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Abstract 

Dissolution in gastrointestinal tract (GI tract) is critical for oral solid dosage forms, 

especially for drugs with poor solubility. Among the commonly used approaches, 

applications of surfactant have become a popular way to address the problem of slow 

dissolution of poor soluble drugs.  

Sodium lauryl sulfate (SLS) is a surfactant commonly used as a wetting agent 

when concentration is below critical micelle concentration (CMC), or a solublizer when 

concentration is above CMC, both are expected to enhance drug dissolution. However, 

this anionic surfactant can also readily interact with the positively charged cations in 

solution, to form a poorly soluble lauryl sulfate salt.  This leads to unexpectedly reduced 

drug dissolution. Given the frequent application of SLS in drug products, understanding 

the mechanism is important to avoid surprises.   

The study was started by systematically investigating the case of ritonavir (RTV), 

which forms a poorly soluble amorphous [RTV2+][LS-]2 salt with SLS at a low pH, the ion-

ion interaction between drug cation and lauryl sulfate anion (LS−), was further proved from 

an analysis of the single crystal structure of [NORH+][LS-] salt, in which proton transfer 

was clearly observed between NORH+ and LS-. For such an acid – base reaction, the 

prevalence of lauryl sulfate salt among other pharmaceutical compounds was investigated, 

using 18 chemicals with diverse molecular structures. 

To investigate the precipitation rules of the poorly soluble lauryl sulfate salts, p-

aminobenzoic acid (PABA), which forms [PABAH+][LS-] salt with SLS, was chosen as the 

model compound.  The thermodynamic driving force   as well as precipitation kinetics are 

discussed.  With that, two formulation strategies were proposed to mitigate the negative 

effect induced by SLS.  
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In summary, although usually used as a dissolution enhancer, SLS can surprisingly 

reduce drug dissolution by forming a poorly soluble lauryl sulfate salt.  To understand this 

phenomenon, we systematically investigated its mechanism, prevalence, and formation 

rules, and demonstrate formulation strategies to mitigate the precipitation. This work 

provides a solid foundation for the appropriate use of SLS in pharmaceutical formulations. 
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1.1 General introduction  

The orally dosed tablet is the most popular dosage form of drugs. Absorption after 

oral administration mainly takes place in the gastrointestinal tract (GI tract). In order to be 

absorbed, the active pharmaceutical ingredient (API) needs to be released from the bulk 

solid into the GI fluids through the process of dissolution. Thus, dissolution process directly 

affects the bioavailability and therapeutic effectiveness of oral dosage forms. 

The dissolution process can be treated as a heterogenous reaction, which occurs 

at the interface between the dissolving solid phase and the liquid medium in the context 

of oral tablet. 1-2 It includes several steps: 1) wetting by the dissolution medium, 2) breaking 

the intermolecular bonds, 3) solvation of the released solute molecule, 4) diffusion into the 

bulk medium through the thin diffusion layer at the solid surface.3  Any of these steps could 

potentially become rate limiting for the overall dissolution if they are slow.  Common 

formulation strategies to overcome slow dissolution include 1) use of a wetting agent, 2) 

solid phase engineering, 3) particle size reduction, and 4) lipid-based formulations.4 

Among the dissolution enhancement strategies, the an amphiphilic surface active 

agent (surfactant) is commonly used to enhance the wettability of the poorly soluble drug.  

Surfactant can also solubilize hydrophobic compounds through micelle formation, which 

occurs when its concentration is above the critical micelle concentration (CMC).  Sodium 

lauryl sulfate (SLS) is an anionic surfactant widely used in pharmaceutical formulations or 

in vitro dissolution medium to improve dissolution of hydrophobic drugs.  

However, under certain circumstances, SLS can also reduce the dissolution of 

drugs by forming a poorly soluble lauryl sulfate (LS) salt. 5-12  When an SLS-containing 

dissolution medium is used, experimentally observed poor dissolution of drug from a tablet 

due to the formation of such an LS salt is misleading, because this dissolution deterioration 

mechanism is not applicable in the GI tract where no SLS is present. Thus, a clear 
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understanding of the phenomenon is important for the appropriate use of SLS in tablet 

formulation and dissolution testing to avoid surprises.    

We have systematically investigated this phenomenon to understand the 

molecular mechanism of LS salt formation 7-8 as well as its prevalence and formation rules. 

The goal was to develop adequate understanding of this phenomenon to guide the 

appropriate use of SLS in drug development to eliminate surprise in the course of drug 

product development.  

1.2 Literature review  

1.2.1 Pharmaceutical tablets  

1.2.1.1 Tablet dosage form for drug delivery – advantage and classification 

The tablet accounts for more than 80% of all dosage forms administered to 

humans 13 because of several advantages, such as 1) high dose precision and outstanding 

chemical and physical stability; 13-14 2) convenient for patients because of the non-invasive 

route of administration, and 3) the low cost of manufacturing, packing, transportation, and 

storage.  A tablet can be formulated to provide flexible drug release profiles to meet 

various clinical needs, such as immediate release, sustained release, controlled release, 

and targeted release. 15  In addition to the swallowable tablets, other common tablet types, 

including multilayer, chewable, orally disintegrating and effervescent tablets, offer tailored 

approaches for patient needs.  While 90% are ingested orally, tablets can be administered 

by other routes, such as implantation, 16-17 sublingual and buccal. These advantages justify 

the dominant role of the tablet dosage form in drug delivery. 

1.2.1.2 The critical attributes of tablets 

To ensure safety and quality, the critical attributes of tablets a tablet must satisfy 

the compendial standards, including 1) small tablet weight variation and good content 
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uniformity; 2) adequate hardness and low friability; 3) appropriate disintegration and 

dissolution.     

The disintegration and dissolution tests of an orally administered tablet are critical 

because a tablet must disintegrate into small particles before appreciable dissolution into 

the GI liquid and permeation though the gut wall can take place.  In fact, both the 

dissolution and permeation are critical in determining the bioavailability of a drug, i.e., the 

fraction of an administered dose that enters the systemic circulation,18 as well as the 

therapeutic effect.19 For an immediate release tablet, a rapid disintegration favors fast 

dissolution of the API, which is typically achieved by incorporating a disintegrant in the 

tablet formulation. 

The Biopharmaceutical Drug Classification system (BCS) classifies drugs into four 

categories based their solubility and gastrointestinal permeability.19-20 For BCS II drugs, 

which have low solubility and high permeability, the rate of dissolution is usually a limiting 

factor for adequate bioavailability. Importantly, BSC II compounds account nearly 70% of 

the drug discovery pipeline.21  To these compounds, improving their rate and extent of 

dissolution in the GI tract is a major challenge for their successful development.   

1.2.2 Dissolution theories and dissolution enhancement 

1.2.2.1 Heterogeneous reaction 

Chemical reactions generally involve structural changes of molecules in a single 

homogenous phase.  However, heterogeneous reactions encompass chemical reactions 

occurring at the interface of different phases. A heterogeneous reaction occurs in the 

following steps: a) transport of solute molecules to the interface, b) adsorption at the 

interface, c) reaction at the interface, d) desorption of the products and e) recession of the 

products from the interface.1-2  Among these steps, a) and e) are mass transport processes 
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while b), c) and d) are chemical processes characterized by an interaction between 

reactants.1 

The dissolution process may be considered as a type of heterogeneous reaction 

described by Eq. 1, where chemical structures of the reactants are not changed.  The 

dissolution process in water consists of four steps: a) wetting of the particle’s surface with 

water, b) breakdown of solid state bonds, c) solvation of individual species, and d) diffusion 

to the bulk fluid. 3 Among which, steps a), b) and c) require interaction between reactants 

and step d) is simple mass transport. 

𝐷𝑟𝑢𝑔(𝑠𝑜𝑙𝑖𝑑) ⇌  𝐷𝑟𝑢𝑔(𝑠𝑜𝑙𝑛)                                                (1) 

The rate of dissolution depends on the interplay between the rate of reaction at the 

interface and mass transport.  When the rate of reaction at the interface is much slower 

than the transport process, dissolution is reaction controlled. When the reaction at the 

interface occurs much faster than the rate of mass transport, the latter is the rate-limiting 

step for dissolution. When reaction rate and mass transfer rate are comparable, the rate 

of dissolution is a function of both processes. 22 

 

1.2.2.2 Reaction limited dissolution 

In a reaction limited dissolution, where the reaction rate at the interface is much slower 

than that of mass transport, drug molecules will diffuse rapidly into the bulk solution once 

released from the solid surface.  

There are three steps in a reaction process: wetting, chemical bonds breaking, and 

solvation. Each step is associated with an activation energy, which must be surpassed for 

the reaction to proceed, and the step with the highest energy barrier controls the overall 

rate of the process.   



6 
 

The first step of dissolution, wetting, is characterized by the intimate contact of the 

solvent molecules with the surface of drug solid as a direct consequence of molecular 

interactions between the two phases. 23 In an aqueous dissolution medium, a hydrophilic 

compound exhibits a good wettability and a hydrophobic compound exhibits poor 

wettability. 24 The high interfacial tension between hydrophobic drugs and the aqueous 

medium can be reduced by a surfactant, which is an amphiphilic molecule containing both 

hydrophobic and hydrophilic parts.  When the two phases are coming into contact, the 

surfactant molecules preferentially orient at the interface to lower the interfacial energy 

and facilitate the adhesion, spreading, and immersion. 

The other two processes, chemical bonds breaking and solvation, are related to the 

lattice energy and solvation/hydration energy, respectively.  They affect dissolution 

because of their determining roles in the intrinsic solubility. 25-27 The chemical bond 

breaking is a prerequisite for the dissociation of solute molecules from crystal lattice. 

Hence, strong intermolecular interactions within the crystal hinder the dissociation and, 

hence, dissolution.  Such compounds sometimes are vividly described as ‘brick dust’. 27-

29 The strength of such intermolecular interactions in a crystalline solid can be qualitatively 

assessed based its melting point (Tm). The solubility of a crystalline solid is considered 

lattice energy limited when the Tm is higher than 200°C. 29 In this case, solubility can be 

improved by weakening the intermolecular interactions through changing the molecular 

packing in the solid state, which may be achieved through using polymorphs with a higher 

free energy and amorphous solids. 27, 30 

In the hydration/solvation process, the dissociated solute molecule is enveloped by 

solvent molecules (water if in an aqueous medium) and delivered out from the solid 

surface. This process is favored by a strong affinity between the drug and solvent 

molecules. Since hydrophobic molecules are usually large and having a high degree of 
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flexibility, 31 they have a limited capacity to interact with the polar water molecules, Drugs 

with this property have a hydration limited solubility and are sometimes described as 

“greaseballs”. The propensity to the hydration limited solubility may be quantitatively 

assessed by the logarithm of the octanol/water partition coefficient (logP) for the neutral 

form and the logarithm of the distribution coefficient of the ionizable compound between 

octanol and water (logD). 27, 29, 32 Compounds with a high hydrophobicity do not readily 

interact with water, and usually exhibit a limited solubility and dissolution rate. 27, 29 

Formulation strategies successful for delivery of the hydration-limited solubility 

compounds are lipid-based formulations that are composed of lipids, surfactants and/or 

cosolvents to essentially change the properties of the media to facilitate their interactions 

with the drug molecules. 4  

1.2.2.3 Mass transport limited dissolution- diffusion layer theory   

In mass transport limited dissolution, the mass transport rate for a released molecule 

is much slower than that of interfacial reaction rate. Currently, among the proposed 

dissolution theories, the diffusion layer model, which was proposed by Noyes, Whitney 

and modified by Brunner and Nernst, has been a commonly used model considering a 

mass transport limited dissolution process. 33  

1.2.2.3.1 Evolution of the diffusion layer theory  

In 1897, Arthur A. Noyes and Willis R. Whitney published the seminal paper on the 

dissolution of benzoic acid and lead chloride in distilled water. 34 In that paper, the 

materials were cast uniformly on a glass core to form a cylindrical stick, the stick was then 

inserted into water-contained wide-mounted bottles and rotated to enable the dissolution.  

The dissolution surface area of solutes in this way was approximately constant, and the 

concentration of benzoic acid or lead chloride at pre-determined time points were 

determined by titration. In the experiment, dissolution was assumed as a simple diffusion 
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process of molecules from an indefinitely thin layer of saturated solution formed at the 

surface of the solid.  The proposed Eq. (2) indicates that the rate of dissolution is 

proportional to the difference between the concentration of a saturated solution (Cs) and 

the bulk medium (C). 34 

𝑑𝐶

𝑑𝑡
= 𝑘(𝐶𝑆 − 𝐶)                                                       (2) 

  

Brunner and Tolloczsko 35 later confirmed that the constant k in Eq. (2) is proportional 

to the surface area exposed (S). Accordingly, they proposed Eq. (3), to better explain the 

physical origin of the dissolution rate.  They conjured that the constant k’ depends on the 

rate of stirring (or water velocity across the surface), temperature, structure of the surface, 

and the arrangement of the apparatus. 

𝑑𝐶

𝑑𝑡
= 𝑘′𝑆(𝐶𝑆 − 𝐶)                                                               (3) 

 

Figure 1. 1. Schematic of film model, solid line represents the concentration distance 

profile proposed by Nernst-Brunner law, dashed line represents profile proposed by Levich. 

36 

Subsequently, Nernst theoretically generalized these views of dissolution to all 

heterogeneous reactions. He assumed that all the heterogeneous reactions are controlled 
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by mass transport rate, i.e., the chemical reaction equilibrium in heterogeneous reaction 

is established much faster at the interface compared to the mass transport of reactants or 

products. He also introduced the term for thickness of the thin layer of solution adhering 

to the solid surface, h, through which diffusion occurs (Figure 1.1). The thickness is 

negatively correlated to the paddle speed through different mathematical functions under 

different hydrodynamic conditions. 37   

The Fick’s first law (Eq. 4) describes the rate at which a dissolved substance diffuses 

into a solution, i.e., the quantity of solute (dm) diffuses through an area (A) over a time 

(dt), is proportional to the concentration gradient (dc/dx), in a direction perpendicular to 

the plane of A. 

𝑑𝑚

𝑑𝑡
= 𝐷𝐴

𝑑𝑐

𝑑𝑥
                                                               (4) 

where D is the diffusion coefficient.  By converting the mass (m) to concentration (C)  

𝑑𝐶

𝑑𝑡
=

𝐷𝐴

𝑉

𝑑𝑐

𝑑𝑥
                                                                (5) 

where V is the volume of the bulk liquid. Nernst assumed that dc/dx can be expressed by 

(Cs-C)/h.  Thus, the Nernst and Brunner equation, Eq. (6), is obtained. 

𝑑𝐶

𝑑𝑡
=

𝐷𝐴

𝑉

(𝐶𝑆−𝐶)

ℎ
                                                             (6) 

By comparing to Eq. (6), the constant, k, in Eq. (2) can be expressed as: 

𝑘 =
𝐷𝐴

𝑉ℎ
                                                                   (6) 

When the sink condition is met, the solute concentration, C, in the bulk solution is 

negligible compared to the concentration in the saturated solution near the solid surface.  

Thus, Eq. (6) simplified into Eq. (7). 

𝑑𝐶

𝑑𝑡
=

𝐷𝐴

𝑉ℎ
𝐶𝑆                                                              (7) 

With the determining factors known, Eq. (7) points to practical strategies on the 

improvement of drug dissolution, including a) increasing surface area by reducing particle 
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size , or increasing the effective surface area for compounds with poor wettability by using 

a surfactant; b) improving the solubility, which not only enhances the reaction rate as 

discussed previously, but also enhances the mass transport process in the diffusion layer; 

c) facilitating diffusion by keeping a low concentration in the bulk fluid to maintain a high 

concentration gradient; d) increasing the rate of stirring so that the thickness of the 

adhering layer is decreased; e) decreasing the viscosity of the dissolution media to 

increase the diffusion coefficient of the drug in the adhering layer. 

 

1.2.2.3.2 Refinement to the diffusion layer theory  

Despite being informative and useful in guiding the dissolution rate enhancement, 

there are also disputes surrounding the Nernst and Brunner’s theory. 

First, this diffusion layer model assumes that mass transportation is the limited process 

for dissolution, i.e., the reaction process at the surface proceeds much faster than diffusion. 

However, for cases of the heterogeneous reactions with a high activation energy, the 

reaction rate at the interface is slow, which leads to deviation from the theory.  38 A solution 

to this problem is to use a mathematical model that combines both reaction limited and 

diffusion limited dissolution process. 39-40                                                                                                                                                                                                                                                                                                                                                                                

Second, the model assumes that the aqueous boundary layer adhered to the solid 

surface is stagnant where diffusion is the only mode of transport.  Thus, a linear 

concentration gradient in the unstirred layer is obtained.  The thickness of that layer was 

estimated to be 20-40 μm, which corresponds to ~ 50,000 molecules. 1  This is too high to 

be physically probable. 41 In fact, even the existence of such a stagnant layer was disputed. 

38, 42  Clearly, abrupt transition from the completely unstirred liquid layer (in which diffusion 

was the only mode of mass transport) to the well-stirred bulk fluid (in which mass transport 

occurs mainly via convection) is not realistic. 43 There is likely a zone between the well 

stirred bulk and the stagnant layer, where convection assumes gradually increasing 
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importance with increasing distance from the substance’s surface. By taking the 

convective mass transfer into consideration, Levich 36 studied the hydrodynamics of the 

rotating disk and calculated the concentration at any point. The result showed that the 

concentration gradient merges asymptotically with the surrounding fields (dashed line in 

Figure 1.1), and the distance h’ is related to h by the expression:  

ℎ = 0.893 ℎ′                                                             (8)  

Third, in the model, the change of dissolution surface area was not considered. This 

approximation is fine at the beginning of particle dissolution, but gross deviations occurs 

as the particles becomes very small as the dissolution proceeds, which virtually always 

occurs in pharmaceutical applications. Hixson and Crowell addressed this issue by a 

“cube-root law” (Eq. 9), 

𝑀𝑡
1 3⁄

= 𝑀0
1 3⁄

− 𝑘𝑡                                                    (9) 

In the equation, M0 and Mt represents the mass of the particle at time t = 0 and at time 

t, respectively, and k is a positive constant. Thus, plotting the cube-root of the remaining 

particle mass as a function of time gives a straight line, the slope of which is k and the y-

axis intercept is the cube-root of the initial mass, M0. This model was subsequently verified 

by the dissolution study of CuSO4·5H2O. However, in this model, the following 

assumptions are made: 1) sink condition is satisfied, 2) particles are spherical (isometric) 

and the shape does not change with time, 3) particles remain intact and do not disintegrate 

into smaller fragments during dissolution.  

However, in spite of the limitations, the thin layer diffusion model is simple and remains 

extremely helpful in guiding the use of effective strategies to increase the dissolution rate 

of a poorly water soluble drugs. The parameters in the equation have been confirmed 

experimentally to influence dissolution rate, i.e., the dissolution rate is a function of 
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dissolution surface area, stirring rate, diffusion coefficient of the solute.  It was also shown 

that there is a concentration gradient existed between the solid surface and bulk liquid. 

Thus, while the quantitative relationships may not be accurate in some situations, the 

qualitative relationships have been substantiated experimentally. 

1.2.3 Deteriorated dissolution performance and mitigation strategies 

A theoretical understanding of the dissolution process informs the development of 

promising formulation strategies to enhance drug dissolution. The commonly used 

approaches include reducing the particle size; application of a surfactant as wetting agent; 

preparation of more soluble solid forms of API, such as salts, cocrystals, amorphous solids, 

and polymorphs; development of lipid-based formulations; and using of complexing 

agents, such as cyclodextrins. 4, 44  These methods essentially modify either the reaction 

rate, or the mass transport rate, or both, during dissolution.  

However, caution must be exercised when using these approaches, since they may 

not always result in an improved dissolution.  Sometimes, dissolution may deteriorate if 

these strategies are inappropriately adopted without suitable controls. For example, 

although particle size reduction is generally an effective way to increase the dissolution 

surface area and dissolution rate, micronized hydrophobic compounds may form large 

agglomerates in the aqueous medium because of the high surface energy and poor 

wettability.  Consequently, dissolution rates slower than the unmicronized sample may be 

obtained. 45-46 It is also possible that precipitation of less soluble solid phase occurs during 

the dissolution of a soluble solid form, which leads to lower dissolution rate that that 

expected from the solubility of the soluble solid form.  Precipitation during dissolution can 

take place either at the surface of the solid or in the bulk medium. 47 Surface precipitation 

leads to dissolution that is comparable to that of the precipitating solid, if it coats the 

surface of the soluble solid.  This is a high probability event since precipitation occurs 
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more quickly at a higher degree of supersaturation, 48 which is in the solution next to the 

dissolving solid surface. For example, salts may undergo disproportionation in GI fluids, 

where the dissociated free API precipitates out instantly on the surface of the solid due to 

a high degree of supersaturation; 47   amorphous APIs can crystallize at the surface during 

dissolution; 44, 49 and an anhydrous solid may convert to a less soluble polymorphs or 

hydrates during dissolution. 50  

To harvest the potential advantage in improving dissolution of soluble solid forms, 

formulation strategies to prevent, or slow down the precipitation in diffusion layer can be 

explored. 51-52 An effective formulation strategy is to use polymers in the formulation as a 

nucleation inhibitor to slowdown the precipitation in the thin diffusion layer. 53-56  Common 

ion/cofomer effect can also be explored to suppress the solubility of salt or cocrystals.  By 

lowering the solubility of the soluble form in the diffusion layer, precipitation can be 

retarded or eliminated while the dissolution can still be high.  57-58 A pH modifier can be 

used to adjust the local environment pH in the diffusion layer based on the pH dependent 

solubility. 59-60  This approach reduces the degree of supersaturation by elevating the 

solubility of free base or acid, which also lowers the degree of supersaturation.  

Precipitation could also take place when a drug and an excipient can form a less soluble 

complex.  Sodium lauryl sulfate (SLS) is a surfactant that is commonly used either in solid 

dosage forms or the in vitro dissolution medium to improve dissolution. However, 

sometimes drug dissolution may be deteriorated by forming a poorly soluble complex 

between the LS- anions and drug cations in solution.  This is the focus of this research. 
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1.2.4 Sodium lauryl sulfate (SLS) 

 

Figure 1. 2. Molecular structure of SLS  

Sodium lauryl sulfate (SLS), or sodium dodecyl sulfate, is a synthetic organic 

compound with the molecular formula, CH3(CH2)11SO4Na. The molecule contains a 

hydrophobic 12-carbon “tail” and a hydrophilic sulfate “head” (Figure 1.2). When dissolved 

in water at a low concentration, SLS molecules tend to distribute at the surface due to their 

amphiphilic nature, which reduces surface tension. 61 When the SLS concentration 

exceeds the CMC, SLS monomers start to self-associate in the bulk medium to form 

micelles with a hydrophilic shell and hydrophobic core. 62 This micelle formation process 

is favored as the hydrophobic “tails” are isolated from the aqueous environment by 

hydrophilic “head”, which can readily interact with water molecules. 63 Micelles have the 

capacity to enhance the apparent aqueous solubility of poorly water-soluble drugs via 

solubilization in the hydrophobic micelle core or in the head group palisade region. 4 

The CMC of SLS is 8.2 mM in pure water at 25 °C. 64  It is influenced by factors, 

such as temperature, 64 electrolyte type and concentrations, 65 and pH. 66 Many 

physicochemical properties of a solution usually are dramatically changed upon the 

formation of CMC.  Therefore, the CMC value can be obtained based on the change of 

surface tension, conductivity, light transmission, solubility, light scattering, and osmotic 

pressure. 4 

SLS has been very commonly used in many domestic cleaning products, personal 

hygiene, and cosmetics products. In pharmaceuticals, SLS is used as an ionic solubilizer 
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and emulsifier in liquid dispersions, solutions, and emulsions 67-68 as well as a wetting 

agent and lubricant in solid dosage forms. 20, 69  Some examples of marketed tablet 

products containing SLS are Brufen ®, Tarceva ®, and Janumet®. Additionally, SLS can 

also moderately increase the intestinal permeability to facilitate oral absorption of drugs, 

70 the mechanism includes affecting the integrity of the tight junctions, 71concentration-

dependent solubilization of cell membranes,72 etc. SLS is among the list of excipients 

generally regarded as safe (GRAS) and it is included in the FDA Inactive Ingredients 

Database (dental preparations; oral capsules, suspensions, and tablets; topical and 

vaginal preparations).  However, due to its degenerative effect on the cell membranes, 73 

maximum amounts in topical products, food additives or oral dosage forms should be 

establish based on carefully conducted experiments. 74  

The negatively charged sulfate group of SLS can readily react with other positively 

charged ions, such as cationic polymers and APIs. 5-12  This limits the universal application 

of SLS in pharmaceuticals. For example, in an attempt to investigate the dual functions of 

SLS as a lubricant and a wetting agent in tablet formulations, the dissolution of ritonavir 

(RTV) containing SLS was slower than that of the formulation containing magnesium 

stearate (MgSt), despite the expected faster dissolution due to the improved wetting by 

SLS. 75-76 Similar observations were made for a few drugs in the literature, 5-6, 9-12 but a 

mechanistic explanation of such phenomenon remains elusive. Given the frequent 

application of SLS as a dissolution enhancer for poorly soluble drugs, it is important to 

understand the underlying mechanism of such phenomena, which helps guide the 

appropriate use of SLS in solid dosage formulations. In addition, it is useful to understand 

the prevalence of this phenomenon among pharmaceutical compounds, the rules for the 

complex to precipitate, and possible formulation strategies to address the problem when 

it does occur. 
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1.3  Objectives and hypotheses  

1. To systematically investigate the mechanism of the detrimental effect of SLS on 

drug dissolution.  

The investigation was triggered by a peculiar observation during the investigation of 

the feasibility of SLS as a surrogate for magnesium stearate, MgSt, in tablets. MgSt is an 

effective lubricant for tablet compaction, but its hydrophobicity usually leads to slower drug 

dissolution. SLS was used as an excipient with dual functions, i.e., lubrication and 

dissolution enhancement for poorly soluble drug through improving wetting. However, in 

the dissolution study using an artificial stomach and duodenum (ASD), the SLS-containing 

tablets showed unexpectedly retarded dissolution than the MgSt-containing tablet in the 

stomach chamber, where the dissolution medium is at a low pH.  We hypothesized that, 

1) such deteriorated dissolution by SLS is due to the formation of a poorly soluble salt 

between the drug cation and LS- anion during dissolution. 

 

2. To investigate the prevalence of such negative impact of SLS on drugs and 

understanding the precipitation thermodynamics and kinetics. 

Since the formation of lauryl sulfate salt is an acid - base reaction and the lauryl 

sulfate acid has a calculated pKa of -3.29, proton transfer is very likely to occur (> 80% 

probability) for compounds with a pKa > 0 according to the ΔpKa rule.  77  Thus, lauryl 

sulfate salts with most of drugs containing positive charge(s) or basic groups are expected 

to form under appropriate conditions.  

For precipitation to occur, the degree of supersaturation is the thermodynamic 

driving force. For the lauryl sulfate salts, we hypothesized that the degree of 

supersaturation can be quantified as Q/Ksp, where Q is the ion product in the solution and 
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Ksp is the solubility product of the salt.  Additionally, since SLS is also a surfactant, the 

concentration of SLS could lead to different precipitation kinetics under the same Q/Ksp 

value. 

3.To explore formulation strategies for mitigating the negative impact of SLS on 

drug dissolution in solid dosage forms. 

We hypothesized that reducing the thermodynamic driving force (Q/Ksp) by 

lowering Q in the diffusion layer of a dissolving particle can counter the detrimental effect 

of LS salt formation on dissolution.  As Q is determined by both the concentration of drug 

cations and the LS- monomer (equal to CMC of SLS) in the diffusion layer, we explored 

the strategies of lowering Q value by 1) reducing drug cations concentration by 

maintaining an elevated local pH in the diffusion layer using a pH modifier, and 2) 

depressing the CMC of SLS in the diffusion layer using an inorganic salt. 

1.4  Research plan and thesis organization  

Chapter 2 

Chapter 2 describes an unexpected dissolution reduction when SLS was used in 

a tablet formulation of ritonavir (RTV). Here, SLS was intended to improve wetting, while 

also functioning as a lubricant.  However, tablets containing SLS actually showed slower 

dissolution rate in simulated gastric fluid than MgSt containing tablets. Systematical 

investigations revealed that the precipitation of a poorly soluble amorphous salt with LS-, 

[RTV2+][LS−]2, in an acidic environment is the underlying reason.  

Chapter 3 

In Chapter 3, a crystalline salt of [NORH+][LS–]·1.5 H2O between SLS and 

norfloxacin (NOR) was formed.  Based on the solved crystal structure by single crystal X-

ray diffraction, we provide direct crystallographic evidence of the ion-ion interaction 
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between LS- and NORH+. The available crystal structure also enables the use of the 

energy framework to gain an understanding of the structural origin of the thermal behavior 

of [NORH+][LS–]·1.5 H2O. 

Chapter 4 

In Chapter 4, we investigated the prevalence of the LS salt among pharmaceutical 

compounds, formation rules, and its implications on formulation design. We studied 18 

compounds with diverse chemical structures, including salts of basic drugs, a quaternary 

ammonium salt, organic bases, and zwitterionic molecules.  A total of 14 compounds 

formed less soluble LS salts and precipitation occurred when SLS was mixed with 

respective solutions of these compounds.  We further chose p-aminobenzoic acid to 

investigate the precipitation thermodynamic and the kinetics.   

Chapter 5 

In Chapter 5, we explored possible formulation strategies to mitigate the 

detrimental effect of LS salt formation on dissolution from a tablet, based on the 

understanding on the precipitation kinetics in Chapter 4.  Here, PABA was used as a model 

compound.  The two strategies we explored are 1) incorporating an inorganic salt to 

reduce the CMC of SLS, i.e., lower LS concentration in the diffusion layer, and 2) 

incorporating a pH modifier to maintain an elevated pH in the diffusion layer.  Both 

strategies reduced the ion product (Q) in the diffusion layer, hence, lower driving force for 

precipitation of the LS salt, but the latter is more effective.  
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Chapter 2 

Mechanism for the reduced dissolution of ritonavir tablets by sodium lauryl 

sulfate
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2.1 Synopsis 

Sodium lauryl sulfate (SLS) is an anionic surfactant widely used in pharmaceutical 

research as a dissolution enhancer for poorly soluble drugs. When SLS was used in 

ritonavir (RTV) tablet formulation to improve wetting, dissolution of RTV was surprisingly 

deteriorated in acidic media. To understand this unexpected phenomenon, a systematic 

investigation, including solubility determination, intrinsic dissolution rate measurement, 

dissolution in an artificial stomach and duodenum apparatus, and solid-state 

characterization, revealed the formation of a poorly soluble salt, [RTV2+][LS-]2, in an acidic 

environment.  Solubilization of the poorly soluble RTV salt was observed when the 

concentration of SLS exceeded the critical micelle concentration. Thus, precipitation of 

[RTV2+][LS-]2 at a low pH and in presence of a low SLS concentration can lead to 

deteriorated bioavailability. This unintended negative effect on dissolution should be 

carefully considered when using SLS in a tablet formulation of a basic drug that can be 

ionized in gastric fluid.     

2.2 Introduction  

With the increased number of poorly soluble new chemical entities discovered in 

pharmaceutical industry, enabling formulation technologies to overcome solubility limited 

bioavailability have played an increasingly important role in the development of oral solid 

drug products 4, 19, 78. To this end, several formulation technologies have been available, 

such as particle size reduction, cyclodextrins complexation, application of surfactants, 

polymorph screening, amorphous solid dispersion, and salt or cocrystal preparation.4, 78-79  

Among these,  the application of an amphiphilic surfactant to solubilize poorly water-

soluble drugs through micellization, and to improve wetting of hydrophobic drugs during 

dissolution has been widely adopted.4 
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Sodium lauryl sulfate (SLS) is an anionic surfactant commonly used in 

pharmaceutical formulations and in vitro dissolution study.80-82 It has been used as an 

emulsifier, solubilizer, tablet lubricant, and wetting agent.80, 83-86 When applied as a wetting 

agent, SLS could reduce the surface tension between hydrophobic drugs and aqueous 

media to prevent the self-aggregation of drug particles, thus increase the effective surface 

area of dissolution.83 Above the critical micelle concentration (CMC), SLS monomers 

aggregate to form micelles that can solubilize hydrophobic drugs.87-88 In a study to 

investigate the dual function of SLS as lubricant and wetting agent in a biopharmaceutical 

classification system II (BSC II) drug, ritonavir (RTV) tablet formulation, using an Artificial 

Stomach and Duodenum (ASD) apparatus,50, 89 the use of SLS surprisingly led to slower 

release of ritonavir than that of the formulation containing a commonly used lubricant, 

magnesium stearate (MgSt). 

A search of the literature led to a handful of reported cases of dissolution slowdown 

by SLS.90-95 A possible mechanism was the formation of a poorly soluble complex between 

drug and SLS during dissolution, where the low diffusivity of the drug-SLS complex could 

also contribute to the reduced dissolution.90-95 This phenomenon, although speculated 

previously, has not been mechanistically proven. The current case of RTV offered a good 

opportunity to develop mechanistic understanding of this interesting phenomenon.  Such 

understanding is essential to guide the appropriate use of SLS in tablet formulation to 

avoid surprises. 

In this study, we first approached the problem by investigating interactions 

between RTV and SLS in pH 1.2 and 6.8 media.  Then, we isolated and characterized 

solid-state properties of the insoluble precipitate, followed by examination of the dual 

process of precipitation and solubilization by SLS and its impact on dissolution behavior.  
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2.3 Materials and method  

2.3.1 Materials 

Ritonavir (RTV, Form II, Figure 2.1a) was purchased from Wuhan Beier Biopharm 

Ltd. (Wuhan, China). Excipients typically used in direct compression tablet formulations, 

i.e., Microcrystalline cellulose (MCC; Pharmacel 102, DFE Pharma; Goch, Germany), 

lactose monohydrate (SuperTab 11SD; DFE Pharma; Goch, Germany), Magnesium 

stearate (MgSt; Covidien, Dublin, Ireland) and croscarmellose sodium (CCS, Ac-Di-Sol, 

FMC Biopolymer, Philadelphia, PA), and sodium lauryl sulfate (SLS; Ward's Science, 

Rochester, NY, Figure 1b) were used as received.  Other materials were all ACS reagent 

grade. Hydrochloric acid (36.5-38 %, VWR International, Eagan, MN), sodium phosphate 

monobasic monohydrate, and sodium phosphate dibasic heptahydrate (Fisher Scientific 

International, Inc. Fair Lawn, NJ) were used as received to prepare buffer solution.  

 

Figure 2.1 Molecular structures of a) ritonavir and b) sodium lauryl sulfate. The calculated 

pKa’s of RTV are 2.010.10 (N1) and 2.510.10 (N2), and dodecyl hydrogen sulfate is -

3.290.18.  

a) b) 

1 

2 
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2.3.2 Methods 

2.3.2.1 Calculation pKa value 

The pKa value was calculated using ACD Lab (V11.01, Advanced Chemistry 

Development, Inc. Toronto, Canada). 

 

2.3.2.2 Preparation of Tablets  

Two formulations (Table 2.1) of ritonavir were prepared by direct compaction. 

Powder blends were obtained by placing accurately weighed individual components, 

except the lubricant, in a glass bottle (250 mL), which was then blended on a mixer 

(Turbula, Glen Mills Inc., Clifton, NJ) at a frequency of 49 rpm for 2 min.  Subsequently, a 

chosen lubricant was added to the bottle and the mixture was blended for another 5 min. 

Batch size was 40 g in both cases. 

Cylindrical tablets (~300 mg) used for ASD study were obtained by compressing 

the above-mentioned powder blends on a compaction simulator (Presster; Metropolitan 

Computing Company, East Hanover, NJ) to simulate a 29-station Korsch XL400 tablet 

press using round flat-faced tooling (10.0 mm diameter). The compaction was conducted 

at room temperature and approximately 33% RH.  The dwell time was set at 30 ms, 

corresponding to a linear production speed of 0.423 m/s. The compaction pressure was 

set at approximately 100 MPa without pre-compression.  
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Table 2.1 Ritonavir tablet formulations (batch size was 40 g). 

            Material Amount (w/w) 

Ritonavir 5% 5% 

60% MCC + 40% Lactose 89% 85% 

CCS 5% 5% 

MgSt 1% - 

SLS - 5% 

Total 100% 100% 

 

2.3.2.3 Artificial stomach and duodenum dissolution study  

The ASD apparatus was similar to that previously described. 50, 96-97 Briefly, it 

consists of two jacketed beakers with temperature controlled at 37 °C using a water bath 

to simulate stomach and duodenum, where the fluid flow is regulated by a 

programmatically controlled peristaltic pump (Masterflex L/S Easy-Load II pump, Cole-

Parmer, Vernon Hills, IL). 

To simulate human physiological conditions in the fasted state, experiments were 

conducted with 0.1 N HCl (pH = 1.2) for the stomach and 0.1 M sodium phosphate buffer 

(pH = 6.8) for the duodenum. The initial fluid volume of the stomach chamber was 250 mL, 

which was decreased to 50 mL by first-order emptying with a half-life of 15 min. The 

duodenum volume was maintained at 30 mL throughout the entire study, achieved by 

setting a vacuum line in the duodenum chamber at a calibrated height. In addition, the 
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chambers were infused with fresh gastric or duodenal liquid at 2 mL/min to mimic 

corresponding in vivo secretion processes. Drug concentration was monitored by a fiber 

optic UV/Vis probe. Mixing was achieved by an overhead paddle stirrer in the stomach 

chamber and a magnetic stirrer in the duodenum chamber. All pumps and spectrometers 

were calibrated prior to each experiment. All fluids used in the experiment were degassed 

to avoid the introduction of bubbles that might affect the UV signal transmission. 

The drug concentration − time profile in ASD duodenum chamber was analyzed 

by PKsolver 2.0.98 The noncompartmental method was used to calculate the peak plasma 

concentration (Cmax), time to reach Cmax (tmax), and the area under the concentration − time 

curve (AUC). 

2.3.2.4 Effect of SLS on RTV solution concentration 

SLS powder was introduced into a RTV solution (~0.13 mM, 10 mL) at pH 1.2 to 

arrive at different concentrations of SLS.  The systems were stirred for 24 hr using 

magnetic stirring bars.  The suspensions were passed through 0.45 µm filter membrane 

and RTV concentration in the filtrate was detected by UV spectrometry (DU® 530 UV VIS 

spectrophotometer, Beckman, Brea, CA). 

2.3.2.5 Equilibrium concentration of RTV in SLS solutions  

Excess RTV was equilibrated with a series of SLS (0 - 80 mM) solutions at pH 1.2 

and pH 6.8 (0.1 M sodium phosphate buffer), respectively. The vials were tightly capped 

and suspensions were stirred with magnetic stirring bars for 72 hr at room temperature. 

The samples were filtered and the solutions were diluted appropriately for UV test.  The 

excess solids were collected for powder X-ray diffraction test. 
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2.3.2.6 Equilibrium concentration of SLS  

 SLS concentrations were determined using HPLC (Agilent 1290 Infinity), which 

comprised of the following modules: quaternary pumps, a multi-sampler, multi-column 

oven, a diode array detector (DAD) and a charged aerosol detector (CAD). The two 

detectors were connected from outlet of the DAD to the inlet of the CAD by PEEK capillary.  

Column was a 150 mm × 4.6 mm, 5-µm Thermo Scientific Acclaim Surfactant column.  

The method details are summarized in Table S2.1. Instrument control and data analysis 

were carried out with Empower III chromatography data system (Waters Corporation, 

Milford, MA, USA).   The precipitate was dissolved into a mixture of acetonitrile and water 

(50/50, v/v) to prepare a 1 mg/mL solution, which was injected into the column.  The 

concentration of SLS was determined from the CAD response, which was assumed linear 

over a narrow range bracketed by two SLS standard solutions. The concentration of RTV 

was determined by DAD.  External standards were used for all the quantifications.     

2.3.2.7 Intrinsic dissolution study  

Intrinsic dissolution rate (IDR) of RTV was determined by the rotating disc 

method.99-100 Dissolution medium was HCl aqueous solution with SLS (0-20 mM) at pH 

1.2. Approximately 20 mg of RTV powder was compressed at a force of 2000 lb, using a 

custom-made stainless steel die, against a flat stainless steel disc for 2 min to prepare 

pellet (6.39 mm in diameter) with a visually smooth exposed surface that was coplanar 

with the surface of the die. While rotating at 300 rpm, the die was immersed in 100 mL of 

the dissolution medium at room temperature, an UV-Vis fiber-optic probe (Ocean Optics, 

Dunedin, FL) was used to continuously monitor the UV absorbance of the solution at 260 

nm. IDR was calculated from the slope of the linear portion of the concentration time profile 

and the pellet surface area exposed to the dissolution medium. 
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2.3.2.8 Solid-state characterization  

Polarized Light Microscope (PLM) 

RTV, SLS, and their complex were observed under a polarized light microscope 

(Eclipse E200, Nikon, Tokyo, Japan). 

Powder X-ray Diffraction (PXRD) 

X-ray powder diffractograms were obtained on a wide-angle X-ray diffraction 

instrument (X’Pert Pro; PANalytical Inc., West Borough, MA) using Cu Kα radiation. The 

voltage and current applied were 45 kV and 40 mA, respectively. Each measurement was 

performed with a step size of 0.0167° in the two-theta range of 5-35 ° and a dwell time of 

1.15 s.  

Vibrational Spectroscopy  

Fourier transformation infrared (FT-IR) spectra of RTV, SLS and RTV-SLS 

complex were collected using a FTIR spectrometer (Nicolet iS50; Thermo Scientific, 

Waltham, MA) with a built-in diamond attenuated total reflection (ATR). The detector was 

DLaTGS. A total of 32 scans were collected and averaged for each sample. IR spectra in 

the range of 4000-450 cm−1 at a resolution of 2 cm−1 were processed using the software 

OMNIC 9.2.  Raman spectroscopy was conducted by spreading approximately 1-3 mg of 

powder on a glass slide evenly and then flattening using a spatula to facilitate focusing 

the laser. A point of interest in the powder was focused using the 100× lens of a confocal 

Raman microscope (Alpha 300R, WITec, Ulm, Germany). The spectra were then acquired 

using a 532 nm laser source and an integration time of 10 s. The average spectrum of two 

accumulations was obtained for each sample. 
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Differential scanning calorimetry  

Glass transition temperature (Tg) of the precipitate was determined using 

differential scanning calorimetry (DSC, Q1000, TA Instruments, New Castle, DE). Before 

each DSC run, dried and milled precipitate was equilibrated in different RH chambers over 

saturated aqueous salt solutions (Table S2.2) for at least one week.  Equilibrated samples 

were immediately weighed and packed into aluminum T-zero pans and hermetically 

sealed with aluminum lids, and cooled to -50 °C from room temperature and then heated 

to 90 °C at 10 °C/min. The cell was purged with dry nitrogen at 50 mL/min. Tg was 

determined from the inflection point observed in the heating segment (Figure S2.1), using 

TA Universal Analysis software.  

2.3.2.9 Water sorption isotherm 

Water sorption isotherm was obtained using an automated moisture balance 

(Intrinsic DVS, Surface Measurement Systems Ltd., Allentown, PA, USA) at 25°C. The 

nitrogen flow rate was 50 mL/min. A sample was first purged with dry nitrogen to a constant 

weight and then exposed to various relative humidities (RHs) from 0% to 70%. The 

minimum equilibration time was set as 6 h and equilibration criteria was dm/dt < 0.0005% 

or maximum equilibration time of 13 h.  The RH was changed to the next target value once 

one of the criteria was met (Figure S2.2).  The precipitate became sticky fused mass at 

the end of the experiment.   

2.4 Results and Discussion  

2.4.1 Retarded release of RTV in SLS-contained tablet  

By more closely mimicking physiological conditions in humans, ASD is a more 

predictive tool for investigating drug release in GI tract because it considers various 

processes, such as dissolution, precipitation, and transportation. For drugs with high 
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permeability, the AUC of the drug concentration – time profile in the duodenum chamber 

has been shown to be proportional to its in vivo bioavailability.50, 89, 96 Thus, ASD can 

provide a relative comparison of drug release from formulations or dissolution of different 

solid forms. 

 

Figure 2. 2. RTV concentration-time profiles of two tablets containing magnesium stearate 

and SLS in the stomach chamber of ASD.   

Due to its hydrophobicity, magnesium stearate (MgSt) might retard drug 

dissolution.80, 101-102 SLS has been widely used to either improve wetting or solubilize 

poorly soluble drugs.  Both effects favor faster dissolution.  Therefore, replacing MgSt with 

SLS in an otherwise identical RTV tablet formulation may be expected to improve drug 

release.86 However, concentration-time profile in ASD stomach chamber surprisingly 

exhibited lower Cmax and longer Tmax than the MgSt-containing tablet (Figure 2.2). 

Therefore, an event that leads to slower release of RTV must be at work.  An effective 

solution to this problem requires a mechanistic understanding of the underlying process.  

We hypothesized that reaction between SLS anions and protonated RTV led to 

precipitation of a poorly soluble complex, which decreased drug release, as shown in 

some prior examples.90-95 This mechanism is possible because the two thiazole nitrogen 
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atoms to RTV (pKa,1 = 1.8 and pKa,2 = 2.6 from literature 103 and 2.010.10 and 2.510.10 

by calculation from its molecular structure, Figure 2.1a) undergo protonation at pH 1.2 in 

the stomach chamber.   

2.4.2 Complexation between RTV and SLS  

To test the hypothesis, various amounts of SLS powder were introduced to a RTV 

solution (~0.13 mM, 10 mL) at pH 1.2. The clear RTV solution at pH 1.2 became turbid 

when SLS was added and RTV concentration continued to decrease until SLS 

concentration was ~1.1 mM (Figure 2.3). Further increase in SLS concentration above 1.1 

mM led to increasing RTV concentration and a clear solution was again obtained. The 

precipitation upon introduction of SLS and the simultaneous decrease in RTV 

concentration suggest the precipitate is a complex between SLS and RTV, which is less 

soluble than pure RTV at pH 1.2.  

 

Figure 2.3. Effect of SLS on RTV solution concentration at pH 1.2 (n=3) 
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The precipitate was very fine when they initially formed (Figure 2.4c). However, 

large particles appeared while fine particles disappeared over time (Figure 2.4d). This may 

be attributed to the Ostwald ripening where larger particles grow at the expense of smaller 

ones.104 The precipitate was recovered through vacuum filtration and characterized using 

multiple techniques for its chemical composition and solid-state properties. The absence 

of birefringence under PLM (Figure 2.4c and 2.4d) and mere presence of an amorphous 

halo in PXRD pattern (Figure 2.5) indicated the amorphous nature of the precipitate. In 

contrast, both RTV and SLS were crystalline as they exhibited birefringence (Figure 2.4a 

and 2.4b) and strong X-ray diffraction peaks (Figure 2.5). Furthermore, the glass transition 

temperature (Tg) of the dried solid was 30.9 °C (Figure 2.6). The fresh precipitate was 

sticky and gel like when it was in full contact with water. Thus, Tg of fully hydrated 

precipitate is below room temperature, due to the plasticizing effect of water. This has 

been proved by the gradual decrease in Tg of the precipitate with water increasing 

contents when equilibrated at higher RHs (Figures 2.6 and S2.1).  

Figure 2.4. PLM of a) SLS, b) RTV, c) fresh precipitate, and d) precipitate aged for 72 

hours. 

a) b) 

c) d) 
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Figure 2.5. PXRD of RTV, SLS, and precipitate. 

 

 

Figure 2.6. Tg of the precipitate as a function of water content. 

FT-IR and Raman spectra of the RTV, SLS, and the precipitate are shown in Figure 

2.7.  For both IR (Figure 2.7a) and Raman (Figure 2.7b) spectra, characteristic peaks of 

RTV and SLS could be observed in the precipitate, confirming it is a complex between 

RTV and SLS.  The single IR peak of 3322 cm-1 is attributed to the N-H stretching of amide 

Precipitate 
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groups and the broad peak of 3203 cm-1 is assigned to the hydroxyl group to RTV. Several 

peaks observed in the range of 2800-3000 cm-1 correspond to C-H stretching vibrations. 

The C=O stretching vibrations of amide and ester groups of RTV correspond to peaks at 

1702 and 1659 cm-1. The strong absorption peaks in the IR spectrum of SLS at 1248 and 

1215 cm-1 are assigned to the stretching of S=O.  These peaks are red-shifted to 1245 

and 1197 cm-1. The IR peak due to the N-H is also red shifted to 3302 cm-1. The peak 

shifts suggest the presence of an S=O···H-N+ hydrogen bond in the precipitate (Figure 

S2.3).  Similar interaction was observed in 9-aminoacridinium dodecyl sulfate, 2-

(dodecanoyloxy) ethanaminium dodecyl sulfate, and 1-Octylquinolinium dodecyl sulfate. 

105-107 

 

Figure 2.7. Vibrational spectra of RTV, SLS, and precipitate, a) FTIR and b) Raman.  

Corresponding to the two thiazole groups of RTV, two types of ionic species of 

RTV may exist in the solution, RTV+ and RTV2+. Based on Henderson-Hasselbalch 

equation,4 approximately 80% of RTV (pKa,1 = 1.8, pKa,2 =2.6) exists as RTV+ and 20% are 

RTV2+ at pH 1.2. The pKa of the conjugate acid of SLS, dodecyl hydrogen sulfate (LS-H), 

is -0.09 from the literature and -3.29 by calculation.108 Therefore, essentially all lauryl 

a) b) 
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sulfate ions, LS-, remained ionized instead of forming LS-H in 0.1 M HCl, 81 which favors 

its reaction with the protonated RTV cations to form complexes, either [RTV2+][LS-]2 or 

[RTV+[LS-]. Since the ∆pKa (base – acid) between the calculated pKa’s of LS-H and RTV 

is larger than 5, proton transfer between RTV and SLS is highly likely.109 

2.4.3 Effects of SLS and pH on equilibrium concentration of RTV 

The solubility of RTV in the pH 1.2 and the pH 6.8 media was 0.2 ± 0.02 mM and 

0.008 ± 0.002 mM (Figure 2.8a & 2.8b). The radically higher solubility at pH 1.2 is due to 

the ionization of RTV, as shown by its pH-solubility profile (Figure S2.4). 

At pH 1.2, 10 mL SLS solutions with different concentrations (0-80 mM) were 

prepared. Approximately 100 mg RTV powder was introduced into each of them (with 

exception of 150 mg in 80 mM SLS). After stirring for 72 hr, excess solid in each vial was 

isolated by vacuum filtration. Solution pH increased with increasing SLS concentration, up 

to 1.6 in the sample containing 80 mM of SLS. Concentration of RTV in solution was 

determined by UV/VIS spectroscopy with dilution if needed. The RTV concentration 

decreased with increasing SLS concentration and reached a minimum value at a SLS 

concentration of approximately 30 mM (Figure 2.8a). However, RTV concentration 

increased sharply with further increase in SLS concentration (Figure 2.8a). In Figure 2.8a, 

the total concentration of SLS in the system was used.  The actual concentration of SLS 

in solution was lower because of the precipitation of the SLS-containing salt and possible 

degradation of SLS at low pH. In the 0-30 mM SLS concentration region, the equilibrating 

excess solids exhibited decreasing crystallinity with increasing amount of SLS (Figure 2.8c 

and 2.8d), corresponding to the loss of crystalline RTV due to the increasing extent of 

complex formation. When total SLS concentration was 30 mM or greater, crystalline RTV 

disappeared in the equilibrating solid (Figure 2.8d), indicating complete conversion of 

crystalline RTV to the amorphous salt. 
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Figure 2.8. Equilibrium concentration of RTV in SLS solutions (0-80 mM, n=3) in a) pH 

1.2 and b) 0.1 M sodium phosphate pH 6.8 buffer. PXRD analysis of excess solids c) at 

pH 1.2 with SLS concentration of 0-20 mM and d) 30-80 mM. 

Solids at 30 and 80 mM were chosen for determining the stoichiometry of the salt 

by HPLC-CAD. The CAD detector was employed because the absence of a chromophore 

in SLS molecule makes it difficult to detect by traditional UV/Vis method.110 Approximately 

1:2 molar ratio of RTV to SLS was determined (Table S2.3) to yield a formula of 

[RTV2+][LS-]2 for the salt. 

At pH 6.8, RTV undergoes minimum ionization (less than 0.01%). Correspondingly, 

no conversion of the crystalline RTV to the amorphous salt was observed (Figure S2.5). 

Solution concentration of RTV increased monotonically with increasing SLS concentration 

while solution pH did not change. CMC value of SLS decreases with increasing electrolyte 

c) 

b) 

d) 

a) 
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concentration and is 1.99 mM in 0.05 M sodium phosphate buffer at pH 7.111 Therefore, 

the CMC of SLS in the pH 6.8 phosphate buffer (0.1 M) in this study is expected to be 

lower than 1.99 mM.  Consequently, SLS micelles formed in all SLS solution 

concentrations in this study because they were all above 1.99 mM. This is in good 

agreement with the nearly linear rise in RTV solubility with increasing SLS concentration 

(Figure 2.8b) due to the solubilization of RTV by SLS micelles. 

Clearly, solubility of RTV and precipitation of [RTV2+][LS-]2 depend on both pH and 

SLS concentration. These complicated effects can be understood from a holistic 

consideration of possible equilibria in this system (Figure 2.9). For the salt complex to form, 

RTV cation and SLS anion must be present in the solution at concentrations at which the 

Ksp of the complex is surpassed.  From the measured concentrations of SLS and RTV in 

the solutions containing 0.28 and 0.55 mM total SLS (Figure 2.3), Ksp was calculated to 

be 3.5x 10-4 and 2.7x 10-4 (mg/mL)3 (or 5.9 x 10-3, 4.4 x 10-3 mM3), respectively.  RTV, as 

a di-basic compound with two ionization sites, can form both monovalent ion and divalent 

ion. The relative abundance of RTV ions and neutral RTV is affected by the ionization 

equilibration constants and solution pH. Because the stoichiometry of the complex is 1:2, 

the mono-salt must be more soluble than the di-salt. Therefore, when a small amount of 

SLS was added to a RTV solution at pH 1.2, the amorphous di-salt precipitated out.  When 

the SLS concentration is sufficiently high, the precipitate can be re-dissolved by SLS 

micelles. Various equilibria of this system are summarized in Figure 2.9. 
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Figure 2.9. Equilibria in the 0.1 M HCl solution containing SLS and RTV. 

2.4.4 Impact of SLS-contained media on RTV dissolution  

2.4.4.1 Intrinsic dissolution rate (IDR) 

So far, the slower release of RTV during dissolution in simulated gastric fluid 

(Figure 2.2) can be reasonably explained by the formation of a less soluble salt. To confirm 

this, IDRs of RTV at pH 1.2 in media containing different concentrations of SLS were 

determined. 

The initial portion of some dissolution profiles in IDR study was not strictly linear, 

which indicates phase change during dissolution (Figure S2.6). We attribute this to the 

dynamic nature of the precipitation and the time required to establish equilibrium during 

IDR experiments.  Thus, the IDR was calculated using terminal slope to characterize 

dissolution, assuming this is where the new solid phase would be dominant.  IDR initially 

decreased with increasing SLS concentration in the media up to 2 mM SLS. Further 

increase in SLS concentration in the dissolution medium led to steady increase in IDR 

(Figure 2.10). This is consistent with the trend observed in solubility plot (Figure 2.8a). The 

precipitation reaction and formation of the less soluble salt hinders IDR and this 

detrimental effect is more obvious in a more concentrated SLS medium, which explains 

the initial decrease in IDR.  When SLS concentration is above CMC, solubilization of RTV 

by micelles also occurs.  The rate of solubilization is higher in a more concentrated SLS 

medium, which favors higher IDR.  With increasing SLS concentration, IDR transitions 
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from the precipitation dominating phase to the solubilization domain.  The transition point 

roughly agrees with the CMC of SLS, which is likely slightly below 1.99 mM. 

The nominal SLS concentration corresponding to the turning point in the IDR plot 

is 2 mM while 30 mM in the solubility plot (Figure 2.8). This discrepancy may be explained 

by the different designs of the two experiments. In the equilibrium concentration study, 

RTV introduced into each vial consumes SLS in the solution.  Thus, the actual SLS 

concentration is far lower.  In contrast, the dissolution of a small amount of RTV into the 

medium did not noticeably lower the SLS concentration in the medium. Hence, 

solubilization effect is observed at a much lower SLS concentration.  

 

Figure 2.10. Dependence of intrinsic dissolution rate of the di-salt as a function of SLS 

concentration (n=3). 
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2.4.4.2 Artificial Stomach and Duodenum (ASD) dissolution study  

The effect of SLS on drug release was also evaluated in ASD at different 

concentrations of SLS, which was kept the same in stomach and intestine chambers 

(Figure S2.7). With increasing SLS concentration, both AUC and Cmax first decreased and 

then increased (Figures 2.11a and 2.11b). This is similar to the trend observed in the IDR 

and solubility experiments, The reduced dissolution is explained by the formation of the 

less soluble [RTV2+][LS-]2 salt. The subsequent increase with increasing SLS 

concentration is due to solubilization by SLS micelles. Thus, the impact of SLS on RTV 

bioavailability depends on SLS amount in the formulation. Since SLS in a tablet 

formulation is usually not used at a very large amount due to the toxicity concern, the 

detrimental effect by SLS likely dominates the dissolution performance of tablets. However, 

such detrimental effect is less likely to occur if protonation of APIs can be avoided or 

suppressed, such as by avoiding low pH gastric fluid using enterically coated tablets. 

 

 

Figure 2.11. Duodenum Concentration-Time Profile parameters for RTV tablet a) AUC, 

and b) Cmax 

Since SLS is not naturally present in the GI tract, this effect is not a threat to drug 

dissolution if the drug product does not contain SLS. However, for poorly soluble drugs, 
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SLS is often used to either improve wetting or create a sink condition during in vitro 

dissolution. In this context, the complicated precipitation and solubilization mechanism 

detailed above is relevant.  If not carefully controlled, the in vitro dissolution study may 

yield misleading results and possible erroneous conclusions on tablet quality and 

biopharmaceutical performance. 

2.5 Conclusion 

The use of SLS in the RTV tablet formulation deteriorated RTV dissolution in 

simulated gastric fluid due to the formation of a poorly soluble salt, [RTV2+][LS-]2. The salt 

was formed only when pH was sufficiently low to assure a significant concentration of 

protonated RTV in solution. This leads to detrimental effect on RTV dissolution. Given the 

frequent use of SLS in pharmaceutical formulations, the results from this study highlight 

the need to carefully consider potential complexation between SLS and basic drugs during 

dissolution during tablet formulation development. Potential issue to consider include: 1) 

the risk of slower release of basic drugs by forming poorly soluble complexes with SLS; 2) 

SLS containing dissolution media may lead to erroneous conclusion of poor dissolution 

performance of a formulation that may actually exhibit excellent dissolution in SLS free 

human GI tract. 

2.6 Support information  

Differential scanning calorimetry study of RTV-SLS precipitate equilibrated at 

different RHs 

Glass transition temperature was determined from the inflection point observed in 

the heating cycle. 
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Figure S2.1.Effect of water content on the glass transition temperature.  Samples were 

equilibrated at different RHs for at least 1 week. 

Dynamic vaper sorption isotherm 

 

 

Figure S2. 2. Water sorption isotherm of the precipitate at 25 oC. 

 

 

 

Exo  
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Molecular interaction 

The majority of intermolecular interactions involve the sulfate group of LS-.  The 

charged -NH+ nitrogen is favorable to form S=O…H-N+ interaction with LS-. 

 

 

Figure S2.3. Full interaction maps of SLS. 

 

pH dependent solubility of ritonavir 

The pH dependent solubility of ritonavir was calculated based on Henderson-

Hasselbalch equation with pKa,1 = 1.8, pKa,2 = 2.6 of RTV, and intrinsic solubility of 1 

μg/mL. 
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Figure S2.4. pH dependent solubility of ritonavir 

Equilibrium concentration of RTV in SLS solutions at pH 6.8 

Excess RTV was equilibrated with series concentration of SLS (0-80 mM) solution 

at pH 6.8 (0.1 M sodium phosphate buffer). Excess solid was collected for powder X-ray 

Diffraction test study after 72 hours stirring at room temperature. The presence of 

crystalline peaks through the entire SLS range indicated no conversion of the crystalline 

RTV to the amorphous salt at in phosphate buffer at pH 6.8. 
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Figure S2. 5. PXRD analysis of excess solid in pH 6.8 phosphate buffer with SLS 

concentration a) 0-20mM, and b)30-80mM 

Intrinsic Dissolution Rate   

RTV concentration – time profiles in 0.1 M HCl with different concentrations of SLS 

are shown in Figure S2.6. The IDR profiles are non-linear in most cases but highly 

reproducible.  We attribute this to the simultaneous occurrence of two competing 

a) 

b) 
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processes, precipitation and solubilization of the SLS-RTV complex, in the diffusion layer 

of different concentrations of SLS.  

  

Figure S2. 6. Dissolution profiles of RTV discs in pH 1.2 media containing different 

concentrations of SLS. 

Dissolution studies using an artificial stomach and duodenum (ASD)   

Different concentrations (0-80 mM) of SLS were prepared for both simulated 

gastric and intestinal fluids used in the ASD experiments.  The concentration of SLS was 

kept the same in both chambers in each experiment. Two UV/VIS fiber probes were 

inserted into both chambers to monitor the drug release. RTV concentration – time profiles 

in the duodenum chamber are shown in Figure S2.7.  These profiles are fitted using a 

non-compartment pharmacokinetic model. 
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Figure S2. 7. Dissolution profiles in ASD duodenum chamber containing media with 

different SLS concentrations. 
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Table S2. 1. SLS Method parameters 

Column 
Thermo Scientific Acclaim Surfactant column, 150 mm × 4.6 

mm, 5-µm 

Eluent A 100 mM of Ammonium acetate buffer, pH 5.4 

Eluent B Acetonitrile 

Flow rate 1.0 mL/min 

Gradient 

0-4.5 min: 50%B; 4.5-12.0 min: 50%B-90%B; Hold 90%B for 5 

min. 

Post time: 4 min at 50%B 

Column oven 30°C 

Sampler temperature Ambient 

DAD Wavelength 240 nm, Reference Wavelength: 500 nm 

CAD data rate: 5 Hz, nebulizer temperature: 35°C 

Injection volume 10 µL 

 

Saturated aqueous salts solution with different relative humidity. 

Saturated aqueous salts solutions were prepared in a 50 mL plastic wide-mouth 

container, different amount of salts was dissolved by 10 - 20 mL deionized water. The 

screw-capped containers were equilibrated under room temperature for 72 hours to meet 

the targeted humidity. Drierite-contained chamber was used to provide a low RH of 2%. 
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Table S2. 2. Saturated salt solution with different RH 

Salt Relative humidity (%) 

LiCl 11 

KC2H3O2 23 

K2CO3 43 

CuCl2 67 

 

Stoichiometry determination of RTV and SLS  

Table S2. 3. Stoichiometry determination of RTV and SLS 

SLS Conc. (mM) 

Mol Ratio 

of SLS to 

Ritonavir 

Ritonavir% SLS% 

30 2.00 51.32* 44.6* 

80 2.25 43.79* 42.7* 

* The total weight of SLS and RTV do not add up to 100% due to the presence of water 

and some impurities.  SLS is known to undergo degradation in media with pH lower than 

2.5. 
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Chapter 3 

Crystallographic and Energetic Insights into Reduced Dissolution and Physical 

Stability of a Drug-Surfactant Salt – The Case of Norfloxacin Lauryl Sulfate 
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3.1 Synopsis 

A commonly used pharmaceutical surfactant, sodium lauryl sulfate (SLS), has 

been reported to reduce the dissolution rate of drugs due to the formation of a less soluble 

drug-lauryl sulfate salt. In this study, we provide direct crystallographic evidence of the 

formation of salt between SLS and norfloxacin (NOR), [NORH+][LS-]·1.5 H2O. The 

available crystal structure also enables the use of the energy framework to gain an 

understanding of structure – property relationship. Results show that the hydrophobic 

methyl groups in SLS dominate the surfaces of the [NORH+][LS-]·1.5 H2O crystals, 

resulting in the increased hydrophobicity and reduced wettability by aqueous media. 

Moreover, an analysis of molecular environments and energy calculation of water 

molecules provides insight into the stability of [NORH+][LS-]·1.5 H2O with variations in 

relative humidity and temperature. In summary, important pharmaceutical properties, such 

as solubility, dissolution, and thermal stability, of the drug-surfactant salt [NORH+][LS-]·1.5 

H2O have been characterized and understood based on crystallographic and energetic 

analyses of the crystal structure. 
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3.2 Introduction  

Dissolution of a solid drug is critical for successful drug delivery as a prerequisite 

for absorption.4 A surfactant is often used to enhance the dissolution of a poorly soluble 

drug, 112 through either improving wetting of the solid by the aqueous medium113 or 

solubilizing drugs when micelles are formed.114 

The sodium salt of lauryl sulfuric acid (LS-H with a pKa of -3.29, Figure 3.1b), is 

one of the most commonly used surfactants in non-parenteral pharmaceutical formulations 

and cosmetics.115  However, sodium lauryl sulfate (SLS) was found to reduce the solubility 

and dissolution rate of some basic drugs in low pH media by forming poorly soluble 

complexes. 8, 90-93, 116 This phenomenon highlights the need to exercise caution when using 

SLS in solid dosage formulations to avoid the unexpected decrease in drug dissolution.8  

The formation of such drug-surfactant complexes has been confirmed by visual 

observation, PXRD, IR, Raman, and compositional analysis of the complex. The 

Coulombic interaction between drug cation and lauryl sulfate anion (LS-) has been 

proposed based on the ΔpKa rule.  This is supported by the fact that precipitation only 

occurred at pH values, where drugs are protonated. 8, 92-93  Such charge-charge interaction 

of LS- was also reported with amine functional polymer cations via solubility diagram and 

surface tension measurement. 94  

In this study, we provide a more direct evidence of proton transfer between drug 

cation and LS- anion through an analysis of crystal structure, from which molecular insights 

into the changes in pharmaceutical properties, such as solubility and dissolution rate, 

could be gained. Crystal structures of a handful of complexes between LS- and organic 

molecules have been reported, including berberine,117 9-aminoacridine (a cationic dye), 

O-lauroylethanolamine,107 quinolinium and isoquinolinium (ionic liquid crystals).105 

However, most reported drug-lauryl sulfate complexes are amorphous, except for 
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trimethoprim and metformin, which precipitated out as crystalline solids.90-91  Single crystal 

structures of trimethoprim and metformin complexes with LS- have not been reported. 

Consequently, direct crystallographic insights into some important pharmaceutical 

properties remain elusive.  

In a systematic screening for drug lauryl sulfates, we successfully grew single 

crystals of the complex formed between norfloxacin (NOR, a broad-spectrum antibacterial 

compound) and SLS and solved its structure.  This provides an opportunity for gaining 

direct molecular insight into the nature of such drug-LS- complexes and their solid-state 

properties. 118 

 

Figure 3. 1. Molecular structure of a) norfloxacin cation (NORH+) and b) SLS.  

3.3 Materials and methods 

3.3.1 Materials 

Norfloxacin was purchased from SINCH Pharmaceuticals (Shanghai, China). 

Sodium lauryl sulfate was purchased from Ward’s Science (Rochester, NY). Hydrochloride 

acid (36.5%-38%, VWR international, Eagan, MN) was ACS reagent grade. Sodium 

phosphate monobasic and sodium phosphate dibasic heptahydrate were purchased from 

Fisher Scientific International, Inc (Fair Lawn, NJ).  All materials were used as received. 

a) b) 

2
+ 
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3.3.2 Methods 

3.3.2.1 Calculation of pKa value 

The pKa value of LS-H was calculated using the ACD Lab (V11.01; Advanced 

Chemistry Development, Inc., Toronto, Canada). The prediction was made based on a 

statistical model between molecular structures and experimentally measured pKa values, 

which was established using a large set of molecules. 

3.3.2.2 Precipitation of NOR by adding SLS 

An excess amount of NOR powder was suspended in 15 mL of pH 1.2 hydrochloric 

acid (HCl) aqueous solution.  After about 8 hours, the suspension was filtered to obtain a 

NOR solution, to which ~50 mg of SLS powder was slowly introduced. Precipitation 

occurred immediately after SLS was dissolved (Video S3.1). The precipitate was 

recovered by vacuum filtration and air-dried on the bench. 

3.3.2.3 Powder X-ray diffraction (PXRD)  

X-ray diffractograms of powders were collected by a wide-angle X-ray diffraction 

instrument (X’Pert Pro; PANalytical Inc., West Borough, MA) using Cu-Kα radiation. The 

voltage and amperage were 45 kV and 40 mA, respectively. Each measurement was 

performed with a step size of 0.0167° in the two-theta range of 5-35° and a dwell time of 

1.15 s. 

3.3.2.4 Polarized Light Microscopy 

The precipitate was observed under a polarized light microscope (Eclipse E200; 

Nikon, Tokyo, Japan). A small drop of the solution containing solid precipitate was put on 

a glass slide.    A cover glass was then applied, which was gently pressed to further 

disperse the sample. 
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3.3.2.5 Karl Fischer titration (KFT)  

Water content of the precipitate was determined with a Karl Fischer Titrator 

(Metrohm 831 KF coulometer equipped with a Metrohm 703 Ti Stand mixer). Titrations 

were carried out in HYDRANAL®-Coulomat AG (methanol-based anolyte, Sigma Alderich, 

St. Louis, MO) under constant stirring. An accurately weighed sample (approximately 10 

mg) was introduced into the titration vessel, which was immediate capped to minimize 

interference by moisture from the environment.  Water content was recorded at the end of 

each titration run. Measurements were repeated six times. 

3.3.2.6 Moisture sorption isotherm   

Water sorption isotherm of the precipitate powder was collected using an 

automated dynamic vapor sorption analyzer (Intrinsic DVS, Surface Measurement 

Systems Ltd., Allentown, PA) at 25 °C. The nitrogen flow rate was 50 mL/min. The sample 

was first purged with nitrogen at 70% relative humidity (RH) until a constant weight was 

obtained. Then, the sample was exposed to a series of RHs from 70 to 0%, 0 to 95% and 

95 to 0%, with a step size of 5% RH. At each specific RH, the equilibration criterion of 

either dm/dt ≤0.002% with a minimum equilibration time of 0.5 h or a maximum 

equilibration time of 6 h was applied. The RH moved to the next target value once one of 

the criteria was met.  This experiment was started at 70% RH instead of 0% because the 

sample, consisting of hydrate crystals, undergoes dehydration on exposure to dry nitrogen 

purge.  

3.3.2.7 Thermal analyses    

Thermal properties of the precipitate powder were characterized by differential 

scanning calorimetry (DSC, TA Instruments, New Castle, DE), thermogravimetric analysis 

(TGA, Q500, TA Instruments, New Castle, DE) and variable temperature powder X-ray 

diffractometry (vtPXRD,TK450; Anton Paar, Graz-Straßgang, Austria). In DSC, each 
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sample was packed into an aluminum T-zero pan and hermetically sealed with an 

aluminum lid, a pin hole was made to allow the escape of volatiles produced during heating. 

The heating rate was 10 °C/min unless specified. The DSC cell was purged with nitrogen 

gas at 50 mL/min. In TGA, the samples were purged with dry nitrogen at 60 mL/min and 

heated at rate of either 0.5 or 10 °C/min. In vtPXRD, a temperature stage (TTK 450; Anton 

Paar, Graz-Straÿgang, Austria) was used to control the sample temperature on a powder 

X-ray diffractometer (D8 CEVANCE; Bruker AXS, Madison, WI) using Cu Kα radiation (40 

kV, 40 mA) and Si strip one-dimensional detector (LynxEye; Bruker AXS, Madison, WI).  

Under the nitrogen purge (50 mL/min), the sample was heated to the target temperatures 

from room temperature at a rate of 10 °C/min and then maintained under isothermal 

conditions during data collection (5-30° 2θ with a step size of 0.02° and a dwell time of 0.5 

s). Hot-Stage Microscopy (HSM) was conducted using a polarized light microscope 

(Eclipse e200; Nikon, Tokyo, Japan) equipped with a hot stage with a temperature 

controller (Linksys 32; V.2.2.0, Linkam Scientific Instruments, Ltd., Waterfield, UK). A 

single crystal was immersed in a drop of silicone oil on a glass slide and heated to 300 °C 

at a rate of 10 °C/min. 

3.3.2.8 Thermodynamic solubility    

The solubilities of the NOR and the precipitate powders were determined by 

equilibrating excess amount of each sample in ∼10 mL of pH 1.2 HCl (adjust pH when 

necessary) solution or a pH 6.8 sodium phosphate buffer (0.1 M) at 23 °C under vigorous 

stirring for 48 h. The suspensions were filtered with 0.45 μm polypropylene membrane 

filters. The concentration of filtrates was determined using a UV spectrometer (DU® 530 

UV-vis spectrophotometer; Beckman, Brea, CA) after appropriate dilution and 

interpolation from a standard curve. The nature of the equilibrating solid phase was 

identified by PXRD. 
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3.3.2.9 Intrinsic dissolution rate (IDR)    

IDR was measured using a rotating disk method. Dissolution was performed in 

both a pH 1.2 HCl solution and a pH 6.8 sodium phosphate buffer (0.1 M). Approximately 

20 mg of sample powder was compressed using a custom-made stainless-steel die 

against a flat stainless steel disc for 2 min to prepare pellets (6.39 mm in diameter).  A 

force of 1000 lb was used to prepare pellets of the precipitate to avoid extensive sticking 

to the steel disc at high pressures.  For NOR, a force of 2000 lb was applied to favor the 

formation of smoother surfaces since it did not stick. The exposed surface of the pellet 

was visually smooth and coplanar with the surface of the die. While rotating at 200 rpm, 

the die was immersed in 300 mL of the dissolution medium in a water jacketed beaker 

with temperature maintained at 23 °C. UV absorbance of the solution was continuously 

monitored with an UV-Vis fiber-optic probe (Ocean Optics, Dunedin, FL). Absorbance was 

converted to concentration based on a separately established calibration curve. 

3.3.2.10 Contact angle measurement    

Contact angles were determined by the sessile drop method on a goniometer (DM-

CE1, Kyowa Interface Science, Saitama, Japan). NOR, the precipitate, and SLS powders 

were compressed at 300 MPa into thin ribbons. A drop (∼2.5 μL) of HCl solution (pH 1.2) 

or 0.1 M phosphate buffer solution (pH 6.8) was placed on the surface of the ribbon using 

a fine needle attached to a dispenser. The shape of the water drop was recorded every 1 

s for 30 s using a high-speed camera. The angle between the sample surface and the 

tangent line at the edge of the drop was determined using image analysis software, 

FAMAS3.72 (Kyowa Interface Science Co. Ltd., Japan). Three measurements were made 

at different locations on each film, and the mean and standard deviations were calculated.  
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3.3.2.11 Single crystal X-ray diffraction (SCXRD)    

Single crystals of the precipitate were grown by dissolving 10 mg of the precipitate 

in 6 mL of water and methanol 4:1 (v:v) mixture facilitated with slightly heating. The 

solution was allowed to slowly evaporate at 4 °C to produce single crystals.  

Single crystal X-ray diffraction (SCXRD) was performed on a Bruker D8 Venture 

diffractometer (Bruker AXS Inc., Madison, Wisconsin), equipped with a Bruker PHOTON-

II CMOS detector. Data was collected at 100(2) K with a Mo-Kα radiation source (IμS 3.0 

microfocus tube). Data integration was performed with the SAINT program.  The SADABS 

program was used for scaling and absorption correction and XPREP was used for space 

group determination and data merging. The crystal structure was solved by direct methods 

and refined using ShelXle program (a graphical user interface for SHELXL1)119. The 

crystal structure was solved using SHELXT (Intrinsic Phasing) methods. Hydrogen atom 

or proton bonded to NORH+ cation were located from the difference Fourier map. Their 

coordinates were allowed to refine while their thermal parameters were constrained to ride 

on the carrier atoms. Hydrogen atoms bonded to other atoms were placed in calculated 

positions, and their coordinates and thermal parameters were constrained to ride on the 

carrier atoms in the refinement cycles. All non-hydrogen atoms were refined with 

anisotropic displacement parameters. The three carbon atoms C17, C21, and C22 in one 

of the lauryl sulfate anions have positional disorders.   

3.3.2.12 Intermolecular interaction energy calculation    

The pairwise intermolecular interaction energy was estimated with B3LYP-D2/6-

31G(d,p) molecular wave functions using the experimental crystal geometry 

(CrystalExplorer V.17 and Gaussian09).120-122  For the disordered carbons of the lauryl 

sulfate anion, one set of the carbons were used in the calculation. This is not expected to 

significantly impact the calculated energy framework results because these carbons, as a 
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part of the long hydrophobic tail of anion, only weakly interact with neighboring molecules.  

Before each calculation, hydrogen atoms were automatically placed at bond lengths 

corresponding to standard neutron diffraction values. The intermolecular interaction 

energy was the sum of electrostatic, polarization, dispersion, and exchange-repulsion 

terms.123-124 Each term was properly scaled based on values from a large training set. The 

total interaction energies of water with all molecules having any atom within 3.8 Å of water 

molecule were calculated and summed to obtain the total energy. The water-host molecule 

interaction energies were represented by cylinders, where cylinder thickness was 

proportional to the total intermolecular interaction energy.  

3.4 Results and discussion  

3.4.1 Precipitation of a NOR solution by adding SLS  

The precipitation of a drug by SLS generally requires the presence of drug cations 

in the solution. 8, 92-93 Excess NOR powder was used to saturate a pH 1.2 hydrochloride 

solution (similar to the pH of the physiological gastric liquid, in which the piperazine 

nitrogen of NOR is protonated since the solution pH is significantly lower than its basic 

pKa (8.7) (Figure 3.1a).125-126 Immediate precipitation from this saturated NOR solution was 

observed after SLS was added (Figure S3.1, Video S3.1). The precipitate contains lauryl 

sulfate and NOR in 1:1 ratio as suggested by the solution NMR data (Figure S3.2).  

 

3.4.2 Solid-state properties of the precipitate  

The precipitate showed birefringence under PLM (Figure 3.2a) and a PXRD 

pattern distinct from those of NOR and SLS (Figure 3.2b), suggesting a new crystalline 

phase was formed.  Moreover, the PXRD of the precipitate matched well with the 

calculated PXRD pattern from the solved single crystal structure, which is a NOR lauryl 

sulfate mono-salt sesquihydrate, [NORH+][LS-]·1.5 H2O (Figure 3.2b). The systematic 
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shifts of diffraction peaks are attributed to the much lower temperature at which the crystal 

structure was solved (100 K) than that of the experimental PXRD (298 K). The thermal 

expansion of crystal lattice from 100 to 298 K leads to larger d-spacing for certain (h k l) 

planes, which corresponds to lower two theta angles. 127 Water content of the precipitate 

measured by KFT is 4.55 ± 0.07% (n = 6, Table S3.1), which matches reasonably well 

with the theoretical value of 4.41% for a sesquihydrate. This further supports that the 

precipitate and the single crystals are the same phase. 

 

Figure 3. 2. a) Polarized light microscopy of the precipitate; b) PXRD patterns of NOR, 

SLS, and the precipitate along with the calculated PXRD pattern of [NORH+][LS-]·1.5 H2O.  

3.4.3 Physical stability of the precipitate  

The stability of the [NORH+][LS-]·1.5 H2O precipitate under different RHs at 25 °C 

is shown in Figure 3.3a. When RH decreased from 70% to 5%, the mass of the 

sesquihydrate was only reduced by 0.33%, corresponding to surface moisture. Since the 

5% - 70% RH range covers most ambient RHs, the hydrate is stable under typical ambient 

RHs. When RH reached 0%, the sample started to lose weight, after the criteria of 

maximum 6 h was reached, the weight loss was <2%, which indicates incomplete 

dehydration of the 4.41% theoretical amount of water. In an effort of completing water 
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releasing, sample was purged with dry nitrogen, which led to ~3% total weight loss after 

6.3 days. This corresponds to one stoichiometric water in the sesquihydrate (Figure 3.3b). 

Therefore, the dehydration at 0% RH led to the formation of a hemihydrate (containing 0.5 

stoichiometric water). Thus, two different chemical environments of water molecules in 

[NORH+][LS-]·1.5 H2O was indicated, where one stoichiometric water is less strongly 

bonded than the 0.5 stoichiometric water.  

 

Figure 3. 3. Dynamic vapor sorption of [NORH+] [LS-]·1.5 H2O at 25 °C, a) sorption-

desorption isotherms, b) desorption kinetics from 70% to 0% RH (n = 1).  

The phase change from the sesquihydrate to hemihydrate is reversible, as the 

hemihydrate converted to the sesquihydrate when RH was ≥5% (Figure 3.3a).  There is 

only slight hysteresis between the sorption-desorption curves in the entire RH range.  The 

weight loss at 0% RH during the second desorption cycle is only about 1.6% when the 6 

h criterion was reached. Therefore, the shorter exposure time did not allow complete 

dehydration of the sesquihydrate to form phase pure hemihydrate. The water content in 

the sample exposed to 95% RH corresponds to that of a 2.5 hydrate (Figure 3.3a). 

However, additional data are required to establish it as a new hydrate phase. 
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Although the stability of two types of water was significantly different at 25 °C, no 

difference was observed at elevated temperature in TGA and DSC open pan, where a 

single dehydration event was observed at both conditions (Figure 3.4a). When a 

hermetically sealed DSC pan with a pinhole was used, two endotherms were observed in 

which the second peak could be attributed to the evaporation of released water, which did 

not readily escape the pan through the pinhole (Figure S3.2a). This implies the important 

effect of pan type on the DSC thermogram.128 TGA also shows significant weight loss at 

temperature above 150 °C (Figure S3.2b), suggesting dissociation or degradation of the 

[NORH+] [LS-] salt. 

 

Figure 3. 4. Thermal behavior of [NORH+][LS]-·1.5 H2O salt, a) DSC and TGA (with open 

pans), b) vtPXRD, c) hot-stage microscopic images (n = 1). 

 

During the vtPXRD experiment, the PXRD pattern of the sample remained 

essentially unchanged up to 55 °C. Therefore, dehydration of the sesquihydrate at or 

c) 

b) a) b) 
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below 55 °C did not lead to a noticeable change in crystal structure. However, partial loss 

of crystallinity at 60 °C and nearly complete loss of crystallinity at 70 °C (Figure 3.4b) 

suggest destruction of crystal lattice when dehydration occurred at higher temperatures, 

resulting in an amorphous [NORH+][LS-] salt.  Mechanistic understanding of the 

dehydration process would require monitoring dehydration kinetics under controlled RHs 

and temperatures, which was beyond the scope of this work. 129 The new peaks observed 

at 200 °C (Figure 3.4b) indicated recrystallization of the products after degradation of the 

molten [NORH+] [LS-].  

Hot stage microscopy (HSM) provided further insight into the thermal behavior of 

the [NORH+] [LS-]·1.5 H2O (Figure 3.4c, Video S3.2). On heating at the rate of 10 °C/min, 

a sesquihydrate crystal did not show any observable changes up to ~78 °C. This is 

consistent with the initially unchanged PXRD in the vtPXRD experiment (Figure 3.4b). 

Loss of birefringence of the crystal commenced at 80 °C and was completed at 89 °C, 

corresponding to the dehydration process. The amorphous phase formed a liquid drop at 

130 °C. Subsequently, recrystallization occurred during the temperature range of 158-

190 °C.  This is consistent with the vtPXRD data where the amorphous phase at 150 °C 

became partially crystalline at 200 °C (Figure 3.4b). The new crystalline phase melted at 

250 - 280 °C (Figure 3.4c).  Therefore, the HSM and vtPXRD data are in good agreement.  

However, a glass transition of the amorphous [NORH+] [LS-] salt was not detected by DSC 

(Figures 3.4a and S3.2a).  It is likely that the glass transition event was hidden by the 

dehydration endotherm.  In addition, the amorphous [NORH+] [LS-] prepared by drying 

[NORH+] [LS-]·1.5 H2O in a 100 °C oven for ~15 min, gained 6.5% weight when RH rose 

from 0% to 70% (Figure S3.3). Thus, the amorphous [NORH+] [LS-] is hygroscopic and 

water removed from crystal lattice was likely retained in the resulting amorphous phase.  

Consequently, the Tg of the “wet” amorphous phase is depressed and glass transition 
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event had already occurred as soon as the amorphous phase was formed.  In other words, 

the dehydration of [NORH+] [LS-]·1.5 H2O by heating in DSC led to a rubbery phase.  

Hence, a glass transition is not detected by DSC. 

To test this hypothesis, the sesquihydrate powder was heated in DSC from room 

temperature to 100 °C in an open pan to ensure complete drying of the amorphous phase 

(1st cycle).  The sample was then cooled to 0 °C (2nd cycle) and reheated to 110 °C (3rd 

cycle) (Figure 3.5). A Tg of 83.2 °C was observed in the 3rd cycle, confirming the 

hypothesis of depressed Tg of the resulting amorphous phase by water. When amorphous 

[NORH+][LS-], prepared by heating the sesquihydrate in 100 °C oven for ~15 min, was 

heated in DSC from room temperature to 150 °C, a glass transition was observed at 

~50 °C (Figure S3.4).  This lower Tg, compared to the dry amorphous [NORH+][LS-], likely 

occurred because the amorphous sample absorbed some water (up to 4.5%) from the 

environment (RH = 50%), despite the short exposure time (~10 min), before DSC 

experiment was run.   
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Figure 3. 5. DSC of [NORH+] [LS-]·1.5 H2O powder with cycles of 1) heating at 10 °C/min 

from 25 °C to 100 °C; 2) cooling at 20 °C/min to 0 °C; 3) heating at 50 °C/min to 110 °C 

(n = 1). 

3.4.4 Reduced solubility and intrinsic dissolution rate of the precipitate  

At 23 °C, measured solubility values of NOR in pH 1.2 (21067 ± 578 μg/mL) and 

pH 6.8 (581 ±11 μg/mL) media (Table S3.2) are similar to those reported previously.130  

The equilibrating solid phases were different from the initial NOR powder, possibly 

corresponding to a HCl salt at pH 1.2 and a phosphate salt monohydrate at pH 6.8.131  

[NORH+] [LS-]·1.5 H2O, on the other hand, was phase stable in both conditions and the 

measured solubility was 179 ± 50 μg/mL at pH 6.8 and 136 ± 20 μg/mL at pH 1.2 (Table 

S3.2). The comparable solubility values of [NORH+] [LS-]·1.5 H2O at pH 1.2 and 6.8 is 

consistent with the expected pH independence of solubility of a salt, provided there is no 

common ion effect.  The solubility of [NORH+] [LS-]·1.5 H2O was 31% and 0.6% of that of 

NOR at pH 6.8 and pH1.2, respectively. At the same temperature, the IDR of [NORH+] 

[LS-]·1.5 H2O was around 8% and 0.7% of those of NOR at pH 6.8 and 1.2, respectively 

(Figure 3.6, Table S3.2). The lower IDR of [NORH+] [LS-]·1.5 H2O is qualitatively consistent 

with the lower solubility in both media.  At pH 1.2, the IDR and solubility of [NORH+] 

[LS-]·1.5 H2O were both 0.6-0.7% of those of NOR.  This suggests that the significantly 

reduced IDR of [NORH+] [LS-]·1.5 H2O was mainly driven by its lower solubility at pH 1.2.  

However, at pH 6.8, the IDR and solubility of [NORH+] [LS-]·1.5 H2O were 8% and 31% 

those of NOR, respectively. The different ratios between solubility and IDR may reflect the 

more complete phase conversion to a less soluble solid phase during the solubility 

measurement (48 hr) than that during IDR measurement (~4 min).  However, it should be 

cautioned that the relatively large errors in some of the experimentally determined IDR 

and solubility values could also affect the calculated ratios (Table S3.2).  In any case, the 



65 
 

reduced solubility and IDR of [NORH+] [LS-]·1.5 H2O highlight the risk of lower 

bioavailability when using SLS in the formulation of NOR.  

 

 

Figure 3. 6. Intrinsic dissolution test of NOR and [NORH+] [LS-]·1.5 H2O salt in a) 0.1 M 

sodium phosphate buffer at pH 6.8 and b) HCl solution at pH 1.2 (n = 3). Compared to 

NOR, the IDR of [NORH+] [LS-]·1.5 H2O was significantly reduced in both media. 

In addition to the lower solubility, the reduced dissolution of [NORH+][LS-]·1.5 H2O 

may also have resulted from its higher hydrophobicity relative to NOR. Higher 

hydrophobicity of particle surfaces often leads to reduced wetting by aqueous media, 

which slows dissolution since wetting is a prerequisite for dissolution. 3, 132  In fact, despite 

the presence of the surface active LS-, [NORH+][LS-]·1.5 H2O is more hydrophobic than 

NOR as suggested by its larger contact angles than those of NOR by both acidic (pH 1.2) 

and nearly neutral (pH 6.8) media (Figure 3.7).  Therefore, the slower dissolution rate of 

[NORH+][LS-]·1.5 H2O compared to NOR is a combined effect of lower solubility and less 

wetting.  
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Figure 3. 7. Wettability of NOR, SLS, and [NORH+] [LS-] ·1.5 H2O to 0.1M pH 6.8 

phosphate buffer (Solid square) and pH 1.2 HCl solution (open circles). a) time course of 

contact angle (n = 3), b) drop images. 

Interestingly, the contact angle of SLS is only slightly lower than that of 

[NORH+][LS-]·1.5 H2O and significantly higher than that of NOR under both acidic and 

neutral conditions. This result is counterintuitive as low contact angles are expected based 

on the very high solubility of SLS in water and aqueous media. The PXRD pattern of a 

compressed pellet clearly suggested preferred orientation of SLS (Figure S3.5), where the 

dominating peak at around 7o two theta corresponds to the (6 0 0) plane.  Therefore, the 

high hydrophobicity, indicated by the high contact angle, suggests that the hydrocarbon 

tail of LS- is enriched at the surfaces of compressed pellet.   

3.4.5 Structure – properties relationship of the [NORH+] [LS-]·1.5 H2O  

The crystal structure of the [NORH+] [LS-]·1.5 H2O belongs to the centrosymmetric 

triclinic P1̅ space group (Table S3.3). The asymmetric unit consists of two NORH+, two 

LS−, and three H2O molecules, confirming the 1.5 stoichiometry of water, i.e., 

[NORH+][LS-]·1.5 H2O (Figure 3.8). Though the two NORH+ cations (NORH+
(1) and 

NORH+
(2)) have similar conformation (Figure S3.6a), significantly different conformations 

a) b) 
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were observed between the two LS- anions (LS-
(1) and LS-

(2)), where the LS-
(2) has a more 

twisted carbon chain compared to that of the LS-
(1) (Figure S3.6b).   

 

Figure 3. 8. Asymmetric unit of [NORH+][LS-]·1.5 H2O  

IR and Raman spectroscopy, surface tension measurement and solubility 

determination were used to probe the impact of the drug-SLS complexation on 

pharmaceutically important physical properties.8, 91-92, 94  The availability of the crystal 

structure offers an opportunity to examine the intermolecular interactions between NORH+ 

and LS- that underlies such property modifications.  In the [NORH+][LS-]·1.5 H2O crystal, 

LS-
(1) interacts with two NORH+ cations via charge assisted hydrogen bonds of N+-H···O--

S (2.742 Å) and N+-H…O=S (2.928 Å) (Figure 3.8). The LS-
(2) anion is connected to water 

molecules (H2O (1) and H2O (3)) via O-H···O--S (2.710 Å) and O-H···O=S (2.817 Å) 

hydrogen bonds.  The ionized piperazine nitrogen in NORH+
(1) forms N+-H···O hydrogen 

bonds with LS-
(1) and H2O (1) , while that in NORH+

(2) forms N+-H···O hydrogen bonds with 

LS-
(1), NORH+

(1) and H2O(2) (Figure 3.8). 

The [NORH+][LS-]·1.5 H2O crystal consists of stacked layers running parallel to the 

ab plane (Figure 3.9a).  Each layer exhibits a sandwiched structure, where polar functional 

groups, including ionized piperazine, sulfate, water, and carboxylic acid interacting 

through a number of hydrogen bonds, are located between two hydrocarbon layers. This 
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structure explains the poor wettability and very low solubility of [NORH+][LS-]·1.5 H2O in 

aqueous media.    

 

Figure 3. 9. a) Structure of one layer in the [NORH+][LS-]·1.5 H2O crystal, and the energy 

framework of [NORH+][LS-]·1.5 H2O crystal viewed into b) unit cell a axis and c) unit cell b 

axis. The radius of cylinder represents the relative strength of intermolecular interaction 

energy, blue cylinder implied attractive interaction and the orange cylinder indicate repulsive 

interactions. 

 

a) 

b) c) 
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3.4.6 Energy framework of the [NORH+] [LS-]·1.5 H2O  

The energy framework of [NORH+][LS-]·1.5 H2O shows that the molecules within 

the stacking layers interact with each other strongly (Table S3.4, Figures 3.9b, 3.9c).  This 

is consistent with the presence of strong ionic interaction, hydrogen bond, and π-π 

stacking among molecules in the polar region of the layers. In contrast, interlayer 

interactions are only weak dispersive forces between hydrocarbon tails of LS-.  Therefore, 

it is energetically favored to have the (0 0 1) facet of the [NORH+][LS-]·1.5 H2O crystal 

covered with hydrocarbon chains, which makes this crystal hydrophobic.  This is in 

agreement with the (0 0 1) being the major facet of the predicted crystal morphology 

(Figure S3.9).133  It also explains the poor wetting behavior of [NORH+][LS-]·1.5 H2O by 

aqueous media (Figure 3.7).   

The strong interactions in the stacking layers potentially leads to a higher lattice 

energy than NOR.  Such higher lattice energy disfavors the solubility of [NORH+][LS-]·1.5 

H2O.  However, the different solvation energy and molecular hydrophobicity (indicated by 

LogD) due to the lauryl sulfate in [NORH+][LS-]·1.5 H2O also plays a role. 25, 134-135  A 

detailed discussion of these effects is outside the scope of this work. 

The physical stability of the sesquihydrate salt can also be explained by 

considering the interaction energy of each water molecule in the crystal.  Among the three 

water molecules in the asymmetric unit (Figure 3.8), the H2O(1) connects with two NORH+ 

cations and one LS- anion via classical N-H+···O and O-H···O hydrogen bonds (Figure 

3.10a). However, H2O(2) and H2O(3) form a tetranuclear planner structure through O-H···O 

hydrogen bonds (Figure 3.10b). The tetranuclear structure of water molecules is 

surrounded by NORH+ cations and LS- anions via N-H+···O and O-H···O- hydrogen bonds. 

The removal of water molecules from the crystal lattice requires -128.3 kJ/mol, -87.8 

kJ/mol and -101.1 kJ/mol energy for H2O(1), H2O(2) and H2O(3), respectively (Figure S3.8). 
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Thus, the relative stability of three water molecules follows the order: H2O(1) > H2O(3) > 

H2O(2). The total water-host interaction energy of H2O(1) (-128.3 kJ/mol) is even higher than 

that of the stable lactose monohydrate (-114.5 kJ/mol).  This explains the good stability of 

the hemihydrate even at 0% RH during DVS experiment at 25 °C (Figure 3.3).  To put 

things in perspective, the total water bonding energy is -76.3 kJ/mol and -83.4 kJ/mol in 

unstable theophylline monohydrate and p-hydroxybenzoic acid monohydrate.136 Since the 

bonding energy (-87.8 kJ/mol) of H2O(2) with surrounding molecules is close to those of 

unstable hydrates, its removal from crystal lattice at 0% RH was possible at 25 °C  .  

Because of the cooperative nature of the tetra water ring formed by H2O(2) and H2O(3), 

H2O(3) can also be easily removed after the removal of H2O(2).  Therefore, both water 

molecules are removed in a single step (Figure 4a), despite the higher bonding energy for 

H2O(3).   

 

Figure 3. 10. Different molecular environments of water in the [NORH+] [LS-]·1.5 H2O  
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3.5 Conclusion  

The elucidation of the drug-surfactant salt crystal structure of [NORH+][LS-]·1.5 

H2O provided useful insight into the low solubility and dehydration behaviors. The 

sandwiched molecular layer structure of hydrophobic surfaces and polar core explains the 

poor wetting and low solubility of [NORH+][LS-]·1.5 H2O. The crystal energy framework 

offers mechanistic insight into the physical stability of [NORH+][LS-]·1.5 H2O with respect 

to RH.  

3.6 Accession Code 

CCDC 1949137 contains the supplementary crystallographic data for 

[NOR][LS]1.5 H2O.These data can be obtained free of charge via 

www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or 

by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge 

CB2 1EZ, UK; fax: +44 1223 336033. 

3.7 Support information  

Table S3. 1. Water content determination by Karl Fischer Titration (KFT) method 

No. Water Content (%) 

1 4.64 

2 4.61 

3 4.59 

4 4.53 

5 4.47 

6 4.49 

Average 4.55 
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Table S3. 2. Solubility and intrinsic dissolution rate (IDR) of NOR and [NORH+] [LS-]·1.5 

H2O at 23 °C (n=3). 

 IDR (μg‧mL-2‧S-1) Solubility (μg/mL) 

pH 1.2 pH 6.8 pH 1.2 pH 6.8 

[NORH+] [LS-]·1.5 H2O 0.7 ± 0.3 0.2 ± 0.1 136 ± 20 179 ± 50 

NOR 98 ± 10 2.4 ± 0.5 21067 ± 578 581 ±11 
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Table S3. 3. Crystallographic information table for [NORH+][LS-]·1.5 H2O 

Formula C28H47FN3O8.5S 

Molecular weight 612.749 

Crystal system Triclinic 

Space group P-1 

a (Å) 11.6164 (11) 

b (Å) 14.2842 (13) 

c (°) 20.0986 (18) 

α (°) 84.266 (3) 

β (°) 89.012 (4) 

γ (°) 68.014 (3) 

Volume (Å3) 3076.24 

Z/Z’ 2/1 

ρcalc (g/cm3) 1.323 

F (000) 1316.0 

Temperature(K) 100 

R1 0.0662 

wR2 0.1713 

Rint 0.1171 

Goodness-of fit 1.031 

Maximum and minimum residual electron density 

(e/Å3) 

0.945 and -0.752 

CCDC No. 1949137 
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Table S3. 4. Intermolecular interaction energies estimated using B3LYP-D2/6-31G(d,p) 

dispersion-corrected DFT model.  Both the total energy (E(tot)) and electrostatic (E(ele)), 

polarization (E(pol)), dispersion (E(dis)), and exchange-repulsion (E(rep)) components are 

listed (kJ/mol).  R indicated the distance between centers of mass of the pair of molecules 

(Å). 

 

 Symop R Eele Epol Edis Erep Etot 

 - 8.52 -10.1 -1.6 -3.5 4.6 -12.1 

 - 2.92 -18.9 -4.7 -3.0 18.8 -14.5 

 - 5.40 2.4 -3.5 -5.0 1.9 -3.2 

 -x, -y, -z 4.35 -3.7 -0.1 -0.4 0.0 -4.3 

 - 2.77 -46.2 -9.3 -3.9 46.4 -30.4 

 - 6.87 -9.9 -7.0 -6.3 5.0 -18.1 

 - 7.51 -46.4 -18.3 -5.4 40.7 -42.2 

 - 5.35 -16.4 -3.7 -7.1 3.0 -24.4 

 - 8.09 -58.6 -21.1 -4.7 55.2 -47.6 

 - 6.68 1.4 -0.8 -4.3 2.8 -1.2 

 - 8.50 23.6 -3.7 -1.8 0.2 20.8 

 - 8.17 -34.9 -5.7 -5.0 41.4 -19.9 
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 - 3.90 -2.7 -0.3 -1.0 0.2 -3.8 

 - 11.76 2.0 -1.0 -2.2 0.7 -0.1 

 - 6.81 -88.2 -31.0 -10.5 78.7 -76.8 

 - 7.99 -2.0 -0.6 -1.2 0.1 -3.5 

 -x, -y, -z 3.67 -6.8 -0.4 -1.1 0.3 -8.2 

 - 6.53 -81.9 -25.1 -9.3 53.9 -80.0 

 - 8.01 -25.9 -5.3 -6.3 33.6 -16.0 

 - 8.69 2.8 -0.7 -1.8 0.6 1.2 

 - 8.59 -8.5 -5.3 -1.9 0.8 -14.0 

 - 7.42 23.5 -4.2 -3.1 0.6 19.4 

 - 5.57 5.6 -2.9 -3.7 1.7 1.6 

 x, y, z 14.28 96.9 -7.4 -9.3 5.0 92.0 

 - 16.98 50.3 -0.6 -20.1 14.4 44.0 

 - 15.48 -87.2 -8.5 -8.7 4.8 -103.1 

 -x, -y, -z 6.71 86.7 -9.0 -49.7 33.0 62.1 

 - 5.30 97.1 -17.8 -42.2 27.3 69.6 

 - 9.12 94.8 -2.7 -12.0 3.6 90.1 

 - 14.79 -109.1 -15.7 -9.4 5.2 -132.0 
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 - 5.20 -344.4 -77.2 -44.1 41.4 -434.1 

 - 5.16 -145.5 -13.3 -32.2 15.9 -181.8 

 - 8.59 -8.5 -5.3 -1.9 0.8 -14.0 

 - 8.27 101.0 -4.2 -20.2 9.0 91.7 

 - 6.33 180.8 -26.8 -25.3 15.0 158.6 

 - 17.48 68.4 -7.6 -7.0 2.7 62.2 

 - 8.13 -331.0 -68.5 -23.9 25.5 -405.7 

 - 6.68 1.4 -0.8 -4.3 2.8 -1.2 

 - 7.51 -46.4 -18.3 -5.4 40.7 -42.2 

 - 8.09 -58.6 -21.1 -4.7 55.2 -47.6 

 - 10.99 -163.8 -30.3 -8.1 11.0 -195.9 

 - 11.86 -183.5 -22.3 -5.0 4.9 -211.8 

 -x, -y, -z 6.30 82.9 -11.0 -25.0 8.0 62.7 

 -x, -y, -z 14.46 53.7 -1.6 -18.4 6.2 43.4 

 - 13.49 -357.0 -56.9 -13.2 19.1 -419.2 

 - 9.11 -181.2 -44.2 -23.0 23.6 -229.7 

 - 3.57 -158.8 -51.9 -51.5 35.6 -229.2 

 - 13.01 -406.6 -79.6 -17.2 67.4 -462.1 
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 - 14.74 -81.0 -17.0 -13.4 8.4 -104.8 

 - 11.76 2.0 -1.0 -2.2 0.7 -0.1 

 -x, -y, -z 21.01 43.6 -0.3 -1.7 0.0 44.5 

 -x, -y, -z 5.91 9.1 -22.4 -83.7 52.8 -47.2 

 -x, -y, -z 10.34 149.8 -19.3 -12.6 3.2 135.1 

 - 10.18 51.0 -5.8 -11.8 8.7 44.7 

 - 9.98 235.4 -40.7 -19.3 7.2 206.4 

 - 5.57 5.6 -2.9 -3.7 1.7 1.6 

 - 8.52 -10.1 -1.6 -3.5 4.6 -12.1 

 x, y, z 14.28 61.8 -9.4 -2.3 0.0 56.3 

 - 3.79 236.5 -47.3 -101.6 56.6 161.5 

 - 8.01 -25.9 -5.3 -6.3 33.6 -16.0 

 - 6.87 -9.9 -7.0 -6.3 5.0 -18.1 

 - 14.04 25.8 -26.1 -7.8 25.9 17.1 

 - 6.53 -81.9 -25.1 -9.3 53.9 -80.0 

 - 13.38 80.6 -22.3 -7.9 9.8 67.8 

 - 8.83 246.7 -21.0 -9.8 2.7 238.5 

 - 7.99 -2.0 -0.6 -1.2 0.1 -3.5 
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 - 5.40 2.4 -3.5 -5.0 1.9 -3.2 

 - 8.50 23.6 -3.7 -1.8 0.2 20.8 

 x, y, z 14.65 57.3 -8.6 -2.1 0.0 52.4 

 - 7.42 23.5 -4.2 -3.1 0.6 19.4 

 -x, -y, -z 10.19 73.9 -11.6 -12.3 3.3 60.8 

 - 8.69 2.8 -0.7 -1.8 0.6 1.2 

 - 5.35 -16.4 -3.7 -7.1 3.0 -24.4 

 - 6.81 -88.2 -31.0 -10.5 78.7 -76.8 

 - 8.17 -34.9 -5.7 -5.0 41.4 -19.9 
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Figure S3. 1. Precipitation from a NOR solution at pH 1.2 induced by adding SLS  

 

 

Figure S3. 2. Solution NMR data of the precipitate.  Experiment was performed in CD3OD 

on a Bruker Avance III HD nanobay AX-400 spectrometer at 400 MHz equipped with a 5 

mm BBO SmartProbe. 
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Figure S3. 3. Thermal behavior of the precipitate a) DSC by hermetically sealed pan 

with a pinhole, and b) TGA 

 

Figure S3. 4. DVS of amorphous [NORH+] [LS-] salt from 0 – 70% RH at 25 °C 

 

a) b) 
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Figure S3. 5. DSC of dry amorphous [NORH+] [LS-] salt at a heating rate of 30 °C/min 

 

Figure S3. 6. PXRD of compressed SLS ribbon for contact angle test. 
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Figure S3. 7. Conformation of a) NORH+ cations and b) LS- anions in asymmetric unit of 

[NORH+][LS-]·1.5 H2O 

 

 

Figure S3. 8. Water - host molecules interaction. 

a) b) 

H
2
O (1) H

2
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Figure S3. 9. Predict crystal morphology of [NORH+][LS-]·1.5 H2O based on attachment 

energy calculation. 
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Chapter 4 

Pharmaceutical lauryl sulfate salts – Prevalence, formation rules and formulation 

implications 
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4.1 Synopsis 

 The anionic surfactant sodium lauryl sulfate (SLS) is known to deteriorate the 

dissolution of some drugs by forming poor soluble lauryl sulfate (LS) salts.  However, 

because of the perception of its infrequent occurrence, this phenomenon is usually not 

investigated in drug development until unexpected dissolution slowdown is encountered.  

This work demonstrates the prevalence of this phenomenon, where 14 out of 18 

compounds with diverse chemical structures, including salt of basic drugs, a quaternary 

ammonium salt, organic bases, and zwitterionic molecules, precipitated as LS salts from 

a solution when mixed with SLS. Although no precipitation was observed for the other 4 

compounds, their FTIR spectra suggested 3 of them had intermolecular interactions with 

SLS when dried from a solution. Along with the 5 other compounds reported in the 

literature, the prevalence of this phenomenon is demonstrated. The occurrence of 

precipitation is thermodynamically driven by the relative difference between the ion 

product in solution (Q) and the solubility product of the lauryl sulfate salt (Ksp). SLS, as a 

surfactant, also affects precipitation kinetics through influencing the interfacial tension of 

nuclei of the insoluble salt.  When a potential issue associated with the LS salt is identified, 

effective mitigation strategies should be proactively designed and implemented to alleviate 

its possible negative impact on drug dissolution.  
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4.2 Introduction  

Poor aqueous solubility of a drug is a major challenge facing the development of 

an oral solid dosage form because it causes slow release of drug and limits the 

bioavailability.  Formulation approaches to address this problem include 1) use of more 

soluble solid forms, cocrystal, salts, and amorphous solid dispersions; 2) use of 

complexation agents, e.g., cyclodextrin; 3) enhancement of dissolution rate by reducing 

particle size or improving wetting. 4  The wettability enhancement of hydrophobic drug 

particles is commonly achieved by incorporating in the formulation a surfactant, which 

reduces interfacial tension between the drug solid and water. In addition to improving 

wetting, surfactants can also deliver other benefits, such as solubilization through micelle 

formation, stabilization of emulsions, and enhancement of absorption by facilitating drug 

permeability through the gut wall. 4, 112  

Sodium lauryl sulfate (SLS) is an anionic surfactant, consisting of a negatively 

charged lauryl sulfate group with a hydrophobic twelve carbon chain (LS -) and sodium 

cation.  SLS is a commonly used additive in many domestic cleaning products, processed 

foods, personal hygiene and cosmetics products, as well as in pharmaceuticals. 74, 137-138 

Although the use of SLS in solid oral dosage form is intended to improve drug dissolution, 

the negatively charged LS- can form insoluble salts with the positively charged drug 

molecules in an acidic environment. 5-10, 12, 95   The precipitation of the insoluble LS salt 

both reduces the surface active function of SLS and deteriorates the dissolution of drugs, 

5-10, 95 which may lower the bioavailability and therapeutic effect of the drug.  When in vitro 

dissolution experiments are performed in a SLS containing medium, the inadvertent 

formation of an insoluble LS salt causes slower dissolution of the drug, which may sound 

a false alarm and mislead formulators in their efforts to optimize formulation as human 

gastrointestinal tract (GI tract) is free of SLS.  This potential pitfall, however, has not 
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attracted the attention of most formulators despite a few published examples of this 

phenomenon. 5, 9-10, 12, 28, 91, 95   One possible reason is the impression that such insoluble 

LS salts rarely form.  

Given the straightforward acid-base reaction underlying the formation of insoluble 

LS salts, we expected that many basic drugs can form LS salt, provided they are 

protonated in an acidic environment, such as the stomach.  Hence, we set out to examine 

the prevalence of such LS salts, along with the efforts to better understand their formation 

rules to inform effective mitigation strategies.  

4.3 Materials and Methods 

4.3.1 Materials 

Sodium lauryl sulfate was purchased from Ward’s Science (Rochester, NY). 

Hydrochloride acid aqueous solution (36.5%−38%, VWR international, Eagan, MN) was 

ACS reagent grade. A total of 18 compounds with diverse chemical structures used in this 

work include salt of bases (isoniazid HCl, diphenhydramine HCl, metformin HCl, caffeine 

HCl, nicotinamide HCl, ligustrazine HCl, leucine HCl), quaternary ammonium salt 

(berberine Cl-), bases (4-Aminobenzoic, lamivudine, ritonavir, erlotinib, cytosine, 

fluorocytosine), and zwitterionic compounds (norfloxacin, levofloxacin, fleroxacin, 

ciprofloxacin ).  They were obtained from respective suppliers.  

4.3.2 Methods 

4.3.2.1 Precipitation of LS salt 

 The driving force for precipitation of any LS salt is the relative difference between 

the solubility product of the salt and the ion product (Q) in solution.  For a given salt, a 

higher Q value leads to a greater driving force for precipitation.  To maximize the chance 

of observing precipitation of LS salts, saturated solutions of all model compounds, except 

berberine chloride, in pH 1.2 HCl solution were prepared to maximize the concentrations 



88 
 

of respective cations.  Berberine chloride was saturated in water since berberine carries 

a permanent positive charge and the dissociation of this quaternary ammonium salt is pH 

independent. Its solubility is depressed in HCl solution due to the common ion effect.  To 

2 mL of each of the saturated solution, 0.2 mL SLS aqueous solution (100 mM) was added.  

The mixed solution was placed on the bench top undisturbed for visual observation of 

possible precipitation.  Water was used to prepare SLS solution to avoid its degradation 

in a low pH (< 2.5) solution. 139   However, the LS moiety is chemically stable in the phase 

separated LS salt precipitate. 

4.3.2.2 Solubility determination for p-ABA lauryl sulfate salt 

Precipitated p-ABA lauryl sulfate salt, [PABAH+][LS-], was recovered and 

suspended in deionized water for 72 hr at room temperature. After filtration with a 0.45 µm 

polypropylene membrane, the total concentration of PABA in the supernatant was 

determined by UV-Vis spectrometry (DU® 530 UV-Vis spectrophotometer; Beckman, 

Brea, CA) using a separately constructed calibration curve. The concentration of ionized 

PABA, [PABAH+], was calculated using the Henderson-Hasselbalch equation from the 

total concentration and the measured solution pH with a pH meter (Orion Star A211 pH 

Meter, Thermo Scientific, Waltham, MA). The [LS-] concentration cannot be directly 

measured by UV due to the absence of a chromophore.  It is assumed to be the same as 

the measured total concentration of PABA.   

4.3.2.3 1H NMR study for [PABAH+][LS-] 

The [PABAH+][LS-] was recovered and suspended in D2O along with sodium salt 

of deuterated trimethylsilylpropanoic acid (TMSP-d4) as an internal standard at a 

concentration of 5.12 mM. After stirring for 72 hr at room temperature, the supernatant 

was passed through a 0.45 µm polypropylene syringe membrane and the concentration 

of PABA in the filtrate was determined using a NMR spectrometer (Varian 400 MHz, Varian 
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Inc., CA) at 25 °C. The spectrometer is equipped with a Varian NMR System console and 

a Varian 7600-AS automatic sample change system. Data was acquired with an 

acquisition time of 2.6 s and a relaxation delay of 1.0 s.  The NMR spectra were analyzed 

by MestReNova software (version 14.2.1 – 27684, Varian Inc., CA). 

4.3.2.4 Solutions with various ion products (Q) by varying either [LS-] or [PABAH+] 

at a constant pH 

A stock solution of PABA was prepared by dissolving ~100 mg PABA powder in 

15 mL pH 1.2 HCl solution, the solution pH was shifted to 1.75 after PABA was completely 

dissolved.  This solution was diluted with pH 1.75 HCl solution to obtain various 

concentrations of PABA. A stock solution of SLS was prepared by dissolving ~575.4 mg 

SLS powder into 20 mL DI water to obtain a concentration of ~9.98 mM.  This stock SLS 

solution was diluted with DI water to obtain SLS solutions with various concentrations.  

Then, either 1 mL PABA stock solution ([PABAH+] ~ 35.87 mM) was mixed with 0.1 mL 

SLS solutions with various concentration, or 0.1 mL SLS stock solution ([LS-] ~ 9.07 mM) 

was mixed with 1 mL PABA solutions of various concentrations. Additionally, two more 

[LS-] stock solutions at 0.4 mM or 0.2 mM were prepared and mixed with various 

concentrations of PABA solutions using a similar process. 

4.3.2.5 Solutions with varying Q values prepared by adjusting pH of a PABA solution   

Blank media with different pHs (0.91-2.88) were prepared by diluting concentrated 

HCl with DI water.  A PABA solution in DI water (29.17mM, pH = 3.56) was mixed with the 

various HCl solutions at 2:1 volume ratio (PABA solution:HCl solution).  In this way, 

solutions having the same total concentration of PABA but different pHs (1.66 - 3.48) were 

obtained.  In these solutions, [PABAH+] differed because of the different extents of 
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ionization caused by pH variation.  To 1 mL of each of these solutions, 0.1 mL SLS solution 

in DI water (11 mM) was added to attain different Q values. 

4.3.2.6 Determination of CMC of SLS in pH 1.75 HCl solution 

A SLS stock solution (20 mM) in pH 1.75 HCl solution was prepared. The stock 

solution was diluted consecutively with a blank pH 1.75 HCl medium to different 

concentrations.  The surface tension of these SLS solutions was immediately measured 

with the Wilhelmy plate method using a force tensiometer (K100, KRÜSS GmbH, 

Germany). It was reported that for a 20 mM SLS solution, ~ 7% was hydrolyzed in 30 min 

when medium pH is 2.09 at 25 °C, 140 therefore, due to the inevitable acid-catalyzed 

hydrolysis of SLS, especially for the high SLS concentration (20 mM) and high acidity (pH 

1.75) medium, the surface tension measurement in this study was conducted immediately 

after the SLS solution was prepared to minimize the degradation.  The entire process was 

finished within 30 min. Furthermore, the trace impurities in the commercially available SLS 

affected the measurement of CMC such that the measured surface tension did not reach 

a plateau with increasing SLS concentration. In this study, CMC was taken as the 

minimum in the surface tension - SLS concentration profile. 141-142   

4.3.2.7 Nucleation induction time  

Precipitation in a supersaturated solution was monitored using a fiber optic UV-Vis 

fiber-optic probe (Ocean Optics, Dunedin, FL) at 800 nm with 1 s sampling intervals, the 

wavelength was chosen to monitor the nucleation kinetics.  At this wavelength, these 

model compounds do not have absorption in solution but particles scattered light to cause 

reduced light transmission.  Induction time was taken as the intersection point between 

the linear regression line of the rising portion of the curve and the baseline.  
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4.3.2.8 Preparation of soluble lauryl sulfate salts 

Some compounds, e.g., fluorocytosine, caffeine HCl, nicotinamide HCl, 

ligustrazine HCl, and leucine HCl, did not precipitate when mixed with SLS as described 

above, suggesting a high solubility of their LS salts, if any. To prove the existence of ion-

ion interaction between the cations and LS- anion in these cases, 5 mL of concentrated 

(0.5 mM) solutions containing each of the compounds and SLS were dissolved in DI water.  

Then, one to two drops of concentrated HCl solution were added to attain a pH at least 2 

units below pKa to ensure the complete protonation of the compound. Precipitation 

occurred immediately in the solution of fluorocytosine and SLS when the concentrated 

HCl was added. No precipitation occurred after adding the concentrated HCl solution for 

the other four compounds.  These solutions were then allowed to evaporate quickly (in 20 

min) in large open petri dishes on bench top. The fast evaporation minimized possible 

degradation of SLS at a low pH. 139  The dried solids were characterized using a Fourier-

transform infrared (FT-IR) spectrometer (Nicolet iS50; Thermo Scientific, Waltham, MA) 

with a built-in diamond attenuated total reflection. The detector was DLaTGS. A total of 32 

scans were collected and averaged for each sample. IR spectra in the range of 4000-400 

cm−1 at a resolution of 2 cm−1 were processed using the software OMNIC 9.2. 

4.4 Results and Discussion 

4.4.1 Fast screening results of the pharmaceutical lauryl sulfate  

Out of the 18 compounds tested in this work, precipitation occurred in 14 cases 

when mixed with SLS at pH 1.2 (Figure 4.1 and Table 4.1). These precipitants were 

positively identified as simple LS salts since their solution in MeOD contained both LS - 

and corresponding drug cation based on solution NMR data. In the case of florocytosine, 

the solid was a florocytosine – florocytosine lauryl sulfate salt cocrystal, which was 

confirmed by its single crystal structure (unpublished data).   Regardless of the nature of 
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the precipitate, these compounds risk the precipitation of less soluble LS salts in stomach, 

if their formulations contain SLS.  This may negatively affect their dissolution performance. 

The precipitation of these 14 compounds can be explained from the acid-base reaction 

in acidic solutions.  The calculated pKa of lauryl sulfuric acid is -3.29.  Thus, for most drugs 

with a basic group having a pKa 4 units above it, i.e., pKa > 0.71, salt formation with LS- 

can likely happen.  If the LS salts are poorly soluble, precipitation occurs. 5-10, 109 The list 

of compounds studied in this work represent four distinct groups, i.e., salts of basic drugs, 

quaternary ammonium salt, bases, and zwitterionic drugs, with pKa in the range of 1.8-

11.27 (Figure 4.1 and Table 4.1).    

 

Figure 4. 1.Precipitation of representative model drug solutions upon mixing with a SLS 

solution, base (ritonavir), salt of a basic drug (diphenhydramine HCl), zwitterionic drug 

(norfloxacin) and quaternary ammonium salt (berberine+ Cl-). 
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Table 4. 1. A list of 18 model drugs and their precipitation tendency with SLS in this study.  

The choice of pH 1.2 HCl solution as a medium for examining the tendency to form 

an LS salt is to simulate the acidity of the gastric fluid. Upon mixing SLS with the saturated 

No. Compounds  pKa 

Precipitation visually 

observed 

Interaction by 

FTIR 

1 isoniazid 3.79 and 11.27 Y  

2 diphenhydramine 8.87 Y  

3         metformin 6 2.8 and 11.5 Y  

4 caffeine HCl 0.7 and 14.0 N Y 

5 nicotinamide HCl 3.63 N N 

6 ligustrazine HCl 2.19 N Y 

7 leucine HCl 9.60 N Y 

8 berberine Cl
-
 NA Y  

9 4-aminobenzoic acid 2.38 Y  

10 lamivudine 4.3 Y   

11 ritonavir 8 1.8 and 2.6 Y  

12 erlotinib 4.62 Y  

13 cytosine 4.45 Y   

14 fluorocytosine 3.26 Y  

15 norfloxacin 7 8.68 Y   

16 levofloxacin 6.02 Y   

17 fleroxacin 6.06 Y   

18 ciprofloxacin 8.74 Y   
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solution at pH 1.2, precipitation occurred immediately in 14 compounds (Figure 4.1 and 

Table 4.1), which is ~76.4% of the 18 compounds. Along with the 5 more cases reported 

in the literature, 5, 9-10, 95 the prevalence of this phenomenon calls for more attention when 

using SLS in an oral solid formulation.  To that end, a clear understanding of rules 

underlying LS salt formation is helpful to effectively addressing potential problems that 

may be caused by unexpected precipitation of an insoluble LS salt during dissolution.  This 

is addressed in the following sections. 

4.4.2 Thermodynamic driving force - ion product (Q) vs solubility product (Ksp) 

The nature of the observed precipitation is the formation of an insoluble salt 

between LS- anions and drug cations. For this reaction, the driving force for precipitation 

is the degree of supersaturation defined by the ion product (Q) relative to solubility product 

(Ksp), where precipitation tends to occur only when Q > Ksp. The critical degree of 

supersaturation required for the precipitation, i.e., the width of the metastable zone, is 

system dependent. 143-145   

The model compound, p-aminobenzoic acid (PABA), used in this work is a 

zwitterionic compound with pKa of 2.38 (-NH2 group) and 4.85 (-COOH group). In an acidic 

environment, the -NH2 group is protonated to form -NH3
+, which reacts with LS- to form 

the [PABAH+][LS-] salt.  The 1:1 stoichiometry is expected based on charge balance and 

was verified by solution NMR data (Figure 4.2). 
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Figure 4. 2. 1H NMR spectrum of [PABAH+][LS-] salt with TMSP-d4 as an internal standard.  

Based on the 1H NMR spectrum (Figure 4.2), the 1:1 stoichiometry of 

[PABAH+][LS-] was confirmed using equation (1). The concentration of the internal 

standard of TMSP-d4 (5.12 mM number of H = 9) was used to determine the concentration 

of both [PABAH+] and [LS-]. 

𝐶[𝑃𝐴𝐵𝐴𝐻+]

𝐶[𝐿𝑆−]
=  

𝐼[𝑃𝐴𝐵𝐴𝐻+]∗𝐻[𝐿𝑆−]

𝐼[𝐿𝑆−]∗𝐻[𝑃𝐴𝐵𝐴𝐻+]

                                                   (1) 

where I is signal intensity (integral), H is the number of protons in a functional group, C is 

concentration.  

For the mono-salt, Ksp is [PABAH+]*[LS-], which was 42.05 ± 4.22 mM2 in D2O. This 

value is much higher than that determined in H2O (2.44 ± 0.21 mM2) by a UV method using 

equation (2).  The large difference is attributed to the different solvents. As Ksp determined 

in H2O is more relevant to this work, the 2.44 ± 0.21 mM2 is used to predict the solubility 

SLS(-CH
2
-CH

3
) 

SLS (-CH
2
-CH

2
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CH - 
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curve (Figure 4.3).  Any point above the curve represents a state of supersaturation, i.e., 

Q > Ksp.  The observations of precipitation behaviors of various combinations of [PABAH+] 

and [LS-] qualitatively validate the solubility curve predicted from Ksp in the sense that 

precipitation occurred only when the points lie above the predicted solubility line not below 

it.   

𝐾𝑠𝑝 = [𝑃𝐴𝐵𝐴𝐻+][𝐿𝑆−] = [𝑃𝐴𝐵𝐴𝐻+][𝑃𝐴𝐵𝐴]𝑡𝑜𝑡𝑎𝑙 = ([𝑃𝐴𝐵𝐴]𝑡𝑜𝑡𝑎𝑙)2(
1

1+10𝑝𝐻−𝑝𝐾𝑎
)      (2) 

 

Figure 4. 3. Solubility curve of [PABAH+][LS-] in water predicted from Ksp (black line).  Solid 

symbols indicate the occurrence of precipitation, and open symbols indicate absence of 

precipitation. The different approaches for preparing solutions with various Q is 

distinguished with color.  The red shaded area above the solubility line represents the 

estimated metastable zone.  
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To ensure the robustness of the test, solutions with different Q values were 

prepared using different approaches.  The first approach involved keeping [PABAH+] 

constant at 37.87 mM and pH constant at 1.75, but varying the concentration of [LS-] from 

0.009 to 9.070 mM (Table 4.2, blue symbols in Figure 3). At pH 1.75, the CMC of SLS is 

3 mM based on surface tension measured by the tensiometer (Figure S4.1).  Since only 

the LS- monomers, not micelles, contribute to the salt formation, the Q values are the 

same when total SLS concentration is above the CMC. In this set of samples, precipitation 

occurred only in those with Q > Ksp where a lower Q resulted in longer induction time 

consistent with the lower driving force for precipitation. The absence of precipitation in 48 

hrs for solution with Q of 3.25 mM2, which is greater than Ksp = 2.44 mM2, suggests the 

width of the metastable zone is >0.81 mM2 in this system.  
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Table 4. 2. Precipitation behaviors of solutions with varying Q values prepared by keeping 

[PABAH+] constant (35.87 mM) at pH 1.75 but allowing [LS-] to change (blue symbols in 

Figure 4.3).  The Ksp of [PABAH+][LS-] is 2.44 ± 0.21 mM2. 

SLS Conc. (mM) Q (mM2)  Precipitation induction time 

9.070 107.62  2 s 

6.800 107.62  2 s 

4.535 107.62  2 s 

2.267 81.34  2 s 

1.296 46.48  4 s 

0.907 32.54  8 s 

0.605 21.69  15 s 

0.453 16.27  25 s 

0.091 3.25  > 48 hr 

0.009 0.33  > 48 hr 

 

The second approach involved keeping [LS-] constant but varying [PABAH+] to 

prepare solutions with different Q values. Here, three sets of such solutions were prepared 

using [LS-] at 9.07 mM (Table 4.3, pink symbols in Figure 4.3), 0.4 mM (Table S4.1, yellow 

symbols in Figure 4.3) and 0.2 mM (Table S4.2, dark green symbols in Figure 4.3). Since 

the solution pH was 1.75 in all these cases, the effective [LS-] in the 9.07 mM [LS-] set was 

3 mM corresponding to the CMC of SLS at pH 1.75. Again, in these samples, precipitation 

occurred only when Q > Ksp not when Q < Ksp and the precipitation induction time 

increased as Q value approached Ksp. Interestingly, precipitation occurred when [LS-] is 

0.4 mM, but not when [LS-] is 0.2 mM when Q was 4 mM2.  Thus, the same apparent 

driving force (Q/Ksp) does not guarantee same precipitation kinetics.  This may be 
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attributed to the different interfacial surface tension induced by different SLS 

concentrations, which affects precipitation kinetics. 146 This is discussed further in the next 

section. 

Table 4. 3. Precipitation behaviors of solutions with varying Q values prepared by keeping 

a constant [LS-] (9.07 mM) at pH 1.75 but allowing [PABAH+] to change (pink symbols in 

Figure 4.3). The Ksp of [PABAH+][LS-] is 2.44 ± 0.21 mM2. 

[PABAH+] (mM) Q (mM2)  Precipitation induction time   

35.87 107.62 

 

2 s 

17.94 53.81 16 s 

8.97 26.90 23 s 

3.59 10.76 125 s 

1.79 5.38 20 hr 

0.36 1.08 None in 48 hr 

0.04 0.11 None in 48 hr 

 

The third approach for preparing solutions with different Q values is to keep the 

total PABA concentration constant but allowing the medium pH to vary, which leads to 

various [PABAH+] and, therefore, different Q values (Table 4.4, purple symbols in Figure 

4.3). In this study, solution pH was in the range of 1.66-3.48 and the [SLS] was 1 mM.  

Since the concentration of SLS is above the CMC (1 mM) in this pH range, the SLS 

monomer concentration was taken as 1 mM for calculating Q.  Once again, precipitation 

occurred when Q > Ksp, but not when Q < Ksp.  The precipitation was slower when the Q 

value was lower (Table 4.4). The absence of precipitation in the sample with Q of 2.5 mM2, 

which is slightly greater than Ksp = 2.44 mM2, may be attributed to the existence of a 

metastable zone associated with crystallization or precipitation.  



100 
 

Table 4. 4. Precipitation behaviors of solutions with varying Q values prepared from a 

constant [PABA] (17.59 mM) but different [PABAH+] due to different pHs (purple symbols 

in Figure 4.3). The [LS-]monomer was 1 mM and the Ksp of [PABAH+][LS-] is 2.44 ± 0.21 mM2. 

pH [PABAH+] (mM) Q (mM2) Precipitation induction time 

1.66 14.78 14.78 25 s 

2.08 11.72 11.72 35 s 

2.58 6.81 6.81 1 min 29 s 

3.16 2.50 2.50 None in 48 hr 

3.35 1.70 1.70 None in 48 hr 

3.48 1.29 1.29 None in 48 hr 

 

4.4.3 Kinetic factor- surface tension  

Unlike precipitation of other salts, one unique feature of the precipitation of LS salts 

is that SLS is also a surfactant.  Thus, a change in SLS concentration not only affect 

thermodynamic driving force but also the kinetic barrier of nucleation due to its surface 

active property, as suggested by the classical nucleation equation 3. 

𝐽 = 𝐴 exp [−
16𝜋𝛾3𝜈2

3𝑘3𝑇3(ln 𝑆)2]                                                    (3) 

where J is the nucleation rate, k is the Boltzmann constant and ν is the molecular volume, 

T is temperature, S is the degree of supersaturation (= Q/Ksp in this study), and γ is 

interfacial tension, which is lower at higher SLS concentration.  As the nucleation rate is 

inversely proportional to the induction time, a higher SLS monomer concentration is 

expected to promote nucleation and lower induction time.  
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To investigate the effect of SLS on precipitation kinetics, a series of solutions with 

the same Q value were prepared at pH 1.75 by varying both [PABAH+] (3 – 60 mM) and 

[LS-] (0.25 - 5 mM) so that the degree of supersaturation is the same in all these samples 

but their interfacial tension of nuclei varied (Table S4.3, light green symbols in Figure 4.3).  

The induction time was approximately constant, ~16 s, when SLS was above 2 mM.  

However, below 2 mM SLS concentration, the induction time increased gradually when 

[SLS] decreased to 0.5 mM but sharply increased when [SLS] was below 0.5 mM (from 

~23 s at 0.5 mM to ~70 s at 0.25 mM).  This behavior is consistent with that predicted from 

equation 3, reflecting the higher interfacial tension at lower SLS concentrations.  

 

Figure 4. 4. Induction time vs. SLS concentration when ion product, Q, is constant at 15 

mM2. 

4.4.4 Soluble pharmaceutical lauryl sulfate salt  

The precipitation necessarily indicates that the newly formed LS salts are less 

soluble in water.  An absence of precipitation can be a result of either an LS salt does not 

exist, or the salt is actually soluble.  In fact, all 4 compounds (caffeine HCl, nicotinamide 
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HCl, ligustrazine HCl, leucine HCl) that did not precipitate in this study are highly soluble 

in water.  This point finds support from the ΔpKa rule, 109 which states that a salt is very 

likely formed in solid state when ΔpKa between the conjugate acid of the base and the acid 

is more than 4.  In the case of LS- salts, the calculated pKa of LS-H is -3.29 while the pKa 

of the 4 compounds ranged 2.19 - 9.60, giving ΔpKas much larger than 4.   Thus, rather 

than suggesting their LS salts does not exist, we hypothesize that their LS salts are highly 

soluble in water, i.e., their Ksp values are high.  To test this hypothesis, powder mixtures 

of each of the 4 compounds and SLS (1:1 mole ratio) were dissolved in a medium with pH 

at least two units below their pKa to form high concentration solutions, which were quickly 

evaporated in a large petri dish on a bench.  The recovered solids after drying were 

analyzed by FT-IR spectroscopy (Figure 4.5).  

When the cations of these compounds interact with SLS sulfate head group, 

shifting of the characteristic peaks of SO2 asymmetric νas (SO2) at 1216 and 1247 cm−1 

and symmetric νsym (SO2) at 1080 cm−1 vibrations is expected. 147  For the leucine-SLS 

sample, the νas(SO2) red shifted to 1167 and 1214 cm−1, and the νsym(SO2) red shifted to 

1052 cm−1 (Figure 4.5a), this clearly indicates the leucine LS salt was formed. In caffeine-

SLS (Figure 4.5b) and ligustrazine-SLS (Figure 4.5c), the νas(SO2) and νsym (SO2) bands 

underwent complex changes in width, intensity, and wavenumbers, suggesting the SO2 

group engaged in new kinds of intermolecular interactions. The characteristic νas(SO2) 

bands of SLS are not visible in the caffeine-SLS sample, further substantiating a significant 

change in the intermolecular interactions involving the lauryl sulfate anion.  However, the 

nature of these interactions requires further investigation. The spectrum of nicotinamide-

SLS appears to be a simple addition of the spectra of nicotinamide HCl and SLS, with no 

observable changes in the vibrational bands (Figure 4.5d), suggesting it is a physical 

mixture between nicotinamide HCl and SLS.  
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Figure 4. 5. FTIR of solids obtained from drying SLS solutions and four compounds, a) 

leucine, b) caffeine, c) ligustrazine, d) nicotinamide 

 

4.4.5 Formulation implications  

A clear understanding of the nature of precipitation of pharmaceutical LS salts and 

factors that affect their precipitation kinetics leads to several formulation strategies that 

can be applied to mitigate the negative impact of SLS.  

1) Since the precipitation is mostly between protonated bases (berberine is an 

exception) and the lauryl sulfate anions, the acid-base reaction can be eliminated if the 

dosage form is protected from the acidic environment in the stomach, which is necessary 

a) 

c) d) 

b) 
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for protonation of the base.  A common formulation strategy to attain this effect is enteric 

coating.  

2) When a poorly soluble LS salt is anticipated or suspected but SLS must be used 

for whatever reasons, an appropriate polymer may be added to inhibit or slow down the 

nucleation of the possible LS salt during dissolution.  

3) Because the driving force for such precipitation reaction is the high Q, any 

strategies that reduce the Q values may mitigate this problem. For example, since Q is 

determined by the monomer concentration of SLS, strategies that reduce CMC of SLS by 

introducing electrolyte may be considered. 65  This strategy can also lead to the generation 

of more micelles, which can potentially solubilize the drug.  Other strategies that reduce 

cations concentration, such as using a pH modifier to adjust the microenvironmental pH 

in diffusion layer or a salt with a common ion to suppress the dissolution of drug cation 

from a soluble salt, 47, 59 can lower the propensity to forming a LS salt so that the nucleation 

induction time is long enough to ensure the drug safely diffuse into the bulk medium before 

precipitation takes place. 

 

4.5 Conclusion 

We have shown that almost all drugs with cations or protonatable in an acidic 

environment have the potential to form LS salts.  Among the compounds studied in this 

work, ~77.8% (14 out of 18) model compounds resulted in precipitation, which likely 

deteriorates drug dissolution. Although only 5 cases of SLS induced precipitation were 

reported in the published literature so far, the phenomenon is actually rampant. Therefore, 

a preliminary assessment of precipitation propensity in the presence of SLS should be 

carried out for such compounds before SLS is used to improve their dissolution.  If 
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precipitation occurs in the presence of SLS, other surfactants are recommended.  If SLS 

must be used, appropriate formulation strategies should be implemented to mitigate any 

negative impact on the dissolution of the drug. 

4.6 support information  

Table S4. 1. A series of Q values prepared by 0.4 mM [LS-] and various [PABAH+] at pH 

1.75 (yellow symbols in Figure 4.2) 

[LS-] (mM) 0.4 mM 

[PABAH+] (mM) Q Ksp precipitation 

30.00 12.01 

2.44 ± 0.21 

✓ 

20.00 8.01 ✓ 

10.00 4.00 ✓ 

5.00 2.00 ✕ 

3.00 1.20 ✕ 

2.00 0.80 ✕ 

1.00 0.40 ✕ 
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Table S4. 2. A series of Q values prepared by 0.2 mM [LS-] and various [PABAH+] at pH 

1.75 (dark green symbols in Figure 4.2) 

[LS-] (mM) 0.2 mM 

[PABAH+] (mM) Q Ksp precipitation 

30.00 6.01 

2.44 ± 0.21 

✓ 

20.00 4.00 ✕ 

10.00 2.00 ✕ 

5.00 1.00 ✕ 

3.00 0.60 ✕ 

2.00 0.40 ✕ 

1.00 0.20 ✕ 

 

Table S4. 3. Induction time vs SLS conc. when ion product is constant at 15 mM2 

(light green symbols in Figure 4.2)  

  Induction time (S) 

SLS 
Conc. 
(mM)  

0.25 0.3 0.35 0.4 0.5 1 1.5 2 2.5 3 3.5 4 5 

1 83 44 30 22 22 19 28 25 13 13 17 18 27 

2 67 40 25 22 21 18 15 10 23 30 15 14 13 

3 58 50 25 33 26 30 11 12 10 9 13 17 11 

AVE 69.33 44.67 26.67 25.67 23.00 22.33 18.00 15.67 15.33 17.33 15.00 16.33 17.00 

SD 10.34 4.11 2.36 5.19 2.16 5.44 7.26 6.65 5.56 9.10 1.63 1.70 7.12 
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Figure S4. 1. CMC determination by surface tension measurement in pH 1.75 HCl solution 

 

 

 

 

 

 

 

 

 

 

 

20.00

30.00

40.00

50.00

0.1 1 10

SLS Conc. (mM)

Surface Tension (mN/m)

CMC



108 
 

 

Chapter 5 

Formulation strategies for mitigating dissolution reduction of PABA by sodium 

lauryl sulfate through diffusion layer modulation 
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5.1 Synopsis 

The use of the surfactant, sodium lauryl sulfate (SLS), instead of enhancing drug 

dissolution, deteriorates the dissolution of some alkaline drugs through forming poorly 

soluble lauryl sulfate salts.  The thermodynamic driving force for precipitation of such salts 

is the ratio of ion product in solution (Q) to the solubility product of the salt (Ksp).  In this 

work, we have examined two formulation strategies for mitigating the negative effect of 

SLS on the dissolution of p-aminobenzoic acid (PABA) by reducing the Q value of its LS 

salt in the diffusion layer: 1) introducing alkalizing excipient, Na3PO4, to reduce the 

concentration of PABAH+ by elevating the microenvironment pH, and 2) introducing NaCl 

to reduce the LS- monomer concentration by depressing the critical micelle concentration 

(CMC) of SLS. 

5.2 Introduction 

Sodium lauryl sulfate (SLS) may deteriorate the dissolution of drugs with functional 

groups that can be protonated in an acidic medium, through the precipitation of an 

insoluble lauryl sulfate (LS) salt.5-10, 95 To form a salt, the pH of the medium must be 

sufficiently low to protonate drug molecules.8-10  Salt formation was confirmed by analyzing 

the single crystal structure of an LS salt of norfloxacin, in which strong ion pairs between 

protonated norfloxacin molecules and LS anions exhibit low solubility in water.7  Our 

further investigations have shown that LS salts broadly form through the conventional acid 

- base reaction.148  Hence, this raises a concern given the frequent use of SLS in 

formulation with the intention to improve wetting of hydrophobic drugs.  If not proactively 

addressed, the formation of such insoluble LS salts may deteriorate dissolution 

performance and leads to poor decisions in formulation design.  



110 
 

 

Figure 5. 1.  Molecular structure of p-aminobenzoic acid. 

To effectively mitigate the negative impact of LS salts on drug dissolution, we have 

investigated key factors that determine the precipitation of a LS salt of p-aminobenzoic 

acid (PABA, Figure 5.1), [PABAH+][LS-].148 Results show that the precipitation of 

[PABAH+][LS-] is driven by a high ratio of ion product (Q), defined in Eq. (1), to solubility 

product (Ksp),  

𝑄 = [PABAH+] ∗ [LS−]mono                                                                         (1) 

In Eq. (1), [PABAH+] is the concentration of protonated PABA and [LS-]mono is the 

concentration of SLS monomer.  Here, [LS-]mono is equal or below the critical micelle 

concentration (CMC).  Precipitation can occur only when the Q value sufficiently exceeds 

the Ksp of [PABAH+][LS-], and a higher Q/Ksp corresponds to faster precipitation.   

Furthermore, at the same Q/ Ksp value, the precipitation kinetics is affected by [LS-]mono , 

because a higher concentration of the surface-active SLS monomer more effectively 

lowers the interfacial tension between nuclei and medium, resulting in a faster nucleation 

rate.  

Built upon this understanding of precipitation kinetics, here we investigate possible 

formulation strategies to mitigate the negative impact LS salt formation on dissolution of 

drugs.  The classical thin-film diffusion layer model teaches that an indefinitely thin layer 
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of saturated solution is formed at the surface of the solid during dissolution. 34, 149-150  

According to this model, the precipitation of LS salt should initiate in the diffusion layer 

where the Q value is the highest. As Ksp is usually a constant for a given salt in a given 

solvent at a fixed temperature, we focused on reducing the thermodynamic driving force, 

Q/Ksp, by decreasing Q value in the diffusion layer through formulation strategies. 

The Q value in the diffusion layer can be lowered by lowering either [PABAH+] 

through maintaining a high pH in the diffusion layer or [LS-] by depressing the CMC of 

SLS.  The effectiveness of these possible mitigation strategies was assessed using both 

intrinsic dissolution rate (IDR) and tablet dissolution in this work. 

5.3 Materials and Methods 

5.3.1 Materials 

p-aminobenzoic acid was purchased from Sigma-Aldrich (St. Louis, MO).  

Microcrystalline cellulose (Pharmacel 102; DFE Pharma, Goch, Germany), magnesium 

stearate (MgSt, Covidien, Dublin, Ireland), croscarmellose sodium (Ac-Di-Sol; FMC 

Biopolymer, Philadelphia, PA), and SLS (Ward's Science, Rochester, NY), NaCl 

(Maillinckrodt Baker, Inc., Phillipsburg, NJ), and Na3PO4·12 H2O (Acros Organics, Fair 

Lawn, NJ) were purchased from respective suppliers. Hydrochloride acid aqueous solution 

(36.5%−38%, ACS reagent grade, VWR international, Eagan, MN) and deionized water 

were used to prepare the dissolution medium, i.e., pH 1.2 HCl solution. 

5.3.2 Methods 

5.3.2.1 Intrinsic dissolution rate (IDR) 

The IDRs of PABA and its physical mixtures with different additives were measured 

using the rotating disc method. 151-153 The individual ingredients were mixed using a mixer 

(Turbula; Glen Mills Inc., Clifton, NJ), running at a speed of 49 rpm for 20 min.  NaCl and 
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Na3PO4·12 H2O were grinded and passed through a 230 mesh sieve with 63 μm opening 

before mixing.  The relative humidity (RH) in the laboratory during the entire process was 

approximately 35%. A powder was compressed at a force of 2000 lb on a hydraulic press 

using a custom-made stainless-steel die against a flat stainless-steel disc for 2 min.  The 

pellet (6.39 mm in diameter) had a visually smooth surface that was coplanar with the 

surface of the die. While rotating at 50 rpm, the die was immersed in 300 mL pH 1.2 HCl 

solution at 37°C in a water-jacketed beaker. A UV−Vis fiber optic probe (TI300-UV-VIS, 

Ocean Optics, Dunedin, FL) was used to monitor the UV absorbance, from which the 

concentration of PABA was calculated using a pre-constructed calibration curve. Results 

from at least triplicated measurements were used to calculate means and standard 

deviations at prescribed time points. 

 

5.3.2.2 Tablet preparation  

Tablets of physical mixtures of PABA, SLS, and NaCl or Na3PO4·12 H2O (Table 5.1) 

were prepared by compression. To achieve good uniformity, NaCl and Na3PO4·12 H2O 

were grinded and passed through a 230 mesh size sieve (63 μm opening) before mixing 

with a Turbula mixer (Glen Mills Inc., Clifton, NJ) at 49 rpm for 20 min.  The mixtures were 

compressed at a force of 2000 lbs for 5 s to prepare ribbons (16.8 × 9.5 mm, 300 mg) 

using a laboratory hydraulic press (model C, Carver Inc., Wabash, IN, USA). The ribbons 

were grinded gently in a mortar with a pestle and then passed through a sieve with 90 μm 

opening. The sieved granules were mixed with all other components except the lubricant, 

MgSt, in the mixer at 49 rpm for 20 min. When used in a formulation, MgSt was mixed with 

the mixture of all other ingredients for 2 min. Batch size was 1.2 g in all cases. 

 

 

 

https://www.sciencedirect.com/science/article/pii/S0022354918306798#tbl1
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Table 5. 1. Tablet formulations of PABA  

Ingredient 
Control 1 

(MgSt) 

Control 2 

(SLS) 
NaCl tablet Na3PO4 tablet 

PABA 10% 10% 10% 10% 

MCC 84% 75% 25% 70% 

CCNa 5% 5% 5% 5% 

MgSt 1%    

SLS  10% 10% 10% 

NaCl   50%  

Na3PO4· 12 H2O    10% 

Total 100% 

 

5.3.2.3 Karl Fischer Titration (KFT)  

The water content of the grinded and sieved Na3PO4·12H2O powder was determined 

with a Karl Fischer Titrator (Metrohm 831 KF coulometer) equipped with a Metrohm 703 

Ti Stand mixer. Titrations were carried out in HYDRANAL Coulomat AG (methanol-based 

anolyte, Sigma Aldrich, St. Louis, MO) under constant stirring. An accurately weighed 

sample (approximately 50 mg) was introduced into the titration vessel, which was 

immediately capped to minimize interference by moisture from the environment. The water 

content was recorded at the end of the run.   

 

5.3.2.4 Tablet dissolution  

The release of PABA from tablets was evaluated in 300 mL pH 1.2 HCl solution. The 

medium was maintained at 37 °C and stirred with an overhead stirrer at 50 rpm. Drug 
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release was monitored using the same fiber optic UV dip probe used in the IDR 

measurement. 

5.3.2.5 pH dependent solubility of PABA   

To determine the solubility of PABA at different pHs, an excess amount of the PABA 

was suspended in ~5 mL desired media, including pH 1.2 HCl solution, pH 2 HCl solution, 

DI water, and pH 6.8 phosphate buffer (0.1 M) for at least 48 hr under stirring at 37 °C. 

The pH of these media shifted to 2.24, 3.07, 3.59, 4.66, respectively after equilibration, 

and the solid phase of PABA remained unchanged according to their PXRD patterns. After 

passing through a 0.45 µm polypropylene filter membrane, the concentration of PABA was 

determined by UV-Vis spectrometry (DU® 530 UV-Vis spectrophotometer; Beckman, 

Brea, CA), using a separately constructed calibration curve with appropriate dilution if 

needed.    

The solubility values at four pHs were fitted  by the Henderson–Hasselbalch equation 

using pKa,1 = 2.38 for -NH3
+ 154 and pKa,2 = 4.85 for -COOH 155 to generate a pH-solubility 

profile of PABA. The Non-linear regression was performed using SciPy's orthogonal 

distance regression (ODR) package (SciPy v1.6.2, Python v3.8.2). Ordinary least squares 

(job=2) was used, and y standard deviations were included for fitting.  We did not use the 

solubility values at three pHs to obtain a pH – solubility profile of PABA because of a very 

poor fitting, suggesting errors in the literature values. 156 

5.3.2.6 Moisture Sorption Isotherm 

The moisture sorption isotherm of Na3PO4 was collected using an automated 

dynamic vapor sorption analyzer (Intrinsic DVS, Surface Measurement Systems Ltd., 

Allentown, PA) at 25 °C. The sample was purged with nitrogen at a flow rate of 50 mL/min. 

Initially, RH was maintained at 95% until a constant sample weight was obtained to ensure 

complete phase conversion to the highest hydrate at 25 oC. Then, the sample was 
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exposed to a series of decreasing RHs from 95 to 0% with a step size of 5%.  The sorption 

isotherm was obtained by exposing the dried sample to a series of RHs from 0 to 90% 

with a step size of 10% RH. At each specific RH, the equilibration criterion of either dm/dt 

≤ 0.002% with a minimum equilibration time of 20 min or a maximum equilibration time of 

6 h was applied. The RH moved to the next target value once one of the criteria was met. 

5.4 Results and discussion 

5.4.1 Q reduction by lowering [LS-]mono  

 The SLS monomer concentration, [LS-]mono, directly drives possible precipitation 

of the [PABAH+][LS-] salt by contributing to Q (Eq. 1). In the diffusion layer, [LS-]mono is 

equal to the CMC of SLS because the medium at the surface is saturated by the 

dissolving SLS solid. 34  Therefore, reducing the CMC of SLS lowers [LS-]mono, which 

subsequently lowers the thermodynamic driving force for precipitation. 

 The CMC of SLS in DI water is 8.2 mM at 25 °C, 64 the value is strongly affected 

by several factors, such as temperature, 64 pH, 66 species and concentration of 

electrolyte present in the solution. 65, 157 The cationic electrolyte binds to the negatively 

charged micelle surface, which decreases the electronic repulsion between micelles, 

and leads to a reduced CMC of SLS. 158-159 Therefore, the maximal concentration of the 

LS- monomer in solution is expected to be lower in the presence of an inorganic salt. 65 

Correspondingly, we hypothesized that the incorporation of NaCl in tablet formulation 

of PABA can reduce Q by depressing the CMC of SLS in the diffusion layer.  This 

hypothesis was tested by determining IDR and tablet dissolution of formulations 

containing NaCl, PABA, and SLS at different weight ratios.  
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Figure 5. 2. Effects of NaCl and SLS on the dissolution of PABA in a pH 1.2 medium, a) 

intrinsic dissolution, b) tablet dissolution.  

In the pH 1.2 solution, SLS reduced the IDR of PABA significantly (Figure 5.2a).  

Although its initial rate is comparable to that of PABA alone (66.85 ± 7.65 μgcm -2s-1), 

the IDR of PABA: SLS (1:1 w/w) pellet decreased significantly after ~50 s to be 3.52 ± 

0.29 μgcm-2s-1. This is attributed to the gradual coverage of the surface of the PABA:SLS 

(1:1 w/w) pellet by the [PABAH+][LS-] that precipitated out with time. Thus, the terminal 

IDR is essentially that of the [PABAH+][LS-]. Correspondingly, the IDR ratio of PABA to 

[PABAH+][LS-] is 18.99 (Figure 1a). The deleterious effect of SLS on the dissolution of 

PABA is also clear when comparing the dissolution from a tablet containing 1% MgSt 

and 10% SLS (Figure 5.2b).  At 30 min, the amount of released PABA from the SLS-

containing formulation (control formulation 1) is only slightly more than 50% of that from 

the PABA tablet free from SLS (control formulation 2). 

The incorporation of NaCl into the mixture had little impact on IDR when the weight 

ratio was PABA: SLS: NaCl 1:1:1 (Figure 5.2a).  However, a higher IDR was obtained 

at a higher NaCl amount (1:1:5 w/w/w), despite the smaller effective surface area of 

PABA for dissolution due to the dilution by the larger amount of NaCl in the formulation.  

b) a) 
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The mitigation effect of NaCl during tablet dissolution is expected to be more significant 

than that indicated by IDR, since the total area of PABA exposed to the medium is less 

negatively affected by NaCl upon tablet disintegration (Figure 5.2b).  Indeed, significant 

recovery of the dissolution of PABA from the tablet was observed when NaCl was used 

at 5 times the weight of PABA (Figure 5.2b).  However, the lost dissolution performance 

by forming the poorly soluble [PABAH+][LS-] was still not fully recovered (Figure 5.2b).  

Nevertheless, the results support the hypothesis that the incorporation of NaCl in 

formulation can mitigate dissolution slowdown caused by the formation of a less soluble 

LS salt of PABA during dissolution.    

5.4.2 Q reduction by lowering [PABAH+]  

Eq. (1) also suggests that Q can be reduced by lowering [PABAH+]. The [PABAH+] 

in diffusion layer can be reduced by maintaining a higher local pH using an alkalizer, 

which shifts the ionic equilibrium of PABA in solution from [PABAH+] to [PABA].   In fact, 

pH-modification is a commonly used strategy to enhance the dissolution and oral 

bioavailability of drugs. 59, 160-161   

A suitable alkalizer should have a relatively high aqueous solubility and a higher 

pKa than that of PABA. Such an alkalizer dissolves and creates a local pH sufficiently 

high to minimize protonation of dissolved PABA molecules, which is a necessary 

condition for forming the less soluble LS salt. Based on this consideration, Na3PO4 was 

chosen as the alkalizer in this work.  The physical stability of Na3PO4 was assessed by 

DVS because it is known to form hydrates. 162 The DVS data revealed four hydrates 

based on weight change, where the Na3PO4·15H2O, Na3PO4·12H2O, Na3PO4·8H2O, 

Na3PO4·6H2O, and the anhydrate are stable at RH ranges of 95%, 65-90%, 35-60%, 

20-30%, and below 15%, respectively (Figure 5.3).  Thus, under normal manufacturing 

conditions with RH in the range of 30% - 50%, either the Na3PO4·6H2O or Na3PO4·8H2O 
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is the stable form.  In fact, the water content of Na3PO4 powder used in the formulation 

was 50%, which is between the theoretical water contents of Na3PO4·8H2O (46.8%) and 

Na3PO4·12H2O (56.8%).  It is worth mentioning that the main goal here is to investigate 

the feasibility of Na3PO4 as an alkalizer to reduce the thermodynamic driving force of 

the [PABAH+][LS-] precipitation by elevating the pH in the diffusion layer.  Therefore, the 

relative physical stability of the Na3PO4 hydrate forms is not a major concern in this 

study.  Should this strategy be adopted in any commercial formulations, alternative 

alkalizers that do not have the complication of various hydration states should be 

pursued. 

 

Figure 5. 3. Dynamic vapor sorption (squares) and desorption (diamonds) of Na3PO4 at 

25 oC.  

  

The effectiveness of Na3PO4 in mitigating the negative effect by SLS was also 

assessed by both IDR and tablet dissolution. The incorporation of Na3PO4 significantly 

increased both the IDR and tablet dissolution at the 1:1:1 weight ratio of 
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PABA:SLS:Na3PO4 (Figure 5.4), suggesting Na3PO4 is an effective alkalizer to counter the 

negative impact of SLS on the dissolution of PABA. The IDR of PABA:SLS:Na3PO4 (1:1:1, 

w/w/w) pellet is even higher than that of PABA alone (control 1 tablet) despite the reduced 

effective surface area of PABA by SLS and Na3PO4.   The higher IDR is attributed to both 

the higher solubility of PABA at an elevated pH than that at pH 1.2 (Figure 5.4), due to 

ionization of –COOH, and the elimination of the precipitation of [PABAH+][LS-]. The 

ionization of -COOH is demonstrated by the significantly higher IDR of PABA: Na3PO4 (1:1 

w/w) than PABA. The plateau observed in the profiles of both Na3PO4-containing pellets 

corresponded to complete dissolution.  The higher plateau value of the PABA: Na3PO4 

profile reflects the larger amount of PABA in the pellet.   Importantly, the higher IDR 

achieved by Na3PO4 could be successfully translated to higher tablet dissolution, leading 

to a nearly fully recovered release of PABA from tablet (Figure 5.4b).  

 

Figure 5. 4. Effect of Na3PO4 on mitigating dissolution reduction by SLS, a) intrinsic 

dissolution, b) tablet dissolution. 

 

The micro-environment pH of the PABA:SLS:Na3PO4 (1:1:1, w/w/w) pellet can be 

estimated from the pH - solubility profile of PABA (Figure 5.5), assuming IDR is 

a) b) 
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proportional to the equilibrium solubility under identical hydrodynamic conditions. 149 In the 

pH 1.2 medium, the pH in the diffusion layer of PABA pellet is 2.19 instead of 1.2 because 

of the self-buffering effect due to the ionic equilibrium of dissolved PABA molecules. 163-

164 The pH in the diffusion layer was inferred from the pH of a saturated solution of PABA 

in the pH 1.2 medium.        

 

 

 

Figure 5. 5. pH - solubility profile of PABA in water at 37 °C. The profile is obtained by 

nonlinear regression for the four solubility values (yellow symbol) using the Henderson–

Hasselbalch equation. 

From figure 5.4a, the true IDR of PABA from PABA:SLS:Na3PO4 (1:1:1 w/w/w) is at 

least 3 times that of PABA if the surface area is corrected. Thus, as the solubility of PABA 

is 100.24 mM at pH of 2.19, this corresponds to a local pH of ~5.70 surrounding PABA 

according to the pH-solubility profile (Figure 5.5).  Since this pH is more than 3 pH units 

above the pKa of -NH3
+ (2.38), almost all the -NH2 groups are in their neutral state.  

Additionally, the CMC of SLS, which is 8.2 mM in water, is lower at a lower pH. 157  

Therefore, at pH ~5.70, the Q value would be lower than 0.10 mM2 ([LS-] = 8.2 mM and 
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[PABAH+] = 0.012 mM at pH 5.70), which is much lower than the Ksp (2.44 ± 0.21 mM2) of 

[PABAH+][LS-]. Thus, the elimination of the precipitation of [PABAH+][LS-] is justified by  

an absence of thermodynamic drive force for it to occur. 

Since PABA is a zwitterionic compound, a higher pH reduces [PABAH+] but not 

necessarily the solubility of PABA because of the ionization of –COOH at high pHs.  

Therefore, maintaining a high local pH can both reduce the propensity to form a less 

soluble complex with LS- and maintain a fast dissolution of PABA.  For non-zwitterionic 

bases, dissolution rate may be reduced at a high pH.  Hence, judicious choice of the 

type and amount of pH modifiers in formulations requires systematic examination of 

their impact on dissolution. 

5.5 Conclusion 

Using PABA as a model drug, we have demonstrated that dissolution deterioration 

by SLS can be mitigated through formulation strategies, i.e., 1) pH elevation using an 

alkalizer, Na3PO4, and 2) depression of the CMC of SLS using NaCl.  These strategies 

modulate the environment in the diffusion layer to reduce the thermodynamic driving force 

for forming a poorly soluble lauryl sulfate salt.   
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Chapter 6 

Research summary and future work 
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Research summary 

The story starts from a peculiar observation, in which the dissolution enhancer of 

SLS surprisingly deteriorated the dissolution of ritonavir (RTV) in its tablet formulation.  

With a series characterization techniques, such dissolution reduction was confirmed to be 

due to the formation of a poorly soluble amorphous lauryl sulfate salt between SLS and 

RTV, i.e., [RTV2+][LS-]2, at a low pH.   

With the solved single crystal structure of norfloxacin (NOR) lauryl sulfate salt, i.e. 

[NORH+][LS–]·1.5 H2O, the columbic interaction between protonated drug cation and LS - 

was confirmed. From the single crystal structure, stacked layer with a sandwiched 

structure for each layer was observed, in which polar moieties with strong interactions, 

like strong ionic interaction, hydrogen bonds, and π−π stacking, are buried inside each 

layer, while nonpolar moieties with only weak dispersive forces are energetically favored 

outside each layer. This gives the salt a high hydrophobicity and disfavors the dissolution.   

Due to the straightforward acid – base reaction, SLS is observed to form lauryl 

sulfate salt with many other compounds. Among the 18 model compounds, 14 of them 

(77.8%) formed poor soluble lauryl sulfate salt with precipitation observed. 4 other 

compounds, although no precipitation observed, 3 of them also exhibited interactions with 

SLS suggested by FT-IR spectra. With the additional 5 compounds that are reported in 

literature, LS salt is shown to be a rather general phenomenon.  

The formation rules was investigated by p-aminobenzoic acid (PABA), which forms 

[PABAH+][LS-] with SLS. It was found that the occurrence of precipitation is 

thermodynamically driven by the relative difference between the ion product in solution (Q) 

and the solubility product of the lauryl sulfate salt (Ksp), i.e., Q/Ksp. On the other hand, as 

a surfactant, SLS also affects precipitation kinetics by influencing the interfacial tension 

during nucleation. 
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To mitigate the negative effect of SLS, two mitigation strategies were proposed to 

reduce the thermodynamically driving force Q/Ksp in the thin diffusion layer of the 

dissolving solid, they are 1) lowering LS- monomer concentration by introducing NaCl, and 

2) lowering PABAH+ concentration by introducing Na3PO4, which is an alkalizing excipient 

that can elevate the microenvironment pH. Importantly, with the application of Na3PO4, the 

dissolution of PABA in presence of SLS was nearly fully recovered. 
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Future work 

1. Exploring other surfactants  

SLS was initially proposed as a surrogate for MgSt, due to its dual functionalities 

as both a lubricant and a wetting agent.  The negative impact on drug dissolution limits its 

universal use in tablet formulations. Therefore, exploring the feasibility of other alternative 

lubricants that are free from this mechanism of forming poorly soluble salts is needed.  For 

example, Poloxamer P188 and P407 have been shown to exhibit good lubrication property 

while also facilitate in vitro drug release. 165  Other solid surfactants, such as PEG 2000, 

can also be explored. 

 

2. Using other model compounds 

In this study, PABA was chosen as the model compound to investigate the 

formation rules of lauryl sulfate salt and mitigation strategies.  The effectiveness of using 

a pH modifier, Na3PO4, on recovering the release of PABA in a SLS contained tablet 

resulted, in part, from the increased ionization of –COOH, which leads to a high solubility. 

For non-zwitterionic compounds, the use of Na3PO4 risks overly depressing the solubility 

so that the dissolution is not much improved, even if precipitation of the LS salt is 

prevented.  In such system, judicious use of the amount and type of alkalizer needs to be 

systematically investigated to ensure robust dissolution performance of tablet formulations.     

  

3. In vivo study 

For a tablet formulation, adequate in vivo bioavailability is critical.  Therefore, it is 

important to know how these in vitro dissolution phenomena affects the in vivo 

performance. For example, does SLS reduced dissolution lead to a reduced bioavailability? 

Are the mitigation strategies also effective in terms of bioavailability?   These will require 

further testing of engineered formulations in animals and, if successful, in humans. 
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Chapter 2 - Mechanism for the reduced dissolution of ritonavir tablets by sodium 

lauryl sulfate of this thesis is adapted from the published original research article by 

Yiwang Guo at Journal of Pharmaceutical Sciences:    

https://www.sciencedirect.com/science/article/pii/S0022354918306798 

https://www.sciencedirect.com/science/article/pii/S0022354918306798


137 
 

 

Chapter 3 – Crystallographic and Energetic Insights into Reduced Dissolution and 

Physical Stability of a Drug-Surfactant Salt – The Case of Norfloxacin Lauryl Sulfate is an 

original research article by Yiwang Guo published on Molecular Pharmaceutics. It is 

adapted with permission from Guo, Y.; Mishra, M. K.; Wang, C.; Sun, C. C., 

Crystallographic and Energetic Insights into Reduced Dissolution and Physical Stability of 

a Drug–Surfactant Salt: The Case of Norfloxacin Lauryl Sulfate. Molecular Pharmaceutics 

2020, 17 (2), 579-587.Copyright (2021) American Chemical Society. 


