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Abstract

Functional magnetic resonance imaging (fMRI) data is increasingly available and

provides insight into the physiological mechanisms of the brain. As psychiatric dis-

orders and many neurodegenerative diseases are intrinsically related to the brain, the

availability of fMRI presents tremendous opportunities for improving understanding of

these disorders and diseases. One approach for analyzing fMRI data is to describe func-

tional connectivity (FC), the dependence of neuronal activity in regions of the brain. FC

disruptions have been found in many mental disorders and diseases, so improving un-

derstanding of alterations in FC potentially underpinning mechanisms of these diseases

is of clinical importance.

Several metrics are used to describe FC connections such as marginal correlations,

partial correlations, mutual information, and coherence among others. In this disserta-

tion, we propose novel methods for inference and estimation of partial correlations for

FC analysis of multi-subject fMRI data. In our first project, we consider heterogeneity

of FC patterns and aim to cluster multi-subject fMRI data based on each individual’s

FC patterns. We propose a novel penalized model-based clustering method which simul-

taneously estimates FC and clusters subjects into groups with similar FC patterns. The

method estimates the precision matrix, the elements of which give partial correlations of

all pairs of variables, at both the subject and cluster level for bi-level FC inference. We

apply the method to a multi-subject fMRI data set collected on participants diagnosed

with schizophrenia and healthy controls finding that participants with schizophrenia

were more likely to be clustered into a group with reduced FC connections.

In our second project, we consider the issue of autocorrelation in fMRI data which is

not accounted for in many existing methods when estimating and conducting inference

of partial correlations. We derive an asymptotic joint distribution and novel covariance

estimator for the partial correlations of a multivariate Gaussian process given mild reg-

ularity conditions. Based on the asymptotic distribution, we develop Wald confidence

intervals and testing procedures for inference of individual partial correlations for in-

ference of FC connections in single-subject fMRI data analysis. In our third project,

we also use our theoretical result to propose a hierarchical model that directly accounts
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for the autocorrelation in fMRI data and within group heterogeneity. We then develop

a novel testing procedure for two-group comparisons of group-level FC in terms of the

partial correlations which is robust to various levels of autocorrelation present in fMRI

data.
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Chapter 1

Introduction

1.1 Functional Neuroimaging and Mental Disorders

Over 50 million American adults were living with a mental illness such as an anxiety

disorder, bipolar disorder, major depression, or other mental illness in 2019. Moreover,

the percent of American adults diagnosed with some form of mental illness has increased

from 17.7% of American adults in 2008 to 20.6% in 2019 (Substance Abuse and Mental

Health Services Administration, 2020). Mental illness not only reduces an individuals’

quality of life but presents additional costs and burdens for society as a whole (Kessler

et al., 2009). Thus, improved understanding of the physiological mechanisms underlying

these disorders is important for developing better treatments for individuals with these

mental illnesses. As these disorders are intrinsically related to the brain, neuroimaging

techniques for effectively describing the structure and neuronal activity patterns of the

brain are vital for improving clinical practice moving forward.

Magnetic resonance imaging (MRI) consists of a broad area of non-invasive tech-

niques implemented to describe brain function and structure, and it is one of the most

widely used neuroimaging methods (Wager and Lindquist, 2015). MRI uses magnetic

fields to produce three-dimensional images of organs such as the brain without using

radiation (Logothetis, 2008). Structural MRI data involves capturing static images and

is useful for examining gray and white matter of the brain, while functional magnetic

resonance imaging (fMRI) commonly relies on observed blood oxygen level-dependent

(BOLD) signals across time which serve as a surrogate measure for neuronal activity. As
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a result, fMRI does not measure electrical currents as a surrogate measure for neuronal

activity as other modalities do such as electroencephalography (EEG) and magnetoen-

cephalography (MEG). However, fMRI can provide more granular measurements in

terms of spatial resolution than EEG and MEG, and thus can facilitate more detailed

descriptions of activity levels in various parts of the brain across time.

The BOLD signals underlying fMRI data are often collected at thousands of three-

dimensional cubes called voxels across time as depicted in Figure 1.1, yielding high-

dimensional data. Consequently, many statistical models cannot be easily used for

analysis on this granular form of the data. However, dimension reduction prior to

analysis can be done by averaging activation levels within sets of voxels called regions

of interest (ROIs). Analyses can then be conducted on the ROI signals rather than the

voxel-level signals, permitting use of a wider variety of statistical methods.

Figure 1.1: Depiction of fMRI data consisting of three-dimensional images, also called

volumes, with a given repetition time or time resolution (TR) between each of the T

volumes. Image from Wager and Lindquist (2015).

Broadly, fMRI data collected on individuals in a research setting fall into two cat-

egories: resting-state fMRI and task-based fMRI. Resting-state fMRI data consist of

fMRI data collected on individuals who are simply at rest and are not engaging in an

assigned task or activity, whereas for task-based fMRI participants are engaged in an

experimental condition. For resting-state fMRI, participants are commonly directed to
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focus on a symbol like a cross in the scanner or to close their eyes for a duration of

approximately 5 to 12 minutes. The resulting resting-state fMRI data that are collected

are useful for exploring characteristics of cognitive performance, aging, psychopathology,

and neurodegenerative diseases (Geuter et al., 2016).

1.2 Functional Connectivity Analysis of Multi-Subject FMRI

Data

Examining the relatedness in activation levels in different parts of the brain across time,

one approach for analyzing resting-state fMRI is to describe functional connectivity

(FC), defined as the temporal dependence of neuronal activity in regions of the brain

(Friston et al., 1993b). Alterations in FC have been associated with psychiatric disorders

such as major depressive disorder (Zhu et al., 2012; Zeng et al., 2014) and schizophrenia

(Yoon et al., 2008; Zhou et al., 2008; Pettersson-Yeo et al., 2011; Camchong et al.,

2011; Fornito et al., 2012) as well as neurodegenerative diseases such as Alzheimer’s

(Dennis and Thompson, 2014). Thus, learning the disrupted patterns of FC networks

for patients as compared to that of healthy controls is of great interest to underpin

potential neurological mechanisms underlying these mental disorders and diseases.

Many methods have been developed for FC analysis of single and multi-subject fMRI

data. For single-subject analyses, marginal correlations are commonly used to estimate

FC connections between pairs of voxels or brain regions. However, other metrics can be

used to describe FC connections as well such as the partial correlation, coherence, and

mutual information among others (Bastos and Schoffelen, 2016). For resting-state fMRI

data, Smith et al. (2011) found under various settings that the partial correlation tends

to outperform other measures of association for detecting true FC connections. However,

in higher dimensions partial correlations require significantly more computation than

marginal correlations and implicitly require estimating more parameters than marginal

correlations. For a thorough comparison of the utility of different metrics for FC analysis

under various settings see Wang et al. (2014).

Joint FC network estimation can be conducted using independent component anal-

ysis (ICA), seed-based analyses, or graphical modeling approaches (Lee et al., 2013;



4

Smitha et al., 2017). For an ICA approach, the main idea is to estimate the indepen-

dent source signals underlying a set of observed BOLD signals (Calhoun et al., 2009).

Seed-based analyses commonly set certain ROIs as reference regions or seeds, and then

estimate the relatedness of other ROIs to the seeds to produce a connectivity map of the

brain (Li et al., 2009). In graphical modeling approaches, an undirected graph can be

constructed with nodes commonly representing ROIs and edges connecting pairs of de-

pendent nodes. Topological characteristics of the graphs can be used to characterize the

FC networks, or one can analyze the strength of the connections between nodes as well.

Yang et al. (2020) provides a broad overview of FC analysis methods for resting-state

fMRI data.

With the availability of fMRI data from larger numbers of participants, multi-subject

fMRI data analyses have become more popular as they facilitate the generalization of

results to a broader population of individuals that eases clinically meaningful interpre-

tations. The group ICA is one approach for estimating FC networks for multi-subject

data without using brain regions that are defined a priori (Calhoun et al., 2001; Sala-

man et al., 2019). Another data-driven approach, independent vector analysis (IVA)

is a generalization of ICA which jointly decomposes multi-subject data and better pre-

serves individual-level heterogeneity than group ICA (Michael et al., 2014). Dictionary

learning aims to find a parsimonious representation of the fMRI data using spatial in-

formation and has also been proposed for estimating both group and individual-level

FC networks (Gong et al., 2018).

For multi-subject data sets in which brain regions are defined a priori, many have

proposed methods for jointly estimating FC networks using the precision matrix (Guo

et al., 2011; Zhu et al., 2014; Danaher et al., 2014; Cai et al., 2016; Qiu et al., 2016; Fan

et al., 2018; Zhang et al., 2020). Although these methods provide sparse precision ma-

trix estimates useful for FC inference of multi-subject fMRI data, they do not account

for between-subject heterogeneity in FC structures that is commonly present (Price et

al., 2017). Hierarchical models are a means of accounting for this within-group hetero-

geneity when estimating FC networks (Wager and Lindquist, 2015; Fiecas et al., 2017).

Moreover, a common obstacle when analyzing resting-state fMRI data is the low signal-

to-noise ratio. There are several sources of noise for fMRI data including heterogeneity

in the magnetic field of the scanner itself and noise due to head motion or physiological
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mechanisms of each individual. Some of these sources of noise can be removed through

preprocessing prior to conducting an analysis, but it is difficult to remove their effects

entirely (Lazar, 2008). In general, there are multiple sources of variability that should be

accounted for when conducting FC analysis of multi-subject fMRI data: variability due

to measurement error or sampling variability, and heterogeneity due to subject-specific

differences in connectivity. It is important that one accounts for both sources of varia-

tion in the modeling process to be able to generalize the results to a larger population

as is commonly the goal. For multi-subject fMRI data, hierarchical models can directly

model these different sources of variability.

1.3 Dissertation Objectives and Overview

In this dissertation, we aim to provide methods for FC analysis of multi-subject resting-

state fMRI data to improve understanding of the physiological mechanisms underlying

psychiatric disorders, neurodegenerative diseases, and other aspects of the brain. Specif-

ically, we provide the following:

1. A model-based clustering method for unsupervised learning of individuals in terms

of FC based on resting-state fMRI data. This hierarchical model provides both

individual and group-level estimates of FC in terms of the inverse covariance matri-

ces, called precision matrices, while simultaneously grouping subjects into clusters

with homogeneous FC patterns.

2. A derivation of the asymptotic distribution and covariance estimator for the em-

pirical partial correlations of a multivariate Gaussian process. Using our derived

asymptotic distribution, we propose methods of inference for the partial corre-

lations of a multivariate Gaussian process which are useful for FC analysis of

single-subject fMRI data.

3. A hierarchical model for group-level inference of FC as described by partial cor-

relations. The model directly accounts for the autocorrelation present in fMRI

data while allowing for within-group heterogeneity in terms of the true partial

correlations for each subject. Based on the hierarchical model, we derive a novel
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testing procedure for two-group comparisons of FC in terms of the group-level

partial correlations.

The listed models and methods are provided in Chapters 2 through 4 in order. Next,

we provide a summary of each of the three Chapters.

In Chapter 2, we present a hierarchical model for simultaneous clustering of subjects

and estimation of FC using a multi-subject resting-state fMRI data set. This modeling

framework clusters participants into homogeneous groups in terms of FC based on the

precision matrix using a model-based clustering approach. Existing methods for cluster-

ing fMRI data at the subject-level mostly cluster subjects based on similar FC patterns

and usually rely on prior subject-level FC estimates obtained from marginal correla-

tions or covariance matrix estimates (Zeng et al., 2014). To the best of our knowledge,

there are no existing methods that conduct clustering and FC estimation concurrently.

Penalized Gaussian mixture models (GMM) have been proposed for simultaneous sub-

ject clustering and multiple network estimation for gene network analysis of microarray

data (Zhou et al., 2009; Hill and Mukherjee, 2013; Gao et al., 2016; Hao et al., 2018).

However, these models are only applicable when there is a single observation for each

subject, and they often assume an identical covariance matrix for observations within

a cluster. Hence, they cannot be directly used to cluster multi-subject fMRI data at

the subject level as there are multiple observations for each subject. The novelty in

our approach lies in allowing the data to drive the grouping of subjects based on FC,

while pooling information across subjects within each group for improved estimates of

FC. Through simulations, we demonstrate the utility of implementing both clustering

and estimation concurrently when correlations between ROIs are smaller in magnitude.

Additionally, we propose a modified stability approach to regularization selection which

uses subsampling to select tuning parameters for our model as well as competing meth-

ods (Liu et al., 2010). Then, we propose use of a gap statistic for selecting the number

of clusters or groups when the number of underlying groups is unknown (Tibshirani et

al., 2001). Lastly, we demonstrate the utility of our proposed unsupervised method on

a multi-subject fMRI data set consisting of participants diagnosed with chronic-episode

schizophrenia, first-episode schizophrenia, and healthy controls, finding a tendency for

those diagnosed with any degree of schizophrenia to be grouped together more so than

healthy controls.
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In Chapter 3, we derive the asymptotic distribution for the empirical partial correla-

tions of a multivariate Gaussian process and derive an explicit form for the corresponding

covariance matrix. Based on this derived asymptotic distribution, we propose inferen-

tial methods for partial correlations that directly account for autocorrelation present

in the data. Partial correlations are one choice for describing FC, although there are

alternatives such as the marginal correlation. However, some assert that partial corre-

lations are more closely related to effective connectivity which describes the influence

that ROIs exert on one another (Friston et al., 1993a; Marrelec et al., 2006). Although

the asymptotic distribution of marginal correlations of a general multivariate time se-

ries have been derived (Roy, 1989), we addressed a similar issue for partial correlations

to permit more valid inferential procedures when autocorrelation is present. We show

the improvement in sensitivity and specificity for testing for non-null partial correlations

compared to inference procedures which ignore autocorrelation in the data, and we show

similar performance to a competitive inferential procedure based on the block-bootstrap

which accounts for the temporal structure of the data in a nonparametric manner.

When groups of subjects are known a priori, Chapter 2 provides a straight-forward

means of testing for group-level differences in FC for subjects with known group mem-

berships. For example, a group-comparison could be conducted using a likelihood ratio

test and the Wishart distribution. However, this testing procedure would not account

for autocorrelation that is commonly exhibited in fMRI data. Addressing this need, in

Chapter 4 we propose a hierarchical model for group-level inference of FC as described

by partial correlations utilizing our derived asymptotic distribution from Chapter 3 to

directly account for autocorrelation present in the data.

Our proposed framework in Chapter 4 bridges the ideas from both Chapters 2 and 3

since we are using a hierarchical model to account for both within-group heterogeneity

and sampling variability in a similar manner as Chapter 2, while we also use the derived

asymptotic distribution from Chapter 3 to explicitly account for autocorrelation in our

modeling framework. Not only does our model allow for heterogeneity within each

group in terms of the true partial correlations for each subject, but it also estimates the

autocorrelation structure for each individual in a subject-specific manner. We display

how inferential procedures for comparing subjects in terms of group-level FC based on

our hierarchical model outperform competing methods in settings modeled after a real
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fMRI data set. We then apply our proposed Wald testing procedure to a multi-subject

resting-state fMRI data set collected on participants diagnosed with chronic episode

schizophrenia and healthy controls.



Chapter 2

Penalized model-based clustering

of fMRI data

2.1 Background

Describing FC among ROIs of the brain using fMRI data is of clinical importance, as it

can be informative of neurological diseases and psychiatric disorders (Yoon et al., 2008;

Zhou et al., 2008; Pettersson-Yeo et al., 2011; Camchong et al., 2011; Fornito et al., 2012;

Dennis and Thompson, 2014). Methods for estimating sparse precision matrices have

commonly been used to describe the FC structure among ROIs. For resting-state fMRI

data from a single subject, graphical modeling approaches have commonly been used

for joint analysis of FC connections among a set of ROIs (Lee et al., 2013; Smitha et al.,

2017). Gaussian graphical models (GGM) assume a multivariate Gaussian distribution

for the BOLD signals, under which the inverse covariance matrix, called the precision

matrix, conveys conditional dependencies between ROIs (Lauritzen, 2004), and is used

to describe FC through a graphical representation of the ROI dependence structure.

Specifically, an undirected graph is constructed with nodes representing ROIs, and

edges connecting pairs of conditionally dependent nodes. In this setting, methods for

estimating sparse precision matrices have been used to obtain the FC structure among

ROIs for a single subject. One commonly used method is the graphical lasso or GLasso

(Friedman et al., 2007). For multi-subject fMRI data, there are often shared features

of FC across subjects that can be accounted for to improve estimation.

9
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Extending the GLasso, many have proposed methods for jointly estimating multiple

sparse precision matrices (Guo et al., 2011; Zhu et al., 2014; Danaher et al., 2014; Cai

et al., 2016; Qiu et al., 2016; Fan et al., 2018; Zhang et al., 2020), which can be used for

inference of multiple subject-level FC networks for multi-subject fMRI data. However,

these methods do not account for between-subject heterogeneity in FC structures that

is commonly present (Fiecas et al., 2017; Price et al., 2017). This heterogeneity among

subjects could be due to the presence of multiple subgroups or clusters of subjects with

varying FC patterns (Mueller et al., 2013).

Although extensive work has been done on methods for classifying subjects based on

resting-state and task-based fMRI signals (Davatzikos et al., 2005; Calhoun et al., 2008;

Shen et al., 2010; Arribas et al., 2010; Castro et al., 2014), fewer studies have focused

on unsupervised clustering of subjects based on FC patterns. Using an unsupervised

maximum margin clustering method, Zeng et al. (2014) distinguished depressed patients

from healthy controls based on FC estimates obtained from pairwise correlations. How-

ever, the maximum margin clustering approach does not yield interpretable estimates of

FC network structures for each class or subject which are of clinical importance. Moti-

vated by gene network analysis of microarray data, penalized Gaussian mixture models

(GMM) have been proposed for simultaneous subject clustering and multiple network

estimation (Zhou et al., 2009; Hill and Mukherjee, 2013; Gao et al., 2016; Hao et al.,

2018). However, these methods apply to subject clustering with only one observation

per subject as often seen in gene expression data and assume a common covariance

matrix for observations within a cluster. Thus, they are not applicable to multi-subject

fMRI data which have multiple observations per subject, and they do not allow for

within-cluster heterogeneity.

In this chapter, we propose a penalized model-based clustering method for resting-

state fMRI data which simultaneously estimates FC and groups patients based on FC

features. Specifically, we propose a random covariance clustering method (RCCM) to si-

multaneously cluster subjects and obtain sparse precision matrix estimates for each clus-

ter as well as each subject, producing interpretable estimates of subject- and group-level

FC networks. A major contribution of the RCCM over existing penalized model-based

clustering methods is to allow for clustering of entire subsets of fMRI data observed for

each subject, rather than only individual observations, and that it allows subjects within
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each cluster to have similar but not identical FC networks. This is implemented via

a hierarchical structure, in which the subject-level precision matrices follow a mixture

of Wishart distributions, each with mean matrix equal to a corresponding cluster-level

precision matrix. Using a mixture of Wishart distributions for each subject’s precision

matrix rather than a Gaussian mixture for individual observations retains observations

together for each participant. This is necessary for clustering participants based on fMRI

data since it would not be interpretable to have observations from a single participant

separated into multiple clusters. The degrees of freedom of each Wishart component

controls the level of similarity between each subject-level matrix and its correspond-

ing group-level matrix and is treated as a tuning parameter which is selected via an

extended stability approach to regularization selection (stARS) method described in

Section 2.2.3. Our simulations provide evidence that by conducting concurrent clus-

tering and network estimation our proposed RCCM has improved performance in the

estimation of subject-level networks due to sharing information across similar subjects,

while better clustering is achieved due to improved subject-level estimates. We ap-

plied the RCCM to a resting-state fMRI data set collected on 61 participants diagnosed

with schizophrenia and 43 healthy controls, finding a slight tendency for participants

diagnosed with schizophrenia to be clustered together.

For the rest of the chapter, we present the proposed RCCM, the computational

algorithm, and the selection of tuning parameters and the number of clusters in Section

2.2. Then, we describe simulations conducted to explore the relative performance of

the RCCM to competitive two-step methods in Section 2.3 and illustrate the utility of

the RCCM on a resting-state fMRI data set in Section 2.4. Lastly, in Section 2.5 we

conclude the chapter with a discussion of our findings.

2.2 Method

2.2.1 Random Covariance Clustering Model

We consider the setting in which we have collected fMRI data on K subjects for p

different ROIs with nk observations or time points on the kth subject. We let ykjt denote

the tth observation or time point of the jth ROI for the kth subject for k = 1, . . . ,K,

j = 1, . . . , p, and t = 1, . . . , nk.
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We assume that ykt = (yk1t, ..., ykpt)
T ∼ Np(µk,Σk) are independent p-dimensional

Gaussian random variables with mean vector µk and covariance matrix Σk. Moreover,

we assume that the precision matrix of ykt, Ωk = Σk
−1, follows a mixture Wishart

distribution with G components:

Ωk ∼ p(Ωk; {Ω0g, πg}Gg=1) =

G∑
g=1

πgpg(Ωk;λ2,Ω0g),

where pg(Ωk;λ2,Ω0g) is the probability density function (PDF) of the gth component

corresponding to a Wishart random matrix with degrees of freedom λ2 and mean Ω0g.

We note that Ωk describes the FC of the kth subject, Ω0g describes the cluster-level FC

for the gth group, and that πg can be interpreted as the proportion of subjects belonging

to cluster g where
G∑
g=1

πg = 1 for g = 1, . . . , G. An essential element for the novelty

of our model, this mixture Wishart distribution of the subject-level Ωk facilitates an

interpretation of each subject’s FC being similar to their corresponding cluster-level FC,

but not necessarily identical. The degrees of freedom λ2 is a tuning parameter control-

ling the degree of similarity between subject and cluster-level precision matrices, with

higher values of λ2 inducing more similarity between each subject-level matrix and its

corresponding group-level matrix. The hierarchy of our proposed RCCM is illustrated

in Figure 2.1, which illustrates the three-level structure of our model: the cluster level,

within-cluster subject level, and within-subject observation level. Heterogeneity is as-

sumed to be present in both the cluster- and subject-levels, while the observations for

each subject are assumed to be homogeneous.
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Level Model Interpretation

Cluster {Ω0g}Gg=1 Set of G cluster-level precision

matrices describing group-level FCy
Subject {Ωk

iid∼
∑G

g=1 πgpg(Ωk;λ2,Ω0g)}Kk=1 Set of K subject-level precision

matrices describing unique

individual-level FCy
Observation {{ykt|Ωk

ind∼ Np(µk,Ω
−1
k )}nkt=1}Kk=1 Set of fMRI signals consisting

of nk observations of p variables

for subject k where p is the

number of ROIs

Figure 2.1: Hierarchy of Random Covariance Clustering Model (RCCM).

Assuming without loss of generality that our observed data is centered so that µk = 0

for k = 1, . . . ,K, the model likelihood for our observed data is

L =
K∏
k=1

nk∏
t=1

(fk(ykt; Ωk)) p(Ωk; {πg,Ω0g}Gg=1),

where fk(ykt; Ωk) = |Ωk|1/2
(2π)p/2

exp
(
−1

2yT
ktΩkykt

)
is the PDF of a mean 0 multivariate

normal, |Ω| denotes the determinant of a matrix Ω, and

p(Ωk; {πg,Ω0g}Gg=1) =

G∑
g=1

πgpg(Ωk;λ2,Ω0g) =

G∑
g=1

πg

(
|Ωk|

λ2−p−1
2 exp(−tr(λ2Ω0g

−1Ωk)/2)

2λ2p/2| 1
λ2

Ω0g|λ2/2Γp(λ2/2)

)

is a Wishart mixture distribution with G components where Γp(·) denotes the multi-

variate Gamma function. Hence, the corresponding model log-likelihood is

` = log(L) =

K∑
k=1

nk∑
t=1

log (fk(ykt; Ωk)) +

K∑
k=1

log p(Ωk; {πg,Ω0g}Gg=1),
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and thus

−2` =

K∑
k=1

nk∑
t=1

(
yT

ktΩkykt − log |Ωk|
)
− 2

K∑
k=1

log

 G∑
g=1

πgpg(Ωk;λ2,Ω0g)

 .

To induce sparsity in our precision matrix estimates, we include lasso penalties on the

subject- and cluster-level precision matrices with different regularization parameters.

Thus, letting Θ = {(πg,Ωk,Ω0g)} for g = 1, . . . , G and k = 1, . . . ,K denote the set of

unknown parameters given the number of clusters or groups, G, we aim to estimate Θ

by minimizing the following penalized objective function:

K∑
k=1

nk∑
t=1

(
yT

ktΩkykt − log |Ωk|
)
− 2

K∑
k=1

log

 G∑
g=1

πgpg(Ωk;λ2,Ω0g)

+ λ1

K∑
k=1

||Ωk||1

+ λ3

G∑
g=1

||Ω0g||1,

(2.1)

where ||Ω||1 =
∑
i 6=j
|ωi,j | gives the sum of the absolute value of off-diagonal entries of the

matrix Ω, and λ1 and λ3 are non-negative tuning parameters for the lasso penalties.

2.2.2 Computational Algorithm

E-Step

We seek to minimize the objective function in Equation (2.1) using the EM algorithm

(Dempster et al., 1977). For the E-step, we first introduce latent variables which are

indicators of cluster membership. Specifically, we let zgk = 1{Ωk ∼ pg(Ωk;λ2,Ω0g)} =

1{subject k is from cluster g}, and define

wgk = Pr(zgk = 1|Θ) = E[zgk|Θ] =
πgpg(Ωk;λ2,Ω0g)
G∑
c=1

πcpc(Ωk;λ2,Ω0c)

,

where Θ = {Ωk, πg,Ω0g} for g = 1, . . . , G and k = 1, . . . ,K, and 1{·} is the indicator

function. Thus, our complete objective function is
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K∑
k=1

nk∑
t=1

(
yT

ktΩkykt − log |Ωk|
)
− 2

K∑
k=1

G∑
g=1

zgk (log(πg) + log(pg(Ωk;λ2,Ω0g)))

+ λ1

K∑
k=1

||Ωk||1 + λ3

G∑
g=1

||Ω0g||1,

since
G∑
g=1

zgk = 1 for k = 1, . . . ,K as each subject belongs to one and only one cluster.

Therefore, since Ez[zgk|Θ(r)] = w
(r)
gk it follows that the conditional expectation of our

complete objective function is

Q(Θ; Θ(r)) =
K∑
k=1

nk∑
t=1

(
yT

ktΩkykt − log |Ωk|
)
− 2

K∑
k=1

G∑
g=1

w
(r)
gk (log(πg) + log(pg(Ωk;λ2,Ω0g))) +

λ1

K∑
k=1

||Ωk||1 + λ3

G∑
g=1

||Ω0g||1.

(2.2)

M-Step

We now seek to minimize the Q(Θ; Θ(r)) function in Equation (2.2) by simultaneously

estimating G cluster-level matrices and K subject-level precision matrices. We use

an expectation/conditional maximization approach for optimization (Meng and Rubin,

1993). Specifically, we iteratively update two blocks: the set of subject-level precision

matrices given by Ω = {Ωk}Kk=1 and the set of cluster-level precision matrices given by

Ω0 = {Ω0g}Gg=1. We note that this objective function is non-convex, and due to the

lasso penalties, we are no longer guaranteed to decrease our objective function at each

iteration which could slow the method’s convergence (Green, 1990). We proceed with

the algorithm as follows:

1. Initialize Ωk
(0) = Ω̂kgl

for k = 1, . . . ,K where Ω̂kgl
is the individual GLasso

precision matrix estimate for subject k using a regularization parameter of 0.001.

2. Initialize w
(0)
gk to be 0 or 1 based on a hard assignment of {Ωk

(0)}Kk=1 into G disjoint

clusters. Cluster assignments could be random, but we determined them using a
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Ward hierarchical clustering method implemented via the hclust function from the

stats package in R, using a matrix of the Frobenius norm of pair-wise differences

as a distance matrix (Murtagh and Legendre, 2014; R Core Team, 2021).

3. Update each πg by calculating π
(r+1)
g = 1

K

K∑
k=1

w
(r)
gk for g = 1, . . . , G.

4. Update each Ω0g by calculating

Ω0g
(r+1) = min

Ω0g

{tr


K∑
k=1

w
(r)
gk Ωk

(r)

K∑
k=1

w
(r)
gk

Ω0g
−1

+ log |Ω0g|+
λ3

λ2

K∑
k=1

w
(r)
gk

||Ω0g||1}

using Bien and Tibshirani’s (2011) majorize-minimize algorithm for solving the

covariance graphical lasso.

5. Update each wgk by calculating

w
(r+1)
gk =

π
(r+1)
g exp

(
−λ2

2 tr(Ω0g
(r+1)−1

Ωk
(r))
)
|Ω0g

(r+1)|−
λ2
2

G∑
c=1

π
(r+1)
c exp

(
−λ2

2 tr(Ω0c
(r+1)−1

Ωk
(r))
)
|Ω0c

(r+1)|−
λ2
2

,

for k = 1, . . . ,K and g = 1, . . . , G.

6. Update each Ωk by calculating

Ωk
(r+1) = min

Ωk

{tr


nkSk + λ2

G∑
g=1

w
(r)
gk Ω0g

(r+1)−1

nk + λ2 − p− 1
Ωk

−log |Ωk|+
λ1

nk + λ2 − p− 1
||Ωk||1}

using the GLasso algorithm of Friedman et al. (2007), where Sk = 1
nk

nk∑
t=1

ykty
T
kt

for k = 1, . . . ,K.
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7. Update each wgk by calculating

w
(r+1)
gk =

π
(r+1)
g exp

(
−λ2

2 tr(Ω0g
(r+1)−1

Ωk
(r+1))

)
| 1
λ2

Ω0g
(r+1)|−

λ2
2

G∑
c=1

π
(r+1)
c exp

(
−λ2

2 tr(Ω0c
(r+1)−1

Ωk
(r+1))

)
| 1
λ2

Ω0c
(r+1)|−

λ2
2

,

for k = 1, . . . ,K and g = 1, . . . , G.

8. Repeat steps 3 through 7 until convergence as determined by

max{{|Ω(r+1)
k(i,j)

−Ω
(r)
k(i,j)
|} ∪ {|Ω(r+1)

g(i,j)
−Ω(r)

g(i,j)
|}} < ε,

where ε > 0 is a small number. That is, convergence is achieved when the largest

change in magnitude of all individual entries of both the subject- and group-level

estimates is smaller than ε, where we used ε = 0.001. Derivations of updates are

included in Appendix A.

2.2.3 Selection of Tuning Parameters and Number of Clusters

There are three tuning parameters for the proposed RCCM denoted λ1, λ2, and λ3 which

control the sparsity of subject-level precision matrices, the within-cluster variability,

and the sparsity of cluster-level precision matrices, respectively. Methods such as cross-

validation (CV) and information criterion such as AIC and BIC can be used to determine

the values of these tuning parameters, but we found for our real data analysis that CV

yielded network estimates that were too dense with nearly all nodes connected to one

another, while AIC yielded network estimates that were too sparse. Instead, we propose

a modified stability approach for regularization selection (stARS) method (Liu et al.,

2010). The stARS method uses a sub-sampling approach to select the tuning parameter

that yields the least amount of regularization while still obtaining an estimate that is

sparse and stable across subsamples. Although Liu et al. (2010) implemented stARS for

a single-subject graphical lasso problem, we extend the approach to our RCCM method

in the context of analyzing data from multiple subjects. Specifically, given a sample of

nk observations for k = 1, . . . ,K, our extended stARS method consists of the following

steps:
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1. For k = 1, . . . ,K, draw N distinct number of subsamples without replacement

from the nk total observations denoted Sk1, . . . , SkN , each of size b(nk) = b10
√
nkc,

where b·c denotes the floor function.

2. For each candidate tuning parameter value, implement the desired method to

obtain subject-level precision matrix estimates for each subsample yielding N

estimated edge sets for each subject denoted by Êk1(Λ), . . . , ÊkN (Λ), where Λ =

(λ1, λ2, λ3).

3. Calculate

θ̂k;st(Λ) =
1

N

N∑
j=1

1{Êkj;st}

where 1{Êkj;st} = 1 if the jth subsample implies an edge between nodes s and t

for the kth subject and 0 otherwise. Thus, θ̂k;st(Λ) is the proportion of subsamples

with an edge between s and t for the kth subject.

4. Calculate ξ̂k;st(Λ) = 2θ̂k;st(Λ)
(

1− θ̂k;st(Λ)
)

, which can be interpreted as the pro-

portion of times that each pair of subsamples disagrees on the presence of an edge

between nodes s and t for the kth subject.

5. Calculate D̂(Λ) = 1
K

K∑
k=1

∑
s<t

ξ̂k;st(Λ)/
(
p
2

)
which is a measure of instability, averaged

across all subjects.

6. Calculate D̄(Λ) = min
Λ
{Λ : D̂(Λ) ≤ β} where we used β = 0.05.

7. Select Λ that yields the least amount of sparsity among all candidate regularization

parameter sets with instability limited by β.

For selecting the number of clusters, we used a gap statistic as proposed by Tibshirani

et al. (2001). Generally, the gap statistic measures the within-cluster dispersion of a

clustering of subjects given a certain number of clusters. The optimal number of clusters

is then chosen as the smallest number that does not result in a significant increase in

the gap statistic. A detailed description of calculating the gap statistic for our proposed

RCCM is included in Appendix A.
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2.3 Simulations

2.3.1 Simulation Settings

We conducted extensive simulations to examine the performance of our proposed RCCM,

considering two different numbers of clusters, two different levels of magnitude of the

precision matrix entries, and three different levels of similarity between the clusters.

Specifically, data were generated with either G = 2 clusters containing 67 and 37 sub-

jects in each group, or G = 3 clusters with 61, 24, and 19 subjects in each group which

reflect the real data clustering results to be presented in Section 4. These data were

generated for either a high or low magnitude setting, where the high magnitude setting

corresponded to the off-diagonal entries of the true precision matrix having roughly

three times the magnitude of the low magnitude setting entries on average. This in-

troduced more distinction in precision matrices between clusters compared to the low

magnitude setting. For all settings, 100 data sets were generated using R consisting of

n = 177 observations of p = 10 variables on each of the K = 104 subjects (R Core Team,

2021). Dimensions in terms of the number of subjects, variables, and observations were

chosen to match our data analysis described in Section 2.4. True networks and precision

matrices were generated in a hierarchical manner beginning with group-level networks

and precision matrices and then subject-level networks and matrices. That is, we first

randomly generated either G = 2 or G = 3 hub-type networks, given by {Ng}Gg=1,

each with b√pc hubs and thus E = p − b√pc edges, while simultaneously forcing the

networks to share s = bρ × Ec edges. We considered ρ ∈ {0.20, 0.50, 0.80} for three

different levels of overlap across the G groups. Note that ρ represents the approximate

proportion of edges that are common across the cluster-level networks, and that these

group-level networks were constant across the 100 simulations for a given ρ. Then, for

each simulation we generated the cluster-level precision matrices, {Ω0g}Gg=1, as follows:

For g = 1 to G;

1. Begin with a p× p adjacency matrix with sparsity structure corresponding to Ng.

2. Randomly draw E values from a uniform distribution with support on the interval

[−1,−0.50]∪ [0.50, 1] for elements corresponding to edges in the network to obtain

Ω0g.
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3. Set the diagonal entries of Ω0g to 1.

4. If Ω0g is not positive definite, then divide each row by its number of non-zero

elements.

The s number of edges that were common across the groups were forced to have the

same values in each Ω0g.

For the K = 104 subjects, we first randomly assigned them to the G clusters.

Subject-level networks were then generated by randomly selecting b0.20 × Ec node

pairs to add or remove an edge from their corresponding group-level network. For

subject-level precision matrices, denoted {Ωk}104
k=1, common entries for subject- and

corresponding group-level matrices were set the same as the group-level matrix with

random noise generated from a N (0, 0.052) distribution added to non-zero entries. En-

tries for added subject-specific edges were generated from a uniform distribution with

support on the interval [−1,−0.50] ∪ [0.50, 1]. As before, if the generated Ωk was not

positive definite, then we divided each row by its number of non-zero elements. Lastly,

n = 177 observations were randomly generated for each subject from a Np(0, Ωk
−1)

distribution and were then centered and scaled prior to analysis. For tuning parameter

selection, we implemented our modified stARS algorithm and included results for 5-fold

CV in Appendix A.

2.3.2 Simulation Results

We assessed the performance of RCCM in two aspects: clustering and network esti-

mation. Since existing methods only conduct clustering and FC network estimation

separately, we considered competitive methods using a 2-step approach. For one ap-

proach, we started by obtaining GLasso estimates for each subject, and then clustering

subjects based on vectorizing these estimates using K-means clustering, calling this

GLasso & K-means (Friedman et al., 2007). For the second approach, we first used the

Ward clustering method described in Section 2.2.2, and then implemented the group

graphical lasso (GGL) of Danaher et al. (2014) for network estimation within each clus-

ter, referred to as Ward & GGL (Murtagh and Legendre, 2014). GGL uses an `1 penalty

to encourage a shared sparsity pattern across subjects, but not necessarily entries of the

same magnitude. For all approaches considered, we implemented our modified stARS
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approach described in Section 2.2.3 for regularization selection. We note that the scale

of what worked well for tuning parameters varied across the methods, so we tailored

them accordingly.

To assess clustering performance, we calculated the rand index (RI) and adjusted

rand index (RIadj) with values of 1 indicating perfect clustering of subjects for both

metrics (Rand, 1971; Hubert and Arabie, 1985). For RCCM, cluster memberships were

determined by assigning each subject to the cluster with the highest posterior probability

as described by the ŵgk estimates. Clustering performances of RCCM, Ward & GGL,

and GLasso & K-means averaged across 100 simulations are displayed in Tables 2.1

and 2.2. Overall, clustering accuracy across all methods tended to be better for G = 2

rather than G = 3 clusters, and better for the high magnitude setting compared to the

low magnitude setting as expected. We believe the exceptionally poor performance of

the competing methods in the low magnitude settings is likely due to the high-level

of similarity between clusters not favoring two-step approaches which fail to extract

useful information from subjects for clustering. For the low magnitude setting RCCM

achieved at best an average RI = 0.997 and RIadj = 0.995 in the setting with G =

2 clusters and only 20% of group edges overlapping, and at worst an average RI =

0.901 and RIadj = 0.805 in the setting with G = 3 clusters and 50% of group edges

overlapping. Generally, for the low magnitude settings RCCM performed the best in

terms of clustering among the three methods considered. However, the Ward & GGL

and GLasso & K-means performed more competitively in the high magnitude setting

with both methods outperforming RCCM in the G = 3 setting with 80% of overlapping

edges across the clusters.

For edge detection pertaining to network estimation, we calculated the true positive

rate (TPR) or recall, the false positive rate (FPR), and the precision or positive predic-

tive value (PPV) for both the subject and cluster-level networks. Performance in terms

of edge-detection averaged across 100 simulations for G = 2 and 3 clusters are displayed

in Tables 2.3, 2.4, 2.5, and 2.6 using our modified stARS method with RCCM, Ward

& GGL and GLasso & K-means. In all tables, subject-level metrics are denoted with a

subscript k, and group-level metrics subscript g.

Overall, we observe from Tables 2.3, 2.4, 2.5, and 2.6 that all three methods achieved

higher power for the high magnitude settings compared to the low magnitude settings
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as expected. Moreover, the three methods performed better in terms of power as the

proportion of overlapping edges across the clusters decreased. For RCCM and Ward &

GGL, this is likely due to improved clustering since across-cluster variability becomes

comparable to within-cluster variability. For GLasso & K-means, we believe the im-

proved power as overlap decreased is due to the true precision matrices having entries

slightly higher in magnitude on average for lower overlap settings compared to higher

ones. This is since less adjustments needed to be made to ensure the true precision

matrices shared enough edges while still being positive definite.

For the low magnitude settings with G = 2 clusters displayed in Table 2.4, all

three methods attained FPR values close to 0, displaying how stARS yields very sparse

estimates. However, RCCM was the only method to maintain a reasonable power, dis-

playing the advantage of concurrent estimation and clustering as opposed to conducting

them sequentially. By pooling information across subjects in each group, RCCM was

able to detect non-zero entries that were low in magnitude while the competing ap-

proaches with stARS yielded too much penalization. As expected, GLasso & K-means

generally had the lowest power of the three methods, as it does not pool information

across subjects in network estimation. Simulation results for 5-fold CV are included in

Appendix A.

2.4 Data Analysis

We applied the proposed RCCM to a resting-state fMRI data set collected on 40 partici-

pants diagnosed with chronic schizophrenia, 21 participants diagnosed with first-episode

schizophrenia, and 43 healthy controls using our modified stARS algorithm for tuning

parameter selection. Resting-state fMRI data were collected during an approximately

6-minute period using a Siemens Trio 3T scanner (Erlangen, Germany) with the follow-

ing acquisition parameters: gradient-echo echo-planar imaging 180 volumes, repetition

time = 2 s, echo time = 30 ms, flip angle = 90◦, 34 contiguous ACPC aligned ax-

ial slices, voxel size = 3.4 × 3.4 × 4.0 mm, matrix = 64 × 64 × 34 (Camchong et al.,

2011). Additionally, a field map acquisition was collected and used to correct images

for geometric distortion due to magnetic field inhomogeneities (repetition time = 300

ms, echo time = 1.91 ms/4.37 ms, flip angle = 55◦, voxel size = 3.4 × 3.4 × 4.0 mm).
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Imaging data were preprocessed using the software tool FEAT (Woolrich et al., 2001).

The first 3 volumes were removed prior to analysis, leaving 177 volumes in total. After

preprocessing, data from 10 ROIs within the superior and inferior parietal lobules were

extracted using an atlas developed through a parcellation study by Mars et al. (2011).

Resulting clusters of subjects obtained using our RCCM are referred to as groups A

and B for G = 2 clusters and groups C, D, and E for G = 3. As displayed in Table 2.7,

specifying G = 2 clusters yielded 67 and 37 subjects in groups A and B respectively.

Most participants diagnosed with schizophrenia were classified into group A with 66.7%

of participants diagnosed with first-episode schizophrenia and 75.0% of participants

diagnosed with chronic-episode schizophrenia, while only about half of healthy controls

were in the same group. Specifying G = 3 clusters yielded clusters with 61, 24, and

19 subjects in groups C, D, and E respectively. Most participants diagnosed with

schizophrenia were clustered into group C, with 57.1% of participants diagnosed with

first-episode schizophrenia and 70.0% of participants diagnosed with chronic-episode

schizophrenia respectively, and about half of the healthy controls in the same cluster.

Applying the competing methods to our data, we found somewhat similar results as

that of RCCM. In terms of clustering, the estimated cluster memberships for RCCM

and Ward clustering had rand indexes of 0.873 and 0.891 when specifying G = 2 and 3

clusters respectively, indicating that RCCM and Ward clustering agreed on roughly 90%

of subject pairings. The estimated cluster memberships for GLasso & K-means were

less similar to that of RCCM, with rand indexes of 0.675 and 0.673 when specifying

G = 2 and 3 clusters respectively, indicating that RCCM and the GLasso & K-means

approach agreed on only about 70% of subject pairings.

Using a gap statistic as described in Appendix A, we selected G = 3 as our final

number of clusters (Tibshirani et al., 2001). Generally, the gap statistic compares the

observed change in within-cluster dispersion of a clustering of subjects when specifying

different numbers of clusters to what is expected under a corresponding null setting.

The performance of using a gap statistic for the proposed RCCM was investigated via

simulations with the results summarized in Table A.1 of Appendix A.

Specifying G = 3 clusters based on the results of the gap statistic, we observe that

group C remained mostly the same as group A, but group B was further divided into

groups D and E, suggesting more heterogeneity among subject-level estimates in group
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B compared to group A. This within-cluster heterogeneity in terms of edge presence is

displayed in Figure 2.2. Overall, subjects were somewhat similar within each cluster, al-

ways having precision matrix entries with the same sign and similar in magnitude. How-

ever, not all implied networks were identical. This individual heterogeneity is displayed

in Figure 2.2 showing the variance in edge presence calculated as Vij = pij × (1 − pij)
where pij is the proportion of subjects within each cluster with an edge present between

variables i and j.
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Figure 2.2: Variability in edge presence for groups A through E. A value of 0 indicates

perfect agreement in edge presence within a cluster, while a value closer to 0.25 indicates

a larger amount of heterogeneity in the presence of edges. Regions within the inferior

parietal lobule are prefixed with IPL, while regions within the superior parietal lobule

are prefixed with SPL.

Specifying either number of clusters, there was a tendency for participants diagnosed

with schizophrenia to be clustered together more than healthy controls, but not signif-

icantly so. It is possible that subject-level heterogeneity in hemodynamic responses

prevented better discrimination between those with schizophrenia and healthy controls.
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Moreover, it is unreasonable to expect perfect discrimination of participants since psy-

chiatric disorders such as schizophrenia are complex and may not always yield consistent

patterns in fMRI data across individuals (Wager and Lindquist, 2015).

Plots of estimated networks made using the igraph R package (Gabor and Tamas,

2006) are displayed in Figure 2.3. Regions within the inferior parietal lobule are prefixed

with IPL, while regions within the superior parietal lobule are prefixed with SPL. Speci-

fying G = 3 clusters, we observe that the estimated group-level networks were somewhat

similar, with all edges for group C, the majority schizophrenia group, also being present

for groups D and E which had significantly fewer participants diagnosed with schizophre-

nia. Moreover, estimated precision matrices were also similar in that common non-zero

entries had the same sign. For example, the SPLA and SPLC nodes were connected

in all three networks, and all had negative entries in their corresponding precision ma-

trix estimates. However, it is notable that group C, the majority schizophrenia group,

had fewer estimated connections than groups D and E. This is consistent with others

who have found evidence supporting a general disconnection hypothesis in schizophrenia

based on disrupted or decreased FC (Honey et al., 2005; Zhou et al., 2008; Yoon et al.,

2008; Chen et al., 2020b; Lottman et al., 2019).
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Figure 2.3: Estimated FC networks of the inferior and superior parietal lobules obtained

using RCCM specifying G = 2 or 3 clusters for the top and bottom rows respectively.

For G = 2 clusters, Group A contained the highest proportion of participants diagnosed

with schizophrenia, and its estimated network had far fewer connections than Group B

(top right) suggesting decreased FC among participants diagnosed with schizophrenia.

For G = 3 groups, Group C contained the majority of participants diagnosed with

schizophrenia, and similarly had decreased FC relative to Groups D and E. Notably,

Groups D and E were mostly made up of subjects belonging to Group B in the G = 2

setting.

2.5 Discussion

Estimating FC for multi-subject fMRI data to better understand psychiatric disorders

and neurodegenerative diseases is of clinical importance. We proposed a penalized

model-based clustering method, the RCCM, to use fMRI data to simultaneously clus-

ter subjects and provide interpretable estimates of both subject- and cluster-level FC

networks. Additionally, we also proposed a modified stARS method for regularization
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selection that obtains more interpretable estimates of FC networks than current ap-

proaches. We showed the competitive performance of RCCM compared to conducting

clustering and estimation sequentially rather than concurrently through simulations un-

der varying settings. Lastly, we displayed the utility of RCCM through application to a

resting-state fMRI data set collected on participants diagnosed with schizophrenia and

healthy controls finding evidence to support the disconnection hypothesis among those

diagnosed with schizophrenia. A corresponding R package for the proposed RCCM and

related functions is available for download at https://github.com/dilernia/rccm.

Although the proposed RCCM addresses short comings in current methods for ana-

lyzing multi-subject fMRI data sets, the method could be improved to better facilitate

analyses in higher dimensions. Additionally, the proposed RCCM relies on the assump-

tion of independent observations within subjects which is likely violated for fMRI data

in which observations are known to exhibit autocorrelation. In Chapter 3, we present

an asymptotic distribution for the empirical partial correlations of a multivariate time

series to facilitate inference of FC that accounts for autocorrelation in the data.
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Table 2.1: Clustering performance of RCCM, Ward, and K-means clustering using

stARS for tuning parameter selection. Results are for G = 2 unbalanced groups, true

precision matrices with entries large or small in magnitude, and group overlap being

0.20, 0.50, or 0.80 for each of 104 subjects averaged across 100 simulations. Ward

clustering was based on a difference matrix of the Frobenius-norm differences between

matrix estimates, while K-means clustering was based on vectorized GLasso matrix

estimates.

Magnitude Overlap Method RI RIadj

High 0.2 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 1.000 (0.000) 1.000 (0.000)

0.5 RCCM 0.995 (0.046) 0.990 (0.100)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 0.987 (0.072) 0.975 (0.145)

0.8 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 1.000 (0.000) 1.000 (0.000)

Low 0.2 RCCM 0.997 (0.008) 0.995 (0.015)

Ward & GGL 0.971 (0.031) 0.942 (0.062)

GLasso & K-means 0.529 (0.013) -0.007 (0.023)

0.5 RCCM 0.993 (0.012) 0.986 (0.023)

Ward & GGL 0.962 (0.038) 0.923 (0.076)

GLasso & K-means 0.531 (0.031) -0.002 (0.066)

0.8 RCCM 0.982 (0.030) 0.963 (0.060)

Ward & GGL 0.921 (0.067) 0.842 (0.135)

GLasso & K-means 0.527 (0.012) -0.008 (0.024)
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Table 2.2: Clustering performance of RCCM, Ward, and K-means clustering using

stARS for tuning parameter selection. Results are for G = 3 unbalanced groups, true

precision matrices with entries large or small in magnitude, and group overlap being

0.20, 0.50, or 0.80 for each of 104 subjects averaged across 100 simulations. Ward

clustering was based on a difference matrix of the Frobenius-norm differences between

matrix estimates, while K-means clustering was based on vectorized GLasso matrix

estimates.

Magnitude Overlap Method RI RIadj

High 0.2 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 0.865 (0.125) 0.717 (0.263)

0.5 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 0.888 (0.127) 0.765 (0.266)

0.8 RCCM 0.878 (0.116) 0.767 (0.219)

Ward & GGL 0.999 (0.003) 0.998 (0.007)

GLasso & K-means 0.975 (0.077) 0.948 (0.156)

Low 0.2 RCCM 0.910 (0.058) 0.822 (0.112)

Ward & GGL 0.892 (0.060) 0.786 (0.117)

GLasso & K-means 0.526 (0.031) -0.002 (0.066)

0.5 RCCM 0.901 (0.062) 0.805 (0.120)

Ward & GGL 0.872 (0.067) 0.748 (0.132)

GLasso & K-means 0.513 (0.011) -0.030 (0.019)

0.8 RCCM 0.917 (0.058) 0.835 (0.119)

Ward & GGL 0.885 (0.061) 0.771 (0.121)

GLasso & K-means 0.520 (0.015) -0.013 (0.027)
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Table 2.3: Comparison of method performances for G = 2 unbalanced groups contain-

ing 67 and 37 subjects. Results are for the high magnitude setting with observations of

p = 10 variables and n = 177 observations for each subject using stARs for tuning pa-

rameter selection, averaged across 100 simulations. Group-level performance measures

for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.913 0.091 0.673 1.000 0.134 0.580

(0.000) (0.006) (0.014) (0.000) (0.004) (0.008)

Ward & GGL 0.913 0.088 0.682 1.000 0.092 0.666

(0.000) (0.006) (0.015) (0.000) (0.003) (0.007)

GLasso & K-means 1.000 0.093 0.664

(0.000) (0.003) (0.007)

0.5 RCCM 1.000 0.066 0.724 0.929 0.120 0.587

(0.000) (0.005) (0.017) (0.004) (0.006) (0.012)

Ward & GGL 1.000 0.084 0.675 0.921 0.076 0.689

(0.000) (0.005) (0.013) (0.002) (0.003) (0.008)

GLasso & K-means 0.921 0.077 0.687

(0.002) (0.003) (0.009)

0.8 RCCM 0.705 0.078 0.710 0.910 0.148 0.641

(0.155) (0.025) (0.094) (0.033) (0.009) (0.028)

Ward & GGL 0.900 0.045 0.847 0.848 0.093 0.726

(0.051) (0.024) (0.075) (0.066) (0.018) (0.050)

GLasso & K-means 0.856 0.091 0.731

(0.054) (0.014) (0.038)
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Table 2.4: Comparison of method performances for G = 2 unbalanced groups contain-

ing 67 and 37 subjects. Results are for the low magnitude setting with observations of

p = 10 variables and n = 177 observations for each subject using stARs for tuning pa-

rameter selection, averaged across 100 simulations. Group-level performance measures

for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.588 0.120 0.507 0.887 0.011 0.947

(0.099) (0.036) (0.093) (0.037) (0.005) (0.021)

Ward & GGL 0.091 0.018 0.522 0.238 0.002 0.965

(0.059) (0.013) (0.282) (0.087) (0.002) (0.030)

GLasso & K-means 0.124 0.000 0.994

(0.044) (0.001) (0.015)

0.5 RCCM 0.592 0.148 0.524 0.806 0.020 0.924

(0.095) (0.050) (0.092) (0.063) (0.007) (0.024)

Ward & GGL 0.096 0.020 0.644 0.155 0.002 0.961

(0.072) (0.028) (0.279) (0.067) (0.002) (0.037)

GLasso & K-means 0.159 0.000 0.993

(0.019) (0.000) (0.007)

0.8 RCCM 0.574 0.115 0.650 0.639 0.017 0.936

(0.125) (0.076) (0.081) (0.136) (0.006) (0.017)

Ward & GGL 0.097 0.015 0.778 0.130 0.001 0.977

(0.059) (0.025) (0.235) (0.048) (0.001) (0.023)

GLasso & K-means 0.118 0.000 0.993

(0.017) (0.000) (0.006)
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Table 2.5: Comparison of method performances for G = 3 unbalanced groups containing

61, 24, and 19 subjects. are for the high magnitude setting with observations of p = 10

variables and n = 177 observations for each subject using stARs for tuning parame-

ter selection, averaged across 100 simulations. Group-level performance measures for

GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.999 0.143 0.598 0.997 0.159 0.570

(0.007) (0.021) (0.029) (0.008) (0.011) (0.009)

Ward & GGL 0.998 0.108 0.663 0.988 0.120 0.636

(0.011) (0.016) (0.030) (0.010) (0.013) (0.017)

GLasso & K-means 0.988 0.120 0.636

(0.010) (0.013) (0.016)

0.5 RCCM 0.994 0.133 0.653 0.999 0.170 0.596

(0.056) (0.022) (0.039) (0.009) (0.014) (0.028)

Ward & GGL 1.000 0.086 0.745 0.997 0.124 0.667

(0.000) (0.017) (0.039) (0.002) (0.007) (0.012)

GLasso & K-means 0.977 0.120 0.678

(0.116) (0.022) (0.056)

0.8 RCCM 0.869 0.113 0.673 0.969 0.152 0.615

(0.027) (0.002) (0.007) (0.006) (0.007) (0.010)

Ward & GGL 0.858 0.093 0.714 0.913 0.094 0.709

(0.033) (0.015) (0.032) (0.012) (0.008) (0.017)

GLasso & K-means 0.914 0.095 0.708

(0.011) (0.008) (0.016)
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Table 2.6: Comparison of method performances for G = 3 unbalanced groups containing

61, 24, and 19 subjects. are for the low magnitude setting with observations of p = 10

variables and n = 177 observations for each subject using stARs for tuning parame-

ter selection, averaged across 100 simulations. Group-level performance measures for

GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.984 0.020 0.912 0.935 0.017 0.926

(0.065) (0.019) (0.083) (0.040) (0.010) (0.040)

Ward & GGL 0.298 0.000 0.994 0.314 0.002 0.976

(0.091) (0.004) (0.067) (0.073) (0.002) (0.021)

GLasso & K-means 0.158 0.000 0.996

(0.020) (0.000) (0.005)

0.5 RCCM 0.801 0.005 0.974 0.796 0.006 0.975

(0.124) (0.024) (0.125) (0.041) (0.002) (0.008)

Ward & GGL 0.192 0.002 0.966 0.222 0.002 0.966

(0.080) (0.009) (0.170) (0.062) (0.002) (0.032)

GLasso & K-means 0.107 0.001 0.990

(0.041) (0.002) (0.024)

0.8 RCCM 0.746 0.028 0.897 0.702 0.028 0.899

(0.066) (0.025) (0.088) (0.051) (0.017) (0.052)

Ward & GGL 0.232 0.001 0.992 0.274 0.006 0.946

(0.100) (0.005) (0.056) (0.077) (0.004) (0.027)

GLasso & K-means 0.162 0.001 0.991

(0.022) (0.000) (0.007)
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Table 2.7: Summary of clustering results for specifying G = 2 or 3 clusters. For G = 2,

Group A had the highest proportion of participants diagnosed with schizophrenia with

66.7% of first-episode participants, and 75.0% of participants diagnosed with chronic-

episode schizophrenia. Healthy controls, however, were more evenly distributed between

the two groups, with 53.5% and 46.5% in Groups A and B respectively. Results forG = 3

groups were not as clear, with most subjects being clustered into Group C.

G Group Control 1st Episode Chronic

2 A 23 (53.5%) 14 (66.7%) 30 (75.0%)

B 20 (46.5%) 7 (33.3%) 10 (25.0%)

3 C 21 (48.8%) 12 (57.1%) 28 (70.0%)

D 10 (23.3%) 6 (28.6%) 8 (20.0%)

E 12 (27.9%) 3 (14.3%) 4 (10.0%)



Chapter 3

Inference of Partial Correlations

for a Stationary Multivariate

Time Series

3.1 Introduction

The partial correlation coefficient measures the strength of the linear relationship be-

tween two variables of interest after removing the effect of other variables, and has been

commonly used to describe conditional dependencies in areas such as ecology (Damos,

2016), geoscience (Erb, 2020), genomics (de la Fuente et al., 2004), and neuroimaging

(Marrelec et al., 2006). The sampling distribution of a single partial correlation coef-

ficient for independent and normally distributed data was first derived geometrically

by Fisher (1924). Others have derived the distribution facilitating various procedures

for conducting inference of individual partial correlations (Wilks, 1932; Cramer, 1974;

Gupta, 1977; Williams, 1978; Bergsma, 2020). However, these methods of inference

rely on an assumption of independent observations which is violated in time series data

where observations are correlated over time, possibly resulting in spurious correlations

(Student, 1914; Granger and Newbold, 1974). Addressing this issue, some have pro-

posed use of adjusted degrees of freedom measures (Afyouni et al., 2019), pre-whitening

data to remove autocorrelation present in the data prior to analysis (Haugh, 1976), and

35
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modified standard error estimators (Bartlett, 1946). A limitation of these approaches

though is the reliance on correctly specifying a model for autocorrelation present in the

data (Box and Newbold, 1971). Moreover, these approaches provide inference proce-

dures for correlations when autocorrelation is present, but they do not fully characterize

the large-sample sampling distribution of the partial correlations.

Assuming independent observations, the asymptotic joint distribution of partial cor-

relations has been derived (Hedges and Olkin, 1983). However, to the best of our

knowledge an asymptotic distribution for the partial correlations of a general multi-

variate time series has not been formally derived. Partial correlations are distinctly

important compared to marginal correlations since they adjust for the possible delayed

effects of other variables for multivariate time series data. Moreover, inference of par-

tial correlations is important for applications such as functional connectivity analysis in

neuroimaging studies in which use of marginal or partial correlations can yield varying

results (Marrelec et al., 2006; Kim et al., 2015).

We derive an asymptotic distribution for the partial correlations of a weakly sta-

tionary multivariate time series using a second-order Taylor series approximation and

properties of quadratic forms of multivariate normal random vectors. Based on this de-

rived distribution, we propose Wald based confidence intervals and testing procedures

for inference of individual partial correlations when autocorrelation is present. We show

through simulations the advantage of our proposed inferential procedures compared to

others which assume independent observations, achieving closer to nominal false positive

rates when autocorrelation is present.

In Section 3.2.1, we first review the definition of the partial correlation and then

provide the large-sample distribution of the partial correlation coefficients. In Section

3.2.2, we derive a corresponding asymptotic covariance matrix for the empirical partial

correlations. Then, in Section 3.3 we propose inferential methods based on our derived

asymptotic distribution. In Section 3.4, we demonstrate the utility of our inference

procedures for finite samples via simulation. Lastly, in Section 3.5 we conclude with a

discussion of our findings and future directions.
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3.2 Asymptotics of Sample Partial Correlations

3.2.1 Asymptotic Distribution

Let x(t) = {xk}pk=1 be an N -length realization of a p-variate Gaussian process that

is second-order stationary and ergodic with xk ∈ RN for k = 1, 2, . . . , p. Generally,

a Gaussian process is stationary provided that it has a constant mean and that its

covariance function c(xi(t − `), xj(t)) = cij(`) only depends on the lag between points

given by `. The sample partial correlation between any pair of variables can be expressed

using the ordinary least squares (OLS) residuals. Specifically, letting ei·(ij) and ej·(ij)

be the N -length vectors of OLS residuals from regressing xi and xj respectively on the

other p− 2 variables {xk}k 6=i,j , it follows that the empirical partial correlation between

xi and xj is

rij·(ij) = f(

[
ei·(ij)

ej·(ij)

]
) = f(eij) =

eTi·(ij)ej·(ij)√
eTi·(ij)ei·(ij)e

T
j·(ij)ej·(ij)

, (3.1)

so that rij·(ij) is equivalent to the sample marginal correlation between ei·(ij) and ej·(ij).

Further assuming that each of the p variables have square integrable spectral density

functions, we will show that the empirical partial correlations {rij·(ij)}i 6=j are jointly

asymptotically normal. First, we present the necessary conditions to derive the asymp-

totic joint distribution of the partial correlations of a multivariate time series.

1. All fourth-order cumulants of x(t) are 0.

2. The spectral density functions of each component of x(t) are square-integrable.

3. Each component of x(t) is a stochastic linear process with finite variance meaning:

(a) x(t) =
∞∑̀
=0

A(`)ε(t−`), where ε(t−`) is the vector of one-step linear prediction

residuals at lag `.

(b) E[ε(t1)ε(t2)T ] =

0, t1 6= t2

Σ, t1 = t2

, where Σ ∈ Rq×q is nonsingular.

(c) E[ε(t)] = 0

(d)
∞∑̀
=0

||A(`)||2 <∞, where || · || is the Euclidean norm.
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4. The first through fourth moments of ε(t|Ft−1) are all finite constants, where Ft−1

is the sub σ-algebra generated by {x(t′) : t′ < t}.

We note that conditions 1 and 2 correspond to a result regarding the asymptotic normal-

ity of marginal correlations of a multivariate time series obtained using the multivariate

delta method (Roy, 1989; Serfling, 1980), and conditions 3 and 4 correspond to a the-

orem establishing the joint asymptotic normality of empirical covariances for a general

multivariate time series (Hannan, 1976).

Theorem 1. Let x(t) = {xk(t)}pk=1 be an ergodic, second-order stationary p-variate

Gaussian process satisfying conditions 1 through 4 above. Then if rij·(ij) is the empirical

partial correlation between xi and xj based on an N -length realization of x(t), it follows

that
√
N(rij·(ij)−ρij·(ij)) converges in distribution to a normal with mean the population

partial correlation ρij·(ij) for all i 6= j.

A proof of Theorem 1 is provided in Appendix B. We next present a theorem providing

an explicit form for the asymptotic covariance structure of the partial correlations in

Section 3.2.2.

3.2.2 Asymptotic Covariance Estimator

Assuming the conditions of Theorem 1, it follows that {ei·(ij)} are N -length Gaussian

vectors. In this setting, we present the asymptotic covariance structure for any two

empirical partial correlations.

Theorem 2. Let ei·(ij), ej·(ij), ek·(km), and em·(km) be N -length Gaussian random

vectors. Then the asymptotic variance of rij·(ij) is 1
2 [tr (H[f(θij)]ΣijH[f(θij)]Σij)],

where tr(·) denotes the trace function, Σij = Cov(
[
eTi·(ij) eTj·(ij)

]T
), and H[f(θij)] is a

Hessian matrix derived in Appendix B. Moreover, the asymptotic covariance between

rij·(ij) and rkm·(km) is 1
2 tr
(
H[f(θij)]Σeijkm12H[f(θkm)]ΣT

eijkm12

)
, where Σeijkm12 =

Cov(
[
eTi·(ij) eTj·(ij)

]T
,
[
eTk·(km) eTm·(km)

]T
).

A proof of Theorem 2 is also provided in Appendix B. In the proof, we approximate

rij·(ij) and rkm·(km) as quadratic forms of multivariate normal random vectors which

means they are asymptotically distributed as a generalized χ2 distribution (Imhof, 1961).
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However, to facilitate more general inference we apply the conditions and result of The-

orem 1 to obtain that the empirical partial correlations are asymptotically multivariate

normal. The established asymptotic normality allows us to derive novel Wald-based

confidence intervals and testing procedures for partial correlations of a multivariate

time series.

3.3 Inferential Methods

We demonstrate the utility of our derived distribution and asymptotic covariance ma-

trix in finite samples by implementing Wald confidence intervals for individual partial

correlations and a Wald testing procedure for testing if each partial correlation is equal

to 0. Specifically, we calculate 100× (1−α)% Wald confidence intervals for each ρij·(ij),

the population-level partial correlation, as rij·(ij) ± Zα/2 × SE(rij·(ij)), where rij·(ij) is

the empirical partial correlation as defined in Equation (3.1), Zα/2 is the α/2 quantile of

the standard normal distribution, α is the significance level where we use α = 0.05 cor-

responding to 95% confidence intervals, and SE(rij·(ij)) is the standard error of rij·(ij)

for i, j = 1, 2, . . . , p. The approximate standard error based on our second-order Taylor

series approximation for rij·(ij) is the square root of 1
2 [tr (H[f(θij)]ΣijH[f(θij)]Σij)] as

derived in Appendix B. There are several options for estimating the covariance matrix

Σij , but we use tapered covariance estimators for each of the four blocks of Σij and

method of moments estimators for the Hessian matrices H[f(θij)] (Westgate, 2014).

We also propose a Wald test for testing whether individual partial correlations were

0 or not i.e., H0: ρij·(ij) = 0 vs. HA: ρij·(ij) 6= 0. The corresponding Wald test statistic

is Tw;ij = r2
ij·(ij)/SE(rij·(ij))

2. We note that this testing procedure is equivalent to using

a likelihood ratio test, and thus under the null hypothesis Tw;ij asymptotically follows

a χ2 distribution with 1 degree of freedom (Wilks, 1938). Hence, we reject the null

hypothesis if Tw;ij ≥ χ2
(1;1−α), where χ2

(1;1−α) ≈ 3.84 for α = 0.05.
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3.4 Simulations

3.4.1 Setup

We implemented simulations to assess the performance of confidence intervals and infer-

ence procedures using our derived asymptotic distribution. We considered three different

numbers of variables (p ∈ {5, 10, 15}), two different sample sizes (N ∈ {100, 500}), three

different levels of autocorrelation (φ ∈ {0, 0.40, 0.80}), and generated partial correlations

either uniformly from the set {−0.30, 0, 0.30} or as all being zero, yielding 36 unique

settings in total. A total of 1,000 data sets were generated for each setting with N

observations of a p-variate first-order autoregressive model with correlation parameter

φ. Simulations were conducted using R (R Core Team, 2021).

For comparison approaches to construct confidence intervals, we considered three

other approaches: a näıve confidence interval assuming normally distributed and inde-

pendent observations, a Fisher-transformed interval also assuming normally distributed

and independent observations, and a block-bootstrap interval for each partial cor-

relation. For the näıve approach, the estimated standard error for rij·(ij) is (1 −
r2
ij·(ij))/(

√
N − p) (Cramer, 1974; Ferguson, 2002). Thus, a näıve 95% confidence in-

terval for ρij·(ij) is rij·(ij) ± t∗(N−p)

√
(1− r2

ij·(ij))/(N − p) where t∗(N−p);α/2 is the α/2

quantile of a t-distribution with N −p degrees of freedom (Levy and Narula, 1978). For

the Fisher-transformed intervals, we constructed Wald intervals centered around the

inverse hyperbolic tangent of the partial correlations given by

tanh−1(rij·(ij)) =
1

2
log
(
(1 + rij·(ij))/(1− rij·(ij))

)
,

and under an assumption of independent and normally distributed observations

tanh−1(rij·(ij)) converges to a normal distribution with mean tanh−1(ρij·(ij)) and vari-

ance 1/(N−p−1) (Cramer, 1974; Fisher, 1915). Thus, we constructed Wald confidence

intervals for tanh−1(ρij·(ij)) centered around tanh−1(rij·(ij)) using an estimated stan-

dard error of 1/
√
N − p− 1, and then transformed the endpoints using the hyperbolic

tangent function to obtain a corresponding interval for ρij·(ij). For the block-bootstrap,

we used the α/2 and 1− (α/2) quantiles calculated from 1,000 bootstrap samples, and

we selected the block-length using an automatic selection algorithm for stationary mul-

tivariate time series data (Politis and White, 2004).
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For comparison approaches for hypothesis testing of partial correlations, we im-

plemented a näıve t-test, a Wald test based on a Fisher transformation, and a block-

bootstrap testing procedure. The näıve t-test statistic is tij = rij·(ij)
√

(N − p)/(1− r2
ij·(ij))

which we compared to the quantiles of a student’s t distribution with N − p de-

grees of freedom (Levy and Narula, 1978). The Fisher-transformed test-statistic is

Zij = tanh−1(rij·(ij))/
√

(N − p− 1) which we compared to the quantiles of a standard

normal distribution. For the block-bootstrap, we rejected the null hypothesis that the

true partial correlation was 0 provided that 0 was outside the α/2 and 1−α/2 quantiles

of the 1,000 generated bootstrap samples.

3.4.2 Results

Simulation results are summarized in Tables 3.1 and 3.2. Table 3.1 displays the cover-

age rates from constructing 95% confidence intervals for individual partial correlations.

Overall, all four approaches considered achieved close to the nominal coverage rate of

95% for the independence setting (φ = 0). As expected, when autocorrelation was

present the block-bootstrap and Taylor series approximation approach based on our

derived asymptotic distribution attained coverage rates closer to the nominal rate than

the näıve and Fisher transformation intervals which assume independent observations.

We also observe that as the sample size (N) increased, the intervals based on our

Taylor series approximation and the block-bootstrap approached the nominal coverage

rate of 95% for all numbers of variables and all levels of autocorrelation. The Fisher

transformation and näıve approaches, however, attained lower coverage rates as the

sample size increased when a moderate to high amount of autocorrelation was present

(φ ∈ {0.40, 0.80}).
Table 3.2 displays the results of testing for a zero partial correlation for each of the q

unique partial correlations comparing our approach to the competing methods. Overall,

from Table 3.2 we observe that in general the Taylor series Wald test and the block-

bootstrap perform similarly in terms of Matthews correlation coefficient (MCC), both

outperforming the Fisher transformation and näıve approaches when autocorrelation is

present, while achieving similar MCC values in the independence setting. The Taylor

approximation and the block-bootstrap also outperformed the Fisher and näıve testing

approaches in terms of both the false positive rate (FPR) and false discovery rate
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(FDR) when autocorrelation was present, while still achieving similar FPR and FDR

values in the independence case. The only setting in which there was a meaningful

difference between the block-bootstrap and our Wald test based on our Taylor series

approximation was the high autocorrelation (φ = 0.80) low sample size (N = 100) case,

in which the block-bootstrap achieved somewhat lower FPR and FDR values. For the

large sample size setting though (N = 500) the methods again performed very similarly

in terms of FPR and FDR values. When implemented properly, the block-bootstrap

provides a flexible approach for inference across a variety of settings. However, it can

be computationally expensive especially in high-dimensional settings. An advantage

of our approach compared to the block-bootstrap is potential gains in computational

efficiency. Moreover, our derived covariance estimator can more easily be integrated

into other modeling frameworks such as hierarchical models for multi-subject analysis.

3.5 Discussion

In this chapter, we provided the asymptotic distribution and covariance matrix for

the empirical partial correlations of a second-order stationary multivariate time se-

ries. Although current methods exist for inference of partial correlations assuming

independent and normally distributed observations, we showed how ignoring autocor-

relation present in the data can result in significantly lower than nominal coverage

rates for confidence intervals and inflated false positive rates in hypothesis testing,

consistent with previous work (Student, 1914; Granger and Newbold, 1974). Using

our derived asymptotic distribution for inference procedures performed similarly to the

block-bootstrap which is a competitive method of inference for multivariate time series

data. Our derived covariance estimator and asymptotic distribution provide tools for FC

analysis of single-subject fMRI data sets based on the partial correlations. Moreover,

our derived asymptotic distribution can be incorporated into other statistical mod-

els such as hierarchical models for analyzing data sets with multiple subjects. An

R package implementing our derived asymptotic covariance estimator is available at

https://github.com/dilernia/pcCov.

Although our derived asymptotic distribution and covariance matrix address short

comings in current approaches for conducting inference of partial correlations for time
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series data, our inferential procedures could be improved for smaller sample sizes. In

particular, we observed that our derived asymptotic covariance between each pair of

empirical partial correlations performed somewhat poorly for small sample sizes. In

Chapter 4, we demonstrate the utility of our derived asymptotic distribution for analyz-

ing multi-subject data sets in which information can be pooled across subjects allowing

for improved estimation of the covariances between partial correlations.
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Table 3.1: Individual coverage rates from 1,000 simulations for 95% confidence intervals

of individual partial correlations based on N observations. Note that p is the total

number of variables and φ is the autocorrelation parameter.

N p φ Taylor Approximation Block-Bootstrap Fisher Transform Näıve

100 5 0 0.936 0.934 0.939 0.956

0.4 0.924 0.918 0.899 0.922

0.8 0.826 0.874 0.653 0.692

10 0 0.935 0.935 0.939 0.950

0.4 0.920 0.919 0.899 0.918

0.8 0.798 0.887 0.674 0.712

15 0 0.910 0.912 0.914 0.919

0.4 0.890 0.899 0.874 0.884

0.8 0.775 0.897 0.692 0.719

500 5 0 0.947 0.946 0.948 0.960

0.4 0.941 0.933 0.902 0.918

0.8 0.919 0.906 0.640 0.664

10 0 0.914 0.907 0.915 0.927

0.4 0.920 0.906 0.873 0.887

0.8 0.906 0.899 0.632 0.659

15 0 0.726 0.714 0.728 0.748

0.4 0.772 0.751 0.703 0.722

0.8 0.843 0.841 0.562 0.580
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Table 3.2: True positive rate (TPR), false positive rate (FPR), Matthews correlation

coefficient (MCC), and false discovery rate (FDR) based on 1,000 simulations for testing

if each individual partial correlation is nonzero.

N = 100 N = 500

Metric p φ Taylor Bootstrap Fisher Näıve Taylor Bootstrap Fisher Näıve

TPR 5 0 0.873 0.860 0.855 0.868 1.000 1.000 1.000 1.000

0.4 0.798 0.791 0.818 0.830 1.000 1.000 1.000 1.000

0.8 0.577 0.527 0.715 0.727 0.935 0.940 0.991 0.991

10 0 0.774 0.748 0.749 0.768 1.000 1.000 1.000 1.000

0.4 0.704 0.685 0.720 0.737 0.999 0.999 1.000 1.000

0.8 0.549 0.464 0.650 0.663 0.887 0.894 0.977 0.977

15 0 0.579 0.534 0.545 0.570 0.999 0.999 0.999 0.999

0.4 0.539 0.491 0.543 0.566 0.990 0.991 0.995 0.995

0.8 0.480 0.344 0.544 0.560 0.769 0.771 0.927 0.928

FPR 5 0 0.063 0.064 0.054 0.060 0.051 0.053 0.050 0.051

0.4 0.074 0.082 0.089 0.099 0.058 0.064 0.095 0.097

0.8 0.171 0.122 0.336 0.351 0.084 0.095 0.360 0.363

10 0 0.061 0.059 0.050 0.058 0.053 0.054 0.051 0.053

0.4 0.079 0.077 0.088 0.099 0.057 0.064 0.094 0.096

0.8 0.203 0.112 0.311 0.326 0.088 0.088 0.350 0.353

15 0 0.058 0.051 0.048 0.055 0.052 0.055 0.050 0.052

0.4 0.083 0.068 0.086 0.097 0.059 0.066 0.094 0.096

0.8 0.213 0.086 0.276 0.293 0.100 0.091 0.349 0.352

MCC 5 0 0.822 0.810 0.815 0.821 0.954 0.952 0.955 0.954

0.4 0.744 0.728 0.747 0.748 0.948 0.942 0.915 0.914

0.8 0.437 0.446 0.397 0.392 0.861 0.855 0.678 0.676

10 0 0.695 0.672 0.681 0.692 0.958 0.957 0.960 0.959

0.4 0.611 0.595 0.616 0.622 0.954 0.949 0.926 0.925

0.8 0.345 0.367 0.332 0.331 0.791 0.799 0.693 0.691

15 0 0.539 0.511 0.524 0.536 0.954 0.951 0.956 0.954

0.4 0.476 0.454 0.477 0.484 0.938 0.933 0.914 0.912

0.8 0.277 0.304 0.269 0.267 0.664 0.675 0.614 0.612

FDR 5 0 0.059 0.060 0.052 0.057 0.041 0.043 0.040 0.041

0.4 0.073 0.084 0.085 0.093 0.046 0.051 0.074 0.075

0.8 0.200 0.157 0.298 0.304 0.071 0.080 0.246 0.248

10 0 0.045 0.044 0.038 0.043 0.030 0.031 0.029 0.030

0.4 0.062 0.062 0.067 0.074 0.032 0.036 0.052 0.053

0.8 0.178 0.121 0.222 0.226 0.055 0.054 0.176 0.177

15 0 0.069 0.065 0.060 0.066 0.037 0.039 0.036 0.037

0.4 0.101 0.091 0.103 0.111 0.042 0.047 0.065 0.067

0.8 0.245 0.152 0.273 0.279 0.087 0.080 0.219 0.220



Chapter 4

A Group-Comparison Procedure

for Partial Correlations of a

Stationary Multivariate Time

Series

4.1 Background

The analysis of multi-subject fMRI data is increasingly important to facilitate under-

standing of neurodegenerative and psychiatric diseases (Craddock et al., 2013). One

approach for examining differences in the fMRI data collected between clinically rele-

vant groups is to describe alterations in FC of the brain. In this setting, many graphical

modeling approaches have been proposed for detecting group-level differences in FC.

Zalesky et al. (2010) proposed a network based statistic for group-level inference of

FC that reduces the family-wise error rate while maintaining power by accounting for

dependencies between differential edges in group-level networks. Also using a network

based approach, Chen et al. (2020a) proposed a method for testing for topological dif-

ferences in FC between clinically relevant groups via subnetwork identification. Chen

et al. (2020b) proposed a novel Bayesian nonparametric model which uses the network

topological structure based on the empirical covariances between connectivity edges for

46
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improved inference. Using a mixed-effects model, Simpson and Laurienti (2015) mod-

eled both the strength and probability of edges between ROIs in a graphical modeling

approach. Fiecas et al. (2017) used a mixed effects model for comparing FC between

groups of subjects using the marginal correlations between ROIs. Their model also

accounted for within group heterogeneity of the autocorrelation structure and the true

marginal correlations for each subject. For a more thorough review of group comparison

methods for FC analysis of neuroimaging data see Kim et al. (2014) and Ginestet et al.

(2014).

An important limitation of many of these approaches is an implicit assumption of

independent observations even though fMRI data are known to exhibit autocorrelation

(Friston et al., 1995). While the variance components model of Fiecas et al. (2017) does

account for autocorrelation present in the data when conducting group-level inference,

it uses an asymptotic covariance estimator for the marginal correlations, but not partial

correlations. Smith et al. (2011) found under various settings for resting-state fMRI

data that for detecting true differences in FC connections the partial correlation tends

to outperform other measures of association such as the marginal correlation coefficient

and coherence. However, others have found that it depends on the true sparsity structure

of the group-level FC networks (Kim et al., 2015).

In this chapter, we propose a hierarchical model for modeling group-level partial

correlations for multi-subject fMRI data based on the theoretical results presented in

Chapter 3. Based on this hierarchical model, we propose a novel testing procedure for

two-group comparisons of group-level FC. Similar to the variance components model of

Fiecas et al. (2017), our model allows for within-group heterogeneity in terms of both the

autocorrelation structure as well as the true correlations for each individual. The novelty

in our proposed framework is that we are conducting inference based on the partial

correlations rather than the marginal correlations by using our asymptotic covariance

estimator derived in Chapter 3. We demonstrate the competitive performance of our

modeling framework compared to other approaches in terms of power while maintaining

nominal false positive rates through simulations.

For the rest of the chapter, we start with a presentation of our hierarchical model in

Section 4.2. Then, we provide an algorithm for optimizing our corresponding model like-

lihood in Section 4.2.2. In Section 4.3, we propose an asymptotic Wald test for testing
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an overall difference in group-level FC between two groups, and in Section 4.4.2 we de-

scribe alternative testing approaches. In Section 4.4 we describe simulations conducted

to explore the relative performance of our proposed Wald test compared to competing

methods, finding improved power across most settings while maintaining nominal false

positive rates. In Section 4.5 we analyze a resting-state fMRI data set collected on

participants diagnosed with schizophrenia and healthy controls. Lastly, in Section 4.6

we conclude with a discussion of our conclusions and future directions.

4.2 Method

4.2.1 A Hierarchical Model for the Partial Correlations of a Multi-

variate Gaussian Process

Suppose we have fMRI data collected from G = 2 groups each with Kg subjects. For

each subject, we have ngk observations or time points measured at p ROIs. We let

ygkjt denote the tth observation or time point of the jth ROI for the kth subject from

the gth group for g = 1, 2, k = 1, . . . ,Kg, j = 1, . . . , p, and t = 1, . . . , ngk. Using

partial correlations to describe FC for each group, we assume a hierarchical structure

for the data to allow for similar but different subject-level FC within each group which

is illustrated in Figure 4.1. As depicted in Figure 4.1, we let {ρ0g}Gg=1 be the vectors of

true group-level partial correlations of length q = p(p− 1)/2 which describe the average

or group-level FC for each group. To account for inter-subject heterogeneity within

each group, we assume that {{ρgk
ind∼ Nq(ρ0g,Σ0g)}Kgk=1}

G
g=1. That is, we assume that

each individual’s vector of true partial correlations is normally distributed with mean

being the group-level partial correlations. Lastly, to describe sampling variability in

the empirical partial correlations for each individual, we assume that {{rgk|ρgk
ind∼

Nq(ρgk, Σ̃gk)}Kgk=1}
G
g=1. That is, we assume that each individual’s partial correlations

are normally distributed with their own subject-specific mean and covariance matrix.

The subject-specific mean allows for within-group heterogeneity in terms of FC, while

the subject-specific covariance matrix allows for unique autocorrelation structures for

each individual which in turn affect the uncertainty in the empirical partial correlations.
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Level Model Interpretation

Group {ρ0g}Gg=1 Set of G group-level partial

correlations describing group-level FCy
Individual {{ρgk

ind∼ Nq(ρ0g,Σ0g)}Kgk=1}
G
g=1 Set of K individual-level partial

correlations describing unique individual-

level FCy
Observation {{rgk|ρgk

ind∼ Nq(ρgk, Σ̃gk)}Kgk=1}
G
g=1 Set of empirical partial correlations

from nk observations of p variables

for subject k of group g where p is the

number of ROIs

Figure 4.1: A normal-normal hierarchical model for the partial correlations of a multi-

variate Gaussian process.

Based on our proposed framework, our model likelihood for the subject-level empir-

ical partial correlations is

L(Θ|{ygkjt}) =
G∏
g=1

Kg∏
k=1

f(rgk|ρgk, Σ̃gk)f(ρgk|ρ0g,Σ0g),

where Θ = {ρgk,ρ0g,Σ0g} for g = 1, 2, . . . , G and k = 1, 2, . . . ,Kg, and f(x|µ,Σ) is

the probability density function of a multivariate normal random vector with mean µ

and covariance matrix Σ. Thus, our model log-likelihood is

`(Θ|{ygkjt}) =

G∑
g=1

Kg∑
k=1

log
(
f(rgk|ρgk, Σ̃gk)

)
+ log (f(ρgk|ρ0g,Σ0g)) . (4.1)

4.2.2 Computational Algorithm

Given an observed data set, we can calculate the empirical partial correlations for each

subject and the estimated Σ̃gk using the covariance estimator derived in Chapter 3. We
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now seek to maximize the model log-likelihood in Equation (4.1) with respect to Θ. In

particular, we obtain estimates for Θ = {ρgk,ρ0g,Σ0g} using block-coordinate descent

(Wright, 2015). Our optimization algorithm is as follows:

1. Initialize the ρ0g and Σ0g. We suggest initializing ρ0g as ρ
(0)
0g = 1

Kg

Kg∑
k=1

rgk, each

ρgk as ρ
(0)
gk = 1

2(rgk + ρ
(0)
0g ) and each Σ0g as Σ0g

(0) = 1
Kg

Kg∑
k=1

(ρ
(0)
gk − ρ

(0)
0g )(ρ

(0)
gk −

ρ
(0)
0g )T for g = 1, 2, . . . , G and k = 1, . . . ,Kg.

2. Update each ρgk by calculating

ρ
(m+1)
gk =

(
Σ̃−1

gk + Σ0g
−1(m)

)−1 (
Σ̃−1

gkrgk + Σ0g
−1(m)

ρ
(m)
0g

)
for g = 1, 2, . . . , G and k = 1, . . . ,Kg.

3. Update each ρ0g by calculating

ρ
(m+1)
0g =

1

Kg

Kg∑
k=1

ρ
(m+1)
gk

for g = 1, . . . , G.

4. Update each Σ0g by calculating

Σ0g
(m+1) =

1

Kg

Kg∑
k=1

(ρ
(m+1)
gk − ρ(m+1)

0g )(ρ
(m+1)
gk − ρ(m+1)

0g )T

for g = 1, . . . , G.

5. Repeat steps 2 through 4 until convergence defined as

(
`(Θ(m+1)|{ygkjt})− `(Θ(m)|{ygkjt})

)
/`(Θ(m)|{ygkjt}) < ε,

where ε is a small positive number. Thus, convergence is attained when the percent

increase in the model log-likelihood is less than 100 × ε, where we used ε = 0.01

corresponding to a 1% increase.
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We note that the updates for the ρgk in step 2 are a weighted-average of the group-

level partial correlations ρ0g and the empirical individual-level partial correlations rgk.

We also note for the update of the group-level covariance matrices Σ0g in step 4 that

the estimate of Σ0g is positive definite if and only if the number of subjects in the

group, Kg, is greater than the number of unique partial correlations, q. However, we

suggest use of a regularized covariance estimator such as the graphical lasso or other

shrinkage estimators to ensure that the resulting covariance matrices are positive definite

(Friedman et al., 2007; Schäfer and Strimmer, 2005).

4.3 Wald Test

We consider the setting in which we have G = 2 groups each with Kg subjects. Based on

the calculated empirical partial correlations rgk, the asymptotic covariance estimators

Σ̃gk, and the estimated Θ parameters obtained above, we propose a novel Wald hypoth-

esis testing procedure to test the equality of the set of q group-level partial correlations

i.e., H0: ρ01 = ρ02 vs. HA: ρ01 6= ρ02.

Based on our model above and letting r̄0g = 1
Kg

Kg∑
k=1

rgk, it follows that r̄0g
ind∼

Nq(ρ0g, Σ̃0g + 1
Kg

Σ0g), where ρ0g ∈ Rq is the vector of unique group-level partial

correlations, and Σ̃0g = 1
K2
g

Kg∑
k=1

Σ̃gk for g = 1, 2, . . . , G. Hence, the test statistic for

the Wald test testing the equality of all q partial correlations for G = 2 groups is then

calculated as

Tw = (r̄01 − r̄02)T (Σ̃01 + Σ01/K1 + Σ̃02 + Σ02/K2)−1 (r̄01 − r̄02) ,

which asymptotically follows a χ2 distribution with q degrees of freedom under the

null of the group-level partial correlations being equal across the two groups. Thus,

for an α-level significance test we reject the null hypothesis of ρ01 = ρ02 if Tw ≥
χ2

(q;1−α) where χ2
(q;1−α) is the 100 × (1 − α)th percentile of a Chi-squared distribution

with q degrees of freedom. However, we found empirically that the test statistic was

inflated when the number of subjects in each group was not very large. This was

likely due to the asymptotic covariance estimates for the group-level covariance matrices

Σ0g being poorly estimated based on a smaller amount of data. Using a regularized
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covariance estimator when the number of subjects in the group is small could potentially

alleviate this issue (Schäfer and Strimmer, 2005; Friedman et al., 2007). To maintain a

false positive rate closer to the nominal level, we use a permutation testing procedure

using our proposed Wald test statistic. For the permutation test, we permute the

group memberships of each of the K1 + K2 number of individuals P times to obtain

a distribution of P permutation test statistics. Then, we reject the null hypothesis if

Tw ≥ χ2∗
(1−α), where χ2∗

(1−α) is the 95th percentile of the P permutation test statistics

for α = 0.05.

4.4 Simulations

4.4.1 Setup

We implemented simulations to assess the performance of our proposed inference proce-

dures for group comparisons of partial correlations. We considered two different numbers

of variables (p ∈ {5, 10}), one sample size (N = 255), three different levels of autocor-

relation (φ ∈ {0, 0.40, 0.80}), and setting q − p of the group-level partial correlations to

be 0 and p of the partial correlations to be 0.20 identically across the two groups in the

null setting. For the non-null setting of the groups having different partial correlations,

we reduced the magnitude of all nonzero partial correlations for one group by 30%, so

nonzero partial correlations for the second group were set to be 0.14 instead of 0.20.

Data were generated with either 16 and 19 individuals or 59 and 54 individuals to ex-

plore settings with a smaller and larger number of subjects in each group. A total of 500

data sets were generated for each setting with N observations of a p-variate first-order

autoregressive (AR) model with correlation parameter φ.

There were two forms of heterogeneity that we introduced within each group: het-

erogeneity in the amount of autocorrelation in the data and heterogeneity in the true

partial correlations for each subject. To induce heterogeneity for the autocorrelation

present for each individual, we generated the autocorrelation parameter for each subject

from a N (φ, σ2 = 0.052) distribution. Thus, it is possible that some subjects’ data were

generated from an AR model with an autocorrelation parameter larger than 1, violating

the assumption of an ergodic time series. However, this was unlikely to happen often,

even in the φ = 0.80 setting, and would only attest to the robustness of our model when
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misspecified in this manner. In addition to autocorrelation, we also introduced hetero-

geneity in each individual’s true partial correlation ρgk by setting them equal to the true

group-level partial correlations ρ0g plus some noise generated from a N (0, σ2 = 0.102)

distribution. All of the parameter settings for our simulations were selected to match

estimates from our motivating fMRI data set. Simulations were conducted using R (R

Core Team, 2021).

4.4.2 Comparison Methods

For comparison approaches for testing the equality of partial correlations across two

groups, we considered four other permutation testing approaches: a Wald test based on

a variance components model (Fiecas et al., 2017), a Wald test using a block-bootstrap

covariance estimator (Carlstein, 1986), a multivariate Hotelling t-test (Hotelling, 1931),

and a permutation testing procedure based on the mean squared differences (MSD) of

the partial correlations between the two groups. For each of the approaches considered,

a permutation testing procedure based on P = 500 permutations of each individual’s

group membership was used to alleviate inflated false positive rates. The 95th percentile

of each test’s respective permutation distribution was used to determine statistical sig-

nificance at the 5% significance level.

In general, the two-sample Hotelling t-test is not defined when the number of com-

ponents of the vector of interest, q, exceeds K1 +K2 − 1. However, using the Hotelling

package in R we implemented a shrinkage estimator for the covariance matrix ensuring

the Hotelling test statistic is always defined (Curran, 2018). For the block-bootstrap

approach, we obtained a block-bootstrap covariance estimator for the difference r̄01−r̄02

based on B = 500 bootstrap samples. The block length for the procedure was selected

for each individual via an automatic selection algorithm for time series data (Politis and

White, 2004). This covariance estimator was constant across the 500 permutations for

the permutation testing procedure, but the difference between the estimated group-level

correlation vectors varied across the permutations.
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4.4.3 Results

Results for 500 simulations comparing the performance of our proposed Wald testing

procedure to the other competing methods are summarized in Tables 4.1 and 4.2 and

Figures 4.2 and 4.3. Tables 4.1 and 4.2 display the relative performances of the methods

for testing for any difference in the group-level partial correlations evaluated by power

and false positive rates for detecting true group-level differences in terms of partial

correlations. Figures 4.2 and 4.3 display receiver operating characteristic (ROC) curves

conveying the tradeoff between true and false positive rates for the methods considered.

The ROC curves were created using the ggplot2 package in R (Wickham, 2016).

From Figures 4.2 and 4.3, we observe that across all settings the methods tend to

perform worse as the amount of autocorrelation increases as expected. We note that

since the number of differences between each group’s set of partial correlations increases

linearly with the number of variables the methods are better able to detect differences

between the groups for p = 10 variables as compared to p = 5 variables. We also

note that all methods perform quite similarly in the independence case (φ = 0) and

when a small amount of autocorrelation is present (φ = 0.40). However, when a high

amount of autocorrelation is present (φ = 0.80) with a smaller number of subjects in

each group, our Normal-Normal Wald test and the VCM approaches outperform the

other competing methods.
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Figure 4.2: Receiver operating characteristic (ROC) curves displaying the trade-off

between the true and false positive rates for detecting any difference in the set of group-

level partial correlations for p = 5 variables.
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Figure 4.3: Receiver operating characteristic (ROC) curves displaying the trade-off

between the true and false positive rates for detecting any difference in the set of group-

level partial correlations for p = 10 variables.

Table 4.1 displays results for simulations with p = 5 variables for each subject and

also shows the better performance overall by the Normal-Normal Wald test and the

VCM compared to the other competing methods. The Normal-Normal Wald test and

the VCM achieve the same or higher power than the other competing methods across all

settings, most noticeably when a high amount of autocorrelation is present. Although

all methods attained similar false positive rates due to using permutation testing pro-

cedures, the Normal-Normal model and the VCM approaches achieved higher power

and thus better performance overall. This is likely since the Normal-Normal and VCM

approaches account for the heterogeneity within each group in terms of autocorrela-

tion and the true partial correlations for each subject, whereas the Hotelling and MSD

methods do not. The block-bootstrap does account for autocorrelation, which is why
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it has a slight improvement in performance compared to the Hotelling and MSD ap-

proaches when autocorrelation is present in the small sample size setting, but it is still

outperformed by the Normal-Normal and VCM models. The only potentially mean-

ingful difference between the Normal-Normal model and the VCM in terms of power is

in the high autocorrelation (φ = 0.80) setting with 16 and 19 subjects in each group,

in which the Normal-Normal model achieved slightly higher power. We observed in

simulations that this was likely due to the Normal-Normal model obtaining a better

estimate of the difference between the group-level partial correlation vectors than the

VCM model, which uses a weighted average of the empirical partial correlations within

each group. Thus, if more heterogeneity were present in each subjects’ autocorrelation

or in the number of observations, we would expect the VCM to potentially outperform

the Normal-Normal model.

Table 4.2 displays results for simulations with p = 10 variables for each subject.

As with p = 5 variables, all methods perform similarly in terms of false positive rates,

achieving values close to 0.05 across all settings due to all methods using a permuta-

tion testing procedure. Although the methods all perform somewhat similarly overall

as displayed in Figures 4.2 and 4.3, a general trend across the settings again is that

the Normal-Normal, VCM, and block-bootstrap approaches tend to outperform the

Hotelling and MSD approaches in terms of power, indicating better overall performance

especially in the high autocorrelation settings when each group has a smaller number

of subjects. Hence, when a high amount of autocorrelation is present, we suggest use of

the Normal-Normal, VCM, and block-bootstrap approaches for group comparisons of

partial correlations. As with p = 5 variables, again the only noticeable difference in the

performance of the Normal-Normal model and the VCM is in the high-autocorrelation

setting (φ = 0.80) when a smaller number of subjects are in each group. In this case the

Normal-Normal model achieved roughly 10% higher power than the VCM, again likely

due to better estimates of the difference between the group-level correlation vectors.

4.5 Data Analysis

Altered FC patterns among those with schizophrenia and related disorders have been

found in a number of previous studies (Giraldo-Chica and Woodward, 2016). In a study
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by Woodward and Heckers (2015), participants with chronic psychosis were found to

have reduced FC of the thalamus with cerebellum and inferior parietal lobule regions.

Giraldo-Chica et al. (2018) found increased thalamic anatomical connectivity with oc-

cipital regions among those with schizophrenia, and Li et al. (2019) found increased

connectivity among the right medial prefrontal cortex and right superior temporal cor-

tex for those diagnosed with schizophrenia compared to healthy controls. Woodward

et al. (2012) found reduced FC between the thalamus and the prefrontal cortex among

those with schizophrenia compared to healthy controls.

Our motivating data set consists of resting-state fMRI data collected on 64 total

participants: 29 healthy controls and 35 participants diagnosed with chronic or first-

episode schizophrenia. The mean age of participants diagnosed with schizophrenia was

29.4 years (range 20 to 53 years) and 35.6 years (range 18 to 59 years) for the healthy

controls. Resting-state fMRI data were acquired using a Siemens Trio 3T scanner with

the following acquisition parameters: gradient-echo echo-planar imaging 260 volumes,

repetition time = 2 s, echo time = 30 ms, flip angle = 90◦, 34 contiguous ACPC aligned

axial slices, voxel size = 3.4 × 3.4 × 4.0 mm, matrix = 64 × 64 × 34. Imaging data

were preprocessed using ICA-AROMA with the software tool fMRIPrep (Pruim et al.,

2015; Esteban et al., 2019). The initial 5 volumes were removed before analysis, leaving

255 total volumes. After preprocessing, ROIs were extracted using an atlas created

by Desikan et al. (2006). In an attempt to maintain statistical power, we only used

a subset of these ROIs in our analysis. Based on previous studies, we selected 14 of

the ROIs to compare participants diagnosed with schizophrenia and healthy controls in

terms of group-level FC (Anticevic et al., 2014; Woodward and Heckers, 2015; Giraldo-

Chica et al., 2018; Li et al., 2019; Woodward et al., 2012). The selected ROIs and their

corresponding abbreviations are provided in Table 4.3.

We applied our proposed Wald testing procedure to our motivating data set to test

for an overall difference in group-level FC between those with schizophrenia and healthy

controls. Based on our permutation testing procedure, we did not find a statistically

significant difference (permutation p-value = 0.360). This was consistent with the results

of the other competing methods since all other methods obtained a p-value greater

than or equal to 0.320. As displayed in Figures 4.4 and 4.5, the estimated group-

level partial correlations do indeed look quite similar, consistent with the finding of
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the methods. However, not finding a statistically significant difference in the overall

group-level partial correlations is inconsistent with previous studies. This could be due

to an insufficient number of subjects for simultaneously testing 91 correlations or the

high level of autocorrelation in the data. Either of these aspects could potentially limit

our statistical power as illustrated by our simulation results.

Although there was not a statistically significant overall difference in group-level

FC, Figure 4.6 displays differences in FC connections for the control group compared to

the schizophrenia group. We observe that the largest difference in strength was for the

connection between the right hemisphere thalamus (TSR) and the left hemisphere lateral

occipital cortex (LOL). This was the largest pairwise difference between the groups and

is consistent with the results of Giraldo-Chica et al. (2018) who also found differential

connectivity between thalamic and occipital regions among participants diagnosed with

schizophrenia.
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Figure 4.4: Estimated group-level partial correlations for the healthy controls. Full

descriptions for the 14 selected ROIs are provided in Table 4.3.
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Figure 4.5: Estimated group-level partial correlations for the participants diagnosed

with schizophrenia. Full descriptions for the 14 selected ROIs are provided in Table 4.3.
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Figure 4.6: Difference in estimated group-level partial correlations between healthy

controls and the schizophrenia group. Full descriptions for the 14 selected ROIs are

provided in Table 4.3.
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4.6 Discussion

In this chapter, we proposed a hierarchical model for comparing multiple subjects in

terms of group-level FC that directly accounts for autocorrelation in the data and hetero-

geneity within each group in terms of FC. We showed how accounting for autocorrelation

can lead to increased power when using permutation testing procedures compared to

competing approaches, while still maintaining a nominal false positive rate. We did

not find a statistically significant difference between healthy controls and participants

diagnosed with schizophrenia in terms of group-level FC for our real data set. However,

we saw from pairwise differences of group-level partial correlations that potential dif-

ferences in FC did exist. Thus, our inference procedures may have been under-powered

due to a high amount of autocorrelation in the data or testing too many correlations

simultaneously. A larger number of subjects or using a smaller number of ROIs could

increase our power to detect any difference in group-level FC.

Although we provided a flexible model for conducting group-level inference of partial

correlations, our modeling framework is only feasible for a smaller number of variables

(p < 30) due to computational constraints. This is since the number of estimated

parameters for the asymptotic covariance estimator from Chapter 3 is quartic (p4) in

the number of variables. A more computationally efficient estimator for the covariance

matrix would allow analyzing fMRI data with hundreds of ROIs which may provide a

more detailed picture of group-level differences in FC. Another aspect that could be

explored is the use of a regularized precision matrix estimator for obtaining estimated

partial correlations (Kim et al., 2015). We did not use regularization in our simulations

or analysis, but this could be potentially useful in higher-dimensional settings. To

extend our modeling framework, one could allow for a dynamic correlation structure

across time. A model that allowed for time varying correlations would facilitate FC

analysis for task-based fMRI studies as well.
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Table 4.1: Performances across 500 simulations for normal-normal hierarchical model
(Normal-Normal), variance components model (VCM), a block-bootstrap based per-
mutation test (Bootstrap), Hotelling t-test (Hotelling), and mean squared difference
permutation test (MSD). Results are for p = 5 variables and 16 and 19 or 59 and 54
subjects in each group, with 255 observations for each of p variables for each subject and
autocorrelation parameter φ. True positive rate (TPR) and false positive rate (FPR)
are for a two group comparison testing a true difference in any of the group-level partial
correlations.

Ks φ Metric Normal-Normal VCM Bootstrap Hotelling MSD

16 & 19 0 TPR 0.976 0.982 0.976 0.958 0.954
FPR 0.054 0.052 0.050 0.048 0.044

0.4 TPR 0.940 0.938 0.924 0.882 0.886
FPR 0.046 0.050 0.044 0.044 0.038

0.8 TPR 0.486 0.462 0.428 0.372 0.354
FPR 0.038 0.048 0.042 0.042 0.034

59 & 54 0 TPR 1.000 1.000 1.000 1.000 1.000
FPR 0.048 0.058 0.054 0.042 0.052

0.4 TPR 1.000 1.000 1.000 1.000 1.000
FPR 0.042 0.052 0.046 0.040 0.046

0.8 TPR 0.988 0.992 0.958 0.976 0.966
FPR 0.054 0.054 0.046 0.048 0.050
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Table 4.2: Performances across 500 simulations for normal-normal hierarchical model
(Normal-Normal), variance components model (VCM), a block-bootstrap based per-
mutation test (Bootstrap), Hotelling t-test (Hotelling), and mean squared difference
permutation test (MSD). Results are for p = 10 variables and 16 and 19 or 59 and 54
subjects in each group, with 255 observations for each of p variables for each subject and
autocorrelation parameter φ. True positive rate (TPR) and false positive rate (FPR)
are for a two group comparison testing a true difference in any of the group-level partial
correlations.

Ks φ Metric Normal-Normal VCM Bootstrap Hotelling MSD

16 & 19 0 TPR 0.996 0.992 0.994 0.970 0.972
FPR 0.050 0.060 0.054 0.054 0.054

0.4 TPR 0.972 0.970 0.906 0.916 0.908
FPR 0.058 0.058 0.070 0.072 0.062

0.8 TPR 0.532 0.424 0.380 0.420 0.394
FPR 0.050 0.044 0.020 0.054 0.054

59 & 54 0 TPR 1.000 1.000 1.000 1.000 1.000
FPR 0.044 0.050 0.056 0.052 0.048

0.4 TPR 1.000 1.000 1.000 1.000 1.000
FPR 0.052 0.056 0.048 0.058 0.054

0.8 TPR 0.998 0.996 0.970 0.988 0.986
FPR 0.038 0.034 0.010 0.042 0.044

Table 4.3: Selected ROIs and their abbreviations.
Region Abbreviation

Thalamus (left hemisphere) TSL
Thalamus (right hemisphere) TSR
Cerebellum white matter (left hemisphere) CWL
Cerebellum white matter (right hemisphere) CWR
Cerebellum grey matter (left hemisphere) CGL
Cerebellum grey matter (right hemisphere) CGR
Inferior parietal cortex (left hemisphere) IPL
Inferior parietal cortex (right hemisphere) IPR
Lateral occipital cortex (left hemisphere) LOL
Lateral occipital cortex (right hemisphere) LOR
Medial orbital frontal cortex (left hemisphere) MFL
Medial orbital frontal cortex (right hemisphere) MFR
Superior temporal gyrus (left hemisphere) STL
Superior temporal gyrus (right hemisphere) STR



Chapter 5

Discussion

In this thesis, we proposed multiple approaches for modeling and analyzing FC for

multi-subject resting-state fMRI data. In Chapter 2 we proposed a penalized model-

based clustering method, the RCCM, for fMRI data collected on multiple participants

which concurrently estimates FC and groups subjects based on FC of the brain. We

showed the competitive performance of RCCM compared to current methods which

implement estimation and clustering sequentially. Then, in Chapter 3 we considered

the issue of autocorrelation in fMRI data when testing partial correlation coefficients.

Specifically, we presented an asymptotic distribution and covariance structure for the

empirical partial correlations of a multivariate Gaussian process, facilitating inference

of partial correlations for FC analysis. We also showed the competitive performance

of our proposed inference procedures compared to current testing approaches such as

the block-bootstrap for time series data and näıve approaches assuming independent

observations. Lastly, in Chapter 4 we proposed a hierarchical model for comparing

group-level FC for multi-subject fMRI data sets based on the partial correlations. Our

hierarchical model accounts for both within and between group heterogeneity in terms

of FC, and thus outperforms methods that assume identical FC structures within each

group.

In future work, we envision developing an unsupervised or supervised method for

grouping patients based on FC that directly accounts for temporal correlation com-

monly exhibited in fMRI data. This could be an extension of the RCCM proposed in

64
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Chapter 2 and our hierarchical model proposed in Chapter 4. Overall, the methods pro-

posed in this work contribute to a vast and continuously growing collection of methods

for neuroimaging analysis and will hopefully prove useful for clinical practice moving

forward.
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Appendix A

Chapter 2 Supplementary

Materials

Several equations and formulas in Chapter 2 are not trivial and require more justifica-

tion. This appendix shows some supplementary tables as well as brief derivations.

Updates for πg’s

With a LaGrange multiplier constraint to force
G∑
g=1

πg = 1, the terms of Q(Θ; Θ(r))

containing πg’s are

Qπ(Θ; Θ(r)) = −2
K∑
k=1

G∑
g=1

w
(r)
gk (log πg) + γ

 G∑
g=1

πg − 1

 ,

so

∂Qπ(Θ; Θ(r))

∂πg
= − 2

πg

K∑
k=1

w
(r)
gk + γ = 0 =⇒

πgγ = 2
K∑
k=1

w
(r)
gk =⇒ π(r+1)

g =
1

K

K∑
k=1

w
(r)
gk

since
G∑
g=1

πg =
G∑
g=1

w
(r)
gk = 1.
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Updates for Ω0g’s

The terms of Q(Θ; Θ(r)) containing Ω0g’s are

QΩ0g(Θ; Θ(r)) = −2

K∑
k=1

w
(r)
gk log

(
pg(Ωk
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)

+ λ3||Ω0g||1 =
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which can be solved using the covariance lasso algorithm.

Updates for Ωk’s

The terms of Q(Θ; Θ(r)) containing Ωk’s are

QΩk(Θ; Θ(r)) =

nk∑
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(
− log |Ωk|+ yT

ktΩkykt
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−2

G∑
g=1

w
(r)
gk

(
λ2 − p− 1

2
log |Ωk| −

1

2
tr(λ2Ω0g

(r)−1
Ωk)

)
+λ1||Ωk||1 =

nk∑
t=1

(
tr(ykty

T
ktΩk)− log |Ωk|

)
+

G∑
g=1

w
(r)
gk

(
λ2tr(Ω0g

(r)−1
Ωk)− (λ2 − p− 1) log |Ωk|

)
+λ1||Ωk||1 =
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tr(nkSkΩk) + tr(λ2

G∑
g=1

w
(r)
gk Ω0g

(r)−1
Ωk)− log |Ωk|(nk + (λ2 − p− 1)) + λ1||Ωk||1,

since
G∑
g=1

w
(r)
gk = 1 and Sk = 1

nk

nk∑
t=1

ykty
T
kt. Therefore,

QΩk(Θ; Θ(r)) = tr

(nkSk + λ2

G∑
g=1

w
(r)
gk Ω0g

(r)−1
)Ωk

−log |Ωk|(nk+λ2−p−1)+λ1||Ωk||1 ∝

tr


nkSk + λ2

G∑
g=1

w
(r)
gk Ω0g

(r)−1

nk + λ2 − p− 1
Ωk

− log |Ωk|+
λ1

nk + λ2 − p− 1
||Ωk||1,

which is solved using the glasso algorithm.

Updates for wgk’s

w
(r+1)
gk =

π
(r+1)
g pg(Ωk

(r+1);λ2,Ω0g
(r+1))

G∑
c=1

π
(r+1)
c pc(Ωk

(r+1);λ2,Ω0c
(r+1))

=
π

(r+1)
g exp

(
−λ2

2 tr(Ω0g
(r+1)−1

Ωk
(r+1))

)
|Ω0g

(r+1)|−
λ2
2

G∑
c=1

π
(r+1)
c exp

(
−λ2

2 tr(Ω0c
(r+1)−1

Ωk
(r+1))

)
|Ω0c

(r+1)|−
λ2
2

.

Selecting the Number of Clusters

For selecting the number of clusters, we used a gap statistic as proposed by Tibshirani et

al. (2001). Generally, the gap statistic compares the observed change in within-cluster

dispersion of a clustering of subjects when specifying different numbers of clusters to

what is expected under a corresponding null setting based on the observed data. For the

setting in which we have data for K subjects each with nk observations of p variables,

we calculate a gap statistic for the RCCM as follows:
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1. Obtain the estimated clustering of subjects using RCCM when specifying G total

clusters for G = 2, . . . , Gmax where Gmax is the maximum number of clusters to

be considered.

2. Calculate the GLasso estimate for the kth subject using a small amount of penal-

ization for k = 1, 2, . . . ,K. We used a tuning parameter value of 10−16 so that

the optimal number of clusters was invariant to the choice of tuning parameters.

3. Calculate the log of the within-cluster variability for the observed data when

specifying G total clusters for G = 2, . . . , Gmax as

VG = log

 G∑
g=1

K∑
k=1

p∑
i=1

p∑
j=1

(ωk;i,j − ω̄g;i,j)2 · zgk/(G · p2)

 , (A.1)

where log(·) is the natural log, zgk = 1{subject k is in cluster g} is an indicator

of the kth subject belonging to the gth cluster, ω̄g;i,j =
K∑
k=1

(ωk;i,j · zgk)/Ng is the

average value of the GLasso estimate entry in the ith row and jth column for

subjects in the gth cluster, and Ng =
K∑
k=1

zgk is the number of subjects in the gth

cluster. We note that VG represents the log of the average variance of the precision

matrix entries across subjects within each cluster.

4. Generate B reference data sets for K subjects and obtain the estimated clustering

of subjects using RCCM when specifying G total clusters for G = 2, . . . , Gmax.

Specifically, generate nk observations for the kth subject from a Np(0,Ω−1
bk ). The

entry in the ith row and jth column of Ω−1
bk is generated from a

uniform
(
min{ωk;i,j}Kk=1,max{ωk;i,j}Kk=1

)
distribution where {ωk;i,j}Kk=1 are the GLasso

entries for the observed data. We adjust the Ω−1
bk matrix to make it positive defi-

nite if needed.

5. Implement the RCCM for each generated data set varying the specified number of

clusters, and calculate VG;b for b = 1, 2, . . . , B and G = 2, . . . , Gmax as described

in Equation (A.1).

6. Calculate the estimated gap statistics as
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Gap(G) =
1

B

B∑
b=1

(VG;b − VG) = V̄ − VG.

7. Choose the optimal number of clusters as

G∗ = arg min{G : Gap(G) ≥ Gap(G+ 1)− σG+1},

where σG+1 =

√
B∑
b=1

(VG;b−V̄ )
2

B ·
√

1 + 1/B.

Table A.1: Accuracy of gap statistic across 100 simulations for selecting the correct

number of clusters, where G is the true number of clusters, Magnitude indicates whether

the true precision matrices had entries high or low in magnitude, and Overlap is the

proportion of overlapping edges across clusters.

G Magnitude Overlap Accuracy

2 High 0.20 1.00

0.50 1.00

0.80 1.00

Low 0.20 1.00

0.50 0.99

0.80 0.97

3 High 0.20 1.00

0.50 1.00

0.80 1.00

Low 0.20 1.00

0.50 1.00

0.80 0.99
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Table A.2: Clustering performance of RCCM, Ward, and K-means clustering using

5-fold CV for tuning parameter selection. Results are for G = 2 unbalanced groups,

true precision matrices with entries large or small in magnitude, and group overlap

being 0.20, 0.50, or 0.80 for each of 104 subjects averaged across 100 simulations. Ward

clustering was based on a difference matrix of the Frobenius-norm differences between

matrix estimates, while K-means clustering was based on vectorized GLasso matrix

estimates.

Magnitude Overlap Method RI RIadj

High 0.2 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 1.000 (0.000) 1.000 (0.000)

0.5 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 1.000 (0.000) 1.000 (0.000)

0.8 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 1.000 (0.000) 1.000 (0.000)

Low 0.2 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 0.998 (0.007) 0.996 (0.014)

GLasso & K-means 0.998 (0.009) 0.996 (0.018)

0.5 RCCM 1.000 (0.003) 0.999 (0.005)

Ward & GGL 0.996 (0.012) 0.992 (0.025)

GLasso & K-means 0.988 (0.034) 0.976 (0.067)

0.8 RCCM 0.992 (0.015) 0.983 (0.031)

Ward & GGL 0.950 (0.047) 0.900 (0.094)

GLasso & K-means 0.909 (0.152) 0.810 (0.324)
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Table A.3: Clustering performance of RCCM, Ward, and K-means clustering using

5-fold CV for tuning parameter selection. Results are for G = 3 unbalanced groups,

true precision matrices with entries large or small in magnitude, and group overlap

being 0.20, 0.50, or 0.80 for each of 104 subjects averaged across 100 simulations. Ward

clustering was based on a difference matrix of the Frobenius-norm differences between

matrix estimates, while K-means clustering was based on vectorized GLasso matrix

estimates.

Magnitude Overlap Method RI RIadj

High 0.2 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 0.853 (0.124) 0.691 (0.260)

0.5 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 1.000 (0.000) 1.000 (0.000)

GLasso & K-means 0.872 (0.124) 0.733 (0.259)

0.8 RCCM 1.000 (0.000) 1.000 (0.000)

Ward & GGL 0.999 (0.003) 0.998 (0.007)

GLasso & K-means 0.965 (0.088) 0.928 (0.180)

Low 0.2 RCCM 0.999 (0.003) 0.998 (0.007)

Ward & GGL 0.995 (0.009) 0.989 (0.020)

GLasso & K-means 0.934 (0.100) 0.863 (0.206)

0.5 RCCM 0.999 (0.003) 0.998 (0.007)

Ward & GGL 0.991 (0.012) 0.980 (0.026)

GLasso & K-means 0.929 (0.094) 0.855 (0.190)

0.8 RCCM 0.989 (0.019) 0.975 (0.041)

Ward & GGL 0.945 (0.040) 0.880 (0.086)

GLasso & K-means 0.896 (0.098) 0.788 (0.192)
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Table A.4: Comparison of method performances for G = 2 unbalanced groups contain-

ing 67 and 37 subjects. Results are for the high magnitude setting with observations

of p = 10 variables and n = 177 observations for each subject using 5-fold CV for

tuning parameter selection, averaged across 100 simulations. Group-level performance

measures for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.999 0.210 0.507 1.000 0.626 0.252

(0.007) (0.041) (0.046) (0.002) (0.029) (0.014)

Ward & GGL 1.000 0.322 0.400 1.000 0.451 0.319

(0.000) (0.049) (0.037) (0.005) (0.010) (0.011)

GLasso & K-means 1.000 0.452 0.318

(0.005) (0.010) (0.011)

0.5 RCCM 1.000 0.250 0.501 1.000 0.626 0.286

(0.000) (0.018) (0.019) (0.000) (0.056) (0.016)

Ward & GGL 1.000 0.247 0.507 1.000 0.437 0.364

(0.000) (0.044) (0.044) (0.000) (0.008) (0.004)

GLasso & K-means 1.000 0.438 0.363

(0.000) (0.008) (0.004)

0.8 RCCM 0.947 0.247 0.508 1.000 0.736 0.255

(0.000) (0.021) (0.021) (0.000) (0.071) (0.020)

Ward & GGL 0.951 0.304 0.459 1.000 0.444 0.360

(0.013) (0.043) (0.037) (0.000) (0.007) (0.004)

GLasso & K-means 1.000 0.446 0.359

(0.000) (0.007) (0.004)
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Table A.5: Comparison of method performances for G = 2 unbalanced groups contain-

ing 67 and 37 subjects. Results are for the low magnitude setting with observations

of p = 10 variables and n = 177 observations for each subject using 5-fold CV for

tuning parameter selection, averaged across 100 simulations. Group-level performance

measures for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.996 0.438 0.370 0.999 0.559 0.287

(0.015) (0.236) (0.168) (0.006) (0.188) (0.083)

Ward & GGL 0.990 0.387 0.369 0.989 0.429 0.350

(0.023) (0.141) (0.130) (0.015) (0.151) (0.128)

GLasso & K-means 0.803 0.212 0.443

(0.046) (0.048) (0.042)

0.5 RCCM 0.989 0.476 0.390 0.992 0.586 0.314

(0.023) (0.245) (0.157) (0.013) (0.186) (0.081)

Ward & GGL 0.849 0.341 0.427 0.877 0.376 0.412

(0.066) (0.160) (0.151) (0.046) (0.174) (0.151)

GLasso & K-means 0.682 0.200 0.464

(0.047) (0.041) (0.034)

0.8 RCCM 0.990 0.789 0.307 0.993 0.810 0.314

(0.032) (0.139) (0.043) (0.008) (0.105) (0.029)

Ward & GGL 0.868 0.482 0.507 0.789 0.486 0.390

(0.150) (0.338) (0.275) (0.093) (0.168) (0.062)

GLasso & K-means 0.634 0.226 0.514

(0.050) (0.049) (0.037)
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Table A.6: Comparison of method performances forG = 3 unbalanced groups containing

61, 24, and 19 subjects. Results are for the high magnitude setting with observations

of p = 10 variables and n = 177 observations for each subject using 5-fold CV for

tuning parameter selection, averaged across 100 simulations. Group-level performance

measures for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.913 0.102 0.647 1.000 0.620 0.229

(0.000) (0.005) (0.010) (0.000) (0.007) (0.002)

Ward & GGL 0.940 0.298 0.395 1.000 0.448 0.292

(0.025) (0.030) (0.025) (0.000) (0.007) (0.003)

GLasso & K-means 1.000 0.449 0.291

(0.000) (0.007) (0.003)

0.5 RCCM 1.000 0.092 0.655 0.973 0.619 0.224

(0.000) (0.006) (0.016) (0.005) (0.007) (0.002)

Ward & GGL 1.000 0.277 0.388 0.960 0.444 0.285

(0.000) (0.033) (0.028) (0.005) (0.007) (0.003)

GLasso & K-means 0.960 0.445 0.284

(0.005) (0.007) (0.003)

0.8 RCCM 0.963 0.102 0.723 0.999 0.772 0.274

(0.045) (0.025) (0.060) (0.005) (0.040) (0.019)

Ward & GGL 0.998 0.366 0.432 0.992 0.463 0.384

(0.012) (0.056) (0.034) (0.026) (0.019) (0.028)

GLasso & K-means 0.997 0.463 0.385

(0.009) (0.017) (0.027)
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Table A.7: Comparison of method performances forG = 3 unbalanced groups containing

61, 24, and 19 subjects. Results are for the low magnitude setting with observations

of p = 10 variables and n = 177 observations for each subject using 5-fold CV for

tuning parameter selection, averaged across 100 simulations. Group-level performance

measures for GLasso are missing since the method does not yield cluster-level estimates.

Overlap Method TPRg FPRg PPVg TPRk FPRk PPVk

0.2 RCCM 0.973 0.455 0.340 0.994 0.551 0.290

(0.076) (0.204) (0.128) (0.012) (0.170) (0.075)

Ward & GGL 0.957 0.380 0.361 0.969 0.393 0.365

(0.103) (0.124) (0.109) (0.026) (0.128) (0.116)

GLasso & K-means 0.696 0.182 0.446

(0.031) (0.020) (0.019)

0.5 RCCM 0.983 0.724 0.280 0.993 0.753 0.275

(0.035) (0.140) (0.044) (0.010) (0.111) (0.029)

Ward & GGL 0.974 0.712 0.280 0.947 0.634 0.302

(0.047) (0.107) (0.041) (0.035) (0.121) (0.033)

GLasso & K-means 0.763 0.249 0.470

(0.041) (0.045) (0.040)

0.8 RCCM 0.964 0.762 0.295 0.985 0.774 0.312

(0.046) (0.126) (0.036) (0.013) (0.108) (0.029)

Ward & GGL 0.834 0.498 0.413 0.789 0.472 0.378

(0.145) (0.252) (0.191) (0.079) (0.124) (0.045)

GLasso & K-means 0.602 0.207 0.509

(0.050) (0.045) (0.034)



Appendix B

Chapter 3 Supplementary

Materials

Gradient Vector and Hessian Matrix

Consider the function

f(
[
x y

]T
) =

xTy√
xTxyTy

=

N∑
k=1

xkyk√
N∑
k=1

x2
k

N∑
k=1

y2
k

,

such that x, y ∈ RN and f : R2N → R. We can approximate this function using

a Taylor series expansion. Specifically, a second-order Taylor series approximation of

f(
[
x y

]T
) around a point θ =

[
θx θy

]T
∈ R2N is given by

f(
[
x y

]T
) = f(θ) + (

[
x y

]T
− θ)T∇f(θ) +

1

2
(
[
x y

]T
− θ)TH(f(θ))(

[
x y

]T
− θ),

where ∇f(θ) is the gradient of f(θ) and H(f(θ)) is the Hessian matrix of f(θ). For the

gradient of f(
[
x y

]T
), we observe that

∂f

∂xi
=

∂

∂xi

(
xTy(xTxyTy)−

1
2

)
=

∂

∂xi

(
N∑
k=1

xkyk(
N∑
k=1

x2
k

N∑
k=1

y2
k)
− 1

2

)
,

90
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= yi(

N∑
k=1

x2
k

N∑
k=1

y2
k)
− 1

2 − xi(
N∑
k=1

x2
k

N∑
k=1

y2
k)
− 3

2 (

N∑
k=1

y2
k)

N∑
k=1

xkyk,

and similarly

∂f

∂yi
= xi(

N∑
k=1

x2
k

N∑
k=1

y2
k)
− 1

2 − yi(
N∑
k=1

x2
k

N∑
k=1

y2
k)
− 3

2 (
N∑
k=1

x2
k)

N∑
k=1

xkyk.

Hence, it follows that the gradient of f(
[
x y

]T
) is given by

∇f(

[
x

y

]
) =

[
∂f
∂x
∂f
∂y

]
=

[
y(xTxyTy)−

1
2 − x(xTxyTy)−

3
2 (yTy)(xTy)

x(xTxyTy)−
1
2 − y(xTxyTy)−

3
2 (xTx)(xTy)

]
∈ R2N .

Moreover, the Hessian matrix of f(
[
x y

]T
) is equivalent to the Jacobian matrix of the

gradient vector given by

H(f(
[
x y

]T
)) =

[
∂2f

∂x∂xT
∂2f

∂y∂xT

∂2f
∂x∂yT

∂2f
∂y∂yT

]
∈ R2N×2N .

Letting IN×N denote the N ×N identity matrix, it follows that

∂2f

∂x∂xT
=− 2(xyT )(xTxyTy)−

3
2 (yTy) + 3(xxT )(xTxyTy)−

5
2 (yTy)2(xTy)

− IN×N · (xTy)(xTxyTy)−
3
2 (yTy),

∂2f

∂y∂xT
=

∂2f

∂x∂yT
=− (xxT )(xTxyTy)−

3
2 (yTy) + (xyT )(xTxyTy)−

3
2 (xTy)

− (yyT )(xTxyTy)−
3
2 (xTx) + IN×N · (xTxyTy)−

1
2 ,

∂2f

∂y∂yT
=− 2(xyT )(xTxyTy)−

3
2 (xTx) + 3(yyT )(xTxyTy)−

5
2 (xTx)2(xTy)

− IN×N · (xTy)(xTxyTy)−
3
2 (xTx).
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Proof of Theorem 1

Proof. We observe that since x(t) is an ergodic stationary stochastic process, e(t) is also

a stationary ergodic process (Samorodnitsky, 2016). Moreover, since the {xi}pi=1 are

normally distributed with square integrable spectral density functions, it follows that

the OLS residuals are normally distributed, and thus all corresponding fourth-order cu-

mulants are 0 (Lauritzen, 2002), so condition 1 is satisfied for e(t). Furthermore, since

a linear combination of square integrable functions is also square integrable, it follows

that the spectral density functions for the OLS residuals are also square integrable, so

condition 2 is met for e(t) as well. Similarly, a linear combination of a linear process with

finite variances is also a linear process with finite variances, so condition 3 is satisfied

for e(t). Lastly, since the OLS residuals are normally distributed, condition 4 is satis-

fied. Hence, by the result of Roy (1989), the empirical partial correlations {rij·(ij)}i 6=j ,
which are equivalent to the marginal correlations between the OLS residuals, are jointly

asymptotically normal with mean the population partial correlation.

Proof of Theorem 2

Proof. To derive an asymptotic covariance estimator for the q =
(
p
2

)
unique partial

correlations, we use a Taylor series approximation of the sample partial correlations

and properties of quadratic forms of multivariate normal random vectors. We ap-

proximate f(·) in Equation (3.1) using a second-order Taylor series expansion around

θij =
[
θi θj

]T
∈ R2N given by

f(eij) = f(θij) + (eij − θij)T∇f(θij) +
1

2
(eij − θij)TH[f(θij)](eij − θij),

where ∇f(θij) = E[f(eij)] ∈ R2N is the expected value of the gradient of f(eij) and

H[f(θij)] = E[H(eij)] ∈ R2N×2N is the expected value of the Hessian matrix of f(eij).

Details regarding the form of the gradient vector and Hessian matrix are provided

in Appendix B. Note that ∇f(θij) = 0, and thus the first term of the Taylor series

is 0. Therefore, a second-order approximation of the variance of f(eij) = rij·(ij) is

Var(rij·(ij)) ≈ 1/4Var
[
(eij − θij)TH[f(θij)](eij − θij)

]
. Moreover, since eij − θij is
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normal with mean 0, it follows by the variance of quadratic forms of multivariate nor-

mal random vectors that Var(rij·(ij)) ≈ 1
2 [tr (H[f(θij)]ΣijH[f(θij)]Σij)], where tr(·)

denotes the trace function and Σij = Cov(eij) ∈ R2N×2N is

Σij =

[
Cov(ei·(ij)) Cov(ei·(ij), ej·(ij))

Cov(ej·(ij), ei·(ij)) Cov(ej·(ij))

]
.

Extending this result to obtain the asymptotic covariance matrix for any pair of partial

correlations, we let eijkm =
[
eTi·(ij) eTj·(ij) eTk·(km) eTm·(km)

]T
∈ R4N , and we consider

the function

g(eijkm) =

 f(
[
eTi·(ij) eTj·(ij)

]T
)

f(
[
eTk·(km) eTm·(km)

]T
)

 =

[
rij·(ij)

rkm·(km)

]
,

such that g : R4N → R2. Through a similar process as in the single partial correlation

case, we observe that the asymptotic covariance matrix of g(eijkm) is

Cov(
[
rij·(ij) rkm·(km)

]T
) ≈

1

4

[
Var(eTijH [f(θij)] eij) Cov(eTijH [f(θij)] eij , e

T
kmH [f(θkm)] ekm)

Cov(eTkmH [f(θkm)] ekm, e
T
ijH [f(θij)] eij) Var(eTkmH [f(θkm)] ekm)

]
.

We have already shown the diagonal entries in the single partial correlation case. For

the off-diagonal terms, we observe that

Cov(eTijH [f(θij)] eij , e
T
kmH [f(θkm)] ekm) =

1

2

(
Var(eTijkmHijkmeijkm)−Var(eTijH[f(eij)]eij)−Var(eTkmH[f(ekm)]ekm)

)
,

where Hijkm =

[
H(f(eij)) 0

0 H(f(ekm))

]
∈ R4N×4N . This is since

Var(eTijkmHijkmeijkm) = Var
(
eTijH[f(eij)]eij + eTkmH[f(ekm)]ekm

)
,

= Var(eTijH[f(eij)]eij) + Var(eTkmH[f(ekm)]ekm)

+ 2Cov(eTijH [f(θij)] eij , e
T
kmH [f(θkm)] ekm).

Again, by the variance of a quadratic form of a multivariate normal random vector,

Var(eTijkmHijkmeijkm) = 2tr
(
HijkmΣeijkmHijkmΣeijkm

)
,
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where Σeijkm = Cov(eijkm) =

[
Cov(eij) Σeijkm12

ΣT
eijkm12 Cov(ekm)

]
∈ R4N×4N , and

Σeijkm12 =

[
Cov(ei·(ij), ek·(km)) Cov(ei·(ij), em·(km))

Cov(ej·(ij), ek·(km)) Cov(ej·(ij), em·(km))

]
∈ R2N×2N .

Thus, the asymptotic covariance between rij·(ij) and rkm·(km) is
1
2tr
(
H[f(θij)]Σeijkm12H[f(θkm)]ΣT

eijkm12

)
.
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