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Abstract

Visually-guided underwater robots are deployed alongside human divers for coop-

erative exploration, inspection, and monitoring tasks in numerous shallow-water and

coastal-water applications. The most essential capability of such companion robots is

to visually interpret their surroundings and assist the divers during various stages of an

underwater mission. Despite recent technological advancements, the existing systems

and solutions for real-time visual perception are greatly a�ected by marine artifacts such

as poor visibility, lighting variation, and the scarcity of salient features. The di�culties

are exacerbated by a host of non-linear image distortions caused by the vulnerabilities

of underwater light propagation (e.g., wavelength-dependent attenuation, absorption,

and scattering). In this dissertation, we present a set of novel and improved visual

perception solutions to address these challenges for e�ective underwater human-robot

cooperation. The research outcomes entail novel design and e�cient implementation of

the underlying vision and learning-based algorithms with extensive �eld experimental

validations and real-time feasibility analyses for single-board deployments.

The dissertation is organized into three parts. The �rst part focuses on developing

practical solutions for autonomous underwater vehicles (AUVs) to accompany human

divers during an underwater mission. These include robust vision-based modules that

enable AUVs to understand human swimming motion, hand gesture, and body pose

for following and interacting with them while maintaining smooth spatiotemporal co-

ordination. A series of closed-water and open-water �eld experiments demonstrate the

utility and e�ectiveness of our proposed perception algorithms for underwater human-

robot cooperation. We also identify and quantify their performance variability over a

diverse set of operating constraints in adverse visual conditions. The second part of

this dissertation is devoted to designing e�cient techniques to overcome the e�ects of
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poor visibility and optical distortions in underwater imagery by restoring their percep-

tual and statistical qualities. We further demonstrate the practical feasibility of these

techniques as pre-processors in the autonomy pipeline of visually-guided AUVs. Finally,

the third part of this dissertation develops methodologies for high-level decision-making

such as modeling spatial attention for fast visual search, learning to identify when image

enhancement and super-resolution modules are necessary for a detailed perception, etc.

We demonstrate that these methodologies facilitate up to 45% faster processing of the

on-board visual perception modules and enable AUVs to make intelligent navigational

and operational decisions, particularly in autonomous exploratory tasks.

In summary, this dissertation delineates our attempts to address the environmen-

tal and operational challenges of real-time machine vision for underwater human-robot

cooperation. Aiming at a variety of important applications, we develop robust and e�-

cient modules for AUVs to follow and interact with companion divers by accurately

perceiving their surroundings while relying on noisy visual sensing alone. Moreover,

our proposed perception solutions enable visually-guided robots to see better in noisy

conditions, and do better with limited computational resources and real-time con-

straints. In addition to advancing the state-of-the-art, the proposed methodologies and

systems take us one step closer toward bridging the gap between theory and practice

for improved human-robot cooperation in the wild.
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Chapter 1

Introduction

Underwater robotics is a domain of increasing importance with existing and emerg-

ing applications ranging from monitoring, inspection, and surveillance to data collec-

tion, surveying, and bathymetric mapping. In particular, visually-guided AUVs (Au-

tonomous Underwater Vehicles) and ROVs (Remotely Operated Vehicles) are widely

used in important coastal-water and shallow-water applications such as the monitoring

of coral reefs and marine species migration [40, 41, 42], the inspection of submarine ca-

bles and wreckage [43, 44], underwater scene analysis [45, 46], seabed mapping [47, 48],

and more (see Figure 1.1). Since truly autonomous navigation is still an open problem,

underwater missions are often deployed with a team of human divers and robots that co-

operatively perform a set of common tasks. The human divers typically lead the mission

and interact with the robots during task execution. Such human-in-the-loop guidance

for autonomous and semi-autonomous robots simpli�es the mission planning [5, 49] and

signi�cantly reduces the associated operational risks and computational overhead.

In human-robot collaborative settings, underwater robots typically rely on vision for

exteroceptive perception. A practical alternative is to use acoustic sensors such as sonars

and hydrophones. However, they are mainly used for deep-water target tracking [50, 51]

1
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