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Abstract 

The control of tuberculosis has proven an ongoing challenge for public health. For 

pastoralists, those defined by their fundamental cultural relationship with livestock and 

migration in search of pasture and water, the complexity of tuberculosis control intersects 

with social and cultural practices that should be considered when designing interventions 

not as binary attributes of the community, but as a continuum within which the 

community lives and operates. The goal of the work contained within this thesis is to 

characterize Mycobacterium tuberculosis complex species (MTBC) in a high-exposure 

human-animal interface; explore the relevance of social and cultural factors; and evaluate 

the potential role of livestock movement in the transmission and control of zoonotic 

tuberculosis in the Mara ecosystem. In this dissertation, I document the co-circulation of 

multiple MTBC species in this ecosystem, with zoonotic tuberculosis substantially 

contributing to the overall burden, especially in villages adjacent to the Maasai Mara 

National Reserve, a protected wildlife area. Further, this work demonstrates that livestock 

movements not only mediate connectivity between villages within this ecosystem, but 

also interact with other factors to shape household tuberculosis patterns. Specifically, 

consumption of raw animal products, and movement of livestock for grazing or trade 

influence household tuberculosis occurrence, and reinforce the importance of zoonotic 

tuberculosis. Using data on livestock movement, this study demonstrates that dry season 

grazing patterns are important for enhancing the embeddedness of households’ in their 

community social networks, with villages adjacent to the Maasai Mara National Reserve 

as the most common destination for grazing. Overall, the work presented here reinforce 

the complexity of this issue within this ecosystem, and demonstrates that network-based 



 

v 
 

control measures aimed at highly connected villages, have the potential to enhance the 

proactive development of targeted disease control programs as traditional and/or 

narrowly focused approaches for tuberculosis control are unlikely to work. Thus, in 

accordance with the current global wave of thinking, One Health approaches are also 

necessary and even required in this system. However, the operationalization of One 

Health approaches need to be culturally appropriate and tailored specifically to the 

characteristics of a locality and contextualized to its practices and structures. 
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Chapter 1 | Introduction: Social determinants of health and 

tuberculosis: Gaps for One Health approaches in pastoralist 

populations 

Pastoralism, marginalization and determinants of health 

Pastoralism as a socio-cultural system is characterized by raising livestock on 

rangelands. It is classified into nomadic, semi-sedentary, sedentary and agro-pastoralists 

based on distance of movement (Schwartz, 1993). Unlike the agro-pastoralist or 

sedentary pastoralists whose practices include potential settlement and the raising of 

crops, nomadic and semi-sedentary pastoralist societies are inherently dynamic, 

characterized by livestock and human movement in search of water and forage (Galaty, 

2015). Nomadic pastoralism involves movement of livestock, people and homesteads 

following the temporal distribution of forage and water, while semi-sedentary pastoralism 

denotes the long-distance movement of animals, mostly by young men, for forage during 

the dry season while maintaining a permanent homestead in a single location (Schwartz, 

1993). In both nomadic and semi-sedentary pastoralism, long-standing traditional 

management strategies have been progressively undermined by socioecological, 

economic and political factors. For instance, the lack of permanent locations and constant 

migration has led to their exclusion from education (Dyer, 2013; Krätli et al., 2013), 

economic and national development policies (Thompson and Homewood, 2002; 

Markakis, 2004), as well as access to health services (Duba et al., 2001; Caulfield et al., 

2016; Wild et al., 2020b). This continued marginalization, coupled with the continued 

lack of national and local supportive policies enhances a negative feedback loop between 
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the coupled natural-human system, reinforcing cycles of poverty and poor health 

outcomes (Grace et al., 2017). 

The myriad of challenges posed to the sustainability and resilience of the pastoral 

way of life have both direct and indirect repercussions for health at the population level 

(Ekaya, 2005; Little, 2013; Serbessa et al., 2016). For instance, a closer look at local 

biodiversity hotspots in East Africa, such as the Maasai Mara Ecosystem in Southwestern 

Kenya, show that increased fencing (due to individuation of communal lands) threatens 

the contiguity of both human and animal migration patterns (Løvschal et al., 2017; Mwiu 

et al., 2019; Weldemichel and Lein, 2019). The resulting conversion of communal lands 

to individual holdings has led to increased human settlements in protected areas 

(Lamprey and Reid, 2004; Nyariki et al., 2017), with concomitant disturbance and 

destruction of habitat, and decrease in some wildlife species and ecosystem services 

(Ogutu et al., 2009). With subsequent increased contact between livestock and wildlife, 

there have been reported increases in the prevalence of livestock diseases (Lekolool, 

2011; Nthiwa et al., 2019a; Nthiwa et al., 2020) with presumed correlation in human 

health in these livestock-human coupled systems. Although direct empirical evidence 

linking livestock and human health is still formative, recent work in western Kenya has 

shown that poor livestock health leads to poorer health outcomes in dependent 

households, including child stunting (Mosites et al., 2015). This complex relationship, 

coupled with poor investment in veterinary health, livestock insurance and drought 

mitigation measures, is a form of re-marginalization perpetuated by national and donor 

policies (Oxby, 1999; Markakis, 2004; Elias and Abdi, 2010; Nyanjom, 2014). 
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That pastoralists occupy habitats with an intensive human-livestock-wildlife 

interface is common knowledge. However, social and cultural practices of different 

groups are relatively unique, differing in areas such as spatial habitat use (range and 

frequency) in order to efficiently utilize resource-scarce ecosystems, and are based on 

community tradition and values, leadership, cultural identity and resilience (Smith, 1992; 

Anderson, 1993; Straight, 1998; Leslie et al., 2013; Carabine, 2014; Jandreau and Berkes, 

2016). Unfortunately, these same practices may also put these communities at increased 

risk for the acquisition and transmission of zoonotic diseases (Miller and Olea-Popelka, 

2013a; Olea-Popelka et al., 2017; Amulyoto et al., 2018; Kemunto et al., 2018; Onono et 

al., 2019). This is extremely concerning when combined with the fact that there is a 

paucity of information available to support culturally appropriate disease control 

strategies for these communities  (Onesmo, 2013; Grace, 2015; Halliday et al., 2015; 

Mangesho et al., 2017). It has been proposed that as a precursor to alleviating poverty and 

enhancing wellbeing, one must disentangle the complex interactions between social and 

environmental determinants of health (Perry and Grace, 2009; Grace et al., 2012; Jones et 

al., 2013; Travis et al., 2014a; Travis et al., 2014b; Grace, 2015; Grace et al., 2017). 

Social determinants of health and tuberculosis in pastoralist communities 

Health is a complex phenomenon (Donev, 2000). It is a continuum between the 

individual and the community with diverse determinants including genetic, behavioral, 

social and environmental factors that need to be incorporated for effective disease control 

(Frieden, 2015). The recognition that the biomedical approach to medicine does not 

holistically address health challenges (Feinstein, 1999), has brought to the fore the 

concept of health as an equilibrium between the individual and their environment. On this 
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front, it is acknowledged that settings in which individuals grow, live, work and age are 

shaped by interactions among social, economic and political exigencies, which in turn 

influence health and health outcomes both at the individual and population level. These 

are collectively known as the social determinants of health (CDSH, 2008).  

Social determinants of health as a concept is important for the control of socially 

driven diseases such as tuberculosis, which in 2019 alone affected ~10 million people, 

and caused 1.4 million deaths (WHO, 2020). The current approaches to tuberculosis 

control focus on reducing transmission through timely case detection and treatment 

(Volmink and Garner, 2007; Lonnroth and Raviglione, 2008; WHO, 2013, 2019, 2020). 

However, there has been a shift to a social model of health to bridge inequity and address 

broader causes of exposure, infection, lack of access and adherence to therapy for 

tuberculosis patients (Lonnroth et al., 2009; Rasanathan et al., 2011). This follows 

epidemiological studies showing that infections are higher in communities ranking low 

on socioeconomic indicators such as overcrowding in households, unemployment rates, 

education level, general poverty, and among marginalized groups (Cantwell et al., 1998; 

Stout et al., 2006; Muniyandi et al., 2007; Baker et al., 2008; Dye et al., 2009; Lonnroth 

et al., 2009; Baussano et al., 2013). These determinants influence all aspects of 

tuberculosis epidemiology including baseline prevalence in the population, exposure type 

and transmission rates between infected and susceptible individuals, potential 

pathogenesis of the infection, access to care and treatment outcomes. The determinants 

are further shaped by gender, nutritional status, syndemics, lack of ventilation within 

households and human movement across environments including urban areas 

(Hargreaves et al., 2011).  
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Focus on social determinants of health as a model for tuberculosis surveillance 

and control is especially lacking in marginalized populations (Meleis and Im, 1999; 

Venkatapuram et al., 2010; Baah et al., 2019) such as pastoralist communities who are 

marginalized on multiple fronts (Mkutu, 2007; Pavanello, 2009; Elhadary, 2010; Pike et 

al., 2010; Heathcote, 2012; Ahearn, 2016; Wild et al., 2020a). Among these communities, 

unique sociocultural practices increasing the risk of tuberculosis include housing with 

minimal ventilation, overcrowding in households, consumption of raw or undercooked 

animal products, and close interaction with animals. These parallel the social 

determinants of tuberculosis (Lonnroth et al., 2009; Rasanathan et al., 2011). It has been 

shown that in high burden settings, there is need for more health personnel, diagnostic 

and contact tracing resources to stem the transmission of tuberculosis (Bonadonna et al., 

2017). However, in pastoralist communities, barriers to tuberculosis care, diagnosis and 

treatment stem from lack of access to healthcare and knowledge on control, and in some 

communities, adherence to traditional beliefs and healers (Gele et al., 2009; Gele et al., 

2010). These factors, in addition, are complicated by socioeconomic status, gender, and 

mobility (Getnet et al., 2019; Nooh et al., 2019; Megerso et al., 2020). The challenge of 

tuberculosis in pastoralist communities is further complicated by the reliance on 

microscopy - which has a low sensitivity (<60%) (Siddiqi et al., 2003; Ganoza et al., 

2008) - for the diagnosis of tuberculosis.  Furthermore, microscopy cannot differentiate 

between competing causative agents of tuberculosis in humans; an important 

consideration in such communities with potential exposure to a variety of mycobacterium 

species of humans, animals and the environment (Kankya et al., 2011; Gumi et al., 2012; 

Gumi, 2013; Mnyambwa et al., 2018a).   Thus, there is need for a more holistic approach 
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incorporating structural interventions that target proximate levels of disease determinants, 

in addition to diagnostics and treatment for the effective control of tuberculosis 

(Blankenship et al., 2000; Sumartojo et al., 2000; Blankenship et al., 2006).  

Disentangling determinants of human tuberculosis in pastoralist communities  

The social determinants of tuberculosis as a concept have been acknowledged 

since before the identification of the actual causative agent - Mycobacterium tuberculosis 

- in humans in 1882 (Dubos and Dubos, 1987). Mycobacterium tuberculosis is part of a 

group of mycobacterial organisms capable of infecting human beings and other animals, 

known as Mycobacterium tuberculosis complex (MTBC). In addition to Mycobacterium 

tuberculosis, these include Mycobacterium africanum, Mycobacterium bovis, 

Mycobacterium canettii, Mycobacterium caprae, Mycobacterium microti, 

Mycobacterium pinnipedii, Mycobacterium suricattae, Mycobacterium dassie, 

Mycobacterium oryx, and Mycobacterium mungi  (Velayati and Farnia, 2016; Gagneux, 

2018). Of these, M. tuberculosis and M. africanum are human pathogens while M. bovis 

is a zoonotic pathogen with the greatest host range, including domestic and wild animals 

(Wayne, 1986; Palmer et al., 2012; Muller et al., 2013). Mycobacterium canettii has been 

isolated from human beings but is thought to be an opportunistic environmental pathogen 

(Pfyffer et al., 1998; Koeck et al., 2011; Supply and Brosch, 2017).  

The complexity of the epidemiology of tuberculosis among pastoralists mimics 

the challenge of understanding the general ecology of infectious diseases at the human-

livestock-wildlife interface where various infectious diseases occurrence and patterns are 

amplified by the community’s social and cultural practices (MacGregor and Waldman, 

2017). The ecology of M. tuberculosis in marginalized pastoralist populations is in 
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parallel with the occurrence of zoonotic tuberculosis caused by M. bovis (Mfinanga et al., 

2003; Cleaveland et al., 2007). M. bovis is not endemic in much of the world but 

represents a risk for spillback to humans in intensive livestock interfaces, and through 

foodborne transmission (Miller and Olea-Popelka, 2013a; Müller et al., 2013; Olea-

Popelka et al., 2017).  In 2019 the World health Organization estimated the occurrence of 

~140,000 (Range: 69,800-235,000) M. bovis cases worldwide, of which 49% occurred in 

Africa (WHO, 2020). Thus the risk is real and coupled with diagnostic approaches with 

low sensitivity and discriminatory power, there are significant demerits to instituting only 

healthcare-based interventions (Marmot, 2005; Hargreaves et al., 2011). On the other 

hand, similarities in social and structural drivers of M. tuberculosis and M. bovis 

ecologies make it difficult to tease them apart and identify appropriate points for public 

health interventions. For example, tuberculosis occurrence is influenced by 

socioeconomic status, co-morbidities, age, geographical location and housing status 

(Hargreaves et al., 2011). In the case of zoonotic tuberculosis, the risk is influenced by 

number of people in a household, income, co-morbidities, consumption of raw milk or 

meat, proximity to wildlife areas and close interaction with domestic animals (Mfinanga 

et al., 2003; Caron et al., 2013; Brooks-Pollock et al., 2014; Anderson et al., 2015; Cowie 

et al., 2015; Olea-Popelka et al., 2017). These are practically the same determinants being 

seminal to different diseases in the same communities and/or ecosystems. Thus, there is 

need to understand nuances around transmission for effective control.   

Studies investigating the association between household tuberculosis, livestock M. 

bovis status, and socio-cultural practices have had varying results (Koech, 2001; 

Mfinanga et al., 2003; Meisner et al., 2019). Many socio-cultural factors were commonly 
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associated with increased risk of both M. tuberculosis and M. bovis (Mfinanga et al., 

2003; Fetene et al., 2011; Meisner et al., 2019). Furthermore, while M. tuberculosis is 

primarily considered a pulmonary disease, its occurrence has also been associated with 

cases of extrapulmonary forms of tuberculosis (Berg et al., 2015b). A review of 

tuberculous adenitis cases in Africa show association with livestock exposure (52%), and 

consumption of raw animal products (46%) (Mekonnen et al., 2019a). Thus, the often 

assumed association between extrapulmonary tuberculosis with M. bovis (Koech, 2001), 

may be a misdiagnosis as it has been shown that certain lineages of M. tuberculosis may 

have extrapulmonary involvement (Kong et al., 2006, 2007). The intricacies surrounding 

risk factors extend to their association with M. bovis in human populations. In some 

studies, presence of reactors in a household’s cattle herd was protective against human 

tuberculosis (Meisner et al., 2019), and in other studies, consumption of raw milk was 

also protective (Koech, 2001). However, consumption of raw milk led to elevated risk in 

several other studies (Tschopp et al., 2009; Fetene et al., 2011; Berg et al., 2015b; 

Mengistu A et al., 2015). Thus, despite numerous studies on human tuberculosis in high-

risk populations, there are still gaps in our understanding of risk factors and, 

consequently, the appropriateness of interventions in the face of imperfect diagnostic 

techniques. Thus, obfuscating the control and management of tuberculosis in general in 

these communities.  

Future directions and opportunities for integrating social determinants to 

tuberculosis surveillance 

There is no question that traditional approaches to tuberculosis control in 

pastoralist populations have not been effective. This is due to the obvious diagnostic 

challenges, but is also a result of the complex eco-epidemiology of disease in these 
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communities. Managing this complexity necessitates an integrated approach to control in 

an interconnected human, animal, environmental system - in a culturally acceptable 

manner - which is often ignored or beyond the scope of traditional thinking and funding.  

The confluence between M. tuberculosis and M. bovis in pastoralist populations is 

worrisome, as M. bovis has been shown to be resistant to first line antituberculosis drugs 

(Sreevatsan et al., 1997). In addition, it has been suggested that the complex relationship 

between livestock, wildlife and sociocultural factors in the ecologies of both M. 

tuberculosis and M. bovis, and their management necessitates a “One Health” approach 

(De Garine-Wichatitsky et al., 2013; Miller and Olea-Popelka, 2013b; Travis et al., 

2014b; Olea-Popelka et al., 2017).  This is in recognition of the limitations traditional 

approaches to tuberculosis control including dependence on patient initiated hospital 

visitation, imperfect diagnostics and lack of culturally appropriate and surveillance 

approaches.   

Implementation of the “One Health” paradigm implicitly advocates for the 

harnessing of collaborative and multi-disciplinary methodologies - integrating human, 

animal and socioecological knowledge to control diseases (Travis et al., 2014b; Binot et 

al., 2015; Cardona et al., 2015; Munyua et al., 2019) – towards risk-based stratification of 

surveillance efforts for maladies such as tuberculosis (Gebreyes et al., 2014; Roug et al., 

2014; Meisner et al., 2019). However, with competing determinants, this approach needs 

more evidence on several fronts, and explicit efforts to understand transmission patterns 

and the effect of heterogeneity within populations. Accordingly, there is need to expound 

on both risk factors, and their synergistic or antagonistic interactions, to identify areas 

that may allow population or area specific interventions (Koplan et al., 2009; Conrad et 
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al., 2013). This may be further supported by cheap and easy to implement or portable 

molecular methods for characterizing mycobacterial species in suspected tuberculosis 

patients. This is especially critical in high exposure interfaces where the frequency of 

different Mycobacterium tuberculosis complex species and nontuberculous mycobacteria, 

may complicate diagnosis and management of tuberculosis in patients as recently shown 

(Mnyambwa et al., 2018b). In combination with advanced quantitative methods, triaging 

risk factors and diagnostic results allows for the resolution of competing determinants 

(Koech, 2001; Meisner et al., 2019) or teasing apart risk factors in cases where multiple 

population-based predictors seem to be interacting   (Berg et al., 2015b).  

A new area for exploration in disease transmission and management is network 

analysis. Network analysis has been used to elucidate transmission and control strategies 

in livestock (Christley et al., 2005; Dube et al., 2009; Kao and Kiss, 2010; Poolkhet et al., 

2013; VanderWaal et al., 2016; VanderWaal et al., 2017; Kinsley et al., 2019; Mekonnen 

et al., 2019b)  and wildlife systems (Bohm et al., 2008; Godfrey, 2013; Craft, 2015; Silk 

et al., 2017). It has also been employed in human disease to understand epidemic 

structure (De et al., 2004), and potential transmission nodes (Yaganehdoost et al., 1999; 

Klovdahl et al., 2001). In pastoralist communities, network analysis has been used to 

characterize seasonal distribution of grazing patterns and effect of mobility on livestock 

disease transmission (VanderWaal et al., 2017; Pomeroy et al., 2019a), and on the role of 

movement of personnel on disease transmission between farms (Rossi et al., 2017). 

Pastoralists move across the ecosystem in search of forage and water for their livestock. 

The role of such movements in increasing human and animal congregation, and 

specifically their effect on occurrence of human diseases, is an important area for 
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research. These can also be applied in developing contact tracing methodologies in 

mobile populations. In conclusion, it is important to note that pastoralists have intricate 

biocultural calendars that drive different types of livestock movements, human and 

animal congregations across their ecosystems. Transmission of tuberculosis has been 

shown to occur in areas where humans cluster (Yaganehdoost et al., 1999; Klovdahl et 

al., 2001), thus social and cultural factors that promote human congregation, including 

festivities, market and grazing coalitions are important avenues for the potential control 

of tuberculosis in these populations. Thus, we must endeavor to develop a deeper 

understanding of sociocultural practices, human and animal movement and landscape 

utilization, in order to develop targeted and effective interventions for tuberculosis.  

Goal of this dissertation 

In an attempt to fill the knowledge gaps identified above, the overarching objective of 

this dissertation was to investigate the role of social and cultural factors in shaping 

tuberculosis patterns in a pastoralist population in Maasai Mara Ecosystem, Kenya with 

an eye toward developing more comprehensive disease control strategies. The Maasai 

Mara Ecosystem is part of Narok County, Kenya characterized by the presence of the 

Maasai Mara National Reserve, which through availability of forage during the dry 

season drives human, livestock and wildlife movement across the ecosystem. There have 

been reports of Mycobacterium tuberculosis within this population but not of 

Mycobacterium bovis despite the community’s continued observation of sociocultural 

practices, including consumption of raw milk and other animal products (Koech, 2001; 

Kirui, 2014). To accomplish this objective, the specific aims of this dissertation were as 

follows (Figure 1.1): 
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Aim 1. Characterization and spatial distribution of Mycobacterium tuberculosis complex 

species in Maasai Mara Kenya. In this aim, sputum collected from tuberculosis suspected 

patients was analyzed using polymerase chain reaction and classification of the 

mycobacterial species based upon molecular analysis (Chapter 2). 

Aim 2. Assessing socio-cultural drivers of tuberculosis in the Maasai Mara Ecosystem. 

Here, using survey data from households in the ecosystem, in this aim a machine-learning 

algorithm as developed to characterize drivers and their interaction patterns associated 

with household tuberculosis (Chapter 3).  

Aim 3. Conceptualizing potential pathways for disease control amongst villages through 

assessing livestock movements. This aim defined and characterized livestock-associated 

cultural movements and evaluated their potential role in network-based disease control 

within the ecosystem (Chapter 4). 

 

 

Figure 1.1. Schematic diagram of the dissertation chapters and questions they 

are addressing 
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Chapter 2 | Characterization and spatial distribution of 

Mycobacterium tuberculosis complex species in Maasai Mara, 

Kenya 

Background 

The Mycobacterium tuberculosis complex (MTBC) is a group of mycobacterial 

organisms capable of infecting humans and other animals (Brosch et al., 2002; Comas et 

al., 2013; Velayati and Farnia, 2016; Gagneux, 2018). In addition to Mycobacterium 

tuberculosis (M.  tuberculosis), the most common agent of human tuberculosis (TB) 

infections, MTBC includes M. africanum (humans), M. canettii (humans), M. bovis 

(animals and humans), M. caprae (animals and humans), M. microti (voles), M. 

pinnipedii (seals), M. suricattae (meerkats), M. dassie (hyrax), M. oryx (oryx), M. mungi 

(mongoose) (Velayati and Farnia, 2016; Gagneux, 2018), and the newly recognized 

chimpanzee bacillus (Coscolla et al., 2013). Pastoralist communities are at a higher risk 

of different MTBC due to their lived experiences – social determinants of TB 

(Hargreaves et al., 2011; Olea-Popelka et al., 2017). Among the MTBC species, M. bovis 

is a re-emergent zoonosis with the greatest host range, including domestic and wild 

animals (Wayne, 1986; Palmer et al., 2012; Muller et al., 2013), and is a pathogen of 

concern in pastoralist communities due to their sociocultural practices (Etter et al., 2006; 

De Garine-Wichatitsky et al., 2013). 

The challenge of TB control in pastoralist communities is further complicated by 

reliance on smear microscopy for diagnosis. This has low sensitivity and cannot 

differentiate among MTBC (Siddiqi et al., 2003; Ganoza et al., 2008). Ideally, smear 
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microscopy needs to be confirmed by culture, followed by MTBC speciation and 

antibiotic susceptibility testing. However, this would take weeks, and require specialized 

facilities and personnel, which are significant barriers, especially in Africa (Parsons et al., 

2011; Harries and Kumar, 2018), leading to the continued lack of MTBC speciation, and 

potentially limiting the efficacy of TB control programs. Other diagnostic techniques 

including portable molecular techniques such as Xpert® MTB/RIF – an onsite molecular 

based test that simultaneously detects MTBC and rifampicin resistance - are available but 

require high infrastructure and maintenance needs (Lawn and Nicol, 2011; Parsons et al., 

2011; Zeka et al., 2011). On the other hand, IS6110, a mobile genetic element found in 

MTBC has been an important diagnostic marker for differentiating MTBC from other 

mycobacteria (Thierry et al., 1990; Gonzalo-Asensio et al., 2018). Although IS6110 does 

not provide high resolution as whole genome sequencing (Kohl et al., 2014), it is 

standardized and reliable as an epidemiological marker for MTBC (Van Embden et al., 

1993). Comparative genomic analyses have also identified several regions of difference 

(RD) resulting from loss of genetic material in the genomes of MTBC following their 

evolution (Behr et al., 1999; Gordon et al., 1999). Analysis of these RD have revealed 

differences in their occurrence among MTBC subspecies hence allowing for the 

establishment of their genetic lineages (Brosch et al., 2002; Warren et al., 2006). This 

provides an alternative approach for speciation of MTBC in at-risk communities such as 

pastoralists. 

Kenya is a high TB burden country (WHO, 2019, 2020), where microscopy, and 

occasionally, culture and Xpert MTB/RIF are routinely used for TB diagnosis (Enos et 

al., 2018). A recent survey showed a TB prevalence of 558 (95% CI: 455–662) per 
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100,000 adults (Enos et al., 2018), which was higher than previous estimates of 233 per 

100,000 (95% CI: 188-266) (WHO, 2016). In this survey, however, Xpert MTB/RIF 

identified 78% of the cases compared to only 46% identified by smear microscopy – 

highlighting the limitations of smear microscopy. This survey and many other studies 

spotlight deficiencies in currently employed diagnostic testing, which among others, the 

lack of differentiation among MTBC precludes epidemiological consideration for the role 

played by other mycobacterial species in the TB incidence and control in at-risk 

communities.  

This study was conducted in the Maasai Mara Ecosystem, which is primarily 

occupied by a rural Maasai pastoralist community, and consists of Maasai Mara National 

Reserve (MMNR) and adjacent villages. This region saw an increase in cases of 

extrapulmonary TB in the 1990s which were attributed to M. bovis (Koech, 2001). The 

Maasai continue to observe their cultural practices, including consumption of raw animal 

products, close interaction between humans and animals, and congregation of humans 

and livestock around the MMNR during the dry season (Omondi et al., 2021), which 

provides further support that M. bovis may play an important role in TB incidence in this 

ecosystem. Surprisingly, one study in this region found that practices such as 

consumption of raw milk were protective against TB infections (Koech, 2001). These 

reports, which conflict with well-recognized risk factors for specific MTBC species, 

necessitate further investigation for effective TB control. Thus, the objective of this study 

was to characterize Mycobacterium tuberculosis complex species and their spatial 

distribution in the Maasai Mara Ecosystem in Kenya. We hypothesized that zoonotic TB 

would account for the highest proportion among MTBC species in suspected TB patients, 
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with spatial clustering of MTBC cases influenced by Maasai Mara National Reserve 

possibly due to human congregation during dry season grazing of cattle in the protected 

area. 

Methods 

Study site and sample collection 

Sampling for this study was conducted in three local hospitals in the Maasai 

Mara Ecosystem. Sputum samples were collected, by convenience sampling, from all 

patients referred for a TB test at Sekenani, Aitong, and Talek health centers, which are 

three of the four local hospitals with capacity to diagnose and manage TB. All persons 

attending TB clinic in any of the three hospitals between November 2017 and June 2018, 

and were residents of the study area met the inclusion criteria. From all patients, sputum 

samples were collected in a sterile cup by laboratory technicians, decontaminated using 

5% NaOH or phenol (Giacomelli et al., 2005), and evaluated by smear microscopy 

following acid-fast staining. All samples, both smear microscopy positive and negative, 

were aliquoted into cryovials, labeled with a unique sample number, hospital name, and 

village of origin, and stored in liquid nitrogen until analyzed.  

Identification of Mycobacterium tuberculosis complex species 

DNA Extraction 

 The extraction of DNA from sputum samples followed the manufacturer’s 

Quick-DNA™ Fungal/Bacterial Miniprep Kit (Zymo Research). Briefly, 100µl of the 

solubilized sputum sample was transferred into a ZR BashingBead™ lysis tube and 750µl 

BashingBead™ Buffer added. This mixture was vortexed for 15 minutes and the ZR 
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BashingBead™ lysis tube centrifuged at 10,000x g for three minutes. Following 

centrifugation, 400µl of the supernatant was transferred into a Zymo-Spin™ III-F Filter 

in a Collection Tube, and centrifuged again at 8,000x g for one minute. Genomic lysis 

buffer (1,200µl) was then added into the filtrate in the collection tube and transferred into 

Zymo-Spin™ IICR column followed by centrifugation at 10,000 x g for one minute. This 

was then followed by addition of DNA pre-wash buffer (200µl) to the column and 

centrifuged at 10,000x g for one minute. Five hundred microliter g-DNA wash buffer was 

then added and this mixture centrifuged at 10,000x g for an additional minute. For DNA 

elution, the column was transferred into clean 1.5ml micro tube, and 100µl of elution 

buffer was added followed by centrifugation at 10,000x g for one minute. The eluted 

DNA was stored at -20°C until required for further analysis. 

Classification of MTBC species 

This study employed a two-step approach where following DNA extraction, all 

samples were analyzed using IS6110 primer, an insertion element exclusive to MTBC 

(Hellyer et al., 1996; Kamerbeek et al., 1997; Thorne et al., 2011). IS6110 positive 

samples were then speciated through the analysis of regions of difference (Huard et al., 

2003; Huard et al., 2006) using polymerase chain reaction. These are regions deleted 

from different MTBC genomes during evolution allowing for the establishment of their 

genetic lineages (De Jong et al., 2010; Brites and Gagneux, 2017; Gagneux, 2018).  

The amplification reactions were done in a 25µl final reaction volume using 

HotStarTaq Master Mix kit (Qiagen, Heidelberg, Germany). The IS6110 PCR reaction 

mix included 12.5µl of 2x HotStarTaq mastermix, 0.5µl of each primer (10pmol/ul 

forward [5'- TCA GCC GCG TCC ACG CCG CCA - 3'] and reverse [5'- CCG ACC GCT 
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CCG ACC GAC GGT - 3'] primers, respectively), 2µl of template DNA and the reaction 

was topped up with molecular grade PCR water. The DNA was amplified in a Veriti® 

thermal cycler (Applied Biosystems) using the following conditions. Initial denaturation 

at 95 °C for 15 min followed by 35 cycles at 94 °C for 30 seconds, 55 °C for 30 seconds, 

and 72 °C for 45 seconds. Final extension was performed at 72 °C for 5 minutes. The 

success of the PCR was evaluated by visualizing size separation of the products on 1.5% 

agarose gel by electrophoresis, and illuminated by ethidium bromide stain under UV 

light.  

To determine the species of MTBC, all samples were further subjected to PCR 

using primers targeting the regions of differentiation (RD) 1, 4, 9 and 12 (Huard et al., 

2003; Huard et al., 2006). These primers included RD1 - Rv3877/8 (forward [5' - CGA 

CGG GTC TGA CGG CCA AAC TCA TC - 3'], and reverse [5' - CTT GCT CGG TGG 

CCG GTT TTT CAG C- 3']); RD 4 – Rv1510 (forward 5' - GTG CGC TCC ACC CAA 

ATA GTT GC- 3'], and reverse [5' - TGT CGA CCT GGG GCA CAA ATC AGT C- 3']); 

RD9 – Rv2073c (forward [5' - TCG CCG CTG CCA GAT GAG TC – 3'] and reverse [5' 

- TTT GGG AGC CGC CGG TGG TGA TGA - 3']); and RD12 – Rv3120 (forward [5' - 

GTC GGC GAT AGA CCA TGA GTC CGT CTC CAT – 3'] and reverse [5' - GCG 

AAA AGT GGG CGG ATG CCA GAA TAG T - 3']). The amplification reactions were 

done in a 25µl final reaction volume using HotStarTaq Master Mix kit (Qiagen, 

Heidelberg, Germany), using a PCR reaction mix comprised of 12.5µl of 2x HotStarTaq 

mastermix, 0.5ul of each primer (10pmol/µl), 2µl of template DNA and topped up with 

molecular grade PCR water. The DNA was amplified in a Veriti® thermal cycler 

(Applied Biosystems), and success visually evaluated as aforementioned, using gel 
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electrophoresis and ethidium bromide. Classification of the MTBC based on the results of 

the RD PCR was done following the schema shown in Table 2.1. Samples that did not 

meet the criteria were classified as indeterminate. These were positive on IS6110 but did 

not match to any known RD presence/absence pattern (Warren et al., 2006). 

Table 2.1. Classification of Mycobacterium tuberculosis complex species based on 

presence or absence of RD1, RD4, RD9 and RD12. Schema modified from (Warren et 

al., 2006).   

Pathogen RD1 RD4 RD9 RD12 

Mycobacterium canettii Present Present Present Absent 

Mycobacterium tuberculosis Present Present Present Present 

Mycobacterium africanum Present Present Absent Present 

Mycobacterium microti Present Present Absent Present 

Mycobacterium pinnipedii Present Present Absent Present 

Mycobacterium caprae Present Present Absent Absent 

Mycobacterium bovis Present Absent Absent Absent 

Mycobacterium bovis BCG Absent Absent Absent Absent 

 

Local cluster analysis for MTBC species in the Maasai Mara Ecosystem 

Following classification of the MTBC, data were geocoded to their villages of 

origin. To identify local clustering and evaluate their significance, a purely spatial 

multinomial model of the spatial scan statistics was performed using SaTScan software 

v9.4.4 (Kulldorff, 1997; Jung et al., 2010). The units of analysis were villages with five 

nominal attributes based on MTBC classification: category 1 (Mycobacterium canettii), 

category 2 (Mycobacterium bovis), category 3 (Mycobacterium caprae), category 4 

(Mycobacterium bovis BCG) and category 5 (Indeterminate).  
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Using a likelihood ratio test, the purely spatial multinomial cluster analysis 

compares cases using a circular scanning window moving across the geocoded samples 

space (Kulldorff and Nagarwalla, 1995). The windows are variable in size, and when a 

cluster is identified, a test statistic comparing the potential cluster with the remaining area 

is calculated based on a permutation approach, thus, testing the hypothesis that cases 

caused by the same MTBC species are more likely to occur within the clusters than 

expected by chance (Kulldorff and Nagarwalla, 1995; Kulldorff, 1997). The windows 

that maximize the likelihood ratios, a ratio of observed to the expected number of cases, 

are identified as potential clusters. The maximum radius of the spatial window was set at 

50% with a Monte Carlo based p-value <0.05 indicative of statistically significant 

clusters (Jung et al., 2010).  

Results 

Molecular analysis and identification of MTBC species 

This study analyzed 227 sputum samples (57% females and 43% males) from TB 

suspect patients at three local hospitals in the Maasai Mara Ecosystem that met the 

inclusion criteria. Sample distribution from the local hospitals was 71%, 4% and 25% 

from Sekenani Health Centre, CMF Aitong Health Centre and Talek Community Health 

Centre, respectively. Out of the 227 samples analyzed, 13% (29/227) were positive on 

smear microscopy while 40.5% (92/227) were positive on IS6110 PCR. Five percent of 

the samples (12/227) were positive on smear microscopy but negative on IS6110 PCR, 

thus, potentially indicative of the presence of nontuberculous mycobacteria or an MTBC 

species with a low copy number. Surprisingly, only 8% (17/227) of samples were 

positive on both smear microscopy and IS6110 PCR analysis. For the classification of the 
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ninety two samples that were IS6110 PCR positive into MTBC species, an initial binary 

grouping was made using RD9. Its presence (positive RD9 PCR) is indicative of M. 

tuberculosis or M. canettii while its absence (negative RD9 PCR) denotes either M. 

africanum, M. caprae, M. pinnipedii, M. microti, M. bovis or M. bovis BCG (Huard et al., 

2003; Warren et al., 2006). From these two broad classifications (RD9 positive or 

negative), samples were then sequentially differentiated using RD4, RD1 and RD12, with 

8% (n=7), 48% (n=44), 9% (n=8), 3% (n=3) and 32% (n=30) being classified as M. 

bovis, M. bovis BCG, M. canettii, M. caprae and indeterminate (did not match any known 

RD pattern for speciation), respectively. Surprisingly, RD-based classification did not 

yield any M. tuberculosis. Distribution of the MTBC species in different villages across 

the ecosystem and among different age groups are shown in Figure 2.1 and Table 2.2, 

respectively.  



 

22 
 

  

 

 

Table 2.2. Distribution of Mycobacterium tuberculosis complex species from the Maasai 

Mara Ecosystem by age groups. Three individuals did not have their age indicated. 
 

0-9 

years 

10-19 

years 

20-29 

years 

30-39 

years 

40-49 

years 

50-59 

years 

>60 

years 

Total 

Indeterminate 0 7 6 4 2 4 6 29 

Mycobacterium 

bovis 

0 2 0 1 2 0 0 5 

Mycobacterium 

bovis BCG 

1 7 3 10 7 4 12 44 

Mycobacterium 

canettii 

0 1 1 0 3 2 1 8 

Mycobacterium 

caprae 

0 0 0 0 0 1 2 3 

 

Figure 2.1. Distribution of the different Mycobacterium tuberculosis complex species 

(n=62) in different villages across the Maasai Mara Ecosystem. Indeterminate samples are 

not shown.  



 

23 
 

Spatial cluster analysis 

The multinomial model of the spatial scan statistic revealed four clusters, though 

these were not statistically significant (p-value>0.05). Cluster 1 included twelve villages 

situated in a belt around the Maasai Mara National Reserve. A patient from any of these 

villages had a 7.14x greater risk of testing positive for M. bovis compared to being from 

any other village in the ecosystem. Cluster 2 involved three villages located towards the 

southern side of the ecosystem along the Tanzania border (Figure 2.2). A patient from 

any of these villages had a 14.8x greater risk of testing positive for M. caprae compared 

to the other remaining villages. Cluster 3 and 4 included one village each with the 

predominant category being M. caprae in each cluster (Table 2.3). The distribution of the 

different MTBC species across different villages is shown in Table 2.2. 

 

Table 2.3. Spatial clustering results from the multinomial spatial scan statistics of 

Mycobacterium tuberculosis complex species distribution in the Maasai Mara Ecosystem 

(filtered to those with a relative risk>1). Cluster 1 was comprised of villages adjacent to 

the Maasai Mara National Reserve, while villages located along the Tanzania border 

dominated cluster 2. No clusters were statistically significant (p-value >0.05). 

 

Cluster  Radius  Villages Category Relative Risk 

1 10.24km Tipilikwani, Ololchora, Ndoinyo, 

Emarti, Talek, Oldapash, 

Sekenani, Orkiu, Oloirien, Ngoso, 

Loigero, Olekene 

M. bovis 7.14 

M. bovis BCG 1.09 

Indeterminate 1.04 

2 20.85km Naikara, Nkineji, Olosupai M. canettii 4.24 

M. caprae 14.83 

Indeterminate 1.02 

3 0km Gishoromurua M. canettii 3.14 

Indeterminate 2.44 

4 0km Oltiameletei M. canettii 4.24 

M. caprae 14.83 
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Discussion 

The overall goal of this study was to evaluate the occurrence of MTBC species 

and their patterns of spatial clustering in the Maasai Mara Ecosystem in Kenya. The 

molecular analysis revealed the possibility of at least four different MTBC species co-

circulating in the ecosystem (Figure 2.1). Although cases of M. bovis were expected, their 

frequency in this population (8%) was high in comparison to other populations at high-

risk human-livestock-wildlife interfaces in which the prevalence is between 0.2-3% 

(Gumi et al., 2012; Ibrahim et al., 2016; Katale et al., 2017; Getahun et al., 2020). 

However, this is not entirely surprising as this study focused on a high-risk community 

with widespread consumption of raw meat, milk and other animal products, and 

Figure 2.2. Clusters 1 and 2 from the multinomial spatial scan statistics of Mycobacterium 

tuberculosis complex distribution in the Maasai Mara Ecosystem. Cluster 1 was 

comprised of twelve villages located adjacent to the Maasai Mara National Reserve. 

Cluster 2 had three villages located along the Tanzania border. All clusters were not 

statistically significant (p-value >0.05). 
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congregation of humans in villages around the Maasai Mara National Reserve during dry 

season grazing of livestock (Omondi et al., 2021). Although, M. bovis has been isolated 

from various livestock species in Kenya, especially those from pastoralist areas (Gathogo 

et al., 2012; Kuria and Gathogo, 2013; Kuria et al., 2018), there is paucity of data from 

human populations, and especially from at-risk marginalized populations. These 

populations mix livestock herds from different households during dry season grazing, 

with increased contact with wildlife, through forage patches and at watering points, a 

factor shown to influence seropositivity rates in such livestock populations (Lekolool, 

2011). Consequently, the potential for infected livestock spreading disease to humans in 

the face of close contact and consumption of raw animal products exists (Ayele et al., 

2004; Mfinanga et al., 2004a).  

The presence of M. caprae in addition to M. bovis is profound as these two 

pathogens are the main causes of zoonotic TB. M. caprae infects many wild and domestic 

ungulates, and is considered a pathogen of public health concern even though its 

contribution to the overall human TB burden is low (Hansen et al., 2012). In this study, 

M. caprae cases represented 3% of the overall TB burden in this population; a higher 

proportion when compared to that in Spain (Rodríguez et al., 2009). This is usually 

associated with exposure to animals, consumption of raw animal products or reactivation 

following changes to the immune system with age or disease (Prodinger et al., 2014). 

However, these results need to be interpreted with caution, as this was a small sample, 

and only from three local hospitals serving the ecosystem. Thus, not representative of the 

whole population.  
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Based on the results of the regions of difference analysis, the majority of the cases 

in this sample were due to M. bovis BCG (48%). This is a surprising finding given that 

M. bovis BCG is a rare disease, and typically associated with local or disseminated 

infections following BCG (bacillus Calmette-Guérin) immunization (Grange, 1998; 

Liberek et al., 2006; Furuichi et al., 2020), as nosocomial infections (Wansaula et al., 

2019) or following intravesical infusion for treatment of bladder cancer (Abu-Nader and 

Terrell, 2002; Nadasy et al., 2008). BCG immunization rates in Kenya are high at 96.7% 

(95% CI: 95.9-97.5%)  (KNBS, 2015; Allan et al., 2021), although with high levels of 

concomitant syndemics (Vos et al., 2020), the potential role of BCG vaccination and 

development of infection is unknown, and warrants further research. M. bovis BCG has 

also been reported as a pulmonary infection in a healthy individual (Jiang et al., 2015). 

Kenya has conducted two national TB surveys in 1956 and 2016 (MOH, 2016; Enos et 

al., 2018); in both surveys, there was no data on MTBC other than M. tuberculosis. 

Although these results warrant further investigation, they may reflect local transmission 

with concurrent influences of other syndemics in the region (NACC, 2016; Achoki et al., 

2019). On the other hand, however, RD-based classification of M. bovis BCG is based on 

the absence of these regions of differences, which implies potential misclassification 

when using RD-based methods without culture. This may be challenging since RD exists 

in low copy numbers across the mycobacterial genome, and may lead to non-detection 

using PCR in the absence of culture. 

The presence of M. canettii in this part of the world is not surprising given most 

cases have been associated with the Horn of Africa (Pfyffer et al., 1998; Miltgen et al., 

2002; Boyer-Cazajous et al., 2014; Aboubaker Osman et al., 2016; Supply and Brosch, 
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2017). The proportion of cases attributable to M. canettii in this study is similar to that in 

Djibouti, a region associated with most of the global isolates of this pathogen (Boyer-

Cazajous et al., 2014). M. canettii is thought to be an opportunistic environmental 

pathogen (Koeck et al., 2011) with minimal capability for human-to-human transmission, 

and potentially part of an ancestral clade of MTBC organisms (Veyrier et al., 2011; 

Supply et al., 2013). In this study, the findings may reflect the opportunistic nature of the 

pathogen.  

The multinomial model of the spatial scan statistics revealed four clusters with the 

primary cluster comprising twelve villages (Table 2.3). Although the clusters were not 

statistically significant, they provide some insights to explore the epidemiology of 

MTBC, in communities in this ecosystem against the backdrop of sociocultural practices. 

First, the twelve villages are located within <2 kilometers from the border of the Maasai 

Mara National Reserve. These villages have also been shown to be important for dry 

season grazing where animals and people from across the ecosystem congregate to access 

the forage-rich protected area (Omondi et al., 2021). Pastoralist migration has been 

known to follow familial social networks (Grandin, 1991), and these gatherings involve 

overcrowding in manyattas, pastoralist households, and survival based upon meat and 

milk. Thus, the high relative risk for M. bovis (7.14) may be indicative of localized 

transmission, more likely associated with spatiotemporal-linked risk factors. The higher 

relative risk for M. caprae in cluster 2, which consists of villages in remote areas of the 

ecosystem, warrants further investigation. These villages are situated on the southwestern 

part of the ecosystem towards the Tanzania border, and the spatial patterns may be 

capturing either increased consumption of sheep and goat products or the influence of the 
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international border considering that movement of livestock and people is common for 

business and to access forage and water for livestock (Omondi et al., 2021). Cluster 3 and 

4 villages are found in areas that relatively sandwiched between community 

conservancies. The role such conservancies play in delineating human and animal 

movement, and interaction patterns, and hence potential exposures needs to be 

investigated further. In addition, though speculative, this finding may reflect the change 

in species kept at households from cattle to sheep and goats, in response to reduced 

forage areas for cattle. Interestingly, Oltiameletei village in cluster 4 is located close to 

several villages in cluster 1. Thus, the high relative risks for M. caprae and M. canettii 

may point to nuances in exposure and transmission at a local level (Lonnroth et al., 2009; 

Hargreaves et al., 2011; Shelby et al., 2018). 

While there were many indeterminate cases, which need to be investigated 

further, a sample negative on IS6110 but positive on microscopy may be indicative of 

nontuberculous mycobacteria which have been associated with significant human 

infections and treatment challenges (Mnyambwa et al., 2018a). Alternatively, these may 

reflect limitations of using RD PCR for differentiation of MTBC.  

This study has several potential limitations. The gold standard for TB diagnosis is 

the culturing of the causative organism from sputum, bronchial washings and other 

samples. This provides pure isolates that allows for the interpretation of tests including 

RD-based classification less challenging. MTBC are phylogenetically very close and 

notoriously difficult to tease apart using common protocols. Secondly, the use of 

convenience sampling limits the generalizability of the results as the persons attending 

TB clinic in the three local hospitals may not be representative of the target population in 
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the ecosystem. In addition, the lack of concurrent animal data hampers our understanding 

of sources of zoonotic tuberculosis in the ecosystem. Further, the study was conducted in 

a relatively small geographical region, and was hospital-based without concurrent 

information on exposures, risks or presence of concomitant infections from the patients, 

further limiting the generalizability of the findings. However, the study provides a useful 

initial step in understanding the occurrence of MTBC in a high-risk population as a 

precursor to designing appropriate One Health based studies and interventions.  

Conclusions 

Although the study was conducted in a small geographical region with samples 

collected conveniently, this study has shown that there are several different MTBC 

members co-circulating in this ecosystem. Specifically, this study has shown higher 

levels of zoonotic TB due to M. bovis and M. caprae as hypothesized – although these 

results warrant further investigation. Although the potential role of sociocultural 

practices, including consumption of raw animal products, movement patterns and 

interactions within the ecosystem are difficult to quantify, the findings from this study 

point to their possible influence in MTBC occurrence and spatial patterns. Specifically, 

this study shows that villages adjacent to the Maasai Mara National Reserve have a 

relatively higher risk of M. bovis and M. caprae, which may be attributed to human 

congregation patterns during the dry season grazing of livestock (Omondi et al., 2021). 

Finally, the fact that IS6110 PCR had a higher rate of test positivity when compared to 

smear microscopy shows it utility in identifying potentially infected individuals – an 

important component for TB control (WHO, 2019, 2020). 
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Chapter 3 | Assessing socio-cultural drivers of tuberculosis 

infections in the Maasai Mara Ecosystem 

Background 

Tuberculosis (TB), is a concern in pastoralist communities who have traditionally 

been excluded from public health infrastructure (Gele et al., 2009; Gele et al., 2010; Adlo 

et al., 2020). The primary agent of human TB, Mycobacterium tuberculosis (M. 

tuberculosis), is part of the Mycobacterium tuberculosis complex (MTBC), which 

comprises several species of  mycobacteria capable of infecting humans and animals 

(Brites and Gagneux, 2017; Malone and Gordon, 2017). Pastoralist communities are at a 

higher risk of different MTBC (Olea-Popelka et al., 2017), with TB control confounded 

by zoonotic TB, caused by Mycobacterium bovis (M. bovis), and whose epidemiology is 

influenced by prevalent social and cultural practices (Mfinanga et al., 2003; Brooks-

Pollock et al., 2014; Olea-Popelka et al., 2017). TB management in these communities is 

further complicated by the use of smear microscopy for diagnosis as it does not allow for 

the speciation of MTBC (Siddiqi et al., 2003; Ganoza et al., 2008), especially between M. 

tuberculosis and M. bovis, which have overlapping social determinants.  

TB is a social disease with communities ranking low on socioeconomic indicators 

having higher incidences of infection (Baker et al., 2008; Lonnroth et al., 2009; Baussano 

et al., 2013). Social determinants of TB, which take account of socioeconomic 

inequalities, overcrowding within households, and urbanization, among other social 

determinants of health (CDSH, 2008), influence TB epidemiology including baseline 
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prevalence in the population, exposure and transmission, pathogenesis of the infection, 

access to care and treatment outcomes (Hargreaves et al., 2011). 

Although the sociocultural practices are diverse, migration in search of forage and 

water for livestock, is key to pastoralist resilience (Galaty, 2015). However, livestock 

movements are associated with increased risk of infections to domestic herds, which in 

turn pose a threat to humans due to accompanying sociocultural factors, such as 

consumption of raw animal products (Cleaveland et al., 2007). Seldom explored is the 

impact of livestock-mediated human migration on the occurrence of human diseases such 

as TB. For instance, farms with high number of inward contacts have been shown to have 

a higher risk of infection with M. bovis (Sintayehu et al., 2017). However, there is paucity 

of data on how these livestock-mediated community movements influence human health. 

In addition, there is contradictory evidence on the role of sociocultural mediated 

exposures on the occurrence of TB in pastoralist communities. For example, although one 

would expect increased risk of zoonotic TB against the backdrop of sociocultural 

practices (Gumi et al., 2012; Muller et al., 2013; Olea-Popelka et al., 2017), cattle-

associated risk factors are not always linked with TB in humans (Meisner et al., 2019). In 

this study (Meisner et al., 2019), presence of a tuberculin skin test positive livestock in a 

household was associated with lower risk of TB in men. Further, while household 

consumption of raw milk has been shown to be risk factor for zoonotic TB (Ayele et al., 

2004; Mfinanga et al., 2004a), some studies found the practice protective (Koech, 2001). 

These findings, although contrarian, point to a need to understand local drivers of TB 

infections as a precursor to designing control programs and localizing One Health 

approaches.  
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Amongst tools for evaluating risk factors, machine learning models are 

increasingly used in epidemiology to tease apart the relative influences of risk factors to 

disease outcomes (Friedman and Meulman, 2003; Mansiaux and Carrat, 2014; Machado 

et al., 2015; Fountain-Jones et al., 2019; Lu et al., 2019; Machado et al., 2019), as they 

offer a flexible approach to analyzing nonlinear responses and modeling high 

dimensional interactions with better predictive performances (Tu, 1996; Elith et al., 2008; 

Fountain-Jones et al., 2019). In this study, we compared three popular machine leaning 

models; Random Forest (Breiman, 2001), Gradient Boosting Machine (Friedman, 2001), 

and Support Vector Machine (Noble, 2006) to classify household TB events based on a 

set of risk factors in the Maasai Mara Ecosystem. Household TB exposure is a complex 

process involving several risk factors and their interactions (Cleaveland et al., 2007; 

Shelby et al., 2018; Meisner et al., 2019). Although machine learning models focus more 

on the predictive rather than causal modeling, it is recognized that heterogeneity in 

outcomes can be explained by both causal and non-causal factors (VanderWeele, 2009). 

This insight allows for the utilization of predictive modeling as a guide for areas to 

consider when designing interventions (Lynch and Moore, 2016; Flaxman and Vos, 

2018; Wager and Athey, 2018; Bi et al., 2019).  

This study was conducted in the Maasai Mara Ecosystem in Kenya, an area 

occupied by Maasai pastoralist community, and characterized by human and animal 

migration during the dry season for livestock grazing, and other socioeconomic activities, 

with implications for disease transmission and control (Omondi et al., 2021). Kenya is a 

high TB burden country (WHO, 2020), with TB case notification data showing higher 

rates in pastoral areas (Oliwa et al., 2018) where communities have low levels of 
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knowledge on TB control, and unique sociocultural practices that heighten its risk 

(Koech, 2001; Mfinanga et al., 2003; Haasnoot et al., 2010). Thus, these communities 

may greatly benefit from an integrated approach that goes beyond the traditional human 

health sector if risk factors are identified (Lonnroth et al., 2009; Lönnroth et al., 2010; 

Rasanathan et al., 2011). The goal of this study was to understand the epidemiology of 

human TB in the ecological context of sociocultural mediated risk factors in a pastoralist 

community in Kenya. We hypothesized that livestock-mediated human movements 

expose households to infection, and drive TB occurrence patterns in pastoral households 

in this ecosystem. 

Methods 

Study design 

Sampling was conducted using a heterogeneous purposive sampling scheme in 

households within 20 kilometers of the Maasai Mara National Reserve (Figure 3.1) 

(Patton, 1990; Suri, 2011; Palinkas et al., 2015). This distance cutoff was selected as it 

represented the daily average distance covered by pastoralists when grazing livestock 

(Coppolillo, 2000; Coppolillo, 2001; Turner and Schlecht, 2019). Questionnaires were 

administered to 164 households who identified as pastoralists, had at least one species of 

livestock, and consented to participating in the study. Households were defined as all 

persons living within a manyatta, for a period of one month prior to the interview, and 

were identified by the respondent at the time of the interview.  
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Household TB was defined as the presence of at least one case of hospital 

diagnosed human TB in the household in the last year prior to the interview. The 

definition was highly influenced by the fact that local health facilities predominantly used 

smear microscopy for the diagnosis of TB. However, this may be an underrepresentation 

of the true number of TB positive cases in the area (Enos et al., 2018). Data was collected 

on sociodemography of the households: location, sex, number of males and females, 

education (none, primary, secondary, college and university), duration of residence and 

occupation. In addition, data was collected on consumption of raw animal products (milk, 

blood and meat), and their frequencies, and sharing housing with animals (always, never, 

and sometimes). Consumption of raw animal products was defined as always, sometimes, 

rarely and never. Variables associated with animals included numbers of different species 

in the household, grazing patterns (categorized as <5 km, 5-10 km, and >10 km from 

Figure 3.1. Map of the study area, with (A) showing map of Kenya with Narok 

County shaded, while (B) a zoomed in map of Narok County showing the 

Maasai Mara National Reserve, with households in circles and diamonds 

denoting tuberculosis positive and negative households, respectively. 
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home), livestock utilization of the MMNR (categorized as always, sometimes, rarely and 

never), and season of MMNR use (long wet, dry, short wet or others). Transboundary 

movement was recorded as livestock movement into Tanzania, while wildlife-livestock 

interaction was recorded as always, sometimes, rarely, and never. Livestock movement 

included gifting (respondent receiving livestock as a gift), bride price (respondent 

receiving livestock when a female household member is married), in addition to buying 

and selling, denoting the trading of household livestock in formal or informal markets. A 

final category of livestock movement recorded was agistment, which denoted the 

respondents’ temporary transfer of livestock to another location (village) for purposes of 

accessing forage and water during the dry season. The definitions of all variables are 

provided in the Appendix (Table 6).   

Data analysis 

Bipartite network construction and metrics 

For the household livestock movement data (gifting, bride price, agistment, 

buying and selling), household-village bipartite networks were constructed. In graph 

theory, nodes can be divided into k independent groups. Networks with two groups are 

termed bipartite networks (Jacoby and Freeman, 2016). Five household-village bipartite 

networks were constructed to represent each type of livestock movement in the 

ecosystem, with linkages denoting villages to which households sent to and/or received 

animals from. This network representation is appropriate as data collected on households’ 

livestock movements to and/or from different villages in the Maasai Mara Ecosystem. 

These bipartite graphs were then reprojected as one-mode networks, using an overlap 
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counting method (Wasserman and Faust, 1999), leading to a household-household 

network with an edge (connection) existing between households if they had sent to and/or 

received animals from a common village.  

Degree and betweenness centrality values were then calculated for each 

household. These values were extracted and used in the subsequent analysis. Degree was 

defined as the number of contacts a household engages via a movement type, while 

betweenness denoted a measure of the proportion of times a household lies on the path 

between other households in the network, thus, creating indirect connections between 

other households in the network (Freeman, 1978; Wasserman and Faust, 1994). 

Construction of predictive models 

Prior to analyses, we divided into tertiles (low, medium and high) the number of 

cattle, goats and sheep in a household; the length of time a respondent has lived in the 

village (residence); and number of males and females within a household (Kotsiantis and 

Kanellopoulos, 2006; Webb, 2014). Due to the low number of respondents indicating 

“university” as a level of education, “university” and “college” were combined to form 

one level, “college”. For all questions relating to frequencies, sometimes and rarely 

categories were collapsed into a single “sometimes” category. For each household, a GPS 

location was recorded and used to calculate distance to the MMNR border using ArcGIS 

10.5 (ESRI, 2011). The distance, and extracted centrality metrics were also used in the 

construction of predictive models.   
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Variable selection 

In machine learning, variable selection is important as it allows for the 

improvement of model accuracy, and reduction in training time by eliminating irrelevant 

variables (Khalid et al., 2014). In this study, we examined the cross tabulations between 

each set of variables and the outcome, household TB status, for significance using a chi-

square test of independence (Zibran, 2007). Variables that had p-value <0.15 were 

included in the subsequent machine learning models.  

Machine learning models  

For classification, we developed three machine learning models; Random Forest 

(RF), Gradient Boosting Machine (GBM) and Support Vector Machine (SVM). RF is a 

classification and regression algorithm where a set of data from the original dataset is 

generated without replacement, and used to create an ensemble of decision trees by 

repeatedly bootstrapping samples from the training set and fitting trees to each replicate 

(Breiman, 2001). In a single tree, the leaves represented the TB status of the household 

(positive or negative), and the branches represented combinations of risk factors. RF 

construct hundreds of trees using bootstrap samples, using set criteria for the number of 

trees (ntree), and number of risk factors (mtry) to be used to split each node. These trees are 

then aggregated, by majority vote, to obtain estimates (Breiman, 2001). Briefly, one 

draws ntree bootstrap samples from the original dataset (training set: 80% of the data), then 

for each bootstrap sample a classification tree is grown based on selected number 

predictors (mtry) at each node, and finally to validate the model, the performance of the 

model is evaluated against new data (testing set: 20% of the data) and  predictions 
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aggregated (Breiman, 2001; Liaw and Wiener, 2002). In essence, each tree predicts the 

positive or negative classification of an observation by majority vote, and this ‘voting’ is 

aggregated as the overall RF prediction (Breiman, 2001).  

GBM is a non-parametric algorithm for supervised machine learning technique 

where boosting refers to the sequential iterative addition of an ensemble of models fitted 

from a base learner, thus improving the accuracy of the model (Friedman, 2001; Natekin 

and Knoll, 2013). Unlike RF where the trees are grown in parallel from the original 

dataset, and a voting by majority of all trees to give prediction, GBM grows each 

decision tree in series, where each decision tree predicts the error of the previous one, 

hence, improving/reducing (boosting) the residuals/error (gradient). In summary, GBM 

optimizes the prediction accuracy based on iterations of weaker classification tree 

models. To illustrate GBM, if we take dataset x, yi=1
𝑁 , where x = (x1… xn) is a set risk 

factors and y is the outcome. We aim to develop a function approximating the data and its 

error term e;  

 

yi = F1 (Xi) + e1i                             [Equation 1] 

 

 F1 (Xi) has poor accuracy. Thus, we train a second model on the error term, weighting it 

to account for the poor accuracy in the previous model (a weak learner): 

 

 yi - F1 (Xi) = e1i  = h1 (Xi) + e2i [Equation 2] 
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Thus, the new model is:  

 

F2 (Xi) = F1 (Xi) + h1 (Xi ) + e2i 

 

 

[Equation 3] 

 

Thus, at the end, we have iteratively trained new models M times, with the final model 

(Equation 4), containing a series of hM (Xi) weak learners, with a minimized residual 

error, expressed as the loss of function L [Y, FM (X)]. 

 

FM (Xi) = FM–1 (Xi) + hM–1 (Xi)                                                                  [Equation 4] 

 

SVM is an algorithm for binary classification problems based on the Vapnik–

Chervonenkis and dimension theory, a statistical learning theory, and structural risk 

minimization principle, aimed at enhancing the separation of the two classes using a 

multidimensional hyperplane, thus, improving generalization of the model (Cortes and 

Vapnik, 1995; Noble, 2006). Briefly, SVM finds an optimal classification hyperplane 

which fulfills the conditions of classification based on the data. It then tries to achieve the 

widest separation of the two classes by maximizing the distance between the data and the 

hyperplane. The largest achievable maximal margin of separation is considered optimal 

(Fradkin and Muchnik, 2006).  

For each machine learning model, 80% of the data was used as training dataset, 

with the remaining 20% used for model evaluation as independent dataset, and model 
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performance evaluated. Across all models, we used 10 repetitions of 10-fold 

crossvalidation to estimate model performance and prevent overfitting as the same 

dataset was used for both training and testing the models.  

Model performance 

Model performance was assessed by calculating accuracy (ACC), specificity (Sp) 

and sensitivity (Se) of the model through a confusion matrix. A confusion matrix 

comprised the total number of TB positive households that were correctly (true positive; 

TP) or incorrectly predicted by the model (false positive; FP). It also included the number 

of TB negative households correctly (true negative; TN) or incorrectly (false negatives; 

FN) predicted. ACC was defined as (TP + TN)/(TP +TN + FP + FN); Sp = (TN)/(TN + 

FP)*100; while Se = TP/(TP + FN)*100. The Receiver Operating Characteristics (ROC) 

curve was also plotted and the area under the curve calculated to evaluate model 

performance.  

The best model was assessed by comparing the AUC score, sensitivity and 

specificity from the three models, from which we visualized and explored the results 

using variable importance and partial dependency plots. The variable importance plot was 

calculated using classification loss error, which computes the pairwise expected loss in 

predictive performance in classification of TB positive versus TB negative households in 

comparison to the full model (Goldstein et al., 2015). Partial dependency plots visualize 

the marginal effect of a risk factor, while controlling for other risk factors, on the 

likelihood of a positive household TB status, and are reported on the logit scale, with 

higher values signifying high risk of a household being TB positive (Friedman, 2001).  
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Results 

Overall, 164 households from sixty seven villages in the Maasai Mara Ecosystem 

were represented in this study, with 18% of households (29/164) reporting at least one 

TB case in the year prior to the interview. Thirty six percent of respondents reported 

consuming raw milk from cattle, and 15% each, from goat and sheep. Consumption of 

raw milk from cattle was associated with higher odds of household TB infections (4.5, 

95% CI 1.9-10.8), with households who reported to ‘always’ consuming raw milk from 

livestock having higher odds of infection when compared to those who reported ‘never’. 

Households that reported consuming raw milk from goats had lower odds (0.2, 95% CI 

0.01-1) when compared to those who did not. For the bride price degree and 

betweenness, and selling degree, households that had high centrality metrics had higher 

odds of household tuberculosis infection (Table 3.1). Descriptive summaries for all 

variables in this study are presented in the appendix (Table 6).  

Variable selection and performance of machine learning models  

Using a chi-square test of independence, and a cutoff of p-value<0.15 for 

inclusion, 11 out of 54 variables were selected for inclusion in the machine learning 

models (Table 3.1). None of the wildlife related variables met the inclusion criteria, while 

nine of the variables selected were associated with food consumption practices, and 

movement of livestock within the Maasai Mara ecosystem.  

The best model was chosen by comparing the accuracy, area-under-the-curve 

(AUC) scores, specificity, and sensitivity generated from the confusion matrix averaged 

over 10 repetitions of 10-fold crossvalidation. The model accuracies for RF, GBM and 
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SVM were 71.5% ±4.5, 84.4% ±0.9, and 81% ±1.7, respectively. Specificities for the 

three models were 71.6% ±4.8 for RF, 94.6% ±0.7 for GBM, and 96.9% ±1.7 for SVM. 

Model sensitivities were 69.2% ±11, 38.3% ±4.1, 9.6% ±4.8, for RF, GBM and SVM, 

respectively, with a corresponding AUC scores of 92.6%, 91.8% and 90.4%. RF was the 

best performing model as it had a good AUC score with a better sensitivity, when 

compared to the GBM and SVM. 
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Table 3.1. Variables included in the machine leaning models. All variables with a chi-

square test of independence p-value<0.15 were included. Household tuberculosis status is 

categorized as positive or negative, with their associated proportions based on the number 

of respondents, odds ratios and p-value. 

  

 

Variable (code) Levels Number 

 (% 

Positive) 

Number 

 (% 

Negative) 

Odds Ratio 

(95% CI) 

p-

value 

Business person  Yes 4 (2.4) 5 (3.1) 4.2 (0.9-

17.3) 

0.09 

No 25 (15.2) 130 (79.3) 

Consumption of raw 

cattle milk  

Yes 19 (11.6) 40 (24.4) 4.5 (1.9-

10.8) 

0.0006 

No 10 (6.1) 95 (57.9) 

Consumption of raw 

goat milk  

Yes 1 (0.6) 24 (14.6) 0.2 (0.01-1) 0.096 

No 28 (17.1) 111 (67.7) 

Consumption of raw 

sheep kidney  

Yes 20 (12.2) 70 (42.7) 2.1 (0.9-5.1) 0.140 

No 9 (5.5) 65 (39.6) 

Frequency of 

consumption of raw milk  

Never  10 (6.1) 95 (57.9) Ref 0.0001 

Sometimes  1 (0.6)  10 (6.1) 0.95 (0.2-

25) 

Always 18 (11) 30 (18.3) 5.7 (2.4-14) 

Household resident 

coughing for >1 month  

Yes 10 (6) 17 (10.4) 3.6 (1.4-9.1) 0.009 

No 19 (11.6) 118 (72) 

Bride price network 

degree  

Low 16 (9.8) 102  

(62.2) 

2.5 (1.1-5.8) 0.047 

High 13 (7.9) 33 (20.1) 

Bride price network 

betweenness 

Low 24 (14.6) 126 (76.8) 2.9 (0.8-9.4) 0.138 

High 5 (3.1) 9 (5.5) 

Buying network 

betweenness 

Low 14 (8.5) 41 (25) Ref 0.071 

Medium 10 (6.1) 43 (26.2) 0.7 (0.3-1.7) 

High 5 (3.1) 51 (31.1) 0.3 (0.1-0.9) 

Selling degree Low 14 (8.54) 40 (24.39) Ref 0.007 

Medium 3 (1.83) 55 (33.53) 0.2 (0.03-

0.6) 

High 12 (7.32) 40 (24.39) 0.9 (0.35-

2.1) 

Selling betweenness Low 14 (8.5) 40 (24.4) Ref 0.140 

Medium 9 (5.5) 51 (31.1) 0.5 (0.2-1.3) 

High 6 (3.7) 44 (26.8) 0.4 (0.1-1.1) 
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Variable importance 

The most important predictors based on the RF model, for a positive household 

tuberculosis status were selling degree, consumption of raw milk from goats, frequency 

of consumption of raw milk in the household, bride price degree, and household’s buying 

betweenness (Figure 3.2). To further elucidate the functional relationships between 

variables and the outcome, we used partial dependence plots to graphically visualize the 

marginal effects of variables in our model on household’s tuberculosis risk (Hastie et al., 

2009). Essentially, we hold a variable value constant, and average the effect of 

combinations of all the other variables in predicting the occurrence of household 

tuberculosis (Friedman, 2001). We present the partial dependence plot for all the eleven 

predictors in the RF model (Figure 3.3), with higher values on the y-axis indicating a 

higher probability of having a positive case of tuberculosis in the household.  There was 

an increased risk of household tuberculosis with increased frequency of consumption of 

raw milk, being a merchant, and consumption of raw milk from cattle. In addition, 

household tuberculosis risk increased with the presence of a household member coughing 

for more than a month, having a high bride price degree and betweenness (Figure 3.3).  

The risk for household tuberculosis was low among those who consumed raw milk from 

goats. 
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Figure 3.2. Variable importance plot. Variables in the random forest model are ordered 

based on expected loss of predictive performance following permutation. The more a 

variable alters model performance during permutation, the more important it is 

considered to be in predicting household tuberculosis status. 
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Figure 3.3. Partial dependence plots of the marginal effect of all eleven variables on the 

risk of tuberculosis in a household in the random forest model. The predictor names are: 

sell_deg = a household’s selling degree;  rawmilkgoat = consumption of raw milk from 

goats; rawmilkfreq = frequency of consumption of raw milk; bride_deg =  a household’s 

bride price degree; buy_bet = a household’s buying degree;  merchant =  a 

businessperson; sell_bet =  a household’s selling degree; rawmilkcattle = consumption of 

raw milk from cattle; bride_deg =  a household’s bride price degree;    cough1month = 

presence of a household member coughing for more than  1 month; and bride_bet = a 

household’s bride price betweenness. 
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Discussion 

The goal of this study was to investigate the epidemiology of human tuberculosis 

in the context of sociocultural mediated risk factors in the Maasai Mara Ecosystem in 

Kenya. Our analysis revealed several key findings. First, all wildlife-associated variables 

were not selected as important variables. However, we did identify eleven variables 

spanning food practices, livestock-mediated movements, and individual household 

characteristics that were associated with household tuberculosis status. Of these, selling 

degree, consumption of raw milk from goats, frequency of consumption of raw milk, 

bride price degree and a household’s buying betweenness were the most important. Those 

households reporting to ‘always’ consuming raw milk had a higher risk of TB. On the 

contrary, consumption of raw milk from goats was associated with a lower risk of 

household tuberculosis. The inference here though speculative may be related to 

immunological modulators in goat milk  (Jirillo and Magrone, 2014) which are known to 

influence the pathogenesis of tuberculosis (Redford et al., 2011; Jamaati et al., 2017). 

Alternatively, this may confounding, relating to the differing consumption patterns of raw 

milk where community members are more likely to drink raw cattle milk, while goat milk 

is mixed with boiling tea (Amenu et al., 2019). Nevertheless, this warrants further 

research to tease out the mechanisms. Overall, these results taken together confirm that 

focusing on livestock-associated sociocultural practices, especially consumption of raw 

animal products, may help unravel areas for tuberculosis control and potential 

management in this community (Roug et al., 2014).  
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Patterns of tuberculosis occurrence in the larger Narok County area have 

previously been linked to sociocultural practices (Koech, 2001; Kirui, 2014). However, 

such sociocultural practices are often over-simplified, focusing on the household level 

(i.e., consuming raw animal products), while the role of livestock in maintaining and 

amplifying infection via their role in social connectivity of communities is over-looked. It 

has been demonstrated that livestock are central to the social networks of pastoralist 

communities (Omondi et al., 2021). For example, livestock mobility can be viewed 

through the lens of social and family bonds among households, even among those living 

some distance apart. Thus, livestock movement can be used as a correlate for human 

interconnectedness, with implications for surveillance and health programs (Schelling et 

al., 2016).  That said, all eleven variables associated with household tuberculosis in the 

Maasai Mara Ecosystem (Table 3.1) are related to kinship and social bonds (Radcliffe-

Brown and Forde, 2015). However, how each variable relates to the sociocultural fabric 

of the community is not clear cut. When taken against the backdrop of how pastoralists 

utilize marginal rangelands, the interplay between social, economic, political and 

ecological constructs (Western, 1982; Bekure, 1991; Oyugi, 2014; Tyrrell et al., 2017) 

may explain the synergy between these seemingly disparate but connected variables. For 

instance, consumption of raw animal products has been shown to be a codification of the 

Maasai culture in which certain activities such as communal meat feasts are used to 

enhance the bonds within the community, especially within an age-set  (Århem, 1989). A 

group of men within an age-set (a cohort of persons within an age range) will usually go 

to the bush for weeks and celebrate while learning about culture, kinship and 

strengthening their bonds (Århem, 1989).  Thus, even though cultural consumption of 
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raw and/or undercooked products is usually associated with increased risk of zoonotic 

diseases (Onesmo, 2013; Asiimwe et al., 2015; Barnes et al., 2017), contextualization of 

exposure and transmission of diseases such as tuberculosis may be better explained by 

events associated with feasts or other social congregations (Zinsstag et al., 2006; Kirui, 

2014), and not necessarily the consumption of raw animal products.  

Livestock serve as both long-term assets and short-term daily currency in 

pastoralists communities (Glass, 2019). Livestock trade and market access in pastoralist 

communities follow a constitutive organizational configuration originating from cultural 

and social values convergence outside of markets (Igoe, 2006; Allegretti, 2017). 

Livestock trading can be conducted by individual households and merchants  (Allegretti, 

2017), both of which involve familial networks, decision making and interactions among 

community members with most of the ties existing prior to the process of buying or 

selling (Allegretti, 2017). In this study, a high selling degree denoted households that sold 

animals in more markets, potentially due to a household seeking higher prices (Motta et 

al., 2018). Markets form multiple and potentially overlapping communities, in the social 

network sense (Salathé and Jones, 2010). Network analysis has been used to reveal finer 

details about tuberculosis transmission. For instance, in the Houston Tuberculosis 

Initiative, a network analysis of tuberculosis cases showed that common places such as 

restaurants or bars were potential areas of high exposure, and these locations were 

identified as playing a role even tying in cases from outside the ‘Greater Houston’ area 

(Yaganehdoost et al., 1999; Klovdahl et al., 2001). In this Houston Tuberculosis Initiative 

study, one patient was shown to have had contacts with at least nine other patients at 

common places. In a different study, homeless shelters and extra-household locations 
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were observed to be central in predicting tuberculosis infections within a cluster (Barnes 

et al., 1997), underscoring the fact that surveillance for tuberculosis should consider both 

areas of congregation and the persons involved. These considerations should also be 

driven by characteristics of the population and/or the outbreak, and could be aptly applied 

to evaluating the role of different types of movements in pastoral communities which 

tend to follow familial social networks (Grandin, 1991), which are strengthened by 

marriage and gifting of different livestock species. Households involved in buying or 

selling of livestock in many markets also have a higher probability of tuberculosis due to 

the Maasai community organization, and sociocultural practices, values and relationships 

existing prior to the market structure (Allegretti, 2017).  

This study has several limitations. First, this study reflects the experiences of a 

limited number of pastoralists in an intensely utilized human-wildlife-livestock interface, 

as data was collected by a maximum variation sampling scheme, thus the results may not 

be generalizable to all pastoralists (Maxwell, 1961). In addition, although the interviews 

were geared towards understanding drivers of tuberculosis in a community with potential 

exposures to multiple MTBCs, the risk and exposures differ among the species. Thus, 

although both M. bovis and M. tuberculosis may have overlapping determinants (Cosivi 

et al., 1998; Hargreaves et al., 2011; Olea-Popelka et al., 2017), they have distinct eco-

epidemiologies for which questions may need to be appropriately framed to capture their 

distinct drivers. Further, while the use of structured questionnaires allows for the 

comparability of answers and quantitative analysis, they can also limit the depth of 

information received and insights drawn from the data in comparison to other methods 

such as focus group discussions (De Jong and Van Ommeren, 2002; Leung and Savithiri, 
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2009). However, the strength of this study are two pronged; first, this is the first time that 

household-level information have been collected from this population, and secondly, the 

insights are partly corroborated by hospital-based studies that have given consistent 

results, with respect to association between food consumption practices and the 

occurrence of tuberculosis, albeit without a holistic community lens (Koech, 2001; Kirui, 

2014; Enos et al., 2018). 

Conclusions 

Evidence from the analysis of risk factors associated with tuberculosis in the Maasai 

Mara ecosystem suggest that livestock-mediated movements may play an important role 

in shaping households’ tuberculosis risk. Thus, livestock-associated movement can be 

interpreted as one of the potential proxies for the embeddedness of a household within 

community, and should be considered in designing tuberculosis surveillance schemes in 

this community. This however, warrants further investigation to gain an understanding on 

areas or villages in which the community congregates and their activities. Secondly, we 

have shown that sociocultural consumption of raw animal products, especially 

consumption of raw milk, may explain household tuberculosis infections. However, the 

association between consumption of raw animal products and household tuberculosis 

may also be construed to represent the presence of Mycobacterium bovis in this 

community, and this deserves further exploration especially molecular analysis of 

suspected cases in the ecosystem. Thus, this study advances knowledge on the social 

determinants of tuberculosis in pastoralists communities, and highlights the role of 
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sociocultural mediated livestock mobility in the ecoepidemiology of tuberculosis 

infections in Narok County, southwestern Kenya. 
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Chapter 4 | Conceptualizing potential pathways for disease control 

amongst villages through assessing livestock movements. 

Background 

Rangeland ecosystems in Africa, defined as areas of natural or semi-natural 

vegetation in arid or semi-arid climates,  host large numbers of wildlife, livestock, and 

marginalized pastoralist populations (Homewood, 2004).  These areas are characterized 

by low rainfall and seasonally heterogeneous resources such as forage and water, 

necessitating human and livestock movement to utilize these spatiotemporally distributed 

resources (Swallow, 1994; Butt, 2010; Goldman and Riosmena, 2013; Turner and 

Schlecht, 2019). Animal movements have been shown to impact disease patterns (Fevre 

et al., 2006; Altizer et al., 2011), especially among pastoral livestock with high inter-herd 

interactions or contact with wildlife (Rajeev et al., 2017; Sintayehu et al., 2017; 

VanderWaal et al., 2017). Losses emanating from livestock diseases affect livelihoods, 

and their control has the potential to enhance household productivity and health outcomes 

(Marsh et al., 2016). Rangeland systems are especially at high risk for pathogen 

introduction and spread because grazing livestock interact with both wildlife and other 

livestock directly and indirectly through shared forage and water resources (Rajeev et al., 

2017). Herds with high rates of between-herd contacts have a higher risk of acquiring and 

spreading infections (VanderWaal et al., 2017). In addition, it has been shown that 

infections often propagate from a small number of actors (Woolhouse et al., 1997; 

Volkova et al., 2010), with so-called “super-spreaders” disproportionately contributing to 

transmission events (Lloyd-Smith et al., 2005). Targeted control measures aimed at these 



 

54 

 

important nodes in the network have been shown to be more effective than random 

measures. Thus, characterizing the underlying architecture of contact networks within a 

population can help elucidate important drivers and pathways for disease transmission, 

which can inform critical control points and approaches for surveillance and control (Kiss 

et al., 2005; Kao et al., 2006; Kiss et al., 2006; Bajardi et al., 2012; VanderWaal et al., 

2016; Chaters et al., 2019). 

In pastoralist communities, livestock movement data is seldom available, and thus 

contact is difficult to characterize. Several studies have attempted to model livestock 

movement by analyzing sales records (Chaters et al., 2019), animal transaction records 

combined with questionnaire surveys (Motta et al., 2017), census of migrating 

pastoralists (Pomeroy et al., 2019b), Global Positioning System data loggers 

(VanderWaal et al., 2017), and ego-based approaches (Bronsvoort et al., 2004). However, 

none of the methods above capture the diversity of social drivers behind movements 

within rangeland pastoral communities. For instance, in addition to buying and selling, 

Maasai pastoralists move animals, with or without the transfer of ownership, through 

lending animals between friends and families, conferring animal gifts to neighbors, 

friends and relations, and seasonally moving animals to pasture and water (Perlov, 1987 

in (Aktipis et al., 2016)). Thus, in pastoralist populations, moving or sharing animals is a 

survival strategy, a relationship building exercise, and often a method of risk pooling 

(Aktipis et al., 2011; Aktipis et al., 2016). The role that such livestock movements play in 

disease dissemination is seldom evaluated, but may be key to maximizing productivity of 

this management system through effective targeted disease control (Sintayehu et al., 

2017).  
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Designing disease control strategies is complex, and traditional epidemiological 

approaches often fail to capture the dynamic, non-linear, and interconnected nature of 

pastoral systems (Benham-Hutchins and Clancy, 2010). To further understanding of 

animal movements, graph theory can be used to quantify village movements such that 

household actions (for instance buying/selling) connect different villages. In graph 

theory, networks are used to characterize interacting systems in which nodes (here 

defined as villages) are inter-connected through edges (here defined as movement of 

animals between villages (Craft and Caillaud, 2011; Danon et al., 2011; Silk et al., 2017; 

Sintayehu et al., 2017; Balasubramaniam et al., 2018; Ogola et al., 2018)).  

There are several approaches to using network analyses to evaluate network 

properties and connectedness. Using network analysis, we can calculate centrality 

metrics, evaluate the importance of a node in the network, and investigate the 

propagation of a disease. Further, we can assess the network structure to estimate the 

epidemic sizes (Kao et al., 2006) and evaluate the potential for targeted surveillance or 

control if a node is removed. Node removal can be interpreted as the impact of 

vaccination or depopulation in removing nodes from potential transmission pathways in 

the network (Christley et al., 2005; Martinez-Lopez et al., 2009; Marquetoux et al., 2016; 

Motta et al., 2017; Kinsley et al., 2019; Yang et al., 2019). Risk-based interventions 

targeted at high-risk nodes significantly reduce the explosiveness of rapidly spreading 

acute infections like foot-and-mouth disease virus or diminish the prevalence of chronic 

endemic infections such as bovine tuberculosis (Kao et al., 2006).  

In this study, our objective was to use network analysis to characterize the 

network patterns associated with different types of animal movements, and evaluate their 
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potential role in disease transmission and control in pastoralist communities in the Maasai 

Mara Ecosystem (MME) in Kenya. Due to the abundance of dry-season forage available 

in the Maasai Mara National Reserve (MMNR), we hypothesized that villages proximal 

to MMNR will play an important role in maintaining the connectivity of villages in the 

ecosystem, as measured by their centrality metrics. Further, targeted control measures 

aimed at villages with the most connections will be more efficient at fragmenting the 

network and reducing the number of potential secondary infections than a non-targeted 

approach. This study advances our understanding of the movement patterns of livestock 

within a rangeland pastoralist community and their role in network-based interventions 

for livestock disease surveillance and control.  

Methods 

Study site 

This study examined the dynamics of livestock movement in pastoralist 

communities living within the Maasai Mara Ecosystem (MME) (Figure 4.1). MME is 

located in southwestern Kenya, and encompasses the 1,530-km2 Maasai Mara National 

Reserve (MMNR), within which illegal livestock grazing occurs. Communal settlements 

and legal livestock grazing occur in pastoral ranches adjacent to MMNR (Bhola et al., 

2012). Rainfall in this ecosystem is largely bimodal, varying from 500 mm in the 

southeast to 1300 mm in the northwest (Bartzke et al., 2018) creating spatiotemporal 

heterogeneity in water and forage distribution, which influences wild herbivores and 

domestic stock movement. This ecosystem is located within the larger Narok County, 
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which is a 17,953 km2 area with more than one million cattle, 2.3 million sheep and 

goats, and a human population that is largely rural (KNBS, 2010). 

 

 

Study design 

Sampling for this study was conducted between November 2017 and June 2019. 

We defined households as persons living within an abode for a period of one month prior 

to the sampling, and herds as groups of cattle, sheep and goats, and any other domestic 

stock owned by the respondent. We purposively sampled 165 households in 67 villages, 

targeting villages within 20 kilometers of the Maasai Mara National Reserve. Pastoral 

cattle tend to move longer daily distances than small stock, with an average of 2-9 

kilometers being the norm for grazing (Turner and Schlecht, 2019). We focused on longer-

term migration in pastoralist systems, the average distance moved ranges from 47-170 

Figure 4.1. Map of the Maasai Mara Ecosystem. (A). Map of Kenya with Narok County. 

(B). Unique villages from which households were sampled in this study. (C). Map of 

Narok County with households sampled, dotted square represents the study area 

(equivalent to B).  
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kilometers (Turner and Schlecht, 2019), with the wide variation indicative of an individual 

household’s cost-benefit valuation of the move. 

For this study, we recorded two broad categories of animal movements, 

temporary and permanent. For the temporary movement, we defined agistment as re-

location of animals to access forage and water in other locations during the dry season, 

usually lasting 2-3 months, while maintaining a household in a single village. We 

recorded four types of permanent animal movements: gifting (receiving livestock as a 

gift), bride price (receiving livestock when a female member is married), buying, and 

selling, denoting the trading of household livestock. We defined buying origin and selling 

destination as any village from/to which the respondent buys or sells animals, 

respectively, in order to capture both formal markets and local non-market-based 

transactions. Respondents were asked to identify villages (by common name) to which or 

from which they sent or received cattle, sheep or goats through any of the aforementioned 

movement types over the last five years. This period was chosen to capture multiple 

seasons and is a timeframe most appropriate for chronic slowly spreading diseases, such a 

bovine tuberculosis. The MMNR and neighboring Tanzania were also included as 

locations for agistment movements following the initial pretesting of the questionnaire 

that identified these as important locations utilized for grazing in the dry season. The 

respondents were requested to name villages rather than specific households due to the 

logistical constraints of collecting locational data on households named by respondents. 

For each household interviewed and village named, locational data was recorded using a 

handheld Global Positioning System. In villages where multiple households were 
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sampled, we calculated a centroid using ArcGIS to generate representative coordinates 

(ESRI, 2011).   

Data analysis 

Network construction and metrics 

 In our study, a node represented a village while an edge the movement of 

livestock from or to a village. Livestock movements have long been associated with 

livestock disease transmission both for acute and chronic conditions (Fevre et al., 2006; 

Sintayehu et al., 2017; VanderWaal et al., 2017; Machado et al., 2019). Agistment 

constituted the temporary transfer of animals to another village, while selling was the 

permanent moving of animals to another village. Gifting, bride price and buying 

represented the introduction of animals into the respondent’s village. We constructed five 

separate between-village networks for each of the five classes of movement. At the node-

level, we calculated two centrality metrics: in and out-degree and betweenness, while at 

the network level, we calculated the density, clustering coefficient, giant strongly and 

weakly connected components, and the fragmentation index. Further, we constructed a 

combined network of all the movements to gain an understanding of the high-ranking 

villages by degree and betweenness. Definitions for node and network level metrics and 

their significance for disease spread are provided in Table 4.1. All analysis were 

conducted using the igraph package (Csardi and Csardi, 2007). 
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 Table 4.1. Definition of node and network metrics and their epidemiological significance as used in this analysis. 

Parameter Definition Epidemiological significance 

Betweenness Number of times a village is located on the 

shortest path between any two pairs within the 

observed network. 

Villages with high betweenness are more central to the 

network and are likely to be infected earlier. Thus, may 

serve as good targets for interventions (Freeman, 1978; Bell 

et al., 1999).  

In and out-degree Total number of other villages to which a village 

received or sent livestock, respectively.  

A village with a higher in-degree is considered a sink 

(higher probability of disease introduction) in the network 

whereas one with a higher out-degree is considered 

influential (higher probability of spreading disease) 

(Wasserman and Faust, 1994; Martínez‐López et al., 2009).   

Density Proportion of observed contacts relative to the 

total number contacts possible in the network.  

Networks with higher densities have more connections 

between pairs of villages, thus potential for large epidemics 

(Wasserman and Faust, 1994; Martínez‐López et al., 2009). 

Clustering 

coefficient 

Probability of any two villages, connected to a 

third village in common, to themselves be 

connected, forming a triangle in the network 

This identifies the spatial structuring of a network, with high 

clustering hypothesized to reduce transmission (Wasserman 

and Faust, 1994).  

Giant 

strongly/weakly 

connected 

component 

(GSCC/GWCC) 

A strongly connected component in a network is a 

group of villages in which every village can be 

reached from every other village when following 

existing directed edges. On the other hand, a 

weakly connected component denotes that part of 

the network where all villages are linked to each 

other but not all the villages can be reached from 

every other village in the network.  

Given that any villages can be reached from all other 

villages within the GSCC, the size of the GSCC is a metric 

of the potential size of an epidemic in the network.  The 

GWCC relaxes the assumption that all villages can be 

reached from any other village by directed paths in the 

connected component, and the size of the GWCC often is 

interpreted as the maximum size for an epidemic within the 

system (Wasserman and Faust, 1994; Christley et al., 2005). 

Fragmentation 

index 

Proportion of pairs of villages not connected in 

the network relative to all the existing pairs in the 

network.  

 

Based on the strategy adopted for identification of key 

villages (high degree or high betweenness), the best strategy 

for node removal (immunization or surveillance) identifies 

the minimum number of villages to be removed to prevent 

the spread of an epidemic in the resulting network. The 

index (ranging from 0-1) gives us a measure of how the 

network is disconnected (Webb, 2005; Borgatti, 2006; Chen 

et al., 2007; Chami et al., 2017). 
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Scale-free topology of the networks 

Many real-world networks are deemed scale free since node  degree k follows a 

power-law distribution k −α, where 𝛼>1 implies that a small number of nodes have many 

connections while the majority of the nodes have few connections (Barabási and Albert, 

1999; Albert and Barabási, 2002). This has profound implications in disease dynamics at 

the population level (Bansal et al., 2007), and suggests the existence of super-spreaders in 

the network. We analyzed the distribution of contacts per village by fitting a power-law 

distribution using Maximum Likelihood Estimation and used the Kolmogorov-Smirnov 

test to evaluate the goodness of fit as described by (Clauset et al., 2009). This was done 

using the poweRlaw package (Gillespie, 2015).  

Implication of node removal on network topology and basic reproduction number 

 In network epidemiology, the giant strongly (GSCC) and weakly (GWCC) 

connected component estimate the lower and upper bounds of the size of an epidemic in 

the network, respectively (Christley et al., 2005; Kao et al., 2006; Volkova et al., 2010; 

Dorogovtsev and Mendes, 2013). Indeed, the GSCC provides a metric of the proportion of 

nodes that are mutually inter-connected by a directed path in the network, and thus disease 

introduction in one node could reach the other. However, no transmission paths exist 

between nodes that belong to disconnected components. Thus, control measures that 

fragment potential transmission paths in the network and increase the number of network 

components can stymie pathogen spread (Christley et al., 2005; Volkova et al., 2010). This 

can be achieved by removing nodes with high betweenness (many paths passing through 

them) or degree (number of neighbors to which a node is connected) (Christley et al., 2005; 
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Kao et al., 2006; Dube et al., 2009; Volkova et al., 2010). Fragmentation of the network 

can be quantified using a fragmentation index, F, where F = 0 would represent a fully-

connected,  non-fragmented network in which all pairs of nodes are connected through 

paths in the network, and F = 1 would represent a fully fragmented network where every 

node is isolated (Borgatti, 2006; Chen et al., 2007; Martínez‐López et al., 2009). We used 

two criteria to remove villages from the network; first, random removal, where we 

sequentially selected any 2, 5, or 10 villages at random, calculated fragmentation index, 

and repeated this process for 1,000 iterations to generate an expected distribution. 

Secondly, targeted removal, where we sequentially selected top 2, 5, and 10 villages based 

on degree or betweenness, and recalculated the fragmentation index (Albert et al., 2000; 

Holme et al., 2002; Chen et al., 2007).  

Networks can also be evaluated by assessing the potential of a pathogen to spread 

using the basic reproduction number, R0, which estimates the number of secondary infected 

nodes from a single introduction into a susceptible population (Diekmann et al., 1990). A 

population’s R0 is a function of a pathogen’s duration of infectiousness, mean contact rate 

between-villages, and probability of transmission (Woolhouse et al., 1997). Heterogeneity 

in contact patterns leads to variation in transmission such that the majority of the infections 

are attributable to a small proportion of the population (Woolhouse et al., 1997; Lloyd-

Smith et al., 2005). Thus, the network’s contribution to R0 can be separated into two 

components: the mean contact rate (i.e., mean degree), and the variances in contact rates 

across villages (Woolhouse et al., 1997). In a population with a homogeneous contact rate, 

R0 will only be a factor of the mean contact rate alone, but the addition of heterogeneity 

has a multiplicative effect on R0. We calculated the multiplicative effect of network 
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heterogeneity on R0 (hereafter referred to as R0 (heterogeneous)) using the method developed by 

(Volkova et al., 2010) where; 

 𝑅0(ℎ𝑒𝑡𝑒𝑟𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠) ∝  √𝛽𝑖𝑛 ∗ 𝛽𝑜𝑢𝑡 +  𝜎(𝛽𝑖𝑛) ∗ 𝜎(𝛽𝑜𝑢𝑡) ∗ 𝑟(𝛽𝑖𝑛𝛽𝑜𝑢𝑡)             Equation 1                                                                 

𝛽𝑖𝑛 and 𝛽𝑜𝑢𝑡 denote the mean village in-degree and out-degree, respectively, while 𝜎 

denotes the village standard deviation for in- and out-degree, and r is the Pearson’s product 

correlation coefficient. In the absence of contact heterogeneity, 

𝑅0 (ℎ𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑜𝑢𝑠) ∝  √𝛽𝑖𝑛 ∗ 𝛽𝑜𝑢𝑡                                                                       Equation 2  

Thus, the relative effect of contact heterogeneity on R0 was defined as R0 

(heterogeneous)/ R0 (homogeneous) (Volkova et al., 2010). 

Effectiveness of disease control and potential targets 

 A village’s importance for disease transmission is determined by its degree or 

betweenness. A village with high degree has more incoming or outgoing connections to 

other villages, thus, a higher risk of disease introduction or dissemination. Villages with 

high betweenness can be interpreted as either having connections to many other villages 

(this leads to high correlation with degree) or lie on the paths that are breakpoints for 

information flow between villages (important for disease control as their removal 

fragments the network) (VanderWaal et al., 2014). We calculated the Spearman’s rank 

correlation coefficient between the total degree and betweenness for all the five networks. 

Then, to assess the effectiveness of targeted versus random interventions, we quantified 

the relative change, R0 (removed)/ R0 (heterogeneous). R0 (removed) denoted the R0 of the network 

with village i removed without replacement. This quantification was done in three 
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scenarios a) sequential removal of villages based on degree, b) sequential removal of 

villages based on betweenness, and c) random removal of villages. For random village 

removal, we recalculated equation 1 for each network and averaged the reduction in R0 

over 1000 iterations. 

Results 

Network metrics 

We sampled 165 households in 67 unique villages (Figure 1 B) across the Maasai 

Mara Ecosystem. The median livestock movement distance for agistment was 39.49 

kilometers (22.03-63.49 km), while that for gifting, bride price, buying, and selling were 

13.97 km (0-40.30 km), 30.75 km (10.02-66.03 km), 31.14 km (17.56-59.08 km), and 

33.21 km (17.78-58.49 km), respectively. Network metrics are summarized in Table 4.2. 

For agistment, gifting, bride price, buying and selling movements, the respective network 

densities were 0.065, 0.034, 0.036, 0.054, and 0.054. The median village total degrees for 

agistment, gifting, bride price, buying and selling were 6 (interquartile range: 2-12), 2 (1-

5.5), 2.5 (1-5), 3 (2-9), and 4 (2-7), respectively (Table 4.2). This means that on average, 

the villages in the agistment network contacted more villages than in gifting, bride price, 

buying, and selling networks. In all networks apart from the selling network, there was a 

positive correlation between the in- and out-degree, with agistment and gifting networks 

having the highest correlations (Table 4.2). The giant strongly connected components 

comprised of 78.8%, 5.3% and 1.8% of all villages in the agistment, gifting and bride price 

networks, with no GSCC found in the buying and selling networks.  
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In the combined network, villages with the highest degree also had the highest 

betweenness with a few exceptions (Appendix, Table 6). For disease control, villages 

with high betweenness and high degree tend to lie on paths that control information flow 

in the network thus could be considered potential breakpoints in that if they are removed, 

the number of components in the network increases (VanderWaal et al., 2014). These 

villages included Ololaimutia, Aitong, Olesere, Megwara, Ingoso, Gishoromuruak, 

Olesheke, Oldapash, Enkoika, Molibany, Esukuta, Nkoiroro, Irbaan and Oltorotwa.  

Interestingly, over half of these villages are within 3 kilometers of the MMNR, with the 

others being on the outer periphery of the study area. 

Table 4.2. Descriptive measures of the agistment, gifting, bride price, buying and selling 

networks of the Maasai Mara Ecosystem.  

Network metric Agistment Gifting Bride Price Buying Selling 

Nodes 89 67 50 84 83 

Edges 506 150 88 376 370 

Density 0.065 0.034 0.036 0.054 0.054 

Clustering coefficient 0.124 0.136 0.114 0.106 0.107 

Giant Strongly 

Connected component 

(% of villages) 

78.8% 5.3% 1.8% 0% 0% 

Giant Weakly 

Connected component 

(% of villages) 

78.8% 47.8% 39.8% 74.3% 73.5% 

Mean in-degree 

(Standard deviation) 

5.69  

(8.3) 

2.24 

(2.61) 

1.76 

(1.92) 

4.48 

(5.69) 

4.46 

(15.13) 

Mean out-degree 

(Standard deviation) 

5.69  

(8.3) 

2.24 

(3.03) 

1.76  

(2.02) 

4.48 

(13.60) 

4.46 

(5.7) 

Pearson’s correlation in 

~ out-degree (95% CI) 

1 (1-1) 0.53 

(0.33-

0.68) 

0.006  

(-0.27 – 

0.28) 

0.013  

(-0.20 – 

0.23) 

-0.06  

(-0.27 – 

0.16) 

Relative effect of 

network heterogeneity 

on R0 

1.77 1.35 1.00 1.02 0.86 
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Scale free topology of the networks 

For the agistment network, the best cutoff for a power law tail was >37 

observations, an exponent, α = 2.23, xmin = 8, and p-value = 0.989. In all the networks, the 

high p-value indicated that there was no evidence to reject the null hypothesis and most 

probably, the degree distribution follows a power law distribution. For the gifting, bride 

price, buying and selling networks, the best cutoff for a power law tail were 49, 2, 56, and 

Figure 4.2. Plot of the agistment, gifting, bride price, buying, and selling animal 

movement networks with sizes scaled by betweenness. Larger circles also had a higher 

total degree. 
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42 observations, respectively, with corresponding α of 2.03 (p-value =0.912), 5.88 (p-value 

= 0.906), 1.92 (p-value = 0.987) and 2 (p-value =0.836) (Figure 4.3). 

 

  

Implication of node removal on network topology and basic reproduction number  

The results for the top ten-villages ranked by degree and their respective 

betweenness are given in Table 4.3. Three villages were present among the top ten 

villages in all the networks. These included Olesere, Empopongi and Nkoilale. 

Ololaimutia was present among the top ten villages in four of the five evaluated 

Figure 4.3. Plot of the distribution of contacts of the agistment, gifting, bride price, 

buying and selling movement networks. 
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networks. Of the villages evaluated, Maasai Mara National Reserve (though technically 

not a village) had the highest degree and betweenness for agistment. In this network, 

Tanzania, a country neighboring MME on the southwest, was also highly ranked by 

degree. In the buying and selling networks, other than formal livestock markets 

(Nkoilale, Ololaimutia, Ngoswani, Aitong, Ol Pusimoru, Trans Mara, Naikara and 

Lolgorien), the top ten villages included local non-market villages such as Empopongi, 

Olesere and Ilpoori. 
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Table 4.3. Degree and betweenness of the top 10 villages in the five movement networks evaluated in this study. * Not a village 

but serves as an important hub in the network. Ψ Villages that appear in the top ten across all networks. VILL = Village; DG = 

degree; BET = betweenness. 

Agistment Gifting Bride Price Buying Selling 

VILL DG BET VILL DG BET VILL DG BET VILL DG BET VILL DG BET 

MMNR * 108 0.32 Empopongi 
Ψ 

22 0.03 Nkoilale Ψ 13 0.01 Nkoilale Ψ 76 0.02 Ngoswani 91 0.00 

Talek  64 0.15 Nkoilale  Ψ   19 0.04 Ololchora 9 0.00 Ololaimutia   75 0.00 Aitong 72 0.01 

Olesere Ψ 54 0.19 Olesere Ψ 19 0.03 Empopongi 
Ψ 

8 0.00 Ngoswani 62 0.00 Nkoilale Ψ 60 0.01 

Nkoilale  Ψ 52 0.14 Nkineji  17 0.03 Sekenani 8 0.00 Aitong  60 0.00 Ololaimutia   51 0.01 

Sekenani  48 0.18 Talek 15 0.01 Losho 8 0.00 Empopongi  

Ψ 

30 0.00 Ewaso 

Ngiro  

47 0.00 

Trans Mara 48 0.12 Ololchora  12 0.03 Megwara 7 0.01 Ol 

Pusimoru 

24 0.00 Dagoretti 32 0.00 

Ololaimutia  40 0.11 Irbaan  12 0.02 Olesere  Ψ 7 0.00 Olesere  Ψ 24 0.00 Empopongi 
Ψ 

31 0.00 

Empopongi 
Ψ 

36 0.09 Megwara 10 0.01 Tipilikwani  7 0.00 Lolgorien  22 0.00 Olesere  Ψ 26 0.00 

Ololorok  34 0.07 Losho  10 0.00 Ingoso 7 0.00 Naikara  22 0.00 Ilpoori 19 0.00 

Tanzania* 26 0.05 Ololaimutia  9 0.01 Irbaan  6 0.00 Trans Mara 18 0.00 Naikara 17 0.00 
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Effectiveness of targeted interventions 

Consistent with our hypothesis, targeted removal based on degree or betweenness 

outperformed random removal of nodes in terms of increasing the extent to which 

villages are disconnected (Table 4.4). Across all network types, targeted removal of 

nodes based on their degree or betweenness resulted in substantially higher fragmentation 

than random removal of nodes; the fragmentation indices for the targeted removals 

always exceeded the upper bounds of the 95% interval of that achieved through random 

removals. This result was consistent regardless of whether the top 2, 5, or 10 nodes with 

highest degree or betweenness were removed. Although the fragmentation indices based 

on either degree or betweenness were comparable, removal based on degree performed 

considerably better than betweenness, especially in the buying and selling networks 

(Table 4.4, and Figure 4.4). 
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Table 4.4. Fragmentation index of the five networks evaluated in this study following the removal of 2, 5 and 10 nodes, with 

nodes removed either selected randomly or targeted based on degree (A) or betweenness (B).  For random removals, the 

median (95% confidence interval) fragmentation is reported, summarized across 1,000 iterations. 

A. Fragmentation of the network following targeted versus random node removal by degree 

Reason Full 

Network 

Removal of 2 villages Removal of 5 villages Removal of 10 villages 

Random Targeted Random Targeted Random Targeted 

Agistment 0.38 0.41  

(0.41  0.45) 

0.45 0.46  

(0.45 – 0.51) 

0.60 0.55  

(0.51 – 0.61) 

0.85 

Gifting 0.77 0.79  

(0.77 – 0.83) 

0.86 0.82  

(0.80 – 0.87) 

0.92 0.86  

(0.83 – 0.92) 

0.99 

Bride Price 0.84 0.86  

(0.85 – 0.88) 

0.86 0.88  

(0.86 – 0.92) 

0.93 0.92  

(0.89 – 0.96) 

0.99 

Buying 0.45 0.48  

(0.48 – 0.56) 

0.51 0.51  

(0.51 – 0.61) 

0.75 0.59  

(0.57 – 0.68) 

0.96 

Selling 0.46 0.49  

(0.49 – 0.51) 

0.66 053  

(0.53 – 0.66) 

0.86 0.59  

(0.59 – 0.73) 

0.99 

B. Fragmentation of the network following targeted versus random node removal by betweenness 

 Full 

Network 

Removal of 2 villages Removal of 5 villages Removal of 10 villages 

Random Targeted Random Targeted Random Targeted 

Agistment 0.38 0.41  

(0.41 - 0.45) 

0.48 0.46  

(0.45 – 0.51) 

0.60 0.55  

(0.51 – 0.61) 

0.85 

Gifting 0.77 0.79 

(0.77 – 0.83) 

0.83 0.82  

(0.80 – 0.87) 

0.89 0.86  

(0.83 – 0.92) 

0.98 

Bride Price 0.84 0.86  

(0.85 – 0.88) 

0.86 0.88  

(0.86 – 0.92) 

0.88 0.92  

(0.89 – 0.96) 

0.97 

Buying 0.45 0.48  

(0.48 – 0.56) 

0.61 0.51  

(0.51 – 0.61) 

0.68 0.59  

(0.57 – 0.68) 

0.75 

Selling 0.46 0.49 (0.49 – 

0.51) 

0.64 0.53 (0.53 – 

0.66) 

0.69 0.59 (0.59 – 

0.73) 

0.73 
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The relative effect of variability in contact rates on R0 in the five networks are 

presented in Table 4.2. The agistment network had the largest relative effect with the R0 

estimated to be 177%  followed by the gifting network at 135% larger than if the network 

had a homogeneous contact rate equivalent to mean degree (Table 4.2). The Pearson’s 

correlation coefficient for agistment and gifting movement networks were positive and 

statistically significant, and with the high variances in contact, explain the higher relative 

magnitude of R0. Those of the buying and bride price movement networks were weakly 

positive but not statistically significant, while that of the selling network was -0.06. 

Figure 4.4. Plot of the agistment animal movement network 

following removal of top 10 villages based on their degree. 

Node sizes are scaled by their betweenness. Larger circles 

also had a higher total degree. The large node is the Maasai 

Mara National Reserve 
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Despite weak or negative correlations, the high variances of between village contacts 

resulted in a net high relative R0 in these networks. 

For all the networks apart from selling, the total degree and betweenness were positively 

correlated (p-value <0.001), with their respective Spearman’s rank correlation coefficients 

being 0.9, 0.66, 0.53, 0.34, and 0.26 for agistment, gifting, bride price, buying and selling 

networks. The inference here is that villages with a higher than average number of contacts 

were also potential conduits for pathogen flow in the respective networks (Figure 4.2). 

Overall, village removal, equivalent to vaccination, ban on movement or surveillance 

measures, was effective in reducing the basic reproductive number across all networks 

(Figure 4.5). 

Across all networks apart from gifting, although there was some reduction in R0 

when a village was removed based on its degree or betweenness, targeted removal did 

reduce R0 more rapidly than random removal of villages (Figure 4.5). In the agistment 

network, targeted removal of >65% and 73% of the villages based on degree and 

betweenness, respectively, was required to reach an 80% reduction in the R0 (Figure 4.5).  

This 80% threshold was also achieved when 75% of the villages were removed randomly. 

In the buying and selling networks, random removal of villages achieved the threshold 

reduction in the magnitude of R0 when 69% and 47% of the villages were removed, 

respectively, compared to 74% and 70% of villages when removed based on their degree. 

In the gifting and bride price networks, an 80% reduction in the magnitude of the R0 was 

not achievable using any of the three strategies. 
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Figure 4.5. Plot of the agistment, gifting, bride price, buying and selling movement 

networks showing change in the proportion of R0 (removed)/ R0 (heterogeneous) when village are 

removed based on their degree (dashed line), betweenness (solid line) or random removal 

(long dashed line). Horizontal dot dash line represents 80% reduction in R0. 

 

Discussion 

In this study, our goal was to characterize the network patterns associated with five 

classes of animal movements in rangeland pastoralist communities in the Maasai Mara 

Ecosystem in Kenya, and evaluate their potential role in disease control and management. 

The agistment network showed the highest level of connectivity, and coupled with long 

distances (median of ~40 km) and seasonal regularity of movements, agistment is 

potentially an important avenue for disease dissemination in the ecosystem. Paths existed 

between 79% of villages in the giant strongly connected component of the agistment 

network, pointing to an interconnected ecosystem for dry season grazing. Recently, the 
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MMNR has become especially attractive following increased fencing within the ecosystem 

that has disrupted traditional animal foraging routes and grazing lands (Løvschal et al., 

2017; Weldemichel and Lein, 2019). Although grazing in MMNR is banned, illegal grazing 

has been previously reported in the literature (Ogutu et al., 2009; Green et al., 2019). We 

demonstrate that villages adjacent to MMNR are common destinations for agistment, 

which may point to their use as entry points to MMNR. The proximity of these villages to 

a major wildlife area coupled with mixing of livestock herds from different villages makes 

these villages priority areas for disease control interventions and surveillance. Although 

some villages that ranked highly based on their agistment degree and betweenness were 

not adjacent to the MMNR, these villages appear to function as bridges between areas that 

would otherwise be poorly connected. Indeed, Ololaimutia, Aitong, Olesere, Megwara, 

Ingoso, Gishoromuruak, Olesheke, Oldapash, Enkoika, Molibany, Esukuta, Nkoiroro, 

Irbaan and Oltorotwa may be potential cut-points in the network, and such villages may 

function as a firebreak or gate-keeper during a disease epidemic (VanderWaal et al., 2014; 

Motta et al., 2017). In addition, 15% of the respondents identified Tanzania as an agistment 

location. Despite the distance, the motivating reasons included cross-border kinships and 

having hired herders (personal communication). 

Gifting of animals was associated with the shortest median distances, a degree of 2 

villages and the lowest network density, indicating that this type of movement involved a 

smaller range of more localized villages compared with other movement classes. Bride 

price was associated with a median degree of 2.5 villages and a low network density, but 

had a longer median distance that was similar to buying and selling. These results indicate 

that moving animals for gifting and bride price contributes less to the risk of disease 
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propagation within the study area compared with buying, selling and agistment. 

Interestingly, the highest-ranking villages in the bride price and gifting networks included 

villages around the MMNR. Livestock grazing patterns in the Maasai community have 

been shown to follow familial social networks, including patrilineal and matrilineal kin 

(Grandin, 1991). Taken together, these findings show that bride price and gifting might be 

strategically used to enhance relationships beneficial to the household livelihood (Aktipis 

et al., 2011; Aktipis et al., 2016) by increasing accessibility to agistment destinations close 

to MMNR. 

Although buying and selling median distances were identical, a closer look at the 

network reveals more context. First, buying commonly included transactions with villages 

outside Narok County (the study area). For instance, the respondents indicated that in 

addition to the villages listed in Table 4.3, they bought their cattle from Tanzania, Kajiado, 

Kiserian, Emali, and Laikipia, all of which fall outside the county boundaries. This could 

be a strategy to acquire different or “better” livestock genetics (Ilatsia et al., 2012). On the 

contrary, selling of livestock mostly occurred in local markets. These included major 

markets such as Aitong, Nkoilale, Ololaimutia, Ewaso Ngiro, and Ol Pusimoru. In addition, 

a few farmers sold livestock in larger, peri-urban markets (e.g. Dagoretti, Ngong and 

Ongata Rongai) serving the capital city of Nairobi, possibly as a means of getting higher 

returns (Alarcon et al., 2017). A few local non-formal markets were identified, pointing to 

opportunistic trading of animals independent of formal markets.  The presence of a large 

giant weakly connected component in both the buying and selling networks, is an important 

consideration for disease control. While the risks of introducing disease to a herd through 

buying animals are apparent, selling of livestock also poses a particular danger because of 
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the occasional bi-directionality of movement when all animals are not sold. This could 

serve to introduce acute diseases such as foot-and-mouth disease to the village of origin 

(Motta et al., 2019).  

Effectiveness of network-based interventions: Network-based disease control relies 

on identifying a population’s contact structure and evaluating the role of different nodes 

(e.g. villages, households, or farms) that could influence connectivity and whose removal 

may fragment the transmission network (Kiss et al., 2005; Volkova et al., 2010; Tanaka et 

al., 2014; Marquetoux et al., 2016). We compared the effect of random versus targeted 

removal of nodes on the networks’ topological structure using the fragmentation index. 

Random removal of nodes requires no prior information on the network structure, but has 

been shown to be an inefficient approach (Motta et al., 2017; Kinsley et al., 2019). In our 

study, targeted removal of village nodes based on degree or betweenness outperformed 

random removal in terms of fragmenting the network, demonstrating the utility of network 

analysis for more strategic disease control or surveillance in this pastoralist system. Here, 

node removal mimics the effect of vaccination or depopulation on interrupting the disease 

transmission pathways, depending on the disease and context of infectious disease control 

(Keeling and Eames, 2005; Bansal et al., 2010). However, node removal based on degree 

performed marginally better than betweenness. Unlike betweenness, estimations of degree 

are not as dependent on comprehensive network analysis, allowing for a simpler mode of 

data collection, such as ego-based approaches (Bronsvoort et al., 2004), to understand 

movement risk factors relevant for control. This makes a degree-based approach attractive 

in a system where comprehensive network data are not routinely collected. 
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Ideally, an efficient fragmentation strategy should be one that removes a minimal number 

of nodes as it represents, for instance, the minimum number of villages to be vaccinated to 

prevent further spread of an infection (Chen et al., 2007). We demonstrated that the 

removal of the top five nodes with the highest degree was effective at fragmenting all the 

networks. The agistment network, however, was more robust to node removal in that the 

removal of the top 5 or 10 villages resulted in fragmentation indices of 60% and 85%, 

whereas this value was close to 100% for the other networks in this study. This might be 

due to the fact that we cannot remove MMNR from the network (no feasible way to 

vaccinate when the presence of livestock is technically illegal).  

While fragmentation captures the extent to which villages are directly or indirectly 

connected in the network (allowing flow of a pathogen through the network), R0 

calculations capture variation amongst villages in their potential contribution to disease 

spread.  Highly right-skewed scale-free degree distributions are generally indicative of the 

presence of super-spreaders (Dorjee et al., 2013), which may contribute disproportionately 

to disease spread within the system (Figure 3). We show that all the evaluated networks 

displayed scale-free properties, highlighting the important role of hubs in these networks. 

The presence of a few nodes having more connections while the majority having few is an 

important aspect of networks for risk-based disease control interventions (Woolhouse et 

al., 1997; Motta et al., 2017). Evaluation of R0 provides a method to assess the impact of 

such heterogeneities on the potential for pathogen invasion (May and Lloyd, 2001; 

Volkova et al., 2010; Marquetoux et al., 2016).  In populations where the probability of 

contact is equal, the magnitude of R0 is proportional to the mean number of contacts made 

by a village (May and Lloyd, 2001). However, in networks where the contact patterns are 
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heterogeneous, the magnitude of R0 is also influenced by the variance and covariance in 

contact rates between villages (May and Lloyd, 2001; Volkova et al., 2010; Marquetoux et 

al., 2016). When in- and out-degree are correlated, nodes with high degree are not only 

more likely to become infected, but also have a higher potential to transmit a pathogen 

onwards, thus amplifying the realized R0 of the network.  

In our study, we observed a strong correlation between the in and out-degree for 

the agistment network, due to the bidirectional nature of this movement, and documented 

the presence of super-spreader villages (Figure 4.3). This suggests a high risk of disease 

occurrence in the villages engaged in agistments, which is further supported by a higher 

prevalence of various livestock diseases, including zoonotic pathogens, in villages closer 

to MMNR (Lekolool, 2011; Nthiwa et al., 2019b; Nthiwa et al., 2020). The relative 

magnitude of R0 (Table 4.2) favors invasion of highly transmissible diseases such as foot-

and-mouth disease, especially in the agistment network. However, if large number of 

animals moved especially in the agistment network were high, the relative magnitude of 

R0 would also favor chronic diseases such as Mycobacterium bovis (Kiss et al., 2006; 

Kovanen et al., 2011; Marquetoux et al., 2016). In addition, movements associated with 

agistment, buying, and selling occur much more frequently than gifting and bride price, 

thus have  potentially greater implications for pathogen dissemination (Macpherson, 1995; 

Bett et al., 2009).  

Degree and betweenness were highly correlated, thus rankings of villages based on 

these metrics were largely similar. Overall, apart from in the gifting network, village 

removal based on degree or betweenness was not effective at reducing the R0 when 

compared to random removal (Figure 4.4). This may not be surprising as the sampling was 
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focused on a small geographical area; contact rates may not have been substantially 

different between respondents.  

Our study has several limitations. First, data were collected cros-sectionally, and 

temporal changes in a network’s topology is a common phenomenon, especially in 

pastoralist production systems (Volkova et al., 2010; VanderWaal et al., 2017; Pomeroy 

et al., 2019b). Secondly, respondents were asked about movements made during the last 

five years, which limits the temporal resolution of when movements occurred and 

introduces potential recall bias. For example, the respondents are less likely to remember 

villages where they sold or bought animals hence underestimating the representativeness 

of the buying and selling networks as compared to agistment networks, which are used 

regularly. Third, because data were collected in a defined geographical area, the results 

may not be generalizable to other areas. However, the principles of using network 

analysis to identify highly connected nodes and targeting those nodes for disease control 

measures are transferable to other pastoralist systems. Finally, our network structure did 

not account for common areas of daily contact, such as congregation during daily herding 

and at water resources, which may be important for localized disease transmission. Thus, 

our networks may under-represent connectivity amongst villages, particularly at local 

scales.  

Conclusions 

We show that using network analysis to identify highly connected villages could 

be beneficial in designing disease control programs so that measures can be implemented 

to fragment potential transmission pathways in the livestock population. Our findings 

demonstrate that even at a restricted spatial scale, network centrality measures may 
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provide sufficient information to fragment networks, thus showing their utility not only 

for disease control but also in developing targeted risk-based surveillance approaches. 

Our approach of identifying villages rather than households has multiple advantages. 

First, targeting disease control measures at a population level rather than at individual 

level is cost effective, especially in the study population where livestock mobility is 

common. The fact that degree outperformed betweenness in increasing the number of 

components means application of low-cost data collection techniques such as ego-based 

approaches may yield sufficient information to identify disease control targets. 
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Chapter 5 | Conclusions 

The importance of sociocultural factors in disease control has been demonstrated 

through challenges in the management of various diseases including Ebola (Whembolua 

et al., 2015; Carrión Martín et al., 2016), HIV/AIDS (Chitnis et al., 2000; Leclerc-

Madlala et al., 2009) and parasitic diseases (Mata, 1982). At a minimum these factors 

help enhance the understanding of mechanisms of exposure, infection, and pathogenesis 

at the population level (CDSH, 2008), which are critical for effective control.   

Tuberculosis is a community disease whose dynamics are driven by social and 

cultural determinants that modulate exposure, infection,  progression to active disease, 

access to therapy and outcome (Hargreaves et al., 2011).  Its control depends on both 

hospital-based approaches and integration of both social and cultural factors (Lonnroth et 

al., 2009; Hargreaves et al., 2011; Rasanathan et al., 2011; Bonadonna et al., 2017; Baah 

et al., 2019). The goal of this dissertation was to evaluate the role of sociocultural factors 

in shaping tuberculosis patterns in a pastoralist population in Maasai Mara, Kenya and 

assess their potential role in disease control. In Chapter 1, I reviewed the complexity of 

TB and the need for new approaches to surveillance and control. This was in light of 

inequities such as those experienced in traditional pastoralist cultures where their social 

and cultural practices may expose them to multiple MTBC species, and due to their 

marginalization have limited access to health systems, and where available the diagnostic 

techniques employed cannot tease apart these species. In chapter 2, I further characterized 

Mycobacterium tuberculosis complex species (MTBC) in suspected tuberculosis cases 

identified in local clinics in the Maasai Mara ecosystem, and evaluated their spatial 

distribution. Mycobacterium tuberculosis complex species in this system include both 
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human, animal and environmental pathogens (De Jong et al., 2010; Brites and Gagneux, 

2017; Gagneux, 2018). Here molecular analysis showed the possibility of four MTBC, 

Mycobacterium bovis, Mycobacterium bovis BCG, Mycobacterium canettii, and 

Mycobacterium caprae co-circulating in the ecosystem, with villages adjacent to Maasai 

Mara National Reserve being at a high risk of zoonotic tuberculosis caused by 

Mycobacterium bovis, while those along the Tanzania border being at a higher risk of 

Mycobacterium caprae. These findings may reflect increased contacts and spread during 

the dry season when the community (livestock and humans) utilizes the villages around 

the Maasai Mara National Reserve for strategic access to forage-rich lands for their 

animals (Omondi et al., 2021). Using a multinomial spatial scan statistic, I show that 

there are four clusters where different MTBC species are more important. The primary 

cluster comprised of twelve villages located in a belt within 3 kilometers of the Maasai 

Mara National Reserve with the risk for M. bovis being highest, while in the three 

villages in cluster 2 that were located along the Tanzanian border, the risk for M. caprae 

was highest. I further demonstrate that even at geographical locations near each other 

(clusters 1 and 4), the relative risks of zoonotic tuberculosis due to Mycobacterium bovis 

and Mycobacterium caprae differed, potentially reflecting the influence of community 

structure and social determinants (CDSH, 2008; Hargreaves et al., 2011). An important 

next step is to contextualize the transmission through evaluation of livestock sources of 

Mycobacterium bovis and Mycobacterium caprae, especially through milk, and generate 

genetic sequence profiles to allow for the exploration of potential community spread.  

Chapter 3 took a broad view of the community and the ecosystem, exploring the 

role of social and cultural practices on patterns of human tuberculosis. This stemmed 
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from a need to investigate potential competing factors for MTBC in general (Koech, 

2001; Meisner et al., 2019). Pastoralist, including Maasai observe their cultural traditions 

as a way fostering community values, leadership, cultural identity and resilience (Smith, 

1992; Anderson, 1993; Straight, 1998; Leslie et al., 2013; Carabine, 2014; Jandreau and 

Berkes, 2016). Here, this study found that livestock-associated social and cultural factors 

are important for predicting tuberculosis occurrence in this ecosystem. Specifically, there 

was an increased risk of tuberculosis with frequency of consumption of raw milk, sheep 

kidney and consumption of raw milk from cattle. In addition, households’ selling degree 

and bride price degree also ranked high in predicting household tuberculosis. Overall, 

these factors point more towards the possibility of zoonotic tuberculosis in the ecosystem, 

which was demonstrated in Chapter 2. These findings are an important contribution to 

tuberculosis research, especially in pastoralist communities with multiple interacting and 

sometimes contradictory predictors (Koech, 2001; Meisner et al., 2019) as they raise 

awareness on the need to characterize sociocultural variables not just as attributes of the 

community but as a continuum with multiple layers necessary for the localization of One 

Health approaches.  

In Chapter 4, I explored further, the role of livestock movements, highlighting 

locations in which zoonotic tuberculosis could be explored further. It has been shown that 

under the right conditions, although rare, human-to-human transmission of 

Mycobacterium bovis is possible (Evans et al., 2007). In this dissertation, I show that dry 

season grazing plays an important role in the connectivity of villages within the 

ecosystem, with villages around the Maasai Mara National Reserve being the most 

common destinations for grazing. These are the same villages (not all) in cluster 1 in 
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Chapter 2, showing that potentially, movement patterns may influence spatial patterns of 

MTBC. Through analysis of livestock movement, this study reveals the existence of 

bridge villages (Clusters 1, 2, 3 and 4 in Chapter 2) that serve to link seemingly poorly 

connected villages in the ecosystem. These villages were also important spatial clusters 

for zoonotic tuberculosis.  Interestingly, the highest ranking villages in the bride price 

and gifting networks included villages adjacent to the MMNR, a potential further piece of 

evidence for maintaining strategic familial ties as a gateway to survival and livelihoods 

(Aktipis et al., 2011; Aktipis et al., 2016). In exploring potential network-based disease 

control options, first, this study shows that targeted removal of >65% and 73% of nodes 

(villages) that lie on the paths that control information flow within the ecosystem, 

resulted in 80% decrease in the agistment network, with a higher percentage of villages 

needing to be removed using the random approach. In addition, we show that the Maasai 

Mara National Reserve drives the livestock, and by extension human movement, within 

the Maasai Mara Ecosystem, with the caveat that although it is technically not a village, 

focusing disease control measures or surveillance in areas around it would be most 

effective. Although we show that targeted removal always outperformed random removal 

of nodes in fragmenting the networks, the agistment network was more robust to node 

removal due to the influence of the MMNR. Thus, this study shows the utility of 

strategically incorporating villages as potential surveillance points or areas of joint 

surveillance of humans and animals. 

Taken together, this thesis identifies sociocultural factors contributing to the spread and 

potential management of tuberculosis in the Maasai Mara Ecosystem. Specifically, this 

thesis shows that the community within this ecosystem is potentially at a high risk of 
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zoonotic tuberculosis with sociocultural practices including consumption of raw milk, 

livestock movement and congregation around the MMNR increasing exposures. This 

thesis also shows that One Health approaches can yield benefits if combined with an 

understanding of the social and cultural practices. In conclusion, this thesis provides a 

framework for developing a community profile taking into account social and cultural 

practices to enrich and localize One Health approaches for the surveillance and control of 

tuberculosis in a high exposure community. 
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Appendix 

Table 5. Definition of predictors, their code and associated Pearson’s Chi-squared test p-value. All predictors with p-

value<0.15 were included in the machine learning models. 

 Predictor (code) 

Levels No. TB 

positive 

No. TB 

negative 

Justification 

X2 p-value 

1 Sex of the respondent (sex) 

Male 20 94 The number of persons in a household 

has been positively correlated with the 

occurrence of tuberculosis, with females 

more likely to be infected (Teklu et al., 

2018; Meisner et al., 2019). In addition, 

it has been suggested that households 

may present complex interacting system 

leading to increased risk for 

tuberculosis positive contacts 

(Guwatudde et al., 2003). 

1 Female 9 41 

2 

Number of males in the 

family (males) 

Low 14 61 

0.795 

Medium 5 31 

High 10 43 

3 

Number of females in the 

family (females) 

Low 11 48 

0.642 

Medium 8 49 

High 10 38 

4 
Level of education of the 

respondent (education) 

None 22 85 Tuberculosis occurrence in pastoralist 

populations have been shown to be 

associated with lower levels of 

education (Berg et al., 2015a). 

However, in some studies, persons with 

higher levels of education were shown 

to be more at risk , with those educated 

more likely to seek healthcare in formal 

health facilities (Ringo et al., 2018).  0.217 

Primary 1 22 

Secondary 3 20 

College 3 8 

5 

Years respondent has lived in 

the village (residence) 

Low 11 49 Due to the nature of contact among 

pastoralists due to their sociocultural 

practices (Omondi et al., 2021), length 

of time in a village or an area may be 

correlated with increased contact within 0.486 

Medium 6 42 

High 12 44 
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the community and potentially exposure 

to pathogens including tuberculosis. 

6 Formal employment (formal) 

Yes 3 18 Being a pastoralist has associated with 

increased risk of tuberculosis, however, 

some studies have shown that in 

comparison to being a pastoralist, other 

occupational undertakings have higher 

odds of TB infection (Teklu et al., 

2018). 

0.896 No 26 117 

7 Business person (merchant) 

Yes 4 5 

0.09 

No 25 130 

8 

Hunting of wild animals for 

food (hunting) 

Yes 27 123 Consumption of raw animal products 

has been linked with a higher risk of 

testing positive for tuberculosis, 

especially in pastoralists (Gumi et al., 

2012; Kirui, 2014; Berg et al., 2015a), 

with showing a strong positive 

association between exposure to bovine 

tuberculosis, caused by Mycobacterium 

bovis, and tuberculosis positivity in 

humans (Mengistu A et al., 2015).  

However, a few studies have also 

shown contradictory results with 

consumption of raw animal products 

being assumed to be protective against 

tuberculosis (Koech, 2001; Meisner et 

al., 2019). Understanding the frequency 

of consumption of raw animal products 

is important as this can be manipulated, 

together with other public health 

measures, to develop preventive 

measures aimed at reducing human 

exposure to tuberculosis of animal 

origin (Roug et al., 2014). 

1 No 2 12 

9 

Consumption of raw cattle 

milk (rawmilkcattle) 

Yes 19 40 

0.0006 No 10 95 

10 

Consumption of raw goat 

milk (rawmilkgoat) 

Yes 1 24 

0.096 No 28 111 

11 

Consumption of raw sheep 

milk (rawmilksheep) 

Yes 2 23 

0.274 No 27 112 

12 

Consumption of raw cattle 

liver (cattleliver) 

Yes 8 35 

1 No 21 100 

13 

Consumption of raw cattle 

kidney (cattlekidney) 

Yes 16 57 

0.286 No 13 78 

14 

Consumption of raw sheep 

liver (sheepliver) 

Yes 9 39 

0.996 No 20 96 

15 

Consumption of raw sheep 

kidney (sheepkidney) 

Yes 20 70 

0.140 No 9 65 

16 

Consumption of raw goat 

liver (goatliver) 

Yes 9 40 

1 No 20 95 

17 

Consumption of raw goat 

kidney (goatkidney) 

Yes 20 72 

0.183 No 9 63 

18 

Consumption of raw blood 

from cattle (rawbloodcattle) 

Yes 11 41 

0.566 No 18 94 

19 Yes 8 36 1 
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 Consumption of raw blood 

from sheep (rawbloodsheep) 

No 21 99 

20 

Consumption of raw blood 

from goat (rawbloodgoat) 

Yes 8 34 

0.870 No 21 100 

21 

Frequency of consumption of 

raw milk (rawmilkfreq) 

Never 10 95 

0.0001 

Sometimes 1 10 

Always 18 35 

22 

Frequency of consumption of 

raw meat (rawmeatfreq) 

Never 9 58 

0.229 

Sometimes 0 5 

Always 20 72 

23 

Frequency of consumption of 

raw blood (rawbloodfreq) 

Never 17 86 

0.809 

Sometimes 1 6 

Always 11 43 

24 

A household resident 

coughing for a more than a 

month prior to the interview 

(cough1month) 

Yes 10 17  

0.009 

No 19 118 Sharing of poorly ventilated spaces and 

household utensils with TB patients has 

been associated with tuberculosis 

infections among TB patients contacts 

(Aman and Zeidan, 2017).  

25 

Sharing housing with 

livestock (sharehouse) 

Never 10 55 Sharing of household space with 

livestock has been associated with 

higher risk of tuberculosis (Berg et al., 

2015a). In addition, increased contact 

with livestock has been shown to be 

associated with human tuberculosis, 

especially those with tuberculosis 

reactors, however, there are 

contradictory findings where wealthier 

households and those with larger cattle 

herds have more tuberculosis reactors 

and less human tuberculosis (Meisner et 

al., 2019).  

0.635 

Sometimes 0 2 

Always 19 78 

26 

Number of cattle in the 

household (hscattle) 

Low 13 47 

0.523 

Medium 7 45 

High 9 43 

27 

Number of goat in the 

household (hsgoat) 

Low 8 46 

0.601 

Medium 9 46 

High 12 43 

28 

Number of sheep in the 

household (hssheep) 

Low 9 46 

0.809 

Medium 11 55 

High 9 34 
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29 

Distance cattle are herded to 

forage (grazingcattle) 

Less than 

5km 

13 56 Pastoralists graze for shorter daily 

distances (Turner and Schlecht, 2019), 

but also engage in long distance grazing 

and movement of livestock to areas 

with good forage and water. These areas 

include protected areas, thus contact 

with wildlife, and transboundary 

movements which have implications for 

disease in livestock herds (Cleaveland 

et al., 2007; Caron et al., 2013; Omondi 

et al., 2021) and by extension human 

health (Cosivi et al., 1998; Mfinanga et 

al., 2004b; Olea-Popelka et al., 2017).    

0.946 

5km to 

10km 

8 39 

More than 

10km 

8 40 

30 

Distance goat are herded to 

forage (grazinggoat) 

Less than 

5km 

24 106 

0.593 

5km to 

10km 

4 27 

More than 

10km 

1 2 

31 

Distance sheep are herded to 

forage (grazingsheep) 

Less than 

5km 

24 106 

0.593 

5km to 

10km 

4 27 

More than 

10km 

1 2 

32 

Observed interaction between 

wildlife and livestock during 

forage or watering 

(livestock.wildlife) 

Yes 28 127 

0.935 

No 1 8 

33 

Frequency of interaction 

between wildlife and 

livestock during forage or 

watering 

(livestock.wildlifefreq) 

Never 2 10 

0.398 

Sometimes 0 8 

Always 27 117 

34 

Grazing cattle in the 

protected Maasai Mara 

National Reserve 

(maracattle) 

Never 5 27 

0.544 

Sometimes 18 69 

Always 6 39 

35 

Never 27 124 

0.918 Sometimes 1 4 
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Grazing goat in the protected 

Maasai Mara National 

Reserve (maragoat) 

Always 1 7 

36 

Grazing sheep in the 

protected Maasai Mara 

National Reserve 

(marasheep) 

Never 27 124 

0.918 

Sometimes 1 4 

Always 1 7 

37 

Transboundary movement of 

cattle to Tanzania during the 

dry season (tanzania) 

Never 23 116 

0.221 

Sometimes 4 17 

Always 2 2 

38 

Long wet season grazing in 

the Maasai Mara National 

Reserve (wet.long) 

Yes 4 19 

1 
No 25 116 

39 

Dry season grazing in the 

Maasai Mara National 

Reserve (dry) 

Yes 24 108 

0.935 
No 5 27 

40 

Short wet season grazing in 

the Maasai Mara National 

Reserve (wet.short) 

Yes 4 23 

0.879 
No 25 112 

41 

Use of surface water in the 

household (surface.water) 

Yes 18 81 Surface water is usually shared between 

humans, domestic animals and wildlife 

with the potential for sharing pathogens 

among the triad. In addition, the use of 

untreated water carries the risk of 

nontuberculous mycobacteria which 

complicates diagnosis of tuberculosis in 

humans (Mnyambwa et al., 2018a). 

1 No 11 54 

42 

Use of underground/borehole 

water in the household 

(underground.water) 

Yes 8 38 

1 
No 21 97 

43 

Use of piped water in the 

household (piped) 

Yes 4 32 

0.356 No 25 103 

44 

Drinking water from 

streams/rivers/ open pans 

during grazing of livestock 

(opendrinking) 

Never 1 16 

0.276 

Sometimes 0 3 

Always 28 116 

45 Agistment degree (agist_deg) 

Low 10 45 A household’s role in disease 

transmission is determined by its degree 

and/or betweenness where those with 0.427 

Medium 12 42 

High 7 48 
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46 

Agistment network 

betweenness (agist_bet) 

Low 11 46 high degree engage more with other 

households thus may play an important 

role in disease introduction or 

dissemination in the ecosystem. Those 

with a high betweenness lie in the 

middle of the path between other 

households thus, indirectly connecting 

other households, with their ‘removal’ 

fragmenting the network (Wasserman 

and Faust, 1994). Different animal 

movement reasons exist in this 

ecosystem with implications for disease 

transmission and control (Omondi et al., 

2021). 

0.713 

Medium 10 41 

High 8 48 

47 Gift degree (gift_deg) 

Low 16 63 

0.521 

Medium 4 31 

High 9 41 

48 Gift betweenness (gift_bet) 

Low 21 86 

0.583 

Medium 0 2 

High 8 47 

49 

Bride price network degree 

(bride_deg) 

Low 16 102 

0.047 
High 13 33 

50 

Bride price network 

betweenness (bride_bet) 

Low 24 126 

0.138 High 5 9 

51 

Buying network degree 

(buy_deg) 

Low 11 44 

0.454 Medium 11 42 

High 7 49  

52 

Buying network betweenness 

(buy_bet) 

Low 14 41 

0.071 

Medium 10 43 

High 5 51 

53 

Selling degree (sell_deg) 

Low 14 40 

0.007 

Medium 3 55 

High 12 40 

54 

Selling betweenness 

(sell_bet) 

Low 14 40 

0.140 

Medium 9 51 

High 6 44 
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Table 6. Metrics of the top 25 villages in the combined movement network in the Maasai 

Mara Ecosystem. γ Not a village in the ecosystem. 

Village Degree In-degree Out-degree Betweenness 

Nkoilale 220 101 119 0.16 

Ololaimutia 180 72 108 0.15 

Ngoswani 156 92 64 0.14 

Aitong 142 76 66 0.11 

Olesere 130 60 70 0.08 

Empopongi 127 67 60 0.06 

Talek 108 44 64 0.05 

MMNRγ 108 54 54 0.04 

Sekenani 90 41 49 0.04 

Nkineji 75 36 39 0.03 

Trans Mara 68 25 43 0.03 

Ilpoori 65 35 30 0.03 

Losho 60 34 26 0.02 

Naikara 58 22 36 0.02 

Ol Tepesi 57 31 26 0.02 

Ewaso Ngiro 56 47 9 0.02 

Ololchora 53 25 28 0.02 

Irbaan 49 28 21 0.02 

Megwara 47 23 24 0.02 

Ripoi 47 26 21 0.02 

Ololorok 45 21 24 0.01 

Ilturisho 39 21 18 0.01 

Mboseli 37 19 18 0.01 

Tipilikwani 36 17 19 0.01 

Tanzaniaγ 35 13 22 0.01 

 

 


