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Chapter 1: Overview: Background and Significance 

1.1.Overarching sleep and health in older adults  

The prevalence of sleep complaints or sleep disturbances is high among U.S. older 

adults, with approximately 60% of the population reporting sleep complaints including 

trouble with falling asleep, having to wake up at night, waking up too early and not being 

able to fall asleep again, feeling sleepy during the day and not feeling rested in the 

morning1,2. Consequences of not getting enough sleep and sleep disturbances include 

increased risk of fatigue1, falls1, accidents and vehicle crashes3, lower work productivity3, 

and worsened quality of life1. These consequences are exacerbated in older adults, who 

have a host of other medical conditions and functional impairments. For example, studies 

have shown that getting insufficient amount of sleep is associated with chronic diseases 

and conditions such as diabetes4, cardiovascular diseases5, depression6,7 and obesity8. In 

addition, sleep disturbances have also been reported to be associated with functional 

impairments.9   

Sleep health can be measured using 1) self-reported questionnaires such as the 

Pittsburgh Sleep Quality Index, the Karolinska Sleep Diary, the Sleep Timing 

Questionnaire and the Athens Insomnia Scale10–12; 2) overnight polysomnography (PSG) 

and 3) actigraphy. While self-reported questionnaires are the most practical and cost 

efficient method of collecting sleep data for large population-based studies, they may not 

be valid if subjective measures of self-reported sleep data are not the true measures of the 

actual sleep.13 PSG has been used to assess sleep parameters and diagnose sleep apnea, 
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typically performed overnight at a sleep test center or hospital. While PSG has long been 

considered the gold standard method14 to obtain detailed information on objectively 

measures of sleep-disordered breathing (SDB), disturbances of sleep architecture and wake 

and sleep time, PSG has its limitations15 including: 1) sleep measures are only recorded for 

one night thus limiting the data necessary to assess patterns of sleep , 2) it requires highly 

trained staff and appropriate equipment and therefore is expensive to perform, and 3) it is 

inconvenient to patients or study participants to undergo overnight sleep test and 4) sleep 

during the PSG study may not be representative of usual sleep. Recently, with the 

developments and advances in technology, wrist actigraphy watches have become an 

alternative to PSG in sleep studies because they are more affordable than PSG equipment, 

more convenient to patients or study participants, and suitable for long term monitoring 

and collecting sleep-related data.  

1.2.Sleep disordered breathing  

Sleep-disordered breathing (SDB) or sleep apnea, a common disorder, is 

characterized by repeated pauses or reductions in breathing during sleep16. Treatments for 

SDB include the use of a continuous positive airway pressure (CPAP) machine, oral 

appliances therapy, surgery, and weight loss programs through exercise or by changing the 

position of the body while sleeping. According to the American Academy of Sleep 

Medicine (AASM), SDB was present in approximately 24.9 million U.S. adults (12%) in 

2015. Of these 24.9 million, only 5.9 (23.7%) million U.S. adults have received a diagnosis 

of SDB. AASM has also estimated that the direct economic cost of undiagnosed SDB was 

approximately $149.6 billion in 2015, while costs for SDB treatments were estimated to be 
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only 33% of the costs for not diagnosing and treating sleep apnea. Among older adults, the 

prevalence of  SDB is variable, ranging from 6-70% depending on which definition of SDB 

is being used and the populations being studied.17–21 In older community dwelling men, the 

prevalence of SDB was estimated to be 25%.17  Several risk factors have been shown to 

lead to the development and progression of SDB including overweight and obesity, 

increasing age, snoring, non-Caucasian race, sleepiness, male gender, smoking, alcohol use 

and large neck circumference.17,22 Furthermore, SDB has been shown to be associated with 

prevalent and incident cardiovascular disease (CVD) including hypertension, coronary 

heart disease, cardiac conduction abnormalities, heart failure and stroke.23–30 SDB is also 

associated with perioperative complications, motor vehicle accidents, cognitive 

impairment and cognitive decline.22,31,32 Given that SDB is associated with adverse health 

outcomes, especially CVD events, SDB may be associated with higher healthcare costs 

and utilization across a variety of healthcare settings.  If SDB is associated with higher 

subsequent healthcare costs and utilization, future intervention studies would be warranted 

to determine whether treatment of SDB lowers these measures of healthcare burden. 

A number of studies, primarily in younger or middle-aged populations, have 

evaluated the association of SDB and healthcare utilization.33–41 However, previous studies 

were limited by use of cross-sectional or case-control study designs 34–37,40 and inadequate 

control of potential confounders including body mass index (BMI).33,41One study used the 

modified Chronic Disease Score (CDS) as a proxy measure for healthcare utilization41 and 

another study relied on administrative claims for the diagnosis of the obstructive sleep 

apnea (OSA).39 Only three studies focused on older men and results were not consistent 
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between studies. 33,34,39 Given the higher prevalence of SDB in older men, there is a need 

for research evaluating the association of objective measures of SDB with subsequent total 

healthcare costs and utilization in community-dwelling older men. 

1.3.Sleep efficiency 

Sleep efficiency, defined as the percentage of time in bed spent sleeping, is a key 

measure of sleep health and has been shown to decrease with advancing age along with 

total sleep time, another important sleep parameter, defined as total hours per night spent 

sleeping while in bed.42,42–44 Sleep efficiency can be assessed using self-reported 

questionnaires or objectively measured using actigraphy or polysomnography. While both 

short/long sleep duration and sleep efficiency below 70% have been shown to be predictive 

of increased mortality risk in older adults,45,46 it has been proposed that sleep efficiency be 

the primary parameter to be examined and targeted to promote sleep health in older 

adults.47 In addition, reduced sleep efficiency objectively measured by actigraphy is 

associated with impaired cognitive function and higher rates of cognitive decline in both 

older men48 and women49. While some studies have examined sleep efficiency as a 

predictor of adverse health outcomes and conditions, there is a paucity of research that has 

considered sleep efficiency as an outcome measure. Recently, one study by Desjardins et. 

al examined factors associated with sleep efficiency among 2,468 community-dwelling 

Canadians (mean age = 73.7 [SD = 6.1 , range 65-96].50 The study found that pain, nocturia, 

sleep medication use and awakening from bad dreams were all predictive of having a sleep 

efficiency below 80% among elderly people. These results are suggestive; however, this 

study was only cross-sectional and utilized interviews to assess self-reported efficiency 
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rather than objective measures. Given that reduced sleep efficiency is associated with 

increased mortality and cognitive impairment and decline, research is warranted to identify 

predictors of the development of incident reduced sleep efficiency in older adults. For 

example, the development of incident reduced sleep efficiency may be a cause, marker or 

consequence of developing adverse health conditions and diseases. 

1.4.Significance and overview of proposed dissertation aim 

To address current gaps in research presented above, the goals of the proposed 

study are to achieve the following expected outcomes: First, we will estimate the 

prevalence of sleep-disordered breathing and determine the association of SDB with 

subsequent measures of health care utilization and costs in U.S. community-dwelling older 

men. The findings will provide a clearer understanding of the impact of sleep-disordered 

breathing on healthcare costs and inpatient and post-acute care utilization, and possibly 

warrant future intervention studies that would have public health impact to determine 

whether treatment of sleep-disordered breathing lowers these measures of healthcare 

burden. Second, using standard logistic regression, we will examine and identify factors 

that are associated with incident reduced sleep efficiency in U.S. older community-

dwelling men and women. The findings will provide insights on potential modifiable 

predictors of incident reduced sleep efficiency and guide design of future intervention 

studies. Third, we will use machine-learning methods through random forests to identify 

factors of importance in explaining incident reduced sleep efficiency in U.S. older 

community-dwelling men and women. Ultimately, this research proposal will improve our 

understanding of the determinants of the development of incident reduced sleep efficiency 
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in older men and women, and quantify the impact of sleep-disordered breathing on total 

healthcare costs and utilization in older men. 

1.5.Specific Aims 

Aim #1: To determine the association between objective measures of sleep-

disordered breathing using polysomnography and subsequent healthcare costs and 

utilization in older community-dwelling men. 

Hypotheses:  Greater sleep-disordered breathing (as manifested by  higher apnea-

hypopnea index and higher oxygen desaturation index) among older men is associated with 

higher subsequent total health care costs, increased risk of hospital admission and greater 

length of inpatient stay, and increased risk of admission to a post-acute care skilled nursing 

facility 

Aim #2: To identify risk factors for the development of incident reduced sleep 

efficiency (defined as sleep efficiency<70%) using polysomnography measures among 

older men aged 67 years and older with normal sleep efficiency (≥70%) at baseline. 

Hypothesis: We hypothesize that incident reduced sleep efficiency among older 

men is associated with at least one of these risk factors. We will identify potentially 

modifiable characteristics that are independently associated with incident reduced sleep 

efficiency in older men. We will evaluate the following candidate risk factors: older age, 

nonwhite race, low educational level, low physical activity level, current or former smoker, 

alcohol intake ≥ 1 drink/day, higher caffeine intake, use of specific medications 

(antidepressants, benzodiazepines, sleep medications and other (nonbenzodiazepine) 
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sedatives/hypnotics), specific medical conditions and number of conditions (hypertension, 

stroke, angina, myocardial infarction, chronic obstructive pulmonary disease (COPD), 

Parkinson disease, cataracts, rheumatoid arthritis, osteoarthritis, and diabetes mellitus), 

pre-frail and frail status, poorer self-reported health status, functional limitations 

(impairment in Instrumental Activities of Daily Living (IADL)), presence of depressive 

symptoms, presence of anxiety, having trouble sleeping due to pain, nocturia, bad dreams. 

All analyses will be adjusted for baseline sleep efficiency and study enrollment site.  

Aim #3: To identify factors of importance in explaining incident reduced sleep 

efficiency in men aged 67 years and older using machine learning approaches via random 

forests. 

Hypothesis: We hypothesize that specific medical conditions and number of 

conditions will be the most predictive variable with the highest variable importance score. 

The following variables will be candidate predictor variables: older age, nonwhite race, 

low educational level, low physical activity level, current or former smoker, alcohol intake 

≥ 1 drink/day, higher caffeine intake, use of specific medications (antidepressants, 

benzodiazepines, sleep medications and other (nonbenzodiazepine) sedatives/hypnotics), 

specific medical conditions and number of conditions (hypertension, stroke, angina, 

myocardial infarction, chronic obstructive pulmonary disease (COPD), Parkinson disease, 

cataracts, rheumatoid arthritis, osteoarthritis, and diabetes mellitus), pre-frail and frail 

status, poorer self-reported health status, functional limitations (impairment in 

Instrumental Activities of Daily Living (IADL)), presence of depressive symptoms, 
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presence of anxiety, having trouble sleeping due to pain, nocturia, bad dreams. We will 

determine the magnitude of variable importance in the random forest models.  

Aim #4:  To identify risk factors for the development of incident reduced sleep 

efficiency (defined as sleep efficiency<80%) using actigraphy measures among women in 

the 9th decade of life with normal sleep efficiency (≥80%) at baseline. 

Hypothesis: We hypothesize that incident reduced sleep efficiency among older 

women is associated with at least one of these risk factors. We will identify potentially 

modifiable characteristics that are independently associated with incident reduced sleep 

efficiency in older women. We will evaluate the following candidate risk factors: older 

age, nonwhite race, low educational level, low physical activity level, current or former 

smoker, alcohol intake ≥ 1 drink/day, higher caffeine intake, use of specific medications 

(antidepressants, benzodiazepines, sleep medications and other (nonbenzodiazepine) 

sedatives/hypnotics), specific medical conditions and number of conditions (hypertension, 

stroke, angina, myocardial infarction, chronic obstructive pulmonary disease (COPD), 

Parkinson disease, cataracts, rheumatoid arthritis, osteoarthritis, and diabetes mellitus), 

pre-frail and frail status, poorer self-reported health status, functional limitations 

(impairment in Instrumental Activities of Daily Living (IADL)), presence of depressive 

symptoms, presence of anxiety, having trouble sleeping due to pain, nocturia, bad dreams. 

All analyses will be adjusted for baseline sleep efficiency and study enrollment site.  
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Aim #5: To identify factors of importance in explaining incident reduced sleep 

efficiency in women in the 9th decade of life using machine learning approaches via random 

forests. 

Hypothesis: We hypothesize that specific medical conditions and number of 

conditions will be the most predictive variable with the highest variable importance score. 

The following variables will be candidate predictor variables: older age, nonwhite race, 

low educational level, low physical activity level, current or former smoker, alcohol intake 

≥ 1 drink/day, higher caffeine intake, use of specific medications (antidepressants, 

benzodiazepines, sleep medications and other (nonbenzodiazepine) sedatives/hypnotics), 

specific medical conditions and number of conditions (hypertension, stroke, angina, 

myocardial infarction, chronic obstructive pulmonary disease (COPD), Parkinson disease, 

cataracts, rheumatoid arthritis, osteoarthritis, and diabetes mellitus), pre-frail and frail 

status, poorer self-reported health status, functional limitations (impairment in 

Instrumental Activities of Daily Living (IADL)), presence of depressive symptoms, 

presence of anxiety, having trouble sleeping due to pain, nocturia, bad dreams. We will 

determine the magnitude of variable importance in the random forest models. In order to 

address these aims, we will use data from 2 prospective cohort studies of older  

US community-dwelling adults (MrOS (men) and SOF (women)). Data from these two 

studies present a unique opportunity to address the above aims.  
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Chapter 2: Study Designs, Data Collection and Methods 

2.1.Data Source and Study Populations 

2.1.1. The Osteoporotic Fractures in Men (MrOS) study 

The prospective MrOS study recruited 5,994 men aged 65 and older from March 

2000 through April 2002. The MrOS study population consists of community dwelling, 

ambulatory men, who were recruited from six clinical centers in the United States: 

Birmingham, Alabama; the Monongahela Valley near Pittsburgh, Pennsylvania; 

Minneapolis, Minnesota; Palo Alto, California; San Diego, California; and Portland, 

Oregon. The objective of the study is to examine the determinants of fracture risk and other 

age-related conditions in older community-dwelling men i.e. lifestyle, medical and 

nutritional factors, bone mass and geometry, falls, strength and activity, anthropometric 

and neuromuscular measures; and to determine how factures affect quality of life in men. 

The inclusion criteria were: (1) ability to walk without the assistance of another, (2) 

absence of bilateral hip replacements, (3) ability to provide self-reported data, (4) residence 

near a clinical site for the duration of the study, (5) absence of a medical condition that (in 

the judgment of the investigator) would result in imminent death, and (6) ability to 

understand and sign an informed consent. To qualify as an enrollee, the participant had to 

provide written informed consent, complete the self-administered questionnaire (SAQ), 

attend the clinic visit, and complete at least the anthropometric, dual-energy x-ray 

absorptiometry (DEXA), and vertebral X-ray procedures. More details on the study design 
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and recruitment strategies of the MrOS study can be found elsewhere.51,52 Following the 

baseline exam, additional interim visits and sub studies were completed every 1-2 years. 

2.1.2. Outcomes of Sleep Disorders in Older Men (MrOS Sleep) Study 

From December 2003 to March 2005, active MrOS participants were invited to 

participate in the ancillary Outcomes of Sleep Disorders in Older Men (MrOS Sleep) 

Study. The overall aim of the MrOS sleep study was to investigate how sleep disorders 

affect health related outcomes in older men. To be eligible for the enrollment in the sleep 

study, participants had to report not sleeping with continuous positive airway pressure 

(CPAP) or bilevel positive airway pressure (BiPAP) machines, not sleeping with a 

mouthpiece for snoring or sleep apnea in the past three months, not having an open 

tracheotomy, or not using oxygen therapy in the past three months during sleep. Exception 

was given if participant only used CPAP intermittently (< 2 times per week) and was 

willing not to wear the mask so the polysomnography (PSG) recording could be made. Of 

the 5,994 men in the initial MrOS cohort, 3135 (57%) agreed to participate in the Sleep 

Study (exceeding the recruitment goal of 3000 men). 

2.1.3. Linkage of the MrOS cohort to Medicare Claims Files 

Linkage of the MrOS cohort to Medicare Claims Files was completed in 2014, by 

submitting participant social security (SSN) and/or Medicare (HIC) numbers to the Centers 

for Medicare and Medicaid Services (CMS). In order for a linkage between MrOS cohort 

and Medicare claims files to be valid, SSN/HIC exact match was required; and information 

on date of birth (DOB), gender, date of death (if available) and last known residence (ZIP 
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code) from both MrOS cohort and Medicare claims files had to be in sufficient agreement 

with each other. MrOS enrollment began in 2000, and Medicare claims files were requested 

beginning 1/1/1999 in order to have a complete year of data available before the baseline 

MrOS visit. Medicare data was purchased from January 1999 to December 2016. Of the 

5,994 men enrolled in MrOS, linkage to Medicare data was possible for 5,876(98%) of 

MrOS enrollees. 

2.1.4. MrOS Sleep Visit 2 

The second MrOS Sleep Visit (VS2) was completed between 11/10/2009 and 

3/15/2012 at the six MrOS clinical centers: Birmingham, Alabama; the Monongahela 

Valley near Pittsburgh, Pennsylvania; Minneapolis, Minnesota; Palo Alto, California; San 

Diego, California; and Portland, Oregon. All participants who remained active in the MrOS 

study and had usable polysomnography (PSG) and actigraphy data from the baseline MrOS 

Sleep Visit (VS) were eligible to be contacted to participate in the VS2. A special emphasis 

was put on minority recruitment for VS2, so all active minority participants with usable 

PSG and actigraphy data from VS were contacted for participation in VS2. Non-minority 

participants were contacted in random order for enrollment in VS2 until study recruitment 

goals were met. The overall study goal was to obtain usable PSG and actigraphy data on 

1,000 participants at VS2. A total of 1055 participants were seen as part of VS2. 1044 have 

usable actigraphy data, and 1026 have usable PSG data. 1017 participants have both 

usuable actigraphy and usable PSG. 
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2.1.5. The Study of Osteoporotic Fractures in Women (SOF) 

The Study of Osteoporotic Fractures (SOF) is a longitudinal epidemiologic study 

that was conducted to identify the risk factors for osteoporotic fractures in women. Women 

were recruited from four U.S. clinical centers (Baltimore, Maryland; Minneapolis, 

Minnesota; the Monongahela Valley nears Pittsburgh, Pennsylvania; and Portland, 

Oregon).53 The SOF study enrolled 9,704 community-dwelling white women aged 65 years 

and older from 1986-1988. Women were excluded if they were unable to walk without 

assistance, or if they had undergone a previous bilateral hip replacement. Initially African 

American women were excluded from the study due to their low incidence of hip fractures, 

but from 1997-1998, 662 African American women aged 65 years and older were 

recruited.54 

After completion of the baseline clinic visit, additional follow-up visits were 

conducted approximately every 1-4 years. This proposal will utilize actigraphy data from 

the Year 16 (or Visit 8) SOF exam that was conducted between 2002 and 2004; and Year 

20 (or Visit 9). 

2.2.Outcome Measures 

2.2.1. Total healthcare costs 

The primary outcome variable of interest in this study is the annualized total 

healthcare costs, which will be calculated using Medicare claims data as the sum of 

standardized inpatient hospital costs, Part A (an entitlement that provides inpatient 

coverage) paid skilled nursing facility (SNF) costs, outpatient costs, inpatient rehabilitation 
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facility (IRF) costs, and home healthcare costs. Costs for Part A paid SNF stays, for IRF 

stays, home healthcare and outpatient utilizations will be calculated using allowable 

charges for these services in the Medical Provider Analysis and Review (MedPAR) file. 

Standardized costs for hospital stays, SNF and IRF stays will be calculated using 

previously validated and published method. 1–3 All costs will be in U.S. dollars and adjusted 

for healthcare costs inflation to U.S. 2017 dollars. Total healthcare costs will be treated as 

a continuous variable in this proposal. 

 

2.2.2. Incident reduced sleep efficiency 

The second primary outcome variable of interest in this study is the incident 

reduced sleep efficiency. While sleep efficiency is a continuous variable, defined as the 

percent of time scored as sleep during the time in bed, incident reduced sleep efficiency 

will be treated as a dichotomous variable: not having incident reduced sleep efficiency at 

follow-up visit vs. having incident reduced sleep efficiency at follow-up visit. A man is 

considered to have no incident reduced normal sleep efficiency if he had normal sleep 

efficiency (sleep efficiency >= 80) at MrOS sleep visit and still had normal sleep efficiency 

(sleep efficiency >= 80) at MrOS sleep visit 2. Whereas, a man is considered to have 

incident reduced sleep efficiency if he had normal sleep efficiency (sleep efficiency >= 80) 

at MrOS sleep visit and had sleep efficiency < 80 at MrOS sleep visit 2. Likewise, a woman 

is considered to have no incident reduced normal sleep efficiency if she had normal sleep 

efficiency (sleep efficiency >= 80) at SOF visit 8 and still had normal sleep efficiency 
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(sleep efficiency >= 80) at SOF visit 9. Whereas, a woman is considered to have incident 

reduced normal sleep efficiency if she had normal sleep efficiency (sleep efficiency >= 80) 

at SOF visit 8 and had sleep efficiency < 80 at SOF visit 9. In MrOS, sleep efficiency 

measures were obtained from both in-home sleep studies using unattended 

polysomnography (Safiro, Compumedics, Inc., Melbourne, Australia) and the Octagonal 

Sleep Watch actigraphy, or SleepWatch-O, (Ambulatory Monitoring, Inc, Ardsley, NY). 

However, in this proposal, polysomnography sleep efficiency measures in MrOS men will 

be used because there was a change in the type of actigraphy watch utilized between the 

MrOS sleep visit 1 and the follow-up MrOS sleep visit 2. For women, however, actigraphy 

sleep efficiency measures will be used in this proposal. 

2.2.3. Hospitalizations 

2.2.3.1. All-cause hospitalizations 

The first secondary outcome variable of interest in this study is all-cause 

hospitalizations during the three year follow-up period post MrOS sleep visit 1. All-cause 

hospitalizations will be treated as a dichotomous variable: no all-cause hospitalizations 

during the three-year follow-up post MrOS sleep visit vs. at least one all-cause 

hospitalization during the three-year follow-up period post MrOS sleep visit. Indicator of 

all-cause hospitalizations will be defined as having at least one acute short stay in the 

MedPar file.  

2.2.3.2. Hospitalizations due to cardiovascular diseases (CVD)  
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Another secondary outcome variable of interest in this study is CVD 

hospitalizations. CVD hospitalizations will be treated as a dichotomous variable: not 

having CVD hospitalizations during the three year follow-up post MrOS sleep visit vs. 

having CVD hospitalizations during the three year follow-up post MrOS sleep visit. CVD 

hospitalizations will be identified using Medicare inpatient claims data. CVD will include 

coronary heart disease, congestive heart failure, myocardial infarction and cerebrovascular 

accident (stroke). The international Classification of Diseases, Ninth Revision (ICD-9-

CM) will be used to identify these CVD events from claims data. A CVD-related 

hospitalization will be defined as a hospitalization with a primary or secondary discharge 

diagnosis of coronary heart disease (ICD-9-CM codes 414.xx), congestive heart failure 

(ICD-9-CM codes 398.91, 428.0), myocardial infarction (ICD-9-CM codes 410.xx, 412, 

429.7x) and cerebrovascular accident (stroke) (ICD-9-CM codes 433.xx, 434.xx). 

2.2.3.3 Length of stays 

The third secondary outcome variable of interest in this study is length of hospital 

stays. The hospital stays variable will be determined from MedPar file and is defined as 

total days spent as an inpatient during the three-year follow-up post MrOS sleep visit. 

Length of hospital stays will be calculated using the difference between discharge date and 

admission date for inpatient service. If a discharge date is missing then length of hospital 

stays will be replaced by an already created length of stays in the Medpar file. 

2.2.3.4 Admissions to post-acute skilled nursing facilities (SNF) 



 
25 

Admissions to the post-acute skilled nursing facilities will be used as another 

measure of healthcare utilization in this proposal. Admissions to post-acute SNF will be 

treated as a dichotomous outcome: not having admissions to post-acute SNF vs. having 

admissions to post-acute SNF in the three-year period post MrOS sleep visit. Status of 

having at least one admission to post-acute SNF will be identified from the MedPar file. 

2.3.Independent Variables 

2.3.1. Independent variables for Aim #1 

2.3.1.1. Primary independent variables 

The primary independent variables in this proposal are the apnea-hypopnea index 

(AHI) and oxygen desaturation index (ODI). They are measures of sleep-disordered 

breathing. AHI will be defined as the average number of apneas and hypopneas per hour 

of sleep. Apneas are defined as a complete or almost complete cessation of airflow for 

more than 10 seconds. Hypopneas are defined as a >30% reduction in amplitude of either 

respiratory effort or airflow for more than 10 seconds associated with an oxygen 

desaturation of ≥4%.4 

Severity of sleep apnea will be treated as a categorical variable with three 

categories: normal if AHI < 5; mild if AHI is between 5 and 15; and moderate to severe 

sleep apnea if AHI is ≥15.5 

ODI is the mean number of oxygen desaturation events (≥4% decrease in peripheral 

capillary oxygen saturation [SpO2]) per hour of sleep. ODI will be treated as a categorical 
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variable with four categories to indicate severity of ODI: normal if ODI ≤5; mild if 5 < 

ODI  ≤ 10; moderate if 10 < ODI ≤ 15; and severe if ODI > 15.6  

This proposal will also consider two other measures of sleep-disordered breathing: 

1) percent of sleep time with SpO2 <90% [%TST<90] and 2) obstructive sleep apnea 

(OSA), which is calculated as the sum of obstructive apneas (excluding central apneas) 

plus hypopneas associated with a ≥4% desaturation. Similar to the primary measures of 

sleep-disordered breathing, %TST<90 and OSA will be treated as categorical variables to 

indicate severity of SDB. Severity of %TST<90 (also known as nocturnal hypoxemia) will 

be categorized as normal if %TST<90 is less than 1%; mild if %TST<90 is between 1% 

and 3.5%; and at least moderate if %TST<90 is at least 3.5%. OSA will have the same 

cutpoints as AHI i.e. normal if OSA < 5; mild if OSA is between 5 and 15; and moderate 

to severe sleep apnea if OSA is ≥15.  

2.3.1.2. Other covariates for Aim #1 

The potential confounders related to aim #1 based on previous studies7–10 and 

availability in the data sets are as follows: 

Socio-demographic characteristics:  

These include age, race/ethnicity, education, and clinical sites. Age will be treated 

as a continuous variable and measured in years. Race/ethnicity will be treated as a 

dichotomous variable: Non-Hispanic White vs. Other. Education will be treated as a three 

level categorical variable: less than high school, high school and beyond high school. 

Clinical sites will be treated as a categorical variable to indicate six clinical study sites: 
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Birmingham, Alabama; the Monongahela Valley near Pittsburgh, Pennsylvania; 

Minneapolis, Minnesota; Palo Alto, California; San Diego, California; and Portland, 

Oregon.  

Body composition and health-related clinical characteristics:  

These include body mass index, self-reported health status, smoking status, 

physician diagnosis of diabetes, hypertension, chronic obstructive pulmonary disease 

(COPD), and cardiovascular diseases (CVD). CVD will be defined as having any of these 

self-reported conditions: coronary heart disease, stroke or congestive heart failure, where 

coronary heart disease is defined as having any of these conditions: angina, myocardial 

infarction, angioplasty, or coronary artery bypass. A participant is considered to have 

hypertension if he reported having hypertension or using anti-hypertensive medications or 

having systolic blood pressure ≥140 mmHg or having diastolic blood pressure ≥90 

mmHg.11 Body mass index will be calculated as weight in kilograms divided by the square 

of height in meters, and treated as a continuous variable. Self-reported health status will be 

treated as categorical variable with three categories: fair, poor or very poor, and 

good/excellent. 

History of smoking status will be treated as categorical variable with three levels: 

never, past or current. History of having diabetes, hypertension, COPD and CVD will be 

treated as dichotomous variables: history of not having diabetes, hypertension, COPD or 

CVD vs. history of having these conditions. 

2.3.2. Independent variables for Aims #2,3,4,5 
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The potential predictors of interest related to aim #2,3,4,5 based on previous studies 

12,13 and availability in the data sets are as follows: age, race, educational level, physical 

activity level, history of smoking status, alcohol intake, caffeine intake, use of specific 

medications (antidepressants, benzodiazepines, sleep medications and other 

(nonbenzodiazepine) sedatives/hypnotics), specific medical conditions and number of 

conditions (hypertension, stroke, angina, myocardial infarction, chronic obstructive 

pulmonary disease (COPD), Parkinson disease, cataracts, rheumatoid arthritis, 

osteoarthritis, and diabetes mellitus), pre-frail and frail status, poorer self-reported health 

status, functional limitations (impairment in Instrumental Activities of Daily Living 

(IADL)), depressive symptoms,  anxiety, trouble sleeping due to pain, nocturia, bad 

dreams. 

Demographic and lifestyle factors: 

Age will be defined at age at MrOS sleep visit 1 for men and at SOF visit 8 for 

women. It will be treated as a continuous variable measured in years. Race/ethnicity for 

both men and women in MrOS and SOF will categorized as Non-Hispanic white vs. Others 

and treated as a 2 level categorical variable. Educational level will be defined as the highest 

education obtained and be expressed as a categorical variable with three levels: less than 

high school, high school, and college or more. Low physical activity will be defined using 

self-report of never walking for exercise and never engaging in vigorous activity (e.g. 

regular activity long enough to break a sweat). It will be treated as a dichotomous variable: 

low physical activity vs. normal physical activity. History of smoking will be self-reported 

and treated as a categorical variable with two categories: past/current vs. never. Alcohol 
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use  (including beer, wine or mixed drinks) in the past 30 days will be self-reported and 

treated as a categorical variable with two categories: no alcoholic drinks in the past 30 days 

vs. at least 1 alcoholic drink in the past 30 days. The amount of caffeine intake will be 

treated as a continuous variable and measured in mg/day.  

Use of medications: 

Use of antidepressants, benzodiazepines, and other (non-benzodiazepine) 

sedatives/hypnotics will be self-reported and treated as categorical variables with two 

categories: current use of medications in a given medication class vs. non-user of 

medications in a given medication class.   

Self-reported medical conditions: 

Self-reported medical conditions will be categorical variable (present/absent) and  

include hypertension, stroke, angina, myocardial infarction, chronic obstructive pulmonary 

disease (COPD), Parkinson disease, cataracts, rheumatoid arthritis, osteoarthritis, and 

diabetes mellitus. We will examinine multimorbidity (multiple medical conditions) as a 

predictor and express it as the sum of the medical conditions present (e.g. no condition, 1 

condition, 2 condition, 3 or more conditions) 

Frailty will be defined using the SOF index14 and will be identified if data is 

available for at least two of the following three components of SOF frailty index: 1) 

indication of weight loss of ≥5% between SOF visit 6 (Year 10) and SOF visit 8(Year 16) 

for women and between MrOS baseline visit and first MrOS sleep visit for men, regardless 

of whether a woman/man was trying to lose weight or not; 2) indication of being unable to 
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stand up from a chair five times without using the arms; and 3) indication of having poor 

energy will be identified by an answer of “No” to the question “Do you feel full of 

energy?”. A man/woman will be classified as having robust status if he/she has none of 

these three components, intermediate (pre-frail) status if he/she has 1 component, and frail 

status if he/she has at least 2 components. Thus frailty status will be treated as a categorical 

variable with 3 levels: robust vs. intermediate (pre-frail) vs. frail.  

Overall health status will be self-reported and treated as a binary variable 

(excellent/good health vs. fair/poor/very poor health).  

Impairment in Instrumental Activities of Daily Living (IADL) will be defined based 

on answers of yes/no to having difficulty of doing the following five activities: heavy 

housework, walking 2 to 3 blocks, climbing 10 stairs, shopping for groceries or clothing, 

and preparing meals on his/her own.15,16 A person is considered to have an IADL 

impairment if they reported difficulty on at least one activity, and no IADL impairment is 

they responded no to all questions.    

Mental and physical health: 

The short form Geriatric Depression Scale (GDS-15), with values from 1 to 15, is 

a validated questionnaire17–19 that has been widely used in the literature to measure 

depression disorder among older adults20. We will use a standard clinical cutoff, i.e. a 

person has depression if their GDS-15 score is at least 6.19 Thus, depression will be defined 

as a categorical variable with two categories: having depression (GDS-15 score ≥6) vs. not 

having depression (GDS-15 score < 6). Anxiety level will be defined using the Goldberg 
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anxiety score 21 A person is considered to have significant anxiety symptoms if their 

Goldberg anxiety score is ≥521. Thus anxiety will be treated as a categorical variable with 

two categories: significant anxiety symptom vs. not. 

Sleep habits: 

Trouble sleeping due to 1) pain, 2) nocturia, and 3) bad dreams will be self-reported 

and treated as three separate categorical variables. These variables will be based answers 

to questions “During the past month, how often have you had trouble sleeping because you 

have pain/nocturia/bad dreams?” The answers will be: 1) no trouble sleeping during the 

past month, 2) less than once a week, 2) once or twice a week, and 3) three or more times 

a week. A man/woman will be categorized as having no trouble sleeping during the past 

month due to pain/nocturia/bad dreams vs. at least some trouble sleeping due to 

pain/nocturia/bad dreams (combining less than once a week, once or twice a week, and 

three or more times a week).  

Baseline sleep efficiency: 

Baseline sleep efficiency will be defined as the percent of time scored as sleep 

during the time in bed and will be treated as a continuous variable. 
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Table 2.1: Study variable definition and operationalization 

 
Variable  Definition Operationalization 
Outcome/Dependent 
variables 

  

Total healthcare costs Sum of standardized inpatient hospital 
costs, Part A (an entitlement that 
provides inpatient coverage) paid skilled 
nursing facility (SNF) costs, outpatient 
costs, inpatient rehabilitation facility 
(IRF) costs, and home healthcare costs. 

Continuous: 
Expressed in whole U.S. dollars, adjusted for 
2017 healthcare costs.  

Incident reduced 
sleep efficiency 

A man is considered to have incident 
reduced normal sleep efficiency if he had 
normal sleep efficiency (sleep efficiency 
>= 80) at MrOS sleep visit and had sleep 
efficiency < 80 at MrOS sleep visit 2. 
 
A woman is considered to have incident 
reduced normal sleep efficiency if she 
had normal sleep efficiency (sleep 
efficiency >= 80) at SOF visit 8 and had 
sleep efficiency < 80 at SOF visit 9. 

Categorical: 
1: Having incident reduced sleep efficiency 
(sleep efficiency >=80) 
0: Not having incident reduced sleep efficiency 
(sleep efficiency < 80) 
 
Sleep efficiency measures for MrOS men were 
calculated using polysomnography. 
Sleep efficiency measures for SOF women 
were recorded using actigraphy watches. 

All-cause 
hospitalizations 

Defined as having at least one acute short 
stay in the MedPar file. 

Categorical: 
1: Having all-cause hospitalizations in the 
three year follow-up post MrOS sleep visit 1 
0: Not having all-cause hospitalizations in the 
three year follow-up post MrOS sleep visit 1 
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Hospitalizations due 
to cardiovascular 
diseases (CVD) 

Defined as a hospitalization that had a 
primary or secondary discharge diagnosis 
of coronary heart disease (ICD-9 codes 
414.xx), congestive heart failure (ICD-9 
codes 398.91, 428.0), myocardial 
infarction (ICD-9 codes 410.xx, 412, 
429.7x) and cerebrovascular accident 
(stroke) (ICD-9 codes 433.xx, 434.xx). 
 

Categorical: 
1: Having CVD hospitalizations in the three 
year follow-up post MrOS sleep visit 1 
0: Not having CVD hospitalizations in the 
three year follow-up post MrOS sleep visit 1 
 

Length of stays Defined as total days spent as an 
inpatient during the three-year follow-up 
post MrOS sleep visit. 

Continuous: 
Unit in days. 

Admissions to post-
acute skilled nursing 
facilities (SNF) 

Defined as an indicator of having 
admissions to acute SNF in the three-year 
period post MrOS sleep visit. 
Identified from the MedPar file. 

Categorical: 
1: Having SNF admission 
0: Nott having SNF admission 
 

Independent 
variables 

  

Independent 
variables for Aim #1 

  

Age Age in years at the time of MrOS sleep 
visit 

Continuous: 
Unit in years 

Race Race and ethnicity of MrOS men Categorical: 
0: White 
1: Non-white 

Education Highest education level obtained Categorical: 
0: Less than high school 
1: High school 
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2: Beyond high school 
Clinic sites Clinical visit sites where MrOS 

participants were  
Categorical: 
0: Birmingham, Alabama 
1: Pittsburgh, Pennsylvania 
2: Minneapolis, Minnesota 
3: Palo Alto, California 
3: San Diego, California 
4: Portland, Oregon 

Body mass index 
(BMI) 

BMI of MrOS men defined as weight in 
kilograms (kg) divided by his height in 
meters squared 

Continuous: 
Unit in kg/m2 

  
Self-reported health 
status 

Health condition compared to others as 
perceived by men at MrOS sleep visit 

Categorical: 
0: Good/excellent 
1: Fair 
2: Poor/very poor 

Smoking status History of smoking status of MrOS men 
at the 1st MrOS sleep visit 

Categorical: 
0: Never smoked 
1: Past smoker 
2: Current smoker 

Diabetes mellitus Self-reported physician diagnosis of 
diabetes at the time of MrOS sleep visit 
based on question “Have you ever had 
diabetes?” 

Categorical: 
0: No 
1: Yes 

Hypertension History of having hypertension based on 
question “have you ever had 
hypertension” or based on history of anti-
hypertensive medications or based on 
having systolic blood pressure ≥140 

Categorical: 
0: No hypertension 
1: Had hypertension 
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mmHg or having diastolic blood pressure 
≥90 mmHg 

Chronic obstructive 
pulmonary disease 
(COPD) 

Self-reported history of having COPD 
based on question “Have you had 
COPD?” 

Categorical: 
0: No 
1: Yes 

Cardiovascular 
diseases (CVD) 

History of having CVD defined as having 
any of these conditions: coronary heart 
disease, stroke or congestive heart failure  

Categorical: 
0: No CVD 
1: Had CVD 

Primary predictors 
for Aim#1 

  

Apnea-hypopnea 
index (AHI) 

Defined as the average number of apneas 
and hypopneas per hour of sleep 

Categorical: 
0: Normal if AHI < 5;  
1: Mild if AHI is between 5 and 15 
2: Moderate to severe sleep apnea if AHI is 
≥15 

Oxygen desaturation 
index (ODI) 

Defined as the mean number of oxygen 
desaturation events (≥4% decrease in 
peripheral capillary oxygen saturation 
[SpO2]) per hour of sleep 

Categorical: 
0: Normal if ODI ≤5 
1: Mild if 5 < ODI  ≤ 10 
2: Moderate if 10 < ODI ≤ 15 
3: Severe if ODI > 15 

Secondary 
predictors for Aim 
#1 

  

Hypoxemia Defined as the percent percent of sleep 
time with oxygen desaturation events 
<90% 

Categorical: 
0: Normal if ODI ≤5 
1: Mild if 5 < ODI  ≤ 10 
2: Moderate if 10 < ODI ≤ 15 
3: Severe if ODI > 15 
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Obstructive sleep 
apnea (OSA) 

Defined as the sum of obstructive apneas 
(excluding central apneas) plus 
hypopneas associated with a ≥4% 
desaturation 

Categorical: 
0: Normal if OSA < 5;  
1: Mild if OSA is between 5 and 15 
2: Moderate to severe sleep apnea if OSA is 
≥15 

Independent 
variables for Aim 
#2,3,4,5 

  

Age Defined as age in years for MrOS men at 
MrOS sleep visit 1 and age in years for 
SOF women at SOF visit 8 

Continuous: 
Unit in years 

Race Race and ethnicity of MrOS men and 
SOF women 

Categorical: 
0: White 
1: Non-white 

Education Highest education level obtained Categorical: 
0: Less than high school 
1: High school 
2: College or more 

Low physical activity 
level 

Defined using self-report of never 
walking for exercise and never engaging 
in vigorous activity (e.g. regular activity 
long enough to break a sweat). 

Categorical: 
0: Normal physical activity level 
1: Low physical activity level 

Smoking status Defined as self-reported history of 
smoking status 

Categorical: 
0: Never smoked 
1: Past/Current smoker 

Alcohol intake Defined as the number of alcoholic 
beverages in the past 30 days.  

Categorical: 
0: No alcoholic drinks in the past 30 days 
1: At least 1 alcoholic drink in the past 30 days 
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caffeine intake Defined as the amount of caffeine intake, 
measured in mg/day 

Continuous: 
Unit in mg/day 

Use of 
antidepressants 

Defined as history of use of 
antidepressants based on question “Have 
you used antidepressants?”  

Categorical: 
0: No 
1: Yes 

Use of 
benzodiazepines 

Defined as history of use of 
benzodiazepines based on question 
“Have you used benzodiazepines?” 

Categorical: 
0: No 
1: Yes 

Use of sleep 
medications 

Defined as history of use of sleep 
medications based on question “Have 
you used sleep medications?” 

Categorical: 
0: No 
1: Yes 

Use of other 
(nonbenzodiazepine) 
sedatives/hypnotics 

Defined as history of use of 
(nonbenzodiazepine) sedatives/hypnotics 
based on question “Have you used other 
(nonbenzodiazepine) 
sedatives/hypnotics?” 

Categorical: 
0: No 
1: Yes 

Hypertension Self-reported physician diagnosis of 
hypertension at the time of MrOS sleep 
visit or SOF visit 8 based on question 
“Have you ever had hypertension?” 

Categorical: 
0: No 
1: Yes 

Stroke Self-reported physician diagnosis of 
stroke at the time of MrOS sleep visit or 
SOF visit 8 based on question “Have you 
ever had stroke?” 

Categorical: 
0: No 
1: Yes 

Angina Self-reported physician diagnosis of 
angina at the time of MrOS sleep visit or 
SOF visit 8 based on question “Have you 
ever had angina?” 

Categorical: 
0: No 
1: Yes 
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Myocardial infarction Self-reported physician diagnosis of 
myocardial infarction at the time of 
MrOS sleep visit or SOF visit 8 based on 
question “Have you ever had myocardial 
infarction?” 

Categorical: 
0: No 
1: Yes 

COPD Self-reported physician diagnosis of 
COPD at the time of MrOS sleep visit or 
SOF visit 8 based on question “Have you 
ever had COPD?” 

Categorical: 
0: No 
1: Yes 

Parkinson disease Self-reported physician diagnosis of 
Parkinson disease at the time of MrOS 
sleep visit or SOF visit 8 based on 
question “Have you ever had Parkinson 
disease?” 

Categorical: 
0: No 
1: Yes 

Cataracts Self-reported physician diagnosis of 
cataracts at the time of MrOS sleep visit 
or SOF visit 8 based on question “Have 
you ever had cataracts?” 

Categorical: 
0: No 
1: Yes 

Rheumatoid arthritis Self-reported physician diagnosis of 
rheumatoid arthritis at the time of MrOS 
sleep visit or SOF visit 8 based on 
question “Have you ever had rheumatoid 
arthritis?” 

Categorical: 
0: No 
1: Yes 

Osteoarthritis Self-reported physician diagnosis of 
osteoarthritis at the time of MrOS sleep 
visit or SOF visit 8 based on question 
“Have you ever had osteoarthritis?” 

Categorical: 
0: No 
1: Yes 
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Diabetes mellitus Self-reported physician diagnosis of 
diabetes mellitus at the time of MrOS 
sleep visit or SOF visit 8 based on 
question “Have you ever had diabetes 
mellitus?” 

Categorical: 
0: No 
1: Yes 

Frailty Defined using SOF Frailty index71 using: 
1) weight loss of > 5% between SOF visit 
6 (Year 10) and SOF visit 8(Year 16) for 
SOF and between MrOS baseline visit 
and first MrOS sleep visit for MrOS, 
regardless of whether a woman/man was 
trying to lose weight or not; 2) indication 
of being unable to stand up from a chair 
five times without using the arms; and 3) 
indication of having poor energy 

Categorical: 
0: Robust for having 0 components 
1: Pre-frail for having 1 component 
2: Frail for having at least 2 components 

Self-reported health 
status 

Health condition compared to others as 
perceived by men at MrOS sleep visit 
and by SOF women at SOF visit 8 

Categorical: 
0: Good/excellent 
2: Fair/Poor/very poor 

Instrumental 
Activities of Daily 
Living(IADL) 

Defined by sum of scores of yes/no to 
having difficulty of doing the following 
five activities: heavy housework, walking 
2 to 3 blocks, climbing 10 stairs, 
shopping for groceries or clothing, and 
preparing meals on his/her own 

Categorical: 
0: No IADL impairment if score of IADL = 0 
1: Having IADL Impairment if score of IADL 
>= 1 

Depression Depression is defined using the Geriatric 
Depression Scale (GDS) from 1 to 15. A 
man/woman with GDS-15 score of at 
least is considered to have depression. 

Categorical: 
0: No depression if GGS-15 score < 6 
1: Having depression if GDS-15score ≥ 5  
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Anxiety Anxiety level will be defined using the 
Goldberg anxiety score with the highest 
score of 9. 

Categorical: 
0: No anxiety if Goldberg anxiety score < 5 
1: Having anxiety if Goldberg anxiety score ≥5 

Trouble sleeping due 
to pain 

Defined as history of trouble sleeping due 
to pain 

Categorical: 
0: No 
1: Yes 

Trouble sleeping due 
to nocturia 

Defined as history of trouble sleeping due 
to nocturia 

Categorical: 
0: No 
1: Yes 

Trouble sleeping due 
to bad dreams 

Defined as history of trouble sleeping due 
to bad dreams 

Categorical: 
0: No 
1: Yes 

Baseline  sleep 
efficiency 

Defined as the percent of time scored as 
sleep as a fraction of total time in bed  

Continuous: 
No unit  
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2.4.Analytical Plans 

2.4.1. Proposed analytical plans for Aim #1: 

Descriptive statistics including means, standard deviations, medians, interquartile 

ranges and correlations for continuous variables and frequency distributions consisting of 

numbers and percentages for categorical variables will be used to summarize the 

descriptive information of the outcome and independent variables.  

Analysis of variance (ANOVA) will be used to examine relationships between SDB 

measures and characteristics at baseline sleep visit when these characteristics are 

continuous and normally distributed variables. For continuous variables at baseline sleep 

visit, whose distributions are skewed (median < mean), non-parametric Kruskal-Wallis 

tests will be used. 

Chi-square or Fisher’s exact tests will be used to examine relationships between 

SDB measures and characteristics of men at the baseline sleep visit that are categorical 

variables. 

Multivariable regression models will be used to examine the associations of 

annualized total healthcare costs, outpatient costs, all-cause hospitalizations, CVD 

hospitalizations, admissions to SNF’s, and length of stay with SDB measures. Specifically, 

generalized linear models (GLMs) with log link and gamma distribution, based on the 

preliminary results of the Modified Park23 and Pregibon link24 tests to account for highly 

right-skewed distributions of total healthcare and outpatient costs, will be utilized to 
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examine the associations between annualized total healthcare costs, outpatient costs and 

SDB. Multivariable logistic regression models will be used to look at the relationships 

between all-cause hospitalizations, CVD hospitalizations, admissions to SNF’s with SDB. 

Two-part Hurdle models25 will be employed to examine the relationships between length 

of stay in post-acute facilities and SDB. 

Analyses will be conducted using SAS version 9.4 (SAS Institute Inc., Cary, NC) 

or Stata, version 14 (StataCorp LLC, College Station, Texas). All significance levels 

reported will be two-sided with p-value < 0.05 for significance. 

Generalized linear models (GLMs) to model total healthcare and outpatient 

costs data: 

It has been shown that healthcare costs data are highly right-skewed due to the 

disproportionally high costs of few patients with severe medical conditions relative to the 

majority of patients.26,27  Thus describing the distributions of healthcare costs data using 

standard approaches and appropriately choosing the right modelling techniques for these 

highly right-skewed healthcare costs data can be challenging .26 The traditional general 

linear models require that the distributions of the residuals be normally distributed and that 

the residuals have equal variance (also known as homoscedasticity). However, these two 

assumptions will be violated when modelling healthcare costs data due to two reasons: 1) 

healthcare costs data is not normally distributed and 2) variance is not constant (violating 

homoscedasticity assumption), and has been shown to be directly proportional the square 

root of the mean healthcare costs.27 A few non-parametric methods, for example smearing, 
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have been developed by Duan et al to address problems with modelling highly right-

skewed healthcare costs data.28 However, very few nonparametric methods can be used to 

examine the impact of covariates on healthcare costs.29 The most commonly used method 

to deal with healthcare costs data is by first transforming healthcare costs data to log scale, 

and then using ordinary least square (OLS) regression30 to estimate the effects of covariates 

on healthcare costs, then finally exponentiating the parameter estimates to get the values 

on the original dollar scale. However, log-transforming healthcare costs dollars then re-

transforming parameter estimates to get to the exact dollar value can result in biased-

estimates of the effects of independent variables on the original healthcare costs dollar.23    

The generalized linear models (GLMs) are an extension of the general linear 

model.31 GLMs are characterized by three components: 1) the linear predictor ƞi = β0 + 

β1x1 + …+ βpxp; where β0,…, βp are the regression coefficients; x1, …, xp represent a list of 

covariates; 2) a link function that describes the mean of the continuous outcome variable 

of interest, E(Yi) = μi , depends on the linear predictor: g(μi) = ƞi; and 3) a variance function 

that describes the variance, var(Yi) depends on the mean: var(Yi) = ϕV(μi); where ϕ is the 

dispersion parameter and is a constant. In GLMs, the dependent variable Yi, is assumed to 

be independently distributed, and in this proposal Yi is total healthcare or outpatient costs. 

However, Yi does not need to be normally distributed as in general linear model, and is 

assumed to follow an exponential family (including binomial, normal (Gaussian), 

multinomial, Poisson, etc). Some attractive features of GLMs include their ability to deal 

with continuous outcome variables whose variance is a function of the mean, and their 

elimination of back transformation of the model parameter estimates.26 Thus GLMs have 



 
44 

been proposed to be the solutions to modelling healthcare costs data due to these appealing 

features. Importantly, the incorporation of Gamma distribution and log link function into 

GLMs to facilitate in interpreting parameter estimates26,32 accommodates the skewness 

nature of healthcare costs data. 

The Modified Park32 test will be used to determine the relationship between raw-

scale mean and variance functions in order choose the correct exponential family in GLMs. 

The Pregibon link test will be used to choose the correct link function. Preliminary data 

suggests that total healthcare and outpatient costs will be modelled using an exponential 

family of gamma distribution with log link. 

Multivariate Logistic Regression: 

The other outcomes of Aim#1 include binary dependent variables (yes/no): all-

cause hospitalizations, CVD hospitalizations, admissions to SNF’s. Thus multivariable 

logistic regression will be used to model the probability of these events occurring in this 

proposal. Logistic regression is a special case of GLMs and it models to log odds of the 

event happening as a linear combination of one or more independent variables.33 In the 

context of GLMs, 1) the distribution of the dependent variable Yi follows a binomial 

distribution Binomial (n, 𝜋𝜋𝑖𝑖), where n is the total number of observations and 𝜋𝜋𝑖𝑖 is the 

probability of having the event happening i.e. all-cause hospitalizations, CVD 

hospitalizations, admissions to SNF’s, 2) the linear predictor ƞi = β0 + β1x1 + …+ βpxp; 

where β0,…, βp are the regression coefficients; x1, …, xp represent a list of covariates; and 

3) the logit link function ƞ=𝑙𝑙𝑙𝑙𝑙𝑙 � 𝜋𝜋
1−𝜋𝜋

� =  𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜋𝜋) 
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Hurdle Regression to model length of stay: 

Length of stay in post-acute care facilities is an indicator of recovery time for a 

patient treated for a condition in the hospital. It can also be considered as a measure of 

healthcare resource consumption and of hospital performance.34 Length of stay in post-

acute care facilities measured in days is considered to be count data that is characterized 

by having a significantly large proportion of zeros, high variability and over-dispersion in 

the data. Thus dealing with count data with these characteristics poses significant 

modelling challenges. There are a few modelling techniques for count data: Poisson model, 

Negative Binomial model, Zero-Inflated model, and Hurdle model. Poisson has been the 

most commonly used method to deal with count data, however, when dealing with length 

of stay, the assumption that the variance is equal to the mean in Poisson model will be 

violated. Thus using the Poisson model to model length of stay will not account for 

heterogeneity in the data due to the presence of significant over-dispersion in the data.35,36 

Negative binomial models are also unable to deal with heterogeneity in count data.36 In this 

proposal, Hurdle logit-Poisson model (also known as two-part model), originally 

developed by Mullahy37 will be used to estimate the length of stay in post-acute care 

facilities by categories of SDB and compare the length of stay between difference SDB 

categories through the use of rate ratios of days, as it performs as well as zero-inflated 

model, but it’s simpler to use and has appealing interpretation.36  

The Hurdle logit-Poisson is the most commonly used of the Hurdle regression. The 

Hurdle logit-Poisson model is a two-part model because it creates two models sequentially: 

1) the Logit regression to model zero vs. non-zero counts i.e. the odds of getting 
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hospitalized vs. non-hospitalized in this proposal, and 2) a truncated Poisson regression to 

model non-zero outcomes i.e. number of days spent in in hospitals if hospitalized. The 

probability density function of the Hurdle logit-Poisson regression is as follows: 

𝑓𝑓(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖) = �
𝜃𝜃𝑖𝑖  𝑓𝑓𝑙𝑙𝑓𝑓 𝑌𝑌𝑖𝑖 = 0

(1 − 𝜃𝜃𝑖𝑖)𝑒𝑒(−𝑢𝑢𝑖𝑖)𝑢𝑢𝑖𝑖
𝑌𝑌𝑖𝑖

(1 − 𝑒𝑒(−𝑢𝑢𝑖𝑖))𝑌𝑌!𝑖𝑖
 𝑓𝑓𝑙𝑙𝑓𝑓 𝑌𝑌𝑖𝑖 > 0,𝑤𝑤ℎ𝑒𝑒𝑓𝑓𝑒𝑒 𝜃𝜃𝑖𝑖 = 𝑃𝑃(𝑌𝑌𝑖𝑖 = 0)𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝑖𝑖 =  𝑒𝑒(𝑋𝑋𝑖𝑖𝛽𝛽)   

 

Due to the use of truncated Poisson regression in the second part of the Hurdle 

logit-Poisson model, bootstrapping will be done to obtain confidence intervals for analyses 

involving days spent in post-acute care facilities among those hospitalized. Bootstrapping 

is a method where data sets will be created via sampling with replacement, 1000 times, to 

create 1000 new data sets of the same size. The purpose of bootstrapping in the analyses is 

to deal with additional heterogeneity in the data.  

The Hurdle logit-Poisson model will be run using Proc NLMIXED, SAS version 

9.4 (SAS Institute Inc., Cary, NC). 

2.4.2. Proposed analytical plans for Aims #2,4: 

Descriptive statistics including means, standard deviations, medians, interquartile 

ranges and correlations for continuous variables and frequency distributions consisting of 

numbers and percentages for categorical variables will be used to summarize the 

descriptive information of the outcome and independent variables.  

Chi-square or Fisher’s exact tests will be used to examine if there is any difference 

in categorical variables by status of incident reduced sleep efficiency. T-test will be used 

to test for difference in means of continuous variables by status of incident reduced sleep 
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efficiency if the continuous variables are normally distributed. In the case of skewed 

continuous independent variables, non-parametric Wilcoxon rank-sum test will be used.  

The outcomes of Aims #2 and #4 include binary dependent variables (yes/no): 

incident reduced sleep efficiency (defined as sleep efficiency<80%) using 

polysomnography measures among older men aged 67 years and older and incident 

reduced sleep efficiency (defined as sleep efficiency<80%) using actigraphy measures 

among women in the 9th decade of life. Thus multivariable logistic regression will be used 

to model the probability of these events occurring in this proposal. More details on 

multivariate logistic regression are described above. Base models will be adjusted for age 

and site. Each individual potential predictor will then be added to the base model separately 

to examine the age- and site-adjusted associations between the odds of developing incident 

reduced sleep efficiency and the potential predictor. The final multivariable models will 

include age, site and potential predictors, whose p-values in the age- and site-adjusted 

models are less than <0.10. All models will be adjusted for sleep efficiency at MrOS sleep 

visit 1 (for men) and SOF visit 8 (for women) as a continuous variable in order to make 

sure that any significant associations between incident reduced sleep efficiency and 

potential covariates are independent of the variability in baseline sleep efficiency. 

All analyses in Aims #2 and #4 will be conducted using SAS version 9.4 (SAS 

Institute Inc., Cary, NC) 

2.4.3. Proposed analytical plans for Aims #3,5: 

Random Forests: 
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In Aims#4 and #5, random forests will be used to identify independent variables 

that are most predictive of incident reduced sleep efficiency in men and women. The results 

will be compared to those obtained from the traditional logistic regression models in Aims 

#2,3 for classification problems involving binary outcomes. 

Random forest technique originally proposed by Breiman (2001)38 is a supervised 

machine learning technique and is an extension of Classification and Regression Trees 

(CART).39 Random forests are ensembles of decision trees that are trained using 

bootstrapped samples randomly selected from the original dataset to identify and rank most 

important/predictive features/characteristics that are classifiers of an outcome through the 

use of variable importance measures (VIM).38 The use of building decision trees and then 

aggregating these trees to cast a vote for the predicted outcome of interest given a list of 

features/independent variables leads to decorrelation between individual tree predictions 

and reduces the variance compared to using single decision trees.40 The advantages of 

random forests include 1) its ability to deal with both small sample sizes and data with 

complex data structures i.e. high dimension data, where number of predictors/features is 

higher than the number of observations in the data sets, 2) its robustness to noise i.e. 

variability in the data sets, 3) its ability to deal with non-linear data and missing data, and 

4) less amount of tuning of hyper-parameters. As a result, random forest algorithm has 

been applied to many fields such computational biology, personalized medicine and 

engineering, etc. and has been proven to perform better and produce higher accuracy than 

other classification algorithms.41–46 There are three processes that are fundamental to 

random forest technique: 1) use of two types of randomness: a) each tree is constructed 
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using a randomly bootstrapped sample of the training data (two-thirds of the original data, 

also known as learning data) , b) a random sample of predictors among all potential 

predictors are considered to be potential splitting variables or nodes (usually taken as a 

square root of the number of predictors for classification and number of predictors divided 

by three for regression), 2) bagging: a process where predictions from bootstrapped 

samples (sample with replacement from the training dataset) are aggregated and averaged 

to come up with the final prediction; and 3) cross-validation – a method that is used to 

evaluate how well the random forest models from training data apply to the data that were 

not used to generate those results. The data that is not used to create the random forest 

models are called out-of-bag (OOB) data (also considered as validation/test data), which is 

one-third of the original data. 

In Aims #4 and 5, predictive random forest models will be obtained to identify 

predictors most predictive of incident reduced sleep efficiency in men and women using a 

set of 29 potential predictors. The data sets in Aims#4 and 5 will first be divided into two 

parts: training data sets (two-thirds of the original data) and validation data sets (OOB data) 

(one-third of the original data) based on Breiman (2001).38 Then to create random forest 

models for prediction of incident reduced sleep efficiency in each aim, the following steps 

will be carried out in this proposal: 

1) With replacement, create 500 bootstrapped samples of training data set. These 

500 samples have the same size as the training set. The use of 500 bootstrapped samples to 

create 500 trees as a hyperparameter in random forest models is the default and has been 

shown to produce reliable and stable results in many practical applications.47 
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2) Then generate 500 independent trees from these 500 bootstrapped samples 

without pruning by randomly selecting a subset of 5 predictors at each node (approximately 

square root of 29 potential predictors) to be considered as potential splitting variables. 

3) Evaluate the importance of each variable using the OOB data by running the 

OOB data through the 500 trees generated in step 2. Variable importance for each of the 

29 potential predictors in predicting incident reduced sleep efficiency is calculated as the 

difference between prediction error (also known as impurity) when the variable in the OBB 

is randomly permuted while the other variables remain the same. An average value of 

variable importance score for each potential predictor will be calculated for the 500 trees 

and then used to rank and determine which predictor is most predictive of incident reduced 

sleep efficiency in men and women in Aims #4 and 5. 

The accuracy and performance of random forest models in Aims#4 and 5 will be 

evaluated using the out-of-bag (OOB) error, which is defined as the average proportion 

(out of 500 bootstrapped OOB datasets) of categories of sleep efficiency in the OOB data 

sets, incorrectly classified by the random forest model. Smaller OOB error values indicate 

higher accuracy of the random forest model. 

Similar to the use of area under the curve (AUC) obtained from the Receiver 

Operating Characteristic (ROC) curve, random forest models also produce AUC and 

confusion matrix containing sensitivity, specificity, positive and negative predictive 

values. These metrics will also be used to assess the predictive values of random forest 

models in Aims #4 and 5. 
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Random forest models for Aims#4 and 5 will be fitted using the open source 

software R (version 3.5.0) and the randomForest package.  

2.5.Limitations of the Proposed Study 

First, the study population in Aims#1, 2 and 3 includes healthy community-

dwelling older men, with few non-Caucasian participants. Thus, the results of this proposal 

might not be generalizable to women, others from different racial or ethnic groups, older 

men in poorer health, or those residing in other institutions like nursing homes. A second 

limitation of Aim#1 in this proposal is that since only men enrolled in Medicare FFS had 

available data on total healthcare and outpatient costs, hospital and SNF stays, results of 

Aim#1 might not be generalizable to men enrolled in Medicare Advantage. In addition, 

there is a great variability and noise in total healthcare and outpatient costs data, despite 

the use of rigorous statistical technique in Aim#1, it is possible that not all the variability 

and noise in healthcare costs data will be fully accounted for. Furthermore, while this 

proposal utilizes longitudinal cohort studies to look at the relationships between sleep 

disordered breathing and subsequent hospitalizations and costs in Aim#1, and between 

incident reduced sleep efficiency and a list of potential factors in Aims#2,3,4 and 5, 

causality of these relationships cannot be strongly inferred due to the potential for residual 

confounding. This proposal will only look incident reduced sleep efficiency in community-

dwelling older men and women in Aims#2,3,4, and 5, thus future studies can examine 

incident reduced sleep efficiency in younger populations to compare results. Moreover, 

changes in other sleep parameters are also worth looking at in order to have a more 

comprehensive understanding of what affects sleep over time, which in turn helps target 
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certain patients’ characteristics using intervention studies to improve sleep health of the 

general population and public health. All these limitations will be fully acknowledged in 

this study. 

2.6. Timelines 
 

These data sets have had IRB approvals and are included in the ongoing works for 

SOF and MrOS studies.  

This dissertation follows a three manuscript format.  

Aim #1 will be completed in Chapter 3 – Manuscript #1. At the time of the writing 

of this proposal, this manuscript has been in press at SLEEP journal. Aims #2 and 4 will 

be addressed in Chapter 4 – Manuscript #2. Aims #3 and 5 will form the third manuscript.  
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Chapter 3: Manuscript 1                                                                        

Association of Sleep-Disordered Breathing with Total Healthcare Costs and 

Utilization in Older Men: the Outcomes of Sleep Disorders in Older Men (MrOS 

Sleep) Study 

3.1.Overview 

Study Objectives: To determine the associations of sleep-disordered breathing 

(SDB) with subsequent healthcare costs and utilization including inpatient and post-acute 

care facility stays among community-dwelling older men. 

Methods: Participants were 1316 men (mean age 76.1 [SD=5.7] years) in the 

Outcomes of Sleep Disorders in Older Men (MrOS sleep) study (from December 2003 to 

March 2005), who were enrolled in a Medicare Fee-For-Service plan. Primary SDB 

measures including apnea-hypopnea index (AHI) and oxygen desaturation index (ODI) 

were collected using in-home level 2 polysomnography. Incident healthcare costs and 

utilization were determined from claims data in the subsequent 3-year period post MrOS 

sleep visit. 

Results: 529 (40.2%) men had ≥1 hospitalization in the 3-year period. Compared 

to those without sleep apnea (AHI <5/hour), men with moderate to severe sleep apnea (AHI 

≥15/hour) had a higher odds of all-cause hospitalization (odds ratio [OR] adjusted for age 

and site 1.43, 95% confidence interval [CI] 1.07-1.90). This association was slightly 

attenuated after further adjustment for traditional prognostic factors including education, 

body mass index, comorbid medical conditions, and health status (OR=1.36; 95% CI 1.01-

1.83). Similar associations were observed for ODI. However, measures of SDB were not 
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related to subsequent healthcare costs (total or outpatient) or odds of post-acute skilled 

nursing facility stay. 

Conclusions: Older men with SDB have an increased risk of hospitalization, not 

entirely explained by the greater prevalence of comorbid conditions, but not higher 

subsequent total healthcare costs. These findings indicate a need to evaluate the impact of 

SDB treatment on subsequent healthcare utilization. 

Keywords: sleep-disordered breathing, sleep apnea, Medicare, hospitalization, 

healthcare costs and utilizations, older men 

3.2.Introduction  

Sleep-disordered breathing (SDB) is a common disorder characterized by repeated 

pauses or reductions in breathing during sleep with a prevalence of 25% in older 

community dwelling men.1,2 SDB is associated with prevalent and incident cardiovascular 

disease (CVD) including hypertension, coronary heart disease, cardiac conduction 

abnormalities, heart failure and stroke.3-10 SDB is also associated with perioperative 

complications, motor vehicle accidents, cognitive impairment and cognitive decline.11-13 

Given that SDB is associated with adverse health outcomes, especially CVD events, SDB 

may be associated with higher healthcare costs and utilization across a variety of healthcare 

settings.  If SDB is associated with higher subsequent healthcare costs and utilization, 

future intervention studies would be warranted to determine whether treatment of SDB 

lowers these measures of healthcare burden. 

A number of studies primarily in younger or middle-aged populations have 

evaluated the association of SDB and healthcare utilization.14-23 However, previous studies 
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were limited by use of cross-sectional or case-control study designs16-19,22 and inadequate 

control of potential confounders including body mass index (BMI).14,23 One study used the 

modified Chronic Disease Score (CDS) as a proxy measure for healthcare utilization23 and 

another study relied on administrative claims for the diagnosis of the obstructive sleep 

apnea (OSA).21 Only three studies focused on older men and results were not consistent 

between studies.14,16,21  

Our aim was to examine the association of objective measures of SDB with 

subsequent total healthcare costs and utilization in community-dwelling older men. To 

address this question, we used a unique longitudinal data set comprised of 1316 men 

participating in the Outcomes of Sleep Disorders in Older Men (MrOS Sleep) prospective 

cohort study linked with their Medicare claims data. 

3.3.Methods 

3.3.1. Study population and Linkage to Medicare Claims Data 

We studied participants enrolled in MrOS study, a prospective cohort study of 5994 

community-dwelling older men, aged ≥65 years. Men were recruited between March 2000 

to April 2002 from six US cities: Birmingham, AL; Minneapolis, MN; Palo Alto, CA; 

Monongahela Valley near Pittsburgh, PA; Portland, OR; and San Diego, CA. Details of 

the MrOS study design and recruitment have been described elsewhere.24,25 Linkage of 

MrOS cohort data to Medicare Claims Files was completed by submitting participant social 

security and/or Medicare numbers to the Centers for Medicare and Medicaid Services 

(CMS). Linkage to Medicare enrollment data was successful for 5,876 men (98%) as of 

January 1, 1999. 
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Recruitment for Outcomes of Sleep disorders in Older Men (MrOS Sleep) study 

occurred from December 2003 to March 2005 among the pool of 5605 active participants 

(Figure 3.1). Among these men, 150 were not eligible for the MrOS Sleep Study because 

they were receiving treatment for sleep apnea or snoring, 1,997 were invited but refused to 

participate, and 323 were not asked to participate because recruitment goals had already 

been met. Thus, a total of 3135 (57%) men agreed to participate in the Sleep Study 

(exceeding the recruitment goal of 3000 men). 

Of the 3135 men that participated in the sleep visit, 2911 men had usable overnight 

polysomnography (PSG) recording. Of these 2911 men, 1316 (45.2%) men who were 

enrolled continuously in a Medicare Fee-For-Service (FFS) program (Parts A and B [and 

not Part C, Medicare Advantage]) during the 12 months prior to and 36 months after the 

sleep visit (or until death within this period) were included in the analytical cohort for this 

study (Figure 3.1). 

3.3.2. SDB exposures 

In-home sleep studies were completed using in-home, level 2 polysomnography 

(Safiro, Compumedics, Inc.®, Melbourne, Australia). The PSG recordings were obtained 

within one month of the clinic visit (mean 6.9 ± 15.8 days from visit), with 78% of 

recordings gathered within one week of the clinic visit. The recording montage was as 

follows: C3/A2 and C4/A1 electroencephalograms, bilateral electrooculograms and a 

bipolar submental electromyogram to determine sleep stage; thoracic and abdominal 

respiratory inductance plethysmography to determine respiratory effort; airflow (by nasal-

oral thermocouple and nasal pressure cannula); finger pulse oximetry (SpO2) for 

measuring oxygen saturation; lead I EKG; body position (mercury switch sensor); and 
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bilateral tibialis leg movements (piezoelectric sensors). Centrally-trained and certified staff 

performed home visits to set up the unit, verify the values of the impedances for each 

channel, confirm calibration of position sensors and note any problems encountered during 

set-up, similar to the protocol used in the Sleep Heart Health Study.26 Staff returned the 

next morning to collect the equipment and download the data to the Central Sleep Reading 

Center (Cleveland, OH) to be scored by certified research polysomnologists blinded to all 

other data. PSG data quality was excellent, with a failure rate of less than 4% and more 

than 70% of studies graded as being of excellent or outstanding quality. 

Apneas were defined as a complete or almost complete cessation of airflow for 

more than 10 seconds. Hypopneas were defined as a >30% reduction in amplitude of either 

respiratory effort or airflow for more than 10 seconds associated with an oxygen 

desaturation of ≥4%.27 

The primary measures of SDB in this study were the apnea-hypopnea index (AHI) 

and oxygen desaturation index (ODI). AHI was defined as the average number of apneas 

and hypopneas per hour of sleep. Severity of sleep apnea was defined as normal if AHI 

was <5/hour, mild if AHI was 5 to <15/hour, and moderate to severe if AHI was ≥15/hour.28 

ODI was defined as the mean number of oxygen desaturation events (≥4% decrease in 

SpO2) per hour of sleep. Severity of ODI was considered normal if ODI ≤5/hour, mild if 

ODI was between 5 and ≤10/hour, moderate if ODI was between 10 and ≤15/hour, and 

severe if ODI >15/hour.29 Secondary SDB measures included the percent of sleep time 

with SpO2 <90%, and OSA calculated as the sum of obstructive apneas (excluding central 

apneas) plus hypopneas associated with a ≥4% desaturation.  Severity of nocturnal 

hypoxemia (% of total sleep time with SaO2 <90% [%TST<90]) was considered normal if 
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%TST<90 was less than 1%, mild if %TST<90 was 1.0% to less than 3.5%, and at least 

moderate if %TST<90 was 3.5% or greater. OSA severity was categorized using the same 

cutpoints as for AHI. 

3.3.3. Outcome measures  

The primary outcome was total healthcare costs (an aggregate measure of overall 

healthcare burden) for the 36 months after the MrOS sleep visit. Secondary outcomes 

included all-cause and CVD-related hospitalizations. Annualized total healthcare costs 

were calculated as the sum of standardized inpatient hospital costs, Part A paid skilled 

nursing facility (SNF) costs, inpatient rehabilitation facility (IRF) costs, outpatient costs, 

and home healthcare costs. Inpatient hospital stays and stays in post-acute care facilities 

(SNF or IRF) were identified using the Medical Provider Analysis and Review (MedPAR) 

file. Standardized costs for hospital stays, SNF stays and IRF stays were calculated using 

previously validated and published methods.30-32 Costs for Part A paid SNF stays, for IRF 

stays, home healthcare utilization, and outpatient utilization were calculated using 

allowable charges for these services in the MedPAR, Home Healthcare, Carrier, and 

Outpatient Medicare claims files. All costs were adjusted for healthcare cost inflation to 

U.S. 2017 dollars.32 

Secondary outcomes including all-cause hospitalizations, CVD-related 

hospitalizations and SNF stays were identified from claims data.  A CVD-related 

hospitalization was defined as a hospitalization with a primary or secondary discharge 

diagnosis of coronary heart disease (ICD-9 codes 414.xx), congestive heart failure (ICD-9 

codes 398.91, 428.0), myocardial infarction (ICD-9 codes 410.xx, 412, 429.7x) or 

cerebrovascular accident (stroke) (ICD-9 codes 433.xx, 434.xx).  
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3.3.4. Other measurements 

 Participants completed a questionnaire on demographics, history of selected 

medical conditions, self-reported health status, smoking status (never, former, current), at 

the time of the sleep visit. Participants were asked about physician diagnosis of diabetes, 

coronary heart disease (including angina, myocardial infarction, angioplasty, or coronary 

artery bypass), stroke, congestive heart failure, or chronic obstructive pulmonary disease 

(COPD). CVD was defined as having a self-reported history of coronary heart disease, 

stroke, or congestive heart failure. Hypertension was defined using self-reported 

hypertension, use of anti-hypertensive medications, having systolic blood pressure ≥140 

mmHg, or having diastolic blood pressure ≥90 mmHg.33 Depressive symptoms were 

assessed using the Geriatric Depression Scale (GDS); a participant with GDS score ≥6 was 

considered to have depression.34 Participants who attended an in-clinic visit also had 

measurements of blood pressure, body weight and height collected. Body mass index 

(BMI) was calculated as weight in kilograms divided by the square of height in meters. 

Participants were also asked to bring all medication containers used within the preceding 

30 days to the clinic visit. Drugs were identified and recorded by clinic staff, and the 

information was stored in an electronic drugs inventory database. All medications recorded 

by the clinics were entered into an electronic medications inventory (San Francisco 

Coordinating Center, San Francisco, CA). Each medication was matched to its 

Ingredient(s) based on the Iowa Drug Information Service (IDIS) Drug Vocabulary 

(College of Pharmacy, University of Iowa, Iowa City, IA).35 

3.3.5. Statistical Analysis 
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Characteristics of the 1316 men were compared across categories of SDB measures 

using chi-square or Fisher’s exact test for categorical variables, ANOVA for continuous 

variables with normal distributions and non-parametric Kruskal-Wallis tests for variables 

with skewed distributions. 

The associations of SDB measures with annualized total healthcare costs and 

outpatient costs were estimated using generalized linear models (GLMs). GLMs with log 

link and gamma distribution were used to account for the highly right-skewed distributions 

of total healthcare costs and outpatient costs and to ensure that the models were well-

specified based on the results of the Modified Park36 and Pregibon link37 tests.  Logistic 

regression models were used to estimate the association of SDB measures with odds of one 

or more hospitalizations and odds of one or more SNF stays during the 3 year follow-up 

period. 

Base models were adjusted for age and clinical site. Multivariable models were 

further adjusted for traditional prognostic variables including education, health status, 

diabetes, hypertension, CVD, COPD, and body mass index at the sleep visit. 

Analyses were performed using SAS 9.4 (SAS Institute Inc., Cary, North Carolina) 

or Stata, version 14 (StataCorp LLC, College Station, Texas). 

3.4.Results  

Study Population 

Among the 1316 men in the analytic cohort, mean (standard deviation [SD]) age 

was 76.5 years (5.7); 92.2% were non-Hispanic white, and 12% reported their health status 

as fair/poor/very poor. There were 529 men (40.2%) who had no evidence of sleep apnea 
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as indicated by AHI <5/hour, 444 (33.7%) with mild sleep apnea (AHI 5 to <15/hour), and 

343 (26.1%) with moderate to severe sleep apnea (AHI >15/hour). SDB as indicated by 

ODI was also common in this cohort of older men, with 21.0% of the study participants 

with ODI between 5 and ≤10/hour (mild), 12.8% with ODI between 10 and ≤15/hour 

(moderate), and 32.1% with ODI greater than 15/hour (severe). Men with greater severity 

of sleep apnea as manifested by higher AHI or ODI were older, more likely to report poorer 

health status and fewer years of education and have diabetes, hypertension, congestive 

heart failure and higher BMI. (Table 3.1 and Table S3.1). 

Characteristics (including the distributions of SDB measures) of the 1316 men in 

the analytical cohort were similar to those of the 1595 MrOS men attending the sleep visit 

who were excluded from analyses because they were not enrolled in a FFS plan (Table 

S3.2). While differences in race, educational level, hypertension, and depression were 

statistically significant, these differences were small in magnitude. 

Associations of Measures of SDB with Total Healthcare and Outpatient Costs 

The annualized unadjusted mean (SD) total healthcare and outpatient costs (2017 

U.S. dollars) during the 36 month follow-up period were $7,499 (SD 9,552) and $3,908 

(SD 4,813), respectively. Mean annualized total healthcare costs during the 3 years 

following the sleep visit were $7,441 (SD 9,904) for men without SDB, $6,945 (SD 8,644) 

for men with mild SDB, and $8,305 (SD 10,079) for men with moderate or more severe 

SDB (p-value for difference in mean total healthcare costs across categories of SDB=0.06, 

Table 1). After consideration of age and study enrollment site, there was no evidence of an 

association between severity of SDB as manifested by higher AHI or ODI and total 

healthcare costs (Table 3.2). For example, the cost ratios of mean total healthcare and 
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outpatient costs were slightly higher among men with moderate to severe sleep apnea (AHI 

>15/hour) compared with those without sleep apnea (AHI <5/hour), but the associations 

were not significant as shown by the respective cost ratios (CR) and the 95% confidence 

intervals (CI): 1.10 (0.92-1.31) and 1.01 (0.76-1.36). Further consideration of other 

potential confounders in multivariable models did not alter these results. Among secondary 

measures of SDB, neither OSA nor %TST<90 was associated with total healthcare costs. 

When considering outpatient costs, greater %TST<90 was associated with lower outpatient 

costs in full multivariable models. 

Association of Measures of SDB with Incident All-Cause Hospitalization, CVD-

Related Hospitalization and SNF Stay 

There were 523 (39.7%) men who were hospitalized on at least 1 occasion during 

the three years following their polysomnography study including 272 (20.7%) with at least 

1 CVD-related hospitalization (Table 3.1). A total of 77 men (5.9%) had at least 1 SNF 

stay and 88 (6.7%) men died during the 3 year-follow-up period. 

Men with greater SDB as manifested by high levels of AHI, ODI, or OSA were 

more likely to experience at least 1 hospitalization including a CVD-related hospitalization 

during the subsequent 36 months. In particular, men with moderate to severe sleep apnea 

(AHI ≥15/hour) had a 1.4-fold higher odds of subsequent hospitalization (OR=1.43, 95% 

CI: 1.07-1.90) compared to those without sleep apnea (AHI <5/hour) in models adjusted 

for age and study enrollment site (Table 3.3). Results were similar in models substituting 

ODI or OSA for AHI.  The association of moderate to severe SDB with hospitalization was 

only slightly attenuated in multivariate models further adjusted for additional potential 

confounders (OR for AHI ≥15/hour vs. <5/hour = 1.36, 95% CI: 1.01-1.83). The 
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associations of moderate to severe SDB as manifested by higher AHI, ODI, or OSA with 

odds of subsequent hospitalization due to CVD appeared to be similar in magnitude to 

associations of these measures with all-cause hospitalization, though the latter associations 

did not reach significance (Table S3.3). Associations of mild SDB as manifested by 

intermediate values of AHI, ODI or OSA the subsequent odds of hospitalization and CVD-

related hospitalization were weaker in magnitude and not statistically significant. Among 

men hospitalized, there was no difference in mean length of hospital stays (LOS) according 

to severity of sleep apnea; mean LOS was 8.8 days for men without sleep apnea, 6.4 days 

for men with mild sleep apnea, and 8.1 days for those with moderate to severe sleep apnea. 

Greater nocturnal hypoxemia as manifested by higher %TST<90 was not related to odds 

of hospitalization. In addition, there was no association between any of the measures of 

SDB and odds of a SNF stay in either the minimally adjusted or fully adjusted models. 

Additional Analyses 

Further sensitivity analyses restricting the study sample to the 1228 men, who 

survived 36 months after the sleep visit did not alter the results (data not shown). In 

addition, analyses excluding the 72 (5.5%) men who initiated treatment for sleep apnea 

during the three-year follow-up period post sleep visit yielded similar results (data not 

shown). 

3.5.Discussion 

In this longitudinal study of older community-dwelling men, we found that SDB as 

manifested by higher AHI, ODI or OSA was similarly associated with a higher risk of 

hospitalization even after consideration of multiple traditional prognostic indicators. 
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However, measures of SDB were not related to healthcare costs or risk of post-acute skilled 

nursing facility stays. The presence of SDB may help identify individuals at increased risk 

for hospitalization. Future research should evaluate the effect of treatment of SDB on 

subsequent healthcare utilization. 

 Our findings suggest a 1.4-fold increase in the risk of hospitalization among older 

men with moderate to severe SDB, an association that is only explained in part by the 

greater burden of cardiovascular and other medical conditions among men with SDB. SDB 

is associated with chronic cardiac, pulmonary, metabolic and liver disease, which has been 

attributed to chronic effects of sleep fragmentation, increased work of breathing and 

hypoxemia. While we adjusted for prevalent health problems, those with moderate to 

severe SDB may have had more severe underlying organ dysfunction or less reserve, 

resulting in greater vulnerability to decompensation requiring in-patient hospitalization. 

SDB also has been associated with immune dysregulation and accelerated biological 

aging38-40, which may accelerate inflammatory processes and reduce resiliency.41 

Individuals with underlying lung disease and SDB may have more hypoxemia than 

individuals with either condition and when faced with an exacerbation of lung disease, such 

individuals may more likely require hospitalization.42 In addition, patients with SDB may 

be chronically fatigued and have impaired cognition, which may adversely impact 

adherence to chronic disease medical regiments. 

Our results are in general agreement with other studies that have suggested that 

SDB is associated with increased risk of hospitalization.17,18,21 A small case-control study 

(mean age 47.1 years), conducted in 1996 in Manitoba, Canada, comprised of 97 obese 

patients with OSA and 97 controls without OSA, reported that patients in the OSA group 
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had statistically significant higher total number of nights spent in hospitals during a two-

year follow-up period (251 nights for OSA group vs. 90 nights for the control group).17 

Another Canadian case-control study reported similar findings where OSA patients spent 

more nights in hospitals than controls (1118 nights vs. 676 nights).18 A large retrospective 

cohort study in 1,867,876 older veterans (age ≥65) done at the Veterans Health 

Administration (VHA) reported that patients with incident OSA had a 4.5-fold higher odds 

of hospitalization compared to those without OSA.21 The magnitude of the association 

between OSA and hospitalization in these studies is higher than the magnitude of the 

association between SDB and hospitalization in our study. A plausible explanation for this 

difference in results may be the difference in the study design (case control vs. prospective 

cohort study).  In addition, the retrospective cohort study performed at the VHA used the 

International Classification of Diseases (ICD-9) codes to obtain diagnosis of OSA that may 

not be as accurate as objectively measured OSA using polysomnography.21 Our study 

strengthens and expands on these earlier findings through our use of objective, quantifiable 

measures of SDB through polysomnography, prospective design, and use of community-

based sampling (rather than the common practice of clinic-based sampling) of older men 

not selected on the basis of disease status.   

Few previous studies have estimated the associations between SDB and total 

healthcare costs and utilization in older men and arrived at inconsistent conclusions. 

Similar to findings from our study, a cross-sectional analysis of a small subgroup of 198 

Taiwanese men at least 70 years of age, reported that there was no difference in the total 

healthcare costs between those with and without sleep apnea.14 In contrast, utilizing a case-

control study in an Israeli population, Tarasiuk et al. found that OSA patients had 1.8-fold 
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higher healthcare costs compared to controls without OSA in a small total sample of 185 

older (age ≥65 years) patients.16 Another cross-sectional study analyzed 6,440 participants 

(mean age 63.6 years) from the Sleep Heart Health Study (SHHS) and reported that severe 

SDB problems (AHI >29.9) and greater nocturnal hypoxemia were associated with higher 

healthcare utilization, as indirectly measured using the modified chronic disease score 

(CDS).23 A small case-control study performed in middle-aged adults by Kapur et al. found 

that medical costs among patients with undiagnosed sleep apnea were almost double the 

medical costs for controls without sleep apnea, matched for age and gender, but this study 

did not consider other potential confounders of the association.15 Potential reasons for these 

discrepant results could be due to other studies selection of either younger patients (SHHS) 

or sicker elderly patients compared to the healthier community-dwelling men in MrOS. For 

example, among the elderly group of 158 participants, Tarasiuk et al. reported 42% of them 

with poor health status; and among the OSA group, comorbidities such as CVD and 

hyperlipidemia were highly prevalent.16 Compared to previously published studies, the 

advantages of our study include a prospective cohort design, consideration of several 

potential confounders and use of well-established Medicare claims data to estimate, with 

validated methods, standardized healthcare costs representative for the older male US 

Medicare population. 

The increased risk of hospitalization for those with moderate to severe sleep apnea 

compared to those without sleep apnea did not translate to higher subsequent total 

healthcare costs, outpatient costs, or SNF utilization. Results were generally consistent 

regardless of which SDB measure was used. This casts doubt on the hypothesis that the 

costs of SDB treatment can be partially offset by saving health care costs associated with 
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untreated SDB. Results for sensitivity analyses restricting to those who survived at least 36 

months following the sleep visit or excluding those who initiated treatment for SDB during 

follow-up were similar to finding of the primary analyses. Surprisingly, we found that men 

with moderate to severe nocturnal hypoxemia had lower outpatient costs compared to men 

without hypoxemia in the full multivariable model. We do not have a plausible explanation 

for this finding that may be a spurious result due to random chance alone or numerous 

comparisons performed. Hence, while treatment of sleep apnea may yield health benefits, 

our data suggest that lower healthcare costs will likely not be among those benefits. 

This study has several strengths, including the use of a prospective cohort study 

with comprehensively assessed participant characteristics, objective measures of SDB 

using polysomnography, enrollment of participants not on the basis of sleep apnea status, 

published and validated methodology to compute standardized healthcare costs and 

ascertain healthcare utilization from administrative data, linkage of cohort participants to 

their Medicare claims data; and inclusion of several possible confounding and mediating 

factors. However, this study has limitations. First, the cohort included healthy community-

dwelling older men, with few non-Caucasian participants. Thus, the results might not be 

generalizable to women, others from different racial or ethnic groups, older men in poorer 

health, or those residing in other institutions like nursing homes. Future studies are needed 

to confirm our findings and to further investigate associations of SDB and other outcomes, 

such as long-term nursing home placement. Second, data on total healthcare and outpatient 

costs, hospital and SNF stays were only available for those men enrolled in Medicare FFS, 

but not for those enrolled in Medicare Advantage. This limitation is mitigated by the fact 

that characteristics of men enrolled in Medicare FFS, including proportions with SDB, 
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were similar to those of men enrolled in Medicare Advantage. Third, while our data does 

not preclude a weak association between moderate to severe sleep apnea and higher total 

health care cost, the association was not significant perhaps because we did not have a 

sufficient sample size in the moderate to severe sleep apnea group to detect a small effect. 

Fourth, we do not have the sample size to establish if shifts of costs from outpatient or SNF 

settings to acute care hospitals account for our findings of higher odds of hospitalization 

yet no clear increase in total health care costs amongst those with obstructive sleep apnea. 

Fifth, while we adjusted for education in our analysis, we did not account for other 

socioeconomic status variables such as income and occupation, which might have 

confounded the association between sleep apnea and healthcare costs and utilization. 

Finally, even though we utilized a longitudinal cohort study and controlled for potential 

confounders and mediators, causality of the relationship between SDB and risk of 

subsequent hospitalizations cannot be strongly inferred due to the potential for residual 

confounding. 

In conclusion, our results suggest that SDB is associated with higher risk of 

hospitalization (but not with total healthcare costs) in community-dwelling older men. This 

association is not entirely explained by a greater number of cardiovascular or medical 

conditions among those men with SDB. Future studies are needed to evaluate the 

association between SDB and healthcare costs and utilization among other patient 

populations and to evaluate the effect of treatment of SDB on these measures of healthcare 

burden. 
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3.6.Figures, tables and supplemental tables 

Figure 3.1. Analysis Cohort 
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Table 3.1. Characteristics of 1316 Participants by Category of Apnea Hypopnea Index at Baseline  

 

 AHI  
 Normal  

(<5.0/hou
r) 

Mild  
(5.0 to <15/hour) 

At Least Moderate  
(≥15/hour) 

 

Baseline Characteristic (N=529) (N=444) (N=343) P-
value* 

Age, years, mean (SD) 76.2 (5.7) 76.2 (5.7) 77.3 (5.6) 0.01 
Caucasian, n (%) 489 (92.4) 411 (92.6) 313 (91.3) 0.76 
Education, n (%)    0.02 
     Less than high school 17 (3.2) 20 (4.5) 14 (4.1)  
     High school 56 (10.6) 58 (13.1) 63 (18.4)  
     Beyond high school 456 (86.2) 366 (82.4) 266 (77.6)  
Fair, Poor or very poor health 

status, n (%) 
53 (10.0) 60 (13.5) 45 (13.1) 0.19 

Smoking status, n (%)    0.23 
     Never 216 (40.8) 181 (40.9) 147 (42.9)  
     Past 302 (57.1) 254 (57.3) 195 (56.9)  
     Current  11 (2.1) 8 (1.8) 1 (0.3)  
Diabetes, n (%) 54(10.2) 61 (13.8) 53 (15.5) 0.06 
Hypertension, n (%) 344 (65.0) 316 (71.3) 262 (76.6) 0.00

1 
Coronary heart disease†, n (%) 161 (30.4) 124 (27.9) 114 (33.2) 0.27 
Stroke, n (%) 23 (4.3) 15 (3.4) 11 (3.2) 0.62 
Congestive heart failure, n (%) 18 (3.4) 30 (6.8) 25 (7.3) 0.02 
CVD**, n (%) 178 (33.6) 144 (32.4) 130 (37.9) 0.25 
COPD or emphysema, n (%) 29 (5.5) 24 (5.4) 11 (3.2) 0.25 
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Body mass index, kg/m2, mean 
(SD) 

26.2 (3.3) 27.3 (3.6) 28.2 (4.1) <0.
001 

Depression (GDS score ≥6), n 
(%) 

31 (5.9) 17 (3.8) 23 (6.7) 0.17 

Hospitalized in the year prior 
to sleep visit, n (%) 

67 (12.7) 65 (14.6) 43 (12.5) 0.59 

Outcomes‡     
Hospitalized, n (%) 188 (35.5) 176 (39.6) 159 (46.4) 0.00

6 
CVD-related hospitalization, n 

(%) 
96 (18.1) 87 (19.6) 89 (25.9) 0.02 

SNF stay, n (%) 34 (6.4) 24 (5.4) 19 (5.5) 0.76 
Dead, n (%) 32 (6.0) 29 (6.5) 27 (7.9) 0.55 
Annualized total healthcare 

costs 
   0.06 

     Mean (SD) $7,441 
(9,904) 

$6,945 (8,644) $8,305 (10,079)  

     Median (IQR) $3,672 
(1,536 to 9,128) 

$3,746 (1,641 to 
8,799) 

$4,674 (1,947 to 
10,227) 

 

Annualized outpatient costs    0.16 
     Mean (SD) $3,955 

(5,192) 
$3,641 (3,962) $4,181 (5,193)  

     Median (IQR) $2,772 
(1,344 to 4,950) 

$2,708 (1,287 to 
4,632) 

$2,980 (1,601 to 
5,064) 
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Abbreviations: AHI = Apnea Hypopnea Index; N = number of men in each category; SD = standard deviation; n (%) = number 
(proportion); CVD = cardiovascular disease; COPD = chronic obstructive pulmonary disease; GDS = Geriatric Depression Scale; SNF 
= skilled nursing facility; IQR = interquartile range 
*ANOVA (or non-parametric equivalent i.e. Kruskal Wallis test) for continuous variables, chi-square (or Fisher’s exact test) for 
categorical variables 
†Coronary heart disease was defined by a self-reported history of a physician diagnosis of angina, myocardial infarction, angioplasty or 
coronary artery bypass 
**CVD was defined as having either one these three conditions: CHD, stroke, or congestive heart failure 
‡During the 3 year follow up post MrOS sleep visit 
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Table 3.2. Associations of Measures of Sleep Disordered Breathing with Mean Total and Outpatient Healthcare Costs 

 Cost Ratio (95% CI) 
 Total Healthcare Costs Outpatient Care Costs 
SDB measure Age and Site 

adjusted 
Multivariable 

adjusted* 
Age and Site 

adjusted 
Multivariable 

adjusted* 
AHI†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0 0.93 (0.79-1.10) 0.91 (0.78-1.08) 0.87 (0.66-1.14) 0.86 (0.66-1.13) 
     ≥15.0 1.10 (0.92-1.31) 1.04 (0.86-1.24) 1.01 (0.76-1.36) 0.93 (0.69-1.25) 
ODI†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to ≤10 0.95 (0.78-1.15) 0.95 (0.78-1.16) 0.94 (0.68-1.29) 0.93 (0.68-1.27) 
     10 to ≤15 0.87 (0.69-1.10) 0.86 (0.68-1.09) 0.74 (0.51-1.07) 0.72 (0.50-1.04) 
     >15.0 1.07 (0.90-1.28) 1.01 (0.84-1.21) 0.93 (0.70-1.23) 0.84 (0.63-1.13) 
OSA†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0 0.96 (0.81-1.14) 0.94 (0.80-1.11) 0.87 (0.67-1.15) 0.86 (0.66-1.13) 
     ≥15.0 1.10 (0.92-1.31) 1.06 (0.89-1.27) 1.01 (0.76-1.35) 0.95 (0.71-1.27) 
%TST<90     
     <1.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     1.0 to <3.5 1.02 (0.86-1.22) 0.97 (0.81-1.15) 0.88 (0.66-1.17) 0.80 (0.61-1.06) 
     ≥3.5 0.98 (0.82-1.17) 0.95 (0.78-1.14) 0.78 (0.59-1.04) 0.68 (0.51-0.90) 

Abbreviations: CI = confidence interval; SDB = sleep disordered breathing; AHI = apnea hypopnea index; ODI = oxygen desaturation 
index; OSA = obstructive apneas plus hypopneas with a 4% desaturation; %TST<90 = percent of total sleep time with oxygen saturation 
<90% 
*Adjusted for age, site, education, health status, comorbid medical conditions (including diabetes, hypertension, CVD, and COPD), and 
body mass index at the sleep visit 
†Unit is per hour  



 
78 

Table 3.3. Associations of Measures of Sleep Disordered Breathing with Odds of Hospitalization and Skilled Nursing 
Facility Stays 

 Odds Ratio (95% CI) 
 Inpatient Hospital Stays SNF Stays 
SDB measure Age and Site 

adjusted 
Multivariable 

adjusted* 
Age and Site 

adjusted 
Multivariable 

adjusted* 
AHI†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0 1.15 (0.88-1.50) 1.13 (0.86-1.49) 0.85 (0.49-1.48) 0.72 (0.41-1.28) 
     ≥15.0 1.43 (1.07-1.90) 1.36 (1.01-1.83) 0.80 (0.44-1.46) 0.60 (0.32-1.13) 
ODI†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to ≤10 0.96 (0.70-1.33) 0.96 (0.69-1.33) 0.45 (0.20-1.00) 0.44 (0.19-0.98) 
     10 to ≤15 1.32 (0.92-1.92) 1.33 (0.91-1.93) 0.78 (0.36-1.72) 0.67 (0.30-1.49) 
     >15.0 1.38 (1.04-1.83) 1.33 (0.99-1.78) 1.02 (0.59-1.76) 0.75 (0.42-1.34) 
OSA†     
     <5.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0 1.09 (0.83-1.44) 1.07 (0.81-1.41) 0.79 (0.45-1.39) 0.67 (0.37-1.20) 
     ≥15.0 1.41 (1.06-1.88) 1.37 (1.02-1.84) 0.80 (0.45-1.42) 0.61 (0.33-1.13) 
%TST<90     
     <1.0 1.00 (referent) 1.00 (referent) 1.00 (referent) 1.00 (referent) 
     1.0 to <3.5 1.04 (0.79-1.38) 1.00 (0.75-1.34) 0.97 (0.54-1.74) 0.82 (0.45-1.51) 
     ≥3.5 1.22 (0.93-1.62) 1.20 (0.89-1.61) 1.11 (0.62-1.97) 0.82 (0.44-1.53) 

Abbreviations: CI = confidence interval; SNF = skilled nursing facility; SDB = sleep disordered breathing; AHI = apnea hypopnea 
index; ODI = oxygen desaturation index; OSA = obstructive apneas plus hypopneas with a 4% desaturation; %TST<90 = percent of 
total sleep time with oxygen saturation <90% 
*Adjusted for age, site, education, health status, comorbid medical conditions (including diabetes, hypertension, CVD, and COPD), and 
body mass index at the sleep visit 
†Unit is per hour
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Table S3.1. Characteristics of 1316 Participants by Category of Oxygen Desaturation Index at Baseline 

 Oxygen Desaturation Index  
 Normal  

(≤5/hour) 
Mild  
(5 to 

≤10/hour) 

Moderate  
(10 to ≤15/hour) 

Severe  
(>15/hour) 

 

Baseline Characteristic (N=449) (N=276) (N=168) (N=423) P-value* 
Age, years, mean (SD) 76.1 (5.8) 75.8 (5.5) 76.5 (5.6) 77.3 (5.6) 0.005 
Caucasian, n (%) 410 (91.3) 262 (94.9) 157 (93.5) 384 (90.8) 0.18 
Education, n (%)     0.008 
     Less than high school 15 (3.3) 10 (3.6) 10 (6.0) 16 (3.8)  
     High school 43 (9.6) 32 (11.6) 26 (15.5) 76 (18.0)  
     Beyond high school 391 (87.1) 234 (84.8) 132 (78.6) 331 (78.3)  
Fair, poor or very poor health 
status, n (%) 

49 (10.9) 21 (7.6) 24 (14.3) 64 (15.2) 0.02 

Smoking status, n (%)     0.37 
     Never 184 (13.9) 104 (7.9) 69 (5.3) 187 (14.2)  
     Past 254 (19.3) 169 (12.9) 97 (7.4) 231 (17.6)  
     Current  11 (0.8) 3 (0.2) 2 (0.2) 4 (0.3)  
Diabetes, n (%) 45 (10.0) 29 (10.5) 26 (15.5) 68 (16.1) 0.02 
Hypertension, n (%) 296 (65.9) 182 (65.9) 122 (72.6) 322 (76.5) 0.002 
Coronary heart disease†, n (%) 136 (30.3) 75 (27.2) 49 (29.2) 139 (32.9) 0.44 
Stroke, n (%) 19 (4.2) 12 (4.3) 5 (3.0) 13 (3.1) 0.71 
Congestive heart failure, n (%) 16 (3.6) 16 (5.8) 7 (4.2) 34 (8.1) 0.03 
CVD**, n (%) 151 (33.6) 92 (33.3) 52 (31.0) 157 (37.1) 0.47 
COPD or emphysema, n (%) 26 (5.8) 13 (4.7) 12 (7.1) 13 (3.1) 0.13 
Body mass index, kg/m2, mean 
(SD) 

26.0 (3.1) 26.9 (3.5) 27.8 (3.6) 28.2 (4.1) <0.001 

Depression (GDS score ≥6), n 
(%) 

26 (5.8) 12 (4.4) 4 (2.4) 29 (6.9) 0.14 
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Hospitalized in the year prior 
to sleep visit, n (%) 

56 (12.5) 36 (13.0) 23 (13.7) 60 (14.2) 0.90 

Outcomes‡      
Hospitalized, n (%) 159 (35.4) 96 (34.8) 74 (44.0) 194 (45.9) 0.003 
CVD-related hospitalization, n 
(%) 

78 (17.4) 51 (18.5) 37 (22.0) 106 (25.1) 0.03 

SNF stay, n (%) 30 (6.7) 8 (2.9) 9 (5.4) 30 (7.1) 0.08 
Dead, n (%) 25 (5.6) 18 (6.5) 10 (6.0) 35 (8.3) 0.45 
Annualized total healthcare 
costs 

     

     Mean (SD) $7,387 (9,839) $7,064 (9,606) $6,736 (7,469) $8,204 (9,924) 0.27 
     Median (IQR) $3,561 

(1,551 to 9,079) 
$3,566 

(1,643 to 
8,923) 

$3,966 
(1,697 to 8,285) 

$4,621 
(1,806 to 
10,475) 

 

Annualized outpatient costs      
     Mean (SD) $4,077 (5,483) $3,839 (4,340) $3,419 (3,412) $3,968 (4,823) 0.59 
     Median (IQR) $2,806 

(1,404 to 4,978) 
$2,711 

(1,279 to 
4,822) 

$2,634 
(1,427 to 4,219) 

$2,867 
(1,472 to 

4,931) 

 

Abbreviations: N = number of men in each category; SD = standard deviation; n (%) = number (proportion); CVD = cardiovascular 
disease; COPD = chronic obstructive pulmonary disease; GDS = Geriatric Depression Scale; SNF = skilled nursing facility; IQR = 
interquartile range 
*ANOVA (or non-parametric equivalent i.e. Kruskal Wallis test) for continuous variables, chi-square (or Fisher’s exact test) for 
categorical variables 
†Coronary heart disease was defined by a self-reported history of a physician diagnosis of angina, myocardial infarction, angioplasty or 
coronary artery bypass 
**CVD was defined as having either one these three conditions: coronary heart disease, stroke or congestive heart failure 
‡During the 3 year follow up post MrOS sleep visit  
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Table S3.2. Characteristics of 2911 Participants According to Enrollment Status 

  FFS Enrollment  

Characteristic All Participants Yes No P-value* 
 (N=2911) (N=1316) (N=1595)  
Age, years, mean (SD) 76.4 (5.5) 76.5 (5.7) 76.3 (5.4) 0.39 
Caucasian, n (%) 2641 (90.7) 1213 (92.2) 1428 (89.5) 0.01 
Education, n (%)    <0.001 
     Less than high school 152 (5.2) 51 (3.9) 101 (6.3)  
     High school 472 (16.2) 177 (13.4) 295 (18.5)  
     Beyond high school 2287 (78.6) 1088 (82.7) 1199 (75.2)  
Fair, poor or very poor health status, n 
(%) 2524 (86.8) 1157 (88.0) 1367 (85.8) 0.08 

Smoking, n (%)    0.07 
     Never 1150 (39.5) 544 (41.4) 606 (38.0)  
     Past 1703 (58.5) 751 (57.1) 952 (59.7)  
     Current  57 (2.0) 20 (1.5) 37 (2.3)  
Diabetes, n (%) 387 (13.3) 168 (12.8) 219 (13.7) 0.45 
Hypertension, n (%) 1986 (68.3) 922 (70.2) 1064 (66.7) 0.05 
Coronary heart disease†, n (%) 869 (29.9) 399 (30.3) 470 (29.5) 0.62 
Stroke, n (%) 111 (3.8) 49 (3.7) 62 (3.9) 0.82 
Congestive heart failure, n (%) 174 (6.0) 73 (5.6) 101 (6.3) 0.38 
CVD**, n(%) 989 (34.0) 537 (33.7) 452 (34.3) 0.70 
COPD or emphysema, n (%) 151 (5.2) 64 (4.9) 87 (5.5) 0.48 
Body mass index, kg/m2, mean (SD) 27.2 (3.8) 27.1 (3.7) 27.2 (3.9) 0.37 
Depression (GDS score ≥6), n(%) 188 (6.5) 117 (7.3) 71 (5.4) 0.04 
AHI    0.66 
     <5.0/hour 1144 (39.3) 529 (40.2) 615 (38.6)  
     5.0 to <15.0/hour 999 (34.3) 444 (33.7) 555 (34.8)  
     ≥15.0/hour 768 (26.4) 343 (26.1) 425 (26.6)  
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ODI    0.62 
     <5.0/hour 971 (33.4) 449 (34.1) 522 (32.7)  
     5.0 to ≤10/hour 617 (21.2) 276 (21.0) 341 (21.4)  
     10 to ≤15/hour 396 (13.6) 168 (12.8) 228 (14.3)  
     >15.0/hour 927 (31.8) 423 (32.1) 504 (31.6)  
OSA      0.57 
     <5.0/hour 1050 (36.1) 487 (37.0) 563 (35.3)  
     5.0 to <15.0/hour 1012 (34.8) 446 (33.9) 566 (35.5)  
     ≥15.0/hour 849 (29.2) 383 (29.1) 466 (29.2)  
%TST<90    0.14 
     <1.0 1410 (48.4) 639 (48.6) 771 (48.3)  
     1.0 to <3.5 767 (26.3) 327 (24.8) 440 (27.6)  
     ≥3.5 734 (25.2) 350 (26.6) 384 (24.1)  

Abbreviations: FFS = Fee-for-Service; N = number of men in each category; SD = standard deviation; n (%) = number (proportion); 
CVD = cardiovascular disease; COPD = chronic obstructive pulmonary disease; GDS = Geriatric Depression Scale; AHI = apnea 
hypopnea index; ODI = oxygen desaturation index; OSA = obstructive apneas plus hypopneas with a 4% desaturation; %TST<90 = 
percent of total sleep time with oxygen saturation <90% 
*T-test (or non-parametric equivalent i.e. Wilcoxon rank-sum test) for continuous variables, chi-square (or Fisher’s exact test) for 
categorical variables 
†Coronary heart disease was defined by a self-reported history of a physician diagnosis of angina, myocardial infarction, angioplasty or 
coronary artery bypass 
**CVD was defined as having either one these three conditions: coronary heart disease, stroke or congestive heart failure 
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Table S3.3. Associations of Measures of Sleep Disordered Breathing with Subsequent CVD-related Hospitalization  

 Inpatient Hospital Stays, Odds Ratio (95% CI) 
SDB measure Age and Site Adjusted Multivariable Adjusted* 
AHI   
     <5.0/hour 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0/hour 1.04 (0.74-1.44) 1.06 (0.74-1.51) 
     ≥15.0/hour 1.38 (0.98-1.95) 1.32 (0.91-1.91) 
ODI   
     <5.0/hour 1.00 (referent) 1.00 (referent) 
     5.0 to ≤10/hour 1.05 (0.71-1.57) 1.04 (0.68-1.59) 
     10 to ≤15/hour 1.20 (0.76-1.88) 1.28 (0.78-2.08) 
     >15.0 1.36 (0.97-1.92) 1.34 (0.92-1.95) 
OSA     
     <5.0/hour 1.00 (referent) 1.00 (referent) 
     5.0 to <15.0/hour 1.06 (0.76-1.48) 1.04 (0.73-1.49) 
     ≥15.0/hour 1.22 (0.87-1.72) 1.21 (0.84-1.76) 
%TST<90   
     <1.0 1.00 (referent) 1.00 (referent) 
     1.0 to <3.5 1.19 (0.85-1.66) 1.10 (0.77-1.59) 
     ≥3.5 1.04 (0.74-1.46) 1.14 (0.78-1.67) 

Abbreviations: CI = confidence interval; SDB = sleep disordered breathing; AHI = apnea hypopnea index; ODI = oxygen desaturation 
index; OSA = obstructive apneas plus hypopneas with a 4% desaturation; %TST<90 = percent of total sleep time with oxygen saturation 
<90% 
*Adjusted for age, site, education, health status, comorbid medical conditions (including diabetes, hypertension, CVD, and COPD), and 
body mass index at the sleep visit 
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Chapter 4: Manuscript 2 

Predictors of incident reduced sleep efficiency in community-dwelling older 

women 

4.1.Overview 

Study objectives: To examine potential risk factors for incident reduced sleep 

efficiency among community-dwelling women in the 9th decade of life  

Methods: Participants were 700 women (mean age 82.5 [SD=3.0] years) with 

normal sleep efficiency (SE >=70%) at SOF Visit 8 exam (2002-2004) of the Study of 

Osteoporotic Fractures (SOF), who had repeated measurement of sleep efficiency at the 

SOF Visit 9 exam (2006-2008). Sleep efficiency at both time points was measured using 

actigraphy collected for a minimum of 3 consecutive 24-hour periods (mean duration, 3.6 

days). Incident reduced SE was defined by a SE <70% at Visit 9. Logistic regression was 

used to estimate the associations of potential predictors with incident reduced sleep 

efficiency in minimally and fully adjusted models. Variable importance measures obtained 

from random forest analysis were used to rank predictors most important in predicting 

incident reduced sleep efficiency. 

Results: 62 (8.9%) women developed incident reduced sleep efficiency between 

SOF Visits 8 and 9. The odds of developing incident reduced sleep efficiency obtained 

from the multivariable logistic regression models were higher among women with history 

of antidepressant use (adjusted odds ratio (OR) = 3.06, 95% confidence interval (CI): 1.50, 

6.25), benzodiazepine use (OR=2.97, 95% CI: 1.30, 6.80), and self-reported hypertension 

(OR = 2.83, 95% CI: 1.47, 5.45). Random forest identified the use of benzodiazepine as 
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the most important factor in predicting incident reduced sleep efficiency, followed by 

depressive symptoms, self-reported health status, anxiety, and frailty. Both random forest 

and logistic regression identified benzodiazepine as a common determinant of incident 

reduced sleep efficiency.   

Conclusions: These results from logistic regression and random forest suggest that 

the antidepressant use, benzodiazepine use, hypertension, depression, health status, anxiety 

and frailty may be factors of importance in the development of reduced sleep efficiency in 

women late in life. Future studies are warranted to explore potential biological mechanisms 

underlying these associations.  In addition, machine learning technique via random forests 

and other supervised and unsupervised techniques should be used in sleep research to 

compare findings. 

 

Keywords: incident reduced sleep efficiency, actigraphy, older women, logistic 

regression, machine learning, random forests.  

 

 

 

 

 

 



94 
 

 

4.2.Introduction  

Sleep efficiency, defined as the percentage of time in bed spent sleeping, is a key 

measure of sleep health and has been shown to decrease with advancing age.1–3 Sleep 

efficiency below 70% is associated with increased mortality risk in older adults, and has 

been proposed as the primary parameter to be assessed and targeted to promote optimal 

sleep health in older adults.4 Furthermore, reduced sleep efficiency is associated with 

impaired cognitive function and higher rates of cognitive decline in older women5.  

While some studies have examined sleep efficiency as a predictor of adverse health 

outcomes and conditions, there is a paucity of research that has considered sleep efficiency 

as an outcome measure. A Canadian study examined factors associated with sleep 

efficiency among 2,468 community-dwelling men and women 65 years of age and older 

(mean age = 73.7 [SD = 6.1].6 The study found that pain, nocturia, sleep medication use 

and awakening from bad dreams were predictive of having a sleep efficiency below 80%. 

However, this study had several limitations including a cross-sectional design and use of 

interviews to assess self-reported efficiency rather than an objective measure such as 

actigraphy or polysomnography.  

Given that reduced sleep efficiency is associated with increased risk of adverse 

outcomes in older adults, longitudinal research is warranted to identify predictors of the 

development of incident reduced sleep efficiency. Identifying the determinants of 

objectively measured sleep efficiency in the elderly population is particularly important for 

informing evidence-based recommendations on which factors to target or interventions to 

implement to improve sleep health among this population. For example, the development 



95 
 

 

of incident reduced sleep efficiency may be a cause, marker or consequence of developing 

adverse health conditions and diseases.  

The present study aimed to longitudinally examine and identify factors associated 

with incident reduced sleep efficiency in 700 U.S. older community-dwelling women 

enrolled in the Study of Osteoporotic Fractures (SOF), using the traditional logistic 

regression. In addition, we applied the random forest technique to identify factors most 

important in predicting incident reduced sleep efficiency in U.S. older community-

dwelling women. Random forest, a machine learning technique has been developed to 

solve classification problems in the last 15 years.7 Random forest technique works well 

with both small sample sizes and complex data structures including high dimensional data. 

It is also robust to noise and takes each individual predictor including non-linear data and 

multivariate interactions between predictors into account. As a result, random forest 

algorithm has been applied to many fields such computational biology, personalized 

medicine and engineering, etc. and has been proven to perform better and produce higher 

accuracy than other classification algorithms.8–13 Finally, the results obtained from logistic 

regression were contrasted with those obtained from the random forest technique. 

4.3.Methods  

4.3.1. Study population 

We studied participants enrolled in the SOF study, a longitudinal cohort study of 

community-dwelling older women, aged ≥65 years. Women were recruited from four U.S. 

cities: Baltimore, MD; Minneapolis, MN; Portland, OR; and Monongahela Valley near 

Pittsburgh, PA.14 At the baseline SOF visit women were excluded if they were unable to 
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walk without help or had previous bilateral hip replacements. From September 1986 to 

October 1988, 9,704 white women were recruited. African American women were initially 

excluded due to their low incidence of hip fracture. However, from February 1997 to 

February 1998 (Visit 6), 662 African American women met study inclusion criteria and 

were recruited into the study.15 We included women who completed both wrist actigraphy 

during the SOF Visit 8 (2002-2004) and during the SOF Visit 9 (2006-2008). At the SOF 

Visit 9, only women from three of the original four sites were enrolled into the study 

(Minneapolis, MN; Portland, OR; and Monongahela Valley near Pittsburgh, PA). 

 Of the 4,727 women who completed at least the SOF Visit 8 questionnaire, 

actigraphy data were collected on 3,127 (62.2%) women who completed clinic or home 

visit. Of these, 1793(57.3%) were enrolled at the 3 sites conducting visit 9. A total of 829 

women (46.2% of women completing at least the questionnaire component at visit 9) had 

repeated actigraphy data at the SOF Visit 9 (5.0 years [SD=0.5] between visits. We 

excluded 128 women who had sleep efficiency <70% at the SOF Visit 8 and one woman 

with missing repeat sleep efficiency at the SOF Visit 9. The remaining 700 women are 

included in the present analysis (Figure 4.1). 

 The institutional review boards on human research approved the study at 

each institution. All participating women provided informed consent. 

4.3.2. Actigraphy 

Actigraphy is an objective non-invasive method of collecting information on 

activity and rest cycles. In this study, actigraphy was performed using the Octagonal Sleep 

Watch actigraphy, or SleepWatch-O, (Ambulatory Monitoring, Inc, Ardsley, NY) to 
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estimate sleep/wake activity. The actigraph, which looks like a wristwatch, measures 

movement using a piezoelectric biomorph-ceramic cantilevered beam, which generates a 

voltage each time the actigraph is moved. These voltages are gathered continuously and 

stored in one-minute epochs. The term “mode” is used to refer to the technique with which 

different measures were obtained. Data were collected in the 3 modes of zero crossings 

(ZCM), proportional integration mode (PIM), and time above threshold (TAT). In ZCM 

mode the conditioned transducer signal is compared with a sensitivity threshold of zero. 

The number of times the signal voltage crosses zero voltage is summed over the epoch. 

The ZCM mode is a measure of frequency of movement. The PIM mode is a high-

resolution measurement of the area under the rectified conditioned transducer signal (area 

under the curve). The PIM mode is a measure of activity level or vigor of motion. In TAT 

mode the amount of time in tenths of a second spent above the sensitivity threshold is 

gathered over the epoch. The TAT mode measures time spent in motion or duty-cycle.16   

Actigraphy data were transferred to the San Francisco Coordinating Center (San  

Francisco, CA) for centralized processing. Centralized training and certification was 

required for clinic staff gathering actigraphy data. Action W-2 software was used to score 

the data.17 Sleep scoring algorithms available in this software were used to determine sleep 

from wake times. The Cole-Kripke algorithm was used for data collected in the ZCM mode 

and the University of California, San Diego (UCSD) scoring algorithm was used for data 

collected in the PIM and TAT modes.18,19 These algorithms calculate a moving average, 

which takes into account the activity levels immediately prior to and after the current 

minute to determine if each timepoint should be coded as sleep or wake. Participants 
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completed a sleep diary which was used in the editing of the data to determine when the 

participant got into and out of bed and when the actigraph was removed.20 In this present 

study, data collected from PIM mode were used because PIM mode matches up better (than 

TAT and ZCM) to PSG which is the gold standard for measuring sleep parameters by 

electroencephalograms (EEG).21 

In SOF, women wore the actigraphs on the nondominant wrist for a minimum of 3 

consecutive 24-hour periods, except when bathing or during water sports.  

4.3.3. Outcome variable 

Sleep efficiency was defined as the percentage of time spent sleeping during the 

entire in-bed interval. Incident reduced sleep efficiency was calculated from actigraphy 

results at two time points. A woman was classified as having incident reduced sleep 

efficiency if she had normal sleep efficiency (SE >= 70%)) at SOF Visit 8 and reduced 

sleep efficiency (SE < 70%) at SOF Visit 9. 

4.3.4. Predictors of incident reduced sleep efficiency 

4.3.4.1. Demographic and lifestyle factors  

At the SOF Visit 8, women completed questionnaires on demographics (age 

(continuous), race (white vs. black), highest education obtained (years), Women were 

classified as married or not married (a category that included widowed, divorced, 

separated, or never married). In addition, participants reported lifestyle factors including 

smoking history (yes/no), and alcohol use (number of drinks/week), physical activity 

(none vs. at least walked for exercise or engaged in vigorous activities).  
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4.3.4.2. General and physical health 

Women were asked to report health status (excellent/good vs. fair/poor/very poor) 

and a physician diagnosis (yes/no) of selected medical conditions including hypertension, 

stroke, angina, myocardial infarction, chronic obstructive pulmonary disease (COPD), 

Parkinson disease, cataracts, rheumatoid arthritis, osteoarthritis, and diabetes mellitus. 

Usual gait speed was measured using the 6-meter walk speed in meter/second. The 

presence of impairment in Instrumental Activities of Daily Living (IADL) was 

determined by asking the participants if they had difficulty of doing the following five 

instrumental activities of daily living: heavy housework, walking 2 to 3 blocks, climbing 

10 stairs, shopping for groceries or clothing, and preparing meals on her own.22,23 A 

woman was considered to have an IADL impairment (yes vs.no) if they reported 

difficulty on at least one activity. Frailty was defined using the SOF index24 created for 

use in the clinical practice setting and was identified if data was available for at least two 

of the following three components of SOF frailty index: 1) weight loss of ≥5%  between 

SOF visit 6 and SOF visit 8, regardless of whether a woman was trying to lose weight or 

not; 2) unable to stand up from a chair five times without using the arms; and 3) reporting 

poor energy by having an answer of “No” to the question “Do you feel full of energy?” 

on the Geriatric Depression Scale. A woman was considered robust if she had none of 

these three components, intermediate (pre-frail) if she had 1 component and frail if she 

had at least 2 components. 

4.3.4.3. Mental health 
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Depressive symptoms were assessed using the Geriatric Depression Scale (GDS-

15)25; a participant with GDS-15 score ≥6 was considered to have depression. A woman 

was considered to have significant anxiety symptoms (yes/no) if her Goldberg anxiety 

score was ≥526. Cognitive function was measured using the Mini-Mental State 

Examination, scored from 0 to 3027 and the Trails B test.28 

4.3.4.4. Prescription drug use 

Women were asked to bring all current (defined as daily or almost daily use in the 

30 days preceding the examination) prescription and nonprescription medications with 

them to SOF clinic Visit 8. Subsequently, women were asked about their medication 

history, including type of medication and frequency of use. For women who completed 

SOF Visit 8 at home, an interviewer completed the medication history at their residence. 

Participants were specifically queried as to whether they were taking a given medication 

for a sleep related problem or condition. A computerized dictionary was used to 

categorize type of medication from product brand and generic names obtained from 

containers. Medications were then assigned a therapeutic class based on the Iowa Drug 

Information Service Drug Vocabulary (College of Pharmacy, University of Iowa, Iowa 

City, IA).29 In this analysis, the use of antidepressants, benzodiazepines, and 

nonbenzodiazepine/nonbarbiturate sedative hypnotics were examined as potential 

predictors of incident reduced sleep efficiency. 

4.3.4.5. Sleep characteristics 



101 
 

 

Women were asked to report having trouble sleeping due to: pain (not at all vs. 

one or more times a week); nocturia (not at all vs. one or more times a week); bad dreams 

(not at all vs. one or more times a week).  

4.3.5. Statistical analysis 

Descriptive statistics including means, standard deviations for continuous 

variables, distributions consisting of numbers and percentages for categorical variables 

were used to summarize the descriptive information of sleep efficiency and predictors of 

incident reduced sleep efficiency.  

Characteristics of the 700 women by status of incident reduced sleep efficiency 

(no vs. yes) between SOF Visit 8 and Visit 9 were compared using Chi-square or Fisher’s 

exact tests for categorical variables, t-tests for difference in means of continuous 

variables with normal distributions, and nonparametric Wilcoxon rank-sum tests for 

continuous variables with skewed distributions.  

To determine a final multivariable logistic regression model to examine the 

associations of potential predictors with incident reduced sleep efficiency, a three-step 

analytical process was utilized. The first step involved running the base model, which 

included age, clinical site and the continuous value of sleep efficiency at SOF Visit 8. 

The second step of the analysis involved adding each potential predictor one at a time to 

the base model. The significance of a variable in this second step was determined using 

Benjamin Hochberg false-discovery rate of q-values <0.10. This strategy adjusts for 

multiple testing and control false discovery rate due to large number of predictors; q-

value is considered to be more conservative the p-value alone30. The third step was a 
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multivariable logistic model that included the base model and all predictors that met the 

q-value < 0.10 criterion. All models included continuous baseline sleep efficiency at SOF 

Visit 8 in order to make sure that any significant associations between potential 

predictors and incident reduced sleep efficiency were independent of the variability in 

baseline sleep efficiency. All logistic regression models were conducted using SAS 

version 9.4 (SAS Institute Inc., Cary, NC). 

To ensure that the most significant variables to explain incident reduced sleep 

efficiency were accurately identified, a random forest technique was employed. Random 

forest was originally proposed by Breiman (2001)7 is a supervised machine learning 

technique and is an extension of Classification and Regression Trees (CART).31 In a 

classification tree, using a value of a correlate, the data set is first split into two subgroups, 

also called nodes, to maximize the homogeneity of the subgroups. Then, the process is 

repeated recursively to each node until the nodes can no longer be split. Random forests 

are ensembles of decision trees that are trained using bootstrapped samples randomly 

selected from the original dataset to identify and rank most important/predictive 

features/characteristics that are classifiers of an outcome through the use of variable 

importance measures(VIM).7 In building random forests, the data that is not used to create 

the random forest models is called out-of-bag (OOB) data (also considered as 

validation/test data) to compute the classification error. The OBB error is averaged over all 

trees. Smaller OOB error values indicate higher accuracy of the random forest model. VIM 

of a variable of interest is the difference between the OOB error when a data set is obtained 

through random permutation of the variable of interest and the OOB error that is obtained 
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from the original data set. In our analysis, variables with VIM values greater than 2 were 

considered important, because at a VIM value of 2, there was a large break between 

variables in terms of VIM values.32,33 

The Random forest analysis was performed using the Random Forest package in 

R, version 3.6.2. to classify incident reduced sleep efficiency status among the 700 

women and rank the importance of potential predictors. 500 bootstrapped samples were 

drawn from the data to grow 500 classifications trees and a subset of 5 predictors at each 

node was used as potential splitting variables. Variables deemed most important in 

classifying incident reduced sleep efficiency in women from the random forest analysis 

were compared with the results obtained from the logistic regression to determine the 

common significant predictors between the two methods. 

4.4.Results 

Study Population 

Baseline demographic and health characteristics of the overall cohort and by 

absence or presence of incident reduced sleep efficiency are presented in Table 4.1. Among 

the 700 women with normal sleep efficiency at SOF Visit 8 in the analytic cohort, mean 

(standard deviation [SD]) age was 82.5 years (3.0); 92.0% were non-Hispanic white, and 

19.6% reported their health status as fair/poor/very poor. There were 62 women (8.9%) 

who developed incident reduced sleep efficiency between SOF Visit 8 and Visit 9. Women 

who developed incident reduced sleep efficiency at SOF Visit 9 had a slower walk speed, 

and were more likely to report use of benzodiazepine and antidepressants, have at least 1 
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IADL impairment, depression, hypertension and report poorer health status and trouble 

sleeping due to pain. (Table 4.1). 

Demographic and lifestyle predictors of incident reduced sleep efficiency from 

logistic regression 

In the base models, compared to women with normal level of physical activity, 

women with low level of physical activity at SOF Visit 8 had higher odds of developing 

incident reduced sleep efficiency at the SOF Visit 9 (odds ratio (OR) = 1.85, 95% 

confidence interval (CI): 1.03-3.30). In subsequent logistic model, this association was no 

longer significant with the use of Benjamin Hochberg false-discovery rate of q-value<0.10 

to adjust for multiple comparison-corrected significance level. No other 

demographic/lifestyle factors met the criteria for being a significant predictor of incident 

reduced sleep efficiency by satisfying both the tradition significance level, alpha of 0.05 

and the multiple comparison-corrected significance level. (Table 4.2) 

Other predictors of incident reduced sleep efficiency from logistic regression 

Logistic regression modeling found that development of incident reduced sleep 

efficiency was significantly associated (q-value <0.10) with antidepressant use (OR=2.96; 

95% CI: 1.50-5.85), benzodiazepine use (OR=3.75; 95% CI: 1.69-8.33) and a self-reported 

diagnosis of hypertension (OR=2.71; 95% CI: 1.43-5.14) (Table 3). After adjustment for 

age, enrollment site and baseline sleep efficiency, no other measures of general health, 

mental health, prescription medication use or self-reported sleep characteristics including 

trouble sleeping due to pain/nocturia/bad dreams were predictive of incident reduced sleep 

efficiency. 
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The final logistic regression model 

The final multivariable logistic model included age, clinic site, baseline sleep 

efficiency, antidepressant use, benzodiazepine use and diagnosis of hypertension. The 

associations of antidepressant use, benzodiazepine use and hypertension with incident 

reduced sleep efficiency were not substantially altered in magnitude and remained 

significant in the final multivariable model. In particular, the odds of developing incident 

reduced sleep efficiency were approximately 3-fold higher among women with history of 

antidepressant use (adjusted odds ratio (OR) = 3.06, 95% confidence interval (CI): 1.50, 

6.25), benzodiazepine use (OR=2.97, 95% CI: 1.30, 6.80), and self-reported hypertension 

(OR = 2.83, 95% CI: 1.47, 5.45) (Table 4.4).  

Results from random forest analysis 

In random forest analysis, benzodiazepine use (VIM=6.1) was ranked as the most 

important factor in predicting incident reduced sleep efficiency at SOF Visit 9. The next 

most important factors ranked by variable importance measures were depressive symptoms 

(VIM=3.4), health status (VIM=3.4), anxiety (VIM=3.3), and frailty index (VIM=2.1) 

(Figure 4.2).   

4.5.Discussion  

Reduced sleep efficiency is associated with impaired cognitive function, higher 

rates of cognitive decline and increased mortality risk in older adults. To date, however, 

few studies have examined sleep efficiency as an objectively measured outcome. To 

address this gap, the current study used actigraphy data to calculate sleep efficiency at 2 

visits an average of 5.0 years apart in in 700 elderly women enrolled in the Study of 
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Osteoporotic Fractures, a multi-site, longitudinal, cohort study of community dwelling 

women 65 years of age or older. This study utilized the traditional logistic regression and 

random forest technique to examine the determinants of reduced sleep efficiency. 

Using logistic regression, several factors were found to be significantly associated 

with reduced sleep efficiency after adjusting for each other and potential confounders. Our 

findings suggest that older women with a history of antidepressant use, benzodiazepine use 

and with self-reported hypertension had approximately 3 times higher odds of developing 

worsened sleep efficiency. In addition, with random forests, we found that the use of 

benzodiazepine was the most important factor in predicting incident reduced sleep 

efficiency, followed by depressive symptoms, self-reported health status, anxiety, and 

frailty. As stated before, there is a lack of research focusing on reduced sleep efficiency in 

the older population. To the best of our knowledge, there is one Canadian study that has 

identified factors associated with poorer sleep efficiency in a population of 2,468 

participants, ages 65 and older.6 Our result regarding the use of benzodiazepine as a 

significant predictor of incident reduced sleep efficiency in the logistic regression model is 

somewhat consistent with a finding from the Canadian study, where the use of sleep 

medication was identified as a significant factor of poorer sleep efficiency (OR=1.82, 95% 

CI: 1.48, 2.22). However, the other factors associated with poorer sleep efficiency 

identified in our study are different from those identified in this Canadian study, where the 

authors concluded that pain, nocturia, and awakening from bad dreams were also 

associated with poorer sleep efficiency below 80%. Thus, predictors identified in our study 

add to the list of possible factors associated with reduced sleep efficiency. A plausible 



107 
 

 

explanation for the discrepancies in results may be the difference in study design (cross 

sectional study vs. prospective cohort study). In addition, the Canadian study utilized in-

home interviews to assess sleep efficiency, which might not be as accurate as objective 

measures of sleep efficiency measured using actigraphy as performed in our study. To the 

best of our knowledge, our study in community-dwelling women is the first longitudinal 

study that examines the determinants of incident reduced sleep efficiency in a population 

who started out with normal sleep efficiency.  

Both traditional logistic regression and random forest found the use of 

benzodiazepine as the common predictor of developing incident reduced sleep efficiency. 

This noted association between reduced sleep efficiency and benzodiazepine use confirms 

what has been known about the adverse events associated with the use of these drugs in 

older populations.  Since the introduction of the Beer’s Criteria of Medications to Avoid in 

the Elderly in the 1970’s, benzodiazepines have been identified as drugs of concern.34 They 

have been associated with increased risk of falls and fractures, motor vehicle accidents and 

cognitive impairment/delirium, and rapid eye movement sleep behavior disorder in 

community-dwelling elderly.34–37 Our findings strongly suggest that the use of 

benzodiazepines as indicated by both traditional logistic regression and random forest, and 

the diagnosis of anxiety (only identified by random forest) for which they may be 

prescribed, are associated with reduced sleep efficiency. Continued concern about this 

therapeutic class of drugs is warranted. 

The association between reduced sleep efficiency and depression is also 

noteworthy. Logistic regression identified a history of antidepressant use as a significant 



108 
 

 

factor, while random forest identified self-reported of depressive symptoms as important. 

The diagnosis of depression and the subsequent prescription of anti-depressants is 

widespread in the elderly population38,39,  with serotonin reuptake inhibitors (SSRIs) being 

the most commonly prescribed this population40.  Clinical literature suggests a number of 

adverse effects of antidepressants in the elder population including cognitive impairment 

and a number of antidepressants are identified as drugs to avoid in the elderly population34. 

A cross sectional study in 2,853 community-dwelling women (ages 71 and older) without 

evidence of depression attending the SOF Visit 8 found that the use of SSRIs was 

associated with sleep disturbances including worsened sleep efficiency, longer sleep 

latency and sleep fragmentation41.  The result from our longitudinal study on the 

association of antidepressant use and incident reduced sleep efficiency confirms the finding 

from this previous study and adds to this literature. Reduced sleep efficiency with its 

accompanying impaired cognitive function and cognitive decline may compound the 

adverse effects of antidepressants. 

Our results from the random forest technique demonstrated two general and 

physical health concerns that are associated with reduced sleep efficiency including poorer 

health status and  frailty. There is a known association between frailty and subsequent 

rating of health status.42–46 Our study data confirm this general relationship; a higher 

proportion of women with intermediate or frail status reported having fair/poor/very poor 

health status. Our analysis demonstrates that both of these characteristics are also 

associated with reduced sleep efficiency. A study in 3133 community-dwelling older men 

showed that reduced sleep efficiency was associated with 1.37-fold times higher risk of 
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developing greater frailty status.47 Thus, this suggests that there might a bi-directional 

relationship between frailty and reduced sleep efficiency.  

Finally, our results from the logistic models indicated that hypertension was a 

significant predictor of incident reduced sleep efficiency. The odds ratio (OR=2.83; 95% 

CI: 1.47,5.45) indicated that history of self-reported hypertension was associated with a 

nearly 3-fold higher risk of developing incident reduced sleep efficiency. The association 

of hypertension with sleep related problems including apnea, insomnia, restless leg 

syndrome and sleep duration above or below the median of 7 to 8 hours per night, has been 

a subject of published research 48–50. In general, these published studies examined 

hypertension as an outcome and sleep parameters as predictors. Our study indicated 

however, hypertension is a significant factor in the development of incident reduced sleep 

efficiency. Thus, this suggests that there might a bi-directional relationship between 

hypertension and sleep health. Further research studies are needed to confirm this 

association between hypertension and reduced sleep efficiency and explore the mechanism 

by which these two conditions affect one another.  

Our study contributes to the sparse literature on the development of incident 

reduced sleep efficiency, which is particularly of a great concern for the older populations 

with high number of comorbid conditions and functional limitations. Our study has several 

strengths. We used a prospective cohort study with comprehensive assessment of 

participant characteristics including demographics, lifestyle, general and physical health, 

sleep characteristics, and prescription drug use factors. We also used repeated objective 

measures of sleep efficiency through actigraphy, and adjusted for the baseline sleep 
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efficiency to ensure that the associations between baseline predictors and incident reduced 

sleep efficiency were independent of baseline sleep efficiency. In addition, we adjusted for 

multiple comparisons in the analyses involving logistic regression to control for false 

discovery rate. Furthermore, we also applied random forest, a machine learning technique 

to confirm, compare and contrast the results to those obtained from the traditional logistic 

regression. The use of random forest offers many advantages over the traditional logistic 

regression including its ability to allow the inclusion of correlated data and its potential to 

explore and find interactions between predictors of incident reduced sleep efficiency 

independently without any assumptions.7 

However, this study has limitations. First, the cohort was restricted to older 

community-dwelling older, primarily white women. Thus, the results might not be 

generalizable to other populations such as men, younger women, or other more diverse 

populations. Future studies are warranted to examine longitudinal changes in sleep 

efficiency in other populations including those residing in institutions such as nursing 

homes. Second, even though we utilized a longitudinal cohort study and controlled for 

potential confounders and mediators in our logistic regression, causality of the relationship 

between predictors and risk of developing incident reduced sleep efficiency cannot be 

strongly inferred due to the potential for residual confounding. Third, our sample size and 

the number of events for incident reduced sleep efficiency at follow-up were small. Thus, 

while we accounted for multiple comparisons in order to reduce the false-positive findings 

in the analyses involving logistic regression, there might be a chance for false negative 

findings. Fourth, while we adjusted for baseline characteristics, we did not adjust for 
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changes in participants’ characteristics that might have taken place in between the SOF 

visits. These changes might be changes in general, physical and mental health, prescription 

medication use or sleep characteristics, and could further contribute to the development of 

incident reduced sleep efficiency in older women. Future studies are warranted to 

determine whether these changes between visits are potential determinants of the 

development of incident reduced sleep efficiency. Lastly, the random forest technique used 

in our analysis may have possible shortcomings as it may introduce subjectivity to the 

analysis, due to the choice of tuning parameters of random forests.7,51 Correlation between 

predictors of incident reduced sleep efficiency in the random forests may result in 

confounding. While random forest ranks predictors in terms of importance to the 

classification of worsened sleep efficiency, in comparison to logistic regression, random 

forest is unable to determine the magnitude and direction of the effects of the predictors on 

worsened sleep efficiency, resulting in a lack of interpretation of results and limiting our 

understanding of the determinants of worsened sleep efficiency.  

In conclusion, our results suggest that the antidepressant use, benzodiazepine use 

and hypertension may be risk factors for the development of reduced sleep efficiency in 

women late in life. Results from random forest analysis suggest that in addition to 

benzodiazepine use as also identified by traditional logistic regression, mental health, 

physical health and frailty might be predictive of the development of reduced sleep 

efficiency in older women. Thus, future research is warranted to explore potential 

biological mechanisms underlying these associations to explain the etiology of reduced 

sleep efficiency. In addition, future intervention studies/trials are needed to target risk 
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factors such as depressive symptoms, anxiety, and frailty to determine whether 

interventions designed to improve these factors would result in improved sleep efficiency. 

The use of benzodiazepines and antidepressants should be prescribed with caution in older 

women. Finally, machine learning technique via random forests and other supervised and 

unsupervised techniques should be used in sleep research as alternative analytical methods 

to confirm and compare findings. 
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4.6.Figures and Tables 

 
Figure 4.1: Study Flow Chart 
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Table 4.1: Baseline characteristics for 700 women at SOF Visit 8 by incident reduced sleep efficiency (SE) status  

 
Characteristics Total Normal SE  Incident reduced SE P-value 
 N = 700 N=638 N=62  
 Age, mean (SD) 82.5(3.0) 82.5(3.0) 82.8(3.3) 0.4655 
SE at sleep visit 1 (%), mean (SD) 83.0(6.0) 83.3(5.9) 79.4(5.5) <.0001 
SE at sleep visit 2 (%), mean (SD) 82.4(9.4) 84.5(6.2) 61.3(10.9) <.0001 
Time in seconds to complete Trails 
B test(0-180), mean (SD) 114.4(32.2) 113.9(31.4) 120.7(39.8) 0.2394 
Short Mini-mental state exam (0-
30), mean (SD) 25.0(1.3) 25.0(1.3) 25.0(1.4) 0.8608 
Walking speed in meters/second, 
mean (SD) 0.92(0.22) 0.93(0.22) 0.87(0.22) 0.0563 
Race, N(%)    0.3687 
              White 642(91.7%) 587(92.0%) 55(88.7%)  
              Black 58(8.3%) 51(8.0%) 7(11.3%)  
Education, N(%)    0.3307 
              Less than high school 
(HS) 115(16.4%) 101(15.8%) 14(22.6%)  
              HS 317(45.3%) 289(45.3%) 28(45.2%)  
             At least HS 268(38.3%) 248(38.9%) 20(32.3%)  
Smoking status, N(%)    0.6798 
             Never 434(62.1%) 394(61.9%) 40(64.5%)  
             Past/Current 265(37.9%) 243(38.1%) 22(35.5%)  
Alcohol consumption, N(%)    0.0949 
            0 drinks/week 560(80.0%) 504(79.0%) 56(90.3%)  
            1-13 drinks/week 127(18.1%) 121(19.0%) 6(9.7%)  
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            At least 14 drinks/week 13(1.9%) 13(2.0%) 0(0.0%)  
IADL impairments, N(%)    0.0515 
            No impairments 398(56.9%) 370(58.0%) 28(45.2%)  
            At least 1 impairment 302(43.1%) 268(42.0%) 34(54.8%)  
Depression, N(%)    0.0258 
             No depression (GDS-15 < 
6) 648(92.6%) 595(93.3%) 53(85.5%)  
             Depression (GDS-15 >=6) 52(7.4%) 43(6.7%) 9(14.5%)  
Anxiety status, N(%)    0.6466 
             No anxiety (Goldberge 
score <= 4) 609(87.1%) 557(87.3%) 52(85.2%)  
             Anxiety (Goldberge score 
>=5) 90(12.9%) 81(12.7%) 9(14.8%)  
Trouble sleeping due to pain, N(%)    0.047 
             No 474(67.7%) 439(68.8%) 35(56.5%)  
             Yes 226(32.3%) 199(31.2%) 27(43.5%)  
Trouble sleeping due to nocturia, 
N(%)    0.9422 
             No 81(11.6%) 74(11.6%) 7(11.3%)  
             Yes 619(88.4%) 564(88.4%) 55(88.7%)  
Trouble sleeping due to bad 
dreams, N(%)    0.5379 
             No 605(86.4%) 553(86.7%) 52(83.9%)  
             Yes 95(13.6%) 85(13.3%) 10(16.1%)  
Frailty status, N(%)    0.5689 
             Robust 216(35.9%) 195(35.5%) 21(41.2%)  
             Intermediate (Pre-frail) 302(50.2%) 280(50.9%) 22(43.1%)  
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             Frail 83(13.8%) 75(13.6%) 8(15.7%)  
Benzodiazepine use, N(%)    0.0011 
            No 655(93.6%) 603(94.5%) 52(83.9%)  
            Yes 45(6.4%) 35(5.5%) 10(16.1%)  
Nonbenzo/nonbarbituate sedative 
hypnotic use, N(%)    0.4791 
            No 693(99.0%) 632(99.1%) 61(98.4%)  
            Yes 7(1.0%) 6(0.9%) 1(1.6%)  
Antidepressant use, N(%)    0.0013 
            No 626(89.4%) 578(90.6%) 48(77.4%)  
            Yes 74(10.6%) 60(9.4%) 14(22.6%)  
History of hypertension, N(%)    0.0007 
            No 288(41.1%) 275(43.1%) 13(21.0%)  
            Yes 412(58.9%) 363(56.9%) 49(79.0%)  
History of stroke, N(%)    0.5114 
            No 647(92.4%) 591(92.6%) 56(90.3%)  
            Yes 53(7.6%) 47(7.4%) 6(9.7%)  
History of angina(chest pain), 
N(%)    0.6445 
            No 622(88.9%) 568(89.0%) 54(87.1%)  
            Yes 78(11.1%) 70(11.0%) 8(12.9%)  
History of heart attack, N(%)    0.7782 
            No 639(91.3%) 583(91.4%) 56(90.3%)  
            Yes 61(8.7%) 55(8.6%) 6(9.7%)  
History of COPD/emphysema, 
N(%)    0.7228 
            No 630(90.0%) 575(90.1%) 55(88.7%)  
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            Yes 70(10.0%) 63(9.9%) 7(11.3%)  
History of Parkinsons Disease, 
N(%)    1 
            No 698(99.7%) 636(99.7%) 62(100%)  
            Yes 2(0.3%) 2(0.3%) 0(0.0%)  
History of rheumatoid arthritis, 
N(%)    0.8083 
            No 644(92.0%) 586(91.8%) 58(93.5%)  
            Yes 56(8.0%) 52(8.2%) 4(6.5%)  
History of osteoarthritis, N(%)    0.4726 
            No 436(62.3%) 400(62.7%) 36(58.1%)  
            Yes 264(37.7%) 238(37.3%) 26(41.9%)  
History of diabetes, N(%)    0.4508 
            No 629(89.9%) 575(90.1%) 54(87.1%)  
            Yes 71(10.1%) 63(9.9%) 8(12.9%)  
Health status, N(%)    0.0213 
            Poor/Very Poor/Fair 137(19.6%) 118(18.5%) 19(30.6%)  
            Good/Excellent 563(80.4%) 520(81.5%) 43(69.4%)  
Marital status, N(%)    0.707 
            Not married 482(68.9%) 438(68.7%) 44(71.0%)  
            Married 218(31.1%) 200(31.3%) 18(29.0%)  
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Table 4.2: Demographics and lifestyle predictors of incident reduced sleep efficiency (models adjusted for age, site and 
baseline sleep efficiency) 

 Incident reduced SE 
 OR(95% CI) pvalue q value 
Age (years), per SD increase 1.11(0.86,1.43) 0.4181 0.7867 
Sleep efficiency (%), per SD increase 0.51(0.39, 0.67) <.0001 0.0003 
Low physical activity vs. normal level 1.85(1.03,3.30) 0.0391 0.2659 
Race, Nonwhite vs. white 1.14(0.46,2.85) 0.775 0.9759 
Education    
                   Less than high school vs. at least college 1.58(0.74,3.38) 0.2409 0.63 
                   High school vs. at least college 1.33(0.71,2.47) 0.3743 0.7867 
Smoking status, ever vs. never 0.85(0.48,1.50) 0.5753 0.9182 
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Table 4.3: Health status and disease predictors of incident reduced sleep efficiency (models adjusted for age, site and 
baseline sleep efficiency) 

 Incident reduced SE 
 OR(95% CI) pvalue qvalue 
IADLs impairment, impaired vs. non-impaired 1.61(0.94,2.75) 0.0852 0.4054 
Trails B: Total time ((0-180 sec), per SD increase 1.09(0.82,1.46) 0.5482 0.9182 
Short Mini-mental state exam (0-30), per SD 
increase 1.01(0.77,1.31) 0.95 0.9902 
Walk speed (m/s), ?per SD increase 0.80(0.59,1.09) 0.158 0.4884 
Depression  1.84(0.82,4.12) 0.1368 0.4651 
Anxiety status 1.04(0.48,2.22) 0.9288 0.9902 
Trouble sleeping due to pain 1.59(0.92,2.73) 0.0954 0.4054 
Trouble sleeping due to nocturia 0.79(0.34,1.86) 0.5941 0.9182 
Trouble sleeping due to bad dreams 1.34(0.64,2.79) 0.4396 0.7867 
Frailty status    
                      Prefail vs. Robust 0.71(0.37,1.35) 0.2913 0.7074 
                      Frail vs. Robust 0.96(0.40,2.32) 0.93 0.9902 
Antidepressant use 2.96(1.50,5.85) 0.0018 0.0195 
Benzodiazepine use 3.75(1.69,8.33) 0.0012 0.0195 
Nonbenzo/nonbarbituate sedative hypnotic use  1.51(0.17,13.72) 0.7121 0.9312 
History of hypertension 2.71(1.43,5.14) 0.0023 0.0195 
History of stroke 1.45(0.58,3.64) 0.4238 0.7867 
History of angina(chest pain) 1.19(0.54,2.65) 0.6703 0.9206 
History of heart attack 1.09(0.44,2.70) 0.8486 0.9902 
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History of COPD/emphysema 1.03(0.44,2.40) 0.9502 0.9902 
History of rheumatoid arthritis 0.77(0.26,2.26) 0.6366 0.9206 
History of osteoarthritis 1.26(0.73,2.17) 0.4042 0.7867 
History of diabetes 1.19(0.53,2.67) 0.6769 0.9206 
Health status 
Poor/very poor/fair vs. good/excellent   1.68(0.93,3.04) 0.0878 0.4054 
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Table 4.4. Results from the final multivariable model of the development of incident reduced sleep efficiency in women 
between SOF Visit 8 (2002-2004) and SOF Visit 9 (2006-2008). 

Characteristics Incident reduced sleep efficiency 
 Odds ratios 

(95% Confidence interval) 
P-value 

Age, years (per SD increase) 1.08 
(0.83, 1.40) 

0.57 

Antidepressant use 3.06 
(1.50, 6.25) 

0.002 

Benzodiazepine use 2.97 
(1.30, 6.80) 

0.01 

Self-reported hypertension 2.83 
(1.47, 5.45) 

0.002 
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   Figure 4.2: Permutation variable importance measures  



123 
 

 

   These measures obtained from the Random forests model are represented by the mean   decrease accuracy for each predictor 

in classifying incident reduced sleep efficiency. The larger the value for mean decrease accuracy due to the exclusion of that 

variable, the more important the variable in reducing classification error. Variables whose mean decrease accuracy values less 

than 0 are considered to be non-informative. 
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Chapter 5: Manuscript 3 

Predictors of incident reduced sleep efficiency in community-dwelling older 

men 

5.1.Overview 

 Study objectives: To identify potential risk factors for incident reduced sleep 

efficiency among community-dwelling older men. 

Methods: Participants were 487 community-dwelling men (mean age 74.1 

[SD=4.6] years) with normal sleep efficiency (SE >=80%) at MrOS Sleep Visit 1 [VS1] 

(2003-2005) of the Osteoporotic Fractures in Men (MrOS) study, who had repeated 

measurement of sleep efficiency at the MrOS Sleep Visit 2 [VS2](2009-2012). Sleep 

efficiency at both time points was measured using overnight polysomnography (PSG). 

Incident reduced SE was defined by a SE <80% at VS2. Logistic regression was used to 

estimate the associations of potential predictors with incident reduced sleep efficiency in 

minimally and fully adjusted models. Variable importance measures obtained from random 

forest analysis were used to rank predictors most important in predicting incident reduced 

sleep efficiency. 

Results: 262 (53.8%) men developed incident reduced sleep efficiency between 

VS1 and VS2. Men with higher baseline sleep efficiency had 31% lower odds of 

developing incident reduced sleep efficiency based on age and clinical site adjusted logistic 

regression models  (adjusted odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.57, 
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0.83) per 1 SD increase in baseline sleep efficiency. However, measures of general health, 

general mental health, prescription medication use or sleep characteristics (including 

trouble sleeping due to pain, nocturia, or bad dreams) were not found to be predictive of 

incident reduced sleep efficiency after adjustment for age, enrollment site and baseline 

sleep efficiency. On the other hand, random forest models identified depressive symptoms 

as the most important factor in predicting incident reduced sleep efficiency in men, 

followed by cognitive function, nocturia, diabetes, weekly alcohol consumption and 

baseline sleep efficiency.  

Conclusions: Machine learning techniques such as random forests could be 

valuable in identifying novel risk factors for adverse sleep outcomes such as incident 

reduced sleep efficiency. Depressive symptom, cognitive function, nocturia, diabetes, 

consumption of alcoholic drinks and baseline sleep efficiency may be important factors for 

the development of reduced sleep efficiency in older men. 

 

Keywords: incident reduced sleep efficiency, polysomnography, older men, 

logistic regression, machine learning, random forests.   

 

5.2.Introduction  

Sleep efficiency, defined as the percentage of time in bed spent sleeping, is a key 

measure of sleep health and has been shown to decrease with advancing age.1–3 Sleep 

efficiency below 80% is  associated with increased mortality risk in older adults, and has 

been proposed as the primary parameter to be assessed and targeted to promote optimal 
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sleep health in older adults.4 Furthermore, reduced sleep efficiency is associated with 

higher rates of cognitive decline in older men5.  

While some studies have examined sleep efficiency as a predictor of adverse health 

outcomes and conditions, there is a paucity of research that has considered sleep efficiency 

as an outcome measure. A Canadian study of 2468 community-dwelling men and women 

65 years of age and older (mean age = 73.7 [SD = 6.1]  found that pain, nocturia, sleep 

medication use and awakening from bad dreams were predictive of having a sleep 

efficiency below 80%.6 However, the study had several limitations including a cross-

sectional design and use of interviews to assess self-reported efficiency rather than an 

objective measure like polysomnography (PSG) or actigraphy.  

Given that reduced sleep efficiency is associated with increased risk of adverse 

outcomes in older adults, longitudinal research is warranted to identify predictors of the 

development of incident reduced sleep efficiency. Identifying the determinants of 

objectively measured reduced sleep efficiency in the elderly population is particularly 

important for the design of potential interventions aimed at improving sleep health among 

this population and to inform evidence-based recommendations regarding prevention and 

treatment of age-related impairment in sleep health. For example, the development of 

incident reduced sleep efficiency may be a cause, marker or consequence of developing 

adverse health conditions and diseases.  

The objective of the present longitudinal study was to identify factors associated 

with incident reduced sleep efficiency in U.S. older community-dwelling men enrolled in 

the Osteoporotic Fractures in Men (MrOS) Study. Analyses were performed using 
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logistic regression and a newer machine learning technique, random forest. Like logistic 

regression, random forest analysis can be used to solve classification problems7.  In the 

last 15 years random forest analysis has been used in diverse fields including 

computational biology, personalized medicine and engineering.8–13  

5.3.Methods  

5.3.1. Study population 

We studied participants enrolled in the MrOS study, a prospective cohort study of 

5994 community-dwelling older men, aged ≥65 years. Men were recruited between March 

2000 to April 2002 from six US cities: Birmingham, AL; Minneapolis, MN; Palo Alto, 

CA; Monongahela Valley near Pittsburgh, PA; Portland, OR; and San Diego, CA. Details 

of the MrOS study design and recruitment have been described elsewhere.14,15 

Recruitment for Outcomes of Sleep disorders in Older Men (VS1) study occurred 

from December 2003 to March 2005 among the pool of 5605 active participants (Figure 

1). Among these men, 150 were not eligible for the VS1 study because they were receiving 

treatment for sleep apnea or snoring, 1997 were invited but declined participation, and 323 

were not asked to participate because the study recruitment goal had been met. Thus, a total 

of 3135 (57%) men agreed to participate in the VS1 (exceeding the recruitment goal of 

3000 men). 

The second MrOS Sleep Visit (VS2) was completed between 11/10/2009 and 

3/15/2012; 2911 men who remained active in the MrOS study and had usable PSG data 

from the VS1 were eligible to be contacted to participate in the VS2. All active minority 

participants with usable PSG data from VS1 were contacted for participation in VS2; non-
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minority participants were contacted in random order for enrollment until a study 

recruitment goal of 1000 participants was met. Of the 2911 men that remained active in 

VS1, follow-up was not expected for 64 (2.2%); 856 (29.4%) refused further study 

participation; 538 (18.5%) died prior toVS2; 37 (1.3%) terminated; 54 (1.9%) were not 

eligible and 307 (10.6%) were not contacted. Recruitment goals for the VS2 study were 

exceeded with a total of 1055 enrolled participants. Among these 1055 men, 1026 had 

usable PSG data at both VS1 and VS2. We excluded 539 men who had sleep efficiency 

<80% at the VS1. The remaining 487 men are included in the present analysis (Figure 5.1). 

5.3.2. PSG 

In-home sleep studies were completed using a level 2 PSG (Safiro, Compumedics, 

Inc.®, Melbourne, Australia). The PSG recordings were obtained within one month of the 

clinic visit (mean 6.9 ± 15.8 days from visit), with 78% of recordings gathered within one 

week of the clinic visit. The recordings included C3/A2 and C4/A1 electroencephalograms, 

bilateral electrooculograms and a bipolar submental electromyogram to determine sleep 

stage, thoracic and abdominal respiratory inductance plethysmography to determine 

respiratory effort, airflow (by nasal-oral thermocouple and nasal pressure cannula), finger 

pulse oximetry (SpO2) for measuring oxygen saturation, lead I EKG,body position 

(mercury switch sensor), and bilateral tibialis leg movements (piezoelectric sensors). 

Centrally-trained and certified staff performed home visits to set up the unit, verify the 

values of the impedances for each channel, confirm calibration of position sensors and note 

any problems encountered during set-up, similar to the protocol used in the Sleep Heart 

Health Study.16 Staff returned the next morning to collect the equipment and download the 
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data to the Central Sleep Reading Center (Cleveland, OH) to be scored by certified research 

polysomnologists blinded to all other data.  

For VS2, approximately every 6 months a test sample of 10 to 20 records were 

scored to document inter-and intra-scorer reliability by the primary scorer (937) assigned 

to MrOS (May 2010, January 2011, October 2012-November 2012). Intra-class correlation 

coefficients were generated for these reliability assessments for key sleep variables. Two 

certified scorers from the VS1study participated in training and follow-up review of the 

first 100 VS2 studies. PSG data quality was deemed excellent, with a failure rate of less 

than 4%; more than 70% of the assessments were graded as excellent or outstanding 

quality.  

5.3.3. Outcome variable 

Sleep efficiency was defined as the percentage of time spent sleeping during the 

entire in-bed interval. Incident reduced sleep efficiency was calculated from PSG results 

at two time points. A man was classified as having incident reduced sleep efficiency 

(yes/no) if he had normal sleep efficiency (SE >= 80%) at VS1 and reduced sleep efficiency 

(SE < 80%) at VS2. 

5.3.4. Predictors of incident reduced sleep efficiency 

5.3.4.1. Demographic and lifestyle factors 

At the VS1, men completed questionnaires on demographics including age 

(continuous), race (white vs. others). Highest education obtained (years) was collected at 

MrOS baseline visit. In addition, participants reported lifestyle factors including smoking 
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history (yes/no), and alcohol use (number of drinks/week). Physical activity level was 

accessed using the Physical Activity Scale for the Elderly (PASE).17   

5.3.4.2. General and physical health 

Participants were asked to report health status (excellent/good vs. fair/poor/very 

poor) and a physician diagnosis (yes/no) of selected medical conditions including 

hypertension, stroke, angina, myocardial infarction, chronic obstructive pulmonary 

disease (COPD), Parkinson disease, cataracts, rheumatoid arthritis, osteoarthritis, and 

diabetes mellitus. Usual gait speed was measured using the 6-meter walk speed in 

meter/second. The presence of impairment (yes/no) in Instrumental Activities of Daily 

Living (IADL) was determined by asking the men if they had difficulty in doing the 

following five instrumental activities of daily living: heavy housework, walking 2 to 3 

blocks, climbing 10 stairs, shopping for groceries or clothing, and preparing meals on his 

own.18,19 A man was considered to have an IADL impairment (yes vs.no) if he reported 

difficulty on at least one activity. Frailty was defined using the SOF index20 and was 

identified if data was available for at least two of the following three components: 1) 

weight loss of ≥5%  between MrOS baseline visit and VS1, regardless of whether a man 

was trying to lose weight or not; 2) unable to stand up from a chair five times without 

using the arms; and 3) reporting poor energy by having an answer of “No” to the question 

“Do you feel full of energy?” on the Geriatric Depression Scale. A man was considered 

robust if he had none of these three components, intermediate (pre-frail) if he had 1 

component and frail if he had at least 2 components. 

5.3.4.3. Mental health 
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Depressive symptoms (yes/no) were assessed using the Geriatric Depression 

Scale (GDS-15)21; a participant with GDS-15 score ≥6 was considered to have 

depression. A man was considered to have significant anxiety symptoms (yes/no) if his 

Goldberg anxiety score was ≥522. Global cognitive function was measured using the 

Mini-Mental State Examination (3MS), scored from 0 to 100, with higher 3MS scores 

representing better cognitive functioning.23 Executive function (mental skills that include 

working memory, flexible thinking, and self-control) was also assessed using the Trails B 

test, with shorter Trails B time spent on completing the test representing better cognitive 

functioning.24 

5.3.4.4. Prescription drug use 

Men were asked to bring all current (defined as daily or almost daily use in the 30 

days preceding the examination) prescription and nonprescription medications with them 

to VS1. Subsequently, participants were asked about their medication history, including 

type of medication and frequency of use. Participants were specifically queried as to 

whether they were taking a medication for a sleep related problem or condition. A 

computerized dictionary was used to categorize type of medication from product brand 

and generic names obtained from containers. Medications were then assigned a 

therapeutic class based on the Iowa Drug Information Service Drug Vocabulary (College 

of Pharmacy, University of Iowa, Iowa City, IA).25 In this analysis, the use of 

antidepressants, benzodiazepines, and nonbenzodiazepine/nonbarbiturate sedative 

hypnotics were considered as candidate predictor variables. 

5.3.4.5. Self-reported sleep characteristics 



139 
 

 

Men were asked to report having trouble sleeping due to: pain (not at all vs. one 

or more times a week); nocturia (not at all vs. one or more times a week); and bad dreams 

(not at all vs. one or more times a week).  

The institutional review boards on human research approved the study at each 

institution. All participating men provided informed consent. 

5.3.5. Statistical analysis 

Descriptive statistics (means, standard deviations for continuous variables; 

distributions consisting of numbers and percentages for categorical variables) were used 

to summarize the descriptive information of sleep efficiency and predictors of incident 

reduced sleep efficiency. Participants’ characteristics by status of incident reduced sleep 

efficiency between VS1 and VS2  were compared using Chi-square or Fisher’s exact tests 

for categorical variables, t-tests for difference in means of continuous variables with 

normal distributions, and nonparametric Wilcoxon rank-sum tests for continuous 

variables with skewed distributions.  

To determine a final multivariable logistic regression model to examine the 

associations of potential predictors with incident reduced sleep efficiency, a three-step 

analytical process was utilized. The first step was performing the base model, which 

included age, clinical site and the continuous value of sleep efficiency at VS1. The 

second step of the analysis was adding each potential predictor one at a time to the base 

model and determining its significance,  using the Benjamin Hochberg false-discovery 

rate of q-values <0.10. This strategy adjusts for multiple testing and controls for the false 

discovery rate due to a large number of predictors; q-value is considered to be more 
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conservative the p-value alone26. The third step was a multivariable logistic model that 

included the independent variables in the base model and all predictors that met the q-

values < 0.10 criterion. All models included continuous baseline sleep efficiency at VS1 

to ensure that any significant associations between potential predictors and incident 

reduced sleep efficiency were independent of the variability in baseline sleep efficiency. 

All logistic regression models were conducted using SAS version 9.4 (SAS Institute Inc., 

Cary, NC). 

Random forest technique was also employed to identify to further investigate 

incident reduced sleep efficiency in this population of older men. Random forest, as 

originally proposed by Breiman (2001),7 is a supervised machine learning technique and is 

an extension of Classification and Regression Trees (CART).27 In a classification tree, 

using a value of a correlate, the data set is first split into two subgroups, also called nodes, 

to maximize the homogeneity of the subgroups. Then, the process is repeated recursively 

to each node until the nodes can no longer be split. Random forests are ensembles of 

decision trees that are trained using bootstrapped samples randomly selected from the 

original dataset to identify and rank the most important/predictive features/characteristics 

that are classifiers of an outcome through the use of variable importance measures(VIM).7 

In building random forests, the data not used to create the random forest models is called 

out-of-bag (OOB) data (also considered as validation/test data) and is used to compute the 

classification error. The OOB error is averaged over all trees. Smaller OOB error values 

indicate higher accuracy of the random forest model. VIM of a variable of interest is the 

difference between the OOB error when a data set is obtained through random permutation 
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of the variable of interest and the OOB error that is obtained from the original data set. A 

large break or drop in VIM values is usually used to rankvariables important to the 

classification problems in random forests. 28,29 

The Random forest analysis was performed using the Random Forest package in 

R30, version 3.6.2. to classify incident reduced sleep efficiency status among men 

included in the analytical cohort and rank the importance of potential predictors. In our 

analysis, 500 bootstrapped samples were drawn from the data to grow 500 classifications 

trees; a subset of 5 predictors at each node was used as potential splitting variables. 

Variables deemed most important in classifying incident reduced sleep efficiency in men 

from the random forest analysis were contrasted with the results obtained from the 

logistic regression.  

5.4.Results 

Study Population 

Baseline demographic and health characteristics of the overall cohort and by 

absence or presence of incident reduced sleep efficiency are presented in Table 5.1. Among 

the 487 men with normal sleep efficiency at VS1 in the analytic cohort, mean age was 74.1 

years ±4.6 years; 88.1% were non-Hispanic white; 9.0% reported their health status as 

fair/poor/very poor; and 85.4% completed at least college education. Incident reduced sleep 

efficiency between VS1 and VS2 developed in 262 men (53.8%). There were no 

statistically significant differences in demographics and lifestyle factors; measures of 

general, physical and mental health; or use of antidepressants, benzodiazepines, and 

nonbenzodiazepine/nonbarbiturate sedative hypnotics between men who developed 
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incident reduced sleep efficiency at VS2 and those whose sleep efficiency remained 

normal. Nonetheless, men who developed incident reduced sleep efficiency at VS2 were 

more likely at baseline to have lower sleep efficiency and report having history of 

osteoarthritis, have trouble sleeping due to nocturia, and less likely to report having chest 

pain (Table 5.1). 

Predictors of incident reduced sleep efficiency from logistic regression 

Men with higher baseline sleep efficiency had 31% lower odds of developing 

incident reduced sleep efficiency based on age and clinical site adjusted logistic regression 

models  (adjusted odds ratio (OR) = 0.69, 95% confidence interval (CI): 0.57, 0.83) per 1 

SD increase in baseline sleep efficiency. No demographic or lifestyle factors met the 

criteria for being a significant predictor of incident reduced sleep efficiency by satisfying 

either or both the traditional significance level, alpha of 0.05 and the multiple comparison-

corrected significance level (Table 5.2). After adjustment for age, enrollment site and 

baseline sleep efficiency, no predictors of general health, mental health, prescription 

medication use or sleep characteristics (including trouble sleeping due to pain, nocturia, or 

bad dreams) were predictive of incident reduced sleep efficiency (Table 5.2). 

Since no predictors met the stringent criterion of Benjamin Hochberg false-

discovery rate of q-values <0.10, no final logistic regression model was selected to predict 

incident reduced sleep efficiency in older men in our analytical cohort.  

 

Results from random forest analysis  
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Figure 5.2 represents the output of all variables for random forest technique. Based 

on the decision rule criterion generally applied in the random forest technique, a VIM value 

of 2.5, where there was a large break in VIM values for predictors, was chosen as the cut 

off-point to identify important variables in predicting incident reduced sleep efficiency in 

men. Using 2.5 as the cut-off point for VIM value, there were five variables deemed most 

important in predicting incident reduced sleep efficiency in men. Depression as defined by 

a GDS score less than 6 (VIM=4.9) was ranked as the most important factor in predicting 

incident reduced sleep efficiency in community-dwelling older men at VS2. The next most 

important factors ranked by variable importance measures were cognitive function as 

indicated by trails B scores (VIM=4.6), nocturia (VIM=3.8), diabetes (VIM=3.3), alcoholic 

drinks per week (VIM=3.1) and baseline sleep efficiency (VIM=2.53) (Figure 5.2). 

5.5.Discussion  

While lower sleep efficiency has been associated with higher risks of cognitive 

decline and mortality in the aged population, few studies have examined the development 

of incident reduced sleep efficiency as an objectively measured outcome in older men. To 

address this gap, the current study used objective sleep measures obtained through 

polysomnography to evaluate sleep efficiency for 486 men at two sleep visits, who were 

enrolled in the Study of Osteoporotic Fractures in Men, a multi-site, longitudinal, cohort 

study of community dwelling men 65 years of age or older. In this study, the determinants 

of reduced sleep efficiency in community-dwelling older men were examined using the 

traditional logistic regression and random forest technique. 
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Our study indicated that for one standard deviation increase in baseline sleep 

efficiency, the odds of developing incident reduced sleep efficiency in community-

dwelling older men was 0.69 times lower, after adjusting for age and clinical sites. 

However, no factors in logistic models other than baseline sleep efficiency were found to 

be significantly associated with reduced sleep efficiency after adjusting for age and study 

enrollment site and controlling for the false discovery rate. Potential reasons for the null 

findings using logistic regression include the lack of signals between incident reduced sleep 

efficiency and predictors and a small sample size, hence inadequate power in our study. 

The lack of power might be especially relevant for potential risk factors with low 

prevalence, such as several of the medical conditions including depression. In contrast, 

using random forest technique, we found that depression was the most important factor in 

explaining incident reduced sleep efficiency in community-dwelling older men at VS2, 

followed by trails B test scores, nocturia, diabetes, alcoholic drinks per week and baseline 

sleep efficiency. To the best of our knowledge, there is only one Canadian study that has 

identified factors associated with poorer sleep efficiency in a population of 2468 

participants, ages 65 and older.6 Our result regarding nocturia as one of the important 

predictors of incident reduced sleep efficiency is consistent with a finding from the 

Canadian study. However, the other factors associated with poorer sleep efficiency 

identified in our study differ from those identified in the Canadian study, where the authors 

concluded that pain, nocturia, and awakening from bad dreams were also associated with 

poorer sleep efficiency below 80%. Reasons for the discrepancies in results may be due to 

statistical noise and differences in study design (cross sectional study vs. prospective cohort 
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study). In addition, the Canadian study utilized in-home interviews to assess sleep 

efficiency, rather than the objective measure of sleep efficiency measured through PSG as 

performed in our study. Furthermore, our study calculated sleep efficiency from PSG at 

two visits thus allowing us to longitudinally identify factors that can predict a participant 

with normal sleep efficiency at baseline will subsequently develop incident reduced sleep 

efficiency. Thus, predictors identified using random forest in our study add to the list of 

potential predictors for reduced sleep efficiency in older men.  

While traditional logistic regression did not find any independent predictor of 

incident reduced sleep efficiency, random forest identified depressive symptom score 

dichotomized at the cutoff value for a diagnosis of depression as the most important 

variable. Literature on the association of depression and sleep efficiency is sparse and has 

documented inconsistent findings31–33. Paudel et al examined the association of risk of 

depression and sleep efficiency using both subjective and objective measures of sleep 

efficiency parameters in 251032 and in 3051 community-dwelling older men33 respectively, 

who were enrolled in the MrOS study. Paudel et al. found out that there was no association 

between depression and sleep efficiency after adjusting for potential confounders in both 

studies. A study by Sukegawa et al. in 4682 elderly Japanese population  concluded that 

participants with self-reported sleep efficiency < 75% had 1.3 times higher odds of 

developing depression compared to those with normal sleep efficiency (OR=1.3; 95% CI: 

1-1.7).31 Our results from the traditional logistic regression is consistent with the lack of 

association between sleep efficiency and depression as reported by Paudel et al. In contrast, 

our results suggesting an association between depression and lower probabilities of 
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developing reduced sleep efficiency from the random forest technique is not in agreement 

with the finding from the Japanese study by Sukegawa et al. though the latter study 

modeled depression as the outcome and reduced sleep efficiency as a predictor variable. 

Together, these findings suggest that the relationship between reduced sleep efficiency and 

depression is a complex one that might be bidirectional by nature and not thoroughly 

understood as suggested by other studies.32,34,35 Further investigations on the association 

between depressive symptoms and risk of reduced sleep efficiency in other populations are 

warranted to confirm or refute our findings and to explore mechanisms underlying any 

association.  

 The association between reduced executive function as manifested by longer time 

to complete the Trails B test and risk of reduced sleep efficiency as suggested by findings 

from random forest analysis is also noteworthy. While cognitive function assessed by 

measures of global or executive function was not an independent predictor of reduced sleep 

efficiency in logistic regression (OR = 1.11; 95% CI = 0.91,1.35), reduced executive 

function (but not global cognition) was the second most important variable in predicting 

incident reduced sleep efficiency in the random forest analysis as indicated by the partial 

dependency plot where probabilities of developing incident reduced sleep efficiency 

increased with higher Trails B test scores. Previous cross-sectional studies have shown that 

poor sleep is associated with worsened cognitive function.36–38 Additionally, prior literature 

has reported associations of reduced sleep efficiency with impaired cognitive function 

(including global measurement using Mini-Mental State Examination (MMSE), Trail 

Making B Test, verbal fluency, encoding and retaining verbal material from the 
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Consortium to Establish a Registry for Alzheimer’s Disease test battery and subjective 

cognitive functioning from self-reported questionnaires) in older men and women. 38, 39 A 

cross-sectional study by Biddle et al. showed that men (50 years and older) with poor 

objective sleep efficiency as measured using actigraphy had a 4.15 higher odds of 

developing impaired executive function (OR=4.15; 95% CI: 1.35-12.69).41 The result from 

the random forest of our longitudinal study on the association between reduced executive 

function and incident reduced sleep efficiency in context of previous studies reporting 

associations of impaired sleep with lower executive function suggests the presence of a 

bidirectional association between sleep efficiency and executive function. 

Results from random forest identified nocturia as third most important variable in 

predicting incident reduced sleep efficiency. Nocturia has been shown to be one of the 

causes of sleep disturbances, especially in the older populations.42 Clinical literature also 

suggests that nocturia is associated with impaired functioning, worsened quality of life, 

health and productivity.43–45 Longitudinal studies on the association of incident reduced 

sleep efficiency and nocturia in older men are scarce. One Canadian study conducted by  

Desjardins et al. concluded that compared to older men (65 years and older) without 

nocturia, those with nocturia had a 2.26 times higher odds of developing reduced sleep 

efficiency as measured by sleep report.6 Thus the result from our longitudinal study on the 

association of nocturia and incident reduced sleep efficiency is in agreement with the 

finding from this previous study. 

Our results from the random forest technique indicates that diabetes may be an 

important predictor of reduced sleep efficiency in community-dwelling older men. While 
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sleep disturbances and lack of sleep have been shown to be associated with diabetes46,47, 

the association between sleep efficiency as measured objectively using PSG and diabetes 

has not been well examined. A recent cross-sectional study by Yan et al concluded that 

poor sleep efficiency as measured using polysomnography was associated with diabetes in 

4737 community-dwelling older adults (mean age = 63.6 ± 11.0 years), who were without 

sleep-disordered breathing and enrolled in the Sleep Heart Health Study (SHHS) 

(OR=1.89; 95% CI: 1.19-3.02).48 In addition, clinical research has indicated that the cause-

and-effect relationship between diabetes and sleep is a complex one that still needs further 

investigations. Barone et al. argued the association between diabetes and sleep is a cycle, 

where sleep disorders may lead to the development of diabetes or diabetes itself might lead 

to sleep disorders when diabetes is associated with poor metabolic control. 49 Furthermore, 

a cross-sectional study in 162 patients in Thailand found that lower sleep efficiency 

measured by actigraphy was associated with lower cognitive function (measured by using 

the Thai version of the Montreal Cognitive Assessment) in patients with prediabetes and 

type 2 diabetes.50 Hence, cognitive impairment together with diabetes might exacerbate 

reduced sleep efficiency.  

Finally, our results from random forest analysis indicated that the number of 

alcoholic drinks per week was an important predictor of incident reduced sleep efficiency. 

While the literature on this association between sleep efficiency and alcoholic drinks is 

scarce, the association of alcohols with sleep related problems including sleep-disordered 

breathing (SDB), sleep apnea, insomnia, and periodic leg movements has been a subject of 

published research. 51–55 In general, these published studies examined the potential 
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pathways and mechanisms by which alcohol intake affects the quality of sleep. Given these 

negative effects of alcohols on sleep, it is possible that high number of alcoholic drinks per 

week would lead to reduced sleep efficiency in older men, among whom the prevalence of 

SDB and sleep apnea is high. Furthermore, alcohol often used as a sedative agent can 

interact with prescription and over-the-counter drugs that are prescribed to older adults. 

The consumption of alcoholic drinks may exacerbate cognitive impairment, which might 

further lead to reduced sleep efficiency. Given our hypothesis on the possible association 

between incident reduced sleep efficiency and alcoholic consumptions, it was interesting 

that our findings on this association were opposite of what we had expected. The use of 

alcoholic drinks was found to be protective of developing incident reduced sleep efficiency 

in community-dwelling older men in our study (OR = 0.78; 95 % CI: 0.51,1.20 for  1-13 

drinks/week vs. None and OR = 0.60; 95% CI: 0.28,1.31 for at least 14 drinks/week vs. 

None). Partial dependence plot from random forests also indicated similar marginal effects 

of alcoholic drinks on reduced sleep efficiency, where the probabilities of developing 

incident reduced sleep efficiency are slightly higher for men who did not consume 

alcoholic drinks vs. 1-13 drinks/week and at least 14 drinks per week. A plausible 

explanation for this finding might be due to enrollment of healthy men in the MrOS study 

and that former drinkers (who may have abstained from alcohol due to health conditions) 

along with never drinkers are included in the group of men not currently consuming 

alcoholic drinks.  

Our study has several strengths. First, our study contributes to the sparse literature 

on the development of incident reduced sleep efficiency in community-dwelling older men. 
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Second, this study used a prospective cohort study with comprehensive assessments of 

participant characteristics including demographics, lifestyle, measures of general and 

physical health, sleep characteristics, and prescription drug use. Third, our study obtained 

repeated objective measures of sleep efficiency through PSG, and adjusted for the baseline 

sleep efficiency to ensure that the associations between baseline predictors and incident 

reduced sleep efficiency were independent of baseline sleep efficiency. Fourth, we 

controlled for false discovery rate using the Benjamin Hochberg method in logistic 

regression to deal with the issues of multiple comparisons. Finally, we also applied random 

forest, a machine learning technique to confirm, compare and contrast the results to those 

obtained from the traditional logistic regression. The use of random forest offers many 

advantages over the traditional logistic regression including its ability to allow the 

inclusion of correlated data and its potential to explore and find interactions between 

predictors of incident reduced sleep efficiency independently without any assumptions.7 

Despite the strengths, this study has limitations. First, there is lack of power in this 

study due to small size of the study population and low prevalence of some candidate 

predictors. Thus, the findings of this study should be interpreted with caution. Second, our 

study population consisted of relatively well-functioning mostly white, community-

dwelling older men. Hence, the results of this study might not be generalizable to other 

populations such as men in younger age groups, or other more diverse populations, and 

cannot be applied to women or older adults residing in institutions. Future research studies 

are warranted to examine longitudinal changes in sleep efficiency in other populations. 

Third, even though we utilized a longitudinal cohort study and controlled for potential 
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confounders and mediators in our logistic regression, causality of the relationship between 

predictors and risk of developing incident reduced sleep efficiency cannot be strongly 

inferred due to the potential for residual confounding. Fourth, even though we adjusted for 

baseline characteristics, we did not adjust for changes in participants’ characteristics that 

might have taken place in between the MrOS sleep visits 1 and 2. These changes might be 

changes in general, physical and mental health, prescription medication use or sleep 

characteristics, and could further contribute to the development of incident reduced sleep 

efficiency in older men. Furthermore, the random forest technique used in our analysis may 

have possible shortcomings as it may introduce subjectivity to the analysis, due to the 

choice of tuning parameters of random forests.7,56 Results obtained from random forests 

may be confounded by the correlations between predictors included in the model to classify 

incident reduced sleep efficiency between MrOS sleep visits 1 and 2. Finally, while random 

forest models rank predictors in terms of importance to the classification of worsened sleep 

efficiency, in comparison to logistic regression, they are unable to determine the magnitude 

and direction of the effects of the predictors on worsened sleep efficiency, resulting in a 

lack of interpretation of results and limiting our understanding of the determinants of 

worsened sleep efficiency.  

In conclusion, our results from random forest analysis suggest that depressive 

symptom, cognitive function, nocturia, diabetes, and alcoholic drinks per week may be 

factors of importance in explaining the development of reduced sleep efficiency in older 

men. Thus, future research is warranted to explore potential biological mechanisms 

underlying these associations to explain the etiology of reduced sleep efficiency in men. 
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Finally, results from random forests and logistic regression were different and thus should 

be interpreted with caution due to the aforementioned limitations of this study and of the 

statistical methods. 
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5.6.Figures and Tables 

Figure 5.1: Study Flow Chart 
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Table 5.1: Baseline characteristics for 487 men at VS1 by incident reduced sleep efficiency (SE) status  

 

Characteristics Total Normal SE 
Incident reduced 

SE 
P-

value 

 
N=487 N=225 N=262 

 
Age, mean (years) 74.1(4.6) 73.8(4.6) 74.4(4.6) 0.14 
Sleep efficiency at VS1 (%), mean (SD) 86.5(4.3) 87.3(4.4) 85.8(4.0) <.0001 
Sleep efficiency at VS2 (%), mean (SD) 77.2(11.6) 86.6(4.2) 69.2(9.7) <.0001 
PASE Score, mean (years) 160.2(67.6) 159.5(69.4) 160.9(66.2) 0.83 
Time in seconds to complete Trails B test (0-300), 
mean (SD) 103.1(40.1) 101.0(40.3) 105.0(39.8) 0.28 
Short Mini-mental state exam (0-100), mean (SD) 94.3(4.4) 94.4(4.4) 94.3(4.4) 0.72 
Walking speed in meters/second, mean (SD) 1.2(0.21) 1.21(0.21) 1.19(0.22) 0.20 
Race, N(%)    0.74 
       Others 58(11.9%) 28(12.4%) 30(11.5%) 

 
       White 429(88.1%) 197(87.6%) 232(88.5%) 

 
Education, N(%)    0.44 
       Less than high school (HS) 15(3.1%) 9(4.0%) 6(2.3%) 

 
       HS 56(11.5%) 28(12.4%) 28(10.7%) 

 
       At least college 416(85.4%) 188(83.6%) 228(87.0%) 

 
Smoking status, N(%)    0.23 
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        Never  222(45.6%) 96(42.7%) 126(48.1%) 
 

        Past/Current 265(54.4%) 129(57.3%) 136(51.9%) 
 

Alcohol consumption/week, N(%)    0.25 
        0 drinks/week 134(27.8%) 55(24.8%) 79(30.4%) 

 
        1-13 drinks/week 312(64.7%) 147(66.2%) 165(63.5%) 

 
        At least 14 drinks/week 36(7.5%) 20(9.0%) 16(6.2%) 

 
IADLs impairment, N(%)    0.43 
        No impairments 429(88.1%) 201(89.3%) 228(87.0%) 

 
        At least 1 impairment 58(11.9%) 24(10.7%) 34(13.0%) 

 
Depression, N(%)    0.40 
        No depression (GDS-15 < 6 473(97.1%) 217(96.4%) 256(97.7%) 

 
        Depression (GDS-15 >=6) 14(2.9%) 8(3.6%) 6(2.3%) 

 
Anxiety status, N(%)    0.84 
       No anxiety (Goldberge score <= 4) 461(94.9%) 212(94.6%) 249(95.0%) 

 
       Anxiety (Goldberge score >=5) 25(5.1%) 12(5.4%) 13(5.0%) 

 
Trouble sleeping due to pain, N(%)    0.60 
       No 345(70.8%) 162(72.0%) 183(69.8%) 

 
       Yes 142(29.2%) 63(28.0%) 79(30.2%) 

 
Trouble sleeping due to nocturia, N(%)    0.07 
       No 38(7.8%) 23(10.2%) 15(5.7%) 
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       Yes 449(92.2%) 202(89.8%) 247(94.3%) 
 

Trouble sleeping due to bad dreams, N(%)    0.75 
       No 369(75.8%) 169(75.1%) 200(76.3%) 

 
       Yes 118(24.2%) 56(24.9%) 62(23.7%) 

 
Lack of energy, N(%)    0.12 
       No 313(64.5%) 152(68.2%) 161(61.5%) 

 
       Yes 172(35.5%) 71(31.8%) 101(38.5%) 

 
Frailty status, N(%)    0.79 
       Robust 258(53.8%) 122(55.5%) 136(52.3%) 

 
       Intermediate (Pre-frail) 192(40.0%) 85(38.6%) 107(41.2%) 

 
       Frail 30(6.3%) 13(5.9%) 17(6.5%) 

 
Benzodiazepine use, N(%)    0.94 
       No 470(96.5%) 217(96.4%) 253(96.6%) 

 
       Yes 17(3.5%) 8(3.6%) 9(3.4%) 

 
Nonbenzo/nonbarbituate sedative hypnotic use, 
N(%)    0.80 
        No 473(97.1%) 219(97.3%) 254(96.9%) 

 
        Yes 14(2.9%) 6(2.7%) 8(3.1%) 

 
History of hypertension, N(%)    1.00 
        No 277(56.9%) 128(56.9%) 149(56.9%) 
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        Yes 210(43.1%) 97(43.1%) 113(43.1%) 
 

History of stroke, N(%)    0.58 
        No 474(97.3%) 218(96.9%) 256(97.7%) 

 
        Yes 13(2.7%) 7(3.1%) 6(2.3%) 

 
History of angina(chest pain) , N(%)    0.03 
        No 418(85.8%) 185(82.2%) 233(88.9%) 

 
        Yes 69(14.2%) 40(17.8%) 29(11.1%) 

 
History of heart attack, N(%)    0.43 
        No 422(86.7%) 192(85.3%) 230(87.8%) 

 
        Yes 65(13.3%) 33(14.7%) 32(12.2%) 

 
History of COPD/emphysema, N(%)    1.00 
        No 474(97.3%) 219(97.3%) 255(97.3%) 

 
        Yes 13(2.7%) 6(2.7%) 7(2.7%) 

 
History of Parkinsons Disease, N(%)    0.50 
        No 485(99.6%) 225(100%) 260(99.2%) 

 
        Yes 2(0.4%) 0(0%) 2(0.8%) 

 
History of cataracts, N(%)    0.65 
        No 289(59.3%) 136(60.4%) 153(58.4%) 

 
        Yes 198(40.7%) 89(39.6%) 109(41.6%) 

 
History of rheumatoid arthritis, N(%)    0.96 
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        No 457(93.8%) 211(93.8%) 246(93.9%) 
 

        Yes 30(6.2%) 14(6.2%) 16(6.1%) 
 

History of osteoarthritis, N(%)    0.05 
         No 365(74.9%) 178(79.1%) 187(71.4%) 

 
         Yes 122(25.1%) 47(20.9%) 75(28.6%) 

 
History of diabetes, N(%)    0.55 
         No 433(88.9%) 198(88.0%) 235(89.7%) 

 
         Yes 54(11.1%) 27(12.0%) 27(10.3%) 

 
Health status, N(%)    0.73 
         Poor/Very Poor/Fair 39(8.0%) 17(7.6%) 22(8.4%) 

 
         Good/Excellent 448(92.0%) 208(92.4%) 240(91.6%) 

 
History of cerebrovascular disease, N(%)    0.53 
         No 454(93.2%) 208(92.4%) 246(93.9%) 

 
         Yes 33(6.8%) 17(7.6%) 16(6.1%) 

 
History of peripheral arterial disease, N(%)    0.73 
         No 453(93.8%) 211(94.2%) 242(93.4%) 

 
         Yes 30(6.2%) 13(5.8%) 17(6.6%) 

 
Antidepressant use, N(%)    0.62 
         No 447(91.8%) 208(92.4%) 239(91.2%) 

 
         Yes 40(8.2%) 17(7.6%) 23(8.8%) 
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Table 5.2: Demographics and lifestyle predictors of incident reduced sleep efficiency in community-dwelling older men 
(models adjusted for age, site and baseline sleep efficiency) 
 

Incident reduced SE  
OR(95% CI) P value q value 

Age (years), per SD increase 1.18(0.98,1.43) 0.0895 0.8055 

Sleep efficiency (%), per SD increase 0.69(0.57,0.83) 0.0001 0.0036 

PASE Score, per SD increase 1.09(0.90,1.31) 0.396 0.8672 

Race, Nonwhite vs. white 0.89(0.49,1.61) 0.7043 0.9462 

Education 
   

                   Less than high school vs. at least college 0.53(0.18,1.58) 0.254 0.8672 

                   High school vs. at least college 0.77(0.42,1.43) 0.4095 0.8672 

Smoking status, ever vs. never 0.76(0.53,1.11) 0.1555 0.8672 

Alcohol consumption/week 
   

                   1-13 drinks/week vs. None 0.78(0.51,1.20) 0.2569 0.8672 

                   At least 14 drinks/week vs. None 0.60(0.28,1.31) 0.1984 0.8672 
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Table 5.3: Health status and disease predictors of incident reduced sleep efficiency in community-dwelling older men 
(models adjusted for age, site and baseline sleep efficiency) 

 
Incident reduced SE 

 
OR(95% CI) pvalue qvalue 

IADLs impairment, impaired vs. non-impaired 1.09(0.61,1.95) 0.7705 0.9462 

Trails B: Total time (0-300 sec), per SD increase 1.11(0.91,1.35) 0.2924 0.8672 

Teng 3MS (0 to 100), per SD increase 0.97(0.80,1.18) 0.7764 0.9462 

Walk speed (m/s) 0.86(0.71,1.06) 0.1516 0.8672 

Depression  0.56(0.18,1.70) 0.3039 0.8672 

Anxiety status 0.86(0.37,1.97) 0.7194 0.9462 

Trouble sleeping due to pain 1.02(0.68,1.53) 0.9237 0.9471 

Trouble sleeping due to nocturia 1.60(0.80,3.21) 0.1858 0.8672 

Trouble sleeping due to bad dreams 0.92(0.60,1.42) 0.708 0.9462 
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Lack of energy 1.19(0.81,1.77) 0.3775 0.8672 

Frailty status 
   

                      Prefail vs. Robust 1.03(0.70,1.52) 0.8845 0.9471 

                      Frail vs. Robust 1.03(0.46,2.31) 0.9448 0.9471 

Antidepressant use 1.21(0.61,2.38) 0.5913 0.9462 

Benzodiazepine use 1.04(0.38,2.84) 0.9471 0.9471 

Nonbenzo/nonbarbituate sedative hypnotic use  1.13(0.37,3.46) 0.8326 0.9471 

History of hypertension 0.92(0.64,1.34) 0.6647 0.9462 

History of stroke 0.73(0.24,2.27) 0.5883 0.9462 

History of angina(chest pain) 0.52(0.31,0.89) 0.0172 0.3096 

History of heart attack 0.78(0.45,1.35) 0.3786 0.8672 

History of COPD/emphysema 0.78(0.25,2.48) 0.6785 0.9462 

History of cataracts 0.95(0.65,1.40) 0.7885 0.9462 

History of rheumatoid arthritis 1.03(0.47,2.24) 0.9432 0.9471 



162 
 

 

History of osteoarthritis 1.57(1.02,2.41) 0.0422 0.5064 

History of diabetes 0.76(0.42,1.35) 0.3486 0.8672 

Health status, good/excellent vs. poor/very poor/fair 0.89(0.45,1.78) 0.7465 0.9462 

History of cerebrovascular disease 0.83(0.40,1.73) 0.621 0.9462 

History of peripheral arterial disease 1.15(0.53,2.51) 0.7244 0.9462 
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Figure 5.2: Permutation variable importance measures 

These measures obtained from the Random forests model are represented by the 

mean decrease accuracy for each predictor in classifying incident reduced sleep 

efficiency. The larger the value for mean decrease accuracy due to the exclusion of 

that variable, the more important the variable in reducing classification error. 

Variables whose mean decrease accuracy values less than 0 are considered to be 

non-informative. 
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Figure 5.3: Partial Dependence Plots  

This shows the marginal effects of the independent variables on incident reduced sleep efficiency. 
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Chapter 6: Discussion 

6.1.Summary of study results 

6.1.1. Summary of the first-manuscript results 

 This manuscript examined the associations of sleep-disordered breathing (SDB) 

with subsequent healthcare costs and utilization, including inpatient and post-acute care 

facility stays, among community-dwelling older men. The study described included 1316 

men with a mean age of 76.1 years (SD=5.7).  Data was obtained by linking Medicare 

claims data with cohort data from the Outcomes of Sleep Disorder in Older Men (MrOS). 

Primary SDB measures including apnea-hypopnea index (AHI) and oxygen desaturation 

index (ODI) were collected using in-home level 2 polysomnography. Incident healthcare 

costs and utilization were determined from claims data in the subsequent 3-year period post 

MrOS sleep visit. 

Approximately 40.2% of the men had at least one hospitalization in the 3-year 

period. Results from logistic regression suggested that compared to those without sleep 

apnea (AHI <5/hour), men with moderate to severe sleep apnea (AHI ≥15/hour) had a 

higher odds of all-cause hospitalization (odds ratio [OR] adjusted for age and site 1.43, 

95% confidence interval [CI] 1.07-1.90). This association was slightly attenuated after 

further adjustment for traditional prognostic factors including education, body mass index, 

comorbid medical conditions, and health status (OR=1.36; 95% CI 1.01-1.83). Similar 

associations were observed for Oxygen Desaturation Index (ODI). However, measures of 
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SDB were not related to subsequent healthcare costs (total or outpatient) or odds of post-

acute skilled nursing facility stay. 

 Results from this manuscript suggest that SDB is associated with higher risk of 

hospitalization (but not with total healthcare costs) in community-dwelling older men. This 

association is not entirely explained by a greater number of cardiovascular or medical 

conditions among those men with SDB. Future studies are needed to evaluate the 

association between SDB and healthcare costs and utilization among other patient 

populations and to evaluate the effect of treatment of SDB on these measures of healthcare 

burden. 

6.1.2. Summary of the second-manuscript results 

The objective of this manuscript was to examine potential risk factors for incident 

reduced sleep efficiency among community-dwelling women in the 9th decade of life using 

traditional logistic regression and the machine learning technique, random forest. The study 

included a population of 700 women (mean age 82.5 [SD=3.0] years) with normal sleep 

efficiency (SE >=70%) at SOF Visit 8 exam (2002-2004) of the Study of Osteoporotic 

Fractures (SOF), who had repeated measurement of sleep efficiency at the SOF Visit 9 

exam (2006-2008).  

Approximately 9% of the women meeting study inclusion criteria developed 

incident reduced sleep efficiency between SOF Visits 8 and 9. Results from the 

multivariable logistic regression models suggested that the odds of developing incident 
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reduced sleep were higher among women self-reporting a history of antidepressant use 

(adjusted odds ratio (OR) = 3.06, 95% confidence interval (CI): 1.50, 6.25), 

benzodiazepine use (OR=2.97, 95% CI: 1.30, 6.80), and hypertension (OR = 2.83, 95% 

CI: 1.47, 5.45). Random forest identified the use of benzodiazepine as the most important 

factor in predicting incident reduced sleep efficiency, followed by depressive symptoms, 

health status, anxiety, and frailty. Both random forest and logistic regression identified 

benzodiazepine use as a common determinant of incident reduced sleep efficiency.   

The results from logistic regression and random forest suggest that a history of 

antidepressant use, benzodiazepine use, self-reported hypertension, depressive  symptoms, 

health status, anxiety and frailty may be risk factors for the development of reduced sleep 

efficiency in women late in life. Future studies are warranted to explore potential biological 

mechanisms underlying these associations.  In addition, machine learning via random 

forests and other supervised and unsupervised techniques should be used in sleep research 

to compare findings 

6.1.3. Summary of the third-manuscript results  

 The third manuscript generated from this research focused on the potential risk 

factors for incident reduced sleep efficiency among community-dwelling older men. The 

study included 487 community-dwelling men (mean age 74.1 [SD=4.6] years) with normal 

sleep efficiency (SE >=80%) at MrOS Sleep Visit 1 [VS1] (2003-2005) of the Osteoporotic 
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Fractures in Men Study (MrOS), who had repeated measurement of sleep efficiency at the 

MrOS Sleep Visit 2 [VS2](2009-2012).  

The results indicated that 53.8% of the men developed incident reduced sleep 

efficiency between VS1 and VS2. Results from logistic regression suggested that the odds 

of developing incident reduced sleep efficiency were 0.69 times lower with 1 SD increase 

in baseline sleep efficiency (adjusted odds ratio (OR) = 0.69, 95% confidence interval (CI): 

0.57, 0.83) in the age and site- adjusted model; measures of general health, general mental 

health, prescription medication use or sleep characteristics (including trouble sleeping due 

to pain, nocturia, or bad dreams) were not found to be predictive of incident reduced sleep 

efficiency after adjustment for age, enrollment site and baseline sleep efficiency. On the 

other hand, random forest models identified depressive symptoms as the most important 

factor in predicting incident reduced sleep efficiency in men, followed by cognitive 

function, nocturia, diabetes, weekly alcohol consumption and baseline sleep efficiency.  

The results reported in this manuscript suggest that baseline sleep efficiency might 

be a potential risk factor for incident reduced sleep efficiency in men. Future studies are 

needed to further examine this association with the hope for targeting possible 

interventions to improve sleep efficiency for better sleep health. In addition, machine 

learning techniques such as random forests may be valuable in identifying risk factors for 

adverse sleep outcomes such as incident reduced sleep efficiency. Depressive symptom, 

cognitive function, nocturia, diabetes, consumption of alcoholic drinks and baseline sleep 
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efficiency may be risk factors for the development of reduced sleep efficiency in older 

men. Caution is warranted regarding the interpretations of the potential relationship 

between depression and incident reduced sleep efficiency from the random forest in this 

small population of community-dwelling men in this study. 

6.2.Implications of the dissertation 

The research efforts reported in this dissertation examined the association of sleep-

disordered breathing with subsequent measures of health care utilization and costs in U.S. 

community-dwelling older men, and broadened our understanding of the determinants of 

incident reduced sleep efficiency in both community-dwelling older men and women. The 

findings of this dissertation have several clinical implications. 

First, the findings from this dissertation suggest that SDB, as manifested by higher 

AHI, ODI or OSA, was associated with a higher risk of all-cause hospitalizations even after 

adjusting for potential confounders and prognostic indicators. In addition, the findings also 

suggested that measures of SDB were not related to total healthcare costs or to a risk of 

post-acute skilled nursing facility stays. Given the association of SDB and risk of all-cause 

hospitalizations found in this longitudinal study of older community-dwelling men, 

clinicians and researchers may be better able to identify individuals with increased risks of 

all-cause hospitalizations using the reported findings. Even though the analyses reported 

in this dissertation did not find a significant association between measures of SDB and 

subsequent total healthcare costs and utilizations in community dwelling-older men, future 
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studies are warranted to investigate the effects of treatments of SDB on all-cause 

hospitalizations and subsequently on healthcare costs and utilization. In addition, findings 

from the first manuscript also indicated that men with moderate to severe nocturnal 

hypoxemia had lower outpatient costs compared to men without hypoxemia in the full 

multivariable model. This may be a spurious result due to random chance alone or to the 

numerous comparisons performed. Hence, while treatment of sleep apnea may yield health 

benefits, our data suggest that lower healthcare costs will likely not be among those 

benefits. 

Second, findings from the second manuscript reported in this dissertation suggest 

that older women with a history of antidepressant use, benzodiazepine use and with self-

reported hypertension had approximately 3 times higher odds of developing worsened 

sleep efficiency. In addition, with random forests, we found that the use of benzodiazepine 

was the most important factor in predicting incident reduced sleep efficiency, followed by 

depressive symptoms, self-reported health status, anxiety, and frailty. As explained earlier 

in the second manuscript, benzodiazepines have been identified as drugs of concern, 

especially in the elderly. Our findings on the effects of benzodiazepines on the 

development of sleep efficiency in older women further validate what has been found in 

the literature and could inform clinicians to be cautious when prescribing this therapeutic 

class of drugs to older women. In contrast to the finding on the association of use of 

benzodiazepines and the development of incident reduced sleep efficiency in women, the 

impact of the use benzodiazepines on the development of incident reduced sleep efficiency 
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was not demonstrated in our study of community-dwelling men in the third manuscript. 

While it is possible that the difference might be due to many reasons including chance 

findings, statistical noise, and perhaps related to underlying study populations, there could 

also be potential reasons for the difference in response in sleep efficiency to the use of 

benzodiazepines in elderly women versus elderly men. Further understanding of the 

difference of the effects of benzodiazepines by gender might be a fruitful area of research. 

The final manuscript presented in this dissertation indicated that for a one standard 

deviation increase in baseline sleep efficiency, the odds of developing incident reduced 

sleep efficiency in community-dwelling older men decreases by a factor of 0.69, after 

adjusting for age and clinical sites. However, in the logistic models no factors other than 

baseline sleep efficiency were found to be significantly associated with reduced sleep 

efficiency after adjusting for age and study enrollment site and controlling for the false 

discovery rate. Future intervention studies aiming to improve sleep efficiency among older 

men population are warranted. Findings from the random forest analysis suggest that 

depressive symptoms, cognitive function, nocturia, diabetes, and alcoholic drinks per week 

may be factors for the development of reduced sleep efficiency in older men. Caution is 

needed when interpreting these results from the random forest, which could be due to 

chance findings or due to our small sample size and the limitations of random forests as 

pointed out in the discussion of the third manuscript. 

It is worth noting that sleep efficiency used in this dissertation was measured 

objectively using actigraphy and polysomnography. While literature suggests that these 
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two methods have moderate correlations for sleep efficiency, it is not clear that these 

measures provide the same measures of sleep efficiency. 

6.3.Strengths of the research presented in this dissertation 

The research analyses reported in this dissertation have several strengths.  First, this 

research employed two prospective cohort studies with comprehensively assessed 

participant characteristics. The first manuscript utilized published and validated 

methodology to compute standardized healthcare costs and ascertain healthcare utilization 

from administrative data, linkage of cohort participants to their Medicare claims data. 

Potential confounding and mediating factors were considered.  

Second, the second and the third manuscripts of this dissertation contribute to the 

sparse literature on the development of incident reduced sleep efficiency in elderly women 

and men, which is of a great concern for the older populations with high number of 

comorbid conditions and functional limitations. To examine factors related to the 

development of incident reduced sleep efficiency, prospective cohort studies (SOF and 

MrOS) were used. These prospective cohort studies included comprehensive assessments 

of participant characteristics including demographics, lifestyle, general and physical 

health, sleep characteristics, and prescription drug use factors.  

Third, unlike other studies of sleep efficiency, the analyses for this dissertation used 

repeated objective measures of sleep efficiency through actigraphy and polysomnography 

(PSG), and adjusted for the baseline sleep efficiency to ensure that the associations between 
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baseline predictors and incident reduced sleep efficiency were independent of baseline 

sleep efficiency.  

Fourth, multiple comparisons were employed in the analyses involving logistic 

regression to control for false discovery rate. Furthermore, random forest, a machine 

learning technique was applied to confirm and compare the results to those obtained from 

the traditional logistic regression. The use of random forest offers many advantages over 

the traditional logistic regression including its ability to allow the inclusion of correlated 

data and its potential to explore and find interactions between predictors of incident 

reduced sleep efficiency independently without any assumptions.  

6.4.Limitations of the research presented in this dissertation 

 This dissertation has several limitations. First, the first manuscript only included 

healthy community-dwelling older men, with few non-Caucasian participants. Thus, the 

results might not be generalizable to women, others from different racial or ethnic 

groups, older men in poorer health, or those residing in other institutions like nursing 

homes. Second, data on total healthcare and outpatient costs, hospital and SNF stays were 

only available for those men enrolled in Medicare FFS, but not for those enrolled in 

Medicare Advantage.  

Third, particularly for the second and third manuscripts, even though prospective, 

longitudinal cohort studies were used and potential confounders and mediators were 

adjusted for in logistic regression models, causality of the relationship between predictors 
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and risk of developing incident reduced sleep efficiency in older women and men cannot 

be strongly inferred due to the potential for residual confounding.  

Fourth, sample sizes and number of events for incident reduced sleep efficiency at 

follow-up for both studies in men and women in the second and third manuscripts at follow-

up. Thus, while multiple comparisons were used to control for false-positive findings in 

the analyses involving logistic regression, there might be a chance for false negative 

findings.  

Fifth, while the second and third manuscripts adjusted for baseline characteristics, 

changes in participants’ characteristics that might have taken place in between the 

SOF/MrOS visits were not included. The omission of these variables was due to the fact 

that they were not collected during the SOT/MrOS studies. Other changes in between 

MrOS/SOF visits might be changes in general, physical and mental health, and prescription 

medication use or sleep characteristics, and could further contribute to the development of 

incident reduced sleep efficiency in older women.  

Sixth, while objective measures of sleep efficiency were used: actigraphy in the 

second manuscript and polysomnography in the third manuscript due to logistic reasons 

when the sleep studies were conducted for MrOS/SOF, it is not clear whether measures of 

sleep efficiency from actigraphy and polysomnography in fact can be used 

interchangeably. 
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Finally, despite the advantages the random forest technique offers, it also has 

possible shortcomings as it may introduce subjectivity to the analysis due to the choice of 

tuning parameters of random forests as discussed in the second and third manuscripts. 

Correlations between predictors of incident reduced sleep efficiency in the random forests 

may result in confounding. While random forest ranks predictors in terms of importance to 

the classification of worsened sleep efficiency, in comparison to logistic regression, 

random forest is unable to do hypothesis testing when the magnitude and direction of the 

effects of the predictors on worsened sleep efficiency are of interest. This resulted in a lack 

of interpretation of results and limiting our understanding of the determinants of worsened 

sleep efficiency. 

6.5.Recommendations for future research 

This dissertation examined the association of sleep-disordered breathing with 

subsequent measures of health care utilization and costs in U.S. community-dwelling older 

men. In addition, this dissertation also broadened our understanding of the determinants of 

incident reduced sleep efficiency in community-dwelling older men and women. However, 

several research questions have emerged from this dissertation. First, future studies are 

needed to confirm findings and to further investigate associations of SDB and other 

outcomes, such as long-term nursing home placement. Additional research efforts to 

examine the association between SDB and healthcare costs and utilizations in older women 

and other racial or ethnic groups, men in poorer health or those residing in nursing homes 
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are needed to further elucidate these associations. Second, further research is needed to 

investigate the incremental costs of SDB in populations with underlying commodities such 

as diabetes and CVDs. Third, the dissertation noted that there was a significant and 

pronounced effect of the use of benzodiazepines on sleep efficiency in elderly women but 

not in elderly men. Last, further research utilizing much larger sample sizes including both 

elderly men and women and using preferably the same method of objectively measuring 

sleep efficiency is needed to explore the potential difference in the effects of 

benzodiazipines on sleep efficiency by gender.  
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