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Abstract

Modern dynamical systems–particularly heuristic models–often take the form of piecewise-

continuous differential equations. In order to better understand the behavior of these

systems we generalize aspects of Conley index theory to this setting. Because nons-

mooth models do not generally have unique solutions, this process involves organizing

the solution set of the piecewise-continuous equation into a set-valued object called a

multiflow. We prove several properties of this object, providing us with a foundation

for extending Conley’s techniques. This framework allows us to define isolating neigh-

borhoods and demonstrate that they are stable under perturbation. We also provide

an attractor-repeller pair decomposition of compact invariant sets for multiflows which

helps us to understand the limiting behavior of solutions in such sets. This decomposi-

tion is shown to continue under perturbation. Because we assume very little structure

in proving these results we are able to connect them to many different existing formu-

lations of the Conley index for multivalued dynamical systems. Therefore we are able

to identify isolating neighborhoods in a large class of differential inclusions, decompose

the associated isolated invariant sets into an attractor-repeller pair, and provide the

index of of the original isolated invariant set, the attractor, and the repeller; all of

this information is stable under small perturbations. This process is carried out on a

piecewise-continuous model from oceanography as an example.
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Chapter 1

Introduction

1.1 Broad Goals

In the mathematics community we often hear the phrase ”all models are wrong, but

some are useful.” This aphorism tries to capture the idea that while a simple model

could never capture the full truth of the universe, we can still hope that it tells us

some useful information about reality. But for a model to identify physically relevant

information we need to search for behavior that is not too dependent on the specifics of

the equations that we write down; we need information that will hold for models that

are, in some sense, similar.

In dynamical systems, our models are often differential equations of the form

ẋ = f(x)

where f : U 7→ Rn is a smooth function and U ⊂ Rn is an open set. A solution of this

equation is any differentiable function x(·) such that

d

dt
(x(t)) = f(x(t))

for all t in some open interval I. In applications, the function f describes the rate

of change of an abstract object that we are studying and the function x describes the

position of the object. For example, the rate f might describe the population growth of

1
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some species; then x would be the population of the species at any given time. We solve

for–or approximate–the solution x using mathematical techniques, but the function f

is chosen by some application of domain expertise. Therefore we must accept that f

represents only an approximation of the true rate of change, and so x represents only

an approximation of the true position.

To account for the rough nature of these models we consider perturbations of the

function f . We extend the domain of f to U ×Λ, where Λ ⊂ Rn is some interval around

zero. This extension gives us a family of differential equations

ẋ = f(x, λ)

where our original model is now represented by ẋ = f(x, 0). Our hope, then, is that the

behavior of the system ẋ = f(x, 0) is similar to the behavior of the systems ẋ = f(x, λ)

for |λ| small.

It is well known in the field, however, that not all behavior described by the system

ẋ = f(x, 0) will necessarily persist for the system ẋ = f(x, λ), no matter how small

|λ| is chosen. Such sudden changes are called bifurcations, and understanding these

bifurcations is one of the central goals of the study of dynamical systems.

We may hope, however, that it is sometimes possible to avoid the difficulties of

bifurcation theory. That is, we hope that some types of information that we find in

our differential equations will always persist to nearby models. And indeed, we are able

to find such behavior. In the 1960’s and 1970’s, Charles Conley and others were able

to show that some qualitative, topological information about dynamical systems does

persist under perturbation. Since this information can be shown to be truthful even

though the model is inherently an approximation means that the information gleaned

is generally somewhat vague. In Conley’s words, ”if such rough equations are to be of

use it is necessary to study them in rough terms” [7].

The methods that came out of this line of thinking are now called Conley Index

Theory in his honor. Many extensions of this theory have been made in the last half-

century and this thesis aims to continue that trend by generalizing aspects of Conley

index theory to the setting of piecewise-continuous differential equations and set-valued

dynamical systems.
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When differential equations of the form ẋ = f(x) are studied we must put some

smoothness hypotheses on the map f . Typically it is assumed to be at least Lipschitz

continuous because this hypothesis guarantees that solutions are unique up to the choice

of initial condition. However, differential equations where f is not Lipschitz continuous

have received much less study. The reasons for this omission are essentially twofold.

Firstly, from a mathematical point of view, the uniqueness of solutions which the Lips-

chitz hypothesis gives us is extremely valuable. Second, this mathematical simplification

was historically justified by the applications that scientists studied. Most vector fields of

interest were Lipschitz continuous, and hence the more complicated study of equations

lacking this smoothness seemed unnecessary.

However, this second point is becoming less true in the modern world. There are now

many models where the underlying differential equations are not Lipschitz continuous,

or even continuous. This set includes models of friction, where an object can reach a

rest point in finite time, and models involving mechanical switching, where a solution

evolves according to one vector field till it reaches a certain point and then switches

to another [8]. Low dimensional climate models also frequently exhibit non-smooth

behavior; one particular model, Welander’s ocean box model, will be examined in some

detail throughout this essay in order to motivate the study of these systems. [39].

In general, many heuristic models feature discontinuities, where the sudden change

represents a rapid–and poorly understood–shift between regions with different behavior.

Thus it has become important to study differential equations with discontinuous

right-hand sides. This new area of study presents many unique challenges. Most notably,

in order to define a solution of a piecewise-continuous differential equation in the region

of discontinuity we must extend the map on the right hand side to a set-valued map.

This consideration leads to the formulation of differential inclusions, which take the

form

ẋ ∈ F (x)

where the function F is now multivalued. A solution of this inclusion is an absolutely

continuous function x(·) satisfying

ẋ(t) ∈ F (x(t))



4

almost everywhere in the domain of F . As one might expect given the set-valued nature

of F , there may be multiple solutions of such an inclusion with the same initial condition.

The overall aim of this thesis is to generalize aspects of Conley index theory to the

multivalued setting of differential inclusions. Piecewise-continuous differential equations

motivated this study, but the results are stated and proven in more general terms so

that they apply to an extremely general class of differential inclusions. It is worth

mentioning that control systems are often studied using differential inclusions, and the

hypotheses we will assume in this manuscript are less stringent than those frequently

assumed in that setting.

In the following section we will introduce the Welander model in slightly more detail

in order to motivate the study of piecewise-continuous systems as well as indicate the

sorts of results which we hope to obtain about these systems using Conley index theory.

Section 1.3 provides a brief introduction to Conley index theory, including statements

of the main results which are generalized in this thesis. The following section discusses

generalizing this theory to a multivalued setting in somewhat broad terms and describes

the goals and main results of the thesis. The closing section of the introduction discusses

the structure of the rest of the text.

1.2 Piecewise-Continuous Differential Equations and We-

lander’s Ocean Box Model

Piecewise-continuous differential equations often fit naturally into scientific schema, and

conceptual climate models in particular often take this form [39, 31, 37, 35, 38, 36, 14,

13]. The Welander ocean box model [39] illustrates why this is the case. In this model

the ocean is split into a deep ocean region and a shallow ocean region; this simpli-

fication is common in oceanography because many of the physical processes at play

transition extremely rapidly at a certain depth. This split indirectly induces a discon-

tinuity boundary in the underlying equations, which are written in terms of salinity

and temperature. Welander studied this model in order to conceptually demonstrate

that ocean circulation rates could oscillate without any outside forcing. He drew this

conclusion by numerically finding a periodic orbit in the discontinuous model.

Actually proving the existence of this periodic orbit, however, is much more difficult
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(a) Schematic of We-
lander’s box model [39]
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(b) Periodic orbit in a discontinuous model [22]

Figure 1.1: A box model split into two adjacent regions and the piecewise-continuous
vector field that it induces.

because the mathematics behind nonsmooth systems is so complicated. Leifeld later

provided this proof [22], but the methods used do not generalize to other models.

Moreover, researchers are often motivated to understand families of smooth systems

which limit to the piecewise-continuous one. These discontinuous models are often

heuristically understandable, allowing researchers to see why systems behave as they

do, but usually they are considered simplifications of more realistic behavior. In the

ocean box model, for instance, while there is not literally a plane dividing the ocean

into two regions, we still hope this model reflects real dynamics.

However, understanding the relationship between a discontinuous model and nearby

smooth ones is difficult. Given that two families of smooth vector fields, {fλ} and

{gλ}, both limit to the discontinuous vector field F , it is possible for the dynamics

described by the equations {ẋ = fλ(x)} and {ẋ = gλ(x)} to be qualitatively different

[16]. Therefore it is difficult to say what information studying F can provide us about

either of these limiting smooth systems. However, a piecewise-continuous vector field

is used in the Welander model both for heuristic reasons and because the transition

between deep and shallow ocean regions is rapid and difficult to understand, so choosing
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any specific smooth model is somewhat undesirable. Therefore we would like to know

what we actually can learn by studying F directly, and that is where Conley Index

Theory comes in.

Conley Index Theory is a tool that describes the behavior of a dynamical system that

is completely robust under perturbation [7]. The theory gives us a qualitative under-

standing of isolated invariant sets and the structure of their attractors. It sidesteps the

problems associated with bifurcation theory by focusing on rough, topological features

of the system. For many models, particularly models which aim to describe extremely

complicated systems like the climate of our planet, we cannot hope that the equations

that we write down perfectly describe the exact behavior of a given system. However,

we hope that these models still tell us information about these systems, and that is

precisely the aim of Conley theory.

This philosophy fits naturally with piecewise-continuous models. As in the Welander

case, for many of these models the instantaneous transition is considered to be an

approximation of a very abrupt and poorly understood, but smooth, transition. Since

the information studied with Conley Index Theory is stable under small perturbations,

we aim to use it in order to study the nonsmooth–but conceptually understandable–

system, and carry that information over to limiting families of smooth systems.

1.3 Introduction to Conley Index Theory

For sufficiently smooth vector fields we can describe the solution set of the differential

equation ẋ = f(x) by a flow. A flow on a locally compact metric space Y is a continuous

map ϕ : R× Y → Y satisfying the following group properties:

1. ϕ(0, x) = x for all x ∈ Y .

2. ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all t, s ∈ R and x ∈ Y .

The flow is the solution set for the differential equation in the sense that for each x0 ∈ Y ,

d

dt
ϕ(t, x0) = f(ϕ(t, x0))

and so ϕ(·, x0) is exactly the solution of the differential equation with initial condition

ϕ(0, x0) = x0.
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Having introduced this object, we can now rephrase our goal of understanding the

behavior of the differential equation ẋ = f(x) as an attempt to understand the behavior

of the flow ϕ : R× Y → Y . The main purpose of Conley’s theory is to provide a robust

qualitative description of the compact invariant sets of such a flow. We note here that

this theory also works for somewhat less smooth differential equations–such as those

which experience finite-time blowup and whose solution sets are instead local flows–but

we work with flows here for the simplicity of the introduction.

A set S ⊂ U is said to be invariant if

ϕ(R, S) := ∪t∈Rϕ(t, S) = S.

In general, the dynamics of such an invariant set can be extremely complicated, and their

structure can radically change under even small perturbations. These complications fall

under the umbrella of bifurcation theory, and to obtain a detailed view of these dynamics

requires a great deal of analysis. However, the Conley theory allows us to give a rough

picture of compact invariant sets in a much more computationally simple manner.

The first object of interest in Conley index theory is the isolating neighborhood,

which is a compact set whose maximal invariant set is contained in its interior. That

is, a compact set N ⊂ Rn is an isolating neighborhood for the flow ϕ if

Inv(N,ϕ) := {x ∈ N |ϕ(t, x) ∈ N ∀t ∈ R} ⊂ int(N).

These neighborhoods allow us to study isolated invariant sets, which are sets S ⊂ Rn

satisfying S = Inv(N,ϕ) for some isolating neighborhood N .

The most important property of isolating neighborhoods is that they are stable

under perturbation. More specifically, we associate a continuous family of flows

ϕλ : R× Y 7→ Y, λ ∈ Λ

to the family of differential equations ẋ = f(x, λ). If N is an isolating neighborhood

for ϕ0, then for |λ| sufficiently small N is also an isolating neighborhood for ϕλ. It

therefore seems reasonable that we might be able to study this stable neighborhood and

glean limited but robust information about the invariant set in its interior; this goal is
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essentially the core of Conley index theory.

One key piece of information that we obtain through this theory is a description of

the attractors of the invariant set S. We call a set A ⊂ S an attractor in S if A is the ω-

limit set of a neighborhood of itself in S. Associated to this attractor is a dual-repeller

R := {x ∈ S|ω(x) 6⊂ A}, and for all other points x ∈ S, α(x) ⊂ R and ω(x) ⊂ A.

Moreover, this decomposition is stable in a topological sense; this attractor-repeller

decomposition continues to nearby flows ϕλ for small |λ|.
The above results are the most important parts of Conley index theory for this thesis

as they are replicated here in the multivalued setting. However, the theory actually

provides us with far more information. For one, if (A,R) is an attractor-repeller pair

decomposition of the set S, then the region S \ (A∪R) is gradient-like in the sense that

there is a Lyapunov function defined on S which is strictly decreasing on S \ (A ∪ R).

And looking beyond the basic attractor-repeller decomposition of S, the Conley theory

defines a Morse decomposition of S which is similar in nature to the attractor-repeller

decomposition but involves a larger partial ordering than the two sets used in that

description. It also gives the so-called fundamental theorem of dynamical systems,

showing that every flow can be decomposed into its chain-recurrent set and a gradient-

like region.

All of this behavior is described algebraically using the Conley Index. This index is

an index of an isolating neighborhood N , but it may also be described as an index of

the maximal isolated invariant set S that this neighborhood contains. The introductory

paper [28] cites three essential properties of this index:

1. (Well-defined) If N and N ′ are both isolating neighborhoods for ϕ and Inv(N,ϕ) =

Inv(N ′, ϕ), then the Conley index of N is the same as the Conley index of N ′.

This property allows us to view the Conley index as a well-defined index of isolated

invariant sets.

2. (Ważewski Property) If the Conley index of N is not trivial then Inv(N) is non-

empty.

3. (Continuation) If {ϕλ|λ ∈ Λ} is a continuous parametrized family of flows and N

is an isolating neighborhood for each flow ϕλ, then the Conley index of N is the

same for each flow ϕλ.
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These three properties are the basis of how Conley index theory is used. We identify

an isolating neighborhood and assign it an algebraic index. The first property tells us

that all isolating neighborhoods containing the same maximal invariant set have the

same index, and so we know that we can pass information that the index tells us about

the isolating neighborhood to the associated isolated invariant set. One such piece of

information is the existence of a nontrivial invariant set, as indicated by the Ważewski

property. Finally, the third property gives the robustness of this information; since we

already know that isolating neighborhoods are stable under small perturbations, we see

from this property that the Conley Index, and any information we gain from it, is also

stable under small perturbations.

This index ties directly to the attractor-repeller decomposition because attractors

and repellers in an isolated invariant set are themselves isolated invariant sets. Therefore

we can also use the Conley index to understand the topology of these sets and know

that this information persists under small perturbations.

Importantly, it is worth highlighting that we do not actually need to know how the

flow is perturbed in order to obtain these results. For example, if we identify an isolating

neighborhood for the flow associated to the differential equation

ẋ = f(x)

then the Conley index of that neighborhood is the same for the flows generated by

ẋ = f(x) + λg(x) or ẋ = f(x) + λh(x)

for small |λ| given any choice of smooth g and h. It is also stable under any other

continuous perturbation of the ODE. The Conley index therefore allows us to address

our original goal of understanding real-world behavior from an inherently simplified

model.

For basic information on Conley theory, the reader is referred to the brief survey

article [28]. For those interested in more detailed information on this topic, see Conley’s

manuscript [7] or the more complete survey [29].
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1.4 Using Conley Index Theory in a Multivalued Setting

As stated previously, the main purpose of this thesis is to generalize aspects of Conley

index theory to a multivalued setting. In particular, we hope to use this theory in

order to study piecewise-continuous differential equations, and differential inclusions

more generally. Some efforts have already been made along these lines. Versions of

the index for certain differential inclusions and piecewise-continuous systems have been

developed in [6, 9, 20, 32], each with their own strengths and drawbacks. Of these,

the development of a cohomological version of the Conley index in [32] is closest to our

goals. The ideas of the attractor-repeller pair decomposition for differential inclusions

have been discussed in [5, 23]. Each of these papers and their results will be discussed

in somewhat more detail later in the paper, but in this section we hope to indicate what

distinguishes the results of this thesis from these earlier works.

As has been said a few times in this chapter, Conley index theory aims to study

isolated invariant sets and the structure of their attractors in a way that is stable under

small perturbations. This goal has, in some sense, two halves. On the one hand we have

the structural component giving the Morse decomposition of the isolated invariant sets;

the papers [5, 23] aim to generalize these ideas. The other half is the stable index itself,

which is the subject of [32, 6, 9, 20]. The fact that attractors are themselves isolated

invariant sets, and hence may be studied using the index, binds these two components

together. Because of this property, it can be shown that the attractor-repeller pair

decomposition continues in the same sense that isolated invariant sets do.

However, the various multivalued generalizations of the different aspects of Conley

index theory mentioned above do not fit together; the results which build the index

itself have different hypotheses than the ones that describe the structure of attractors,

leaving the full power of Conley index theory out of reach. In particular, none of these

papers addresses the notion of attractor-repeller pair continuation in a way that allows

perturbation from a piecewise-continuous vector field to a limiting family of smooth

vector fields. This situation is undesirable, and so the main goal of this thesis is to

provide a unified framework for Conley Index theory which is general enough to study

all piecewise-continuous differential equations.

A primary obstacle in achieving this goal is that the multivalued nature of these
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systems leads to competing notions of invariance. Roughly speaking, some authors

consider a set to be invariant if every point in it has an orbit which remains in the

set for all time; others demand that every orbit remain in the set for all time; still

others demand every orbit remain in the set for all forwards time. Existing results on

the stability of the isolating neighborhoods assume the less stringent first hypothesis

while the results on attractors and repellers assume the more stringent second and third

ones. Both of these assumptions are made for good reasons–which we will discuss in the

text–but the fact that these different aspects of the theory do not work together leads

to a fundamental barrier in its application. Therefore, in order to provide a framework

for Conley index theory in this setting, this thesis will prove all of the relevant results

using the first–and weaker–hypothesis of invariance.

In order to achieve this goal we introduce the idea of multiflows, a set-valued gen-

eralization of a flow introduced by Richard McGehee [25]. This definition is less re-

strictive than similar objects used in other works. In particular, we show in Theorem

5.1 that the solution set of any differential inclusion in Euclidean space that satisfies

some basic set-valued conditions may be described by this object. In particular, any

piecewise-continuous differential equation–even ones which are unbounded and experi-

ence finite-time blowup–will satisfy these conditions. However, this theorem uses an

unusual conception of the solution set. Rather than considering the union of maximal

solutions, we restrict our view to a compact set, and take the union of solutions up

until any point where they leave through the boundary of the set. By considering the

solution set in this way, we sidestep the complications associated to finite-time blowup

and local flows. This has a valuable benefit in that it allows us to remove any global

bounding conditions on our differential inclusions and so we may study a larger class

of these objects. More fundamentally, however, it is this perspective which allows us to

overcome the technical complications that arise due to competing notions of invariance.

This unusual view–where we consider solutions only in a compact set–actually arises

quite naturally in Conley index theory. The Conley index of an isolating neighborhood

is computed using only information about dynamics on the boundary of this neighbor-

hood, and ignores the behavior of solutions once they leave this compact set. As we

demonstrate throughout this thesis, this view is sufficient to generalize many important
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results from Conley index theory. Theorem 7.1 extends the stability of isolating neigh-

borhoods to the setting of multiflows. A similar theorem is proven in [32] but assumes

that the righthand side of the differential inclusion is bounded, an assumption that we

avoid here. Theorem 8.1 extends the attractor-repeller decomposition; similar theorems

are given in [5, 23], but they apply to a more limited set of differential inclusions than

is considered here and utilize a different notion of invariance.

The continuation of the attractor-repeller decomposition is proven in theorem 8.2.

As far as we can see, no comparable theorem has been proven previously, even for

differential inclusions which satisfy global bounding hypotheses and are studied in the

other works mentioned here. In particular, this theorem allows us to identify attractors

in a piecewise-continuous system and continue them to certain nearby smooth systems.

In order to prove these results, several definitions and lemmas related to multiflows

are necessary. One key definition is that of an orbit of a multiflow, which conveys the no-

tion of a single possible path of a point among the potentially infinite possibilities of the

multiflow. Theorem 5.3 demonstrates that in the case that the multiflow is generated by

a differential inclusion these orbits are exactly the solutions of the differential inclusion.

Any collection of these orbits is uniformly equicontinuous, as shown in Lemma 5.2, and

Lemma 5.3 shows that the limit of any uniformly convergent sequence of orbits is also

an orbit. These lemmas combine with the Arzèla-Ascoli theorem to give Theorem 5.4:

given any family of orbits there is some orbit which is the uniform limit of a subsequence

of the family on any compact subset of its domain. This result is used repeatedly in

proving the Conley generalizations. Additionally, Theorem 6.1 and Lemma 4.2 help us

understand perturbation in this setting.

In [32] it is demonstrated that differential inclusions which satisfy some basic hy-

potheses and are also bounded give rise to an object called a multivalued admissible

flow, a strong generalization of the flow. We point out in Theorem 9.5 that recent

results can replace a theorem cited in the proof given in [32], allowing us to relax the

bounded hypothesis and require only linear growth. This change greatly increases the

applicability of the results in [32]. For our purposes, it will allow us to combine the main

results of this thesis with the results given in [32] and analyze the Welander model.
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1.5 Description of Chapters and Sections

In Chapter 2 we introduce the basics of multivalued analysis and define upper-semicontinuity

for set-valued maps. This chapter is analogous to introducing continuous maps in the

single-valued setting and several classic results about continuous maps are generalized

here. In particular, the closed graph theorem is generalized to this setting, a result which

plays an important role in understanding multiflows. No original results are proven in

this section.

The largest chapter, Chapter 3, introduces basic differential inclusions. This chapter

explains how piecewise-continuous differential equations may be reframed as Filippov

systems, a special case of basic differential inclusions. The basic behavior of Filippov

systems is outlined. Here somewhat detailed information about the Welander model–

including some bifurcation analysis–is discussed. Additionally, because control systems

are also often described as basic differential inclusions they are also mentioned in this

chapter. The final section in this chapter gives proofs of some fundamental results

about basic differential inclusions, including Filippov’s existence proof. Again, this

section contains no original results, and is included as background material.

Perturbation plays a central role in Conley index theory, and so the idea of pertur-

bation must be extended to the multivalued setting in order to understand this thesis.

To do so, Chapter 4 discusses the perturbation of differential inclusions. The notion of

perturbation used here is very general, and applies to perturbation in a control sense.

However, since we are motivated by piecewise-continuous differential equations, how

our notion of perturbation relates to these objects is the main point of discussion. In

particular we highlight how Filippov systems may be perturbed both to other Filippov

systems and to nearby smooth systems. While the results of this discussion are relatively

straightforwards, they seem largely unknown in the Filippov systems community.

Finally, in Chapter 5, we introduce multiflows. This chapter includes Theorem 5.1,

which demonstrates that the solution set of differential inclusions is a multiflow. It

also introduces several definitions, such as orbits of a multiflow, which allow us to study

multiflows as objects in their own rights. In order to demonstrate that the results which

we state about multiflows apply to basic differential inclusions, Theorem 5.3 shows that

these orbits in a multiflow generated by a differential inclusion are equivalent to the
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solutions of that differential inclusion.

In Chapter 6 we introduce the notion of a well-parametrized family of multiflows,

which generalizes the notion of a continuous family of flows to this multivalued setting.

The main result of this chapter is Theorem 6.1, which demonstrates that perturbed

differential inclusions give rise to a well-parametrized family of multiflows, allowing us to

conclude that the theorems proven about multiflows apply to the differential inclusions

that we are interested in understanding.

We begin the extension of Conley index theory itself in Chapter 7. This includes

introducing the idea of invariance, isolating neighborhoods, and isolated invariant sets.

The stability of isolating neighborhoods is extended to this well-parametrized family of

multiflows in Theorem 7.1; a similar theorem is proven for bounded differential inclusions

in [32].

Chapter 8 introduces limit sets and attractors for multiflows, and extends the

attractor-repeller decomposition in Theorem 8.1. Importantly, the continuation of the

attractor-repeller pair decomposition is done in Theorem 8.2; this is probably the most

original result of the thesis as we are unaware of similar statements even for more limited

classes of differential inclusions.

Finally, in Chapter 9 we discuss the Conley index itself. Thus far the Conley index

has not been extended to multiflows, but we make some observations and discuss other

multivalued generalizations of the index. Importantly, because of Theorem 9.5, we may

use a variant of the index developed in [32] in order to study differential inclusions which

satisfy a linear growth bound. The Welander model is one such inclusion, and so we are

able to give the stable index of an isolated invariant set and an attractor-repeller pair

in that set.

Each of chapters 3-9 includes a section on the Welander model. These sections are

included as a running example, showing how the ideas developed in each chapter may

be applied to a specific scientific model. All of this analysis cumulates in the result

described in the preceding paragraph. Each of these sections references the previous

ones, and the notation that is adopted builds throughout each section. In case the reader

would like to reference earlier sections for a reminder of the notation and analysis, a

list of hyperlinks is included at the end of each section in order to simplify navigating

between through this long example.
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The final chapter–the conclusion–is quite brief, giving a summary of what has been

discussed in the thesis and highlighting important open questions.

Separately, there is an appendix included at the end of the thesis. This appendix

contains two sections. The first of these sections discusses the Arzèla-Ascoli Theorem

because it plays a central role in proving many of the theorems in this thesis. The

other section discusses convex sets and the Carathèodory Theorem which are used in

reframing piecewise-continuous differential equations as differential inclusions.



Chapter 2

Set-Valued Maps

2.1 Introduction to Set-Valued Maps

Because this manuscript is devoted to the study of set-valued dynamical systems, we

begin with an introduction to set-valued (or multivalued) maps for readers who are not

used to working in this setting.

Definition 2.1. For sets W and Y , a set-valued map (or multivalued map) F :

W → P(Y ) is a mapping which associates a subset F (w) ⊂ Y to each element w ∈W .

We will also use the word function interchangeably with map or mapping.

Of course, a set-valued map on its own has essentially no structure, and we will need

to make certain assumptions on its behavior in order to describe interesting results.

Usually we will assume (or prove) that the multivalued map in question is compact

valued and upper-semicontinuous. In the following section we will define these terms

and show that these objects behave like continuous single-valued maps in many ways.

We will also highlight some of the ways in which these multivalued maps are not as

well-behaved as typical continuous maps.

Because we will often be discussing both set-valued and single-valued maps in this

paper, we will use capitalization in order to distinguish between the two concepts. Any

maps which are assumed to be single-valued will be lower-case, like f or ϕ, and maps

which are allowed to be set-valued will be capitalized, like F or Φ. We note here that

single-valued maps are a special case of multivalued maps.

16
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The results described in this chapter are commonly used throughout the literature

of this niche subject and no ownership is claimed here.

2.2 Compact-Valued Upper-Semicontinuous Set-Valued Maps

In this section we generalize two standard properties of continuous maps to the mul-

tivalued setting. The first is that the composition of continuous maps yields another

continuous map. The second is that continuous maps defined on compact domains are

bounded. This second property is particularly useful in the study of differential equa-

tions because it bounds the velocity of solutions; its generalization serves a similar role

in our study of differential inclusions.

To begin, we specify that for a multivalued map F : W → P(Y ) and any subset

U ⊂W , we denote the image of U under F as

F (U) = ∪w∈UF (w)

Definition 2.2. Let W and Y be topological spaces. A set-valued function F : W →
P(Y ) is said to be upper-semicontinuous at the point w0 ∈ W if for any open

neighborhood V ⊂ Y of F (w0), there exists some open neighborhood U ⊂W of w0 such

that F (U) ⊂ V .

Then F is said to be upper-semicontinuous if it is upper semicontinuous at each

w ∈W .

If we examine this definition, we notice that if an upper-semicontinuous set-valued

map F is in fact single-valued then it is continuous in the traditional sense. Therefore all

of the results proven in this section–generalizations of typical results about continuous

maps–give the corresponding single-valued theorems as corollaries.

Because of this property, the definition of upper-semicontinuity provided here for

set-valued maps contradicts the better known definition of upper-semicontinuity for real-

valued functions, which are not continuous in general. This contradictory terminology

is somewhat unfortunate but standard, and so we will use it here.

As is always the case with mathematics, it is helpful here to consider a simple

example when digesting this abstract definition.
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Figure 2.1: The upper-semicontinuous map of example 2.2.1.

Example 2.2.1. Consider F : R→ P(R) defined by

F (x) =


x− 1 x < 0

[−1, 1] x = 0

x+ 1 x > 0

We can directly verify that this map is upper-semicontinuous at each point in its

domain. Away from the origin, F is single-valued and continuous, and hence upper-

semicontinuous. We can check the upper-semicontinuity of F at the origin in a manner

that is very similar to checking the continuity of single-valued maps. For any ε > 0 we

have that Bε(F (0)) = (−1 − ε, 1 + ε); note that given any neighborhood V of F (0),

there is an ε sufficiently small that Bε(F (0)) ⊂ V . Then choosing 0 < δ < ε, we get

F (Bδ(0)) = F ((−δ, δ)) = (−1− δ, 1 + δ) ⊂ Bε(F (0)) ⊂ V

and so F is upper-semicontinuous everywhere.

As in the single-valued case, we can give a well-defined composition of set-valued

maps:

Definition 2.3. Given multivalued maps G : W → P(Y ) and F : Y → P(Z), we define

the composition

F ◦G : W → P(Z), F ◦G(w) := F (G(w))

Notice that this composition is somewhat unusual in that the range of G is P(Y )

but the domain of F is just Y . However, the notation defined earlier–F (G(w)) =

∪y∈G(w)F (y)–sidesteps this complication and allows F ◦ G to take input in W and
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output subsets of Z.

As is the case with single-valued maps and continuity, the composition of multivalued

functions preserves upper-semicontinuity.

Property 2.1. If maps G : W → P(Y ) and F : Y → P(Z) are upper-semicontinuous

then F ◦G : W → P(Z) is also upper-semicontinuous.

This proof is a straightforward generalization of the analogous result for single-valued

continuous functions.

Proof. At an arbitrary w ∈ W , we must show that if P ⊂ Z is an open neighborhood

of F ◦G(w) then there is some neighborhood U ⊂W of w such that F ◦G(U) ⊂ P .

By definition, if P is an open neighborhood of F ◦ G(W ), then P ⊃ F (y) for each

y ∈ G(w). By the upper-semicontinuity of F , for each y ∈ G(w) there is some Vy ⊃ y

such that F (Vy) ⊂ P . Define V := ∪y∈G(w)Vy and notice that

G(w) ⊂ V, F (V ) ⊂ P

By the upper-semicontinuity of G, there is some open neighborhood U 3 w such that

G(U) ⊂ V . For this choice of U we have that

F ◦G(U) = F (G(U)) ⊂ F (V ) ⊂ P

and so F ◦G is upper-semicontinuous at any arbitrary point in its domain.

The given definition of an upper semicontinuous set-valued function applies to mul-

tivalued maps between any topological spaces. But in this paper we will work primarily

with metric spaces, and so it is often more convenient for us to consider ε and δ neighbor-

hoods rather than arbitrary neighborhoods. This convenience motivates the following

definition:

Definition 2.4. A set-valued function F : W → P(Y ) between metric spaces W and Y

is ε-upper-semicontinuous at the point w ∈ W if for any ε > 0 there exists some

δ > 0 such that F (Bδ(w)) ⊂ Bε(F (w)).

The set-valued map F is said to be ε-upper-semicontinuous if it is ε-upper-

semicontinuous at each x ∈ G.
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We can see immediately that upper-semicontinuity implies ε-upper-semicontinuity

since Bε(S) is an open neighborhood of S for any set S and for any neighborhood U

of a point w ∈ W there is a sufficiently small δ such that Bδ(w) ⊂ U . However, the

converse is not necessarily true because given a neighborhood V of S, it is possible that

Bε(S) 6⊂ V for any ε > 0. For instance, consider the following example from [12]:

Example 2.2.2. Define the map F : R→ P(R2) by F (w) = {w}×R. We can directly

verify that this map is ε-upper-semicontinuous; for each w ∈ R, F (Bδ(w)) = Bδ(w) ×
R = Bδ(F (w)), and so given any ε > 0, if 0 < δ < ε we have that F (Bδ(w)) ⊂ Bε(F (w)).

We can also see, however, that this map is not upper-semicontinuous at any point; for

simplicity we will show that it is not upper-semicontinuous at 0. Notice that the set

V := {(w, y) ∈ R2 : |wy| < 1} is an open neighborhood of F (0). However, for any

neighborhood U of 0, we see that F (U) 6⊂ V .

Although the definitions of upper-semicontinuity and ε-upper-semicontinuity are not

equivalent, we can still use the latter–and more convenient–characterization in most

applications of interest. In addition to upper-semicontinuity, set-valued maps are fre-

quently assumed to be compact-valued; that is, for each w in the domain of F , we demand

that the set F (w) be compact. We can immediately verify that this additional assump-

tion allows us to pass freely between upper-semicontinuity and ε-upper-semicontinuity.

Property 2.2. If W and Y are metric spaces and F : W → P(Y ) is compact-valued,

then F is upper-semicontinuous if and only if it is ε-upper-semicontinuous.

Proof. As was previously indicated, it is straightforward to see that upper-semicontinuity

implies ε-upper-semicontinuity. Therefore we must only show that the converse holds

whenever F is compact-valued.

Given an arbitrary w ∈ W , let V be a neighborhood of F (w). For each y ∈ F (w)

there is some εy > 0 such that Bεy(y) ⊂ V . Since F (w) is compact, there is a finite

collection {yi}ni=1 such that ∪1≤i≤nBεyi (yi) covers F (w). Defining ε := min1≤i≤n(εyi),

we have that Bε(F (w)) ⊂ V .

Notice that as a direct consequence of this definition, the compact-valued map F

is upper-semicontinuous at w ∈ W if and only if given any sequence wi → w and any



21

choice of associated vectors vi ∈ F (wi), for any ε > 0 there is some i sufficiently large

that vi ∈ Bε(F (wi)). This sequential characterization is frequently used to prove that

maps are upper-semicontinuous in practical examples.

It is important to notice that the definition of upper-semicontinuity is inherently

one-sided in the sense that for w, ε, δ as in the definition, d(x, y) < δ does not imply

that F (x) ⊂ Bε(F (y)). If F did have such a symmetric property it would be called

continuous, but it turns out that that requirement is too stringent for many applications

and so we will not assume it; notice that the set-valued map of example 2.2.1 is upper-

semicontinuous but not continuous.

This one-sided nature of upper-semicontinuous functions implies, unfortunately, that

there is no reasonable notion of uniform upper-semicontinuity. That is, even on a

compact domain, for a fixed ε > 0 there is generally no single value of δ > 0 which

implies that F (Bδ(x)) ⊂ Bε(F (x)) for all x ∈ X. Example 2.2.1 demonstrates why this

is the case; for any x 6= 0 and ε < 2, we see that F (0) 6⊂ Nε(F (x)).

However, there are many properties that we typically expect of continuous functions

that also hold for compact-valued, upper-semicontinuous multivalued maps. Impor-

tantly, such set-valued maps are bounded on compact domains.

Lemma 2.1. Let X,Y be metric spaces. If X is compact, then any upper-semicontinuous

and compact-valued set-valued map F : X → P(Y ) is bounded.

As was the case with the composition result, Lemma 2.1, the proof of this result is

very similar to the proof that continuous functions with compact domains are bounded.

Proof. Since F is upper-semicontinuous, for each ε > 0 and x ∈ X there exists some

δx > 0 such that dX(x,w) < δx implies that F (w) ⊂ Bε(F (x)). Balls of radius δx

centered at each point x ∈ X form an open cover of X, and so we may take a finite

subcover of these balls centered at the points {xn}kn=1. Then for each x ∈ X,

F (x) ⊂ ∪kn=1(Bε(F (xn)))

Since F is compact-valued, this union is a bounded set.

Notice that the assumption of upper-semicontinuity is necessary for this result to

hold just as continuity is essential to the analogous result in the single-valued case. The
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map G : [−1, 1]→ R given by

G(x) =

1/x x 6= 0

0 x = 0

is not upper-semicontinuous and it is not bounded. The assumption that the set-valued

map is compact-valued, on the other hand, may be relaxed; if the assumption that the

image of each point is compact is replaced by the assumption that this image is bounded

then the proof follows without any alterations. This weaker assumption is necessary,

however, as the trivial set-valued map H : [−1, 1]→ R, x 7→ R demonstrates.

Actually, the preceding result can be strengthened; the image of a compact set is

compact. As one might expect, this stronger result does require that F be compact

valued (and not merely take bounded values).

Property 2.3. Assume X and Y are metric spaces and that X is compact. If F : X →
Y is compact-valued and upper-semicontinuous then F (X) is compact.

The following proof is taken from [2].

Proof. Let {Vυ}υ∈Υ be an open cover of F (X). Since F (x) is assumed to be compact

for each x ∈ X, we can cover F (x) in a finite number n(x) of these open sets. That is,

F (x) ⊂ ∪1≤i≤n(x)Vυi =: Vx.

By the upper-semicontinuity of F , for each x ∈ X there is some open neighborhood

Ux of x such that F (Ux) ⊂ Vx. Notice that {Ux}x∈X is an open cover of X, and hence

we may choose choose a finite subcover {Uxj}1≤j≤p. Then

F (X) ⊂ ∪1≤j≤pF (Uxj ) ⊂ ∪1≤j≤pVxj = ∪1≤j≤p ∪1≤i≤n(xj) Vυi

and so we have found a finite open subcover of F (X).
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2.3 The Closed Graph Theorem for Set-Valued Maps

There is an analogue of the closed graph theorem for upper-semicontinuous and compact-

valued multivalued maps. This result is central to many of the ideas and theorems

presented later in this thesis and so it is given its own section. To begin we formally

define the graph of a multivalued map:

Definition 2.5. If F : W → P(Y ) is a set-valued map, then the graph of F is the set

ΓF := {(w, y) ∈W × Y |y ∈ F (w)}

As a reminder, the typical closed graph theorem states that if W is a topological

space and Y is a compact Hausdorff space, a map f : Y → Y is continuous if and only if

its graph is a closed subset of W ×Y . If we do not assume that the range Y is compact

then the graph of a continuous map is still closed but the converse no longer holds.

A direct analogue of the above statement does exist in the multivalued setting, but

for our purposes it is simpler to assume that the spaces in question are metric spaces.

This assumption does not restrict our applications at all and the proof becomes more

reminiscent of the flavor of proof which will appear throughout this manuscript. We

will state the theorem here and prove it in a sequence of lemmas. The proofs of these

lemmas are sketched in [33], and these sketches were used in order to write down the

proofs given here.

Theorem 2.1. Let W,Y be metric spaces and Y be compact.

The multivalued function F : W → P(Y ) is upper-semicontinuous and compact valued

m

the graph ΓF = {(w, y) ∈W × Y |y ∈ F (w)} is closed.

In order to prove Theorem 2.1, we begin with the following lemma which assumes

upper-semicontinuity and compact-valuedness only at a single point w in the domain:

Lemma 2.2. Let W and Y be metric spaces.

A multivalued map F : W → P(Y ) is upper-semicontinuous at w ∈ W and F (w) is
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compact

m

for each sequence {wn}∞n=1 such that wn → w, any sequence {yn}∞n=1 such that yn ∈
F (wn) has a convergent subsequence with a limit in F (w).

Proof. We will first show that the sequence condition implies upper-semicontinuity by

showing that if F is not upper-semicontinuous at w then we can find sequences {wn}∞n=1

and {yn}∞n=1 violating the stated conditions. If F is not upper-semicontinuous at w, then

there is some open neighborhood V of F (w) such that F (U) 6⊂ V for any neighborhood

U of w. Let {δn}∞n=1 be a sequence of positive numbers such that δn → 0 and choose

an arbitrary wn ∈ Bδn(w) for each n. Since F is not upper-semicontinuous at w, we

can choose some yn ∈ F (wn) such that yn 6∈ V . Since Y \ V is closed, the sequence

{yn}∞n=1 does not have any limit points in V . More to the point, it does not have any

limit points in F (w).

We will directly show that the sequence condition implies that F (w) is compact.

Consider the stationary sequence {wn}∞n=1 where wn = w for all n. Then our condition

tells us that any sequence {yn}∞n=1 ⊂ F (w) has a convergent subsequence. Notice that

this property is exactly the sequential compactness of F (w), which tells us that F (w)

is compact since Y is a metric space.

We will now give the other direction of the proof and assume that F is upper-

semicontinuous and compact-valued at w. Let V be a bounded neighborhood of F (w)

and let U be a bounded neighborhood of w such that F (U) ⊂ V . Let {wn}∞n=1 be a

sequence such that wn → w and choose yn ∈ F (wn) for each n. For large enough n,

wn ∈ U , and so

(wn, yn) ∈ U × V ⊂ U × V

since yn ∈ F (wn) ⊂ F (U) ⊂ V . Because U × V is compact, this sequence has a

convergent subsequence with some limit (w, y) (where w is the original point where we

have assumed the upper-semicontinuity of F ). We are done once we show that y ∈ F (w).

For the sake of contradiction, assume that y 6∈ F (w). Since F (w) is compact,

b := dY (y, F (w)) is greater than zero. Then Bb/2(F (w)) is a neighborhood of F (w)
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such that for each basic neighborhood Br(w),

F (Br(w)) 6⊂ Bb/2(F (w))

because if the subsequence {ynk}∞n=1 converges to y 6∈ Bb/2(F (w)), then F (wnk) 6⊂
Bb/2(F (w)) even though wnk → w. Thus we have a contradiction to our assumption

that F was upper-semicontinuous at w.

Lemma 2.2 does the bulk of the work in proving Theorem 2.1. The following lemmas

(which have much shorter proofs) do the rest.

Lemma 2.3. Assume W and Y are metric spaces and let F : W → P(Y ) be a multi-

valued function. If for each sequence {wn}∞n=1 such that wn → w, any sequence {yn}∞n=1

such that yn ∈ F (wn) has a convergent subsequence with a limit in F (w), then the graph

ΓF of F is closed.

Proof. Let (w, y) be a limit point of ΓF . Then there is some sequence {(wn, yn)}∞n=1 ⊂
ΓF that limits to (w, y). Since yn ∈ F (wn) by the definition of the graph, the sequence

condition tells us that y ∈ F (w).

Lemma 2.4. Assume that W and Y are metric spaces. Let Y be compact and let

F : W → P(Y ) be a multivalued function. If the graph ΓF of F is closed then for each

sequence {wn}∞n=1 such that wn → w, any sequence {yn}∞n=1 such that yn ∈ F (wn) has

a convergent subsequence with a limit in F (w).

Proof. Let wn → w and choose yn ∈ F (wn) for each n. Since Y is compact, {yn}∞n=1 has

some subsequence {ynk}∞k=1which limits to some point y. Since {(wnk , ynk)}∞k=1 ⊂ ΓF

and ΓF is closed, the limit point (w, y) belongs to ΓF , and so y ∈ F (w).

Theorem 2.1 follows directly from these lemmas. Also, notice that, as in the single-

valued case, the assumption of compactness on Y is necessary for only one direction;

even if Y is not compact, a compact-valued and upper-semicontinuous set-valued map

still has a closed graph.

We close this section with a few examples which demonstrate the necessity of each

of the assumptions of Theorem 2.1.
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Example 2.3.1. F1 : R → P([−1, 1]) is not upper-semicontinuous but is compact-

valued; its graph ΓF1 is not closed:

F1(x) =

−1 x < 0

1 x ≥ 0

F2 : R → P([−1, 1]) is not compact-valued but is upper semicontinuous; its graph ΓF2

is not closed:

F2(x) =


−1 x < 0

[−1, 1) x = 0

1 x > 0

The graph ΓF3 is closed but F3 : R→ P(R) is not upper-semicontinuous (it is compact-

valued):

F3(x) =

1/x x 6= 0

0 x = 0

The graph ΓF4 is closed but F2 : R → P(R) is not compact-valued (it is upper-

semicontinuous):

F (x) =

1/x x 6= 0

R x = 0

2.4 Multivalued Maps as Closed Relations

Another way of stating Theorem 2.1 is to say that upper-semicontinuous and compact-

valued multivalued maps into compact metric spaces are equivalent to closed relations.

In order to state this characterization formally, recall the following definition:

Definition 2.6. Given sets W and Y , a relation over W ×Y is any subset of W ×Y .

If only one set W is specified, then a relation on W is any subset of W ×W .
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Figure 2.2: Graphs from example 2.3.1.

Clearly any set-valued map F : W → P(Y ) is associated with a unique relation

on W × Y , namely the graph ΓF . But it is also true that any relation Γ ⊂ W × Y is

associated with a unique multivalued map

FΓ : W → P(Y ), w 7→ {y ∈ Y |(w, y) ∈ Γ}

Then the closed graph theorem tells us that for metric spaces W,Y with Y compact,

a compact-valued and upper-semicontinuous multivalued map between W and Y is

equivalent to a closed relation over W ×Y . We can even define the composition in these

terms:

Definition 2.7. The composition of two relations F ⊂ Y × Z and G ⊂ W × Y is

the relation

F ◦G = {(w, z) ∈W × Z : ∃y ∈ Y such that (w, y) ∈ G, (y, z) ∈ F}

It follows from Property 2.1 that if the relevant spaces are metric spaces then the

composition of closed relations is closed. In fact this result holds even if the spaces are

only assumed to have a topological structure, but we will not work in that generality
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here.

The use of relations in the study of dynamical systems is quite powerful because of

their generality. For readers unfamiliar with this perspective, this paper should contain

sufficient information to follow the exposition, but for those interested in more detailed

information the book [1] by Akin is recommended. For particular information about

attractors and repellers in the setting of closed relations, see the article [25] by McGehee.

We will rely heavily on this result in this paper because we will often pass back and

forth between these two characterizations. Many of the later results are stated more

easily in one form, but their proofs are often more intuitive using the other interpreta-

tion.



Chapter 3

Differential Inclusions

3.1 Basic Differential Inclusions

We now turn to the objects which motivate this manuscript, differential inclusions. As

mentioned in the introduction, the author’s primary motivation for studying differen-

tial inclusions is that they are used in order to study piecewise-continuous differential

equations, but these objects also have many other important applications, most notably

in control theory [2]. Before beginning, we mention that most of the definitions and

theorems found in this section are taken from A.F. Filippov’s seminal work, [10].

We begin by explicitly defining the objects in question:

Definition 3.1. A differential inclusion is a generalization of the concept of a dif-

ferential equation. It takes the form

ẋ ∈ F (x)

where F is a set-valued map.

A solution of the differential inclusion is an absolutely continuous function

x(t) defined on some interval I ∈ R such that

d

dt
x(t) ∈ F (x(t))

almost everywhere in I.

29
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Recall that on a compact interval [a, b], an absolutely continuous function x(t) may

be written as

x(t) = x(a) +

∫ t

a
ẋ(s)ds

where the derivative ẋ is Lebesgue integrable and exists almost everywhere. The moti-

vation for considering these almost everywhere differentiable functions as the solutions

to differential inclusions, rather than C1 functions as we do for differential equations, is

made clear in example 3.2.2.

Of course, in order to study these objects we must put some assumptions on the

multivalued map F on the righthand side. In his seminal work [10], Filippov introduces

what he calls the basic conditions for set-valued functions. These conditions are neces-

sary in order to ensure that the differential inclusion satisfies certain essential properties;

notably, the basic conditions guarantee the existence of solutions.

Definition 3.2. Let the set-valued function F : Rn ⊃ G→ P(Rn) be upper-semicontinuous.

Also, for all x0 ∈ G, assume that the set F (x0) is

• non-empty

• compact

• convex

Then F is said to satisfy the Basic conditions.

For brevity, we will say that if F satisfies the basic conditions then the inclusion

ẋ ∈ F (x) is a basic differential inclusion. Such inclusions are very general, applying to a

wide variety of dynamical systems. Note that any continuous single-valued function f(x)

trivially satisfies these conditions, and so any results about basic differential inclusions

also apply to more typical differential equations of the form ẋ = f(x).

Of course, since basic differential inclusions are more general than even differential

equations with continuous righthand sides, we expect that their behavior may be very

unusual. In particular, since it is well-known that differential equations where the

righthand side is merely continuous–but not Lipschitz continuous–may have infinitely

many solutions for a given initial condition (the prototypical example is ẋ =
√
x), we

cannot expect any sort of uniqueness theorem for these systems. However, we will prove

in section 3.5 that the solutions of these inclusions do satisfy the following properties:
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Theorem 3.1 (Properties of Solutions to Basic Differential Inclusions). [10]

Let F satisfy the basic conditions in an open domain G ⊂ Rn and consider the differ-

ential inclusion

ẋ ∈ F (x) (3.1)

The following properties hold:

1. For any x0 ∈ G, there exists δ > 0 and a solution x : (−δ, δ) → Rn of (3.1)

satisfying x(0) = x0.

2. Solutions of (3.1) which lie in a compact domain are uniformly equicontinuous.

3. Solutions of (3.1) may be continued on both sides up to the boundary of any

compact domain.

4. The limit of a uniformly convergent sequence of solutions to (3.1) is also a solution

to that inclusion.

In later sections we will see that these properties actually do imbue differential inclu-

sions with a decent amount of structure; in particular, they are sufficient to generalize

many aspects of Conley Index Theory.

We will now show that piecewise-continuous differential equations may be reframed

as basic differential inclusions.

3.2 Filippov Systems: Piecewise-Continuous Differential

Equations

3.2.1 Piecewise-Continuous Differential Equations as Basic Differen-

tial Inclusions

Although Filippov worked in greater generality, his name is primarily associated with the

study of discontinuous differential equations. In this section we will see how piecewise-

continuous differential equations may be reframed and studied as basic differential in-

clusions.

We begin by explicitly defining a piecewise-continuous differential equation on an

open domain G ⊂ Rn. Without loss of generality we may assume that G is connected
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because disconnected portions may simply be examined separately. The set G is divided

into open, disjoint regions Gi, along with their boundary points. We will assume that

the set of all boundary points of all Gi is measure zero in G, and denote it by Σ. We will

refer to Σ as the splitting boundary or discontinuity boundary. For analytical reasons, we

also impose the additional condition that any compact subset of G contains only finitely

many Gi; this assumption is very useful mathematically, and does not impose a burden

from a modeling standpoint. For the rest of this paper, we will call any connected, open

domains partitioned in this way Filippov domains. This language is not standard in the

literature, but it is useful to reference for our purposes.

We now consider a set of differential equations defined on the Filippov domain:

ẋ = pi(x), x ∈ Gi ⊂ G

Each fi is required only to be continuous, framing the system as a piecewise con-

tinuous one. We also assume that pi are continuous up to the boundary of Gi so that

pi(x) evaluates to a finite vector for each i and for all x ∈ Σ. In other words, each pi is

defined and continuous on the closure of Gi.

Of course, as written, this system is incomplete; there is no information about the

vector field along Σ, and so there is no way to continue a solution which reaches the

boundary of any Gi. This issue brings us to the concepts of differential inclusions and

the Filippov convex combination method.

At each x ∈ Σ, there are multiple vector fields pi(x) that are defined. Because of

that fact, it makes sense to introduce a differential inclusion ẋ ∈ F (x). In the Filippov

convex combination method we define our set-valued vector field F (x) to be the single-

valued functions pi(x) for all x in any of the open regions Gi. For x ∈ Σ, however, we

take F (x) to be the set-valued convex hull of all vectors pi(x) such that x is a boundary

point of Gi. We will collect all of this information in the following definition.

Definition 3.3. Let G ⊂ Rn be a Filippov domain such that each Gi is associated with

a function pi that is continuous on the closure of Gi.

Define a set-valued function F as follows. For x ∈ Gi, let

F (x) = {pi(x)}
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Figure 3.1: Some examples of Filippov systems in R2.

For x ∈ Σ, let F (x) be the convex hull of all vectors pi(x) such that x is a boundary

point of Gi.

Then the differential inclusion ẋ ∈ F (x) is a Filippov System.

Note that any differential equation ẋ = f(x) where f is continuous will trivially fit

into this framework. Classical systems, with Lipschitz continuous differential equations,

may then be viewed as special cases of Filippov systems.

Now that we have defined a Filippov system ẋ ∈ F (x), we should check that it does,

in fact, meet the basic conditions.

Lemma 3.1. If ẋ ∈ F (x) is a Filippov system then F is upper-semicontinuous.

Proof. It is clear that F is upper-semicontinuous at x ∈ Gi for any i since F (x) is

defined by the single-valued continuous function pi(x) at such points. Thus it remains

only to show that F is upper-semicontinuous at x ∈ Σ.

Fixing such an x, the set F (x) is the convex hull of a finite number of vectors

{pi(x)}pi=1. Consider an arbitrary ε-neighborhood of F (x), Bε(F (x)). For each i, there

is some δi such that y ∈ Gi and |x−y| < δi implies that |pi(x)−pi(y)| < ε. We can also

write this condition as pi(y) ∈ Bε(pi(x)). Let δ = min1≤i≤p{δi}. Then for y ∈ Bδ(x),

F (y) is either a single valued function pi(y) (for y ∈ Gi) or the the convex hull of a finite

set of vectors {pi(y)}qi=1 (for y ∈ Σ) all satisfying the relationship pi(y) ∈ Bε(pi(x)) ⊂
Bε(F (x)).
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This fact implies that for y ∈ Bδ(x), F (y) ⊂ Bε(F (x)); to verify this statement,

consider an arbitrary vector fy ∈ F (y). We can write this vector as fy =
∑q

i=1 αipi(y),

where 1 ≤ q ≤ p and
∑q

i=1 αi = 1. Now consider the vector fx :=
∑q

i=1 αipi(x) ∈ F (x).

|fx − fy| = |
q∑
i=1

αipi(x)−
q∑
i=1

αipi(y)|

= |
q∑
i=1

αi(pi(x)− pi(y))|

<

q∑
i=1

αi|pi(x)− pi(y)|

<

q∑
i=1

αiε

= ε

Thus F (Bδ(x)) ⊂ Bε(F (x)), and so F is upper-semicontinuous at any x.

With this lemma, it is easy to see that Filippov systems satisfy the basic conditions

of differential inclusions. At each point, the set-valued map F is well-defined and non-

empty. Wherever the system is single valued, F (x0) is clearly compact and convex. For

x0 where the system is not single valued, F (x0) is still clearly closed and convex by

definition, and it is bounded because we assume that pi is defined on Gi for each i, and

so pi(x0) is always finite. We will summarize this information into a theorem:

Theorem 3.2. If ẋ ∈ F (x) is a Filippov system then F satisfies the basic conditions.

We should note here that the Filippov convex combination convention is not the

only possible convention that may be used to reframe piecewise-continuous differential

equations as basic differential inclusions, though it is possibly the most natural and

certainly the most common. In some sense the choice of set-valued vector field defined

on Σ is related to families of smooth systems which limit to the piecewise-continuous

vector field. This concept and other possible conventions to use on Σ will be discussed

in Section 4.2.
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3.2.2 Standard Behavior of Filippov Systems

In general it is possible to consider systems where Σ can be very complicated, and when

theorems are quoted in this paper they will apply to these general systems defined

above. However, in most models, Σ is simply a codimension 1 manifold. There are

a few notable common examples where the dimensionality of Σ is not well defined

everywhere–for instance, Σ could be two intersecting lines–and so it would not be a

manifold. But for many applications, the set Σ is a manifold, and in such cases we will

refer to it as the splitting manifold.

In fact, the majority of non-smooth models in the literature have only two distinct

regions, G1 and G2, as in Figure 3.1 a. When only two regions border Σ, as in this case,

the convex hull may be written compactly as the convex combination of the two vectors

p1(x) and p2(x):

F (x) = {αp1(x) + (1− α)p2(x) : α ∈ [0, 1]}, x ∈ Σ

Thus the entire Filippov system may be written as

ẋ ∈ F (x) =


p1(x), x ∈ G1

p2(x), x ∈ G2

{αp1(x) + (1− α)p2(x) : α ∈ [0, 1]}, x ∈ Σ

For a Filippov system where the dynamics are defined by two regions split by a

codimension-1 manifold, the behavior of the solutions usually falls into one of three

categories: crossing, attracting, or repelling. These names are meant to be descriptive,

and do not give a full description of all possible behavior of Filippov systems. But

typically, solutions which are near the splitting manifold are either drawn to cross over

it, attracted to it, or repelled away from it. Explaining these categories rigorously can

be somewhat technical, but the ideas can be easily understood graphically, as in Figure

3.2.

It is easiest to mathematically describe these categories in the simple case where

there are only two open regions, G1 and G2, and the splitting manifold Σ has a well

defined tangent at each point. Since most models meet those requirements, we will work
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Figure 3.2: Examples of behavior of Filippov systems in R2

in this setting in order to convey the basic ideas as simply as possible, but we note that

these categories can be abstracted to fit general Filippov systems. Again, this section

draws extensively from the work of Filippov [10].

On the splitting manifold Σ, the set F (x) is a line segment connecting the two vectors

p1(x) and p2(x). The simplest situation is when the entirety of this line segment lies on

one side or the other of the tangent to the splitting manifold at x; this arrangement is

called a crossing case. Example 3.2.2 is a crossing case. Here the solution is uniquely

determined and simply passes from G1 to G2 or vice-versa. In fact, the concept of

a differential inclusion is unnecessary to explain these systems. Since the differential

equation ẋ = f(x) is known to be equivalent to the integral equation

x(t) = x(0) +

∫ t

0
f(x(s))ds

we may use the concept of the Lebesgue integral in order to find solutions. The only

issue that arises is a loss of differentiability on a subset of measure zero, but since such

a subset is irrelevant to the Lebesgue integral, we face no major difficulties.

The cases where the line segment F (x) intersects the tangent plane, on the other

hand, do require the concept of a differential inclusion for the full description. Let the

normal to the tangent plane of Σ at x be directed into G1, and let pN1 (x) and pN2 (x)

denote the projections of p1(x) and p2(x) onto this normal vector. As long as the line

segment F (x) is not entirely contained in the tangent plane, there is a unique vector

p0(x) = αp1(x) + (1− α)p2(x), α =
pN2 (x)

pN2 (x)− pN1 (x)
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Figure 3.3: Vectors at a point x0 on a discontinuity boundary Σ. The set of vectors
F (x0) is represented by the purple line segment. Its boundaries are determined by the
blue vectors p1(x0) and p2(x0). The sliding vector p0(x0) ∈ F (x0) is given in red when
it exists.

that allows the solution to remain on the splitting manifold. When a solution remains

on the splitting manifold for some positive time it is said to be a sliding solution or to

exhibit sliding behavior. Since pN1 and pN2 have opposite signs in non-crossing cases, α

is between zero and one, and this value is found by solving the equation

0 = αpN1 (x) + (1− α)pN2 (x)

From here it is important to break into two further cases. The first case is that

pN1 (x) < 0 and pN2 (x) > 0. This is called the attracting case. Here, if a solution

attempted to leave the splitting manifold it would be immediately pushed back onto it,

and so the only possible choice of vector in F (x) is p0(x). If the splitting manifold is

attracting at x then forward time solutions are uniquely determined locally.

If pN1 (x) > 0 and pN2 (x) < 0 then a solution may proceed into either domain G1 or

G2 and obey the vector field there, or it may remain on the splitting manifold and obey

p0(x). This is called the repelling case. In this case F (x) is truly set valued and the

behavior that results is non-deterministic; it is this loss of determinism that motivates

many of the considerations of this paper.

There is actually another possible behavior that does not fit into any of these classifi-

cations. This remaining possibility is that the line segment F (x) is entirely contained in

the tangent plane. Then all solutions remain on the splitting manifold but the velocity

is not uniquely determined, as in the following example; this case is very rare, and we
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Figure 3.4: Graphs from example 3.2.1. The color of the vector indicates its magnitude.

have not found it in practical applications.

Example 3.2.1. For the Filippov system

˙(x, y) ∈ F (x, y) =


{(1, 0)}, y > 0

[1, 2]× {0}, y = 0

{(2, 0)}, y < 0

with the initial condition (x, y)(0) = (0, 0), both

(x, y)1(t) = (t, 0) & (x, y)2(t) = (2t, 0)

are solutions to the differential inclusion.

To be clear, in dimensions greater than one, a single Filippov system may exhibit

any and all of the above cases. A splitting manifold may have crossing behavior in some

regions, attracting behavior in others, and repelling behavior elsewhere. Additionally,

we note that in backwards time, an attracting case becomes a repelling case and vice-

versa, so except in the simple crossing case, we will never expect to see uniqueness in

both forwards and backwards time.

Additionally, we note that while the discussion in this particular section has been

limited to describing the case where the Filippov system is split into two regions locally,

examples involving more regions can be examined using similar methods. For instance,



39

G1
G2

G3

p1

p2
F

x0

p3

Figure 3.5: Convex combination of vectors at a point on a splitting boundary which
borders three open regions.

if a point lies on the boundary of three regions then the convex combination which

determines its potential velocities will be a triangle (unless the three vectors happen to

be colinear) and so the velocity will take any value in that triangle. Whether a solution

actually exists which travels in the direction of a given velocity vector in the triangle

depends on the behavior of the vectors in a neighborhood of the point; this limitation

is analogous to the attracting case, where the set of vectors under consideration was a

whole line, but only a single one of those vectors could actually be used in a solution.

Before we move on to a scientific application of Filippov systems, it is worth returning

to the definition of a solution of a differential inclusion as these Filippov systems show

us why we want to demand only that solutions be differentiable almost everywhere.

When a solution approaches the splitting boundary Σ, its derivative limits to a certain

value. However, on the other side of that boundary, the solution may rapidly change

velocity since the defining vector fields pi and pj need not have any relationship to one

another. Hence we typically expect a loss of differentiability when solutions reach Σ.

The following simple example demonstrates this behavior explicitly:

Example 3.2.2. Consider the one-dimensional basic differential inclusion

ẋ ∈ F (x) =


3, x < 0

[3, 7], x = 0

7, x > 0
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Figure 3.6: The multivalued map and solution to the basic differential inclusion of
example 3.2.2.

Away from {x = 0} we can solve this inclusion locally as either x(t) = 3t + x0 or

x(t) = 7t+x0 using techniques from standard ODE theory. However, any solution with

initial condition x0 < 0 will eventually move to the right and reach the discontinuity

boundary at time t∗ = −x0
3 . Since all v ∈ F (0) are greater than zero, the solution

immediately leaves the splitting boundary and proceeds to the right. After time t∗,

the solution proceeds with velocity ẋ = 7, and so the unique solution for any initial

condition x0 < 0 may be written as

x(t) =

3t+ x0, t < −x0
3

7(t+ x0
3 ), t ≥ −x03

This function is absolutely continuous, but we see that it is not differentiable at t∗ = −x0
3 .

3.3 A Scientific Application of Filippov Systems: Welander’s

Ocean Box Model

3.3.1 Description of the Model

Before delving further into the theory of Filippov systems we will take a brief look at one

of its applications. In 1982, Pierre Welander published a conceptual ocean circulation
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(a) Schematic of We-
lander’s box model [39]

(b) Atlantic Meridional Overturning Circulation [15]

Figure 3.7: Images related to ocean circulation box models.

box model [39]. This model splits the ocean into two boxes: deep ocean and shallow

ocean. Ordinary differential equations dependent on two variables, temperature T and

salinity S, describe the flow of water between these two boxes. Welander’s scientific

goal in this paper was to demonstrate that an ocean box model could oscillate between

convective and non-convective modes without external influences, which would provide

an explanation for behavior that had been observed in the Atlantic Ocean.

The model that he used has the following form:

Ṫ = kT (TA − T )− k(ρ)T

Ṡ = kS(SA − S)− k(ρ)S

ρ = −αT + γS

The values kT , kS , TA, SA, α, and γ are all constant. The pressure of the system,

given by ρ, is an equation of state, and k(ρ) is a non-negative function. Welander

performs analysis of this system using both a smooth and non-smooth version of k,

analytically finding a periodic orbit in the smooth case and numerically finding one in
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the non-smooth one. This periodic orbit provided proof of concept for his convective

oscillation.

In the smooth case, Welander chooses the function

k(ρ) =
1

π
tan−1(

ρ− ε
a

) +
1

2

As the parameter a goes to infinity, this equation limits to the one that Welander uses

in his non-smooth case:

k(ρ) =

k1 ρ > ε

0, ρ < ε

In our language, the splitting manifold Σ is the line ρ = ε. The periodic orbit that

Welander finds is created because the linear equations which govern each region would

have globally stable equilibria if either of them governed the whole system; however, the

locations that these equilibria would be at are on opposite sides of Σ from the vector

fields that determine them. Such would-be equilibria are called virtual equilibria. In

Welander’s model, solutions head towards one virtual equilibria, cross the manifold, and

then begin to head towards the other, causing the periodic orbit that Welander finds

numerically.

It seems that Welander chose to examine this non-smooth system because he thought

it was simpler than the similar smooth version. Indeed, because it is linear away from

the splitting manifold, this system is very simple in some sense. However, Welander

does not elaborate on the behavior of solutions on the splitting manifold, so his analysis

is not mathematically rigorous.

3.3.2 Filippov Analysis of the Model

While Welander only finds a periodic orbit in the non-smooth model numerically, Julie

Leifeld proved its existence by performing more detailed, Filippov style analysis than

Welander had performed [22]. In doing this analysis she discovered two different non-

smooth bifurcations in the system. One of these bifurcations, the fused focus bifurcation,

is analogous to a supercritical Hopf bifurcation and had been discussed in prior liter-

ature on Filippov systems. The other, however, was a special type of border collision
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bifurcation (meaning that under parameter changes an equilibrium collided with the

splitting manifold) that was qualitatively different from any that had been discussed

before.

The new bifurcation is important because previous prominent literature claimed

to have classified all planar codimension one bifurcations [21]. The omission of this

bifurcation from this prominent work indicates that there are foundational difficulties

in the study of Filippov systems. Because bifurcations of Filippov systems are not well

understood–even in the planar case–it is desirable to have a theory which sidesteps these

complications, motivating the study of Conley index theory in this setting. But for now,

let us focus on Leifeld’s bifurcation analysis of this model. behavior

Before performing her analysis, Leifeld performs a coordinate transformation so that

the system is written as

ẋ = 1− x− k(y)x

ẏ = β − βε− k(y)ε− α− (β + k(y))y − (αβ − α)x

Now, k(y) is written as

k(y) =

1 y > 0

0 y < 0

This coordinate transformation takes the splitting manifold to the x-axis, a tech-

nique that is very popular in Filippov analysis. But we should note that this specific

coordinate change is just a linear transformation composed with a translation. This fact

is important because such a transformation preserves the Filippov convex combination

and therefore the behavior of the system. If the original splitting manifold had been

nonlinear, then a continuous transformation sending the splitting manifold to the x-axis

could alter the underlying Filippov convention. That issue would make any analysis of

the transformed system inapplicable to the original system; see Figure 3.8.

For completeness, we will write down the Filippov system version of Welander’s
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(b) The set f(K) in blue and
f(co(K)) purple.

Figure 3.8: Letting K = {(0, 0), (1, 1)} and f(x, y) = (x, y2), we see that even under
smooth mappings the image of the convex hull of a set is not the same as the convex
hull of the image of a set. This simple example indicates that if we apply nonlinear
transformations to a Filippov system the result is not necessarily a Filippov system.

model here:

˙[
x

y

]
∈W0(

[
x

y

]
) :=



 1− 2x

β − βε− ε− α− (β + 1)y − (αβ − α)x

 , y > 0

{

 1− x− τx

β − βε− α− βy − αβx+ αx− τy

 |τ ∈ [0, 1]}, y = 0 1− x

β − βε− α− βy − αβx+ αx

 , y < 0

(3.2)

The choice of appending the subscript 0 to this function will be explained in section 4.7

when we examine perturbations of this model.

For the sake of simplicity, we will fix the parameters

α = 4/5, β = 1/2

for the duration of our analysis of this model.
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(d) ε < 0: periodic orbit

Figure 3.9: Fused Focus Bifurcation; figures from [22].

After making this coordinate transformation, the bifurcation analysis becomes sim-

pler. The first bifurcation that Leifeld finds–the fused focus bifurcation–is analogous to

a supercritical Hopf bifurcation in smooth systems. For ε > 0 there is a stable sliding

region that contains a stable equilibrium. For ε < 0 there is an unstable sliding region

containing an unstable equilibrium. At ε = 0 the sliding region is reduced to a single

point, which is also a stable equilibrium.

Finally, when ε < 0 there is a periodic orbit which crosses the interval (1/2, 3/4 +

15/4ε) × {0}; this orbit is the one that Welander was concerned with when he origi-

nally published his model. There is also a unique unstable node in the interval (3/4 +

15/4ε, 3/4 + 5/4ε)× {0}, which corresponds to the sliding region in this model for this

parameter range. Everywhere else on the x-axis is a crossing region. This birth of a

periodic is analogous to a supercritical Hopf bifurcation, and has been found in other

sources. Notably, [21] includes it in the classification of planar bifurcations in Filippov

systems.
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(b) Bifurcation at ε = ε0:
the periodic orbit becomes a
homoclinic orbit.
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does not exist and all solu-
tions are attracted to a glob-
ally stable equilibrium.

Figure 3.10: Border Collision Bifurcation; figures from [22].

The second bifurcation that Leifeld finds, however, is not included in [21], which

motivates a further and more rigorous study of this field. This bifurcation is a type of

border collision bifurcation. The name comes from the fact that a virtual equilibrium

collides with the splitting boundary as the parameter is varied, causing the bifurcation.

Although border collision bifurcations had been discussed previously, this specific one

displays qualitatively different behavior than any that had been previously described.

Here, for ε > ε0 := −1
15 , there is a stable periodic orbit that passes through the

splitting manifold, and inside of this orbit and on the splitting manifold there is an

unstable Filippov equilibrium. A Filippov equilibrium is just an equilibrium of the

system that exists on the splitting manifold. At ε = ε0, this Filippov equilibrium

collides with the edge of the periodic orbit, transforming it into a homoclinic orbit. The

stability of this equilibrium is very strange. All solutions in the region y > 0 converge

to it while solutions in the region y < 0 are repelled from it. If we restrict our view

to the splitting manifold it is a repelling equilibrium. We note that this behavior is

qualitatively impossible in continuous systems. Solutions which begin on the line y = 0

are repelled from the equilibrium while solutions that begin in the region y > 0 are

attracted to it, regardless of how close the initial condition is to the line y = 0. This

behavior can be topologically ruled out in smooth systems. Additionally, solutions may

leave the equilibrium in finite time and go into the region y < 0; this occurs because the

Filippov convex combination at this point includes both 0 and terms with a negative y

component, so a solution can stay at the equilibrium an arbitrary length of time before

heading downwards.
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For ε < ε0 this Filippov equilibrium leaves the splitting manifold and becomes

a globally stable equilibrium; the periodic orbit no longer remains. The change in

stability is what the classification in [21] misses. While border collision bifurcations are

recognized in that paper, the equilibrium is said to either be annihilated or to persist

without a change in stability. This case–where the equilibrium persists but changes

stability–is missing.

That classification of bifurcations misses this type of border collision bifurcation

because of some of the assumptions that the paper makes regarding transformations.

As discussed above, continuous but nonlinear transformations can alter the Filippov

combination and make the behavior of the transformed system qualitatively different

from the original system. Said another way, if we apply a nonlinear transformation h

to a Fillipov vector field F , where F (x) is defined by the convex combination at the

point x, then h(F (x)) will not necessarily be the convex combination of the transformed

system. The paper [21] ignores this issue, and that leads to an incomplete classification

of qualitatively interesting behavior.

This bifurcation is also important because it has no analogue in smooth systems;

the discontinuous stability of the equilibrium at ε0 makes this clear. This fact indicates

that the behavior of Filippov systems is unique and further motivates their study.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2

• Introduction to Welander’s Model and Bifurcation Analysis, Section 3.3

• Perturbation and Welander’s Model, Section 4.7

• Welander’s Model as a Multiflow, Section 5.5

• Welander’s Model as a Well-Parametrized Family of Multiflows, Section 6.2

• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5
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3.4 Vector Fields with Bounded, Nonautonomous Control

Throughout this section we fix the continuous function f : Rn → Rn. We are interested

in perturbing the ordinary differential equation

ẋ = f(x)

by locally integrable and essentially bounded control functions. To state that more

explicitly, consider the family of functions

{g : R ⊃ I → Rn}

such that g are Lebesgue integrable functions bounded in the sup norm by some positive

constant r ≥ 0; that is,

||g||∞ := sup
t∈I
|g(x)| ≤ r

We now consider the perturbed the differential equations

ẋ = f(x) + g(t) (3.3)

for any g in this family. As is the case with differential inclusions, a solution to (3.3) is

an absolutely continuous function x : R ⊃ J → Rn such that

dx

dt
= f(x) + g(t)

almost everywhere. This notion of a solution comes from Carathèodory theory [10].

Now for this same f , define the set valued function

Fr(x) = {y ∈ Rn : |y − f(x)| ≤ r}

The differential inclusion

ẋ ∈ Fr(x) (3.4)

seems very similar to the differential equation (3.3). In fact, they are identical:
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Lemma 3.2. [24] The function

x : R ⊃ J → Rn

is a solution to (3.3) if and only if it is a solution to (3.4).

Proof. We first assume that x : R ⊃ J → Rn satisfies ẋ(t) = f(x(t)) + g(t) almost

everywhere for some Lebesgue integrable g that is bounded by r. Then

|ẋ(t)− f(x(t))| = |g(t)| ≤ r

and so ẋ(t) ∈ Fr(x(t)).

Conversely, suppose that x : R ⊃ J → Rn is a solution of (3.4). Since x is absolutely

continuous, ẋ is a Lebesgue integrable function satisfying |ẋ(t)− f(x(t))| ≤ r. Then if

we define the function

g(t) := ẋ(t)− f(x(t))

we see that g is Lebesgue integrable (since both ẋ and f are) and that ||g||∞ ≤ r. Then

ẋ(t) = f(x(t)) + g(t) and so x solves (3.3).

This lemma is useful because it allows us to immediately apply any results about

basic differential inclusions to the solutions of the family of differential equations (3.3)

since it is clear that Fr satisfies the basic conditions. It is interesting to note, how-

ever, that Fr actually has a good deal more structure than we typically assume in this

manuscript. Given any x ∈ Rn and ε > 0, we can find δ > 0 such that for |x−y| < δ im-

plies that Fr(y) ⊂ Bε(Fr(x)) and Fr(x) ⊂ Bε(Fr(y)); that is, Fr is actually continuous

and not merely upper-semicontinuous.

3.5 Solutions of Basic Differential Inclusions

In this section we give proofs of some standard results about differential inclusions; these

results may all be found in [10].

The first few results build to the existence theorem for differential inclusions. The

proof of that theorem is a modification of the classic Cauchy-Peano existence proof for



50

differential equations. The Cauchy-Peano proof relies on the construction of approxi-

mate solutions to the differential equation ẋ = f(x), and so it is therefore necessary to

define an approximate solution to a differential inclusion ẋ ∈ F (x).

Definition 3.4. A δ-solution of the differential inclusion ẋ ∈ F (x) is an absolutely

continuous function y(t) that almost everywhere satisfies the differential inclusion

ẏ(t) ∈ Fδ(y(t))

where Fδ(y) := Bδ(co(F (Bδ(y))))

One of the key ideas of the Cauchy-Peano existence proof is that a sequence of in-

creasingly accurate approximate solutions to the differential equation (the Euler broken

line approximations) converges to an exact solution. This step is very different in the

case of differential inclusions, and so we will present the analogous result in the next

two lemmas.

Lemma 3.3. [10] Let {xk : [a, b] → Rn}∞k=1 be a sequence of absolutely continuous

functions that limit to a function x(t), and assume that ẋk(t) ∈ D almost everywhere,

where D ⊂ Rn is a compact, convex set. Then x(t) is absolutely continuous and ẋ(t) ∈ D
wherever it is defined, namely, almost everywhere on [a, b].

Proof. Since D is bounded, by Lemma 2.1 there is some m > 0 such that |ẋk(t)| ≤ m

for all k and t ∈ [a, b]. Then for t1, t2 ∈ [a, b] we have:

|x(t1)− x(t2)| = lim
k→∞

|xk(t1)− xk(t2)|

= lim
k→∞

|
∫ t1

t2

ẋk(t) dt|

≤ lim
k→∞

∫ t1

t2

mdt

= m|t1 − t2|

Thus x is Lipschitz continuous, and hence absolutely continuous.

To see that ẋ(t) ∈ D wherever it is defined, arbitrarily fix t ∈ (a, b) and take h small



51

enough that [t− h, t+ h] ⊂ (a, b). We claim that

qhk :=
xk(t+ h)− xk(t)

h
=

∫ t+h

t

ẋk(t)

h
dt ∈ D

In order to prove this claim, we consider the Riemann definition of the above integral.

Note that since the xk are absolutely continuous functions on the real line, the Riemann

and Lebesgue definitions of the integral are equivalent, and so we consider the Riemann

sum for simplicity. The qhk are supremums (or infimums) of integral sums of the form

∑ ∆iẋk(ti)

h
,

∑ ∆i

h
= 1

This presentation shows that because of the averaging 1
h factor, the integral sums are

convex combinations of points ẋk(ti) ∈ D, and hence belong to the convex set D. Since

D is compact, the supremum (or infimum) over the set of integral sums also belongs to

D, and so the claim is verified.

Since D is compact,

lim
k→∞

qhk =
x(t+ h)− x(t)

h
∈ D

Note that the above statement remains true for arbitrarily small h. Then again using

the compactness of D, this statement implies that

ẋ(t) = lim
h→0

x(t+ h)− x(t)

h
= lim

h→0
qhk ∈ D

whenever that limit exists. Since x(t) is absolutely continuous, the limit must exist

almost everywhere on the interval (a, b).

In addition to its use in demonstrating solution existence for basic differential inclu-

sions, the following lemma is fundamental in demonstrating that isolating neighborhoods

are stable in this multivalued setting. As we will see in chapter 4, solutions to perturbed

differential inclusions are approximate solutions of the original differential inclusion, and

so this lemma allows us to study these perturbed inclusions.

Lemma 3.4. [10] Let F (x) satisfy the basic conditions in a domain G and let δk → 0

as k → ∞. Then the limit x(t) of a uniformly convergent sequence {xk : [a, b] → G}
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of δk-solutions to the differential inclusion ẋ ∈ F (x) is a solution to that inclusion (as

long as x(t) ∈ G).

Proof. Choose an arbitrary t0 ∈ (a, b) and ε > 0. We will show that in a neighborhood

of t0, ẋk(t) ∈ B2ε(F (x(t0))). By Lemma 3.3, this relationship implies that in that

neighborhood, x(t) is absolutely continuous and ẋ(t) ∈ B2ε(F (x(t0))) wherever that

derivative exists (almost everywhere in the neighborhood). Since our choices of to, ε

were arbitrary, we see a few things. First, we see that x(t) is absolutely continuous on

the whole of the interval [a, b] since it is absolutely continuous in a neighborhood of

each t0 and [a, b] is compact. Second, it shows that ẋ(t0) ∈ F (x(t0)) for all t0 where

x is differentiable (again, almost everywhere on the interval) since the choice of ε was

arbitrary and t0 clearly belongs to any neighborhood of itself. Thus, in order to prove

this lemma, we only need to prove the claim.

During this proof, bear in mind that we only consider t ∈ [a, b], and so for t0 = a

or t0 = b the neighborhoods we will find are one-sided. Now, let x0 := x(t0). By the

upper-semicontinuity of F , there exists some η > 0 such that |y− x0| < 3η implies that

F (y) ⊂ Bε(F (x0)). Since δk → 0 and the xk(t) converge uniformly to x(t), there is

also some k0 such that k > k0 implies that δk < min(η, ε) and |xk(t)− x(t)| < η for all

t ∈ [a, b]. Additionally, by the continuity of x(t) (clear since xk → x uniformly), there

is some γ ∈ (0, η) such that |t− t0| < γ implies that |x(t)− x(t0)| < η. For such t, k, η

and γ, the following are true:

1. Bδk(t) ⊂ B2η(t0): This relationship is clear from the choice of t.

2. Bδk(xk(t)) ⊂ B3η(x0): This fact follows from our assumption that δk < η and the

inequalities

|xk(t)− x(t0)| ≤ |xk(t)− x(t)|+ |x(t)− x(t0)| ≤ η + η

3. F (Bδk(xk(t))) ⊂ Bε(F (x0)): This final relationship follows from the prior one and

our choice of η.
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From this third insight we see that

ẋk(t) ∈ Bδk(co(F (Bδk(xk(t)))))

⊂ Bδk(co(Bε(F (x0))))

⊂ B2ε(F (x0))

The final inclusion follows from the condition that δk < ε and the fact that F (x0), and

hence Bε(F (x0)), are already convex. By Lemma 3.3, it follows that ẋ(t0) ∈ B2ε(F (x0)),

completing the proof.

The preceding lemma also gives us the following corollary, which is used in showing

that the solution set of basic differential inclusions is a multiflow.

Corollary 3.4.1. If F (x) satisfies the basic conditions in G, then the limit of a uni-

formly convergent sequence of solutions to the differential inclusion ẋ ∈ F (x) is also a

solution.

Now that we have that lemma, we are in a position to prove the main existence

result. The proof of that theorem is very similar to the proof of the classic Cauchy-

Peano existence theorem, using a sequence of Euler broken line approximations that

limit to the desired solution. One small alteration that must be made is that when we

iteratively define the Euler broken lines at a point x, we choose any arbitrary vector

in F (x) since we do not have a unique choice f(x). The fact that these approximate

solutions of the differential inclusion converge to an exact solution follows from Lemma

3.4.

Theorem 3.3. [10] Let F satisfy the basic conditions in an open domain G ⊂ Rn.

Then for any x0 ∈ G, there exists a solution of the differential inclusion

ẋ ∈ F (x), x(0) = x0

on some interval [−c−, c+], where c−, c+ > 0.

Proof. Without loss of generality, we will demonstrate solution existence on a closed

positive interval [0, c]. The existence proof in backwards time is symmetric.
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Since G is open, we may choose r small enough that the closed ball Br(x0) is

contained in G. Let us denote this ball Z. Next, let m := supZ |F (x)|. By Lemma 2.1,

m <∞. The length of our interval is c := r
m . We are now ready to begin to define the

sequence of Euler broken lines.

For k = 1, 2, · · · , define a step size hk := c
k ; clearly, hk → 0 as k →∞. We partition

the interval [0, c] into k subintervals. Let tik := ihk for i = 0, 1, · · · , k. Note that the

superscript here is an index rather than an exponential. We will define a family of

continuous functions xk : [0, c]→ Z that are linear on the intervals [tik, t
i+1
k ].

We initiate an iterative process by declaring that xk(0) = x0. In order to define

xk(t) for t ∈ (tik, t
i+1
k ], first choose any vector vik ∈ F (xk(t

i
k)). Again, the superscript

here denotes an index. Then for t ∈ (tik, t
i+1
k ],

xk(t) := xk(t
i
k) + (t− tik)vik

The functions xk(t) are absolutely continuous since they are continuous and piecewise

linear. Additionally, if we define δk := hk, then

ẋk(t) = vik ∈ F (xk(t
i
k)) ⊂ F (xk(Nδk(t))) ⊂ Fδk(xk(t))

and so the xk are δk-solutions to the differential inclusion ẋ ∈ F (x).

We also see that xk(t) ∈ Z for t ∈ [0, c] because we make at most k steps of length

hk = r
mk and the maximum velocity is m. More formally, for t ∈ (tlk, t

l+1
k ] (0 ≤ l < k),
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we have the following:

|xk(t)− x0| = |
∫ t

0
ẋk(s) ds|

= |
∫ t

tlk

ẋk(s) ds+
l−1∑
i=0

∫ ti+1
k

tik

ẋk(s) ds|

≤
∫ t

tlk

|ẋk(s)| ds+

l−1∑
i=0

∫ ti+1
k

tik

|ẋk(s)| ds

=

∫ t

tlk

|vlk| ds+

l−1∑
i=0

∫ ti+1
k

tik

|vik| ds

≤
k∑
i=0

∫ ti+1
k

tik

mds

=

k∑
i=0

(hkm)

= k(
r

mk
)m

= r

Then since the family of functions {xk}∞k=1 is uniformly bounded (contained in Z)

and equicontinuous (|ẋk(t)| ≤ m), by the Arzela-Ascoli theorem we can choose a uni-

formly convergent subsequence with a limit x(t). Since Z is compact, x(t) ∈ Z for

t ∈ [0, c], and so by Lemma 3.4, the function x : [0, c]→ G is a solution of the inclusion

ẋ ∈ F (x).

The basic existence result is very important for the study of differential inclusions.

Unfortunately, there is no general uniqueness result for basic differential inclusions;

many of these systems do, in fact, have multiple solutions for a given initial condition.

However, the solutions of these differential inclusions do behave in other ways that are

reminiscent of solutions to standard differential equations. For starters, any family of

approximate solutions on a common time interval is uniformly equicontinuous.

Lemma 3.5. Assume F satisfies the basic conditions and fix δ > 0. For any ε such

that 0 < ε < δ, all ε-solutions to the differential inclusion ẋ ∈ F (x) which lie in a
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compact domain X share a uniform Lipschitz bound (which does not depend on ε).

Thus ε-solutions are uniformly equicontinuous irrespective of ε.

Proof. Since upper-semicontinuous functions are bounded on compact domains, there

is some M > 0 such that |F (x)| < M for all x ∈ X. Note that |Fε(x)| ≤ M + δ. Then

for any ε-solution ψ : I → X,

|ψ(t)− ψ(s)| = |
∫ t

s
ψ̇(τ)dτ | ≤ |

∫ t

s
|ψ̇(τ)|dτ | ≤ |

∫ t

s
(M + δ) dτ | = (M + δ)|t− s|

It is worth emphasizing that the previous lemma gives us the following corollary:

Corollary 3.5.1. [10] If F (x) satisfies the basic conditions in a closed, bounded domain

D, all solutions of the differential inclusion ẋ ∈ F (x) in that domain are uniformly

equicontinuous.

Proof. This result may be seen by considering the definition of a solution. A solution

x(t) has a derivative ẋ(t) ∈ F (x(t)) almost everywhere, and it satisfies the Lebesgue

integral equation

x(t) = x(0) +

∫ t

0
ẋ(s)ds

Using the bound of F in D from Lemma 2.1, we see that solutions are equicontinuous:

|x(s1)− x(s2)| = |
∫ s1

s2

ẋ(s)ds| ≤
∫ s1

s2

|ẋ(s)|ds ≤
∫ s1

s2

Mds = M |s1 − s2|

Using the preceding lemmas and theorems, we can also show that any solution can

be continued until it reaches the boundary of a compact domain. The basic intuition

of this claim is clear; if our solution terminates somewhere in the interior of a compact

set, we can extend it using the existence theorem. Below, we state and prove this result

more rigorously.

Theorem 3.4. [10] Let the set-valued function F (x) satisfy the basic conditions in a

closed, bounded domain D. Then each solution of the differential inclusion ẋ ∈ F (x)

lying within D can be continued on both sides up to the boundary of the domain D.
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Proof. From the existence Theorem 3.3, we know that at any initial condition there is a

solution x(t) to the differential inclusion on some closed interval [0, c1]. The idea of this

proof is to now consider the point x(c1) and extend the solution from there by again

using the existence theorem. This process is iterated indefinitely, and it either yields a

solution defined for all time (meaning the solution remains in the interior of D for all

forwards time) or the position of the solution at the endpoints limits to the boundary

of D. The process in backwards time is symmetric.

Now, more formally, take an arbitrary x0 ∈ D. There is some ε1 such that Bε1(x0)

is contained in the interior of D. Following the method of the proof of the existence

Theorem 3.3, there is a solution x : [0, c1]→ Bε1(x0) where c1 = ε1
m and m = supD |F (x)|

(m < ∞ by Lemma 2.1). Denoting the boundary of D by Γ, if d(x(c1),Γ) > ε1 then

we can extend the solution to a further interval of length c1. We either repeat this

process indefinitely (giving us a solution which remains in D for all forwards time) or

until d(x(kc1),Γ) ≤ ε1 for some k. In the latter case, let t1 = kc1 and x1 = x(t1).

Choosing ε2 < d(x1,Γ) < ε1, we repeat this process, letting t2 = t1 + jc2 and

x2 = x(t2) if we reach a point that d(x(t1 + jc2),Γ) ≤ ε2. In fact, we may iterate this

process either until the algorithm yields a solution remaining in the interior of D for all

time at some ith step or we get sequences

t1 < t2 < · · · , x1, x2, · · ·

If ti → ∞ as i → ∞, then the solution x remains in D for all forwards time.

Otherwise, there exists some T such that ti < T for all i. Thus {ti} is a bounded,

monotonic sequence, and hence limits to some t∗. This bound implies that εi → 0 since

ci = εi
m . We also see that the xi converge to some x∗ because by the equicontinuity of

solutions (Lemma 3.5.1), |x(ti) − x(tj)| ≤ m|ti − tj |. Letting x(t∗) = x∗, we obtain a

solution x : [0, t∗]→ D which reaches the boundary of D.



Chapter 4

Perturbation of Differential

Inclusions

4.1 The Notion of Perturbation

A differential equation of the form

ẋ = f(x)

where f : Rn ⊃ G→ Rn may be used in order to model many different types of systems.

However, we generally do not believe that this model is an exact representation of the

reality, but rather an approximation to it. Therefore it is natural to consider perturbing

this equation in some way. One very natural and general way to do so is to consider a

parametrized differential equation

ẋ = f(x, λ)

where now f : Rn × Λ → Rn. Here we assume that Λ is an interval containing zero,

f varies continuously with λ, and we identify the original map with the value λ = 0:

f(x) = f(x, 0).

Our goal for this section is to determine an equivalent method of perturbing an

arbitrary basic differential inclusion ẋ ∈ F (x). To do so, we will consider a set-valued

58
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function

F : G× Λ→ P(Rn)

for some open subset G of Rn and interval Λ ⊂ R, which satisfies the basic conditions.

That is, we assume that F is upper-semicontinuous in its domain and that the image

of any point is compact-valued, convex-valued, and non-empty.

Definition 4.1. Let G ⊂ Rn be open and Λ ⊂ R be an interval. If F : G×Λ→ P(Rn)

satisfies the basic conditions then the family of inclusions

ẋ ∈ F (x, λ), λ ∈ Λ

is said to be a basic parametrized differential inclusion.

We note that this definition of perturbation is also used in [32].

Notice that in the special case where F is single-valued, the assumption that F

satisfies the basic conditions reduces to the assumption that F be continuous. Therefore

the basic parametrized differential inclusion ẋ ∈ F (x, λ) is a direct generalization of a

continuous parametrized differential equation ẋ = f(x, λ).

Because this multivalued setting is unusual and sometimes counterintuitive, it is

worthwhile to consider whether this generalization of the notion of perturbation is rea-

sonable. This concept is inherently subjective, but we will try and demonstrate that

this definition has many features that we would expect it to have.

First, we notice that because the composition of upper-semicontinuous maps is

upper-semicontinuous (Property 2.1), continuously perturbing the input of a basic mul-

tivalued map gives us an allowable perturbation:

Property 4.1. Let F : Rn → P(Rn) satisfy the basic conditions and let g : Rn×J → Rn

be a continuous map. The set-valued map

H : Rn × J → P(Rn) (x, λ) 7→ F (g(x, λ))

satisfies the basic conditions.

Because our primary motivation is the study of Filippov systems, we devote the next

two sections to understanding how this notion of perturbation applies to these objects.
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4.2 Perturbing Filippov Systems to Other Filippov Sys-

tems

Given a Filippov system, any reasonable notion of perturbation should allow us to

continuously deform the splitting boundary Σ or continuously perturb any of the defining

vector fields fi. We will show in this section that these modifications do fit into our

definition.

For the sake of simplicity we will focus on Filippov systems with a single discontinuity

boundary:

ẋ ∈ F (x) =


p1(x), h(x) > 0

p2(x), h(x) < 0

{αp1(x) + (1− α)p2(x) : α ∈ [0, 1]} h(x) = 0

We will show that continuously perturbing either h or the pi yields an allowable

perturbation in our sense.

Lemma 4.1. Let G ⊂ Rn be open and assume pi : G×[−1, 1]→ Rn and h : G×[−1, 1]→
Rn are continuous. Then the set-valued function

F (x, λ) =


p1(x, λ), h(x, λ) > 0

p2(x, λ), h(x, λ) < 0

{αp1(x, λ) + (1− α)p2(x, λ) : α ∈ [0, 1]} h(x, λ) = 0

satisfies the Filippov conditions.

Proof. For a fixed λ0, the fact that F (·, λ0) is compact, convex, and non-empty valued

is obvious. Therefore we only need to check that F is upper-semicontinuous at any

(x0, λ0) in the domain.

Fix (x0, λ0). If h(x0, λ0) 6= 0 then by the continuity of h we can choose (x, λ)

close enough to (x0, λ0) that h(x, λ) 6= 0, and so the upper-semicontinuity of F at

(x0, λ0) follows trivially from the continuity of p1 and p2. Therefore we will assume that

h(x0, λ0) = 0.
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Fix ε > 0. By the continuity of the pi, there exist δ1 > 0 and δ2 > 0 such that

|(x0, λ0)− (x, λ)| < δi

implies that

|pi(x0, λ0)− pi(x, λ)| < ε

Define δ = min(δ1, δ2) and arbitrarily choose (x, λ) such that |(x0, λ0)− (x, λ)| < δ. In

this case it is possible for h(x, λ) to be positive, negative, or zero.

We will first address the case that h(x, λ) 6= 0, and assume without loss of generality

that h(x, λ) > 0. Note that F (x, λ) = {p1(x, λ)} and that p1(x0, λ0) ∈ F (x0, λ0). By

our choice of δ we have that |p1(x0, λ0)− p1(x, λ)| < ε, and so F (x, λ) ⊂ Bε(F (x0, λ0)).

The remaining possibility is that h(x, λ) = 0, so

F (x, λ) = {αp1(x, λ) + (1− α)p2(x, λ) : α ∈ [0, 1]}

Choose any arbitrary vector v ∈ F (x, λ). Then v = αp1(x, λ) + (1−α)p2(x, λ) for some

fixed α ∈ [0, 1]. Note that for this fixed α, the vector

v0 := αp1(x0, λ0) + (1− α)p2(x0, λ0)

lies in F (x0, λ0). Then by our choice of δ,

|v0 − v| = |(αp1(x0, λ0) + (1− α)p2(x0, λ0))− (αp1(x, λ) + (1− α)p2(x, λ))|

= |α(p1(x0, λ0)− p1(x, λ)) + (1− α)(p2(x0, λ0)− p2(x, λ))|

≤ α|p1(x0, λ0)− p1(x, λ)|+ (1− α)|p2(x0, λ0)− p2(x, λ)|

≤ αε+ (1− α)ε

= ε

Thus F (x, λ) ⊂ Bε(F (x0, λ0)) and so F is upper-semicontinuous.
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4.3 Perturbing Filippov Systems to Nearby Smooth Sys-

tems

4.3.1 Limiting Smooth Systems which are not Perturbations of the

Filippov System

As stated in the introduction, our primary motivation for generalizing Conley index the-

ory to the setting of differential inclusions was to be able to study piecewise-continuous

differential equations and carry the information that we gather there to nearby smooth

systems. However, it is well-known that two different families of differential equations

{ẋ = f(x, λ)} and {ẋ = g(x, λ)} may have qualitatively different behavior even if the

parametrized vector fields p and g both limit to the same piecewise-continuous vector

field away from the discontinuity boundary as λ→ 0 [16]. In example 5.3.1 it is shown

that this distinction can even impact the Conley index. Therefore we do not expect

our notion of perturbation to allow us to pass from a Filippov system to any limiting

family of smooth systems. Instead, what our notion of perturbation does is allow us to

easily distinguish whether a limiting smooth system is an appropriate perturbation of

a given Filippov system, or whether a different convention should be used to define the

differential inclusion from the piecewise-continuous differential equation.

Let us begin by considering a typical piecewise-continuous differential equation with

a discontinuity boundary given by the zeros of a continuous scalar-valued function h :

Rn → R:

ẋ ∈ f(x) =

p1(x), h(x) > 0

p2(x), h(x) < 0

Although this setup is more narrow than Filippov systems in general (because we have

restricted ourselves to two regions of continuity and assumed that the discontinuity

boundary Σ is given by the set {x|h(x) = 0}) this formulation is by far the most

common in applications, and the ideas discussed here can be easily generalized to allow

more regions once understood.

Given such a vector field f : (Rn \ Σ) → Rn, the Filippov convex combination
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convention defines a unique basic differential inclusion

ẋ ∈ F (x) =


p1(x), h(x) > 0

p2(x), h(x) < 0

{αp1(x) + (1− α)p2(x) : α ∈ [0, 1]} h(x) = 0

which we call a Filippov system. However, a continuous vector field g(x, λ) may limit

to f on its domain and yet not be a perturbation of F .

To understand this subtle issue it is helpful to consider a concrete example. Define

the piecewise-continuous function

f̂(x) =

1, x < 0

3, x > 0

This function can be extended to a basic differential inclusion by using the Filippov

convex combination method at the splitting manifold Σ̂ = {0}. However, we will see

that for certain limiting families of smooth systems that the resulting Filippov system

does not have the same qualitative behavior as the smooth family.

Define the functions

fλ(x) = tanh(
x

λ
) + 2 gλ(x) = tanh(

x

λ
) + 2− 2 ∗ e ∗ µ(

x

λ
)

where µ is the smooth mollifier

µ(x) =

0, |x| > 1

exp( −1
1−x2 ), |x| ≤ 1

As λ→ 0, both fλ and gλ limit to f̂ pointwise on its domain R \ {0}. However, the

dynamics of the differential equations

ẋ = fλ(x) ẋ = gλ(x)

are qualitatively different. For all λ, ẋ = fλ(x) has no equilibria, but for any λ there is
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Figure 4.1: The functions f1, f1/5, and F0 respectively.

an equilibrium of the ODE ẋ = gλ(x).

If we use the convex combination method on f̂ we get the set-valued map

F0(x) =


1, x < 0

3, x > 0

[1, 3], x = 0

Qualitatively, the Filippov system ẋ ∈ F0(x) behaves like the differential equations

ẋ = fλ(x), and so it seems natural to consider fλ to be a nearby smooth system for F0.

Indeed, if we define the function F : R× [0, 1]→ R by

F (x, λ) =

F0(x), λ = 0

fλ(x), λ > 0

we can easily verify that F satisfies the basic conditions. Therefore fλ can be said to

be a perturbation of F0 in our sense.

However, gλ is not an allowable perturbation of F0; the function

H(x, λ) =

F0(x), λ = 0

gλ(x), λ > 0

is not upper-semicontinuous.
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Figure 4.2: The functions g1, g1/5, and G0 respectively.

The more appropriate set-valued limit of gλ would be the function

G0(x) =


1, x < 0

3, x > 0

[τ, 3], x = 0

where τ = minx∈R gλ(x) < 0 (this minimum is independent of λ). It is straightforward

to verify that G0 satisfies the basic conditions, and so we can reasonably consider the

differential inclusion ẋ ∈ G0(x). Moreover, note that G0 preserves the qualitative

features of gλ; the function ψ ≡ 0 solves the differential inclusion ẋ ∈ G0(x), showing

that this inclusion has an equilibrium.

Moreover, if we define the function G : R× [0, 1]→ R by

G(x, λ) =

G0(x), λ = 0

gλ(x), λ > 0

we can again verify that G satisfies the basic conditions, and so gλ is an appropriate

perturbation of G0.

This example illustrates a general principle about these perturbations: piecewise-

continuous systems may be the pointwise limit of a family of continuous systems, but

that doesn’t mean that family is an appropriate perturbation of the non-smooth system.

Readers familiar with the Conley index may notice that in the prior example, if we

take a neighborhood of Σ = {0} and compute its index as we would in the smooth case

(we note here that no proofs yet exist to claim that this index is meaningful in the

case of differential inclusions, though we hope to change that) then the index is trivial
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for both F0 and G0. That is, the Conley index does not distinguish between these

systems even though our notion of perturbation does. However, that coincidence is

simply due to the fact that the boundary of any neighborhood of {0} does not intersect

the discontinuity boundary Σ = {0}. In higher dimensions, when we are interested in

isolating neighborhoods whose boundaries intersect the discontinuity, we will see that

the Filippov convention plays an important role (example 5.3.1).

What this definition of perturbation does provide is a simple way to check whether

a limiting smooth system is close to a given differential inclusion. Since single-valued

functions are automatically compact, convex, and non-empty valued (at each point)

checking the Filippov conditions simply requires checking upper-semicontinuity, a task

which is about as easy as checking continuity in the classical case. We will discuss this

idea more in the following subsection.

4.3.2 Smooth Approximations of the Filippov System

As we saw in the previous subsection, when we consider a typical piecewise-continuous

differential equation

ẋ = f(x) =

p1(x), h(x) > 0

p2(x), h(x) < 0

with a discontinuity boundary given by the zeros of a continuous scalar-valued function

h : Rn → R, the choice of set-valued vector field on the discontinuity boundary Σ =

{x|h(x) = 0} plays a large role; crucially, the Filippov convention is only appropriate

for certain smooth approximations to f . In this section we will give a large class of

smooth approximations which are perturbations for the Filippov system

ẋ ∈ F (x) =


p1(x), h(x) > 0

p2(x), h(x) < 0

{αp1(x) + (1− α)p2(x) : α ∈ [0, 1]} h(x) = 0

that extends the general piecewise-continuous differential equation we were originally

considering.
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It is instructive to view f in another form. Consider the step function

γ(t) =

0, t < 0

1, t > 0

and notice that this function is the classic Heaviside step function except that the

domain excludes {0}. With this function we can rewrite our discontinuous vector field

as

f(x) = γ(h(x))p1(x) + (1− γ(h(x)))p2(x).

We now consider smooth approximations to γ and f .

If the smooth family of functions {γλ : R → R}λ∈(0,1] satisfies the condition that

γλ(t)→ γ(t) as λ→ 0 for t ∈ R \ {0}, then the function

g(x, λ) = γλ(h(x))p1(x) + (1− γλ(h(x)))p2(x)

limits to f pointwise on its domain. Some possible choices of functions γλ meeting these

conditions are

γ̂λ(t) =
1 + tanh(t/λ)

2

γλ(t) =
1

π
arctan(t/λ) +

1

2

γ̃λ(x) =
1 + tanh(t/λ)

2
− 2 ∗ e ∗ µ(

t

λ
)

where µ is the smooth mollifier

µ(t) =

0, |t| > 1

exp( −1
1−t2 ), |t| ≤ 1

Notice that in the example of the prior subsection, γ̂λ is used in order to give a per-

turbation of the Filippov system, while γ̃λ gives a perturbation of the other differential

inclusion. The difference is that γ̂λ(0)→ 1/2 as λ→ 0, whereas γ̃λ(0) limits to a value

outside of [0, 1]. In fact, this behavior extends beyond that example.
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Figure 4.3: The Heaviside function and potential approximations.

The set-valued Heaviside function

Γ(t) =


0, t < 0

[0, 1], t = 0

1, t > 0

(4.1)

and we consider a uniformly bounded continuous family of single-valued functions

{γλ : R→ R}λ∈(0,1]

which limits to the Heaviside function as (λ, t) → (0, t0). That is, we assume that

lim(λ,t)→(0,t0) γλ(t) = 0 for t0 < 0, lim(λ,t)→(0,t0) γλ(t) = 1 for t0 > 0, and for any

sequence (λn, tn) → (0, 0) the set {γλn(tn)} contains no limit points outside of the

interval [0, 1]. Notice that we do not demand that lim(λ,t)→(0,0) γλ(t) exists.

If we define the continuous vector fields

fλ(x) = γλ(h(x))p1(x) + (1− γλ(h(x)))p2(x) (4.2)

then it is straightforward to verify that fλ is a basic perturbation of F0. Stated more

directly, the set-valued map

F (x, λ) =

fλ(x), λ > 0

F0(x), λ = 0
(4.3)

satisfies the basic conditions.



69

This result is important for our applications because we will ultimately use these ba-

sic perturbations in order to make Conley type statements about families of differential

inclusions. As in the classical case, the results obtained in this way are all stable under

perturbation, and so these formulas gives us a large class of smooth approximations to

the Filippov system which have the same qualitative features we identify using isolating

neighborhoods.

It is worth mentioning that here when we say smooth approximation, what we mean

is continuous approximation. For the sake of generality we choose to impose the minimal

structure that we are able to work with, and that is continuity. Because differential

equations with continuous right-hand side may have multiple solutions to a given initial

condition, that means that it is possible that there are non-unique solutions to the

equations ẋ ∈ fλ(x). Assuming that the functions which define the model, p1 and p2,

are themselves sufficiently smooth, avoiding this behavior is easy–simply demand that

γλ be locally Lipschitz continuous for all λ ∈ (0, 1] in addition to the demands that we

have placed above.

Finally, we remark that for many heuristic models (which is often the motivation

for considering Filippov systems) the assumptions that we have made here are not a

burden. In these heuristic models, the discontinuity is often an approximation of a

rapid and difficult to understand transition. Then in many cases, the assumption that

a smooth approximation to the Heaviside switching function does not contain limits

outside of the interval [0, 1] is very reasonable. However, we should remark explicitly

that this statement of what might be a reasonable assumption for a heuristic model

is not a mathematical one but rather depends on the context of the application, and

therefore must be evaluated by the modeler.

As a final remark, we note that this section does not prove that the only smooth

perturbations of a Filippov system are built using approximations to the Heaviside

function, but only that such approximations will work. These approximations are high-

lighted because they are used commonly in applications.
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4.4 Solutions of Perturbed Inclusions and Approximate

Solutions

So far this chapter has been devoted to justifying the given notion of perturbation of

differential inclusions. However, we also need to be able to make interesting statements

about these perturbed inclusions. For each λ ∈ Λ, the basic differential inclusion ẋ ∈
F (x, λ) may be examined using Filippov’s theorems. However, we need some way to

relate solutions for different values in Λ to each other. In particular, for our later Conley

applications we will need that a uniformly convergent sequence of solutions to ẋ ∈
F (x, λ) with λ → λ0 is a solution of the inclusion ẋ ∈ F (x, λ0). This desired property

will follow from Filippov’s Lemma 3.4 after the following lemmas demonstrate that

solutions of a perturbed inclusion are approximate solutions of the original inclusion.

Lemma 4.2. Assume X ⊂ Rn is compact. If F : X × [−1, 1] → Rn satisfies the basic

conditions, then for each ε > 0 there exists a δ > 0 such that |λ| < δ implies that

F (x, λ) ⊂ Fε(x, 0) := Bε(co(F (Bε(x), 0)))

Proof. Choose ε > 0. Since F is upper-semicontinuous in both x and λ, for each (x, 0)

in the subspace X × {0} there is some δ′x such that

|(x, 0)− (y, λ)| < δ′x =⇒ F (y, λ) ⊂ Bε(F (x, 0))

Let δx := min( δ
′
x
2 , ε). The sets {Bδx(x)}x∈X cover X, and since the space X is assumed

to be compact we can find some finite subcover {Bδxk (xk)}mk=1. Let

δ := min
1≤k≤m

δxk

The basic open sets

{Bδxk (xk)× (−δ, δ)}mk=1

form an open cover of X × (−δ, δ), and so for any (x, λ) ∈ X × (−δ, δ), there is some k

such that

|(xk, 0)− (x, λ)| ≤ |(xk, 0)− (x, 0)|+ |(x, 0)− (x, λ)| < δxk + δ ≤ δxk + δxk ≤ δ
′
xk
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Thus F (x, λ) ⊂ Bε(F (xk, 0)).

Since we have assumed that δxk ≤ ε, we have that |x− xk| < ε. Therefore

F (x, λ) ⊂ Bε(F (xk, 0)) ⊂ Bε(co(F (xk, 0))) ⊂ Bε(co(F (Bε(x), 0))) = Fε(x, 0)

Our purpose in proving that lemma is to get the following corollary:

Corollary 4.2.1. If F (x, λ) satisfies the Filippov conditions, then for each ε > 0 there

exists some δ > 0 such that |λ| < δ implies that solutions to the perturbed differential

inclusion ẋ ∈ F (x, λ) are ε-solutions of the differential inclusion ẋ ∈ F (x, 0).

Proof. A solution to the perturbed differential inclusion ẋ ∈ F (x, λ) is an absolutely

continuous function ψ mapping from an interval of the real line into the state space

which satisfies

ψ̇(t) ∈ F (ψ(t), λ)

almost everywhere.

By Lemma 4.2, for each ε > 0 there exists δ > 0 such that |λ| < δ implies that

F (x, λ) ⊂ Fε(x, 0) for all x. Then for such λ,

ψ̇(t) ∈ F (ψ(t), λ) ⊂ Fε(ψ(t), 0)

wherever the derivative exists (almost everywhere).

4.5 Welander’s Model and Perturbations

We conclude this chapter on the perturbation of differential inclusions by examining

what this notion of perturbation means for the Welander model. Recall that Welander

used both a smooth and nonsmooth version of his model. After making a coordinate

transformation, the nonsmooth model is given by the Filippov system of inclusion 3.2.
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The transformed smooth version that Welander uses is given by the equations

˙[
x

y

]
= ŵλ(x, y) :=

[
1− x− γ̂λ(y)x

β − βε− γ̂λ(y)ε− α− (β + γ̂λ(y))y − (αβ − α)x

]
(4.4)

where

γ̂λ(t) =
1 + tanh(t/λ)

2

As shown in Section 4.3.2, this family of smooth functions is a basic perturbation of

the Filippov system given by inclusion 3.2. Therefore, letting ŵλ and W0 be defined as

in 4.6 and 3.2 respectively, we see that

Ŵλ(x, y) =

ŵλ(x, y), λ > 0

W0(x, y), λ = 0
(4.5)

satisfies the basic conditions, and ˙(x, y) ∈ Ŵλ(x, y) is a parametrized basic differential

inclusion.

More generally, however, we can consider any family of smooth functions

˙[
x

y

]
= wλ(x, y) :=

[
1− x− γλ(y)x

β − βε− γλ(y)ε− α− (β + γλ(y))y − (αβ − α)x

]
(4.6)

where γλ limits to the set-valued Heaviside function as λ→ 0 and it follows from Section

4.3.2 that

Wλ(x, y) =

wλ(x, y), λ > 0

W0(x, y), λ = 0
(4.7)

is a basic parametrized differential inclusion.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2

• Introduction to Welander’s Model and Bifurcation Analysis, Section 3.3

• Perturbation and Welander’s Model, Section 4.7

• Welander’s Model as a Multiflow, Section 5.5
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• Welander’s Model as a Well-Parametrized Family of Multiflows, Section 6.2

• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5



Chapter 5

Multiflows

5.1 Defining Multiflows

Recall that for sufficiently smooth vector fields (for instance, vector fields with a global

Lipschitz bound) we can describe the solution set of the differential equation ẋ = f(x) by

a flow. A flow on a locally compact metric space Y is a continuous map ϕ : R×Y → Y

satisfying the following group properties:

1. ϕ(0, x) = x for all x ∈ Y .

2. ϕ(t, ϕ(s, x)) = ϕ(t+ s, x) for all t, s ∈ R and x ∈ Y .

The flow is the solution set for the differential equation in the sense that for each x0 ∈ Y ,

d

dt
ϕ(t, x0) = f(ϕ(t, x0))

and so ϕ(·, x0) is exactly the solution of the differential equation with initial condition

ϕ(0, x0) = x0.

Because basic differential inclusions may have multiple solutions for a single initial

condition, we cannot write their solution set as a flow as we would for typical differential

equations. In order to overcome that problem we work with a multivalued object defined

by Richard McGehee, the multiflow [26].

74
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Definition 5.1. A multiflow on a locally compact metric space Y is a set-valued map

Φ : R+ × Y → P(Y )

which is upper-semicontinuous and compact-valued, and which satisfies the monoid prop-

erties:

1. Φ(0, y) = {y}

2. Φ(t,Φ(s, y)) = Φ(t+ s, y)

Here we also introduce the notation that for A ⊂ Y and I ⊂ R+, we may write

Φ(I, A) = ∪t∈I ∪x∈A Φ(t, y)

When the space in question is compact, it is frequently more convenient to charac-

terize a multiflow in terms of its graph. In order to do so, we introduce some notation.

Let Φ ⊂ [0,∞)×X ×X; we write

Φt = {(x, y) : (t, x, y) ∈ Φ}

That is, for each t ≥ 0, Φt defines a relation on X. With this notation in mind, the

closed graph theorem for set-valued functions (Theorem 2.1) gives the following property

immediately:

Definition 5.2. Let X be a compact metric space. A multiflow on X is a closed subset

of [0,∞)×X ×X satisfying the two monoid properties:

1. Φ0 = {(x, x) ∈ X ×X}

2. Φt+s = Φt ◦ Φs for all t, s ≥ 0.

Multiflows are clearly similar to flows, with the most obvious difference being that

they are set-valued. But in addition to being multivalued, a multiflow only considers

forward time, making it more closely akin to a semiflow than a complete flow. Indeed,

we see that a multiflow with the additional assumption that Φ(t, x) is a single point for

each (t, x) is a semiflow. The possibility of intersecting trajectories necessitates working
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Figure 5.1: In this simple Filippov system, two different initial conditions (green) reach
the same point (red) at time t = 1. This collision means that any analogue of a flow for
Filippov systems cannot have a group action; ϕ1 ◦ ϕ−1 would not be the identity.

only with forward time. With differential inclusions, it is possible for solutions that

begin at distinct initial conditions to reach the same point in finite time. Therefore a

solution could move forwards for time t to one location, then backwards for time −t to

a location other than the initial condition. This makes retaining the group action of R
impossible because the identity requirement would not hold in general. Therefore we

only examine solutions in forward time and settle for a monoid action.

It is, however, quite straightforward to examine backwards time behavior as a sep-

arate system. To do so we introduce the dual multiflow:

Definition 5.3. Given a multiflow Φ : R+ × Y × Y , the dual multiflow to Φ is the

set-valued map Φ∗ : R+ × Y → P(Y ) defined pointwise by

Φ∗(t, b) := {a ∈ Y | b ∈ Φ(t, a)}

This naming convention is justified by two easily-verified properties: Φ∗ is itself a

multiflow over X, and the dual is well-defined ((Φ∗)∗ = Φ).

Of course, one might also wonder why we have gone out of our way to give a second

characterization of multiflows over compact spaces X. We have done so primarily be-

cause this setting will be the primary one in which we will work. Adding the assumption

of compactness gives an extremely helpful simplification.

But we should note here that this assumption of compactness is not a serious barrier

to our goal of extending Conley Index Theory to a multivalued setting. The information

derived from Conley index theory is determined using only the behavior of the dynamical
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system on the boundary of certain compact neighborhoods, and its goal is to understand

the dynamics of objects contained in these sets. Moreover, we will see in Theorem 5.1

that the solution set of basic differential inclusions which are defined over an unbounded

space can still be described using a multiflow defined only on a compact subset of that

space. Therefore multiflows, as defined here over compact spaces, are sufficient for

extending elements of Conley Index Theory to basic differential inclusions which are

defined over any open subset of Rn.

5.2 Basic Differential Inclusions as Multiflows

In this section we tie together the concepts of differential inclusions and multiflows.

Let ẋ ∈ F (x) be any basic differential inclusion defined on an open domain G ⊂ Rn,

and let X be any compact subset of G. We are interested in considering all solutions of

the differential inclusion which are contained entirely in X. If a solution begins in X,

but then leaves, we only monitor the solution up until the time it leaves. We want to

show that the union of the graphs of all of these solutions forms a multiflow.

More explicitly, define the object Φ as follows:

Definition 5.4. Assume that G ⊂ Rn is open and that the set-valued map F : G →
P(Rn) satisfies the basic conditions. Let X ⊂ G be compact and define the set

Φ ⊂ R+ ×X ×X

to be the union of all points (T, a, b) ∈ R+ × X × X such that there exists a solution

x(t) : [0, T ]→ X to the basic differential inclusion ẋ ∈ F (x) with x(0) = a and x(T ) = b.

We call Φ the multiflow over X associated to the differential inclusion ẋ ∈
F (x).

Of course, the name used in that definition is not yet justified; it is unclear that Φ

is actually a multiflow. The following theorem remedies that issue.

Theorem 5.1. Let F : G → P(Rn) satisfy the basic conditions on the open domain

G ⊂ Rn. If X ⊂ G is compact then the multiflow Φ over X associated to the differential

inclusion ẋ ∈ F (x) is actually a multiflow.
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G
X

Figure 5.2: Explanation of the solution set in Theorem 5.1. The blue and red curves
represent solutions of the differential inclusion. Only points on the blue portion of the
curves are included in Φ.

Before beginning this proof, we should note that Richard McGehee proved an analo-

gous result for differential equations ẋ = f(x) where f is assumed only to be continuous

(but not necessarily Lipschitz continuous). This proof owes a deep debt to that result.

Proof. The monoid properties are relatively trivial to see, although it does take a bit of

space to write their proof. We see that Φ0 = {(a, a) ∈ X×X} because by Theorem 3.3,

for each a ∈ X, there is at least one solution, and obviously a solution cannot begin at

a and go to any other point in zero time.

Next, note that the second monoid property, Φt+s = Φt ◦ Φ|S for all t, s ≥ 0, is

equivalent to the following statement: (t+ s, a, c) ∈ Φ if and only if there exists b ∈ X
such that (t, a, b) ∈ Φ and (s, b, c) ∈ Φ. In our case, points in Φ may be written as

(t, x(0), x(t)). Then we must show two things. First, if there is a solution z such that

z(0) = a and z(t+ s) = c, then there must be some point b and solutions x and y such

that x(0) = a, x(t) = b = y(0), and y(s) = c. Conversely, if there is some point b and

solutions x and y such that x(0) = a, x(t) = b = y(0), and y(s) = c, then there must be

a solution z such that z(0) = a and z(t+ s) = c.

Let us first assume that there is some point b and solutions x and y such that

x(0) = a, x(t) = b = y(0), and y(s) = c. In brief, pasting these solutions together

yields the desired solution. More rigorously, define the function z : [0, t + s] → X by

the equation

z(r) =

x(r) r ≤ t

y(r − t) r ≥ t
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It is clear that z is absolutely continuous since both x and y are, and by its definition

it is obvious that z(0) = a and z(t + s) = c. It also satisfies the differential equation

ż ∈ F (z) almost everywhere because for almost all r ∈ [0, t],

d

dr
z(r) =

d

dr
x(r) ∈ F (x(r)) = F (z(r))

and for almost all r ∈ [t, t+ z]

d

dr
z(r) =

d

dr
y(r − t) ∈ F (y(r − t)) = F (z(r))

Thus z is a solution to the differential inclusion.

Now assume that there is a solution z such that z(0) = a and z(t+ s) = c. In brief,

splitting this function into two functions at time t yields the desired solutions. More

rigorously, define the functions x : [0, t]→ X and y : [0, s]→ X by the equations

x(r) = z(r) y(r) = z(r + t)

Again, it is clear that x and y are absolutely continuous functions which evaluate to the

desired points at the appropriate times. Additionally,

d

dr
x(r) =

d

dr
z(r) ∈ F (z(r)) = F (x(r))

almost everywhere and

d

dr
y(r) =

d

dr
z(r + t) ∈ F (z(r + t)) = F (y(r))

almost everywhere. Therefore x and y are the desired solutions to the differential

inclusion, and Φ satisfies the monoid properties.

The difficultly of this proof comes from showing that Φ is closed. Luckily, Filippov’s

theorems do much of the hard work for us. Let (T, a, b) be a limit point of Φ; we will

show that (T, a, b) ∈ Φ.

Since (T, a, b) is a limit point of Φ, there is some sequence of points in Φ

(Tn, xn(0), xn(Tn))→ (T, a, b)
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where each xn(t) ∈ F (xn(t)) for almost all t in the interval [0, Tn].

The basic idea of the proof is to find a subsequence of {xn} which exist on (or can be

extended to) the common interval [0, T ]. Then we apply the Arzela-Ascoli theorem to

this family of solutions in order to get a uniformly convergent subsequence. By Theorem

3.4, this subsequence converges to a solution x∗(t); the proof will then be complete once

we show that x∗(0) = a, x∗(T ) = b, and x∗(t) ∈ X for each t ∈ [0, T ].

We begin by taking a compact neighborhood K of X; that is, K is a compact set

satisfying

X ⊂ int(K) ⊂ K ⊂ G

By Lemma 2.1 there is some constant M such that |F (x)| ≤ M on K. Combining

that result with Corollary 3.5.1, any family of solutions {x : [0, T ]→ K} is equicontin-

uous and

|x(s1)− x(s2)| ≤M |s1 − s2|

At this point, however, the sequence of solutions we are considering are not neces-

sarily defined on the common interval of time [0, T ], and in order to get equicontinuity

and apply Arzela-Ascoli, we need them to be. If Tn > T then this presents no obstacle,

as we simply consider xn|[0,T ]. However, we must show that for sufficiently large n we

can extend xn to the interval [0, T ] even if Tn < T .

By Theorem 3.4, we know that any solution can be extended at least until it reaches

the boundary of K. Since X ⊂ int(K), we can extend any xn to be defined on some

interval [0, T ′n], where T ′n > Tn. Let δ := d(K,K) > 0, and choose an n0 such that

n ≥ n0 implies that |Tn − T | < δ
M . Then for such n, if Tn < T ′n < T we get that

|xn(Tn)− xn(T ′n)| < M |Tn − T ′n| < δ

and so xn(T ′n) ∈ N0, and hence may be continued further. Thus we may assume that

for n ≥ n0, the solution xn may be extended to the interval [0, T ].

We are now in a position to apply Arzela-Ascoli; the solutions are clearly uniformly

bounded (they are all contained in the compact set K) and we know that they are

equicontinuous. Thus, there is a convergent subsequence of {xn : [0, T ] → K}. By

Theorem 3.4, this subsequence converges to a solution of the differential inclusion; let
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us call this solution x∗(t). Since xn(0) → a by definition, it is clear that x∗(0) = a.

Then to show that (T, a, b) ∈ Φ, we just need to show that x∗(T ) = b and that x∗(t) ∈ X
∀t ∈ [0, T ].

To show that x∗(T ) = b, we will show that for any ε, |xn(T )− b| < ε for sufficiently

large n.

|xn(T )− b| = |xn(T )− xn(Tn) + xn(Tn)− b|

≤ |xn(T )− xn(Tn)|+ |xn(Tn)− b|

≤M |T − Tn|+ |xn(Tn)− b|

Since Tn → T and xn(Tn) → b by assumption, we can guarantee that |T − Tn| < ε
2M

and |xn(Tn)− b| < ε/2 for sufficiently large n, and so x∗(T ) = b.

Now, for sake of contradiction, assume that x∗(t) ∈ K \X for some t ∈ [0, T ]. Let

τ := T − t. For sufficiently large n, |T − Tn| < τ . Then for these large n, xn(t) ∈ X,

since we have chosen n large enough to guarantee that t ∈ [0, Tn] and xn : [0, Tn]→ X

by definition. Then xn(t) must limit to a point in X as n → ∞ since X is compact.

Thus we have a contradiction, and we see that x∗ : [0, T ]→ X.

Thus (T, x∗(0), x∗(T )) = (T, a, b) ∈ Φ, and so Φ is a multiflow.

Although multiflows are defined only for positive time, we may use the dual multiflow

to examine the negative time solution set of a basic differential inclusion as well. The

following lemma shows that this characterization is justified:

Lemma 5.1. Let Φ ⊂ R+ ×X ×X be the multiflow associated to the basic differential

inclusion ẋ ∈ F (x) as in Theorem 5.1. Then

(T, b, a) ∈ Φ∗ ⊂ R+ ×X ×X

if and only if there exists a solution x : [−T, 0] → X of ẋ ∈ F (x) such that x(−T ) = a

and x(0) = b.

Proof. Assume that there exists a solution x : [−T, 0] → X of ẋ ∈ F (x) such that

x(−T ) = a and x(0) = b. Consider the function y : [0, T ]→ X defined by y(t) := x(t−
T ). Clearly y is absolutely continuous, y(0) = x(0− T ) = a, and y(T ) = x(T − T ) = b.
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Also, the chain rule gives us that

ẏ(t) = ẋ(t− T ) ∈ F (x(t− T )) = F (y(t))

and so y is also a solution. Then (T, a, b) ∈ Φ, and so (T, b, a) ∈ Φ∗.

Conversely, assume that (T, b, a) ∈ Φ∗. Then by definition, (T, a, b) ∈ Φ, and so

there is some solution x(t) : [0, T ] → X of the differential inclusion ẋ ∈ F (x) with

x(0) = a and x(T ) = b. Defining y : [−T, 0] → X by y(t) := x(t + T ), we see that y is

absolutely continuous, y(−T ) = x(0) = a, and y(0) = x(T ) = b. Also, the chain rule

gives us that

ẏ(t) = ẋ(t+ T ) ∈ F (x(t+ T )) = F (y(t))

and so y is also a solution.

5.3 Other Multivalued Generalizations of Flows

The concept of a solution set used to relate multiflows and differential inclusions–

solutions monitored only until they reach the boundary of a compact set–is somewhat

unusual. More typically, given a multivalued vector field F : Rn → Rn, we would

consider the solution set of the differential inclusion ẋ ∈ F (x) to be the multivalued

function

π : R× Rn → P(Rn)

where b ∈ π(T, a) if and only if there is a solution x : [0, T ] → Rn (or x : [T, 0] → Rn

in the case where T < 0) such that x(0) = a and x(T ) = b. In other words, typical

conceptions of the solution set would consider the entire domain of the multivalued

vector field.

It is known in the field [2, 4] that if, in addition to the basic conditions, we assume

that F satisfies the bounding assumption

sup
v∈F (x)

|v| ≤ c(1 + |x|) (5.1)

for all x ∈ Rn and some fixed c > 0, then the set-valued map π defined above is a
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multivalued flow:

Definition 5.5. Let Y be a locally compact metric space. An upper-semicontinuous,

compact-valued, multivalued map

π : R× Y → P(Y )

which satisfies the monoid properties

1. π(0, y) = {y} for all y ∈ Y

2. π(t+ s, y) = π(t, π(s, y)) for all ts ≥ 0

3. y ∈ π(t, x) ⇐⇒ x ∈ π(−t, y)

4. π(t, x) 6= ∅ for all (t, x) ∈ R.

is called a multivalued flow over Y .

This definition comes from [32] but similar generalizations are found in many other

places [4, 33, 3, 34]. We have chosen to highlight this object because [32] also deals with

Conley index theory, but the other definitions are only superficially different.

Notice that Property 2 indicates that although π is defined on all of R, the action is

still only a monoid action. Property 3 is essentially equivalent to introducing the dual

multiflow Φ∗ for a multiflow Φ.

Indeed, we see that a multivalued flow is nearly identical to the multiflow. However,

notice that Property 4 demands that the image of any point (t, y) ∈ R × Y is not

the empty set. This requirement is what forces us to place the additional Bounding

Assumption (5.1) on any differential inclusions ẋ ∈ F (x) which we wish to consider

using a multivalued flow.

If we drop Property 4, we get the following object [32]:

Definition 5.6. Let Y be a locally compact metric space. An upper-semicontinuous,

compact-valued, multivalued map

π : R× Y → P(Y )

which satisfies the monoid properties
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1. π(0, y) = {y} for all y ∈ Y

2. π(t+ s, y) = π(t, π(s, y)) for all ts ≥ 0

3. y ∈ π(t, x) ⇐⇒ x ∈ π(−t, y)

is called a partial multivalued flow.

This object is essentially identical to a multiflow. More directly, if Φ is a multiflow

over a locally compact metric space Y , then

π : R× Y → P(Y ), (t, y) 7→

Φ(t, y), t ≥ 0

Φ∗(t, y), t < 0

is a partial multivalued flow. Conversely, if π : R×Y → P(Y ) is assumed to be a partial

multivalued flow on a locally compact space Y , then

Φ : R+ × Y → P(Y ), (t, x) 7→ π(t, x)

is a multiflow over Y .

While this second object is defined in [32], it is not really used there. Importantly

for this thesis, none of the Conley theorems (such as the stability of isolating neighbor-

hoods or the attractor-repeller decomposition) are proven for this object. Probably this

omission is due to the fact that Property 4 is actually quite useful; a key difficulty in

most of the proofs in this thesis is the fact that the image of a point may be empty.

But it is also important to mention that without the bounding assumption (hypoth-

esis 5.1) the full solution set of a basic differential inclusion ẋ ∈ F (x) does not form a

partial multivalued flow on Rn. That is, without our unusual view of restricting to a

compact set, we can find no object which deals with the problem of finite-time blowup as

a local flow does in the single-valued case. The issue, as the following example demon-

strates, is that the set-valued map defined using the typical conception of the solution

set may not be closed-valued (and hence not compact-valued).
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Example 5.3.1. We define a Filippov system in R2 using the multivalued map

F (x, y) =



(−x2, 0) y < 0

{(−αx2, 1− α)|α ∈ [0, 1]} y = 0

(0,−1) y ∈ (0, 1)

{(αx2, 1− α)|α ∈ [0, 1]} y = 1

(x2, 0) y > 1

Notice, in particular, that (0, 0) ∈ F (x, y) if and only if x = 0, and so all equilibria

lie on that line.

Define

Φ(t, x, y) = {(w, z) ∈ R2|∃ψ : I → R2, ψ̇(t) ∈ F (ψ(t))a.e., ψ(0) = (x, y), ψ(t) = (w, z)}

We will show that this map is not compact valued at some points in the domain. In

particular, it is not compact-valued at (3, 1, 1).

A point (w, z) is in the set Φ(3, 1, 1) if and only if there is some solution ψ : [0, 3]→
R2 with ψ(0) = (1, 1) and ψ(3) = (w, z); although a priori any interval containing [0, 3]

may be the domain of a solution we may consider the restriction of such maps to [0, 3].

There are infinitely many such maps ψ, but their behavior follows a simple pattern.

Since (x2, 0) ∈ F (x, 1), solutions may slide along the line {y = 1} for any amount of

time t ∈ [0, 1) (notice that t = 1 is when the finite-time blowup occurs for the IVP

ẋ = x2, x(0) = 1). Once they leave this line, however, their behavior is uniquely deter-

mined; they follow a vertical line path down to reach the line y = 0, and then head left

towards the equilibrium at the origin. In particular, notice that by the symmetry of the

system, if the solution left the line {y = 1} at time τ , then it reaches the point (1, 0)

at time 2τ+1, and then continues left of this point for the remainder of the time interval.
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Figure 5.3: Trajectories plotted for τ = 0, 1/2, 2/3 (red, green, blue). Notice that the
trajectories intersect and cover each other in the figure.

More specifically, for each τ ∈ [0, 1), there is a solution

ψτ (t) =


( 1

1−t , 1) t ∈ [0, τ ]

( 1
1−τ , 1− (t− τ)) t ∈ [τ, τ + 1]

( 1
t−2τ , 0) t ∈ [τ + 1, 3]

and Φ(3, 1, 1) = {ψτ (3)|τ ∈ [0, 1)}.

In particular, notice that ψτ (3) = ( 1
3−2τ , 0) limits to (1, 0) ∈ R2 as τ → 1, and so

(1, 0) is a limit point of the set Φ(3, 1, 1). However, there is no solution to the differential

inclusion which begins at (1, 1) and terminates at (1, 0), and so Φ(3, 1, 1) = [1/3, 1)×{0}
is not compact.

In the previous example, the multivalued map Υ was not compact-valued because

Υ(3, 1, 1) was not closed. The following example will demonstrate that it is also possible

for similar maps to have images which are not bounded.
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Example 5.3.2. Consider the Filippov system ẋ ∈ G(x) where

G(x) =


0 x < 0

[0, 1] x = 0

(1 + x)2 x > 0

Define the set-valued map Π : R+×R→ P(R) by saying that y ∈ Π(t, x) if and only

if there is some ψ : [0, t] → R satisfying ψ̇(t) ∈ G(ψ(t)) a.e. and ψ(0) = x, ψ(t) = y.

Since 0 ∈ G(0), solutions where ψ(0) = 0 may remain at the origin for any amount of

time, including for all time (so ψ̂ ≡ 0 is a solution). The unique solution to the initial

value problem (ẋ = (1 + x)2, x(0) = 0) is x(t) = −t
t−1 , and so if the solution leaves the

origin at time t = τ ∈ R+, we may write it as

ψτ (t) =

0, t < τ

−(t−τ)
(t−τ)−1 , t ≥ τ

(note that ψτ : [0, τ + 1)→ R). Therefore Π(1, 0) = ∪τ>0{ψτ (1)} ∪ {0} = [0,∞).

This loss of compactness presents difficulties because set-valued maps which are not

compact-valued are not very well-behaved. Among other complications, even upper-

semicontinuous maps with compact domains may be unbounded if they are not compact-

valued. For the applications at hand, the primary obstacle obstacle comes from the fact

that the proofs of many of the results in this paper rely on the convergence of certain

sequences, and that convergence depends on the compact-valued nature of Φ.

We also emphasize that example 5.3.1 demonstrates that the typical way of handling

finite-time blowup in the single-valued setting–restricting the domain to an open subset

of R × Rn and considering a local flow–does not translate directly to this multivalued

setting. This difficulty is one of the reasons that we have introduced our unusual con-

ception of the solution set (solutions monitored only until they reach the boundary of a

finite set). Although this perspective shift introduces some complications, it allows us

to overcome the problem of finite-time blowup in a multivalued setting. We will also

see in Chapter 8 that this perspective allows us to overcome certain technical compli-

cations regarding the attractor-repeller pair decomposition of compact invariant sets in
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the multivalued setting.

5.4 Orbits of Multiflows

In this section we introduce the notion of an orbit on a multiflow and demonstrate

various properties of these orbits. The main goal is to begin considering multiflows

as objects in their own right, rather than just as the solution sets to basic differential

inclusions.

Definition 5.7. Let Φ be a multiflow over a locally compact metric space Y . An orbit

on Φ is a continuous function ψ : I → Y , where I ⊂ R is an interval, such that

ψ(t) ∈ Φ(t− s, ψ(s)) whenever s, t ∈ I and t > s.

This definition is intended to invoke the idea of a path in a multiflow. Examining

this definition we notice that if Φ is the multiflow over a compact space X associated

with the differential inclusion (3.1) as in Theorem 5.1, then solutions of (3.1) are orbits

of Φ. The converse is not obvious but it is true; see Theorem 5.3. This abstract notion

of orbits, then, allows us to analyze similar objects without assuming that our multiflow

comes from a differential inclusion.

Of course, for this definition to be useful in the study of multiflows we need to know

that an arbitrary multiflow is guaranteed to have orbits. Kate Meyer has elegantly

demonstrated this property.

Theorem 5.2. [27] If Φ ⊂ R+ ×X ×X is a multiflow on the compact metric space X

and (T, a, b) ∈ Φ, then there is an orbit ψ : [0, T ] → X on Φ satisfying ψ(0) = a and

ψ(T ) = b.

Proof. Meyer’s proof consists of three main steps. In the first step we define a mapping

ψ̂ : D → X, where D is a dense subset of [0, s], which satisfies

(t− s, ψ̂(s), ψ̂(t)) ∈ Φ

for t, s ∈ D and t > s. This step is the most difficult; the key idea here is that given

(t, x, y) ∈ Φ, the semigroup property of the multiflow Φ guarantees some z ∈ X such

that (t/2, x, z) ∈ Φ and (t/2, z, y) ∈ Φ. We demonstrate the Cauchy continuity of this
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function in the second step. Then for the final step we demonstrate that the unique

extension of this function to [0, s] is an orbit of Φ.

For the first step, consider the set of dyadic rationals scaled by T :

D := {rT | r =
p

2q
, p, q ∈ N, p ≤ 2q}

For each j ∈ N, let Dj be the finite subset Dj := { i
2j
s}2ji=0 ⊂ D. Notice that

D0 ⊂ D1 ⊂ D2 ⊂ · · · , ∪j∈NDj = D

We will inductively define functions ψj : Dj → X such that ψj+1|Dj ≡ ψj and

(t− s, ψj(s), ψj(t)) ∈ Φ (5.2)

for all t ∈ Dj . To begin this process we define ψ0 : D0 → X by ψ0(0) = a and ψ0(T ) = b

(note that D0 = {0, T}). By assumption, (T, ψ0(0), ψ0(T )) ∈ Φ, and by the identity

property of Φ, (0, ψ0(0), ψ0(0)) ∈ Φ, and so ψ0 satisfies (5.2). We will then inductively

assume that we can define ψj satisfying (5.2) and use it to define ψj+1.

Notice that if t ∈ Dj+1 \Dj then

t− := t− T

2j+1
∈ Dj , t+ := t+

T

2j+1
∈ Dj

and so ( T
2j
, ψj(t−), ψj(t+) ∈ Φ by our inductive hypothesis. Since T

2j
= T

2j+1 + T
2j+1 ,

the semigroup property of Φ implies that for each t ∈ Dj+1 \Dj there is some ζt ∈ X
such that ( T

2j+1 , ψj(t−), ζt) ∈ Φ and ( T
2j+1 , ζt, ψj(t+)) ∈ Φ. We choose such a ζt for each

t ∈ Dj+1 \Dj and define

ψj+1 : Dj+1 → X, t 7→

ψj(t), t ∈ Dj

ζt, t ∈ Dj+1 \Dj

By the construction of ψj+1, we see that

(
T

2j+1
, ψj+1(t), ψj+1(t+

T

2j+1
)) ∈ Φ
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for all t ∈ Dj+1 \ {T}. If t, s ∈ Dj+1 and t > s then t − s = kT
2j+1 for some positive

integer k ≤ 2j+1, and so the semigroup property of Φ gives us that

(t− s, ψj+1(s), ψj+1(t)) = (
kT

2j+1
, ψj+1(s), ψj+1(s+

kT

2j+1
)) ∈ Φ

and so (5.2) holds for ψj+1 : Dj+1 → X, completing the induction. The first step is

then completed by letting ψ̂(t) := ψj(t), where here j is chosen to be the least integer

such that t ∈ Dj .

For the second step let {ti}∞i=1 ⊂ D be a Cauchy sequence. For the sake of contra-

diction assume that {ψ̂(ti)}∞i=1 is not a Cauchy sequence. Then for some ε > 0 and each

M ∈ N there are some mM , nM > M such that dX(ψ̂(tmM ), ψ̂(tnM )) ≥ ε. Without loss

of generality we assume that mM > nM .

Since X ×X is compact and {ti}∞i=1 is Cauchy, there is a limit point of the set

{(tmM − tnM , ψ̂(tmM ), ψ̂(tnM ))}M∈N ⊂ Φ

which we shall denote by (0, x, y). It follows that dX(x, y) ≥ ε. Since Φ is closed,

(0, x, y) ∈ Φ, contradicting the identity property of Φ; this concludes the second step.

Finally, we define the continuous function ψ : [0, T ] → X as the natural extension

of ψ̂:

ψ(t) =

 ˆψ(t), t ∈ D

limtk→t ψ̂(tk), t ∈ [0, T ] \D

Here {tk}∞k=1 is any sequence which limits to t; ψ(t) is unique and well-defined since ψ̂

is Cauchy continuous and X is complete (since it is compact).

By construction ψ(0) = a and ψ(T ) = b, and so it remains only to check that

(t− s, ψ(s), ψ(t)) ∈ Φ for all t, s ∈ [0, T ] with t > s. Choose sequences {ti}∞i=1 ⊂ D and

{si}∞i=1 with ti → t and si → t. Then

(t− s, ψ(s), ψ(t)) = lim
i→∞

(ti − si, ψ(si), ψ(ti)) = lim
i→∞

(ti − si, ψ̂(si), ψ̂(ti)) ∈ Φ

since Φ is closed and (ti − si, ψ̂(si), ψ̂(ti)) ∈ Φ was demonstrated in step one.

It is clear from definition 5.7 that if Φ is the solution set of a basic differential
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inclusion ẋ ∈ F (x) then the solutions to that differential inclusion are orbits. The

converse is less clear. That is, it seems possible that some orbit of Φ may not be a

solution of the differential inclusion. The following theorem, however, rules out that

behavior.

Theorem 5.3. If X is a compact metric space and Φ ⊂ R+ ×X ×X is the multiflow

over X associated to the basic differential inclusion ẋ ∈ F (x), then all orbits in Φ are

solutions to the differential inclusion.

Before beginning this proof, we should mention that Kate Meyer proved an analogous

result for the special case that F (x) = Br(f(x)) where f : Rn → Rn is a globally

Lipschitz continuous function. The methods of this more general proof, however, differ

substantially.

Proof. Let ψ : [a, b]→ X be an orbit on Φ. We will construct a solution x∗ : [0, b−a]→
X to the differential inclusion ẋ ∈ F (x) such that x∗(h) = ψ(a+h) for all h ∈ [0, b− a].

Then we will have that ψ̇ exists almost everywhere and that

ψ̇(t) = ẋ(t− a) ∈ F (x(t− a)) = F (ψ(t))

which directly demonstrates that ψ is a solution to the differential inclusion. In other

words, ψ is simply a reparametrization of the constructed solution x∗(·).
Let {hi}∞i=1 be an enumeration of (Q ∪ {b − a}) ∩ [0, b − a] such that h1 = b − a.

Since

(b− a, ψ(a), ψ(b)) ∈ Φ

there is some solution x1 : [0, h1] such that x1(0) = ψ(a) and x1(h1) = ψ(b) by the

definition of Φ. Similarly, since

(h2 − a, ψ(a), ψ(a+ h2)) ∈ Φ (h1 − h2, ψ(a+ h2), ψ(a+ h1)) ∈ Φ

there are solutions y : [0, h2] → X and z : [0, h1 − h2] → X such that y(0) = ψ(a),

y(h2) = z(0) = ψ(a + h2), and z(h1 − h2) = ψ(b). We can reparametrize z by the

map t 7→ t + h2 and concatenate y and z into the solution x2 : [0, h1] → X satisfying

x2(0) = ψ(a), x2(h2) = ψ(a+ h2), and x2(h1) = ψ(b).
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We continue this process inductively as follows. Reorder the finite set {hi}ji=1 as

{δi}ji=1 where δi > δi+1. Then by the definition of ψ we have that

{(δi − δi+1, ψ(a+ δi+1), ψ(a+ δi))}j−1
i=1 ⊂ Φ

and

(δj − a, ψ(a), ψ(a+ δj)) ∈ Φ

By the definition of Φ, there are solutions {yi : [0, δi − δi+1] → X}j−1
i=1 and yj :

[0, δj − a] → X that agree with ψ on their endpoints (in other words, yi(δi − δi+1) =

ψ(a + δi)). Reparametrizing and concatenating these solutions as before, we get a

solution xj : [0, h1]→ X that satisfies xj(0) = ψ(a) and xj(hi) = ψ(a+ hi) for i ≤ j.
The family of solutions

{xi : [0, h1]→ X}∞i=1

is uniformly bounded (their range is the compact set X) and equicontinuous (Corollary

3.5.1). Then by the Arzaela-Ascoli lemma, there is a uniformly convergent subsequence

of this family. Its limit, which we denote x∗(·), is a solution by Lemma 3.4. It is also

clear that x∗(0) = ψ(a) and x∗(hi) = ψ(a+hi) since xj(0) = ψ(a) and xj(hi) = ψ(a+hi)

for j ≥ i.
It follows that x∗(h) = ψ(a + h) for all h ∈ [0, h1] because x∗(·) and ψ(·) are both

continuous and the rational numbers are dense in R. From this construction it follows

that ψ is a solution of the differential inclusion ẋ ∈ F (x).

As the preceding proof demonstrates, the uniform equicontinuity of solutions of

basic differential inclusions is quite useful. The following lemma indicates that orbits

of general multiflows have this same property. Since such orbits are also uniformly

bounded (the range is compact), we see that any family of orbits of a multiflow satisfies

the hypotheses of the Arzelà-Ascoli theorem, a property which we will utilize repeatedly

in the remainder of this thesis.

Lemma 5.2. Let Φ be a multiflow over a compact metric space X. Assume that I ⊂ R
is an interval and let Υ := {ψ : I → X|ψ orbits} be a family of orbits on Φ. Then Υ is

uniformly equicontinuous.
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Proof. Since the result is trivial if Υ is finite, we will assume that it is infinite. For the

sake of contradiction assume that there is some ε > 0 such that for each δ > 0 there

exists tδ, sδ ∈ I and ψδ ∈ Υ such that |tδ − sδ| < δ and |ψδ(tδ)− ψδ(sδ)| ≥ ε.
Without loss of generality, we may choose a subsequence δk → 0 such that tδk > sδk

(if this were not the case, we would simply have to switch the order of a tuple later in

the proof). For convenience, we will drop the δ part of the subscript, leaving us with

sequences (tk − sk)→ 0 and {ψk(·)}∞k=1 ⊂ Υ.

Since X is compact,

{(tk − sk, ψk(t0), ψk(tk))}∞k=1 ⊂ [0, max
1≤k<∞

(tk − sk)]×X ×X

has a convergent subsequence {(tki − ski , ψki(t0), ψki(tki))}∞i=1. Its limit, which we will

denote (0, x, y), satisfies the property that |x− y| ≥ ε since |ψδ(tδ)− ψδ(sδ)| ≥ ε for all

δ.

By our definition of an orbit, {(tk − sk, ψk(t0), ψk(tk))}∞k=1 ⊂ Φ (it is here that the

tuple order would be switched if the condition tk > sk could not be met). Since Φ is

closed we have that (0, x, y) ∈ Φ. Since x 6= y, this result contradicts the definition of a

multiflow. Therefore all families of orbits in a multiflow are uniformly equicontinuous.

Having shown that families of orbits of multiflows satisfy the hypotheses of the

Arzèla-Ascoli theorem and therefore contain uniformly convergent subsequences, we

now demonstrate that the limit of such subsequences is also an orbit.

Lemma 5.3. Let Φ be a multiflow over the compact space X and let I ⊂ R be any

interval. If ψ : I → X is the limit of a uniformly convergent sequence of orbits {ψn :

I → X}∞n=1 on Φ, then ψ is also an orbit on Φ.

Proof. Since the convergence is uniform, ψ is continuous. For each t, s ∈ I with t > s

we have that

(t− s, ψ(s), ψ(t)) = lim
n→∞

(t− s, ψn(s), ψn(t)) ∈ Φ

since (t− s, ψn(s), ψn(t)) ∈ Φ by assumption and Φ is closed.

Because our applications are concerned with invariant sets, the common domain of
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families of orbits that we consider will often be all of R. However, it is not true that

any uniformly bounded and equicontinuous family of functions will contain a uniformly

convergent subsequence; that is, the hypothesis that the domain is compact is necessary

for the Arzèla-Ascoli theorem to hold. However, it is a straightforward consequence of

the theorem (Lemma A.3) that for any such family there is a continuous function which

is the uniform limit of a subsequence of the family when restricted to any compact

interval contained in R. The following lemma demonstrates that for a family of orbits

on a multiflow, this function is also an orbit.

Lemma 5.4. Let Φ ⊂ R+ × X × X be a multiflow over a compact metric space X.

Given any sequence {ψk : R→ X}∞k=1 of orbits of Φ, there is an orbit

ψ : R→ X

on Φ such that on any compact interval [a, b] ⊂ R, there is a subsequence of the restricted

family

{ψk|[a,b] : [a, b]→ X}∞k=1

which converges uniformly to ψ|[a,b].

Proof. Since orbits are continuous functions, by Lemma A.3 we know that there exists

a continuous function ψ such that on any compact interval [a, b] ⊂ R, there is a sub-

sequence of the restricted family {ψk|[a,b] : [a, b] → X}∞k=1 which converges uniformly

to ψ|[a,b]. By Lemma 5.3, ψ|[a,b] is an orbit on Φ for any [a, b]. We can see directly

that ψ : R→ X is an orbit on the entire real line. Since its restriction to any compact

interval is continuous, Ψ is continuous on R. Now choose any arbitrary t > s. Take m

large enough that t, s ∈ [−m,m]. We see that

(t− s, ψ(s), ψ(t)) = (t− s, ψ[−m,m](s), ψ[−m,m](t)) ∈ Φ

since ψ|[−m,m] is an orbit of Φ and so we are finished.
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5.5 Welander’s Model and Multiflows

As we remarked in earlier chapters, Inclusion 3.2 is a basic differential inclusion. There-

fore, given any compact subset X ⊂ R2, we have a multiflow Ω0 over X associated

to ˙(x, y) ∈ W0(x, y). For our purposes it is sufficient to fix X = B10(0, 0). In later

chapters we will extend certain aspects of Conley index theory to multiflows, and so

this formulation also allows us to use these techniques to study the Welander model.

Additionally, it is worth noting that the set-valued map W0 : R2 → P(R2) given

in 3.2 is the Filippov convex combination of two linear maps. Therefore it satisfies

Bounding Assumption 5.1, and hence its full solution set over R2 is a multivalued flow.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2

• Introduction to Welander’s Model and Bifurcation Analysis, Section 3.3

• Perturbation and Welander’s Model, Section 4.7

• Welander’s Model as a Multiflow, Section 5.5

• Welander’s Model as a Well-Parametrized Family of Multiflows, Section 6.2

• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5



Chapter 6

Families of Multiflows and

Continuation

The primary motivation for Conley index theory is to gain information about dynamical

systems which is robust under perturbation. In Chapter 4 we discussed the perturbation

of differential inclusions, and here we define a notion of perturbation for multiflows.

As always, we assume in this chapter that X is a compact metric space.

6.1 Families of Multiflows

Our goal for this section is to define a set-valued analogue of a continuous family of

flows

{ϕλ}λ∈Λ

where Λ is some interval of the real line.

In order to do so, we begin by considering a parametrized families of multiflows

{Φλ}λ∈Λ

That is, for each λ in the interval Λ, Φλ is a multiflow over X.

Of course, in order to study such an object, we need each of these multiflows to

have some sort of relation to each other which is an appropriate generalization of the

continuity of the family of flows. As might be expected by this point in the exposition,

96
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that generalization is upper-semicontinuity.

Definition 6.1. We consider a family of multiflows over X

{Φλ}λ∈Λ

where Λ ⊂ R is an interval. This family is said to be well-parametrized if the set-

valued map

R+ ×X × Λ ⊃ (t, x, λ) 7→ Φλ(t, x) ⊂ X

is upper-semicontinuous.

Notice that by the closed graph theorem for set-valued maps, this definition is equiv-

alent to the following one if the parametrizing interval Λ is compact.

Equivalent Definition 6.1.1. Let X ⊂ Rn be compact and Λ ⊂ R be a compact

interval. A well-parametrized family of multiflows over X and Λ is a closed

subset

ΦΛ ⊂ R+ ×X ×X × Λ

such that Φλ is a multiflow over X for each λ ∈ Λ.

Of course, even though we have shown throughout this paper that upper-semicontinuity

and compact-valuedness are a natural generalization of continuity, we still must justify

that this generalization of a continuous family of flows is sufficient for our applications.

This justification comes from Theorems 7.1 and 8.2, which generalize the stability of

isolating neighborhoods and the continuation of attractor-repeller pairs, as well as Theo-

rem 6.1, which demonstrates that perturbed differential inclusions may be studied using

well-parametrized families of multiflows.

Throughout the duration of this thesis we will often be concerned with collections

of functions which are each orbits on one multiflow in a parametrized family. Because

of the importance of these families we give them a name in the following definition.

Definition 6.2. Assume that I ⊂ R is an interval and {Φλ}λ∈Λ is a family of multi-

flows. The collection Υ := {ψ : I → X} is said to be a family of orbits on {Φλ}λ∈Λ

if each ψ ∈ Υ is an orbit on the multiflow Φλ for some λ.
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One crucial property of well-parametrized families of multiflows is that if the parametriz-

ing interval Λ is compact then any family of orbits on these multiflows is uniformly

equicontinuous. The proof is nearly the same as the proof of the same property for a

single multiflow.

Lemma 6.1. Assume J ⊂ R is a compact interval and let {Φλ}λ∈Λ be a well-parametrized

family of multiflows over a compact metric space X. Assume that I ⊂ R is an inter-

val and let Υ := {ψ : I → X} be a family of orbits on {Φλ}. Then Υ is uniformly

equicontinuous.

Proof. Since the result is trivial if Υ is finite, we will assume that it is infinite. For the

sake of contradiction assume that there is some ε > 0 such that for each δ > 0 there

exists tδ, sδ ∈ I, λδ ∈ [−1, 1], and ψδ ∈ Υ such that ψδ is an orbit on Φδ, |tδ − sδ| < δ,

and |ψδ(tδ)− ψδ(sδ)| ≥ ε.
Without loss of generality, we may choose a subsequence δk → 0 such that tδk > sδk

(if this were not the case, we would simply have to switch the order of a tuple later in

the proof). For convenience, we will drop the δ part of the subscript, leaving us with

sequences (tk − sk)→ 0, {λk}∞k=1 and {ψk}∞k=1 ⊂ Υ.

Since X is compact,

{(tk − sk, ψk(sk), ψk(tk), λk)}∞k=1 ⊂ [0, max
1≤k<∞

(tk − sk)]×X ×X × Λ

has a convergent subsequence {(tki − ski , ψki(ski), ψki(tki), λki)}∞i=1. Its limit, which we

will denote (0, x, y, λ0), satisfies the property that |x− y| ≥ ε since |ψδ(tδ)−ψδ(sδ)| ≥ ε
for all δ.

By the definition of an orbit, {(tk − sk, ψk(sk), ψk(tk), λk)}∞k=1 ⊂ ΦΛ (it is here that

the tuple order would be switched if the condition tk > sk could not be met). Since

Φ ⊂ R+ × X × X × Λ is closed we have that (0, x, y, λ0) ∈ ΦΛ. Since x 6= y, this

result demonstrates that Φλ0 is not a multiflow, contradicting our original hypothesis.

Therefore all families of orbits in a well-parametrized family of multiflows are uniformly

equicontinuous.

In order to demonstrate that isolating neighborhoods are stable under perturbation

we will need to show that uniformly convergent families of orbits of a well-parametrized
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family of multiflows limit to an orbit. Once again, the proof of this result is almost

identical to the proof of the same result for a single multiflow.

Lemma 6.2. Assume J ⊂ R is a compact interval and let {Φλ}λ∈Λ be a well-parametrized

family of multiflows over a compact metric space X and let I ⊂ R be any interval. If

ψ : I → X is the limit of a uniformly convergent sequence of orbits {ψn : I → X}∞n=1 of

{Φλ}λ∈Λ, then ψ is an orbit on Φλ for some λ.

Proof. Since the convergence is uniform, ψ is continuous.

Note that for each n there is some λn such that ψn is an orbit on Φλn by definition,

meaning that for each t, s ∈ I with t > s we have that (t − s, ψn(s), ψn(t), λn) ∈ ΦJ .

Since Λ is compact there is some subsequence {λni}∞i=1of {λn}∞n=1 which converges; we

will call its limit λ0.

Then for each t, s ∈ I with t > s we have that

(t− s, ψ(s), ψ(t), λ0) = lim
i→∞

(t− s, ψni(s), ψni(t), λni) ∈ ΦΛ

since ΦΛ is closed. Therefore ψ is an orbit on Φλ0 .

Putting the previous lemmas together with the Arzela-Ascoli theorem gives us the

following result:

Lemma 6.3. Let ΦΛ ⊂ R+×X×X×J be a well-parametrized family of multiflows over a

compact metric space X and compact interval Λ. Given any sequence {ψk : R→ X}∞k=1

of orbits of ΦJ , there is an orbit

ψ : R→ X

on Φλ for some λ ∈ Λ such that on any compact interval [a, b] ⊂ R, there is a subsequence

of the restricted family

{ψk|[a,b] : [a, b]→ X}∞k=1

which converges uniformly to ψ|[a,b].

Proof. Since orbits are continuous functions, by Lemma A.3 we know that there exists

a continuous function ψ such that on any compact interval [a, b] ⊂ R, there is a sub-

sequence of the restricted family {ψk|[a,b] : [a, b] → X}∞k=1 which converges uniformly
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to ψ|[a,b]. By Lemma 6.2, there is some λ ∈ Λ such that ψ|[a,b] is an orbit on Φλ for

any [a, b]. Notice that the same λ is fixed for all [a, b] because the subsequence chosen

for any interval is a subsequence of the one chosen for any smaller interval which it

contains. We can see directly that ψ : R → X is an orbit on the entire real line. Since

its restriction to any compact interval is continuous, Ψ is continuous on R. Now choose

any arbitrary t > s. Take m large enough that t, s ∈ [−m,m]. We see that

(t− s, ψ(s), ψ(t)) = (t− s, ψ[−m,m](s), ψ[−m,m](t)) ∈ Φλ

since ψ|[−m,m] is an orbit of Φλ and so we are finished.

6.2 Perturbed Differential Inclusions and Families of Mul-

tiflows

The following straightforward theorem demonstrates that well-parametrized families of

multiflows may be used in order to study perturbed differential inclusions. Essentially,

this theorem allows us to prove results about well-parametrized families of multiflows

and use those results in order to make statements about perturbed differential inclusions

in the same manner that we use families of flows in order to study perturbed differential

equations.

Theorem 6.1. For an interval Λ ⊂ R and an open subset G of Rn, assume that

F : G × [−1, 1] → Rn meets the basic conditions. Fix any compact X ⊂ G. For each

λ ∈ Λ let Φλ be the multiflow over X associated to the basic parametrized differential

inclusion ẋ ∈ F (x, λ). Then {Φλ : R+ ×X → P(X)}λ∈Λ is a well-parametrized family

of multiflows.

Proof. We must only show that the set ΦΛ ⊂ R+×X ×X ×Λ is closed. Let (T, a, b, λ)

be a limit point of ΦΛ and consider any sequence {(Tn, an, bn, λn)}∞n=1 which limits to

it.

By definition there exists {ψn : [0, Tn] → X}∞n=1, ψn(0) = an, ψn(Tn) = bn, and

ψ̇n(t) ∈ F (ψn(t), λn) for almost all t in the interval. As in the proof of Theorem 5.1, for

sufficiently large n we can ensure that each function in this family is actually defined
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on the interval [0, T ]. That is, if Tn > T we simply consider the restriction ψn|[0,T ] and

if Tn < T but n sufficiently large then we can extend ψn by Lemmas 2.1 and 3.4.

Let δk → 0. By Corollary 4.2.1, there is a subsequence {nk}∞k=1 such that for each

k, ψnk : [0, T ]→ X is a δk-solution to the differential inclusion ẋ ∈ F (x, λ). By Lemma

3.4, a subsequence of {ψnk(·)}∞k=1 converges to a solution ψ : [0, T ]→ X of ẋ ∈ F (x, λ).

It is clear that ψ(0) = a, and again through an argument identical to one made in the

proof of Theorem 5.1 we see that ψ(T ) = b. Therefore (T, a, b, λ) ∈ ΦΛ, and so ΦΛ is a

well-parametrized family of multiflows.

6.3 Well-Perturbed Families of Multiflows and Welander’s

Model

We begin by recalling the basic parametrized differential inclusion ˙(x, y) ∈ Wλ(x, y)

given by inclusion 4.7. As a reminder, Wλ(x, y) is a single-valued function for λ posi-

tive, but we do not define a particular form of this equation; rather, Wλ may be any

continuous function which limits to W0 as discussed in Section 4.3.2. The particular

smooth function that Welander uses in his original paper is a special case of these

possibilities.

Let X be a large closed disk centered at the origin; for our purposes in later chapters,

a disk of radius 10 will suffice. For each λ ∈ [0, 1], let Ω0 : R+×X → X be the multiflow

over X associated to ˙(x, y) ∈Wλ(x, y). Then the collection

{Ωλ}λ∈[0,1]

is a well-perturbed family of multiflows.

We remark that Ωλ may be multivalued for λ > 0 because we have imposed min-

imal structure on Wλ and even single-valued differential equations may have multiple

solutions for a given initial condition. If we further demand that {γλ}λ∈(0,1] satisfy a

local Lipschitz bound then we would avoid this behavior.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2
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• Introduction to Welander’s Model and Bifurcation Analysis, Section 3.3

• Perturbation and Welander’s Model, Section 4.7

• Welander’s Model as a Multiflow, Section 5.5

• Welander’s Model as a Well-Parametrized Family of Multiflows, Section 6.2

• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5



Chapter 7

Isolating Neighborhoods and

Isolated Invariant Sets

7.1 Invariance for Multiflows

As mentioned in the introduction, there are several possible notions of invariance in a

multivalued setting. In this section we will choose a definition of invariance and give

some reasons why this notion is more natural than competing ones for Conley index

theory.

Definition 7.1. A set S ⊂ X is called invariant under the multiflow Φ if for each

x ∈ S there exists an orbit

ψ : R→ S

on Φ with ψ(0) = x.

We will often also consider the maximal invariant subset of a given set U under the

multiflow Φ, which is

Inv(U,Φ) := {x ∈ U |∃ orbitψ : R→ U on Φ, ψ(0) = x}

If the choice of multiflow Φ is clear, we will sometimes shorten this notation to Inv(U).

Note that because we are working with set-valued systems, it is possible for points

in an invariant set to have an orbit which leaves the invariant set. That is, since a given
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point may have many different orbits, some of these orbits can leave the invariant set.

All that is required is that each point in the invariant set has at least one orbit which

stays in the set for all time.

This definition of invariance–which is sometimes called weak invariance–is not the

only possible notion of invariance for multiflows. The following definition–which we will

call strong invariance–may at first glance appear to be the more natural generalization

of the classical notion of invariance.

Definition 7.2. A set S is strongly invariant under Φ if Φ(t, S) = S for all t ∈ R+.

We note that an attractor-repeller pair decomposition of strongly invariant sets is

given in [23]; we perform this decomposition of weakly invariant sets in Chapter 8. It is

also worth noting that it is shown in [23] that strong invariance implies weak invariance

for compact sets.

One reason for studying choosing our notion of invariance, rather than strong in-

variance, is that with this perspective the closure of an invariant set is invariant.

Property 7.1. The closure of an invariant set is invariant.

Proof. Assume the set K is invariant. Let x be a limit point of K, so that there is some

sequence {xk}∞k=1 ⊂ K converging to x. Since K is invariant, we have an associated

sequence of orbits {ψk : R → K}∞k=1 with ψk(0) = xk. By Lemma ?? there is an orbit

ψ : R→ K where {ψk : R→ K}∞k=1 converges uniformly to ψ on any compact interval.

Clearly ψ(0) = x. Since the choice of x ∈ K was arbitrary, we see that the closure of K

is invariant.

The following simple Filippov system shows that the closure of a strongly invariant

set is not necessarily invariant.

Example 7.1.1. Let

F (x) =


0, x < 0

[0, 1], x = 0

1, x > 0

and let Φ be the multiflow over [−1, 1] associated to ẋ ∈ F (x). The set [−1, 0) is

strongly invariant, but its closure, [−1, 0], is not strongly invariant. Note that [−1, 0] is

invariant, however.
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7.2 Isolating Neighborhoods and Isolated Invariant Sets

for Multiflows

In this section we define isolating neighborhoods–the basic building blocks of Conley

index theory–and demonstrate the crucial property that these neighborhoods are stable

under perturbation. Following this fundamental theorem we examine alternative notions

of invariance and demonstrate that similar stability properties do not hold under these

alternative definitions.

Definition 7.3. A compact set N ⊂ X is called an isolating neighborhood if its

maximal invariant set lies in its interior; that is,

Inv(N) ∩ ∂N = ∅

The most important property of isolating neighborhoods is that they are stable

under perturbation. This property is generalized here for multiflows.

Theorem 7.1. Let X ⊂ Rn be compact and Λ ⊂ R be a compact interval. Let {Φλ}λ∈Λ

be a well-parametrized family of multiflows. If N is an isolating neighborhood for the

multiflow Φλ0 then there exists some ε > 0 such that |λ− λ0| < ε implies that N is an

isolating neighborhood for Φλ.

Proof. Without loss of generality, assume that 0 ∈ Λ and λ0 = 0. We proceed by

contradiction. Suppose that for each ε > 0 there was some λ with |λ| < ε such that N

was not an isolating neighborhood for Φλ. Then we can make sequences

{εk}∞k=1, {λk}∞k=1

such that εk → 0 as k →∞, |λk| < εk, and N is not an isolating neighborhood for Φλk .

Since N is not an isolating neighborhood for Φλk , for each k there is some orbit

ψk : R→ N

of Φλk such that ψk(0) ∈ ∂N .

The sequence {ψk}∞k=1 is uniformly bounded (since the range of each orbit is the
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compact space X) and it is uniformly equicontinuous by Lemma 6.1. Since λk → 0, by

Lemma 6.3 there is an orbit

ψ : R→ N

of Φ0 such that on any compact interval I, there is a subsequence of {ψk|I}∞k=1 that

converges uniformly to ψ. Since ∂N is compact and ψk(0) ∈ ∂N for each k, ψ(0) ∈ ∂N .

This contradicts our assumption that N is an isolating neighborhood for Φ0.

Here we should mention that a key motivation in considering invariance as we have

defined it, rather than strong invariance, is that analogously defined isolating neighbor-

hoods for strongly invariant sets are actually not stable under perturbation.

Example 7.2.1. Let

F (x) =



−1, x < −1

[−1, 0], x = −1

0, −1 < x < 0

[0, 1], x = 0

1, x > 0

and let Φλ be the multiflow over [−2, 1] associated to ẋ ∈ F (x + λ). The set [−1, 0]

is compact and under Φ0 its maximal strongly invariant set (−1, 0) is contained in its

interior. However, for any λ < 0, Φλ(t, 0) = 0 = Φ∗λ(t, 0) for all t ∈ R+. That is,

the maximal strongly invariant set contained in [−1, 0] under Φλ includes the boundary

point {0} for any λ < 0.

We notice that in example 7.2.1 the maximal strongly invariant set was an open

interval. This fact again demonstrates that the closure of a strongly invariant set need

not be strongly invariant.

Still, we may wonder whether the definitions of isolated invariant sets and isolating

neighborhoods could be further massaged so that Conley index theory could be applied

to the study of strongly invariant sets as we are doing with invariant sets. Perhaps

an alternative definition of an isolating neighborhood could be a compact set whose

maximal strongly invariant set is a compact set contained in its interior. However, as
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Figure 7.1: The set-valued map F from example 7.2.1

the following example shows, the key issue is that a boundary point which contains a

psuedo-equilibirium–where solutions may stay for all time or leave in finite time–may

perturb to a standard rest point in the nearby smooth system. Avoiding this issue is

the primary motivation for defining invariant as we have.

Example 7.2.2. Consider the Filippov vector field

F0(x) =



−x, x ≤ 1

−1, 1 < x < 2

[−1, 1], x = 2

1, x > 2

as well as the continuous vector fields

fλ(x) =



−x, x ≤ 1

−1, 1 < x < 2− λ
x−2
λ , 2− λ < x < 2 + λ

1, x > 2 + λ

for λ ∈ (0, 1]. Let Φλ be the well-parametrized family of multiflows over the interval

X := [−1, 3] associated to the basic parametrized family of differential inclusions

ẋ ∈ F (x, λ) =

F0(x), x = 0

fλ, x ∈ (0, 1]
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Figure 7.2: The functions F0 and f1/2 from example ??.

For N := [−1/2, 2], the maximal strongly invariant compact set contained in N

is S0 := {0} for Φ0. However, for Φλ, the maximal strongly invariant compact set

contained in N is Sλ = [0, 2], which does not lie in the interior of N .

The main idea that the preceding example is intended to convey is that at a par-

ticular parameter valued, the maximal strongly invariant set of a compact set N may

be a compact set contained in the interior of N . However, under any small parameter

change, this maximal set grows discontinuously. As we will discuss in the following sec-

tion, by defining invariance as we do–as opposed to this notion of strong invariance–we

avoid this major problem.

7.3 Isolated Invariant Sets and Continuation

Our main interest in defining isolating neighborhoods is to use them in order to study

the associated isolated invariant sets, which we define here for the case of multiflows.

Definition 7.4. A set S ⊂ Rn is called an isolated invariant set if it is the maximal

invariant set in some isolating neighborhood. That is, S is an isolated invariant set if

there is an isolating neighborhood N such that

S = Inv(N)

One key property of isolated invariant sets is that they are compact; therefore we

may apply the results of Chapter 8 to these objects.
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Property 7.2. Isolated invariant sets are compact.

Proof. Let S be an isolated invariant set. Since S is contained in a compact neighbor-

hood N by assumption, the boundedness condition is immediate. Also, S is invariant

by Property 7.1. Then since S ⊂ N is invariant, and Inv(N) is contained in the interior

of N by assumption, we see that S = S.

Isolated invariant sets are associated to isolating neighborhoods, and the key prop-

erty of isolating neighborhoods is that they are stable under perturbation. Therefore we

need some way of associating this stability to the isolated invariant sets. The following

definition gives us the language to do so.

Definition 7.5. Let N ⊂ X be a compact neighborhood, and denote Sλ := Inv(N,Φλ).

Two isolated invariant set Sλ0 and Sλ1 are related by continuation or Sλ0 continues

to Sλ1 if N is an isolating neighborhood for all Φλ, λ ∈ [−λ0, λ1] ⊂ [−1, 1].

Note that this definition is exactly the same as the definition given in classical Con-

ley Index theory, once the notion of invariance and perturbation has been understood.

Then, as in the classical case, it is worth mentioning here that continuation says nothing

explicitly about the invariant sets Sλ, and is only a statement about isolating neigh-

borhoods. Indeed, the structure of the invariant sets is allowed to change somewhat

drastically while remaining related by continuation. For instance, a degenerate fixed

point is often continued to the empty set. For a simple example, consider the family of

differential equations ẋ = x2 +λ. Then the interval [−1, 1] is an isolating neighborhood

for all λ ∈ [0, 1], and therefore S0 = {0} continues to S1 = ∅.
This property of continuation is actually a feature of Conley theory and not a bug,

allowing us to avoid the complications of bifurcation theory. By using the Conley index,

we can use knowledge of the behavior on the boundary of the isolating neighborhoods

to obtain topological information about the associated isolated invariant sets. At this

point in time, the Conley index itself has not been generalized to multiflows, but the

results of this paper lead us to believe that this generalization is possible.

One interesting remark about the continuation of isolated invariant sets is that the

invariant sets only change semicontinuously. That is, isolated invariant sets which are
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related by continuation may suddenly shrink, as the example involving the degenerate

fixed point and the empty set shows, but they can only grow in a continuous way. We

see this by noticing that if S is an isolated invariant set, then for arbitrarily small δ,

the set Bδ(S) is an isolating neighborhood for S. Since this isolating neighborhood is

stable under perturbation, the continuation of S is a subset of Bδ(S) for sufficiently

small perturbations of the multiflow. Then because δ can be made arbitrarily small, it

is clear that S cannot grow discontinuously. Since this result is used in the proof of one

of our main theorems, we will state it formally as the following lemma.

Lemma 7.1. Let S0 continue to Sλ for λ ∈ I, where I is a closed interval around 0.

Then if λn → 0 and xn ∈ Sλn, then any convergent subsequence of {xn}∞n=1 must limit

to a point in S0.

7.4 Isolating Neighborhoods and The Welander Model

We return once again to Welander’s model. In this section we will identify an isolating

neighborhood homeomorphic to a disk in the system. Proceeding from the setup in

Section 6.3, we have that {Ωλ}λ∈[0,1] is a well-parametrized family of multiflows and

that Ω0 corresponds to the nonsmooth version of the model while Ωλ comes from the

nearby continuous systems. The associated differential inclusion is ˙(x, y) ∈ Wλ(x, y),

and is given by inclusion 4.7. Recall that W0 takes the form

W0(x, y) =


p1(x, y), y > 0

{τp1(x, y) + (1− τ)p2(x, y) : τ ∈ [0, 1]}, y = 0

p2(x, y), y < 0

where both p1 and p2 are linear functions. This linearity means that we can compute the

associated trajectories explicitly, and we will exploit this fact throughout this analysis.

We begin with a few pieces of information from [22]. When we analyzed Filippov

bifurcations of this model in section 3.3.2, we allowed the parameter ε to vary; for the

duration of this manuscript we will fix ε := −1/20 and consider perturbations of this

fixed Filippov system to nearby smooth systems. This parameter choice means that the

sliding region is (9/16, 11/16) × {0} =: (υ, η) × {0}; recall that all other parts of the
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x-axis are crossing regions, which simplifies our analysis. Further, it is given in [22] that

there is a periodic which intersects the interval (1/2, υ)×{0}. Examining inclusion 3.2,

we see that p1(x, y) contains a vertical trajectory at x = 1/2. This asymptote will help

us to define our isolating neighborhood.

Our isolating neighborhood is homeomorphic to a disk, and we will define it by

giving the curve on its boundary. In describing this curve, it is useful to let ϕi(t, x, y)

be the flow associated to the differential equation ˙(x, y) = pi(x, y); again, the equations

for these flows may be explicitly computed because of the linearity of the functions pi.

Consider the point (1/2, 0). This point lies in a crossing region, and so Ω0(t, 1/2, 0)

is determined completely by ϕ2(t, 1/2, 0) until this trajectory intersects the x-axis. We

denote by ta the first positive time such that ϕ2(ta, 1/2, 0) does return to the x-axis, and

further denote (xa, 0) := ϕ2(ta, 1/2, 0); note that xa > 3/4. Conveniently, (xa, 0) also

lies in a crossing region, and so Φ0(ta + t, 1/2, 0) is uniquely determined by ϕ1(t, xa, 0)

until this trajectory intersects the x-axis. We now denote by tb the first positive time

such that ϕ1(tb, xa, 0) returns to the x-axis and let (xb, 0) := ϕ1(tb, xa, 0). Since the x-

component of the vector p1(x, 0) is positive for x > 3/4 + 15/4 ∗ ε = υ, the trajectory of

ϕ1 cannot return to the x-axis on this interval, and so xb ∈ (1/2, υ); note that the lower

bound of this interval is determined by the vertical trajectory of p1 at x = 1/2. We now

define the closed curve C as the union of the curves ϕ2([0, ta], 1/2, 0), ϕ1((0, tb], xa, 0),

and (1/2, xb)×{0}. This allows us to define the compact set N to be the region bounded

by this curve (including C itself).

Notice thatN is an isolating neighborhood. For all (x, y) on the curve ϕ2([0, ta], 1/2, 0)∪
ϕ1(tb, xa, 0), Φ∗0((ta + tb,∞), x, y) ⊂ {1/2} × (0,∞); we see this behavior because these

trajectories are uniquely determined by following the flows discussed in the preced-

ing paragraph backwards until the points enter this vertical trajectory. For (x, y) ∈
(1/2, xb)×{0},Φ∗0(t, x, y) 6∈ P for arbitrarily small t > 0; we see this because (1/2, xb)×
{0} is part of a crossing region.

Morevoer, we are able to conclude from Theorem 7.1 that N is an isolating neigh-

borhood for Ωλ if λ is sufficiently small.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2
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Figure 7.3: The boundary of an isolating neighborhood (yellow) and a periodic orbit
(red) in Welander’s model.
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Chapter 8

The Attractor-Repeller Pair

Decomposition for Multiflows

As indicated by the title, the goal of this chapter is to extend Conley’s attractor-repeller

decomposition to the setting of multiflows. For the remainder of this chapter, we will

assume that Φ ⊂ R+ ×X ×X is a multiflow over a compact metric space X.

8.1 Limit Sets for Multiflows

In order to discuss attractors and repellers, we need to define the concepts of limit sets

for multiflows.

Definition 8.1. The ω-limit set of a set U is defined by

ω(U) = ∩t≥0Φ([t,∞), U)

This definition of an ω-limit set for multiflows is a direct generalization of the classical

definition for flows. Note that ω(U) is the set of all points x ∈ X such that

x = lim
n→∞

ψn(tn)

where ψn is an orbit on Φ, ψn(0) ∈ U and tn →∞.

As is the case with flows, we can also consider the α-limit set, which is essentially

113
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the ω-limit set in backwards time.

Definition 8.2. The α-limit set of a set U is defined by

α(U) = ∩t≥0Φ∗([t,∞), U)

Unfortunately, since some solutions can leave invariant sets, the ω-limit set is not

extremely well behaved. For instance, if we have a multiflow over some space X which

is not itself invariant, it is possible that the ω-limit set is also not invariant.

Example 8.1.1. Consider the differential inclusion

ẋ ∈ F (x) =

[0, 1] x = 0

1 x 6= 0

Let ΦF be the multiflow over the compact interval [0, 1] associated to this differential

inclusion. Then for ΦF , ω(0) = [0, 1], but [0, 1] is not invariant. Moreover, we note that

S = {0} is an invariant set for this multiflow, but ω(S) 6⊂ S.

The fact that it is possible that ω(S) 6⊂ S for an invariant set S means that when

we are trying to describe the dynamics on S, we need to take an extra step to restrict

our view to S. Therefore we will be concerned with the following object:

Definition 8.3. Let Φ : R+ × X → P(X) be a multiflow and let S ⊂ X. Then

Φ|S : R+ × S → S is the multiflow Φ restricted to S and is defined pointwise by

saying that b ∈ Φ|S(T, a) if and only if there exists an orbit ψ : [0, T ] → S on Φ such

that ψ(0) = a and ψ(T ) = b.

Note in particular that the orbits here are followed only until they leave S, even

if they return. For instance, it is possible that there is some point b ∈ S such that

b ∈ Φ(T, a) for some (T, a) ∈ R+ × S, but b 6∈ Φ|S(T, a). Because of this fact, this

terminology contradicts the better known terminology for the typical restriction of a

map.

We can verify that Φ|S : R+×S → S is itself a multiflow over the compact invariant

set S using the same methods as Theorem 5.1. Therefore the view that we take in the
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remainder of this section is essentially to study the behavior of a multiflow with the

additional property that

Φ|S(T, a) 6= ∅.

The value of first considering multiflows which do not have this property is that we may

consider a wider class of differential inclusions. That is, we can begin with a differential

inclusion defined over an unbounded space–like Rn, for instance–and use this restricted

object in order to understand the structure of the attractors of its invariant sets.

Definition 8.4. Let S be a closed invariant set for the multiflow Φ and let U ⊂ S.

Then the ωS and αS limit sets of U are the sets

ωS(U) = ∩t≥0Φ|S([t,∞), U), αS(U) = ∩t≥0(Φ|S)∗([t,∞), U)

This formulation trivially gives us the convenient property that ωS(S) ⊂ S for any

invariant set S of the multiflow Φ.

Similar to the case of the general ω-limit set, we notice that ωS(U) is the set of all

points x ∈ S such that

x = lim
n→∞

ψn(tn)

where ψn is an orbit on Φ|S , ψn(0) ∈ U and tn → ∞. Since S is invariant, however,

we also may assume that ψn is defined for all time. Although this domain does not

follow a priori from the definition–the definition of invariance only requires that each

point have an orbit which remains in S for all time, and not that all orbits remain in S

for all time–we notice that we can always extend any orbit on Φ|S to a maximal orbit

which exists for all time since S is invariant. Said another way, although the definition

only directly implies that ψn : In → S, where In is an interval containing [0, tn], we

can extend ψn beyond this interval because ψn evaluated at the endpoints of In (or the

limiting value, in the case where In is not closed) is a point in S, and therefore there

is some orbit which exists for all time at these points which we may append to ψn.

Therefore, when we consider the ωS-limit set, we only need to think about maximal

orbits which are defined on all of the real line.

Notice that in the special case where Φ is a flow, ωS(U) = ω(U) for all U ⊂ S, and

so this object is simply a generalization of the classic ω-limit set. And as the following
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lemma begins to demonstrate, this object is much more well-behaved than the general

ω-limit set of a multiflow.

Lemma 8.1. Let S be a compact invariant set for Φ. For nonempty U ⊂ S, both ωS(U)

and αS(U) are nonempty and invariant.

Proof. We will prove the result for the ωS-limit set; the same result for the αS-limit set

follows by symmetry.

Let {ψn}∞n=1 be any sequence of orbits such that ψn(R) ⊂ S and ψn(0) ∈ U . We

know that such a sequence must exist because S is invariant (and we do not demand that

the ψn are unique). Let tn →∞ and consider the sequence of points {ψn(tn)}∞n=1 ⊂ S.

Since S is compact, this sequence must contain a convergent subsequence with some

limit x. By definition, x ∈ ωS(U), and therefore ωS(U) is non-empty.

Now let x ∈ ωS(U), so x = limn→∞ ψn(tn). For each s ∈ R, let γn(s) = ψn(tn + s).

By Lemma 5.4, there is some orbit γ : R→ S such that on any compact interval [a, b],

the family {γn}∞n=1 has some subsequence which converges uniformly to γ. We see that

x = γ(0) and that γ(s) = limnk→∞ γnk(s) = limnk→∞ ψnk(tnk + s) ∈ ωS(U) (for any

given s we can take [a, b] to be large enough that we get the subsequence in that previous

equality).

The αS- and ωS-limit sets also satisfy the following properties which are used in

proving Theorem 8.1, the attractor-repeller decomposition.

Lemma 8.2. Let S be a compact invariant set for Φ. For any U ⊂ S, if ωS(U) ⊂ U

then Inv(U) = ωS(U).

Symmetrically, if αS(U) ⊂ U then Inv(U) = αS(U).

Proof. The inclusion ωS(U) ⊂ Inv(U) follows from Lemma 8.1. Therefore we must only

show that Inv(U) ⊂ ωS(U).

Let x ∈ Inv(U). Then by definition there is some orbit ψ : R→ U such that ψ(0) = x.

Given a sequence {tn} → ∞, ψ(−tn) ∈ U , so

x ∈ Φ|S(tn, ψ(−tn)) ⊂ Φ|S([tn,∞), U)

for each n ∈ N, and so x ∈ ωS(U).
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8.2 Attractor-Repeller Decomposition of Compact Invari-

ant Sets

For the remainder of this section, assume that S ⊂ X is a compact invariant set for Φ.

With the αS and ωS limit sets defined, we are now ready to define attractors and

repellers for multiflows. As in the traditional setting, an attractor is a set which is the

ωS-limit set of a neighborhood of itself, and a repeller is a set which is the αS-limit set

of some neighborhood of itself.

Definition 8.5. A set A ⊂ S is said to be an Attractor in S if there is a neighborhood

U of A in S such that ωS(U) = A.

A set R ⊂ S is said to be an repeller in S if there is a neighborhood U∗ of R in S

such that αS(U∗) = R.

It follows directly from Lemma 8.1 that these attractors and repellers are invariant.

However, it is worth mentioning that if A is an attractor, Φ∗(t, A) 6= A in general; in

particular, orbits may leave an attractor in backwards time. The following example

demonstrates this behavior, and similar examples demonstrate that we have symmetric

issues with repellers.

Example 8.2.1. Let

F (x) =



x+ 2, x < −1

[0, 1], x = −1

0, x ∈ (−1, 1)

[−1, 0], x = 1

x− 2, x > 1

and consider the multiflow Φ over S := [−2, 2] associated to the Filippov system ẋ ∈
F (x). We see that S is a compact invariant set and that [−1, 1] is an attractor in S.

However, the orbit ψ : R→ S given by

ψ(t) =

2− exp(t), t ≤ 0

1, t > 0
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Figure 8.1: The set-valued map F from example 8.2.1. Since orbits may enter the
attractor [−1, 1] from outside of it, we see that orbits may leave attractors in backwards
time.

has initial condition ψ(0) = 1 ∈ [−1, 1] but ψ((−∞, 0)) 6⊂ [−1, 1], and so Φ∗(t, [−1, 1]) 6⊂
[−1, 1] for any t < 0.

A crucial aspect of the attractor-repeller decomposition is that for a given attractor

we can associate a specific dual repeller. Symmetrically, if we begin with a repeller, we

can associate a specific dual attractor.

Definition 8.6. If A ⊂ S is an attractor in S, then the dual repeller of A in S is

the set

R = {x ∈ S|ωS(x) 6⊂ A}

If R ⊂ S is a repeller in S, then the dual attractor of R in S is the set

A = {x ∈ S|αS(x) 6⊂ R}

At this point, it is unclear that the dual repeller is actually a repeller, or that

the dual attractor is actually an attractor. Moreover, it is unclear that the term dual

is justified–that the dual of the dual object is the original object. However, we will

ultimately see that this terminology is justified in Theorem 8.1. This symmetry also

distinguishes our work from earlier work extending the attractor-repeller decomposition

to differential inclusions in [23]. In that paper, the repeller is not defined as an object in

its own right, and only a definition of dual repeller is given. By considering the notion

of a repeller as its own object we see that more of the structure of the attractor-repeller

decomposition carries over to this setting than was previously shown. Before diving

more into this structure, however, we should make a few remarks about our definition.
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In the classical theory of Conley index for flows, the dual repeller is defined as the

set {x ∈ S|ω(x) ∩A = ∅}. A simple lemma then shows that ω(x) ∩A 6= ∅ if and only if

ω(x) ⊂ A, and so the definition that we have provided here for multiflows does indeed

generalize the traditional definition. However, in the case of differential inclusions it is

possible for the ωS-limit set of a point to intersect an attractor without being a subset of

that attractor, motivating our definition. To see this phenomenon consider the following

example:

Example 8.2.2. Let F : [−1, 1]→ R be defined by

F (x) =


0 x ∈ [−1, 0)

[0, 1] x = 0

1− x x ∈ (0, 1]

Note that F satisfies the basic conditions, and let Φ be the associated multiflow.

Notice that S = [−1, 1] is invariant and A = {1} is an attractor in S. Still we see that

ωS(0) = [0, 1], and so ωS(0) ∩A 6= ∅ and ωS(0) 6⊂ A.

Also, notice that the set

{x ∈ [−1, 1]|ωS(x) ∩A = ∅} = [−1, 0)

is not a repeller, but the set

{x ∈ [−1, 1]|ωS(x) 6⊂ A} = [−1, 0]

is a repeller (it is the dual-repeller to A).

We also note that if A is an attractor and R is the associated dual-repeller, then

A∩R = ∅. Therefore we can complete the decomposition of S by simply taking the set

of all remaining points, which we will call the connecting region.

Definition 8.7. Given an attractor A in S and its dual repeller R, define the connect-

ing region between A and R as

C(R,A) := S \ (A ∪R)
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Figure 8.2: The set-valued map F from example 8.2.2

Given these definitions, we see that

S = A ∪R ∪ C(R,A).

We will call the pair (A,R) an attractor-repeller pair decomposition of the in-

variant set S, and we will list its properties in Theorem 8.1.

Theorem 8.1. Let Φ : R+ ×X → P(X) be a multiflow over a compact space X ⊂ Rn

and assume that S ⊂ X is compact and invariant under Φ. Let A be an attractor in S,

R its dual repeller, and C(R,A) the connecting region between them.

1. S = A ∪R ∪ C(R,A) and the sets A, R and C(R,A) are all disjoint.

2. R is a repeller in S.

3. C(R,A) = {x ∈ S|ωS(x) ⊂ A, αS(x) ⊂ R}.

4. A is the dual attractor to R.

Proof. Item 1 follows directly from the definitions of the relevant sets and is included

only for emphasis. Item 4 follows directly after proving items 2 and 3.

Proof of 2:

Let U be a neighborhood of A in S such that ωS(U) = A. Then there is some time

t∗ > 0 such that Φ|S([t∗,∞), U) ⊂ U ; if that were not the case, we could find a sequence

of image points of U whose limit was not in A. Define U∗ := S \ Φ|S([t∗,∞), U); note

that S = U ∪ U∗. We will show that R = αS(U∗).
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We can see that (Φ|S)∗([t∗,∞), U∗) ⊂ S\U ⊂ U∗. If not, there would be some points

y ∈ U∗ and x ∈ U and some time τ > t∗ such that x ∈ (Φ|S)∗(τ, y). But then we would

have that y ∈ Φ|S(τ, x), contradicting our assumption on t∗. From this inclusion it

follows that U∗ is a neighborhood of αS(U∗), and so by Lemma 8.2, Inv(U∗) = αS(U∗).

Therefore we can show that R ⊂ αS(U∗) by showing that R ⊂ Inv(U∗).

We want to show that if x ∈ R then there is some orbit with initial condition x

that remains in U∗ for all time. Since S is invariant, there is some orbit ψ : R → S

with ψ(0) = x. Note that if every orbit originating at x had to enter U in positive

time then it follows that ωS(x) ⊂ ωS(U) and so x 6∈ R. Therefore, without loss of

generality, we can assume that ψ(R+) ∩ U = ∅. Now, if ψ(−t) ∈ U for any t > 0 then

ωS(x) ⊂ ωS(ψ(−t)) ⊂ A, contradicting the assumption that x ∈ R. Thus ψ(R−) ⊂ U∗.
Therefore x ∈ Inv(U∗) = αS(U∗) and so R ⊂ αS(U∗).

To see that αS(U∗) ⊂ R, we start by noting that if x ∈ αS(U∗) then ωS(x)∩αS(U∗) 6=
∅ by the invariance of the αS-limit set. Since αS(U∗) ⊂ U∗ and U∗∩A = ∅, we conclude

ωS(x) 6⊂ A and so x ∈ R.

Proof of 3:

It follows directly from the definition that ωS(x) ⊂ A for x ∈ S \R, so we must only

show that αS(x) ⊂ R for x ∈ S \A.

Let x ∈ S \ A, and call δ := dist(x,A). Let U ′ be a neighborhood of A in S

such that ωS(U ′) = A. Then U := U ′ ∩ Bδ/2(A) also satisfies ωS(U) = A. As shown

in the proof of part 2, there is some time t∗ > 0 such that Φ|S([t∗,∞), U) ⊂ U and

U∗ := S \ Φ|S([t∗,∞), U) satisfies αS(U∗) = R. Then since x ∈ U∗, αS(x) ⊂ R.

We will close out this section with a lemma that gives a way to more easily identify

attractors. If the multiflow moves the closure of a set into its interior at some posi-

tive time then the set’s ωS-limit set is an attractor. This condition is very helpful in

identifying attractors because it relies only on checking a single positive time.

Lemma 8.3. Suppose U ⊂ S and Φ|S(t, U) ⊂ int(U) for some t > 0. Then ωS(U) is

an attractor contained in the interior of U .

Proof. Since Φ|S(t, U) ⊂ int(U), there is an open set V such that Φ|S(t, U) ⊂ V ⊂
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V ⊂ int(U). Then there is some ε > 0 such that Φ|S((t − ε, t + ε), U) ⊂ V . If that

were not the case then there would be a sequence of times tn → t and associated points

xn ∈ U and orbits ψn with ψn(0) = xn ∈ U and ψn(tn) 6⊂ V . By Lemma 5.3, there is

an orbit ψ such that on any compact interval I ⊂ R there is some sequence {nk}∞k=1

where ψnk |I → ψ|I . But ψ(0) = limk→∞ ψnk(0) ∈ U and ψ(t) limk→∞ ψnk(t) ∈ V c,

contradicting our assumption that Φ|S(t, U) ⊂ V .

Then if t′ > t2/ε, we can write t′ = s1 + · · ·+ sm where si ∈ (t− ε, t+ ε). Then

Φ|S(t′, U) = Φ|S(s1+· · ·+sm, U) = Φ|S(sm,Φ|S(sm−1(· · · (Φ|S(s2,Φ|S(s1, U))) · · · ))) ⊂ V

We can see this by noticing that Φ|S(si, U) ⊂ Φ|S((t − ε, t + ε), U) ⊂ V ⊂ int(U), and

hence Φ|S(sj ,Φ|S(si, U)) ⊂ Φ|S((t − ε, t + ε), U). Then for t′ > t2/ε, Φ([t′,∞), U) ⊂
V ⊂ int(U). Therefore ωS(U) ⊂ int(U) and so ωS(U) is an attractor.

8.3 Attractor-Repeller Pair Continuation

The ultimate goal of the Conley Index theory is to obtain results which are stable under

perturbation. Therefore we would like to show that, in some sense, our attractor-repeller

pairs are stable up to perturbation of the differential inclusion.

Recall that isolated invariant sets are compact (Property 7.2), and hence we may

give an attractor-repeller pair decomposition of any isolated invariant set. Importantly,

these attractors and repellers are also isolated invariant sets.

Lemma 8.4. Let S be an isolated invariant set for the multiflow Φ. If A ⊂ S is an

attractor in S, then A is an isolated invariant set for the multiflow Φ. Symmetrically,

a repeller in S is an isolated invariant set.

Proof. Let N be an isolating neighborhood for S and let U ′ ⊂ S be a neighborhood

of A in S such that ωS(U ′) = A. Let dH(W,Z) denote the Hausdorff distance of the

compact sets W and Z, and define

δ := min(dH(A, ∂N), dH(A, ∂U ′))

Now let U := U ′ ∪Bδ/2(A). We will show that U ⊂ int(N) is an isolating neighborhood
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for A in Φ.

We need to show that Inv(U) ⊂ int(U), so let x ∈ ∂U . If x 6∈ S, then we know that

x 6∈ Inv(U) because S = Inv(N) and U ⊂ int(N). If x ∈ S, then αS(x) ⊂ R, where R

is the dual-repeller of A in S. Since R ∩ U ′ = ∅, there cannot be an orbit with initial

condition x that remains in U for all time, and so x 6∈ Inv(U).

With this lemma stated, we are ready to prove one of the key results of this paper,

showing that the attractor-repeller decomposition described in the prior section is stable

under perturbation.

Theorem 8.2. Attractor-repeller pair decompositions continue.

To our knowledge, no comparable theorem exists in the differential inclusions liter-

ature.

In the proof of this result, we will need to discuss the interiors and closures of sets

relative to other sets. To do so, we will adopt the convention that int(W ;Z) and cl(W ;Z)

respectively denote the interior and closure of the set W relative to Z. Additionally,

the notation W \Z does not imply here that Z ⊂W , but merely is intended to convey

the notion W \ (W ∩ Z).

Additionally, before beginning this proof, we should acknowledge the role Richard

Moeckel played in its development. He offered some extremely valuable insights into

the nature of continuation that come into play here.

Proof. Assume that S0 is an isolated invariant set for the multiflow Φ0 with isolating

neighborhood N , and let (A0, R0) be an attractor-repeller pair decomposition of S0.

Then since A0 and R0 are themselves isolated invariant sets for Φ0 by Lemma 8.4, they

have isolating neighborhoods NA ⊂ N and NR ⊂ N . Since isolating neighborhoods are

stable under perturbation by Theorem 7.1, there is some λS > 0 such that |λ| ≤ λS

implies that N is an isolating neighborhood for Φλ. Similarly, there exist λA > 0 and

λR > 0 such that NA and NR remain isolating neighborhoods for λ ∈ [−λA, λA] and

λ ∈ [−λR, λR] respectively.

Let λ0 := min(λS , λA, λR). Then for λ ∈ [−λ0, λ0], the isolated invariant sets

Aλ := Inv(NA,Φλ) are related by continuation, the Rλ := Inv(NR,Φλ) are related by
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continuation, and the Sλ := Inv(N,Φλ) are related by continuation. Thus all that

remains to check is that (Aλ, Rλ) is an attractor-repeller pair decomposition for Sλ for

for sufficiently small |λ|.
We will start by showing that Aλ is an attractor in Sλ for small enough |λ|. We

know that is some time t∗ such that

ΦS0
0 (t∗, NA ∩ S0) ⊂ int(NA ∩ S0;S0)

since A0 is assumed to be an attractor in S0. For a sufficiently small |λ|, we will show

that

ΦSλ
λ (t∗, NA ∩ Sλ) ⊂ int(NA ∩ Sλ;Sλ)

which implies that ωSλ(NA ∩ Sλ) is an attractor in Sλ by Lemma 8.3.

If this were not the case, we would have a sequence λn → 0 and associated points

xn ∈ NA ∩ Sλn and orbits ψn on Φλn satisfying

ψn(0) = xn ∈ NA ∩ Sλn , ψn(t) 6∈ int(NA ∩ Sλn ;Sλn)

By Lemma 6.3, on a compact interval I containing 0 and t, we can take some subsequence

{nk}∞k=1 of these orbits which converge uniformly to an orbit ψ on Φ0. Notice that

xnk = ψnk(0)→ ψ(0) ∈ NA ∩ S0

by Lemma 7.1. But Lemma 7.1 also shows that ψ(t) ∈ cl(S0 \ NA;S0), contradicting

our assumption that ΦS0
0 (t,NA ∩ S0) ⊂ int(NA ∩ S0). Therefore ωSλ(NA ∩ Sλ) is an

attractor in Sλ for small enough |λ|. Since ωSλ(NA ∩ Sλ) = Aλ by Lemma 8.2, we see

that Aλ is an attractor as desired.

We can follow a symmetric argument to see that Rλ is a repeller in Sλ for small

enough |λ|, and so it only remains to show that Rλ is the dual-repeller to Aλ in Sλ.

That is, we must show that ωSλ(x) ⊂ Aλ for all x ∈ Sλ \Rλ for small enough |λ|.
In fact, we actually only need to show this property for for x ∈ Sλ \ NR. This

restriction is possible because x ∈ (Sλ ∩NR) \ Rλ implies that for any orbit ψ on ΦSλ
λ

such that ψ(0) = x, there is some time t such that ψ(t) ∈ Sλ \ NR because NR is

an isolating neighborhood and Sλ is an invariant set. Then if ωSλ(x) 6⊂ Aλ, then also
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ωSλ(ψ(t)) 6⊂ Aλ for some such orbit.

For the sake of contradiction, assume that this is not the case and ωSλ(x) 6⊂ Aλ for

all x ∈ Sλ\NR for small enough |λ|. Then there is some sequence λn → 0 and associated

points xn ∈ Sλn \NR and yn 6∈ Aλn such that yn ∈ ωSλn (xn). By the definition of the

ω-limit set, that means that for each n there is a sequence of orbits {ψkn}∞k=1 and a

sequence of times tkn →∞ such that

ψkn(0) = xn, ψkn(tkn)→ yn, k →∞

Without loss of generality, we may assume that tkn < k for all n.

As we just saw, however, for x ∈ NA ∩ Sλ and |λ| sufficiently small, we have that

ωSλ(x) ⊂ Aλ. Since yn ∈ ωλn(ψkn(tkn)) for any k or n, we therefore must have that

ψkn(tkn) ∈ Sλn \NA

for all n and k.

By Lemma 6.3, for each k there is an orbit ψk on Φ0 such that on any compact

interval, {ψkn}∞n=1 has some subsequence which converges uniformly to ψk. Taking

further subsequences if necessary, we also find limit points tk of {tkn}∞n=1 ⊂ [0, k], x

of {xn}∞n=1 ⊂ N , and yk of {ψkn(tkn)}∞n=1 ⊂ N . Notice that x = ψk(0) and that

yk = ψk(tk). Additionally, note that Lemma 7.1 implies that x ∈ cl(S0 \ NR;S0)

and yk ∈ cl(S0 \NA;S0).

Since yk ∈ cl(S0 \NA;S0), there is some convergent subsequence

ykm → y ∈ cl(S0 \NA;S0)

as km →∞. That is,

ψkm(tkm)→ y ∈ cl(S0 \NA;S0)

This implies that ωS0(x) 6⊂ A0, even though x ∈ S0 \R0, contradicting our assumption

that (A0, R0) is an attractor-repeller decomposition of S0. Therefore ωSλ(x) ⊂ Aλ for

all x ∈ Sλ \Rλ for small enough |λ|, and attractor-repeller decompositions continue.
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8.4 Basins of Attraction and Attractor Blocks

This brief section of the chapter does not prove any substantial results; instead we

introduce some definitions that are used in the classical Conley index theory and address

a few questions that had been posed by Richard McGehee. Throughout this section

assume that Φ is a multiflow over a compact space X, S ⊂ X is a compact invariant

set for Φ, and A ⊂ X is an attractor in S.

Definition 8.8. The basin of attraction for A is the set

B(A) = {x ∈ S|ω(x) ⊂ A}.

Notice that Theorem 8.1 immediately gives two properties of these basins. Namely,

basins of attraction are open and B(A)c is a repeller.

Definition 8.9. An attractor block is a compact subset B ⊂ S such that

Φ|S(t, B) ⊂ int(B), t > 0

It follows from Lemma 8.3 that ωS(B) is an attractor. However, one crucial question

that McGehee raised about this object remains: given an attractor A and a neighbor-

hood U of A, are we guaranteed the existence of an attractor block B ⊂ U such that

ωS(U) = A?

8.5 Attractor Repeller Pair Decomposition in Welander’s

Model

We proceed from the work done in Section 7.4, where for the multiflow Ω0 we identified

an isolating neighborhood N and associated isolated invariant set S0. Although the

index theory is not sufficiently developed to allow us to conclude that S0 is non-empty,

ad-hoc methods do allow us to make this claim because [22] identified a periodic orbit

in the interior of N , and S0 must contain the disk bounded by this periodic orbit. Our

goal for this section is to establish an attractor-repeller pair decomposition (A0, R0) of

S0.



127

We will identify a set U ⊂ S0 such that ωS0(U) = A0; the techniques used will be

nearly identical to those used in defining N . Consider the point (υ, 0), which lies on

the boundary of the crossing region. Because of this crossing behavior, Ω0(t, υ, 0) is

determined by ϕ2(t, υ, 0) for t sufficiently small. We denote by tc the first positive time

such that ϕ2(tc, υ, 0) returns to the x-axis, and further denote (xc, 0) := ϕ2(tc, υ, 0); note

that xc > 3/4. Conveniently, (xc, 0) also lies in a crossing region, and so Ω0(tc+ t, xf , 0)

is uniquely determined by ϕ1(t, xf , 0) until this trajectory intersects the x-axis. We now

denote by td the first positive time such that ϕ1(td, xf , 0) returns to the x-axis and let

(xd, 0) := ϕ1(td, xc, 0). Since the x-component of the vector p1(x, 0) is positive for x > υ,

the trajectory of ϕ1 cannot return to the x-axis on this interval, and so xd ∈ (xb, υ).

Here the lower bound is determined by the fact that (xd, 0) ∈ S0 ⊂ N . Let D be the

union of the curves ϕ2([0, tc], υ, 0), ϕ1((0, td), xc, 0), and (xd, υ) × {0}, and notice that

D ⊂ int(S0) because D is in the interior of the periodic orbit identified by [22]. We

then define U to be the exterior of the curve D intersected with the set S0, as well as

the curve D itself. Notice that for t > tc + td, we have that Ω|S0(t, U) ⊂ int(U, S0).

Therefore by Lemma 8.3, ωS0(U) =: A0 is an attractor contained in the interior of U .

We know that A0 is itself an isolated invariant set by Lemma 8.4. If we define NA as

the closed annulus bounded by the curves C and D, we can see that NA is an isolating

neighborhood for A0. We have already demonstrated that points on the curve C leave

NA in backwards time (since C is the curve defining the boundary of N). We also notice

that for (x, y) ∈ D have the same property because for for t > tc + td, we have that

Ω∗0(t, x, y) lies in the interior of the curveD, i.e. outside of the setNA. ThereforeNA is in

fact an isolating neighborhood. Further notice that Inv(NA,Ω0) = Inv(U,Ω0|S0) because

NA ⊂ N and Inv(NA,Ω0) = S0. Finally, by Lemma 8.2, ωS0(U) = Inv(U,Ω0|S0), and

so A0 = Inv(NA,Ω0).

Letting NR be the interior of the curve D as well as the curve itself, symmetric

arguments imply that αS0(NR) is the dual-repeller R0 to A0 in S0. Moreover, NR is

an isolating neighborhood for R0. Also notice that both Theorem 8.1 and Lemma 8.3

imply on their own that R0 is non-empty.

Finally, denoting Aλ := Inv(NA,Ωλ), Rλ := Inv(NR,Ωλ), and Sλ := Inv(N,Ωλ),

by Theorem 8.2, (Aλ, Rλ) is an attractor-repeller pair decomposition of the isolated

invariant set Sλ for λ sufficiently small.
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Figure 8.3: The curves C (yellow) and D (green) which define the annulus NA in
Welander’s model.
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• Welander’s Model as a Multiflow, Section 5.5
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• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5



Chapter 9

The Conley Index for Multiflows

9.1 The Conley Index for Flows

Before discussing a multivalued generalization of the Conley Index we should review its

basic properties in the classical setting. This review section borrows heavily from [29].

Throughout this section we assume that ϕ is a flow. As was stated in the introduction,

the Conley Index of an isolating neighborhood N for ϕ satisfies three crucial properties:

1. (Well-defined) If N ′ is another isolating neighborhood for ϕ and Inv(N,ϕ) =

Inv(N ′, ϕ), then the Conley index of N is the same as the Conley index of N ′.

This property allows us to view the Conley index as a well-defined index of isolated

invariant sets.

2. (Ważewski Property) If the Conley index of N is not trivial then Inv(N) is non-

empty.

3. (Stable) If {ϕλ}λ ∈ [0, 1] is a continuous parametrized family of flows and N is an

isolating neighborhood for each flow ϕλ, then the Conley index of N is the same

for each flow ϕλ.

Because isolating neighborhoods are robust under small perturbations, the hypothe-

ses of the continuation property are always guaranteed to be satisfied for some small

range of λ. That means that if we can use the Ważewski property of the Conley in-

dex to identify a non-empty invariant set in an isolating neighborhood N , that same

129
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neighborhood will contain a non-empty invariant set for nearby flows.

In Section 9.2 we will see that we need to adopt additional hypotheses on multiflows

in order to retain the Ważewski property. Without this property, it is difficult to see

what value the index provides.

Before seeing why these additional assumptions must be made, however, we should

make a few more remarks about the Conley index in the setting of flows. To do so we

must first introduce a few other terms.

Definition 9.1. Let L ⊂ N . The set L is said to be positively invariant relative to

N under the flow ϕ if given x ∈ L and ϕ([0, t], x) ⊂ N , we have that ϕ([0, t], x) ⊂ L.

Intuitively, the preceding definition says that points in L remain in L under the flow

ϕ for as long as they remain in its superset N .

Definition 9.2. Let L ⊂ N . The set L is said to be an exit set for N under the flow

ϕ if for each x ∈ N , ϕ(t1, x) 6∈ N and t1 > 0 implies that there is some t0 ∈ [0, t1) such

that ϕ([0, t0], x) ⊂ N and ϕ(t0, x) ∈ L.

The name exit set captures the notion it defines very well; a point may only leave

the set N in forward time by passing through the exit set.

These definitions allow us to define an index pair for an isolated invariant set; this

pair is what is actually used to compute the Conley index.

Definition 9.3. A pair of compact sets (N,L) with L ⊂ N is called an index pair for

the isolated invariant set S if:

1. S = Inv(N \ L) and N \ L is a neighborhood of S.

2. L is positively invariant in N .

3. L is an exit set for N .

There is always an index pair associated to any isolated invariant set [29].

In order to tie this concept of an index pair to the attractor-repeller pair decompo-

sition of an isolated invariant set S, we introduce the notion of an index triple.

Definition 9.4. Let S be an isolated invariant set and let (A,R) be an attractor-repeller

pair decomposition of S. An index triple for (A,R) is a collection of compact sets

(N2, N1, N0) such that N0 ⊂ N1 ⊂ N2 and
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1. (N2, N0) is an index pair for S;

2. (N1, N0) is an index pair for A;

3. (N2, N1) is an index pair for R.

There exists an index triple for any attractor-repeller pair decomposition of any

isolated invariant set [29]. Although we will not discuss this object in great detail, we

note that it is useful in understanding connecting orbits between attractors and repellers

(or more generally between Morse sets). We mention these triples here because we will

see that there are problems with this object for the index developed in [32]; we will

discuss this index and these problems in Section 9.3.

The notion of an index pair for an isolated invariant set allows us to finally define the

Conley index. This index has both a homotopy and homology variant; since homotopic

spaces have the same homology as well, this twin notion is well-defined.

Definition 9.5. Given any index pair (N,L) for the isolated invariant set S, the ho-

motopy Conley index of S is the homotopy type of the pointed topological space

obtained by identifying the exit set to a point:

h(S) = h(S, ϕ) ∼ (N/L, [L])

The homological Conley index is given by

CH∗(S) := H∗((N/L, [L]))

Keeping these definitions in mind we now proceed to the next section and demon-

strate that additional assumptions must be made on multiflows in order to meaningfully

define the Conley index in the multivalued setting.

9.2 Necessity of Additional Conditions on Multiflows

The results of the previous chapters indicate that multiflows have sufficient structure

for generalizing Conley Index Theory to the multivalued setting. However, the following

example shows that this is not the case, and that we must make additional assumptions

on these objects in order to develop a meaningful Conley index theory.
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Consider the set-valued map

F (x) =


−1, x < 0

{−1, 1}, x = 0

1, x > 0

Notice that ẋ ∈ F (x) is not a basic differential inclusion because F (0) is not a convex set.

For such a simple differential inclusion, however, we may explicitly compute all solutions

and therefore do not require any general existence theorem. For initial conditions x0 ≥ 0,

we have

x : [0,∞)→ R, x0 → x0 + t

and for initial conditions x0 ≤ 0 we have

x : [0,∞)→ R, x0 → x0 − t

Notice, in particular, that there are exactly two solutions with initial condition x0 = 0.

We can also directly verify that the set

Φ = {(T, a, b) ∈ R+×X×X|∃ solution ψ : [0, T ]→ X of ẋ ∈ F (x), ψ(0) = a, ψ(T ) = b}

is a multiflow for any compact interval X ⊂ R. Let’s take X = [−2, 2].

The compact interval N = [−1, 1] is an isolating neighborhood for Φ. Moreover,

because the behavior of the multiflow at the endpoints {−1, 1} is actually single-valued,

under any possible generalization of the notion of an exit set, the set L := {−1, 1} must

be an exit set for N . We also see that L is positively invariant relative to N , and so

(N,L) is an index pair for S := Inv(N \ L).

The homotopy type of (N/L, [L]) is that of a pointed circle; in particular, h(S) is

nontrivial. However, S = ∅, and so the Ważewski property does not hold in this setting.

The problem here is that Φ(t, {0}) is a two-point set for t ∈ (0, 2] (the right endpoint

of this interval is the time when the image of this point leaves the compact set X =

[−2, 2]). This change to the topological structure of the point as it is mapped forwarded

in time contradicts the basic structure of Conley index theory. This issue is, of course,
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a serious problem.

We also remark that the reason that the Ważewski property fails for this example is

that one of the other critical properties–that the index is well-defined–also fails. While

(N,L) is an index pair for the empty set, so is (∅, ∅), and the homotopy types of the

associated pointed spaces are different.

However, as we mentioned earlier, F does not satisfy the basic conditions. If we use

the Filippov convex combination method in order to extend F to the multivalued map

F ′(x) =


−1, x < 0

[−1, 1], x = 0

1, x > 0

this problem goes away. Letting Φ′ be the multiflow associated to ẋ ∈ F (x) over the

compact set X = [−2, 2], we see that again (N,L) = ([−1, 1], {−1, 1}) is an index pair

and (N/L, [L]) is homotopy equivalent to a pointed circle. Now, however, Inv(N \ L) =

{0}, and so we do not have a contradiction to the Ważewski property. This example

indicates that we may still be able to generalize Conley index theory to differential

inclusions by placing additional assumptions on multiflows which are compatible with

the differential inclusions that we have discussed. As we will see in the following section,

a version of the index actually has been developed for a class of differential inclusions

that is slightly less general than the basic differential inclusions that we have considered

thus far.

9.3 The Conley Index for Multivalued Dynamical Systems

Our primary purpose for this section is to discuss some of the results of ”A Cohomo-

logical Index of Conley Type for Multi-valued Admissible Flows” [32], which defines an

index for these objects in a way that preserves the three crucial properties of the index.

We will see in this section that an admissible multivalued flow is a multiflow with some

additional assumptions. Moreover, all definitions given for multiflows in earlier parts of

this text align with the definitions given for the more restrictive objects used in [32],

and therefore by combining this index with the attractor-repeller decomposition and
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continuation given earlier we are able to analyze certain differential inclusions. In fact,

as we will see in the following section, any basic differential inclusion satisfying a linear

growth bound may be studied with these techniques. That allows us to identify the

Conley index of the isolated invariant set and its attractor-repeller pair decomposition

identified in the Welander model in Section 8.5; this analysis is carried out in Section

9.5.

Before proceeding we should make a few remarks. First, this section is far less

detailed than earlier sections; in particular, important theorems here will be cited and

not proven. Second, to the extent possible, terms introduced in [32] have been translated

into the language that we have introduced throughout this thesis, and so may differ in

appearance (but not substance) from the definitions given in [32].

We begin with some notation. As indicated in the title, [32] uses cohomology rather

than homology in defining the index. Specifically, the Alexander-Spanier cohomology

is used. In order to define this theory we need a bit of notation. First, let Top2

denote the category of topological pairs; that is, pairs (P,Q) of topological spaces such

that Q ⊂ P . Further let GMod denote the category of graded Z-modules and linear

maps of degree zero. Then the Alexander-Spanier cohomology is here considered as a

functor H∗ : Top2 → GMod. We can consider the cohomology of a single space Y by

identifying it with the pair (Y, ∅). Note that the notation H∗ is intended to indicate

an infinite sequence of functors; that is, for each i ∈ N, we have a functor H i. We now

proceed with a series of necessary definitions from topology.

Definition 9.6. A continuous map f : W → Y between topological spaces is said to be

proper if the preimage of any compact set is compact. That is, given K ⊂ Y compact,

f−1(K) ⊂W is also compact.

Definition 9.7. A non-empty compact space Y is said to be acyclic if it has the same

cohomology as a one point space:

H∗(Y ) = {Z, 0, 0, 0, · · · }

Definition 9.8. A continuous map f : W → Y between topological spaces is said to be

Vietoris if it is proper and the preimage f−1(y) of any point y ∈ Y is acyclic.

We also need the following definition for set-valued maps:
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Definition 9.9. A set-valued map F : W → P(Y ) between topological spaces is said to

be strongly admissible if there exists a topological space Υ, a Vietoris map p : Υ →
[0, T ]× Y , and a continuous map q : Υ→ Y such that

q(p−1(y)) = Φ(y)

for all y ∈ Y .

Note that any single-valued map f is strongly admissible since f ≡ f ◦ id−1 and id

is Vietoris.

In order to define the cohomological index of Conley type, [32] introduces the con-

cept of an admissible multivalued flow. This object is a multiflow with two additional

properties.

Definition 9.10. Let Y be a locally compact metric space. A multiflow

Φ : R+ × Y → P(Y )

which satisfies the additional criteria

1. (nonempty) Φ(t, y) 6= ∅, Φ∗(t, y) 6= ∅ for all (t, y) ∈ R+

2. (admissibility) there exists a time T > 0 such that the restriction of Φ to the time

interval [0, T ] is strongly admissible

is called an admissible multivalued flow.

We note that the definition of the admissibility criterion given in [32]–where it is

defined in terms of certain morphisms–highlights the fact that the choice of p, q, and

W is generally not unique, but rather a whole equivalence class. We do not need the

more technical information for our purposes, however.

There are two important things to notice about this definition. The first is that

the restriction of a flow ϕ : R × Y → Y to forwards time is automatically an admis-

sible multivalued flow because it is single-valued. Therefore this definition is truly a

generalization of the idea of a flow to a set-valued setting.

The second crucial fact is that the admissibility criterion rules out problematic

behavior like we saw in section 9.2. Acyclic sets are path-connected, and the continuous
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image of a path-connected set is again path-connected. Therefore the admissibility

criterion rules out the possibility that Φ(t, x) is two disjoint points, like we saw in that

example.

Continuing now to the use of this object in Conley index theory, we note that

invariance, isolated invariant sets, and isolating neighborhoods are all defined in [32]

as we have defined them here; no additional phrasing is needed to introduce them

here because admissible multivalued flows are multiflows with additional assumptions.

This alignment is valuable because it allows us to use the attractor-repeller structure

developed in this thesis with the index defined in [32]. However, we do need to introduce

the following notation for maximal forwards and backwards invariant sets:

Inv+(U,Φ) := {x ∈ U |∃ orbitψ : R+ → U onπ, ψ(0) = x}

Inv−(U,Φ) := {x ∈ U |∃ orbitψ : R− → U onπ, ψ(0) = x}

In order to define an index pair–and hence the Conley index itself–[32] introduces

an object identical to the restricted multiflow. Note that given a compact set N and

an admissible multivalued flow Φ, it is generally not true that Φ|N is an admissible

multivalued flow; however, it is still a multiflow (since admissible multivalued flows are

a special case of multiflows).

In stating this definition, we will also need the terminology that a set A ⊂ N is

strongly positively invariant with respect to Φ|N if Φ|N ([0,∞), A) ⊂ A.

Definition 9.11. The pair of subsets (P,Q) of an isolating neighborhood N is said to

be an index pair in N with respect to Φ if the following conditions are satisfied:

1. P and Q are compact and strongly positively invariant with respect to Φ|N .

2. Inv−(N) ⊂ int(P,N), Inv+(N) ⊂ N \Q

3. P \Q ⊂ int(N)

Notice that it is not assumed that an index pair is a topological pair; that is, we do

not demand that Q ⊂ P . As in the classical setting, for any isolated invariant set S

there is always an index pair [32].
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In [32] it is remarked that this notion of an index pair does not reduce to Conley’s

notion of an index pair in the single-valued case [7], and is in fact more restrictive. The

final condition–that P \Q ⊂ int(N)–induces some technical difficulties in finding index

pairs. More importantly, as we will see at the end of the chapter, it is not generally true

that index triples exist with this definition. Nevertheless, these index pairs may still be

used to construct a cohomological index.

Definition 9.12. If S is an isolated invariant set with isolating neighborhood N , then

the cohomological index of Conley type of S is

C(S) := H∗(P, P ∩Q)

where (P,Q) is an index pair in N with respect to Φ.

A priori this index is not well-defined; given a different isolating neighborhood of

S, or a different choice of index pair, the index of S could be different. However, the

following theorem indicates that this is not the case:

Theorem 9.1. [32] The cohomological index of Conley type of an isolated invariant set

S depends only on S.

We remark again that the example given in the previous section demonstrates that

this property does not hold for multiflows without the admissibility criterion. However,

since the index is well-defined with the additional assumption of the admissibility cri-

terion, it follows that this index also has the Ważewski property. Notice that for any

admissible multivalued flow, the empty set is an isolating neighborhood and its associ-

ated isolated invariant set is also the empty set. Additionally, (∅, ∅) is an index pair for

the empty set. Thus, we see that

C(∅) = {0, 0, 0, 0, · · · }.

The converse of this result gives us the Ważewski property; although this property is a

direct corollary of Theorem 9.1, we label it as a theorem because of its importance.

Theorem 9.2. If the cohomological index of Conley type of an isolating neighborhood

is not trivial, then the associated isolated invariant set is non-empty.
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Finally, [32] also proves the final crucial property of the Conley index: it is sta-

ble under perturbation. To give this statement, we need to formally define a well-

parametrized family of multivalued admissible flows {Φλ}λ∈Λ as a well-parametrized

family of multiflows with the additional assumption that each multiflow Φλ be an ad-

missible multivalued flow.

Theorem 9.3. [32] Let Λ ⊂ R be a compact interval. If

{Φλ}λ∈Λ

is a well-parametrized family of admissible multivalued flows and N is an isolating neigh-

borhood for Φλ0, then

C(Inv(N,Φλ0)) = C(Inv(N,Φλ1))

for λ1 sufficiently close to λ0.

The preceding theorems demonstrate that the index developed in [32] retains the

fundamental properties of the classic Conley index. However, there are still some open

questions about this theory which we would like to answer in the future.

First, we would like to understand what class of differential inclusions may be studied

using this theory. Without demanding linear growth, it is not true that the full solution

set of basic differential inclusions yields a multivalued admissible flow. Of course this

behavior–finite time blowup–is well-known even for flows, but we remark again that the

problem is more substantial in this setting. As demonstrated in Example 5.3.1, we see

that the resulting set-valued map may not have closed values, and its graph may not

be closed. However, by restricting to a compact set–as we have done in the bulk of this

work–we avoid these issues. An interesting question, then, is how–or even whether–we

can rephrase the admissibility criterion for multiflows over compact spaces. It seems

reasonable to expect that the Conley index can be defined for such objects since they

retain all of the features necessary for computing the index. Understanding these issues

is an important goal for future research.

Moving on from this question we get to a detail more intimately related to the

cohomological index itself. If we define an index triple as in Section 9.1, then we get

the following unfortunate property:



139

Property 9.1. Index triples do not generally exist for the cohomological index of Conley

type for multivalued admissible flows.

Proof. We consider a multivalued admissible flow Φ with non-empty isolated invariant

set S. Assume that (A,R) is an attractor-repeller pair decomposition of S and further

assume R is a proper subset of S; that is, S 6⊂ R.

Let N be an isolating neighborhood of S (so S = Inv(N)) and assume that (N2, N0)

is an index pair in N with respect to ϕ. Since Inv−(N) ⊂ int(N2, N), we see that

S ⊂ N2.

Now let N ′ be an isolating neighborhood of R and assume that (N2, N1) is an index

pair in N ′ with respect to ϕ. Then N2 ⊂ N ′, and hence S ⊂ N ′. Since S is invariant,

S ⊂ Inv(N ′) = R, giving our contradiction.

As was noted earlier, the definition of index pair given in [32] is more restrictive

that the classical definition. Here we see that this restriction impedes our ability to

find index triples. Also notice that this issue is not directly related to the multivalued

nature of the object at hand, but rather is due to the more restrictive definition; if the

multivalued admissible flow Φ used in the proof is assumed to be a single-valued flow

we run into the same problem. This property is unfortunate because these triples are

used in the construction of connection matrices, which allow us to understanding the

structure of connecting orbits via linear algebra. Therefore we would like to understand

whether or not it is possible to give a less restrictive definition of index pairs and still

retain the fundamental properties of the Conley index in this multivalued setting.

With this question in mind, we note that [32] is not the only work in the literature

to consider the Conley index in the setting of differential inclusions. In [9], the Conley

index is developed for special multivalued flows in a Hilbert space. One advantage of

this theory over the one developed in [32] is that the definition of index pairs is the

same as in the classical setting, and so we avoid the problem of index triples that we

have identified with [32]. However, the additional hypotheses assumed on the differential

inclusions in [9] exclude Filippov systems. Essentially, [9] defines a Conley index with all

of the desired properties in a multivalued setting, but in a more restricted multivalued

setting that does not include the objects we are interested in. However, this adaptation
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of the index does seem very well suited to the applications in 3.4. Future research should

examine whether or not the techniques given can be adapted to our setting.

A version of the Conley index for certain discontinuous vector fields is developed in

[6]. This work is much closer to the setting that we desire, but we remark that many

additional conditions are placed on the orientation of the vector fields and the nearby

smooth systems considered are more limited (the transition functions are assumed to

be monotonic, among other things). Moreover, the Conley index theory developed is

not quite as robust as the one given in [32]. The isolating neighborhoods considered

are less general, and the stability of the index is assumed as a hypothesis, rather than

demonstrated. Therefore we are not able to use this index for our goals, but as with [9],

further research should examine these techniques and see if they can be strengthened.

Earlier, [20] proves the existence of a well-defined Conley index for classes of dif-

ferential inclusions which is far closer to those we would like to consider. The index

there is defined by passing first to single-valued approximations and using the classical

index defined there. However, this approach presents computational difficulties, as the

modeller is then forced to demonstrate that the index computed in a single-valued ap-

proximation is stable over the whole parameter range of single-valued approximations

before passing to the nonsmooth model. Our interest, instead, is in computing the index

in the nonsmooth case–where one frequently benefits from the model being composed of

relatively simple pieces–and passing from that single computation to any nearby smooth

system. The machinery developed in [32] seems closest to that goal, which is the reason

that we have focused on that work here.

Before moving on, we emphasize that in each of these papers more structure is

assumed than we have done for multiflows. Therefore the attractor-repeller pair decom-

position and continuation which we have proven in this thesis may be used in conjunction

with any of the indices developed in [32, 20, 9, 6].

9.4 Basic Differential Inclusions with Linear Growth as

Admissible Multivalued Flows

It is demonstrate in [32] that the full solution set of a basic differential inclusion ẋ ∈ F (x)

is a multivalued admissible flow if we also assume that F is bounded. Our goal in this
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section is to relax that bounded hypothesis in order to allow linear growth; the result

is Theorem 9.5. This relaxation is possible because of work done in the years since [32]

was published. Essentially, the proof given in [32] references a theorem analogous to

Theorem 9.4 which required that F be bounded. With the updated version of Theorem

9.4 presented here we are able to weaken this constraint. This update is important

because it greatly increases the class of differential inclusions which may be studied

using the cohomological index of Conley type. In particular, it allows us to identify the

Conley index of isolated invariant sets in the Welander model.

We introduce a few definitions and results from [11].

Definition 9.13. An upper-semicontinuous map F : W → P(Y ) between topological

spaces is said to be acyclic if F (w) is an acylic set for each w ∈W .

Denote the graph of F by ΓF = {(w, y) ∈ W × Y |y ∈ F (w)} and let pF : ΓF → W

and qF : ΓF →W be the associated projections. We have the following property:

Property 9.2. [11, 32.3] If F : W → P(Y ) is an acyclic map then the projection

pF : ΓF →W is Vietoris.

Notice that F (w) = qF (p−1
F (w)). Therefore we get the following corollary:

Corollary 9.2.1. An acyclic map F : W → P(Y ) is strongly admissible.

We now formally state the linear growth bound on F that we will need in order to

show that ẋ ∈ F (x) gives rise to an admissible multivalued flow.

Definition 9.14. A multivalued map F : Rn → Rn is said to have linear growth if it

satisfies Bounding Assumption 5.1; that is, if there is some constant c > 0 such that

sup
v∈F (x)

|v| ≤ c(1 + |x|).

For our purposes, it is worth mentioning that if a Filippov system is formed from

finitely single-valued maps that all satisfy comparable linear growth bounds, then the

multivalued map on the righthand side of that inclusion has linear growth; we simply

take the constant c to be the maximum of all such constants from the single-valued

pieces. Because this situation is so common in the Filippov systems community, it is

worth recording this trivial observation as a formal property.
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Property 9.3. Let ẋ ∈ F (x) be a Filippov system in Rn that is defined by finitely many

single-valued vector fields {pi}ki=1. If there are constants {ci}ki=1 such that

|pi(x)| ≤ ci(1 + |x|)

then F has linear growth.

For the duration of this section, let us fix that F : Rn → P(Rn) satisfies the basic

conditions and has linear growth.

For an interval I ⊂ R, let C(I,Rn) be the space of continuous functions from I to

Rn with the norm ||f || = supt∈I |f(t)|. Consider the following sets:

ST (x) = {ψ ∈ C([0, T ],Rn) |ψ(0) = x, ψ̇(t) ∈ F (ψ(t)) a.e.}

Theorem 9.4. [11, 70.6]

The set ST (x) is acyclic and compact for each x ∈ Rn.

It is worth mentioning that [11, 70.6] actually assumes slightly weaker hypotheses

and gives a slightly stronger result than what we have stated here. However, introducing

these statements would require introducing a good deal of terminology, and the above

result is sufficient for our purposes.

In addition to this theorem we will require the following simple lemma:

Lemma 9.1. For each T ∈ R, the multivalued map ST : Rn → C([0, T ],Rn) given by

x 7→ ST (x) is upper-semicontinuous.

Proof. Fix an arbitrary x ∈ Rn. If this result were not true then there would be

some ε > 0 such that for each δ > 0 there would be some ψδ ∈ ST (Bδ(x)) with

ψδ 6∈ Bε(ST (x)). This statement contradicts Lemma 3.4.

Notice that the direct implication of Theorem 9.4 and Lemma 9.1 is that the map

ST is an acyclic–and hence admissible–mapping.

Lemma 9.2. [11, 40.6] If F : W → P(Y ) and G : Y → P(Z) are strongly admissible

then the composition G ◦ F is also strongly admissible.
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We are now ready to prove the main result of this section. To state this theorem,

define the set valued map Φ : R+ × Rn → P(Rn) by

(t, x) 7→ {ψ(t) |ψ ∈ ST (x)}.

Notice that Φ is the multiflow associated to ẋ ∈ F (x) over Rn.

Theorem 9.5. Φ is a multivalued admissible flow.

Proof. Note that the fact that Φ is a multivalued flow–that is, a multiflow with the

additional property that Φ(t, x) 6= ∅ for all (t, x) ∈ R× Rn–is well known [4, 33, 3, 34].

It remains to be demonstrated that there exists a time T > 0 such that the restriction

of Φ to the time interval [0, T ] is strongly admissible.

Choose any T > 0. Define the map ET : ST (Rn)× [0, T ]→ Rn by

(ψ, t)→ ψ(t).

We will show that this map is continuous (note that any single-valued continuous map

is automatically strongly admissible); when we have done so the proof will be complete

since the restriction of Φ to the interval [0, T ] equals ET ◦ ST and the composition of

strongly admissible maps is strongly admissible (Lemma 9.2).

Choose an arbitrary (ψ0, t0) ∈ ST (Rn) × [0, T ] and a compact neighborhood K ⊂
ST (Rn) of ψ0. Fix ε > 0. By Lemma 3.5, all maps in K are equicontinuous, and so in

particular we will find δ > 0 such that

|t− t0| < δ =⇒ |ψ(t)− ψ(t0)| < ε/2

for all ψ ∈ K.

Further choose V to be a neighborhood of ψ0 such that

ψ ∈ V =⇒ ||ψ − ψ0|| < ε/2.

We can now verify the continuity of ET . For any (ψ, t) ∈ (V ∩K)×Bδ(t0), we have
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the following inequalities:

|ET (ψ, t)− ET (ψ0, t0)| = |ψ(t)− ψ0(t0)|

≤ |ψ(t)− ψ(t0)|+ |ψ(t0)− ψ0(t0)|

≤ ε/2 + ||ψ − ψ0||

< ε.

This improved result greatly increases the class of differential inclusions which may

be analyzed using the techniques in [32]. For Filippov systems in particular, it is gen-

erally not the case in applications that the system is actually bounded; however, many

common models do have linear growth. We will continue our analysis of one such

model–the Welander model–in the next section.

9.5 The Conley Index and Welander’s Model

We return, for the final time, to Welander’s model. As in each of these sections, we will

continue the notation built in the previous Welander’s model sections. Recall that the

model is given by the well-parametrized differential inclusion ˙(x, y) ∈ Wλ(x, y), where

W0 is the piecewise-continuous vector field and Wλ is a continuous single-valued vector

field for λ > 0. For each λ ∈ [0, 1] define the map Υλ : R+ × R2 → P(R2) by

Υλ(t, x, y) = {(w, z) ∈ Rn | ∃ψ : [0, t]→ Rn, ψ(0) = (x, y), ψ(t) = (w, z), ˙ψ(t) ∈Wλ(ψ(t))a.e.}.

For each λ ∈ [0, 1], the map Wλ has linear growth. For λ = 0 this fact follows

from the linearity of the vector fields pi which define the Filippov system and Property

9.3. For λ > 0 this fact follows again from the linearity of the vector fields pi and the

boundedness of the family of transition functions {γλ}λ∈(0,1]. Therefore, by Theorem

9.5, {Υλ}λ∈[0,1] is an a well-parametrized family of multivalued admissible flows. Notice

that Υλ|X ≡ Ωλ.

In Section 8.5 we identified an isolated invariant set Sλ with attractor-repeller pair

decomposition (Aλ, Rλ) for sufficiently small λ. Here we will strengthen that result by
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giving the index of each of these isolated invariant sets (possibly restricting to smaller

λ). We phrase this result as the following theorem:

Theorem 9.6. For λ sufficiently small, Υλ contains an isolated invariant set Sλ with

C(Sλ) = {Z, 0, 0, · · · }.

Moreover, there is an attractor-repeller pair decomposition (Aλ, Rλ) of Sλ such that

C(Aλ) = {Z,Z, 0, · · · }

and

C(Rλ) = {0, 0,Z, 0, 0, · · · }.

Notice that if we were able to use the classic definition of an index pair (Definition

9.3) then we would be able to use (N,NA, ∅) as an index triple in order to get this

result. Unfortunately, the more stringent definition of an index pair required for the

cohomological index of Conley type prevents us from using these sets directly–indeed,

as the proof of Property 9.1 demonstrates, index triples do not exist for this attractor-

repeller pair decomposition–but it is still possible to find index pairs giving these results.

The construction of these index pairs is very similar to the construction of N and

NA; again we will define certain closed curves by taking advantage of the single-valued

crossing region, and these curves will be the boundaries of relevant sets. Before be-

ginning this process, we note that the indexing of points which we identify in these

constructions continues from Sections 8.5 and 7.4. Moreover, the fact that we have to

identify points each time a curve crosses the discontinuity boundary, combined with

the large number of curves which we will have to construct, makes the proofs of these

lemmas somewhat long and tedious, and perhaps makes the proofs appear more difficult

than they actually are. Ultimately, the idea behind each of these constructions is the

same: we follow trajectories and use them to define the boundary curves of isolating

neighborhoods.

We prove Theorem 9.6 as the following sequence of lemmas.

Lemma 9.3. The cohomological index of Conley type of the isolated invariant set S0

of Υ0 is C(S0) = {Z, 0, 0, · · · }.
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Proof. We will ultimately see that (N, ∅) is an index pair for S0, but we first must specify

an additional isolating neighborhood M such that N ⊂ int(M). We must take this extra

step–which we would not typically need to do in single-valued systems–because of the

additional restriction placed on index pairs in [32] that the closure of the first element

of the pair with the second one removed must be contained in the interior of an isolating

neighborhood for the invariant set.

Choose µ < 1/2; we will use the point (µ, 0) in order to define the boundary of M in

a manner that is very similar to how (1/2, 0) was used in order to define the boundary

of N . We denote by te the first positive time such that ϕ2(te, µ, 0) returns to the x-axis,

and further denote (xe, 0) := ϕ2(te, µ, 0); note that xe > 3/4. Conveniently, (xe, 0) also

lies in a crossing region, and so Υ0(te + t, xe, 0) is uniquely determined by ϕ1(t, xe, 0)

until this trajectory intersects the x-axis. We now denote by tf the first positive time

such that ϕ1(tf , xe, 0) returns to the x-axis and let (xf , 0) := ϕ1(tf , xe, 0). Since the

x-component of the vector p1(x, 0) is positive for x > 3/4 + 15/4 ∗ ε = υ, the trajectory

of ϕ1 cannot return to the x-axis on this interval, and so xf ∈ (1/2, xb); note that the

lower bound of this interval is determined by the vertical trajectory of p1 at x = 1/2

and the upper bound comes from the fact that trajectories of ϕ1 cannot intersect.

At this point, our method deviates from the one used to define N . We cannot use

a straight line to close the curves defined in the previous paragraph as we did in that

case because we need N ⊂ int(M). Instead, we choose 0 < tff < tf to be small enough

that ϕ1(−t, [µ, xf ] × {0}) lies in the region y > 0 for all t ∈ (0, tff ]; notice that this

is clearly possible because of the linearity of p1. Further note that ϕ1(−tff , [µ, xf ] ×
{0}) is a curve homeomorphic to a closed interval. We define the closed curve C ′ as

the union of the curves ϕ1((−tff , 0), µ, 0), ϕ2([0, te), µ, 0), ϕ2([0, tf − tff ), xe, 0), and

ϕ1(−tff , [µ, xf ] × {0}). We now define M to be the curve C ′ and its interior. We can

verify that M is also an isolating neighborhood in a manner that is almost identical to

proving that N was an isolating neighborhood.

It is clear that N and ∅ are strongly positively invariant with respect to Υ0|M ,

that Inv+(M) ⊂ M \ ∅ = M , and N \ ∅ = N ⊂ int(M). We can further verify

that Inv−(M) ⊂ int(N,M) by examining the backwards time trajectories of points

in M \ int(N). Therefore (N, ∅) is an index pair for M , and M contains an isolated
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invariant set S such that

C(S) = H∗(N, ∅) = {Z, 0, 0, · · · }.

Moreover, since Inv(M) ⊂ Inv−(M) ⊂ N , we have that S = S0.

Lemma 9.4. The attractor A0 in S0 of Υ0 satisfies C(A0) = {Z,Z, 0, 0, 0, · · · }.

Proof. We will not use (NA, ∅) as an index pair for A0–even though H∗(NA, ∅) =

{Z,Z, 0, 0, 0, · · · }–because the restrictive definition of an index pair would further re-

quire finding another isolating neighborhood of A0 that contained NA in its interior.

Because of the location of the sliding region in Welander’s model, it is simpler to con-

struct new sets. However, we are still able to recycle much of the construction of the

curve D–one of the closed curves which bounds the annulus NA–in constructing a new

isolating neighborhood M ′.

Choose a time 0 < tdd < td so that ϕ1(−t, [xd, υ]× {0}) is contained entirely in the

upper-half plane for all t ∈ (0, tdd]; it is clearly possible to do so because p1 is linear. De-

fine the closed curve D′ to be the union of the curves ϕ1((−tdd, 0), υ, 0), ϕ2([0, tc), υ, 0),

ϕ1([0, td − tdd), xc, 0), and ϕ1(−tdd, [xd, υ] × {0}). Let M ′ be the closed annulus that

lies between the curves C ′ and D′, including the curves. It is straightforwards to verify

that M ′ is an isolating neighborhood as we have done with other neighborhoods.

Choose ρ ∈ (xd, υ). Follow ϕ2(t, ρ, 0) until it reaches the x-axis for the first time;

label the time tg and the point (xg, 0). Then follow ϕ1(t, xg, 0) until it reaches the

x-axis; label the time th and the point (xh, 0). Define the curve D′′ as the union of

ϕ2([0, tg), ρ, 0), ϕ1([0, th), xg, 0), and [xh, ρ]× {0}. Further define N ′A to be the annulus

bounded by the curves D′′ and C, including these curves. Then it is routine to verify

that (N ′A, ∅) is an index pair in M ′ because the boundaries of these sets lie completely in

crossing regions or away from the discontinuity boundary. Therefore there is an isolated

invariant set A := Inv(M ′) ⊂ int(N ′A) and

C(A) = {Z,Z, 0, 0, · · · }.

Moreover, since NA ⊂ M ′, we have that Inv(NA) ⊂ Inv(M ′) ⊂ int(N ′A), and therefore

A = A0.
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Lemma 9.5. The dual repeller R0 of A0 in S0 for Υ0 satisfies C(R0) = {0, 0,Z, 0, 0, ...}.

Proof. Let N1 be the disk bounded by the curve D′′ as well as that curve. Let N2 be

the annulus bounded by the curves D′′ and D′ as well as those curves. It is routine to

check that (N1, N2) is an index pair in N1, and so R := Inv(N1) satisfies

C(R) = {0, 0,Z, 0, 0, ...}.

We also notice that R ⊂ N1 \ N2 ⊂ int(NR). Then since NR ⊂ N1 we have that

R = R0.

Finally, combining these lemmas with Theorems 8.2 and 9.3, we obtain Theorem

9.6.

Navigating Sections on Welander’s Model:

• Goals for Welander’s Model, Section 1.2

• Introduction to Welander’s Model and Bifurcation Analysis, Section 3.3

• Perturbation and Welander’s Model, Section 4.7

• Welander’s Model as a Multiflow, Section 5.5

• Welander’s Model as a Well-Parametrized Family of Multiflows, Section 6.2

• Isolating Neighborhood in Welander’s Model, Section 7.4

• Attractor-Repeller Pair Decomposition for Welander’s Model, Section 8.5

• The Conley Index and Welander’s Model, Section 9.5



Chapter 10

Conclusion and Discussion

In this thesis we have demonstrated that Conley’s qualitative theory of isolated invariant

sets can–to some extent–be extended to the setting of piecewise-continuous differential

equations.

Before extending Conley’s theory we first needed to organize these equations in a

manner analogous to the introduction of a flow for classical dynamical systems. We

borrowed from Filippov’s study of piecewise-continuous differential equations and saw

that they may be rephrased as differential inclusions, objects which are better known

for their use in control theory. The introduction of the multiflow object allows us to

organize the solution set of basic differential inclusions, even when the set-valued vector

field under consideration does not satisfy any bounding conditions. Passing then to

the study of multiflows as objects in their own right, we have seen that the orbits

of multiflows are relatively well-behaved, and that we can consider well-parametrized

families of multiflows in order to study perturbed differential inclusions.

With this structure developed we are able to demonstrate that multiflows have some

of the same qualitative structure identified for flows in [7]. We are able to define isolating

neighborhoods for multiflows and demonstrate that they are stable under perturbation.

The associated isolated invariant sets may then be decomposed into attractor-repeller

pairs and so we can understand the limiting behavior of trajectories in these sets. More-

over, this decomposition continues under small perturbations.

In order to actually define the Conley index itself we saw that more structure is

needed than multiflows assume. However, others have developed the Conley index for
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various classes of differential inclusions [9, 20, 32]. Importantly, multiflows assume less

structure than any of these papers demand, and therefore the attractor-repeller pair

decomposition and continuation developed here may be applied to any of the inclusions

studied by [9, 20, 32]. To this end, we have examined [32] in particular because the

development in that manuscript is closest to our goal of studying piecewise-continuous

differential equations. Through a simple observation we extended the class of inclusions

which may be considered by [32] to all basic differential inclusions with linear growth,

and therefore we are able to understand the indices associated to any attractor-repeller

pair decomposition in such systems, and continue this result to nearby systems. This

process was carried out for Welander’s model, hopefully demonstrating the utility of

this theory in the setting of conceptual climate models.

Still, many open questions remain about the structure of multivalued dynamical

systems. We would like to demonstrate that one aspect of the attractor-repeller pair

decomposition not studied in this thesis–the existence of a Lyapunov function–will still

hold in our general setting. Similar results have been established for strongly invariant

sets in [23, 5], and so these papers should be helpful roadmaps in proving the related

result for our (weakly) invariant sets. We would also like to extend the attractor-

repeller pair decomposition to the more general Morse decomposition, as is done in [23]

for strongly invariant sets.

We introduced the notion of an attractor block in Section 8.4, and mention that an

important question surrounding this object remains for multiflows: given an attractor

A in S and a neighborhood U ⊂ S of A, are we guaranteed the existence of an attractor

block B ⊂ U such that ωS(B) = A?

Turning more to the subject of the Conley index itself, we recall that [32] develops

this index for an object called and admissible multivalued flow, which is a multiflow

with the addition of an nonempty criterion and an admissibility criterion. Because the

full solution set of basic differential inclusions does not generally yield a compact-valued

map, and we avoid this issue by restricting to a compact set and removing the nonempty

criterion, we would like to know if it is possible to rephrase the admissibility criterion

while allowing empty images. If so, we should be able to develop a consistent Conley

index for basic differential inclusions without assuming any bounds on the growth.

In Section 9.3 we noted that the index pairs defined in [32] are more restrictive than
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those given in the classic theory. This strengthened hypothesis prevents the existence

of index triples, providing a barrier to the development of connection matrices [29, 30].

Therefore an important avenue of future research would be to understand whether or

not these restrictions may be removed in the multivalued setting, or if there is some

alternative method of constructing the connection matrices. The index defined in [9]

does not have this same restriction on the index pairs and so it is worth pursuing the

existence of index triples and connection matrices for this setting (which we note is a

more restricted class of inclusions than assumed by [32], and may not be applied to

Filippov systems).

On a somewhat different note, we remark that recent work has reframed the structure

of attractors in the algebraic language of lattices and posets [17, 18, 19]. This perspective

has the advantages of being both extremely general and highly computable. At this

time, it is not known that piecewise-continuous differential equations, or differential

inclusions more generally, can fit into this abstract framework, but determining that

result certainly merits future efforts.

Finally, we remark that we would like to actually use the abstract machinery de-

veloped in this thesis in applications. We have applied the theorems given here to one

example–Welander’s ocean box model–but many other conceptual climate models are

also described as Filippov systems [39, 31, 37, 35, 38, 36, 14, 13]. In the future, we

would like to examine what Conley index theory can tell us about these–and many

other–nonsmooth models.
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Appendix A

Appendix

A.1 Uniform Convergence and the Arzelà-Ascoli Theorem

The basic purpose in including this appendix is to state and prove the Arzelà-Ascoli the-

orem that is used repeatedly throughout the manuscript. This theorem–as stated and

proven here, and used throughout this manuscript–gives sufficient conditions (uniform

boundedness and equicontinuity) for a family of functions to contain a uniformly conver-

gent subsequence. This theorem may be substantially generalized, removing hypotheses

on the relevant spaces and also giving necessary conditions, but these generalizations

are not included here because they are not necessary for our results.

To begin, we recall the definition of uniform convergence:

Definition A.1. For a topological space S and a metric space M , a sequence of func-

tions {fn : S →M} converges uniformly to f : S →M if for each ε > 0 there exists

n0 ∈ N such that

dM (fn(x), f(x)) < ε, n > n0

for all x ∈ S.

Without explicitly referencing the limit f , we sometimes say that such a sequence is

uniformly convergent.

The primary reason for considering uniform convergence–as opposed to pointwise

convergence–is that this convergence preserves continuity.
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Property A.1. The limit of a uniformly convergent sequence of continuous functions

is continuous.

We also give a related definition that is used in the proof of the Arzelà-Ascoli theo-

rem.

Definition A.2. For a set S and a metric space M , a sequence of functions {fn : S →
M} is considered to be uniformly Cauchy if for each ε > 0 there is some N > 0 such

that dM (fn(x), fm(x)) < ε for all x ∈ S and m,n > N .

As the following lemma demonstrates, given reasonable hypotheses on S and M ,

these definitions are actually equivalent. The proof is standard and omitted.

Lemma A.1. For a topological space S and a complete metric space M , any uniformly

Cauchy sequence of functions {fn : S →M} converges uniformly.

The following lemma is also used in the proof of the Arzelà-Ascoli theorem; again,

this result is standard in analysis courses and the proof is not given here.

Lemma A.2. Any compact metric space is complete.

The basic hypotheses of the Arzelà-Ascoli Theorem are uniform boundedness and

equicontinuity. We include these definitions here.

Definition A.3. Given a set S and a metric space M , a family of functions {f : S →
M}f∈F is said to be uniformly bounded if there is some m ∈ M and 0 < K < ∞
such that

dM (f(s),m) < K

for all s ∈ S.

Definition A.4. Let P,Q be metric spaces. A family Υ of continuous functions from

P to Q is said to be equicontinuous at a point p0 ∈ P if for each ε > 0 there exists

some δ > 0 such that dP (p0, p) < δ implies that dQ(υ(p0), υ(p)) < ε for each υ ∈ Υ.

The family Υ is said to be equicontinuous if it is equicontinuous at each point.

The family Υ is said to be uniformly equicontinuous if the choice of δ does not

depend on the point p0.
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Theorem A.1 (Arzelà-Ascoli Theorem). Let Υ be a family of continuous functions

from a compact interval I ⊂ R to a compact metric space X. If Υ is equicontinuous,

then there is a sequence {ψn : I → X}∞n=1 ⊂ Υ which converges uniformly on I.

Notice that the assumption that X is compact replaces the usual assumption that

Υ be uniformly bounded, and also guarantees that X is complete.

Proof. Let {ti}∞i=1 be an enumeration of I ∩ Q, the rationals in I. The set of points

{ψ(t1)}ψ∈Υ ⊂ X contains a convergent sequence {ψn1(t1)}∞n1=1 since X is compact. We

use this sequence of points in order to identify the sequence of functions {ψn1}∞n1=1 ⊂ Υ.

We now consider the sequence of points {ψn1(t2)}∞n1=1; again by the compactness

of X, this sequence contains a convergent subsequence {ψn2(t2)}∞n2=1 which we use in

order to identify the subsequence of functions {ψn2}∞n2=1 ⊂ {ψn1}∞n1=1 ⊂ Υ. Notice that

lim
n2→∞

ψn2(t1) = lim
n1→∞

ψn1(t1)

Continuing in this way, for each i ∈ N we inductively identify a sequence {ψni}∞ni=1 ⊂
Υ such that

{ψn1}∞n1=1 ⊃ {ψn2}∞n2=1 ⊃ {ψn3}∞n3=1 ⊃ {ψn4}∞n4=1 ⊃ · · ·

and {ψnk(ti)}∞nk=1 converges for 1 ≤ i ≤ k.

We now take the diagonal sequence {ψn}∞n=1 defined by ψn = ψnn . Notice that

{ψn(ti)}∞n=1 converges for each i ∈ N by construction.

Then for each ε > 0 and tk ∈ I ∩Q, there is some M(ε, tk) such that

dX(ψn(tk), ψm(tk)) ≤ ε/3

for all n,m > M(ε, tk).

By the equicontinuity of Υ, for each t ∈ I there exists some interval Ut ⊂ I containing

t such that

dX(ψ(r), ψ(s)) ≤ ε/3

for each ψ ∈ Υ and r, s ∈ Ut. Because {Ut}t∈I forms an open cover of the compact

interval I, we may choose a finite subcover which we relabel {Up}Pp=1.
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Choose a rational tk(p) ∈ Up for each p and let K > max1≤p≤P k(p). Then because

each t ∈ I lies in Up for some 1 ≤ p ≤ P , we see that for any t ∈ I

dX(ψn(t), ψm(t)) ≤ dX(ψn(t), ψn(tk(p))) + dX(ψn(tk(p)), ψm(tk(p))) + dX(ψm(tk(p)), ψm(t))

≤ ε/3 + ε/3 + ε/3

for each n,m > max1≤k(p)≤K(M(ε, tk(p))). Therefore the sequence {ψn}∞n=1 is Cauchy

continuous and converges uniformly.

The following example shows that the assumption in the Arzèla-Ascoli theorem that

the family of functions in question has a compact domain is necessary.

Example A.1.1. Define the function g : R→ [0, 1] by

g(x) =


0, x ≤ 0

x, 0 < x < 1

1, x ≥ 1

Now let fn(x) := g(x − n). Then the family of functions {fn : R → [0, 1]}∞n=0 is

uniformly bounded and equicontinuous. Additionally, it converges pointwise to the

continuous function f ≡ 0. However, this convergence is not uniform; for each n, we

have that |fn(x)− f(x)| = 1 for x > n+ 2.

This property is somewhat problematic for our applications; because we are in-

terested in invariant sets, the domain of the functions that we are concerned with is

generally R. However, this issue is not catastrophic. In the example above, we notice

that there is still a continuous function which, when restricted to any compact interval,

is the uniform limit of the sequence of functions restricted to that compact interval.

The following lemma–basically a corollary of the Arzèla-Ascoli theorem, and in some

texts actually called the Arzèla-Ascoli theorem–shows that this property is generic in a

sense made specific here.

Lemma A.3. If X is a compact metric space, then for any equicontinuous sequence of
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functions {ψk : R→ X}∞k=1 there is a continuous function

ψ : R→ X

such that on any compact interval [a, b] ⊂ R, there is a subsequence of the restricted

sequence

{ψk|[a,b] : [a, b]→ X}∞k=1

which converges uniformly to ψ|[a,b].

Alternatively, this lemma may be phrased as saying that any family of functions

which meets the assumed hypotheses is compact under the topology of uniform conver-

gence on compacta.

Proof. The idea of this proof is relatively straightforward but may be obfuscated by

indexing, and so we will first sketch the basic intuition. We consider a nested sequence

of compact intervals that grow to encompass all of R. On each interval the Arzela-Ascoli

theorem gives us a uniformly convergent subsequence that limits to a continuous function

defined on that compact interval. In successive steps we take subsequences of the prior

subsequences so that the limit function defined on the larger interval agrees with the

limit function on any smaller interval. Then we use these limit functions in order to

pointwise define the function ψ(·) on all of R that satisfies the desired requirements.

In more detail, the proof goes as follows:

For all k, the function ψk is defined on the interval [−1, 1], and so we can consider

the restricted family {ψk|[−1,1] : [−1, 1] → X}∞k=1. Since this family of functions is

uniformly bounded (the range is X) and equicontinuous, by the Arzela-Ascoli theorem

there is some subsequence {ψki |[−1,1] : [−1, 1]→ X}∞i=1 which converges uniformly to a

continuous function ψ1 : [−1, 1] → X. To avoid any possible confusion, we note that

the superscript used here differentiates functions, and does not denote an exponent.

In the next step, we note that ψki is defined on the interval [−2, 2] for all i, and so we

may consider the uniformly bounded and equicontinuous family {ψki |[−2,2] : [−2, 2] →
X}∞i=1. As in the last step, this has some subsequence which converges to a continuous

function ψ2 : [−2, 2] → X. Here we note that since ψki(t) → x1(t) for t ∈ [−1, 1], we

have that ψ2|[−1,1] ≡ ψ1.
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We iterate this process inductively. That is, at step m we use the subsequence

defined in step (m−1) and then pass to another subsequence that converges on the larger

interval [−m,m]. In this way we get subsequences of {ψk|[−m,m] : [−m,m] → X}∞k=1

which converge uniformly to continuous functions ψm : [−m,m]→ X and satisfy

ψm|[−q,q] ≡ xq

for any q ≤ m.

Finally, we pointwise define the function ψ(t) := ψm(t), where here m is taken to be

the least integer greater than or equal to t. Clearly ψ is continuous. To see that for any

compact interval [a, b] there is a subsequence of the restricted family {ψk|[a,b] : [a, b] →
X}∞k=1 which converges uniformly to ψ|[a,b], take m large enough that [a, b] ⊂ [−m,m]

and use the subsequence from step m of the induction.

A.2 Convex sets and the Carathèodory Theorem

Filippov’s method for studying piecewise-continuous differential equations as differential

inclusions involves taking the convex combination of a finite number of vectors. Here

we examine a few basic facts about convex sets which we require for this technique. The

definitions, results, and proofs in this section are simplified from ones found in [10].

Definition A.5. A set C ⊂ Rn is said to be convex if for every pair of points, x, y ∈ C,

the line segment connecting these points, {αx+ (1− α)y|α ∈ [0, 1]}, is a subset of C.

Definition A.6. A convex combination of a finite number of points {xi}ki=1 ⊂ Rn

is any point of the form

y =

k∑
i=1

αixi

where αi ≥ 0 and
∑k

i=1 αi = 1.

Property A.2. A set is convex if and only if it contains all possible convex combinations

of its points.
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Proof. If a set contains all possible convex combinations of its points then it clearly

contains the line segment connecting any two of its points.

For the other direction we require induction. Let K be convex. If x1, x2 ∈ K, α1

and α2 are both non-negative, and α1 + α2 = 1, then by definition α1x1 + α2x2 ∈ K.

Using this as the basis for our induction, we assume that if {xi}ki=1 ⊂ K, αi ≥ 0 and∑k
i=1 αi = 1, then

∑k
i=1 αixi ∈ K.

Now consider the convex combination
∑k+1

i=1 λiyi of points in K. Define Λ =
∑k

i=1 λi;

notice that trivially
∑k

i=1
λi
Λ = 1 and hence

∑k
i=1

λi
Λ yi ∈ K by our inductive hypothesis.

Therefore

k+1∑
i=1

λiyi = (

k∑
i=1

λiyi) + λk+1yk+1 = Λ(

k∑
i=1

λi
Λ
yi) + (1− Λ)yk+1 ∈ K

since 0 ≤ Λ ≤ 1 and K is convex, proving our result.

Property A.3. The intersection of any collection of convex sets is convex.

Proof. If the intersection is empty or contains only a single point, then the result follows

trivially, and so we examine the case where this intersection contains at least two distinct

points. Since these two points are contained in each set in the collection, the line

between them is also contained in each set in the collection. Therefore that line is in

the intersection, and the intersection is convex.

Given a set K ⊂ Rn, we are often concerned with the minimal convex subset con-

taining K. By minimal we mean that this set is contained in any other convex subset

containing K. A priori it is unclear that such a set exists or that it is unique, but we

can see that both of these statements are true by considering the intersection of all

convex subsets which contain K. This intersection is well-defined and unique, and is

convex by Property A.3. Additionally, it is contained in any other convex subset which

contains K by definition. Therefore this intersection is precisely the minimal convex

subset containing K, and we give it a name in the following definition:

Definition A.7. The convex hull of a set K ⊂ Rn is the unique minimal convex set

in Rn which contains K. We denote the convex hull of K by co(K).
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(a) K is two points. (b) K is three points. (c) K is the upper half unit
circle.

Figure A.1: The convex hull co(K) (blue and purple) of various sets K (blue).

It is immediate that the convex hull of a bounded set is bounded, and we will later

show that the convex hull of a compact set is compact. However, it is not true that the

convex hull of a closed set is closed, as the following example demonstrates:

Example A.2.1. Let K be the set

{(x, y) ∈ R2|y ≥ 1

1 + x2
}

Then co(K) = {(x, y) ∈ R2|y > 0}.

Property A.4. The convex hull of a set K is the set of all possible convex combinations

of points in K.

Proof. Since co(K) is convex, by Property A.2 it contains all possible convex combina-

tions of points in K. Conversely, the set of all possible convex combinations of the set

K is a convex set; if
∑k

i=1 αixi and
∑p

j=1 λjyj are convex combinations of points in K,

then any point on the line between them may be written as

β(
k∑
i=1

αixi) + (1− β)(

p∑
j=1

λjyj) = (

k∑
i=1

βαixi) + (

p∑
j=1

(1− β)λjyj)

which is also a convex combination of points in K since
∑k

i=1 βαi+
∑p

j=1(1−β)λj = 1.

Therefore the set of all convex combinations of points in K contains the intersection of

all convex subsets containing K, which is co(K).

With these properties of convex sets we are now in a position to state and prove one
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of the fundamental results of convex analysis, the Carathèodory theorem.

Theorem A.2 (Carathèodory Theorem). If K is a subset of Rn, then any point in the

convex hull of K may be written as the convex combination of at most n + 1 points in

K. That is, if x ∈ co(K), then there are {xi}n+1
i=1 ⊂ K, αi ≥ 0, and

∑n+1
i=1 αi = 1 such

that

x =
n+1∑
i=1

αixi

Proof. Pick an arbitrary x ∈ co(K). By Property A.4 we may write x as a convex

combination of points in K:

x =
k∑
i=1

αixi

Without loss of generality, assume that αi > 0. If k ≤ n + 1 then there is nothing to

prove so assume that k > n+ 1. Therefore the k − 1 vectors

x2 − x1, x3 − x1, · · · , xk − x1

must be linearly dependent and so we can choose k− 1 real numbers µ2, · · · , µk, not all

of which are zero, such that
k∑
i=2

µi(xi − x1) = 0

Define µ1 :=
∑k

i=2 µi and notice that

k∑
i=1

µixi = µ1x1 +

k∑
i=2

µixi =

k∑
i=2

(−µix1) +

k∑
i=2

µixi =

k∑
i=2

µi(xi − x1) = 0

Also, since
∑k

i=1 µi = 0 and not all µi are zero, we must have that µi > 0 for some i.

Using that fact, we know that there is some j such that

αj
µj

= min
1≤i≤k

{(αi
µi

)|µi > 0}

is a positive number.
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We can therefore write

x =

k∑
i=1

αixi −
αj
µj

k∑
i=1

µixi =

k∑
i=1

(αi −
αj
µj
µi)xi =

k∑
i=1
i 6=j

(αi −
αj
µj
µi)xi

Notice that (αi − αj
µj
µi) ≥ 0 for all i ∈ {1, · · · , k} and that

k∑
i=1
i 6=j

(αi −
αj
µj
µi) =

k∑
i=1

(αi −
αj
µj
µi) =

k∑
i=1

αi −
αj
µj

k∑
i=1

µi = 1− 0

Therefore we have written x as the convex combination of k− 1 points in K. Since our

only assumption on k was that k > n + 1, we can iterate this process until we write x

as the convex combination of at most n+ 1 points in K.

Our interest in the Carathèodory theorem is in showing that the convex hull of a

compact set is compact. To see this corollary, we rephrase the Carathèodory theorem

in order to give an explicit formula for co(K). First, define the map

ζ : Rn(n+1) × [0, 1]n+1 → Rn, (x1, x2, · · · , xn+1, α1, · · · , αn+1) 7→
n+1∑
i=1

αixi

Clearly ζ is continuous.

Notice that we can identify any combination of n + 1 points in the set K with a

single point in K ×K × · · · ×K = Kn+1 ⊂ Rn(n+1). Letting

∆n := {(α1, · · · , αn+1)|αi ≥ 0,

n∑
i=1

αi = 1} ⊂ [0, 1]n+1

the Carathèodory theorem tells us that

co(K) = ζ(Kn+1 ×∆n)

This formula is not particularly useful for computational purposes. What it does,

rather, is allow us to view co(K) as the image of a continuous map. In particular, since
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∆n is a compact set, we see immediately that if K is compact then co(K) is compact.

This corollary is used in reframing piecewise-continuous differential equations as basic

differential inclusions and so we label it here:

Property A.5. The convex hull of a compact set is compact.
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