cluster
seed data: a collection of n distinguished generators x = (x1,...,x,) where the x; are still referred
to as cluster variables and the entire subset is still referred to as a cluster; a collection of coefficient
variables y = (y1,...,¥yn); an n X n skew-symmetrizable exchange matrix B with integer entries; an

n x n diagonal exchange degree matriz R with positive integer entries; and a collection (ay, ..., a,),



where a; = (a; ;) e[, is the set of exchange polynomial coefficients for the cluster variable x;.
In the same manner as for ordinary cluster algebras, the generalized seed data can be used to
generate the remainder of the cluster variables and coefficient variables via mutation, which remains

involutive. The exchange relations now have the general form
—1 ,
rEr, =14 apiu+ -+ aprp1uF T U,

where u is specialized to be a particular product of cluster and coefficient variables.

As before, mutation replaces the collection of coefficient variables y with a new collection y’ =

(Wis- - Yk ---» yp) and the exchange matrix B with a modified exchange matrix B’. It also replaces
the collection of exchange polynomial coefficients (ay,...,ag,...,a,) with the modified collection
(ar,...,ay,...,an), where aj is obtained by setting a; ; = aj ;. The exchange degree matrix R

is fixed under mutation. Further details about these mutation relations, as well as examples, are
given in Section 2.5.

All of the generalized cluster algebras considered in this thesis belong to the subclass of reciprocal
generalized cluster algebras. This subclass has the additional constraint that every exchange poly-
nomial must be a reciprocal polynomial - i.e., that a; ; = a;,,—; for all ¢ € [n]. As a consequence,
the exchange polynomials of such generalized cluster algebras are fixed under mutation. Within this
subclass, we also specifically consider generalized cluster algebras from orbifolds. Such algebras have
exchange polynomials that are either binomial or of the form 1+ A,u + u?, where Ap is a particular
constant associated to an orbifold point of order p (for the definition of A,, see Section 2.4). Note
that both of these types of exchange polynomials are necessarily reciprocal so generalized cluster
algebras from orbifolds are a subclass of reciprocal generalized cluster algebras.

Generalized cluster algebras exhibit many of the same structural properties as ordinary cluster
algebras. In their original paper, Chekhov and Shapiro prove that all generalized cluster algebras
exhibit the Laurent phenomenon, that positivity holds for generalized cluster algebras of rank two,
and that generalized cluster algebras admit the same finite-type classification as ordinary cluster
algebras [13]. Positivity for arbitrary generalized cluster algebras remains conjectural. Chekhov and
Shapiro also show that triangulations of orbifolds provide a geometric model for a certain subclass
of generalized cluster algebras, drawing on the work of Felikson, Shapiro, and Tumarkin [17, 18].

As for ordinary cluster algebras, an important structural question in the study of generalized
cluster algebras is the existence of bases. A small number of subclasses of generalized cluster algebras
have known bases, including: the greedy basis for rank 2 generalized cluster algebras [(68] and the
monomial basis for acyclic and coprime generalized cluster algebras [1].

Much of the structural information of a given generalized cluster algebra can be encoded in a
pair of ordinary cluster algebras called companion algebras, defined by Nakanishi and Rupel [62].
More detail about companion algebras, precise technical definitions for generalized cluster algebras,

and examples of both types of algebras can be found in Section 2.5.

1.3 Overview

In this thesis, we give two constructions which can be used to study structural properties of gener-

alized cluster algebras: generalized snake graphs and generalized cluster scattering diagrams. These



constructions extend the ordinary snake graphs of Musiker, Schiffler, and Williams [58] and the
cluster scattering diagrams of Gross, Hacking, Keel, and Kontsevich [41].

In Chapter 2, we review relevant background material. This includes basic definitions and ex-
amples of ordinary cluster algebras, orbifolds, generalized cluster algebras, and companion cluster
algebras. We review the construction of ordinary snake graphs in Section 2.2 and that of cluster
scattering diagrams in Section 2.3.

In Chapter 3, we introduce our construction for generalized snake graphs. Using this construction,
we give an explicit combinatorial formula for the Laurent expansion of any arc or closed curve on
a triangulated orbifold. This gives an alternate and explicitly combinatorial proof of positivity for
generalized cluster algebras from orbifolds, using the geometric model introduced by Chekhov and
Shapiro. We also introduce the notion of universal snake graphs, which can be used to recover both
ordinary and generalized snake graphs and allow us to simplify the calculations and arguments of
Musiker, Schiffler, and Williams [58]. We describe the poset of perfect matchings of these universal
snake graphs and highlight some interesting properties, including that this poset is isomorphic to
the Boolean lattice B,,. Finally, we describe the relationship between punctures and orbifold points
and show that some of the results of [58] and [59] can be recovered by treating punctures as orbifold
points of infinite order.

In Chapter 4, we introduce generalized cluster scattering diagrams for reciprocal generalized
cluster algebras, building on the work of Gross, Hacking, Keel, and Kontsevich [11]. We also define
generalized cluster varieties and the middle generalized cluster algebras. We then use generalized
cluster scattering diagrams to define the theta basis in the context of reciprocal generalized cluster
algebras. We show that when the generalized cluster algebra and upper generalized cluster algebra
coincide, a particular collection of theta functions forms a basis for the generalized cluster algebra.

Chapter 4 also contains material about companion algebras. We explicitly give the fixed data for
the companion algebras of a particular generalized cluster algebra and show that the fixed data of
the left and right companion algebras are Langlands dual. We also discuss the relationship between
the cluster scattering diagram of a particular generalized cluster algebra and the cluster scattering

diagrams of its associated companion algebras.



Chapter 2

Background

2.1 Ordinary cluster algebras

Cluster algebras were introduced in 2002 by Fomin and Zelevinsky [24] to provide a concrete com-
binatorial framework for studying dual canonical bases and total positivity in semisimple groups.
Subsequently, there have been many generalizations of cluster algebras. To avoid any potential for
confusion, we therefore use the term ordinary cluster algebra whenever we refer to a cluster algebra
in the original sense defined by Fomin and Zelevinsky.

Before defining an ordinary cluster algebra, A, we must first describe its ground ring. Let (P, @, -)
be an arbitrary semifield. The group ring ZP will serve as the ground ring for A. Let F be isomorphic
to the field of rational functions in n independent variables with coefficients in QP. The field F is
referred to as the ambient field of A.

Frequently, the semifield P is chosen to be the tropical semifield. There are two conventions
for the tropical semifield: the min-plus convention and the max-plus convention. In the min-plus
convention, the auxiliary addition @ is defined as © @ y = min(z,y), whereas in the max-plus
convention it is defined as = ® y = max(x,y). In both cases, the multiplication operation - is the
usual addition. Regardless of the choice of convention, the resulting ordinary cluster algebra is said
to be of geometric type.

We are now prepared to build up the definition of an ordinary cluster algebra.
Definition 2.1.1 (Definition 2.3 of [26]). A labeled cluster seed is a triple ¥ = (x,y, B) such that
o x = (x1,...,%,) is a free generating set for F,
oy = (y1,...,Yn) is an n-tuple with elements in P,
e and B = [b;;] is an n x n skew-symmetrizable matriz with entries in Z.

We refer to x as the cluster of ¥, y as the coefficient tuple of X, and to B as the exchange matrix.
We refer to the elements x1,...,x, as the cluster variables of ¥ and to the elements yi1,...,y, as

the coeflicient variables of 3.



Definition 2.1.2 (Definition 2.4 of [26]). For a cluster seed 3 = (x,y, B), mutation in direction k,
W, 1s defined by the following exchange relations:

Y —bij i:kOTjZk
ij = ..
bij + ([=bir]+bkj + bik[be;]4) 1,5 #k
,Jut i=k
Yi = (bir]+ —bix
vy (1@ yw) i#k
n [brjl+ n [=bgjly
BN | +I1j=, z; -
2 = Tk (k = 10y, . ) i=k
3

where [-]+ = max(-,0).

Definition 2.1.3. Let %, be the n-reqular tree whose edges are labeled by 1,...,n such that each
edge incident to a given vertex has a different label. A cluster pattern is an assignment of labeled
seeds 3y = (x4, ¥+, B) to each vertex t € T, such that seeds assigned to adjacent vertices t —t', whose

mutually incident edge has label k, are related by seed mutation in direction k. We use the notation
Xt = (l’l;t, cee ,In;t)v ye = (Y1ts - - -ayn;t)7 B, = [biﬂ
Definition 2.1.4. For a fized choice of cluster pattern, let

X = U Xy = {l‘i;t 1t e ‘In,l S [n]}
tex,

be the union of the clusters of each seed in the cluster pattern. We refer to the elements z;y € X
as cluster variables. The cluster algebra A associated to the cluster pattern is the ZP-subalgebra of
F generated by the cluster variables, A := ZP[X]. We often write A = A(x,y, B) to indicate the

cluster algebra associated to the cluster pattern containing the seed (x,y, B).
One of the most celebrated properties of ordinary cluster algebras is the Laurent phenomenon:

Theorem 2.1.5 (Theorem 3.1 of [24]). Let A = A(x = (z1,...,%4),y, B) be an arbitrary cluster
algebra. Every element of A can be expressed in terms of the cluster variables x1,...,x, as Laurent

polynomials with coefficients in ZP.

Note that because the cluster algebra A can be defined by any choice of seed from the corre-
sponding cluster pattern, the above theorem means that the elements of the cluster algebra can be
expressed as Laurent polynomials in terms of any choice of initial cluster.

The Laurent phenomenon becomes even more compelling with the addition of the positivity

property.

Conjecture 2.1.6 (c.f. Section 3 of [24]). The coefficients of these Laurent polynomials are strictly

non-negative.

Positivity was conjectured in Fomin and Zelevinsky’s original paper [24] and later verified in a

variety of cases, including: skew-symmetric cluster algebras [52], cluster algebras of surface type [58,



, 71], acyclic (quantum) cluster algebras [7, 16, 46, 65], bipartite cluster algebras [60], and cluster
algebras of geometric type [41]. Note that this last case encompasses all of the prior cases and is the

most general setting in which a proof of positivity is known.

2.1.1 Principal coefficients
A particularly important type of cluster algebra is one with principal coefficients.

Definition 2.1.7 (Definition 3.1 of [20]). A cluster pattern is said to have principal coefficients at
vertex ¢t if P = Trop(y1,...,Yn) and yr = (Y1,...,Yn). We refer to the corresponding cluster algebra

A as a cluster algebra with principal coefficients.

This definition can be equivalently stated in terms of the extended exchange matriz, B. An
ordinary cluster algebra A is said to have principal coefficients at vertex t if A is of geometric type

and is associated to the 2n x n extended exchange matriz

where I is the n x n identity matrix. Note that the extended exchange matrix B, could also be

written as a skew-symmetric 2n x 2n block matrix of the form
B, -1
I o}’

where I is the n x n identity matrix and 0 is the n X n matrix whose entries are all zero. When we

Bt =

discuss cluster scattering diagrams, we will prefer the 2n x 2n form. Otherwise, the 2n x n form is

typically used for the sake of concision.

Remark 2.1.8. The cluster algebra literature contains two conventions for defining extended ex-
change matrices - the tall convention, where extra rows are added, and the wide convention, where
extra columns are added instead. The preceding definition for an ordinary cluster algebra with prin-
cipal coefficients is given using the tall convention, consistent with the original definition of Fomin

and Zelevinsky [20]. In the wide convention, we would instead have the n X 2n matriz

Et = |:Bt I:|
or the 2n x 2n skew-symmetric matric
~ By I
Bt = y
-1 0

where I and O are defined as before. In order to be consistent with the major papers which define snake
graphs and cluster scattering diagrams, this thesis will actually use both conventions. We will use the
tall convention when discussing generalized snake graphs in Chapter 3 and the associated background
material in Sections 2.2 and 2.4. We will use the wide convention when discussing generalized cluster

scattering diagrams in Chapter 4 and the associated background material in Section 2.3. We will also



use the wide convention in Section 2.5, which provides background for both Chapter 8 and Chapter 4.
Whenever there is potential for confusion or ambiguity, we will explicitly specify which convention

is being used.

The Laurent phenomenon and positivity hold for ordinary cluster algebras with principal coeffi-

cients. For such algebras, we can also define the notion of an F-polynomial.

Definition 2.1.9 (Definition 3.3 of [20]). Let A be the ordinary cluster algebra with principal coef-

ficients at vertex to defined by the initial cluster seed ¥y = (Xt,,¥to, Bt ), where

Xty = (xlv cee vmn)v Yt, = (yla' . 'ayn)v and Bto — BO - [bZOJ]

By definition, P = Trop(x1,...,x,) and the exchange relation coefficients are monomials in the
variables yi,...,yn. The Laurent phenomenon allows us to express any cluster variable x,: as
a unique subtraction-free rational function in the variables x1,...,Tn,Y1,--.,Yn.- We denote this

rational function as
Bt
XZ,t = X&t 0 e st(xlv e Ty Y1y ,yn).

et Fp; = *ito denote the polynomial obtained from Xy via the specialization
Let Fyy = FJ} 7
F&t(yla cee 7yn) = X@,t(17 sy 17y17 e ayn)

We refer to Fy; as a F-polynomial.

Example 2.1.10. Let A be the ordinary cluster algebra with principal coefficients defined by the

initial cluster seed

0 1
= (0 = v = o= )

The following table shows the extended exchange matrix Et, the coefficient variables y1; and ya ¢,



the cluster variables x; = (X1+ and Xa4), and the F-polynomials Fy 4 and Fay at vertex t € T,,.

t By Y1t Y2t X1t Xoy Fi Fyy
—
-1 o
0 o Y2 x T2 1 1
L 0 1_
T
1 0 1 14+yox,
]‘ 1 o U1 Y2 T To ]. ]_ =+ Y2
_0 71_
o N
-1 0 1 1 Tot+yitviyez: 1+yszg
2 -1 o0 1 Y2 T1T2 o I+y1+v1y2 14y
Lo -1
.
1 o 1 To+y1+Yi1y221 T2+Y1
3 -1 0 Y1Y2 Y2 ;1x2 1 1+ U1 + Y1Y2 1+ Y1
_71 1 -
—
-1 0 1 T2+Y1
4 1 1 Y1y2 Y1 T2 x1 1 1+ Y1
L 1 0_
T
10
S, . Y2 % Tg T 1 1
_1 0 -

Table 2.1: Data for a cluster algebra of type As with principal coefficients.

Let F' be a subtraction-free rational expression over Q in several variables, P be an arbitrary
semifield, and u1, ..., us be elements of P. Then we use F|p (u1,...,us) to denote the evaluation of
F at uq,...,us. Using this notation, we can explicitly state the relationship between the Laurent
expansions for cluster variables in an arbitrary ordinary cluster algebra and in the corresponding

ordinary cluster algebra with principal coeflicients.

Theorem 2.1.11 (Theorem 3.7 of [20]). Let A be an ordinary cluster algebra over an arbitrary
semifield P defined by associating the cluster seed ¥y, = (Xt,,¥to, Bt,) to the initial vertex tg € Ty,.

Any cluster variable in A can be expressed as

Bty
0.t F(x17"'7l'nayl7"'7yn)
Ter = BOt
,to
F&t P(yla"'7yn)

Note that if P is a tropical semifield, then the denominator of the above expression for x;+ is a

monomial. Hence, we have the following immediate corollary.

Corollary 2.1.12 (Corollary 2.14 of [26]). Let A be the ordinary cluster algebra with principal
coefficients at vertexr tg € T, defined by the initial cluster seed i, = (Xty,Yto, Bty). Let A be
any ordinary cluster algebra of geometric type defined by the same initial exchange matriz By,. If
positivity holds for A, then it holds for A.



An important consequence of this corollary is that for ordinary cluster algebras of geometric type,
it is sufficient to show positivity in the principal coefficient case. Hence, many proofs of positivity

primarily treat ordinary cluster algebras with principal coefficients.

2.2  Ordinary snake graphs

Snake graphs were defined by Musiker, Schiffler, and Williams as a tool for finding explicit com-
binatorial formulas for the cluster variables in any cluster algebra of surface type [58]. Via this

construction, they offered the first known proof of positivity for cluster algebras from surfaces.

2.2.1 Ordinary cluster algebras from surfaces

In 2008, Fomin, Shapiro, and D. Thurston showed that a subset of ordinary cluster algebras can be
modeled by triangulations of bordered surfaces with marked points [22]. Marked points may appear
either on the boundary or within the interior of the surface; those that appear within the interior
are called punctures. In this thesis, we will primarily deal with unpunctured surfaces, although we
note some connections between orbifold points of infinite order and punctures in Section 3.14.

In this section, we establish some nomenclature and briefly highlight relevant features of Fomin,
Shapiro, and D. Thurston’s construction for unpunctured surfaces. For a much more detailed expo-

sition, we refer the reader to Section 2 of [22].

Definition 2.2.1. An ordinary arc v on a surface (S, M) is a non-self-intersecting curve on S with
endpoints in M that is otherwise disjoint from M and 0S. Curves that are contractible onto 0S or
that cut out an unpunctured monogon or bigon are not considered ordinary arcs. Ordinary arcs are

considered up to isotopy class.
Ordinary arcs are a special type of generalized arc.

Definition 2.2.2. A generalized arc v on a surface (S, M) is a curve on S which may contain
self-intersections or be a mon-contractible closed curve with no endpoints in M. Curves that are
contractible onto 05, that cut out an unpunctured monogon or bigon, or that are contractible to a

point are not considered generalized arcs. As before, generalized arcs are considered up to isotopy.

Let [y] denote the isotopy class of the arc v. Because arcs are considered up to isotopy, we
must be somewhat careful when defining intersections of arcs. Let 4 and +' be arbitrary arcs on S
and « and o denote arbitrary representatives of their isotopy classes. Then the crossing number
e(y,7’) is the minimal number of crossings of each possible choice of o and /. Two arcs v and ~/
are considered compatible if e(y,v') = 0, i.e. if it is possible to draw representatives of the isotopy
classes of v and 4’ which are non-crossing. Similarly, if T = {ry,...,7,} is a triangulation of a

surface, we define e(y,T) =Y | e(v, 7).

Definition 2.2.3. An ideal triangulation T' of a surface is a mazximal collection of pairwise com-

patible arcs (and boundary arcs).

Surfaces with ideal triangulations provide a useful combinatorial tool for studying certain cluster

algebras, via the correspondence described in the following theorem.
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Theorem 2.2.4 (c.f. Section 6 of [23]). Given a surface with marked points, (S, M), there exists a
unique cluster algebra A = A(S, M) such that:

1. The seeds are in bijection with tagged triangulations of (S, M).
2. The cluster variables are in bijection with tagged arcs in (S, M).

3. The cluster variable x., corresponding to arc vy is given by the lambda length of v, in terms of

some nitial triangulation.

Under this correspondence, mutation of cluster variables in A is equivalent to “flipping” arcs
in the triangulation 7. To understand what we mean by “flipping”, observe that each arc 7 in T
looks locally like the diagonal of a quadrilateral and that this quadrilateral has a unique diagonal,

7!, which is not in T. To “flip” 7, we replace it with 7’.

Figure 2.1: Flipping an arc on a triangulated surface.

Hence, the result of “flipping” 7 in T is the new triangulation 7" = (T' — {7}) U {7'}. Note that this

procedure is both well-defined and involutive, as expected.

2.2.2 Laminations

In the context of cluster algebras, laminations were used by Fomin and D. Thurston [23] as a tool for
tracking the coefficients of a cluster algebra from a surface using W. Thurston’s [72] shear coordinates
and theory of measured laminations. We will review only the relevant portion of their work (for
unpunctured surfaces), but refer the reader either to Chapter 12 of their work for further details
about laminations in this context, or to the work of Fock-Goncharov [21] or W. Thurston [72] for

more details about measured laminations and their relationship to matrix mutations.

Definition 2.2.5 (Definition 12.1 of [23]). Let (S, M) be an unpunctured bordered surface. An
integral unbounded measured lamination (henceforth referred to as just a lamination) on S is a

finite collection of non-self-intersecting and pairwise non-intersecting curves on S such that:

e cach curve is either a closed curve or a non-closed curve with endpoints on umarked points on

a8,
e no curve bounds an unpunctured disk,

e and no curve with endpoints on 0S is isotopic to a portion of the boundary containing either

no or one marked point(s).

A multi-lamination is a finite family of such laminations. W. Thurston’s shear coordinates [72]

provide a coordinate system for laminations.

11



Definition 2.2.6 (Definition 12.2 of [23]). Let S be a surface with triangulation T and L be a

lamination on S. For each arc v € T, the shear coordinate of L with respect to T is
by(T, L) = > by(T, L;)

where the summation runs over all individual curves in L. The shear coordinates b, (T, L;) are
defined as:

+1 —1

Tracking principal coefficients requires the notion of an elementary lamination.

Definition 2.2.7. The elementary lamination L; associated to an arc ; in triangulation T is the
lamination such that by, (T, L;) =1 for 7, € T and b.(T,L;) =0 forT ¢ T.

An ordinary cluster algebra of surface type with principal coefficients corresponds to a triangu-

lated surface with a multi-lamination composed of all possible elementary laminations.

2.2.3 Snake graph construction

Let v be a fixed arc and T be a fixed triangulation of some surface (S, M), where M is a set of
marked points. Musiker, Schiffler, and Williams [55] construct a snake graph G ~ by gluing together
tiles that encode the local geometry at each intersection between v and arcs of the triangulation.
The formula for the expansion of x., with respect to the cluster corresponding to 71" is given in terms
of perfect matchings of G7 . We briefly review their construction for unpunctured surfaces, but
refer the interested reader to Section 4 of [58] for the complete construction and many examples.

Let (S, M) be a bordered surface with triangulation T' and v be an ordinary arc (i.e., a non-self-
intersecting arc) on S which is not in 7. Fix an orientation of v and let s and ¢ denote, respectively,
the start and end points of 7. Denote the intersection points of v and T" as s = pg, p1,. .., Pi+1 = t,
in order, and let 7;; denote the arc in 7" which contains intersection point p;. Let A;_; denote the
ideal triangle that v passes through just before 7; and A; denote the ideal triangle it passes through
just after.

Each intersection p; is associated with a square tile G; formed by gluing copies of A;_; and A;
along the edge labeled 7;,. This can be done in two ways: such that both triangles have orientation
matching the orientations of A;_; and A; on S, or such that both triangles have the opposite
orientation. Hence, there are two valid planar embeddings of G;. We say that the tile G; has
relative orientation rel(G;) = +1 if the orientation of its triangles matches the orientations of A;_;
and A; on S and rel(G;) = —1 otherwise. Two of the edges of the triangle A; are labeled 7;; and
Ti; 115 label the remaining edge as 7).

The graph Gr,, is then formed by gluing together subsequent tiles G1,...,Gq in the order by

the corresponding intersection points. After choosing planar embeddings éj and éjH such that
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rel(CN}’j) + rel(CN}’jH), the embedded tiles éj and éjH are glued along the edges labeled 71, ;. Gluing
together all d tiles yields a graph @Tﬁ. The graph G can then be obtained from GTW by removing

the diagonal edge from each tile.

Example 2.2.8. Consider the triangulated surface (S, M) corresponding to the ordinary cluster

algebra
0 1 0
A | (21,22, 23), (Y1,92,93), | -1 0 —1
0 1 0

Below, we show two examples of ordinary arcs on (S, M) and the corresponding snake graphs.

c
b d T2 T3 e
T1 T2 T3 a :_\ c N f N d
o T2 T
a e b T1 T2
[
b d T3 e
73 AN f AN
T T c N N
! y 20 73" d
N N
a e T1 T2

Figure 2.2: Examples of snake graphs from ordinary arcs on a triangulated surface.

The statement of Musiker, Schiffler, and William’s expansion formula requires several additional

definitions, beginning with the crossing monomial.

Definition 2.2.9 (Definition 4.4 of [58]). For an ordinary arc 7 crossing the sequence of arcs

Tiys---,Tiy 0T, the crossing monomial of v with respect to T is defined as

d
cross(T,vy) = H Tr,, -
j=1

The other monomial required to state Musiker, Schiffler, and William’s expansion formula is the
height monomial. Defining this monomial requires first establishing some notions related to perfect
matchings of graphs. A perfect matching P of a graph G is a subset of the edges of G such that

each vertex of G is incident to exactly one edge of P.

Definition 2.2.10 (Definition 4.5 of [58]). A perfect matching P of a snake graph G which uses

edges labeled 7, ..., 7;, has weight z(P) =z, - %, .

Definition 2.2.11 (Definition 4.6 of [58]). G has exactly two perfect matchings that include

only boundary edges; these are referred to as the minimal and maximal matchings of Gr,. The
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distinction between the two depends on the relative orientation of Gr . If rel(Gr ) = 1 (respectively,
—1), define e; and ey to be the edges that are immediately counterclockwise (respectively, clockwise)
from the diagonal. The minimal matching, P_, is defined to be the unique perfect matching that
includes only boundary edges and does not include e; or es. The maximal matching Py is the

complementary perfect matching on boundary edges that includes e; and es.

Let P o P_ := (P U P_)\(P N P_) denote the symmetric difference of an arbitrary perfect
matching P with the minimal perfect matching P_. The edges of P & P_ are always the set of
boundary edges of a (potentially disconnected) subgraph of G, which is composed of a union of

cycles. These cycles enclose a finite set of tiles, {G;, }je.-

Definition 2.2.12 (c.f. Definition 4.8 of [58]). Let T = {71,..., 7} be an ideal triangulation of an
unpunctured surface (S, M) and ~y be an ordinary arc on (S, M). Let P be a perfect matching of
Gt such that P © P_ encloses the set of tiles {G, }jes. The height monomial of P is

y(P) =[] vinr,
k=1

where my, is the number of tiles in {Gij }ies with diagonal labeled Ti; -
Now, we are prepared to state the expansion formula.

Theorem 2.2.13 (Theorem 4.9 of [58]). Let (S, M) be a bordered surface with triangulation T, A
be the corresponding cluster algebra with principal coefficients, and v be an ordinary arc on S. Then

x can be written as a Laurent expansion in terms of the initial cluster variables as

where the sum ranges across all perfect matchings P of the snake graph G .

Example 2.2.14. Consider the snake graph for the ordinary arc v, from Example 2.2.8. All of the
perfect matchings of this snake graph are shown below, with the mazimal and minimal matchings
shown, respectively, on rows three and five. For each perfect matching P;, the tiles enclosed by the
symmetric difference P;© P_ are shaded. The corresponding weight and height monomials are given

on the right.
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T2 73 e
RN N S a(P) =1 Y(P1) = Yr Y,
b 71 T2
73 e
A S
N I AN
I 2(Py) = r, y(P2) =y,
. — N — J
T2 T3 e
. f~ ] B B
a ,—1\ ,—;\ 7—:\5\ ¢ LU(P‘g) = Tr Try y(PB) =YY Yrs
b T1 T2
T2 T3
\TI\ \,ﬁ;\f \T;\;\ d z(Py) = 2o, y(P1) = yr,
b 1
72 73 e
N N N
al .. T.;\f o4 w(Bs) =43, y(Ps) =1
b T1 T2

Table 2.2: An example of a complete set of perfect matchings of a snake graph, along with the
associated weight and height monomials.

Musiker, Schiffler, and William’s expansion formula then gives us the Laurent expansion

1
Ly = — (ynyrg +x72y73 +lexT3yT1yszT3 +x7’2y71 +x‘2rz)

Ty Ty Ty

Subsequently, Musiker and Williams extended the snake graph construction to handle generalized
arcs, which may contain self-intersections, and closed curves [59]. Suppose 7 is now a generalized
arc. If y is a contractible loop, define z, := —2. If v contains a contractible kink, then let 7 denote
the corresponding arc with the kink removed and define x., := (—1)z5. Musiker and Williams then
show that Theorem 2.2.13 holds for generalized arcs. For closed curves, they define a corresponding
cluster algebra element using a slight modification of snake graphs called band graphs, where the
first and last tiles are glued to form a non-planar graph. For details, see Section 3 of [59].

The set of perfect matchings of a snake graph has a natural poset structure. Describing this
structure makes use of twists, which are local moves on a perfect matching P where the horizontal
edges of a single tile are replaced with the vertical edges of that tile, or vice versa. Building on
previous work by Propp on the poset structure of perfect matchings of bipartite planar graphs [64],
Musiker, Schiffler, and Williams [57] establish the following result.

Theorem 2.2.15 (Theorem 5.2 of [57]). Consider the set of all perfect matchings of a snake graph
G and construct a graph whose vertices are labeled by these perfect matchings and which has an edge
between two vertices if and only if the matchings corresponding to those vertices are obtainable from
each other by a single twist. An edge corresponding to twisting a tile with diagonal edge T; is labeled

y;. This graph is the Hasse diagram of a distributive lattice, with minimal element P_, which is
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graded by the degree of the height monomials associated with each matching.

2.3 Cluster scattering diagrams

Later, in Chapter 4, we will construct cluster scattering diagrams for reciprocal generalized cluster
algebras. In order to set the stage for that construction, this section will review the construction
of cluster scattering diagrams for ordinary cluster algebras, largely following the exposition of [20],
[39], and [11]. When we extend these definitions and constructions in Chapter 4, we will explain how
the ordinary definitions and constructions can be recovered as specializations of those extensions.
Scattering diagrams first appear in the literature in two dimensions, in work by Kontsevich and
Soibelman [17], and then in arbitrary dimension in the work of Gross and Siebert [10]. Our discussion

of cluster scattering diagrams will loosely follow Section 2 of [39] and Section 1 of [11].

Basic data

We begin with definitions of fixed data and torus seed data, which together encode the information

of a cluster seed.

Definition 2.3.1 (c.f. Section 2 of [39]). The following collection of data is referred to as the fixed
data and is denoted by I':

e The cocharacter lattice N with skew-symmetric bilinear form {-,-} : N x N = Q.

o A saturated sublattice Nyy C N called the unfrozen sublattice.

An index set I with |I| = rank(N) and subset Iy C I such that |Ing = rank(Nyy)

A set of positive integers {d;};er such that ged(d;) =1

A sublattice N° C N of finite index such that {Ny;, N°} C Z and {N,N,yNN°} CZ

o A lattice M = Hom(N,Z) called the character lattice and sublattice M°® = Hom(N°,Z).
The name ‘fized data’ refers to the fact that this data is fixed under mutation.

Definition 2.3.2 (c.f. Section 2 of [39]). Given a set of fized data, the associated torus seed data
is a collection s = {e; }ier such that {e;}icr is a basis for N, {e;}; € Ly is a basis for Ny, and
{d;e;}icr is a basis for N°. The torus seed data defines a new bilinear form

[,]s: NxN—=Q

lei ej]s = €15 = {ei e5}d;
which is not necessarily skew-symmetric.

Remark 2.3.3. Under the wide convention for the exchange matrices of cluster algebras, the ma-
trices B and € = [e;;]ijer coincide. Under the tall convention, used by Fomin and Zelevinsky [2/],

the matrices are instead related by a transpose, i.e. e = BT
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A choice of torus seed s = {e;};c; defines a dual basis {e} },c; for M and a basis {f; = d;le;‘ bier

for M°. It also defines two associated algebraic tori:

XS = T]w = Spec ]k[N],
As = Tyo = Spec k[M°].

The torus X5 has coordinates yi,...,y, and the torus Ag has coordinates x1,...,x,. It is also
common in the literature to use the notation Aq,..., A, for the coordinates of Ag and X4,...,X,
for the coordinates of X.

The bilinear form {-,-} : NxN — Q naturally defines maps p} : Ny — M° and p3 : N — M°/NZ;

as

pi(n € Ny) = (n € N {n,n'}),
ps(ne N)=(n"€ NyNN°+— {n,n'}).

Based on these maps, we can then choose a map p* : N — M®° such that p*|Nuf = p} and the
composition of p* with the quotient map M® — M°/Nk agrees with p}. It is important to note that
the choice of p* is not unique because there is more than one possible choice of map N/Nys — NuLf.
It is also important to note that for an arbitrary choice of fixed data, the map p} : Ny — M° is not
necessarily injective. It is, however, always injective for the principal coefficient case, which will be
discussed later in this section. The assumption that p} is injective is sometimes referred to as the
injectivity assumption.

The injectivity assumption is, in fact, a crucial ingredient in many of the arguments given by
Gross, Hacking, Keel, and Kontsevich and therefore many of their results are proved via the principal
coefficient case. For the same reason, we will also later work via the principal coefficient case.

Because the fixed data and torus seed data encode information from a cluster seed, we naturally

expect that there should also be a notion of torus seed mutation.

Definition 2.3.4. Given torus seed data s and some k € I, a mutation in direction k of the torus

seed data is defined by the following transformations of basis vectors:

e; + [e]ren i Fk

—€L i=k

i+ Zjeruf[_ekj]-s-fj i=Fk
fi i#k

The basis mutation induces the following mutation of the matriz € = [€;;]; jer:

—€4j k=iork=j
Egj = {6276}}%— = €ij k#1i,7 and €;jrer; <0

€ij + leinler; Kk F#14,7 and ey >0

Mutation of torus seed data s in direction k defines birational maps py : Xs — X, (s) and
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pr : As = Ay s) via the pull-backs

ppz™ =2"(1+ z”’“)_<d’“e’“m> for m € M°, (2.1)

2" = 2"(1+ z¢) "okl for p e N, (2.2)

where vy, := pj(eg). Explictly, using dual bases, one can compute

vk =enleg] = Y enjfj

J€luy

Some of the most iconic equations in the study of cluster algebras are the mutation relations
for the cluster variables and coefficients. We can explicitly see the familiar forms of the mutation

relations, given in Definition 2.1.2, by applying u} to the cluster variables z; = 2/ and y; = 2¢:

xk1< IT 23+ 11 ijkj> i=k

szg = €r; >0 € <0 (23)
—sgn(e;x)) .
. yi (1 +yp e ) i#k
HYi = (2.4)
Yp i=k

Remark 2.3.5. Equation (2.3) and Equation (2.4) can be obtained from Equation (2.1) and Equa-
tion (2.2) by settingn = e; and m = f;. For example, consider the mutation of x; = 2 and y; = 2°
in direction k. If i =k, then

1 (Ye) = i (Zk) = g (27) = 27k (L zok) el = e =
and

MZ(.’I;;{;) = ,LLZ <Zf}/”) — /’l/;:; (Z_fk+zje[uf[—€kj]+fj)

_ Z*fk+2jezw[*6kj]+fj 1+ ka)*<dk6k,*fk+2]»€1“f[*6kj]+fj>

_ Z—fk H Z[—ekj]+f_7~ (1 + ka)(dkek,fk>
JE€Lyy
1
-l H Sl—eril £ 1+ H S€ki T
JE€Lus JELy
L H 2ekifi H €3 T
jEqu, €x; <0 jE[uf, €x; >0
— 1 k) H €kj
o | [T =™+ T
€x; <0 €xi >0
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If i £ k, then

N
|

— MI’; (Z€i+[5ik]+ek>

_ Zei+[6ik]+ek (1 +Z€k)*[ei+[5ik]+ekﬁek]

(i) = i (2

— Zeiz[eik]+ek (1 + Zefc)*[ez‘:ek]

— % Hlenl+en (1 + Zek)—fik

If €5, > 0, then

—€ik

L€ yleir]ver (14 20%) 7% = z& (1 + Z*Gk)feik — & (1 + Z*Sgn(qk)ek)

If €, < 0, then

—€ik

Zeiz[eik]Jrek (1 +Z€k)7€ik = (1 _'_Zfsgn(eik)ek)

Hence, in both cases we have

—€ik

i (y;) = (1 + y;sgn(eik)>

Finally, pi(z}) = u} (zfi/) = pj (27) =2fi (1 + ZoR)ldren fi) = ofi = gy

Proposition 2.4 of [39] then allows the collection {Ag}, where s ranges over all valid choices of
torus seed data for some fixed cluster algebra, to be glued along the open pieces where the uy given
in Equation (2.1) are defined. This produces a scheme A, known as the A cluster variety. Similarly,
the collection {AXs} can be glued using the py given in Equation (2.2) to obtain a scheme X', known
as the X cluster variety.

Each choice of torus seed s has an associated A-cluster algebra T'(A, O 4) and X-cluster algebra
I'(X,0x). The A-cluster algebra is generally referred to as the upper cluster algebra [1] and con-
sists of the set of universal Laurent polynomials, i.e. Laurent polynomials in k[M°] which remain
Laurent polynomials under all mutation sequences. The ordinary cluster algebra itself is actually
the subalgebra of the field of fractions k(As) = k(x1,...,x,) of As generated by functions of the
form {p*(«})} where ;s is a coordinate on Ag for some mutation equivalent torus seed s’ and p* is
the appropriate composition of pull-backs specified by the mutation sequence relating s and s'.

The cluster algebras which arise via this construction are specifically those of geometric type.

Principal coefficients

Many of the important results of [11] were obtained via the principal coefficient case. In this section,
we will use the wide convention for extended exchange matrices. Recall from Section 2.1.1 that an
ordinary cluster algebra with principal coefficients has extended exchange matrix B , which has the

form

B 1
-1 0

)

where [ is the n X n identity matrix and 0 is the n X n matrix whose entries are all zero.
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In this section, we review the construction of ordinary cluster scattering diagrams in the prin-
cipal coefficient case, loosely following the exposition of Section 3 of [39]. Including the additional
information of principal coefficients requires the following modifications to the fixed and torus seed
data:

Definition 2.3.6 (Construction 2.11 of [39]). Given fized data T, the fized data for the cluster
variety with principal coefficients, I'prin, is defined by:

e The double of the lattice N, N:=Na® M°, with skew-symmetric bilinear form given by

{(n1,m1), (n2,m2)} = {n1,n2} + (n1,mz2) — (n2,m1).

Here, (-,-) : N x M° — Q denotes the canonical pairing given by evaluation, (n,m) — m(n).
e The unfrozen sublattice Nu = Ny @ 0= Ny
e The sublattice N° := N° & M of N.
o The lattice M = Hom(N,Z) = M @& N°.
e The lattice M° = M° & N, which has sublattice M.
e The index set given by the disjoint union of two copies of I.

o The unfrozen index set, fuf given by thinking of the original Is as a subset of the first copy of
1.

e A collection of integers {di}ief taken such that within each disjoint copy of I, the d; agree with

the original torus seed s.

Definition 2.3.7 (Construction 2.11 of [39]). Given a torus seed s, the torus seed with principal

coefficients Sprin, s defined as
Sprin += {(ei, 0)7 (Oa fl)}zef
For ease of notation, we will use ¢ and j to denote indices corresponding to basis elements of
the form (e;,0) and « and S to denote indices corresponding to basis elements of the form (0, f,,).
Because of the way the collection {d;} is chosen, the entries of the matrix € defined by the principal

fixed data are determined by the following relationships:

€5 = €5, €8 = 5,'[3, and €aj = _5aj-

g_[;g].

As before, the choice of spyi, defines dual bases for M and M°. The previous choice of a map

That is, € is a block matrix of the form

p*: N — M° allows us to define a map p* i N — M° as

p*(ei,0) = (p*(es), €i),
p*(oafa) = (_fa70)
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The new map p* : N — M° is now necessarily injective. In fact, p* : N — M° is actually an

isomorphism. The choice of s, also defines the associated algebraic tori

= Ty = Spec k[N,

T'5. = Spec k[M°].

Sprin -

A

Sprin *

The principal cluster varieties Xppn and Apmn are then obtained by gluing along the birational
- A:Ufk (Sprin)?
cluster varieties Xppin and Apyin depend solely on the mutation class of s. For more details, we refer
the reader to Apendix B of [11].

There are several important observations to make about the principal cluster varieties. First, the

mutation maps fig : X, = Xy (sprn) N fg P Aspyin as previously. The principal

ring of global functions on Ap,in is the upper cluster algebra with principal coefficients at the seed
s. Second, Apin has useful relationships with the cluster varieties X and A which arise from the

natural inclusions

F:N%Mo,

n— (p*(n),n)
and

ﬂ'*:N%MO,

n— (0,n).
For any torus seed s, the map p* induces the exact sequence of algebraic tori:

1o The = As DX, —1

Sprin

The map p: A

sprin — Xs defined by this exact sequence commutes with the mutations p, on A,

Sprin

and X, yielding a morphism p : Apyn — A. Similarly, the Tno action on A yields a Tio

Sprin
action on Apn. The quotient Apin/Tne is the X-variety. The map 7* induces the projection
7 Aprin — Tar. Let Ay := w7 1(¢). Then the fiber A., where e € Ty is the identity element, is the

A-variety.

Cluster scattering diagram construction

To construct a cluster scattering diagram, we begin with a choice of fixed data I" and initial seed
data s and let k be a field of characteristic zero. Let 0 C Mg be a strictly convex top-dimensional
cone and define an associated monoid P := o N M° such that pi(e;) € J := P\P* for all i € L.
Here, P* = {0} is the group of units of P and J is a monomial ideal in the polynomial ring k[P].
Let ]k/[lg] denote the completion of k[P] with respect to J.

The construction also requires the assumption that p7 : Ny — M° is an injective map. It’s
important to note that this assumption does not hold for all choices of fixed data, but does hold
for fixed data corresponding to the principal coefficient case. Because arbitrary cluster algebras
can be considered as specializations of the principal coefficient case, it’s sufficient for the injectivity

assumption to hold for that case.
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Set

N+ = Ns+ = { Z a;e;

iequ

a; EO,Zai>O}

and choose a linear function d : N — Z such that d(n) > 0 forn € N*.

—

Definition 2.3.8. (Definition 1.4 of [/1]) A wall in My is a pair (0, f5) € (N1, K[P]) such that for

some primitive ng € N1,
1. fhe ]k/[F] has the form 1+ Zj‘;l c;27P1(0) with ¢; € k
2. 0 Cng C Mg is a conver rational polyhedral cone with dimension rank M — 1.

We refer to 9 C Mg as the support of the wall (9, g5)-

—

Let m denote the ideal in k[P] which consists of formal power series with constant term zero.

Definition 2.3.9 (Definition 1.6 of [11]). A scattering diagram @ for NT and s is a set of walls
{(d, fo)} such that for every degree k > 0, there are a finite number of walls (0, fo) € D with fo # 1

mod mFt1,

For a scattering diagram D,

Supp(®) = | o,

(<)

Sing(D) := (U 80) U U 01 N0y

0ED 01,00€D
dim(21Md2)=n—2
are defined as the support and singular locus of the scattering diagram. When @ is finite, its support
is a finite polyhedral cone complex. A (n — 2)-dimensional cell of this complex is referred to as a
joint. In this case, Sing(D) is simply the union of the set of all joints of ®. A wall 0 C ng is called
incoming if p(ng) € 0. Otherwise, 0 is called outgoing.

Each wall 9 € © has an associated wall-crossing automorphism.
Definition 2.3.10 (Definition 1.2 of [11]). Forng € N, let mg := pj(no) and f = 14+ o, cpztmo.
Then py € k[P] denotes the automorphism
pr(zm) = 2" fimom)
where n(, generates the monoid R>qng N N°.

These wall-crossing automorphisms can be composed in order to compute automorphisms asso-
ciated to paths on the scattering diagram that pass through multiple walls. Such compositions are

called path-ordered products.

Definition 2.3.11. Let v : [0,1] — Mg\Sing(D) be a smooth immersion which crosses walls trans-
versely and whose endpoints aren’t in the support of ®. Let 0 < t1 <ty <--- <ts; <1 be a sequence
such that at time t; the path v crosses the wall 9; such that fi # 1 mod M**1. Definition 2.3.9
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ensures that this is a finite sequence. For each i € {1,...,s}, set ¢ := —sgn({n;,7' (t;))) where
n; € NT is the primitive vector normal to 0;. For each degree k > 0, define
k. s €
Pyo =Ry, O oby
where pg,, s defined as in Definition 2.3.10. Then,
= 1i k.
Py = 0 Pyo
We refer to py» as a path-ordered product.

A scattering diagram © is consistent if p, » depends only on the endpoints of v. Two scattering
diagrams, © and ©’, are considered equivalent if p, 5 = p. o/ for all paths v for which both path-
ordered products are defined.

Gross, Hacking, Keel, and Kontsevich consider a particular scattering diagram, referred to as

the cluster scattering diagram. This diagram is defined by the fixed and torus seed data as follows.

Definition 2.3.12. Given a set of fized data T and torus seed s, let v; = pi(e;) for all i € I The

initial scattering diagram ®,, s is defined as

Dins = {(ef, 1+ 2") 14 € Ly}

0 1
Example 2.3.13. Consider the ordinary cluster algebra A (x,y, l 01) with seed data

s = ((1,0),(0,1)). This algebra has initial scattering diagram
D= {(00514:00) (w01 200,

which can be drawn as

’ ~ fDl = 1 + Z(_lao)
T L— D Jo, =1+ 201

Figure 2.3: The initial cluster scattering diagram for an ordinary cluster algebra of type A2, with a
loop v that can be used to check for consistency.
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We can see that ©;, s 15 not consistent by computing p%@m,s(z(ovl)) as:

002, 0 (| +Z(_lyo))<<o,1>,<oﬁl>>
L0.1)
1+ z(-1.0)
(0,1) (1 n 2(071))«0’1)7(1»0»
1+ 2(-10) (1 4 20D){7HO(L0)
L0.1)
1+ 25
200 (1 4 20D)
11200 1 (10
20D (14 Z(_1,o))<(0»1)7(0,1)> (1 + 20D (14 z(—1,o))<(071),((h1)>)
1+ 201 (1 + 2(71,0))«0"1)’(0’1)) + 2(-1,0)
20D (14 210) (14 20D (1 4 2(=10)))
1420 (14 2(=1.0) 4 2(=1,0))
200 (14 20 4 4(-1D)

AN

1+ 20,1
20D (14 200) ODEEO (14 01 421D (14 500 (TN
’—> 1+ 201
20 (1 4 20 4 51D (1 4 zOD))
14 201
200 (14 20D) (1 4 2(-1)
14 2(0,1)

= (01 (1 + z(_l’l))

In a consistent diagram, we would expect that p, o, . (2™) = 2™ for any loop . Whereas, here
Py Dins (Z(O’l)) # 2000 To make Dins consistent, we add the wall 03 = (Rzo(l, -1),1+ 2(71’1)).
Let ®g denote this new scattering diagram. Following the same loop v as above, our calculation now

has the additional step

S(0.1) (1 +Z<f1,1>) 23, (0,1) (1 +z(’1’1))<(0’1)’(_1’_1)> (

14 25D (1 + 2(1,1))«—171)7(—1,—1)))

(0,1)

VA

_ (-1,1)
RNy (1+210)

_ 0

and we therefore have p., o (2(0’1)) = 200 To finish verifying that this additional wall makes Dins
consistent, we would need to also check that p%@s(z(l’o)) = 2(10) a5 we need to verify consistency
for a complete set of basis vectors of Mg ~ R2. The computation is omitted from this example,
however, because it is very similar to the computation for pmgs(z(o’l)).

(2(0,1)). In

cluster scattering diagrams with more than one outgoing wall, it is difficult to determine the support

Here, the necessary wall-crossing automorphism can be seen by inspection of p, o

in,s

and associated wall-crossing automorphisms of those walls by inspection. Instead, there is a simple
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algorithm to produce s from D, s which was introduced in two dimensions by Kontsevich and

Soibelman [/7] and then extended to arbitrary dimension by Gross and Siebert [/0].
The following theorems are two of the major results of [11].

Theorem 2.3.14. (Theorem 1.12 of [/1]) There is a scattering diagram Ds such that
1. D¢ is consistent
2. Ds D Dings
3. Ds\Din,s consists of only outgoing walls

The diagram D is unique up to equivalence.

Theorem 2.3.15 (Theorem 1.13 of [11]). The scattering diagram Ds is equivalent to a scattering
diagram whose walls (0, f5) all have wall-crossing automorphisms of the form fo = (1 + 2™)¢ for
some m = p*(n), n € Nt, and positive integer c. In particular, all the nonzero coefficients of fy are

positive integers.

To illustrate Theorem 2.3.14, we can briefly return to the previous example.

0 1
Example 2.3.16. Consider the ordinary cluster algebra A (x,y, l ) 01) with torus seed data

s = ((1,0),(0,1)). The initial scattering diagram, ®ns, was shown in Example 2.3.13. A cluster

scattering diagram ®g which meets the conditions of Theorem 2.3.14 is shown below:

02
f01 =1+ 2(71)0)

sz =1+ Z(O,l)
01 fas =1 + 2(71’1)

03

Figure 2.4: A consistent cluster scattering diagram for an ordinary cluster algebra of type A2.

To see that ©s meets the conditions of Theorem 2.3.14, observe that Ds D Dins, that Ds\Din s
consists of a single outgoing wall, and that the consistency of Ds was explicitly verified in Exam-
ple 2.3.183.

Mutation Invariance

Recall that an ordinary cluster algebra can be equivalently specified by any possible choice of initial
cluster - there is no particular canonical choice. In the language of scattering diagrams, this means
there should be no special choice of torus seed data. If two torus seeds, s and s’ are mutation

equivalent, we should therefore expect that the corresponding cluster scattering diagrams ®g and
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Dy are also equivalent. This expectation reflects the fact that ®g and D encode information about
the same ordinary cluster algebra.
In order to make the notion of mutation invariance precise, we must define the following half-

spaces and piecewise linear transformation:

Definition 2.3.17 (Definition 1.22 of [11]). For k € I, define

Hi+ :={m € Mg : {ex,m) > 0},
Hy— :={m € Mg : {ex, m) < 0}.

The piecewise linear transformation Ty : M° — M° is defined as

m + vg(dger,m) m € Hy 4
Tk(m) =
m m € Hy,—

The shorthand notation Ty, — and Ty 4 is somelimes used to refer to T in the respective regions
Hy,— and Hy 4.

Intuitively, the map T} gives us a way to “mutate” cluster scattering diagrams. By applying the

map T}, to Ds, we obtain a new cluster scattering diagram T} (Ds) via the following algorithm:
1. The wall 0, = (ef, 1+ 2*) is replaced by 0}, := (ei, 1 + z7V¢),

2. For each wall (0, f5) € Ds\{0x}, there are either one or two walls in T;(®s). The potential
walls are
(T (®@NHi,—), Tk~ (f5)) and (Ti(® N Hi1), Th,+(f2)),

where T, 1 (f>) denotes the formal power series obtained by applying T + to each exponent in
fo. The first wall is dropped if dim(?) N Hy,— < rank(M) — 1 and the second wall is dropped
if dim(®) N Hg,+ < rank(M) — 1.

The following theorem justifies why we should think of the action of T} as mutation of the cluster

scattering diagram.

Theorem 2.3.18 (Theorem 1.24 of [11]). If the injectivity assumption holds, then Ty(Ds) is a

consistent scattering diagram and the diagrams D, ) and Ty,(Ds) are equivalent.

Applying Theorem 2.3.18 multiple times gives the equivalence of T, o--- 0Ty, (Ds) and Dy
where s and s’ are related by the sequence of mutations ug, ..., g, i.e. 8" = g, 0+ 0 g, (s).
Chamber Structure

The map T}, also gives rise to a chamber structure on the cluster scattering diagram ®g. Within

Ds, there are two important named chambers.

Definition 2.3.19. Given a torus seed s, we define CX C My as

CS:={m e Mg|(e;;m) >0 forie Ly},
Cy :={m € Mg|(e;,m) <0 forie I}
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When s is clear from context, we omit the subscript and simply write C*. We refer to CT as the

positive chamber and C~ as the negative chamber.

The chambers CF are closures of connected components of Mg\Supp(®s). Similarly, the cham-
bers ka( s) are closures of connected components of Mg\Supp(®,, s)). We can observe that this
means the chambers T} 1(ka(s)) are closures of connected components of Mr\Supp(®Ds). Further,
C+ and T, 1(Cffk(s)) share a codimension one face with support e;. This creates the following
chamber structure on a subset of Mg\Supp(Ds).

Let ¥ be a directed infinite rooted tree where each vertex has |I,¢| outgoing edges, labeled by the
elements of Is. Let v be the root of the tree and associate some initial torus seed s with mutation
class [s] to v. To indicate this choice of initial seed, we write T,. An edge with label k € I
corresponds to mutation in direction k. Hence, any simple path beginning at vertex v determines a
sequence of mutations according to the sequence of attached edge labels. These mutation sequences
determine an associated torus seed s for each vertex v.

Let w be an arbitrary distinct vertex of T5. Then the sequence of edges between v and w
determines a map T, = Ty, 0---0T), : Mg — Mg. By Theorem 2.3.18, we know that T,,(Ds) = Ds,,
and so the chambers Cf := T, *(C5 ) are closures of connected components of Mg\Supp(Ds).

Definition 2.3.20 (Definition 1.32 of [41]). Let AT denote the set of chambers {Ct} where w runs

over the vertices of Ts. The elements of AT are referred to as cluster chambers.

In fact, this chamber structure coincides with the Fock-Goncharov cluster complex [20]. For

further details, see Construction 1.30 and Section 2 of [41].

Theta basis

One of the major results of the work of Gross, Hacking, Keel, and Kontsevich [11] is the existence
of the theta basis, a canonical basis for ordinary cluster algebras. The theta functions which form

this basis can be defined on scattering diagrams via combinatorial objects called broken lines.

Definition 2.3.21 (Definition 3.1 of [11]). Let D be a scattering diagram, mg be a point in M°\{0},
and @ be a point in Mg\ Supp(®). A broken line with endpoint @Q and initial slope mg is a piecewise
linear path v : (—o00,0] — Mg\Sing(D) with finitely many domains of linearity. Each domain of
linearity, L, has an associated monomial cpz™= € K[MP°] such that the following conditions are
satisfied:

1.~4(0) =@

2. If L is the first domain of linearity of v, then cpz™E = 2o,

3. Within the domain of linearity L, the broken line has slope —my, - in other words, v'(t) = —my,

on L.

4. Let t be a point at which v is non-linear and is passing from one domain of linearity, L, to
another, L', and define
D, ={(0, /) €D :~(t) €d.}

Then the power series Poleise @ contains the term cpz™L’ .
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Broken lines allow for a beautifully concrete and combinatorial definition of a theta function:

Definition 2.3.22 (Definition 3.3 of [11]). Suppose © is a scattering diagram and consider points
mo € M°\{0} and Q € Mg\ Supp(D). For a broken line v with initial exponent mqy and endpoint @,
we define I(v) = mg, b(y) = Q, and Mono(y) = ¢(7)zF ™) where Mono(v) is the monomial attached
to the final domain of linearity of v. We then define

VQmo 1= Z Mono(~)
v

where the summation ranges over all broken lines ~ with initial exponent my and endpoint Q. When

mo = 0, then for any endpoint Q) we define Vg o = 1.

One of the key steps in proving that the theta functions form a basis is to show that the cluster
variables and cluster monomials, i.e. products of cluster variables from a particular cluster, are
themselves theta functions. Although we will not reproduce the full proof, we will highlight several
important intermediate properties and results. For the full set of definitions and technical details of
the proof, we refer the reader to Sections 3, 4, 6, and 7 of [11].

One important property is that theta functions with the same initial slope mg but with distinct

endpoints Q and @’ are related by a path-ordered product.

Theorem 2.3.23 (Theorem 3.5 of [11]). Let ® be a consistent scattering diagram, mo be a point
in M\{0}, and consider a pair of points Q and Q' in Mg\Supp(D) such that Q and Q' are linearly
independent over Q. Then for any path v with endpoints Q and Q" for which p o is defined, we

have
Q' mo = Py, (VQ,mo)

Another important property is the existence of a bijection between broken lines in the diagram
Ds and in the diagram D, ). Because the diagrams Ds and D, () correspond to the same cluster
algebra, this is a clearly desirable property if the theta functions are going to form a basis. That is,
any choice of initial cluster (i.e., cluster corresponding to the positive chamber) should produce the

same basis, up to isomorphism.

Proposition 2.3.24 (Proposition 3.6 of [11]). The transformation T} gives a bijection between
broken lines with endpoint Q and initial slope mg in Ds and broken lines with endpoint Ty, (Q) and

initial slope T (mo) in D, (s). In particular,

Tit (93mo) Q€ Hey

19;kés) —
' Tk’>7 ( 22’77740) Q € Hkv*

Q),Tr(mo)

where the superscript indicates which scattering diagram is used to define the theta function and

T+ acts linearly on the exponents in g, ,, .

Although Proposition 2.3.24 gives a bijection between cluster scattering diagrams generated by
seeds that are related by a single mutation, repeated applications of the proposition yield such
bijections for any pair of cluster scattering diagrams which correspond to the same cluster algebra.

Finally, the theta functions have structure constants with an elegant combinatorial definition in

terms of pairs of broken lines. Let p1,p2, and ¢ be points in MSO and z be a generic point in Mﬁ,s-
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There are finitely many pairs of broken lines +1, 2 such that 7; has initial slope p;, both ~; and =9

have endpoint z, and the sum of the slopes of their final domains of linearity is ¢q. Define

az(p1,p2,q) = Z c(m)e(r2)-

(71,72)
I(v:)=pi,b(vi)=2
F(v1)+F(v2)=q

Products of theta functions can then be written as

19171 '191)2 = Z az(q)(p17p27Q)79q-
qus

Hence, the theta functions form a legitimate vector space basis.

Moving from proving results about theta functions on scattering diagrams to proving results
about the ordinary cluster algebras requires formalizing the connection between cluster scattering
diagrams and cluster varieties. To do so, Gross, Hacking, Keel, and Kontsevich construct a space
Ascat from the cluster scattering diagram ®g by attaching a copy of the torus T to each cluster
chamber of ®g and then gluing these copies according to the birational maps given by the wall-
crossing automorphisms. Up to isomorphism, this space is independent of the choice of torus seed
s within a given mutation class. Gross, Hacking, Keel, and Kontsevich then show that the space
Ascat 18 isomorphic to the cluster variety As.

Once this identification is made, it’s then possible to formalize the relationship between the theta
functions and cluster monomials. Consider a set of fixed data I' and torus seeds s, s, = (€], ..., €}).
In this geometric context, a cluster monomial on s,, is defined as a monomial on Tno ., C A of the
form 2™ where m = Y, a; f with all a; non-negative. Such monomials extend to regular functions
on A. A cluster monomial on A is then defined as a regular function which is a cluster monomial
on some torus seed of A. The following theorem identifies the cluster monomials on A with theta

functions.

Theorem 2.3.25 (Theorem 4.9 of [11]). Let T be a set of fivred data which satisfies the Injectivity
Assumption and s be a choice of torus seed. Consider a point Q € CJ and m € o N M° for some
chamber o € Af. Then 9¢q,m is a positive Laurent polynomial which expresses a cluster monomial

of A in terms of the initial torus seed s. Further, all cluster monomials can be expressed in this way.

In Section 7, Gross, Hacking, Keel, and Kontsevich define the notions of middle and upper cluster
algebras in order to prove that the theta functions form a basis for the ordinary cluster algebra.
Their proof works primarily with Apin and is then extended to A and X by using the fact that
these varieties appear as a fiber and quotient, respectively, of Apyin.

The middle cluster algebra associated to Apyiy is defined as

mid (Aprin) = Pk - 9,

qeO®

where © C AY;,(Z") is the collection of mg such that for any generic point Q € o € AT, there are
finitely many broken lines with initial slope my and endpoint Q). By design, the structure constants

a(p1, p2, ¢) make mid (Apyin) into an associative and commutative k[V]-algebra.
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The upper cluster algebra associated to Ap,in is defined as
up (-Aprin) = F(Aprinv O.Apr;n)v

and the ordinary cluster algebra ord(Apin) is the subalgebra of up (Apwn) generated by the set of
global monomials on Apyin, i.e. the set of regular functions on Ap,in which restrict to a character on
some torus in its atlas.

Gross, Hacking, Keel, and Kontsevich show there are canonical inclusions
ord (Aprin) C mid (Aprin) C up (Aprin) ,

and that therefore the theta functions form a basis for the ordinary cluster algebra when the ordinary

cluster algebra and upper cluster algebra coincide.

2.4 Orbifolds

An orbifold is a generalization of a manifold where the local structure is instead given by quotients
of open subsets of R™ under finite group actions. Orbifolds were first introduced as V-manifolds
by Satake in 1956, in the context of modular and automorphic forms [69]. In the 1970s, Thurston
subsequently introduced the term orbifold when studying the geometry of 3-manifolds [72].

In the context of cluster algebras from orbifolds, it is simplest to think of orbifolds as surfaces
with isolated singular points, referred to as orbifold points. An orbifold point of order p has an
associated constant A, = 2cos(m/p). In our context, A, arises geometrically from the length of
diagonals in an equilateral p-gon which appears in a particular covering space called the p-fold cover
[13, 48]. In the literature, it also appears in the work of Holm and Jgrgensen on non-integral frieze

patterns from polygon dissections [44].

Definition 2.4.1. An arc v on an orbifold O = (S,M,Q) is a non-self-intersecting curve in S
with endpoints in M that is otherwise disjoint from M, @, and 00O. Curves that are contractible
onto OO are not considered arcs. Arcs are considered up to isotopy class. An arc which cuts out an
unpunctured monogon with exactly one point in Q is called a pending arc, while all other arcs are

called standard arcs.

There are two common ways to draw pending arcs, as shown below.

Figure 2.5: Two equivalent ways to draw pending arcs on a triangulated orbifold.

Within this thesis, we draw pending arcs as arcs cutting out unpunctured monogons that contain
exactly one orbifold point, as shown on the right hand side, as this is more geometrically suggestive.

In particular, this makes it clear that if a pending arc crosses another arc, it necessarily does so an
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even number of times. We sometimes refer to a pending arc as being incident to the orbifold point
it encloses, in the spirit of the left hand side.
Pending arcs appear in two types of triangles: bigons with one orbifold point and monogons with

two orbifold points.

Figure 2.6: Types of triangles that contain pending arcs.

While in many pictures it appears that the pending arc is in a bigon, we can identify the two
vertices to recover a monogon with two orbifold points. There is one special case - a sphere with one
marked point and three orbifold points, which has exactly one triangle made up of three pending
arcs, as in Table 3.5 of [17]. Our construction works in this special case as well.

We also consider generalized arcs, which may contain self-intersections. Allowing self-intersections
introduces the possibility of arcs winding around orbifold points. By convention, we consider coun-
terclockwise winding to be positive and clockwise winding to be negative. A generalized arc exhibits
modular behavior when winding around an orbifold point. A winding arc can have up to p — 1
self-intersections due to winding around an orbifold point of order p. Once the number of self-
intersections reaches p, the winding arc is isotopic to an arc with no self-intersections - i.e., one that
does not wind around the orbifold point at all. If a winding arc has k > p self-intersections, then it
is isotopic to an arc with £ mod p self-intersections and L%J contractible kinks. The below diagram

shows examples of possible winding behavior around an orbifold point of order 4.

Q

Figure 2.7: An example of the possible distinct types of winding behavior around an orbifold point
of order p = 4.

For an orbifold point of order p, winding counter-clockwise with k self-intersections is isotopic to
winding clockwise with (p — 1) — k self-intersections. For convenience, we use the phrasing “winding
k times” to refer to winding with k self-intersections. So, for example, “winding 0 times” simply
refers to crossing a pending arc twice with no self-intersections occurring between those crossings.

It is also possible to have closed curves with no self-intersections which we refer to as loops. A
non-contractible loop is often called an essential loop.

Triangulated orbifolds provide geometric realizations for some ordinary cluster algebras which
cannot be realized as triangulated surfaces. This realization is due to Felikson, Shapiro, and Tu-
markin, who describe a correspondence between skew-symmetrizable ordinary cluster algebras and
triangulated orbifolds [18]. In a later paper, Felikson and Tumarkin generalize the bracelet, bangle,

and band bases to ordinary cluster algebras from unpunctured orbifolds with at least two marked
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points on the boundary [19]. Canakgi and Tumarkin later showed that the assumption about the
number of marked points on the boundary can be removed and extended the snake graph and band
graph constructions to triangulated orbifolds which correspond to ordinary cluster algebras [9].
Triangulations of unpunctured orbifolds can also provide geometric realizations for some skew-
symmetrizable quantum cluster algebras. Huang demonstrates this realization and uses it to give a

proof of positivity for such quantum cluster algebras [43].

Covering spaces

When working with triangulated orbifolds, it is often useful to consider some covering space. Which
particular covering space is most useful varies depending on the application, but covering spaces
that appear in the literature include the associated orbifolds of Felikson, Shapiro, and Tumarkin [17]

and the polygonal p-fold covering of an orbifold with a single orbifold point of order p [13, 48].

(%
V2 2 V1 U3 U2
U1
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V3 Vg
V12
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U3 Vg 5
v
vg V6 11
Vs v
vy 10
U1 Vg U7 vy Vg

Figure 2.8: An example of a triangulated orbifold with a single orbifold point of order p (left) and
the p-fold covering spaces for p = 3 (middle) and p = 4 (right).

Laminations
In Section 6 of [17], Felikson, Shapiro, and Tumarkin extend Fomin and Thurston’s work on lami-
nations [23] in order to track coefficients for cluster algebras from orbifolds. Although they define

laminations on an object called an associated orbifold and we will work with laminations on the orig-
inal orbifold, much of their work will transfer to our setting. We use their definition of a lamination

on an orbifold.

Definition 2.4.2 (Definition 6.1 of [17]). Let O = (S,M,Q) be an unpunctured orbifold. An
integral unbounded measured lamination (henceforth, just a lamination) on O is a finite collection

of non-self-intersecting and pairwise non-intersecting curves on O such that:

e FEach curve is either a closed curve or a mon-closed curve for which each end is either an

unmarked point on the boundary of O or an orbifold point in Q.
e No curve bounds an unpunctured disk or a disk containing a unique point of M U Q.

e No curve with both endpoints on the boundary of O is isotopic to a portion of the boundary

containing either no or one marked point(s).

e No two curves begin at the same orbifold point.
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For the associated shear coordinates, however, we adopt a modified definition. The difference in
our definition stems from the fact that we draw pending loops as arcs around orbifold points, rather

than as having one endpoint at an orbifold point.

Definition 2.4.3. Let O be an orbifold with triangulation T and L be a lamination on O. For each
arc v € T, the shear coordinate of L with respect to T is

by(T,L) = > by(T, L;)

where the summation runs over all individual curves in L. The shear coordinates b, (T, L;) are

defined as:
+1 -1 +1 -1

To understand why these are the natural shear coordinate definitions for pending arcs, consider
the corresponding view in the covering space. A pending curve L; for which b, (T, L;) = +1 appears

in the covering space as

Figure 2.9: The image in the p-fold covering space of a pending curve L; with b, (T, L;) = +1.

Notice that each copy of the lamination L; crosses a copy of the pending arc twice. One of these
crossings contributes +1 to the shear coordinate and the other crossing contributes 0, for a net shear
coordinate of +1. The picture for b, (7T, L;) = —1 is analogous.

This extended shear coordinate definition then allows us to apply the usual definition of an
elementary lamination to both standard and pending arcs. Recall that if 7; is a standard arc, the
corresponding elementary lamination L; can be found by shifting its endpoints clockwise. Similarly,
if 7; is a pending arc, then L; can be found by shifting the singular endpoint clockwise. Examples

of both are shown below.
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Figure 2.10: Examples of the elementary laminations corresponding to standard and pending arcs

Other types of crossings contribute 0 to the shear coordinate of the pending arc. If we look at
these crossings in the cover, they resemble crossings in standard triangulations that contribute 0 to

the shear coordinates.

Figure 2.11: Examples of crossings which contribute 0 to the shear coordinate of a lamination.

However, these new elementary laminations associated to pending arcs will contribute 2 to a
standard arc when they cross in a meaningful way. This contribution of 2 is also seen in generalized

mutation rules.

0 1 -1 0 -1 1
-1 0 1 1 0 -1
1 -1 0 . -1 1 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 2 0 -1

Figure 2.12: An example of how flipping a pending arc impacts the shear coordinates of a lamination.
The left-hand side of the diagram is an example of an elementary lamination from a triangulated
orbifold.

On the lefthand side of Figure 2.12, we have the elementary lamination associated to this trian-

gulation. When we flip the pending arc, then the lamination associated to the pending arc intersects

a non-trivially twice. This matches the result of mutating (with generalized mutation) the extended
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B-matrix associated to the left-hand picture at the index representing the pending arc. The third

column and row correspond to the pending arc.

Remark 2.4.4. The mutation of the extended portion of the B-matriz resembles the result of mu-

tating at an orbifold point of weight 2 in the sense of Felikson, Shapiro, and Tumarkin [18]. While

1
27

closely resemble those from orbifold points of weight 2. This seems to follow from the tropical duality

the dynamics of our x-variables mimic those of orbifold points of weight the y-variables more

between c-vectors and g-vectors, given by Nakanishi and Zelevinsky in [65].

2.5 Generalized cluster algebras

This thesis is concerned with a particular generalization of ordinary cluster algebras which is due
to Chekhov and Shapiro [13]. In a generalized cluster algebra, the hallmark binomial exchange
relations of an ordinary cluster algebra are allowed to instead be potentially longer polynomials of
a particular form. Such algebras are referred to in the literature both as Chekhov-Shapiro algebras
and as generalized cluster algebras. We will exclusively use the later term. In this section, we will
use the wide convention for exchange matrices.

To formally define generalized cluster algebras, we begin with the notion of a generalized cluster
seed. Recall that (P, 4, ) is an arbitrary semifield.

Definition 2.5.1. A labeled generalized cluster seed is a quintuple ¥ = (x,y, B, R,a) such that
e x=(x1,...,%,) is a free generating set for F,
e vy is an n-tuple with elements in P,
e B = [b;;] is an n x n skew-symmetrizable matriz with entries in 7Z,

e R is an n xn diagonal matriz with positive integer entries whose i-th diagonal entry is denoted

by 74,

o and a = (a;j)icn],je[r.—1] 5 a collection of formal variables, typically specialized to elements
of P.

We refer to x = (1,...,xy,) as the cluster of X, y = (y1,...,yn) as the coefficient tuple, B as the
generalized exchange matrix, R as the exchange degree matriz, and a as the exchange coefficient
collection. We refer to the elements x1,...,x, as the cluster variables of ¥ and to the elements

Y1,---,Yn aS the coefficient variables of 3.

Together, the exchange degree matrix R and the exchange coefficient collection a determine a

set of exchange polynomials p1, ..., pn, where
pilw) =1+a;1u+---+ aim_lu”*l +u" € ZPu, i, - - 5 Qipi—1]-

The structure of the exchange relations for mutation in direction k are determined by the k-th

exchange polynomial.

35



Definition 2.5.2. For a generalized cluster seed 3 = (x,y, B, R, a), generalized mutation in direc-

tion k, u,(:), 18 defined by the following exchange relations:

b/ _bij Z:kOT]:k
ij = .
bij + 7 ([=bik)+bkj + biklbrj]+) 45 # K
,Juet i=k
Yi = i)+ \ " Tk j —bie
Yi (yk ) ( =0 ak,jyk) i £k
-1 n [=brs)+ \ ™ ko ak, ;08 -
= Tk (szl 7 ) GBJJTQZ%,J‘?JS 1=k

Ak,j = Qk,r—j

where ||+ = max(-,0) and
@‘ =Y H 902]

Remark 2.5.3. The mutation relation for bgj in Definition 2.5.2 is for the generalized exchange

matriz, B. This is equivalent to writing that the matric BR mutates according to the relation

(br)i; = (br)ij 4 ([=(0r)ig] + (b7)kj + (br)ir[(br)kz]1)-

At the matrix level, this reflects the fact that mutation commutes with right multiplication by R: that
is, pp(BR) = ,u,(:)(B)R, where py, denotes ordinary matrix mutation and ,u,(:) denotes the generalized

matriz mutation given in Definition 2.5.2.

Remark 2.5.4. In their original paper, Chekhov and Shapiro use matrices B and 3 in their exchange
relations [13]. Their § matriz is our generalized exchange matriz, B, and their B matriz is our
BR matriz. Note that if the matriz B is skew-symmetrizable, then the matriz BR is also skew-

symmetrizable.

As in the ordinary case, defining a generalized cluster algebra first requires us to establish the

notion of a generalized cluster pattern.

Definition 2.5.5. Let %, be the n-reqular tree whose edges are labeled by 1,...,n such that each
edge incident to a given vertex has a different label. A generalized cluster pattern is an assignment
of labeled generalized cluster seeds ¥y = (x,y, B, R,a) to each vertex t € T,, such that seeds assigned
to adjacent vertices t —t', whose mutually incident edge has label k, are related by generalized cluster

seed mutation in direction k. We use the notation

xl;t; cee 7xn;t)7

(
Yt = (yl;ta v 7yn;t)a
[



In a slight abuse of notation, we will use ¥,, to denote both generalized cluster patterns and or-
dinary cluster patterns. Because it’s clear from context whether we mean an ordinary or generalized

cluster pattern, this should not create confusion.

Definition 2.5.6. For a fized choice of generalized cluster pattern %, let

X = U Xt = {xi;t 1t e ‘In,’é S [n]}
teT,

be the union of the clusters of each generalized cluster seed in the generalized cluster pattern. We
refer to the elements x;y € X as cluster variables. The generalized cluster algebra A associated
to the generalized cluster pattern is the ZP[a; ;]-subalgebra of F generated by the cluster variables,
A = ZPla; ;][X]. We often write A = A(x,y,B,R,a) to denote the generalized cluster algebra

associated to the generalized cluster pattern containing the seed (x,y, B, R,a).

Remark 2.5.7. If all of the formal variables {a;s} are specialized to elements of P, then the

generalized cluster algebra is simply a ZP-subalgebra of F.

This does create some potential for notational confusion because it is also common to use A
when referring to the A-variety. It is typically clear from context whether A refers to a (generalized)
cluster algebra or (generalized) cluster variety and therefore we use this notation in order to be
consistent with the literature.

Finally, we can give a statement of the Laurent phenomenon for generalized cluster algebras.

Theorem 2.5.8 (Theorem 2.5 of [13]). Let A = A(x,y, B, R,a) be an arbitrary generalized cluster
algebra. Its cluster variables can be expressed in terms of any cluster of A as Laurent polynomials
with coefficients in ZP[a; ;).

Note that in the above theorem, the Laurent polynomial coefficients are in ZP. Further, Chekhov
and Shapiro prove that for a particular subclass of generalized cluster algebras, these coefficients are

strictly non-negative:

Theorem 2.5.9 (c.f. Section 5 of [13]). Let A be any generalized cluster algebra whose exchange
polynomials are all reciprocal and of degree at most two. Then its cluster variables can be expressed

in terms of any cluster of A as Laurent polynomials with non-negative coefficients in ZP[a; ;].

Our generalized snake graph construction gives an alternate explicit combinatorial proof of this
theorem. Positivity remains conjectural, however, for arbitrary generalized cluster algebras.
We will consider two subclasses of generalized cluster algebras: reciprocal generalized cluster

algebras and generalized cluster algebras from orbifolds.

Reciprocal generalized cluster algebras

When we construct generalized cluster scattering diagrams in Section 4, we will work in the same
specialized setting as [61] and impose the additional requirement that a; ; = a;,,—; - i.e., that all
exchange polynomials are reciprocal polynomials. We refer to generalized cluster algebras whose
exchange polynomials are all reciprocal polynomials as reciprocal generalized cluster algebras. Note

that because reciprocal polynomials are fixed under the generalized mutation ,ug") of Definition 2.5.2,
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all exchange polynomials of reciprocal generalized cluster algebras are fixed under mutation. Hence,
the tuple a = (aj,...,a,) is the same in every seed associated to a given reciprocal generalized
cluster algebra. Restricting our attention to reciprocal generalized cluster algebras allows us to
focus on a more tractable subclass of generalized cluster algebras.

Nakanishi has shown that many useful structural properties of ordinary cluster algebras still hold
in this specialized setting [61]. In particular, he gives definitions of c-vectors, F-polynomials, and
g-vectors for reciprocal generalized cluster algebras.

Before stating these definitions, we will need a notion of a generalized cluster pattern with
principal coefficients. As such, we will temporarily regard the coefficients y = (y1, ..., y,) as formal
variables. Let Trop(y,a) denote the tropical semifield of y and a. This is the multiplicative abelian

group freely generated by y and a, where the tropical sum & is defined as

d; dis ei eis | _ min(d;,e;) min(d; s,ei,5)
[[v[Tas | o | 1T Tt | =11 i’ :
[ 7,8 [ 7,8 7

i,S
where d;, d; s, e;, and ¢; s are integers. Then,

Definition 2.5.10 (Definition 3.1 of [61]). A generalized cluster pattern with principal coefficients
is a generalized cluster pattern in P = Trop(y,a) with initial seed (x,y, B, R,a), where x, B, and R

are arbitrary.

We can then extend the notions of c-vectors, F-polynomials, and g-vectors to generalized cluster
patterns with principal coefficients. Let Qg be the universal semifield of y and a, consisting of

rational functions in y and a which have subtraction-free expressions. [26]

Definition 2.5.11 (Definitions 3.2 and 3.4 of [61]). Consider the generalized cluster pattern A
associated to the initial seed ¥ = (x,y, B, R,a). By the Laurent phenomenon, each z-variable !
of A can be expressed as X}(x,y,a) € ZP[x*!] where P = Trop(y,a). Each y-variable y¢ of A can
be expressed as a subtraction-free rational function Y (y,a) € Qy(y,a). We refer to the X! as

X-functions and to the Y;! as Y-functions.

For any generalized cluster pattern in P with a given initial exchange matrix, we have y! =
Y} |p(y,a) Where the right hand side is understood to be the evaluation of Y!(y,a) in P [61]. Moreover,
each y! € Trop(y,a) is a Laurent monomial in y with coefficient 1 [61]. Together, these two facts

allow us to define the following useful set of matrices and vectors.

Definition 2.5.12 (Definition 3.7 of [61]). Consider the generalized cluster pattern with principal

coefficients A. Fach y-variable y;’ of A can be expressed as

n t
t _ yt _ Ceij
Y; = }/J ‘Trop(y,a)(y,a) - Hyj ’
i=1

We refer to the resulting matriz C* = [c};]7,_, as the C-matrix of A and to its column vectors

s = [c};]i2y as the c-vectors of A.

Analogously to the ordinary case, Nakanishi gives the following definition for F'-polynomials.
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Definition 2.5.13 (Definition 3.11 of [61]). Let A be a generalized cluster pattern with principal
coefficients. For each t € T, and i € [n|, the specialization of the X-function X!(x,y,a) of A to
x1 =+ =1z, =1 defines a polynomial F}(y,a). We refer to these polynomials as the F-polynomials
of A.

Defining g-vectors requires that we first establish a Z"-grading on Z[x*!,y,a]. Consider the
generalized cluster pattern with principal coefficients A associated to the initial seed (x,y, B, R, a).

Following the work of [26] for the ordinary case, Nakanishi [61] defines:
deg(z;) == ey,
deg(yi) := by,
deg(a;,s) :==0,

where e; denotes the i-th standard basis vector and b; = Y"1 | b;;e; is the j-th column of the initial

exchange matrix. Note that because ¢; = y; H?:1 x?j ’, we have

deg (9;) = deg(y:) + Y _ bjideg(z;) = —b; +b; =0

j=1

Another key property of this grading is that the X-functions are homogeneous with respect to

it [61]. Hence, the degree vector of each X! is well-defined.

Definition 2.5.14 (Definition 3.14 of [61]). Let A be the generalized cluster pattern with principal
coefficients associated to the initial seed (x,y,B,R,a). Then we can express the degree vector of

each X -function X} as
deg (X5) = >_gljer
i=1

We refer to the resulting matriz Gt = [gfj]ﬁjzl as the G-matrix of A and to its column vectors

9% = gi;]i=1 as the g-vectors of A.

Generalized cluster algebras from orbifolds

Recall that a subset of ordinary cluster algebras have a geometric realization in terms of triangulated
surfaces. Analogously, there is a subset of generalized cluster algebras which have a geometric
realization in terms of triangulated orbifolds. In such generalized cluster algebras, the exchange
polynomials are either binomials of the form z; = 1 4+ u, when the cluster variable x; is associated
to a standard arc, or trinomials of the form z; = 1+ A\yu + u?, when z; is associated to a pending
arc incident to an orbifold point of order p.

Triangulated orbifolds first arose in the context of cluster algebras when Felikson, Shapiro,
and Tumarkin [17, 18] studied unfoldings of skew-symmetrizable ordinary cluster algebras. Later,
Chekhov and Shapiro [13] showed that mutations for orbifold points of order p > 2 are given by
trinomial exchange relations with reciprocal coefficients (when p = 2, A, = 0 and the exchange
polynomial 1 + A\pyu + u? reduces to the binomial 1 4+ u). Chekhov and Shapiro also showed that
both the Laurent phenomenon and positivity hold for such generalized cluster algebras using argu-

ments similar to those given by Fomin and Zelevinsky [25, 27] for ordinary cluster algebras. Later,
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Labardini-Fragoso and Velasco [48] showed that the generalized cluster algebras associated to poly-
gons with a single orbifold point of order 3 are equivalent to Caldero-Chapoton algebras of quivers
with relations arising from this polygon.

When working with triangulated orbifolds, it is often useful to consider some covering space.
Which particular covering space is most useful varies depending on the application, but covering
spaces that appear in the literature include the associated orbifolds of Felikson, Shapiro, and Tu-
markin [17] and the polygonal p-fold covering of an orbifold with a single orbifold point of order p

[13, 48]. In Chapter 3, we will define and make extensive use of this covering space.

2.5.1 Companion algebras

Given a generalized cluster algebra, the associated companion algebras are a pair of ordinary cluster
algebras which encode the data of the generalized cluster algebra. Companion algebras were first
defined by Nakanishi [61] for reciprocal generalized cluster algebras which meet the normalization
condition that &7 qa;; = 1 for all i € [n]. In subsequent work by Nakanishi and Rupel [62], this
definition was extended to the more general subclass of reciprocal generalized cluster algebras which
A =Y

Recall that (P, ®) is an arbitrary semifield. Let QP denote the field of fractions of this semifield

and QP(x) = QP(x1,...,x,) denote the field of rational functions in the algebraically independent

meet the weaker power condition

variables z1,...,z,. In earlier sections we referred to QP(x) as F, but here it will be convenient to
write QP(x) since we will also want to discuss fields of rational functions in other sets of algebraically
independent variables.

Let A denote the generalized cluster algebra associated to the generalized cluster seed 3. We

can then state the definitions of the companion algebras as:

Definition 2.5.15 (See Section 4 of [62]). Let Fx = x'/* = (Fay,..., Fa,) := (gc}/“,. . ,a:i/r") and
Ly =y in QP(x'/*) The left companion algebra of A is the ordinary cluster algebra A C QP(x'/)
with seed (*x,%y, BR). Let Lcj, ng, and LFj denote the c-vectors, g-vectors, and F-polynomials
of LA.

Definition 2.5.16 (See Section 4 of [(2]). Let x = x and By = y* = (Byy,...,By,) =
(y1*,...,y"). The right companion algebra of A is the ordinary cluster algebra ®A C QP(x)
with seed (x,y", RB). Let ch, jo, and RFj denote the c-vectors, g-vectors, and F-polynomials of

RA.

Remark 2.5.17. Note that we use the wide convention for exchange matrices in this section, whereas
Nakanishi and Rupel use the tall convention [02]. As such, our definitions of the companion algebras
reverse the role of the matrices RB and BR. That is, our left companion algebra has exchange
matriz BR rather than RB and our right companion algebra has exchange matriz RB rather than
BR. This difference is purely notational and does not change the companion algebras associated to

a given generalized cluster algebra.

The c-vectors and g-vectors of a generalized cluster algebra and its companion algebras are
related by simple transformations. Although Nakanishi [61] originally proved these relationships
for the subclass of reciprocal generalized cluster algebras which meet the normalization condition,
Nakanishi and Rupel [62] subsequently showed that these relationships still hold in the more general

setting of reciprocal generalized cluster algebras which meet the weaker power condition.
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Lemma 2.5.18 (Propositions 3.9, 3.10, 3.16, 3.17 of [61] and Corollaries 4.1, 4.2 of [62]). Let A be
the generalized cluster algebra associated to the generalized cluster seed ¥ = (x,y, B, R,a). Let c;

and g; represent the c-vectors and g-vectors of A.

1. The c-vectors of A agree with the c-vectors of * A and are related to those of A wia the

transformation c; = [r;  cijr;].

2. The g-vectors of A agree with the g-vectors of ®A and are related to those of A via the

transformation 'g; = [rigijrjfl].

The F-polynomials of a generalized cluster algebra and its companion algebras are also related

by simple transformations. For i € [n] and j € {0,...,7;}, let aP™ := (aRijn) where aRijn = (’;)
Let Qgt(y) denote the set of rational functions in the variables y1, ..., y, which can be written in a

subtraction-free form.

Lemma 2.5.19 (Proposition 4.3, 4.6 of [62]). Let A be the generalized cluster algebra associated to
the generalized cluster seed ¥ = (x,y, B, R,a). Let F; represent the F-polynomials of A. For all
J € [n], the following equalities hold in Qg (y):

1_71j (y,7 abi’n) — LFJ (Ly) Tj
Fj(y,0) = "F; ("y)

In Section 4.12, we will discuss cluster scattering diagrams for companion algebras and show
that our definitions of the fixed and torus seed data for companion algebras satisfy these structural

relationships.
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Chapter 3

Generalized snake graphs

This chapter describes joint work with Esther Banaian, which appears in [2] and [3]. It is motivated

by, but does not use, unpublished work of Gleitz and Musiker [38].

3.1 Tiles

If v = 7; for 1 <14 < n (recall the final c—n arcs are boundary arcs), then G, is a single edge labeled
with 7;. Otherwise, v must cross at least one arc in T.

Let 7,,...,7;, be the set of internal arcs of 1" that v crosses, given a fixed orientation of . For
each standard arc 7;; that v crosses, we construct a square tile G; by taking the two triangles that
7i; borders and gluing them along 7;; such that either both either the same orientation relative to
O. We say that the square tile produced has relative orientation +1 if the orientation of its triangles
matches that of O and —1 otherwise. We denote this as rel(G;) = £1.

a b

b d a c
(% Pi
c d

Figure 3.1: Relative orientations of ordinary snake graph tiles.

Next, we consider the case when 7;; is a pending arc incident to an orbifold point of order p. If
7 is a generalized arc who shares an endpoint with 7;;, then it could be that v only crosses 7;; once.
In this case, j = 1 or j = k, and we use a square tile as before. However, the labels of some edges

will be given by normalized Chebyshev polynomials, Uy(x), evaluated at A\, = 2 cos(w/p).
Definition 3.1.1. We let Uy(x) denote the (-th normalized Chebyshev polynomial of the second
kind, for £ > —1. These are given by initial polynomials U_1(x) = 0,Up(x) = 1, and the recurrence,

Ue(z) = 2Up—1(x) — Up—a(x)

For instance, Uy (z) = x, Us(z) = 22 — 1, Us(2) = 2 — 22. These polynomials are normalized as
they can be recovered by evaluating the standard Chebyshev polynomials of the second kind at /2.
The following lemma verifies that, up to sign, these labels are independent of increasing or

decreasing the winding around an orbifold point by an integer multiple of its order.
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Lemma 3.1.2. Ewvaluations of these normalized Chebyshev polynomials at A, are periodic, in the
sense that Uyp(Ap) = —Ur(Np). In particular, Up_1(Np) = —=U_1(A,) = 0.

Lemma 3.1.2 can be readily proven using basic properties of Chebyshev polynomials. We see in
Lemmas 3.12.3 and 3.12.4 that our statistics are still well-defined up up to sign.

The edge labels of these tiles contain Up(\,) and Up_q1(Ap) where ¢ is the number of self-
intersections of « around the orbifold point. For concision, U, is used as shorthand for U,(\,)
throughout the paper. Moreover, o and 8 may be standard or pending arcs. If one of these arcs is
pending, then this is in fact a monogon enclosing two orbifold points.

A pending arc can wind either clockwise or counterclockwise around an orbifold point. Below,

we show the positive and negative orientations of tiles for each type of winding:

T2 Ta T2 Ta
Lo g T T
N N N N
Y U Y Y U Y
N N N N
> 11T p - - £ ) "
ngp \\'1 P \\'l P T Ug_lx,, \\’[ P \\'l P Tao
N g N N s N
N N N N
N — N N — N
+ . . + . .
U1, Uiz, Uz, Up_rz,

Figure 3.2: Tiles for winding pending arcs.

Above, each tile on the left has positive orientation and the tile on the right has negative orien-
tation. We can see this, for example, by comparing the relative orientation of edges labeled x5 and

T, with 7 and 7.

Remark 3.1.3. Musiker and Williams discuss a similar example in [59] with a puncture rather

than an orbifold point. We compare these cases in Section 3.1/.

In most cases, if v crosses a pending arc 7;, it crosses it twice consecutively, so that 7;, =, , or

Ti:

= Tisy- In this case, we introduce a hexagonal tile which accounts for both intersections. These

hexagonal tiles also will have edges labeled by Chebyshev polynomials evaluated at A, and we again
let ¢ be the number of self-intersections of v as it winds around the orbifold point. Because these
hexagonal tiles can be thought of as “containing” two square tiles, we assign them a tuple of signs.
A hexagonal tile has relative orientation (+, —) if the South-West triangle matches the orientation of
the surface and the North-East triangle does not, as on the left hand side of the following diagram,
and (—,+) otherwise, as on the right hand side.
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Usp, ~

~

Figure 3.3: Relative orientations of hexagonal tiles.

In Section 3.10.1, we give a geometric intuition for why the edge labels U;p, Uyy1p, and U;_1p
appear in this particular arrangement on the hexagonal tiles. This geometric intuition is based
on crossing diagonals in the p-fold cover. We formally justify these hexagonal tiles in Section 3.10,
however, using matrix products associated to arcs, perfect matchings of abstract graphs, and Lemma
3.12.4.

Below, we give puzzle pieces that can be used to construct a generalized snake graph from such

an arc. Again, o and 8 could be either standard or pending arcs.

N
p \NIg
o . N
N .
To Tol oy Ty
el | == -
, ~ ~ i
Uz, ~ N U ~
Ty \\\ s Lp N Ty \[.\\ s 4 Ip Ty
Uy, AR N N AN R P NN N N
— ol Y . — ~ ApZp 2 ~
Sl Ve, Ta| ) P S .. Ve, I IEON SATB
>~ ~
ToaNlp ™ ~ R T, \\ N To L, ~ ez, R \\ R
. LB NG Ty NG NG Zp Zp
N x N i N i N kg
N N C N C \ C
Ta P Ta P Ta P oo P
N Y Y N
N o o o

Figure 3.4: Puzzle pieces for arcs that cross pending arcs.

Note that if £ = 0 (i.e., the arc does not intersect itself) then the edge labeled Up—_1(\,) has
weight 0. Thus, we can delete it and recover a standard snake graph with square tiles. We show
side by side the general hexagonal tiles and the £ = 0 cases. By Lemma 3.1.2, this is also true if
k = p — 2. Moreover, if { = p — 1, then two edges have weight zero and one has negative weight.
Using the symmetry of an orbifold point, this is equivalent to not crossing the pending arc at all.
Thus, we will assume that « winds less than p — 1 times around an orbifold point of order p to avoid
including absolute values in our labels.

If v does not wind around the pending arc, then our snake graph is still composed of square tiles.
However, the internal edge bordering the two tiles labeled 7;; has a potentially non-integer weight
ApTi; Where A\, = 2cos(m/p). Note that A, is the ratio between the length of a 2-diagonal (an arc
between marked points on the boundary which skips exactly one marked point) and the length of

the sides of a regular p-gon.
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3.2 Gluing puzzle pieces

To construct generalized snake graphs, we will glue together tiles corresponding to arcs crossed
consecutively by 7. If v crosses 7; and 7,41 consecutively, and 7; and 7,41 are distinct arcs, then
these arcs form a triangle. Call the third arc in this triangle 7j;. Then, we glue tiles G; and Gy
along the edge 7;). using the appropriate planar embeddings so rel(T, G;) # rel(T,G;y1). Note
that this rule does not differentiate between standard and pending arcs. If G; and G;41 are either
both square or both hexagonal, then the statement of the rule is clear. If G; is square and G,
is hexagonal, then rel(T, G;;1) should be understood to mean the orientation of the South-West
triangle of G,41. Likewise, if G; is hexagonal and G, square, then rel(T, G;) should be understood
to mean the orientation of the North-East triangle of G;.

Because the choice of relative orientation for the first tile, G, is not fixed, there are two valid
planar embeddings of G'r, for any v. Our cluster expansion formula produces the same result for
either choice of planar embedding, so the choice is unimportant. We also make a choice to glue the
tiles so that our snake graphs travel from South-West to North-East; this also will not affect any
statistics related to the snake graph.

Finally, we can construct generalized band graphs using the same ideas. Band graphs calculate
the length of closed curves on a surface. Choose a point p on v such that p does not lie on any arc
in T or at an intersection of v with itself. For simplicity, we require p to not be in the interior of a
pending arc. Then, construct the snake graph for v, picking an orientation and starting and ending
at p. Because the first and last tile correspond to arcs bordering the same triangle, they will always
have a common edge. We glue the first and tile along this edge, producing a graph which resembles
an annulus or a Mobius strip.

Band graphs have the same associated statistics as snake graphs and a version of a perfect
matching on a band graph, called a good matching, is defined similarly. Musiker and Williams note
that a good matching of a band graph can always be obtained from a perfect matching of the original,
unglued snake graph used to construct the band graph. To do so, one takes a perfect matching that
uses at least one of the glued edges and deletes that glued edge. For further discussion and details,

see Section 3 of [59].

3.3 Cluster expansion formulas

We use Musiker, Schiffler, and Williams’ definitions for minimal and maximal matchings, the cross-
ing monomial cross(7T,7), and the weight (P) and height monomial y(P) associated to a perfect
matching P, as stated in Section 2.2. Using this language, we can establish the following theorem
for Laurent expansions of arcs (both standard and pending), a more general version of Theorem 4.9

from [58].

Theorem 3.3.1. Let O = (S, M, Q) be an unpunctured orbifold with triangulation T and A be the
corresponding generalized cluster algebra with principal coefficients with respect to Xp = (X1, yT, Br).
For an ordinary arc v with generalized snake graph Gr ., the Laurent expansion of x. with respect

to X7 18
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where the summation is indexed by perfect matchings of Gr .

Example 3.3.2. The table below shows snake graphs for a variety of curves on the triangulated

0
orbifold corresponding to A = (x, y, L

,(1+,uu+u2,1+)\u+u2)>.

0
X1 Za
—_—
N N
N N
N N
N N
N — N -
Zq «d 1 T2
R 22 S
A A
N N
N N
T2 T
1 2.2
Ty = ;1( + (Y22, + Y513)
L1 L2
N N
X9 | N a
S N
) X9 a > JHTL N
N S S I
I AN a\\{_ t2 vl
N N Ax \\
2N SJA2 N
N 1 T2
N
] \l 1
N
N
a
— _1 2,.2,4,2 2,2
Ty = 224, (zariyrys + + AT L1205y Y2

Az ytys + pPaledyl + 2uxaxiy
+2uxd Tyt + x5 + 222 235y7 + w4yt
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T1x2

Figure 3.5: Examples of generalized snake graphs

Labels for arcs in the initial triangulation are only shown in the first orbifold diagram, but are
consistent throughout. Snake graphs are shown for each curve ~;, with one perfect matching and
the corresponding term in the Laurent expansion highlighted. Both 7 and -5 are cluster variables
of A which can be obtained via the respective mutation sequences p1 and paps.

The second half of this example illustrates our results for generalized arcs and closed curves.
Since 73 and 4 cross the same arcs in the same orientation, the shapes of the two associated graphs
are the same. However, in the band graph associated to 4, we identify u with v’ and v with ¢/, In
each graph, we have highlighted the maximal matching and the corresponding term in the Laurent
expansion.

Note that in each example, our expression for x., is given after canceling a mutual factor from
the crossing monomial and the numerator. Although the exact mutual factor depends on the curve
being considered, cancellation of this type occurs whenever we cross pending arcs.

In the Sections 3.4 to 3.9 we prove Theorem 3.3.1 when < is an ordinary arc. Then, z, is a
cluster variable in the associated generalized cluster algebra. Moreover, we are able to lift v to a
construct a triangulated polygon where expansion formulas are already known. In Section 3.10.1,

we explain why this tactic does not work for generalized arcs.

3.4 The lift S,

In the following sections, let O = (S, M, Q) be an orbifold with triangulation T' = {71,...,Tnic}
where 7, ..., 7, are internal arcs and 7,41, ..., Th+c are boundary arcs. Let v ¢ T be an arc on an

orbifold, and pick an orientation of v. Let 7;,,...,7;, be the arcs crossed by « in order. Note that
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Figure 3.6: An example of a generalized snake graph from a triangulated orbifold with one orbifold
point of order 3 (top) and one orbifold point of order 4 (bottom).

it is possible to have j # k and 7;, = 74, since v may cross a given arc in 7' multiple times. It is
even possible to have 7;; = 7;,_,; this occurs only when 7;; is a pending arc.

We define a polygon :9’; with triangulation ﬁ which lifts the local configuration of O and T
around . The triangulation ﬁ consists of arcs o1,...,04,0441,.-.,024+3 Where og41,...,024+3
are boundary arcs. We also construct a lift of v in 5‘:, denoted as 7; in short, 7 will be the arc in
3’; which crosses all arcs in f; .

Musiker, Schiffler, and Williams gave a construction of E; and T:, for the case where «y is an arc
on a surface [58]. We describe an extension to their construction and refer the interested reader to
their paper for details of the original construction. Essentially, they keep track of when consecutive
arcsin T', 7;; and 7, ,, share a vertex on the right or on the left of v. We will let ¢; denote the vertex
shared by 7;; and 7;,,. The corresponding consecutive arcs o; and 741 in ﬁ share a vertex, s;, on
the same side of 7 and S’; is constructed by gluing together the fans formed by sets of consecutive
arcs in 1" which share a given vertex ¢;. Musiker, Schiffler, and Williams also provide a projection
map 7 : T; — T such that 7(o;) = 7;,. This map also can be applied to boundary arcs in :S’:; we
will give a full definition of 7 in Section 3.6.

This construction can be used in the orbifold case when « crosses consecutive standard arcs;
what remains is to analyze the case when ~ crosses a pending arc.

There are several possible configurations for this case. Let 7;; be a pending arc; then, 7;; is
enclosed by a bigon or monogon with sides o and (. If this is a bigon, let v be the vertex shared by
Ti;», and 3 and let w be the vertex only shared by o and 3, as shown below. If this is a monogon,
let v = w be the unique vertex shared by «, 8 and p. Our configuration of s;_1,s;, and s;1 will
depend on how + interacts with the bigon.

It could be that ~ is the result of flipping p. In this case, d = 2, s; = v, and S’; is a triangulated

pentagon, as below. We label arcs o; with 7, if 7(0;) = 7%.

48



Next, consider the case where d > 2 and 7;, or 75, is a pending arc. Suppose, without loss of
generality, that 7;,, = p is a pending arc. Since, as an ordinary arc, v necessarily crosses p twice,

p =Ty, = T;,. Then regardless of whether 7;, = a or 7;, = 3, we set s; = s3. See below for the case
where 7, = f.

a S1 = S2
Vs TN
| /s P
B | B
Ap P @

Finally, we have two cases for when  crosses the bigon twice. In this case, d >4 and j > 1. If
~ crosses both sides of the bigon, then s;_1 = s; = 5j41.

Alternatively, v could cross the same side of the bigon both before and after crossing 7;;. That
is to say, 7;, = 7;,,, and 7;,_, = 7;,,. If the first point of intersection between v and 7, _, = 7;,,
is closer to v than the second point of intersection, then set s;_; = s; and sj11 # s;; otherwise, set

sj = 8j41 and s;_1 # s;j. See below for an example where 7;, , = 7;,,, = 8 and the second point of
intersection is closer than the first.
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Using these rules in addition to those in [58], we can construct S‘;, a (d+3)-gon with triangulation
T, consisting of d internal arcs and d + 3 boundary arcs. The arc 7 € Sy crosses all arcs in T, and

this pattern of crossings resembles the arcs that « crosses in O.

3.5 Quadrilateral and bigon Lemmas

The machinery of our proof that ¢,(x5) = z, will be an induction on the number of crossings
between v and T'. To that end, we provide a way to express x,, in terms of z¢, where all arcs (; have
less crossings with 7" than ~

This was accomplished in [58] by Lemma 9.1, known as the quadrilateral lemma. The quadri-
lateral specified in this lemma gives slightly weaker results when pending arcs are present, but still

allows us to prove our expansion formula.

Lemma 3.5.1. Let T be a triangulation of an unpunctured orbifold O and v be a standard arc not

in T. Then, there exists a quadrilateral oy, as, as, oy, of arcs in O such that:
e v and another arc, 7', are the two diagonals of this quadrilateral,
o ¢(a;,T) <e(v,T), and
o c(+,T) <e(v,T).

Moreover, if e(oy;, T) = e(v,T) for some i, then o; is a pending arc and e(a;,T) < e(y,T) for
all j # 1.

If 7y, instead, is a pending arc, then there exists another pending arc, p, and a bigon composed of
arcs 81 and B2 such that:

e v and p are the two possible pending arcs contained within the bigon,
* 6(6“T) < C(VaT)/2; and
o e(p,T) <e(y,T)/2.

Prior to the proof, we need to establish some notation. Let «; and 5 be two arcs which intersect
at a point b. This can be an end point of the arcs or not. Let a be another point on ~; and let ¢ be
another point on 2. Then, (a,b, c|y1,v2) denotes an arc which starts at a, is isotopic to vy, between
a and b, is isotopic to v between b and ¢, and finally ends at ¢. We can generalize this notion to
more arcs which consecutively intersect. We also let v~ denote an arc that is isotopic to v but has

opposite orientation.
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Proof. We will induct on e(vy,T). We have two base cases. If e(y,T) = 1, then v must be a standard
arc and is the result of flipping an arc 7 € T, so v is one diagonal in a quadrilateral which is entirely
made up of arcs in T, and the other diagonal is 7.

The other base case is when + is the result of flipping a pending arc p. Then, e(v,T) = 2 and ~
is a pending arc. It also must be that the arcs, 1, B2, making up the bigon about « and p are in T'
as well.

Now, suppose first that e(y,T) = d and ~ is a standard arc. Label the crossing points between
vand T by 1,2,...,d. If 7, the arc that crosses v at point h = fg], is not a pending arc, then the
construction from Lemma 9.1 in [58] holds. However, if 7 is a pending arc, and v crosses 7 in spots
J1,---,Jr where jy = h, then either the crossing point h+ 1 or h — 1 is also on 7.

More explicitly, suppose je + 1 = jp41 = h + 1 and first let d be even, so that d = 2h. Let
s(7),t(7) be respectively the start and end of v once we select an orientation. Moreover, suppose
that we orient 7, the pending arc containing the intersection points jz, je11 so that it visits j, before
je+1. Then, assuming that ¢ > 1, Musiker, Schiffler, and Williams [58] give the following explicit

construction for the quadrilateral:

s(7), de—1,4e, (N, 777)
s(7), Jes Je 1, 1), 7,7)
t(y), Jes1, je, tNy 77 )
t(y), des je—1, s(NIY " 77,77)
(), Je—1, o1, t (V)| T, 7)

(
= (
(
= (
= (

From these descriptions of «;, we can compute e(c;, T'), and similarly for 4'. We only highlight

a few calculations as the rest are equivalent to the calculations in [58].

G(Oll,T):(jg_lfl)+jE<(h71)+h<d
ez, T) = (d—jes1) +(d—je+1)=(d—(h+ 1))+ (d—h+1)=d

We can see that ag is a pending arc incident to the same orbifold point as 7. If instead j, — 1 =
je—1 = h — 1 and d is still even, then we will find that e(ay,T) = e(v,T) and «; will be a pending
arc. One can check that e(a;,T) < d for other ¢ and e(y',T) < d in both these cases.
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If d is odd, then we will again have that e(a;,T) < e(y,T) for all ¢ if we follow the recipe for «;
given in [58].

Now, let v be a pending arc, and let p € T be the pending arc to the same orbifold point as ~.
First, note that d = e(y,T) is necessarily even. Let j,j + 1 be the intersections of v and p. Then,
j = d/2. Orient p so that, like ~, it passes j before j + 1. Define 81 = (s(v), je, s(p)|7, p~) and
Ba = (t(7), jex1,t(p)|7 ", p). We can check that all of these arcs cross arcs in T fewer times than ~:

o e(pI)=0aspeT
° e(,@l,T):j—1<g

o (B, T)=k—(j+1)< 4

3.6 ;1; and ¢,

We first define a map 7 : 5; — O. Then, we define a morphism, ¢, between the algebras from these
spaces and show it is an algebra homomorphism.

We define 7 from {o1,...,024+3} to {71,...,Tntc}, which will also define = on the marked
points of each space. Recall that 7(;,) is the third side of the triangle formed by 7;, and 7, ,. For
completeness, we define o, 0, to be the two boundary arcs in the first triangle that 4 crosses where
oy, follows o, in the clockwise direction. Note that 7 inherits an orientation based on the orientation
of v. We define 7, and 73 to be analogous arc in O; note that 7, and tau; are not necessarily on the
boundary. Then, we define 0,0, to be the boundary arcs in the last triangle 5 crosses where o,

follows o, in the clockwise direction, and define 7, and 7, analogously in O.

Ti; 1 < j < d
m(0;) = § Ty J > d and o; incident to o) and o441

Ta oj =0, for x € {a,b,w, z}

Let A be the generalized cluster algebra from O, as explained in Section 2.5. Let ;4; be the cluster

algebra corresponding to the polygon :9’; with initial triangulation ﬁ ={01,...,04,0441,--,024+3}
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where 01, ...,04 are the arcs in the triangulation and images of the arcs that v crosses in O, and
Od+1s---,024+3 are boundary arcs. In :4;, let x,, be the variable associated to o;. We treat the
variables from boundary arcs, To,.,,...,To,,.,, as coefficients. We also consider :4; with principal
coefficients {y,, , . .., o, }; geometrically, we place an elementary (multi)-lamination {L1, ..., Lq} on
S’; where L; is the elementary lamination from o;. Let P = Trop(Toy,,,- -+ Tosgys> Yous -« Yoq) DE
the tropical semifield generated by these elements.

It is clear by construction that ANW is a type Ay, acyclic cluster algebra since the triangulation ZT’;

has no internal triangles. Thus, we can the following proposition from Bernstein-Fomin-Zelevinsky.

Proposition 3.6.1 (Corollary 1.21 of [4]). The algebra ;1\; is the ZIP algebra with set of generators

{%oyy s oy, o2y}, where o, = px(x,,), and relations generated by those of the form

/
(a0

Lo &

We now construct a map, ¢~, from Zl; to Frac(A). First, we will describe what ¢., does to the
generators of ;1;7 which we found in Proposition 3.6.1. Then, we will prove that this map is indeed
an algebra homomorphism by showing that it sends relations in :4\:, to relations in A. We eventually
will show that ¢, (z5) = .

In most cases, we define ¢ (z,,;) = Tr(o;); the exception will be if 0; = o) for some 1 <k < d
and w(og) = m(ok+1) = p is a pending arc in O. In this case, if the orbifold point incident to oy, is
order p, we set ¢~ (z,;) = A\px,. Regardless of whether 7(c;) is a pending arc or standard arc, we
set QS'Y(yO'j) = Yn(oy)- .

Next, we need to define the image of ¢, on the first mutations of the mutable variables in A, .

/

If 7(0;) € T is a standard arc, then we set ¢, (z;,,) = (o

) If 7(0;) = 7, is a pending arc in T,
then either w(oj_1) = w(0;) or w(o;) = w(0j41). Without loss of generality, assume the latter. Let
6 and p be the the two other arcs in the quadrilateral in ,T; around o; such that ¢ is opposite of o

in this quadrilateral.

—_ Lo N
i gj Oj+1

o1

If o(;) is counterclockwise of o, as in the diagram above, then we define

Dy (Tg1) = Ap - Dy(25) + Dy (Yo,) - Dy (X)) = Ap - Tr(s) + Yn(oy) * Tre(u)-
Otherwise, define

Dy (T61) = Ap - Dy (Yo,) - Dy(5) + Dy (X)) = Ap * Yn(oy) " Tr(6) T Trr()-

Remark 3.6.2. The expression A\py,a + B is the result when you simplify the self-intersection of
the arc below with the skein relation. Compare this with the arc with self-intersection we encounter

when proving Proposition 3.13.4.
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Proposition 3.6.3. The map ¢, is an algebra homomorphism; that is, it maps relations in ;1; to

relations in A.

Proof. First, let m(o;) be a standard arc. Then, in ;l:,, we have a relation

!
To; Ty,

= Yo pxp + Moz, (3.1)

where b ranges over arcs which are immediately clockwise of o; in T, and c ranges over arcs which

are counterclockwise of o;. The image of this relation under ¢., is
Tr(0;)Tr(oy) = Yr(o)) LT () + Mer(c)- (3.2)

This is exactly the exchange relation for z.(,,) in A.

Now assume m(c;) is a pending arc in 7', then z,, has an exchange relation in A, akin to
Equation (3.1). Using our prior notation, in the case where oy
exchange relation in ANV is x’gjx,,j = Yo;T6Toy;, + Toy Ty WE have that ¢, maps xfjjxgj to the

is clockwise of o, so that this

following:

(ApYr(o,)Tn(s) + Ta(u))Tr(o;) = ApYr(o;)Tr(o5)Tr(8) T Tr(oy) Tr(p)-

Moreover, this is equivalent to ¢~ (Yo, T6T0;, + To; 4, Tp) SinCE Ory (To,) = ApTa(o;)- We see a similar
relation when ¢ is counterclockwise of o;. In either case, this is simply an identity in 4. Thus, all

relations in ;1; are mapped to relations in A. O

Remark 3.6.4. It is reasonable that we send the exchange relation for a pre-image of a pending arc
to an identity in Frac(A) since, if both o; and cj41 correspond to the same arc in g;, it does not

make sense to only mutate one of them.

3.7 Showing ¢,(z5) =

In Section 3.6, we defined ¢, : :4; — A on the generators of ;4; and showed that it is in fact an
algebra homomorphism. Now, we will show that ¢,(z5) = z,. In ,,S';, we already have expansion
formulas thanks to [58] (and originally due to [56]). So, we can import the expansion formula for

z in A via our map ¢-.
Proposition 3.7.1. Let ¢, be the map from the last section. Then, ¢~ (z5) =z,

Proof. Our proof in the orbifold case will differ from the proof of the analogous result in the surface
case, Theorem 10.1 in [58], in two ways. First of all, we need to prove this for the case when v is a
pending arc. Then, we need to take account for the case when « is an standard arc and the resulting

quadrilateral from the quadrilateral lemma, {c;}, is such that e(a;, T) = e(v,T) for some index 4.
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Both of these cases will utilize Lemma 3.5.1. We work through these cases simultaneously using
induction on e(~,T).

Let e(y,T) = d. If d = 0, then v € T, and we already have that ¢,(z5) = 23 = z,. If
d =1, then +y is a standard arc which crosses one other standard arc, and the statement follows from
Theorem 10.1 of [58].

Now, suppose that d > 1. First, consider the case where v is a pending arc. Then d is necessarily
even. Let p € T be the pending arc incident to the same orbifold point as v. By Lemma 3.5.1,
we can find (1, 82 such that 1,82 form the bigon which contains the pending arcs p and -, and
e(fi, T) < %. Suppose the orbifold point incident to « is order p. Then, in A, we have that
Ty, = Y125 4+ YoApxs,2p, + Y 123 , where we can compute Y; by finding a sequence of flips from
p to v and performing the corresponding mutations in the cluster algebra. In Proposition 3.8.1, we
will see that we can also compute these Y; from the orientation of 5; and Py and their intersections
with the elementary lamination on O.

We compare this with the scenario in the lift, ,/S’: . Recall 5‘; is a polygon triangulated by o;, for
1 <i<d. For j =%, we have that m(c;) = m(0j41) = p. Moreover, in O, the j3; only cross arcs in
{m(o;)}i, implying that :S’; already contains 53; and trivially contains §; as p € T. Thus, we can
apply ¢~ to B; and p, as all of these are arcs in the polygon :S’:

Due to the symmetry of arcs crossed by -y, there are two lifts of 5; and (s to :S';; call them
B1,i, B2, for @ = 1,2. Moreover, 31, 32, and o[; form a pentagon in SNA,, which is triangulated by
o; and oj41. Let so = s(7) and sq = () be the start and end of the arc 7. Recall we define s; to
be the vertex shared by o; and 041 . Let a; (aj41) be the other vertex of o; (0;41). Note that
7(sj) = m(a;) = w(a;+1) since m(o;) = w(o;41), and this arc is a pending arc. Then, up to changing
indices, 1,1 connects sg and s;, and (1,2 connects a;y1 and s4. Similarly, 321 connects so and a;,

and B2 connects s; and sgq.

Sd

Using cluster algebra expansion formulas from triangulated polygons [58], in :4\; we have that

T3To; Loy yy = ?nglylxglyzaroj +)70x5111x52,2m5 +Y_12p,,28, ,%5,,,- The image of this relation under

O is

Oy (27)22 = ¢y (V)22 2, + by (Yo)2,28, (Mpp) + 0y (Yo1)22, 7,
= ¢ (25)1, = 6, (Y1)22, + &y (Yo)Npp, s, + &y (Yo1)zh,  (3.3)

Comparing this with our generalized exchange relation, if we can show that ¢, (17;) =Y, we can
conclude that ¢, (x5) = z,. We postpone this discussion of y-variables and laminations to Lemma

3.8.2 in the next section.
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Now, let v be an standard arc in O with d = e(v,T). Since we are in an orbifold, it may be that
the quadrilateral, {a;}, which we produce from Lemma 3.5.1, has a pending arc a = «; for some
i, such that e(a,T) = d. In this case, 5; is not contained in STY, but we can glue these polygons
together as the intersection of arcs crossed by « and 7 is nonempty. We may also need to glue
S’z onto this. Details about this gluing may be found in [58]. Denote this glued polygon S. The
advantage of this larger polygon is a preimage of our quadrilateral {a;} with diagonals «,~’, lives in
S. We already showed that ¢o(z5) = 2a, since « is a pending arc with e(a,T') = d. By induction,
we also know that ¢, (z5/) = @, and for the other a;, ¢q,(25;) = Ta,-

In S, by cluster expansion formulas from surfaces, we have the exchange relation zyxy =
}Zx&leag + ?:x&;xa;. The image of this relation under ¢, is

¢v($7/)$7’ = ‘157(57-%)3304135&3 + &y (Y-)TayTa,

Again, we direct our reader to the next section for discussion of laminations on an orbifold and
for now assume Lemma 3.8.2. By comparing the previous discussion to the Ptolemy relation in O

applied to the intersection of v and +/, we conclude that ¢ (z5) = z,. O

3.8 Laminations on an orbifold

We now show that the shear coordinates and elementary laminations for pending arcs defined in
Section 2.4 correctly models the mutation of an extended B-matrix in a generalized cluster algebra.
Let L;1, be the elementary lamination from arc 7; € T. Recall n is the number of arcs in the

triangulation 7.

Proposition 3.8.1. These shear coordinate rules for an orbifold agree with mutation of extended

B-matrices in the associated generalized cluster algebra.

Proof. First, we show that the shear coordinate associated to a pending arc, 7; changes when we
flip an standard arc, 74, in the same way that the bottom half of the corresponding column (call
it column j) of the extended B-matrix changes when we mutate at this index, k.The entry by ; is
positive if and only if 7, is counterclockwise of 7;. For a lamination L;, with i > n, the entry by, is
positive if and only if L; intersects the two arcs that are clockwise of 7. If both of these situations
are true, then py(b;;) will be given by b;; + birbr;. In a picture, we can see that when we flip 7,
it will change the bigon around 7;, so that now L; will intersect the bigon on the same side twice.
This will increase the shear coordinate associated to L; and 7;. See picture below, where the shear
coordinate b, (T, L) changes from 0 to 1. We can deal with the case where by, and by; are both
negative similarly. If these entries are different signs or one is zero, it is clear from pictures that
there will be no change to b, (T, L).
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Next, we want to show that, when we flip a pending arc 7;, all shear coordinates change according
to generalized mutation rules. By set up, it is clear that the shear coordinates associated to that
pending arc will flip signs. Recall other entries mutate by p;(bix) = bix + 2b;;b;x if both b;; and b,
are positive, u;(bir) = bir — 2b;;b;1 if both b;; and bj;, are negative, and no change otherwise. As
before, bj), is positive if and only if 7; is counterclockwise of 7. For i > n, the entry b;; is positive if
and only if the lamination L; intersects the side of the bigon around 7; that is clockwise of 7; as well
as 7; itself. Thus, both entries are positive if L; intersects 7, twice, both before and after intersecting
7j. If 73, is a pending arc, since we draw this as a loop L; intersects 75 four times, in two pairs.
Moreover, the two intersections or pairs of intersections of L; and 74 could either both contribute
—1, both contribute 0, or one of each contribution. We know that they cannot contribute 41 since
L; intersects 7;, which is counterclockwise of 7. Then, when we flip 7;, we change the quadrilateral
or bigon around 7y, depending on whether 7 is standard or pending, which L; intersects. Thus, we
will change the shear coordinate associated to 7, and L;. Because of the two intersections or pairs
of intersections, we will change by a multiple of two, as required in the generalized mutation rule.

Figure 2.12 illustrates one example of this situation. Notice that bs; changes from 0 to 2. O

Lemma 3.8.2. In the language of the previous section, (;57(}7;-) =Y;.

Proof. Recall the expressions ¢, (Y;) from Equation (3.3).

First, let v be a pending arc. Then, by the Bigon Lemma, we have a bigon (51, 82 around - and
the arc p € T at the same orbifold point, such that e(3;,T) < e(v,T). We saw that the pre-image of
this bigon in ‘/S’: is a pentagon. We want to show that the laminations L., contribute the same shear
coordinates in the bigon as their pre-images, Ly, , contribute in the pentagon in S,. However, since
p is in the triangulation T', and accordingly its images o; and o041 in :S'; are in the triangulation
f;, the only elementary laminations that will contribute nontrivially to the relations in either case
will be those associated to p in O, or 0,041 in :S‘\:,

In §;’ we have a pentagon with sides (31, 81,2, the two pre-images of 81 € O, B2.1, 52,2, the
two pre-images of 32, and op;], the third arc in the triangle formed by o; and o;1. This pentagon
is triangulated by o; and o041, and the lift ¥ is the arc crossing both arcs in this triangulation.
By using the skein relations with y-variables from [59] in :S”: twice, on these two intersections,

Yo;Yo;41T81,1%81 200 Yo, 108y 1TBg o T Ty 1 BBy oo .
A 2 % i L 9*1  Recalling that
75 To5+1

&y (Yo;) = (Yo, 41) = Yp, We see that our map ¢, maps the y-variables as we hoped.

7l

we have the expansion x5 =

Sd

Next, let v be an standard arc. From [58], we know that elementary laminations from standard
arcs have the same local configuration about @, the quadrilateral corresponding to v and T from

the quadrilateral lemma, and @, the lift of @ in 5 We need to verify that the same is true for
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Figure 3.7: From left to right: A standard arc and a pending arc crossing, the elementary lamination
from a pending arc and a standard arc crossing, and the lifts of these two scenarios to S, .

elementary laminations from pending arcs. Suppose that p € T is a pending arc with elementary
lamination L,, and 0;,0,41 € T; are the pre-images of p with elementary laminations L;, L;y;. In
Figure 3.7, on the left we show one example of intersections of p and L, with (), the quadrilateral
from applying the quadrilateral lemma to v and T'. In this case, b, (T, L,) = 2. On the right half we
show first the intersections of o; and ¢4, and then the intersections of L; and L, with @, the lift
of @ to :S: Here, bry(ﬁ,Lj) = b;(ﬁ,LjH) = 1. If y,,y;, and y;41 are the y-variables associated
to L,,L; and Lj4 respectively, then since ¢ (y;) = ¢ (yj+1) = y,, we see that the contribution of
laminations is consistent in O and :S’: in this case. The cases b, (T, L,) = —2 and b,(T,L,) = 0 are

similar as, again, the local configurations around ~ and 7 look the same. O

3.9 Proof of cluster expansion formula

With the proof of Lemma 3.8.2, we are ready to complete our proof of Theorem 3.3.1.

Proof. In the statement of Theorem 1, we have a fixed orbifold O = (S, M,Q) with triangu-
lation T = {7T1,...,Tn, Tnt1s-- > Tntc} wWhere 71,...,7, are internal arcs and 7,41,...,Tnic are
boundary arcs. This determines the corresponding generalized cluster algebra A with principal
coefficients with respect to the initial generalized seed Y¥r = (xr,yr,Br,z). For a given arc
v on O, we defined the lifted triangulated polygon i,, the lifted arc 7, and lifted triangulation
T = {01,...,04,0441,..,024+3} where o1,...,04 are internal arcs and o441,...,024+3 are bound-
ary arcs. The lift :S’: has an associated type Ay ordinary cluster algebra, ;1\:,, where d = e(,T).
We then defined a projection map 7 : {o1,...,024+3} = {71, -, Tntec}, which in turn allowed us to
define an algebra homomorphism ¢., : Z; — Frac(A); in general,¢., acts by ¢, (zy;) = Tr(,,) and
?y(Yo;) = Yn(o,) for all o5 € {01, ..., 02443} We noted that when y crosses one or multiple pending
arc(s), ¢, will map some variables associated to boundary arcs in 3; to constant multiples of the
variables associated to these pending arcs in . These multiples are determined by the orders of
orbifold points. Further, we proved in Proposition 5 that ¢ (z5) = z,.

Because ;1; is a type Ay ordinary cluster algebra, we know from the work of Musiker, Schiffler,
and Williams [58] that we can build a snake graph wa which has the cluster expansion for zz
as the generating function for its perfect matchings. This cluster expansion for zz is in terms of
the variables x4, ...,%Zg,,,, and Y5, ...,¥s,. Hence, computing the cluster expansion for z, in Xt
is equivalent to specializing the variables in the generating function for perfect matchings of G:F;,

using the homomorphism ¢..
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By construction, the unlabeled graphs for Giﬁﬁ and G are identical. Because ¢ (z,,) = Tr(o;)s
applying ¢~ sends most edges labeled o; in Gfﬁ to edges labeled 7(o;) in G . Similarly, diagonals
labeled y,, are sent to diagonals labeled yr(,,). Hence, applying ¢, to the generating function for
perfect matchings of Gfﬁ yields the formula in the theorem statement, which is itself the generating

function for perfect matchings of G, as desired. O

Now we have an expansion formula for arcs without self-intersections in an unpunctured orbifold
O. These correspond to cluster variables in the associated generalized cluster algebra, A. Arcs with
self-intersections, i.e. generalized arcs - and closed curves do not correspond to cluster variables as
they can never appear in a triangulation of O. However, we can still use the rules in Sections 3.1
and 3.2 to construct snake graphs from these arcs and curves. By applying the expansion formula
to these snake graphs, we associate an element of A to each generalized arc and closed curve. In the
following sections, we will show that this association has desirable properties.

In order to study these arcs and curves, we will associate each with a product of 2 x 2 matrices
that is developed breaking the path of the arc/curve into a sequence of “elementary steps”. We can
use another set of 2 x 2 matrices to help us compute weighted perfect matchings of graphs. We
will show that these two sets of matrices are related. With these connections between arcs/curves,
graphs, and matrices, we will be able to investigate properties of one object by studying another. In
particular, we will use our matrix formulation to show that our expansion formula for generalized
arcs and closed curves respects the skein relations. This work follows closely the work of Musiker

and Williams [59], who do these calculations for cluster algebras from surfaces.

3.10 Universal snake graphs

In [59], Musiker and Williams compared their snake graph formulas to formulas arising from mul-
tiplying together strings of 2 x 2 matrices. These 2 x 2 matrices came in two types, depending on
whether the matrix corresponds to adding a tile to the east or north of a snake graph. We simplify
the calculations and arguments of [59] by using universal tiles to build universal snake graphs. Ac-
cordingly, we use only one type of 2 x 2 matrix which includes both types in [59] as specializations.
We will similarly see that the universal snake graph is made up of a combination of the pieces used
to build standard snake graphs.

For any positive integer n, the n-tile universal snake graph, UG,,, encodes information about
the perfect matchings of all n tile ordinary snake graphs, as well as those with extra diagonals that
we encounter in the orbifold setting. We will make this statement make more precise. Below is
the universal snake graph with 4 tiles UG4. The horizontal edges are labeled with a; and the long
diagonal edges, which are solid, are labeled with b;. The dashed lines, labeled i;, serve as labels for

the individual tiles and cannot be used in a perfect matching.
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Figure 3.8: An example of a universal snake graph

Note that we can glue a or b to w’ or 2’ to obtain a universal band graph. Good matchings of
universal band graphs are defined analogously to good matchings of standard band graphs.

If n is even, let w’ = w and 2z’ = 2. Otherwise, w’ = z and 2’ = w. As a heuristic, we label the
last tile so that the matching of all boundary edges that uses edge a must also include w. We call
this the minimal matching to be consistent with the standard snake graph case. The other matching
consisting of only boundary edges will include edges b and z, and we call this the mazimal matching.

We note that we can recover any snake graph we are interested in, as well as others, from the

universal snake graph of the appropriate size.

e Specializing a; = 0 or b; = 0 at each j will recover an ordinary snake graph. Based on the
correspondence between snake graphs and sign sequences noted in [8], we know that there are
2"~! snake graphs with n tiles. This is also the number of ways to choose whether a; = 0 or

bj=0forj=1,...,n—1.

e If we do not set a; = 0 or b; = 0 at some 7, but a;_1b;—1 = 0 and a;41b;41 = 0, we recover a

hexagonal tile as in Section 3.1.

e We do not have a geometric interpretation of a graph where a;b; # 0 and aj41b;11 # 0, or a

graph where a; = b; = 0.

Remark 3.10.1. We can think about the universal snake graph UG, as constructed of two initial

triangles and n — 1 parallelograms with crossing diagonals,
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These parallelograms are essentially a superposition of the north-pointing and east-pointing par-
allelograms in [59]. If b; = 0, the parallelogram is genuinely north-facing, and if a; = 0, it is

east-facing.

We also verify some simple properties about this graph and its perfect matchings. First, we
explain how to extend the definition of a twist to the more complicated tiles in UG,,. As in the case
of ordinary snake graphs 2.2.15, twisting induces a poset structure on the set of perfect matchings
of UG,,. In Lemma 3.10.2, we see that this poset structure has a simple description.

If a perfect matching uses edges ¢;_1 (set £y = b) and r; (set r, = w') for 1 < j < n, we
twisting at tile j is accomplished by replacing those edges with the edges a;_;1 (set ap = a) and q;
(set an, = 2’). This twist results in another valid perfect matching of UG,,. If a perfect matching
instead uses edges ¢; (set ¢, = z’) and rj_1 (set 79 = a), for 1 < j < n, then twisting at tile j is
accomplished by replacing those edges with the edges b;_1 (set by = b) and b; (set b, = w’). Both
types of local move are referred to as a twist at tile j.

The poset of perfect matchings of UG, has some of the same basic properties as the ordinary
case described in Section 2.2.3 - that is, the covering relation is given by a twist at single tiles, and
the poset rank function is given by the degree of the associated height monomials. As before, the
height monomial for a given perfect matching P can be determined by viewing the labels of tiles
enclosed by cycles in the symmetric difference P © P_. Note that we consider a tile to be “enclosed”

by a cycle if the dashed line marking the tile is inside the cycle.
Lemma 3.10.2. 1. UG, has 2™ perfect matchings

2. The poset of perfect matchings of UG, is isomorphic to the poset of subsets of {1,...,n}
ordered by inclusion, By,. This isomorphism sends a subset {i1,...,ix} to the matching with
weight Y;, -+ - i, -

Proof. The first statement follows immediately from the second. We prove the second statement
by induction. It is clear that the claim holds for UG;, as this snake graph is a single tile with
only a minimal and maximal matching. The maximal matching covers the minimal matching in the
corresponding poset.

Now, suppose our claim holds for UGk_1, and consider the poset of perfect matchings of UGj.
This contains a subposet of all matchings using the edge w; the minimal matching is in this subposet.
Such matchings cannot use edges z and either cannot use ¢;_1 or rx_1, depending on the parity of
k. If we remove z,w and either r,_1 or {;_; from UG}, we have a graph isomorphic to UG _1;
hence, the subposet of matchings using w is isomorphic to the poset of perfect matchings of UGj_; .

The remaining elements of UG}, necessarily use z. The minimal element of this subposet is the
perfect matching obtained by twisting the minimal matching at tile i;. For the same reasons as for
the matchings using w, this subposet is isomorphic to the poset of perfect matchings of UGy_1.

Since the poset corresponding to perfect matchings of UGg_; is isomorphic to Bg_1, and UGy
consists of exactly two disjoint subposets isomorphic to UG _1 in the way described, we have that
UG|, is isomorphic to Bj. Following our same induction, we can show the second statement of part
2; the subposet of matchings using w corresponds to subsets of {1,...,k} which do not include k

while the subposet of matchings using z corresponds to subsets which do include k. O

Along with the y; variables from the poset structure of perfect matchings on UG, for each edge,

7 in the graph, we associate a formal variable x,,. Of course, when these graphs come from a surface,
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Figure 3.9: A Hasse diagram showing the poset of perfect matchings of UG3, ranked by height
monomial. For each perfect matching, the enclosed tiles are shaded.

62



these variables will be cluster variables. We associate a product of matrices to UG,, for each n.
1 0
1 Then, for
n>2, .

Teg Try Loy
MG, — . T, Y3Tbs Ty Y2%as z0, Y1ZTo,
n = mn—l e ml Y [1,‘]32 [1}22 1},11 {L’Tl
Y2 Tiq Tig h Tiy |

These products will encode all weighted perfect matchings of UG,,. Let MG; =

l‘as CETS

Ys

LigTiy Liy TigTig Lig

where the last terms depend on the parity of n. Explicitly,

Ty,
J
— YjTy,;
Zq . J .
o . for odd j
@ Ty
Loij@ijen @i
mj; =
- -
J .
Ti; ijaj f .
24 2, or even j
LTijTijqa Yi Tijyq

We show that the graphs UG,, and the matrices M G,, satisfy the same relationship as Proposition
5.5 of [59].
A’I’L B’ﬂ
C. D,

Proposition 3.10.3. The matriz M G,, is given by MG,, = where

_ ZpesA zE(P)y(P) _ ZPESB x(P)y(P)

A, B,

(@i Tipy 1 )Taluw (Tip -+~ Tipy ) TpTay
C - Zpesc z(P)y(P) D. — ZpesD z(P)y(P)
(@, ) Ta Y, (@i )Ty,

where Sy is the set of matchings using a and w (this includes the minimal matching), Sg is
the set of matchings using b and w, Sc is the set of matchings using a and z, and Sp is the set of

matchings using b and z (this includes the maximal matching).

Proof. The proof proceeds by induction. The statement clearly holds for n = 1 or n = 2. Now,

suppose it holds for n — 1, and consider the graph UG,,. Suppose that n is even. Then, we have
that

Ty, T

n—1 n—2 Ty k7N
- n—1Th,, _ - n—2Tq,, _ —= x x
MG, = | Zmr T R il IO B S ] B BT
n Tap_1 Yn_1 Tryp_1 Zop_2 Yn—2 ) Thy Yo Ty Tay n ZTrq
) - n— ) - - n—2o. — ) . -
Tip_1Tin Tin Lip_o%in_q Tip 1 TigTig Tig TigTig Tig
Ty Ty
n—1 n—1
1T P -1z
. T, Yn—1Tb, 4 . i, Yn—12b,,_, A,_1 Bn_1
- Tap_1 y 1”"7171 n—1= Tap_1 y 1”3"'7171 C,.1 D, i
- - n— 5 - - n— y n— n—
Tip 1 %in Tip, Tip 1 %in Tip
Ty Ty
n—1 n—1
z: An—l + yn—lxbn,lcn—l Z: Bn—l + yn—lxbn,an—l
_ n—1 n—1
Tap_1 Trp_1 Tay 1 g

anl + Yn—1 o) anl

x
; ; Anfl + Yn—1 ) n—1 ) ) -
Tiy_1Tin Lin Tip 1 Tin T,

Consider the subgraph consisting of tiles i1, ...,%,_1 as the graph UG,,_1. Since n is even, the edge

that would be labeled w in this embedded copy of UG,,—1 (which we call w,_1) is labeled a,,—1 in
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UG,,. Similarly, the edge labeled r,_1 in UG,, would be labeled z in UG, _1 and so we call this
edge z,_1.

Let S, S%,St, S be the sets of matchings satisfying the description in the proposition for the
specified subgraph UG,,_1. Then, we have that all matchings in S 4 correspond either to a matching
in 8’ or in S¢, via the following correspondence. Matchings in S4 use both a and w; because n
is even, they must also use either ¢, 1 or b,_1. If one of these matchings uses ¢, _1, it uniquely
corresponds to a matching of UG,,_1 which uses a,—1 = w,_1; such a matching belongs to S’;. If
it uses b,_1, then it uniquely corresponds to a matching of UG,,_1 which uses r,_1 = z,_1; this

matching of UG,,_1 belongs to S¢..

in—1 in—1

We can then consider the weights of each matching. If a matching uses the edge #,,_1, then its
symmetric difference with the minimal matching of UG,, cannot enclose the tile labeled 4,. Hence,
its weight must be equal to the weight of the corresponding perfect matching in S’. If the matching
instead uses the edge b,_1, then its symmetric difference with the minimal matching must enclose

the tile labeled iy, so its weight is given by y;, ., - (weight of corresponding matching from S¢).

Therefore, the set of matchings in S4 satisfies the relationship 4,, = ff"’l An1 +yn—12p, ,Cn_1.
ip—1
The remaining arguments for the other matrix entries and the case where n is odd are very similar.

O

By considering several specializations, we can apply Proposition 3.10.3 to band graphs. Note
that, while abstractly we can glue a or b to w or z to form a band graph, in order to get a graph
which would come from a surface we must either glue a to z or b to w. In the first case, if the graph
is from a closed curve on a surface, then we would also have b = i,, and w = iy. If we glue b to w,

then a = i,, and z = ¢;. See Figure 5 in [59].

Theorem 3.10.4. Let UG, be a universal snake graph on n tiles. Then, we can express its sum of

weighted perfect matchings by

T, Z2Yi, 0 Ty
> a(P)W(P) =y, -y, ur " LA

P Za Liq

where ur returns the upper right entry of a matriz.

Now, let G be the result of gluing a and z in UG, and setting b = i, and w = i1. Then, we can
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express its sum of weighted perfect matchings by

Z z(P)h(P) =z, - ~xintr<

P

T s
T, ayln M
0 YipnTin n
Iil

Stmilarly, if G is the result of gluing b and w in UG,, and setting a = i, and z = i1, then

I'il 0

Tin M

Tp Yip Tip "
xi’l Tip 3’57‘,1

Proof. For the case of UG, by using A,, B,,,Cy, D, as in Proposition 3.10.3, we find that

Z x(P)h(P) =x;, - ~xintr<

P

T LY 0 = ToT TpT LT s
ur rwll 2Yin M, o za _ La wAnJr bLw Bn+$am2yincn+b72ylnDn (3’4)
= 0 Tq 71) xin xil ‘rin 7;,,,
. Tq Tiy
P)h(P
From the definition of A,, we see that #e*= A, = ZPG;'A,?;) ( ). A very similar statement
tn 1 in

is true for the terms of B,,C,, and D,,. Since the sets S4,Sp,Sc, and Sp partition all perfect
matchings of UG, the proof is complete.

Next, consider the case where we obtain G by gluing a and 2z in UG, and make appropriate
specializations. A good matching of this graph is one which could be extended to a perfect matching
of UG,, by adding a or z. Thus, the matchings from A,,,C,,, and D,, all descend to good matchings
of G. We expand the trace,

1
— Yi, T . . .
tr( [ Z ] Mn) = 25 Ay + i, 2o + 222D,

0 n. n in ‘,I’.’Ll
Tiq

We see that the coefficients on A,,C,, and D,, are as in Equation (3.4), with one less factor
of ©, = x,. This matches the relationship between perfect matchings and good matchings. The

situation is similar for a band graph obtained from gluing b and w. O

When a snake graph UG, or band graph G is associated to an arc or closed curve 7 on an orbifold

O with triangulation T', we give the following cluster expansion formulas.

Definition 3.10.5. Let O = (S, M, Q) be an unpunctured orbifold with triangulation T and A
be the corresponding generalized cluster algebra with principal coefficients with respect to Yp =

(x7,y71,Br). Let v be a generalized arc with generalized snake graph Gr .
o If vy has a contractible kink, then X, v = —X5 1 where ¥ is v with this kink removed.

e Otherwise, we define

Definition 3.10.6. Let O = (S, M, Q) be an unpunctured orbifold with triangulation T and A
be the corresponding generalized cluster algebra with principal coefficients with respect to Yp =

(x7,yr,Br). Let v be a closed curve with generalized band graph Gr .

o If~y is a contractible loop, Xy 1 = —2.
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o If~y is isotopic to a curve which bounds a disk containing a unique orbifold point, then X, r =

2cos(m/p) := A\, where p is the order of the orbifold ponit in this disk.

e Otherwise, we define
1

X - -
cross(T, )

> x(P)y(P)

P

vT =

where the sum is over good matchings of Gr .

These definitions also cover some special cases when it is not clear how to build a snake graph

from the arc or curve.

3.10.1 Lift for generalized arcs

We give brief motivation for the crossing diagonals in generalized snake graphs from arcs which wind
around orbifold points. If the order, p, of the orbifold point is greater then two, then when we lift a
piece of such an arc to a p-fold cover, the lifted arc passes through a p-gon. If p > 3, then this is an
untriangulated p-gon.

The standard snake graph construction relies on an arc passing through a triangulation. However,
by using a loosened notion of T-paths, we can determine the appropriate expansion formula for such
arcs which wind around orbifold points. Since the covers we consider are not triangulated but instead
dissected into polygons, which is a setting not fully explored in T-path literature, we use this as a
heuristic rather than a proof. Sections 3.11 - 3.13 will formally verify these formulas.

The concept of T-paths was defined originally by Schiffler and Thomas in [71] to give cluster ex-
pansion formulas in unpunctured surfaces and provide a proof of positivity for these cluster algebras
as a corollary. Musiker and Gunawan expanded the T-path construction to once-punctured disks in
[42].

As always, let v be an arc on a surface (S, M) with triangulation T = {r,...,7,}, and let
d = e(v,T) > 0. Fix an arbitrary orientation to each arc 7 € T and to v, and let 7= be an
arc isotopic to 7 with opposite orientation. Let 7;,,...,7;, be the arcs crossed by ~y, with order

determined by +’s orientation. Loosely, a (complete) T-path is a path « = (a1, ..., @24+1) such that
1. Each «; is equivalent to 7; or 7,° for some 7; € T'.
2. For 1 <i<n, tlay) = s(oy1).
3. s(a1) = s(y) and t(azq41) = (7).
4. (This requirement makes the T-path “complete”) ag; = 75, for 1 < j < d.

From each T path we obtain a monomial where variables associated to the arcs crossed on odd
steps are in the numerator and variables from arcs crossed on even steps are in the denominator.
Then, we sum the monomials from all T-paths from « to obtain . Note that for a complete T-path,
each denominator is equal to cross(T, 7).

Given an arc v, the collection of T-paths from +y are in bijection with perfect matchings of G'r .
Moreover, we can draw each complete T-path on G, by using the dashed diagonals in each tile as
the steps along the arcs crossed by -, that is, the even indexed steps. The set of edges used by the
odd-indexed steps (those not on dashed edges) is a perfect matching of the graph.
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As an example of the sort of arcs we are describing, consider « as below, where the orbifold point

is order 5.

Figure 3.10: A lift of an arc that crosses a pending arc and winds around the associated orbifold
point.

We consider possible sub-path (i, a2it1, @ 41)) of a T-path from the lift of 7. As in the
definition, ag; will go along ¢; in some direction and ay(;41) Will go along ¢z, as required by the
definition. Then, ag;41 will have to connect t(az;) and s(ag(i11)). If we lift the requirement that
each ¢ is an arc in the triangulation, we see that the four diagonals highlighted (one being a side
of the polygon in this case) all connect end points of ¢; and cs.

Each of the polygons in the lifts is regular since all sides correspond to the same arc in the
orbifold. Thus, we can use elementary geometry to write the lengths of these diagonals in terms of

the length of the sides of the polygon.

Definition 3.10.7. A k-diagonal in a polygon is one which skips k — 1 wertices. For instance,

boundary edges in a p-gon are both 1-diagonals and (p — 1)-diagonals.
The following lemma appears in Section 2 of [50].

Lemma 3.10.8. A k-diagonal in a regular p-gon with sides of length s has length Uy_1(\p)-s, where
Ui (z) denotes the k-th normalized Chebyshev polynomial as in Definition 3.1.1.

The fact that we have four options for potential steps between ¢; and cs leads to the hexagonal
tiles discussed in Section 3.1. Note that the configuration between the two dashed lines in these tiles
looks similar to the lift of the generalized arc above. In Lemma 3.12.4, we will see these Chebyshev

polynomials also arise from products of matrices in SLo(R).
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3.11 M-path from an arc in a triangulated orbifold.

In the previous section, we associated a product of 2 X 2 matrices to the universal snake graph.
Now, following the construction of [59], we will also associate products of matrices to arbitrary arcs
or curves on a triangulated orbifold; Theorem 3.12.12 will show a relationship between these two
systems of matrices. This method will allow us to extend our snake graph formula to generalized
arcs and closed curves.

Similar to the graph case, we break arcs or closed curves into a series of elementary steps and
associate 2 X 2 matrices to each step. Arcs do not have a unique associated M-path, but in Section
3.12 we will both describe a convention for which M-path to use and show that the statistics we use
do not depend on the path.

While the start and terminal point of an arc on an orbifold coincide with the set of marked points,
elementary steps and the M-paths in general go between points which are near marked points but
are not marked points themselves. To formalize this, draw a small circle, h,,, around each marked
point m. These should be small enough that h,, does not intersect h,,, for another distinct marked
point m/. If 7 is an arc incident to m, let v, » be the intersection of 7 and h,,. If 7 is a standard
arc, we define v}

m,T

Um,r. If 7 is a pending arc, we deﬁne Vs U o7 and vt to be, in counterclockwise order,

T M, 7 “m,T?

(respectively, v, ) to be a point on hy, that is counterclockwise (clockwise) of

s clockwme of all of 7, v, is counterclockwise of all of 7, and

are contained within 7, drawn as a loop, such that vmi‘ is counterclockwise from

four spots along h,, such that v

+ +,—
U7 and v

+
vm:'r

m,T e . m,T

Given an arc 7, with end points s(v) and t(y), any representative M-path will go between v;tm -

+

or vsi(’w) and vt |, or vti(ﬂ)t ,where 7 and 7/ are arcs in the triangulation incident to s(v) and ¢(~y

t(v),7 )T

respectively.

First, we recall the three types of elementary steps used in the surface case [59]:

e An elementary step of type 1 goes from vt _ to vl .+ where 7 and 7' share an endpoint and

border the same triangle in 7. If o is the thlrd side of the triangle, then we associate the

. The sign of is positive if we travel from v+ to v, ., and negative

matrix l

s 1

TrX 1

otherwise.
e An elementary step of type 2 goes from vt _ to v, -5 that is, this step crosses the arc 7. We

0 - 0 .
‘| if we go from vy, , to v;f, . and [y() 1] otherwise.
Yr

1
associate the matrix l

e An elementary step of type 3 follows an arc 7 in the triangulation. That is, if 7 connects

marked points m and m’, then this step goes from vl _ to vl /- We associate to this the
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+x
=0

zr

signs if it sees 7 on the left.

matrix "|. We use +z, and ;—1 if this step sees 7 on the right and uses the opposite

Because we’re working on a triangulated orbifold rather than a triangulated surface, we update
these elementary steps to handle interactions with pending arcs. In particular, we show how to
decompose a portion of an arc winding around an orbifold point into a sequence of elementary steps;
combining this with the above elementary steps will allow us to decompose any arc in a triangulated
orbifold.

First, we can go from vnil’)ij to vrflf where p is a pending arc. We also examine this local

configuration in a cover.

o
g
In the cover, this resembles an elementary step of type 1 from [59]. Accordingly, we associate to
0 1 0
this a matrix N = A . As for an elementary step of type 1 in a surface, we use 2o
ip%p 1 £ 1 p

if we travel clockwise ( from U;E’jp[ to Uf;i) and use =2 otherwise.
s s P
If v does not have self-intersections, this is the only sort of step we will see. But if v winds & > 1

times around the orbifold point, we will also see an elementary step of type 3 along the pending arc,

again between vfl’j to v,fl’j.
o
([ ]

This configuration resembles an elementary step of type 3, and as a result, we associate the

0
matrix l 1 p] , with the same rule for determining the sign as before.
P
We can treat an elementary step of type 2 across a pending arc, that is, between vfnﬁ and vi*,;f,

the same as for a pending arc.
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Definition 3.11.1. If k is an M -path whose sequence of elementary steps has associated matrices

M,y -y, then we define M (k) =np, - 11.

3.12 Standard M-path

We give an algorithm of assigning a M-path, ., to an arc or closed curve -y, which consists of a
series of connected elementary steps. We say that this convention produces the “standard M-path”
associated to . As an informal heuristic, we will pick an orientation of 7, then always travel along
the right of ~.

First, we utilize the symmetry about an orbifold point to choose a convenient representative for
~. At each pending arc that - crosses, we choose a representative that winds clockwise and less than
p times around the incident orbifold point, with one exception. If v crosses a pending arc which is
based at a vertex to the left of v, and if y is isotopic to one which winds 0 times around this orbifold
point, then we will use a representative of « which winds p times around this orbifold point. The
reason why we choose this will be made clear in the description of &.,.

As before, let v be an arbitrary arc on an orbifold O with triangulation T = {7y,...,7,}. Let
Tiys---,Tiy be the arcs which « crosses, with order determined by an orientation on +.

Suppose the first triangle that « cuts through has sides «, 8, 7;,, in clockwise order, so that «
and (3 share an endpoint at s(y). Then, x, will start at LRI and follow a with a step of type 3,
followed by a step of type 1 from a to 7;,.

Similarly, suppose the last triangle that v cuts through has sides w, z, 7;,, in clockwise order, with

w and z both touching ¢(y). Then, the last few steps of k. will be a step of type 2 crossing 7;,, a

+
t(v),2"

We next explain the sequence of steps we use between 7;; and 7;,,, for 1 < j < n — 1, where

step of type 1 from 7;, to z, and a step of type 3 along 2. Then, &, will end at v

these are both standard arcs. This sequence will involve crossing 7;; but not 7;,,. First, we use a
step of type 2 to cross 7;;. Then, if 7;; and 7;,,, share a vertex to the right of -, then we use a step
of type 1. Call this sequence of a step of type 2 and a step of type 1 a compound step of type A. If
7i; and 7;,, share a vertex to the left of v, let ; be the third arc in this triangle. Then we use a
step of type 1 between 7;; and o, a step of type 3 along o, and a step of type 1 between 7;, and
oj. We call this sequence a compound step of type B. A “step” will be assumed to be elementary
unless otherwise specified.

Now we explain the protocol when «y crosses a pending arc p = 7;,. First, we assume that p is not
the first or last arc that « crosses, so 7;,_, and 7;,,, are not necessarily distinct arcs in the bigon or
monogon surrounding p. We give rules for the transition from 7,;,_, to 7 = p, for the winding inside
p, and the transition from 7441 to 7y42. These depend on whether p is based at a vertex to the right
or left of v, and whether 7;,_, and 7;,,, are distinct or not. These will not depend on whether 7;,_,
and 7;,,, are standard or pending.

First, suppose that p is based at a marked point w to the right of v, and that 7, , and 7;,,, are
distinct. Then, between 7;,_, and p, we use a compound step of type A. Between the two crossings
of p, we use an elementary step of type 2 to cross p. If v winds k£ > 0 times around the orbifold
point incident to p, we include a step of type 1 from v;:;‘ to v;ﬁ;;; followed by k iterations of a step
of type 3 along p and a step of type 1 from v;;;r to vfg:;. Finally, we transition from p = 7, , to

with a compound step of type A. See the top left of Figure 3.11.

Tigpq

70



Tig—1 Tio—1 = Tigqo

Tigto
Tig—1 Tig—1 = Tigyo
Tigyo

Figure 3.11: Sequences of elementary steps to use when ~ crosses a pending arc twice consecutively.

Otherwise, we have that 7;, , = 7,,,, so that v crosses the same arc both before and after
crossing p. Then, at the transition from p = 7, , to 7;,,,, we instead use a compound step of type
B. The earlier part of the sequence remains the same. See the top right of Figure 3.11.

Now suppose that p is based to the left of y, and first suppose that 7;,_, and 7;,,, are distinct. We
can use a compound step of type B to transition from 7;,_, to p. From our choice of a representative
of v, we know that v winds k > 1 times around the orbifold point incident to p. We can use the
same algorithm for the sequence of steps within the pending arc p, but we will only include k& — 1
self-intersections. Then, we use another compound step of type B to transition from p to 7;,,,. Note
that while x- only intersects itself £ — 1 times inside the pending arc v, it intersects itself one more
time outside the pending arc. Thus, . remains homotopic to . See the bottom left of Figure 3.11.

If ;,_, and 7;,,, are not distinct, then we can include all k self-intersections in the pending arc
p. In this case, we use a compound step of type A when transitioning from 7;,,, to 7;,,,. See the
bottom right of Figure 3.11.

Example 3.12.1. As an example, here is the corresponding expansion of matrices for the piece of
7 portrayed in the case 7;,_, # 7;,,, and the pending arc p = 7;, is based to the right of ~, as in the

top left of Figure 3.11. For convenience, let « = 7;,_, and 8 = 15,,,

[1 0] [1 0“1 OHO ;cpH1 0] [1 OH 1 0] ll 0]
To Ap _ Ap x
TRTp 1 0 Ys ?p 1 1'701 0 J«'79 1 0 Yo l'a/;v'p 1 0 Yo

[ 1 0] [ Ap ypxp] [ 1 0]
= o ()\3)71) T
wzwp Ys z, ApYp zafc,, Yo

In the second line, we multiply the matrices within each compound step. Notice that these

matrices resemble those we assigned to pieces of the universal snake graph. We will eventually

71



B

Figure 3.12: Sequences of elementary steps when a pending arc is the first arc which « crosses.

solidify this connection.

The cases we have yet to discuss are when the first or last arc that + crosses is a pending arc.
We again will vary our procedure based on whether the pending arc is based at a vertex to the right
or to the left of  or if it is based at s(7).

Let P = s(v) be the start of 7. Recall we choose a representative of v which winds counterclock-
wise around any orbifold point it encounters. If the pending arc, p, is based at a vertex other than
P, then we use a step of type 3 along «, the boundary edge to the right of 7, and a step of type
1 from a to p. The following steps will depend on how many times v winds around this orbifold
point and which arc « crosses next. These use the same compound steps as in the earlier discussion.
For example, on the left-hand side of Figure 3.12 if v crosses « after winding around the orbifold
point, then after a compound step which winds around the orbifold point, as drawn, we will use a
compound step of type B to transition from p to a.

Next, suppose s(7) is also the unique marked point incident to p and v winds at least once
around the orbifold point. Note that if v does not wind at least once around the orbifold point, it
is isotopic to an arc that does not cross the pending arc. See the right-hand side of Figure 3.12. As
in the case when p is not based at s(v), the following steps depends on which arc v crosses next.

The cases where the last arc that v crosses is a pending arc, p are very similar. If ¢() is distinct
from the unique marked point incident to p, the final compound step will start with a step of type
2 to cross p, then a step of type 1 and a step of type 3. We can see this by traveling the opposite
direction along the M-path on the left of Figure 3.12.

If ¢(7y) is the marked point incident to p, then our final compound step will be as in the case
when p is incident to s(7y), but again with the order reversed.

Finally, we consider the case when = is a closed curve. Pick a triangle, A, such that « consecutively
crosses two of its arcs. Label these arcs 7;, and 7;,, such that 7;, immediately follows 7;, in a clockwise
order. Let ¢ be the endpoint of 7;, which is not also an endpoint of 7;,. Then, the standard M-path,
k~, will start and stop at Vgors, - The M-path can start with a compound step of type A or B,
depending on whether 7;, and 7;, share a vertex to the right or left of the chosen orientation of ~.
Then, since by construction 7;, and 7, share an endpoint to to the left of v, x, will end with a
compound step of type B.
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3.12.1 Upper right entry does not depend on choice of M-path

Lemma 4.8 in [59] shows that the upper right (trace) of matrices from M-paths associated to arcs
(closed curves) on a surface does not depend on our choice of M-path. For instance, if «y is a closed
curve, the trace of M (k) for an M-path x from v does not depend on k’s start and end point since

trace is invariant under cyclic permutations.

Lemma 3.12.2 (Lemma 4.8 of [59]). Let 1 and 2 be a generalized arc and closed curve with no
contractible kinks, respectively, on a triangulated surface (S, M). Then, given k1 and k2, two M-
paths associated to vy, we have [ur(M (k1))| = |ur(M (k2))|. If &} and k% are two M -paths associated
to va, we have |tr(M(k1))| = [tr(M(k2))]|.

Since we are in an orbifold, there are more ways to adjust an M-path associated to an arc «; in
particular, if an M-path winds k times around an orbifold point of order p, we can adjust it to wind
k+mp times for any integer m. We show in Lemma 3.12.3 that these adjustments still do not affect

the statistics of the matrices which we care about.

Lemma 3.12.3. Let k1 and ko be two M-paths which are identical except at one orbifold point
of order p, such that at this orbifold point k1 winds k times and ko winds k + mp times where
m € Z. Then, up to universal sign, M (k1) = M(kz2). In particular, |ur(M(k1))| = |ur(M (k2))| and
(M (k1)) = |t7(M (x2))].

To prove this, we will prove a lemma about products of the elementary matrices which correspond
to an M-path winding around an orbifold point of order p. It turns out products of these matrices

have Chebyshev polynomials, evaluated at A,, as coefficients.

Lemma 3.12.4. Let k > 0, and let Ui (x) be the k-th normalized Chebyshev polynomial of the second

kind. Then, i
1ol [0 2| \*  [=Uka(Ny) Ueci(Np) -z
(s 15 o) = [ o >
and
0 =z, [ 1 0o[\* [h(p) -Uici(hy) -z, .
§ P B I et e 0

Proof. Recall our convention that U_q(z) = 0, Up(x) = 1, and the normalized recurrence for ¢ > 0:
Ue(z) = zUp—1(x) — Up—a(x). This proof follows by induction and the recurrence for Chebyshev

polynomials. O

Remark 3.12.5. Equation 3.6 can also be thought about as making sense of what matrixz should be

assigned to a generalized arc which winds k times clockwise around an orbifold point.

Remark 3.12.6. Compare the matrices in Lemma 3.12.4 with the statement of Proposition 3.10.3
and the labels we include in hexagonal tiles from an arc with nontrivial winding about an orbifold
point. In particular, note that if we consider a hexagonal tile as UG, then there is exvactly one
perfect matching in each A, B,,C,, and D,, and each matching uses exactly one edge with label

Ui(Ap)x, for some £ and for the pending arc p.

Now, we can prove Lemma 3.12.3.
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Proof. If m = 0, this lemma is trivial. If m > 0, then the expansion of M (k3) into elementary

1 0|10 mp —Up_2a(A Up—1(Ap) - m
matrices will have a term < N o P ) = ( e 2(()\ ’;) 1) p > . Recall
TP 1 ra 0 Vpl . Up()‘p)
that Up—2(Ap) = 1,Up—1(\,) = 0, and Up(A,) = —1. Thus, this extra factor in the expansion of
M (k2) is simply +1d, where the sign depends on the parity of m. Thus, |ur(M (k1))| = Jur(M (k1))|.

The case where m < 0 is similar. O

From Lemma 3.12.2 and Lemma 3.12.3, we see that we can always use the standard M-path, .
for any generalized arc or closed curve v and not affect the upper right or trace, respectively, of the
associated matrix.

We have that the upper right (trace) of the matrix from an M-path for most arcs (closed curves)
is a well-defined statistic. However, if 7 is a closed curve, there are some cases where y does not
cross any arcs on 17" and so the M-path may be ambiguous. Musiker and Williams deal with curves
which are contractible or enclose a single puncture [59]. In an orbifold, we can also have a curve
which encloses a single orbifold point.

We turn to the normalized Chebyshev polynomials of the first kind which Musiker, Schiffler, and

Williams use to describe arcs such as we are describing.

Definition 3.12.7 (Definition 2.33 and Proposition 2.34 of [57]). Let Ty(x) denote the ¢-th nor-
malized Chebyshev polynomial of the first kind, for £ > —1. These are given by initial polynomials

To(z) = 2,Ti(z) = z, and the recurrence,
Ty(x) = aTy—1(x) — Ty—o(x)

While the definition in [57] keeps track of an extra variable Y, for now we set Y = 1. See Section
3.14 for a related discussion of y-variables.

We give the following as a corollary of Proposition 4.2 of [57].

Proposition 3.12.8. Let v be isotopic to a closed loop encompassing a single orbifold point with
k>0 self intersections. Then, x = Ti11(\p)-

This proposition largely follows from the following relationship amongst the normalized Cheby-

shev polynomials discussed here.

Lemma 3.12.9. Let Uy(x) and Ty(x) be normalized Chebyshev polynomials of the second and first
kind, respectively, as in Definitions 3.1.1 and 3.12.7. Then, for £ > 1,

Tg(lL‘) = Uz(x) — U[_Q(x)

Lemma 3.12.9 can be proved using induction and the recurrence relations for each type of Cheby-

shev polynomials.

Proof of Proposition 3.12.8. If ~ intersects itself & > 0 times, we can build an M-path for ~, call
it k, which is a sequence of k£ 4 1 steps of type 1 and type 3. From Lemmas 3.12.4 and 3.12.9, we
immediately see that trM (k) = Ugy1(Ap) — Uk—1(Ap) = Tht1(Ap). We see this follows naturally
from Proposition 4.2 of [57] since if € is an essential loop around this single orbifold point and & is
an M-path from i, then we have tr(M(k)) = A,. O
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Now, we are prepared to state a complete definition.

Definition 3.12.10. Let v be a generalized arc and ~' be a closed curve on an unpunctured orbifold
O with triangulation T. Then, x~y1 = |ur(M(k,))|.

If v is contractible, set x v = —2. If v is isotopic to a closed loop encompassing a single
orbifold point of order p, with k > 0 self-intersections, let .17 = Try1(Np). Otherwise, let x4 7 =
er(M (1))

In Theorem 3.12.12 we will compare x.,r with X, 7. Recall we found X, 1 by building a snake

graph from ~.

Remark 3.12.11. Musiker and Williams show in Section 4 of [59] that their matrices, after spe-
cializations, generalize work of Fock and Goncharov in [21] which also associated matriz products to
paths in triangulated surfaces as a way to construct coordinates on the corresponding Teichmuller
space.

In their paper defining generalized cluster algebras, Chekhov and Shapiro update the matriz prod-

ucts which compute X -coordinates (in the sense of Fock-Goncharov) to include orbifolds [13]. They

0 1
. ) to the piece of a path going around an
- —p

accomplish this by assigning the matriz F), = <
orbifold point. If an arc winds k times around an orbifold point, they include (712)’“’1F1ﬁC where Iy
is a 2 X 2 identity matriz.

Notice that when k = 1 and when we specialize x, = 1 in the matriz in equation 3.5, we get a
matriz similar to F,. Thus, we can interpret this matriz as recording a composition of steps of type
1 and 3. (Musiker-Williams also have matrices which differ by a sign along the diagonal from Fock-
Goncharov, which does not affect the desired matriz statistics.) This is akin to the quasi-elementary
steps which Musiker- Williams associate to matrices from Fock-Goncharov which correspond to a path
turning left or right inside a triangle. Thus, we can interpret these new matrices from Chekhov-
Shapiro as a way to record turning “inside” a pending arc (when pending arcs as visualized as loops

around orbifold points, as shown in Section 2.4).

3.12.2 Connecting Arcs and Snake Graphs

So far, given an arc or closed curve v on an orbifold O with corresponding generalized cluster algebra
A, we have provided two elements of A from v: X, r and x,,7. We now show these are always the

same element of A

Theorem 3.12.12. Let O be an unpunctured orbifold with triangulation T, and let v be any arc or
closed curve on O. Let e(y,T) =d > 1 and G, be the snake graph (or band graph) constructed

from ~. Then,
1

o T > a(P)h(P) (3.7)

P

Xy, 1 =Xy =

where the summation ranges over all perfect matchings P of G .

Proof. First, we briefly discuss the case where d = 0 for use in later portions of the proof. If d =0,

then v € T. In this case, the standard M-path is a step of type 3 along « and its associated matrix
0 ==z,

is simply ETRE

. The snake graph Gr . consists of two vertices connected by a single edge

with label y.wSuch a graph has exactly one perfect matching.
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Now, we are prepared to consider d > 0. First, we consider the case when ~ is an arc. Recall
Theorem 3.10.4,

Ty
1 ﬁ T2Yiq 0 Lq
_— E z(P)h(P) =ur My .
cross(T, ) -1 0 =1
P T, Tq Tiq
Moreover, recall that My = mg_1 - - - mq1 where for j > 1,
25 o s laj 1 Do
T2 Y25a2; P Y25—-1025-1
mo; = Moi_] =
’ baj 2T J az;—1 ) Toj_1
iyt 01 I a0 ta—1in;  J20-1 740y,

These elements of the matrices m; are labels of the edges of the universal snake graph UG,.
When our graph comes from an arc on a triangulated orbifold, the labels of the edges of the graph
correspond to arcs in the orbifold. Here, the first triangle that + passes through has sides a, b, and
T;, in clockwise order, and 7;, is the arc which « crosses. Similarly, the last triangle that ~ crosses
through has sides w, z, and 7;, in clockwise order, and 7;, is the last arc which =y crosses.

We gave an algorithm for determining &, the standard M-path of v, in terms of a sequence of
compound steps. If v crosses d arcs in 7', we use d — 1 compound steps, as well as initial and final
sequence of elementary steps. Each compound step has an associated matrix.

In most cases, the product of matrices associated to the elementary steps before the first crossing

0 =«
in the standard M-path is [_1 9:1 . When + first crosses a pending arc, p, and s(7) is also the
Ta Ty
T
unique marked point incident to p, this matrix is of the form m: . However, the terms in the
% Tb
wil

first column will not affect the upper right entry of the product of matrices. This is similar for the
product of matrices associated to the elementary steps at and after the last crossing in &..

Next, we compare the matrices m; in the description of My with the matrices from each compound
step of k.. In our rules for k., if v crosses two consecutive standard arcs, 7;; and 7;,_,, which share

a vertex to the right of +, then we use a compound step of type A. Multiplying the elementary

1 0

matrices these correspond to gives the matrix [ .,

where c; is the third edge in the
ENET L
triangle formed by 7;; and 7;,,,. If v crosses a standard arc 7;; and then a pending arc 7;,,, and
Ti;4, is based to the right of «, then we have the same form of matrix.

From our construction of snake graphs, if 7;, and 7, , share a vertex to the right of v, and i;
is odd, then we use a north-pointing parallelogram, so b; = 0. In this case, r; = ;11 and £; = i;.
If i; is even, then we use an east-pointing parallelogram, so a; = 0, r; = ¢; and ¢; = ¢;41. These
specializations apply even if 7;, | is a pending arc. In either case, the matrix from the j-th compound
step in k-, matches the matrix we use for the j-th parallelogram in Gr .

If ;, and 7, , share a vertex to the left of , or if 7;,, is a pending arc based to the left of -,
then we use a compound step of type B to transition between these. Multiplying the matrices in this

Zin Yi T,

compound step gives | i yj xi; . When constructing G, if 7; is odd, we use an east-pointing

Tiji1
parallelogram and if ; is even, we use a north-pointing parallelogram. When we use the relevant

specializations, we see again that in either case the matrix m; matches the matrix in the expansion
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of M (k) from this compound step.
Next, consider when 7;, = 7;,,,; this implies 7;, is a pending arc. Suppose that v winds k > 0
times around the orbifold point enclosed by 7;;. Then, the product matrices from the series of

elementary steps from the standard M-path are

ql o] [0 pb’“[l 0] [1 0]
Ap -1 Ap ) .
3 1 L 0 3 1 0 yl]‘

By Lemma 3.12.4 and the recurrence relation for Chebyshev polynomials, we have

~Up—a(Ny) Uii(Np)-z,] [1 0] 1 0]
—He) Us(Ap) oo )

Zp LZp

Ue(Ap)  Uk—1(Ap) - yi;2p
Urt1(Ap) Ue(Np) - 4,

Zp

If k = 0, then U_;(\,) = 0, and this resembles the case when 7;; and 7;,,, are standard arcs
which share a vertex to the right of 7. If k = p — 2, then Uy,_2)41()\p) = 0, and this resembles the
case where two consecutive standard arcs share a vertex to the left of 4. If 0 < k < p — 2, then all
four entries of this matrix are nonzero.

In our construction of G, when an arc winds k > 0 times around an orbifold point, we associate
a hexagonal tile. In the language of the universal snake graph, we construct this with a parallelogram
where both diagonals are included. Moreover, we have i; = ;41 = x,, and r; = £; = Ui(Ap)z),.
Then, either a; = Ug_1(A\p)z, and b; = Ugy1(Ap)z, or vice versa.

When 7;, is a pending arc and 7, , is not a pending arc, we have to consider both whether 7;;
is to the left or right of v and whether 7;,_, is distinct from 7;,,. We saw these four cases in the
description of k.. If 7, , and 7;,_, are distinct arcs, then we use the same compound step between

Tij_s and Ti;_, as we do between Ti; and Tijir-

For example, if Tijir and Ti;_, are distinct arcs and
7i;, the pending arc, is based to the right of y, then between 7;; and 7, , we use a compound step of
type A, just as we use between 7;,_, and 7;,_,. When constructing Gt , in this case, at indices j — 2
and j we either have both parallelograms facing north or both facing east. Thus, in the standard
labeling of the universal snake graph, either both a;_» = a; = 0 or bj_3 = b; = 0. Conversely,
if 7, , = 7i,;,,, in K, we use opposite compound steps between 7;,_, and 7;,_, and between 7;,
and 7, ,. In the construction of G, we use opposite parallelograms at indices j — 2 and j. By
specializing the entries of the matrices m; from the parallelograms at each case, we will see that the
matrices from the graph and M-path agree again.

Putting all these cases together demonstrates that the matrices from the compound step de-
composition of - largely match the matrices used in Theorem 3.10.3 to encode weighted perfect
matchings of G, 7. The initial and final matrices will not necessarily completely match. However,

we can conclude the following

pvr s e i DY I D B oy
! -1 0 -1 = cross(T, ) - ’

+

Tiys

end. Then, 7;, and 7;, form two sides of the triangle which ¢ lives in; call the third side of this

Now, let v be a closed curve, and let ¢ = v , be a point chosen on v for &, to start and

triangle a. We see that we can start with a compound step of type A or B since we start adjacent

to the first arc which v crosses. However, when we cross 7;,, we will need to include a compound
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step of type B to return to g, since 7;, follows 7;, immediately clockwise. This compound step has

T4

Tiy 0 Tiy 0
matrix Z‘; viywiy | - Thus, M (k) = tr( Z‘: Yiy @iy Md>. By Theorem 3.10.4, this is
TidnTiy Tig TigTiy Tiy
equivalent to the weighted sum of perfect matchings of the band graph Gr . O

Corollary 3.12.13. Let v be an arc or closed curve on O with no contractible kinks which winds at
most p—1 times around any particular orbifold point of order p. Then the coefficients of the Laurent

expansion for x~ obtained from the cluster expansion formula in Theorem 3.12.12 are non-negative.

3.13 Skein relations with y-variables

The following definition will be useful for a condensed discussion of the skein relations in [59].

Definition 3.13.1. A multicurve, C, on O is a finite multi-set of arcs and closed curves on

O. If these arcs and curves are v1,...,%Vn, then we define the monomial xcr to be the product

Xy, T Xy, T

Musiker and Williams [59] prove in Propositions 6.4, 6.5, and 6.6 that, in the surface case, the
quantities x,,r respect the skein relation. Let C' be the multicurve which consists of either v; and
2, two generalized arcs or closed curves which intersect, or 7, an arc or closed curve with points of
self-intersection. At one point of intersection between v, and -2, or one point of self-intersection on
v, we can use smoothing. This will create two new multicurves, call them C7 and Cy; amongst the
arcs in Cy and Cb, there is at least one less intersection than amongst the arcs in C. See [59] for

more details about the process of smoothing and the proofs of these propositions.

Theorem 3.13.2 (Propositions 6.4, 6.5, and 6.6 of [59]). Let A be the cluster algebra associated
to surface (S, M) with initial triangulation T'. Let C' be a multicurve consisting of two intersecting
arcs/curves or one arc with self-intersection, and Cy,Cy be the multicurves obtained by smoothing

one point of intersection in C. Then in A we have

xo,r = £Yi1xc,,r £ Yoxe,, T,

where Y1 and Yo are monomials in the y-variables which can be computed by analyzing the in-
tersections of the arcs/curves in C,C1, and Cy with the elementary laminations from the initial

triangulation T'.

These skein relations can also be applied to pending arcs, or, more generally, to arcs which wind
around orbifold points. Consequently, we can extend Theorem 3.13.2 to unpunctured triangulated
orbifolds.

Proposition 3.13.3. Theorem 3.13.2 holds on an unpunctured triangulated orbifold O. In partic-

ular, it holds for multicurves which include pending arcs or arcs that wind around orbifold points.

Proof. The arguments used by Musiker and Williams in [59] to prove Propositions 6.4, 6.5, and 6.6
can also be applied in the orbifold setting. Smoothing a multicurve C' on an orbifold works in the
same manner as smoothing a multicurve C on a surface, and we have shown that the expansion of

the cluster algebra element associated to an arc or closed curve can be encoded by a product of a
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sequence of matrices. Thus, we can use the same matrix equalities (Lemma 6.11 of [59]) which are
fundamental to their proofs. Because we consider only unpunctured orbifolds, we don’t require the

notion of a loosened M -path. [

These skein relations show that our choice of cluster algebra element x. r associated to a gen-
eralized arc or closed curve 7 is the right choice. In particular, we can decompose 7 into a sum of
products of ordinary arcs. By Theorem 3.3.1, we already know the correct cluster algebra elements
to associate to the ordinary arcs. Proposition 3.13.3 shows that the associated cluster algebra ele-
ments satisfy the same decomposition. Since x.,r = X, 7, we can conclude our expansion formula
provides the right choice of cluster algebra element for arbitrary arcs and closed curves.

Standard skein relations resemble the binomial exchange relation in an ordinary cluster algebra.
When two pending arcs intersect, we can use the standard skein relation twice to recover a three-term

relation which models the generalized exchanges in the generalized cluster algebras we consider.

Proposition 3.13.4. Let v1,7v2 be two distinct pending arcs to the same orbifold point in an un-
punctured orbifold O with triangulation T. Choose an orientation for 1, and let qi1,...,qop be the

intersections of y1 and vz, with order determined by the orientation of y1. Orient vo so that it visits

qe before qoy1. Let By = (71,75 |5(71), g, 5(72)) and let Ba = (71,721t (1), qes1,t(72)). Then,
X TXA2,T = YoX3, 7 + YiXpXpy, 71X 65,7 + YaX5, 1

Proof. Note that 51 and B form a bigon around the orbifold point incident to ; and ~s such that

these are the two pending arcs inside the bigon.

First, we use Proposition 6.4 of [59] to smooth 77 and 2 at go. In the vocabulary of Theorem
3.13.2, if C = {y1,72}, then C1 = {B1,a} and Co = {B2, B2} where o = (y1,72[t(11), ¢, t(72))-
Note that o has one self-intersection. We can then use Proposition 6.6 of [59] to smooth «. If

C = {a}, then after smoothing we get the two multicurves C; = {, B2} and Cy = {31} where ¢ is
an essential loop around the orbifold point incident to v; and 5. Then, we can decompose C to
Ci11 = {§ B, 02} and Cy o = {f1,61}. There are no crossings amongst the arcs in Cq 1,C1 2, and
(3, and we have that x¢ = z¢, , +2¢, , +Zc,. By Proposition 3.12.8, z¢ = A, where p is the order
of this orbifold point. This yields the desired equality

X1, T X2, T = Y Xpy 7Xa, + YoX5y 1 = YoX53, 10 + YiX80,7X82.7 + YoX5o.1

A diagram of this smoothing on the orbifold is shown below.

B3

oS - D

e
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B2 P2

N S

B2 A

Figure 3.13: Smoothing the intersections of two distinct pending arcs incident to the same orbifold
point using the standard skein relation.

O

3.14 Connection to punctures

Within this chapter, we restricted our discussion to unpunctured orbifolds. Recall that a puncture
is a marked point which appears in the interior of a surface or orbifold. The original snake graph
construction in [58] does handle surfaces with punctures. In this section, we give some interesting
examples which illustrate how some results from [58] and [59] concerning punctures can be recovered
by treating the puncture as an orbifold point with infinite order.

As motivation, recall that an arc which winds k times around an orbifold point of order p is
isotopic to an arc winding k &+ np times for any integer n - even if this means that the winding
arc switches directions. This type of isotopy does not exist for arcs winding around punctures;
thus, in some sense we could consider the puncture to have infinite order. Moreover, note that
Aoo 1= limy_s o Ap = limy,_, o 2 cos(m/p) = 2. Thus, a loop which is contractible to an orbifold point
of infinite order has the same weight as a loop contractible to a puncture.

We will specifically consider the case of a puncture inside a self-folded triangle, as this most
closely resembles a pending arc, and compare the z-variables and y-variables in these situations. We
note that by specializing Ao = 1 + y,., we can nearly recover the F-polynomials from these cluster
algebra elements.

Previously, we discussed normalized Chebyshev polynomials of the second kind. Now, we intro-

duce another formal variable to these Chebyshev polynomials.

Definition 3.14.1. Let {U{(m)}k be a family of polynomials indexed by k = —1,0,1,... such that
UY,(z) =0,U{ (z) =1, and for k > 1,

U (2) =2 Uy (2) =Y - Uiy (2)

For example, UY (z) = z,Uy (z) = 22 — Y, and Uy (z) = 2° — 2V .
We then record some results about our normalized Chebyshev polynomials, with and without

coefficients, for later use.
Lemma 3.14.2. Let Uy, and UY be as in definitions 3.1.1 and 3.14.1. Then for k > 1,
1. Upx(2)=k+1

2.UY(1+Y)=1+Y 4 +Y*
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Figure 3.14: A comparison of the local snake graphs for arcs crossing pending arcs and self-folded
triangles. The highlighted perfect matching of the generalized snake graph corresponds to the two
highlighted perfect matchings in ordinary snake graph for the punctured surface case.

Proof. The first statement follows from the second by setting ¥ = 1, so we need only prove the
second statement. We do so by induction. The statement clearly holds for UY (z), and by definition
Uy(1+4Y)=(1+Y)2-Y =1+Y + Y2 Then, for k > 3,

UYQ+Y)=0+Y)- U 1+Y)-Y -UY ,(1+Y)
=(1+YV)A+Y 4+ 4+Y*""H YA 4+Y ... 4 Y+ 2
=14+Y+...4YF

as desired. O

In Figure 3.14, we compare the generalized snake graph from an arc that crosses a pending arc
twice and has a single self-intersection to the ordinary snake graph for an analogous arc where the
orbifold point has been replaced by a puncture and the pending arc by a self-folded triangle. If we
set Aoo = 2, s0 that Up(Aeo) = 1, U1 (Aao) = 2 and Uz (M) = 3, several edge labels on the generalized
snake graph become positive integer multiples of cluster variables. A perfect matching which uses
one of these edges corresponds to multiple perfect matchings in the snake graph from the surface
case. The highlighted perfect matchings in Figure 3.14 show an example of this.

In the generalized snake graph, the perfect matching P uses an edge labeled Uy (Aoo)z, = 2.
Considering only the arcs drawn, z(P) = 2zz’. Recall that in the denominator of the cluster
expansion formula, we have the crossing monomial xi. However, a factor of x, also appears in
each of the other terms in the numerator. Canceling this factor gives the reduced weight 2zgx,,.

In the ordinary snake graph, we show two matchings, which each have weight zgz22?. Similar to
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Figure 3.15: Another comparison of generalized and ordinary snake graphs, for an example of arcs
crossing the pending arc or loop a single time.

the orbifold case, here the crossing monomial is z2z%. By observation, we see that every perfect

matching will use at least two edges labeled z, and one edge labeled z,; thus, we can cancel a factor
of x2z, to obtain the reduced weight xgx¢ for each perfect matching. Setting A\, = 1 + y,, so that
U1(Ap) = 1+ y,, also makes sense in this example, since the two highlighted matchings differ only
by a twist at a tile with diagonal label r.
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Chapter 4

Generalized cluster scattering

diagrams

This chapter describes joint work with Man-Wai Cheung and Gregg Musiker, which will appear as an
extended abstract in the 2021 proceedings of the Formal Power Series and Algebraic Combinatorics
(FSPAC) conference [15]. A full length version of that extended abstract is currently in preparation
[14]. This work occurred contemporaneously to, and independently of, the related work of Lang
Mou [54].

4.1 Basic definitions

We begin by updating some definitions for the generalized setting. First, we update the definition

of fixed data to include data from the exchange degree matrix R.
Definition 4.1.1. The following data is referred to as generalized fixed data, denoted I':

e A lattice N called the cocharacter lattice with skew-symmetric bilinear form {-,-} : N x N — Q.

A saturated sublattice Nyy C N called the unfrozen sublattice.

An index set I with |I| = rank(N) and subset Iy C I such that |Ipng = rank(Nyy).

A set of positive integers {d;};er such that ged(d;) = 1.

A sublattice N° C N of finite index such that {Ny, N°} C Z and {N, NN N°} C Z.

A lattice M = Hom(N,Z) called the character lattice and sublattice M° = Hom(N°,Z).

A set of positive integers {r;}icr.
e A collection {az‘,j}v;eluf,je[m—l] of formal variables.
The adjective ‘fived’ refers to the fact that this data is fized under mutation.

Note that the exchange polynomial coefficients {a; ;};c Iu,jelrs) are formal variables, rather than
elements of k. As such, we must work over the ground ring R = k[a; ;] rather than over k as in the

ordinary case. In doing so, we follow the work of [5] on cluster varieties with coefficients.
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We also establish the notion of a generalized torus seed, also denoted s.

Definition 4.1.2. Given a set of generalized fized data, we can define associated generalized torus
seed data s = {(ei,(am»))]»iem,e[m_1
ordinary torus seed data and each (a;j;) is a tuple of formal variables taken from the collection
specified in the fized data.

] such that the collection {e;}icr satisfies the conditions for

Analogous to the ordinary case, this defines a dual basis {e} };c; for M and {f; = d; 'ef};e; for
M°. Note that when r; = 1 for all ¢, our definitions reduce to the definitions for an ordinary torus
seed.

We will confine our attention to the subclass of reciprocal generalized cluster algebras:

Definition 4.1.3. A generalized torus seed s is called reciprocal if its scalar tuples (a; ;) satisfy the
reciprocity condition a;; = a;,—j. We refer to the associated algebra as a reciprocal generalized

cluster algebra.

Note that the exchange polynomial coefficients a; ; appear in both the generalized fixed data
and generalized torus seed data. These coefficients must appear in the fixed data because we now
work over the ground ring R = kla, ;]. For reciprocal generalized cluster algebras, the exchange
polynomial coefficients are fixed under mutation and so arguably do not need to also appear in
the generalized torus seed data. These coeflicients are not, however, fixed under mutation for non-
reciprocal generalized cluster algebras. As such, we choose to include the exchange polynomial
coefficients in the generalized torus seed data in order to leave open the possibility of extending our

construction to arbitrary generalized cluster algebras without redefinition.

Example 4.1.4. The generalized cluster algebra

0 1 3 0
A (XaY7 [1 O‘| ) [O 1] 7((1’0'70'71)7(171)))

has generalized fized data T' with d = (1,1), » = (3,1), I = Is={1,2}, N =N° = (e1,e2), M =
Me° = (e}, e5), and skew-symmetric bilinear form {-,-} : N° x N° — Z specified by the exchange

matriz. One possible choice of generalized torus seed data is

5= {(61 = <1a O)’ (1,&, a, 1))7 (62 = (07 1)’ (la 1>>}’

Definition 4.1.5. Given generalized torus seed data s and some k € I,5, a mutation in direction
k of the generalized torus seed data is defined by the following transformations of basis vectors and

exchange polynomial coefficients:

o e; + T}c[qk]+ek 1#k
' —€L 1=k

fl= —fo e Yjer, el i 1=k
s ik

! L .
Ok j = Qk,rp—j
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The basis mutation induces the following mutation of the matriz [€;;):
—€45 k=1ork :]

/ R ! / _ R
€;; = {e, ejtdj =< €y k#1i,5 and e;per; <0

€ij +rleinlen; k#4,j and eper; >0

Given generalized torus seed data s, we can then define associated algebraic tori Ag and As.

Recall that our ground ring is R = k[a; ;]. For a lattice L, let
TL(R) := Spec (k[L*] ® R) = T, xk Spec(R).

This notation then allows us to state the following definition:

Definition 4.1.6. A choice of generalized torus seed data s defines the tori:

Xs = Ty (R) = Ty Xi Spec(R) = Spec (K[N]) xk Spec(R)
As = Tno (R) = Tyo Xx Spec(R) = Spec (k[M°]) xk Spec(R)

There are several common notational conventions for the coordinates of these algebraic tori.
We will use y1,...,y, for the coordinates of X5 and z1,...,x, for the coordinates of Ag in order
to be consistent with the prevailing notation for ordinary and generalized cluster algebras. In the
literature, however, it is common to see X1,..., X, used for the coordinates of X5 and Aq,..., A,

for the coordinates of As.

Definition 4.1.7. We define birational maps py : Xs — Xy, sy and py : As = Ay, (s) via the pull-

back of functions

—(dkex,m)

upz™ = z2"m (1 +ag 12"+ + akyrk,lz(”“’l)”’“ + zr’“”’“) (4.1)
) n e (re—1)e TRe ~Insex]
urpz"t =z (1+ak,1z Mg 12T TR k) (4.2)

forne N and m e M°.

As in the ordinary case, the exchange relations for generalized cluster algebras, stated in Defini-
tion 2.5.2, can be explicitly obtained from Definitions 4.1.5 and 4.1.7 by applying uj to the cluster

variables z; = zfi and Y = 2.

Remark 4.1.8. The form of the exchange relations for generalized cluster algebras can be recovered
from Equation (4.1) and Equation (4.2) by setting m = f; and n = e;. Consider the mutation of

x; = 27" and y; = 2% in direction k. If i = k, then

HE(R) = i () = pi (27%) = 275 (Lo 2meen) Toomend = pmen =y
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and

uiah) = wi (=)

= i (fo’““’k Zjeruf[*ﬁkjhfj)

z_fk+7'k Yjer leril+fi (1+ apa 2% + -+ Zrk’uk)_<dk€k7—fk+7'k 2jer, lmeril+ f5)
Tk

Pl H Sl=enil+ £i (1 + ak,lzvk R ak,rk_1z(r"'71)”k R A
JE€Ly

) (dier,fr)

v (re—1)v oo\ e lensl+ )
H(1+ak7lzk+"'+ak,m—1z k k+zkk>

JE€ELyy
Tk
- . 1 n 1
L H Zlenile i (1 +ap1z" 4+ ak,rk—lz(rk_ ok Zwmc)
jEqu

0
H (1 gz et g2 z""“’“)

jEqu
Tk
L H Sl=erile fi (1 Fap 2 4+ ak,rk_lz("'kfl)’uk + Z’I‘k’l/lc)
JELuf
Tk Tk
= H Sleril+ f 1+ agy H Zeeili | 4o 4 H 2k fi
JEILy JELy JEL
Tk Tk
_ by bej bij
:xkl Hx[_ kil+ 1+ap, H”M bt Hx_k]
J , J J
jGqu jGqu jEqu

If i £ k, then

ui(wh) = i (=)
HZ (z€i+7”k [E,yk]+ek>

_ Z€i+'r'kt[fik]+6k (1 + aszek N ak,rk—lz(rkil)ek + Zrkek)

—lei+rrleir]+ex ekl

e Tkl€ik]+er er (re—1ex reen —[eisex]
= z%z 14+ap12°% 4+ +agr,-12 +z

—€ik

= Zez‘ (Z[Eik]+€k)7'k (1 +ak,126k 4+ .4 ak,rk—lz(rkil)ek + Zrk.ek)

b; Tk _ —bik
=y (Z/;[€ k“) (1+ ap1ye + - + pr—1Y5" '+ ypr)

and

#Z(;p;) = uj (Zfl/) =pu (Zfl) — fi (1+ ap 2% +--- _’_Z’Fkvk)*<dkek7fk> — G fi ;
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4.1.1 Generalized cluster varieties

In order to define generalized cluster varieties, we need the following gluing construction from [5],

which is a more general version of Proposition 2.4 of [39].

Proposition 4.1.9 (Lemma 3.10 of [5]). Let {S;} be a collection of integral, separate schemes of
finite type over a locally Noetherian ring R, with birational maps fi; : S; — S; for all 1,7, with
fis = Id and f;i o fi; = fir as rational maps. Let U;; C S; be the largest open subscheme such that

fij : Uiy = fi;(Uij) is an isomorphism. Then there exists a scheme
S:=Js:
i

which is obtained by gluing the S; along the open sets U;; via the maps fij.

Although the statement of Proposition 2.4 in [39] specifically requires that R be a field, its proof
actually holds in the more general case where R is a locally Noetherian ring, as explained in Remark
3.11 of [5]. In our setting, R is a Laurent polynomial ring and we therefore require the more general
statement.

Fix a generalized cluster pattern, as in Definition 2.5.5.

Definition 4.1.10. The A-generalized cluster variety is the scheme

A= A

seT

obtained by using Proposition 4.1.9 to glue the collection of algebraic tori {As}sex according to the
birational maps py : As — Ay, (s) specified in Definition 4.1.7. Analogously, the X-generalized

cluster variety is defined to be the scheme

X::UXS

seT
obtained by gluing the collection {Xs}sex according to the birational maps py = Xs — Xy, (s)-

For readability, we will often refer to these schemes simply as the A-variety and X-variety.

Intuitively, we expect that the construction of the A-variety and X'-variety should not depend
on the choice of seed - that is, mutation equivalent seeds s and s’ should yield isomorphic schemes.
The two smaller commutative diagrams in the following proposition show that structures of the tori
given in Definition 4.1.6 are compatible with generalized torus seed data mutation. This induces a

similar compatibility for A4 and X.

Proposition 4.1.11. Let K = ker(p;) and K° = KN N°. For a given generalized torus seed s and

mutation direction k € [n], the following diagrams are commutative:

Teo As P Xs Ty

Pk

Tko —— A#k(s) L> X#k(s) — T~
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Tin/Nyye — & As — Tnoy(NynN°)
CE
Tin/Nys — Xur(s) Aus) — Tnej(Nynno)

Proof. There are several unlabeled maps in the above commutative diagrams. Those maps come

from the following structures, as described in [39]:
1. The inclusion K C N induces a map Xs — Tk~.
2. The inclusion K° — N° induces a map Txo — As.

3. Let Nk :={m € M°: (m,n) = 0 for all n € Ny}. Then the inclusion N C M° induces a

map .AS — TNO/(NufﬂNo).

4. The choice of the map p* : N — M° definesamap p : As — X5. The map p* : N — M?® induces
maps p* : K — N and p* : N/Nys — (K°)* which define maps p : Tny(Nynney — Tx+ and
p:TKko — T(N/Nuf)*'

Using the definitions of these maps, p, and pyg, it is straightforward to check the commutativity of

each square. O

4.2 Generalized cluster scattering diagrams

As in the ordinary case, we will be interested in a particular scattering diagram which is defined by
the generalized fixed and torus seed data. To define this diagram, which we refer to as the generalized

cluster scattering diagram, we begin by modifying the definition of an initial scattering diagram.

Definition 4.2.1. Let v; = pi(e;) for i € I;. Then we define
) . 1 ) 20, . (ri—1)v; iU\ .
Din,s 1= {(ei ltai12" +a; 2277+ a2 + 2 )}zeluf

Generalized cluster scattering diagrams use the same notions of equivalence, uniqueness, and
consistency as ordinary cluster scattering diagrams. For statements of these definitions, see Sec-
tion 2.3.

Example 4.2.2. The generalized cluster algebra from Example 4.1.4 has birational maps p1, tio
defined by the pullbacks

iz =21+ azM0 4 az(20) 4 530 =IO
[ = (1 4 2O 4 202 4 03 ~(10)m)
[ = 27(1 4 200y =[n O]

paz™ = 2" (1 + Z(—170))—<(0,1)7m>.

It has initial scattering diagram
Dins = {((0,1)5, 14 2589 (1,001, 1 + az®Y 4 202 4 203y},
which can be drawn as
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09

v fo, =14 210
/ 01 fo, =1+ az(OD 4 q2(02) 4 ,(0.3)
i

Consider the paths v (traveling counterclockwise, on the left) and ' (traveling clockwise, on the
right). We can demonstrate that the diagram ©,,s is not consistent by computing pyo, . and

in,s

Py Dine - We compute p o as

in,s

ZLD) 22y (LD (1 +az0V +q202 4 z(o’g))«l’l)’(l’o»

— (1 1 azO0D) 4 (02 4 Z(Oﬁ))

1+az0D (14210

1,1),(0,1
'D_1> L(LD) (1 n 2(71’0))« ),(0,1)) 1az(02) (1 _’_Z(—l,o))((O,Q),(O,l))
4+,(03) (1 + 2(71,0))«0,3)7(0,1))

= (LD (1 + z(_1’0)> (1 +az(®V (1 + z(_l’o)) + az(®?) (1 + z(_1’0>)2 + 2009 (1 + z(_l’o))3)

) <(011)1(071)>

Similarly, we compute p o, . as

in,s

A0 2 (1) (1 + z(71’0)><(171))(0’1)>

_ L1 (1 n Z(—LO))

22, 21D (1 +az®V + a0 2(0’3)> Ao :

(1 L L(-10) (1 + a0 4 s02) 4 2(0’3)> <(—1,0),(1,0)>>

(_1)0)
_ (1) ( (0,1) (0,2) (0,3)) z
z 1+az +az +z <1 + (1 a0 & a0 1 2(073))
— D (1 a0 4 (02 4 (03) 4 Z<71,o>)

Observe that py o, 7 Py 0w Hence, Dins is by definition not consistent. Making the diagram
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consistent requires adding four walls:

032( >0
04:( >0

(1,-3),
(1,-2)

05 = (Rxo(2,-3), 14 209
(1,-1),

062( >0

The consistent diagram is shown in Example 4.3.3.

1,-3),14 2~ 13))

1,-2),1 4 az"h? 462729 4 2(73’6)) ,

1,-1),1 4+ az"0Y 42022 4 z(_?”?’)) .

As in the ordinary setting, the initial diagram ®;, s uniquely determines a consistent generalized

cluster scattering diagram g, up to equivalence.

Theorem 4.2.3 (Analogue of Theorem 1.12 of [11]). Given a generalized torus seed s, there exists
a consistent scattering diagram Dg such that D5 C Ds and Ds\Dy,s consists only of walls d C né

with pi(no) € 0. The scattering diagram Ds is unique up to equivalence.

Proof. The proof given in Section 1.2 and Appendix C of [41] for ordinary cluster scattering diagrams
holds in the generalized setting. That proof is a special case of results from [10] and [47] and
holds in our setting because it does not require that the wall-crossing automorphisms are strictly

binomial. O

4.2.1 The r = (2,2) case

As an aside, we briefly explore the construction of a generalized cluster scattering diagram for the

generalized cluster algebra

A= <<xhx2>, (1. 32) [01 (1)] , [3 ;)D (1a, ). (1,6,1))

and offer a conjecture for the wall-crossing automorphism attached to its limiting wall. Intuitively,
we can think of this generalized cluster algebra as an analogue of the ordinary 2-Kronecker quiver.
As such, we will often refer to A as the “generalized 2-Kronecker”. The associated generalized fixed
data I" has

= (171)a
r=(2,2),
I=1TI,;={1,2},

and skew-symmetric bilinear form {-,-} : N° x N° — Z specified by the exchange matrix. One

natural choice of generalized torus seed data is

s = {(61 - (17 O)a (1,@, 1))’ (62 = (Oa 1)7 (17 b, 1))}
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For this choice of s, we have
Dins = {((1,0)1, 1+ 02OV 4+ 202y ((0,1)4,1 + az"10 4 (=201,

We conjecture that this initial scattering diagram gives rise to the following consistent scattering

diagram Dg:

01— 02— - f
Figure 4.1: The conjectural cluster scattering diagram for the “generalized 2-Kronecker”.

with associated wall-crossing automorphisms

o0 =1+ az(7h0) 4 5 (=2.0)
o, = 1+ bZ(O’l) + 2(072)

o 1+ bz(=(+1)n) 4 o (=2(n+1),2n)  for odd n

" 14 az(=(Hhn) 4 o (=2(41).20)  for even n

1 + az(_(n+1)7n) -+ Z(—Q(TL-{-I),QTL) fOI' odd n

1+ bz(=(dDm) 4 o (=2(n41).20)  for even n

and a currently unknown wall-crossing automorphism f attached to the limiting ray. Observe that
when a = b = 0, this reduces to the known cluster scattering diagram for the ordinary 2-Kronecker

with wall-crossing automorphisms, where f is known:
o = 142020
0, =1+ 2(0:2)

14 z(=2(n+1).2n)  for odd n

ot =
1+ z(=2(+1).2n)  for aven n

14+ 2(=2(n+1).20)  for odd n

1+ z(=2(n+1).2n)  for aven n

91



1

= (1 - 2(-22)?

In a representation theoretic context, Reinke [67] proved that the wall-crossing automorphism on

the limiting wall in the ordinary 2-Kronecker case is i In [66], Reading offered a proof

1
1—2(-22))2"
using limits of path-ordered products and ratios of powers of F-polynomials.
One can verify that appropriate path-ordered products in ®g indeed produce cluster variables of

A. For example,

10 28, (=10) (4 4 00 4 (0.2))((=10).(-1.0)
= 2780 (1 4 pz (O 4 50.2))
201 204 0-1) (] 4 (=10) | H(=20))((0:~1),(0,-1))
= 207D (1 4 2710 4 (=20))
2, 20701 4 201 4 520D 4 20D ((=10.(=1.0)) 4 5 (=20)(1 4 p, (O
+ 2(072))«_2)0)7(_170»)
o 2(07_1)(1 _|_ aZ(_LO)(l + bz(oal) + 2(072)) + Z(_270)(1 _|_ bz(ovl) + 2(0,2)))
=201 4 az0780) 4 2(520) 4 gp (51D 4 g2 (712) 4 9pp (=21
+ (24022722 4 2p2(723) 4 ,(=24))

Observe that these are two of the cluster variables of the generalized 2-Kronecker, as expected.

In the ordinary 2-Kronecker, there is a formal power series which is closely related to the wall-
crossing automorphism attached to the limiting ray. This formal power series appears as the limit of
ratios of F-polynomials: lim;_, o F;1/F;. The fact that this limit stabilizes to a formal power series
was observed in [73]. The same ratio of F-polynomials appears to also stabilize for the generalized
2-Kronecker.

In the generalized 2-Kronecker, we conjecture that

B (1= 2-29)% 4 2(=22)(2 4 b?) 4 abz("1D (1 4 2(-1D)°
1m = .
imvoo Fiyq (1—2(-22)"

To support our conjecture, we offer the following argument which follows the method used by

Reading [66] to prove that

F; . i+ NI
lim T—Cl =1+ + Z (=) Nar(i, 7)1 42’

i—00
i,§>0
for the F-polynomials of the ordinary 2-Kronecker, where
1 i=37=0
Nar(i,j) =10 ij = 0 but either i # 0 or j # 0
1(iy( i .
?(j) (jfl) 1,7 > 1

is a Narayana number.
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Let 7 be the path which begins at the limiting ray and goes clockwise to the positive chamber.
Similarly, let 7_,, be the path which begins at the limiting ray and goes counterclockwise to the

positive chamber. For ¢ < —1, we define paths ~; as shown below on the righthand side.

Observe that crossing the limiting wall while traveling towards the north-east sends z(11) —

(LD (D (=1-D) — (L1 =2 Tp order for the diagram to be consistent, we must have

Poo (2(1,1)) — p (0D 72,

Recall that the cluster variable x; can be written in the form x; = x8 F;, where g; and F; denote,
respectively, the g-vector and F-polynomial associated to x;. Hence, for i < 1, we have x; =

xix;(iﬂ)Fi and

P, (Z(z',—<z‘+1>>) — =)

P, (z(i+1’7(i+2))) = z(”l’*(H?))le.

The key observation is then that f is given by the anti-diagonal terms of

A — i (LD p2it3 p-2i-1
P (0D) TS

Using code which implements generalized cluster algebras in SageMath, we then computed the
F-polynomials F_1,...,F_19. Below, we list the antidiagonal terms of each F-polynomial. Note

that we stopped at F_19 due to the length of time required for computation.

Foy:1, abz"),) (24 b%)2(-22)

Foo:l, abzth), (240 +07)207%2) 4ab2759, (34 30%) 04

Fog=1, abz"MY, (24 +07)2037, 5abz"%, (34 30 + 462741, 9abz ("),
(4 + 6b%)2(~69)

Foy:1, abz8Y (24 a2 + 0220722 5abz(733) | (34 4a® + 40%) 274 | 13abz(—9),
(4 + 6a% 4+ 96?)2(=69)  16abz("T) | (5 4 106%)2(~8)

Fog:1, abz00) (246 + 09202, 5abz(739) | (34 4a® + 46%)204Y | 14ab2(—5),
(44 9a% +106%)259 | 25ab2"7D | (5 + 10a® + 166%)2(~58) | 25ab2(~%9)
(6 + 15b%)z(~10:10)

Fog:1, abz0M) ) (24 a2 + 09202, 5abz(033) | (34402 + 46%)204Y | 14ab2(~5),
(44 10a% +100%)2759 | 29ab2 =77 (5 + 160 + 196%)2() | 41ab2(—99)
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(6 + 154>
F -1 a® + 25b%)z(71010)
T G/bz(_l,l) (2+ ) ) 36@[)2(—11711)
(4 + 100 a® +b%)2(72% (74 215%)207120)
Oa 5abz(—3
+ lobz)z(*ﬁyﬁ) , 5abz %%, (3 + 4a
(6 + 25(12 13 9 ) 300,()2(*7,7) a” + 4b2)Z(_474)
].b )2(710;10) ’ (5 + 19(12 4 2 2 ’ 140/[)2(_575)
(8 + 28b2)2(~1419) , 6labz("1HD (7 06%)z~%%), 50abz'~? ’
Foq: ’ , (7 +21a? , 50abz{~%%
8 - 1’ a)bz(—Ll) 2 1a + 36[]2)2(*12’12) ’
(4 K ( +a2 + b2)z(—2,2) ) 49@[)2(*13,13)
+10a2 + 106%) (-6  BabzH, (34 ’
s ) 2
(6 + 31a2 + 34b2 ’ 30abz(="7) da” + 4b2)z(—474)
4b )Z(_lo,lo) ’ (5 + 20@2 ) 2 ’ 14abz(—5,5)
<8+28a2 +49b2) (—1 ’ T7abz(~1H1Y (7 00 )2(78’8) 54abz(—? 7
F o 2_4714) ’ +3 2 ’ G’Zi’g)
9:1, sz(7111) (2 N ) ) 64@()2;(—15715) 6a” + 46[)2)2(—12712) )
(4 + 100> a® + )22 , (9 +36b%)2 (71010 , 85abz( 131
10(1 + 10b2)z(*6 6) ) 5abz(*3,3) (3 ) 3
s ) 2
(6 + 34a2 43 ) ’ 30abz(*7,7) +4a” + 4b2)z(74,4)
5b )Z(—lo,lo) ’ (5 + 20a2 +2 2 ’ 14abz(*575)
(8—1—49a2 + 64b2) (1 ) 86abz(—11711) (7 0b )2(78,8) 55ab (—9 )
Z_4714) y +4 2 ’ azi’9)
P (10 + 451)2)2(,18’18) ’ 1130,[)2(—15715) 6a” + 52b2)2(_12,12) ’
“10: 1, abz(—11 , (94 36a” + 646%) 2\~ , 110ap(142
), (2 +a® 4 1? b?)z(71010 7
(4 + 10a® + b?)2(=22) B , 8labz(~171D)
a? + 1062)2(-69)  Babs("3) (3 + 4a? ’
(6 + 3502 43 o ’ 30abz(—7,7) da” + 4b2)z(—4,4)
5b )Z( 10,10) ’ (5 + 20@2 + 9 2 ’ 140,[)2;(_575)
(8 + 64a% + T4b?)2(-14 , 90abz("111D) | (7 00%)2(-58) 55ab2(~ ;
2(—14,14) . (74 52a> ’ 2(=99)
F (]‘O + 45612 + 81b2) ( ) ’ 149&[)2(*15’15) (9 2a + 551)2)2(*12712) 1 ’
' 11 : ,(=18,18 ) + 2 , 126 (—
el abzCY) (24 a? ), 100abz(~1919) | (1 6402 + 8562)2(1616) | abz(~13:13)
’ a 2 _ 9 ) —
(44 1002 + 105) (—Zb )2(-22) 5ghy(~39) 14 552)2(720:20) 45abz (1717
A 3,6) (3 2
(6 + 35a2 43 ) ) 30abz(*7,7) ( +4a” + 4[)2)2(—474)
5b )2(710;10) ’ (5 + 20(12 + 2 2 ’ 14@[)2(—575)
(8—|— 74(12 + 80b2) (<1 ) 91@})2(*11711) (7 0b )Z(*S,S) 55ab (o 5
1419 , (7 + 550> , 55abz(~%Y)
(10 + 810 1 1000%)=( , 174abz("15:19) (9 Ba2 + 56b2)2(71212) 13 )
,(=18,18) ) + 85q2 , 13bab (—13
F 121(],[)2(*21’21) (12 ) 1810,[)2»(*19719) a + 100b2>2(_16,16) < )13)7
1y i1, absM ’ + 66()2)2(,22’22 , (11 4 554> , 194abz(=1717)
) 24 a? 10 ) +10002)2(~20:20) ,
’ a”+b (-2,2 T
(4 + 1002 + 106%)2(~ )2(722), 5aba(~33
0b2)2(~6:6) ), (3+ 4a®
(6 + 35(12 n ) ) 300/()2;(_777) a” + 4b2)2(—4 4)
350 )z(*lo,lo) , (5+ 20a2 + 20b> " 14abz(—55)
(8 + 8002 + 83%) (14 L 9laba("1MD (7 062)2(-38) 55qb2(~9 ;
L(—14,14 ) + 2 ’ »(=9,9)
(10 + 10907 + 2 ). 190abz(~15:15) 56a2 + b2)2(712:12) )
0 ) 9+ 1008 1301319
. abz(—21,21) (1246 ) 245abz(—19:19) + 110b2)z(716,16) ) )
— . ’ 2 ) 1 ) —
1511, abzCBY ) (2 4 a2 6a2 + 121p%)2(~22:22) (11 + 100a? + 1366%)2(~2° 230abz( 17,17)
’ ’ F AN ’
(4 N 10&2 a® + b2)z(72’2) Sab - 5 1440,[)2:(—23723) 0)7
+ 10b2)z(_6,6) , 0abz ,3)7 (3+4 ) ’ (13—|— 78b2)z(—24 24
(6 + 35a2 ’ 30@()2(_7,7) a” + 4b2) (—4,4 24)
+ 35b2)2(_10710) ’ (5 + 20a2 + 2 2 ‘ ’ )’ 140,[)2(75’5)
(8+83a2+84b2) - ) 91abz(~1H1D) (7 0b )Z(_s’s) 55ab2(—0 ’
A ,14 ) -+ 2 ’ YA ,9)
(10 + 1300 + ). 199abz(~15:19) 56a” + bQ)z(—lz,lz) )
145{)2)2(718’18) s (9 + 110a2 ’ 140@[)2;(—13713)
) 294abhz(—19:19) a +116b2)z(*16,16) 5 ’
) 1 + 136a2 ) 25abz(*17717)
+ 1641)2)2(720;20), )
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302ab2( 7212V | (12 4 1216 + 166b%) 272222 265ab2("232%) | (13 4 7842 + 144b?) (2429,
169abz(72525 | (14 + 91p?)z(~26:26)

As 7 increases, the sequence of anti-diagonal terms appears to stabilize to:

1, abz"0D (24 a? + b2)2(722) 5abz(733) | (3 + 4a® + 4b%) 24 | 14abz(—5)
(441042 4+10b%)2(=66) 30abz(=77) | (542042 4 20b%)2(=88) 55ab2(=%9) (6 4 3542 + 35b%)2(~10:10),
91abz(—111D (7 + 5642 + 56b%) 271212 140abz(~1313) | (8 + 8442 + 84b%)2(~1414) | 204abz(~15:15),
(9 + 120a? + 1200?)2(~16:16)  285ab2(~17:17) | (10 + 16502 + 1656%)2(~1818)

We can then look at several subsequences of the coefficients of these terms. First, observe that the
constant terms of the coefficients of terms with even exponents, i.e. of the form z(=2™2") form the
sequence

1,2,3,4,5,6,7,8,9,10,...

These are the only non-vanishing terms if we set a = b = 0. We expect that setting a = b = 0
should recover the power series arising from the F-polynomial ratio lim; ,~, F;11/F; in the ordinary
2-Kronecker. Indeed,

= 14220722 £ 3,04 | 4,(266) | 5,(=88) 4 ,(1010 4 7,(-12.12),
(1 _ 2(71,1))2

We can then look at the coefficients of (a? 4 b%)z(=2"2") which form the sequence
0,1,4,10,20, 35,56, 84,120, 165, . . .,

which matches the tetrahedral numbers. So it appears that this portion of the series is converging

to

(@ +8)22D o)

(1 — (22t + 42744 4 10,(=6.6) 4 90, (—8:8) 4 35,(=10,10) 4 56.(-1212) | .

Finally, the coefficients of the terms with odd exponents, i.e. of the form z(—~(2n+1).27+1) “form the
sequence
1,5,14, 30, 55,91, 140,204, 285, . ..

We were computationally limited in computing terms of this sequence by the runtime. From the
terms that we were able to compute, this sequence could match three known sequences from OEIS:
the square pyramidal numbers (A000330), the growth series for the affine Coxeter group (A266783),
and A109678. All three sequences agree until the 25th term, at which point sequence A266783 has
the term 823 and the other two sequences, A000330 and A109678 have the term 819. Distinguishing
between A000330 and A109678 would require the ability to compute substantially more terms of the
coefficient sequence.

We conjecture that this sequence is in fact the square pyramidal numbers, and so this portion of
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the series is converging to

abz(=1D(1 4 2(=11)
(z(-1D — 1)1

= 1452000 4 142533 4 30,755 4 91,777 4 ...

Combining the three types of terms yields the conjecture that

. (1 - 2-22)% 4 2(=22)(a2 4 2) 4 abz(-1D) (1 4 2(-1D)°
1m = .
i—00 ['j4q (1 — Z(_2’2))4

4.3 Mutation invariance

We can slightly tweak the mutation of ordinary scattering diagrams. We use the same definitions of
Hpy,+ and Hy, —, but modify the definition of T}, as follows:

Definition 4.3.1. We define the piecewise linear transformation Ty, : M° — M° as

m + revg(dier, m) m e Hy
Tk(m) =
m m € 'Hk,_

As before, we sometimes use the shorthand Ty, — and Ty, 4 to refer to Ty, in, respectively, the regions
Hi+ and Hy,—.

The procedure for applying T} to a generalized cluster scattering diagram remains the same. For

reference, we reproduce it in the following definition.
Definition 4.3.2. The scattering diagram Ty(Ds) is obtained from Dg via the following procedure:

1. The wall vy, in Dg becomes the wall V), = (eiy L4ayz™ 4 Fap, 12~ D% 4 27Tk
Tr(Ds).

2. For each wall (3, f) in Ds other than dy, := (ej,1 + a12% + - + a,.,c_lz(”“_l)”’“ + 2TRVE),
there are either one or two corresponding walls in T (Ds). If dim(®d N Hy,—) > rank(M) — 1,
then add to Ty(Ds) the wall (Tx(® N Hy,—),Tk,—(f>)) where the notation Ty 1 (fo) indicates
the formal power series obtained by applying Ty + to the exponent of each term of fo. If
dim(d N Hg,+) > rank(M) — 1, add the wall (Tx(d N Hi,+), T+ (fo))-

Example 4.3.3. Consider the generalized cluster algebra

0 1 3 0
(o2 L )

with seed data s = (((1,0),(1,a,a,1)),((0,1),(1,1))). For this algebra, we have

€12 = {e1,ea}da =1

€21 = {ea,e1}d; = —1

v1 = pi((1,0)) = (0,1)
vz = pi((0,1)) = (=1,0)
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By definition, this means
Dins = {((1, 0),1+ 259) ((0,1),1 + az®V 4 a2 4 2(0’3))}
Adding walls to make this diagram consistent, we obtain the following:

[

fo, = 142010
c* fo, =14 az®Y 4202 4 (03
fog = 1420719
fou =1+ azh 4 a2(720 4 4(536)
fog =1+ 20729
fos = 1+ az0hD 4 az(722) 4 5(=33)

0

[
03 04 05

By definition, we have the half-planes

Hor ={(0,y) : y >0}
How ={(0,y) 1y <0}

which are shown on ® in blue, for Ha y, and red, for Ha . To mutate in direction k = 2, we’ll use

the linear transformation

m+(_1a0)<(071)7m> m€H27+
Tg(m) = c H
m m 2,—

Because Ty fizes the walls in Ha —, the only walls that change under Ty are 91 and 92NR>0(0,1). Be-

cause the support of 01 is ey = (1,0), it’s transformed via the procedure outlined in (1) of Definition

4.3.2 and becomes
o = (ez,14219)

To determine the image of 92 NR>(0, 1), we compute
T5((0,1)) = (0,1) + (=1,0){(0,1), (0, 1)) = (~1,1)

Because Ty is a linear transformation, we know that T»((0,2)) = (—2,2) and T>((0,3)) = (—3,3).
As such,
To(22 NR30(0,1)) = (Rxo(—1,1), 1+ al7hD 4 q2(722) 4 5 (=39))

and we draw p® as
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(01, 1 + Z(l’o))

C+

[U3
02 03 04 05

where fay, fou, fous fos, and fo, are the same automorphisms as in ©g. We can also compute the

new basis vectors ey and ey using Definition 4.1.5:

el = e1 + ralern]en
(1,0) +(0,1)
(1,1)

eh = —ey = (0,—1)

Because A has exchange polynomials with reciprocal coefficients, the exchange polynomial coefficients

are fixed under mutation.So we have

M?(S) = (((1’ 1)7 (17 a, a, 1))7 ((O’ _1)7 (1’ 1)))

Each cluster mutation p can be defined by a triple (n,m,r) € N x M x Z>o with (n,m) = 0.
Emulating the notation of [39], we denote this mutation as ji(, m . It is defined by the pullback

(n,m’)

(nm.r) (zm/) =" (1 Farz™ 4 a2 4 zrm) ,

where ay,...,a,_1 are scalars and r € Zx>.

We refer to the max-plus tropicalization of a semifield P as the Fock-Gonacharov tropicalization
and denote it as PT. Likewise, we refer to the min-plus tropicalization as the geometric tropicalization
and denote it as P!. Let u : Ty — T be a positive birational map. Then uT : N — N and
ut : N — N denote, respectively, the induced maps T (Z1) — Ty (ZT) and T (Z') — Tn(ZY).

Proposition 4.3.4 (Analogue of Proposition 2.4 of [11]). The map T} : M° — M° given in Defi-

nition 4.3.1 is the Fock-Goncharov tropicalization of the map fu(v, dyey.,ry)-

Proof. The map fi(g, ey vy,ri) : Tare — Taro is defined by the pullback

(drex,m)
M?Uk;dkek,Tk) (zm) =z" (1 +ay 2" 4+ ark—lz(rk_l)vk + zrk”’*‘)

By definition, fi(q4, e, v,,ry) has Fock-Goncharov tropicalization

T .
Hdyer,on,me N —= N

x =+ rip[{dieg, x)] 1 vk
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Observe that when = € Hy _, then (dyer,z) < 0 and the above map reduces to z — z. When
x € Hp 4+, then (dyeg,) > 0 and the map reduces to x — x+7r,vg(drer, z). Hence, the tropicalization

agrees exactly with our definition of Ty, as desired. O

Theorem 4.3.5 (Analogue of Theorem 1.24 of [11]). If the injectivity assumption holds, then Ty, (Ds)
is a consistent scattering diagram for N:k ()" Moreover, the diagrams D,,, sy and Ty,(Ds) are equiv-

alent.

To prove this, we need to show that Tj(Ds) is a scattering diagram for g, (s) and N;rk(s). The

major technical hurdle in doing so is the fact that the wall-crossing automorphisms of s and D, (s)

—

live in different completed monoid rings. Those in D live in k[P], where P is the monoid generated
by {vi}ier,. Those in ®,, () live, instead, in EqP\’}, where P’ is the monoid generated by {v}}icr,,-
To overcome this difficulty, we define an additional monoid P which contains both P and P’.
Let 0 C M° be a top-dimensional cone which contains the vectors {v;}ier,, and —vy, such that
o N (—0) = Ruy. For a fixed choice of o, let P := o N M° and J = P\(PNRv;) = P\P .
Even after choosing an appropriate monoid P, we still have to deal with the fact that the wall-

crossing automorphism associated to the wall

0 = (GIJ{» 1+ ap12% +---+ ak,m—lz(”ﬂ)vk + ka) =: (ei'a fr)

— —

is an automorphism of the localization k[P],, rather than the ring k[P’], where the completions are

e

with respect to the ideal J. Let py, € k[P] 7, denote the automorphism associated with crossing 0

from Hy, — into Hj, 4. By definition,
P, (Zm) _ Zm(l + ak,lzvk 4t ak,rkflz(rk_l)vk + ka)—(dkemm).

We can then define

N:’k = Zaiei a; € L>g for i # k,a € Z, and Z a; >0
i€lu¢ 7;Equ\{k}’

Because s’ = (s\{vx}) U {—vi}, the conditions of this definition mean that N} = Ns",”k. As such,
we can use the abbreviated notation N without introducing any ambiguity.

To allow us to work in P, we need to slightly modify the definition of a scattering diagram:

Definition 4.3.6. Given the monoid P and ideal J, a wall is a pair (3, f;) such that for some
primitive ng € NTF,

1. fo € K[P)] has the form 1 + 3" p | cxz"?" (") and is congruent to 1 mod J,

2. and d C ng C Mg is a convex rational polyhedral cone with dimension rank N — 1.

For a seed s, the slab is 0 = (eﬁ, 1+ag 12"+ + ak,rk_lz(’“’“’l)”’“ + z%). Because vy € PX, the
slab doesn’t qualify as a wall under the above definition. So we extend the definition of a scattering

diagram © such that:

1. © contains a collection of walls and potentially the slab 0y, and
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2. for k>0, we have fo = 1mod J* for all but finitely many walls of D.

In this modified scattering diagram, crossing a wall or slab (0, f;) induces an automorphism
pjfal € k[P] o Note that the localization at fi is only really required when crossing 0, as otherwise

fo lives in k[P].
The proof of Theorem 4.3.5 requires the following result:

Theorem 4.3.7 (Analogue of Theorem 1.28 of [11]). There exists a scattering diagram Ds such
that

s :_> gin,&

o]

e D \Djns consists of only outgoing walls,

-

e and the path-ordered product p o € k[P]y, depends only on the endpoints of ~.

Such Dg is unique up to equivalence. Further, because Dg is also a scattering diagram for NF, it’s

equivalent to Dg. Moreover, this implies that the only wall contained in e,JC- is the slab 0

The proof given in [41] in the ordinary setting also holds in our generalized setting. Because that
proof is quite lengthy, we do not reproduce it here.

We will also need the following definition:

Definition 4.3.8. A codimension two convex rational polyhedral cone j is a joint of the scattering
diagram D if either every wall 0 C nt that contains j has direction —p*(n) = —{n,-} tangent toj
or direction mot tangent to j. In the first case, where every wall is tangent to j, we call the joint

parallel. In the second case, we call the joint perpendicular.

We’re now prepared to prove Theorem 4.3.5:

Proof. Let s = {e;}ier be a fixed choice of generalized torus seed and s’ := ui(s) = {e;}ier. From
Theorem 4.3.7, we know that the scattering diagrams for s and s’ are unique up to equivalence and
therefore we can choose representative scattering diagrams ©g and D .

Notice that if 2™ € J* for some i > 0, then z7=(™) € Ji. As such, Ty(Ds) is also a scattering
diagram for the seed s’ in the slightly extended sense of Definition 4.3.6. In order to use Theorem
4.3.7 to show that Dy and Tj(Ds) are equivalent, we need to (1) verify that T (Ds) is consistent
and (2) show that both diagrams are equivalent to diagrams with the same set of slabs and incoming
walls.

We can begin by showing that T} (Ds) is consistent. To do so, we need to show that p., 7, (p_) = id
for any loop ~ for which the path-ordered product is defined. Because ®g is consistent and so by
definition p., » = id whenever the path-ordered product is defined, one strategy is to show that
Py, Tw (D) = Pry,0, and therefore p, 1, (p,) = id. In areas of D5 where T} is linear, the consistency of
a loop in Tj(Ds) is an immediate consequence of linearity since each wall is crossed either not at all
or in both possible directions.

Therefore, we need only be concerned about when « is a loop around a joint j of ®¢ which is
contained in the slab 9. Given such v, we can subdivide it as 7 = y17y2y374 Where 1 crosses 0y,
v2 C My + contains all the crossings of walls in ®¢ which contain j and lie in Hy , 73 crosses 04,
and 74 contains all the crossings of walls in ®g that contain j and lie in Hy, . We can also assume
that it has a basepoint @) in Hy, .
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One example of a possible subdivision of « is shown below:

Hi —
V4

Let py, denote the wall-crossing automorphism for crossing 9 from Hj _ into Hp, 4. Similarly,
let py, denote crossing 9, from Hy _ into Hy 4. Explicitly, we have

7(d,e ,,m)
P, (Zm) —,m (1 + ak7lzuk 4t alc,rk—lz(rk_l)vk + zrk‘bk) K€k

7<d € 7m>
Po, (z™) = 2™ (1 fag1z7 % 4+ ak,?'k—lz_(rk_l)vk + Z—mm) kek

Because 0j, is the only wall contained in eé-, we know that p,, o, = po, and p,, o, = pgkl. Let

o : k[M°] — k[M°®] be the automorphism a(2™) = z™*7sveidker- ™) induced by Ty . We can then

observe the following relationships:

p’yl,Tk(Qs) = pD;C

—1

p'YZ’Tk(gs) =@o p'YZ:Ds o«
_ .1

Pys, T (9:) = pa;C

p"/47Tk =Pyuo

So we have

p'Yv’}Ds = p'Y4,®s © p'\/B,:Ds © p'\/2,©s © p"/lst
—1
= Py, @5 O Py, OPve,D, ©Poys
Py, T (D6) = Pya, T (D) © P, Ti(Dss) Pw,n( © Py Tk (Ds)

_ -1
=Py, 0Py 0@ Opy@, 00 o pa;,

and showing that p, o, = p, 7, (0,) reduces to showing that alo Pa, = o, Using the fact that
Qk,; = Gk ry—i, Observe that

-1 m -1 m —v —(rp=1)v v —(drex,m)
(p%(z )):a z (1+a;€,1z b g 12 VRT p 2 k’v)

m—rivi(drer,m) — Vg —(rr—1)vg —TRUR —{dkex,m)
=2z ' 1+ap1z + k12 + z

—(drex,m)

2™ ( TRVE (1 + ak,lz_vk R ak},’l"kflz_(rk_l)vk + Z—T'k'Uk))

—(drex,m)

_ m( TRUE +ak: Zrk 1)vk+ +ak,rk—lzvk+1)
( —(drer,m)

=M TkVk +ak7k 12(77@ 1)'”19_'_ +ak,1zvk+1)

= Pa, Zm)
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as desired. As such, we have that p, o, = py 7, (0.) and therefore p., 1, (o,) = id and T} (Ds) is
consistent.

Next, we want to show that Ty (Ds) and D¢ have, up to equivalence, the same set of slabs and
incoming walls. Recall that ®;j, s contains only the slab and incoming walls of D/, so it will suffice
to show that the incoming walls and slab of T;(®s) appear in Dy s.

First, observe that if 9 C n' is an outgoing wall in Dy, then it’s mapped to an outgoing wall
in Ty (Ds). This follows from the definition - recall that 0 is outgoing if pi(n) &€ 0. Because T} is
injective, having pj(n) € 0 implies Ty (pj(n)) & T (0). Hence, we need only consider the slab and
incoming walls of T} (®s). Equivalently, we consider the walls of T, (Din,s)-

Let v] = p*(e}). Because e), = —eg, observe that the slab for s’ is
D;C = ((e;c)l’ 1+ ak,lz”;v 4+ ak,rkflz(rk_l)v;‘ 4 ZTkUI/c)
= (e’i‘7 1+ ak,lzka 4+ ak,?‘k—lzi(rkil)vk + Z*"'k”k) ,

which appears in both ©;, ¢ and Ty (Diy,s) by definition.
Next, we consider the walls 0; = (ef, 1+a;i12%+---+ aiﬁrrlz(ri_l)vi + z"v) for ¢ # k. To do
so, we need to divide our argument into three cases based on whether (v;, ex) is positive, zero, or

negative. Because 0; is an incoming wall, it will necessarily lie in both Hy 4 and Hj, —.

Case 1: If (e, v;) = 0, then the two halves of 9; € Dj, s are mapped to the walls

((ef NHp )1+ ag 27+ 4o 4 ai,ri_lsz,Jr((Ti*l)vi) + ZTht(rivi))

(e NHp—), 1+ a;127=) 4o a2 Te (i v) g T = (rivi)y
whose union is the wall
((ei)l’ 1+ ai,lzvi N ai,ri_lz(mfl)vi + vai)

because having (v, er) = 0 means that v; = Ty 1+ (v;) = v;. Because €] = e;, the above wall in
T (Din,s) is the same as the wall

! - / !
((e;)L’ 1 + ai’lzvi + e+ a’i,Tiflz(nr v + ZTzvz) ,

which we know by definition appears in Dj, o .

Case 2: Suppose (e, v;) > 0. We must consider where d; N Hy, + is mapped by T. This portion of

0; becomes the wall
0 4 = (Tk(Hk,+ Nel), 14 a1 2T+ 4o gy, g ZTrr (i Dus) ZTk,+<rwi))

in T;(Ds). To see that 9 , is incoming in Ty (D)ins, observe that pi(e;) = v; € (Hi,+ Ne;-) and
therefore T (pi(ei)) = Tk (vi) € 0} . To argue that d; , also appears as an incoming wall in Dy, we
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need to show that Tk (Hy + Nei) C (e;)* and that T 4 (v;) = v). Observe that for m € Hy, 4 Ne;,

(€}, Ti(m)) = (e; + rrl€ir]+ex, m + rivi(drer, m))
= (e;,m) + (e, revg{drer, m)) + (rileix]+ex, m) + (rrleix]+ex, revr(drer, m))
= re{drer, m)(e;, vi) + €]+ {er, m)
= rp(drer, m){e;, pi(er)) + rrdi{e;, ex} ek, m)
= rpdi{er, e; Hex, m) + rpdi{e;, ex Hex, m)
= rrdi{er, m) ({ex,ei} + {ei, ex})
=0

and therefore T (m) € (e;)L. Next, observe that

Ty 4 (vi) = vi + rrv(dier, vi)
= v; + rrdivrier, pi(e:))
= v; + rrdivg{e;, ex}
= V; + TkELVk
= pi(ei) + reeirpi(ex)
= {ei, -} + reeafer, -}
= {ei + rr€irer, -}
= {e,}
= pi(e})
/

:Ui

As such, 0, NHy 4+ € Dg is mapped to the wall
o = (Tk(?—Lk,Jr Nei), 1+ ai12% + -+ ag, 127 D% 4 z”i) € Ti(Ding),
which is half of the wall

((eg)l, 1+ ai,lzvi 4+ -+ ai,ri—lz(m_l)vi + zvi) c Qin,s“

Case 3: Finally, let (ex,v;) < 0. The half of d; with support 9; N Hj, _ is mapped by T} to

h

1, —

= (Tk(Hk,— Nef), 1+ az1zT=0) 4o gy, g 2Te- (i bva) ZT’“*(”’“))
Since Ty, —(m) = m for m € Hy,_ Ne; and Ty _(v;) = v;, we have

OQ’, = (/Hk,f N eiL’ l+ai 2%+ + ai,ri—lz(m_l)vi + Z(Mvi) )
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Because (e, v;) = {e;,er} < 0, we know that €;; = di{e;, ex} < 0. Therefore,

~

e; = e; + rplein] rer = €;

~

vi = pi(e;) =pile) = vi

N

and so 0} _ is simply half of the wall

vy, —

((6/1-)L7 1+ aialzvg +eee ai,h;flz(nil)vg + Z”v;) S @in,s/.

Hence, we see that after dividing some of the walls of ®j, ¢ into two halves, the diagrams
Ti(Dins) and Dip ¢ have the same set set of incoming walls. Therefore, up to the same halving of

walls, the diagrams Ty (Ds) and D¢ also have the same set of incoming walls. O

4.4 Principal coefficients

The principal coefficient case in the generalized setting is similar to that in the ordinary setting. We
begin by making the analogous modifications to the definitions of the fixed and generalized torus

seed data.

Definition 4.4.1. Given generalized fized data I', the generalized fized data Iy for the principal
coefficient case is defined in the same way as for ordinary cluster algebras, with the additional

requirement that 7 = (r,r), i.e. that 7 consists of two copies of r with 7; = r; fori € I.

Definition 4.4.2. Given a generalized torus seed s, the generalized torus seed with principal coeffi-

cients is defined as
Sprin = s= {((eia 0)7 ai)a ((07 fi)v ai)}’iEI

We can then use these updated definitions to define the cluster varieties with principal coefficients.

Recall that we work over the ring R = kla; ;|.

Definition 4.4.3. Given a generalized torus seed s, we define the associated algebraic tori
s, = T57(R) = Spec lk[]\N/'] x¢ Spec(R),

As, = Tro (R) = Spec K[M°] x¢ Spec(R).

The A-generalized cluster variety with principal coefficients and X -generalized cluster variety with

principal coefficients are then defined as in the ordinary case.

As before, the A-generalized cluster variety is given by the fiber A, and the X-generalized cluster
variety is given by the quotient Apyin/Tno.

The many important relationships between the various types of ordinary cluster varities also
exist between the various types of generalized cluster varieties. These relationships are summarized

in the following proposition:
Proposition 4.4.4 (Analogue of Proposition B.2 of [11]). Given a set of generalized fixed data T':

1. There is the following commutative diagram, where the dotted arrows are only present if there

are no frozen variables:
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»At — -Aprm u X ) Xprm € -’4
I |
t — TM ****** > TK* {-—=--- TM — €

where t is any point in Ty, e € Ty is the identity, and p is an isomorphism which is canonical

if there are no frozen variables.

2. There is a torus action of Tno on Appin; Tro on A; TNL on X; and Ty on Aprin, where K°
is the kernel of the map N° & M — Ny given by (n,m) — p3(n) —m. The action of Tne and
Tx,
map p i Aprin — X = Aprin/Tne is a Tyo-torsor. Furthermore, there is a map Tr, — TNJ}

on Thy is such that the map 7 : Aprin — Tar is Tivo -equivariant and Tz, -equivariant. The

such that p is compatible with the actions of these tori on, respectively, Aprin, and X. Hence,

T Aprin, — X/TNJ} 15 a T, -torsor.

Proof. For (1), we must first specify the named maps. At the level of the cocharacter lattices, these

maps are:
T:N°®dM — M,

(
p:N°®dM — M, (n,m) — m —p*(n)
p:M®N° — M, (

m)—m

n) —m
A M — K*, m— m|g
w:Me&N° — M, (m,n) — m —p*(n)
£:N°— M& N*, n— (—p*(n),—n)
p:N°®M — Mo N°, (n,m) — (m —p*(n),n)

Observe that the map A is the transpose of the inclusion K < N. When there are no frozen variables
(i.e., when Nyt = N), the maps corresponding to the dotted lines are simply given on the cocharacter
lattices by A. It is straightforward to check commutativity using the above formulas for the maps.
It is likewise straightforward to check that the map p is a lattice isomorphism and therefore induces
an isomorphism of the associated tori.

For (2), we must specify the torus actions. The torus action of Tyo on Apyi, is given at the level

of cocharacter lattices by

N° — N° @ M,

n i (n,p*(n))

The other torus actions are all given at the level of cocharacter lattices by inclusions. So the action
of Tke on A is given by K° < N°, the action of TNd_f on X is given by Nj; — M, and the action
of Tz, on Appiy is given by K° < N° @ M. It is straightforward to check that the induced actions
are compatible with mutations.

The action of Tys on Ty is given on the level of the cocharacter lattice by the map n — p*(n).
The action of T, on Ty is given on the level of the cocharacter lattice by (n,m) — m. It
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is straightforward to check that the induced actions of Txo and Tz, are equivariant and that
D : Aprin — X is a T, -torsor.

Finally, the map Tz, — Ty is given on the level of the cocharacter lattice by (m,n) — m—p*(n).
It is straightforward to check that this map is compatible with the actions of Tz, on Apyin and TNuLf
on X and that the map 7 is a T, . O

Next, we update the definition of the initial cluster scattering diagram.

Definition 4.4.5. Given a generalized seed s, let v; := (v;,e;) = (pi(ei),e;). Then we can define

Drrin {((ei,O)J‘7 14 ai12% 4o gy 2T DT 2”7)}

n,s

Example 4.4.6. Consider the generalized cluster algebra with B =

3
R= [
0
{1,2},d=(1,1,1,1), 7= (3,1,3,1) and lattices N = N & M°, N° = N°@® M, M = M & N°, and

M° = M° & N, all of which have basis {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}. By definition,

we have

0 -1
], d = (1,1), and
1 0

0 - _
ik as in Example 4.1.4. The generalized fized data I priy has index set I = TU I, Iz =

A _ 31 = ((0,1,0,0)%, 1 4 2(-1.00D))
" B2 = ((1,0,0,0) 5,1+ azOLL0) 4 g2(0:22.0) 4 5(033.0))

which can be completed, using the definition of consistency, to give a scattering diagram for
Aprin, denoted @;4”””. Because this diagram is four dimensional, however, we draw scattering
diagrams for these cluster varieties with principal coefficients by projecting onto M°. The wall
v € @;4””” has support (0,1,0,0)~ C R*, d.e. its support is the three-dimensional hyperplane
((1,0,0,0),(0,0,1,0),(0,0,0,1)). When we project the diagram from Mﬂg onto Mg, the wall 0y s
projected onto R(1,0) C R?, i.e. the one-dimensional hyperplane ((1,0)). Similarly, dy is projected
onto R(0,1), i.e. the one-dimensional hyperplane {(0,1)). Applying this projection to each wall of

9;41”1"7 we obtain the diagram:

52
" (=1,0,0,1)
3, = 1+ =z

f5 =1 —‘1-@2’(0’1’1’0) —|—CLZ(O’2’2’O) +Z(O,3,3,0)
2

~ f—=1+ L (=1,3,3,1)

01 03
f54 =1+ az(—1,272,1) + az(_2’4’4’2) + Z(_3’6’6’3)
fﬁ =1+ Z(_2’3’3’2)
5
56 fS -1 _'_az(fl,l,l,l) —|—az(72’2’2’2) +Z(73,3,3,3)
6

D3 04 05

We can obtain a diagram for Xs, denoted DX, from Dl by taking the slice {m € M° : m = pj(n)}
Of @é“prm.
Suppose V. is a wall in DY with support given by either R-n or R>q-n forn € N. The wall 0

prin

corresponds to a wall Oy, in DL with support either R - (pi(n),n) or R>q - (pj(n),n), respectively.
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prin
)

To determine the wall-crossing automorphism fo,, we compute a path-ordered product pz in 5‘3;4

where 5 is a path crossing only Oy, and then take the slice {m € M° : m = pi(n)}.

For exzample, consider the wall 95 and the following path 5 in @;4””" :

By definition, we compute

((0,~1,-1,0),(~3,-1,0,0))
ps (z(o,—l,—LO)) — ,(0-1,-1,0) (1 + Z(—1,3,3,1))

— ,(0-1,-1,0) (1 Jr2(71,373,1))

The slice {m € M° : m = p}(n)} gives us the path-ordered product p.,(2(=10)) = (0= (14 25:1)
in DX, from which we can read off the wall-crossing automorphism for 03 as fo, = 1423D . Similar

X

<, shown below.

computations for the remaining walls allow us to draw O

[

for = 14201

fo, = 1+ az19 4 q2(20) 4 ,3.0)
0 foa =1+ 2051

for = 14+ az®Y 4 qz(42) 4 (6:3)

fos =1+ 2632

foo =1+ az(MY 4 qz(22) 4 ;(3:3)

06

05 04 03

Example 4.4.7. Consider a generic generalized cluster algebra of rank 2 with B =

0 b
—c o’

d=(b,c), and r = (r1,72). Then Dy, for Ay, is

((0,1), 1+ a2’12(070,170) N ag’r1,1z(”_1)(0’c’1’0) + 2”(0’0’1’0))),
((1,0)7 14+ a1,1Z(7b’0’0’1) N al,rgflz(rzil)(ib’o’o’l) 4 ng(fb,0,0,l))

Taking the slice {m € M° : m = pj(n)}, we find that D, for the X diagram is
{ ((0,1), (14 ay12OV + -+ 4 ay 122~ DOD) 4 ,r2(01))ey }

((1,0), (1 + amz(l,o) N a27m_1z(r171)(170) + 21 (10))by
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Note that in Examples 4.4.6 and 4.4.7, the X scattering diagrams have the same dimension as
the A scattering diagrams because p} is injective in the principal coefficient case. Otherwise, these

diagrams may not necessarily have the same dimension.

Remark 4.4.8. Given 33;4"”"', one can obtain the equation for mutation in direction k by computing

the wall-crossing formula when crossing 0 from the positive chamber. Recall that
0 = (ei‘, 1+ akylz(”’“’ek) R ak,rk—lz(rkil)(vk’ek) + ZTJ«(vk,Ek))7
so for m = pi(n) € CJ, crossing 0y gives
)) —{(drex,0),(m,n))

Lmn) Ly (mn) (1 Fap 2O g g g 2T D Oer) | (e

Taking the slices {m € M° : m = pi(n)} and {n € N : pi(n) € M°} yields the maps from
Definition 4.1.7:

(rr—1) —(drex,m)
2" 2™ (1 +ap12% 4t ag 12T+ z“")
n n e (rxk—1)e rRe —({drex,m)
2z (l—l—ak’lz’“—l—-“—i-akm,lz k "—l—z’“’“)
—{n,drex}
= " (1 + ag12 €k ... ak)rk_lz(rk_l)ek + Zﬁcek)
n e (re—1)e rie ~Inoex]
=z (1—|—ak1z’“ et age, 120k ’“—|—z’“’“)

4.5 Chamber structure

In this section, we discuss the chamber structure of generalized cluster scattering diagrams. Because
this structure is analogous to the chamber structure of ordinary scattering diagrams, our discussion
largely reviews that of [41] for the ordinary case.

As in Section 2.3, let T be a directed infinite rooted tree where each vertex has |I,¢| outgoing
edges, which are labeled by the elements of I+ such that each vertex has only one incident edge
with a given label. Let v be the root of the tree and associate an initial generalized torus seed s
with mutation class [s] to v. As before, we indicate this choice of initial seed by writing ¥, or Ts.
Let an edge with label k € I;s correspond to mutation in direction k, so any simple path beginning
at vertex v determines a mutation sequence according to the attached edge labels. These mutation
sequences then determined associated generalized torus seeds for each vertex.

Let w # v be an arbitrary vertex in 5. Then the sequence of edge labels ki, ..., ks on a simple
path between v and w determine a map T3, = Tk, o --- T, : Mg — Mg where each Tk, is defined
with respect to the basis vector e, in the mutated generalized torus seed py, , o --- o ug, (s) rather

than the original generalized torus seed s. It follows from Theorem 4.3.5 that T3, (Ds) = Ds,,, where

Sw
s, denotes a generalized torus seed associated to the vertex w.

Let X be a set of generalized fixed data which satisfies the injectivity assumption and s be a choice
of associated generalized torus seed. Although there may be multiple equivalent representatives of

the associated generalized cluster scattering diagram g, by construction every representative must
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include a collection of incoming walls with support {eé'}kel As in the ordinary case, we define

uf*

CH:={m e Mg : (e;,;m) >0 for all i € I},

Cy :=={m € Mg : (e;;m) <0 for all i € I}.

We refer to C} as the positive chamber. Observe that the chambers CF are closures of connected

components of Mr\Supp(®s). Further, let Citk (s) denote the chambers where either all (el,m) >0
+

ki (s
component of Mg\Supp(D,,,(s)). Hence, T,;l(Ci (S)) is the closure of a connected component of

or (e;,m) < 0, respectively. Then we observe that C ) is similarly the closure of a connected

Mg\Supp(®s) which shares a codimension one f::ge, given by e, with CE.

The same reasoning can be extended to generalized torus seeds which are related to s by longer
mutation sequences. Let w be a vertex of %5 which is reachable from the root vertex via a simple
path of arbitrary length. Earlier, we observed that this simple path defines a map T, : Mg — Mg
and that T,(Ds) = Ds,,. It also follows from Theorem 4.3.5 and the previous paragraph that
CE:=T,'(CL) is a closure of a connected component of Mg\Supp(Ds).

It is important to note, however, that the collection of cones C;F will not always form a dense
subset of M.

Definition 4.5.1. Let CF denote the chamber of Supp(Ds) which corresponds to the verter v € Tg
and AL denote the collection of chambers CE as v runs over the vertices of Ts. We refer to elements

of AL as cluster chambers.

Gross, Hacking, Keel, and Kontsevich [41] showed that the chamber structure of ordinary cluster
scattering diagrams coincides with the Fock-Goncharov cluster complex. In the generalized setting,

we can state the following natural analogue of the definition of the Fock-Goncharov cluster complex.

Definition 4.5.2 (Analogue of Definition 2.14 of [20], Definition 2.9 of [11]). Fiz a set of gener-
alized fized data ¥ and an associated generalized torus seed s. Then for a generalized torus seed
s’ = {(e}, (ai ;))} which is reachable via a mutation sequence from s, the Fock-Goncharov cluster

chamber associated to s’ is the subset

’

{z e AY(RT): (2%)T(x) <0 for all i € I},
which is identified with the subset
{z € AY(RY): (z)!(x) <0 for all i € I,5}}

via the canonical sign-change map i: AV (RT) — AV (R?).
From this definition, we then obtain the following analogous identification.

Lemma 4.5.3 (Analogue of Lemma 2.10 of [11]). Let ¥ be a set of generalized fized data which
satisfies the injectivity assumption and s be an accompanying choice of generalized torus seed. Let
s' = {(e}, (ai ;))} be a distinct generalized torus seed which is reachable via some mutation sequence
from's. Then the positive chamber C, C Mg, = AY(RT) (which can be identified with AY(R")
via the sign-change map i) is the Fock-Goncharov cluster chamber associated to s'. Therefore, the

Fock-Goncharov cluster chambers are the mazimal cones of a simplicial fan and A is identified
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with ALY for every choice of generalized torus seed s which gives an identification of AY(RT) with
Mg

Proof. The proof given by [11] holds in the generalized setting, because we showed in Proposi-

tion 4.3.4 that our modified T map is the Fock-Goncharov tropicalization of the generalized muta-

tion map L, dyex,rr)- O

As in the ordinary case, it follows from the previous Proposition, when the injectivity assumption
holds, that:

Theorem 4.5.4 (Analogue of Theorem 2.13 of [11]). For any set of initial data, the Fock-Goncharov

cluster chambers in A (RT) are the mazimal cones of a simplicial fan.

4.6 Building Ag.a; from a generalized cluster scattering dia-

gram

In this section, we parallel the exposition in Section 4 of [41], which describes how to build the space
Ascat from an ordinary scattering diagram and then identifies Ageaq with the A variety. We review
relevant portions of their constructions and statements, pointing out where modifications are needed
to extend the results to generalized cluster algebras with reciprocal coefficients.

Let ' be a set of generalized initial data such that the diagram g yields a cluster chamber
structure Al. We will often want to discuss multiple copies of the lattices N, M, N°, and M°
which arise from different choices of seed s. To allow us to distinguish between these copies, we
index both the seeds and lattices by either the vertices v of T, or chambers o of AJ. For example,
the seed s, gives rise to the diagram Ds, on the lattice Mg, . The chambers in Dg, give the
Fock-Goncharov cluster complex AT under the identification Mg, = AY(RT). Because the space
AY(RT) is independent of the choice of the initial seed s, there is a canonical bijection between the

cluster chambers of Dg, and D , as a consequence of this identification.

Definition 4.6.1 (Construction 4.1 of [11]). Given a seed s, we want to construct a space, Ascats
using the chambers o € AFY. For distinct 0,0’ € AT, there exists a path v from o' to o. This path
gives rise to an automorphism py o, : ]k/[F] — ]k/[];] which depends only on the choice of o and o’
and is independent of choice of path.

For each chamber in AT

S 7

attach a copy of the torus To o := Tno. If v is chosen such that it
lies in the support of the cluster complex, then the wall-crossing automorphisms attached to walls
crossed by v are birational maps of To. Therefore the path-ordered product p. o, can be viewed as
a well-defined map of fields of fractions py o, : k(M®°) — k(M®) which induces a positive birational
map Po.o : Ino.o — Tno o

The space Ascars is constructed by gluing the collection of tori {TNoyg}UeA: using the birational

maps {Po,o' by orcn+ according to the method described in Proposition 2.4 of [39].

Proposition 4.6.2 (Analog of Proposition 4.3 of [11]). Let s be a seed, v be the root of Ts, and
v’ be any other vertex of Ts. Let NUT/,U : Mg — My be the Fock-Goncharov tropicalization of
s M2, — M2 to each cluster chamber o' of A:v,

totw 2 Tare = Taro ». The restriction ,uUT,ﬂ)

o!
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gives a linear isomorphism from o’ to the corresponding cluster chamber o := /‘Z’,v (') in AL and
induces an isomorphism
TU/,O' . TN070- — TN070./.

When o ranges across all the cluster chambers of A;‘;, the isomorphisms Ty 5 glue together to yield

an isomorphism between Agcqts, and .Ascat,sv,,

Proof. We follow the structure of the proof in [11]. In general, v and v are related by a composition
of mutations and fi, , is the inverse of that composition. To prove this statement for arbitrary v and
v’, it is sufficient to prove it for the special case where v and v’ are related by a single mutation. In
this case, ”Z/w = T,;1 and the isomorphism T/ ; : Tve o — Tivo 1, (o) is induced by the restriction
T, ! | Te(0)’ To show that gluing together these isomorphisms for all o € Al gives an isomorphism
between Agcat,s, and Ascat’sv,, we need to show commutativity of the diagram

T‘U/ o
TN°,U — TNO70"

pa,&J/ lpo-/ 5!

,I’No’gr r} TNO,&/
v!,&

where o and & are chambers in Al and ¢’ = Ty(0) and 6’ = T() are chambers in Ag ,. Note
that the map p, s indicates a wall-crossing in D and p, 5 indicates a wall crossing in D.

If o and & both fall in Hy, —, then commutativity is immediate because T}, fixes the wall-crossing
automorphism on the wall between o and &. If both chambers fall in Hj 1, then commutativity
follows from Theorem 4.3.5 because by definition the path-ordered product between a given pair of
points is equal in equivalent diagrams. Hence, the important case to consider is when ¢ and & are
on opposite sides of the wall with support e,i-.

Without loss of generality, we can assume that o is the chamber in Hj 4, where e; is non-
negative. We know that the only wall in Dg contained in ej is the slab 9 = (e, 1+ aj12% + -+

ak,rk,lz(’"k_l)“’“ + 2"%). In g, the slab contained in eﬁ is

/ 1 —vg —(rp—1)vg —r
0 = (e, 1+ ap 27" + -+ app_12 (re=Dvr 4 5 TRURY,

As such, the only way for o and & to be on opposite sides of ei is for the wall between them to be

0, in ©g and 9}, in Dy . Pictorially, we can envision:
o€ Hp
k, /po,&

RS /Hk,+ \

1 + ak,lzvk _|_ e + Z"'kvk

in ®g and similarly

1+ ap127% + - 27 TR
o' € ’Hk’_ \

in ®g. We can then compute that
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i (P (™) = T g (27 (1 @pa 2™ o g 277D o rmn = ldeenm) )
= T30 (") T (L4 @127 e g2 (800 i) ()
= 10 ) D (1 a2 o gy g2 (0D o~ ldiewm) )
=T, (™) T * ((1 Fap 12 % 4 Fap 1z T 4 z*rk”k)*dke'cvm)
= e (1 4 g 2 gy, e (D0 g Ty —(drerm)

=2m (zfr’“v’“)7<dke}wm> (I+ak 127+ + Zfrkvk)7<dkek’m>

_ Zm(zrkvk 4 ak’lz(rkfl)vk RS ak,rkflzvk + 1)*<dk€k,m>

—(drex,m)

2™ (1 +ag 12" o g, 12T 4 zr’“”"')

Because Hy, 4+ and Hy, — are reversed in g and Dy, our assumption that m € Hy 4 in Dg means
that m € Hg — in Dg. As such, 2™ = T ;(2™) and we have T}, , (b5, 5(2™)) = pi 5 (T 5(2™))

and the desired commutativity holds. Note that this computation relies on the reciprocity condition

ki = Qyry—i- O

Theorem 4.6.3 (Analogue of Theorem 4.4 of [11]). For a given generalized torus seed s, let v denote
the root of Ts and v’ be another arbitrary vertex in Ts. Let ¢* , : MS — MS, be the linear map

v, v’ v’

and ¢y 2 Tno o — Tivo o be the map between the associated tori. Then the collection

T
:u"uﬂj’ c+
v'eEs

{Gv,0' }or glue to give an isomorphism
As = UTN° — Ascat,s = UTNO,U/
v’/ v’

and the diagram

-As ” -Ascat,s

l |

Asv/ ? -Ascat,su/

commutes, where the horizontal maps are the isomorphisms that were just defined, the right-hand
vertical map is the isomorphism described in Proposition 4.6.2 and the left-hand map is the natural

open immersion As — As ,.

Proof. The proof of this theorem is identical to that of Theorem 4.4 from [41]; previous propo-
sitions check that despite the differences in wall-crossing automorphisms, we have the necessary

commutativity of diagrams. O
This allows us to identify the rings of regular functions on Agcay and As.

Definition 4.6.4 (Definition 4.8 of [11]). Let I' be a set of generalized fixed data and s be an

associated initial generalized torus seed. Let s,, = (e},...,el) be a generalized torus seed with dual

rn

basis {(e})*}; and f = d; ' (e})*. A cluster monomial in s,, is a monomial in Txo ., C A of the form

%
m

2™ withm =Y. a;f] for a; € Z>o. We refer to any reqular function which is a cluster monomial

in some seed of A as a cluster monomial on A.
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4.7 Broken lines and theta functions

Broken lines have a similar definition in the generalized setting as in the ordinary setting, with the
caveat that we now work over the ground ring kfa; ;] and so the monomials attached to the domains

of linearity of a broken line lie in kla; ;|[M°].

Definition 4.7.1. Let © be a scattering diagram, mg be a point in M°\{0}, and Q be a point
in Mg\Supp(®D). A broken line with endpoint Q and initial slope mg is a piecewise linear path
v : (—00,0] = Mg\Sing(D) with finitely many domains of linearity. Each domain of linearity, L,

has an associated monomial cz™ € k[a; ;][M°] such that the following conditions are satisfied:
1.4(0)=Q
2. If L is the first domain of linearity of vy, then cpz™L = 20,

3. Within the domain of linearity L, the broken line has slope —my, - in other words, v'(t) = —my,

on L.

4. Let t be a point at which v is non-linear and is passing from one domain of linearity, L, to
another, L', and define

D:={(0,/5) €D :v(t) €0.}

Then the power series Poleise @i contains the term cp2™L".

The definition of a theta function in terms of broken lines remains the same, except that we are
now thinking of broken lines in the generalized sense. For the statement of this definition, see 2.3.22.
In order to justify these definitions, we can begin by verifying that broken lines and theta functions
still have several crucial properties.

The Laurent phenomenon - i.e., that elements of the generalized cluster algebra can be written as
Laurent polynomials in terms of any cluster - is one of the hallmark properties of generalized cluster
algebras. Philosophically, the Laurent phenomenon means that a “good” basis for a generalized
cluster algebra should be able to be equivalently defined in terms of any choice of initial cluster
or torus seed. As such, one important property of theta functions is the following correspondence

between theta functions with the same initial slope but whose endpoints lie in different chambers:

Theorem 4.7.2 (Theorem 3.5 of [11]). Let ® be a consistent scattering diagram, mo be a point in
M\{0}, and consider a pair of points Q and Q' in Mg\Supp(®) such that Q and Q' are linearly
independent over Q. Then for any path v with endpoints Q and Q" for which p. o is defined, we

have

ﬁQ/ymo =Py (19@77”0)

Proof. As in the ordinary setting, this is a special case of the results of Section 4 of [10]. Those
results do not assume that the wall-crossing automorphisms are binomials and are therefore also
applicable to our setting. O

In Section 4.3, we discussed the mutation invariance of generalized cluster scattering diagrams.
It is also important that the theta functions exhibit this mutation invariance. Recall that the
positive chamber of a cluster scattering diagram corresponds to a choice of initial torus seed s for

the associated generalized cluster algebra. If the cluster scattering diagrams D and Dy are related
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by a single application of the map T}, then the initial torus seeds are related by a single mutation,
ie. bfs’ = pr(s). The following proposition exhibits a bijection between the sets of broken lines
and theta functions defined on D5 and Dg-.

Proposition 4.7.3 (Analog of Proposition 3.6 of [41]). The transformation T}, gives a bijection
between broken lines with endpoint Q@ and initial slope mgy in Dg and broken lines with endpoint

T1(Q) and initial slope Ty(mo) in D, (s). In particular,

19%(5) Ty + (7922,m0) Q< Hi+

Tw(Q),Tr(mo) — T ( amo) Qe Hp

where Ty, 4+ acts linearly on the exponents in 1922’7,10.

Proof. We follow the structure of the proof of Proposition 3.6 from [41].

Let v be a broken line in a scattering diagram ®g and Ty () denote the composite map Ty o :
(—00,0] — Mpg. If any domain of linearity of v is in both Hy + and Hy —, we can subdivide that
domain of linearity at the point where it crosses between Hj 4 and Hy . As such, we can assume
for any domain of linearity L that (L) falls either entirely inside Hy 4 or entirely inside Hy,_. For
any domain of linearity L that’s been subdivided in this way, the associated monomial ¢y 2™ will
be sent to either ¢ zTk+(mL) or ¢y zTr~(mL) depending on the portion of L being considered. We
know from Theorem 4.3.5 that D, (s) = Tk(Ds), so we can think about T} (Ds) when thinking about
the broken line in D, (s)-

We know that ej lies on the boundary between Hy, + and Hy, —. So in order to understand what
happens to the subdivided domains of linearity, which originally were in both Hj  and Hj _, we
need to analyze what happens when « crosses e,i-. First, consider the original broken line v in Dg.
Suppose that one domain of linearity, L, has been subdivided into L; and Ly such that « crosses e
at the point where it passes from the first domain of linearity, L, to the second domain of linearity,
Ly. By definition, we know that when the monomial ¢y, 2™%1 passes through ekl, it’s mapped to

m v (re—1)vg TRV [{drersmry )l
CL, Z Ly <1+ak,12"'+"'+ak,rk712 k k+zkk)

and that cr,2™%2 must appear as a term in this polynomial.
We can then consider the image of v in T, (Dg). If L1 € Hy,— and Ly C Hy, 4, then ¢, 2 Th,+(miy)
must appear as a term in the polynomial
CleTk,+(mL1) 14+ zrkvk)—<dk5kamL1) _ clele +revg(dpeg,mr,) (14 + ZTkvk)—(dkekﬂnLl)
_ CLlZ'le (z—rkvk (1 4+t Zrkvk))*wkekmel)
—(drer,m
_ CLlZle (z—rkvk +ak’1z_(rk_1)”k 4t 1) (drek L1>

— CleTk’i(le) (Z—rkvk +ak’lz—('rk—1)vk IS 1)*<dkek7’mL1>

Due to the assumption that the exchange polynomials have reciprocal coefficients - i.e., that

ak,j = Gk, ry—; - this polynomial is equal to

Ty, - (mrLy) —vg —(rr—1)vk R —(drer,mry)
Ccr, 2" 1 1—|—ak712 +"'+ak,rk—12 42
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and therefore T () satisfies the rules for bending as it crosses
0, = (eé7 L+apiz7% 4+ + ak,rk—lz_(rk_l)vk 4 TTRYE)

in Ty (Dg). Similarly, if L; C Hy 4 and Ly C Hy, —, then cr,zTh=(m2) = ¢p 2™L> must appear
as a term in
CleTk,—("LLl) (14 -+ z"kvk)(drermr)

(dpeg,mr,)
= CL1Zle (1 + ak,lzvk + -+ ak,rk-flz(Tk_l)vk + Zrkvk) !

(drek,mry)

=cp, 2™ (1 + @y —12°% 4+ akylz('rkfl)vk + Z’"k”k)

_ —(r— _ (dgeg,mpy)
cp, 2™ (ZTkvk(Z TRVE fay 12 (re—Dvk cbagazT 1)) B

_ (. — _ (drek,mpy)
:clemL1+Tkvk<dk€kamL1> (1+ak,1z Uk b —12 (re=Dvg 4 Tkvk) 1

_ (e — _ (dger,mrLy)
:cleTk~+(mL1) <1+ak,1z Uk ag 12 (re=Dve 4 5 Tk“k) !

and therefore Ty (y) also satisfies the rules for bending at 9 in this case. As such, we’ve verified
that for any broken line v in Ds, its image Ty () is also a broken line in ©,, (s) = T3(Ds). To see that
T}, is, in fact, a bijection, we must verify that Tk_l(Tk(’y)) = 7. First, we define Tk_1 "D ps) — Ds
as
m me M

T, (m) =
¥ m — ryvg{dgex, m) m € H; _

where Hj , and H; _ are defined relative to ej. Notice, however, that because mutation in
direction k sends ey, to ej = —ex, we have H; , = Hy — and H; = Hj, 1. As such, showing that
T, '(Tx (7)) = v amounts to showing that T,;Jlr 0T — =id and T;;i o Ty + = id. The first equality

follows trivially from the definitions and we can verify the second by observing that

T,;i 0Ty +(m) = T;;i (m + rrvg(diex, m))
= (m + rpvg <dk€k7 m>) — TRV <dk€k; m + rpUk <dk6k, m>>
=m + rrvg(dier, m) — rpvg(dier, m) — rpvg(dier, rev(dieg, m))

=m — 1V (dier, m) (drer, TEVk)

By definition, we know that vy = pj(ex) and so (dgeg, rrvi) = 0 and the above expression reduces

to Tk_i o Ty +(m) = m, as desired. O

In fact, such a bijection exists for any pair of diagrams Dg and Dy where s and s’ are mutation
equivalent. The explicit bijection can be obtained by simply iterating the previous proposition for
each step in the mutation sequence between s and s’.

The following proposition is crucial in showing that the generalized cluster variables are, in fact,

theta functions.

Proposition 4.7.4 (Proposition 3.8 of [11]). For a point Q in Int(CS) and a point m in C§ N M°,

we have



L(=1,-1) L(=12)

L(=1,-1)
~ az(=11)

(=1,0)
—1,—1
Ay “ ,(0,-1)

5(0,-1) »(0,-1) »(0,-1)

AN

Figure 4.2: The broken line for 9y _1) ¢ in Ds for the generalized cluster algebra and generalized
torus seed from Example 4.1.4.

Proof. The proof of this proposition is identical to the proof given for the ordinary version in [41].
The fact that the wall-crossing automorphisms now contain additional terms, which offer more

options for scattering, can be accounted for in the choice of the normal vectors n; in that proof. [

One immediate corollary is that the cluster monomials are also theta functions. As with ordinary

cluster algebras, this is a highly desirable property for a basis for generalized cluster algebras.

Corollary 4.7.5 (Corollary 3.9 of [11]). Let ¢ € AL be a cluster chamber. Then for any points
Q € Int(o) and m € o N M°, we have Vg m = 2™

Proof. The result follows from Propositions 4.7.3 and 4.7.4. O

Together, Theorem 4.7.2 and Corollary 4.7.5 give us a way to compute theta functions using

path-ordered products:

Proposition 4.7.6. Consider mg € M°\{0} such that there exists a path vy from mg to some point
Q in the positive chamber CT which passes through finitely many chambers. Then

VQ.mo = Py (™)

Proof. By assumption, we know that the path v from mg to @ passes through finitely many chambers.
Let o7 denote the first chamber through which ~ passes and let Q’ be a point in 1 which lies on 7.
By Proposition 4.7.4, we know that 9¢/ m, = 2™°. Let Q" be a point in CJ such that the coordinates

of Q" and Q" are linearly independent over Q and let 7/ denote a path between Q' and Q" which
+

s
than Q. By Theorem 4.7.2, we know that 9g/ m, = Py (V07 ,me) = Py (2™0).

Because both path-ordered products and theta functions are independent of the exact location

follows ~ until within the interior of the positive chamber C7, at which point it goes to Q" rather

of their endpoints within the interior of a chamber, we therefore have

VQ mo = VQ,me = p'y’(zmo) = p'y(zmo)
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We can then establish a weaker version of Theorem 4.9 of [41], without the guaranteed positivity

of Laurent polynomial coefficients:

Theorem 4.7.7. For generalized fixed data T, which satisfies the injectivity assumption, and a
choice of initial generalized torus seed s, consider a point Q € C¥ and a point m € o N M°® for some
chamber o € Af. Then 0¢q , expresses a cluster monomial of A in's as a Laurent polynomial.

Moreover, all cluster monomials can be expressed as Vg m for some choice of Q@ and m.

Proof. The proof of Theorem 4.9 from [11] holds in the generalized setting, except for the proof of
positivity. The proof of positivity in [41] uses an earlier result, Theorem 1.13, for which we do not
have a generalized analogue. In particular, [41, Theorem 1.13] states (in the case of ordinary cluster
algebras) that the scattering diagram Dy is equivalent to one such that all walls can be expressed
as (0, fo) where fp = (1+2™)¢ with m = p*(n) for some n € N which is normal to ? and ¢ € Z~.
Since we are allowing polynomial exchanges that are not simply binomials, we allow ourselves to
work with scattering diagrams that are not necessarily equivalent to one with walls only of this

form. ]

In order for the theta functions to form a viable basis, we need to understand how to decompose
products of theta functions. Before we can develop and compactly state this framework, we need to
introduce a few pieces of additional notation. For a broken line 7, let Mono(y) = ¢(7)z" ™ be the
monomial attached to its final domain of linearity. Then ¢(y) denotes the coefficient and F(vy) the
exponent in that final domain of linearity. Let I(7) and b(y) denote the initial slope and endpoint,
respectively, of .

With this notation, we can then define structure constants for the multiplication of theta func-

tions.

Proposition 4.7.8 (Analogue of Definition-Lemma 6.2 in [11]). Let p1,p2, and q be points in MSO
and z be a generic point in JT/[/D%s. There are at most finitely many pairs of broken lines 1,72 such

that ~y; has initial slope p;, both broken lines have endpoint z, and F(y1) + F(v2) = q. Let

az(p1,p2,q) := > c(m)e(r2)

(71,72)
I(vi)=pi,b(vi)=2
F(v1)+F(v2)=q

The integers o, (p1,p2,q) are non-negative.

Proof. A major portion of this statement is a definition; the claim requiring proof is that there are
finitely many such pairs of broken lines. By definition, a scattering diagram ®g has walls (9, f5) with
fa e @ Recall that when a monomial 2P scatters off a wall in Dy, it is mapped to a monomial of
the form a;zP:T™ with m; € Ps, where a; is some product of the exchange polynomial coefficients
(and can simply be 1). If the monomial 2P scatters off multiple walls in Dg, then it is mapped to a
monomial with the same form where m; is a sum of elements of Ps. Because Ps is a strictly convex
cone, we know that there are finitely many expressions of m; € Ps as a sum of finitely many elements
of Ps. Because the exchange polynomial coefficients are formal variables, the ¢(vy;) are non-negative,
and therefore so is a,(p1,p2,q).

Hence, for any broken line «;, we have F(v;) = I(;) + m; for m; € Ps where m; has finitely

many expressions as a finite sum of elements of Ps. The summation in the definition of a,(p1, pe, q) is
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indexed over pairs (71, 72) such that F(v;) + F(y2) = ¢. This condition can be equivalently written

as
I(y1) + 1(72) + my + ma =g

There are both finitely many possible choices of m1, ms and finitely many ways to express any choice
of my or my as a sum of elements of Ps. It follows that for a fixed choice of p1,ps and ¢, there are

finitely many possible ways to express ¢ in this form. O
We then obtain the following decomposition of products of theta functions:

Lemma 4.7.9 (Analogue of Proposition 6.4(3) of [11]). Let p1,p2, and q be points in ]T]SO and z be

a generic point in Mg .. Then

Opy Uy = Y 0y (D1,P2,0)Vg
qeM?

for z(q) sufficiently close to q. When z is sufficiently close to q, a,(p1,p2,q) is independent of the

choice of z and we can simply write a(p1,p2,q) := a,(p1,p2,q)-

Proof. The argument given in [41] for the analogous result for ordinary cluster scattering diagrams
holds in our generalized setting. No portion of that argument assumes that the wall-crossing auto-

morphisms are binomials. O

4.8 Partial compactifications of generalized cluster varieties

The discussion in Sections 4.10 and 4.11 will require certain canonical partial compactifications of
generalized cluster varieties. These partial compactifications are constructed in the same manner
as for ordinary cluster varieties. In this section, we review the construction given in Appendix B of
[41], with minor modifications when necessary to adapt the construction to our generalized setting.

We begin by recalling some constructions and notation from previous sections of this paper
and from [41]. Recall from Definition 4.6.1 that for a fixed choice of generalized torus seed s, the
scattering diagram @;4"““ provides an atlas for Aprin scat,s- When it’s clear from context that we’re
discussing the principal case, we will drop prin from the subscript and instead write Agscas s in order
to simplify the notation. Recall that the atlas for Agcas s is constructed by attaching a copy of 15,
to each chamber 0 € Al and gluing these copies according to the wall-crossing automorphisms.
From Theorem 4.6.3, we know that Apyins = Agscat,s. Recall that Ay, has an atlas of tori Tﬁo)w
parametrized by vertices w of Ts.

The choice of initial generalized torus seed s determines a partial compactification ﬁ;rin D Aprin
as follows. Recall that the generalized torus seed s determines a corresponding generalized torus
seed with principal coefficients sp.n. In the original seed s, the indices of the frozen variables are
given by I\I,;. Recall that the index set I for Sprin 18 constructed by taking two disjoint copies of
the original index set I. In this case, the frozen variables are specified by the indices I\I,¢ in the
first copy of I along with all of the indices in the second copy of I.

The generalized cluster variety A has a partial compactification A O A which is constructed by

partially compactifying each of the torus charts of A via Tiye s C TV(X%) where % =37,/ Rxoe; C
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Ng s and T'V(2®) denotes the toric variety of the cone ¥°. Although the monomials {27 }igr,, are
fixed under mutation, the monomials {2 };cy,, can change under mutation despite corresponding

to frozen indices (see Definition 4.1.5). Given a generalized cluster variety A = |J, g Tno s and a

sesS
fan ¥ C Ng which gives a partial compactification TV (X) D Tno ¢ for some generalized torus seed

s’ which is mutation equivalent to s, we can canonically construct a partial compactification

A=Jrv(s)

seS

by taking ¥% := ¥ and ¥ := (u;s,)*l(Esl) where yif , is geometric tropicalization of the birational
map given by the composition g ¢ : Tno g C A D Tnogr.
The seed s also determines a partial compactification of Agcat,s. This partial compactification

j:cat,s D Agcat,s 18 given by the atlas of toric varieties TV (X,es) D Tve ves Where

S s if v/ = v is the root of T

pt . (3,) for all other vertices v’ in Tg

)

Proposition 4.6.2 and Theorem 4.6.3 (and their proofs) extend to this partial compatification.
In the principal coefficient case, recall that the frozen variables are indexed by I'\I,¢ in the first

copy of I along with all the indices in the second copy of I. We obtain a partial compactification
_s

Aprin Dy taking only the second copy of I as the set of frozen indices. Then, Ty, C TV (¥°) where
3% is now the cone generated by the basis vectors of s, whose indices are in the second copy of

I. It is important to note that although A, depends only on the mutation class of s, the partial
S

compactification Zprm actually depends on the particular choice of generalized torus seed.

This dependence arises because the choice of s determines sp,i, and therefore the set of cluster

variables {z(0¢1) z(fi:0)} In the partial compactification A°, the variables {z(0¢)}, < are allowed
to equal zero and the map 7 : Apun — T induces a map 7 : ZZrin — A%, x, where 2% pulls
back to z(9¢). As such, the choice of s also determines a canonical extension of each cluster variable
on a chart of A to a cluster variable on the corresponding chart of Apyin.

For any vertex v’ of T, let Spyin s denote the seed obtained by mutating sy, according to the
mutation sequence determined by the path between the root v of T and the vertex v’. Let X%, denote
the cone generated by the basis vectors of spin,» Whose indices are in the second copy of I. The cone
3%, gives a partial compactification of the torus T~°,1ﬂ' Recall that under the isomorphism given in
Theorem 4.6.3, the torus T, ,, is identified with Tz, o+ o+ Thus, the cone X5, /= Lo (35)

gives a partial compactification of T~O’C:€A:.
The cone 35

scat,pr Can be explicitly described:

Lemma 4.8.1 (Analogue of Lemma 5.2 of [11]). The cones X3

scat, v’
S

in the atlas of the partial compactification A

and therefore the toric varieties

are independent of the choice of vertex v’ of Ts.

scat,s’
Fors = (e1,...,en), each 35,/ s equal to the cone generated by {(0,e7),...,(0,e5)}.
Proof. The proof of this lemma is essentially identical to the proof of Lemma 5.2 of [41]; because

the argument is short, we reproduce it here with the (minor) necessary modification.
By definition, X5 is the cone generated by {(0,e7,...,(0,¢e)}. Each of the other fans 2

scat,v scat,v’

can be obtained from Ygcas,, by applying the geometric tropicalization of the birational gluing map
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between the corresponding tori in the atlas for Agcat s. Recall that these gluing maps are given by the
wall-crossing automorphisms of Ds. In the generalized setting, any wall between cluster chambers has
an attached wall-crossing automorphism which is of the form 1+aqz?" ("0 4. .. 4 q,_;2(r=Dp"(n.0) 1
27" (0) rather than 1+ 27" (™9 for some n in the convex hull of {e;}icr, M = p*(n,0), and positive

integer 7. We can recognize this automorphism as the mutation u 7., for some n € N° and

i € M°. Recall that the geometric tropicalization “Eﬁfﬁm) : N — N maps

x = x+r[(m,x)]-n,
where [z]- = min(z,0). Because (m, (0,e})) = {(n,0),(0,e})} > 0, we have ,u’zﬁ m,m(€7) =€} and
therefore X5,/ = X3¢0 O

We can then establish the following proposition, for use in Section 4.10:

Proposition 4.8.2 (Analogue of Corollary 5.3 of [11]). Let s be a fized choice of seed and v be the
corresponding vertex in the tree T5. Then:

s
prin

1. The map 7 : A, = A%, x. has fiber 7=1(0) = To.

s
prin

2. The mutation maps TV (X5)) — TV (X5,) between tori varieties in the atlas which defines A

are isomorphisms in a neighborhood of the fiber of 0 € A%~ « .

s
scat,s

3. The partial compactification A D Agcars has an atlas whose charts are indexed by chambers
of ®s. The mutation maps between two charts, which correspond to the mutation maps in (2),
are isomorphisms in a neighborhood of the fiber 0 € A’y = and restrict to the identity on

that fiber.

Proof. Recall that Apin = Agcat, as shown in Proposition 4.6.2. If the mutation maps between toric
—S

varieties in the atlas defining are isomorphisms in a neighborhood of the fiber of 0 € A% =~ « |

prin
then so are the mutation maps between the toric varieties in the atlas which define A._,.. In order
for the mutation maps in (3) to restrict to the identity on that fiber, the map 7 : ﬂprin = A —

A%, . x, must have fiber 771(0) = Tivo. As such, (3) immediately implies both (1) and (2) and it
will suffice to prove (3).

Recall that each incoming wall of the scattering diagram ®g has an attached wall-crossing func-
tion of the form 1 + amz(“i’ei) + e+ ai’ri,lz(”_l)(”“ei) + zriwised) and that we identified X; = 2% .
Each of these wall-crossing functions is trivial modulo X7, ..., X,,; therefore, the diagram Dy is trivial
modulo X7,...,X,.

Adjacent vertices v and v’ in the tree Ty correspond to seeds that are related by a single mutation.
As such, the gluing map TV (35, ,) — TV(¥S.,./) is given by the monomial mapping 2™
2™ f{mm) where f is a regular function on TV(ESa0), 1 € NO, and m € M°. When X1, X,
are zero, the function f is trivial. Hence, the gluing maps are the identity on the fiber 0 € Ay~ .
When Xi,...,X,, are non-zero, the gluing map TV(Z:C%U) — TV(Z:C%’U,) gives an isomorphism
between open subsets of TV (X5, ,,) and TV (%5

scat,v’

in the neighborhood of the fiber 0 € A’y y . as desired. O

). The gluing maps are therefore isomorphisms
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4.9 g-vectors

The Laurent expansion of a cluster variable with respect to a particular initial cluster can be specified
via two statistics: its F-polynomial and its g-vector. In [26], Fomin and Zelevinsky give a definition
of g-vectors in terms of a particular Z™-grading of the ring of Laurent polynomials in x whose
coefficients are integer polynomials in y. Gross, Hacking, Keel, and Kontsevich [41] give a description
of g-vectors in the context of cluster scattering diagrams and ordinary cluster varieties. In particular,
this alternate description is useful because it allows for a definition of g-vectors on all types of
ordinary cluster varieties. In this section, we state this alternate description in the context of
generalized cluster scattering diagrams and generalized cluster varieties.

There is a To action on Apin that can be specified at the level of cocharacter lattices as

N° — N° @ M,

n = (n,p*(n)).

Under this Tne action, each cluster monomial on Apyy, is a Tyo-eigenfunction. Via this action,
choosing a generalized torus seed s determines a canonical extension of each cluster monomial on A
to a cluster monomial on Ap,. This allows us to give the following definition of the g-vector of a

cluster monomial of A.

Definition 4.9.1 (Analogue of Definition 5.6 of [11]). The g-vector with respect to the generalized

torus seed s associated to a cluster monomial of A is the Tyo-weight of its lift determined by s.

There is another way to characterize g-vectors which is extensible to the other types of generalized

cluster varieties.

Definition 4.9.2 (Analogue of Definition 5.8 of [11]). Consider the generalized cluster variety A =
U, Tnos. Let A denote a cluster monomial of the form 2™ on a chart Tyo s where s' = {(e},a})}.
Identify AY(R") with Mg, Because (z¢)T(m) < 0 for all i, m is identified with a point in the
Fock-Goncharov cluster chamber C5; € AY(RT). Define g(A) to be this point in Cj; C AY(RT).

Definition 4.9.3 (Analogue of Definition 5.10 of [11]). Consider a generalized cluster variety V =
UsTr,s- Let f be a global monomial on 'V and s be a generalized torus seed such that f|TL,s CcVis
the character 2™ for m € Hom(L,Z) = L*. Then the g-vector of f, denoted g(f), is the image of
m under the identifications V¥ (ZT) = Ty« s(ZT) = L*.

From Definitions 4.9.2 and 4.9.3, we obtain the following corollary.

Corollary 4.9.4 (Analogue of Corollary 5.9 of [11]). Let s be a generalized torus seed and A be a
cluster monomial on the associated generalized cluster variety A. The seed s gives an identification

AV (RT) = Mg ¢ under which g(A) is the g-vector of the cluster monomial A with respect to s.

Proof. The proof given in [41] for the ordinary case holds in the generalized setting, using the

appropriate analogous intermediate results for O

We can then generalize the definition of a g-vector beyond the A-variety to any type of generalized

cluster variety.
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Definition 4.9.5 (Analogue of Definition 5.10 of [11]). Consider a generalized cluster variety V =
UsTrs. Let f be a global monomial on V and s be a generalized torus seed such that the restriction
f‘TL,s C V is the character 2™ for some m € Hom(L,Z) = L*. We then define the g-vector of f,
denoted g(f), as the image of m under the identifications VV(Z') = Ty~ (Z7) = L*.

Although it is not a priori clear from this definition, we will see in Lemma 4.11.5 that this
definition of g-vector is actually independent of the choice of generalized torus seed s. As in the
ordinary case, this formulation of g-vectors allows for a very quick and elegant proof that the g-

vectors are sign-coherent.

Theorem 4.9.6 (Analogue of Theorem 5.11 of [11]). Consider an initial generalized torus seed
s = {(e;,(ai;))}, which defines the usual set of dual vectors {f; = d;'el}. If s’ is a mutation

equivalent generalized torus seed, then the i-th coordinates of the g-vectors for the cluster variables

in s’ are either all non-negative or all non-positive when expressed in the basis {f1,..., fn}.
Proof. The proof for the ordinary case given in [11] holds in the generalized setting as well, using
the appropriate analogues of intermediate results. O

4.10 Theta basis for Appin

The primary goal of this section is to show that when the generalized cluster algebra gen(Apyin)
and upper generalized cluster algebra up(Apin) coincide, the theta functions defined in Section 4.7

form a basis for Apyin. Following the work of Gross, Hacking, Keel, and Kontsevich in the ordinary

case [41], we do so by first defining the middle generalized cluster algebra of Apyin as a subalgebra
of up(Aprin). We then show that there exists a subset © C Al\j’rin(ZT) which yields a vector space

basis for the middle generalized cluster algebra. We show that the middle generalized cluster algebra
necessarily contains all the cluster monomials and therefore contains the generalized cluster algebra.

That is, we show the inclusions
gen(Aprin) C mid(Aprin) C up(Aprin)-

The upper generalized cluster algebra was first defined by Gekhtman, Shapiro, and Vainshtein
[31], analogously to the definition of the ordinary upper cluster algebra. Given a generalized cluster

algebra A, the associated upper generalized cluster algebra is

up (A) == ﬂ ZxEr, . aE c F

clusters{zy,...,zy } of A
In our work, we will use the following equivalent definition:

Definition 4.10.1. The upper generalized cluster algebra up(V) associated to a generalized cluster
variety V is up(V) := H°(V, Oy).

In this section, we will discuss the Apyi, case. Later, in Section 4.11, we will descend to the A
and X cases by using the fact that the A-variety appears as a fiber of Apin — T and the X-variety
appears as the quotient Apin/Tno.
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4.10.1 Expansions for universal Laurent polynomials on Apin

The essential objective of this subsection is to associate a formal summation quAFv)rm(ZT) a(9)(q)¥,,
with coefficients a(g)(¢) € kla; s, to each universal Laurent polynomial g on Ap.in. In doing so, we
follow the structure of Section 6 of [11] for the ordinary case, with modifications when necessary
to accommodate our generalized setting. We begin by giving such a summation for a fixed choice
of generalized torus seed s, then show that the coefficients a(g)(q) are, in fact, independent of the
choice of generalized torus seed.

Fix a choice of generalized torus seed s = {(e;, {a; ;})}. Recall that in the generalized setting, we
are working over the ground ring R = k[a; ;] rather than over k. Following the notation established
in Section 4.8, let X; := 2% and Iy = (X4,...,X,) C R[X1,...,X,]. Then, set

Alx, x.yx = Spec R[Xy,..., X,] /IS,

P n
Aprin k= Aprin Xaz o Ak, Lx0) ke

The map 7 : erin — A% x,, which we defined in Section 4.8, then induces a map 7 : Zsprimk —

Alx,...x,) ke Let

up (zls)rin) = ];inup (z}irin,k>

For any g € up(Apyin), we have 2"g € UP(erin) where 2" is some monomial in the X;. This fact
induces the inclusion -
—S
up(Apein) € up (o) By KN (43)

where N;- C N denotes the monoid generated by e1,...,e,. Let my : M° = M°® N — N be
the projection map and define J/\ZS""r = 7'(';[1 (NS). Let Ps C M; be the monoid generated by
(v1,€1),. ., (Un,en).

We can begin by establishing the following proposition, which defines canonical functions 9,
on up(XZrin) ®@i[nv+] k[N] and then shows that two particular collections of such 1, form bases for
up(jfnrin,k)'

Proposition 4.10.2 (Analogue of Proposition 6.4(1,2,4) of [11]). 1. Given a point q € ]\Afso#,
the function V¢, 4 s a reqular function on Vs .. As o varies, the ¥¢q_ 4 glue to yield a

canonically defined function ¥4 € up (erin,k)'

2. For q € Ay, and k' > k, O | s = Uqr. Hence, the collection {041 }k>0 canonically
prin, k =

defines a function

—

Vg € up (Z;rin) Rz KINV]-
Let can(Aprin) denote the k-vector space

P kv,

gAY, (ZT)

prin

The ¥, are linearly independent, so there is a canonical inclusion of k-vector spaces

—

can(Aprin) C up (]Zn'n> Ry KINV]-
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3. The collection {¥q : q € M;*\M;Ll} restricts to a basis of up (Z;m‘n,k> as a k-vector space.

Similarly, the collection {0, : ¢ € Ty (0)} restricts to a basis of up (erm’k) as a k[NF]/1E+1-
module.

Proof. The proof given in [41] for the ordinary case holds in our setting. O

In order to associate a formal summation ) a(g)(g)Y, to each universal Laurent polynomial g
on Apyin, we will first associate a formal summation Y as(g)(¢)?¥, which depends on the choice of

generalized torus seed s. To do so, we must first define the function .

Proposition 4.10.3 (Analogue of Proposition 6.5 of [11]). There is a unique inclusion
Qg @ up (Z;mn) vz K[N] = Homgers (.A;,/Tm(ZT) = Mso,lk)

given by the map g — (q— as(g)(q)). For alln € N, as(z"™ - g)(¢+n) = as(g)(q)-

o —

Proof. One consequence of Proposition 4.10.2 and Lemma 4.7.9 is that every g € up(A can be

s
prin)

uniquely expressed as a convergent formal sum ) as(9)(q)9, where the coefficients as(g)(gq)

qEMS +
lie in k. This immediately implies the desired unique inclusion. O
Definition 4.10.4 (Analogue of Definition 6.6 of [41]). Let g be a universal Laurent polynomial
on up(Aprin). On the torus chart T, . of Aprin, we can write g = quﬁo Bs(9)(q)z?. Because

-

2™g € up(Aprins) for some m € MSO, we can also write a formal expansion g = quMO as(9)(g)Y,.
Let

Sy = {a € M : Bs(9)(q) # 0}, Sy.s = {g € Mg : as(g)(q) # 0},

and Py be the monoid generated by {(vi, e;)}bicr,,-

It follows from the construction of the theta functions that S, s € Sy + Ps.
We are then ready to prove that on up(Aprin), the function ag is actually independent of the

choice of generalized torus seed s.

Theorem 4.10.5 (Analogue of Theorem 6.8 of [11]). There is a unique function a : up (Aprin) —
Homygets (Azrzn (ZT) ,k) such that:
1. a is compatible with the k[N]-module structure on up (Aprn) and the N-translation action on
Xm'n (ZT); i.e.

a(2"-g) (z +n) = alg)(z)

for all g € up(Aprin), n € N, and x € AY, . (ZT).

prin
2. For any generalized torus seed s, the formal sum . 4v (ZT)a(g)(q)ﬁq converges to g in

up@%m) Dy KN

3. If 2" - g lies in up (sz'n)’ then a (2" - g) (q) = 0 unless 7 (q) € Ng~. Moreover,

2 g = > a(z"- g)(q)0q mod (IJ*")

7N,s (@) ENS\ (NS kg1
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and the coefficients a(z™ - g)(q) are the coefficients for the expansion of z™ - g when it is viewed

as an element of up (Z;m.n) in the basis of theta functions {¥q: q € MSOJF\M;;H}

4. For any generalized torus seed s’ reachable from s via a sequence of mutations, the map o is
the composition of inclusions

up (Aprin) C up (Aj)rin) ®lk[N:, k[N]] € Homsess (AZrm(ZT) = Mso’vk)

from Proposition 4.10.3 and Equation (4.3). This maps the cluster monomial A € up (Aprin)
to the delta function 6g(ay where g(A) € AY. (ZT) is its g-vector.

prin
Moreover, a(g)(m) = ag (g)(m) for any generalized torus seed s'.

Proof. The proof given in [41] for the ordinary case holds in our generalized setting, with some
modification. We review the proof from [41] for the ordinary case, making modifications when
necessary for our setting. Note that this proof is quite long and contains two subordinate claims.

As in the ordinary case, it follows from Propositions 4.10.2 that for a fixed generalized torus seed
S, ag is the unique function satisfying statements (1)-(3). It is also clear that as satisfies statement
(4) when s’ =s. As such, it is sufficient for us to show that the map as is actually independent of
the choice of generalized torus seed. To do so, we wish to show that ag expresses g as a (possibly
infinite) sum of theta functions. The uniqueness of this expression then follows from the fact that
the theta functions are linearly independent.

Consider a generalized torus seed s = {(e;, (ai,j))}bier, e, .- Then let ¥° denote the fan in
N° = N° @& M whose rays are spanned by the collection {d;f;}. To show that as is independent
of the choice of generalized torus seed, it will suffice for us to then consider a generalized torus
seed 8" = {(e}, (a] ;))} which is related to s by a single mutation, i.e. s’ = pg(s). Without loss of
generality, assume that k& = 1.

We will then consider the union of the tori Ty, . and Ty from the atlas for Apn. Because

Neo,s/
s’ = p1(s), these tori are glued by the mutation map g1, which is defined by the pullback

.wlk . ymn) Z(m»”)(l +ay 12(1’1:@1) +ooda rl_lz(rlfl)(vhel) 4 Z”"l(vl’el))7<(d16170)7(m1n)>

where (m,n) € M~ = M° @& N. We can compactify this union by gluing py : TV(Z5) — TV (S%).
Let U := TV(25) UTV(2%) denote the partial compactification of the union under this gluing. It

is important to note that U is not in the atlas for either Zprin or ﬁprin.
Recall that f/ = f; for i # 1 and that f| = —f1+m Zjejuf[*ekj]—&-fr As such, the cones ¥~ and

’

3° share a codimension one face. Together, they form a fan ¥. By construction, the rational maps
TV (2%) = TV(Z) and TV(E5) — TV (X" ) are regular. Because the mutation map j; commutes
with the projection map 7 : T'w, — T, the map 7 : U — TV (X) is also regular.

The toric boundary OV has a unique complete one-dimensional stratum P! and two zero strata

1

0s and Og. We denote the complements of the zero strata in P as Al, and Al

respectively. Let
A;’ x C V denote the k-th order neighborhood of P!, U . denote the scheme theoretic inverse image

7' (Al,) C U, and Ug,, 1 denote the intersection

UAlkmUAI/k CU
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We wish to show that the theta functions form a basis of functions on the formal neighborhoods
up(Uy: ) and up(Ug,, ). In doing so, it will be useful to establish the following coordinate system.

Let X; := 2(0¢) and X; = 20 For i # 1, recall from Definition 4.1.5 that pj(X;) = X;
and p}(X]) = X/. There is a map from the fan 3 to the fan which defines P! that is defined by
dividing out the subspace spanned by {d;f;}icp\ (13- Pulling back Op:i(1) to V' yields a line bundle
with monomial sections X and X’ pulled back from X and X', where X'/ X = X{. Let A; := 2(/i:0)
and A} = 2U1:0) Diverging from the ordinary case, the open subset of U where X’ # 0 is now given,

up to codimension two, by the hypersurface

n 1 1 n J
A - A/l — (H A£—611]+> Zal,j <X1HA§M>
i=1 §=0 i=1

Observe that the points (f;,0),(0,e;) € (M° @ N)s = AY,; (ZT) both lie in the chamber of A}

corresponding to s and that the point (f],0) € (M° & N): = AYin(Z") lies in the chamber of AF
corresponding to s’. Hence, we know from Proposition 4.7.4 that each of these points determines a
theta function in up(Aprin). In fact, these theta functions are the corresponding cluster monomials:
Ay = 20e) X, = 20 and A} = 2(/1:0), There is an analogous description for the open subset
where X # 0.

Consider the ideal J = (X;);cp\{1}- As in the ordinary case, the only wall of D that is non-trivial
modulo J is the wall ((e1,0)*,1 +a17lz(“1’31) +- +a17rl_1z(”*1)(”1’61) +z’”1(”1’31)). It follows from
Theorem 4.3.7 that Dy has finitely many non-trivial walls modulo J*. Let my : M° — N be the
projection map and let @ be a point in the positive chamber C;. When 7y (m) € Span(e, ..., e,),
it also follows that the theta function Jq ., is regular on Uy .

As in the ordinary case, Ug,, i is the subscheme of U defined by the ideal J ¥ in the open subset
XX'#0CU. The open subset defined by XX’ # 0 and [][,; X; # 0 is the union of the tori T
and TNQ’ o

We are now ready to establish the first intermediate claim. First, we introduce some useful addi-
tional notation. Let C := >"}'_; Ne; and €7 := >";'_, Ne,. Recall from the definition of generalized

torus seed mutation that e} = —ey, so

i#1

n n
C:=7TZes + ZNek = Ze)| + ZN%
k=2 k=2

is well-defined.
Claim 4.10.6 (Analogue of Claim 6.9 of [11]). The following statements hold:

1. The collection {0¢q m} such that m € M° and 7x(m) € C\(Crgr N C) forms a kla; ;]-basis of

the vector space up(Ug k)

2. The collection {¥¢ (m,0)} such that m € M® forms a basis of up(UA;’k) as a HO(A;,C,OA;JQ)—

module.
3. The collection {9¢g m} such that wx(m) € C\Cy forms a Kla; ;]-basis of up(Ug,, ,.)-

The proof given in [41] for Claim 6.9 also holds in the generalized setting. There is an analogous

claim for s’.
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Now, we wish to show that S, ¢ = S, for all regular functions g on Ap.in. Because of the V-
linearity of scattering diagrams, we may multiply g by any monomial from the base of Aprin — 1.
If we multiply by a monomial in {X;};2z1, we may assume that ¢ is a regular function on the
open subset of U where XX’ # 0. Recall that we defined P; C M; as the monoid generated by
(v1,€1), ..., (Un,epn). Analogously, Py C Ms", be the monoid generated by (v{,¢€}),..., (v,, e, ).Using
the notation §g75 and S, s which was established in Definition 4.10.4, we observe that mx(m) € C
when m € Ps+S,s or m € Py +S, . Because D has finitely many non-trivial walls modulo J* for
all k, it follows that for m € S, s or m € Sy the theta functions ¥¢ ., and J¢ ., are finite Laurent
polynomials modulo J*, where Q and Q' are, respectively, endpoints in the chambers corresponding
to s and s’. We can then establish the following claim about expansions for g in terms of such theta

functions.

Claim 4.10.7 (Analogue of Claim 6.10 of [11]). Modulo J*, the sums

Z amﬁQ,my Z a;’nﬁQ/’m

meESy.s mesy g

are finite and coincide with g in the charts indexed, respectively, by s and s'.

The proof given in [41] for Claim 6.10 holds in the generalized setting. By Theorem 4.7.2, the
theta functions ¥, and ¥, induces the same regular function 9,, on Ug,, » when m € 75" ().

Thus, we get equality, modulo J*, of the expansions from Claim 4.10.7:

g= Z oV, = Z o 9, mod JE.

m,Sy.s mesS

g.s’

Varying k, it follows from (3) of Claim 4.10.6 that the coefficients o,

m are indeed equal and

therefore the map «y is independent of the choice of generalized torus seed, as desired. O

4.10.2 The middle generalized cluster algebra for Ap,yin

In order to define the middle generalized cluster algebra, we will need to be able to discuss a par-
ticular subset of theta functions. First, we show that the theta function 9 m,, for @ € cA™ and

mo € Al (ZT), is a positive universal Laurent polynomial on k[M°].

Proposition 4.10.8 (Analogue of Proposition 7.1 of [11]). Let s = {(e;, (ai;))} be a generalized
torus seed with all a; ; > 0. Fix some mgy € .AZ”.TL(ZT), If for some generic choice of Q € 0 € AT

there are finitely many broken lines v in g with I(vy) = mo and b(y) = Q, then this holds for any

generic Q' € o' € AT. Hence, 9g m, € k[ﬂo, a; ;] is a positive universal Laurent polynomial.

Proof. By Theorem 4.7.2, we know that when endpoints Q and @’ lie in different chambers, the theta
functions 9¢, m, and Vg’ m, are related by a composition of wall-crossings. When the endpoint varies
within a chamber, the corresponding theta function does not change. Hence, it’s sufficient to check
that if @ € o and Q' € ¢’ are in adjacent chambers with @ close to the wall o N o', then ¥¢g m,
having finitely many terms implies that ¥¢g/ n, also has finitely many terms.

Fix some generalized torus seed s. Let the wall oMo’ be in ng for ng € N° with (ng, Q) > 0 and

denote the wall-crossing automorphism when moving from @ to Q" by p. Recall that a chamber of
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Ds is called reachable if there exists a finite, transverse path between that chamber and the positive
chamber Cf C Ds. By Lemma 2.10 of [11], there exists a bijection between torus seeds that are
mutation equivalent to the initial torus seed s and reachable chambers of 5. A consequence of
this bijection, as described in [55], is that there exists a sequence of mutations py,,..., 1, and
corresponding piecewise linear maps Tk,, ..., ), such that s’ = ug, o -+ o g, (s), Dy = Ty, ©
Ty, (Ds), and Ty, , 0 --- 0Ty, (0') C Hy, — for each ¢ € {1,...,¢}. In the language of green
sequences, this is equivalent to saying that there exists a sequence of green mutations from s’ to s.

Recall that p(z™) = 2™ f("™  When both chambers, o and ¢’ are reachable, f has the form
1+api29+---+ ak?rk,lz(r’fl)q + 2" for some q € nd- - Mo, r € Zso, and k € I. In particular,
note that f is a positive Laurent polynomial in aq,...,a,—1 and z. One can verify that f has this
form by recalling that the wall-crossing automorphisms associated to the positive chamber CJ, C Dy
have the form 1 + ay 12"% + - - - + 2" for some k € I and then applying the appropriate sequence
of piecewise linear maps T}, , ..., Tk, to obtain the wall-crossing automorphism p.

Monomials 2™ can be classified into three groups, based on the sign of (ng,m). The arguments
for (ng,m) = 0 or (ng,m) > 0 given in [11] will work here also. Briefly, when (ng,m) = 0, the
monomial is fixed by p and so these terms coincide in Vg m, and 9q/ m,. When (ng,m) > 0, the
monomial 2™ is sent to 2z f{"™)  which is by definition a polynomial. So each such z™ in 9Q,mo
corresponds to finitely many terms in 9g/ .

The last case is when (ng,m) < 0. Consider a broken line in ©g with endpoint Q" € o' C Dg
and a monomial of the form cz™ with (ng,m) < 0 attached to its final domain of linearity. To
complete the proof, it remains to show that there are finitely many such broken lines. By way of
contradiction, assume that there actually infinitely many.

The direction vector of such a broken line must be towards the wall ¢ N¢”, so its final domain of

linearity can be extended to some point Q" € . When crossing ¢ N ¢’ from ¢’ into o, we have

m m q (kal)q Tkq (—no,m)
czm e (14 ap12%+ -+ apre—1% +z

for some k € I. Note that the primitive normal vector —n( appears in this wall-crossing computation
rather than ng because by assumption (ng, Q) > 0, so ng is directed into the chamber o rather than
into ¢’. The fact that ag1,...,arr,—1 are formal variables means that there are no cancellations.
Because 9g m, is independent of the location of ¢ within the chamber o, this means there are

infinitely many broken lines with initial slope mg and endpoint @, a contradiction. O

This then allows us to state the following definition for any Q € o € AT, rather than for some
particular point, because we know the cardinality of the set of broken lines with initial slope my is

independent of the choice of endpoint Q.

Definition 4.10.9 (Analogue of Definition 7.2 of [411]). Let © C AY,. (Z™) be the collection of mg

prin
such that for any generic point Q € o € AT, there exist finitely many broken lines with initial slope

mgo and endpoint Q.

Definition 4.10.10 (Definition 7.3 of [41]). A subset S C Ay, is intrinsically closed under addition
if p,q € S and a(p,q,r) # 0 implies that r € S.

We are now prepared to state the major result of this section:
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Theorem 4.10.11 (Analogue of Theorem 7.5 of [41]). Let

A+(Z) = U O—mA;)/rin(ZT)

ceAt
be the set of integral points in the chambers of the cluster complex. Then
1. AT(Z) ce.

2. For p1,ps € O, the product
19171 '191)2 = Za(p17p277")19r

T

is a finite sum with non-negative integer coefficients. Moreover, if a(p1,pa,r) # 0, thenr € O.

3. The set © is intrinsically closed under addition. For any generalized torus seed s, the image

of © C Mso s a saturated monoid.

4. The structure constants a(p,q,r) defined in Lemma 4.7.9 make the k-vector space

mid (Aprin) == Pk - 9,

q€®

whose basis is indexed by ©, into an associative and commutative K[N]-algebra. There are

canonical inclusions

—

gen(Aprin) C mid(ApTin) C up(APTin) C UP(AWM,S) ®k[Ns+] k[N]

where each cluster monomial Z € gen(Aprin) is identified with Vg(zy € mid(Aprin) for its
g-vector g(Z) € AT (Z) and each 94 € mid(Ay,yin) is identified with a universal Laurent poly-

nomial in up(Aprin)-

Proof. The majority of the proof from [41] for the ordinary case holds in our generalized setting.
We review the proof here in additional detail.

The proof of (1) follows from Corollary 4.7.5 and Proposition 4.7.6. Consider m € A*(Z) and
let @ be a generic point within the cluster complex. If m and @ lie in the same chamber of the
cluster complex, then we know from Corollary 4.7.5 that ¥g,, = 2™ and so there is exactly one
broken line with initial slope m and endpoint Q. Hence, m € ©. If Q € CJ and m lies in some other
chamber, then we know from Proposition 4.7.6 that ¥g ,» = p,».(2") where 7 is a path from m
to @ which passes through finitely many chambers. Because each wall-crossing automorphism has
finitely many terms, each wall-crossing maps a monomial to a polynomial with finitely many terms.
Hence, the sequence of finitely many wall-crossings determined by v maps the monomial 2™ to a
polynomial with finitely many terms, so m € ©. This actually also handles the case where m and
Q are in distinct chambers but Q ¢ C. Let s’ be a generalized torus seed reachable from s via a
sequence of mutations pg,, ..., ik, such that @ € C;C. Let T := Ty, o --- oTy,. By the previous
argument, Up(q),7(m) (computed on D) has finitely many terms and hence there are finitely many
broken lines on ®g with initial slope T'(m) and endpoint T(Q). From Proposition 4.7.3, we know
that this set of broken lines is in bijection with broken lines on g with initial slope m and endpoint
Q. Hence, m € ©.
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For (2), first note that the coefficients a(p1, p2,r) are non-negative by Lemma 4.7.9. Consider
p1,p2 € © and let () be a generic endpoint in some cluster chamber. Because each ¥ p, is a Lau-
rent polynomial, we know that ¥ ,, - ¥ p, is a product of Laurent polynomials and therefore has
finitely many terms. By Lemma 4.7.9, we know that J¢q p, - Vg p, = >, @(p1,p2,7)0,. By Proposi-
tion 4.10.8, we know that ¥, is a positive universal Laurent polynomial in k[J\AJ/O, a;s]. As such, the
summation ) a(p1,p2, )V, is a positive linear combination of series with positive coefficients and
must therefore contain finitely many terms, as it cannot contain any cancellation. Hence, each 9,
must have finitely many terms and be a Laurent polynomial. By definition, this means that r € ©
and therefore O is intrinsically closed under addition.

For (3), the fact that © is intrinsically closed under addition follows immediately by definition
from (2), since in (2) we showed that having pi,ps € © and a(p1,p2,7) # 0 implies r € ©. To
show that © is saturated, consider kq € © for some integer k£ > 1 and generic endpoint ). By
definition, having kg € © means there are a finite number of broken lines with initial slope kg and
generic endpoint Q € o € AT. Let S(kq) denote the set of final monomials on these broken lines.
By assumption, S(kq) is finite. For every broken line  with initial slope ¢ and endpoint @, there is
a corresponding broken line v/ with initial slope kg and the same underlying path, such that in each
domain of linearity L of v the monomials my, and m/ attached, respectively, to v and +' satisfy the
relationship m/;, = kmy. Hence, ¢ € S(q) implies that kg € S(kq) and the finiteness of S(q) follows
from the finiteness of S(kq).

For (4), we know from Proposition 4.10.8 that each ¥q p, for p € ©, is a universal positive
Laurent polynomial in the initial cluster variables and the exchange polynomial coefficients. By
Theorem 4.10.5(4), ¥, € up (Apyin) is the corresponding cluster monomial for p € A (Z). The as-
sociativity of multiplication on mid (Apin) and the inclusions follow from Lemma 4.7.9 and Propo-
sition 4.10.2. O

The following corollaries are immediate consequences of Theorem 4.10.11.

Corollary 4.10.12. Fiz a set of generalized fized data I' and a choice of generalized torus seed s.
When the generalized cluster algebra and the upper generalized cluster algebra coincide, the collection

{0Q,m}mee forms a basis for the associated generalized cluster algebra.
Corollary 4.10.13 (Analogue of Corollary 7.6 of [41]). The following hold:

1. There are canonically defined non-negative structure constants

a: A (2T x AV (ZT) x AY L (Z7) = Zso U {00}

prin prin prin

These are given by counts of broken lines.

2. There is a canonically defined subset © C Azrm(ZT) with a(© x © x ©) C Z>( such that the
restriction of a gives the vector subspace mid(Aprin) C can(Apry) with basis indexed by O the

structure of an associative commutative k-algebra.
3. AT(Z)c ©

4. For the lattice structure on AY,. (Z") determined by any choice of seed, © C AY,..(Z") is

closed under addition. Furthermore, © C A, (Z") is saturated: fork >0 and x € A}, (Z"),
k-xz €0 if and only if x € O.
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5. There is a canonical k-algebra map v : mid(Aprin) — up(Aprin) which sends 9, for ¢ € AT(Z),

to the corresponding global monomial.
6. The image v(Vy) € up(Aprin) is a universal Laurent polynomial.
7. v is injective.

As in the ordinary case, we can verify that the theta functions are well-behaved with respect to

the canonical torus action on Apyis.

Proposition 4.10.14 (Analogue of Proposition 7.7 of [41]). For ¢ € © C A} .(Z), the theta
function 9y € up(Appin) is an eigenfunction for the natural Tz, action on Ay, with weight w(q)
given by the map w : M = (1\70)* — (IN(O)* Moreover, ¥, is an eigenfunction for the subtorus

Tyo CT5

o with weight w(q) given by the map w : M° — M° defined by mapping (m,n) — m—p*(n).

Proof. The proof given in [11] for the ordinary case holds in the generalized case as well, since by

definition we still have w(v;, e;) = v; — p*(e;) = 0. O

4.11 From Ay to A and X

As in the ordinary case, our results for Ap., induce similar results on the A and X varieties. In
this section, we adapt the results of section 7.2 of [11] for our generalized setting. As such, we will
closely follow the structure of their exposition.

Recall that A; = 7~ 1(¢), where 7 is the canonical fibration Aprin — Th. Consider the maps
p: A — AV and € : XY — AY.. which have tropicalizations

prin prin

pt: (m,n) — m,
&' in e (=p*(n), —n).

The map p! identifies AY(ZT) and the quotient of AY, (Z*) by the natural action of N. Let

prin
w: AY;, — M° be the weight map given by w(m,n) = m —p*(n). Then €T identifies XV (ZT) with
w~1(0).

These maps allow us to define broken lines for the A and X" cases. First, recall that each wall in
’D:‘"“" has an associated wall-crossing automorphism which is a power series in 2" (") for some
n. Hence, w(m,n) = w(p*(n),n) = 0 for every exponent which appears in one of these wall-crossing
automorphisms.

First, consider the X' case. Suppose 7y is a broken line in @;4"““ with both I(v) and the initial
domain of linearity lying in w~!(0). Because every exponent that appears in a wall-crossing function
lies in w~1(0), the monomials attached to each subsequent domain of linearity must also lie in w=*(0).
In particular, this means that F(y) and b(v) both lie in w=!(0). We define the set of broken lines
in XV(RT) to be the set of such broken lines.

Next, consider the A case. Here, the set of broken lines in A (RT) is defined as {p? (y)} where

7 ranges over the set of broken lines in AY;, (RT).
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We then define

O(X) := O (Aprin) Nw™1(0),
O(A) 1= o (8 (Aprin)).

Because AY(Z") is identified with the quotient of LAY (Z”) under the natural N-action, it
follows that O(Apyin) is invariant under N-translation and therefore ©(Apwin) = (pT)71 (O(AL)).
In fact, any section X : AY(Z") — AY,;,(Z") of p” will induce a bijection between ©(Apin) and
@(.At) X N.

Definition 4.11.1 (Analogue of Definitions 7.12 and 7.14(2) of [11]). Define

mid(X) 1= mid(Aprin)™ = € ki,
qgeEO(X

mzd(At) = mZd(Apmn) ®]k[N] k,

where the map k[N] — k is given by t € Thy.

Using this definition for mid(X’), we obtain the following corollary of Theorem 4.10.13 by taking

T'no-invariants.

Corollary 4.11.2 (Analogue of Corollary 7.13 of [11]). The results of Theorem 4.10.13 also hold
for X.

Each choice of generalized torus seed s determines fans ¥gy for V. = Apnn, A, and X. In

particular,

ZS,.A = {Rzoei 11 € qu},
ES,X = {—Rzo’ui 11 E qu}.

Lemma 4.11.3 (Analogue of Lemma 7.8 of [11]). For m € Hom(Ls,Z), the character z™ on
Trs C V is a global monomial if and only if 2™ is regular on TV (Xgyv). The character 2™ is
regular on TV (Xsv) if and only if (m,n) > 0 for the primitive generators n of each ray in X v .
When V is an A-type cluster variety, the set of global monomials exactly coincides with the set of
cluster monomials. That is, every global monomial is a monomial in the variables of a single cluster

with non-negative exponents on the non-frozen variables.

Proof. The proof given in [41] for the ordinary case holds in the generalized setting, with one minor
change: the support of Z; is now defined by the zero locus of polynomials rather than binomials. Le.,
its support is now 1+ a; 12" +--- + ai’ri,lz(”_l)”i + z"% = ( rather than 1+ 2% = 0. Subsequent
portions of the proof still hold after this change is made.

Note that the proof in the ordinary case uses the Laurent phenomenon. Because the Laurent
phenomenon holds in the reciprocal generalized setting, see Theorem 2.5.8, this portion of the proof

extends to our setting without modification. O
Recall that there exist canonical maps p: Ay, — A" and £ : XY — A7, with tropicalizations
ot i (myn) = mand £ :n+— (—p*(n), —n). Let w : Al\)/rin(ZT) — M?° be the weight map given by

(m,n) = m — p*(n).

132



Observe that p” identifies AY(Z") with the quotient of AY; (Z”) by the natural N-action.

Observe also that ¢ identifies X'V with the fiber of w : A}, — T over the identity element e, so
¢T identifies XV (ZT) with w=1(0).

Definition 4.11.4. For a generalized cluster variety V = J, T s, let C3(Z) C VV(Z") denote the
set of g-vectors of the associated generalized cluster algebra and A‘t(Z) C VY(ZT) denote the union
of all C (Z).

Lemma 4.11.5 (Analogue of 7.10 of [11]). 1. For an A-type generalized cluster variety, C is
the set of integral points of the cone CJ in the Fock-Goncharov cluster complex which corre-

sponds to the seed s.

2. For both A-type generalized cluster varieties and X, CF is the set of integral points of a ra-
tional convex cone CJ and the relative interiors of CI as s varies are disjoint. The g-vector
g(f) € VV(ZT) depends only on the function f. That is, if f restricts to a character on two

distinct seed tori, the g-vectors they determine are the same.

3. For m € w=1(0) N Aj‘wm(Z), the global monomial ¥, on Aprin is invariant under the Tvo
action and thus gives a global function on X = Aprin/Tno. This is a global monomial and all

global monomials on X occur in this way. Moreover, m = g(9,,).

Proof. The proof given in [41] for the ordinary case holds in our generalized setting, as we have
proven analogs of all the necessary previous results. We quickly review the proof given in [11] in
order to point out each place where we are instead using an analogous result for the generalized
setting.

First, consider (1) for an A-type generalized cluster variety. By Lemma 4.5.3 and Lemma 4.11.3,
the positive chamber CJ is the Fock-Goncharov cluster chamber associated to s and a maximal cone
of a simplicial fan. By Theorem 4.5.4, A;(Z) forms a simplicial fan.

The A case, which includes Apyin, of (2) follows from Section 4.9. The X" case follows from the
Aprin case. Recall that the map p : Apin — & given by Zmm) s m=p"(n) makes Aprin into a
Tno-torsor over X. Hence, pulling back a monomial on X yields a Te-invariant global monomial
on Aprin. By Proposition 4.10.14, we have the inclusion A% (Z) € w=(0) N Aj\pr;n' Conversely,
suppose m € w~'(0) and m = g(f) for some global monomial f on Apin. Then there exists some
generalized torus seed s = {(e;,a;)} such that f is represented by a monomial 2™ on T% _. Since
m € w=1(0), it must be of the form m = (p*(n),n) for some n € N. By Lemma 4.11.3, m is

non-negative on the rays R>o(e;,0) of X 4, and therefore n is non-negative on the rays —R>qv;

prin

of 3s x and 2" is a global monomial on X. As such, AL(Z) = w™'(0)NAJ | (%) and the cones for
X are given by intersecting the cones for Apyi, with w=!(0). This also gives (3). O

Lemma 4.11.6 (Analogue of 7.14(2) of [11]). Given X, the collection {¥m }mes(are) forms a k[N]-
module basis for mid(Apryn) and therefore a k-vector space basis for mid(A;). For mid(Ay), this
basis is independent of the choice of ¥ up to scaling each basis vector. For mid(A), however, the

basis is entirely independent.

Recall that the variety A; is defined as the space (J, Tve,s where the tori are glued according to
birational maps which depend on the parameter ¢. Because the tropicalizations of these birational
maps are independent of ¢, we have A (ZT) = AY(ZT).
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Theorem 4.11.7 (Analogue of 7.16 of [11]). The following statements hold:

1. Given a choice of section ¥ : AV (ZT) — AY. . (ZT), there exists a map

pPTrin
aq, AV (ZT) x AY(ZT) x AY(Z7) — kU {o0},
given by the mapping

(P a:m) = > aa,, (0(p),5(q), Z(r) +n) 2" (1)
neN

if the summation is finite. Otherwise, aa,(p,q,r) = c0. Ifp,q,r € O(A;), then the summation
will be finite.

2. Let © = O(A;) C AY(Z"). Let mid(A;) C can(A;) be the vector subspace with basis indexed
by ©. Restricting the structure constants gives mid(A;) the structure of an associative and

commutative k-algebra.
3. The subset © contains the g-vector of each global monomial - i.e., Aj\t (zT) c e.

4. The choice of generalized torus seed determines a lattice structure on AY(ZT). Within this

lattice structure, the subset © C AY(Z") is both closed under addition and saturated.

5. There exists a k-algebra map v : mid(Ay) — up(A;) which maps 9, for p € Aj‘t (ZT), to a

multiple of the corresponding global monomial.

6. If the vectors {vi}ier,, lie in a strictly convex cone, then the map v is injective. When v is

injective, there exist canonical inclusions

gen(A;) C mid(A;) C up(Ay).

By taking t = e, we obtain all of the above statements for A.

Proof. The proof given in [41] for the ordinary case holds in the generalized setting, with our
Proposition 4.10.14 replacing the use of Proposition 7.7 and our Proposition 4.4.4 replacing the use
of Proposition B.2. O

4.12 Companion algebras

In Section 2.5.1, we reviewed the definitions and important properties of the companion algebras
associated to a generalized cluster algebra. In this section, we will discuss companion algebras in
the context of cluster scattering diagrams. For a given generalized cluster algebra, we will explicitly
state the fixed data of the associated companion algebras and show that it satisfies the c-vectors,
g-vectors, and F-polynomial relationships from Section 2.5.1. After reviewing the notions of tropical
duality and Langlands duality, we will show that the fixed data of the left and right companions are

Langlands dual, up to isomorphism.
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4.12.1 Langlands duality and tropical duality

In this subsection, we restrict our attention to ordinary cluster algebras in order to briefly review
the definitions of Langlands duality and tropical duality. In subsection 4.12.2, we will explore how

these notions of duality appear in the context of companion algebras to generalized cluster algebras.

Langlands duality

In [20], Fock and Goncharov give the following definitions for the Langlands dual of a set of fixed

data and a torus seed:

Definition 4.12.1. Given fized data T' and torus seed s, let D := lem(ds,...,d,). The Langlands
dual of T is the fized data TV defined by

NV := N°,
IV =1,
I’I\L/f.: qu7
dy :=d;'D,

{1 =D}
The Langlands dual of s is the torus seed sV := (dieq,...,dney).

From these definitions, we can observe the following relationship between the bilinear forms of
I'and I'V.

1
{eiej}d; = E{diem djej}

D
= —Dil{djej, diei} (d)

= —{ej el YV (d))

It follows that €;; = —eJ; and that, on the matrix level, € = —(e¥)”. Recall from Definition 2.3.2

that the exchange matrix B (in the Fomin-Zelevinsky sense) can be represented as
bij = €ij = {ei, e; }d;

for a given choice of torus seed s. Hence, the Langlands dual of an ordinary cluster algebra defined
7).

by the exchange matrix B = [e;;] is simply the ordinary cluster algebra defined by —B” = [—€ij

Tropical duality

The study of cluster algebras often involves a different type of duality, called tropical duality. In [26],
Fomin and Zelevinsky define c-vectors and g-vectors as the tropicalizations of the A and X cluster
variables. From another perspective, Gross, Hacking, Keel, and Kontsevich showed in Lemma 2.10
of [41] that given a choice of seed data s, Mg _ = A (RT), where AY(RT) denotes the tropicalization
of the Fock-Goncharov dual variety. By explaining the connection between the lattices used in [11]

and the c-vectors and g vectors, we can connect these seemingly disparate statements.
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Consider the fixed data I' and choice of initial torus seed data si, = (ein,;). By definition, the
1 _*

basis vectors of Ny, are {ein,i}ics and the basis vectors of Mg —are {fin;}icr, where fin; = 2 €in.i-
Recall that A cluster variables have the form 2™ with m € Mg and that the A" cluster Variables
have the form 2™ with n € Ng, . Because the c-vectors and g-vectors are the tropicalizations of these
cluster variables, we can express them as cg,, ; = Zk Cik€in,k and 8= Zk 9ik fin k-

Now, consider an arbitrary seed s = (es ;). Now, the lattice Ng has basis vectors {es ; }icr and the
lattice Mg has basis vectors {fs;}ier. The corresponding A and X cluster variables have g-vectors
and c-vectors which we can write as gs; = fsi = Y _j Gikfin,k and Cs; = €s; = Y ;. Cik€ink. We
denote by CS (respectively, G§) the integer matrix with columns cy.,...,Cn;s (respectively, with
columns g, g, ..., 8,.s), wWhere € = [¢;;] is the matrix defined by s;,.

Nakanishi and Zelevinsky proved the following identity, referred to as a tropical duality, between

the c-vectors and g-vectors.

Theorem 4.12.2 (Theorem 1.2 of [63]). For any torus seed s and the associated matriz € = [e;;] =

ei,e;td;], take €, = € and let €5 denote the matriz associated to the torus seed s. Then,
7 ra;
(G;>T (Cvs_€ )_17 (44)

We can also understand this tropical duality in the language of cluster scattering diagrams. In
the previous subsection, we saw that replacing € with —e” in the fixed data T' is equivalent to
considering its Langlands dual, I'Y. Consider some choice of torus seed s = {es ;}ics associated to
I'. As explained above, the associated collections of g-vectors and c-vectors are, respectively, {fs,;}
and {es;}. The associated collections of g-vectors and c-vectors of the Langlands dual torus seed
data s¥ are therefore {f; = d; D' fs;} and {ey,; = die i}, respectively. One can immediately see
that the bases {fs;} and {esv’l- = d,es,;} are dual, because

<€;/,i’f5,i> = <diesai>di_1€;7i> = <€S,i)€:7i> =1,

which implies the tropical duality in the language of seed basis vectors.

4.12.2 Fixed data

Fix a generalized cluster seed ¥ = (x,y, B, R,a), which defines the generalized cluster algebra A.
We will assume that A is a reciprocal generalized cluster algebra, so we can use our construction of
cluster scattering diagrams for reciprocal generalized cluster algebras. The corresponding generalized
fixed data T" has lattices N, M, M°, N°; index sets I and I,y; collections of scalars {d;} and {r;};
and the collection of formal variables {a;;}icr,jejr,—1], as specified in Definition 4.1.1. Consider the
initial generalized torus seed data s = {(e;, (a;j))}icr, where {e;};cr forms a basis for N, {d;e; }icr
for N°, {ef}ier for M, and {f; = d%e;f‘}ief for M°. As usual, we let v; = pi(e;) € M° for i € L.
As explained in Section 2.5.1, the generalized cluster algebra A has an associated pair of compan-
ion algebras, “A and ®.A. We can explicitly described the fixed data associated to the left and right
companion algebras. In doing so, we will use the superscript © to indicate when we’re considering
an object in a generic companion algebra and the superscripts © and R, respectively, to denote the
corresponding notions in the left and right companion algebras. The data associated to the left and

right companion algebras is summarized below.
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Cdz Ldz =d;r; Rdl = %

e, Pei=e € =Tie;

c Lp _ 1L *_ 1 _ 1 Rfp _ 1R, _ 1

i fomddlel = Ler = 1f, fi= el = Giler = f,

N IN=N RN = span {r;e;}
CN° LN® = span {ri(d;e;)} RN° = span {d;e;}
M LM = span {e;} = M RM = span {%ef}
CMe LM = span {“f,} RAL° = span {®f,}

Cx; Ly, = 2 f = xg/” Ry, = 2= T;

Cyi Lyi — ZLei = 26 — n Ry — zRei — Tt — y:1
C:(/‘ Ly" — z(’l}i,ei) — :l”/‘ Rg — Z(mvi,nei) — ,g’l‘i
Cu; Poi = {Pei, ) = {ei -} = v Ro; = {Rej, -} = {riei, -} = mwi

Sd;ei, i) (d;%e;, M f;) = (diries, %fﬁ =1 Rd;Re;, B f;) = <di7";1(7“i€i)afi> =1

Table 4.2: Fixed data for the companion algebras of an arbitrary generalized cluster algebra.

Note that it is possible for a right companion algebra to have fixed data such that some Rd; are
non-integral. In fact, ®d; will be non-integral whenever r; # 1. To ensure that all ®d; are integral,
one could scale ®d = (R®d;) by a factor of lem(r;). Any computations done using a cluster scattering
diagram generated by the scaled fixed data would then require that we account for this scaling.

In fact, the unscaled fixed data T can still be used to define a sensible cluster scattering diagram
that allows for easy computation of cluster variables, etc. To understand the impact of non-integral
values of ®d; on the construction of a cluster scattering diagram, we can consider the impact on
the associated lattices and initial cluster scattering diagram. It’s clear that BN will always be an
integral lattice, since ®* N = span{r;e;}. The scaling of Re; guarantees that ® N° is always an integral

lattice, since
d.
RN° = gpan {RdiRei} = span {lriei} = span {d;e; }.
T

Note that this scaling also means that

?

1 . 1 1
"M° = span{"f;} = span {F% (Rei) } = span {;r_ef} = span {def} = span{ f;}.
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By definition, ®A has initial scattering diagram

R@in = {((Rei)J‘, 1+ ZR‘vi)} = {((Tiei)la 1+ Z”Ui)}iejuf )

ST

where all the wall-crossing automorphisms have integral exponents. As such, the algorithm for
producing a consistent scattering diagram that was introduced by Kontsevich and Soibelman in
two-dimensions and then extended to higher dimensions by Gross and Siebert can be applied to
RD;,. Likewise, other major results of Gross, Hacking, Keel, and Kontsevich [41] which rely on
the wall-crossing automorphisms having integer exponents still hold for the resulting consistent
scattering diagram.

Example 4.12.3. Consider the generalized cluster algebra from Example 4.3.3,

0 1 3 0
A <x7y7 [_1 0] , lo 1] 7((1,a,a,1),(1,1))> .

This generalized cluster algebra has companion algebras:

LA: <(x]i/3,«r2)a(y17y2)’ [33 é])
Rg_ <(x1,x2),(y§vy2)’ [_01 ?)])

Recall from Ezample 4.1.4 that A has fized data d = (1,1), r = (3,1), I = Iy = {1,2}, N =
N° = (ey,e2), M = M° = (e},€3), and skew-symmetric form {-,-} : N° x N° — 7Z specified by the
exchange matriz. The fized and seed data of its associated companion algebras are summarized in
the following table.

LA RA
“d (3,1) (3,1)
Ce; e, e 3er, e
i 3f1. fo fi fa

N span {e1,ea} | span {3e1,e2}

CN° || span {3e1,e2} | span {e1,ea}

‘M span {e3,e5} | span {ief, €3}
“Me span {%fl,f2} span { f1, fo}
“v; U1, V2 11, TaV2

Table 4.3: Fixed data for the companion algebras of a generalized cluster algebra with r = (3, 1).

The cluster scattering diagrams for A and A are shown below (on the top and bottom, respectively).
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02

f01 =1+ Z(_370)
sz =1+ Z(O,l)
fas =1+ 2(73’3)
0 fo4 — 14 2(73,2)
0 _
Di fos =1+ Z783)
05 foo =1+ 2(=3:1)
[
[
f01 =1+ 2(71’0)
fDQ =1+ 2(073)
fag =14+ Z(—173)
0 fo,=1+ 2(=3,6)
f05 =1 + Z(_273)
f06 =1 + Z(_3’2)
06
03 04 05

Note that the left and right companion algebras are, up to isomorphism, Langlands dual according

to the definition given in Section 4.12.1.

Proposition 4.12.4. Let A be an arbitrary reciprocal generalized cluster algebra with companion
algebras “A and R A. Let T denote the fized data of A and fix some choice of generalized torus seed
s = {(ei, (aij) Yier,jepri—1)- Let 'T and BT denote the fived data of “A and ®A, respectively. Then,

(LF)V ~ Rp and (RF)V ~ I,

Proof. Let the fixed data I' of A consist of the lattices N, M, M°, N°; index sets I and I
collections of scalars {d;} and {r;}; and the collection of formal variables {a;;}ics jer,—1- Fix
a choice of associated generalized torus seed s = {(ej, (ai;))icr jeir;—11}- Recall from previous
definitions that the sets of fixed data “T', (*I")V, and BT are:

I I S B VA
di diri EZZ. = ;],j.. L
e; e; d;e; rie;
N span {e;} span {r;d;e;} | span {r;e;}
N° | span {r;d;e;} span {e;} span {d;e;}
M span {ef} span {ﬁef} span {7-ej}
M?° | span {nld% ej} span {ﬁef span {d%ef}
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where D = lem(Yd;). The isomorphism between (“T')V and RT is given by the maps

d2

(Ldi)v N 51 (Ldi)v,

(Fes)¥ s Tildi (L)
Observe that

2 2 L

(0 - () = (g = =
and
(“ei) = L (Vi)Y = L (ridie;) = e; = Y.
rid; rid;

These maps induce the appropriate lattice isomorphisms. The argument that (RF)V ~ LT is analo-

gous. O

Based on the explicit fixed data of the companion algebras, we can make several other useful
observations. First, the c-vectors of the left companion algebras and the generalized algebras coincide
because the torus seed basis vectors are the same. On the other hand, for the g-vectors we have

1
L
g ,:—97»
S,J Tj S,

1
=— Zgjifin,i
rj S

Hence, we have Lgsj = [Igjilicr as in Corollary 4.2 of [62]. We can similarly deduce that the
7 J
g-vectors of the right companion algebras and the generalized algebra are the same, since f; = B f;.

The c-vectors are related as

R —
Cs,j = TjCs,j

=Ty E CjiCin,i
i
.
f§: Jj. R
= ——Cji Cin,i,
— T
K3

which also agrees with Corollary 4.1 of [62].

We can also explore the relationship between mutation of the generalized cluster algebra and
mutation of its associated companion algebras. Consider a reciprocal generalized cluster algebra A4
with fixed data I". Again, let us consider a fixed generalized torus seed s and the associated scattering
diagram with principal coefficients, Dg prin. The fixed data for the left and right companion algebras
of A are as specified earlier in this section. By definition, the initial scattering diagram for *A is of

the form
Lgisr,lprin = {(Lak = (dekekaO)J_7Lf°k =1+ Z(vkyek)> ’ for k € qu} ’
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Note that the dual lattice of LM is LN°® = span{r;d;e; };cr. Hence, the primitive vectors normal
to the wall 05 in L@;‘jprm have the form (£rdiex,0). By convention, we will choose to use the

primitive normal vector (rpdger,0) when calculating path-ordered products. Now, consider the

cluster variables V; = 2(¥i-¢9) and let

vi= Pvife = v i)

k k

Mutating ¢, in direction k is equivalent to applying the wall-crossing automorphism associated to

L9 to the monomial z(V#¢). Hence, we can calculate juy, (“9;) by computing

L Tk € Vi, €4
Lgi — Z(Lvi,&:) Ok Z(vi,&:) (Lfak)« kdrer,0),( )

— Z(va‘,ei) (Lfb )<dekek7zjeIL”Uij>

= Z(Lvi;(ii) (Lfak)Zjel<rkd’“ek’Lviijj>

k

Observe that

1
(redier, "vi" f;) = redi v (ex, " f3) = redi i (ex, Teﬁ = ‘
Tia; 0 jF#k

Hence, we have
L Loy,
L, = 2(Cvied) 2y pCvien) (Lp )70
Recall that the variables of the generalized cluster algebra and the left companion algebra are related

by Lx; = xi/” and Yy; = ;. Recall also that “v; = v; and therefore Myj; = Z(vised) — (vie) — Ui

Hence, we can rewrite the above map as
L L
~ A . e VikTk
Yi ? z(vhel) (Lfak) ' )

which agrees with the F-polynomial transformation given in Proposition 4.3 of [62]. The analogous

computation for mutation in the right companion algebra also agrees with Proposition 4.6 of [62].
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