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Abstract

Adaptive compression systems dynamically choose a compression strategy — in-

cluding no compression — by monitoring CPU usage, output rate, expected time to

compress, and perhaps most importantly, the estimated compressibility of the data.

Many adaptive compression systems were designed with the assumption that files

with the same filename extension will compress roughly to the mean compression

ratio (the ratio of compressed size to original size) of some set of files with the same

extension. This implies that the compression ratio distribution follows a normal dis-

tribution. Though a normal distribution of compression ratios may seem intuitive,

this assumption lacks strong empirical supporting evidence. To test this assumption,

we built a tool to compress real-world files from many participants, storing the com-

pressed size, original size, file extension, and other metadata. The results of three

tests for normality indicate that none of the file extensions we analyzed have a nor-

mal distribution, though for some extensions, not all three tests agree. Furthermore,

quantitative analysis reveals that files with the same extension compress according

to multiple different distributions, and we identified some readily accessible metadata

that can separate these files into simpler distributions. We conclude with a discussion

of the utility of mean compressibility as an estimator and the implications this study

has for future research in adaptive compression.
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1 Introduction

Modern technological advances demand massive data collection schemes, and all of

that data must be transported and stored. Beyond data collection for the noble causes

of science, our society collects huge amounts of data for marketing, entertainment,

and other efforts. The Internet Data Corporation estimated that in 2020 alone, 59

zettabytes of data would be generated, copied, and consumed [1]. By the year 2025,

the amount of data stored worldwide is expected to reach 200 zettabytes [2]. To keep

up with data storage requirements, computer systems must find ways to maximize

the amount of information that can be stored on a medium. Reducing required

storage space additionally reduces energy consumption, and with the growing threat

of climate change, we have a moral duty to reduce consumption where possible. The

simplest solution to maximizing data storage efficiency is data compression.

The efficiency of data compression is completely dependent on the data itself.

Whenever characteristics of the data change, we may need to adjust our compression

strategy. The field of Adaptive Compression (AC) creates systems that dynamically

identify the best compression method for a data stream. One critical metric that an

AC system needs to make decisions is an estimate of the file’s compressibility. One

such way of estimating is to use the file’s extension.

AC systems that use file extensions to estimate compressibility must use some

metric, e.g., the mean, median, or mode of a file extension’s compressibility, as the

estimator. If we know that file compressibility is normally distributed, these three

values will be equal. We can then build an extension lookup table for an AC system to
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make accurate and timely compression decisions. If files with a particular extension

do not compress normally, we do not know which metric, if any, will accurately predict

compressibility. For example, if a particular file extension compresses according to a

bimodal distribution, then the file extension will likely be a poor predictor.

To date, there has been no study to test the assumption that compressibility is

normally distributed. Moreover, if a file extension does compress normally, we do not

know the mean compressibility that one would use in a lookup table. Understanding

the relationship between a file extension and compressibility will enable the field of

adaptive compression to design future algorithms based on empirically-tested results.

In this study, we compressed a wide variety of files on multiple systems using

multiple strength levels of three common compression algorithms. The results of three

commonly used tests for normality provide strong evidence that none of the extensions

we analyzed are associated with a normal distribution. We then calculated the mean,

median, and mode (or highest mode, if the distribution appears multimodal) to make

claims about using the mean or mode as estimators. For distributions that appear

multimodal, we investigated whether some other readily accessible metadata (e.g.,

versions of a file format) can separate the data into unimodal distributions. We

conclude with a discussion of the implications for future AC research.
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2 Background

2.1 Overview

Much of the information we store contains redundancy. Though redundancy is

occasionally beneficial, as in error-correcting codes, transmitting and storing redun-

dant data is also wasteful. By removing redundancies from a data stream, we can

represent the same information using fewer symbols. The process of converting a

data stream into a smaller data stream is known as compression. The simplest form

of compression is to drop imperceptible or insignificant bits from the data, but this

technique will always lose some amount of information. Any compression method

that loses information is called lossy compression. When we compress and then de-

compress a stream with a lossy method, we can never reconstruct an identical copy

of the original stream. For some data, it is unacceptable to lose any information; we

must be able to reconstruct an exact copy from the compressed stream. Any method

that preserves all information is called lossless compression.

Lossy compression can discard any amount of information in the encoding pro-

cess, which results in distortion when the data is decompressed. In contrast, loss-

less compression can only compress a stream to a lower bound — the most efficient

representation of the information — beyond which, any further compression would

necessarily cause information loss. This relies on a rather intuitive principle: every

losslessly compressed file has exactly one decompressed representation. If two unique

files F1 and F2 compressed to the same file C, the decompressor cannot know whether

3



F1 or F2 created C. Now, if we tried to create a lossless compressor that could reduce

every file to no more than n bits, the compressor could only produce

n∑
i=0

2n

possible compressed files, restricting the decompressor into producing a finite number

of decompressed representations.

In 1948, Claude Shannon proved that the lower bound to which a file can be

compressed is its entropy [3]. If we treat a file as a random variable X, then the

entropy H(X) is

H(X) = −
∑
i

P (xi) log2 P (xi)

Though we can easily calculate the entropy of a file, in practice, it may be difficult

to achieve this ideal level of compression. To achieve optimal compression for a file, we

must exhaustively search for patterns in the data. Searching for increasingly longer

patterns will eventually provide diminishing gains in space savings.

At its core, data compression is a trade-off between time and space. To achieve

better compression of a data stream, a system must spend greater time compressing

the data. Conversely, reducing the time spent compressing a stream will likely result

in less compression. Though sometimes we may value the extreme optimization of

either space or time, most applications desire a “happy medium” between both di-

mensions. A plethora of compression algorithms have been designed over the decades

to match the varying applications that utilize compression.

All lossless compression algorithms have a complementary decompression algo-

rithm, which may have very different run time compared to the compressor. In-

tuitively, compression usually takes more time than decompression. Searching for

4



exploitable patterns in the data requires more effort than following instructions to

rebuild the original, just as unpacking a car is much easier than finding the best way

to pack it. When either encoding or decoding is significantly faster or less resource

intensive than the other, we call that compression asymmetrical [4]. Asymmetrical

compression is an attractive option for applications that do not compress and decom-

press with the same frequency. For example, some data may be compressed once and

accessed very frequently. In this case, we may be willing to spend greater resources

compressing the data while still enjoying rapid decompression later.

2.2 Common Compression Methods

Most general-purpose lossless compression methods fall into two categories: dic-

tionary or statistical. Dictionary methods use fixed-size codes to represent variable-

length strings of characters. The code lookup table, called the dictionary, specifies

the string that each code represents. The modern era of dictionary-based compres-

sion began in 1977 when Jacob Ziv and Abraham Lempel developed what is now

known as the LZ77 algorithm [5]. LZ77 used a sliding window composed of a search

buffer and a look-ahead buffer, which essentially used the most recently seen strings

as the dictionary. The following year, they created a method that replaced the slid-

ing window with an external dictionary of previously seen strings [6]. Today, most

dictionary-based encoding schemes are variations on either of these two groundbreak-

ing algorithms.

Statistical methods generally use variable-length codes, assigning shorter codes to

the most probable symbols. To use a statistical method, we must know the probability

model of our source alphabet, or we at least need a good estimate. This model may

be permanent, or it may be modified during the encoding process.

5



Huffman Coding

Perhaps the most famous statistical encoding method is Huffman Coding, a prefix

code designed by MIT student David Huffman in 1952 [7]. Huffman designed his code

based on two observations: first, symbols occurring with higher probability should

have shorter codes, and second, the two least probable symbols should have codes of

the same length. Using these two principles, he specified a bottom-up approach to

generate an optimal code:

1. List all symbols si in descending order of probability.

2. Combine the two least probable symbols sn−1, sn into a new symbol α1. The

codes for sn−1 and sn will be α1 ◦ 0 and α1 ◦ 1, where ◦ denotes concatenation.

3. Insert α1 into the list, with P (α1) = P (sn−1) + P (sn).

4. Continue from step 2 until only two symbols remain, which should be s1 and

αn−1. Assign 1 to one symbol and 0 to the other.

The output will always be an optimal and uniquely decodable prefix code, though it

is not guaranteed to be optimal for all possible compression methods. Huffman codes

will leave zero redundancy when all symbols occur with some probability that is a

negative power of two, but their performance decreases when the source alphabet is

very large or the probabilities are highly skewed.

Arithmetic Encoding

The idea behind arithmetic encoding is that every possible message can be mapped

to some unique real number — called a “tag” — in a predefined interval [4]. If we

divide the interval into subintervals with sizes proportional to the probabilities of

each symbol in the alphabet, we can encode a message as a unique tag by recursively
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selecting the interval corresponding to the next symbol to encode and re-partitioning

the new interval into subintervals. For example, say we have some alphabet {a, b, c}

with probabilities P (a) = 0.1, P (b) = 0.2, P (c) = 0.7. For simplicity, we will choose

our interval to be [ 0, 1). If we wish to encode the message a c b, we first divide the

interval into [ 0, 0.1), [ 0.1, 0.3), and [ 0.3, 1). Since the first symbol is a, the tag

will lie somewhere in [ 0, 0.1). We again subdivide the interval, yielding [ 0, 0.01),

[ 0.01, 0.03), and [ 0.03, 0.1). Since the next symbol is c, the tag will lie in [ 0.03, 0.1).

Subdividing the interval and encoding b will give us an interval of [ 0.037, 0.051). We

can now choose any number in this interval, so we could choose 0.037 for simplicity.

The decoder only needs to know the probability model used by the encoder in order

to decode the message. When the source alphabet is small and the probabilities are

highly skewed, arithmetic encoding can compress much more effectively than Huffman

codes.

The drawback is that computers are not well designed for real value arithmetic;

dividing real numbers is slow and will lose precision. Researchers later designed

integer implementations to avoid these drawbacks [8, 9]. This class of arithmetic

coding is now called range encoding. Range encoders can use numbers of any base,

and so their implementations can greatly differ. Though base 2 encoders provide

the strongest compression, base 256 encoders are faster, emitting a byte at a time

instead of a bit. Since they also require fewer renormalizations (resizing the interval

to prevent overflow or underflow), base 256 encoders are more common [4].

2.2.1 Deflate

The Deflate algorithm, patented by Phillip Katz in 1990 [10], forms the basis of

the popular zip file archive format, the gzip application, and the zlib compression
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library [4, 11, 12]. Deflate has been incorporated to the HTTP protocol since at

least 1999, the PNG image format since its inception [13], and the PDF format since

version 1.2 [14].

Deflate uses a combination of Huffman coding and LZSS — a close relative of

LZ77. While LZ77 requires every chunk of data be encoded as a triple (offset, length,

next symbol), LZSS uses an indicator bit to allow string literals when the code would

be longer than the bytes. Furthermore, it condenses the codes to a pair (offset,

length) [15]. Deflate then uses a Huffman code to encode offsets and a separate

Huffman code for lengths and literals [11]. The Deflate encoder and decoder have

two preset Huffman codes that can be used, or they can create unique codes based

on the data. The former is used for default-level compression, and the latter is used

with higher-level compression.

2.2.2 LZ4 & LZ4HC

Yann Collet designed LZ4 in 2011 to maximize compression/decompression speeds

at the cost of weaker compression [16, 17]. LZ4 is strongly related to LZ77, though

it uses a hash table or binary search tree to find matches, rather than LZ77’s linear

search function. To further improve search speed, the hash table must be small enough

to fit in L1 cache. Additionally, LZ4 allows literals to prevent data expansion. LZ4HC

is a recent variant of LZ4 designed for greater compression by spending more time

searching for the best match. Though LZ4HC is slower, it uses the same decompressor

as LZ4, and so it still has very fast decompression.

Because of its high compression and decompression speeds, LZ4 has been incor-

porated into the OpenZFS file system, both to save disk space [18], and because com-

pressing and sending data to a drive may be faster than sending the uncompressed
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data, even with the time added to compress [19].

2.2.3 LZMA/XZ

The Lempel-Ziv Markov-chain Algorithm (LZMA) is the brainchild of Igor Pavlov

designed for high compression and fast decompression [4]. Though decompression is

only slightly slower than Deflate, compression takes nearly ten times longer with

LZMA [20] largely due to a massive dictionary search, which also demands much

more memory. In addition to delivering high compression, LZMA requires only a

small memory footprint for decompressing — only 5 KB plus the dictionary size [21].

LZMA is the basis for the XZ compression application.

LZMA begins compressing by using a modified LZ77 algorithm followed by range

encoding. Though there are numerous changes from LZ77, one important feature is

the array of the four most recent distances. If the file is periodic in nature, certain dis-

tances will occur frequently, allowing the encoder to replace these (potentially large)

distance values with a 2-bit index. Like Deflate, LZMA allows literals, preventing

expansion. To locate matches in the dictionary, LZMA will hash 2, 3, or 4 bytes at

a time (depending on the size of the dictionary) to locate a pointer to either a list or

a binary search tree (the user can select the former for better speed, or the latter for

better compression). Once the dictionary encoder has found the best match, a range

encoder passes through, much like how Deflate finishes with Huffman encoding.

2.3 Adaptive Compression

Not all data compresses equally. Intuitively, the greater the redundancy, the

higher we can compress a data stream. For example, a file consisting of the characters

aabbaabb will compress much more effectively than a file containing acbdbcad. Data

9



streams with minimal redundancy, such as files that have already been compressed

or files containing random data, may not compress at all. A file of random data

may actually expand if processed by a compressor, since compressors generally add a

dictionary or other header information for the decompressor. It is therefore important

that we understand some information about the data stream before we attempt to

compress it in order to avoid unintended expansion and wasted resources.

The field of adaptive compression (AC) seeks to adapt the compression strategy

to the changing environment. The simplest AC scheme will use only one compression

method and strength level, and it will choose between “compression on” and “com-

pression off.” This approach adds very little overhead, but such a coarse decision

model leaves many missed opportunities to optimize. AC becomes more sophisti-

cated when it expands environmental monitoring to more-complex characteristics of

the data, the available computational resources (most commonly, the current CPU

usage), and the output rate. When compressing a stream to be stored locally, the

output rate refers to the throughput from memory to nonvolatile storage. In the con-

text of a network, the output rate is the available bandwidth. Even if characteristics

of the data remain constant, a dramatic increase in CPU load may force AC to switch

to a less expensive compressor. Likewise, a dramatic decrease in output rate may fill

up the write buffer, meaning CPU resources have become relatively cheaper, and so a

slower compressor becomes more attractive. Constantly optimizing the compression

strategy can save time, space, and energy.

2.3.1 Estimating Compressibility

Part of optimizing the AC system is to better predict future CPU usage and fu-

ture output rate. While both of these resources are somewhat predictable using recent
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measurements, estimating the compressibility of the data is much more difficult. AC

can predict a stream’s compressibility in a number of ways, including measuring com-

pressibility of recent data [22], compressing a small sample of bytes [19], calculating

the standard deviation of either the bytes [23, 24] or the difference of consecutive

bytes [24], or counting the number of unique bytes that appear more frequently than

some threshold [25].

The best way to estimate compressibility is to compress the data, but this has a

huge time cost (and energy cost). All time spent estimating compressibility reduces

the time savings from compression. For this reason, we want compressibility estima-

tors to be fast, and so far the fastest of the aforementioned predictors requires O(n)

runtime.

2.3.2 File Extension as an Estimator

A much simpler and more efficient way to estimate the compressibility of a file

would be to use some metadata about the file combined with a constant-time table

lookup. Some systems use file extensions — the trailing alphanumeric characters after

a “.”, e.g., “jpg” in somefile.jpg — to estimate compressibility [26, 27, 28, 29]. An

example is the Linux tool rsync, commonly used for mirrors for package managers

[30], which will choose to compress files with one strength level in the zlib library

unless the file extension is assumed to correspond to an incompressible format1 [26,

31]. Another common example is an optional Apache Server feature that chooses

compression the way rsync does.

Though file extensions are not always available, as with network traffic, including

a file extension is a widely used convention. Windows systems use file extensions to

determine how to open the file, and so they are mandatory [32]; however in Linux

1The full list of “incompressible” file extensions is available in table C.1.
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systems, file extensions are not required.

A drawback to using extensions is that one could change a file’s extension to

obscure its true compressibility. For example, one could change a text file’s name

from “file.txt” to “file.gz,” making the file appear to already be compressed with

gzip. Text files are usually highly compressible, but an AC system basing decisions

on file extension would almost certainly not attempt to compress a pre-compressed

file. While this is certainly concerning for multi-user systems, we should not expect

a normal user to try to game their own filesystem, and so this concern is not always

valid. With some additional education, users can be encouraged to use file extensions

on their system to help optimize a local AC system.

2.3.3 Assumption of Normality

Systems that do use file extensions have all made the assumption that the com-

pressibility of those files is normally distributed. If the compressibility of a particular

file extension is a normally distributed random variable, then both the arithmetic

mean and the mode (being equal to the mean) will accurately predict the long-term

compression performance for that file extension. If the distribution is not normal, then

mean compressibility could be significantly higher or lower than the mode, meaning a

AC system would compress too many incompressible files or miss many compression

opportunities. Even if this effect disappears in the limit, unpredictable short-term

performance negatively affects other AC goals, like maintaining a constant flow of

input and output. It is also possible that the distribution will be multimodal, sig-

nalling that there may be some other metadata that could separate the data into

several unimodal distributions, which would greatly improve performance.

To date, there has been no robust study to test the assumption of normality.
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Without empirical data to estimate the true distributions of compressibility, we can-

not definitively say that AC based on file extension is a good or bad idea. If estimating

compressibility using file extensions is indeed a good policy, we still do not know the

mean compressibility for each extension, which would allow us to optimize the policy.

2.4 Previous Work

2.4.1 Adaptive Compression for the Zettabyte File System

Florian Ehmke attempted to utilize file extensions to make compression decisions

in his implementation of AC in the ZFS filesystem [29]. Ehmke’s approach allowed

the user to prioritize energy use, compression, or system performance. The filesystem

kept a lookup table of file extensions and the best compression algorithm for each of

the three priority states. Whenever writing a file to disk, it would use the lookup

table to make a decision. Ehmke acknowledged that the performance of his system

depended on knowing which algorithm is truly best for each file extension. Without

an empirical analysis of a broad range of file types, the file extension lookup table is

a set of assumptions and intuitions, not an evidence-based policy.

2.4.2 Ares

Devarajan et al. developed an AC engine named “Ares” that uses input type and

format to choose a compression library [33]. As a foundation for their dataset, they

collected data that was broadly characters, integers, sorted integers, floats, or dou-

bles. They then compressed and decompressed this data with many compressors, the

most notable being bsc, bzip2, lz4, lzo, lzma, pithy, quicklz, snappy, and zlib. After

averaging the compression ratios and output rates, they built a table that specified
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the best2 compression strategies for a given data type and workload strategy. They

then built a similar table of best performances based on the data format. Data for-

mats were categorized as “binary data” (e.g., POSIX), “scientific data” (e.g., HDF5),

“textual data” (e.g., XML or JSON), or “columnar data” (e.g., AVRO).

Using the dataset above, they built a compression framework that dynamically

selected a compression approach using the data type and format. While they did use

a file’s extension as part of a larger system to infer the data format, the file extension

was not used to directly make a compression decision. Additionally, they considered a

very narrow range of extensions, ignoring anything uncommon or any extension that

could be associated with multiple data formats. During the earlier data collection

phase, though they did produce a table of “best” compressors for a given file type,

they considered only five classes of data rather than the full range of file extensions.

We seek to consider a much broader range of file extensions, and we will show the

distribution of compression ratios rather than a single average value.

2.4.3 Efficient Compressibility Estimators

Asamoah Owusu modeled the relationship between efficient compressibility esti-

mators (ECEs) using data gathered from browsing Wikipedia, Facebook, and YouTube

[23]. He noted that since estimating compressibility by compressing samples of the

data using multiple compressors is so inefficient, there is a great opportunity in us-

ing one ECE to predict the output of multiple compressors. While some ECEs are

statistical measures, compression ratios from common encoders can also be viewed as

ECEs. He first related the compression ratios of the dataset (gzip levels 1 and 6, xz,

2“Best” was quantified as a weighted sum of compression metrics, with weights adjusted based
on workload priority.
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and lz4) to the “average meaning entropy,”3 Shannon entropy, the byte standard de-

viation, the “bytecount” (a novel method proposed by Peterson as part of Datacomp

[25]), and the “heuristic” (a combination of methods developed by Titovets [34] and

based on the work of Harnik et al. [35]).

While there generally was a strong association between ECEs, there were some

notable exceptions. Most prominently, bytecounting could predict the compression

ratio of the current browsing session, but it could not accurately predict the compres-

sion ratio for a future browsing session of the same website. This shows that while

fast and accurate for current data, the average bytecount for a class of data should not

be used to predict compressibility of future data. In the same vein, average meaning

entropy and Shannon entropy of the previous browsing sessions were poor predictors

for future browsing sessions.

Though this study grouped data by source, it examined only Internet browsing

data. AC can also be used on a local filesystem, which includes a much broader range

of data types. This study also focused on the compression ratio only, ignoring the

computational cost associated with different compressors.

2.4.4 Datacomp

Peterson proposed estimating file compressibility using “bytecounting,” which

counts the number of “over-represented” bytes in a stream [25]. In this context,

a byte is considered over-represented if it occurs at least file size
256

times, which is the

expectation assuming a uniform distribution of bytes. Bytecounting (BC) is strongly

related to entropy, though it is much faster and requires fewer resources to compute.

He then utilized BC to implement Datacomp, a general purpose AC system that

3“Average meaning entropy” is Titovet’s metric, which is the difference of the average byte value
for this data and the average byte value for random data. The larger the difference, the higher the
estimated compressibility.
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monitors CPU usage, available bandwidth, and estimated compressibility to make

compression decisions. Since Datacomp is designed to be useful for both local files

or network transfers, it cannot rely on access to file metadata, such as extensions,

to estimate compressibility, and so it did not rely on any characteristics beyond the

bytes themselves to estimate compressibility.

2.4.5 Statistical Measures as Predictors of Compression Sav-

ings

Culhane explored three statistical measures of files to determine which, if any,

would be good predictors of compression ratio [24]. He used the standard deviations of

three values of the data: the individual bytes, the difference of consecutive bytes, and

the XOR of consecutive bytes. The dataset came from a single hard drive, with the

assumption that the spread of the data would be enough to justify a generalization to

other files of the same type. The compression algorithms used were Huffman coding

and several varieties of LZW. Ultimately, he found that the best predictor of file

compressibility was the standard deviation of bytes, with accuracy above 76%.

Culhane’s study provides evidence that files of the same type compress similarly,

which shows that a file extension is a promising predictor for compressibility. What

his study lacked was comparison to a broad set of compression algorithms; perfor-

mance on LZW and Huffman coding do not necessarily predict the performance of

other common compression algorithms, like LZMA and LZ4. Even Deflate, which in-

corporates Huffman coding, may perform much differently than pure Huffman coding,

since Deflate uses Huffman coding not for the data itself, but to encode dictionary

entries. We will also have much stronger evidence for generalization with data from

multiple systems using different operating systems.

16



3 Experiment

To show the relationship between file extension and compression performance, we

needed data about the compressibility of files that exist in the real world. To draw

valid conclusions, we needed data sourced from many different users with varying

computing resources.

3.1 Comprestimator

To gather data about the compressibility of real-world files, we built Compresti-

mator, a tool that compresses system files with multiple compressors and stores the

results. Compression is generally a very slow process, so we wanted to make the pro-

gram as low-level as possible to get a decent-sized result set from each user without

asking them to run the program for a week. Though we could send the source code to

each participant with instructions to compile, this would limit data collection to ma-

chines operated by computer-savvy users. We chose the Java programming language

to strike a balance between portability and low-level operation. Java additionally pro-

vides many well-tested compression libraries, allowing us a wide variety of algorithm

choices for this experiment.

3.1.1 Compressors

Comprestimator compresses each file with three levels of Deflate, two levels of

LZ4, and two levels of LZMA. We chose these general-purpose algorithms for their
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popularity and very different performance characteristics.

Deflate is an obvious choice for its near-ubiquitous use. The three levels of Deflate

available in Java — BEST SPEED, DEFAULT COMPRESSION, and BEST COMPRESSION

— correspond to gzip levels 1, 6, and 9. Each is ordered in ascending compression

and descending speed. We used the Deflate implementation from the Java 8 SDK

[36].

We chose LZ4 due to its increasing popularity, especially since it has become

commonplace in the Zettabyte File System. We also use LZ4HC — an acronym for

“LZ4 High Compression” — which is essentially the same algorithm as LZ4, but it

spends greater time searching for matches in the dictionary. LZ4HC uses the same

ultra-fast decompressor as LZ4. We used the LZ4 Java port version 1.7.1 available

on github.com [37].

We selected LZMA since it is the main compression algorithm for the popular 7-

zip application and forms the basis of the popular XZ application’s LZMA2 algorithm

[21]. LZMA uses much larger dictionaries than Deflate and LZ4, and so it may be able

to find patterns in the data that are far too long for other compressors to detect. We

used the XZ application’s SDK, which supports LZMA2 [38]. LZMA2 can be thought

of as a wrapper for LZMA. LZMA2 first compresses a block using LZMA, then it

decides whether to store a block of uncompressed data rather than the compressed

data if the compressed data has expanded. This means that LZMA and LZMA2 have

virtually the same compression time, though LZMA2 reduces expansion. LZMA2

also supports multithreading and per-block dictionaries, though we did not use these

features in order to maintain performance similar to 7-zip. We compressed with XZ

level 6 — the default compression level — and level 9 — the highest compression

level that uses a much larger dictionary and has a longer maximum match length.
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3.1.2 Data Source

Comprestimator compresses all files on a filesystem with six different compressors

described above, recording the original file size, the compressed file size, the time to

compress, the file extension, and for Linux/Unix systems, the metadata output from

the file command. We also needed some way of detecting duplicate files, since we

need the compression data for only one instance of each file per user. Additionally,

we would like to see how different machines perform for the same file, so we need

to identify duplicate files across machines. Common operating systems have many

pre-installed system files, so we can expect many duplicate files between machines.

To protect user privacy, we opted to store a hash value of each file instead of storing

the file’s name or location on disk. We used the SHA-256 hash function, since its

cryptographic properties ensure a high level of security and minimize the probability

of a hash collision.

The risk to participants, however, was nonzero. No computationally feasible

method exists to reverse the hash value to the original file; in other words, given

a hash y, it is intractable to find the original x such that h(x) = y. Nevertheless, if

we were to hash all files on our own systems, we may find one or more participants

with the same hash in their data. If our file’s size matches the participant’s file size,

we can assume these two files are identical. Thus, we can know that a participant

has a specific file if we already have a copy of this file. For this reason, we will release

data anonymized and only in aggregate. Understanding how we would safeguard all

data, the UMN IRB deemed this study “not human subjects research,” though we

still required all participants to electronically sign a consent form.

We recruited 24 volunteers to run Comprestimator on their machines and send us

the results. We instructed users to let the program run when the computer is otherwise
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idle, since other running processes could interfere with the timed compression process.

Data was stored locally using an SQLite database file, which the participants later

sent to us via a private dropbox.

Even with the included privacy protection, we gave participants the option to

hide files from Comprestimator to prevent them from being touched. If users had

any specific files or directories they wanted to hide from Comprestimator, they could

enter the full path to the file or directory on a new line in a skip list. Before adding

a path to the list of files, Comprestimator would check if the path started with any

path on the skip list. Comprestimator never followed symbolic links, so a listed file

would remain hidden even if it were linked elsewhere.

3.1.3 Algorithm

Comprestimator begins by calling the Unix find command or the Windows equiv-

alent to generate a complete list of accessible files 1. Each string representation of

the path is compared to the list of files in the skip list. If no path in the skip list

forms the beginning of the path in the complete list, Comprestimator would add it to

the list of files it planned to process. By default, the skip list contained /dev, /proc,

/sys, /snap, and /run to avoid the pseudo-files2 they contain. Once Comprestimator

has added the full list of files to process, it shuffles the list to ensure it will process

a variety of files, should the program be aborted before the full list has been pro-

cessed. Comprestimator then writes the list of files to be processed to a file named

enumeration.dat so that if the program is halted and restarted, it would not need

to repeat the enumeration phase.

1If the user does not have permission to access a file on the system, Comprestimator would also
not have access.

2A pseudo-file is a device or process directory created by the kernel that appears to be a regular
file.
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Compressing every listed file requires significant time, likely upwards of 48 hours.

Since we did not expect participants to relinquish control of their computers for

two straight days, we designed Comprestimator so that a participant could halt and

restart it without losing any previous work. The database file recorded which line in

the enumeration file it had last processed so that it could resume where it had left

off. This allowed users to run Comprestimator in several segments rather than all at

once.

With the shuffled list of files, Comprestimator begins the main compression loop

outlined in algorithm 1. Before processing a file, the program again checks that the

file is not a pseudo-file and that it has not already processed this file on this machine.

With both conditions satisfied, the program reads the file into a byte array in memory.

It is important to make sure that the file being compressed is completely read into

memory before compressing it. This ensures the time to compress does not include

I/O latency. The Java function Files.readAllBytes() ensures the file is completely

in memory. The memory requirement forced us to skip any files larger than about

1 GB, since larger files generally require an amount of heap space that frequently

causes an Out of Memory Error.

With the entire file in memory, Comprestimator compresses the byte array and

stored the results for each of the seven compressors. It stores the time to compress

with microsecond-level precision with the assumption that most CPU process over-

head would occur at the nanosecond level, and so nanoseconds would not be significant

to calculate the true time to compress.
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Algorithm 1 Compression Loop

1: for all files do
2: if file is not a pseudo-file and file not in database then
3: read entire file into memory
4: result.size← size(file)
5: result.hash← SHA256(file)
6: result.ext← file extension
7: for all compressors do
8: result.start← system time
9: result.compressSize← size(compress(file))

10: result.stop← system time
11: store result
12: reset compressor dictionary

3.2 Methodology

The primary goal of this thesis is to estimate the distributions of compressibility

for common file extensions, particularly to determine whether the distributions are

normal. To do this, we first use the Kolmogorov-Smirnov (KS) test for normality, the

Anderson-Darling (AD) test, and Pearson’s Chi-Squared test.

3.2.1 Plotting

To graph the distributions, we used a line histogram with bins of width 0.05. We

chose histograms over Kernel Density Estimations, because a KDE requires knowledge

of the underlying distribution(s). Lines made the differences between compressors

much clearer. Though we tried using smaller bins, this smoothed the curves in a way

that made it harder to separate each compressor’s line. A bin width of 0.05 creates

an error of ±0.025, which is important to consider when we discuss the modes in the

results. Our calculation of the mean, median, standard deviation, and all normality

tests are unaffected by the binning process.
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3.2.2 Compression Ratio

We use the compression ratio (CR) as our measure of compressibility. There are

multiple definitions of CR: one is the original file size divided by the compressed size

(also called compression factor [4]). We will use the definition of compressed size

divided by original size as outlined in equation 3.1, since nearly all CRs will fall into

the range between 0 and 1. With this definition, a CR of 0.1 indicates the compressed

file is 10% of the original file size, and a CR of 1.05 indicates the file has expanded

to 105% of its original size. Though the range of values for our definition of CR does

not have tight bounds, in practice, it is rare that a file larger than 1 KB will expand

to more than 110% of its original size.

CR =
compressed size

original size
(3.1)

3.2.3 Normality Testing

The KS, AD, and Chi-Squared tests assume that all files with a particular exten-

sion are drawn from the same distribution. To test this assumption, we will compute

the means for 100,000 samples of size 30. We will then use the Anderson-Darling

test to test whether these means are normally distributed. According to the central

limit theorem, if the data points all follow one distribution, then these means should

be normally distributed. By extension, if the means are not normally distributed,

then the CRs do not come from the same distribution. The CRs do not need to be

normally distributed for the CLT to hold.

File extensions that are associated with multiple underlying distributions may

have some other distinguishing property in common (e.g., different versions of the

same file format) that could help us identify to which distribution a file belongs, or
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perhaps different users’ files follow different distributions.

The primary benefit of normally distributed file CRs is that the arithmetic mean

of the files’ CRs would be a meaningful estimator of compressibility, as outlined in

Section 2.3.3. However, it is possible that some file extensions will have a distribution

that is unimodal but not normal. For these extensions, the mean CR may or may

not be a useful estimator of compressibility.

Multimodal distributions challenge the hypothesis that a file extension can pre-

dict compressibility. A multimodal distribution, however, may indicate a mixture of

Gaussian distributions under the umbrella of a single file extension. For these dis-

tributions, we ask the question, can we find some readily accessible metadata that

can be used to separate data into multiple categories with simpler distributions? An

example is the Portable Document Format (PDF). We can see the PDF’s version

number using the metadata we gather. If the distribution for PDFs appears to be

multimodal, perhaps different PDF versions will follow different distributions.

Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov test is used to test goodness-of-fit for a population.

Specifically, the KS test returns a statistic s which is equal to the maximum distance

between the Empirical Distribution Function for the sample and the Cumulative Dis-

tribution Function for the assumed underlying distribution (in this case, the normal

distribution). We use the Scipy’s stats.kstest function to determine the likelihood

that our data does not fit a normal distribution. stats.kstest automatically computes

a p-value for our sample. It is important to note that the KS test gives much more

weight to the center of the data than it does to the tails [39].
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Anderson-Darling Test

The Anderson-Darling test is a modification of the Kolmogorov-Smirnov test that

puts extra weight on the tails. It is generally considered more sensitive than the KS

test [40]. Since compressors usually detect potential data expansion and resolve to

store the uncompressed data, it is very rare for a compressed file to expand by much.

This means that the further the mode for a file type shifts towards 1, the less a right-

hand tail will appear. Similarly, the closer the mode shifts towards 0, the left-hand

tail must disappear at zero. Despite these drawbacks, the Anderson-Darling statistic

remains an important metric.

We used Scipy’s stats.anderson function, which calculates the probability that

a given set of points does not follow a normal distribution. The function outputs

the Anderson-Darling statistic A along with five critical values, corresponding to the

significance levels 0.15, 0.1, 0.05, 0.025, and 0.01. For example, the output A = 0.8,

[0.576, 0.656, 0.787, 0.918, 1.092] would indicate that the set of input points likely do

not follow a normal distribution with p < 0.05, since 0.787 corresponds to α = 0.05.

With these same critical values, A = 0.7 would indicate not normal with significance

p < 0.1. Unfortunately, with this function, we cannot report significance beyond

p < 0.01.

Pearson’s Chi-Squared Test

Pearson’s Chi-Squared test is another goodness-of-fit test for observed distribu-

tions. Unlike the KS test and the Anderson-Darling test, Chi-Squared can be applied

to discrete distributions [41]. A drawback of the Chi-Squared test is that it requires a

large sample to be significant, and so it will not be reliable for the extensions with the

minimum number of data points. We used Scipy’s stats.chisquare function, which
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automatically computes the p-value for the given sample.

3.2.4 Extension Selection Criteria

Due to the sheer magnitude of file extensions in use, we will analyze only the most

common extensions from our data. We will use three criteria to select extensions

to analyze: 1) popularity by ranked vote, 2) total number of files from all users,

and 3) diversity of data types. The ranked vote system prevents bias in the list of

extensions towards participants who contribute massive datasets. Each user will vote

their top 90 extensions, and we will manually select from this list. We expect to add

or remove some extensions to ensure we analyze a variety of data types and include

some extensions that will be especially interesting.

Since users may choose how much time they want to run Comprestimator, we

expect some users to contribute datasets much larger than average. To prevent these

users’ data from dominating the results, we will select a limited number of files per

participant. We decided this limit for an extension will be the smallest number of

files any particular user has that is greater than 10. This should create a sample large

enough to be representative while still mitigating sampling bias. If we believe this

strategy fails to prevent sampling bias for any particular extension, we will consider

dropping this extension from our analysis.
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4 Results

We received compression data from operations on a total of 12,018,933 files from

24 participants. Table 4.1 shows how many files each participant processed and how

many hours processing took1. It should be noted that the majority of participants

were computer science students or professionals, and so source code and LATEX files

were over-represented.

The most common extension by both ranked vote and total files was the empty

extension, that is, files with no extension. PNG was the second most common ex-

tension by both measures. Tables 4.3 and 4.2 list the top 90 extensions by total and

ranked vote, respectively.

Of the 18 extensions analyzed, all normality tests described in Section 3.2.3 re-

turned not normal with p < 0.01 at the minimum significance. For the vast majority,

p approached 10−23, some even too small to fit in a 64-bit float. For this reason,

we will not include specific numbers for these tests. For multimodal distributions

shown below, the mode refers to the single largest mode in the distribution. A repre-

sents the Anderson-Darling statistic used to test whether the CRs are from one single

distribution as described in Section 3.2.3. SD refers to standard deviation.

1In order to collect metadata, some participants used Windows Subsystem for Linux, which has
very high I/O latency. Once the file was in memory, compression speed was near equal to the
equivalent in CMD.
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Table 4.1: Total Files and Hours of Compression Per User

User Total files Hours

1 2,269,436 111

2 183,922 13

3 138,015 15

4 142,006 13

5 606,730 75

6 177,051 8

7 296,194 37

8 157,111 12

9 253,166 18

10 228,612 46

11 282,567 69

12 880,003 82

User Total files Hours

13 272,082 15

14 981,004 177

15 107,741 26

16 1,936,267 173

17 50,114 4

18 496,324 87

19 142,222 48

20 413,491 22

21 251,102 24

22 798,042 134

23 422,011 40

24 533,720 58

4.1 File Formats

We chose to analyze BIN, DLL, DOCX, EXE, GIF, GZ, HTML, JPG, JS, JSON,

MP3, PDF, PNG, RTF, SVG, TTF, TXT, and WAV individually. With the exception

of DOCX, all were in the top 50 by ranked vote and/or the top 75 by total files. We

added DOCX to the list because it is a file extension common enough to interest

other researchers. Additionally, we did a brief analysis on a group of extensions that

are always compressed and a group of extensions representing source code. In the

following sections, we describe these extensions and the formats they represent, and

present the Comprestimator results for each.
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Table 4.2: Most Common File Extensions Observed

Rank Ext. Total
1 (none) 2823530
2 png 498864
3 html 497473
4 h 451014
5 dll 409941
6 pyc 358332
7 c 329101
8 js 314428
9 strings 309089
10 py 285446
11 cat 278685
12 jpg 263022
13 tfm 206884
14 manifest 202276
15 mum 170092
16 java 158671
17 gz 157473
18 xml 145239
19 go 134126
20 ko 120264
21 svg 115943
22 json 108612
23 ogg 104942
24 cpp 90874
25 hpp 89700
26 o 86887
27 mo 80833
28 nib 78046
29 txt 77034
30 so 77018

Rank Ext. Votes
31 m 61923
32 vf 60237
33 cc 57190
34 exe 56093
35 bin 56080
36 plist 51102
37 page 49252
38 mui 47512
39 pm 44807
40 class 42185
41 pdf 41033
42 md 39798
43 i 37921
44 wem 35831
45 jar 33071
46 file 30173
47 loopdata 27851
48 wav 27401
49 mlx 27305
50 final 25192
51 pfb 24176
52 tex 24151
53 rb 23939
54 a 23336
55 ts 23265
56 dat 23122
57 lua 22949
58 tiff 22667
59 dds 21441
60 enc 21289

Rank Ext. Votes
61 map 20564
62 sty 19734
63 mp3 18953
64 vim 18854
65 s 18709
66 ttf 18679
67 pl 18665
68 tif 18472
69 css 17759
70 d 17605
71 log 17547
72 sh 17256
73 1 16715
74 0 16438
75 gif 16430
76 po 16373
77 rst 16217
78 php 15687
79 sys 14577
80 pak 14499
81 qml 14279
82 pri 13663
83 rs 13604
84 stringsdict 13393
85 tga 13340
86 fd 12929
87 inf 12442
88 etl 11961
89 otf 11898
90 xnb 11795
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Table 4.3: Most Common File Extensions by Ranked Vote

Rank Ext. Votes
1 (none) 2862
2 png 2739
3 js 2588
4 html 2582
5 xml 2521
6 jpg 2320
7 txt 2298
8 json 2244
9 svg 2171
10 py 2093
11 bin 2028
12 h 1987
13 pyc 1984
14 dll 1919
15 ttf 1701
16 dat 1685
17 gz 1661
18 pm 1554
19 mo 1553
20 css 1498
21 so 1446
22 md 1431
23 exe 1399
24 cat 1384
25 manifest 1370
26 pdf 1361
27 mum 1344
28 wav 1301
29 mui 1261
30 pl 1245

Rank Ext. Votes
31 log 1240
32 java 1238
33 jar 1237
34 vim 1222
35 hpp 1208
36 pak 1195
37 c 1162
38 lua 1160
39 gif 1129
40 sys 1047
41 tfm 1026
42 htm 1023
43 cpp 1021
44 pri 1010
45 inf 992
46 final 945
47 tga 934
48 etl 913
49 rtf 906
50 1 879
51 rb 845
52 mp3 820
53 o 806
54 cab 805
55 a 800
56 0 798
57 strings 788
58 map 783
59 tex 769
60 ini 767

Rank Ext. Votes
61 res 750
62 plist 742
63 ts 721
64 pod 714
65 enc 712
66 file 705
67 winmd 684
68 ko 679
69 otf 671
70 ogg 669
71 pfb 660
72 pnf 652
73 sty 652
74 mof 649
75 afm 647
76 vf 623
77 page 620
78 go 617
79 class 612
80 wmf 608
81 zip 607
82 qml 602
83 sh 594
84 adml 585
85 man 574
86 ps1 567
87 pyi 562
88 cdxml 557
89 tcl 553
90 md5sums 544

4.2 Results by Extension

4.2.1 Null Extension

The “null extension” refers to the absence of an extension, which was the most

common extension both by ranked vote and overall. The average file size was 96
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Table 4.4: Null Extension

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.612 0.577 1.00 0.277 14, 510.591, p < 0.01

Deflate 6 0.597 0.563 1.00 0.287 14, 938.423, p < 0.01

Deflate 9 0.597 0.563 1.00 0.288 14, 879.734, p < 0.01

LZ4 0.696 0.721 1.00 0.249 10, 783.644, p < 0.01

LZ4HC 0.669 0.695 1.00 0.265 11, 256.256, p < 0.01

XZ 6 0.584 0.568 1.00 0.296 13, 466.838, p < 0.01

XZ 9 0.584 0.568 1.00 0.296 13, 465.480, p < 0.01

Figure 4.1: Histogram for Null Extension

KB, and the largest file processed was about 1 GB, the maximum size allowed. As

expected, this data is anything but normal.

As the Anderson-Darling statistic A in Table 4.4 shows, these files certainly follow

many different distributions. For reference, A ≈ 1 is a value high enough to reject

the null hypothesis with p < 0.01, and all values of A are above 10,783.
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It is very concerning that the most common extension, representing 23.5% of all

results gathered, provides very little information about compressibility. We don’t

know how commonly a system would interact with this type of file, i.e. 23.5% of files

stored does not guarantee 23.5% accessed and transported, so the high prevalence of

this files does not automatically imply disaster.

4.2.2 BIN

Table 4.5: BIN

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.555 0.465 1.00 0.328 25.507, p < 0.01

Deflate 6 0.540 0.434 1.00 0.337 27.875, p < 0.01

Deflate 9 0.539 0.433 1.00 0.338 27.840, p < 0.01

LZ4 0.620 0.598 1.00 0.312 19.023, p < 0.01

LZ4HC 0.587 0.539 1.00 0.325 22.195, p < 0.01

XZ 6 0.508 0.374 1.00 0.354 30.586, p < 0.01

XZ 9 0.508 0.374 1.00 0.354 30.545, p < 0.01

Bin is an extension associated with binary (i.e. non-text) data. “Binary data”

is extremely broad; it includes executable files, images, audio, and compressed data,

both proprietary and open-source [42], so we doubted that it would be normally

distributed.

BIN (Table 4.5 and Figure 4.2) was the 11th most common extension by ranked

vote and 35th overall. The average file size was 906 KB with the largest file at 732

MB. While the means and medians are relatively close for all compressors (largest

distance was 0.134 for XZ 6 & 9, smallest was 0.022 for LZ4), the mode was far away

at 1.00 for all compressors. There were no striking differences in results between
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Figure 4.2: Histogram for BIN

compressors.

Figure 4.2 showed that roughly 25% of all BIN files were completely incompress-

ible, but that leaves almost 75% of files that will have decent to excellent compression.

Given how broad this category is, there are also a massive number of unique results

from the file command, so binning files with that information will require significant

time.

4.2.3 DLL

DLL is generally a Dynamic-Link Library used within Microsoft Windows oper-

ating systems. DLLs can encapsulate data from multiple formats, such as ActiveX

controls (.oxc), Control Panel files (.cpl), and device drivers (.drv) [43].

DLL (Table 4.6 and Figure 4.3) was the 14th most common extension by ranked

vote and the 5th overall. The average file size was 556 KB, and the largest file was

421 MB. The slightly larger average file size may make DLLs more-attractive targets
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Table 4.6: DLL

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.604 0.499 1.00 0.275 23910.964, p < 0.01

Deflate 6 0.585 0.471 1.00 0.287 24748.282, p < 0.01

Deflate 9 0.584 0.469 1.00 0.288 24729.361, p < 0.01

LZ4 0.678 0.614 1.00 0.237 15878.543, p < 0.01

LZ4HC 0.633 0.549 0.95 0.259 20155.424, p < 0.01

XZ 6 0.547 0.409 1.00 0.314 27016.871, p < 0.01

XZ 9 0.546 0.409 1.00 0.314 27015.298, p < 0.01

Figure 4.3: Histogram for DLL

for compression. As evidenced by both the chart and the very high values of A, all

lines are multimodal, having a smaller mode very close to 1. Oddly, LZ4HC had a

secondary mode near 0.9, smaller than all other compressors.

Some programs exist to compress executable DLLs [44]. The file command does

not indicate whether the DLL has been compressed, but given the large group of CRs
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near 1, it is likely that many of these DLL files were already compressed.

Upon further investigation, it appeared many of the DLLs contained PGP keys

(Figure 4.6 shows 380). Using a uniform number of data points per user and split-

ting the data points into those containing the word “key” and those without, the

distributions did not change significantly (see Figures 4.4 and 4.5). When looking at

all DLLs without limiting the number of files per user, nearly all files containing the

word “key” in the metadata had a CR near 1. Shown in Figure 4.7), removing files

containing “key” had very little difference from the original distribution.

Average file sizes changed significantly depending on the range of CRs. The

average size of files with a CR greater than 0.95 was 37 KB, greater than 0.9 was 41

KB, less than 0.9 was 761 KB, and less than 0.75 was 755 KB. The average CR for

files less than about 100 KB was 0.65. The average CR increased steadily as the sizes

decreased, reaching a peak of 0.96 for files less than 2 KB. In the opposite direction,

the average CR for files larger than 20 MB was 0.27. This does not perfectly bin the

results, however, since at least one file larger than 20 MB had a CR greater than 0.9.

4.2.4 DOCX

DOCX is the Microsoft Word Open XML format introduced in 2009 [45]. DOCX

was introduced to replace MS Word’s older DOC format. It includes information

about font type, size, and color, margins, embedded images, etc. DOCX is automat-

ically losslessly compressed with Deflate.

DOCX (Table 4.7 and Figure 4.8) was the 154th most common overall. It did not

appear in the ranked vote, which spanned the top 160 extensions. Even though DOCX

was relatively uncommon, people interact with DOCX often and know the extension

fairly well, so we considered its results interesting. The average DOCX file size was
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Figure 4.4: Histogram for DLL containing “key” in file metadata

Figure 4.5: Histogram for DLL without “key” in metadata

738 KB with a maximum size of 32 MB. As expected, CRs were fairly high (DOCX is

automatically compressed with Deflate), though the mode was a surprisingly low 0.8.
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Figure 4.6: Histogram for DLL containing “key,” no limit on user contribution

Figure 4.7: Histogram for DLL without “key,” no limit on user contribution

All compressors had a mean, median, and mode very close together, with LZ4 having

the largest distance between mean and mode at 0.066. Both XZ levels had the smallest
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Table 4.7: DOCX

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.853 0.849 0.80 0.069 6.144, p < 0.01

Deflate 6 0.849 0.845 0.80 0.070 5.976, p < 0.01

Deflate 9 0.849 0.844 0.80 0.070 5.907, p < 0.01

LZ4 0.862 0.856 0.80 0.070 5.748, p < 0.01

LZ4HC 0.853 0.846 0.80 0.071 5.892, p < 0.01

XZ 6 0.847 0.843 0.80 0.077 9.531, p < 0.01

XZ 9 0.847 0.843 0.80 0.077 9.531, p < 0.01

Figure 4.8: Histogram for DOCX

distance at 0.05 between median and mode. Their near-identical performance may

have been related to the small average file size; XZ 6 is already looking for matches

so long that higher levels of XZ can provide no additional benefit. The average file

size among files with a CR lower than 0.75 was 370 KB, suggesting that smaller files

may be lightly compressed.
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4.2.5 EXE

Table 4.8: EXE

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.621 0.513 1.00 0.268 2426.411, p < 0.01

Deflate 6 0.603 0.487 1.00 0.279 2521.368, p < 0.01

Deflate 9 0.602 0.486 1.00 0.279 2520.533, p < 0.01

LZ4 0.699 0.640 1.00 0.226 1409.943, p < 0.01

LZ4HC 0.653 0.574 0.55 0.250 1849.589, p < 0.01

XZ 6 0.564 0.427 1.00 0.306 2765.054, p < 0.01

XZ 9 0.564 0.427 1.00 0.306 2762.860, p < 0.01

Figure 4.9: Histogram for EXE

EXE refers to an executable file for Microsoft operating systems [46]. Even though

EXE is specific to PCs, we chose to analyze this extension to explore executable files

in general. Many Mac and Linux executables do not use an extension, so header
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information is necessary to identify them. We expect machine code to compress well;

however, some executables are already compressed [4]. Compressed and uncompressed

executables share the EXE extension, so the extension alone will likely tell us very

little about compressibility.

EXE (Table 4.8 and Figure 4.9) was the 23rd most common extension by ranked

vote and 34th overall. The average file size was 2 MB, and the largest file was 1 GB

(the maximum allowable size). EXE had a multimodal distribution resembling that

of DLL. Like DLL, LZ4HC inexplicably performed better on data with CRs near 1.

LZ4 similarly performed better on the less-compressible files, though it did not have

this performance advantage on DLLs.

Many EXEs are already compressed, which should be a strong predictor that the

file will not compress further. Further investigations, however, did not provide much

supporting evidence. We assumed a file was compressed if the metadata contained

the substrings “compress” or “extract,” which frequently corresponded to the strings

“compressed” or “self-extracting.” Including only the files containing compression

keywords provided no additional information for the distribution using a uniform

number of points per user (Figure 4.10); however, the distribution with unlimited

points per user (Figure 4.11) showed that including the compression keywords strongly

predicted the file would have a large CR. Strangely, there were still a significant

number of supposedly compressed EXEs with CRs around 0.1 to 0.4.

The average CR for each participant was relatively stable. Two participants had

a mean CR of 0.41 for Deflate 6 (about 0.19 below the global average), and one had

an average of 0.73 (about 0.13 above global average), but most other participants had

averages in the 0.5 to 0.7 range. Table 4.9 shows each participant’s average CR and

how many EXEs each user contributed when we ignored user limits.
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Table 4.9: Average CR and Number of EXEs per Participant

User ID Avg CR Num Files
1 0.56 45
2 0.66 3500
3 0.73 3138
4 0.62 3967
5 0.33 1608
6 0.64 11
7 0.66 4531
8 0.52 9
9 0.52 9
10 0.67 4154
11 0.61 4347
12 0.58 6753

User ID Avg CR Num Files
13 0.41 62
14 0.49 440
15 0.60 4183
16 0.30 1058
17 0.51 8
18 0.54 3614
19 0.70 3180
20 0.41 143
21 0.52 9
22 0.57 7094
23 0.66 4216
24 0.54 14

Figure 4.10: Histogram for EXE containing compression keywords

4.2.6 GIF

GIF, or Graphics Interchange Format, is a format that stores image data com-

pressed with a variant of LZW [4]. Though LZW is a lossless compressor, GIF image

input is restricted to 256 colors, meaning a higher-quality image will lose some de-
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Figure 4.11: Histogram for EXE containing compression keywords, no user limit

Table 4.10: GIF

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.903 0.978 0.95 0.165 746.165, p < 0.01

Deflate 6 0.901 0.977 0.95 0.167 739.436, p < 0.01

Deflate 9 0.901 0.977 0.95 0.167 739.610, p < 0.01

LZ4 0.913 0.984 1.00 0.163 856.342, p < 0.01

LZ4HC 0.909 0.981 1.00 0.166 819.544, p < 0.01

XZ 6 0.880 0.954 0.95 0.173 531.531, p < 0.01

XZ 9 0.880 0.954 0.95 0.173 531.531, p < 0.01

tail before compression. Though GIF was never intended to be an animation format

[47], one can animate GIFs by encapsulating multiple frames within a single file, each

with its own time delay. Because LZW is a one-dimensional compressor, GIF cannot

exploit color similarities between vertically adjacent pixels, or temporally adjacent

pixels, in the case of animated GIFs.

GIF (Table 4.10 and Figure 4.12) was the 39th most common extension by ranked
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Figure 4.12: Histogram for GIF

vote and 75th overall. The average file size was 73 KB, and the largest was 22 MB.

The distribution is very clearly not normal, with all modes around 0.95 or higher.

There is still a significant group of files compressible to 80% or less of the original

size. Since the distribution is so heavily weighted near 1, the mean, median, and

mode for all compressors are somewhat close, but the mean is universally smaller

than both the median and mode. The difference between the mean and the mode

is as much as 0.078 (for XZ 6 & 9), which could lead to many näıve attempts to

compress incompressible files if using the mean as an estimator. Perhaps the most

important metric is the median, which shows that half the files have a CR larger than

0.962 for XZ. Even if this were the median for the fastest compressor, it still may not

be profitable. The minority of files with CRs around 0.5 are skewing the mean much

lower than we would expect it to be.
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Table 4.11: GZ

Algorithm Mean CR Median CR Mode SD A

Deflate 1 1.000 1.004 1.00 0.030 14377.647, p < 0.01

Deflate 6 1.000 1.004 1.00 0.030 14376.987, p < 0.01

Deflate 9 1.000 1.004 1.00 0.030 14381.956, p < 0.01

LZ4 1.002 1.004 1.00 0.027 19089.815, p < 0.01

LZ4HC 1.000 1.004 1.00 0.028 17329.813, p < 0.01

XZ 6 1.011 1.014 1.00 0.034 7328.876, p < 0.01

XZ 9 1.011 1.014 1.00 0.034 7329.839, p < 0.01

Figure 4.13: Histogram for GZ

4.2.7 GZ

GZ is the extension for gzip-compressed files. Gzip is based on Deflate, which as

described in Section 2.2.1 the background, is a very effective compression algorithm.

For this reason, we expect very little compression or some expansion when trying to
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compress pre-compressed files.

GZ (Table 4.11 and Figure 4.13) was the 17th most common extension both by

ranked vote and overall. The average file size was 132 KB with a maximum size of

1 GB (the largest size considered). It is not at all surprising that the mean, median,

and mode are so very high. All medians were larger than 1, meaning that more than

half of all files expanded when attempting to compress these pre-compressed files.

4.2.8 HTML

Table 4.12: HTML

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.330 0.325 0.25 0.101 378.407, p < 0.01

Deflate 6 0.303 0.294 0.20 0.105 706.272, p < 0.01

Deflate 9 0.303 0.294 0.20 0.106 711.838, p < 0.01

LZ4 0.444 0.438 0.35 0.136 396.095, p < 0.01

LZ4HC 0.405 0.392 0.30 0.142 761.319, p < 0.01

XZ 6 0.308 0.293 0.20 0.118 1020.903, p < 0.01

XZ 9 0.308 0.293 0.20 0.118 1020.903, p < 0.01

HTML and HTM denote Hypertext Markup Language files used for internet

browsers. HTML is an XML-based text language, and so we expect these files to

compress like other XML-style files. HTML files may contain some JavaScript using

the <script></script> tags. Though we also expect JavaScript to compress well

(see Section 4.2.10), if JS has a mean far from that of pure HTML, this may produce

a second mode.

HTML (Table 4.12 and Figure 4.14) was the 4th most common extension by

ranked vote and the 3rd overall. The average file size was a small 18 KB, and the
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Figure 4.14: Histogram for HTML

largest size was 44 MB. The group of files near 1 is very surprising for an XML-based

format. There were 283 files (not limited by user) with a CR larger than 0.9. The

average size for this group of files was 2.2 KB, suggesting they may just be too small

to compress well.

At first glance, all lines appear to be trimodal. Unlike many of the lines we have

seen, the modes appear to be universally smaller than the mean. Deflate 1 may be the

exception, but the binning process (described in Section 3.2.1) reduces precision. Also

unlike previous distributions, the percentage of files at the modes is quite variable.

There was a bit of a difference in GIF (see Table 4.10), but here, there is a difference

of almost 10% between LZ4 and XZ 6 & 9.

4.2.9 JPG

JPEG and JPG are interchangeable extensions used for images compressed with

some version of JPEG. JPEG is an image compression method only, not a standard
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Table 4.13: JPG

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.942 0.982 0.95 0.111 6040.397, p < 0.01

Deflate 6 0.940 0.981 0.95 0.113 5996.984, p < 0.01

Deflate 9 0.940 0.981 0.95 0.114 5999.496, p < 0.01

LZ4 0.950 0.989 0.95 0.108 6082.688, p < 0.01

LZ4HC 0.944 0.985 0.95 0.111 5831.245, p < 0.01

XZ 6 0.937 0.982 0.95 0.119 5698.467, p < 0.01

XZ 9 0.937 0.982 0.95 0.119 5698.345, p < 0.01

Figure 4.15: Histogram for JPG

for a complete file. As such, pixel aspect ratio, color map, and interleaved bitmap

rows must be independently coded [4]. Further complicating this extension, JPEG

has many modes. Compression can be lossless, though it is almost always lossy. Lossy

compression can encode the file linearly (left to right, top to bottom), in blocks, or

hierarchically, which allows the user to view lower-resolution blocks of an image before
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the higher-resolution portions have been decompressed. Like all already-compressed

files, we expect very little compression.

JPG (Table 4.13 and Figure 4.15) was the 6th most common by ranked vote and

the 12th overall. The average file size for JPG was 753 KB with the largest file at

66 MB. The lines for JPG follow the pattern that we saw for other pre-compressed

data. The mean, median, and mode for each line are very close to 1, and the means

are skewed to the left due to left-hand tail.

4.2.10 JS

Table 4.14: JS

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.374 0.371 0.35 0.096 26.773, p < 0.01

Deflate 6 0.345 0.340 0.30 0.103 44.739, p < 0.01

Deflate 9 0.344 0.340 0.30 0.104 43.293, p < 0.01

LZ4 0.515 0.513 0.45 0.129 5.531, p < 0.01

LZ4HC 0.466 0.460 0.40 0.143 46.279, p < 0.01

XZ 6 0.355 0.346 0.30 0.121 121.820, p < 0.01

XZ 9 0.355 0.346 0.30 0.121 121.819, p < 0.01

JS is the extension for JavaScript files. We expect JavaScript to compress well

because it contains so many patterns. English text compresses very well2, and many

JavaScript functions and variable names use English text. If the programmer who

created a file regularly uses one coding style, e.g., puts the left curly brace on the

same line as the function signature, patterns will be even stronger.

2Using an alphabet of 95 ASCII characters, Brown et al. estimated an upper bound on the
entropy of English text at 1.75 bits per letter [48]. Assuming a text file uses one byte per character,
that would leave a CR near 0.22.
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Figure 4.16: Histogram for JS

JS (Table 4.14 and Figure 4.16) was the 3rd most common extension by ranked

vote and the 8th overall. The average file size was 31 KB, and the maximum was 51

MB. All JS lines are the closest to normal that we have seen so far. Interestingly,

Deflate 6 & 9 performed slightly better than both levels of XZ. Like HTML (Figure

4.14), the percentage of files at the modes is highly variable. There appears to be a

difference of 8 or 9% between LZ4HC and Deflate 1.

In other extensions with fairly bell-shaped curves, it’s common for LZ4 and LZ4HC

to have larger standard deviations, making them look “flatter.” Speed is definitely

the only reason to choose these compressors, because they stand out from Deflate and

XZ much more than the differences between Deflate and XZ.

4.2.11 JSON

JSON, or JavaScript Object Notation, is a language-independent data-interchange

format [49]. Its text-based structure makes it human-readable, easy for machines to
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Table 4.15: JSON

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.350 0.373 0.40 0.121 380.764, p < 0.01

Deflate 6 0.322 0.343 0.40 0.124 318.110, p < 0.01

Deflate 9 0.321 0.342 0.40 0.125 325.304, p < 0.01

LZ4 0.477 0.515 0.60 0.165 500.484, p < 0.01

LZ4HC 0.429 0.467 0.55 0.168 491.170, p < 0.01

XZ 6 0.332 0.353 0.40 0.141 364.152, p < 0.01

XZ 9 0.332 0.353 0.40 0.141 364.169, p < 0.01

Figure 4.17: Histogram for JSON

parse, and therefore, likely compressible. Compressibility may rely heavily on the

data structure(s) the JSON file contains or based on coding styles. For example, a

programmer who frequently replaces long field names with the @JsonProperty anno-

tation may have less-compressible files compared to a programmer who ignores this

feature.
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Table 4.16: MP3

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.923 0.956 0.95 0.107 171.563, p < 0.01

Deflate 6 0.920 0.951 0.95 0.108 167.214, p < 0.01

Deflate 9 0.920 0.951 0.95 0.108 166.742, p < 0.01

LZ4 0.935 0.976 0.95 0.107 187.135, p < 0.01

LZ4HC 0.924 0.959 0.95 0.108 171.890, p < 0.01

XZ 6 0.916 0.947 0.95 0.111 157.784, p < 0.01

XZ 9 0.916 0.947 0.95 0.111 157.458, p < 0.01

JSON (Table 4.15 and Figure 4.17) was the 8th most common extension by ranked

vote and the 22nd overall. The average file size was 56 KB, and the largest file was 585

MB. Deflate and XZ had fairly similar performance, but as usual, LZ4 and LZ4HC

had noticeably worse performance. The average file size for the files with a CR larger

than 0.8 was 14 KB, suggesting that their poor compressibility is due to smaller file

sizes.

4.2.12 MP3

MP3 is the well-known extension for the MPEG-3 audio file format, a lossy com-

pression format that utilizes a Modified Discrete Cosine Transform (MDCT). Its

open-source counterpart is Ogg Vorbis [50], identifiable with the extension OGG [51].

Though the OGG extension was more common by total files, MP3 had a higher ranked

vote, and MP3 is better known. We chose to analyze only MP3 with the assumption

that two MDCT-based formats would have similar compression performance.

MP3 (Table 4.16 and Figure 4.18) was the 52nd most common extension by ranked

vote and the 63rd overall. The average MP3 size was 5 MB with the largest file at
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Figure 4.18: Histogram for MP3

Table 4.17: PDF

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.835 0.903 0.95 0.178 765.015, p < 0.01

Deflate 6 0.826 0.897 0.95 0.186 747.393, p < 0.01

Deflate 9 0.825 0.896 0.95 0.186 745.065, p < 0.01

LZ4 0.856 0.915 0.95 0.160 707.205, p < 0.01

LZ4HC 0.839 0.901 0.95 0.171 684.823, p < 0.01

XZ 6 0.813 0.884 0.95 0.198 656.093, p < 0.01

XZ 9 0.813 0.884 0.95 0.198 655.635, p < 0.01

991 MB. Each compressor’s distribution closely resembles all other distributions for

pre-compressed files.
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Figure 4.19: Histogram for PDF

4.2.13 PDF

PDF (Portable Document Format) was created in the early 1990s by Adobe

Systems [52]. Later-version PDFs can contain interactive content, audio, video,

JavaScript, vector graphics, and more. Updates to objects within the document

are often appended to the document rather than modifying the original object [53].

Individual objects can be compressed (e.g., images can be compressed with JPEG or

Run-Length Encoding), and since version 1.2, the entire document can be compressed

with lossless algorithms like Deflate or LZW.

PDF (Table 4.17 and Figure 4.19) was the 26th most common extension by ranked

vote and the 41st overall. The average file size was 872 KB with a largest size of 664

MB. The given shape of the lines strongly suggests that the majority of these PDFs

were already compressed. Unfortunately, the metadata gives only the version of the

PDF and does not tell us whether the entire file or portions of the file are compressed,
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Table 4.18: Individual PDF versions using Deflate 6

Version Mean Median Mode

1.0 0.584 0.652 0.75

1.1 0.722 0.838 0.95

1.2 0.787 0.826 0.80

1.3 0.845 0.889 0.90

1.4 0.784 0.845 0.90

though at the minimum we know that text will not be compressed if the version is

1.0 or 1.1. We also have no way to know what each PDF contains. PDFs with many

embedded images likely compress very differently from their text-heavy counterparts.

Though the distributions resemble those for pre-compressed data, there is a much

longer tail to the right. A great number of PDFs are still very compressible even

though the mode is universally at 0.95.

Comparison by Version

Table 4.18 and Figure 4.20 suggest that, as expected, versions 1.0 and 1.1 predict

greater compressibility, but n = 7 is a very small sample to draw any conclusions.

Versions 1.3 and 1.4 have equal modes, but the mean and median for version 1.4 are

both lower than those of 1.3.

4.2.14 PNG

PNG is a Deflate-compressed image format created to replace GIF [54]. It supports

multiple levels of compression, so while some PNGs may compress slightly more, we

expect generally poor performance.

PNG (Table 4.19 and Figure 4.21) was the 2nd most common extension both by
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Figure 4.20: Histogram for PDF versions 1.0 to 1.4 using Deflate 6

Table 4.19: PNG

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.930 0.997 1.00 0.160 539.405, p < 0.01

Deflate 6 0.929 0.997 1.00 0.162 542.535, p < 0.01

Deflate 9 0.929 0.997 1.00 0.163 542.595, p < 0.01

LZ4 0.941 1.002 1.00 0.152 603.117, p < 0.01

LZ4HC 0.934 0.997 1.00 0.156 564.665, p < 0.01

XZ 6 0.930 0.999 1.00 0.167 467.808, p < 0.01

XZ 9 0.930 0.999 1.00 0.167 467.808, p < 0.01

ranked vote and overall. The average size was 84 KB, and the largest size was 379

MB. Its distributions resembled all other pre-compressed file distributions.
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Figure 4.21: Histogram for PNG

Table 4.20: RTF

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.565 0.411 1.00 0.342 335.296, p < 0.01

Deflate 6 0.539 0.381 1.00 0.362 333.748, p < 0.01

Deflate 9 0.538 0.381 1.00 0.364 330.337, p < 0.01

LZ4 0.647 0.577 1.00 0.299 198.314, p < 0.01

LZ4HC 0.600 0.528 1.00 0.336 219.204, p < 0.01

XZ 6 0.542 0.398 1.00 0.373 285.454, p < 0.01

XZ 9 0.542 0.398 1.00 0.373 285.454, p < 0.01

4.2.15 RTF

Rich Text Format (RTF) was created by Microsoft in 1987 to hold text with italics,

bold-face, multiple fonts, among other features [55]. RTF can include embedded

images of several formats, including PNG and JPG. RTF is highly portable across
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Figure 4.22: Histogram for RTF

operating systems, making it an attractive format and increasing its prevalence.

RTF (Table 4.20 and Figure 4.22) was the 49th most common extension by ranked

vote and the 111th overall. We included RTF, since it is still a relatively common

and portable document format, and so we considered its results interesting. We were

very surprised to find a massive group of totally incompressible files. Upon further

investigation, many files simply had “data” as the results of the file command.

The average CR for these files was 1.01. No version of Rich Text Format supports

compression, so we assume these files are something other than Rich Text. If we

include only files containing “Rich Text Format” in the metadata, we get Figure

4.23, the distribution we expected for this extension. (This chart did not limit the

number of files per user.)
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Figure 4.23: Histogram for RTF

Table 4.21: SVG

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.388 0.394 0.35 0.107 140.737, p < 0.01

Deflate 6 0.364 0.370 0.40 0.111 82.533, p < 0.01

Deflate 9 0.364 0.369 0.40 0.112 85.992, p < 0.01

LZ4 0.556 0.566 0.55 0.163 95.158, p < 0.01

LZ4HC 0.518 0.527 0.50 0.167 56.495, p < 0.01

XZ 6 0.367 0.371 0.30 0.126 31.905, p < 0.01

XZ 9 0.367 0.371 0.30 0.126 31.905, p < 0.01

4.2.16 SVG

SVG is an abbreviation for Scalable Vector Graphics, an Internet-based static or

animated graphic specified in XML [56]. Unlike raster graphics, which are 2D arrays

of pixel values, SVGs store descriptions of a graphic as a series of lines, colors, shades,

angles, etc. Due to their XML-based structure and simplified nature, we expect SVGs
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Figure 4.24: Histogram for SVG

to compress well.

SVG (Table 4.21 and Figure 4.24) was the 9th most common extension by ranked

vote and the 21st overall. The average file size was 13 KB, and the largest size was

13 MB. LZ4 and LZ4HC performed particularly badly compared to the other five.

Unlike the XML-based HTML files, we don’t see a cluster of files near 1. Instead,

these lines are relatively normal with the exception of the small spike between 0.1

and 0.25. For Deflate and XZ, nearly all files have a CR less than 0.75.

4.2.17 TTF

TTF, or TrueType Font, is a font format used by Mac, Linux, and Windows [57].

TrueType uses a “hinting language” to help a rasterizer appropriately display the

font at all sizes and resolutions, improving readability and visual appeal [58]. TTF

files contain bytecode to be executed by the rasterizer. TTF files are not compressed;

WOFF and WOFF2 are container formats designed to wrap and compress TTF [59].
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Table 4.22: TTF

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.582 0.581 0.55 0.102 98.335, p < 0.01

Deflate 6 0.552 0.550 0.50 0.107 100.738, p < 0.01

Deflate 9 0.551 0.550 0.50 0.108 100.223, p < 0.01

LZ4 0.709 0.718 0.70 0.107 80.868, p < 0.01

LZ4HC 0.637 0.641 0.60 0.114 55.854, p < 0.01

XZ 6 0.471 0.467 0.45 0.123 76.770, p < 0.01

XZ 9 0.471 0.467 0.45 0.123 76.751, p < 0.01

Figure 4.25: Histogram for TTF

We expect TTFs, like any bytecode files, to compress well.

TTF (Table 4.22 and Figure 4.25) was the 15th most common by ranked vote

and 66th overall. TTF had an average file size of 402 KB and a largest file size of 48

MB. The TTF lines appear somewhat normal, though the small cluster of files near

1 break from the pattern. The average file size for files with a CR greater than 0.9
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Table 4.23: TXT

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.362 0.366 0.40 0.145 61.467, p < 0.01

Deflate 6 0.333 0.328 0.30 0.149 53.981, p < 0.01

Deflate 9 0.332 0.327 0.30 0.150 53.114, p < 0.01

LZ4 0.504 0.508 0.55 0.202 32.825, p < 0.01

LZ4HC 0.452 0.441 0.40 0.206 68.612, p < 0.01

XZ 6 0.333 0.321 0.30 0.168 97.042, p < 0.01

XZ 9 0.333 0.321 0.30 0.168 97.098, p < 0.01

was 787 KB, so small file size was not likely a contributor. A great number of these

files contained the substring “EmojiRegularVersion.” Of all files whose metadata

contained this substring, the smallest CR in the XZ 9 table was 0.47, which would

be placed in the 0.5 bin during the histogram binning process. This means that all

Emoji font files’ CRs were larger than the mean, median, and mode. It makes sense

that a highly detailed font such as Emoji would have less redundancy. It could be

that the cluster near 1 is largely custom fonts.

4.2.18 TXT

TXT is generally associated with unformatted text files [32], which is a very broad

category of files that contain mainly ASCII or or other printable characters. Though

we can expect English text to compress fairly well, it would be näıve to assume the

contents are even close to English. The variety of possible formats will likely create

a multimodal distribution.

TXT (Table 4.23 and Figure 4.26) was the 7th most common extension by ranked

vote and 29th overall. The average file size was 222 KB, and the largest was 891 MB.
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Figure 4.26: Histogram for TXT

The average file size was relatively low at 210 KB, but the largest file reached 869

MB. For all compressors, the mean, median, and mode were very close. The largest

distance from the mean to the mode was 0.03, a tie between Deflate 6 & 9. LZ4 had

the largest distance from the median to the mode at 0.042. Except for LZ4HC and

LZ4, all compressors had a sharp decline in CRs after about 0.6.

The cluster of files with CRs larger than 0.9 is likely due to files breaking with the

standard for the TXT extension. The average file size for this cluster was about 300

KB, so it is unlikely that small files were the culprit. Some metadata from this cluster

included “Targa image data”, “gzip compressed data”, and “OpenSSH RSA public

key.” This perfectly exemplifies a critical flaw in the extension approach: extensions

make no guarantee about the data they contain. In the RSA public key case, one

could argue that .txt does not break from the convention, because RSA public keys

are usually stored in a text representation; however, we expect human language and

encryption keys to have dramatically different entropy.
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Table 4.24: WAV

Algorithm Mean CR Median CR Mode SD A

Deflate 1 0.739 0.767 0.90 0.180 52.502, p < 0.01

Deflate 6 0.730 0.759 0.90 0.188 55.727, p < 0.01

Deflate 9 0.730 0.759 0.90 0.188 55.937, p < 0.01

LZ4 0.889 0.947 0.95 0.155 319.042, p < 0.01

LZ4HC 0.841 0.898 0.95 0.179 200.610, p < 0.01

XZ 6 0.629 0.628 0.45 0.209 28.310, p < 0.01

XZ 9 0.629 0.628 0.45 0.209 28.269, p < 0.01

TXT files were largely compressible, with most files compressed to at least 75%

of their original size. The file contents appear to have varied significantly. Though

most metadata suggested ASCII, UTF-8, UTF-16, or ISO-8859 characters, some files

appeared to contain public keys, git commits, or other incompressible data. The

category “text files” may be too broad to make any estimations of compressibility.

This extension shows how different the utility of the mean CR can be based on

extension. The lines for Deflate and XZ show that the system can confidently assume

a TXT file will compress below 0.75. It cannot make the same strong assumption for

LZ4. Even though LZ4 will be much faster than Deflate, there is a non-trivial chance

that LZ4 will waste time reducing a file by only 10% of its original size.

4.2.19 WAV

WAV refers to Waveform Audio File Format, which is generally uncompressed

audio, though may be compressed (all analog-to-digital audio conversion incurs some

amount of information loss, but we will explain in Section 4.2.19). WAV supports

both mono and stereo sound, variable sample rates, and multiple encoding formats,

63



Figure 4.27: Histogram for WAV

including Pulse Code Modulation (PCM), Adaptive Differential Pulse Code Modu-

lation (ADPCM), A-law, and µ-law [60]. We expect the flexibility of encoding to

produce a multimodal distribution.

WAV (Table 4.24 and Figure 4.27) was the 28th most common extension by ranked

vote and 48th overall. The average file size was 801 KB, and the largest size was 891

MB. LZ4 and LZ4HC had the worst performance, with mean, median, and mode

fairly tight about 0.95. XZ 6 and XZ 9 had virtually identical results and achieved

CRs for most files lower than 0.9.

The WAV data clearly suggest a multimodal distribution. The several dips and

peaks in the XZ compressors’ lines show that there are probably multiple underlying

distributions. XZ’s mode at 0.45 is only slightly larger than the mode near 0.9, and

so using 0.45 would incur significant penalties for many marginally compressible files.

Deflate suffers from the opposite problem: the modes for all three levels are at 0.9,

but Deflate 1 has a mode near 0.6, and Deflate 6 & 9 have a mode near 0.55. Using
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the mean CR, these three compressors would likely miss some opportunities to save

time and energy.

The largest noticeable change from the original distribution happens in Figure 4.28

when we plot 8-bit PCM mono audio samples. Here, the lines shift left, suggesting

that this cluster of files is uncompressed or at least more compressible. The 16-bit

PCM mono files, shown in Figure 4.29, did not follow this same trend. The 8-bit

PCM stereo files, shown in Figure 4.30, seemed about as compressible as the 8-bit

PCM mono, but there were only 33 files in this sample.

Figure 4.28: WAV audio, 8-bit mono

To understand the difference in compressibility between 8- and 16-bit files, we

need to briefly cover how WAV audio is encoded.

WAV Quantization

Converting a continuous signal into discrete steps will always lose some amount

of information; however, the number of steps and step size determine information
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Figure 4.29: WAV audio, 16-bit mono

Figure 4.30: WAV audio, 8-bit stereo

loss. PCM encodes each audio sample individually using constant-size steps. The

bit resolution, in this case typically 8-bit or 16-bit, determines how many steps the
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audio will have. Since the step size will not change, PCM-encoded data is considered

“uncompressed.”

This means the compressibility difference between 8- and 16-bit PCM files is likely

due to the number of steps. 8-bit samples allow for 256 possible pitches sounds, which

essentially is a 256-character alphabet. The 16-bit files can have 216 = 65, 536 possible

sounds. The larger alphabet is likely breaking up some patterns.

ADPCM does not encode each sample alone, but rather it encodes the difference

between the previous sample and the current sample [61]. Additionally, it changes the

step sizes dynamically and reduces necessary number of steps, which requires fewer

bits to encode a step, but results in some information loss. Thus, ADPCM-encoded

data is considered “compressed.” A-law and µ-law are also compressed encodings,

but we did not have enough of these files to analyze them.

At least 90% of WAV files were encoded with PCM or ADPCM3. As expected,

separating PCM from ADPCM-encoded files showed a large difference in compress-

ibility. There are some clear differences between the PCM data, shown in 4.31, and

the ADPCM data, shown in 4.32. Figure 4.31 shows many PCM files are compress-

ible below the mode, with some at a CR of 0.25. Figure 4.32 shows ADPCM files

are much more closely packed near 1. There were no discernible differences between

ADPCM mono and stereo, and so we did not include their charts.

4.3 Comparison among File Formats

We chose to compare the performance of compressed formats to see how efficient

compression is for each format relative to others. If all formats have very efficient

compression, then we assume their mean compression ratios should be somewhat

390% includes only files for which we had metadata and could therefore determine the encoding.
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Figure 4.31: WAV audio, PCM samples

Figure 4.32: WAV audio, ADPCM

equal and their histograms should have very similar shapes.
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4.3.1 Compressed File Formats

The extensions we analyzed are DOCX, GIF, GZ, JPG, MP3, PNG, and ZIP.

These formats are always compressed, unlike the extensions PDF and WAV, which

are only usually compressed. To make the histograms easy to distinguish, we charted

only the Deflate 6 results. We chose Deflate 6 because being the default compression

level for both zip and gzip programs (see Section 2.2.1), it is the most common

compressor of the seven we used.

Table 4.25: Compressed Format Performance with Deflate 6

Ext. Mean Median Mode

docx 0.865 0.871 0.80

gif 0.892 0.981 0.95

gz 1.000 1.003 1.00

jpg 0.954 0.989 0.95

mp3 0.922 0.949 0.95

png 0.937 0.999 1.00

zip 0.891 0.984 0.95

Overall, the lines all followed a very similar shape. DOCX was the exception, but

Figure 4.8 showed that many DOCX files would compress somewhat well. Of these

extensions, DOCX is the only one expected to be mostly textual data.

The least surprising result was GZ performance. Though some gzip files may have

been compressed with a level lower than 6, we do not expect gzip to compress its own

output any further. It is also not surprising that Deflate 6 poorly compressed JPG

and PNG files, since JPG is lossy compressed and PNG uses a version of Deflate (see

Section 4.2.14). We did expect some GIFs to compress fairly well for the reasons

outlined in Section 4.2.6.
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Figure 4.33: Compressed Format Performance with Deflate 6

It is interesting that the mean CR for ZIP is somewhat low, especially relative

to GZ. The primary difference between zip and gzip is that zip is an archive format,

while gzip requires a separate application (like tar) to archive. This means that zip

compresses files individually, while gzip compresses one single file. Maybe zip is not

detecting patterns across files, but gzip, compressing an entire archive at once, can

detect these patterns. We can see that there is a small cluster of files with a CR

near 0.35, and so this likely has some effect on the mean. There is something strange

about the zip files, however. A total of 857 files had a CR less than 0.5, and 79 files

had a CR less than 0.1. Of the 50 files with the lowest CRs, two were labeled “data”

(the lowest CR was 0.001 and was labeled “data”), three were labeled “AppleDouble

encoded Macintosh file,” and one was labeled “Mozilla archive omni.ja.” Nevertheless,

only eight files with a CR less than 0.5 had metadata that did not include the string

“Zip archive data”4.

4This number does not include files with no metadata. Some Windows machines did not have a
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It is somewhat unexpected that a number of MP3s were further compressed. Fig-

ure 4.33 shows that many MP3s compressed better than other formats. Like GIF,

JPG, and ZIP, the mode was at 0.95, but the mean was 0.922.

4.3.2 Source Code Formats

Table 4.26: Source Code Files with Deflate 6

Ext. Mean Median Mode

c 0.316 0.302 0.25

cpp 0.318 0.313 0.25

h 0.343 0.346 0.35

java 0.344 0.338 0.25

js 0.358 0.357 0.40

py 0.304 0.297 0.25

We chose to compare results from source code files C (C language), CPP (C++),

H (C/C++ header files), JAVA (Java), JS (JavaScript, see Section 4.2.10), and PY

(Python) files using the Deflate 6 compressor. Even though these are separate lan-

guages, we expect source code to compress similarly, specifically because they all

follow common patterns. C & CPP files may have the most similar compression,

since they are such closely related languages. PY has the most dissimilar structure,

though it will likely be close enough to compress like the other extensions.

Surprisingly, PY and C appear to compress more similarly than C and CPP, at

least according to the shape of the lines in Figure 4.34. Table 4.26 shows that these

three source code files have near identical means — a difference of 0.003 would mean

C compressed an average of 0.3% more than CPP and PY.

method to return results of the file command.
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Figure 4.34: Source Code Files with Deflate 6

All means were larger than the modes for every extension. The means and modes

also had very little difference, the range being 0.017 to 0.068. JAVA’s relatively poor

performance could be related to the average file size: JAVA had an average size of 11

KB, all other extensions had 15 to 31 KB.

One reason we did not do a deeper dive into all of these extensions was the average

file size. Even JS, having an average of 31 KB, is fairly small when considering whether

to compress. Compressing a single file requires some amount of overhead regardless

of file size. When the file being compressed is 2 MB, the overhead is trivial, but when

the file is 5 KB, overhead should be considered. As we discuss in Section 5.2, an AC

system will doubtfully try to compress any file smaller than the filesystem’s page size.

In total, 83,025 of 158,671 JAVA files (52.3%) were smaller than 4 KB, the default

page size for NTFS and ext4 filesystems. This means that even though a JAVA file

usually compressed to less than half its original size, compression usually provided

little to no space savings.
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5 Discussion

In this chapter, we make some higher-level observations about the results in the

previous section.

5.1 Normality

We tested a total of 18 extensions for normality. Our results strongly suggest that

no file extension has a normal distribution of compressibility for the three algorithms

and seven total compressors we used. This is supported by the agreement of three

tests for normality — Kolmogorov-Smirnov, Anderson-Darling, and Chi-Squared —

all suggesting we should reject the null hypothesis that these distributions are normal

(p < 0.01 for AD, p < 0.001 for both KS and Chi-Squared).

There were several extensions for which not all normality tests agreed. 22 extension-

compressor pairs did not have significant evidence to reject the null hypothesis for

one of the three tests performed. Of these 22, 16 passed the KS test and 6 passed the

Chi-Squared test (there was no overlap). This means that for all of these extensions,

two of three tests still returned not normal. While these results may warrant more

testing, we do not consider it evidence of normality. All raw results are in Table A.1.

Some extensions appeared to follow a unimodal, somewhat bell-shaped curve even

though they were quantitatively not normal. The departure from normality may be

explained by some anomalous files that according to their metadata, may contain

data other than what is associated with their extension. For example, JS (4.16)
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appeared to have curves closest to normal. The XZ compressors along with Deflate 6

& 9 appear somewhat bimodal for JS, but LZ4 looks very close to the characteristic

bell curve. We built the JS distributions with 57,724 files. Of these, 466 were “data”

according the metadata we gathered, while we would expect “ASCII,” “UTF-8,” or

“text” to be in that metadata.

Perhaps the LZ4 curve was not normal due to the cluster of the files with CRs

near 1, which appears as a slight bump; however, a back-of-the-envelope test shows

that the bump near 1 might not be the culprit. There are 137 files in the LZ4 data

with a CR greater than 0.9 and 96 files with a CR less than 0.128, which are three

standard deviations from the mean. That means 99.60% of files were within three

standard deviations, which is very close to the expected 99.73%. Additionally, there

were 87 files with a CR greater than 0.9665 (3.5-σ events), leaving 98.49% of files

within 3.5 standard deviations, again, not so far off from the expected 99.95% (3.5

standard deviations less than the mean is a negative number).

The larger factor, then, must be the slightly misshapen center of the curve. LZ4

must have a second mode slightly right of 0.45, just as the other curves appear to have

a rightward mode. The difference between the mean and the mode for LZ4 is 0.065,

which shows there is some skew. Since the mean is slightly larger than the mode, the

small bias towards larger CRs might have very little effect on overall performance,

since in theory the AC system would have slightly better compression performance

than the mean suggests.

5.2 File Sizes

Our experiment looked at all files between 1 KB and 1 GB. While we would

have liked to learn how files larger than 1 GB would compress, this upper limit was
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created to prevent Comprestimator from using too much memory and/or swap on

participants’ computers. We do not know how many files this limit excluded. At the

opposite end of the spectrum, the 1 KB file size could also be adjusted. We chose

1 KB as the lower limit considering that virtually no system would have a page size

smaller than 1 KB, and so compressing such small files would not save any space

on disk. Additionally, network packets are commonly about 1 KB. Many page sizes,

however, are 4 KB or larger. If future work finds that file size plays a large role

in the mean CR for a particular extension, then any AC system would need to use

a distribution that excludes all files below its page size or whatever the size of the

smallest container would be.

5.3 Mean as an Estimator

Our results show that the utility of using the mean as a compressibility estimator

varies from extension to extension. The mean is an especially bad estimator for

extensions that have very flat distributions, like BIN (4.2.2), or extensions that are

multimodal with the modes very far apart, like DLL (4.2.3), EXE (4.2.5), and WAV

(4.2.19). Especially for DLL and EXE, the using the mean would be an utter disaster,

because their distributions show that the file will almost certainly have a CR much

higher or much lower than the mean. The best example is XZ, which has a mean CR

at 0.55, but the modes are clearly at 0.3 and 1.

The mean is also an inaccurate prediction when a small number of highly com-

pressible files shifts the mean below the mode. The best examples are GIF (4.2.6)

and PDF (4.2.13). With GIF, a few files with CRs between 0.25 and 0.5 shift the

mean CR for XZ 6 & 9 0.07 lower than the mode, which is at 0.95. For LZ4HC, the

mean is 0.09 lower than the mode. The distributions for PDF also have a large mode
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at 0.95, but the long tail to the left skews the mean 0.14 lower for XZ. Even when we

separate PDFs by version, the means are universally skewed to the left. Compression

decisions based on the mean in distributions like this are more likely to result in CRs

closer to the mode, which has worse compression.

There is one more problem with the mean: using it assumes that the files that are

really more compressible will cancel out the effect of files that are less compressible,

and that this will be worthwhile in the long run. In reality, this may not be true. The

unexpected benefit from a more-compressible file may not be equal to the penalty

of one less compressible. The imbalance between benefit and penalty might even

differ between machines. This would imply that each individual machine would need

to measure the average penalty and average benefit in order to calibrate what the

estimated compressibility should be for each extension.

Lastly, the mean changes potentially dramatically depending on the compressor.

In general, LZ4 and LZ4HC had worse compression performance, but how worse they

were was variable. For JS (Figure 4.16), LZ4 had CRs up to 0.25 higher than Deflate.

LZ4 and LZ4HC’s significantly worse performance also appeared in the results for

JSON (Figure 4.17), SVG (Figure 4.24), TXT (Figure 4.26), and especially WAV

(figure 4.27). Though LZ4 is a very fast compressor, it greatly underperforms Deflate

and XZ.

5.4 Mode as an Estimator

For the majority of extensions, the (highest) mode was larger than the mean CR.

The difference may be as small as 0.001, as shown in the table for TTF 4.22, or as

large as 0.454, as shown in the table for DLL 4.6. Since no results for an extension-

compressor pair appeared to be from one single distribution (no set of sample means
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followed a normal distribution), it is very difficult to choose one mode value that would

cover all sub-distributions. In general, the mode would be a very cautious estimator.

It is typically better to avoid wasting resources by compressing the incompressible

than missing opportunities to compress, but using the mode represents a strategy

that is “pessimism over accuracy.”

Specifically for pre-compressed files, the mode may be an acceptable estimate,

because virtually all modes for pre-compressed files were 0.95 or 1.00, both discour-

aging attempts to compress. Particularly for JPG (Figure 4.15), the mode covered

almost 70% of files compressed with Deflate 6 or 9. It appears that for the majority

of extensions indicating a pre-compressed file, it is indeed a bad decision to attempt

compression.

5.5 File Extension as a Predictor of File Type

One concern with using file extensions to predict compressibility is that the file

extension does not guarantee file format or type. According to our results, we should

all share this concern. First, the most common extension in our data was no extension

at all! This “null extension” does not communicate useful information. It is a severe

problem that the most common extension is one of the least helpful.

Also, many files appeared not to conform with their extension’s conventional for-

mat. The best example is RTF (see Figure 4.22) where almost one in three files was

not Rich Text. 10 of 24 participants each contributed between 147 to 154 of these

files. Such a consistent number suggests they may be system files. Fortunately, the

metadata was extremely helpful in removing the incompressible offenders. Metadata

also revealed distinguishing characteristics of WAV files, where the substrings “PCM”

and “ADPCM” helped separate compressible and incompressible files.
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JPG had a number of offenders, including “gzip compressed data,” “CSV text,”

“ASCII text, with CRLF line terminators,” “Python script,” “PE32 executable (DLL),”

and “XML 1.0 document.” Most importantly, these files were from participants who

presumably were not trying to game their own systems.

These examples show that people designing AC systems to use file extensions

should account for the problem of inaccurate extensions in some way.

5.6 Future Work

This experiment creates many opportunities for future work with the current

dataset. Most obviously, we analyzed only 18 extensions. It would especially be

interesting to analyze extensions like MP4, MOV, WMV, and other extensions asso-

ciated with video. As noted in Appendix B, we skipped a number of system-dependent

files. Since these files are extremely common, they may be worth investigating. The

dataset also includes a number of metrics that we have not yet used, like the byte-

count, entropy, and compression time for each file.

We have evidence that for at least some extensions, the metadata from the Unix

file command better predicts compressibility than the file extension alone. Since

there is an overwhelming number of extension-metadata pairs, data mining could

potentially find some combinations that reliably predict compression performance.

Another machine learning project could find file properties that predict to which un-

derlying distribution a file belongs. Many other questions could be answered through

machine learning or data mining, such as: How does file size correlate with com-

pressibility? Does a user’s average C source file compressibility reliably predict other

source code file compressibility? Does their WAV file compressibility somehow predict

their MP3 compressibility?
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Though we know the theoretical maximum compression is the file’s entropy, it

would be interesting to compare the entropy to the observed CRs to see if entropy

predicts real-world compressibility, not just theoretical. Similarly, it would be worth-

while to compare the bytecount to observed CRs. Bytecount has so far been used in

network traffic compression [25] and local filesystem compression [62], and comparing

it to CRs and entropy from our dataset could give more information on its utility for

future projects.

5.6.1 Participant Diversity

It would be helpful to expand our list of participants to reach more people who are

not part of the computer science world. It would also help to include a wider range of

participant ages and include people from different geographic regions and who speak

languages other than English. Building a more-diverse dataset may significantly

change some results. It would be extremely helpful for future AC development to know

whether geographic region or primary language will affect compression performance.

5.6.2 Time Estimation

Estimated time to compress is a very important metric for making compression

decisions. Although we collected information on compression time, we did not in-

clude it in our analysis. Understanding the interaction of runtime, compressors, and

extensions would compliment this work well, especially if the runtime and CR can be

paired to estimate a byte reduction per second for a particular file.
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5.6.3 Implementation in Real-World AC

The largest question for work was whether file extensions can be of any use for AC

systems. The best test would be a real-world implementation. An implementation

could show us how useful both time and compressibility estimates are when based

on mean compressibility. This could also show how much time is saved by making

a quicker decision. Even if compression takes longer than expected, the reduction in

decision time will offset at least some of the time penalty of compression. If the file

extension is the only estimator, decision time will be reduced for all files, both for

those that compressed faster than their estimate and those slower. If the extension

is the sole estimator for only a subset of files, decision time will slightly increase for

other files, though the system should experience a net reduction. AC systems for

smaller machines could especially benefit from this type of implementation.
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6 Conclusion

In this thesis we provided strong evidence refuting the assumed claim that file

compressibility follows a normal distribution. Using a tool we built to collect com-

pressibility information of over 12 million files, we estimated the probability distri-

butions of file compressibility for 18 different extensions across seven different file

compressors. From these results, we concluded that not only are these distributions

not normal, but the CR distribution for files with a shared extension likely come from

multimodal distributions — that is, multiple underlying distributions.

These results sow doubt that the mean compression ratio is good predictor of file

compressibility for a majority of file extensions, though it may be reliable enough for

some extensions to warrant use in a larger adaptive compression system. Knowing the

distributions of compressibility for file extensions motivates future work to improve

compressibility prediction, such as by using a combination of the mean and the mode

or other statistical properties, or finding readily accessible file metadata that can be

used for identifying to which sub-distribution a file belongs.
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A Normality Test Results

The following is the raw results for the top 100 extensions by ranked vote, plus

DOCX. The Kolmogorov-Smirnov statistic (KS), Chi-Squared statistic (χ2), and

Anderson-Darling statistic (A) all have p < .01 unless otherwise marked. One as-

terisk (*) indicates p < .05, ** indicates p < .1, and *** indicates p > .1.

Table A.1: Normal Test Results

Ext. Compressor KS χ2 A Mean Median Mode SD

(none)

Deflate 1 0.11 5.1e+05 14478.21 0.612 0.577 1.0 0.277

Deflate 6 0.11 8.7e+05 14908.49 0.597 0.563 1.0 0.287

Deflate 9 0.11 8.8e+05 14850.18 0.597 0.563 1.0 0.288

LZ4 0.11 4.4e+04 10776.76 0.696 0.721 1.0 0.249

LZ4HC 0.10 9.7e+04 11256.43 0.669 0.695 1.0 0.265

XZ 6 0.10 8.1e+05 13441.19 0.584 0.567 1.0 0.296

XZ 9 0.10 8.1e+05 13439.87 0.584 0.567 1.0 0.296

png

Deflate 1 0.31 1.6e+05 40396.16 0.937 0.999 1.0 0.151

Deflate 6 0.31 1.6e+05 40758.18 0.936 0.999 1.0 0.153

Deflate 9 0.31 1.6e+05 40765.34 0.936 0.999 1.0 0.153

LZ4 0.34 1.8e+05 45919.61 0.948 1.003 1.0 0.143

LZ4HC 0.33 1.7e+05 42701.27 0.941 1.0 1.0 0.147

XZ 6 0.27 1.5e+05 34029.47 0.937 1.0 1.0 0.159

XZ 9 0.27 1.5e+05 34029.49 0.937 1.0 1.0 0.159
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Ext. Compressor KS χ2 A Mean Median Mode SD

js

Deflate 1 0.01 4.7e+03 26.77 0.374 0.371 0.35 0.096

Deflate 6 0.02 4.4e+03 44.74 0.345 0.34 0.3 0.103

Deflate 9 0.02 4.3e+03 43.29 0.344 0.34 0.3 0.104

LZ4 0.01 6.2e+01 5.53 0.515 0.513 0.45 0.129

LZ4HC 0.02 2.6e+02 46.28 0.466 0.46 0.4 0.143

XZ 6 0.04 1.9e+03 121.82 0.355 0.346 0.3 0.121

XZ 9 0.04 1.9e+03 121.82 0.355 0.346 0.3 0.121

html

Deflate 1 0.06 1e+04 378.41 0.33 0.325 0.25 0.101

Deflate 6 0.07 1.2e+04 706.27 0.303 0.294 0.2 0.105

Deflate 9 0.07 1.2e+04 711.84 0.303 0.294 0.2 0.106

LZ4 0.05 1.1e+03 396.10 0.444 0.438 0.35 0.136

LZ4HC 0.07 2.5e+03 761.32 0.405 0.392 0.3 0.142

XZ 6 0.08 9.8e+03 1020.90 0.308 0.293 0.2 0.118

XZ 9 0.08 9.8e+03 1020.90 0.308 0.293 0.2 0.118

xml

Deflate 1 0.05 3.5e+03 500.55 0.325 0.307 0.25 0.152

Deflate 6 0.06 3.8e+03 557.60 0.306 0.287 0.25 0.157

Deflate 9 0.06 3.7e+03 544.07 0.306 0.287 0.25 0.157

LZ4 0.06 2.9e+03 532.27 0.428 0.402 0.35 0.198

LZ4HC 0.06 3.2e+03 589.74 0.399 0.372 0.35 0.204

XZ 6 0.06 2.9e+03 558.96 0.316 0.295 0.25 0.17

XZ 9 0.06 2.9e+03 558.90 0.316 0.295 0.25 0.17
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Ext. Compressor KS χ2 A Mean Median Mode SD

jpg

Deflate 1 0.30 3.8e+04 6040.40 0.942 0.982 0.95 0.111

Deflate 6 0.30 3.7e+04 5996.98 0.94 0.981 0.95 0.113

Deflate 9 0.30 3.7e+04 5999.50 0.94 0.981 0.95 0.114

LZ4 0.31 3.9e+04 6082.69 0.95 0.989 0.95 0.108

LZ4HC 0.30 3.8e+04 5831.24 0.944 0.985 0.95 0.111

XZ 6 0.29 3.5e+04 5698.47 0.937 0.982 0.95 0.119

XZ 9 0.29 3.5e+04 5698.34 0.937 0.982 0.95 0.119

txt

Deflate 1 0.04 7.3e+02 61.47 0.362 0.366 0.4 0.145

Deflate 6 0.04 1.5e+03 53.98 0.333 0.328 0.3 0.149

Deflate 9 0.04 1.4e+03 53.11 0.332 0.327 0.3 0.15

LZ4 0.04 4e+02 32.82 0.504 0.508 0.55 0.202

LZ4HC 0.04 7.4e+02 68.61 0.452 0.441 0.4 0.206

XZ 6 0.03 1.4e+03 97.04 0.333 0.321 0.3 0.168

XZ 9 0.03 1.4e+03 97.10 0.333 0.321 0.3 0.168

json

Deflate 1 0.08 3.3e+02 380.76 0.35 0.373 0.4 0.121

Deflate 6 0.07 1.1e+02 318.11 0.322 0.343 0.4 0.124

Deflate 9 0.07 1e+02 325.30 0.321 0.342 0.4 0.125

LZ4 0.09 9.8e+02 500.48 0.477 0.515 0.6 0.165

LZ4HC 0.09 5.8e+02 491.17 0.429 0.467 0.55 0.168

XZ 6 0.07 9.7e+01 364.15 0.332 0.353 0.4 0.141

XZ 9 0.07 9.7e+01 364.17 0.332 0.353 0.4 0.141
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Ext. Compressor KS χ2 A Mean Median Mode SD

svg

Deflate 1 0.04 4.4e+02 140.74 0.388 0.394 0.35 0.107

Deflate 6 0.03 1.4e+02 82.53 0.364 0.37 0.4 0.111

Deflate 9 0.03 1.6e+02 85.99 0.364 0.369 0.4 0.112

LZ4 0.03 8.2e+02 95.16 0.556 0.566 0.55 0.163

LZ4HC 0.02 6.8e+02 56.50 0.518 0.527 0.5 0.167

XZ 6 0.02 1.9e+02 31.91 0.367 0.371 0.3 0.126

XZ 9 0.02 1.9e+02 31.91 0.367 0.371 0.3 0.126

py

Deflate 1 0.03 6.5e+02 95.03 0.337 0.334 0.3 0.082

Deflate 6 0.04 1.8e+03 235.74 0.304 0.297 0.25 0.087

Deflate 9 0.04 1.8e+03 232.13 0.304 0.296 0.25 0.088

LZ4 0.02 4.5e+02 69.16 0.468 0.464 0.45 0.116

LZ4HC 0.04 2e+03 266.03 0.413 0.401 0.35 0.126

XZ 6 0.06 3.4e+03 500.94 0.313 0.299 0.25 0.105

XZ 9 0.06 3.4e+03 500.93 0.313 0.299 0.25 0.105

bin

Deflate 1 0.16 1.3e+05 860.55 0.576 0.489 1.0 0.33

Deflate 6 0.16 1.2e+05 941.25 0.561 0.463 1.0 0.339

Deflate 9 0.16 1.2e+05 942.09 0.56 0.462 1.0 0.34

LZ4 0.17 3.6e+04 681.39 0.643 0.623 1.0 0.311

LZ4HC 0.17 1.6e+05 761.43 0.608 0.557 1.0 0.324

XZ 6 0.16 1.2e+05 1024.49 0.532 0.416 1.0 0.357

XZ 9 0.16 1.2e+05 1023.72 0.532 0.416 1.0 0.357
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Ext. Compressor KS χ2 A Mean Median Mode SD

pyc

Deflate 1 0.03 5.2e+03 174.21 0.486 0.49 0.45 0.094

Deflate 6 0.02 2.5e+03 104.31 0.459 0.463 0.45 0.101

Deflate 9 0.02 2.5e+03 103.76 0.458 0.462 0.45 0.102

LZ4 0.03 5.3e+03 295.41 0.642 0.652 0.65 0.12

LZ4HC 0.03 2.7e+03 196.83 0.591 0.599 0.6 0.135

XZ 6 0.01 2.3e+02 40.81 0.444 0.443 0.4 0.119

XZ 9 0.01 2.3e+02 40.81 0.444 0.443 0.4 0.119

h

Deflate 1 0.02 1.3e+03 122.45 0.356 0.362 0.35 0.104

Deflate 6 0.01 6.4e+02 43.23 0.332 0.335 0.3 0.109

Deflate 9 0.01 5.9e+02 46.09 0.331 0.334 0.3 0.11

LZ4 0.02 9.6e+02 121.50 0.49 0.497 0.5 0.142

LZ4HC 0.01 6.4e+02 43.21 0.45 0.454 0.45 0.151

XZ 6 0.01 1.5e+02 26.67 0.343 0.343 0.35 0.127

XZ 9 0.01 1.5e+02 26.67 0.343 0.343 0.35 0.127

dll

Deflate 1 0.21 1.6e+05 23910.96 0.604 0.499 1.0 0.275

Deflate 6 0.21 2.4e+05 24748.28 0.585 0.471 1.0 0.287

Deflate 9 0.21 2.5e+05 24729.36 0.584 0.469 1.0 0.288

LZ4 0.19 1.4e+04 15878.54 0.678 0.614 1.0 0.237

LZ4HC 0.20 7.5e+04 20155.42 0.633 0.549 0.95 0.259

XZ 6 0.21 5.3e+05 27016.87 0.547 0.409 1.0 0.314

XZ 9 0.21 5.3e+05 27015.30 0.546 0.409 1.0 0.314
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Ext. Compressor KS χ2 A Mean Median Mode SD

ttf

Deflate 1 0.06 1.3e+03 98.33 0.582 0.581 0.55 0.102

Deflate 6 0.06 1.5e+03 100.74 0.552 0.55 0.5 0.107

Deflate 9 0.06 1.5e+03 100.22 0.551 0.55 0.5 0.108

LZ4 0.06 1.7e+03 80.87 0.709 0.718 0.7 0.107

LZ4HC 0.05 7.6e+02 55.85 0.637 0.641 0.6 0.114

XZ 6 0.06 2.1e+03 76.77 0.471 0.467 0.45 0.123

XZ 9 0.06 2.1e+03 76.75 0.471 0.467 0.45 0.123

dat

Deflate 1 0.09 1.5e+03 290.21 0.441 0.386 0.2 0.3

Deflate 6 0.10 1.5e+03 364.02 0.42 0.343 0.05 0.306

Deflate 9 0.10 1.5e+03 366.13 0.418 0.34 0.05 0.307

LZ4 0.08 2.9e+04 214.56 0.536 0.506 1.0 0.316

LZ4HC 0.09 1.1e+04 254.52 0.488 0.43 0.95 0.318

XZ 6 0.13 1.3e+03 512.97 0.379 0.276 0.1 0.309

XZ 9 0.13 1.3e+03 512.53 0.379 0.276 0.1 0.309

gz

Deflate 1 0.39 1.2e+05 14377.65 1.0 1.004 1.0 0.03

Deflate 6 0.39 1.2e+05 14376.99 1.0 1.004 1.0 0.03

Deflate 9 0.39 1.2e+05 14381.96 1.0 1.004 1.0 0.03

LZ4 0.46 1.3e+05 19089.81 1.002 1.004 1.0 0.027

LZ4HC 0.43 1.3e+05 17329.81 1.0 1.004 1.0 0.028

XZ 6 0.30 1.1e+05 7328.88 1.011 1.014 1.0 0.034

XZ 9 0.30 1.1e+05 7329.84 1.011 1.014 1.0 0.034
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Ext. Compressor KS χ2 A Mean Median Mode SD

mo

Deflate 1 0.06 6.7e+02 111.64 0.444 0.433 0.4 0.075

Deflate 6 0.05 4.3e+02 72.51 0.417 0.406 0.35 0.086

Deflate 9 0.05 3.8e+02 67.24 0.417 0.406 0.35 0.087

LZ4 0.04 3e+01 36.00 0.602 0.592 0.55 0.103

LZ4HC 0.04 3.6e+02 41.39 0.55 0.54 0.45 0.124

XZ 6 0.08 1.4e+03 259.08 0.359 0.34 0.3 0.101

XZ 9 0.08 1.4e+03 259.08 0.359 0.34 0.3 0.101

pm

Deflate 1 0.06 1.5e+03 82.10 0.397 0.399 0.35 0.088

Deflate 6 0.03 2.7e+02 19.01 0.365 0.365 0.35 0.095

Deflate 9 0.03 3e+02 19.86 0.365 0.364 0.35 0.096

LZ4 0.05 1.2e+03 61.25 0.544 0.547 0.5 0.122

LZ4HC 0.02 1e+02 9.69 0.491 0.489 0.45 0.133

XZ 6 0.02 2.9e+01 17.55 0.368 0.362 0.3 0.115

XZ 9 0.02 2.9e+01 17.55 0.368 0.362 0.3 0.115

exe

Deflate 1 0.22 3.1e+04 2426.41 0.621 0.513 1.0 0.268

Deflate 6 0.22 4.7e+04 2521.37 0.603 0.487 1.0 0.279

Deflate 9 0.22 4.7e+04 2520.53 0.602 0.486 1.0 0.279

LZ4 0.19 2.1e+03 1409.94 0.699 0.64 1.0 0.226

LZ4HC 0.20 1.1e+04 1849.59 0.653 0.574 0.55 0.25

XZ 6 0.24 1.1e+05 2765.05 0.564 0.427 1.0 0.306

XZ 9 0.24 1.1e+05 2762.86 0.564 0.427 1.0 0.306
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Ext. Compressor KS χ2 A Mean Median Mode SD

cat

Deflate 1 0.27 2.1e+04 15258.62 0.568 0.615 0.6 0.094

Deflate 6 0.27 2.1e+04 15269.43 0.559 0.607 0.6 0.095

Deflate 9 0.27 2.1e+04 15328.95 0.558 0.607 0.6 0.096

LZ4 0.27 2.1e+04 15062.12 0.591 0.636 0.6 0.09

LZ4HC 0.28 2.2e+04 15394.34 0.579 0.625 0.6 0.093

XZ 6 0.28 2.2e+04 15394.17 0.542 0.592 0.55 0.097

XZ 9 0.28 2.2e+04 15394.17 0.542 0.592 0.55 0.097

manifest

Deflate 1 0.22 1.1e+04 4942.36 0.449 0.384 1.0 0.323

Deflate 6 0.23 1.1e+04 5216.29 0.437 0.366 1.0 0.328

Deflate 9 0.22 1.1e+04 5204.21 0.437 0.366 1.0 0.328

LZ4 0.15 1.8e+04 2280.05 0.515 0.496 1.0 0.313

LZ4HC 0.15 1.7e+04 2495.42 0.5 0.475 1.0 0.317

XZ 6 0.18 1.1e+04 4341.84 0.453 0.392 1.0 0.333

XZ 9 0.18 1.1e+04 4341.84 0.453 0.392 1.0 0.333

pdf

Deflate 1 0.18 2.9e+03 765.02 0.835 0.903 0.95 0.178

Deflate 6 0.17 2.7e+03 747.39 0.826 0.897 0.95 0.186

Deflate 9 0.17 2.7e+03 745.06 0.825 0.896 0.95 0.186

LZ4 0.18 3.2e+03 707.20 0.856 0.915 0.95 0.16

LZ4HC 0.17 2.9e+03 684.82 0.839 0.901 0.95 0.171

XZ 6 0.17 2.4e+03 656.09 0.813 0.884 0.95 0.198

XZ 9 0.17 2.4e+03 655.63 0.813 0.884 0.95 0.198
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Ext. Compressor KS χ2 A Mean Median Mode SD

so

Deflate 1 0.07 3.3e+02 87.93 0.332 0.339 0.3 0.12

Deflate 6 0.07 6.5e+02 87.74 0.309 0.315 0.3 0.117

Deflate 9 0.07 6.8e+02 86.98 0.308 0.314 0.3 0.116

LZ4 0.08 2e+02 90.58 0.43 0.44 0.4 0.161

LZ4HC 0.08 1.9e+02 96.04 0.378 0.388 0.35 0.145

XZ 6 0.07 1.7e+02 84.68 0.255 0.263 0.25 0.099

XZ 9 0.07 1.7e+02 84.61 0.255 0.263 0.25 0.099

mum

Deflate 1 0.14 1.7e+04 6270.84 0.33 0.361 0.4 0.092

Deflate 6 0.14 1.7e+04 5974.25 0.317 0.343 0.35 0.091

Deflate 9 0.14 1.7e+04 5997.30 0.317 0.343 0.35 0.092

LZ4 0.15 1.7e+04 6219.92 0.429 0.465 0.5 0.117

LZ4HC 0.15 1.7e+04 5942.03 0.415 0.45 0.5 0.117

XZ 6 0.14 1.5e+04 5303.47 0.349 0.381 0.4 0.108

XZ 9 0.14 1.5e+04 5303.47 0.349 0.381 0.4 0.108

wav

Deflate 1 0.07 5.1e+02 52.50 0.739 0.767 0.9 0.18

Deflate 6 0.07 4.6e+02 55.73 0.73 0.759 0.9 0.188

Deflate 9 0.07 4.6e+02 55.94 0.73 0.759 0.9 0.188

LZ4 0.23 2.3e+03 319.04 0.889 0.947 0.95 0.155

LZ4HC 0.18 1.4e+03 200.61 0.841 0.898 0.95 0.179

XZ 6 0.06 1.8e+02 28.31 0.629 0.628 0.45 0.209

XZ 9 0.06 1.8e+02 28.27 0.629 0.628 0.45 0.209
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css

Deflate 1 0.04 1.2e+03 28.10 0.307 0.3 0.25 0.116

Deflate 6 0.04 1.3e+03 27.56 0.278 0.269 0.25 0.122

Deflate 9 0.04 1.2e+03 26.84 0.277 0.268 0.25 0.123

LZ4 0.03 1.9e+02 18.74 0.421 0.414 0.4 0.157

LZ4HC 0.04 3.3e+02 19.64 0.373 0.363 0.35 0.166

XZ 6 0.04 6.8e+02 19.29 0.287 0.279 0.25 0.138

XZ 9 0.04 6.8e+02 19.29 0.287 0.279 0.25 0.138

md

Deflate 1 0.04 1.4e+02 10.13 0.43 0.433 0.4 0.088

Deflate 6 0.03* 4.7e+01 3.70 0.406 0.41 0.4 0.094

Deflate 9 0.03* 5.1e+01 3.94 0.406 0.409 0.4 0.094

LZ4 0.04 9e+01 6.76 0.597 0.599 0.55 0.129

LZ4HC 0.02** 3.3e+01 2.81 0.56 0.565 0.55 0.137

XZ 6 0.02** 1.3e+01* 2.13 0.428 0.429 0.45 0.115

XZ 9 0.02** 1.3e+01* 2.13 0.428 0.429 0.45 0.115

mui

Deflate 1 0.34 1.1e+04 6830.24 0.426 0.341 0.35 0.263

Deflate 6 0.34 1.1e+04 6578.22 0.399 0.312 0.3 0.276

Deflate 9 0.34 1.1e+04 6580.18 0.397 0.311 0.3 0.277

LZ4 0.27 8.3e+03 4426.25 0.514 0.457 0.45 0.225

LZ4HC 0.27 8.4e+03 4241.59 0.457 0.398 0.4 0.252

XZ 6 0.33 1.1e+04 6522.88 0.375 0.281 0.3 0.291

XZ 9 0.33 1.1e+04 6522.88 0.375 0.281 0.3 0.291
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java

Deflate 1 0.04 2.9e+03 197.15 0.372 0.366 0.3 0.096

Deflate 6 0.04 5.2e+03 249.81 0.346 0.34 0.25 0.104

Deflate 9 0.04 5.2e+03 246.13 0.345 0.34 0.25 0.105

LZ4 0.03 3.2e+03 182.96 0.514 0.508 0.45 0.136

LZ4HC 0.04 5.9e+03 238.91 0.474 0.468 0.4 0.149

XZ 6 0.05 6.1e+03 293.04 0.365 0.357 0.25 0.125

XZ 9 0.05 6.1e+03 293.04 0.365 0.357 0.25 0.125

hpp

Deflate 1 0.03 3.2e+02 30.75 0.341 0.348 0.35 0.111

Deflate 6 0.03 3.2e+02 27.34 0.319 0.325 0.3 0.116

Deflate 9 0.03 3.2e+02 27.90 0.318 0.325 0.3 0.116

LZ4 0.03 2.8e+02 26.04 0.467 0.476 0.4 0.154

LZ4HC 0.03 2.8e+02 21.21 0.432 0.438 0.4 0.161

XZ 6 0.04 4.2e+02 28.75 0.336 0.343 0.35 0.131

XZ 9 0.04 4.2e+02 28.75 0.336 0.343 0.35 0.131

jar

Deflate 1 0.27 1.5e+03 810.48 0.784 0.885 0.9 0.227

Deflate 6 0.27 1.5e+03 817.55 0.772 0.879 0.9 0.238

Deflate 9 0.27 1.5e+03 817.19 0.772 0.879 0.9 0.238

LZ4 0.25 1.8e+03 706.47 0.804 0.892 0.9 0.2

LZ4HC 0.26 1.6e+03 748.17 0.781 0.878 0.9 0.221

XZ 6 0.27 1.5e+03 840.14 0.755 0.871 0.85 0.26

XZ 9 0.27 1.5e+03 839.54 0.755 0.871 0.85 0.26
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gif

Deflate 1 0.26 3.3e+03 746.17 0.903 0.978 0.95 0.165

Deflate 6 0.26 3.3e+03 739.44 0.901 0.977 0.95 0.167

Deflate 9 0.26 3.3e+03 739.61 0.901 0.977 0.95 0.167

LZ4 0.28 3.6e+03 856.34 0.913 0.984 1.0 0.163

LZ4HC 0.28 3.4e+03 819.54 0.909 0.981 1.0 0.166

XZ 6 0.20 2.6e+03 531.53 0.88 0.954 0.95 0.173

XZ 9 0.20 2.6e+03 531.53 0.88 0.954 0.95 0.173

pl

Deflate 1 0.18 1.6e+03 315.68 0.396 0.453 0.45 0.129

Deflate 6 0.17 2.1e+03 291.80 0.367 0.425 0.45 0.131

Deflate 9 0.17 2e+03 292.71 0.367 0.425 0.45 0.132

LZ4 0.19 1.8e+04 439.12 0.611 0.679 0.8 0.228

LZ4HC 0.18 2.7e+05 407.11 0.57 0.636 0.75 0.237

XZ 6 0.08 7.1e+02 70.33 0.312 0.293 0.2 0.128

XZ 9 0.08 7.1e+02 70.33 0.312 0.293 0.2 0.128

vim

Deflate 1 0.05 8.9e+02 61.32 0.368 0.374 0.35 0.092

Deflate 6 0.04 3.5e+02 28.94 0.344 0.347 0.35 0.096

Deflate 9 0.04 3.5e+02 29.62 0.343 0.347 0.35 0.096

LZ4 0.05 9.6e+02 63.50 0.51 0.518 0.5 0.127

LZ4HC 0.04 2.9e+02 25.88 0.471 0.477 0.45 0.134

XZ 6 0.03 6.3* 17.59 0.356 0.352 0.3 0.113

XZ 9 0.03 6.3* 17.59 0.356 0.352 0.3 0.113
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c

Deflate 1 0.03 4.7e+01 9.59 0.352 0.348 0.3 0.09

Deflate 6 0.04 1.3e+02 17.64 0.321 0.314 0.25 0.098

Deflate 9 0.04 1.2e+02 16.82 0.32 0.314 0.25 0.098

LZ4 0.02* 4e+01 6.81 0.485 0.479 0.45 0.126

LZ4HC 0.04 1.6e+02 17.51 0.431 0.424 0.35 0.14

XZ 6 0.05 2.1e+02 33.15 0.325 0.314 0.25 0.116

XZ 9 0.05 2.1e+02 33.15 0.325 0.314 0.25 0.116

log

Deflate 1 0.10 1.5e+03 130.27 0.197 0.177 0.15 0.126

Deflate 6 0.11 1.8e+03 171.95 0.177 0.155 0.05 0.125

Deflate 9 0.11 1.8e+03 175.65 0.175 0.154 0.05 0.125

LZ4 0.08 6.8e+02 90.60 0.256 0.234 0.1 0.157

LZ4HC 0.10 9.8e+02 146.04 0.224 0.201 0.05 0.154

XZ 6 0.10 1.6e+03 212.30 0.165 0.138 0.05 0.13

XZ 9 0.10 1.6e+03 212.32 0.165 0.138 0.05 0.13

lua

Deflate 1 0.09 1.9e+03 76.60 0.378 0.378 0.45 0.127

Deflate 6 0.09 2e+03 73.28 0.35 0.348 0.45 0.133

Deflate 9 0.09 2e+03 72.51 0.349 0.348 0.45 0.133

LZ4 0.06 8.2e+01 44.33 0.519 0.532 0.6 0.15

LZ4HC 0.06 6.7e+01 45.87 0.468 0.48 0.6 0.159

XZ 6 0.07 2e+03 56.54 0.346 0.349 0.4 0.137

XZ 9 0.07 2e+03 56.54 0.346 0.349 0.4 0.137
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tfm

Deflate 1 0.09 7.4e+03 527.98 0.473 0.478 0.65 0.18

Deflate 6 0.09 9.5e+03 510.67 0.462 0.465 0.65 0.183

Deflate 9 0.09 9.7e+03 507.76 0.461 0.463 0.65 0.183

LZ4 0.10 4.3e+03 618.21 0.638 0.655 0.85 0.234

LZ4HC 0.10 7.3e+03 618.87 0.614 0.614 0.85 0.236

XZ 6 0.09 4e+04 638.35 0.398 0.414 0.55 0.174

XZ 9 0.09 4e+04 638.35 0.398 0.414 0.55 0.174

pak

Deflate 1 0.34 3e+03 940.27 0.429 0.39 0.35 0.179

Deflate 6 0.31 2.8e+03 806.45 0.378 0.336 0.3 0.199

Deflate 9 0.31 2.7e+03 779.06 0.376 0.336 0.3 0.2

LZ4 0.24 1.7e+03 419.68 0.533 0.517 0.5 0.164

LZ4HC 0.25 1.8e+03 475.27 0.444 0.416 0.4 0.194

XZ 6 0.33 3e+03 943.74 0.31 0.258 0.25 0.216

XZ 9 0.33 3e+03 945.30 0.31 0.258 0.25 0.215

sys

Deflate 1 0.26 6.1e+03 437.35 0.655 0.541 1.0 0.255

Deflate 6 0.27 1.7e+04 456.42 0.635 0.511 1.0 0.268

Deflate 9 0.27 1.7e+04 456.67 0.635 0.51 1.0 0.268

LZ4 0.21 1.5e+02 253.38 0.734 0.677 1.0 0.21

LZ4HC 0.23 2.1e+03 370.41 0.684 0.59 0.55 0.237

XZ 6 0.27 5.1e+04 485.88 0.597 0.45 1.0 0.297

XZ 9 0.27 5.1e+04 485.87 0.597 0.45 1.0 0.297
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pri

Deflate 1 0.43 2e+03 2212.39 0.828 1.001 1.0 0.277

Deflate 6 0.43 2e+03 2215.32 0.82 1.0 1.0 0.288

Deflate 9 0.43 2e+03 2214.36 0.82 1.0 1.0 0.289

LZ4 0.42 2.4e+03 2094.70 0.873 1.004 1.0 0.221

LZ4HC 0.42 2.2e+03 2086.48 0.858 1.002 1.0 0.24

XZ 6 0.42 2.2e+03 2134.34 0.811 1.004 1.0 0.313

XZ 9 0.42 2.2e+03 2134.34 0.811 1.004 1.0 0.313

cpp

Deflate 1 0.03* 1.6e+02 2.96 0.34 0.334 0.3 0.093

Deflate 6 0.04 1.6e+02 5.61 0.314 0.305 0.25 0.099

Deflate 9 0.04 1.6e+02 5.51 0.313 0.304 0.25 0.1

LZ4 0.03* 1.4e+01 2.62 0.466 0.457 0.4 0.127

LZ4HC 0.04 4.3e+01 6.39 0.422 0.41 0.35 0.138

XZ 6 0.05 1e+02 9.71 0.328 0.313 0.25 0.117

XZ 9 0.05 1e+02 9.71 0.328 0.313 0.25 0.117

inf

Deflate 1 0.07 1.5e+03 95.70 0.274 0.273 0.3 0.151

Deflate 6 0.08 1.8e+03 116.85 0.249 0.243 0.05 0.153

Deflate 9 0.08 1.7e+03 116.10 0.248 0.241 0.05 0.154

LZ4 0.09 7.5e+02 103.29 0.383 0.389 0.45 0.199

LZ4HC 0.09 5.6e+02 126.81 0.339 0.337 0.05 0.202

XZ 6 0.09 1.8e+03 173.71 0.239 0.219 0.05 0.168

XZ 9 0.09 1.8e+03 173.71 0.239 0.219 0.05 0.168
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final

Deflate 1 0.21 9.3e+02 591.13 0.883 0.875 0.85 0.062

Deflate 6 0.21 9.8e+02 568.74 0.882 0.874 0.85 0.064

Deflate 9 0.21 9.8e+02 568.65 0.882 0.874 0.85 0.064

LZ4 0.34 1.6e+04 2119.75 0.995 1.003 1.0 0.026

LZ4HC 0.27 1.1e+04 1270.98 0.983 0.998 0.95 0.035

XZ 6 0.13 9.2e+02 270.01 0.872 0.869 0.85 0.077

XZ 9 0.13 9.2e+02 270.01 0.872 0.869 0.85 0.077

etl

Deflate 1 0.14 8.7e+03 298.26 0.104 0.101 0.1 0.066

Deflate 6 0.14 9.1e+03 343.40 0.094 0.088 0.05 0.064

Deflate 9 0.14 9.2e+03 353.30 0.093 0.085 0.05 0.064

LZ4 0.13 7.8e+03 242.02 0.124 0.118 0.1 0.079

LZ4HC 0.15 8.3e+03 288.46 0.111 0.099 0.05 0.075

XZ 6 0.16 9.4e+03 375.65 0.084 0.08 0.05 0.062

XZ 9 0.16 9.4e+03 375.62 0.084 0.08 0.05 0.062

tga

Deflate 1 0.12 2.1e+03 301.65 0.222 0.178 0.05 0.183

Deflate 6 0.14 2.5e+03 381.02 0.199 0.157 0.0 0.182

Deflate 9 0.14 2.5e+03 384.12 0.197 0.155 0.0 0.182

LZ4 0.10 1.2e+03 206.39 0.307 0.256 0.15 0.235

LZ4HC 0.14 2e+03 340.32 0.249 0.191 0.0 0.222

XZ 6 0.13 2.6e+03 316.51 0.182 0.152 0.0 0.16

XZ 9 0.13 2.6e+03 316.51 0.182 0.152 0.0 0.16
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rtf

Deflate 1 0.26 1.8e+04 334.73 0.568 0.412 1.0 0.341

Deflate 6 0.26 1.8e+04 332.70 0.542 0.384 1.0 0.362

Deflate 9 0.26 1.8e+04 329.22 0.541 0.384 1.0 0.363

LZ4 0.25 2.4e+04 199.24 0.649 0.579 1.0 0.298

LZ4HC 0.25 1.9e+04 218.45 0.603 0.533 1.0 0.336

XZ 6 0.25 1.8e+04 284.21 0.544 0.401 1.0 0.373

XZ 9 0.25 1.8e+04 284.21 0.544 0.401 1.0 0.373

1

Deflate 1 0.14 1e+03 126.90 0.441 0.437 0.4 0.124

Deflate 6 0.12 1.1e+03 104.88 0.412 0.407 0.4 0.13

Deflate 9 0.12 1.1e+03 104.17 0.411 0.407 0.4 0.131

LZ4 0.08 2.1e+02 39.40 0.588 0.596 0.6 0.139

LZ4HC 0.05 9.9e+01 15.96 0.534 0.537 0.55 0.151

XZ 6 0.09 7.4e+02 46.00 0.399 0.39 0.4 0.147

XZ 9 0.09 7.4e+02 45.93 0.399 0.39 0.4 0.147

rb

Deflate 1 0.04 1e+02 19.34 0.373 0.372 0.35 0.078

Deflate 6 0.04 1.6e+02 15.68 0.343 0.34 0.3 0.084

Deflate 9 0.04 1.5e+02 15.03 0.343 0.339 0.3 0.085

LZ4 0.03 4.3e+01 9.93 0.523 0.522 0.5 0.108

LZ4HC 0.03 1.2e+02 10.60 0.469 0.464 0.4 0.12

XZ 6 0.04 1.2e+02 15.05 0.361 0.353 0.3 0.101

XZ 9 0.04 1.2e+02 15.05 0.361 0.353 0.3 0.101
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strings

Deflate 1 0.19 1.4e+02 39.66 0.335 0.296 0.25 0.123

Deflate 6 0.18 1.5e+02 37.04 0.305 0.269 0.25 0.128

Deflate 9 0.18 1.5e+02 37.15 0.304 0.267 0.25 0.129

LZ4 0.19 8.8e+01 34.16 0.444 0.403 0.35 0.149

LZ4HC 0.17 8.1e+01 26.00 0.39 0.358 0.3 0.154

XZ 6 0.16 1.4e+02 35.34 0.288 0.263 0.25 0.131

XZ 9 0.16 1.4e+02 35.34 0.288 0.263 0.25 0.131

o

Deflate 1 0.09 4.5e+02 19.93 0.364 0.354 0.3 0.095

Deflate 6 0.10 5.6e+02 22.11 0.331 0.32 0.3 0.097

Deflate 9 0.10 5.6e+02 21.81 0.328 0.318 0.3 0.097

LZ4 0.07 5.8e+01 9.75 0.495 0.491 0.45 0.115

LZ4HC 0.08 1.2e+02 12.72 0.422 0.413 0.4 0.114

XZ 6 0.08 6.3e+02 15.17 0.279 0.271 0.25 0.102

XZ 9 0.08 6.3e+02 15.17 0.279 0.271 0.25 0.102

a

Deflate 1 0.05 7.3e+02 17.44 0.281 0.291 0.3 0.13

Deflate 6 0.06 1e+03 24.10 0.247 0.25 0.25 0.128

Deflate 9 0.06 1e+03 24.20 0.243 0.245 0.25 0.129

LZ4 0.04 1e+02 11.99 0.364 0.378 0.4 0.159

LZ4HC 0.05 4.6e+02 15.58 0.296 0.298 0.3 0.149

XZ 6 0.08 1.6e+03 46.18 0.192 0.182 0.1 0.118

XZ 9 0.08 1.6e+03 45.85 0.192 0.182 0.1 0.118
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plist

Deflate 1 0.06* 3.4e+01 5.77 0.304 0.289 0.35 0.16

Deflate 6 0.06* 3.8e+01 6.41 0.286 0.268 0.35 0.162

Deflate 9 0.06* 3.7e+01 6.38 0.284 0.268 0.35 0.163

LZ4 0.06* 1.8e+01 4.25 0.392 0.382 0.45 0.197

LZ4HC 0.07* 1.8e+01 5.20 0.362 0.353 0.45 0.198

XZ 6 0.08 1.5e+01 8.01 0.292 0.281 0.35 0.165

XZ 9 0.08 1.5e+01 8.01 0.292 0.281 0.35 0.165

tex

Deflate 1 0.03 4.6e+02 12.12 0.377 0.376 0.4 0.117

Deflate 6 0.03 5e+02 10.28 0.347 0.343 0.35 0.123

Deflate 9 0.03 5e+02 10.22 0.346 0.343 0.35 0.123

LZ4 0.02** 1.8e+01 2.22 0.524 0.522 0.45 0.16

LZ4HC 0.03* 5e+01 6.55 0.473 0.465 0.4 0.168

XZ 6 0.03 9.7e+01 9.05 0.346 0.337 0.3 0.133

XZ 9 0.03 9.7e+01 9.05 0.346 0.337 0.3 0.133

0

Deflate 1 0.11 1.6e+02 70.82 0.369 0.394 0.4 0.17

Deflate 6 0.12 2.7e+02 66.76 0.343 0.361 0.35 0.168

Deflate 9 0.11 2.8e+02 66.37 0.341 0.359 0.35 0.168

LZ4 0.11 1.4e+02 65.90 0.478 0.515 0.5 0.203

LZ4HC 0.11 6.1e+01 67.66 0.415 0.439 0.45 0.193

XZ 6 0.14 7.9e+02 71.97 0.296 0.298 0.25 0.162

XZ 9 0.14 7.9e+02 71.91 0.296 0.297 0.25 0.162
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cab

Deflate 1 0.26 3.5e+02 469.06 0.875 0.962 0.95 0.129

Deflate 6 0.26 3.7e+02 468.67 0.872 0.961 0.95 0.132

Deflate 9 0.26 3.7e+02 468.59 0.872 0.961 0.95 0.132

LZ4 0.26 2.6e+02 467.01 0.89 0.974 1.0 0.122

LZ4HC 0.26 3.8e+02 472.34 0.877 0.962 0.95 0.129

XZ 6 0.26 2.8e+02 457.74 0.867 0.961 0.95 0.138

XZ 9 0.26 2.7e+02 456.56 0.867 0.961 0.95 0.138

ko

Deflate 1 0.06 1.5e+02 11.55 0.34 0.343 0.3 0.044

Deflate 6 0.06 1.9e+02 9.57 0.308 0.309 0.3 0.044

Deflate 9 0.06 1.9e+02 9.77 0.304 0.305 0.3 0.044

LZ4 0.10 2.1e+02 24.00 0.443 0.446 0.4 0.051

LZ4HC 0.07 2.3e+02 15.26 0.37 0.372 0.35 0.049

XZ 6 0.04** 8.9e+01 4.27 0.261 0.264 0.25 0.044

XZ 9 0.04** 8.9e+01 4.27 0.261 0.264 0.25 0.044

map

Deflate 1 0.15 3.4e+02 49.01 0.369 0.336 0.25 0.18

Deflate 6 0.16 3.6e+02 57.33 0.335 0.29 0.2 0.189

Deflate 9 0.15 3.6e+02 56.71 0.334 0.289 0.2 0.189

LZ4 0.04* 5.1e+01 5.50 0.49 0.485 0.5 0.181

LZ4HC 0.07 1.2e+02 15.06 0.422 0.4 0.25 0.189

XZ 6 0.10 3.5e+02 29.09 0.313 0.278 0.15 0.174

XZ 9 0.10 3.5e+02 28.93 0.313 0.278 0.15 0.174
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ts

Deflate 1 0.03 1.4e+02 34.65 0.346 0.353 0.35 0.1

Deflate 6 0.03 9.4e+01 21.74 0.322 0.328 0.3 0.105

Deflate 9 0.03 9.8e+01 22.46 0.322 0.328 0.3 0.105

LZ4 0.04 2.9e+02 40.50 0.474 0.485 0.5 0.14

LZ4HC 0.03 2.8e+02 28.07 0.438 0.448 0.45 0.146

XZ 6 0.03 3.1e+02 20.17 0.347 0.352 0.35 0.124

XZ 9 0.03 3.1e+02 20.17 0.347 0.352 0.35 0.124

file

Deflate 1 0.18 1.2e+03 257.63 0.648 0.578 1.0 0.233

Deflate 6 0.17 1.2e+03 248.67 0.638 0.567 1.0 0.241

Deflate 9 0.17 1.1e+03 247.93 0.637 0.566 1.0 0.242

LZ4 0.16 8e+02 246.48 0.701 0.641 1.0 0.201

LZ4HC 0.16 7.6e+02 237.68 0.682 0.619 1.0 0.214

XZ 6 0.17 1.3e+03 274.31 0.619 0.535 1.0 0.251

XZ 9 0.17 1.3e+03 274.31 0.619 0.535 1.0 0.251

res

Deflate 1 0.10 1.1e+03 66.88 0.301 0.278 0.25 0.119

Deflate 6 0.11 1.2e+03 72.51 0.275 0.251 0.2 0.12

Deflate 9 0.10 1.2e+03 70.97 0.274 0.25 0.2 0.12

LZ4 0.11 4e+02 56.33 0.407 0.382 0.35 0.15

LZ4HC 0.09 6.5e+02 60.33 0.355 0.328 0.3 0.147

XZ 6 0.07 1.4e+03 38.78 0.272 0.265 0.25 0.108

XZ 9 0.07 1.4e+03 38.78 0.272 0.265 0.25 0.108
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ogg

Deflate 1 0.21 7.2e+02 127.10 0.956 0.978 0.95 0.054

Deflate 6 0.20 7.1e+02 126.53 0.953 0.977 0.95 0.056

Deflate 9 0.20 7.1e+02 126.58 0.953 0.977 0.95 0.056

LZ4 0.24 9.4e+02 156.42 0.974 0.993 1.0 0.043

LZ4HC 0.23 8.9e+02 147.18 0.967 0.988 0.95 0.045

XZ 6 0.20 6.1e+02 118.11 0.949 0.974 0.95 0.061

XZ 9 0.20 6.1e+02 118.10 0.949 0.974 0.95 0.061

winmd

Deflate 1 0.35 1.5e+04 584.09 0.745 0.987 0.95 0.293

Deflate 6 0.34 1.5e+04 584.13 0.734 0.985 0.95 0.304

Deflate 9 0.34 1.5e+04 584.37 0.734 0.985 0.95 0.304

LZ4 0.33 1.6e+04 543.17 0.807 0.99 0.95 0.224

LZ4HC 0.33 1.6e+04 545.71 0.785 0.988 0.95 0.247

XZ 6 0.34 1.5e+04 558.61 0.709 0.985 0.95 0.34

XZ 9 0.34 1.5e+04 558.61 0.709 0.985 0.95 0.34

go

Deflate 1 0.07 4.8e+01 9.59 0.33 0.35 0.35 0.13

Deflate 6 0.04* 3.5e+01 4.53 0.304 0.313 0.3 0.129

Deflate 9 0.04* 3.7e+01 4.59 0.303 0.313 0.3 0.13

LZ4 0.07 5.1e+01 9.78 0.458 0.487 0.55 0.183

LZ4HC 0.04* 5.1e+01 4.24 0.414 0.426 0.4 0.182

XZ 6 0.05* 7.4e+01 4.22 0.308 0.315 0.3 0.152

XZ 9 0.05* 7.4e+01 4.22 0.308 0.315 0.3 0.152
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ini

Deflate 1 0.12 1.2e+03 94.82 0.364 0.386 0.4 0.156

Deflate 6 0.12 1.2e+03 91.04 0.341 0.369 0.35 0.162

Deflate 9 0.12 1.2e+03 90.66 0.34 0.369 0.35 0.163

LZ4 0.10 3.7e+01 58.40 0.492 0.534 0.55 0.181

LZ4HC 0.11 3.3e+01 55.69 0.452 0.505 0.5 0.194

XZ 6 0.09 9.8e+02 66.94 0.34 0.365 0.35 0.172

XZ 9 0.09 9.8e+02 66.94 0.34 0.365 0.35 0.172

page

Deflate 1 0.03 2.7e+02 23.57 0.431 0.434 0.4 0.068

Deflate 6 0.02 1.4e+02 11.51 0.412 0.414 0.4 0.07

Deflate 9 0.02 1.5e+02 11.68 0.412 0.414 0.4 0.071

LZ4 0.03 4e+02 31.67 0.596 0.603 0.6 0.095

LZ4HC 0.02 1.8e+02 13.41 0.564 0.569 0.55 0.099

XZ 6 0.01* 4.1e+01 3.61 0.442 0.442 0.4 0.083

XZ 9 0.01* 4.1e+01 3.61 0.442 0.442 0.4 0.083

vf

Deflate 1 0.21 2.7e+03 744.72 0.697 0.763 0.75 0.152

Deflate 6 0.21 2.5e+03 749.78 0.697 0.763 0.75 0.152

Deflate 9 0.21 2.5e+03 750.37 0.697 0.763 0.75 0.152

LZ4 0.30 3.5e+03 1371.61 0.893 0.967 0.95 0.164

LZ4HC 0.33 3.5e+03 1517.85 0.877 0.955 0.95 0.165

XZ 6 0.20 2.9e+03 684.04 0.644 0.719 0.7 0.183

XZ 9 0.20 2.9e+03 684.04 0.644 0.719 0.7 0.183
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pod

Deflate 1 0.16 2.9e+02 149.41 0.392 0.416 0.4 0.1

Deflate 6 0.13 1.7e+02 94.06 0.357 0.373 0.35 0.103

Deflate 9 0.13 1.7e+02 93.15 0.356 0.373 0.35 0.103

LZ4 0.14 2.3e+02 112.75 0.538 0.569 0.55 0.137

LZ4HC 0.10 1.3e+02 43.59 0.478 0.491 0.45 0.145

XZ 6 0.10 4.4e+01 43.29 0.357 0.364 0.35 0.115

XZ 9 0.10 4.4e+01 43.29 0.357 0.364 0.35 0.115

sty

Deflate 1 0.07 3.1e+02 18.13 0.36 0.354 0.3 0.094

Deflate 6 0.07 4.4e+02 21.42 0.331 0.324 0.25 0.101

Deflate 9 0.06 4.3e+02 21.12 0.331 0.324 0.25 0.102

LZ4 0.07 3.2e+02 19.03 0.504 0.494 0.45 0.133

LZ4HC 0.07 4.6e+02 22.92 0.454 0.443 0.6 0.143

XZ 6 0.07 3.9e+02 22.37 0.341 0.331 0.45 0.119

XZ 9 0.07 3.9e+02 22.37 0.341 0.331 0.45 0.119

enc

Deflate 1 0.28 6.3e+02 148.59 0.458 0.443 0.45 0.186

Deflate 6 0.26 6e+02 128.16 0.449 0.43 0.45 0.191

Deflate 9 0.26 6e+02 127.50 0.448 0.43 0.45 0.191

LZ4 0.21 4.6e+02 94.55 0.725 0.674 0.95 0.238

LZ4HC 0.21 1.4e+03 97.24 0.704 0.646 0.95 0.249

XZ 6 0.26 8.1e+02 176.11 0.401 0.371 0.4 0.201

XZ 9 0.26 8.1e+02 176.11 0.401 0.371 0.4 0.201

105



Ext. Compressor KS χ2 A Mean Median Mode SD

pfb

Deflate 1 0.24 2.2e+03 352.85 0.917 0.94 0.95 0.11

Deflate 6 0.24 2.2e+03 339.68 0.914 0.938 0.95 0.112

Deflate 9 0.24 2.2e+03 340.07 0.914 0.938 0.95 0.112

LZ4 0.23 2.2e+03 331.13 0.925 0.946 0.95 0.101

LZ4HC 0.23 2.1e+03 322.20 0.921 0.943 0.95 0.102

XZ 6 0.23 2.1e+03 322.08 0.908 0.937 0.95 0.126

XZ 9 0.23 2.1e+03 322.08 0.908 0.937 0.95 0.126

wmf

Deflate 1 0.10 2.2e+03 185.56 0.633 0.652 0.65 0.103

Deflate 6 0.10 2.1e+03 170.89 0.621 0.64 0.65 0.106

Deflate 9 0.10 2.1e+03 171.70 0.621 0.639 0.65 0.106

LZ4 0.10 2.8e+03 216.64 0.822 0.845 0.85 0.121

LZ4HC 0.10 2.7e+03 207.27 0.806 0.83 0.8 0.126

XZ 6 0.04 1.5e+02 23.10 0.484 0.482 0.45 0.102

XZ 9 0.04 1.5e+02 23.10 0.484 0.482 0.45 0.102

pnf

Deflate 1 0.15 9.9e+02 125.71 0.275 0.289 0.25 0.043

Deflate 6 0.14 1e+03 129.88 0.249 0.262 0.25 0.04

Deflate 9 0.14 1e+03 130.73 0.248 0.262 0.25 0.04

LZ4 0.15 9.2e+02 124.24 0.384 0.404 0.4 0.059

LZ4HC 0.14 8.8e+02 123.92 0.332 0.351 0.35 0.052

XZ 6 0.18 7.3e+02 199.48 0.204 0.221 0.2 0.046

XZ 9 0.18 7.3e+02 199.48 0.204 0.221 0.2 0.046
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mof

Deflate 1 0.13 2e+03 136.95 0.254 0.219 0.2 0.152

Deflate 6 0.12 2e+03 136.24 0.231 0.192 0.1 0.158

Deflate 9 0.12 2e+03 135.15 0.23 0.192 0.1 0.158

LZ4 0.10 9e+02 53.78 0.335 0.302 0.25 0.171

LZ4HC 0.08 9.3e+02 61.24 0.299 0.264 0.2 0.179

XZ 6 0.11 1.7e+03 114.99 0.231 0.197 0.1 0.171

XZ 9 0.11 1.7e+03 114.99 0.231 0.197 0.1 0.171

class

Deflate 1 0.06 7.2e+02 48.42 0.475 0.484 0.45 0.067

Deflate 6 0.06 7.2e+02 44.51 0.456 0.465 0.45 0.069

Deflate 9 0.06 7.1e+02 43.61 0.456 0.465 0.45 0.069

LZ4 0.05 4.2e+02 33.11 0.619 0.628 0.6 0.08

LZ4HC 0.05 3.4e+02 32.92 0.59 0.6 0.6 0.085

XZ 6 0.07 4.9e+02 68.60 0.441 0.456 0.45 0.082

XZ 9 0.07 4.9e+02 68.60 0.441 0.456 0.45 0.082

sh

Deflate 1 0.03* 4.9** 3.49 0.406 0.408 0.4 0.099

Deflate 6 0.04* 5.0** 3.61 0.383 0.384 0.35 0.105

Deflate 9 0.04* 5.3** 3.66 0.383 0.384 0.35 0.105

LZ4 0.03** 5.1e+01 3.61 0.553 0.555 0.55 0.136

LZ4HC 0.04* 6.9e+01 3.89 0.517 0.518 0.5 0.145

XZ 6 0.04* 4.5e+01 4.26 0.405 0.401 0.35 0.121

XZ 9 0.04* 4.5e+01 4.26 0.405 0.401 0.35 0.121
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afm

Deflate 1 0.08 8.9* 28.40 0.303 0.305 0.3 0.077

Deflate 6 0.09 3.6e+01 25.43 0.261 0.262 0.25 0.072

Deflate 9 0.10 4.6e+01 26.82 0.258 0.26 0.25 0.072

LZ4 0.06 3.1*** 12.66 0.435 0.434 0.4 0.107

LZ4HC 0.11 1e+02 26.76 0.36 0.364 0.35 0.095

XZ 6 0.14 2e+02 39.22 0.219 0.221 0.2 0.079

XZ 9 0.14 2e+02 39.22 0.219 0.221 0.2 0.079

adml

Deflate 1 0.26 8.6e+02 342.58 0.402 0.318 0.25 0.242

Deflate 6 0.24 8.4e+02 318.81 0.377 0.294 0.2 0.254

Deflate 9 0.24 8.4e+02 317.96 0.377 0.294 0.2 0.254

LZ4 0.14 4.8e+02 154.18 0.504 0.439 0.35 0.219

LZ4HC 0.13 4.8e+02 148.25 0.465 0.41 0.25 0.237

XZ 6 0.18 7.2e+02 248.06 0.392 0.306 0.2 0.262

XZ 9 0.18 7.2e+02 248.06 0.392 0.306 0.2 0.262

zip

Deflate 1 0.28 8.4e+02 281.73 0.887 0.982 0.95 0.2

Deflate 6 0.28 8.3e+02 281.32 0.882 0.981 0.95 0.207

Deflate 9 0.28 8.3e+02 281.20 0.882 0.981 0.95 0.207

LZ4 0.29 9e+02 271.67 0.899 0.991 1.0 0.186

LZ4HC 0.28 8.5e+02 261.74 0.889 0.985 0.95 0.196

XZ 6 0.26 7.2e+02 250.29 0.867 0.978 0.95 0.217

XZ 9 0.26 7.1e+02 246.84 0.866 0.978 0.95 0.217
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qml

Deflate 1 0.10 2.4e+02 58.77 0.345 0.349 0.35 0.055

Deflate 6 0.10 2.3e+02 49.23 0.318 0.323 0.3 0.059

Deflate 9 0.10 2.2e+02 49.55 0.318 0.323 0.3 0.06

LZ4 0.11 2.1e+02 66.53 0.481 0.489 0.5 0.077

LZ4HC 0.10 1.6e+02 58.71 0.441 0.45 0.45 0.085

XZ 6 0.08 2.2e+02 35.72 0.333 0.337 0.35 0.07

XZ 9 0.08 2.2e+02 35.72 0.333 0.337 0.35 0.07

man

Deflate 1 0.09 2.5e+02 42.25 0.354 0.372 0.45 0.124

Deflate 6 0.08 2.3e+02 40.10 0.339 0.358 0.4 0.125

Deflate 9 0.08 2.3e+02 40.71 0.338 0.358 0.4 0.126

LZ4 0.09 2.4e+02 40.79 0.468 0.487 0.55 0.167

LZ4HC 0.09 2.3e+02 39.96 0.445 0.468 0.55 0.167

XZ 6 0.08 2.1e+02 36.93 0.356 0.376 0.45 0.139

XZ 9 0.08 2.1e+02 36.93 0.356 0.376 0.45 0.139

ps1

Deflate 1 0.09 1.3e+03 35.85 0.358 0.361 0.35 0.101

Deflate 6 0.08 1.1e+03 29.78 0.336 0.339 0.35 0.108

Deflate 9 0.08 1.1e+03 30.02 0.335 0.339 0.35 0.108

LZ4 0.08 2.3e+02 17.84 0.474 0.477 0.45 0.121

LZ4HC 0.06 1.8e+02 15.95 0.439 0.446 0.45 0.13

XZ 6 0.06 6.4e+02 18.44 0.356 0.369 0.35 0.119

XZ 9 0.06 6.4e+02 18.44 0.356 0.369 0.35 0.119
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odl

Deflate 1 0.23 4.1e+01 39.90 0.299 0.327 0.3 0.085

Deflate 6 0.25 4.8e+01 46.56 0.284 0.316 0.3 0.088

Deflate 9 0.25 4.9e+01 46.47 0.284 0.316 0.3 0.089

LZ4 0.31 1.1e+02 80.79 0.411 0.471 0.45 0.116

LZ4HC 0.32 1.1e+02 86.73 0.387 0.451 0.45 0.122

XZ 6 0.15 3.3e+01 20.24 0.224 0.2 0.25 0.089

XZ 9 0.15 3.3e+01 20.24 0.224 0.2 0.25 0.089

otf

Deflate 1 0.06 1.4e+01* 8.30 0.649 0.664 0.65 0.121

Deflate 6 0.06 1.5e+01 8.31 0.633 0.651 0.65 0.128

Deflate 9 0.06 1.5e+01 8.32 0.632 0.65 0.65 0.128

LZ4 0.06 1e+02 14.98 0.765 0.779 0.8 0.124

LZ4HC 0.06 5e+01 12.36 0.712 0.728 0.75 0.134

XZ 6 0.09 1.2*** 13.22 0.554 0.566 0.4 0.131

XZ 9 0.09 1.3*** 13.14 0.554 0.566 0.4 0.131

nib

Deflate 1 0.26 6.4e+01 29.78 0.561 0.652 0.65 0.215

Deflate 6 0.24 6.3e+01 29.38 0.547 0.638 0.65 0.215

Deflate 9 0.24 6.3e+01 29.47 0.547 0.638 0.65 0.215

LZ4 0.23 7e+01 29.40 0.647 0.741 0.8 0.245

LZ4HC 0.23 6.5e+01 27.85 0.626 0.721 0.75 0.244

XZ 6 0.20 4.5e+01 19.39 0.487 0.561 0.6 0.199

XZ 9 0.20 4.5e+01 19.39 0.487 0.561 0.6 0.199
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md5sums

Deflate 1 0.03* 2.3e+02 3.42 0.395 0.396 0.4 0.066

Deflate 6 0.03** 2.1e+02 3.34 0.381 0.381 0.35 0.067

Deflate 9 0.02*** 1.9e+02 3.20 0.378 0.378 0.35 0.068

LZ4 0.03* 2.3e+02 4.97 0.589 0.591 0.55 0.101

LZ4HC 0.03* 2e+02 4.48 0.569 0.572 0.55 0.106

XZ 6 0.03* 1.1e+01* 3.99 0.391 0.391 0.4 0.094

XZ 9 0.03* 1.1e+01* 3.99 0.391 0.391 0.4 0.094

cdxml

Deflate 1 0.18 1.1e+03 162.58 0.273 0.203 0.15 0.195

Deflate 6 0.19 1.1e+03 174.24 0.249 0.175 0.1 0.201

Deflate 9 0.19 1.1e+03 173.10 0.248 0.173 0.1 0.202

LZ4 0.17 5.2e+02 109.80 0.343 0.271 0.2 0.217

LZ4HC 0.18 5.9e+02 131.51 0.312 0.233 0.15 0.222

XZ 6 0.19 1.1e+03 155.13 0.257 0.181 0.1 0.205

XZ 9 0.19 1.1e+03 155.13 0.257 0.181 0.1 0.205

pyi

Deflate 1 0.02 1.5e+01 3.35 0.299 0.297 0.25 0.07

Deflate 6 0.03 3.2e+01 4.37 0.275 0.274 0.25 0.072

Deflate 9 0.03 3.1e+01 4.26 0.274 0.274 0.25 0.073

LZ4 0.02* 2.2e+01 3.20 0.416 0.416 0.35 0.096

LZ4HC 0.02* 2.4e+01 3.21 0.376 0.375 0.3 0.1

XZ 6 0.03 7.6e+01 8.14 0.298 0.297 0.25 0.087

XZ 9 0.03 7.6e+01 8.14 0.298 0.297 0.25 0.087
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pyo

Deflate 1 0.03 8.3e+01 5.59 0.404 0.408 0.4 0.077

Deflate 6 0.02* 2.2e+01 2.01 0.374 0.378 0.35 0.083

Deflate 9 0.02* 2.3e+01 2.12 0.373 0.377 0.35 0.084

LZ4 0.03* 5.3e+01 4.54 0.546 0.552 0.55 0.108

LZ4HC 0.02** 1.5e+01 2.14 0.486 0.485 0.4 0.12

XZ 6 0.03 4.6e+01 7.66 0.35 0.344 0.3 0.094

XZ 9 0.03 4.6e+01 7.66 0.35 0.344 0.3 0.094

tcl

Deflate 1 0.09 2.7e+03 96.76 0.364 0.357 0.35 0.106

Deflate 6 0.08 2.6e+03 88.31 0.333 0.321 0.3 0.113

Deflate 9 0.08 2.6e+03 86.63 0.333 0.321 0.3 0.113

LZ4 0.05 4.8e+02 23.69 0.504 0.496 0.45 0.13

LZ4HC 0.05 5.9e+02 25.26 0.452 0.436 0.4 0.142

XZ 6 0.08 2e+03 70.23 0.342 0.321 0.3 0.126

XZ 9 0.08 2e+03 70.23 0.342 0.321 0.3 0.126

ui

Deflate 1 0.14 9.2e+01 20.27 0.169 0.148 0.1 0.076

Deflate 6 0.15 1e+02 22.99 0.142 0.12 0.05 0.077

Deflate 9 0.15 9.9e+01 23.05 0.139 0.117 0.05 0.078

LZ4 0.14 9.2e+01 19.18 0.229 0.2 0.15 0.106

LZ4HC 0.15 1e+02 21.96 0.185 0.154 0.1 0.107

XZ 6 0.16 1e+02 24.67 0.147 0.121 0.05 0.089

XZ 9 0.16 1e+02 24.67 0.147 0.121 0.05 0.089
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p7x

Deflate 1 0.43 1e+05 405.81 0.889 1.004 1.0 0.171

Deflate 6 0.43 7.5e+04 406.54 0.886 1.004 1.0 0.175

Deflate 9 0.43 7.7e+04 406.49 0.886 1.004 1.0 0.175

LZ4 0.43 7.5e+04 405.05 0.894 1.004 1.0 0.162

LZ4HC 0.43 8e+04 407.49 0.89 1.004 1.0 0.168

XZ 6 0.42 6.3e+04 402.07 0.89 1.016 1.0 0.186

XZ 9 0.42 6.3e+04 402.07 0.89 1.016 1.0 0.186

dds

Deflate 1 0.07 2.4e+03 34.82 0.488 0.503 0.75 0.282

Deflate 6 0.07 2.6e+03 34.25 0.467 0.472 0.0 0.284

Deflate 9 0.07 2.8e+03 35.49 0.464 0.463 0.0 0.285

LZ4 0.10 7.4e+03 67.88 0.585 0.625 1.0 0.328

LZ4HC 0.08 1.1e+04 48.42 0.514 0.524 0.9 0.308

XZ 6 0.07 6.4e+02 26.18 0.389 0.378 0.0 0.249

XZ 9 0.07 6.4e+02 26.13 0.389 0.378 0.0 0.248

tiff

Deflate 1 0.11** 3.6e+01 1.96 0.623 0.616 0.95 0.264

Deflate 6 0.11** 3.6e+01 2.00 0.61 0.595 0.95 0.273

Deflate 9 0.11** 3.6e+01 2.01 0.609 0.594 0.95 0.274

LZ4 0.11** 2.6e+01 2.60 0.687 0.726 0.95 0.25

LZ4HC 0.12* 2.7e+01 2.44 0.654 0.692 0.95 0.265

XZ 6 0.10*** 4.8e+01 1.95 0.575 0.561 0.95 0.281

XZ 9 0.10*** 4.8e+01 1.95 0.575 0.561 0.95 0.281
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list

Deflate 1 0.24 1.2e+03 256.69 0.229 0.191 0.15 0.158

Deflate 6 0.27 1.2e+03 283.66 0.21 0.173 0.15 0.159

Deflate 9 0.26 1.2e+03 274.18 0.208 0.171 0.15 0.159

LZ4 0.20 9.9e+02 191.50 0.31 0.267 0.25 0.169

LZ4HC 0.20 9.9e+02 187.72 0.278 0.242 0.2 0.161

XZ 6 0.20 1e+03 171.12 0.223 0.193 0.15 0.157

XZ 9 0.20 1e+03 171.12 0.223 0.193 0.15 0.157

translation

Deflate 1 0.10 4e+02 128.40 0.143 0.137 0.1 0.03

Deflate 6 0.13 5.5e+02 184.19 0.114 0.107 0.1 0.029

Deflate 9 0.13 5.9e+02 191.44 0.11 0.104 0.1 0.029

LZ4 0.08 2.6e+02 108.68 0.187 0.179 0.15 0.04

LZ4HC 0.14 5.7e+02 200.84 0.135 0.126 0.1 0.037

XZ 6 0.15 6.7e+02 228.04 0.101 0.094 0.05 0.029

XZ 9 0.15 6.7e+02 228.04 0.101 0.094 0.05 0.029

stringsdict

Deflate 1 0.05 4.4e+02 52.43 0.453 0.465 0.5 0.114

Deflate 6 0.05 5e+02 48.01 0.435 0.446 0.5 0.118

Deflate 9 0.05 5e+02 48.35 0.435 0.446 0.5 0.118

LZ4 0.06 5.3e+02 80.58 0.546 0.565 0.6 0.132

LZ4HC 0.05 6.2e+02 68.42 0.517 0.533 0.6 0.138

XZ 6 0.05 8.8e+02 60.68 0.422 0.432 0.5 0.124

XZ 9 0.05 8.8e+02 60.68 0.422 0.432 0.5 0.124
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Ext. Compressor KS χ2 A Mean Median Mode SD

jsonlz4

Deflate 1 0.24 2.6e+03 256.75 0.846 0.852 0.85 0.021

Deflate 6 0.24 2.8e+03 271.32 0.844 0.852 0.85 0.023

Deflate 9 0.24 2.8e+03 271.48 0.844 0.852 0.85 0.023

LZ4 0.35 4.2e+03 538.91 0.997 1.004 1.0 0.017

LZ4HC 0.32 3.6e+03 466.77 0.99 1.003 1.0 0.028

XZ 6 0.24 3.5e+03 278.15 0.811 0.825 0.8 0.041

XZ 9 0.24 3.5e+03 278.15 0.811 0.825 0.8 0.041

mp3

Deflate 1 0.24 1e+03 171.56 0.923 0.956 0.95 0.107

Deflate 6 0.23 1e+03 167.21 0.92 0.951 0.95 0.108

Deflate 9 0.23 1e+03 166.74 0.92 0.951 0.95 0.108

LZ4 0.26 1e+03 187.14 0.935 0.976 0.95 0.107

LZ4HC 0.23 1e+03 171.89 0.924 0.959 0.95 0.108

XZ 6 0.22 9.8e+02 157.78 0.916 0.947 0.95 0.111

XZ 9 0.22 9.8e+02 157.46 0.916 0.947 0.95 0.111

docx

Deflate 1 0.09 1.4e+02 6.14 0.853 0.849 0.8 0.069

Deflate 6 0.09 1.3e+02 5.98 0.849 0.845 0.8 0.07

Deflate 9 0.09 1.3e+02 5.91 0.849 0.844 0.8 0.07

LZ4 0.10 1.3e+02 5.75 0.862 0.856 0.8 0.07

LZ4HC 0.09 1.3e+02 5.89 0.853 0.846 0.8 0.071

XZ 6 0.11 2.6e+02 9.53 0.847 0.843 0.8 0.077

XZ 9 0.11 2.6e+02 9.53 0.847 0.843 0.8 0.077
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B Extensions Not Considered

We chose to skip many file extensions that appeared in the top 50. Some rationale

for this decision follows for each extension or group of extensions.

B.1 H, HPP, C, PY, PYC, CPP, JAVA, GO, LUA

Our participants were largely part of the computer science world, and so we saw

many source code files rise to the top of the list. We chose to skip deeper dives

into these extensions partly because we assumed JS compressibility could generalize

to other source code files (and according to Section 4.3.2 this was true), but also

because they are almost certainly less common in the general population. Since any

internet user commonly interacts with JavaScript behind the scenes, we considered

this code ubiquitous enough to warrant analysis. Additionally, these files were very

small, which is a problem we address in discussion Section 5.2.

B.2 TFM, TEX, VF

These extensions correspond to TeX. TeX files are probably less common in the

general population, and so we did not consider them interesting. TFM and VF files

are associated with TeX fonts, and since we analyzed TTF, we did not believe we

needed to analyze more font files. Additionally, VF files were very small on average

(16 KB), and so they are generally not targets for compression.
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B.3 DAT

DAT is associated with “data,” which is too broad to make assumptions about

content. This extension might mimic the chaos of BIN, and it may be very user-

dependent.

B.3.1 STRINGS, NIB, MANIFEST, KO, PM, MUM, MUI,

etc.

These extensions are highly system-dependent. STRINGS and NIB are almost

exclusive to Mac, KO and PM to Linux, MUM and MUI to Windows. Analyzing

these extensions would greatly reduce the number of participants, e.g., we only had

two Mac users. Some of these extensions, however, are very common, and so it may

be worthwhile to explore them in future work.
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C Rsync Compression Skip List

Table C.1: File Extensions that Rsync Does Not Compress

3g2

3gp

gpp

7z

aac

ace

amr

apk

appx

appxbundle

arc

arj

asf

avi

bz2

cab

crypt5

crypt7

crypt8

deb

dmg

drc

ear

gz

flac

flv

gpg

iso

jar

jp2

jpg

jpeg

lz

lzma

lzo

m4a

m4p

m4v

mkv

msi

mov

mp3

mp4

mpeg

mpg

mpv

oga

ogg

ogv

opus

pack

png

qt

rar

rpm

rzip

s7z

sfx

svgz

tbz

tgz

tlz

txz

vob

wim

wma

wmv

xz

z

zip

zst
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