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Abstract

Turbulent, particle-laden flows are ubiquitous in nature and industry. Particles in many

of these flows have finite size and inertia, which cause them to interact with the fluid

turbulence in complex ways. They are also commonly non-spherical in shape, which adds

further richness to the particle-fluid interplay. In this thesis, the dynamics of dilute,

slightly negatively buoyant particles, fully suspended in a smooth-wall open channel

flow, are investigated experimentally. Spheres, disks, and rods are studied in order to

examine the effects of particle shape on their distribution and interaction with the fluid

turbulence. The friction Reynolds number of the flow is Reτ ∼ 600, and the particle

Stokes number based on the friction velocity is St+ ∼ O(10). Particle image velocimetry

(PIV) and particle tracking velocimetry (PTV) are used to obtain simultaneous, time-

resolved flow fields and particle trajectories. Their translational and rotational motion,

as well as their concentration and dispersion, are investigated.

Disks and rods are both found to oversample high-speed fluid near the wall, in

agreement with particle-resolved DNS studies. The spherical particle Reynolds stresses

exceed those of the fluid due to particle trajectories crossing fluid streamlines; this

effect is not observed for rods and disks. Spherical particle transport is strongly linked to

ejections, while the role of sweeps is marginal, and there is no evidence of turbophoresis.

The mean concentration profile of the spheres follows a power-law with a shallower slope

than predicted by equilibrium theories that neglect particle inertia. However, rod and

disk mean concentration profiles follow Rouse-Prandtl theory over a large portion of the

boundary layer. Particle diffusivity is shown to be well-approximated by the fluid eddy

diffusivity.

A detailed investigation of sphere behavior near the wall is carried out. Upward-

/downward-moving particles display positive/negative mean streamwise acceleration

due to the particle–fluid slip. The particles that contact the wall are faster than the

local fluid both before reaching the wall and after leaving it. Therefore, they are de-

celerated by drag and pushed downward by shear-induced lift. The durations of wall

contact follow exponential distributions with characteristic timescale close to the par-

ticle response time. Lift-offs coincide with particles meeting a fluid ejection. These
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observations emphasize the competing effects of inertia and gravity.

The orientation and rotation of rod and disk particles are also measured. Rods

tend to orient mostly in the streamwise direction, while disks strongly prefer to align

their symmetry axis mostly normal to the wall. This alignment is much more stable for

disks than for rods. Rods undergo strong tumbling near the wall and tend to tumble

freely in response to the mean shear and turbulent fluid velocity fluctuations, whereas

disks tend to wobble about their preferential wall-normal orientation, resulting in much

weaker tumbling rates close to the wall. Wall contact is also implicated as a signif-

icant tumbling-inducing mechanism. Many of these results have not been previously

confirmed experimentally.
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Chapter 1

Introduction

1.1 Spherical particles

Particles in turbulent flows are ubiquitous in natural and industrial systems. A few

examples of particle-laden turbulent systems include combustion engines, dust storms,

rainclouds, sediment in rivers and coastal zones, and many manufacturing processes.

Describing and predicting the behavior of inertial particles in turbulent boundary lay-

ers has been a major goal in fluid dynamics since the work of Shields (1936), Bagnold

(1936), Rouse (1937), and Prandtl (1952), who first began quantifying the transport of

sediment in air and water flows. The experiments of Shields (1936) revealed a relation-

ship predicting the initiation of motion of the sediment from the particle inertia and the

fluid shear stress on the wall. Bagnold (1936) observed the saltation of sand grains in air

and developed an empirical relationship quantifying their flux as a function of the fluid

flow parameters. Rouse (1937) analytically derived an expected concentration profile

of suspended sediment as a function of wall-normal height, under equilibrium between

turbulent resuspension and gravitational settling. Under the same assumption, Prandtl

(1952) used a linear diffusivity model to derive a parabolic concentration profile which

is still the de facto standard. These models are effective at describing the observed bulk

transport properties but do little to shed light on the underlying physical mechanisms

at the particle scale.

More recently, thanks to non-intrusive measurement techniques, several researchers

used detailed experiments to further understand the interaction between the inertial

1
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particles and the wall turbulence. Due to its relevance to sediment transport in water

bodies, many studies in the geophysical research literature focused on the case in which

the suspension is eroded from and deposited to a bed of particles. For example, Hurther

& Lemmin (2003) investigated the transport of suspended particles in a turbulent open

channel flow by comparing statistics of particle mass flux with turbulent momentum flux

and concluded that coherent structures are a dominant mechanism of particle transport.

Lajeunesse et al. (2010) used imaging to investigate the relation between the flow turbu-

lence and the intermittent motions of the particles alternating rest and flight. Heyman

et al. (2016) empirically determined closure equations for particle bed load transport in

terms of known flow conditions, such as particle diffusivity and suspension/deposition

rates.

The presence of a changing wall roughness and the mobilization of a polydisperse

bed complicate the task of isolating the particle-fluid dynamics. Somewhat surprisingly,

the smooth-wall case has been considered in a limited number of experimental studies.

Kaftori et al. (1995a) measured velocity and concentration profiles of sub-millimeter

polystyrene particles in a horizontal water flume and found that particles preferentially

concentrate in regions of low fluid velocity associated with near-wall streaks. Niño &

Garcia (1996) confirmed that particles in a smooth-wall flume arranged themselves in

long streaks generated by streamwise vortices in the inner layer. Tanière et al. (1997)

looked at solid particles in a wind tunnel and reported large fluctuations of the dispersed

phase velocity, attributing them to saltation at the wall. Kiger & Pan (2002) found ev-

idence that particles congregate in specific structures in the turbulent boundary layer,

and showed a difference between ascending and descending particles: upward-moving

particles were concentrated in ejections (events with negative streamwise fluctuation

and positive wall-normal fluctuation of the fluid velocity); whereas downward-moving

particles showed a weaker association to sweeps (events with positive streamwise fluctu-

ation and negative wall-normal fluctuation). This was later confirmed by detailed time-

resolved measurements, e.g., van Hout (2011, 2013); Rabencov et al. (2014). Righetti

& Romano (2004) studied glass particles in water at a volume fraction of 10−3 and

observed significant modulation of the fluid turbulence, which they attributed to the

inter-phase momentum exchange during entrainment from and deposition to the wall.



3

Gerashchenko et al. (2008) measured the acceleration of inertial particles in a turbu-

lent boundary layer and found that acceleration variance increased with particle inertia,

contrary to what happens in isotropic turbulence (Bec et al., 2006). Ebrahimian et al.

(2019) investigated in detail the particle acceleration and its relation to turbulent events

and showed that particles may slide along the wall for considerable time. Tee et al.

(2020) performed detailed, three-dimensional measurements on a single large spherical

particle interacting with the wall in a turbulent boundary layer and found that spheres

underwent minimal rotation while lifting off the wall, and that spanwise forces on the

particles can be important. Berk & Coletti (2020) considered microscopic glass beads in

a wind tunnel. They highlighted how the particle inertia is responsible for discrepancies

from the concentration profile predicted by the Rouse–Prandtl theory (Rouse, 1937;

Prandtl, 1952), and investigated the roots of the relative particle-fluid velocity. Due to

the limited accuracy in locating the small particles, they could not measure the settling

velocity, which is known to be strongly altered by turbulence (Wang & Maxey, 1993;

Nielsen, 1993; Sabban & van Hout, 2011; Petersen et al., 2019).

The numerical studies of inertial particles in smooth-wall turbulence have been much

more numerous and have allowed in-depth analysis of the problem, especially using

direct numerical simulation of the fluid flow coupled with advection of point-particles,

e.g., Rouson & Eaton (2001); Marchioli & Soldati (2002); Zhao et al. (2010); Zamansky

et al. (2011); Sardina et al. (2012); Bernardini (2014); Richter & Sullivan (2014); Lee &

Lee (2015). Typically, a simplified version of the particle transport equation was used,

which is only valid in the limit of vanishingly small particle Reynolds number (Maxey &

Riley, 1983). Also, in the majority of these cases (included the ones mentioned above)

gravity was neglected; this isolates the effect of particle inertia but prevents the direct

application of the results to practical settings. The few studies that considered wall-

normal gravity (among others, Lavezzo et al., 2010; Lee & Lee, 2019) underscored its

importance and interplay with the mean shear. In particular, Lee & Lee (2019) indicated

that gravity greatly reduced turbophoresis, i.e., the tendency of the particles to drift

down the gradient of Reynolds stresses (hence towards the wall) due to the interaction

with streamwise vortices (Marchioli & Soldati, 2002).

The limitations of the point-particle approach may be exacerbated in particle-laden

turbulent boundary layers where wall-normal gravity is important: the assumption of
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negligible particle-size effects is particularly limiting near the wall, where the flow scales

are the smallest and the number density the highest. Forces which are normally consid-

ered negligible for microscopic particles (e.g., added mass, Saffman and Magnus lift; see

Crowe et al. (2011)) may be important, and advanced methods are especially needed

to account for the flow distortion by the particles. While effective point-particle strate-

gies to address the latter issue have recently been proposed (Capecelatro & Desjardins,

2013; Gualtieri et al., 2015; Horwitz & Mani, 2016; Ireland & Desjardins, 2017; Bal-

achandar et al., 2019), numerical advances and ever-growing computational resources

have enabled particle-resolved direct numerical simulations (Kidanemariam et al., 2013;

Picano et al., 2015; Lin et al., 2017; Wang et al., 2017). Still, these studies are mostly

limited to small Reynolds numbers and relatively large particles. Importantly, it is

hard to validate these simulations against the scarce experimental studies focused on

the detailed particle-wall-fluid dynamics, especially considering that most of the exper-

imental literature is concerned with geophysical flows including particle polydispersity,

bed roughness, and mobile beds.

In this thesis we consider the fundamental case of highly dilute, mono-dispersed,

spherical particles suspended by a turbulent boundary layer over a horizontal smooth

wall, where particles interact with the wall but do not deposit on it. We perform

laboratory experiments and leverage simultaneous time-resolved imaging of both phases

to explore the details of the particle-fluid interaction across the boundary layer.

1.2 Non-spherical particles

Particle-laden turbulence studies have often considered spherical particles, treating them

as an idealized case for particles with compact geometries. However, systems in which

particles are non-spherical and extended in one or more dimensions are myriad: for

example, paper-making pulp consists of suspensions of fibers; microplastics are often

fibers or flat fragments; diatoms take rotationally-symmetric prolate or oblate shapes;

ice crystals in atmospheric clouds are often disk-like. In addition, even in applications

where particles are treated as spheres, there is often a distribution of shapes present

in the real particles, which can include particles that differ significantly from spherical.
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Anisotropic particle dynamics differ from spherical particle dynamics in a few key re-

spects: their drag coefficient is dependent on their orientation, resulting in a resistance

tensor rather than a drag vector acting on particles, and they are subject to different

torques than spherical particles, resulting in more complex modes of solid-body rota-

tion. Modulated by the instantaneous orientation of the particle, the drag and torque

components feed back on each other, resulting in rich and complex translational and

rotational particle motion in turbulent flows.

Because of this richness, the behavior of anisotropic particles is less well understood

than that of spheres. In addition to the complexity of the dynamics, there are addi-

tional challenges in experimentally or numerically studying anisotropic particles. Many

simulations rely on point-particle models due to computational constraints, losing some

fidelity in the simulation; those that fully resolve the particle boundary gain fidelity,

but are constrained by limitations on the particle count or the Reynolds number of the

flow. Experimentally measuring anisotropic particle kinematics is difficult due to the

3D nature of the system. Experimental studies typically either use planar imaging ex-

periments which capture 2D projections of the particles, or tomographic or holographic

set-ups which capture the particle behavior in 3D. Both types of imaging can typically

only capture tumbling motion, i.e., the rotation of the particle symmetry axis, and lack

the ability to measure particle spin about the symmetry axis, except in special cases

where different points on the particle can be marked. In addition, particle and fluid

inertia complicate their interactions. The motion of ellipsoidal particles (i.e., those that

possess an axis of rotational symmetry) is mostly controlled by three parameters: fluid

inertia, particle inertia, and particle aspect ratio. The inertia of a fluid flow is quantified

with the Reynolds number, Re = UL/ν, where U is the fluid velocity scale, L is a length

scale characterizing the fluid flow, and ν is the fluid kinematic viscosity. Particle inertia

is quantified with the Stokes number St = τp/τf , where τp is the response time of the

particle and τf is a characteristic time scale of the flow. Finally, the particle aspect ratio

of axisymmetric particles is defined as λ = a/b, where a is the length of particle’s axis

of rotational symmetry, and b is the length of the perpendicular axes. Prolate (rod-like)

particles have λ > 1; oblate (disk-like) particles have λ < 1.

The study of anisotropic particles in fluid flows was pioneered by Jeffery (1922), who

derived an analytical prediction for inertia-less (tracer) elliptical particle rotation in
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laminar 2D simple shear flow and concluded that their motion is completely determined

by their aspect ratio, λ. This was followed by Taylor (1923), who experimentally verified

Jeffery’s predictions. Bretherton (1962) later generalized these so-called Jeffery orbits to

any rigid body of rotation. Jeffery orbits only describe particle motion for negligible St

and Re, however. Significant work has been done over the past two decades on inertial

particles in fully turbulent flows, which is summarized in the review by Voth & Soldati

(2017). Some of the key literature most relevant to our experiment is summarized in

the following.

Point-particle simulations have frequently been used to understand many aspects

of anisotropic particle-laden flows due to the relative simplicity of the models. The

orientation and modes of rotation are found by point-particle simulations to depend on

particle inertia, aspect ratio, and whether they are in proximity to a wall. Marchioli

et al. (2010) studied orientation, distribution, and deposition of inertial fibers in channel

flow and found that the fibers have a preferred, but unstable, streamwise orientation.

Zhao et al. (2015) explored particle rotation rates as a function of St and λ. They found

that modes of rotation depend strongly on both variables: in the high-shear, near-wall

region, low-St disks tend to align orthogonal to the local fluid vorticity vector, and

high-St disks align parallel with it, resulting in a tumbling mode of rotation for low-St

disks and a spinning mode for high-St disks. On the other hand, the orientation and

rotation of rods became more isotropic with increasing inertia. This study was extended

by Zhao et al. (2019), who examined covariances between particle orientation p (i.e., the

unit vector parallel to the symmetry axis of the ellipsoid), particle rotation ω and fluid

rotation Ω. They determined that the co-variance between p and ω tends to explain the

mode of rotation, e.g. spinning versus tumbling, while the co-variance between p and Ω

primarily contributes to the rotation rate. The orientation and rotation of inertial disk

particles in wall turbulence was explored by Challabotla et al. (2015), who showed that

disk λ has only minor effects on particle translation motion, especially for high St. For

low St particles, orientation as well as spin showed a strong dependence on λ in the near-

wall region. The flattest particles were unable to achieve a rotation rate comparable to

that of the fluid, which was attributed to their high rotational inertia. Inertial disks were

found to preferentially align with the vorticity vector (oriented spanwise on average),

producing significant spinning. Simulations of inertial fiber orientation in turbulent
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channel flow were performed by Njobuenwu & Fairweather (2016), finding that long

fibers align themselves parallel to the flow direction, and orthogonal to the vorticity

and flow velocity gradient directions.

The dynamics and mechanisms of particle rotation and preferential orientation have

been studied as well. Ni et al. (2015) performed measurements of the coupling between

the tumbling of rods and the velocity gradient tensor in turbulence, determining that

rods preferentially align with the extensional eigenvector of the velocity gradient tensor,

which itself is usually (but not always) aligned with the vorticity vector. Marchioli

et al. (2016) investigated the relative rotational motion between rigid fibers and fluid

in turbulent channel flow and found that fiber rotation lags fluid rotation, except due

to history effects for very high-St particles. For St ∼ 0, slip spin does not go to zero

because fluid strain contributes to fiber rotation. Fibers also tend to spin relative to

the fluid when entrained in turbulent sweep/ejection events. The dynamics of disk-like

particles in turbulent vertical channel flow were investigated by Yuan et al. (2017).

They found that particle velocity fluctuations are mostly dependent on particle inertia,

and depend very little on particle shape or gravity; the presence of gravity also has a

negligible effect on the disks’ orientation and rotation. Ouchene et al. (2018) studied

the acceleration statistics of prolate spheroidal particles in turbulent channel flow and

found that, as with spheres, particle acceleration RMS decreases with increasing inertia,

and showed from particle acceleration autocorrelations that a global St is inappropriate,

as the zero-crossing time of the autocorrelations increases with increasing distance from

the wall.

The deposition and wall-normal flux of nonspherical particles has also been investi-

gated by point-particle simulations. Marchioli et al. (2010) found that coupling between

the translation motion and the rotational motion of elongated fibers changes their wall-

ward flux significantly by changing the mean fiber wall-normal velocity. This effect

adds to that due to their inertia and, compared to the case of spherical particles, mod-

ifies the build-up of fibers at the wall and their deposition rates. Yuan et al. (2018a)

used Voronoi analysis to study the preferential concentration of spheroidal particles in

wall turbulence and found that particle flux towards the wall is primarily influenced by

particle inertia. Intermediate λ enhanced drift towards the wall for the most inertial

particles, while particles with the most extreme λ exhibited the most even distribution
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across the channel. Yuan et al. (2018b) then found that inertial spheroids moving to-

ward or away from the channel walls tend to correlate with sweeps and with ejections,

respectively, which supports the interpretation that sweeps and ejections are the mech-

anisms by which inertial particles are carried toward the wall and re-entrained into the

outer flow.

Particle-resolved direct numerical simulations (PR-DNS) have been employed to

obtain a more accurate understanding of the effects of finite particle size and inertia on

their dynamics. Several of the above point-particle studies find that ellipsoidal particles

accumulate in low-speed streaks near the wall; however, this finding has been called

into question by PR-DNS studies. Do-Quang et al. (2014) used PR-DNS to simulate

finite-size fibers in a turbulent channel flow and found that particles congregate in high-

speed streaks near the wall rather than in low-speed streaks. They explained that when

finite-size fibers move towards the wall in turbulent sweeps, contact forces with the wall

hinder the fibers from passively following the fluid towards low-speed flow regions and

tend to keep them in high-speed flow regions. Eshghinejadfard et al. (2017) performed

PR-DNS of prolate spheroids in turbulent channel flows without gravity. They found

that although spheres show a local peak of volume fraction near the wall, this is not

the case for spheroids; local volume fraction of spheroids increases gradually before

reaching a plateau far from the wall. Spheroids show a preferential alignment along

the streamwise direction, which is stronger close to the walls and increases with particle

aspect ratio. They infer that tumbling (off-axis rotation), as opposed to spinning (along-

axis rotation), is the most frequent rotation mode of spheroids near the wall. Wang

et al. (2018) studied the effects of particle shape and inertia on the transport of finite-

size particles in a turbulent Couette flow. The symmetry axis of their oblate particles

is almost parallel to the wall-normal direction and the major axis of prolate particles

tends to align in the flow direction. Near the walls, the particles rotate predominantly

along the spanwise direction due to the mean shear.

Finally, a small number of experiments have been performed in this regime. Earlier

experimental work focused on particle orientation Bernstein & Shapiro (1994) and depo-

sition Zhang et al. (2001) in laminar flows. Experiments on inertial anisotropic particles

in turbulent shear flows are scarce. van Hout (2013) presented a method using a combi-

nation of planar PIV and two-orthogonal-view holography in fiber suspension flows to
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experimentally measure 3D fiber orientation and the 2D fluid velocity field surrounding

the particle. Shaik et al. (2020) then performed measurements of length effects on the

dynamics of rigid fibers in a turbulent channel flow using this holography technique.

They found that fibers accumulate in high-speed streaks, but lagged the fluid farther

from the wall due to increased drag. Although these authors did not directly measure

the fluid velocity fields, longer fibers were inferred to interact more frequently with large,

energetic turbulent structures, resulting in increased probabilities of extreme transverse

and wall-normal velocities. Longer fibers were also found to tumble significantly more

strongly than shorter fibers.

From this review, it is clear that many open questions remain in understanding the

behavior of inertial anisotropic particles in turbulence which can be addressed through

experimental measurements, including: do inertial prolate and oblate particles accu-

mulate in low-speed or high-speed streaks? What are their relative rates and axes

of tumbling motion? How do the concentration and wall-normal flux of anisotropic

particles compare to those of spheres? In order to address these gaps, we consider

a dilute suspension of rod and disk particles fully suspended in a turbulent horizon-

tal boundary layer, with St ∼ O(10) and major axis dimensions Dp much larger than

the Kolmogorov and viscous length scales of the flow. Laboratory measurements are

performed to measure simultaneous fluid velocity fields and particle position, velocity,

acceleration, orientation, and tumbling rate.

This thesis is organized as follows: the experimental facility and data processing

methods are described in Chapter 2; results and discussion for the spherical particles

are presented in Chapter 3; results and discussion for the non-spherical particles are

presented in Chapter 4 and conclusions are summarized in Chapter 5.



Chapter 2

Experimental methods

2.1 Experimental facility

A recirculating open channel with water as the working fluid is used for this experiment.

The channel walls and floor are made of transparent acrylic. The channel width is 15

cm, with the water filled to a depth H = 15 cm. Guide vanes are placed in each of the

four corners to reduce secondary flows produced at the turns. The test section is located

1.4 m downstream of a corner, allowing the flow to reach a developed state, which was

verified by comparing fluid velocity statistics from the upstream and downstream ends

of the test section. A diagram of the channel is shown with the configuration for the

spherical particle experiment (figure 2.1) and its configuration for the rod and disk

particle experiment (figure 2.2). The flow is provided by a paddlewheel with 16 paddles

driven by a 1/4 HP permanent magnet motor (Leeson, USA) at a constant angular

speed of 10 revolutions per minute. This is used instead of a centrifugal pump to avoid

damaging the particles and the pump. In the spherical particle experiment, two wire

screens with a grid spacing of 4 mm and one honeycomb with a cell size of 7 mm and a

depth of 25 mm are placed upstream of the test section, as shown in figure 2.1. In the

non-spherical particle experiment, due to the large size of the particles, two 3D-printed

grids are used for flow conditioning instead of the screens and honeycombs, each with a

streamwise depth of 250 mm. The first has a cell size of 40 mm and is placed downstream

of the first bend after the paddlewheel to dampen swirl and large flow structures from

the paddles; the second has a cell size of 30 mm and is positioned upstream of the

10
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Figure 2.1: Diagram of the water channel configured for the spherical particle experi-
ment, showing key components and dimensions. The bold arrow indicates the direction
of the flow.

test section, as shown in figure 2.2. The large cell sizes are necessary to avoid the disk

and rod particles becoming stuck and blocking the flow. In the sphere configuration,

the freestream velocity is 0.42 m/s, which is measured to be constant in time within

experimental uncertainty. The rod and disk configuration results in a freestream flow

velocity of 0.43 m/s due to the slightly lower pressure drop through the coarser flow

conditioning.

2.2 Particles

2.2.1 Spheres

Spherical polystyrene (PS) particles (Composition Materials Co., USA) are used. The

particles are transparent, but their index of refraction causes significant scattering of

the illumination light, and they appear as shown in figure 2.3. Because polystyrene is

hydrophobic, the particles are first mixed in a dilute solution of water and a surfactant

(dish soap) before introducing them into the channel to allow them to disperse.

The physical properties of the particles are listed in table 2.1. The diameter Dp

is measured by imaging about 230 particles placed on a tray in a single layer. Their

detection and sizing are performed via a circle-finding function based on the Hough
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Figure 2.2: Diagram of the water channel configured for the non-spherical particle
experiment, showing key components and dimensions. The bold arrow indicates the
direction of the flow.

Figure 2.3: Instantaneous realization of the particle laden flow. Both the mm-sized
spherical PS particles and the microscopic silver-coated glass tracer particles are visible.



13

Figure 2.4: Probability density function of PS particle diameters. The standard devia-
tion is 12% of the mean value.

transform. The probability density function (PDF) of the particle diameters is plotted

in figure 2.4. For completeness, we also report the value of the Galileo number Ga =

[(ρp/ρf−1)gD3
p/ν

2]1/2 and the Shields number Sh = u2τ/[(ρp/ρf−1)gDp]. These indicate

that the effect of gravity is significant (as also indicated by the ratio Vt/uτ , of order

one), although the particles are in a continuous transport (full suspension) regime.

The terminal velocity Vt is measured by dropping individual particles from rest in a

large tank of quiescent water and recording 60 frame-per-second (fps) videos. Particles

are tracked using the same method used for the particle-laden flow measurements, which

will be described in the next section. The tank is deep enough (0.3 m) for the particles

to reach a steady-state velocity before touching the bottom. The nominal particle

Reynolds number is computed based on the terminal velocity, Rep,Vt = ρfVtDp/µ,

where ρf and µ = ρfν are the water density and dynamic viscosity, respectively. This

Reynolds number is used to correct the Stokes drag coefficient according to the Schiller

& Naumann correction (Clift et al., 2005), which in turn is used to estimate the particle

density ρp from the measured terminal velocity.

To quantify particle inertia, we refer to the Stokes number, i.e., the ratio between

the particle response time and a relevant fluid time scale. As for the particle response

time, we consider the characteristic time scale with which the particle exponentially

approaches the steady state velocity of the surrounding fluid, τp = ρpD
2
p/(18µ). We
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(a) (b)

Figure 2.5: Wall-normal profiles of (a) the particle Stokes number based on the Kol-
mogorov scale and (b) the particle diameter normalized by the Kolmogorov scale.

favour this definition over the other commonly used response time, (ρp − ρf )D2
p/(18µ),

which describes the exponential approach to terminal velocity of a particle settling in

a still fluid. As for the fluid, both the viscous time scale τ+ and the Kolmogorov time

scale τη are relevant. τ+ is based on the friction velocity uτ , estimated from fitting the

log-law to the measured velocity profile (see §3.1), from which we define St+ = τp/τ
+

(the superscript ‘+’ denoting, here and in the following, normalization by wall units).

τη varies with the wall normal distance and is estimated from the production-dissipation

balance in the turbulent boundary layer (Pope, 2000). This gives a range for the Stokes

number Stη = τp/τη and for the ratio of particle diameter to Kolmogorov length Dp/η,

both reported in figure 2.5.

The volume fraction of the particles in the system, Φv, is about 10−4. Thus, at

the present particle-to-fluid density ratio, the momentum two-way coupling effects are

expected to be localized and have a minimal impact on the fluid statistics. This is

verified in §3.1 by showing that the unladen and laden fluid velocity profiles overlap

within experimental uncertainty.
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Dp (mm) D+
p ρp (kg/m2) Vt (mm/s) Vt/uτ Rep,Vt τp (ms) St+ Ga Sh

0.83 16 1018.6 13.9 0.75 13 43.3 15 11.3 2.0

Table 2.1: Properties of the PS particles. Dp is the mean particle diameter, D+
p is the

diameter normalized by the viscous length scale of the flow, ρp is the density, Vt is the
terminal velocity in still water, Rep,Vt is the Reynolds number based on Vt, τp is the
particle response time, St+ is the particle Stokes number based on the viscous time
scale of the flow, Ga is the Galileo number, and Sh is the Shields number.

2.2.2 Rods and Disks

Disk particles with a nominal diameter of 2 mm and rod particles with a nominal length

of 3 mm are also used in the experiments. Circular, white-colored glitter (Etsy.com) is

used for disks. Rods are produced by cutting lengths of translucent white, non-elastic

beading wire (Beadalon) to size. Both rods and disks are stiff enough to be practically

rigid in the water flow. Because the particles are hydrophobic, they are first mixed in a

dilute solution of water and a surfactant (dish soap) before introducing them into the

channel to allow them to disperse.

The key physical properties of the three particle types are summarized in table

2.2. Because the disks are die-cut, there is no measurable scatter in their diameter.

However, there is more scatter in the lengths of the rods because they are manually cut.

Their lengths are measured by imaging about 200 particles placed on a tray in a single

layer; they are then sized from the images using an automated intensity-threshold-based

detection method. The probability density function (PDF) of the rod lengths is plotted

in figure 2.6. In the following, the major axis lengths of particles (i.e., the disk diameter

and the rod length, as well as the sphere diameter) will be denoted by Dp.

The terminal velocity Vt of the disks and rods is measured by dropping individual

particles from rest in a large tank of quiescent water and recording 60 fps videos. Par-

ticles are tracked using the same threshold-based method as is used for the particle

sizing (see section 2.4). The tank is deep enough (0.3 m) for the particles to reach a

steady-state velocity before touching the bottom. The nominal particle Reynolds num-

ber is then computed based on the terminal velocity, Rep,Vt = ρfVtDp,eq/µ, where ρf

and µ = ρfν are the water density and dynamic viscosity, respectively, and Dp,eq is the

particle’s equivalent diameter, i.e., the diameter of a sphere with the same volume as
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Particle type a (mm) b (mm) Material ρp (kg/m3) Vt (mm/s)

Spheres 0.84 – Polystyrene 1018.6 13.9
Rods 2.9 0.25 Nylon 1150 10.5
Disks 0.088 2.0 PET 1380 13.5

Table 2.2: Properties of the non-spherical particle types used in the experiment com-
pared with the sphere properties: a, the mean length of the particle axis of rotational
symmetry; b, the mean length of the other two axes; the particle material; ρp, the
material density; and Vt, the terminal velocity.

Figure 2.6: Probability density function of the rod lengths. The standard deviation is
7% of the mean value.

the disk or rod particle.

In the case of anisotropic particles, the estimation of the particle response time and

Stokes number is more complex than for spheres. An expression for the response time

of prolate spheroids is given by Shapiro & Goldenberg (1993) as

τp =
2

9

ρp(b/2)2

µ

λln(λ+ (λ2 − 1)1/2)

(λ2 − 1)1/2
. (2.1)

For oblate spheroids, the response time is given by

τp =
2

9

ρp(b/2)2

µ

λ[π − 2tan−1(λ(1− λ2)−1/2)]
2(λ2 − 1)−1/2

(2.2)

(Zhao et al., 2015). Both of these formulas are derived for particles with an isotropic

orientation distribution; this is generally not the case in anisotropic shear flows, but
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Figure 2.7: Wall-normal profiles of (a) the particle Stokes numbers based on the Kol-
mogorov scale and (b) the particle major axis lengths normalized by the Kolmogorov
scale.

Particle type D+
p λ ρp/ρf Vt/uτ Rep,Vt St+

Spheres 16 1 1.02 0.75 13 15
Rods 66 11.8 1.15 0.52 8 6
Disks 45 0.044 1.38 0.67 12 11

Table 2.3: Properties of the particles. D+
p is the mean particle major axis length in

viscous units, λ is the aspect ratio, ρp/ρf is the particle-to-fluid density ratio, Vt is
the terminal velocity in still water, Rep,Vt is the Reynolds number based on Vt and the
particle equivalent diameter, and St+ is the particle Stokes number based on the viscous
time scale of the flow.

these formulas can be considered a nominal estimate. In addition, the Kolmogorov

Stokes number Stη = τp/τη and the ratio of particle major axis length to Kolmogorov

length Dp/η are both reported in figure 2.7, compared to those of the spheres.

The volume fraction of the particles in the system is about 10−4. Thus, at the present

particle-to-fluid density ratio, the momentum two-way coupling effects are expected to

be localized and have a minimal impact on the fluid statistics. The physical properties

of the particles are summarized in table 2.3.
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2.3 Fluid velocity measurements

Time-resolved planar particle image velocimetry (PIV) is used to measure the velocity

of the fluid. The water is seeded with 13-micron silver-coated glass bubbles (Potters

Industries) to act as tracers. A 300 W near-infrared pulsed laser with a wavelength of

808 nm (Oxford Lasers, Firefly 300W) is used for illumination. The laser is positioned

above the channel and emits a 1 mm light sheet perpendicular to the floor and parallel

to the streamwise direction, illuminating the channel symmetry plane. A 15 cm square

acrylic plate is fixed at the water surface to avoid distortion of the laser sheet. This

results a in shear layer below the plate less than 1 cm deep, which does not affect our

region of interest. Images are captured with a high-speed, 4-megapixel CMOS camera

(Phantom VEO 640L) viewing through one of the side walls. The camera mounts a

105 mm lens, capturing the bottom 6 cm of the channel. For optimal tracking, a frame

rate of 500 Hz is chosen to obtain typical displacements of about one particle diameter

(approximately 20 pixels). The recording time amounts to about 1900 boundary-layer

turnover times.

The image processing routine is similar to what is described in Petersen et al. (2019).

First the particles are identified (using the method described in §2.4) and substituted

with Gaussian noise having the same mean and standard deviation as the background

image. The resulting tracer-only images are used for PIV processing performed with

a custom-written software. A minimum-intensity background subtraction is then per-

formed which removes consistent bright spots caused by reflections and glare off the wall.

Multi-pass cross-correlation with an overlap of 75% between interrogation windows is

used to compute fluid displacement fields. Initial, intermediate, and final interrogation

window sizes of 1282, 642, and 322 pixels are used, respectively. A signal-to-noise ra-

tio criterion and a universal outlier detection (Westerweel & Scarano, 2005) are used

to reject spurious velocity vectors. The imaging and PIV processing parameters are

summarized in table 2.4.

2.4 Particle detection and tracking

To locate the spherical particles, a convolution method using a particle template image

is used, similar to van Hout et al. (2013) (figure 2.8). First, a low-pass median filter
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fs (Hz) N w (mm) h (mm) wi (mm, wall units) δx (mm, wall units)

500 65 700 95 63 1.26, 24.3+ 0.31, 6.1+

Table 2.4: Imaging and PIV processing parameters: fs is the imaging frequency; N is
the number of images; w and h are the field of view width and height, respectively; wi
is the final-pass PIV interrogation window size; and δx is the PIV vector spacing.

(a) (b)

(c)

(d)

Figure 2.8: Convolution method for particle detection: (a) original image, (b) median
filtered image, (c) particle template image to be convolved with the filtered image, and
(d) convolution peak, the red cross indicating the detected particle centroid.

with a width of nine pixels is applied to the original images (figure 2.8a) to remove the

tracers (figure 2.8b). Then, images are convolved with a particle template image (figure

2.8c). The particle centroids are then identified as convolution peaks which surpass a

specified threshold (figure 2.8d), whose exact value is verified to have negligible impact

on the results.

The disk and rod particles have good contrast with the background (figure 2.9),

allowing detection using an image segmentation method based the particles’ intensity

(figure 2.10). First, a low-pass median filter with a width of nine pixels is applied to

the original images to remove the tracers (figure 2.10a, d). Then, images are segmented

into inertial particles and background based on an intensity threshold (figure 2.10b, e).

Because the particles generally have strong contrast with the background, the detection

was not sensitive to the exact value of the intensity threshold. The centroids of the

particles are then located by computing the centroid of the identified particle image

(figure 2.10c, f).
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(a) (b)

Figure 2.9: Instantaneous realization of the particle-laden flow with rods (a) and disks
(b).

(a) (b) (c)

(d) (e) (f)

Figure 2.10: Intensity-based segmentation method for particle detection for a rod (a-c)
and disk (d-f) particle: (a, d) median filtered image, (b, e) segmented image, and (c, f)
identified particle in original image, with the red cross indicating the detected particle
centroid.
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Figure 2.11: Streamwise acceleration variance as a function of smoothing kernel width.
The solid line indicates the fit of the acceleration variance over its exponential range,
and the optimal kernel width is denoted by the open circle.

The centroids are tracked between successive image pairs using a PIV-based predic-

tor: a first-guess displacement is estimated from the mean fluid velocity profile inter-

polated at the wall-normal location of each particle centroid and subtracted from the

second frame in the pair. Then, a nearest-neighbor search with a search radius of one

particle diameter is used to match particle centroids in the first frame with the shifted

centroids in the second one. As the inter-frame particle displacement is about one par-

ticle diameter, there is no ambiguity in matching particle images. Approximately 2500

particles were tracked within the image set. To obtain particle velocities and acceler-

ations, the particle trajectories are convolved with the first and second derivative of a

Gaussian kernel, respectively. This method, introduced for fluid tracers (Voth et al.,

2002; Mordant et al., 2004), has been used in several studies of inertial particles in tur-

bulence (Gerashchenko et al., 2008; Nemes et al., 2017; Ebrahimian et al., 2019). The

optimal width of the kernel tk is determined from the variance of the particle acceler-

ation magnitude in the data set: the latter is calculated for a range of kernel widths,

and the smallest value for which the variance start decaying exponentially is adopted

(figure 2.11). This corresponds to a duration of 17 successive snapshots, or about 12τ+,

where τ+ = ν/uτ is the time scale based on wall units.

In the data analysis, we will consider the fluid velocity at the particle-location, uf |p.

For spheres, this is obtained by interpolating the PIV vectors onto the instantaneous
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(a) (b)

Figure 2.12: Definition of the particle orientation vector p and its components shown
for rods (a) and disks (b) relative to the water channel reference frame shown in blue.

particle centroid location using an inverse-distance-weighted average of the fluid velocity

in the 4 x 4 vector neighborhood surrounding each particle (a 2 x 2 neighborhood is

used for y+ < 25 to account for the greater shear). For rods and disks, this is obtained

by averaging the fluid velocity vectors within a distance of Dp/4 from the edge of

particle. As the particles have finite size, this definition does not accurately represent

an undisturbed fluid velocity at the particle location (as used in the correct definition

of the drag force, Horwitz & Mani, 2016), but it will serve the purpose of investigating

the fluid flow events experienced by the particles.

2.5 Particle orientation measurement

The three-dimensional particle orientation vector, p, was computed for the disk and

rod particles. The vector p is defined as the unit vector passing through the particle’s

axis of symmetry, and thus, each component of p is the cosine of the angle between

the particle’s axis of symmetry and the respective coordinate axis in the water channel

reference frame (figure 2.12).

Calculation of the anisotropic particle orientation is complicated by the limitation
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(a) (b)

Figure 2.13: Diagram defining (a) the apparent pitch θ and apparent length d of rod
particles and (b) the pitch θ′ and apparent diameter d of the disk particles.

that only the two-dimensional projection of the rods and disks is seen in the images.

However, with the caveat that the sign of pz cannot be determined, the particle orien-

tation can be reconstructed from the apparent pitch (θ, θ′) and apparent major axis

length (d) of the rod and disk particle projections, respectively, illustrated in figure 2.13,

using trigonometry.

Before the orientation can be calculated, the apparent major axis length of the

particles must be corrected for the finite thickness of the particles, which artificially

increases the minimum apparent major axis length when a particle is seen at an angle

(figure 2.14a). This minimum is taken to be the first-percentile apparent major axis

length; that is, the value of d below which 1% of the observations are found (denoted

d1%). However, more of the particle thickness is seen as a particle tilts closer to an

“edge-on” orientation, so the correction value that must be subtracted depends on the

orientation itself. The correction value is scaled linearly with the apparent major axis

length, so that the corrected major axis length is given by dcorr = d− d1%
Dp−d
Dp

. When

the resulting shifted major axis length is negative, it is set to zero. The PDFs of the

original d and corrected dcorr are shown in figure 2.14b (rods) and c (disks).

The set of formulas to compute the correction to the apparent major axis length and
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(a)

(b) (c)

Figure 2.14: (a) Schematic of the finite particle thickness when a particle is seen at an
angle. The edge of the particle is shown in blue (thickness exaggerated), illustrating
how the edge becomes more visible as the particle tilts from a “face-on” to an “edge-on”
view. (b, c) PDFs of the original and corrected apparent major axis length d and dcorr,
respectively, for rods (b) and disks (c).
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Quantity Rods Disks Range

dcorr max
[
d− d1%

Dp−d
Dp

, 0
]

px
dcorr
Dp

cos(θ) sin(θ′)
(

1− (dcorrDp
)2
)1/2

[0, 1]

py
dcorr
Dp

sin(θ) cos(θ′)
(

1− (dcorrDp
)2
)1/2

(−sign(θ′)) [-1, 1]

pz

(
1− (dcorrDp

)2
)1/2

dcorr
Dp

[0, 1]

Table 2.5: Formulas to compute the particle orientation vector for rod and disk particles,
as well as the range of each component.

the components of the particle orientation vector are given in table 2.5. Once calculated,

the components of p are convolved with a Gaussian smoothing kernel of width 17 frames

(the same as was done to obtain particle linear velocity and acceleration) to reduce

measurement noise. The unit length of p is then checked. If |1 − |p|| > 0.05, then

that orientation observation is rejected and not considered when computing statistics

(however, the particle position and velocity values are preserved). This criterion results

in the rejection of about 1.5% of rod and disk observations. Finally, due to the spread

in lengths of the rod particles, pz will be imaginary if dcorr > Dp. All three components

of p are rejected if pz is imaginary, removing about 6% of rod particle observations.

Particle angular velocity and angular acceleration are also of interest. A particle’s

solid-body rotation rate Ω can be decomposed into a spinning component and a tumbling

component, Ω = Ωpp+p×ṗ, where spinning is rotation about the symmetry axis (Ωpp)

and tumbling is rotation of the symmetry axis (p× ṗ). Spinning motion is inaccessible

to our optical imaging; we therefore focus on tumbling rates exclusively. The tumbling

rate is then given by ωt = p× ṗ, and the tumbling component of angular acceleration

is given by αt = p× p̈. The first and second derivatives of particle orientation, ṗ and p̈,

are computed again by convolving the components of p with first and second derivatives,

respectively, of a Gaussian smoothing kernel of width 17 frames.

Before ṗ and p̈ are computed, and before p is smoothed, ambiguities on the signs

of the components of p must be resolved in order to ensure that p is differentiable.
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(a) (b)

Figure 2.15: Example reconstructed trajectories of a rod (a) and a disk (b) moving in
space and time. Snapshots are shown every 5 frames (3.6τ+).

Sign ambiguities occur when the components of p reach the bounds of their range. For

example, since the range of py is [-1, 1], py of a particle which is tumbling end-over-end

in the x-y plane will eventually reach a value just above -1 as it passes through the

vertical orientation and jump to just under 1 in the next realization, while the value of

px remains positive throughout. In order to differentiate p, the signs of py and px must

be flipped as the particle passes through this orientation. Sign ambiguities are resolved

by enforcing a minimum angular acceleration condition on the raw (unsmoothed) p

values. First, observations where any of the components of p change sign or approach

0, 1, or -1, and are also a local temporal minimum or maximum, are flagged. Three

sets of sign changes are applied to the flagged observations: (1) flip only px and py, (2)

flip only pz, and (3) flip px, py and pz. The unsmoothed tumbling angular acceleration

magnitude p̈p̈ is computed for each case, as well as the original case where no signs are

changed. The case with the minimum p̈p̈ is chosen, and the sign change is propagated

forward in time along the remainder of that particle’s track. In general, the p̈p̈ value

associated with the correct set of sign changes will be at least an order of magnitude

lower than the other three, so it is trivial to make the choice. After the sign changes are

applied, the smoothed p, ṗ and p̈ values are computed as described above. Example

reconstructed trajectories for a rod and a disk particle are shown in figure 2.15.
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2.6 Measurement uncertainty

Uncertainty in the particle statistics is estimated by considering both random uncer-

tainty (due to the finite sample size) and bias uncertainty (due to imperfect centroid

and orientation detections). The random uncertainty is estimated by computing 95%

confidence intervals on the statistics (Bendat & Piersol, 2011). To evaluate the ran-

dom uncertainty of particle statistics, we assume a number of independent realizations

equal to the number of recorded trajectories. When statistics are computed within wall-

normal bins, we assume a number of independent realizations equal to the number of

trajectories in each bin.

The bias uncertainty is estimated using synthetic particle templates created from

actual particle images. Sphere templates are generated from a sphere image in which

one quadrant of the image is mirrored over the horizontal and vertical axes, creating

a synthetic particle template for which the centroid is known precisely. Rod and disk

templates are generated from images that are stretched so that d = Dp, then mirrored

over each axis as for the spheres. The synthetic particle templates are translated and

superimposed upon a tracer-filled PIV background to create synthetic particle trajec-

tories with known centroids. The imposed centroids are chosen to be sinusoids so that

the measured derivatives of position and orientation can be compared with their ana-

lytical values. A time-series of 3D rod and disk orientations are defined in which all

components of p vary sinusoidally. These orientations are projected onto the plane of

the image, and particle templates are stretched and rotated according to the projections

to simulate what the camera would capture. Then, detection, tracking, and (for disks

and rods) orientation measurements are performed on the synthetic images. The associ-

ated uncertainties on the centroid location, velocity, acceleration, orientation, tumbling

rate, and tumbling acceleration are estimated as the root mean square (RMS) difference

between measured and actual values. These bias uncertainties are reported in table 2.6.

There is an additional uncertainty on the orientation of rod particles and deriva-

tives thereof owing to the spread in rod lengths. The uncertainty is estimated as

wDp,rods
= σDp,rods

/Dp,rods, where σDp,rods
is the standard deviation of the rod lengths.

This uncertainty is propagated through the orientation and tumbling rate calculations

to obtain the additional uncertainty on those quantities; it has the greatest effect on
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Bias uncertainty Spheres Rods Disks

wxp , wyp 0.03 mm, 0.7+ 0.02 mm, 0.5+ 0.03 mm, 0.5+

wup , wvp 1 mm/s, 0.06+, 0.1% 2 mm/s, 0.1+, 0.5% 4 mm/s, 0.2+, 1%
wax,p , way,p 20 mm/s2, 0.003+, 3% 27 mm/s2, 0.003+, 3% 55 mm/s2, 0.006+, 6%
wpx – 0.01, 1% 0.03, 12%
wpy – 0.02, 8% 0.02, 2%
wpz – 0.05, 10% 0.05, 10%
wωt,x – 0.7 s−1, 0.002+, 13% 0.9 s−1, 0.002+, 10%
wωt,y – 0.7 s−1, 0.002+, 8% 1.2 s−1, 0.003+, 25%
wωt,z – 1.4 s−1, 0.003+, 17% 0.5 s−1, 0.001+ , 7%
wαt,x – 90 s−2, 0.0005+, 25% 100 s−2, 0.0006+, 17%
wαt,y – 90 s−2, 0.0005+, 12% 250 s−2, 0.001+, 50%
wαt,z – 180 s−2, 0.001+, 50% 50 s−2, 0.0003+, 15%

Table 2.6: Bias uncertainties on the particle centroid location, velocity, acceleration,
orientation, tumbling rate, and tumbling acceleration for each particle type in SI units,
wall units, and as a percentage of characteristic values of the quantities.

the uncertainty on rod particle pz, ωt,x, ωt,y, αt,x, and αt,y. Error bars on the plots

in the following sections represent the root sum of squares (RSS) of random and bias

uncertainties as well as the rod length uncertainty.

Uncertainty on the fluid velocities consists of random error and PIV bias error; the

random error is dominant. Following Adrian & Westerweel (2011), the bias error on the

PIV correlation peak is estimated as 0.1 px, or 2 mm/s (0.1uτ ). To calculate the random

uncertainty on statistics, the number of independent samples in the fluid velocity data

is estimated as the number of temporally independent realizations (i.e., the number of

boundary layer turnover times in the recording) multiplied by the number of spatially

independent samples in each realization (i.e., w/d99, where d99 is the boundary layer

thickness).

For the fluid velocity evaluated at the particle location, the interpolation also con-

tributes to the uncertainty. This uncertainty is estimated by applying a synthetic parti-

cle mask to images where the actual velocity vectors are known, performing PIV analysis

on the masked images, then interpolating the resulting fluid velocity at the location of

the synthetic particles. The actual fluid velocity is then compared with the interpolated

values. The resulting interpolation error on the fluid velocity, again defined as the RMS
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difference between the actual and calculated values, is approximately 1 mm/s (0.05uτ )

for both rods and disks, significantly smaller than the random error. To avoid cluttering

in the plots, in the following error bars are added only where significant.



Chapter 3

Results: spherical particles

The contents of this chapter were published in the Journal of Fluid Mechanics in Decem-

ber, 2020 under the title “Particle–fluid–wall interaction of inertial spherical particles

in a turbulent boundary layer”, 908, p. A39. Reprinted with permission.

3.1 Fluid and particle velocity

Here and in the following, the streamwise and wall-normal coordinates are indicated by

x and y, respectively, and u and v indicate the respective velocity components. These

are Reynolds-decomposed as u = 〈u〉 + u′ and v = 〈v〉 + v′, where angle brackets de-

note the time average and the prime denotes the fluctuating part. Subscripts f and

p denote quantities referring to fluid and particles, respectively, and the subscript f |p
denotes fluid quantities interpolated at the particle location. In figures 3.1 and 3.2, the

particle-laden and unladen fluid velocity statistics are compared to turbulent bound-

ary layer measurements by De Graaff & Eaton (2000) at a similar Reynolds number

(Reθ = 1430). The particle-laden and unladen fluid velocity profiles overlap within

experimental uncertainty, indicating that significant two-way momentum coupling be-

tween the particles and fluid is not present. From the mean velocity profile, the friction

velocity is determined by iterative fitting, with the von Kármán constant κ = 0.41 and

the additive constant B = 5.5. The Reynolds stress profiles show some discrepancies

in the magnitudes of the peak stresses due to the non-canonical features of the channel

design (unconventional forcing, limited channel width) and limited spatial resolution.

30
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U∞ (m/s) H (mm) W (mm) δ99 (mm) uτ (mm/s) Re Reτ Reθ
0.42 150 150 29 18.5 66 000 570 1270

Table 3.1: Physical parameters of the water channel and boundary layer properties.
U∞ is the freestream velocity, H is the water depth, W is the channel width, δ99 is
the boundary layer thickness, and uτ is the shear velocity. The boundary thickness is
defined such that u(δ99) = 0.99U∞. Re = U∞H/ν, Reτ = uτδ99/ν, and Reθ = U∞θ/ν
are the freestream, friction, and momentum thickness Reynolds numbers, respectively.
Standard water properties at 22◦C are used in the calculations.

Physical parameters of the water channel and the boundary layer properties are reported

in table 3.1.

Profiles of particle velocity are obtained by defining wall-normal layers (bins) and

taking the mean of particle velocities within each. Particles are more numerous near

the wall and sparser in the outer region (approximately following a power law, see §3.6),

thus the bins are logarithmically spaced to equalize the numbers of particles in each,

as well as to capture the high shear in the near-wall region. The mean streamwise and

wall-normal particle velocity profiles are shown in figure 3.3. In the freestream, the

particle streamwise velocity is very similar to the fluid’s (figure 3.3a), as expected since

there the particles are in equilibrium with a steady flow having negligible fluctuations.

Closer to the wall (y+ . 200) the particles generally lag the fluid, due to their inertia

in responding to turbulence. Past experiments found that mean velocity of inertial

particles exceeded that of the fluid in the viscous sublayer; see Kaftori et al. (1995a);

Righetti & Romano (2004); Ebrahimian et al. (2019). The present PIV resolution does

not allow reliable measurements at such small heights, but the canonical shape of the

boundary layer profile suggests that the lag is vanishing approaching the wall. We

remark that those previous studies considered smaller particles (in wall units) whose

centroid could reach closer to the wall.

The vertical velocity profile (figure 3.3b) shows that in the freestream the particles

settle through the fluid at a speed close to the still-fluid terminal velocity. This is again

consistent with the fact that particles at those heights fall through a quasi-laminar flow.

For y+ . 200 (the same range for which particles lag the fluid streamwise velocity), the

vertical velocity decays in magnitude, but remains negative. We note that a downward
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(a) (b)

Figure 3.1: Mean streamwise velocity profile of the particle-laden (black dots) and
unladen (red dots) fluid, in (a) outer units and (b) wall units. The dashed line in (b)
indicates the logarithmic law fit. The profile is compared with De Graaff & Eaton (2000)
in (b), shown in blue open circles.

(a) (b) (c)

Figure 3.2: Profiles of particle-laden (black dots) and unladen (red dots) streamwise
turbulent normal stress (a), wall-normal normal stress (b), and shear stress (c) of the
fluid in wall units. The profiles are compared with De Graaff & Eaton (2000) shown in
blue open circles.
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(a) (b)

Figure 3.3: Wall-normal profiles of streamwise (a) and wall-normal (b) mean particle
velocity (red crosses) compared with the mean fluid velocity (black dots).

mean particle velocity is expected under equilibrium conditions, i.e., when the wall-

normal turbulent flux balances the gravitational settling (Rouse, 1937; Prandtl, 1952).

Using the concentration measurements (see §3.6), we estimate the total vertical flux to

be several orders of magnitude smaller than the streamwise flux, confirming approximate

equilibrium conditions. The Rouse–Prandtl theory, however, assumes a constant settling

velocity (generally taken to be equal to the still-fluid terminal velocity) throughout the

boundary layer, while here it shrinks to vanishingly small values approaching the wall.

We investigate the roots of this effect, as well as the streamwise velocity lag, in the

following.

3.2 Slip velocity

The reduced streamwise velocity of the particles has been often attributed to the pref-

erential sampling of slow fluid regions (Kaftori et al., 1995a; Kiger & Pan, 2002). We

investigate this issue first by separating the mean slip velocity (〈up〉−〈uf 〉) in two sepa-

rate contributions: the ‘particle-conditioned’ slip velocity, i.e., the mean slip velocity at

the particle location, 〈up−uf |p〉, and the ‘apparent’ slip velocity due to the oversampling
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of fluid regions faster or slower than the average, 〈uf |p〉 − 〈uf 〉 (Kiger & Pan, 2002):

〈up〉 − 〈uf 〉 = 〈up − uf |p〉+ 〈uf |p〉 − 〈uf 〉. (3.1)

Figure 3.4a displays both contributions. (We only report the slip velocity down to the

location of the PIV vector closest to the wall, to avoid extrapolation.) It indicates

that, for y+ > 20, the particles do oversample fluid regions with negative streamwise

fluctuations (〈uf |p〉 − 〈uf 〉 < 0). Closer to the wall, however, the particle-conditioned

slip plays a dominant role in determining the particle lag from the fluid: the term

〈up − uf |p〉 becomes larger in magnitude than 〈uf |p〉 − 〈uf 〉. This is consistent with the

recent findings of Berk & Coletti (2020) who considered solid particles in air at much

larger Reτ and a broad range of St+.

A similar decomposition can be carried out for the vertical velocity component,

noting that 〈vf 〉 = 0:

〈vp〉 = 〈vp − vf |p〉+ 〈vf |p〉 (3.2)

which highlights the separate contributions of the particle-conditioned slip and the ver-

tical fluid velocity at the particle location. Figure 3.4b shows that the first term on the

right-hand side dominates in the freestream and decreases approaching the wall. The

second term, representing the preferential sampling of upward/downward fluid fluc-

tuations, is negligible in the freestream and it becomes comparable to the first term

as the wall is approached. In particular, particles near the wall oversample upward

fluid motions (〈vf |p〉 > 0). This is consistent with their tendency of favouring negative

streamwise fluctuations, which are correlated with upward fluctuations in a turbulent

shear flow. This point will be further discussed in §3.4. In general, throughout the

boundary layer, the effect of the turbulence on the particle settling is opposite to what

one would expect from homogeneous turbulence studies, where the predominant effect

is the enhancement of settling speed by preferential sweeping (Wang & Maxey, 1993;

Petersen et al., 2019).

The mean particle-conditioned slip velocity can be used to define profiles of particle

Reynolds numbers, Rep,uslip = 〈up − uf |p〉Dp/ν and Rep,vslip = 〈vp − vf |p〉Dp/ν, shown

in figure 3.5. Given the observed ranges, the particle wakes are likely to extend for less

than one diameter (Rimon & Cheng, 1969). At the present volume fraction, particles
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(a) (b)

Figure 3.4: Wall-normal profiles of mean streamwise (a) and wall-normal (b) particle
slip velocity, separated into the particle-conditioned mean slip (blue circles) and the
apparent mean slip (red crosses).

are hardly ever found so close to each other, indicating that the momentum coupling

between particles can be assumed to be negligible. However, the Reynolds numbers

are well into the non-linear drag regime, especially in the near-wall region. While drag

corrections are available (Clift et al., 2005), those are developed for steady/quiescent

flows. In a turbulent flow laden with particles at finite Rep, the non-linearities undermine

the use of superposition (assumed in the derivation of the particle equation of motion,

Maxey & Riley, 1983), making the particle-fluid dynamics challenging to capture with

point-particle simulations (Wang et al., 2019).

The instantaneous slip experienced by the particles with respect to the surrounding

fluid is related to their ability to retain memory of the flow events experienced at

previous times. Thus, one might infer that the gravitational drift plays a major role in

determining the streamwise slip velocity, as the settling particles cross flow trajectories

and attain large relative velocities with respect to the fluid. This view is certainly

valid in homogeneous turbulence (e.g., Csanady, 1963; Elghobashi & Truesdell, 1992).

In a turbulent boundary layer, however, the tendency of the particles to sample slow

flow regions, combined with the mean wall-normal velocity gradient, leads to a different

outcome. Let us consider separately the mean streamwise velocity profile for ascending
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Figure 3.5: Profiles of mean instantaneous particle Reynolds number based on the
particle-conditioned streamwise (blue circles) and wall-normal (red crosses) slip velocity.

and descending particles; that is, particles with positive and negative instantaneous

vertical velocity, respectively. Figure 3.6a shows that ascending particles, on average,

move slower than the fluid and account for most of the mean slip velocity reported above;

while descending particles roughly match the mean fluid velocity in the outer layer. This

trend, in agreement with Kiger & Pan (2002) and van Hout (2011), is explained by the

fact that ascending particles come from slower-moving regions of the flow nearer to the

wall, and therefore have lower streamwise velocities. Therefore, unlike in homogeneous

flows, it is the ascending particles suspended by the turbulence that determine the large

slip velocity, rather than the descending ones that settle due to gravity. Remarkably,

the vertical velocity of the ascending particles is comparable in magnitude to that of

the descending ones, both being the order of the friction velocity. As the descending

particles near the wall are more numerous, their contributions dominate the statistics

and the mean vertical velocity of the dispersed phase is negative.

3.3 Reynolds stresses

Profiles of particle and fluid Reynolds stresses are compared in figure 3.7. The stream-

wise normal stress of the particles are comparable to that of the fluid, while the particle

wall-normal normal stress and shear stress exceed that of the fluid by in the range

20 . y+ . 200. Qualitatively similar results were reported for particles in water
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(a) (b)

Figure 3.6: Profiles of mean streamwise (a) and wall-normal (b) particle velocity con-
ditioned on ascending (red crosses) and descending (blue circles) particles compared to
the fluid velocity (black dots).

(Kaftori et al., 1995b; van Hout, 2011) and in air (e.g., Tanière et al., 1997; Fong et al.,

2019). The relatively large particle velocity fluctuations are interpreted as a consequence

of the spread in momentum of particles with different pathways, retaining memory of

their interactions with disparate flow structures. This in turn results in particles often

being surrounded by fluid with velocity different from their own, contributing to the

instantaneous slip reported above.

To explore the particle-turbulence interaction, we can again condition the fluid statis-

tics on the location of ascending and descending particles. The Reynolds shear stresses

are of special interest: they feature in the turbulence production and represent the sta-

tistical signature of the instantaneous sweep and ejection events that are believed to

play a crucial role in the particle transport (Marchioli & Soldati, 2002). Figure 3.8a

displays the fluid Reynolds shear stress evaluated at the locations of ascending and de-

scending particles, while figure 3.8b shows the ‘particle Reynolds shear stress’ associated

to ascending and descending particles. The ascending particles appear to sample regions

with much larger fluid shear stress magnitudes compared to the descending particles,

while the shear stress magnitudes of ascending and descending particles themselves are

nearly the same. That suggests that the motion of the former is strongly driven by
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(a) (b) (c)

Figure 3.7: Wall-normal profiles of the Reynolds stresses of the particles (red crosses)
and fluid (black dots) normalized by the squared shear velocity.

turbulent ejection events, while the latter have a weaker relation to sweep events.

3.4 Quadrant analysis

Previous work (e.g., Niño & Garcia, 1996; Kiger & Pan, 2002; Marchioli & Soldati,

2002; van Hout, 2011) found evidence that inertial particles are strongly affected by

sweep and ejection events in the turbulent boundary layer. Sweeps are identified as

simultaneous u′f > 0 and v′f < 0 events (fourth quadrant of the u′f -v′f plane, or Q4) and

ejections as simultaneous u′f < 0 and v′f > 0 (second quadrant, or Q2). They are often

associated with coherent structures in wall turbulence, such as streamwise rollers and

hairpin vortices (Robinson, 1991). We first plot in figure 3.9 the joint PDF of streamwise

and wall-normal fluid velocity fluctuations: for the near-wall region (y+ < 100, figure

3.9a) and farther away from the wall (y+ > 100, figure 3.9b). As expected, sweeps and

ejections are dominant near the wall, whereas away from the wall the fluctuations are

weaker and there are no dominant quadrants. We then consider the quadrant events at

the location of ascending and descending particles, in the near-wall and outer regions.

Near the wall, ascending particles are found to strongly oversample ejection events

(figure 3.9c), supporting the view that ejections are a major mechanism driving particle
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(a) (b)

Figure 3.8: Wall-normal profiles of the Reynolds shear stress of (a) the fluid velocity at
particle locations and (b) the particle velocity, conditioned on ascending and descending
particles (red crosses and blue circles, respectively). The profiles are compared to the
overall fluid shear stress profile (black dots).

resuspension. Even in the outer region, although the ejections themselves are weaker,

ascending particles still occupy the second quadrant almost exclusively (figure 3.9d). In

contrast, descending particles are found to oversample sweep events near the wall, but

the preference is weaker (figure 3.9e), and in the outer region, descending particles do

not preferentially sample any quadrant (figure 3.9f). This indicates that sweeps weakly

influence the descent of particles towards the wall, while ejections are a key factor in

lifting the particles away from the wall.

The prevalence of fluid ejection over sweeps in influencing particle transport was

reported by previous studies focused on heavy particles suspended in horizontal wall-

bounded flows over a wide range of physical parameters (Kiger & Pan, 2002; Li et al.,

2012; van Hout, 2011; Zhu et al., 2019; Berk & Coletti, 2020). This is in contrast with

configurations in which gravity does not participate to the wall-normal transport: in no-

gravity simulations (e.g., Marchioli & Soldati, 2002) and in vertical channel flow experi-

ments (e.g., Fong et al., 2019) sweep events crucially contribute to the turbophoretic drift

that produces a multi-fold increase in near-wall concentration. In horizontal particle-

laden flows, by contrast, the near-wall concentration has been found to be smaller than

what predicted by the Rouse–Prandtl equilibrium theory (Kiger & Pan, 2002; Zhu et al.,
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Figure 3.9: Joint PDFs of streamwise and wall-normal fluctuating fluid velocities for
y+ < 100 (a) and y+ > 100 (b). Joint PDFs of streamwise and wall-normal fluctuating
fluid velocities at particle locations for y+ < 100 (c, e) and y+ > 100 (d, f) conditioned
on whether the particle is ascending (c, d) or descending (e, f).
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2019; Berk & Coletti, 2020). In §3.6 we will show this to be the case also in the present

configuration. Because the Rouse–Prandtl theory does not account for turbophoresis,

we deduce the latter is not playing a significant role in the particle transport for the

present conditions, despite St+ being in the turbophoretic regime according to point-

particle simulations without gravity (see, e.g., Bernardini, 2014). This could be partly

due to the relatively large size of our particles, which influences the ability of inner-layer

streamwise vortices to accumulate them at the wall. However, considering the findings

of previous studies with much smaller particles (e.g., Berk & Coletti, 2020), the more

likely reason is that gravitational drift disrupts the particle interaction with coherent

turbulent motions.

3.5 Particle diffusion

The question of dispersion is central in particle-laden flows. A large body of experimen-

tal and numerical work in homogeneous turbulence has established that heavy particles

disperse differently from tracers due to two distinct and competing effects. Particle in-

ertia increases the integral time scale of their Lagrangian velocity autocorrelation, and

hence their diffusivity, due to the finite response time (Squires & Eaton, 1991; Wang

& Stock, 1993; Jung et al., 2008). Meanwhile, particle drift due to gravity or other

body forces causes them to cross fluid trajectories with consequent decorrelation of mo-

tion and reduction of diffusivity compared to tracers (Csanady, 1963; Squires & Eaton,

1991; Elghobashi & Truesdell, 1992; Wang & Stock, 1993). In wall-bounded flows, La-

grangian stochastic models have been proposed in order to predict dispersion of inertial

particles (Tanière & Arcen, 2016; Marchioli, 2017) but have been mostly tested against

point-particle numerical simulations, usually without gravity.

To address the issue of dispersion, we first consider the temporal coherence of particle

motion by computing Lagrangian autocorrelations of the particle velocity (in these

definitions we only refer to up for brevity, but all definitions apply to vp as well):

ρup(∆t, y0) =
〈u′p(t0, y0)u′p(t0 + ∆t, y0)〉

〈u′p2(t0, y0)〉1/2〈u′p2(t0 + ∆t, y0)〉1/2
. (3.3)

The subscript ‘0’ denotes the origin of a trajectory, so that t0 and y0 are the initial time
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(a) (b)

Figure 3.10: Lagrangian autocorrelations of streamwise (a) and wall-normal (b) particle
velocity for five wall-normal bins (dots) shown with their respective exponential fits
(dashed lines). The wall-normal locations listed in the legend correspond to the center
of each bin.

and wall-normal location of each trajectory, respectively. Here the fluctuating velocities,

u′p, are determined by subtracting the Lagrangian mean velocity from each trajectory,

〈up(∆t, y0)〉L:

u′p(t0 + ∆t, y0) = up(t0 + ∆t, y0)− 〈up(∆t, y0)〉L. (3.4)

The Lagrangian autocorrelation is computed within five logarithmically spaced wall-

normal bins, such that each contains a comparable number of samples. The autocor-

relations of streamwise and wall-normal particle velocities are plotted in figure 3.10a

and b, respectively. They both drop off more steeply near the wall, and the streamwise

particle velocity remains correlated over a longer length of time than the wall-normal

velocity. These trends are consistent with results for fluid tracers in channel flow simu-

lations (Choi et al., 2004). They are attributed to the smaller flow scales affecting the

particle motion near the wall, and the streamwise-elongated structures that characterize

the boundary layer, contributing to the turbulence anisotropy.

The integral time scale of the particle motions in streamwise and wall-normal direc-

tions can be defined as τL,x =
∫∞
0 ρup(∆t)d∆t and τL,y =

∫∞
0 ρvp(∆t)d∆t, respectively.

Since in practice the integral can only extend to finite values, and recognizing that
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ρup and ρvp approximately follow an exponential decay, we fit an exponential function

to the autocorrelations and consider the time lag that results in an e-fold drop of the

exponential fit. Applying the theory of Taylor (1921) on the Lagrangian statistics of

particle displacements, we evaluate the long-time particle diffusivities in both direc-

tions, εp,x = τL,x〈u
′2
p 〉 and εp,y = τL,y〈v

′2
p 〉. In figure 3.11 this is shown for the five

wall-normal bins and for both velocity components, computed using the variance of the

particle velocity within the respective bins. For comparison, we also plot the classic

estimate for the fluid momentum diffusivity in the log-law region, εf = κyuτ (Prandtl,

1952), and that for the defect layer (y > 0.2δ99), estimated as εf = 0.09δ99uτ (Pope,

2000). In the log-law region, the turbulence causes the particles to disperse much faster

in the streamwise direction, greatly exceeding the momentum diffusivity. This indicates

that the effect of particle inertia (which increases particle dispersion) is dominating over

the effect of gravitational drift (which reduces it), at least in what pertains streamwise

dispersion. This agrees with theoretical arguments of Reeks (1977) which predicted

particles to disperse faster than tracers when the settling velocity Vs < 〈u
′2
f 〉1/2, as it is

the case here. Laboratory observations had confirmed this in homogeneous turbulence

(Wells & Stock, 1983; Sabban & van Hout, 2011), and to our knowledge the present

results are the first experimental observation of this effect in wall turbulence. On the

other hand, εp,y is equal to or smaller than the momentum diffusivity across the bound-

ary layer, indicating that, in the vertical direction, the effect of gravity in decorrelating

the particle motion slightly dominates.

3.6 Particle concentration and flux

Mean particle relative concentration as a function of wall-normal distance is plotted

in figure 3.12. This is obtained by counting particles within logarithmically spaced

wall-normal bins and normalizing by the mean concentration in the lowest bin, C0.

The observed power-law behavior prompts a comparison with the concentration profile

predicted by the theory of Rouse (1937) and Prandtl (1952). This follows from the

balance between gravitational settling and wall-normal turbulent flux:

〈C〉Vs − ε
∂〈C〉
∂y

= Φ (3.5)
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Figure 3.11: Wall-normal profiles of streamwise and wall-normal diffusivity (blue circles
and red crosses, respectively) compared to the theoretical profile of fluid momentum
diffusivity (black dashed line).

where Vs is the particle settling velocity and Φ is the net wall-normal flux of particles.

Assuming equilibrium conditions (Φ = 0), the particles falling at Vs = Vt and having the

same diffusivity as the momentum in the turbulent boundary layer (ε = κyuτ ), leads to

the well-known concentration profile (Prandtl, 1952):

〈C〉
〈C〉ref

=

(
y

yref

)−Ro
(3.6)

where the subscript denotes an arbitrary reference height and the corresponding con-

centration. Ro = −Vt/(κuτ ) is the Rouse number, which quantifies the relative strength

of gravitational settling and turbulent resuspension of the particles. Equation 3.6 is also

plotted in figure 3.12 for comparison, which shows a much steeper drop in concentra-

tion with height than the measurements. A departure from Rouse–Prandtl theory is

expected, notably because the latter does not account for particle inertia. In particular,

Berk & Coletti (2020) recently carried out a wind tunnel study of particle transport

in turbulent boundary layers, and also reported a reduced slope of the concentration

profile compared to the Rouse–Prandtl theory for a wide range of Stokes numbers. They

hypothesized this to be due to a near-wall settling rate below the terminal velocity but

could not accurately measure the particle vertical velocity. The present measurements

corroborate their hypothesis (see figure 3.3b).
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Figure 3.12: Wall-normal profile of mean particle concentration normalized by the con-
centration at the lowest wall-normal bin (black crosses). The power-law profile predicted
by Rouse–Prandtl theory (red dashed line) is calculated from 3.6, where the arbitrary
reference height is taken at y+r = 90.

The particle streamwise mass flux Qx is often of interest, especially in geophysical

flows. Assuming advection dominates on the turbulent transport, the mean flux can

be approximated from the mean concentration and mean velocity profiles, i.e. 〈Qx〉 ≈
〈C〉〈up〉. Here we compute the flux directly by counting particles crossing wall-normal

planes, and verify that it does not vary with streamwise location within the imaging

window, and that it is indistinguishable from the mean advective flux 〈C〉〈up〉. The

profile in figure 3.13, albeit with experimental scatter, suggests a power-law behavior.

In sediment transport and aeolian transport studies, the flux is often observed to decay

exponentially with wall-normal height, thus identifying a characteristic length scale (e.g.,

Bagnold, 1941; Nishimura & Hunt, 2000; Guala et al., 2008; Kok et al., 2012). However,

those processes are inherently different from the present one: they are characterized by

beds of particles mobilized by the impact of other particles, with their transport largely

concentrated in a ‘saltation layer’. The present case instead is governed by suspension,

and as such it does not possess a specific length scale beyond those associated to the

fluid turbulence.
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Figure 3.13: Wall-normal profile of particle streamwise mass flux normalized by the
mass flux at the lowest wall-normal bin (black crosses), compared with a power law fit
(red dashed line).

3.7 Particle acceleration

The statistics of the particle acceleration provide insight not only on the kinematics but

also on the forces at play. In figure 3.14a we present the profiles of mean and r.m.s.

acceleration for both in-plane components. The mean acceleration profiles are in close

agreement with the recent experiments of Ebrahimian et al. (2019), who considered

particles with St+ = 3.9 and D+
p = 6.8 in a channel flow at Reτ = 410. The mean

acceleration is negligible in the freestream, as expected in a fully developed flow. The

streamwise acceleration increases to a positive maximum at y+ ∼ 50, and then rapidly

decays to become negative near the wall. When expressed in wall units, the negative

mean streamwise acceleration we observe near the wall is significantly smaller in mag-

nitude compared with the experiments of Gerashchenko et al. (2008). These authors

considered microscopic water droplets, and therefore the discrepancy is likely rooted in

the larger size of our particles compared to the viscous length scale, and the consequent

effect of forces other than drag and gravity (Maxey & Riley, 1983). The difference

could also be related to particle interactions with the wall (addressed in §3.8), which

were likely inconsequential for the statistics of Gerashchenko et al. (2008).

The mean wall-normal acceleration shows a qualitatively opposite trend compared

to the streamwise component. At first, this would appear consistent with sweep and

ejection being at the root of the acceleration profiles: upward vertical fluid fluctuations
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(a) (b)

Figure 3.14: (a) Profiles of mean streamwise and wall-normal particle acceleration.
(b) Profiles of mean streamwise and wall-normal particle acceleration conditioned on
whether particles are ascending (filled symbols) or descending (open symbols).

lifting the particles away from the wall also tend to decelerate them in streamwise

direction, and vice versa for downward fluctuations. This view, however, does not

consider the fact that the mean velocity of the particles is downward: thus, negative wall-

normal accelerations are mostly associated to a decrease in magnitude of the negative

velocity, i.e., hindering of the settling. We shall come back to this point shortly, when

considering the fluid events associated to these particle statistics.

In Gerashchenko et al. (2008) and Lavezzo et al. (2010) it was argued that the grav-

itational settling of particles through the shear flow plays a crucial role in determining

the streamwise acceleration. To explore this issue, we condition again the statistics

on ascending and descending particles (figure 3.14b). It becomes apparent that the

regions of positive and negative streamwise acceleration can be attributed to the as-

cending and descending particles, respectively. This is in line with arguments presented

by Gerashchenko et al. (2008) and Ebrahimian et al. (2019): particles that fall vertically

find themselves surrounded by slower fluid, which decelerates them; and vice versa for

particles moving vertically upward. The mean vertical acceleration is instead unaffected

by conditioning on ascending/descending particles.

We present profiles of r.m.s. particle acceleration in figure 3.15. The streamwise
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component is quantitatively close to what is reported by Gerashchenko et al. (2008),

Zamansky et al. (2011), and Ebrahimian et al. (2019). The wall-normal component

instead reaches a peak 30-60% larger than in those studies, being comparable to the

streamwise component. We believe this to be mainly caused by gravitational effects.

Already Gerashchenko et al. (2008) found that the particle r.m.s. acceleration of inertial

particles was larger than that of tracer particles, in contrast with known trends in homo-

geneous turbulence (Bec et al., 2006; Ayyalasomayajula et al., 2006). Our particles are

more inertial than those considered by Gerashchenko et al. (2008) (who had maximum

St+ = 5.3) and have larger settling velocity (Vt/uτ = 0.75, versus Vt/uτ = 0.38 in that

study). In laboratory experiments it is not possible to conclusively disentangle inertia

from gravity to determine what drives the higher vertical r.m.s. acceleration, but we

can find hints in previous numerical studies where gravity could be suppressed. Lavezzo

et al. (2010) demonstrated that gravity was the cause of increased r.m.s. acceleration in

streamwise direction. This appears to be the case also for the wall-normal component,

enhanced because the falling particles encounter rapidly changing flow structures. In

further support of this view, the zero-gravity simulations of Zamansky et al. (2011)

found a decrease of both components of r.m.s. acceleration with increasing St+, while

the recent simulations of Lee & Lee (2019) that included gravity showed the oppo-

site trend, in agreement with Gerashchenko et al. (2008). Taken together, the above

indicates that it is gravitational drift that causes heavy particles to have large r.m.s.

accelerations, in both streamwise and wall-normal directions.

The acceleration of fluid tracers and inertial particles in turbulence are known to be

intermittent, with super-Gaussian probabilities of high-acceleration events that strongly

depend on the particle inertia. When gravity is absent or has negligible influence, it is

established that increasing Stokes number leads to reduced intermittency (Bec et al.,

2006; Gerashchenko et al., 2008; Zamansky et al., 2011). We present the PDF of stream-

wise and wall-normal accelerations in figure 3.16. We plot separately the distributions

for particles below and above y+ = 100, which helps in better understanding the ob-

served behavior. The stretched exponential tails indicate significant intermittency, with

relatively large probability of extreme events. This is, however, much stronger for the

particles far from the wall than for those close to it: the flatness of the distributions

for y+ > 100 and y+ < 100 is 5.5 and 20.5 for the streamwise component, and 6.4 and
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Figure 3.15: Wall-normal profiles of streamwise (blue circles) and wall-normal (red
crosses) particle r.m.s. acceleration.

10.4 for the wall-normal component, respectively. This is because the particles closer

to the wall interact with turbulent eddies of smaller time scales, and therefore have an

effectively larger Stokes number (see figure 2.5a), which in turn causes them to ‘filter

out’ intense fluid flow events (Bec et al., 2006). The crossing-trajectory effect, on the

other hand, is weaker for the near-wall particles, that have small mean vertical velocity

(figure 3.3b). Combined with the results for the r.m.s. accelerations, these results un-

derscore the competing influence of gravity and inertia: the first enhances the variance

and intermittency of the particle accelerations, while the second damps them, the net

result depending on the relative importance of both effects.

The particle trajectories are influenced not only by the instantaneous values of their

accelerations, but also by their temporal coherence. This is explored by calculating the

Lagrangian autocorrelation of streamwise particle accelerations, defined analogously to

the velocity autocorrelations and presented in figure 3.17 for various wall distances.

The wall-normal acceleration (not shown) follows similar trends, but less clearly so

due to experimental uncertainty on measuring quantities of smaller magnitude. Close

to the wall (y+ . 100), the acceleration has significant temporal coherence, with the

autocorrelation showing e-folding time of the order of the response time of the particles,

before decaying monotonically to zero. This suggests that near-wall particles move in

and out of streamwise-coherent turbulent structures and behave as if responding to step

changes in the surrounding fluid velocity. We will show in §3.8 that this picture is
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Figure 3.16: PDFs of streamwise (blue filled symbols) and wall-normal (red open sym-
bols) particle acceleration conditioned on y+ < 100 (circles) and y+ > 100 (triangles).
The PDFs for y+ > 100 are shifted upward by a factor of 103 for clarity.

consistent with the behavior of the particles that directly interact with the wall. At

larger heights, the temporal coherence is greatly reduced and the oscillations around

zero suggest a quick alternation of positive and negative accelerations. This is likely

caused by settling with significant speed (close to the particle terminal velocity for

y+ & 100, see figure 3.3b), which cause the particles to move in a less coherent fashion.

This is in line with the above-mentioned drop in streamwise diffusivity with increasing

distance from the wall (figure 3.11).

3.8 Particle–wall interactions

In order to analyze the direct interactions with the wall, we consider the trajectories

of particles that come in contact with it. An example of one such trajectory is shown

in figure 3.18. Actual physical contact cannot be ascertained by the present imaging,

and a lubrication layer is possibly maintained during those events. Still, we will use the

word ‘contact’ to indicate the instances with no measurable wall-particle separation.

More precisely, considering the variance of the particle diameters and the uncertainty

in locating both the particles and the wall, we record contact when particle centroids

are within 1.3 mean particle radii from the wall, i.e., when their wall-normal height

is y+ ≤ 10.4. The results below are robust to small modifications of this threshold.
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Figure 3.17: Lagrangian autocorrelation of streamwise particle acceleration for five wall-
normal bins. The wall-normal locations listed in the legend correspond to the center of
each bin.

We define ‘touch-down’ and ‘lift-off’ events when this threshold is crossed by particles

approaching and leaving the wall, respectively. In figure 3.18, touch-down occurs at

about τ+ = 15 and lift-off at about τ+ = 40; in between, the particle is considered

to be in continued contact with the wall. Below we present results from averaging 241

trajectories leading to a touch-down and 151 trajectories following a lift-off.

First, particle-wall interactions are characterized in terms of duration of contact,

twall. Figure 3.19 presents the PDF of twall in viscous units, which is well described by

an exponential distribution. This is reminiscent of the distribution of ‘waiting times’ be-

tween touch-down and lift-off of the particles mobilized by the flow over a sediment bed

(Einstein, 1950; Ancey et al., 2006; Fan et al., 2016). In the case of bedload transport,

an exponential distribution follows from assuming that touch-down and lift-off are time-

and space-invariant Markovian processes (Ancey et al., 2006), i.e., independent events

that are influenced only by the present and local state. Accordingly, waiting times have

often been modelled as induced by a random (Poissonian) distribution of turbulent fluc-

tuations having sufficient strength to mobilize the particles (e.g., Papanicolaou et al.,

2002). There are obvious differences between bedload transport and the present case:

most notably, our particles are never at rest, as the wall shear stress exerted by the

flow is much larger than the critical value for mobilizing them (Shields, 1936). Still,
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Figure 3.18: An example of an interaction between a particle and the wall. The blue
curve shows the wall-normal distance of the particle centroid vs. time, with error bars
representing the uncertainty in particle position. The dashed line represents a height of
one particle radius above the wall, with the grey shaded region indicating the uncertainty
in the particle radius and the wall location.

our distribution of contact times suggests these can be modelled by a similar stochas-

tic process driven by randomly occurring fluid flow events above a certain threshold.

We note that Cameron et al. (2020) recently showed the importance of very-large-scale

motions (non-random, spatially correlated turbulent events) for sediment entrainment.

While this points to the limitations of considering turbulent fluctuations to be random,

their study was conducted at much higher Reynolds numbers for which very-large-scale

motions are more prominent than in our case (Smits et al., 2011).

The exponential distribution of twall suggests a characteristic time τwall, such that

its duration probability can be approximated as PDF(twall) ∝ exp
(
−twall
τwall

)
. A least-

squares fit returns τwall = 13.5τ+, which is remarkably close to the particle response time

τp/τ
+ = St+ = 15. This suggests that both particle inertia and the fluid fluctuations

play a role in determining the duration of the wall contact, and one may hypothesize a

scaling τ+wall ∼ St+. This is indeed consistent with the results reported by Ebrahimian

et al. (2019), whose particles had St+ = 3.9 and a mean wall contact time around 4τ+.

Because that is the only previous study reporting contact times for suspended particles,

further research is warranted to corroborate this ansatz. We note that, in sediment

transport, the waiting time was originally suggested by Einstein (1950) to be inversely

proportional to the particle settling velocity, but it was later recognized that an inverse

proportionality with fluid velocity showed better agreement with observations, and with
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Figure 3.19: PDF of duration of particle-wall interactions, defined as the length of time
particles spend continuously within 1.3 mean particle radii of the wall.

the view that the particle entrainment rate depends on the strength of the turbulent

fluctuations (Ancey et al., 2006, 2008).

As the particles are never at rest, one may consider the possibility that the short

contact times are associated with a rebound process. However, even assuming an inci-

dent velocity Vi equal to the maximum vertical velocity in the 20τ+ preceding touch-

down (see below), the impact Stokes number ρpViDp/(9µ) is of order unity—well below

the threshold for a non-zero restitution coefficient (Joseph et al., 2001; Gondret et al.,

2002). Thus, in the present regime, the kinetic energy of the particle associated to its

wall-normal motion is expected to be dissipated at contact, with no effective rebound.

The particle–wall interactions can also be characterized by the angle θp of near-

wall particle trajectories as they approach or recede from the wall. The trajectory

angle is defined as θp = atan(vp/up), such that θp is negative for particles approaching

the wall and positive for particles receding from it. The set of particles within one

particle diameter of the wall (y+ < 16) is considered. The PDF of θp is shown in figure

3.20; it displays stretched tails (with a flatness of 6.7), and measurable preference for

positive values (with a skewness of 0.65). The distribution of angles is narrower than

what reported by Ebrahimian et al. (2019). This is attributed to the larger inertia

of the present particles (St+ = 15 versus 3.9), resulting in a slower response time to

fluid velocity fluctuations and thus shallower near-wall trajectory angles. The positive

skewness indicates that, despite gravity, relatively sharp lift-offs may occur.
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Figure 3.20: PDF of the angle of trajectories for near-wall (y+ < D+
p ) particles.

The mechanisms behind particle touch-down and lift-off can be further understood

by considering the Lagrangian averages along the particle trajectories. To this end, we

first identify the moments of touch-down and lift-off (within the temporal resolution of

1/500 s = 0.7τ+), and then average over all trajectories leading to and following those

events, respectively. Figure 3.21 displays the average particle wall-normal distance,

streamwise velocity and vertical velocity during the 20τ+ before touch-down and after

lift-off. We do not report Lagrangian statistics during particle–wall contact, as the range

of contact durations thwarts a consistent averaging process. However, we note that the

wall-normal positions, velocities and accelerations at touch-down are very close to those

at lift-off.

The Lagrangian averages of the wall-normal distance indicate that the particles

descending to the wall follow a somewhat steeper trajectory than those ascending from

it (figures 3.21a and b). This is confirmed by the plots of the vertical velocities (figures

3.21e and f) and is due to a combination of gravity and Saffman lift (which is directed

downward, as demonstrated below). The streamwise velocity declines before touch-

down (figure 3.21c), because the particles approaching the wall are surrounded by slower

and slower fluid, which applies on them drag in the negative x-direction. After lift-off,

although the particles ascend at a similar pace as they descended, they regain streamwise

velocity much more slowly (figure 3.21d). This fits the view of particles being lifted from

the wall by ejections, i.e., events with smaller streamwise fluid momentum compared to

the local mean.
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Figure 3.21: Lagrangian means of particle wall-normal coordinate (a, b), streamwise
velocity (c, d), and wall-normal velocity (e, f) averaged over all identified touch-down
events (a, c, e) and lift-off events (b, d, f). The time axis shows the time interval before
or after lift-off or touch-down, respectively, and ∆t+ = 0 represents the moment of
lift-off or touch-down.
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The Lagrangian average of the fluid velocity experienced by the particles along their

trajectory helps in the interpretation of the above trends. Figures 3.22a and b show

that, before and after wall contact, the streamwise velocity of the fluid surrounding

the particles is significantly lower than the local particle velocity (see figure 3.21c and

d). (This is not captured by the unconditioned mean profiles presented §3.1 and §3.2.

We remark that the particles coming in contact with the wall are a small fraction

of the total in the corresponding bin.) The direction of the streamwise slip velocity

implies that, close to wall contact, drag acts against the direction of motion and Saffman

lift is directed downward (in consideration of the slip velocity and the fluid velocity

gradient, Saffman, 1965). The streamwise fluid velocity along the trajectory is also

significantly lower than the local mean fluid velocity (assuming a canonical boundary

layer profile, see figure 3.1); therefore, the particles are in regions of negative streamwise

fluctuations. Because the vertical fluid velocity is negative before touch-down (figure

3.22c) and positive after lift-off (figure 3.22d), particles approaching and leaving the

wall experience Q3 events and Q2 events, respectively. This confirms once more that

ejections (in Q2) are critical to lift particles from the wall, while the role of sweeps (in

Q4) is not dominant near wall contact. Importantly, figure 3.22d indicates that the

vertical fluid velocity becomes positive just as the particles leave the wall: that is, lift-

off happens when the particle starts to experience a fluid ejection. This is in line with

the view that the duration of the contact time is dictated by the occurring of turbulent

events.

A material frame of reference attached to the particles is the most appropriate

to investigate the forces acting on them, and thus we now consider the accelerations

tangential and normal to the local trajectory, at,p and an,p, respectively:

at,p = ax,p cos(θp) + ay,p sin(θp) (3.7)

an,p = ay,p cos(θp)− ax,p sin(θp) (3.8)

Note that since θp is relatively small, the tangential and normal accelerations are very

similar in magnitude to the horizontal and vertical components, respectively. We can

make inferences on the role and respective importance of drag, gravity, and Saffman

lift. Other forces are expected to be important as well, such as added mass, fluid
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Figure 3.22: Lagrangian means of streamwise (a, b) and wall-normal (c, d) fluid velocity
at particle location averaged over all identified touch-down events (a, c) and lift-off
events (b, d). The time axis shows the time interval before or after lift-off or touch-
down, respectively, and ∆t+ = 0 represents the moment of lift-off or touch-down.

acceleration, Basset history and Faxén corrections, and rotation-induced (Magnus) lift

(Maxey & Riley, 1983; Crowe et al., 2011; Mathai et al., 2019); however, it is not trivial

to infer their behavior from experimental data, so most of our qualitative considerations

will not focus on these forces.

The Lagrangian averages of the accelerations before and after wall contact are plot-

ted in figure 3.23. As the particles approach the wall before touch-down, they experience

increasingly negative tangential acceleration (figure 3.23a), reflecting the drag force op-

posing their motion. Notice that, while we are outside the assumptions of viscous steady

flow made to derive analytical results, we expect the wall proximity to enhance drag for

a particle moving parallel to a solid boundary (Brenner, 1965). The negative stream-

wise acceleration peaks around 5τ+ before touch-down and then decreases in magnitude.

This is possibly due to lubrication effects, as the average particle is then only a fraction

of its diameter away from the wall. Higher resolution measurements are needed to draw

firm conclusions in this regard.

As the particles leave the wall and reach faster fluid layers, they at first experience
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negative streamwise acceleration, but this shrinks in magnitude and eventually reaches a

small positive plateau (figure 3.23b). This follows from the particles being entrained into

faster fluid strata, which reduces the negative drag. However, because the particles are

still faster than the surrounding fluid (see figures 3.21d and 3.22b), the drag is expected

to remain negative. Thus, the positive streamwise acceleration must be a consequence

of other forces. Added mass and fluid acceleration force are prime candidates, because

the acceleration of the fluid along the particle trajectory is positive and larger than that

of the particle (compare again figures 3.21d and 3.22b). Further studies to quantify

these forces are warranted.

The normal acceleration becomes positive before touch-down (figure 3.23c) since the

downward particle velocity is decreasing in magnitude as the wall is approached. This

is qualitatively consistent with the increase in drag predicted in viscous flows when

a particle travels towards a wall (Brenner, 1965). The interaction with a lubrication

layer may also contribute to slowing down the descent. The downward-directed Saffman

lift increases the magnitude of the downward particle velocity before touch-down and

decreases the magnitude of the upward velocity after lift-off. Thus, Saffman lift (along

with gravity) is the likely cause of the drop in positive normal acceleration after the

particles has left the wall (figure 3.23d). Simulations of Lee & Balachandar (2010)

suggested the Magnus force to be relatively small, but the estimates of Ebrahimian

et al. (2019) suggested it could be sufficient to overcome gravity. Here the magnitude

of the Magnus force cannot be estimated without knowing whether the particles are

actually in contact with the wall, as this would dictate their rolling motion.
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Figure 3.23: Lagrangian means of particle tangential acceleration (a, b) and normal
acceleration (c, d) averaged over all identified touch-down events (a, c) and lift-off
events (b, d). The time axis shows the time interval before or after lift-off or touch-
down, respectively, and ∆t+ = 0 represents the moment of lift-off or touch-down.



Chapter 4

Non-spherical particle results

4.1 Fluid and particle velocity and acceleration

4.1.1 Velocity statistics

We first consider the translational statistics of the particles and fluid. Rod and disk

results are compared with those of the spherical particles from Chapter 3.

Wall-normal mean profiles of streamwise and wall-normal particle and fluid velocities

are shown in figure 4.1. The deviation of the streamwise velocity profiles of the sphere

case in the freestream region is due to its slightly higher freestream velocity. Within the

boundary layer, the mean velocities are not drastically different between the particle

shapes, confirming point-particle simulation results (Challabotla et al., 2015; Njobuenwu

& Fairweather, 2016). In all cases, particles lag the fluid within the logarthmic layer

due to their inertia. However, streamwise velocity does differ between particle types

near the wall, with the disk velocity significantly larger than that of the rods.

We investigate the particle slip velocity to understand these trends. The total mean

slip velocity can be decomposed into two components, as follows:

〈up〉 − 〈uf 〉 = 〈up − uf |p〉+ 〈uf |p〉 − 〈uf 〉 (4.1)

where 〈up−uf |p〉 is the mean of the local slip velocity, and 〈uf |p〉− 〈uf 〉 is the apparent

slip velocity. The local slip velocity quantifies the actual slip that each particle expe-

riences relative to the surrounding fluid; the apparent slip velocity reflects preferential

60
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Figure 4.1: Wall-normal profiles of mean streamwise (a) and wall-normal (b) particle
(circles) and fluid (lines) velocity, compared between sphere (black), rod (red), and disk
(blue) particles.

sampling of slower- or faster-than-average fluid (Kiger & Pan, 2002). The streamwise

and wall-normal slip velocities are shown in figure 4.2. Note that fluid velocity, and

therefore slip velocity, is not available below y+ ≈ 11 due to the limited PIV resolution.

From the streamwise slip velocity (figure 4.2a), it is observed that disks and rods

particles oversample faster-moving fluid regions, as evidenced by their positive apparent

slip velocity, below y+ ≈ 30, suggesting that particles accumulate in high-speed streaks.

This preferential sampling is stronger for the rods and disks than for the spheres, whose

apparent slip only slightly exceeds zero at the wall. Oversampling of high-speed streaks

confirms the findings of PR-DNS and experimental studies (Do-Quang et al., 2014;

Shaik et al., 2020). In the outer region up to y+ ≈ 400, the apparent slip for spheres is

negative, while for rods and disks it is much closer to zero. The local slip velocity for all

three particle shapes is negative for the entire channel depth and becomes more negative

as particles approach the wall, indicating that the particles lag the surrounding fluid

on average. This is consistent with the expected behavior of inertial particles. Disks

and rods lag the surrounding fluid by a greater amount than the spheres, possibly

suggesting that they have a larger effective drag or inertia. This would not contradict

the fact that the spheres have a larger nominal St+, because St+ of the disks and rods

is calculated assuming an isotropic orientation distribution; as we will see in §4.2.1, the
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Figure 4.2: Wall-normal profiles of streamwise (a) and wall-normal (b) mean slip ve-
locities for spheres (black), rods (red) and disks (blue). The apparent slip velocity
component is shown in crosses, and local component is shown in circles.

actual orientation distribution is not isotropic.

The wall-normal slip velocity profiles (figure 4.2b) reveal further differences between

the particle shapes. All three particle shapes have negative local slip velocities in the

outer region due to gravitational settling, which decay as they approach the wall due

to the effects of turbulent resuspension and the physical constraint of the wall. How-

ever, spheres slightly oversample upward-moving fluid on average, as evidenced by the

positive apparent slip, but rods and disks do not show this behavior; their apparent

slip is near zero throughout the channel depth. This may be attributed to the spheres

oversampling negative streamwise fluid velocity fluctuations, which are correlated with

positive wall-normal fluid velocities in a turbulent boundary layer; while these behavior

is not exhibited by rods or disks, which in fact show a strong tendency to oversample

regions for positive streamwise fluid velocity fluctuations.

The Reynolds stresses of the fluid and particles are compared in figure 4.3. Rods

have slightly higher 〈u′2〉 near the wall than spheres or disks, and the non-spherical

particles have slightly a lower 〈v′2〉 peak than spheres. The greatest differences show

up in the profiles of 〈u′v′〉: the shape of the profile for the rods is similar to that of the

spheres, but the magnitude is lower, following the shear stress of the fluid very closely.

For the disks, the shape of the profile is significantly different: the shear stress is much
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Figure 4.3: Wall-normal profiles of streamwise (a), wall-normal (b), and shear (c)
stresses for particles (circles) and fluid (lines).

lower near the wall, and the peak is shifted higher in the boundary layer than either

the rods or spheres. The increased particle stresses of the spheres was attributed to

the effect of particle trajectories crossing fluid streamlines due to the particle inertia

(Chapter 3). That the stress profiles of the rods largely match the shape of the spheres’,

but are lower in magnitude, may reflect reduced streamline crossing effects and therefore

lower particle inertia of the rods. On the other hand, the disk Reynolds stress profiles

differ in shape more than magnitude, suggesting a more complex interaction with the

fluid turbulence.

The differences in velocity variance raises the question of shape effects on the tem-

poral coherence of the particle velocity, which is explored using Lagrangian autocorre-

lations. Autocorrelations are calculated within four logarithmically-spaced wall-normal

bins to capture trends in different parts of the boundary layer and freestream. La-

grangian autocorrelations of streamwise and wall-normal particle velocity for each par-

ticle shape are presented in figure 4.4. The streamwise velocity of the disks near the

wall is found to be coherent for a much longer time than it is for either spheres or

rods, but in the outer region the autocorrelations decay at similar rates for all three

shapes. This observation is in line with the finding that disks have reduced 〈u′v′〉 near

the wall, and seem to indicate that disks are less responsive to turbulent fluctuations,

which would decorrelate the disks’ motion, compared to rods or spheres. However, the
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autocorrelations of wall-normal particle velocity decay at similar rates for all three par-

ticles throughout the boundary layer and freestream regions. If the disks’ insensitivity

to turbulence was due to their inertia alone, we would expect the autocorrelations of vp

to decay slowly as well. Since they do not, we hypothesize that orientation-dependent

resistance is the more likely cause. The patterns observed in the autocorrelations are

consistent with disks that preferentially orient with |py| ∼ 1, i.e., flat and level, which

we will confirm to be the case in §4.2.1. Disks oriented this way sustain their streamwise

momentum for much longer than their wall-normal momentum, because their stream-

wise drag is much lower than their wall-normal drag. Lower drag corresponds to both

reduced damping and reduced sensitivity to high-frequency turbulent fluctuations, both

of which would result in a longer time of coherent motion. That this behavior is not

observed in rods may be a consequence of the rods’ geometry: due to their thin shape,

the particle area on which drag acts does not change as much with particle orientation.

4.1.2 Particle acceleration statistics

Particle accelerations are considered to investigate the dynamics of particle motion.

Wall-normal profiles of mean and RMS accelerations in the streamwise and wall-normal

directions are shown in figure 4.5. No significant difference is observed in the mean

acceleration profiles between particle shapes: near the wall, particles tend to have neg-

ative 〈ax,p〉 as they fall into slower fluid, being occasionally slowed further down by

direct contact with the wall; while the positive 〈ay,p〉 near the wall is attributed to

turbulent resuspension. On the other hand, the RMS accelerations show some shape

effects. RMS accelerations for both x and y components are lowest for disks, with the

RMS of ax,p in particular much lower than that of rods or spheres. It is established that

the magnitude of particle RMS acceleration decreases with increasing particle inertia

for spheres; this has also been confirmed for prolate ellipsoids using point-particle DNS

(Ouchene et al., 2018). The reduction of disks’ RMS acceleration further indicates that

drag and/or inertia reduces the disks’ responsiveness to fluid motions, reducing their

acceleration variability. Rods have a lower RMS of ay,p than spheres, but their RMS

of ax,p is similar in magnitude to that of spheres, implying that the rods’ wall-normal

RMS acceleration may be preferentially attenuated through the orientation dependence

of fluid drag.
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Figure 4.4: Lagrangian autocorrelations of up (a-c) and vp (d-f) for spheres (a, d), rods
(b, e) and disks (c, f) calculated within four wall-normal bins.
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Figure 4.5: Wall-normal profiles of mean (a) and RMS (b) particle acceleration for
spheres (black), rods (red), and disks (blue). Streamwise acceleration is shown in crosses,
and wall-normal acceleration is shown in circles.

4.2 Particle orientation and tumbling

4.2.1 Orientation statistics

We then examine the distribution of particle orientations. PDFs of each component

of the particle orientation vector, px, py and pz, are shown in figure 4.6, separated by

particle wall-normal position into two bins with y+p < 100 and y+p > 100. Recall that

the range of px and pz is [0, 1], and the range of py is [-1, 1]. Disk and rod particles have

generally opposite preferential orientations. For the near-wall set of particles, rods tend

to align their symmetry axis p with the streamwise direction (as signaled by the high

probability of px being often close to unity), whereas disks align p with the vertical

axis (indicated by the high absolute values of py being often close to unity). Both

particle types have some level of preferential alignment with the spanwise axis as well,

as indicated by preferential values of pz > 0. Disks show a preference towards py slightly

greater than -1 and rods towards py slightly greater than 0, which both correspond to a

slightly “nose-up” configuration. In the set of particles far from the wall, rods exhibit a

much weaker alignment with the streamwise direction and a stronger alignment with the

vertical and spanwise directions, indicating an increase in their isotropy. In contrast,

disks in the outer region strongly align their symmetry axis with the vertical axis,
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Figure 4.6: PDFs of particle orientation components px (a), py (b), and pz (c) for rods
(red) and disks (blue) with y+p < 100 (circles) and y+p > 100 (crosses).

corresponding to a strong preference for a flat and level orientation. The streamwise

alignment of the rods and their return to isotropy in the outer region agrees with the

results of several point-particle simulations (Zhao et al., 2015; Yuan et al., 2017; Zhao

et al., 2019). However, the alignment of the disks differs from what is found in the

point-particle simulations of Challabotla et al. (2015) and Zhao et al. (2015), which

found that inertial disk particles preferentially align with the spanwise axis near the

wall.

4.2.2 Statistics of tumbling rate and tumbling acceleration

Mean profiles of the squared tumbling rate ṗṗ and squared tumbling acceleration p̈p̈

as a function of wall-normal distance are plotted in figure 4.7. In the outer region of

the channel, the profiles are nearly the same for disks and rods. However, the behavior

of disks and rods diverge below y+ ∼ 100. The squared tumbling rate and squared

tumbling acceleration for disks peak around y+ ∼ 40, below which both quantities drop

off and approach zero. In contrast, rod particles are much more mobile: their squared

tumbling rate and acceleration are much larger than that of disks as y+ goes to zero.

Further insight can be gained by separating the tumbling rate components by com-

ponent. Figure 4.8 shows mean profiles of ωt,z and RMS profiles of all three tumbling
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Figure 4.7: Wall-normal profiles of mean squared tumbling rate (a) and mean square
tumbling acceleration (b) for rods (red) and disks (blue).

rate components. Rods have a greater negative 〈ωt,z〉 (matching the sense of the mean

shear) than disks in the the boundary layer, which contributes to their larger squared

tumbling rate. The RMS tumbling rate provides a better measure of the magnitude of

the other two components, because their mean is zero due to the spanwise symmetry

of the channel. Rods have high RMS values of ωt,y in the inner region, which also con-

tributes to their squared tumbling rate, especially very close to the wall. On the other

hand, all components of disk tumbling rates approach zero near the wall.

PDFs of squared tumbling rate ṗṗ and squared tumbling acceleration p̈p̈ are com-

pared between particle types for near-wall and outer-region particles in Figure 4.9. The

distributions of both ṗṗ and p̈p̈ have very long tails, reflecting the high intermittency

of tumbling events the particles experience. Rods are found to have higher frequencies

of extreme ṗṗ events than disks near the wall, but no difference is observed between

rods and disks for p̈p̈ or particles far from the wall.

A more detailed picture is obtained by splitting the total tumbling rate into tumbling

angular velocity components, |ωt,x|, |ωt,y|, and ωt,z (the sign of the x and y tumbling

components are ambiguous, so the absolute values are presented). PDFs of these are

shown in figure 4.10. While all three components are larger for the near-wall particles,

we observe that the excess tumbling events experienced by near-wall rods show up most

strongly in |ωt,y|, whereas for near-wall disks the excess is mostly in |ωt,x|. ωt,z is the
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Figure 4.8: Wall-normal profiles of mean ωt,z (a) and RMS tumbling rates of all three
components (b) for rods (red) and disks (blue).

Figure 4.9: PDFs of particle squared tumbling rate (a) and squared tumbling accelera-
tion (b) for rods (red) and disks (blue) with y+p < 100 (circles) and y+p > 100 (crosses).
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Figure 4.10: PDFs of tumbling angular velocity components, |ωt,x| (a), |ωt,y| (b), and
ωt,z (c) for rods (red) and disks (blue) with y+p < 100 (circles) and y+p > 100 (crosses).

component associated with rotation due to the mean shear, but the large PDF tails

for the other components indicate that the particles are responsive to turbulent fluid

motions acting in other directions.

By examining PDFs of tumbling angular acceleration components, we can better

understand the influences behind particle tumbling (figure 4.11). The PDFs for particles

with y+p > 100, where the turbulence is weaker, are nearly the same for rods and disks.

For the z component, the distribution of tumbling angular acceleration is also identical

between particle shapes. Taken together with the PDF ωt,z in figure 4.10c, rods appear

to sustain a larger ωt,z, but not larger αt,z. This indicates the cause of the excess ωt,z

for rods is the mean shear, which would not be associated with particularly strong αt,z

events due to its steadiness. In constrast, the near-wall disk and rod particles show

similar patterns in the tumbling acceleration PDF tails as in the tumbling rate PDFs,

with rods having larger |αt,y| than disks and disks having larger |αt,x| than rods. That

the trends show up in the tumbling acceleration as well as the tumbling rate indicates

that the high tails are due to intermittent events, which could either be passing turbulent

structures or interactions with the wall.
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Figure 4.11: PDFs of tumbling angular acceleration components, |αt,x| (a), |αt,y| (b),
and αt,z (c) for rods (red) and disks (blue) with y+p < 100 (circles) and y+p > 100
(crosses).

4.2.3 Temporal coherence

We now consider the coherence of the particle orientation and tumbling in time using

Lagrangian autocorrelations. Figure 4.12 shows the Lagrangian autocorrelations of

particle px and py for rods and disks, calculated within in four logarithmically-spaced

wall-normal bins. Overall, the autocorrelation curves of px and py for the rod particles

are much more sensitive to wall-normal distance than for the disks, showing much more

spread between bins close to and far from the wall compared to disks. This suggests that

rods are more responsive to intermittent small-scale turbulent events occurring near the

wall that induce tumbling. For py in particular, disks show a remarkable amount of

temporal coherence, with very slowly decaying autocorrelations. This translates into

relatively stable disk orientations across the channel depth in flat and level or slightly

tilted configurations, whereas rods display stability in the freestream region but have

more variable orientations nearer to the wall. This supports the findings in Marchioli

et al. (2010) that prolate particles have a preferred streamwise orientation, but this

orientation is unstable near the wall due to the wall-normal velocity gradient.

We then turn to the autocorrelations of spanwise tumbling rate ωt,z (figure 4.13)

to investigate the temporal coherence of tumbling motion. The disk autocorrelations
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Figure 4.12: Lagrangian autocorrelations of px (a, b) and py (c, d) for rods (a, c) and
disks (b, d) calculated within four wall-normal bins.



73

Figure 4.13: Lagrangian autocorrelations of ωt,z for rods (a) and disks (b) calculated
within four wall-normal bins.

are found to decay faster than those of rods at all wall-normal distances, which is the

opposite of what was found in the autocorrelations of py. This confirms that disks tend

to wobble about their preferential orientation, which causes their tumbling rate to vary

over short time scales, rather than tumble end-over-end as the rods do. That the ωt,z

autocorrelations decay faster at lower y+ implies that turbulence is still an important

driver of both disk and rod tumbling motion.

4.2.4 Wall interactions

One mechanism for particle tumbling near the wall is particle interactions with the wall

itself. Due to the particles’ extended dimensions and finite slip velocity, friction due

to contact or near-contact (lubrication) with the wall could exert significant torques on

particles. To isolate the effect of wall contact, we consider particles located within one

semimajor axis length from the wall and compare between those that are contacting the

wall and those that are not. Wall contact is inferred when the lower edge of a particle

coincides with the wall within measurement uncertainty. While this definition does not

necessarily guarantee wall contact, it does capture particles that are close enough to

the wall to feel its friction, either through contact or lubrication. Figure 4.14 shows

PDFs of squared tumbling rate (a) and squared tumbling acceleration (b), compared
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Figure 4.14: PDFs of squared tumbling rate (a) and squared tumbling acceleration (b)
for rods (red) and disks (blue) within Dp/2 of the wall which are not contacting the
wall (crosses) and are in contact with the wall (circles).

between wall-contacting and non-contacting disks and rods with yp < Dp/2. A clear

excess of extreme tumbling events is observed in the set of particles contacting the wall

for both shapes. Rods have a greater increase in the frequency of extreme tumbling rate

events for wall-contacting particles than do disks, suggesting that rods tumble more in

response to wall friction. This makes sense if the resistive torque exerted by the fluid on

the rods is less than that experienced by disks, which is expected since the disks have

a much larger wetted area.

The above PDFs are then broken down into tumbling rate and acceleration compo-

nents, and the same sets of particles are compared again to investigate the mechanics

of wall-friction tumbling events (figure 4.15). As expected, extreme tumbling rates and

accelerations of several components are more frequent for wall-contacting particles than

non-contacting particles. However, the tumbling behavior about the various axes is not

entirely expected. Wall-contacting rod particles are found to have strong tumbling rates

and accelerations more frequently about the spanwise axis than non-contacting rods,

but also about the wall-normal axis. This implies that wall interactions induce a tilted

“pole-vaulting” or “kayaking” mode of tumbling in rod particles. This may be due to

the influence of spanwise shear due to high- and low-speed streaks, as found by Wang

et al. (2018). Disks in contact with the wall, on the other hand, show stronger tumbling
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Figure 4.15: PDFs of tumbling rate (a-c) and tumbling acceleration (d-f) components
for rods (red) and disks (blue) within Dp/2 of the wall which are not contacting the
wall (crosses) and are in contact with the wall (circles).

about the wall-normal axis, and to a smaller degree the streamwise axis, but not the

spanwise axis. This suggests that wall friction does not induce disks to tumble end-over-

end, as it does rods. Instead, the mode of disk tumbling during wall interactions could

be described as wobbling and precessing, like a top. This mode of tumbling is likely to

result from the disks “nose-up” preferential orientation, which does not put the disks

in a position to have their front edge contact the wall. Their point of contact is much

more likely to be on the rear or side edges, which would produce a torque more in line

with the x and y axes.
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4.3 Particle spatial distribution and dispersion

4.3.1 Particle concentration profiles

Finally, we explore particle spatial distribution, transport, and dispersion. Concentra-

tion of heavy particles in turbulent boundary layers is determined by a balance between

gravitational settling and turbulent resuspension. This balance can be derived from the

Reynolds decomposition of the net particle flux, given by

Φ = 〈C〉Vs + 〈C ′v′p〉 (4.2)

where Φ is the net wall-normal flux, C is the concentration, and Vs is the settling velocity

of particles. The assumption of Fickian diffusion allows the balance to be written as

the advection-diffusion model

Φ = 〈C〉Vs − εp
d〈C〉
dy

(4.3)

where εp is the particle diffusivity. Assuming that: (i) equilibrium conditions are

achieved (Φ = 0), (ii) particles settle at their quiescent fluid terminal velocity (Vs = Vt),

and (iii) the particle diffusivity is equal to the turbulent eddy diffusivity (εp = εf =

κuτy), one can derive the following well-known concentration profile (Prandtl, 1952):

〈C〉
〈C〉ref

=

(
y

yref

)−Ro
(4.4)

where yref is an arbitrary reference height, 〈C〉ref is the corresponding concentration,

and Ro = −Vt/(κuτ ) is the Rouse number which quantifies the relative strength of

gravitational settling and turbulent resuspension. Mean wall-normal profiles of parti-

cle concentration are shown in figure 4.16, compared with Rouse-Prandtl theory, and

theoretical values of Ro as calculated above for each particle type are reported in table

4.1.

The spheres show a large deviation from the theoretical profile, which in Chapter 3

was attributed to their inertia and a near-wall settling velocity being less than Vt. In

contrast, the concentration profiles for rods and disks agree with Rouse-Prandtl theory

in the range 30 < y+ < 200, despite their finite size and inertia; above and below
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Particle type Spheres Rods Disks

Ro 1.83 1.13 1.62

Table 4.1: Theoretical particle Rouse numbers Ro = −Vt/(κuτ ).

Figure 4.16: Wall-normal profiles of mean particle concentration for spheres (black),
rods (red), and disks (blue) compared to the Rouse-Prandtl theory of equation 4.4
(lines). Concentration is normalized by its reference value at y+p = 100. Each profile is
shifted horizontally by a factor of 102 for clarity.

that range, however, the deviation becomes apparent. An assessment of Rouse-Prandtl

theory for inertial spherical particles is explored in depth in Berk & Coletti (2020). The

concentration profiles of disks and rods in the present experiment are similar to those of

intermediate-Ro spherical particles (Ro ∼ 1) in their study, with a concentration deficit

near the wall and an excess in the freestream, while the concentration profile of the

spheres in the present experiments corresponds with the higher-Ro particles (Ro ∼ 2)

in Berk & Coletti (2020). They showed that these deviations could be explained as

a consequence of the particles’ decreasing settling velocity approaching the wall and

a small but non-zero net flux in the outer region, while the assumptions of Fickian

diffusion and εp = κuτy were tenable. We have already seen that the mean particle

wall-normal velocity does decrease with wall-normal distance, lending confidence that

the same arguments likely apply to rod and disk particles.
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Figure 4.17: Wall-normal profiles of the particle flux terms in equation 4.2 for spheres
(black), rods (red), and disks (blue). The net flux Φ is shown with circles, 〈C〉Vs is
shown with crosses, and 〈C ′v′p〉 is shown with triangles.

4.3.2 Particle flux and diffusivity

The above conclusions are confirmed further upon inspection of the wall-normal par-

ticle flux and direct estimation of the particle diffusivity. First, the three wall-normal

flux terms from equation 4.2 are estimated. Φ is computed by counting particles as

they cross horizontal planes spaced logarithmically in y, 〈C〉Vs is calculated by directly

multiplying the mean concentration profile by the particle terminal velocity, and 〈C ′v′p〉
was estimated as the difference of the two. These flux terms are shown as a function of

y in figure 4.17. There is indeed a small but non-zero net flux in the outer region of the

flow, as was the case in the experiments of Berk & Coletti (2020). The fluctuating flux

term 〈C ′v′p〉 differs significantly between the particle shapes, with a much sharper peak

for spheres which occurs closer to the wall than that of the rods and disks.

To investigate particle dispersion, we will estimate the diffusivity as a function of y

in two different ways. The first way is to directly solve for εp in equation 4.3, relying

on the assumption of Fickian diffusion. Solving for the diffusivity yields

εp,flux(y) =
−〈C ′v′p〉
d〈C〉/dy

. (4.5)

This formula is applied only to the regions where the mean concentration decreases with
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y. The second method does not rely on any diffusivity models. Instead, diffusivity is es-

timated from the integral timescale of the particles’ wall-normal velocity autocorrelation

Tvp and the wall-normal velocity variance, using the theory of Taylor (1921):

εp,ac(y) = Tvpvar(vp). (4.6)

Due to the limited trajectory lengths of the particles, the integral timescale is estimated

to be the e-folding time of an exponential function fitted to the autocorrelation (see

figure 4.4). These particle diffusivity estimates are compared with two estimates of the

fluid diffusivity: the first from Prandtl theory for a canonical boundary layer, given by

εf,Pr =

 κuτy for y < 0.2δ99

0.09δ99uτ for y > 0.2δ99
(4.7)

and the second a direct estimation of the eddy viscosity, given by

εf,νT =

∣∣∣∣ 〈u′v′〉d〈u〉/dy

∣∣∣∣ . (4.8)

The particle and fluid diffusivity profiles are presented in figure 4.18. The scatter of

εp,flux is very large, but it nevertheless is of the same order as the fluid diffusivity

over the range where the mean concentration profile follows the theoretical prediction,

〈C〉 ∝ y−Ro , in figure 4.16. On the other hand, the profiles of εp,ac follow the fluid

diffusivity profiles remarkably closely. The calculation of diffusivity from integral quan-

tities instead of derivative quantities is less subject to measurement noise, making εp,ac

a more accurate estimator. It also does not rely on the Fickian assumption. This

supports the assumption made in equation 4.4 that particle diffusivity is equal to the

fluid diffusivity, at least for these particles which have St+ ∼ O(10). The fact that

the diffusivity calculated from the particle flux is somewhat similar to both εp,ac and

the fluid diffusivity within a limited range also implies that positing 〈C ′v′p〉 = −εp d〈C〉dy

is reasonably justified and acts as an independent confirmation of the validity of the

Fickian diffusion assumption over this range.
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Figure 4.18: Wall-normal profiles of estimated fluid and particle diffusivities for spheres
(black), rods (red), and disks (blue). Solid black line corresponds to Prandtl diffu-
sivity, dashed black line to eddy viscosity, crosses to particle diffusivity based on the
autocorrelation, and circles to particle diffusivity based on the particle flux.



Chapter 5

Conclusions

5.1 Spheres

We have investigated the transport of inertial particles suspended in a turbulent bound-

ary layer through simultaneous fluid and particle velocity measurements. While the

considered regime is especially relevant to geophysical water flows, we have taken a

fundamental viewpoint and focused on the seemingly simple case of monodispersed

spherical particles not depositing over the smooth wall. Leveraging the time-resolved,

two-phase nature of the measurements, we documented in detail the particle-fluid dy-

namics and delved in several central aspects of this archetypical configuration. Given

the richness of the flow physics, we chose to limit our attention to one specific regime,

leaving parametric studies for the future.

We confirm that the particles travel at a lower mean velocity than the fluid, at

least above the viscous sublayer. In the past, this has largely been attributed to the

oversampling of slow velocity regions. While this is found to be the dominant factor

in the logarithmic layer, closer to the wall the main cause for the mean velocity defect

is the instantaneous particle slip from the surrounding fluid. Indeed, the expectation

that particles would have a small instantaneous slip velocity is only tenable for small

particle inertia and/or slow turbulence fluctuation, i.e., for small Stokes numbers. In the

present regime (St+ = 15), a significant portion of the fluid fluctuations experienced by

the near-wall particles have shorter time scales than τp, and the inability of the particles

to respond to them naturally translates in a sizeable slip velocity. By inspecting the

81
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profiles conditioned on ascending and descending particles, it appears that the mean

velocity lag is due to the ascending ones, thus it is not directly related to gravity. The

mean vertical velocity of the particles is close to the quiescent-fluid terminal velocity

in the freestream, but it becomes vanishingly small approaching the wall. This is an

effect of oversampling upward turbulent fluctuations, which is opposite to the behavior

in homogeneous turbulence.

The near-wall particle diffusivity in the streamwise direction is larger than the mo-

mentum eddy diffusivity, while the opposite is true in the wall-normal direction. This

is one of the several instances in which the distinct (and competing) effects of gravity

and inertia are on display. The dichotomy is highlighted here both by conditioning

the statistics on ascending and descending particles, and by comparing outer and inner

layers. This helps reconcile contrasting results in the literature and underscores the

importance of both effects in realistic situations.

The near-wall particle transport is strongly linked to ejection events that promote

resuspension, while the link with sweep events is weak. This suggests that turbophoresis,

which is often considered a dominant feature according to studies where gravity is either

absent or acting parallel to the wall, is at best a second-order effect when gravity is wall-

normal. Under equilibrium between settling and turbulent suspension, the concentration

profile follows a power-law with a much more gradual decrease from the wall than

predicted by the Rouse–Prandtl theory (which neglects particle inertia), consistent with

the observed reduction of settling velocity. While the particles in the inner layer do

interact with the wall, the absence of bedload is reflected in the lack of a saltation layer

in the mass flux profile.

Separating ascending and descending particles also helps us understand the root of

the mean acceleration profile. Regions of positive and negative streamwise acceleration

can be attributed to ascending and descending particles, respectively. Ascending par-

ticles find themselves surrounded by slower fluid which decelerates them (and more so

because they are strongly associated with ejections); while descending particles are in

the opposite condition, although this is due to gravity and not sweeps. By comparing

with previous studies, we confirm that acceleration variance is larger for heavier parti-

cles, in stark contrast with the well-known trend in homogeneous turbulence. This is

strictly a consequence of the crossing trajectories effect caused by gravitational drift,
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rather than by inertia. Indeed, near the wall, where the gravitational drift is smaller

and the local Stη is larger, the accelerations are much less intermittent than further

away from the wall.

Contrasting the effects of gravity and inertia is important to estimate the trends in

different regimes. If the same particles are suspended in a turbulent boundary layer at

higher Reynolds numbers, for example, the near-wall turbulence time scales will become

smaller. Thus, the Stokes number (encapsulating the effect of inertia) will grow; while

the friction velocity will increase, and so the Rouse number (representing the relative

importance of gravitational drift) will shrink. Our conclusions then provide indications

on the expected trends in such a case: the particles would lag the fluid more markedly;

the settling rate would decrease; the particle Reynolds stresses would be even larger than

the fluid’s; the particle diffusivity would increase (the streamwise component becoming

increasingly larger than the eddy diffusivity, and the vertical component getting closer

to it); the concentration profile would get flatter; and the acceleration variance and

intermittency would decrease. Future parametric studies are warranted to verify these

predictions.

The duration of the wall-particle contact follows an exponential distribution, suggest-

ing an analogy with the waiting times between deposition and entrainment in sediment

transport: after touch-down, the particles slide along the wall (possibly over a lubri-

cation layer we cannot resolve) until fluid fluctuations of sufficient strength lift them

back into the stream. When expressed in wall units, the time scale of wall contact (i.e.,

the inverse of the entrainment rate) is close to St+, in line with our interpretation of

the process: a balance between particle inertia and fluid turbulence. The Lagrangian

average along the trajectories before and after wall contact indicate that the particles

descend more steeply towards the wall than they recede from it, due to a combination

of gravity and Saffman lift. The latter is directed downward, because the particles in

close proximity to the wall are faster than the fluid surrounding them. This also implies

that the drag force opposes the particle streamwise motion. The impact velocity is well

below the threshold for significant energy restitution, therefore there is effectively no

rebound. The lift-off coincides with the particles meeting a fluid ejection, reaffirming

the importance of these events in the particle transport. The particles accelerate after

leaving the wall, even while they are still faster than the surrounding fluid; this is likely
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an effect of added mass and fluid acceleration forces. Future experiments focused on

the near-wall region with higher resolution and the ability to detect particle rotation

are needed to determine the fluid velocity gradients surrounding the particles and assess

the role of lubrication forces and rotation-induced lift.

Different configurations (e.g., particles of different size and density) will display

different behaviors. In particular, the particle size is expected to have an important

impact on the near-wall behavior, where the velocity gradients are sharper. The present

results, however, paint a coherent picture of the multi-faceted problem, shed some new

light on a series of long-standing issues, and isolate new questions that require an even

deeper investigation. Moreover, inasmuch as we reported novel statistics for several

previously undocumented quantities, the results should be useful for developing and

validating numerical models.

5.2 Rods and disks

The mean particle velocity and acceleration statistics are largely similar between spheri-

cal and non-spherical particles. Disks and rods are both found to oversample high-speed

fluid regions near the wall. The particle Reynolds stresses and RMS accelerations differ

with particle shape, with the reduced RMS acceleration of disks implying that they have

a greater effective inertia or resistance to turbulent fluid motion, and the increased RMS

accelerations of the rods implying effectively less inertia. Although the particles have

similar nominal Stokes numbers, the difference can be explained by their non-isotropic

orientation, because the nominal St+ are derived for isotropic orientation distributions.

Investigation of the particle orientation reveals that rods tend to align mostly in the

streamwise direction, while disks strongly prefer to align their symmetry axis mostly

normal to the wall. The near-wall disks also tend to adopt a slightly nose-up configu-

ration. Tumbling is stronger near the wall than in the outer region for both disks and

rods, reflecting the strong shear and turbulence in that region. Rods tend to undergo

intense tumbling events about the y axis, and disks about the x axis. Both particles also

tumble in the spanwise direction, reflecting the sense of the mean shear, but the span-

wise tumbling of rods is stronger than that of disks in the near-wall region. Lagrangian

autocorrelations of particle orientation confirm that py of the disks is coherent for long
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time scales, indicating that their preferential wall-normal orientation is very stable. On

the other hand, the autocorrelations of rod orientation components decay more quickly,

and the decay rate has a strong dependence on wall-normal distance, indicating that

shear and turbulence cause the rod orientation to be unstable. Strong tumbling events

are found in the set of particles that come in contact with the wall, implicating wall

friction as an additional tumbling mechanism.

Rod and disk mean concentration profiles are shown to follow Rouse-Prandtl theory

in the range 30 < y+ < 200, despite their finite size and inertia. The deviations above

and below that range are likely due to a small but non-zero wall-normal particle flux in

the outer region and the variation of settling velocity on wall-normal distance. Particle

diffusivity is shown to be reasonably well-approximated by the fluid eddy diffusivity,

justifying the continued use of that assumption for non-spherical particles, at least for

the range of parameters investigated here, i.e. St+ ∼ O(10) and D+
p ∼ O(10–100).

The present study presents new insights on the behavior and dynamics of inertial,

non-spherical particles in a turbulent boundary layer that were previously not measured

experimentally. However, additional research effort is warranted to gain a more complete

picture of the fluid-particle system. High-resolution PIV studies are needed to measure

the detailed fluid velocity fields surrounding the particles, especially near the wall. In

addition, the isolated effects of particle size, inertia, and aspect ratio, especially for disk

particles, in boundary layer turbulence has yet to be explored experimentally. These

unknowns provide several opportunities and motivation for future work.
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Tanière, A., Oesterlé, B. & Monnier, J. C. 1997 On the behaviour of solid

particles in a horizontal boundary layer with turbulence and saltation effects. Exp.

Fluids 23 (6), 463–471.

Taylor, G. I. 1921 Diffusion by continuous movements. Proc. Lond. Math. Soc. s2-

20 (1), 196–212.

Taylor, G. I. 1923 Experiments on the motion of solid bodies in rotating fluids. Proc.

R. Soc. London, Ser. A 104 (725), 213–218.

Tee, Y. H., Barros, D. & Longmire, E. K. 2020 Motion of finite-size spheres

released in a turbulent boundary layer. Int. J. Multiphase Flow 133, 103462.

Voth, G. A., La Porta, A., Crawford, A. M., Alexander, J. & Bodenschatz,

E. 2002 Measurement of particle accelerations in fully developed turbulence. J. Fluid

Mech. 469, 121–160.

Voth, G. A. & Soldati, A. 2017 Anisotropic particles in turbulence. Annu. Rev.

Fluid Mech. 49, 249–276.

Wang, G., Abbas, M. & Climent, É 2017 Modulation of large-scale structures by

neutrally buoyant and inertial finite-size particles in turbulent Couette flow. Phys.

Rev. Fluids 2 (8), 084302.

Wang, G., Abbas, M., Yu, Z., Pedrono, A. & Climent, E. 2018 Transport of

finite-size particles in a turbulent Couette flow: The effect of particle shape and

inertia. Int. J. Multiphase Flow 107, 168–181.



95

Wang, G., Fong, K. O., Coletti, F., Capecelatro, J. & Richter, D. H.

2019 Inertial particle velocity and distribution in vertical turbulent channel flow: a

numerical and experimental comparison. Int. J. Multiphase Flow 120, 103105.

Wang, L.-P. & Maxey, M. R. 1993 Settling velocity and concentration distribution

of heavy particles in homogeneous isotropic turbulence. J. Fluid Mech. 256, 27–68.

Wang, L.-P. & Stock, D. E. 1993 Dispersion of heavy particles by turbulent motion.

J. Atmos. Sci. 50 (13), 1897–1913.

Wells, M. R. & Stock, D. E. 1983 The effects of crossing trajectories on the dis-

persion of particles in a turbulent flow. J. Fluid Mech. 136, 31–62.

Westerweel, J. & Scarano, F. 2005 Universal outlier detection for PIV data. Exp.

Fluids 39, 1096–1100.

Yuan, W., Andersson, H. I., Zhao, L., Challabotla, N. R. & Deng, J. 2017

Dynamics of disk-like particles in turbulent vertical channel flow. Int. J. Multiphase

Flow 96, 86–100.

Yuan, W., Zhao, L., Andersson, H. I. & Deng, J. 2018a Three-dimensional
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