
Personalized Online Self-Learning

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Shalini Pandey

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Prof. George Karypis and Prof. Jaideep Srivastava

May, 2021

c© Shalini Pandey 2021

ALL RIGHTS RESERVED

Acknowledgements

My PhD journey started in 2016 and looking back now, the whole journey has made

me a stronger person and taught a lot of life lessons. This journey would not have been

possible without help of my friends, family and mentors.

First and foremost, I would like to thank my advisors, Prof. Jaideep Srivastava and

Prof. George Karypis. When I got admission at University of Minnesota, I first talked

to Prof. George Karypis and he has been a great source of inspiration since then. His

hard-work and brilliance is unparallel and I had a lot of opportunities to learn research

skills from him. I admire his style, courage and hard-work and aspire to learn those

qualities one day.

I do not have enough words to thank Prof. Jaideep Srivastava. He always showed

confidence in me and kept encouraging me to achieve more. He genuinely cares for

everyone and brings the best out of them. In addition to providing sufficient guidance

on academic work, he showed me the value of being compassionate and treating everyone

with respect. I wish to ingrain these traits in my future endeavors.

I would also like to thank my committee members, Professors Maria Gini, and

Panayiota Kendeou for being accessible when requested to serve at my, thesis proposal,

and thesis defense examination. Additionally, thanks to Professors Haiyi Zhu, and Ned

Mohan for serving in my preliminary oral exam committee. They are all experts in

their fields and my thesis would not have been in this position without their positive

feedbacks and discussions.

I also learnt a lot from my other mentors during this PhD, particularly, Swayamb-

hoo, Vineeth; Payal, Subhojit, Xia, Saurabh; Mas-ud and Martin. Through various

internships, they taught me to apply the skills gained during PhD in industry.

Last but not the least, I would dearly want to thank all the current and past members

i

of GK lab and DMR lab with whom I have spent memorable times. They have been very

supportive and discussions with them expanded my knowledge and provided invaluable

feedback on my work. I would like to thank my maternal uncle and aunt who motivated

me for higher studies and took care of me all these years. My teachers throughout my

life had encouraged me and gave me the confidence to aim higher. I would also like to

thank my friends and their respective whatsapp groups which kept me in touch of life

outside grad school.

ii

Dedication

Dedicated to my parents for their support and numerous prayers and blessings.

iii

Abstract

With the growth of the internet, online learning platforms such as edX, Coursera, and

Udacity have emerged. The Massive Open Online Courses (MOOCs) provided by these

learning platforms are changing the landscape of education. The advantage of MOOCs

is that they make courses available at a nominal price to students all across the globe.

With the ability to reach a large number of learners around the world, MOOCs have

made a positive impact on education. In addition, professional learners take these

courses with the goal of achieving professional and career growth. This increases the

audience size of the learning platform. Recent studies have shown that MOOCs have

emerged as a disruptive technology with the potential of changing the shape of existing

educational setting [1].

Despite the convenient settings provided by MOOCs, drop out rates on the learning

platforms remain elevated. Some learners who drop out report lack of support by

these platforms as a major reason for their disengagement. A factor contributing to

this lack of personal guidance is that the online learning platforms follow one-size-fits-

all and are not customized for different individuals. Currently, in most of the online

education settings student has to determine everything, from what courses to pick to

what questions to solve. Instead, an ideal learning system must scaffold the learning

process—from initial modeling and coaching-oriented feedback to a gradual release of

responsibility to students. Without sustained student input and feedback, their talents,

creativity, and efficacy can be overlooked or negated. To tackle this problem, we need

to develop systems that support self- learning. Personalized self-learning is defined as

a teaching and learning process that assists learner based on the strengths, needs and

interests of individual learners, while enhancing the self-learning experience. Massive

data generated by online learning platforms has made research in this direction possible.

Machine learning and data mining communities are focusing on application of AI in

MOOC education research.

The first step leading to the development of personalized systems is to identify the

needs of individual learners. In an online education systems, it is important that we

determine the strengths and weaknesses of learners before customizing the platform

iv

to their condition. A system to assess learner’s knowledge can also help in proving a

justification to learner regarding what they need to focus or what learning trajectory

to follow.

Second, we personalize the recommendation of forums to improve the experience

of students on MOOCs. The discussion forums have become an open source venue for

sharing knowledge which generate auxiliary source of learning. For students taking the

online courses, these auxiliary material can help interested student have a constructive

discussion with their peers. However, it is difficult for them to browse through the

enormous amount of forums to find the relevant thread of their interest.

Lastly, we aid self-learners who join the online learning system for developing a

specific skill (such as machine learning) or learning a particular concept. Specifically,

we provide them the pre-requisite concepts to master before focussing on their goal

concept. We believe that this information can help the learners pick the concepts and

videos to watch more intelligently. In addition, we also recommend next videos for

learners to watch based on their interaction behavior in the past. For this we develop a

novel representation learning technique that leverages the rich information about their

textual content and structural relations between entities.

In summary, this thesis contributes towards development of a personalized MOOC

platforms, specifically providing the following application 1)Knowledge Assessment to

determine the strengths and weaknesses of students, 2) Forum recommendation to rec-

ommend relevant forums to students, 3) Concept Pre-requisite Prediction to predict

pre-requisite relations between different knowledge concepts, and 4) Learning Path rec-

ommendation to recommend the sequence of videos a student needs to pick to achieve

their goals.

v

Contents

Acknowledgements i

Dedication iii

Abstract iv

List of Tables x

List of Figures xii

1 Introduction 1

1.1 Thesis statement . 2

1.2 Thesis Outline and Original Contribution 2

1.2.1 Chapter 3: Vision and Design of POSLS 2

1.2.2 Chapter 4: Student Knowledge Modeling 4

1.2.3 Chapter 5: Interest prediction: Thread Recommendation 4

1.2.4 Chapter 6: Goal Understanding: Learning Trajectory Recommen-

dation . 5

1.3 Bibliographic Statement . 5

2 Background and Related Work 7

2.1 Personalized Learning system . 7

2.2 Student Knowledge Modeling . 8

2.3 Attention Mechanism . 9

2.4 MOOC Thread Recommendation . 10

vi

2.5 Student Profile Learning . 12

2.6 MOOC Entities representation learning 12

2.6.1 Concept Pre-requisite Prediction 12

2.6.2 Lecture Recommendation . 13

2.6.3 Pre-trained Representation Learning in NLP 13

3 Vision and Design of POSLS 15

3.1 POSLS Vision and Objectives . 15

3.2 POSLS Framework . 18

3.3 Modeling Entities in online learning system 21

4 Student Knowledge Modeling 22

4.1 Theoretical Framework . 25

4.2 SAKT: Self-Attentive model for Knowledge Tracing 27

4.3 RKT : Relation-Aware Self-Attention for Knowledge Tracing 30

4.3.1 Model Overview . 32

4.3.2 Exercise Representation . 33

4.3.3 Exercise-Relation Matrix Computation 34

4.3.4 Personalized Relation Modeling 35

4.3.5 Input Embedding Layer . 36

4.3.6 Relation-Aware Self-attention Layer 37

4.3.7 Prediction Layer . 38

4.3.8 Network Training . 38

4.4 Experimental Settings . 39

4.4.1 Datasets . 39

4.4.2 Implementation Details . 40

4.4.3 Metrics . 41

4.4.4 Approaches . 41

4.5 Results and Discussion . 42

4.5.1 Student Performance Prediction (RQ1) 42

4.5.2 Ablation Study (RQ2) . 45

4.5.3 Attention weights visualization (RQ3) 47

4.6 KT models on Large-Scale Dataset . 49

vii

4.6.1 Data . 49

4.6.2 Evaluation Setting . 50

4.6.3 Results and Discussions . 50

5 Interest prediction: Thread Recommendation 54

5.1 Theoretical Framework . 56

5.2 Student Interest Trajectory for MOOC Thread Recommendation (SITRec) 59

5.2.1 Text Representation . 59

5.2.2 Embedding layer . 60

5.2.3 Update operation . 61

5.2.4 Projection Operation . 61

5.2.5 Recommendation . 64

5.2.6 Network Training . 64

5.3 Experimental Settings . 65

5.3.1 Dataset . 65

5.3.2 Comparison Approaches . 66

5.3.3 Evaluation Methodology . 67

5.4 Results and Discussion . 69

5.4.1 Performance Evaluation . 69

5.4.2 Ablation Study . 71

5.5 Thread Recommendation on Generalized Platforms 72

5.6 Notations, Definitions, and Preliminaries 74

5.6.1 Model Architecture . 76

5.6.2 Network training . 79

5.7 Experimental Settings . 80

5.7.1 Performance Comparison (RQ1) 81

5.7.2 Analysis of IACN (RQ2) . 83

6 Goal Understanding: Learning Trajectory Recommendation 84

6.1 Theoretical Framework . 86

6.2 Meaningful Learner Profiling . 86

6.3 Representation Learning for POSLS . 88

viii

6.3.1 MERIT: A Unified Representation of MOOC Entities using Graph-

Informed Transformer . 90

6.3.2 MOOC Entity Representation Evaluation 95

6.4 Experimental Settings . 95

6.4.1 Dataset . 97

6.4.2 Evaluation Tasks . 97

6.4.3 Implementation Details . 98

6.5 Results and Discussion . 99

6.5.1 Concept Pre-requisite Prediction (RQ1) 99

6.5.2 Lecture Recommendation (RQ2) 101

6.5.3 Ablation Study (RQ3) . 102

7 Conclusion 104

Bibliography 106

ix

List of Tables

3.1 POSLS capabilities and their benefits to learners and teachers. 16

4.1 Notations . 27

4.2 A contingency table for two exercises i and j. 34

4.3 Dataset Details . 39

4.4 Performance comparison. The best performing method is boldfaced, and

the second best method in each row is underlined. Gains are shown in

the last row. 42

4.5 Ablation Study of RKT . 44

4.6 Comparison of four exercise relation matrix computation methods. . . 46

5.1 Notations . 58

5.2 Dataset Statisitics . 65

5.3 Performance comparison on three datasets for all methods in terms of

Mean Average Precision (MAP) @5. The best and the second best results

are highlighted by boldface and underlined respectively. Gain% denotes

the performance improvement of SITRec over the best baseline. 67

5.4 Comparing variants of the proposed model. Best results are indicated in

bold . 71

5.5 Performance comparison on four datasets for all methods. The best and

the second best results are highlighted by boldface and underlined re-

spectively. Gain% denotes the performance improvement of IACN over

the best baseline. 82

5.6 Ablation analysis. 82

6.1 Types of students and their characteristics 87

6.2 Dataset Details . 96

x

6.3 Performance comparison on concept pre-requisite prediction task. The

best performing method is boldfaced, and the second best method in each

row is underlined. Gains are shown in the last row. 99

6.4 Performance comparison on lecture recommendation task. The best per-

forming method is boldfaced, and the second best method in each row is

underlined. Gains are shown in the last row. 100

6.5 Ablation Study on Concept Pre-requisite Predition task. 100

6.6 Ablation Study on lecture recommendation task. 101

xi

List of Figures

1.1 Above Figure shows the overall contributions of this dissertation towards

POSLS. Green box represent the original thesis contributions. 3

1.2 A self-learning tutor . 3

3.1 From Current MOOC to MOOC with POSLS. 17

3.2 Framework for developing a personalized learning system 18

4.1 Left subfigure shows the sequence of exercises that the student attempts

and the right subfigure shows the knowledge concepts to which each of

the exercises belong. 24

4.2 Diagram showing the architecture of SAKT. 26

4.3 Overview of RKT model: Leftmost figure shows a student performance

data and table shows textual content and knowledge concepts of exercises

which constitute the input of RKT. Middle figure shows the relation be-

tween exercises and forget behavior of student which serve as contextual

information for RKT. Rightmost figure shows that contextual information

encoded as relation coefficients informs the attention weight to revised

attention weights. 31

4.4 The overall architecture of RKT. We first compute the exercise relation

matrix A. Then we use A to compute the relation coefficients based on

the relation between past exercises (e1, e2, . . . en−1) and the next exercise

en and the time elapsed since the interaction (∆1,∆2, . . . ,∆n−1). The

relation coefficients are propagated to the transformer model which modi-

fies the attention weights to take into account the contextual information.

. 33

xii

4.5 Plot of prediction performance over different student groups based on

sparsity of interaction levels. Our model, RKT significantly outperforms

every baseline. 44

4.6 Attention visualization in RKT model of an example student from Junyi.

We predict her performance on e15 based on her past 15 interaction (we

only show the first 4 interactions for better illustration). Right bars show

the attention weights of two RKT (blue) and SAKT (red) 46

4.7 Visualization of attention weights on different datasets. Each subfloat

depicts the average attention weights of different sequences of the corre-

sponding datasets. 47

4.8 Model differences among DKT, DKVMN, SAKT and RKT. 49

4.9 Performance Comparison. RKT performs best among the models. . . . 50

4.10 Visualization of attention weights of an example student from EdNet by

SAKT and RKT. Each subfloat depicts the attention weights assigned by

the models for that student. 52

4.11 Visualization of attention weights pattern on different datasets. Each

subfloat depicts the average attention weights of different sequences. . . 53

5.1 Temporal evolution of student interest and thread topics. The orange

bar chart shows the interest level of students on the topics [1, . . . ,K].

The blue bar chart shows the probability of thread’s content to belong

to topics [1, . . . ,K] . 57

5.2 The SITRec model: Model illustation for student u (orange) and threads

p and q (blue). Student features and thread features influence each other

and co-evolve with time. At time t1, student u posts on thread p, the

dynamic embeddings of both u and p are updated with RNNU and RNNT,

respectively. The projection operation ProjectU and ProjectT predicts

the student and thread embedding , respectively at a future time (t1 + ∆). 60

xiii

5.3 Projection Operation : This figure shows the key idea behind projection

operation. At time t, student u posts in thread p with post features θu,pt .

The projected embedding of student u is shown for different elapsed times

∆ < ∆1 < ∆2. The course topics ϑu represents the topics u is studying

at different times. The embeddings of the two threads, p and q are also

shown. After elapsed time ∆2 thread p’s embedding is projected closer

to u’s embedding while thread q on which u did not post in the past is

projected farther from u’s embedding. 62

5.4 Dataset statistics in terms of posts per topic. 65

5.5 Plot of recommendation performance over different lengths of the train-

ing time window T1 on all datasets. Our model, SITRec significantly

outperforms every baseline. 68

5.6 Recommendation performance for algo dataset by varying testing window

length. 70

5.7 A simplified diagram showing the main components of IACN. 74

5.8 The IACN model: After an interaction (u, i, t,q), the dynamic embed-

dings of u and i are updated in the Interaction modeling layer. The Influ-

ence modeling layer predicts the user embedding at time t+ ∆, u(t+ ∆)

by taking influence vector Iu(t+∆) into consideration. The figure on the

right side shows how influence modeling layer updates user embedding.

As more time elapses, (∆2 > ∆1), the user embedding tends to be closer

to Iu(t). 78

6.1 Students with different goals but taking the same course. 85

6.2 Learner Profiling based on their activities 88

6.3 Overview of MERIT model: Leftmost figure shows entity’s textual con-

tent and hierarchical structure in a course and the relation between con-

cepts and videos which constitute the input of MERIT. 90

xiv

Chapter 1

Introduction

With the growth of the internet, online learning platforms such as edX, Coursera, and

Udacity have emerged. The Massive Open Online Courses (MOOCs) provided by these

learning platforms have changed the educational landscape across the globe. The ad-

vantage of MOOCs is that they make courses available practically free to learners from

all over the world, thus breaking traditional barriers of time, place, and space. Learners

enroll in these courses with various goals, including personal, professional, and career

growth. However, these platforms still face various issues, which need to be addressed

so that their full potential can be leveraged. First, MOOCs still provide a one size

fits all system. From learning content to taking tests, MOOCs today largely resem-

ble classroom teaching where learners fit within pre-determined parameters that leave

little room for individualization [1]. Second, communication and information diffusion

in MOOCs is limited, leaving learners to connect through other means and social net-

works [2], and thus the emergent learner behaviors are difficult to observe. Third, the

overwhelming number of courses provided by the online learning platforms results in a

severe overload of information for MOOC learners, who spend significant time surfing

through the internet to find the course that suits them best [3], often leading to con-

fusion, non-productivity and frustration. For these reasons, effective learning through

MOOCs requires a different approach than currently available [4].

Today, it is well-recognized that effective learning through MOOCs requires different

pedagogies than those used in classroom setting [4]. In MOOCs, students generate rich

learning behavior data through interactions with the system. These interaction data has

1

2

been released for AI research by multiple MOOC platforms (e.g. XuetangX, Coursera

and EdX) [5]. We propose to leverage this data for developing a personalized learning

system. As shown in Figure 1.2, we envision this system as a personal guide for a learner.

This system will assess student knowledge and provide them summary of their strengths

and weaknesses, help them navigate through the course, recommending study material

relevant to their interest and even, recommending a learning trajectory to acquire a

specific skill. Developing such a personalized learning system raises several challenges

in terms of design adopted for integrating various components, as well as developing new

machine learning models to build each individual component. This research transforms

MOOCs into testbeds for advancing educational research, and ultimately, improving

learning.

1.1 Thesis statement

This thesis aims at developing a Personalized Online Self-learning System as a personal

guide to a learner to improve learner’s experience and retention.

To that end, we contribute several machine-learning models to various applications

important for Education Data Mining (EDM) community. Particularly, we focus on

learner knowledge assessment, interest prediction,and developing a guide to help learners

plan their next activity.

1.2 Thesis Outline and Original Contribution

We start with providing the necessary background and overall motivation of this disser-

tation in Chapter 2. The remaining outline and major contributions of this dissertation

in graph embedding literature is shown in Figure 1.1 and further discussed below in

the given order,

1.2.1 Chapter 3: Vision and Design of POSLS

In this thesis we first propose our vision of Personalized Online Self Learning Sys-

tem (POSLS). We build a system that can be used by a user who wants to acquire

some skills/knowledge on his own through the online media. There are many reasons

3

Figure 1.1: Above Figure shows the overall contributions of this dissertation towards

POSLS. Green box represent the original thesis contributions.

Figure 1.2: A self-learning tutor

which motivate a person to take up some online course such as, enhancing their CV,

supplementing their college education, extend their knowledge of a topic or acquiring

knowledge from an institution which they could not afford due to geographical or finan-

cial cause. The growth of internet has led to spawning of many online course provided

by high class institution. However, with more sources of knowledge available, new chal-

lenges come in the scenario. First, it leads to an information overload. Second, most

of these online learning systems are standard rather than personalized. Since learners

on the online learning system belong to different backgrounds it is important for the

system to customize based on individual needs. To address these issues, we propose

Personalized Online Self Learning System (POSLS) that acts as a personalized tutor

4

to guide a learner. This tutor gathers information from various sources and provide the

individual learner a set path of learning activities suited by his/her learning preference.

Figure 1.2 shows a tutor who utilizes information from all the sources and provide a

student the relevant study material. Further details of design and architecture is present

in the chapter 3

1.2.2 Chapter 4: Student Knowledge Modeling

The problem of modeling student knowledge is popularly called knowledge tracing,

where we model each student’s mastery of knowledge concepts (KCs) as (s)he engages

with a sequence of learning activities. Each student’s knowledge is modeled by esti-

mating the performance of the student on the learning activities. The KT task can be

formalized as a supervised sequence learning task - given student’s past exercise interac-

tions X = (x1,x2, . . . ,xt), predict some aspect of his/her next interaction xt+1. On the

question-answering platform, the interactions are represented as xi = (ei, ri, ti), where

ei is the exercise that the student attempts at timestamp i and rt is the correctness of

the student’s answer. KT aims to predict whether the student will be able to answer

the next exercise correctly, i.e., predict p(rt+1 = 1|et+1,X).It is an inherently difficult

problem as it is dependent on the factors such as complexity of the human brain and

ability to acquire knowledge [6].

It is an important step towards a personalized learning system.

1.2.3 Chapter 5: Interest prediction: Thread Recommendation

Estimating the topics that interest a student at a given time is of importance so that

we can build a system to recommend the relevant wikipedia articles, forums or research

papers. In this work, we will describe the challenges involved in predicting student

interest, how we propose to address those challenges and finally our evaluation scheme.

Learners’ preferences over MOOC topics evolve as they progress through the course

and we attempt to model the student interest so as to recommend them external course

material. We developed a model to capture evolving student interest and predict the

next forum they will contribute to. Thus, for each student, u, find the most relevant

threads that she will be interested in where pth thread is represented as p. Experiments

5

illustrate that our model outperform the existing thread recommendation baselines.

1.2.4 Chapter 6: Goal Understanding: Learning Trajectory Recom-

mendation

Different students have different learning preferences and identifying these preferences

beforehand can help a personalized learning system in designing the learning environ-

ment based on their needs. In this work, we propose to understand different student

preferences and clustering them based on their interaction with the learning platform.

We then devise methods to aid students with different preferences. Essentially, our goal

is to help self-learners who enroll in MOOC to master a particular concept (or skill)

by providing them the pre-requisite concepts they should master and recommending

them the next lecture to watch. To this end, we focus on solving two very important

tasks for education community. The first task is to predict the pre-requisite relation

between different concepts and second task is to predict the lecture that the user would

be interested in to achieve his goal. To solve these tasks, we propose to leverage the

knowledge graph that represents the connections and relations between various entities

involved in the MOOC platform, the textual content of individual entities and the do-

main knowledge about concept difficulty. As shown in our experiments, utilizing such

rich information results in better representation learning of MOOC entities compared

to other representation learning models.

1.3 Bibliographic Statement

Findings of the Chapter 4 on self-attention based models for knowledge tracing have

been published in two conference papers [7, 8, 9] and have appeared in (the 12th Inter-

national Conference on Educational Data Mining, EDM, 2019), and (the 29TH ACM

International Conference on Information and Knowledge Management (CIKM) 2020).

Contributions made in Chapter 5 has been published in the paper, “Learning Student

Interest Trajectory for MOOC Thread Recommendation” and presented at the 20th

IEEE International Conference on Data Mining Workshop (ICDMW) 2020 [10]. The

generalized version of thread recommendation has been published in the paper “IACN:

Influence-aware and Attention-based Co-evolutionary Network for Predicting Dynamic

6

Embedding” [11] and accepted at the 25th Pacific Asia Conference on Knowledge Dis-

covery and Data Mining (PAKDD) 2021. In addition, Chapter 6 work has been collected

in the article, “MERIT: A Unified Pre-trained Embeddings of MOOC Entities” with

preprint available on arXiv.

Chapter 2

Background and Related Work

2.1 Personalized Learning system

Several models have been developed with the goal of personalizing the learning system

[12, 13, 14]. A survey on the development of personalized learning was conducted in [12]

. This research can classified the research in personalized learning into four categories

described in the subsequent paragraph of this section. Adaptive learning technologies

include web-based adaptive learning systems and/or intelligent tutoring systems such

as developed in [15, 16]. Generally, these systems would analyze student background

information, prior knowledge, affective state, preference, and/or learning performance

and then algorithmically provide customized learning paths, contents, scaffolds, and/or

assessment reports to individual students.

Our system differ from these works from two perspectives: 1) we focus augment-

ing the current MOOC setting and bring personalization framework on them. We do

not intend to build a tutor to teach students but assist self-learners in optimizing their

paths by solving the information overload problem. 2) we focus on different respresen-

tation learning methods to build better ML models to solve various tasks important to

education community.

7

8

2.2 Student Knowledge Modeling

Several models have been developed for modeling student knowledge from their inter-

action data. These models can be categorized into cognitive diagnosis (from congnitive

science) and knowledge tracing (from computation science) domains.

Cognitive models refer to the models designed to discover latent mastery of each

student on defined knowledge points. Widely-used approaches could be divided into

two categories: one-dimensional models and multi-dimensional models. Among these

models, Rasch model [17] (also known as 1PL IRT) is a typical one-dimensional model

and computes the probability of getting an exercise correct using logistic regression

based on student’s ability and exercise (item) difficulty. To improve prediction results,

other one-dimensional models include additive factor models [18, 19] which assumed

KCs ”additively” affect performance. These models include a student’s proficiency pa-

rameter to account for the variability in student’s learning abilities. Comparatively,

multi-dimensional models, such as Deterministic Inputs, Noisy-And gate model, char-

acterized students by a binary latent vector which described whether or not she mastered

the KCs with the given Q-matrix prior [20].

The KT task evaluates the knowledge state of a student based on her performance

data. A Hidden Markov based model, BKT, was proposed in [21]. It models latent

knowledge state of a learner as a set of binary variables, each of which represents under-

standing or non-understanding of a single concept. A Hidden Markov Model (HMM) is

used to update the probabilities across each of these binary variables, as a student an-

swers exercises. Further extension of BKT includes, incorporating individual student’s

prior knowledge [22], slip and guess probabilities for each concept [23] and the difficulty

of each exercise [24]. Some approaches [25, 26] use factorization methods to map each

student into a latent vector that depicts her knowledge state. To capture the change of

student’s knowledge evolution over time, [27] proposed a tensor factorization method

by adding time as an additional dimension. Another line of research includes meth-

ods based on recurrent neural networks such as Deep Knowledge Tracing (DKT) [6],

which exploits Long Short Term Memory (LSTM) to model student’s knowledge state.

Deep Knowledge Tracing plus (DKT+) [28] is an extension of DKT to address the issue

faced by DKT such as not being able to reconstruct the input and predicted KCs not

9

being smooth across the time. Dynamic Key-Value Memory Networks (DKVMN) [29]

introduced a Memory Augmented Neural Network [30] to solve KT with key being the

exercises practices and values being the mastery of students.

Exercise Relation Modeling: Exercise Relation Modeling has been widely stud-

ied in the educational psychology. Some researchers have utilized Q-matrix to map

exercises with Knowledge Concepts [31, 20]. Two exercises are related if they belong to

the same KC. In addition to Q-matrix based method, recently researchers have started

to focus on deriving relations between exercises using the content of exercises. For

example, [32, 33, 34] utilize the content of exercises to predict the relation between

exercises. After predicting the semantic similarity scores between the exercises [33, 34]

use these scores as attention weights to scale the importance of the past interactions.

Incorporating exercise relation modeling in KT is an under-explored area. To this end,

we explored methods for modeling exercise relations using textual content of exercises

and student performance data.

Forget Behavior Modeling: There has been some research exploring the forget be-

havior of students [35, 36]. Forget curve theory introduced in [37] and employed in [36]

which claims that student memory decays with time at an exponential rate and the rate

of decay is determined by the strength of student cognitive abilities. Recently, DKT-

Forget [35] introduce different time-based features in DKT model. DKT-Forgetting

considers repeated and sequence time gap, as well as the number of past trials, which is

a state-of-the-art method with temporal information. In our work, we take advantage

of both exercise relation modeling and forget behavior modeling in KT task which has

not been done before.

2.3 Attention Mechanism

Attention mechanism [38] is shown to be effective in tasks involving sequence model-

ing. The idea behind this mechanism is to focus on relevant parts of the input when

predicting the output. It makes the models often more interpretable as one can find

the weights of specific input that resulted in making a specific prediction. It was in-

troduced for machine translation task to retrieve the words in the input sequence for

generating next word in the target sentence. Similarly, it is used in recommendation

10

systems to predict the next item a person will buy based on his history of purchase.

Some models [39, 40] have recognized that augmenting self-attention layer with contex-

tual information improves the performance of the model. Such contextual information

include the co-occurrence of items for item recommendation [39] and syntactic and

semantic information of a sentence for machine translation [40].

2.4 MOOC Thread Recommendation

The emergence of the internet has led to the development of various discussion plat-

forms for user interaction. Some of the forums (e.g., StackOverflow, and MathExchange)

provide a discussion on specific topics while others (e.g., Quora, Reddit, and Yahoo! An-

swers) can be used to find answers related to a wide variety of topics. Recommendation

of forums to the users/experts who can provide insight into a topic and reply to related

questions has also been introduced for generic forum recommendation. However, unlike

the Community Question Answer (CQA) setting, on MOOC forums, the students are

not topic experts, rather learners. The discussion forums on MOOC aims for foster-

ing discussion among students to elevate their understanding through a peer learning

experience. Thus, it is important to take into consideration the interest of students

while making a recommendation. Student interests evolve as they progress through

the course. Additionally, MOOC discussion forums are mostly centered on the topics

related to the course. Thus both student’s interests and forums can be modeled using

topic modeling to obtain distribution over topics.

Joint modeling of users and items, where each interaction between an item and a user

updates the state of both interacting user and item has been explored in recommendation

systems. RNNs have been used for modeling the evolving features of items and users

in [41, 42]. These models, similar to ours, also update the state of users and items

after they interact. However, a major difference between these models and our work is

that we take into account the course structure to further enhance the performance of

our model. Additionally, we project the threads’ embeddings personalized to each user

such that we can take into account the likelihood of user posting on a thread because

of the nature of past posts on the thread.

MOOC has generated a huge amount of data attracting machine learning and data

11

scientist for research. Here, we discuss all the research done for the recommendation of

MOOC discussion forums. The works in [43] use unsupervised topic models with sets of

expert-specified course keywords for capturing the category of forum posts. They, then,

use topic assignments and sentiment to predict student course completion. Another

work [44] analyzed the content of the MOOC forum using topic modeling techniques

to automatically generate labels for each thread. These labels can guide students in se-

lecting interesting threads for themselves. Work in [45] couples social network analysis

and association rule mining for thread recommendation; while their approach considers

social interactions among learners, they ignore the content and timing of posts. The

adaptive matrix factorization based method [46] groups learners according to their post-

ing behavior. It also studies the effect of window size, i.e., recommending only threads

with posts in a recent time window. The work in [47] uses a rule-based recommendation

technique for providing personalized recommendations to individuals. However, these

models do not capture the evolving features of users and threads. The point-process

based method (PPS) proposed in [48] models the probability that a learner makes a

post in a thread at a particular time. This probability is computed based on inter-

est level of the learner on the topic of thread, timescale of the thread topic, timing of

the previous posts in the thread, and nature of the earlier posts regarding the learner.

However, the user interest on a topic does not remain static across time.

As for modeling temporal dynamics, the work in [49] proposed a method that clas-

sifies threads into different categories (e.g., general, technical, social) and ranks thread

relevance for learners over time. However, it does not make personalized recommenda-

tions since it does not consider learners individually. Another work [50] leverages con-

text trees that are used in a sequential recommendation system for providing adaptive

recommendations. MOOC forum recommendation differs from typical sequential rec-

ommendation problems because in MOOC forums, both student’s interests and threads

revolve around the course topics. The course structure is an additional source of infor-

mation for predicting student interest and expertise.

12

2.5 Student Profile Learning

Previous work has been conducted to understand learner intent on MOOCs [51, 52, 53].

Most of this work involved designing survey questions to elicit direct response from the

learners. This approach, although informative, dos not adequately account for the

dynamic nature of learning and interest. To address this issue, we plan to develop

machine learning models to infer the intent of learners from their interaction data.

2.6 MOOC Entities representation learning

Real-world education service systems, such as massive open online courses (MOOCs)

and online platforms for intelligent tutoring systems on the web offers millions of on-

line courses which have attracted attention from the public [54, 55]. However, the

dropout rates on the MOOCs have remained elevated . To maintain student engage-

ment, researchers and practitioners have proposed to personalize the MOOC platform

for different profiles of students [56, 57]. In order to build a personalized online learning

platform, concept pre-requisite prediction [58, 59] and lecture recommendation [60, 61]

have shown to be two important tasks.

2.6.1 Concept Pre-requisite Prediction

Concept pre-requisite prediction is the task of identifying the pre-requisite relations

between different concept. Once prerequisite relations among concepts are learned, these

relations can be used by self-learners to understand the concepts they have mastered and

plan their learning path accordingly. In addition, it can also help the course designers in

designing course structure guided by the learned pre-requisites. Previous methods have

exploited hand-crafted features and feed it to classification models [59] or investigate

active learning with these features to improve classification models [58]. More recently,

neural network based methods have been employed to classify pre-requisite relations

such as, [62, 63]. Among those [62] utilizes a Siamese network [64] which takes

concept representation as input and predicts whether the first concept is pre-requisite

of the other. On the other hand, [63] considers the problem of pre-requisite prediction

as link prediction task with concepts as nodes of graph and utilizes Graph Variational

13

Autoencoder [65]. In our work, we pre-train the concept representation using only their

text content and the structural information present in course design.

2.6.2 Lecture Recommendation

Lecture recommendation aims at recommending relevant lectures to users based on their

historical access behaviors. Such next lecture to watch recommendations as a service has

been shown to stimulate and excite learners when they are bored. The overwhelming

selection of possible next steps in a MOOC compounded with the complexity of course

content can leave a learner frustrated; while, friendly next-step recommendation can be

the support they need to move forward and persist [60]. To solve this task, researchers

have looked into of various methods. Pardos et. al. [60] modeled the sequence of

historic lectures that the student has watched as a sequence and uses sequence encoder

to encode the sequence and predict the next lecture of interest. The work in [66] takes

as input the sequence of lectures that the student has watched along with the graph

connecting various MOOC entities obtained from [5] to recommend the next lecture.

This model employs an attention-based graph convolutional networks (GCNs) to learn

the representation of different entities. The model discovers user potential interests by

propagating users’ preferences under the guide of meta-path in the graph. Some studies

extracted hidden features from lectures (e.g., textual features extracted from lecture

titles, visual features, and acoustic features) and used deep learning methods to learn

their representation [67].

Unlike these works, our model learns pre-trained representation of lectures using only

the textual content and the course structure. We then use the pre-trained embeddings

to improve the downstream tasks. All these applications benefits the development of

personalized online learning system [1]. Our work provides a unified representation

for MOOC entities compared with previous studies, and provides a solid backbone for

applications in the education domain.

2.6.3 Pre-trained Representation Learning in NLP

Recent representation learning methods in NLP rely on training large neural language

models on unsupervised data [68, 69, 70, 71, 72, 73]. These methods can be divided

14

into two categories: feature-based methods, where text is represented by some sort of

feature extractors as fixed vectors [72, 73], and pre-training based methods, where

parameters of model are pre-trained on corpus and then fine-tuned to specific tasks

[70, 68]. Among them, the current state-of-the-art model is BERT [70]. It utilizes

Transformer [38] together with some language related pre-training goals, solving many

NLP tasks with impressive performance. Although these pre-training solutions have

been fully examined in a range of NLP tasks, yet they are not effective to be directly

applied to entity representation mainly due to the following three reasons. First, MOOC

entities in addition to having textual features have structural relations between each

other [5]. These structural relations help in enhancing the embedding quality, would

be ignored with these methods that only focus on text [74]. Second, deriving from

domain knowledge, the design of courses by an instructor provide information about

the entities other than just their linguistic features. Third, off-the-shelf application of

these NLP approaches are difficult due to the need of model modification or hyper-

parameter tuning, which is inconvenient under many education setup. In addition to

that, methods have been developed to encode the relational knowledge in graphs [75].

We use these models to generate embeddings of entities from the Bipartite MOOC

graph shown in Figure 5.2 and then use these embeddings as pre-trained embeddings

for downstream tasks.

Chapter 3

Vision and Design of POSLS

Although online learning have been very popular among the society, it has faced chal-

lenges such as high dropout rates, feeling of isolation, standard platform (one size fits

all) among others. To tackle these challenges, it is important to build a Personal-

ized Online Self-Learning system. This system is responsible for understanding student

needs, interests, strengths and weaknesses and guide them accordingly. This will help

accommodate the needs of diverse group of students who enroll on MOOCs and make

students feel more connected with the system. Our research is motivated by a number

of real-world applications. To provide a viable solution for these problem, the system

is required to build models to capture the complexity human learning, their evolving

interests and their diverse backgrounds.

3.1 POSLS Vision and Objectives

Current MOOCs do not serve well the large, diverse population of learners attracted

to them, with their myriad needs. Unlike traditional in-class learners whose primary

goal is to complete the course and get credits (since they have paid fees), the goals

of self-learners taking a MOOC class may fall into a number of distinct categories.

Examples include completing the course at regular pace and getting credit (like in-

class learners), quickly going through the course as a revision of material they’ve learnt

before, interested only in certain topics to fill-in their knowledge gaps, etc. In addition,

self-learners may have very diverse backgrounds from the perspective of preparedness

15

16

T
ab

le
3.

1:
P

O
S

L
S

ca
p

ab
il
it

ie
s

an
d

th
ei

r
b

en
efi

ts
to

le
ar

n
er

s
an

d
te

ac
h

er
s.

P
O

S
L

S
C

a
p

a
b

il
it

y
C

u
rr

e
n
t

R
e
se

a
rc

h
P

ro
p

o
se

d
R

e
se

a
rc

h
B

e
n

e
fi

ts
to

le
a
rn

e
rs

B
e
n

e
fi

ts
to

te
a
ch

e
rs

L
ea

rn
er

K
n
ow

le
d

g
e

A
s-

se
ss

m
en

t

T
ea

ch
er

s
a
ss

es
s

le
ar

n
er

m
a
st

er
y.

K
n

ow
le

d
ge

T
ra

ci
n

g

m
o
d

el
to

p
re

d
ic

t

le
ar

n
er

m
as

te
ry

.

In
fo

rm
le

ar
n

er
s

ab
ou

t

th
ei

r
st

re
n

gt
h

s
an

d

w
ea

k
n

es
se

s.

In
fo

rm
s

te
ac

h
er

s

ab
ou

t
d

iff
er

en
t

le
ar

n
er

s’
ab

il
it

y.

C
om

p
re

h
en

si
ve

P
er

so
n

-

al
iz

ed
S

tu
d

y
M

at
er

ia
l

R
ec

o
m

m
en

d
a
ti

o
n

P
er

so
n

al
iz

ed
d

is
cu

ss
io

n

fo
ru

m
s

re
co

m
m

en
-

d
at

io
n

a
t

an
ea

rl
y

st
ag

e.

D
ev

el
op

a
co

m
p
re

h
en

-

si
ve

re
co

m
m

en
d

at
io

n
of

d
is

cu
ss

io
n

fo
ru

m
s

b
as

ed

on
b

ot
h

st
u

d
en

t
in

te
r-

es
t

in
co

u
rs

e
to

p
ic

s
an

d

le
ar

n
er

’s
p

as
t

fo
ru

m
ac

-

ti
v
it

ie
s.

In
cr

ea
se

s
d

is
cu

ss
io

n
s,

A
d

d
re

ss
es

in
fo

rm
at

io
n

ov
er

lo
ad

,
Q

u
es

ti
on

s

as
ke

d
on

fo
ru

m
s

ge
t

q
u

ic
k

an
sw

er
s,

U
p

d
at

e

of
ot

h
er

le
ar

n
er

ac
ti

v
i-

ti
es

on
M

O
O

C
fo

ru
m

s,

M
or

e
en

ga
ge

m
en

t.

-

C
on

ce
p

t
T

ra
je

ct
o
ry

R
ec

o
m

m
en

d
a
ti

o
n

R
ec

o
m

m
en

d
li

st
of

co
n

ce
p

ts
to

se
lf

-l
ea

rn
er

s

b
as

ed
o
n

th
ei

r
go

al
.

In
co

rp
or

at
e

n
ew

te
ch

-

n
ol

og
ie

s
w

h
ic

h
sp

ec
if

-

ic
al

ly
u

ti
li

ze
m

as
si

ve

d
at

a
to

d
ev

el
op

b
et

te
r

co
n

ce
p

t
re

la
ti

on
p

re
d

ic
-

ti
on

te
ch

n
iq

u
es

.

A
d

d
re

ss
es

in
fo

rm
at

io
n

ov
er

lo
ad

p
ro

b
le

m
.

-

C
ou

rs
e

N
av

ig
at

io
n

B
e-

h
av

io
r

A
n

al
y
si

s
o
f
le

ar
n

-

er
s

S
eq

u
en

ti
al

ly
n
av

ig
at

e

th
ro

u
gh

th
e

w
h

ol
e

co
u

rs
e

or
se

le
ct

iv
el

y

id
en

ti
fy

re
le

va
n
t

co
u

rs
e

to
p

ic
s.

U
n

d
er

st
an

d
le

ar
n

er

in
te

n
t

to
re

co
m

m
en

d

co
u

rs
e

to
p

ic
s

of
in

te
re

st
.

H
el

p
s

le
ar

n
er

s
n

av
ig

at
e

th
ro

u
gh

th
e

co
u
rs

e.

H
el

p
te

ac
h

er
s

m
o
d

if
y

th
e

co
u

rs
e

co
n
te

n
t

se
q
u

en
ce

to
al

ig
n

w
it

h
p

op
-

u
la

r
n

av
ig

at
io

n

p
at

te
rn

s.

17

(a) Current MOOC setting (b) With POSLS

Figure 3.1: From Current MOOC to MOOC with POSLS.

for the content of a particular course. Thus, by default, the one size fits all approach of

organizing the content in current MOOC courses fails to address the needs of its diverse

learners.

Personalized Online Self Learning System (POSLS): To address the needs

of self-learners, we introduce the concept of Personalized Online Self Learning (POSL),

where the pace of learning and the instructional approach implemented are optimized

for the needs of each learner [76]. As shown in Figure 3.1, we develop a system that

embodies a suite of capabilities to address the needs of different individuals. Essentially

the idea is to collect data from POSL platform that will be leverage to build strong

ML models. These ML models will personalize the system for individual learners, par-

ticularly, recommend the next activity, notify about the forums of interest, and asses

each learner knowledge to recommend them the knowledge concept to practice. The

course specific modeling layer, consists of techniques to learn representation of content

of MOOC (courses, videos, and knowledge concepts). By learning their representations,

we can recommend the relevant entities to learners. The idea is to project learners

and MOOC entities closer in the same embedding space, such that relevant entities and

learners are closer in the space.

18

Figure 3.2: Framework for developing a personalized learning system

3.2 POSLS Framework

Figure 3.2 shows the architectural framework of POSLS. As shown, we collect data

from various sources such as Coursera [10], XuetangX [5], Junyi [8], ASSISTment and

POJ [8]. From these sources, we collect the student performance data, their interaction

data (videos watched, forum posts), details of course content (sequence of videos, and

topic), universal concept details and a graph linking MOOC entities. We leverage this

data to build machine learning models that can provide personalized learning platform

(POSLS). Specifically we focus on two different modeling perspectives: student specific

and course content specific. The student specific modeling layer focuses on learning

student interest representation via their interaction sequences and student knowledge

representation via their performance data. We will now describe the major application

layer of POSLS.

19

• Knowledge/skill assessment. The first step leading to development of per-

sonalized systems is to identify the knowledge of individual learners. In an online

education systems, it is important that we determine the strengths and weaknesses

of learners before customizing the platform to their condition. A system to assess

learner’s knowledge can also help in proving a justification to learner regarding

what they need to focus or what learning trajectory to follow.

• Interest Prediction: Recommendation of personalized study material.

MOOCs have become an open source venue for sharing knowledge which gener-

ate auxiliary source of learning, such as discussion forums for students. Recent

MOOCs (such as, XeutangX) has also released various other sources of informa-

tion such as micro-blogs, wikipedia, research papers corresponding to each course

topics. For students taking the online courses, these auxiliary material can help

interested student for acquiring in-depth understanding of course topics or have

a constructive discussion with their peers The fundamental challenge involved in

this task is that the student interests drift as they progress through the course

and it is important to predict the interest of learners at various time instances.

• Exercise recommendation: It can be argued that the current MOOC plat-

form infrastructure is designed to efficiently help students ’learn facts’ rather than

’acquire skills’. This design is suitable for courses which are heavy on knowl-

edge (including facts, theories and formulae). However, there are courses which

emphasize skills (application of knowledge) such as Maths and Computer Pro-

gramming. For such courses there are many practice platforms such as Junyi 1

, Peking Online Judge (POJ) 2 . However, simply providing a pool of exercises

causes information overload for learners. For better utilization, it is important to

recommend exercises to the learners. We attempt to utilize the textual informa-

tion of exercise and learner question-answering sequence to predict which exercise

the learner should work on next to maintain its engagement level. Psychology

has suggested that the difficulty of student should be smoothly increase so that

student’s engagement level is kept elevated. To this end, we propose to predict

1 https://www.junyiacademy.org/
2 http://poj.org/

20

difficulty of each exercise by building a pairwise relations between exercises which

takes the textual information, knowledge concept associated with the exercise and

the question-answering sequence of each student as input.

• Goal Understanding :Learning Trajectory recommendation. Some learn-

ers, especially professionals, join the online learning system for developing a spe-

cific skill (such as machine learning) or learning a particular concept. Under this

project we intend to recommend a learning path to these students which consists

of next of course topics to pick to meet a particular goal. Since students have

different backgrounds, in order to meet a particular goal, different learning paths

has to be recommended to different students. In addition, for some courses, topics

do not have strong dependence on each other. In such courses the learning path

could provide MOOC learners the list of topics they can learn from that course to

meet their goals. This will relieve the learners from the task of of going through

the entire course material to learn only few topic of their interest [1].

• Disengagement Prediction : Smart intervention. A central challenge faced

by MOOCs is the extremely high dropout rate — recent reports show that the

completion rate in MOOCs is below 5%. It is important to study the factors

that cause the users to drop out and their motivation to study MOOCs. With

this knowledge student disengagement can be predicted on time and necessary

measures can be taken. To improve student retention the intervention mechanism

should first identify student who are going to dropout then deploy methods to

increase student motivation to complete the course. [77] studied the dropout

problem on MOOCs and deployed two intervention mechanism. First is certificate

driven in which users receive a message like “Based on our study, the probability

of you obtaining a certificate can be increased by about x% for every hour of

video watching. Second is effort driven in which user will receive a message to

summarize her/his efforts used in this course such as ‘You have spent 300 minutes

learning and completed 2 homework questions in last week, keep going!”

21

3.3 Modeling Entities in online learning system

There are various entities in an online learning system : students, courses, course con-

tent, exercises, videos, research paper, wikipedia articles. We need to embed these

entities such that those entities which are semantically similar are closer in the embed-

ding space. To this end, we define the entities and the associated data we take into

account in our proposed framework:

• Course content and taxonomy Courses are the foundation of MOOCs and

consist of a series of pre-recorded videos. Regarding each course as an entity, we

use the synopsis, video list, teacher, and the organization, offering this course as

its attributes. Notably, we also consider the description of the teacher and the

organization from Wikidata2 as an external resource. In addition to that, we use

the mapping of a course with external course material provided in [5]. Specifically,

for each video, it records the concept description from Wikidata and search top

10 related papers for each concept via AMiner3 [78, 79, 80] as external resource.

• Concept graph and relation between courses Concept graphs [81] refer to

the graph consisting of knowledge concepts and each edge define which two con-

cepts are similar or prerequisite of one another. Prerequisite relation has received

much attention in recent years and has a direct help for teaching applications.

We leverage the prerequisite chains provided by [5] to test our models. It defines

relations between different concepts and courses simultaneously.

• Learners and video watching behavior: Learner interaction data supports a

variety of relevant research (such as course recommendation [82], video navigation

[29], dropout prediction), indicates the relationships between courses and concepts

[83]. We utilize [5] that logs enrollment records and video watch logs of of learners

on the online platform.

• Learner knowledge and question answering interaction : Learner inter-

action data with question-answering platform can help in understanding student

strengths and weaknesses. We utilize data from three real-world platforms, Junyi,

ASSISTments, and Peking Online Judge provided in [8] to perform evaluation of

our knowledge representation model.

Chapter 4

Student Knowledge Modeling

MOOCs requires a mechanism to help students realize their strengths and weaknesses

so that they can practice accordingly. In addition to helping students, the mechanism

can aid the teachers and system creators to proactively suggest remedial material and

recommend exercises based on student needs [84]. For developing such a mechanism,

knowledge tracing (KT) is considered to be crucial and is defined as the task of modeling

students’ knowledge state over time [21]. It is an inherently difficult problem as it is

dependent on the factors such as complexity of the human brain and ability to acquire

knowledge [6].

Figure 4.1 shows an example of a student solving exercises sequentially. When the

student encounters a new exercise (e.g. e5) she applies her knowledge corresponding

to the Knowledge Concept (e.g., Quadratic Equations) to answer it. The mastery of a

particular KC is determined by the past interactions which have a distinct impact on the

target KC. The availability of massive dataset of students’ learning trajectories about

their knowledge concepts (KCs), where a KC can be an exercise, a skill or a concept, has

attracted data miners to develop tools for predicting students’ performance and giving

proper feedback [85]. For developing such personalized learning platforms, knowledge

tracing (KT) is considered to be an important task and is defined as the task of tracing

a student’s knowledge state, which represents his/her mastery level of KCs, based on

his/her past learning activities. The KT task can be formalized as a supervised sequence

learning task - given student’s past exercise interactions X = (x1,x2, . . . ,xt), predict

some aspect of his/her next interaction xt+1. On the question-answering platform, the

22

23

interactions are represented as xt = (et, rt), where et is the exercise that the student

attempts at timestamp t and rt is the correctness of the student’s answer. KT aims

to predict whether the student will be able to answer the next exercise correctly, i.e.,

predict p(rt+1 = 1|et+1,X).

It is an inherently difficult problem as human’s ability to solve an exercise is de-

pendent on the complexity of his brain and his knowledge. In order to solve the KT

problem, various approaches have been developed. Bayesian Knowledge Tracing (BKT)

[21] and its variants [22, 23, 24] model a student’s latent knowledge state as a set of

binary variables, each of which represents the understanding of a particular KC. A Hid-

den Markov model, is used to update the latent variables based on the correctness of

the observed student opportunities to apply the skill in question. Matrix factorization

based methods [?] predict the performance of the student on each exercise similar to

how rating of an item is predicted in the recommender system. In order to track stu-

dent’s learning process, [27] proposed tensor factorization by incorporating additional

time dimension. Performance Factor Analysis (PFA) [18] is a logistic regression based,

skill specific method whose regressors are the number of previous correct and incorrect

responses on exercises that the student has answered which were questioned on the skills

required in the particular exercise. Recently deep learning models such as Deep Knowl-

edge Tracing (DKT) [6] and its variant [28] used Recurrent Neural Network (RNN) to

model a student’s knowledge state in one summarized hidden vector. The non-linear

transitions between input to knowledge state and one knowledge state to the other gives

it more flexibility and representational power compared to BKT. Dynamic Key-value

memory network (DKVMN) [29] exploited Memory Augmented Neural Network [86] for

KT. Using two matrices, key and value, it learns the correlation between the exercises

and the underlying KC and student’s knowledge state, respectively. The BKT model

and its variants suffer because of their assumptions that each exercise belongs to one

concept and representing the mastery of student on each KC with a binary variable,

thus neglecting the complexity of human learning [6]. Although the DKT model has

shown impressive performance in the KT task, The DKT model faces the issue of its

parameters being non-interpretable [87]. DKVMN is more interpretable than DKT as

it explicitly maintains a KC representation matrix (key) and a knowledge state repre-

sentation matrix (value). However, since all these deep learning models are based on

24

Figure 4.1: Left subfigure shows the sequence of exercises that the student attempts

and the right subfigure shows the knowledge concepts to which each of the exercises

belong.

RNNs, they face the issue of not generalizing while dealing with sparse data [88].

Models such as [89, 90] have shown the importance of explicitly incorporating the

relations between KCs as input to the KT model. In particular, [89] uses Dynamic

Bayesian Network to model the pre-requisite relations between KCs while [90] incor-

porate the same in DKT model. However, they assume that the relation between KCs

is known apriori. In fact, manual labeling of relations is labor-intensive work. To auto-

matically estimate the relations between exercises, [91] estimates a mapping between

each exercise and corresponding KCs and considers the exercise belonging to the same

KC as related. While, [34, 33] leverage the textual content of exercises to model se-

mantic similarity relation between exercises. However, these models do not take into

account temporal component which affects the importance of past interactions, owing

to the dynamic behavior of the student learning process.

The temporal factors in knowledge tracing have been addressed in [35, 92, 45]. These

methods mainly focus on the time elapsed since the last interaction with the same KC or

previous interaction without modeling the relation between exercises involved in those

interactions. However, as discussed, the previous interactions have a distinct impact on

prediction task which is attributed to both exercise relation and temporal dynamics of

the learning.

In this work, we propose to use a purely attention mechanism based method, trans-

former [38]. Transformer is a sequence modeling method which has shown impressive

performance in language modeling. It relies on the fact that each word in a sentence

is related to other words and the relevance factor is determined using a compatibility

25

function between the words. Similarly, In the KT task, the skills that a student builds

while going through the sequence of learning activities, are related to each other and

the performance on a particular exercise is dependent on his performance on the past

exercises related to that exercise. For example, in figure 4.1, for a student to solve

an exercise on ‘Quadratic equation’ (exercise 5) which belongs to the knowledge con-

cept ‘Equations’, he needs to know how to find ‘square roots’ (exercise 3) and ‘linear

equations’ (exercise 4). Attention based models proposed in this chapter first identifies

relevant KCs from the past interactions and then predicts student’s performance based

on his/her performance on those KCs. For predicting student’s performance on an ex-

ercise, we used exercises as KCs. As we show later, these models assigns weights to

the previously answered exercises, while predicting the performance of the student on

a particular exercise. The proposed methods significantly outperform the state-of-the-

art KT methods gaining significant performance improvement. Furthermore, the main

component (self-attention) is suitable for parallelism; thus, making our model order of

magnitude faster than RNN based models. The mathematical notations used in this

work are summarized in Table 4.1.

4.1 Theoretical Framework

Central to supporting a learner’s learning is estimating with precision what they already

know or have learned [93, 94]. This information can provide a learner (or a teacher or

a POSLS system) with timely information about the probability that a learner will fail

in their next test, so additional learning activities and/or supports can be identified

that can prevent this from happening. Awareness of the probability of success is really

important in the learning process. Motivation theories [95, 96] predict that expecta-

tions to succeed increase engagement, whereas expectation to fail decrease engagement.

Estimating learner knowledge is important for another reason. Specifically, it can help

identify with precision what a learner does not yet know but can learn with an expert’s

support, what Vygotsky termed the zone of proximal development (ZPD).

26

(a) Network of SAKT. At each timestamp the

attention weights are estimated for each of

the previous element only. Keys, Values and

Queries are extracted from the embedding layer

shown below. When jth element is query and

ith element is key, attention weight is ai,j .

(b) Embedding layer embeds the current exer-

cise that the student is attempting and his past

interactions. At every time stamp t + 1, the

current question et+1 is embedded in the query

space using Exercise embedding and elements of

past interactions xt is embedded in the key and

value space using the Interaction embedding.

Figure 4.2: Diagram showing the architecture of SAKT.

27

Table 4.1: Notations

Notations Description

E total number of exercises

xi ith interaction tuple of a student

d latent vector dimensionality

e sequence of exercises solved by the student

P Positional embedding matrix

A exercise-exercise relation matrix

R relation coefficients of past interactions

x̂i ith interaction embedding

P Positional embedding matrix

l maximum sequence length

E Exercise embedding

X Interaction sequence of a student:(x1, x2, . . . , xi)

4.2 SAKT: Self-Attentive model for Knowledge Tracing

Our model predicts whether a student will be able to answer the next exercise et+1

based on his previous interaction sequence X = x1,x2, . . . ,xt. As shown in figure 2,

we can transform the problem into a sequential modeling problem. It is convenient

to consider the model with inputs x1,x2, . . . ,xt−1 and the exercise sequence with one

position ahead, e2, e3, . . . , et and the output being the correctness of the response to

exercises r2, r3, . . . , rt. The interaction tuple xt = (et, rt) is presented to the model as

a number yt = et + rt × E, where E is the total number of exercises. Thus, the total

values that an element in the interaction sequence can take is 2E, while elements in the

exercise sequence can take E possible values.

We now describe the different layers of our architecture.

Embedding layer: We transform the obtained input sequence y = (y1, y2, . . . , yt)

into s = (s1, s2, . . . , sn), where n is the maximum length that the model can handle.

Since the model can work with inputs of fixed length sequence, if the sequence length,

t is less than n, we repetitively add a padding of question-answer pair to the left of the

28

sequence. However, if t is greater than n, we partition the sequence into subsequences of

length n. Specifically, when t is greater than n, yt is partitioned into t/n subsequences

each of length n. All these subsequences serve as input to the model.

We train an Interaction embedding matrix, M ∈ R2E×d, where d is the latent dimension.

This matrix is used to obtain an embedding, Msi for each element, si in the sequence.

Similarly, we train exercise embedding matrix, E ∈ RE×d such that each exercise in the

set ei is embedded in the eith row.

Position Encoding: Position Encoding is the layer in the self-attention neural network

which is used for encoding the position so that like convolution network and recurrent

neural network, we can encode the order of the sequence. This layer is particularly

important in knowledge tracing problem because a student’s knowledge state evolves

gradually and steadily with time. The output from the embedding layer is embedded

interaction input matrix, M̂ and embedded exercise matrix, Ê:

M̂ =

Ms1 + P1

Ms2 + P2

. . .

Msn + Pn

, Ê =

Es1

Es2

. . .

Esn

. (4.1)

Self-attention layer: In our model, we use the scaled dot-product attention

mechanism [38]. This layer finds the relative weight corresponding to each of the

previously solved exercise for predicting the correctness of the current exercise.

We obtain query and key-value pairs using the following equations:

Q = ÊWQ,K = M̂WK ,V = M̂WV , (4.2)

where WQ, WK , WV ∈ Rd×d are the query, key and value projection matrices, re-

spectively, which linearly project the respective vectors to different space [38]. The

relevance of each of the previous interactions with the current exercise is determined

using the attention weights. For finding the attention weights we use the scaled dot

product [38], defined as:

Attention(Q,K,V) = softmax

(
QKT

√
d

)
V. (4.3)

29

Mutiple heads: In order to jointly attend to information from different representative

subspaces, we linearly project the queries, keys and values h times using different pro-

jection matrices.

Multihead(M̂, Ê) = Concat(head1, . . . ,headh)WO, (4.4)

where headi = Attention(ÊWQ
i , M̂WK

i , M̂WV
i) and WO ∈ Rhd×d.

Causality: In our model, we should consider only first t interactions when predicting

the result of the (t + 1)st exercise. Therefore, for a query Qi, the keys Kj such that

j > i should not be considered. We use, causality layer to mask the weights learned

from a future interaction key,

Feed Forward layer: The self-attention layer described above results in weighted

sum of values, Vi of the previous interactions. However the rows of the matrix obtained

from the multihead layer, S = Multihead(M̂, Ê) is still a linear combination of the

values, Vi of the previous interactions. To incorporate non-linearity in the model and

consider the interactions between different latent dimensions, we use a feed forward

network.

F = FFN(S) = ReLU(SW(1) + b(1))W(2) + b(2), (4.5)

where W(1) ∈ Rd×d, W(2) ∈ Rd×d, b(1) ∈ Rd, b(2) ∈ Rd are parameters learned during

training.

Residual Connections: The residual connection [97] are used to propagate the lower

layer features to the higher layers. Hence, if low layer features are important for predic-

tion, the residual connection will help in propagating them to the final layers where the

predictions are performed. In the context of KT, students attempt exercises belonging

to a specific concept to strengthen that concept. Hence, residual connection can help

propagating the embeddings of the recently solved exercises to the final layer making it

easier for model to leverage the low layer information. A residual connection is applied

after both self-attention and feed forward layer.

Layer normalization: In [98], it was shown that normalizing inputs across features

can help in stabilizing and accelerating neural networks. We used layer normalization

30

in our architecture for the same purpose.If z is the input vector which contains all the

features, the operation of layer normalization is defined as:

LayerNorm(z) = α� z− µ√
σ2 + ε

+ β, (4.6)

where � is the Hadamard product, α is the µ and σ are the mean and the variance of

input vector z. Layer normalization is also applied at both the self-attention and feed

forward layer.

Prediction layer:

Finally, each row of the matrix Fi obtained above is passed through the fully connected

network with Sigmoid activation to predict the performance of the student.

pi = Sigmoid(Fiw + b), (4.7)

where pi is a scalar and represents the probability of student providing correct response

to exercise ei, Fi is the ith row of F and Sigmoid(z) = 1/(1 + e−z)

Network Training: The objective of training is to minimize the negative log like-

lihood of the observed sequence of student responses under the model. The parameters

are learned by minimizing the cross entropy loss between pt and rt.

L = −Σt(rt log(pt) + (1− rt) log(1− pt)) (4.8)

4.3 RKT : Relation-Aware Self-Attention for Knowledge

Tracing

SAKT described above is not able to capture the relations between different exercises

existing in the exercise pool. In addition, it does not model the forget behavior of

learners which present important information about the learners. For example, consider

figure 4.3 which shows an example of a student solving exercises sequentially. When the

student encounters a new exercise (e.g. ‘e5’) she applies her knowledge corresponding

to the Knowledge Concept (e.g., Quadratic Equations) to answer it. The mastery of a

particular KC is determined by the past interactions which have a distinct impact on the

target KC. Besides, the impact is distinct under different circumstances. Typically, two

31

Figure 4.3: Overview of RKT model: Leftmost figure shows a student performance data

and table shows textual content and knowledge concepts of exercises which constitute

the input of RKT. Middle figure shows the relation between exercises and forget behavior

of student which serve as contextual information for RKT. Rightmost figure shows that

contextual information encoded as relation coefficients informs the attention weight to

revised attention weights.

factors account for determining the impact of past interactions in the prediction task:

(1) exercise-relation (reflecting the relation between past exercises and the new exercise

), and (2) the time elapsed since the past interactions. Intuitively, if the two exercises

in the interactions are related to each other then the performance on one affects the

other. Additionally, the knowledge gained while solving an exercise in the interaction

decays with time, which is attributed to the forget behavior of students. It is important

to use this information to contextualize the KT models.

In this sub-chapter, we propose a novel Relation-aware self-attention model for

Knowledge Tracing (RKT) that adapts the self-attention

[38] mechanism for KT task. Specifically, we introduce a relation-aware self-attention

layer that incorporates the contextual information and meanwhile, maintains the sim-

plicity and flexibility of the self-attention mechanism. To this end, we employ a repre-

sentation to capture the relation information, called relation coefficients. In particular,

the relation coefficients are obtained from exercise relation modeling and forget behavior

modeling. The former extracts relation between exercises from their textual content and

student performance data. While the latter employs a kernel function with a decaying

curve with respect to time to model student tendency to forget. Our experiments reveal

32

that our model outperforms state-of-the-art algorithms on three real-world datasets.

Additionally, we conduct a comprehensive ablation study of our model show the effect

of key components and visualize the attention weights to qualitatively reveal the model’s

behavior.

The contribution of this work are:

• We argue that each interaction in the sequence has an adaptive impact on fu-

ture interaction, where both the relation between the exercises and the forgetting

behavior should be taken together into consideration.

• We develop a method to learn the underlying relations between exercises using

the textual content and student performance on the exercises which have not been

explored before.

• We customize the self-attention model to incorporate the contextual information,

thus enabling a fundamental adaptation of the model for KT.

• We perform extensive experiments on three real-world datasets and also illustrate

that our model in addition to showing superior performance, provides an expla-

nation for its prediction.

4.3.1 Model Overview

Knowledge Tracing predicts whether a student will be able to answer the next exer-

cise en based on his/her previous interaction sequences X = {x1, x2, . . . , xn−1}. Each

interaction is characterized by tuple xi = (ei, ri, ti), where ei ∈ {1, . . . , E} is the ex-

ercise attempted, ri ∈ {0, 1} is the correctness of the student answer, and ti ∈ R+ is

the time at which the interaction occurred. For accurate prediction, it is important

to identify the underlying relation between en attempted at time tn and the previous

interactions. As shown in Figure 4.3 the importance of a past interaction in predicting

whether the student will be able to answer the next exercise correctly is determined

by two factors: 1) the relation between the exercises solved in the past interaction and

the next exercise, and 2) time elapsed since the past interaction. Motivated by this,

we develop a Relation-aware Knowledge Tracing model which incorporates the relations

as contextual information and propagates it to the attention weights computed using

33

Figure 4.4: The overall architecture of RKT. We first compute the exercise relation

matrix A. Then we use A to compute the relation coefficients based on the relation

between past exercises (e1, e2, . . . en−1) and the next exercise en and the time elapsed

since the interaction (∆1,∆2, . . . ,∆n−1). The relation coefficients are propagated to

the transformer model which modifies the attention weights to take into account the

contextual information.

self-attention mechanism [38]. The updated attention weights are then used to compute

the weighted sum of the representation of the past interactions which represents the

output corresponding to the nth interaction. To learn the parameters, we employ a

binary cross entropy loss as our objective function.

We now describe the different layers of our architecture.

4.3.2 Exercise Representation

We learn a semantic representation of each exercise from its textual content. For this,

we exploit word embedding technique and learn a function f : M → Rd , where M

represents the dictionary of words and f is a parameterized function which maps words

to d-dimensional distributed vectors. In the look-up layer, exercise content are repre-

sented as a matrix of word embeddings. Then the embedding of an exercise i, Ei ∈ Rd

is obtained by taking weighted combination of embedding of all the words present in

the text of the exercise i using Smooth Inverse Frequency (SIF) [99]. SIF downgrades

unimportant words such as but, just, etc., and keeps the information that contributes

the most to the semantics of the exercise. Thus, the exercise embedding for an exercise

34

Table 4.2: A contingency table for two exercises i and j.

exercise i

incorrect correct total

exercise j
incorrect n00 n01 n0∗

correct n10 n11 n1∗

total n∗0 n∗1 n

i is obtained as:

Ei =
1

|si|
∑
w∈si

a

a+ p(w)
f(w), (4.9)

where a is a trainable parameter, si represents the text of ith exercise, and p(w) is the

probability of word w.

4.3.3 Exercise-Relation Matrix Computation

An important innovation of our model is that we explore methods of identifying the

underlying relations between exercises. Since the relations between exercises are not

explicitly known, we first infer these relations from the data and build a exercise rela-

tion matrix, A ∈ RE×E such that Ai,j represents the importance that performance on

exercise j has on the performance on exercise i. We leverage two sources of information

for discovering the relations between exercises: student’s performance data and textual

content of exercises. The former is used to capture the relevance of knowledge gained in

solving exercise j for solving exercise i, while the latter captures the semantic similarity

between the two exercises.

We will now describe how learner’s performance data can be used to obtain the

relevance of the knowledge gained from exercise j to solve exercise i. We first build a

contingency table as shown in table 4.2 by considering only the pairs of i and j, where

j occurs before i in the learning sequence. If there are multiple occurrences of j in the

learning sequence before i, we only consider the latest occurrence. Then, we compute

the Phi coefficient which is popularly used as a measure of association for two binary

variables. Mathematically the Phi coefficient that describes the relation from j to i is

35

calculated as,

φi,j =
n11n00 − n01n10√
n1∗n0∗n∗1n∗0

. (4.10)

The value of φi,j lies between−1 and 1 and a high φi,j score means students’ performance

at j play an important role in deciding their performance at i. We choose Phi coefficients

among other correlation metrics to compute the relation between exercises because: 1)

it is easy to interpret, and 2) it explicitly penalizes when the two variables are not equal.

Another source of data we use for computing relation between two exercises is the

textual content of exercises which informs the semantic similarity of two exercises. We

first obtain the exercise embedding of i, Ei and j, Ej from section 3.1, then compute

the similarity between exercises using cosine similarity of the embeddings. Formally,

similarity between exercises is calculated as:

simi,j =
EiEj

||Ei||2||Ej ||2
(4.11)

Finally, the relation of exercise j with exercise i is calculated as :

Ai,j =

φi,j + simi,j , if simi,j + φi,j > θ

0, otherwise,
(4.12)

where θ is a threshold that controls sparsity of relation matrix.

4.3.4 Personalized Relation Modeling

Here we model the contextual information to compute the relevance of past interaction,

represented as relation coefficients, for predicting student performance at next exercise.

Specifically, we incorporate the exercise relation modeling and forget behavior modeling

described below at this step.

Exercise Relation Modeling: This component involves modeling the relation be-

tween exercises involved in interaction. Given the past exercises solved by a student,

(e1, e2, . . . , en−1) and the next exercise en for which we want to predict its performance,

we compute the exercise-based relation coefficients from the enth row of exercise relation

matrix, Aen as RE = [Aen,e1 ,Aen,e2 , . . . ,Aen,en−1].

Forget behavior modeling: Learning theory has revealed that students forget the

knowledge learnt with time [100, 37], known as forgetting curve theory, which plays

36

an important role in knowledge tracing. Naturally, if a student forgets the knowledge

gained after a particular interaction i, the relevance of that interaction for predicting

student performance at the next interaction should be diminished, irrespective of the

relation between exercises involved. The challenge is to identify the interactions whose

knowledge the student has forgotten. Since students forget with time, we employ a

kernel function that models the importance of interaction with respect to time inter-

val. The kernel function is designed as an exponentially decaying curve with time to

reduce the importance of interaction as time interval increases following the idea from

forgetting curve theory. Specifically, given the time sequence of interaction of a student

t = (t1, t2, . . . , tn−1) and the time at which the student attempts next exercise tn, we

compute the relative time interval between the next interaction and the ith interac-

tion as ∆i = tn − ti. Thus, we compute forget behavior based relation coefficients,

RT = [exp(−∆1/Su), exp(−∆2/Su), . . . , exp(−∆n−1/Su)], where Su refers to relative

strength of memory of student u and is a trainable parameter in our model.

Following [40], we also obtain revised importance of the past interaction by simply

adding the weights obtained from individual sources of information. Thus, we compute

the relation coefficients as

R = softmax(RE + RT), (4.13)

The relation coefficient corresponding to more relevant interaction is higher.

4.3.5 Input Embedding Layer

The raw data of interactions only consists of tuple representing exercise, correctness and

time of interaction. We need to embed this information of interactions and positions

of interactions. To obtain an embedding of a past interaction j, (ej , rj , tj), we first

obtain the corresponding exercise representation using Equation (1). To incorporate

the correctness score rj , we extend it to a feature vector rj = [rj , rj , . . . , rj] ∈ Rd and

concatenate it to the exercise embedding. Also, we define a positional embedding ma-

trix as P ∈ Rl×2d, to introduce the sequential ordering information of the interactions,

where l is the maximum allowed sequence length. The position embedding is particu-

larly important in knowledge tracing problem because a student’s knowledge state at a

particular time instance should not show wavy transitions [28].

37

Afterward, we feed the inputs to RKT, and these inputs should convey the represen-

tation of interactions and positions in the sequences. Thus, the interaction embedding

is obtained as:

x̂j = [Eej ⊕ rj] + Pj (4.14)

Finally, the input interaction sequence is expressed as X̂ = [x̂1, x̂2, . . . x̂n] by com-

bining the interaction embedding E, and the positional embedding P.

4.3.6 Relation-Aware Self-attention Layer

The core component of RKT is the attention structure that incorporates relation struc-

ture. For this, we modify the alignment score of the attention mechanism to attend

more to the relevant interactions identified by the relation coefficient, R. Let α be the

attention weights learned using scaled dot-product attention mechanism [38] such that

αj =
exp(ej)∑n−1
k=1 exp(ek)

, ej =
EenWQ(x̂jW

K)T√
d

, (4.15)

where WQ ∈ Rd×d and WK ∈ Rd×d are projection matrices for query and key, respec-

tively. Finally we combine the attention weights with the relation coefficients, by adding

the two weights:

βj = λαj + (1− λ)Rj , (4.16)

where Rj is the jth element of the relation coefficient R. We used addition operation

to avoid any significant increase in computation cost. λ is a tunable parameter. The

representation of output at the ith interaction, o ∈ Rd, is obtained by the weighted sum

of linearly transformed interaction embedding and position embedding:

o =

n−1∑
j=1

βjx̂jW
V , (4.17)

where WV ∈ Rd×d is the projection matrix for value space.

Point-Wise Feed-Forward Layer: We apply the PointWise Feed-Forward Layer

(FFN) to the output of RKT by each position. The FFN helps incorporate non-linearity

in the model and considers the interactions between different latent dimensions. It

consists of two linear transformations with a ReLU nonlinear activation function be-

tween the linear transformations. The final output of FFN is F = ReLU(oW(1) +

38

b(1))W(2) + b(2), where W(1) ∈ Rd×d, W(2) ∈ Rd×d are weight matrices and b(1) ∈ Rd

and b(2) ∈ Rd×d are the bias vectors.

Besides of the above modeling structure, we added residual connections [97] after

both self-attention layer and Feed forward layer to train a deeper network structure.

We also applied the layer normalization [98] and the dropout [101] to the output of

each layer, following [38].

4.3.7 Prediction Layer

Finally, to obtain student ability to answer exercise en correctly, we pass the learned

representation F obtained above through the fully connected network with Sigmoid

activation to predict the performance of the student.

p = σ(FW + b), (4.18)

where p is a scalar and represents the probability of student providing correct response

to exercise en, and σ(z) = 1/(1 + e−z).

4.3.8 Network Training

Since the self-attention model works with sequence of fixed length, we convert the input

sequence, X = (x1, x2, . . . , x|X|), into sequence of fixed length l before feeding it to RKT.

If the sequence length, |X| is less than l, we repetitively add a padding to the left of the

sequence. However, if |X| is greater than l, we partition the sequence into subsequences

of length l. The objective of training is to minimize the negative log likelihood of the

observed sequence of student responses under the model. The parameters are learned

by minimizing the cross entropy loss between p and r at every interaction.

L = −
∑
i∈I

(ri log(pi) + (1− ri) log(1− pi)), (4.19)

where I denotes all the interactions in the training set.

39

Table 4.3: Dataset Details

ASSIST2012 Junyi POJ

students 39,364 238,120 22,916

exercises 58,761 684 2,751

Interactions 4,193,631 26,666,117 996,240

Avg exercise record/student 107 111.99 43.47

Duration of data collection 365 days 1095 days 258 days

4.4 Experimental Settings

In this section, we present our experimental settings to answer the following questions:

RQ1 Can attention-based models outperform the state-of-the-art methods for Knowl-

edge Tracing?

RQ2: What is the influence of various components in the RKT and SAKT architec-

ture?

RQ3 Are the attention weights able to learn meaningful patterns in computing the

embeddings?

4.4.1 Datasets

To evaluate our model, we used three real-world datasets.

• ASSISTment2012(ASSIST2012)1 : This dataset is provided by ASSISTment

online tutoring platform and is widely used for KT tasks. We also utilized the

problem bodies to conduct our experiments.

• JunyiAcademy (Junyi)2 This dataset was collected by JunyiAcademy3 in

2015 [102]. The available dataset only contains the exercising records of students.

To obtain the textual content we scraped the data from their website. Overall,

1 https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-
affect

2 https://pslcdatashop.web.cmu.edu/DatasetInfo?datasetId=1275
3 https://www.junyiacademy.org/

40

this dataset contains 838 distinct exercises and we removed exercises which do not

contain textual content.

• Peking Online Judge (POJ) This dataset is collected from Peking online plat-

form of coding practices and consists of computer programming questions.We

scraped the publicly available data from the website 4 .

For all these datasets, we first removed the students who attempted fewer than two

exercises and then removed those exercises which were attempted by fewer than two

students. The complete statistical information for all the datasets can be found in

Table 6.2. The code and dataset is available at https://github.com/shalini1194/RKT.

4.4.2 Implementation Details

Word Embeddings

The first step in our method is to embed exercise content and initializing each word

of the exercise content. All exercises are truncated to no more than 200 words. How-

ever, mathematical exercises consists of words not found in traditional English articles

such as, news. For example it is common to find formulas like ”
√

(x) + 1” in mathe-

matical exercise which carry important information about the exercise. Therefore, to

preserve the mathematics semantics, we transform each formula into its TEX code fea-

tures (”
√

(x) + 1” is transformed to ” sqrt x + 1”). After initialization, each exercise

is represented with sequence with vocabulary words and TEX tokens. The model is

trained by embedding each word into an embedding vector with 50 dimensions (i.e., d

= 50) by using word2vec 5 .

Framework Setting

We now specify the network initializations in our model. We set the model dimension

in self-attention as 64 and the maximum allowed sequence length l as 50. The model

is trained with a mini-batch size of 128. We use Adam optimizer with a learning rate

4 http://poj.org/
5 https://radimrehurek.com/gensim/models/word2vec.html

41

of 0.001. The dropout rate is set to 0.1 to reduce overfitting. The L2 weight decay is

set to 0.00001. All the model parameters are normally initialized with 0 mean and 0.01

standard deviation. The value of sparcity controlling threshold, θ used in Eq. (4.12) is

0.8 in our experiments. We trained the model with 80% of the dataset and test it on

the remaining. We perform 5-fold cross validation to evaluate all the models, in which

folds are split based on students.

4.4.3 Metrics

The prediction of student performance is considered in a binary classification setting i.e.,

answering an exercise correctly or not. Hence, we compare the performance using the

Area Under Curve (AUC) and Accuracy (ACC) metric. Similar to evaluation procedure

employed in [35, 6], we train the model with the interactions in the training phase

and during the testing phase, we update the model after each exercise response is

received. The updated model is then used to perform the prediction on the next exercise.

Generally, the value 0.5 of AUC or ACC represents the performance prediction result

by randomly guessing, and the larger, the better.

4.4.4 Approaches

Knowledge Tracing (KT)

We compare our model against the state-of-the-art KT methods.

• DKT [6] : This is a seminal method that uses single layer LSTM model to predict

the student’s performance. In our implementation of DKT, we used norm-clipping

and early stopping to improve the performance as has been employed in [29].

• DKVMN [29]: This is a Memory Augmented Recurrent Neural Network based

method where in the relation between different KCs are represented by the key

matrix and the student’s mastery of each KC by the value matrix.

• DKT+Forget [35] : This is an extension of DKT method which predicts student

performance using both the student’s learning sequence and fogetting behavior.

• EERNN [34]: This model utilizes both the textual content of exercises and

student’s exercising records to predict student performance. They use RNN as

42

Table 4.4: Performance comparison. The best performing method is boldfaced, and the

second best method in each row is underlined. Gains are shown in the last row.

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

DKT 0.712 0.679 0.656 0.691 0.814 0.744

DKVMN 0.701 0.686 0.704 0.700 0.822 0.751

DKT+Forget 0.722 0.685 0.662 0.700 0.840 0.759

EERNN 0.748 0.698 0.733 0.720 0.837 0.758

EKT 0.754 0.702 0.737 0.729 0.842 0.759

SAKT 0.735 0.692 0.696 0.705 0.834 0.757

RKT 0.793 0.719 0.827 0.774 0.860 0.770

Gain% 5.172 2.422 12.212 6.173 1.775 1.050

the underlying model to learn the exercise embedding and the student knowledge

representation. Furthermore, they attend over the past interactions using the

cosine similarity between the past interactions and the next exercise.

• EKT [33]: This model is an extension of the EERNN model which also tracks stu-

dent knowledge acquisition on multiple skills. Specifically, it models the relation

between the underlying Knowledge Concepts to enhance the EERNN model.

4.5 Results and Discussion

4.5.1 Student Performance Prediction (RQ1)

Table 4.4 shows the performance of all baseline methods and our RKT model. We have

the following observations:

Different kinds of baselines demonstrate noticeable performance gaps. SAKT model

shows improvement over DKT and DKVMN model which can be traced to the fact

that SAKT identifies the relevance between past interactions and next exercise. DKT-

Forget further gains improvements most of the time, which demonstrates the importance

43

of taking temporal factors into consideration. Further, EERNN and EKT incorporate

textual content of exercises to identify which interaction history is more relevant and

hence perform better than the those models which do not take into account these rela-

tions. RKT performs consistently better than all the baselines. Compared with other

baselines, RKT is able to explicitly captures the relations between exercises based on

student performance data and text content. Additionally, it models learner forget be-

havior using a kernel function which is more interpretable and proven way to model

human memory [37] compared to DKT+forget model.

Second, the performance gain is lowest for Junyi dataset. We believe that a possible

reason of low improvement on Junyi is that since the number of exercises in Junyi is

fairly small the relation between exercises can be modeled by sequential models such as

RNN and self-attention mechanism. It does not need explicit relation learning based on

the content.

We would also like to point out that, combining the model with contextual infor-

mation in RKT does not lead to any significant increase in runtime of the model and

it remains as scalable as SAKT model. SAKT and RKT are more scalable than other

sequential models because of its parallelization capability [7]. The performance gain

on POJ dataset is the best compared to the other datasets. This can be attributed to

the fact that on POJ dataset is the datset obtained from online judge where students

solve questions on different topics randomly. On the other hand, on ASSISTment and

Junyi platforms the questions consists of High School Maths dataset where students

generally follow a certain path set by the instructor. Thus, the the role of relations

between questions plays an important role in POJ dataset compared to others.

Performance comparison w.r.t. interaction sparsity

One benefit of exploiting the relations between interactions is that it makes our model

robust towards sparsity of dataset. Exploiting the relation between different exercises

can help in estimating student performance at related exercises, thus alleviating the

sparsity issue.

To verify this, we perform an experiment over student groups with different number

of interactions. In particular, we generate four groups of students based on interaction

number per user, thus generating groups with less than 10, 100, 1000, 10000 interactions,

44

Figure 4.5: Plot of prediction performance over different student groups based on spar-

sity of interaction levels. Our model, RKT significantly outperforms every baseline.

Table 4.5: Ablation Study of RKT

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

PE 0.788 0.712 0.790 0.749 0.848 0.763

TE 0.787 0.712 0.816 0.766 0.835 0.758

RE 0.755 0.696 0.686 0.710 0.835 0.763

PE+TE 0.778 0.705 0.788 0.746 0.833 0.754

PE+RE 0.759 0.699 0.676 0.700 0.832 0.757

RE+TE 0.735 0.692 0.696 0.705 0.834 0.757

PE+RE+TE 0.730 0.684 0.667 0.693 0.830 0.756

RKT 0.793 0.719 0.827 0.774 0.860 0.770

respectively. The performance of all the methods is displayed in Figure 4.5. We find

that RKT outperforms the baseline models in all the cases, signifying the importance of

leveraging relation information for predicting performance. Also, the performance gain

of RKT for student groups with less number of interactions is more significant. Thus,

we can reach to a conclusion that RKT which exploits the relation between interactions

is effective for learning knowledge representation of students even with less interactions.

45

4.5.2 Ablation Study (RQ2)

To get deep insights on the RKT model, we investigate the contribution of various com-

ponents involved in the model. Therefore, we conduct some ablation experiments to

show how each part of our method affect final results. In Table 4.5, there are seven

variations of RKT, each of which takes out one or more opponents from the full model.

Specifically:PE, TE, RE refer to RKT without position encoding, forget behavior mod-

eling and exercise relation modeling, respectively. PE+TE, PE+RE, TE+RE refer to

removal two components simultaneously, i.e. position encoding and forget behavior

modeling, position encoding and exercise relation modeling, and exercise relation mod-

eling and forget behavior modeling, respectively. And finally, PE+RE+TE refers to

RKT that does not model the position encoding, forget behavior modeling and exercise

relation modeling for interaction representation. The result in Table 4.5 indeed shows

many interesting conclusions.

First, the more information a model encodes, the better the performance, which

agrees with the intuition. Second for all datasets removing exercise relation modeling

causes the most drastic drop in performance. This validates our argument that explicitly

learning exercise relations is important for improving the performance of KT model.

Thirdly, incorporating the forget behavior model in RKT which of students causes more

improvement in ASSIST2012 and Junyi datasets than POJ. We hypothesize that this

can be attributed to the fact that the concepts involved in solving POJ exercises are

less diverse than those involved in high school maths course (Junyi and ASSIST2012

dataset). As a result in majority cases the reason of wrong answer on POJ is the

confusion or true knowledge gaps in the students, rather than their forgetting behavior.

Effect of Exercise Relation matrix computation

To explore the impact of exercise relation matrix computation, we consider the variants

of RKT that uses different settings. We explore the following methods for computing

exercise relation matrix:

1. Previous work such as [91, 103], considered that two exercises are related if they

belong to the same KC. We also employ this technique and build an exercise

46

Table 4.6: Comparison of four exercise relation matrix computation methods.

ASSIST2012 POJ Junyi

AUC ACC AUC ACC AUC ACC

Method (1) 0.755 0.700 - - 0.764 0.710

Method (2) 0.782 0.708 0.755 0.733 0.836 0.759

Method (3) 0.785 0.709 0.763 0.737 0.844 0.762

Method (4) 0.793 0.719 0.827 0.774 0.860 0.770

Figure 4.6: Attention visualization in RKT model of an example student from Junyi.

We predict her performance on e15 based on her past 15 interaction (we only show the

first 4 interactions for better illustration). Right bars show the attention weights of two

RKT (blue) and SAKT (red)

relation matrix with boolean values such that Ai,j = 1 if i and j belong to the

same KC otherwise 0.

2. Use only the textual content of two exercises to estimate the relation between

them. We compute the relation between two exercises with Equation (3) only.

3. Use the student performance data to compute the relation between two exercises.

Only Equation (2) is employed to compute the relation between two exercises.

4. Use both textual content and student performance data to compute the similarity

between two exercises. We compute the relation coefficients using Equation (4).

47

(a) ASSIST2012 -

SAKT

(b) ASSIST2012 (c) POJ (d) Junyi

s

Figure 4.7: Visualization of attention weights on different datasets. Each subfloat de-

picts the average attention weights of different sequences of the corresponding datasets.

We do not have information about the exercise-to-KC mapping for POJ data and hence

can not apply method (1) for POJ. Specifically Table 4.6 summarizes the experimental

results. The findings are:

Firstly, Method (1) performs the worst among all the four methods. This can be at-

tributed to the fact that linking exercises only based KCs ignores the fact there exists

relation among exercises which do not belong to the same KC. Method (3) also shows

performance gain over method (2) as student performance data is a good indicator of

how relations between exercises are perceived by the students. Even if textual content

of two exercises are not similar the association of knowledge involved in solving the two

exercises could be high. Finally, method (4) that leverages both student performance

data and exercise textual content data outperforms the other methods.

4.5.3 Attention weights visualization (RQ3)

Benefiting from a purely attention mechanism, RKT and SAKT models are highly in-

terpretable for explaining the prediction result. To this end, we compared the attention

weights obtained from both these models. We selected one student from Junyi dataset

and obtain the attention weights corresponding to the past interactions for predicting

her performance at exercise e15. Figure 4.11 shows the weights assigned by both SAKT

and RKT. We see that compared to SAKT, RKT places more weights on e2 which

belongs to same KC as e15 and have stronger relation. Since the student gave wrong

48

answer to e2, she has not yet mastered “Quadratic Equations”. As a result, RKT pre-

dicts that the student will not be able to answer e15. Thus, it is beneficial to consider

relations between exercises for KT.

We also performed experiment to visualize the attention weights assigned by RKT

on different datasets. Recall that at time step ti, the relation-aware self-attention layer

in our model revise the attention weights on the previous interactions depending on the

time elapsed since the interaction and the relations between the exercises involved. To

this end, we examine all sequences and seek to reveal meaningful patterns by showing

the average attention weights on the previous interactions.

Figure 4.7 shows the heatmap of attention weight matrix where (i, j)th element

represents the attention weight on jth element when predicting performance at ith

interaction. Note that when we calculate the average weight, the denominator is the

number of valid weights, so as to avoid the influence of padding for short sequences. We

consider a few comparisons among the heatmaps:

• (b), (c), (d): The heatmap representing the attention weights pertaining to differ-

ent datasets reveals that recent interactions are given the higher weights compared

to other interaction. It can be attributed to the forget behavior of learning process

such that only the recent interactions can inform the student knowledge state.

• (b) vs. (c): This comparison shows the weights assigned by RKT on two different

types of dataset. In ASSIST2012 dataset, the exercises are sequenced for skill-

building, i.e., they are organized so that a student can master one skill first and

then learn the next skill. As a result in ASSIST2012 the exercises adjacent to

each other are related. While, in POJ dataset, student chooses exercises based on

their needs. As a result, the heatmap corresponding to ASSIST2012 dataset has

attention weights concentrated towards the diagonal elements, while for POJ the

attention weights are spread across the interactions.

• (a) vs. (b): This comparison shows the effect of relation information for revis-

ing the attention weights. Without relation information the attention weights are

more distributed over previous interaction, while the relation information con-

centrates the attention weights closer to diagonal as adjacent interactions in AS-

SIST2012 have higher relations.

49

4.6 KT models on Large-Scale Dataset

In this section, we perform an analysis of the described deep-learning models for knowl-

edge tracing. This analysis will help understand which deep-learning model performs

best when we have massive student performance dataset. This work has been published

in [9]. In addition, we visualize the attention weights to qualitatively reveal SAKT and

RKT behavior.

To summarize, figure 4.8 represents the difference between the four models we

have analyzed in this work. First DKT uses a summarized hidden vector to model

the knowledge state. Second, DKVMN maintains the concept state for each concept

simultaneously and all concept states constitute the knowledge state of a student. Third,

SAKT assigns weights to the past interaction using self-attention mechanism to identify

the relevant ones. It then uses the weighted combination of these past interactions to

estimate student knowledge on the involved KCs and predict her performance. Finally,

RKT improves over SAKT by introducing a relation coefficient added to the attention

weights learned from SAKT. The relation coefficient are learned from the contextual

information explicitly modelling the relation between exercises involved in the past

interactions and student forget behavior of students.

(a) DKT (b) DKVMN (c) SAKT (d) RKT

Figure 4.8: Model differences among DKT, DKVMN, SAKT and RKT.

4.6.1 Data

To compare the deep-learning methods for KT, we use large-scale student interaction

dataset, EdNet released in [104]. EdNet consists of all student-system interactions

collected over a period spanning two years by Santa, a multi-platform AI tutoring

50

service with approximately 780,000 students. It has collected a total of 131,441,538

student interactions with each student generating an average of 441.20 interactions.

The dataser consists a total 13,169 problems and 1,021 lectures tagged with 293 types

of skills, and each of them has been consumed 95,294,926 times and 601,805 times,

respectively.

4.6.2 Evaluation Setting

The prediction of student performance is considered in a binary classification setting i.e.,

answering an exercise correctly or not. Hence, we compare the performance using the

Area Under Curve (AUC) and Accuracy (ACC) metric. Similar to evaluation procedure

employed in [35, 6], we train the model with the interactions in the training phase

and during the testing phase, we update the model after each exercise response is

received. The updated model is then used to perform the prediction on the next exercise.

Generally, the value 0.5 of AUC or ACC represents the performance prediction result

by randomly guessing, and the larger, the better.

To ensure fair comparison, all models are trained with embeddings of size 200. The

maximum allowed sequence length for self-attention is set as 50. The model is trained

with mini-batch size of 128. We use Adam optimizer with a learning rate of 0.001. The

dropout rate is set to 0.1 to reduce overfitting. The L2 weight decay is set to 0.00001.

4.6.3 Results and Discussions

(a) AUC (b) ACC

Figure 4.9: Performance Comparison. RKT performs best among the models.

51

Quantitative Results

Figure 4.9 shows the performance comparison of deep-learning models for KT on Ednet

dataset. Different kinds of baselines demonstrate noticeable performance gaps. SAKT

model shows improvement over DKT and DKVMN model which can be traced to the fact

that SAKT identifies the relevance between past interactions and next exercise. RKT

performs consistently better than all the baselines. Compared with other baselines,

RKT is able to explicitly captures the relations between exercises based on student

performance data and text content. Additionally, it models learner forget behavior

using a kernel function which is more interpretable and proven way to model human

memory [37].

The results reveal that provided enough data, attention-based models surpass the

other sequence encoder techniques such as RNN, LSTM and Memory Augmented Net-

works. Furthermore, incorporating contextual data such as relation between exercises

and domain knowledge such as student forget behavior attribute to performance gain

even after availability of the massive dataset. This motivates us to further explore

Knowledge Guided Machine Learning in the KT task.

Qualitative Analysis

Benefiting from a purely attention mechanism, RKT and SAKT models are highly inter-

pretable for explaining the prediction result. Such interpetability can help understand

which past interactions played an important role in predicting student performance on

the next exercise. To this end, we compared the attention weights obtained from both

RKT and SAKT. We selected one student from the dataset and obtain the attention

weights corresponding to the past interactions for predicting her performance at an

exercise. Figure 4.10 shows the heatmap of attention weight matrix where (i, j)th el-

ement represents the attention weight on jth element when predicting performance on

ith interaction. We compare the generated heatmap for both SAKT and RKT. This

comparison shows the effect of relation information for revising the attention weights.

Without relation information the attention weights are more distributed over previous

interaction, while the relation information concentrates the attention weights to specific

relevant interactions.

52

(a) SAKT (b) RKT

Figure 4.10: Visualization of attention weights of an example student from EdNet by

SAKT and RKT. Each subfloat depicts the attention weights assigned by the models

for that student.

Finally we also performed experiment to visualize the attention weights averaged

over multiple sequences by RKT and SAKT. Recall that at time step ti, the relation-

aware self-attention layer in our model revises the attention weights on the previous

interactions depending on the time elapsed since the interaction, and the relations

between the exercises involved. To this end, we examine all sequences and seek to

reveal meaningful patterns by showing the average attention weights on the previous

interactions. Note that when we calculate the average weight, the denominator is the

number of valid weights, so as to avoid the influence of padding for short sequences.

Figure 4.11 compares average attention weights assigned by SAKT and RKT. This

comparison shows the effect of relation information for revising the attention weights.

Without relation information the attention weights are more distributed over previous

interaction, while the relation information concentrates the attention weights closer to

diagonal.Thus, it is beneficial to consider relations between exercises for KT.

We present the concluding remarks in Chapter 7

53

(a) SAKT (b) RKT

Figure 4.11: Visualization of attention weights pattern on different datasets. Each

subfloat depicts the average attention weights of different sequences.

Chapter 5

Interest prediction: Thread

Recommendation

Massive Open Online Courses (MOOCs) provide a platform to teach students all kinds

of subjects or courses. However, learning from MOOC comes with its own set of chal-

lenges. One of the unique challenges faced by online learning platforms is that the means

of interaction between students and instructors are critically limited. Peer learning, i.e.,

learning from each other through discussion, is an important component of the learning

procedure and has a positive impact on student learning. On MOOCs, discussion fo-

rums facilitate peer learning where instructors and students can ask questions, discuss

ideas, and provide help to other students. It has been shown that more the learner’s

participation on MOOC forums results in higher performance gains [105]. However,

as class size grows, the number of forums per course increases rapidly. As a result, it

becomes quite difficult for a student to filter through a vast and overwhelming number

of open forums to find relevant threads.

To address the information overload problem discussed above, it is necessary to build

a thread recommendation system that yields a personalized shortlist of threads based on

the student interest. Furthermore, the thread recommendation system in MOOCs helps

decrease the amount of time required for new questions to go unanswered by directing

appropriate users there [46]. Traditional recommendation models have been used for

54

55

recommending threads using collaborative filtering [47] and adaptive matrix factor-

ization [46]. However, certain characteristics of thread recommendation on MOOCs

set them apart from traditional recommendation systems. Firstly, MOOC forums are

frequently updated by students or the instructors, which diversifies the content of these

forums. Simultaneously, learners’ preferences over MOOC topics evolve as they progress

through the course; yet traditional recommendation techniques assume that learner in-

terests and thread properties are static [106]. To capture this dynamic nature of the

MOOC thread recommendation, a sequential recommendation model based on context

tree [107] was proposed in [50]. However, the main issue with such sequential recom-

mendation models is that the student interest representation is updated only when an

action (a reply on a thread or a post) occurs. However, a student interest in a topic

keeps evolving even when it has not taken any action.

To tackle this, our work Student Interest Trajectory based Recommendation (SITRec)

represents students and thread as embedding vectors. The evolution of student(and

thread) is captured by a sequence of learned embeddings, which represents a trajectory

of a student interests(and thread properties). Two key operations are employed to learn

this trajectory: update operation and projection operation. The update operation up-

dates the embedding of a student and a thread whenever an action involving the two is

observed. It employs two mutually-recursive Recurrent Neural Networks (RNNs). One

of them updates the student embedding using the thread embedding, and the other

updates the thread embedding using the student embedding.

Furthermore, even in the absence of any action, we update the embedding of students

and threads using the projection operation. The projection operation consists of two

components: student projection operation and thread projection operation. The student

projection operation is designed based on two intuitions. Firstly, as more time elapses

time since student’s last update, her embedding will get farther. Secondly, the course

topic that a student is studying at a time is a good indicator of her interest, and

course topics are sequenced as defined in the course structure. Thus, incorporating

the course topic as a context feature in projection operation is beneficial in learning

her projected embedding. The thread projection operation learns personalized thread

embedding for each student. Intuitively, student interest in a thread further increases,

by different factors, if another student posts on it after the student’s post or provide

56

explicit comments to the student’s post [48]. As a result, thread projection operation

projects thread embedding with respect to student embedding based on nature of posts

made on it after the student’s post.

To predict the next thread which the student will be interested in, our model predicts

embedding of the next thread. The recommendations can be made via nearest-neighbor

search centered at that predicted embedding.

Extensive experimentation on real-world datasets shows that SITRec significantly

outperforms the existing thread recommendation and dynamic embedding methods on

Mean Average Precision (MAP). We conduct a comprehensive ablation study to show

the effect of key components and visualize the drift in student interest and how it can be

leveraged to find the topic of interest for each student. Summary of major contributions

of our work are:

• We consider the problem of thread recommendation as a dynamic sequential rec-

ommendation where both student embeddings and the thread embeddings keep

evolving. We model the inter-dependency between the evolution of student and

thread using mutually-recursive RNNs.

• We propose to predict student interest at a future time and then extract the rele-

vant threads. We propose to utilize the course topic that the student is studying

and elapsed time to predict the future interest of the student.

• We propose to project thread embedding personalized for each student so that we

can incorporate how the interest of a student in a thread changes with the nature

of posts made on the thread.

• We performed extensive experimentation involving an ablation study and visual-

izing the drift in student interest to support our methodology.

5.1 Theoretical Framework

Motivation theories emphasize situational interest as an integral component to learner

motivation, and thus engagement [?, 108]. Situational interest is a psychological state

that arises through interactions with learning tasks and can fluctuate over the course of

57

Figure 5.1: Temporal evolution of student interest and thread topics. The orange bar

chart shows the interest level of students on the topics [1, . . . ,K]. The blue bar chart

shows the probability of thread’s content to belong to topics [1, . . . ,K]

58

Table 5.1: Notations

Notations Description

u(t),p(t) Dynamic embedding of student u and thread p

at time t

u(t−),p(t−) Dynamic embedding of student u and thread p

right before time t

ū, p̄ Static embedding of student u and thread p

û(t), p̂(t) Projected embedding of user u and thread p

at time t

q̃(t) Predicted embedding of post at time t

θu,pt Topic distribution of post made at time t

Θi Topic distribution of ith course topic taught in

the course.

Pu(t) Set of threads in which u has posted till time t

O Set of posts in the training dataset.

tu,p The last time user u posted on thread p.

wu,p
t The term-frequency vector of the post made by

user u on thread p at time t.

learning. Thus, estimating a learner’s situational interest not only can provide informa-

tion about the extent to which a learner is engaged at a given point in time, but it can

also present opportunities for interventions designed to sustain such interest, and thus

course engagement. learner interest modeling can be used to recommend, for example,

the relevant wikipedia articles, forums or research papers a learner should engage with

next.

Central to supporting a learner’s learning is engagement in effective interactions

with the system, while also reducing cognitive load [109]. Indeed, in online learning

environments learners expect and experience a high level of customization, interaction

with peers, and control during learning [110], all of which result in increased cognitive

load. Peer learning specifically,namely learning from each other through discussion, is

an important component of the learning process and has a positive impact on learner

59

learning [49]. However, effectively managing this aspect in the context of an online

course can be challenging.

5.2 Student Interest Trajectory for MOOC Thread Rec-

ommendation (SITRec)

Problem statement: In the setting of thread recommendation, we are given m students,

n threads, and N posts. Each post can be represented as a tuple, (u, p, t,wu,p
t), where

wu,p
t denotes the term-frequency vector of the post made by student u, on thread p at

time t. The notations used in this chapter are described in Table 5.1. The problem of

thread recommendation can be defined as: For each student, u, find the most relevant

threads that she will be interested in. As shown in Figure 5.1 the thread content as

well as student interest keeps evolving with time. The interest of the student is further

affected by the course topic she is studying. To perform the recommendation task, it is

important to predict the future interest of students and properties of threads.

Overview: Our model, SITRec learns embeddings to represent student interests and

thread properties. Overall, SITRec comprises of two major operations: update opera-

tion and projection operation. The update operation uses two mutually-recursive RNNs

to update the embedding of student and thread after the student posts on the thread.

To predict student embedding at a future time, the student projection operation lever-

ages the course structure and the elapsed time since last update of student embedding.

Lastly, our model also generates a student personalized projected thread embedding

which takes into account the idea that a student is more likely to post on the thread she

is already associated with. This behavior replicates the notification setting for MOOCs.

5.2.1 Text Representation

The text of each post can be represented as a distribution over few topics because the

posts in MOOCs are centred around the topics associated with the course. For this

reason, we use topic modeling technique to extract text feature from the post. For

extracting the features, we build a dictionary of item vocabularies after filtering the

stop words and removing words that occur fewer than 10 times. The content of each

post text can be represented as a vector, wu,p
t = [wu,pt1 , w

u,p
t2 , . . . , w

u,p
tW

], where W is the

60

Figure 5.2: The SITRec model: Model illustation for student u (orange) and threads p

and q (blue). Student features and thread features influence each other and co-evolve

with time. At time t1, student u posts on thread p, the dynamic embeddings of both

u and p are updated with RNNU and RNNT, respectively. The projection operation

ProjectU and ProjectT predicts the student and thread embedding , respectively at a

future time (t1 + ∆).

total number of words in the vocabulary and wu,ptj represents the frequency of word j

in the post. The topic distribution vector θu,pt is used to represent the post by student

u in thread p at time t and computed using the Latent Dirichlet Allocation (LDA)

model [111].

To find the features associated with the course topic taught in ith week of the

course, Θi, we use LDA to extract the topic distribution of the description of all course

materials taught in the ith week. This description of course materials is extracted from

the synopsis of course obtained from their respective website 1 .

5.2.2 Embedding layer

We assign each student and thread two embeddings: a static and a dynamic embedding.

The static embedding for student ū ∈ Rm, encodes the general interest or expertise

1 https://www.coursera.org/

61

(which represent the likelihood of student to post on a thread) of students, while that

for threads, p̄ ∈ Rn, represents the main topic focussed in the thread. They are obtained

using one-hot vectors as inputs, as described in [112]. The dynamic embedding of stu-

dent, u(t) ∈ Rd changes with time and is used to capture the evolving student interest.

Similarly, the discussion in threads sometimes deviate as new posts and comments are

added. In order to model this dynamic nature, we employ dynamic embedding for each

thread, p(t) ∈ Rd.

5.2.3 Update operation

Whenever a student posts on a thread, both thread embedding and student embedding

gets updated. This update is modeled by two mutually-recursive Recurrent Neural

Networks (RNNs). The hidden states of the RNNU and the RNNT represent the student

and thread embeddings, respectively. The two RNNs are coupled together because

thread embedding affects the student embedding and student embedding affects that of

thread. As shown in Figure 5.2, when student u posts on thread p, RNNU updates the

embedding u(t) by using the embedding p(t−) of thread p right before time t and text

representation of the post θu,pt as inputs. Similarly, RNNT updates embedding p(t) by

using the embedding u(t−) of student u right before time t and text representation of

the post θu,pt as inputs. More formally,

u(t) = σ(W u[u(t−),p(t−), θu,pt ,∆u]), (5.1)

p(t) = σ(W p[p(t−),u(t−), θu,pt ,∆p]), (5.2)

where ∆u denotes the time since u’s previous post on any thread and ∆p is the time

since last post on thread p, θu,pt is the text feature vector of the post. The matrices

W u,W p ∈ R(2d+F+1)×d are the parameters of RNN and F is the number of features

associated with the post.

5.2.4 Projection Operation

The projection operation predicts the future trajectory of student interests based on

course structure and student personalized embeddings of threads based on the nature

of new posts made on the thread.

62

Figure 5.3: Projection Operation : This figure shows the key idea behind projection

operation. At time t, student u posts in thread p with post features θu,pt . The projected

embedding of student u is shown for different elapsed times ∆ < ∆1 < ∆2. The course

topics ϑu represents the topics u is studying at different times. The embeddings of the

two threads, p and q are also shown. After elapsed time ∆2 thread p’s embedding is

projected closer to u’s embedding while thread q on which u did not post in the past is

projected farther from u’s embedding.

Student Projection

In this section, we will describe how we obtain the future embedding trajectory of a

student. The motivation behind the student projection operation is two-folds: 1) as time

elapses student interest drifts farther from the original, 2) the course topic a student is

interested in is an important factor in deciding her future interest. As shown in Figure

5.3, a student u posts at time t and the RNN layer outputs her interest embedding u(t).

After a short duration ∆1 since t, the student’s projected embedding u(t+ ∆1) is close

to her previously observed embedding u(t). As more time ∆2 > ∆1 > ∆ elapses, the

projected embedding drifts farther from u(t) and the course topic embedding ,ϑu(t),

helps in guiding the evolution of projected embedding of the student.

The first step in projecting a student embedding is to determine the topic, she is

interested in, which is determined as, ϑu(t) = i|Θi = argminΘ||Θ − θu,pt ||2, where Θi

63

is the topic distribution of ith week course content and θu,pt is the topic distribution of

post made by student u on thread p at time t. Then, to predict the projected student

embedding, we incorporate the context features: current course topic embedding, ϑu(t)

and the elapsed time since last update, ∆ along with student current embedding u(t)

as input. Since simply concatenating the context features and passing through linear

layer has proved to be ineffective in modeling the interaction between the concatenated

input features, we follow the procedure suggested in Latent Cross [113]. We describe

how we obtain the feature-context vector below.

To incorporate the context feature f , we first convert f to a feature-context vector

wf ∈ Rd using a linear layer wf = W ff . The weights of the linear layer, W f is

initialized by a 0-mean Gaussian. We represent the time-context vector as w∆ and

the course topic-context vector as wϑ. The projected embedding is then obtained as

element-wise product of the context vector and the previous embedding as,

û(t+ ∆) = (1 + w∆ + wϑ) ∗ u(t) (5.3)

Thread Projection

Thread projection layer projects thread embedding personalized to each student based

on the nature of posts made on the thread. It is essentially important to capture the

temporal dynamics of threads. Intuitively, a student is likely to be interested in a thread

if another student posts on the thread which she is already associated with. The level

of interest further increases if another student comments on the student’s post. This

also reflects the notification setting for discussion forum, where student gets notified

whenever any posts/comments are made on threads that the student has interacted

with. Motivated by this, we develop a thread projection layer which learns a student-

personalized thread embedding such that the thread embedding is projected closer to

student embedding based on nature of posts/comments made on the thread after the

student’s last interaction.

The projected thread embedding with respect to student u is obtained as,

p̂u(t+ ∆) =
ζu,p(t+ ∆)

1 + ζu,p(t+ ∆)
u(t) +

1

1 + ζu,p(t+ ∆)
p(t), (5.4)

where ζ-factor, ζu,p(t+ ∆) defines how much closer the projected thread embedding is

to the student embedding. The higher the value of ζ-factor, the closer is the projected

64

thread embedding to the student embedding. Naturally ζ-factor should have different

terms for posts on the thread and comments on student’s post as they induce different

level of excitement among students [48]. This excitement also fades as the time elapses

owing to the ageing of the threads. As a result we define ζ-factor as:

ζu,p(t+ ∆) = 1Pu(
∑

tu,p<tp<t+∆

e−α(tp−tu,p)

+
∑

tu,p<tr<t+∆

e−β(tr−tu,p)),
(5.5)

where 1Pu is 1 if u posted in p , otherwise 0, tu,p is the last time user u posted on p, α

and β are the scalar weights given to the excitement level induced by a new post and

replies on the student’s posts on the thread p, tp and tr are the timestamps of posts

made on the thread p and the timestamps of the explicit replies made on the student’s

post on p, respectively.

5.2.5 Recommendation

Similar to JODIE model [42], we predict the embedding of the next thread that will

interest the student. We make this prediction using the projected student embedding

û(t + ∆) and the embedding of thread p(t) of thread p (the thread on which u last

posted on). The reason we include p(t) is that students often interact with the same

item consecutively and including the item embedding helps to ease the prediction. The

prediction is made using a linear layer as follows:

q̃(t+ ∆) = W [û(t+ ∆), ū,p(t), p̄] + B, (5.6)

where W ∈ R(m+n+2d)×(n+d) is the weight matrix and B ∈ Rn+d is the bias vector in

the linear layer.

Having generated the predicted thread embedding at time t + ∆, we find the can-

didate threads for recommendation using nearest-neighbor search which are closest to

the predicted thread embedding.

5.2.6 Network Training

We train our model to minimize the Euclidean distance between the predicted thread

embedding and the ground truth thread embedding everytime a student posts on a

65

Algo ML comp

Figure 5.4: Dataset statistics in terms of posts per topic.

Table 5.2: Dataset Statisitics

Dataset Threads Posts Learners Weeks

ml 5310 40050 6004 15

algo 1323 9274 1833 9

comp 4860 17562 3060 14

thread. We calculate the total loss as,

Loss =
∑

u,p,t,wu,i
t ∈O

||q̃(t)− [p̄, p̂u(t)]||2 +λU ||u(t)−u(t−)||2 +λT ||p(t)−p(t−)||2, (5.7)

where O is set of posts in training sample, λU and λT are regularization parame-

ters for temporal smoothness of student and thread embeddings, respectively. The

complete parameter space in our training models is Ωupdate = {W u,W p},Ωproject =

{W∆,W ϑ, α, β},ΩRec = {W ,B},Ωreg = {λU , λT }.

5.3 Experimental Settings

To comprehensively evaluate the performance of our proposed SITRec model, we design

different strategies to evaluate the effectiveness of the model.

5.3.1 Dataset

We use three real-world datasets to evaluate the performance of our model. These

datasets are obtained from Coursera course offering for three courses, namely, Machine

66

Learning (ml), Algorithms, Part I (algo), and English Composition I (comp), in 2012.

Table 5.2 gives details on these datasets. These datasets, in addition to varying in

the size of users and density of interaction, also comprises of different user behavior in

terms of posts per topic. As shown in Figure 5.4, ml has the most diversified posts,

pertaining to different topics, while algo and comp have most posts related to one topic.

5.3.2 Comparison Approaches

We compare our model with the following approaches:

• Popularity-based (POP): This is a simple baseline that ranks threads from

most to least popular according to their popularity.

• Recency-based (REC): This is also a simple method that ranks threads from

oldest to newest based on the time the most recent post was made on the thread.

• Personalized Recency-based (USER-REC): This method ranks threads from

oldest to the newest based on the time the user interacted with the thread.

• Adaptive Matrix Factorization (AMF) [46]: This is an Adaptive Ma-

trix Factorization based method which finds similar users and recommends those

threads to a user which similar users have posted on.

• Point Process based (PPS) [48]: This is a Point Process based method which

calculates the probability that a user will post on a thread. It uses a heuristic that

a post on a thread and an explicit reply on a user’s post increases the likelihood

of participation of the user on the thread in different manner.

• Deep Coevolutionary (DeepCo-evolve) [41]: A co-evolutionary model that

updates user and item embeddings when a user interacts with an item using RNN.

To predict whether user will interact with item it employs point process technique

where the probability of the interaction decays with time.

• JODIE [42]: JODIE is state-of-the-art model for predicting a user’s interac-

tion with item. It is also co-evolutionary model that projects user embedding

using temporal attention layer after some elapsed time ∆ since user’s previous

interaction.

67

Table 5.3: Performance comparison on three datasets for all methods in terms of Mean

Average Precision (MAP) @5. The best and the second best results are highlighted by

boldface and underlined respectively. Gain% denotes the performance improvement

of SITRec over the best baseline.

Methods Algo ML Comp

POP 0.102 0.005 0.001

REC 0.020 0.090 0.066

USER-REC 0.338 0.150 0.221

AMF [46] 0.091 0.005 0.253

PPS [48] 0.362 0.152 0.332

DeepCo-evolve [41] 0.112 0.088 0.162

JODIE [42] 0.397 0.253 0.212

SITRec 0.561 0.400 0.393

Gain% 41.310 58.102 18.373

Metrics

We evaluate forum recommendation using the standard ranking metric Mean Average

Precision (MAP@N). In our experiments, we set N = 5.

APu@N =

∑N
n=1 Pu@n× post(n)

min|Ru, N |
, (5.8)

where Ru is the set of threads student u posted on during the test time interval and

post(n) is a binary function that describes whether the user has posted in the nth

thread. Pu@n denotes the precision at n. Finally, MAP is obtained by averaging the

AP values of all the users.

5.3.3 Evaluation Methodology

Model Training and Parameter Selection

We perform a series of pre-processing on the text of posts. For preparing the feature

associated with each post we process the text by i) removing url links, punctuations and

68

Figure 5.5: Plot of recommendation performance over different lengths of the training

time window T1 on all datasets. Our model, SITRec significantly outperforms every

baseline.

words that contain digits, ii) convert all words to their respective base forms, iii) remove

stopwords and (iv) remove words that appear fewer than 10 times. Then, we obtained

a bag-of-words representation of each text. The process used for obtaining features

associated with each post from bag-of-words representation is explained in Section 3.1.

The number of topics used in LDA algorithm is same as the number of topics in the

course as extracted from the course syllabus because we assume that forums are centered

around the topics of course content. We also run LDA on the course syllabus obtained

from the course website.

For all the datasets, we tried the embedding dimensions from [5, 10, 15, 20, 25] and

chose the value that gave the best performance. The values of α and β required in

thread projection were selected from [0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1.0]. We

found that α = 0.5 and β = 0.001 gives the best performance for algo dataset, α = 0.5 ,

β = 0.005 gives the best performance for ml dataset and α =0.5, β = 0.1 gives the best

performance for comp dataset. We used learning rate of 0.001 and t-batch algorithm

[42] for creating the batches in our experiments.

69

5.4 Results and Discussion

5.4.1 Performance Evaluation

Table 5.3 shows the the recommendation performance of our model and the baselines

over for all the dataset when the training time T1 is set to W − 1 week, where W is the

duration in which forums are active and testing time interval (T2−T1) is one day after.

The value of W is 10, 8, 8 for ml, algo, and comp, respectively. Since learners drop out

from the course with time leading to reduction in forum activities, these values of W is

less than those mentioned in Table 5.2.

As seen in the table 5.3, our proposed SITRec significantly outperforms existing

methods in all the datasets. Among the simple baselines (POP, REC, USER-REC),

USER-REC performs better than the rest. This confirms that users tend to post com-

ments on threads they are already associated with. USER-REC performs better than

AMF because AMF does not take into account the posts that the user has already

posted on. Since repetitive behavior of users is an important signal for making predic-

tion of next thread and AMF fails to take that into consideration, it is outperformed by

USER-REC and PPS methods. Among the co-evolutionary models proposed in the lit-

erature, JODIE significantly outperforms Deep Co-evolve which is in agreement to [42].

Since JODIE takes into consideration the last thread on which user posted to predict the

embedding of the next thread, it performs better than DeepCo-evolve Finally, SITRec

outperforms all the baselines. There is no clear winner among the baselines: JODIE

performs better than PPS on algo and ml dataset while PPS performs better than

JODIE on comp dataset. This could be because in comp being English Composition

dataset, the discussions in each thread is longer, leading to more activity notifications

and students tending to reply on same thread, while in engineering courses like ml

and algo learners are expected directly answer each other’s questions than holding long

discussion [48].

The fact that SITRec outperforms the JODIE baseline confirms both our hypothesis

regarding MOOC forums. First, it is important to consider how the user’s interest

evolves (by taking into account the course topic that the student is studying). Second,

user’s interest in a thread increases if she has already posted in that thread and if

someone replies on his post. The fact that SITRec outperforms other baselines which

70

Figure 5.6: Recommendation performance for algo dataset by varying testing window

length.

do not consider the evolving nature of user interest and thread’s properties emphasizes

the benefit of the co-evolutionary RNNs in capturing the dynamic nature involved in

thread activities.

Robustness towards proportion of data

In this experiment, we validate the robustness of SITRec by varying the data taken as

training set and test set and comparing the performance of the algorithm with other

baseline methods. In the first setting, we hold the testing interval fixed to one day and

vary the training data size from 1 week to W−1 weeks, where W is the duration in which

forums are active and testing time is one day after. Figure 5.5 shows the performance

of the various methods in this setting. Overall, we see that our model significantly

outperforms the baselines in each case, achieving 7% to 190% improvement over the

71

Table 5.4: Comparing variants of the proposed model. Best results are indicated in

bold

Dataset algo ml comp

SITRec-Student Projection 0.53 0.37 0.30

SITRec-Thread Projection 0.35 0.29 0.27

SITRec-Text Features 0.46 0.34 0.27

SITRec 0.56 0.40 0.39

strongest baseline. Another interesting observation is that even when the training data

is of small interval, (i.e., when training data consisted of only few weeks) SITRec gives

good performance compared to other models.

In the second setting, we hold the length of the training interval fixed at W−2 weeks

to allow sufficient number of posts in the test week and vary the length of the testing

interval from 1 day to 7 days. Figure 5.6 shows the recommendation performance

over different lengths of the testing time window ∆T for the algo dataset. Our model,

SITRec outperforms the baseline methods for all the values of ∆T . Even when the

length of test set interval increases the performance of our model does not degrade, in

fact improves in some cases. This can be explained by the intuition that every action

taken by a student improves the learnt embedding of student interest. Thus, our model

is robust towards the length of testing interval and is able to model student behavior

over long period of time as well. Since the performance on other datasets was similar,

we omitted the chart of other datasets.

5.4.2 Ablation Study

In order to verify the effectiveness of the modification we introduced in this work, we run

an ablation study to check the importance of each individual component. The results

are provided in Table 5.4. The variants of our models are:

• SITRec-Student Projection: In this variant, we do not predict future student

embedding and the embeddings are only updated when student makes a post on

a thread.

72

• SITRec-Thread Projection: In this variant of SITRec model, we do not project

a thread embedding specific to each student. We use the embedding of thread

obtained right after the update operation.

• SITRec-Text Features: In this variant of SITRec, we remove the text feature

input to RNNU and RNNT models.

The results are obtained by taking W − 1 weeks as training interval and 1 day

as testing interval for each dataset. Removal of the student projection operation is

shown to reduce the performance of model to some extent, however, removal of thread

projection causes a drastic reduction in performance of the model. This suggests that

on MOOC forums students tend to post on the threads they have already visited before.

This factor plays an important role in deciding the thread to recommend when multiple

threads on same topic exist. Without thread projection layer, even if SITRec predicts

correct topic of interest for student, it fails to identify particular thread to recommend.

As a result, identifying the thread after determining the topic of interest is easier for ml

dataset compared to algo and comp. At last, to investigate the effectiveness of textual

features of posts and comments in a thread, SITRec-Text feature is introduced where no

textual features are fed to the two RNNs in the update operation. We find decrease in

performance of the model suggesting that textual features help in enhancing the model

performance.

5.5 Thread Recommendation on Generalized Platforms

We also develop models to improve the recommendations of threads on generalized.

These platforms such as, Reddit, Wikipedia, and StackOverflow provide an open and

broad subject for people to discuss their ideas and express their thoughts. In the

light of dynamic user interest and evolving item properties, we develop representation

learning techniques to learn dynamic embeddings of users and items. However, learning

embeddings on these platforms is a challenging task because the user interest keep

evolving. This evolution can be captured from 1) interaction between user and item, 2)

influence from other users in the community. The existing dynamic embedding models

only consider either of the factors to update user embeddings. However, at a given time,

73

user interest evolves due to a combination of the two factors. To this end, we propose

Influence-aware and Attention-based Co-evolutionary Network (IACN) [11].

The motivation is that when a user interacts with an item her interest at that time

can be determined from the interaction features. However, as time elapses, the interest

of the user drifts and tends to be more driven by the influence of other users. The key

components in the IACN model are:

Interaction modeling layer: The interaction modeling layer is responsible for updat-

ing the embedding of corresponding users and items when they interact with each other.

We leverage the attention mechanism to identify which interactions are important for

determining the updated embedding of entities (users and items) involved in the inter-

action. As shown in Figure 5.7, when a user interacts with an item, ATTU updates

the embedding of the user by adaptively assigning weights to its previous interactions.

Similarly, ATTI updates the embedding of the item based on its past interaction.

Influence modeling layer: We design a ”relation revealing” attention-based oper-

ation to capture the relation between users and then update the embedding of a user

when any user who influences the user interacts with an item. As shown in Figure 5.7,

when a user interacts with an item, it triggers a drift of interest of other users towards

the item.

Fusion layer: To learn future embedding of a user, we design a novel fusion layer

that integrates the embedding from interaction and influence modeling layer. When

an interaction occurs, the user embedding is determined solely by the interaction mod-

eling layer because user interaction reveals the user’s current interest [114]. As time

progresses user embedding drifts further apart from the interaction embeddings. As

shown in Figure 5.7, the future user embedding is computed by additively combining

the influence-based embedding and the interaction-based embedding where the contri-

bution of the interaction model decays while that of the influence model increases with

time.

To recommend the next item which the user will interact with, IACN predicts an

embedding for the next item and uses Locality Sensitive Hashing [115] to find the item

whose embedding is most similar to the predicted item embedding. Summary of this

work’s major contributions are:

• We study the contribution of both the interaction model and the influence model

74

Interaction modeling layer Influence modeling layer

Contribution of interaction

model and influence model

towards user embedding

with time

Figure 5.7: A simplified diagram showing the main components of IACN.

in predicting embeddings for the recommendation.

• We design a co-evolutionary network using two attention layers to update the

embeddings of users and items. The attention layers help in improving the per-

formance of our model along with providing insight into different user behaviors.

• We introduce a novel method to model the influence of other users on a user and

integrate it with the interaction model to obtain the user embedding at query time

• We conduct experimentation on the real-world dataset and demonstrate the su-

periority of our model over state-of-the-art baselines over various domains.

5.6 Notations, Definitions, and Preliminaries

Notations. Given m users and n items, we denote the temporal list of N observed inter-

actions as O = {oj = (uj , ij , tj , qj)∀j ∈ N}, where uj ∈ {1, . . . ,m}, ij ∈ {1, . . . , n}, tj ∈
R+ and qj ∈ RF represent the interaction features. For simplicity, we define Ou =

{ouj = (ij , tj , qj)} as the ordered listed of all interactions related to user u, and Oi =

{oij = (uj , tj , qj)} as the ordered list of all interactions related to item i.

These interactions result in formation of a network where nodes represent either a

user or an item. As users interact with an item, an edge is created between them. Due

to the sequential nature of these interactions, this network keeps evolving with time.

We can formally define the temporal interaction network as,

75

Definition 5.6.1. Temporal Interaction Network Temporal interaction network is

a bipartite graph with edges annotated by chronological interactive events between nodes

(users and items) and is denoted as G =< V,E;O >, where V = {v1, v2, . . . , v|V |} =

U ∪ I, E denotes the set of edges. Each edge (u, i) ∈ E between user u and item i is

annotated by chronological interactions between user u and item i.

To learn embeddings of users and item in temporal interaction network, Co-evolutionary

models have been studied in [114, 41, 116]. We now formally define Co-evolutionary

model as:

Definition 5.6.2. Co-evolutionary models Co-evolutionary models consist of two

interwoven and interdependent layers, such that the output of one effects the output of

the other and vice-versa.

In addition, users are influenced by other users in the social network. Point process

models the discrete sequential events by assuming that historical events before time t

can influence the occurrence of the current event [117]. Their application in modeling

latent influence between users in a social community has been studied in literature

[118, 119, 120, 121]. Here we describe a general outline of how point process is used in

modeling the social influence.

Point processes are characterized using conditional intensity function λ(t). The con-

ditional intensity associated with a temporal point process is defined to be the expected

infinitesimal rate at which events are expected to occur around time t given the history,

H(t). The conditional probability of observing an event in a small time window [t, t+dt)

is λ(t)dt. Algebraically, λ(t)dt = P{event in[t, t+ dt)|H(t)} = E[dN(t)|H(t)]. Following

this idea, social influence methods [121, 118] attempt to model the rate that user u

adopts item i at time t+ ∆ influenced by the interaction of user v with item i at time

t as,

λi,t,v(t+ ∆, u) = αvθu,vexp(−∆)

where αv represents the influence of user v on other users, θu,v is the strength of relation

from user v to u and exp(−∆) models the decay of influence over time. When we arrange

different user’s interaction with items as a sequence according to ascending time, we can

find which users influence other users to interact with the item. These users form local

user neighborhood for the user in consideration. As the user interacts with more items,

76

its neighborhood keeps evolving. We can formally define the local user neighborhood of

a user as follows:

Definition 5.6.3. Local user neighborhood Given a temporal interaction network

G =< V,E;O > representing the observed user-item interactions, the local user neigh-

borhood, Nu(t) of a user u are all those users v ∈ U which are associated with at least one

item before u interacted with it. Mathematically, when an interaction oj = (uj , ij , tj , qj)

is observed the local user neighborhood is updated as, Nu(tj) = Nu(t−j)∪U i(t−j), where

U i(t−j) is the set of user who interacted with item i before time tj and Nu(t−j) is the

local neighborhood of user u right before time tj .

5.6.1 Model Architecture

We will now describe each layer in IACN in detail.

Embedding layer. We assign each user and item two embeddings: a static and a

dynamic embedding. The static embedding encodes the long-term stationary properties

while the dynamic embedding encodes the dynamic properties. This decision is made

by following the setting in [114] such that static embeddings, for a user, u, ū ∈ Rm

and item i, ī ∈ Rn represent the long-term properties of the entities. While dynamic

embeddings u(t) ∈ Rd and i(t) ∈ Rd at time t, respectively model the time-varying

behavior and features.

Interaction modeling layer. The interaction modeling layer updates the embedding

of a user and an item when the user interacts with the item. In particular, when an

interaction oj = (uj , ij , tj ,qj) is observed, the dynamic embedding of the involved user

u and item i is updated. For simplicity of notations we drop the j subscript in the

following section to represent static embeddings as ū and ī and dynamic embedding as

u(t) and i(t).

To obtain interaction-based embedding of u and i, we consider their past interactions

till time t Ou(t) = {ou1 , ou2 , . . . oup} such that tp ≤ t and Oi(t) = {oi1, oi2, . . . oiq} such that

tq ≤ t, respectively. We use attention mechanism to compute the importance of past

interactions in determining the updated embedding of u as:

euk(t) = a(W iik(t
−
k),W uu(t−)) + a(W qqk,W

uu(t−)) (5.9)

77

where ik(tk) represents the dynamic embedding of item occurring at kth interaction in

Ou(t), t− represents the time right before the time t, W u,W i ∈ Rd×d, W q ∈ Rd×F are

the weight matrices and d and F are the embedding size and the number of features

associated with an interaction, respectively. The intuition is as follows, the first term

computes importance of i’s features at the time of interaction to predict u’s future

embedding. The second term introduces the level of contribution the interaction features

have towards the evolution of u. In our experiments, we used a as the dot product

between the two vectors.

Having computed the attention coefficients, eu(t), corresponding to all historical

interactions involving u, we compute the new embedding of u as:

u(t) =σ

(∑
j,oj∈Ou(t)

αuj (t)W iij(tj)

)
, αuj (t) =

exp(euj (t))∑
k,ok∈Ou(t) exp(e

u
k(t))

, (5.10)

where σ is introduced for non-linearity. Here we have described an attention layer to

update the embedding of user u. To update the embedding of i, we employ the same

two operations with interactions associated with the item.

Influence modeling layer One of the major novelty of our method is that we introduce

a time-varying self-attention based influence model for predicting user’s future interest.

The idea is to leverage the knowledge of evolution of a user’s neighbors to predict

future embedding of the user. Modeling neighborhood influence in temporal interaction

network poses specific challenge as the influence of an interaction on a user is driven by

both the relation between users and time elapsed since the interaction.

Our model captures the influence of u’s local neighborhood on u’s embedding by

modeling a function that outputs a representation vector, influence embedding, Iu(t).

This influence embedding is governed by an aggregation function parameterized by the

temporal interaction sequence involving user neighborhood. Influence-based embedding

at time t+ ∆ is computed as:

Iu(t+ ∆) =
∑

v∈Nu(t)t<tv<t+∆

θv,uexp(−δu(t+ ∆− tv))v(tv), (5.11)

where θv,u models the influence user v has on u and exp(−δu(t+ ∆− tv)) models decay

of the influence over time with user-specific parameter δu and Nu(t) is the local user

neighborhood of u. To model the level of influence a user v has on the other u, we again

78

Figure 5.8: The IACN model: After an interaction (u, i, t,q), the dynamic embeddings

of u and i are updated in the Interaction modeling layer. The Influence modeling layer

predicts the user embedding at time t+∆, u(t+∆) by taking influence vector Iu(t+∆)

into consideration. The figure on the right side shows how influence modeling layer

updates user embedding. As more time elapses, (∆2 > ∆1), the user embedding tends

to be closer to Iu(t).

utilize the attention mechanism, i.e.,

θv,u =

a(W l
1v(tv),W

l
2u(t)) if v ∈ Nu(t),

0 otherwise
, (5.12)

where W l
1 and W l

2 are the weight parameters of the attention mechanism. Due to peer

engagement and affinity between users, θ is sparse as users tend to indulge in discussions

with users of their community. For validating this, we computed the average length of

local user neighborhood in ’Wikipedia’ dataset (described in section 5.1). We find that

with 8227 users, the number of non-zero values in θ is 191,307. The average length of

local user neighborhood is only 23.2.

Fusion layer To integrate the signals from interaction layer and influence layer, we

introduce a fusion layer. This layer predicts embeddings of user at time t by taking

into account the user embedding, the influence embedding, and the time elapsed since

u’s last interaction, ∆. The motivation behind constructing this layer is that a user

interest keeps evolving even when it is not interacting with any item and as more time

79

elapses the future embedding is farther from the user embedding. Furthermore, the

interactions from the user local neighborhood influences the user interest which becomes

more pronounced as more time elapses. To model this, we employ a kernel function such

that the user embedding u(t+ ∆) will continue to deterministically decay (at different

rates for different users) from interaction-based embedding u(t) towards influence-based

embedding Iu(t+ ∆). Thus, we extrapolate a user embedding at a future time as:

u(t+ ∆) = u(t) + (Iu(t+ ∆)− u(t))(1− exp(−βu∆)), (5.13)

where βu is a parameter learned while training the model. On the interval [t, t + ∆),

the u’s embedding follows an exponential curve that begins at u(t), when ∆ → 0 and

decays towards Iu(t) (as t→∞, if extrapolated).

Recommendation layer. Once we predict users’ embeddings at time t+∆, we predict

the embedding of the next item. For this we use the updated user embedding u(t+ ∆)

and the embedding of item that u last interacted with at time t, i(t). The predicted

item embedding is:

î(t+ ∆) = W [u(t+ ∆), ū, i(t), ī] + B, (5.14)

where W is the weight matrix and B bias vector which make the linear layer. Then we

recommend the items with the closest embedding with the predicted embedding. This

step can be done in near-constant time by using LSH [115].

5.6.2 Network training

We train our model to minimize the Euclidean distance between the predicted item

embedding and the actual item embedding everytime a user interacts with an item. We

calculate the total loss as,

L =
∑

(u,i,t,q)∈O

||̂i(t)− [̄i, i(t)]||2 + λU ||u(t)− u(t−)||2 + λI ||i(t)− i(t−)||2,

where λU and λI are regularization parameters for temporal smoothness of user and

item embeddings, respectively.

80

5.7 Experimental Settings

To comprehensively evaluate the performance of our proposed IACN model, we design

different strategies to evaluate the effectiveness of the model. Our experiments are

designed to answer the following research questions:

1. RQ1: How does IACN perform compared with other state-of-the-art recommen-

dation models?

2. RQ2: What is the influence of various components in the IACN architecture?

Datasets. We used 4 public datasets and followed the same preprocessing steps as used

in [114]. Thus,we selected 1000 most active items in each dataset.

• Wikipedia dataset: Public dataset consisting of one month of edits made on

Wikipedia pages 2 obtained from [114]. This dataset contains 1000 items, 10, 000

most active users, resulting in 672, 447 interactions.

• Reddit post dataset: We processed reddit 3 forum dataset, which consists of

one month of posts made by users. We first samples 1000 most active reddit post

and the users who made at least 5 posts on the selected posts. This resulted in

13, 840 users and a total of 121, 258 interactions.

• StackOverFlow dataset: We also gathered data from the popular question-

answering website, StackOverFlow4 . For this dataset also, we extracted users

who made at least 5 posts. There are 4, 125 users and 20, 719 posts in this dataset.

These datasets, in addition to varying in size of users and density of interactions,

also comprise of different users’ behavior in terms of repetitive item consumption. In

Wikipedia, Reddit, and StackOverFlow a user interacts with the same item consecu-

tively in 79%, 77% and 62% interactions, respectively.

Code available at https://github.com/shalini1194/IACN.

Metrics. We evaluate forum recommendation performance using the mean recipro-

cal rank (MRR) and recall@10. MRR is a standard ranking metric formulated as:

2 https://meta.wikimedia.org/wiki/Data_dumps.
3 http://files.pushshift.io/reddit/
4 https://archive.org/details/stackexchange

https://github.com/shalini1194/IACN
https://meta.wikimedia.org/wiki/Data_dumps

81

MRR = 1
rankpos

, where rankpos denotes the rank of positive item. Recall@10 is the

fraction of ground truth items ranked in the top 10 recommended items.

Comparison Approaches. To verify the performance gain of IACN, we compare its

performance with various state-of-the-art models which can be categorized into four

classes:

1. RNN based models: This category comprises of RNN based models such as LSTM

[122], RRN [106] among others. RNN uses only static embeddings to represent

items and predicts users’ embedding based on the items they have interacted with.

RRN is widely used method and generates dynamic user and item embeddings

based on the item and user interaction sequence independently. Both these models

take one-hot vector of items as inputs.

2. Co-evolutionary models: These models update both user and item embedding

when a user interacts with an item. We compare our model with JODIE [114]

and Deep Co-evolve [41]. Both the models use RNN to learn representations of

users and items. Deep-Coevolve uses the point process technique to predict the in-

tensity of interaction between user and item, while JODIE uses Euclidean distance

between the learned representation to predict the next item to recommend.

3. Temporal Network Embedding: Temporal Network Embedding models are used to

generate embedding of nodes of a temporal network. HTNE [117] is a state-of-the-

art model for temporal network embedding which integrates the Hawkes process

into network embedding so as to capture the influence of historical neighbors on

the current neighbors

4. Social Network: We compare our method with GraphRec [123] that combines the

information from social network and interaction network to predict user embed-

ding. However, it does not consider the temporal nature of the setting.

5.7.1 Performance Comparison (RQ1)

Table 5.5 compares the performance of IACN with the six state-of-the-art methods.

We make the following observations from the results. IACN significantly outperforms

all baselines in all datasets across both the metrics. GraphRec performs better than

82

Table 5.5: Performance comparison on four datasets for all methods. The best and the

second best results are highlighted by boldface and underlined respectively. Gain%

denotes the performance improvement of IACN over the best baseline.

Methods Wikipedia Reddit StackOverFlow

MRR Recall@10 MRR Recall@10 MRR Recall@10

LSTM [122] 0.329 0.455 0.205 0.251 0.014 0.017

RRN [106] 0.522 0.617 0.290 0.312 0.019 0.019

HTNE [117] 0.500 0.624 0.211 0.313 0.100 0.178

GrapRec [123] 0.634 0.823 0.621 0.815 0.012 0.041

DeepCo-evolve [41] 0.515 0.563 0.271 0.405 0.017 0.019

JODIE [114] 0.746 0.822 0.755 0.919 0.058 0.063

IACN 0.796 0.861 0.869 0.922 0.106 0.280

Gain % 6.702 4.617 15.099 0.326 6.000 57.303

Table 5.6: Ablation analysis.

Methods Wikipedia Reddit StackOverFlow

MRR Recall@10 MRR Recall@10 MRR Recall@10

IACN - Influence 0.776 0.833 0.717 0.919 0.050 0.059

IACN-Attention+RNN 0.786 0.848 0.717 0.92 0.056 0.059

IACN-Fusion+LatentCross 0.612 0.776 0.702 0.918 0.072 0.012

IACN 0.796 0.861 0.869 0.922 0.106 0.280

HTNE for Reddit and Wikipedia dataset. We believe that one of the reasons is the high

volume of interactions in less timespan for these datasets. Due to this, the effect of time

intervals between interactions is not observed here. HTNE models the impact of time

intervals between interactions, which results in its better performance for StackOver-

Flow compared to GraphRec. We find that for StackOverFlow dataset HTNE performs

better than JODIE. This can be attributed to the idea that user-user affinity is more

pronounced due to peer-engagement and depth of discussion on these platforms [124].

The fact that IACN outperforms co-evolutionary models confirms our hypothesis that

it is important to consider both influence-based and interaction-based signals to predict

embedding of user.

83

5.7.2 Analysis of IACN (RQ2)

Table 5.6 shows the performance comparison of variation of IACN. We describe the

variants and discuss the result drop caused by them:

IACN-Influence: Removing the influence modeling layer results in a co-evolutionary

model with attention mechanism to update the embedding. We find that removing the

influence modeling layer results in drop of IACN performance, revealing that it is useful

to model the influence of other users on user interest evolution.

IACN-Attention+RNN: In this variant, we replace the attention in the interaction

modeling layer with RNN. The drop in performance indicates that attention mechanism

is better able to predict the embedding of user and item by adaptively assigning weights

to the past interactions.

IACN-Fusion+LatentCross In this variant of IACN, we replace our Fusion layer with

LatentCross [113]. Essentially, we take an element-wise product of user embedding u(t)

and the time context vector, wt = w ∗∆, where, w is initialized by 0-mean Gaussian

function and ∆ is the elapsed time since user’s last interaction. Then, we add the

influence-based embedding to the resultant vector.

u(t+ ∆) = (1 + wt) ∗ u(t) + Iu(t+ ∆)

Using LatentCross instead of our fusion layer degrades performance of IACN show-

ing that fusions layer is better then LatentCross.

The conclusion of this chapter is described in Chapter 7

Chapter 6

Goal Understanding: Learning

Trajectory Recommendation

MOOCs provide very diverse set of courses and courses with the same course topic but

taught by different teachers. It becomes difficult for students who want to acquire a skill

to find the relevant courses. Moreover, a course consists of a number of video lectures,

with each one covering some specific knowledge concepts and a student might not be

interested in the entire course but certain knowledge concepts taught in the course.

To improve student experience, it is important to understand the goal of student for

enrolling in the MOOC and then recommend him the relevant next activity. Various

challenges are involved in the task of recommending the next activity to students. First,

it is important to understand the student goal and then recommend the next activity

to fulfill that goal. However, student goal is not known explicitly and can only be

inferred from the student behavior. Second, student goal is dynamic and we need to

keep track of the student goal at every time instance to recommend him the relevant

activities. Third, MOOCs attract diverse group of students with different backgrounds

and learning preferences. While recommending the next activities, we need to take into

account their preferences and navigation styles.

To understand and capture student interests on MOOCs paltforms, efforts have

been put, such as, course recommendation [125, 82], behavior prediction [126] and

intention understanding [127] and knowledge concept recommendation [66]. However,

84

85

Figure 6.1: Students with different goals but taking the same course.

these models capture student interest at course-level ignoring the fact that students on

MOOCs are usually interested in learning certain topics of each course rather than the

entire course [1, 66]. In order to address this issue, [66] proposed recommending student

the next course topic to study. However, their model fails to capture the dynamic

student interest. In addition, while developing a next activity recommender system for

students domain factors have to be taken into account.

First, students enrolls in a course with different motivations such as, learning basic

ML or learning NLP. For example, as shown in fig 6.1,. The motivation of students

can be inferred from their interaction behavior. However, only relying on sequential

interaction data of students might be insufficient to capture the motivation of diverse

groups of students. Second, in order to motivate students study a new course topic,

we need to provide an explanation such as ”Study Integral Calculus because you have

studied Differential Calculus”. This motivates us to build an explainable recommender

system for next video recommendation.

86

6.1 Theoretical Framework

Models of self-regulated learning emphasize that learners are more effective when they

take a purposeful role in their own learning, including selection of courses that align

with their learning and professional goals [94, 93]. For a system to adequately provide

access to such information, it is important to provide self-learners further information

about the concept pre-requisite relations and recommend them the next course topic to

learn.

6.2 Meaningful Learner Profiling

A core component of most theories of learning is that learners’ characteristics influence

the ways and the extent to which they learn. Personalized learning, in principle, takes

into account learner characteristics to optimize their learning. It follows that for learning

to be personalized, information about learners, derived from their behavioral data, must

be used to adapt the design of the learning environment and enhance learning outcomes.

One fruitful approach in personalizing learning is the identification of different profiles

of learners, so that their needs are addressed by course design. These profiles can

provide insights into the actual cognitive (e.g., which strategies are used), meta-cognitive

(e.g., the conditions under which strategies are used), and motivational processes (e.g.,

the intensity by which strategies are used) learners engage in during online learning.

Understanding what unique interactions between the learner and the course result in

these profiles, as well as the stability of these profiles across time and across courses

or domains can help further refinement of both learning theories and course design

[128, 129, 130].

learners progress through learning on their own pace, guided by their learning goals

and interests, and engaging with course content in ways that are consistent with those

goals and interests [128]. Additionally, learners vary in the actual processes they engage

in during learning [94]. In this work, we propose to understand learner characteristics

and learning processes based on their interaction with the learning platform. We will

identify distinct interaction sequence patterns and match those sequence patterns to

learning goals and processes (cognitive, meta-cognitive, and motivational processes).

87

Table 6.1: Types of students and their characteristics

ID Type name Activity Pattern

0 Strategic but selective Each video is watched mul-

tiple times but a subset of

videos are watched and the

level of engagement remains

high from beginning to end

1 Nonstrategic, non-engaged The engagement of these

learners is fairly low at the on-

set, and keeps dropping over

time with the low number of

watches per video

3 Strategic but not engaged

learners

Engagement level is decent at

the onset but eventually feel

challenged or bored leading to

lower engagement by the end

.

4 Strategic and engaged Each video is watched mul-

tiple times and engagement

with each video remains high

from beginning to end.

88

Figure 6.2: Learner Profiling based on their activities

Building on the learner profiling mechanism, we develop a system to profile different

learner based on their learning pattern. We characterize these profiles from the learning

theory background. Essentially, we first clustered learners based on the features we

extracted from their interaction with the learning platform. Then we map those clus-

ters to the different patterns interaction sequences originating from the learning theory

perspectives. With this, we come up with four cohorts of learner types, which is also

automatically discovered by our algorithm without any prior knowledge. Looking into

the learner clusters, we find their different combinations of features quite meaningful.

Subsequently, we are able to give the learner types intuitive names, which are shown

in Table 6.1. As shown in Figure 6.2, we plan to use these recognised cohorts of

learners to improve POSLS by adopting different policies for different cohorts. With

these designed cohorts a new learner can be profiled early on in the lecture. With this

information, we can improve several tasks such as, drop out prediction, course content

recommendation, identify if learner is bored or challenged.

6.3 Representation Learning for POSLS

For developing personalized system, representation learning presents a powerful tech-

nique that learns embeddings to represent MOOC entities. These representation can

then be used for various downstream tasks.

Learning comprehensive representations for MOOC entities which can directly be

employed in various downstream tasks remains a challenge. Most previous work is

task-oriented, and directly aim to obtain representation using hand crafted features

89

[59, 58, 131, 67] obtained from the structure of organization or learn representation from

the textual content [132, 61]. However, these models mostly require large amount of

training labels (e.g., concept pre-requisite labels). To tackle this challenge, in this paper,

we investigate the problem of learning an overall representation of MOOC entities in an

unsupervised manner. Our goal is to demonstrate that these pre-trained embeddings

can improve various downstream tasks.

Several pre-training methods have shown their superiority in Natural Language Pro-

cessing (NLP) on representation learning task [70, 69]. However, they only exploit the

textual content of the entities. Simply employing these methods to learn MOOC en-

tity representation is not sufficient as we show in our work. Our method MERIT 1

incorporated the inherent relations between MOOC entities. These relations provide

richer information about them and hence enhance their representation. For example,

as shown in Figure 6.3 a course consists of sequence of topics, each topic consists of se-

quence of videos. In addition, each video is annotated with the corresponding universal

concepts. All this information are crucial for understanding the MOOC entity, which

requires us to find an appropriate way to aggregate them for learning a comprehensive

representation. Second, the organization of a course with respect to concepts taught

in each video presents the domain knowledge about difficulty of concepts. We further

utilize this difficulty information to enhance the representation effectiveness.

To evaluate our pre-trained entity embeddings, we show that the learned representa-

tions substantially outperform the state-of-the-art models on the important EDM tasks.

The first task is predicting the pre-requisite relations between the MOOC concepts. The

second task is to tag the concepts to some external source material so that they can

be provided to students. Experimental results on the two downstream tasks show the

applicability and strength of our model. To summarize, our main contributions in this

paper are as follows:

• We are the first to propose a model for MOOC entity representation learning that

captures, textual content of these entities, their structural relations, and domain

knowledge about concept difficulty. The learned pre-trained embedding can be

directly employed to various downstream tasks.

1 MERIT : MOOC Entity Representation using Graph- Informed Transformers

90

Figure 6.3: Overview of MERIT model: Leftmost figure shows entity’s textual content

and hierarchical structure in a course and the relation between concepts and videos

which constitute the input of MERIT.

• We publicly release the pre-trained embeddings of universal concepts and MOOC

videos. These can be used to improve various downstream tasks. We showed the

improvement of pre-trained embeddings on concept pre-requisite prediction and

video recommendation tasks.

• We perform extensive experiment and show that our pre-trained embedding achieves

on an average 7.29% improvement over state-of-the-art pre-training algorithms.

6.3.1 MERIT: A Unified Representation of MOOC Entities using Graph-

Informed Transformer

Problem Formulation

In this subsection, we formally introduce the problem and clarify mathematical sym-

bols in this paper. Firstly, a course has a natural hierarchical structure. A course

usually consists of multiple topics, {T1, T2, . . . , Tn}, and each topic consists of sequence

of videos, {V1, V2, . . . Vm}. For example, a course on “Computer Vision Basics” has

three topic: “Color, Light, and Image Formation”, “Low-, Mid- and High-Level Vision

”, “Mathematics for Computer Vision”. The “Color, Light, and Image Formation topic”

91

has sequence of videos: “Light Sources”, “Pinhole Camera Model” and “Color Theory”.

Further, each course video is cross linked with various concepts {C1, C2, . . . , Cl} where

each video covers multiple concepts and a concept can be covered by multiple videos.

For example, a video on “Mathematics for Computer Vision” is linked with the concept

“Basic Convex Optimization” and “Basic Convex Optimization” can be associated with

other videos such as “Theory of Machine Learning”. In addition to these relation in-

formation, the textual content consisting of name and description of each entity is also

available.

Our goal is to learn task-independent and effective representations of all the above

described MOOC entities, i.e., the output, encode the individual entity feature along

with different relations between them as a single vectors. In the following sections, we

will address the main three challenges: (1) how to generate individual entity represen-

tation; (2) how the representation is pre-trained; (3) how the representation is applied

to downstream tasks.

Model Architecture

We will now describe each layer of MERIT.

Pre-trained BERT to encode the textual content

Firstly, we encode concepts using its textual content which consists of its name and

description. We employ a pre-trained BERT-base model to obtain the representation

of concepts. Similar to the procedure employed for document representation [133] the

final representation of the [CLS] token is used as the output representation of the entity.

x = BERT(input)[CLS], (6.1)

where BERT is the pretrained- BERT model 2 , and input is the concatenation of

the [CLS] token and WordPieces [134] of the name and description of the entity. We

use the pre-trained BERT as our model initialization because it has been trained on

large Chinese simplified and traditional text. Using this model, we learn the initial

representation of concepts (c0) and videos (v0).

2 https://huggingface.co/bert-base-chinese

https://huggingface.co/bert-base-chinese

92

Encoding course structure with Segment-aware Transformers

Input Embedding Layer. As shown in figure 5.2, a course consists of an ordered se-

quence of topics which consists of videos. We need to encode this hierarchical structure

information present in a course in the learned representations. To obtain an embedding

of jth video in a course c, we first obtain the corresponding video representation using

Equation (1). Additionally, we define a video position embedding matrix as Evp ∈ Rl×d

to encode the order of videos belonging to a course, where l is the maximum number

of videos in a course and topic position embedding matrix as Etp ∈ Rt×d to encode the

position of topic in the course, where t is the maximum number of topics in the course.

This idea is motivated by segment-aware BERT [135] which learns paragraph index,

sentence index, and token index embeddings to encode a document’s hierarchical struc-

ture. Employing video position and topic position encoding is important in learning

video and course representation because it inherently encodes the information of orga-

nization of the course. This implicit information helps identify the relation between

videos of the same course and the contribution of each video in learning the final course

embedding.

Afterward, we feed the inputs to transformer layer, and these inputs should convey

the representation of videos, their positions in the course and the position of their topic.

Thus, the video embedding is obtained as:

v̂i = vi + EV P
i + ETP

i , (6.2)

where vi is obtained from Equation(1).

Finally, the input video sequence is expressed as V̂ = [v̂1, v̂2, . . . v̂n] by combining

the video embedding, the video position embedding and the topic position embedding.

Transformer Layer To learn a course embedding, we take the input video sequence

V̂ and add a special token- [CLS] at the end to represent the whole course. Then we use

transformer layer [38] to encode the entire sequence. The transformer layer is composed

of two sub-layers:

hl = LayerNorm(zl−1 + MHAtt(zl−1)), (6.3)

zl = LayerNorm(hl + FFN(hl)), (6.4)

93

where LayerNorm is a layer normalization proposed in [98] ; MHAtt is the multihead

attention mechanism introduced in [38] which allows each token to attend to other to-

kens with different attention distributions; and FFN is a two-layer feed-forward network

with ReLU as the activation function. We take the course [CLS] token representation

output by the last layer of the global transformers to represent the course semantic and

structural features, denoted as zc.

Pre-training

Graph based pre-training objective

The graph built between videos, concepts and courses, shown in Figure 5.2, can help in

identifying the related entities. To encode this relatedness signal, we design objective

functions to train the MERIT model so that related entities lie closer in the embedding

space. Particurarly, our MOOCCube graph from [5] consists of vertices of types con-

cepts (C), videos (V) and courses (Z). The edges connecting vertices in this graph can

be of two types:

• Explicit relation In the video-concept and course-concept bipartite graphs, edges

exist between videos and concepts and course and concepts, presenting an explicit

signal as it is directly available in the dataset.

• Implicit relation This relation indicates the similarity between the entities of the

same type and can be induced from provided graph but are not provided explicitly.

Specifically, if the number of adjacent nodes between two vertices increases by a

threshold, then we consider an implicit relation between those vertices.

For learning representation of each node in the graph, MERIT optimizes a margin-

based ranking objective between each edge e in the training data and a set of edges e′

constructed by corrupting e.

Ltriplet =
∑
e∈G

∑
e′∈S(e)′

max(f(e)− f(e′) + λ, 0) (6.5)

where λ is a margin hyperparameter, f is the cosine similarity between the two embed-

dings and

S(e′) = (s, d′)|d′ ∈ type(d), (6.6)

94

where type(d) returns the type of vertex d (concept, video, or course).

Domain-Oriented Objective

The above objectives and features have helped learn the information present in the

textual content and the structural relations between entities. However, it is also im-

portant to consider the domain knowledge to learn effective representations of these

entities. The difficulty of understanding of a concept or a lecture contains important

information regarding the concept or lecture. In order to also include such informa-

tion in final representation, in this section, we designed a domain-oriented objective for

our pre-training method. Specifically, the complexity of different concepts captures the

domain-specific knowledge. Different concepts have different complexities and this com-

plexity level is inherent in their distributions in the course. Specifically, for a concept in

MOOCs, if it covers more videos in a course or it survives longer time in a course, then

it is more likely to be a basic concept rather than an advanced one [59]. We then use

the following formal equations to compute average video coverage (avc) and the average

survival time (ast) of a concept i as follows,

avc(i) =
1

|C(i)|
∑
C∈C(i)

|I(C, i)|
|C|

, (6.7)

ast(i) =
∑
C∈C(i)

|max(I(C, i))−min(I(C, i)) + 1|
|C|

(6.8)

These two metrics capture the difficulty of a concept. To preserve the difficulty

information effectively, for the concept, we use a linear layer to map the activation ei to

a difficulty approximation d̂i = wTedi + bd where wd and bd are network parameters.

We use the concept difficulty di as the auxiliary target, and design the following loss

function L to measure the difficulty approximation error:

Lmse =
C∑
i=1

||di − d̂i||2. (6.9)

To generate entity embeddings that preserve explicit relations, implicit similarities,

and concept difficulty simultaneously, we combine all the loss functions together and

minimize the following loss:

L = λ1Ltriplet + (1− λ1)Lmse, (6.10)

95

where, λ1 is a tunable hyperparameter. After pre-training, MERIT entity representa-

tion should be able to capture both relation and individual features, and transfer the

understanding of these entities to downstream tasks in the area of education.

6.3.2 MOOC Entity Representation Evaluation

After learning the representation of MOOC entitiess, we employ them to improve down-

stream tasks in the area of education. The first task we focus on is concept pre-requisite

prediction task. for example, as in the research by Pan et al. [59], the authors use

hand-crafted features followed by classification methods. Another task important for

education community is video recommendation [66]. In the paper of [60], each video

is represented as a single vector and then serves as the input to sequence models to

predict the next element of sequence.

To apply MERIT representation to a specific task, we just provide the required

representation to replace the equivalent part of the downstream model, which minimizes

the cost of model modification. By doing this, we provide a better initialization to the

downstream model, leading to their faster convergence and better optimization.

In summary, MERIT has the following advantages for MOOC entity representation

learning. First, it provides a unified and universally applicable representation for MOOC

entities. Second, it is able to incorporate both textual content and structural relation

between entities along with the domain knowledge about concept difficulty. Third, it is

easy to directly apply them on various downstream tasks.

6.4 Experimental Settings

In this section, we present our experimental settings to answer the following questions:

RQ1 Can MERIT outperform the state-of-the-art methods for Concept Pre-requisite

Prediction task?

RQ2:Can MERIT outperform the state-of-the-art methods for Lecture Recommenda-

tion task?

RQ3: What is the influence of various components in the MERIT architecture?

96

Table 6.2: Dataset Details

Mathematics Computer Science

#Concepts 373 496

#Courses 459 190

#Lectures 10,308 5,085

Lectures/Course 22.46 26.76

#Tokens/Concept 34.17 54.24

#Tokens/Lecture 1365.73 1378.94

#Concepts/Course 17.85 22.84

#Concepts/Lecture 1.93 18.19

Concept Pre-requisites 1,314 1,604

#Users 37,849 26,588

#Lecture/User 60 67.79
%Repetitive elements

in interactions 0.015 0.011
%Sequential elements

in interactions 62.1 66.7

97

6.4.1 Dataset

The dataset we used for our experiments have been obtained from the online education

system called XuetangX and publicly available in [5]. This dataset consists of concepts

along with their description from Wikidata, video playlists from a MOOC corpus along

with the subtitles of the videos, courses where each course consists of several topics and

each topic is covered by several videos. These videos are annotated with set of associated

concepts . We consider the data from two domains, Mathematics and Computer Science.

The details for the dataset are shown in Table 6.2.

There are total 373 and 407 concepts, 459 and 190 courses , and 10, 308 and 5, 085

lectures in Mathematics and Computer Science, respectively. On average, in Mathe-

matics domain each course has 22.46 lectures and 17.85 concepts and each lecture has

1365.73 tokens; while each concept has 34.17 tokens. In Computer Science domain each

course 26.76 lectures and 22.84 concepts; while each lecture has 1378.94 token and each

concept has 54.24 tokens.

Since the MOOC concepts are universal and our goals is to learn pre-trained em-

beddings of these concepts, we augment the concepts from other available datasets

[59, 63, 58] to our dataset. This results in total 1, 314 pre-requisite relations for Math-

ematics concepts, while 1, 604 for Computer Science concepts. For lecture recommen-

dation, we considered the user interaction with courses of Mathematics and Computer

Science domain only. This results in 37, 849 and 26, 588 users, and 60 and 67.79 inter-

actions per user on average for Mathematics domain and Computer Science domain,

respectively. In order to verify that learners do not necessarily follow the sequence of

lectures set by instructors, we also compute the percentage of times consecutive inter-

action patterns occur in the set sequence by instructors. We find that it only occurs

62.1% and 66.7% times in Mathematics and Computer Science dataset, respectively.

6.4.2 Evaluation Tasks

We employ state-of-the-art supervised learning methods for concept pre-requisite predic-

tion [62] and lecture recommendation [60]. To evaluate the effectiveness of MERIT, we

compare the quality of our pre-trained embeddings with pre-trained embeddings learned

98

from the competing approaches. All these methods are able to generate entity represen-

tation, and then be applied to the two models mentioned above as warm-initialization.

Specifically, these methods are:

• Random: We randomly assign the embeddings which essentially results in the

original supervised models.

• Word2vec: Assign text tokens with the corresponding word2vec embedding [136]

and CLS token as input to LSTM layer and use the embedding of [CLS] token as

the entity embedding.

• Doc2vec Similar to word2vec but with an additional paragraph vector to learn

document representation [73]

• BERT is a state-of-the-art pre-training method featuring bi-directional trans-

former layers and masked language model [70].

• PBG is an embedding system that takes only the MOOC graph as input and

learns entity representation in an unsupervised manner [75]. We specifically,

employ TransE [137] model to learn the representations.

6.4.3 Implementation Details

For each evaluation tasks, we split the dataset into 80%, 10%, and 10% as training,

validation, and test set. We take pretrained BERTbase with 12 layers to encode local

semantic features from lectures and concepts. Pretrained model weights are obtained

from Pytorch transformer repository3 . Besides, we set the number of global transformer

layers as 2 based on the preliminary experiments. We find the 2 layer global transformer

layers work much better than 1 layer. All transformer-based models/layers have 768

hidden units. The model is trained on Nvidia GeForce GTX 1050 Ti GPU. The optimizer

is Adam [138] with learning rate of 1e − 5. We set the epochs as 200, batch size as

64. For word2vec we used pre-trained word vectors from [139] and words are extracted

using jieba 4 . For doc2vec as well, we used the pre-trained word vectors from above

3 https://huggingface.co/bert-base-chinese
4 https://github.com/jsrpy/Chinese-NLP-Jieba

https://github.com/jsrpy/Chinese-NLP-Jieba

99

Table 6.3: Performance comparison on concept pre-requisite prediction task. The best

performing method is boldfaced, and the second best method in each row is underlined.

Gains are shown in the last row.

Mathematics Computer Science

P R F1 P R F1 Avg

Random 0.583 0.594 0.587 0.528 0.571 0.545 0.568

Word2vec 0.630 0.638 0.634 0.570 0.577 0.573 0.604

Doc2vec 0.645 0.644 0.642 0.594 0.606 0.599 0.622

BERT 0.646 0.660 0.652 0.630 0.616 0.621 0.632

PBG 0.636 0.626 0.630 0.607 0.611 0.609 0.620

MERIT 0.701 0.685 0.692 0.659 0.670 0.663 0.678

Gain % 8.557 5.771 6.162 8.567 9.656 8.867 7.930

in addtion to gensim APIs to obtain document embedding 5 . For modeling transE, we

used Pytorch BigGraph [75] to obtain entity embeddings with embedding size of 768.

6.5 Results and Discussion

Our evaluation of MERIT’s pretrained entity representations on the two downstream

tasks is shown in Table 6.3. Overall, we observe substantial improvements across both

the tasks with average performance of 0.656 across all metrics on all tasks which is a

8.34% relative improvement over the next-best baseline. We now discuss the results in

detail.

6.5.1 Concept Pre-requisite Prediction (RQ1)

For concept pre-requisite prediction, we used PREREQ [62] as the base model and

initialized the embeddings with pre-trained embeddings from baseline methods and our

MERIT model. Since concept pre-requisite prediction is a binary classification task,

where given a pair of concepts (a, b), the task is to predict whether a is pre-requisite

5 https://www.tutorialspoint.com/gensim/gensim doc2vec .htm

100

Table 6.4: Performance comparison on lecture recommendation task. The best perform-

ing method is boldfaced, and the second best method in each row is underlined. Gains

are shown in the last row.

Mathematics Computer Science

HR@10 NDCG MRR HR@10 NDCG MRR Avg

Random 0.417 0.297 0.278 0.372 0.262 0.247 0.312

Word2vec 0.458 0.358 0.344 0.438 0.325 0.298 0.370

Doc2vec 0.598 0.476 0.451 0.556 0.427 0.400 0.485

BERT 0.650 0.598 0.458 0.628 0.534 0.485 0.559

PBG 0.654 0.592 0.552 0.643 0.559 0.502 0.584

MERIT 0.683 0.615 0.604 0.679 0.614 0.605 0.633

Gain % 4.404 2.809 9.402 5.552 9.857 20.438 8.744

Table 6.5: Ablation Study on Concept Pre-requisite Predition task.

Mathematics Computer Science

P R F1 P R F1

Without concept difficulty 0.657 0.671 0.662 0.649 0.632 0.639

Without explicit similarity 0.664 0.666 0.665 0.647 0.634 0.640

Without implicit similarity 0.656 0.682 0.665 0.636 0.626 0.630

Without explicit+implicit 0.649 0.664 0.653 0.623 0.647 0.638

MERIT 0.701 0.685 0.692 0.659 0.670 0.663

101

Table 6.6: Ablation Study on lecture recommendation task.

Mathematics Computer Science

HR NDCG MRR HR NDCG MRR

Without concept difficulty 0.670 0.607 0.598 0.665 0.608 0.601

Without explicit similarity 0.677 0.608 0.597 0.660 0.602 0.594

Without implicit similarity 0.664 0.599 0.589 0.651 0.594 0.586

Without explicit+implicit 0.656 0.589 0.579 0.642 0.593 0.580

MERIT 0.683 0.615 0.604 0.679 0.614 0.605

of b, we report Precision (P), Recall (R) and Macro-averaged F1 score (F1) to compare

the different models. We observe that PREREQ performance when trained on our

representations is better than when trained on any other baseline. Particularly, on the

Computrer Science (Mathematics) dataset, we obtain an 0.692(0.663) F1 score which

is about a relatively 6.16%(8.87%) relative improvement over the best baseline on each

dataset respectively.

6.5.2 Lecture Recommendation (RQ2)

For lecture recommendation, we used the method proposed in [60] as base model which

employs an LSTM to predict user’s next lecture. We initialize the lecture embeddings

with those pre-trained from the baseline models and MERIT model. We use rank-

ing metrics to evalaute the recommendation performance, specifically report HR@10,

nDCG@10 and MRR. We observe that MERIT outperforms all the baseline models

on this task as well. For Computer Science dataset (Mathematics), MERIT achieves

0.679(0.693), 0.611(0.617), and 0.600(0.603) at HR@10, nDCG@10, and MRR, respec-

tively; MERIT outperforms by 3.84%(7.78%), 2.19%(10.38%), and 8.77%(20.12%) rela-

tive improvement over second best baseline on each dataset respectively.

Another observation is that BERT model which captures only the semantic relation

between entities is the second best model for concept pre-requisite prediction; while

PBG which captures the structural relation between entities is the second best model

for lecture recommendation. This can be attributed to the fact that the textual content

102

of concepts is obtained from Wikipedia [5] and hence the learned embeddings are good

quality. On the other hand, lectures’ textual content is noisy resulting in BERT not able

to generate their good quality embeddings. Our model, utilizing both textual content

and structural relation between entities by taking advantage of the best of both worlds

performs superior than both PBG and BERT.

6.5.3 Ablation Study (RQ3)

To get deep insights on the MERIT model, we investigate the contribution of various

components involved in the model. Therefore, we conduct some ablation experiments

to show how each part of our method affect final results. In Table 6.5 and 6.6, there

are following variations of MERIT, each of which takes out one component from the full

model.

• Without explicit similarity In this variant, weremove the explicit similarity

objective when training the network. Specifically, we remove the course-concept

and lecture-concept similarity loss.

• Without implicit similarity In this variant, we remove the loss function re-

sulting from the implicit similarity between entities. Specifically, we remove the

concept-concept, lecture-lecture, and course-course similarity loss.

• Without explicit+implicit In this variant, both the explicit and implicit simi-

larity loss. The network is only trained with the BERT model followed by concept

difficulty loss.

• Without difficulty constraint In this variant, we remove the loss function

resulting from the difficulty prediction of a concept. The network is only trained

with BERT model to encode the textual content and the the structural information

but not the domain knowledge involved in predicting the concept difficulty.

The result in the above tables indeed shows many interesting conclusions. Removing

individual component does reduce the performance of methods on both concept pre-

requisite prediction and lecture recommendation tasks.

First the removal of loss resulting from explicit and implicit relations causes the

most decline in the performance. Thus, incorporating the structural relations between

103

entities is the most important factor for MERIT. Second, the models show a similar

degree of decline when removing explicit and implicit similarities, which means these

two pieces of information are equally important. The domain knowledge also plays a

significant contribution to the model performance for concept pre-requisite prediction

task; while not that much for the lecture recommendation task. The importance of

concept difficulty for concept pre-requisite prediction task is that, for one concept to be

pre-requisite of the other, it is important that they are both related and one is more

difficult than the other. For lecture recommendation, the MERIT model already takes

into account the position of lecture in the course which already encodes the difficulty

relations between lectures in the same course. This information along with learner

interaction information provided as training example gives sufficient information for

the lecture recommendation model to learn the difficulty relations between lectures and

their associated concepts. Thus explicit concept difficulty does not inform the lecture

recommendation task significantly.

The concluding remarks are present chapter 7

Chapter 7

Conclusion

In this proposal, we described our design Personalized Online Self-learning System

(POSLS). We took steps towards building POSLS, specifically in the field of knowl-

edge assessment, interest prediction and goal understanding.

We describe the various applications and modeling layer required for a fully devel-

oped POSLS in chapter 3. We also discuss how POSLS can help alleviate the existing

issues with MOOC. In addition, we describe the various benefits the developed platform

will have for both learners and teachers. The design goals are an augmentation to the

existing MOOC platform to maintain learner’s engagement and

In Chapter 4, we proposed a self-attention based knowledge tracing model. It models

a student’s interaction history (without using any RNN) and predicts his performance

on the next exercise by considering the relevant exercises from his past interactions.

In the future, we plan to further investigate the learning and forgetting curve of a

student while going through a sequence of learning activities and incorporate those

techniques in our model. We delivered a Self-attention based models for KT. It models

a student’s interaction history and predicts her performance on the next exercise by

considering contextual information obtained from its relation with the past exercises

and the forget behavior of the student. The relation between exercises is computed using

the student performance data and the textual content of exercises. The forget behavior

is modeled using a time decaying kernel function. The contextual information is then

incorporated in a self-attention layer which we call relation-aware self-attention. Owing

to the purely self-attention mechanism self-attention based models are interpretable.

104

105

Extensive experimentation on a variety of real-world datasets shows that our model can

outperform the state-of-the-art methods and is an order of magnitude faster than the

RNN-based approaches.

In Chapter 5, we described a student interest trajectory based solution to MOOC

thread recommendation problem. Our method, SITRec models the dynamic nature

of student interest and thread contents. It also leverages the course topic structure

and how student interest towards a thread changes when posts are made on a thread

that the student has already interacted with. This captures the temporal dynamics of

posting behavior of students in online forums. We demonstrate the superiority of the

performance of our model compared to other competing approaches on three real-world

datasets. Finally, in chapter 6, we develop models to aid self-learners in taking the

most optimal trajectory for gaining a skill. For this, we provide both the concept pre-

requisite lists so that learners can decide themselves what concepts they need to focus

to gain mastery over their goal concepts. In addition, we also provide actual lecture

recommendation for students to watch next based on their history of interactions. We

leverages the relations between all the entities of MOOC, their textual content and

domain knowledge to learn powerful embeddings of all MOOC entities which can be

used for various downstream tasks. The pre-trained embeddings help the downstream

models in two folds: augmenting richer information about entities, and generalizing the

model for unseen behavior of students. We also utilize the interactions data of student

with MOOC lectures to understand the temporal pattern of students with different

behaviors and motivations.

To summarize, MOOCs is still in its beginner’s mode and there exists enormous

scope of research in this field. This proposal transforms MOOCs into test-beds for ad-

vancing educational research, and ultimately, improving learning. Personalzied MOOCs

framework produces a huge impact on the society by providing a cost-effective way for

everyone to afford high quality education. I address the various issues associated with

developing personalized online self-learning systems by developing new machine learning

models.

Bibliography

[1] Han Yu, Chunyan Miao, Cyril Leung, and Timothy John White. Towards ai-

powered personalization in mooc learning. npj Science of Learning, 2(1):1–5,

2017.

[2] Nabeel Gillani, Taha Yasseri, Rebecca Eynon, and Isis Hjorth. Structural lim-

itations of learning in a crowd: communication vulnerability and information

diffusion in moocs. Scientific reports, 4:6447, 2014.

[3] V. Sabnis, P. D. Tejaswini, and G. S. Sharvani. Course recommendations in moocs

: Techniques and evaluation. In 2018 3rd International Conference on Computa-

tional Systems and Information Technology for Sustainable Solutions (CSITSS),

pages 59–66, 2018.

[4] Apostolos Koutropoulos and Panagiotis Zaharias. Down the rabbit hole: An initial

typology of issues around the development of moocs. Current Issues in Emerging

eLearning, 2(1):4, 2015.

[5] Jifan Yu, Gan Luo, Tong Xiao, Qingyang Zhong, Yuquan Wang, Junyi Luo,

Chenyu Wang, Lei Hou, Juanzi Li, Zhiyuan Liu, et al. Mooccube: A large-scale

data repository for nlp applications in moocs. In Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics, pages 3135–3142, 2020.

[6] Chris Piech, Jonathan Bassen, Jonathan Huang, Surya Ganguli, Mehran Sahami,

Leonidas J Guibas, and Jascha Sohl-Dickstein. Deep knowledge tracing. In Ad-

vances in neural information processing systems, pages 505–513, 2015.

106

107

[7] Shalini Pandey and George Karypis. A self-attentive model for knowledge tracing.

arXiv preprint arXiv:1907.06837, 2019.

[8] Shalini Pandey and Jaideep Srivastava. Rkt: Relation-aware self-attention for

knowledge tracing. arXiv preprint arXiv:2008.12736, 2020.

[9] Shalini Pandey, George Karypis, and Jaideep Srivastava. An empirical compari-

son of deep learning models for knowledge tracing on large-scale dataset. arXiv

preprint arXiv:2101.06373, 2021.

[10] Shalini Pandey, Andrew Lan, George Karypis, and Jaideep Srivastava. Learn-

ing student interest trajectory for moocthread recommendation. arXiv preprint

arXiv:2101.05625.

[11] Shalini Pandey, George Karypis, and Jaideep Srivasatava. Iacn: Influence-aware

and attention-based co-evolutionary network for recommendation. arXiv e-prints,

pages arXiv–2103, 2021.

[12] Ling Zhang, James D Basham, and Sohyun Yang. Understanding the implementa-

tion of personalized learning: A research synthesis. Educational Research Review,

page 100339, 2020.

[13] William Swartout, Benjamin D Nye, Arno Hartholt, Adam Reilly, Arthur C

Graesser, Kurt VanLehn, Jon Wetzel, Matt Liewer, Fabrizio Morbini, Brent Mor-

gan, et al. Designing a personal assistant for life-long learning (pal3). In 29th In-

ternational Florida Artificial Intelligence Research Society Conference, FLAIRS

2016, pages 491–496. AAAI Press, 2016.

[14] Arthur C Graesser, Xiangen Hu, Benjamin D Nye, Kurt VanLehn, Rohit Ku-

mar, Cristina Heffernan, Neil Heffernan, Beverly Woolf, Andrew M Olney, Vasile

Rus, et al. Electronixtutor: an intelligent tutoring system with multiple learning

resources for electronics. International journal of STEM education, 5(1):15, 2018.

[15] Ivon Arroyo, Beverly Park Woolf, Winslow Burelson, Kasia Muldner, Dovan Rai,

and Minghui Tai. A multimedia adaptive tutoring system for mathematics that

addresses cognition, metacognition and affect. International Journal of Artificial

Intelligence in Education, 24(4):387–426, 2014.

108

[16] Chih-Ming Chen. Intelligent web-based learning system with personalized learning

path guidance. Computers & Education, 51(2):787–814, 2008.

[17] Steven P Reise. Item response theory. The Encyclopedia of Clinical Psychology,

pages 1–10, 2014.

[18] Philip I Pavlik Jr, Hao Cen, and Kenneth R Koedinger. Performance factors

analysis–a new alternative to knowledge tracing. Online Submission, 2009.

[19] Hao Cen, Kenneth Koedinger, and Brian Junker. Learning factors analysis–a

general method for cognitive model evaluation and improvement. In International

Conference on Intelligent Tutoring Systems, pages 164–175. Springer, 2006.

[20] Jimmy De La Torre. The generalized dina model framework. Psychometrika,

76(2):179–199, 2011.

[21] Albert T Corbett and John R Anderson. Knowledge tracing: Modeling the ac-

quisition of procedural knowledge. User modeling and user-adapted interaction,

4(4):253–278, 1994.

[22] Michael V Yudelson, Kenneth R Koedinger, and Geoffrey J Gordon. Individual-

ized bayesian knowledge tracing models. In International conference on artificial

intelligence in education, pages 171–180. Springer, 2013.

[23] Ryan SJD Baker and Kalina Yacef. The state of educational data mining in

2009: A review and future visions. JEDM— Journal of Educational Data Mining,

1(1):3–17, 2009.

[24] Zachary A Pardos and Neil T Heffernan. Kt-idem: Introducing item difficulty

to the knowledge tracing model. In International conference on user modeling,

adaptation, and personalization, pages 243–254. Springer, 2011.

[25] Nguyen Thai-Nghe, Lucas Drumond, Artus Krohn-Grimberghe, and Lars

Schmidt-Thieme. Recommender system for predicting student performance. Pro-

cedia Computer Science, 1(2):2811–2819, 2010.

[26] Andreas Töscher and Michael Jahrer. Collaborative filtering applied to educa-

tional data mining. 2010.

109

[27] Nguyen Thai-Nghe, Tomás Horváth, and Lars Schmidt-Thieme. Factorization

models for forecasting student performance.

[28] Chun-Kit Yeung and Dit-Yan Yeung. Addressing two problems in deep knowledge

tracing via prediction-consistent regularization. In Proceedings of the Fifth Annual

ACM Conference on Learning at Scale, pages 1–10, 2018.

[29] Jiani Zhang, Xingjian Shi, Irwin King, and Dit-Yan Yeung. Dynamic key-value

memory networks for knowledge tracing. In Proceedings of the 26th international

conference on World Wide Web, pages 765–774, 2017.

[30] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-

thy Lillicrap. Meta-learning with memory-augmented neural networks. In Inter-

national conference on machine learning, pages 1842–1850, 2016.

[31] Tiffany Barnes. The q-matrix method: Mining student response data for knowl-

edge.

[32] Qi Liu, Zai Huang, Zhenya Huang, Chuanren Liu, Enhong Chen, Yu Su, and

Guoping Hu. Finding similar exercises in online education systems. In Proceedings

of the 24th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining, pages 1821–1830, 2018.

[33] Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui Xiong, Yu Su, and Guoping

Hu. Ekt: Exercise-aware knowledge tracing for student performance prediction.

arXiv preprint arXiv:1906.05658, 2019.

[34] Yu Su, Qingwen Liu, Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Chris Ding,

Si Wei, and Guoping Hu. Exercise-enhanced sequential modeling for student per-

formance prediction. In Thirty-Second AAAI Conference on Artificial Intelligence,

2018.

[35] Koki Nagatani, Qian Zhang, Masahiro Sato, Yan-Ying Chen, Francine Chen, and

Tomoko Ohkuma. Augmenting knowledge tracing by considering forgetting be-

havior. In The World Wide Web Conference, pages 3101–3107, 2019.

110

[36] Yuying Chen, Qi Liu, Zhenya Huang, Le Wu, Enhong Chen, Runze Wu, Yu Su,

and Guoping Hu. Tracking knowledge proficiency of students with educational

priors. In Proceedings of the 2017 ACM on Conference on Information and Knowl-

edge Management, pages 989–998, 2017.

[37] Hermann Ebbinghaus. Memory: A contribution to experimental psychology. An-

nals of neurosciences, 20(4):155, 2013.

[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need.

In Advances in neural information processing systems, pages 5998–6008.

[39] Mingi Ji, Weonyoung Joo, Kyungwoo Song, Yoon-Yeong Kim, and Il-Chul Moon.

Sequential recommendation with relation-aware kernelized self-attention. arXiv

preprint arXiv:1911.06478, 2019.

[40] Baosong Yang, Jian Li, Derek F Wong, Lidia S Chao, Xing Wang, and Zhaopeng

Tu. Context-aware self-attention networks. In Proceedings of the AAAI Conference

on Artificial Intelligence, volume 33, pages 387–394, 2019.

[41] Hanjun Dai, Yichen Wang, Rakshit Trivedi, and Le Song. Deep coevolutionary

network: Embedding user and item features for recommendation. arXiv preprint

arXiv:1609.03675, 2016.

[42] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Learning dynamic embeddings

from temporal interactions. arXiv preprint arXiv:1812.02289, 2018.

[43] Arti Ramesh, Dan Goldwasser, Bert Huang, Hal Daume, and Lise Getoor. Un-

derstanding mooc discussion forums using seeded lda. In Proceedings of the ninth

workshop on innovative use of NLP for building educational applications, pages

28–33, 2014.

[44] Thushari Atapattu and Katrina Falkner. A framework for topic generation and la-

beling from mooc discussions. In Proceedings of the Third (2016) ACM Conference

on Learning@ Scale, pages 201–204. ACM, 2016.

111

[45] Yumeng Qiu, Yingmei Qi, Hanyuan Lu, Zachary Pardos, and Neil Heffernan. Does

time matter? modeling the effect of time with bayesian knowledge tracing. pages

139–148, 01 2011.

[46] Diyi Yang, Mario Piergallini, Iris Howley, and Carolyn Rose. Forum thread rec-

ommendation for massive open online courses. In Educational Data Mining 2014.

Citeseer, 2014.

[47] Fabian Abel, Ig Ibert Bittencourt, Evandro Costa, Nicola Henze, Daniel Krause,

and Julita Vassileva. Recommendations in online discussion forums for e-learning

systems. IEEE transactions on learning technologies, 3(2):165–176, 2009.

[48] Andrew S Lan, Jonathan C Spencer, Ziqi Chen, Christopher G Brinton, and

Mung Chiang. Personalized thread recommendation for mooc discussion forums.

In Joint European Conference on Machine Learning and Knowledge Discovery in

Databases, pages 725–740. Springer, 2018.

[49] Christopher G Brinton, Mung Chiang, Shaili Jain, Henry Lam, Zhenming Liu,

and Felix Ming Fai Wong. Learning about social learning in moocs: From statis-

tical analysis to generative model. IEEE transactions on Learning Technologies,

7(4):346–359, 2014.

[50] Fei Mi and Boi Faltings. Adaptive sequential recommendation for discussion fo-

rums on moocs using context trees.

[51] Saman Rizvi, Bart Rienties, Jekaterina Rogaten, and René F Kizilcec. Investigat-

ing variation in learning processes in a futurelearn mooc. Journal of computing

in higher education, 32(1):162–181, 2020.

[52] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. En-

gaging with massive online courses. In Proceedings of the 23rd International Con-

ference on World Wide Web, WWW ’14, page 687–698, New York, NY, USA,

2014. Association for Computing Machinery.

[53] René F. Kizilcec and Emily Schneider. Motivation as a lens to understand online

learners: Toward data-driven design with the olei scale. 22(2), 2015.

112

[54] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. Engag-

ing with massive online courses. In Proceedings of the 23rd international conference

on World wide web, pages 687–698, 2014.

[55] Andrew S Lan, Christoph Studer, and Richard G Baraniuk. Time-varying learning

and content analytics via sparse factor analysis. In Proceedings of the 20th ACM

SIGKDD international conference on Knowledge discovery and data mining, pages

452–461, 2014.

[56] Ashton Anderson, Daniel Huttenlocher, Jon Kleinberg, and Jure Leskovec. En-

gaging with massive online courses. In Proceedings of the 23rd International Con-

ference on World Wide Web, WWW ’14, page 687–698, New York, NY, USA,

2014. Association for Computing Machinery.

[57] Sara Assami, Najima Daoudi, and Rachida Ajhoun. Personalization criteria for

enhancing learner engagement in mooc platforms. In 2018 IEEE Global Engineer-

ing Education Conference (EDUCON), pages 1265–1272. IEEE, 2018.

[58] Chen Liang, Jianbo Ye, Shuting Wang, Bart Pursel, and C Lee Giles. Investigating

active learning for concept prerequisite learning. In Proceedings of the AAAI

Conference on Artificial Intelligence, volume 32, 2018.

[59] Liangming Pan, Chengjiang Li, Juanzi Li, and Jie Tang. Prerequisite relation

learning for concepts in moocs. In Proceedings of the 55th Annual Meeting of

the Association for Computational Linguistics (Volume 1: Long Papers), pages

1447–1456, 2017.

[60] Zachary A Pardos, Steven Tang, Daniel Davis, and Christopher Vu Le. En-

abling real-time adaptivity in moocs with a personalized next-step recommenda-

tion framework. In Proceedings of the Fourth (2017) ACM Conference on Learn-

ing@ Scale, pages 23–32, 2017.

[61] Chidansh Bhatt, Matthew Cooper, and Jian Zhao. Seqsense: video recommen-

dation using topic sequence mining. In International Conference on Multimedia

Modeling, pages 252–263. Springer, 2018.

113

[62] Sudeshna Roy, Meghana Madhyastha, Sheril Lawrence, and Vaibhav Rajan. Infer-

ring concept prerequisite relations from online educational resources. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 33, pages 9589–

9594, 2019.

[63] Irene Li, Alexander R Fabbri, Robert R Tung, and Dragomir R Radev. What

should i learn first: Introducing lecturebank for nlp education and prerequisite

chain learning. In Proceedings of the AAAI Conference on Artificial Intelligence,

volume 33, pages 6674–6681, 2019.

[64] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A

review and new perspectives. IEEE transactions on pattern analysis and machine

intelligence, 35(8):1798–1828, 2013.

[65] Thomas N Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint

arXiv:1611.07308, 2016.

[66] Jibing Gong, Shen Wang, Jinlong Wang, Wenzheng Feng, Hao Peng, Jie Tang,

and Philip S Yu. Attentional graph convolutional networks for knowledge concept

recommendation in moocs in a heterogeneous view. In Proceedings of the 43rd In-

ternational ACM SIGIR Conference on Research and Development in Information

Retrieval, pages 79–88, 2020.

[67] Wei Xu and Yuhan Zhou. Course video recommendation with multimodal infor-

mation in online learning platforms: A deep learning framework. British Journal

of Educational Technology, 51(5):1734–1747, 2020.

[68] Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher

Clark, Kenton Lee, and Luke Zettlemoyer. Deep contextualized word representa-

tions, 2018, 1802.05365.

[69] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving

language understanding by generative pre-training, 2018.

[70] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

114

[71] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen,

Omer Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A

robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692,

2019.

[72] Chris McCormick. Word2vec tutorial-the skip-gram model. Apr-2016.[Online].

Available: http://mccormickml. com/2016/04/19/word2vec-tutorial-the-skip-

gram-model, 2016.

[73] Jey Han Lau and Timothy Baldwin. An empirical evaluation of doc2vec

with practical insights into document embedding generation. arXiv preprint

arXiv:1607.05368, 2016.

[74] Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, and Daniel S Weld.

Specter: Document-level representation learning using citation-informed trans-

formers. In Proceedings of the 58th Annual Meeting of the Association for Com-

putational Linguistics, pages 2270–2282, 2020.

[75] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit

Bose, and Alex Peysakhovich. Pytorch-biggraph: A large-scale graph embedding

system. arXiv preprint arXiv:1903.12287, 2019.

[76] Susan Thomas. Future ready learning: Reimagining the role of technology in edu-

cation. 2016 national education technology plan. Office of Educational Technology,

US Department of Education, 2016.

[77] Wenzheng Feng, Jie Tang, and Tracy Xiao Liu. Understanding dropouts in moocs.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

517–524, 2019.

[78] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. Arnetminer:

extraction and mining of academic social networks. In Proceedings of the 14th

ACM SIGKDD international conference on Knowledge discovery and data mining,

pages 990–998, 2008.

115

[79] Shalini Pandey and George Karypis. Structured dictionary learning for energy

disaggregation. In Proceedings of the Tenth ACM International Conference on

Future Energy Systems, pages 24–34, 2019.

[80] Sahil Gupta, Shalini Pandey, and KK Shukla. Comparison analysis of link predic-

tion algorithms in social network. International Journal of Computer Applications,

111(16):27–29.

[81] Yiming Yang, Hanxiao Liu, Jaime Carbonell, and Wanli Ma. Concept graph

learning from educational data. In Proceedings of the Eighth ACM International

Conference on Web Search and Data Mining, pages 159–168, 2015.

[82] Jing Zhang, Bowen Hao, Bo Chen, Cuiping Li, Hong Chen, and Jimeng Sun. Hier-

archical reinforcement learning for course recommendation in moocs. In Proceed-

ings of the AAAI Conference on Artificial Intelligence, volume 33, pages 435–442,

2019.

[83] Chen Liang, Zhaohui Wu, Wenyi Huang, and C Lee Giles. Measuring prerequisite

relations among concepts. In Proceedings of the 2015 conference on empirical

methods in natural language processing, pages 1668–1674, 2015.

[84] George D Kuh, Jillian Kinzie, John H Schuh, and Elizabeth J Whitt. Student

success in college: Creating conditions that matter. John Wiley & Sons, 2011.

[85] John Self. Theoretical foundations for intelligent tutoring systems. Journal of

Artificial Intelligence in Education, 1(4):3–14, 1990.

[86] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-

thy Lillicrap. One-shot learning with memory-augmented neural networks. arXiv

preprint arXiv:1605.06065, 2016.

[87] Mohammad Khajah, Robert V Lindsey, and Michael C Mozer. How deep is

knowledge tracing? arXiv preprint arXiv:1604.02416, 2016.

[88] Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommenda-

tion. CoRR, abs/1808.09781, 2018.

116

[89] Tanja Käser, Severin Klingler, Alexander Gerhard Schwing, and Markus Gross.

Beyond knowledge tracing: Modeling skill topologies with bayesian networks. In

International conference on intelligent tutoring systems, pages 188–198. Springer,

2014.

[90] Penghe Chen, Yu Lu, Vincent W Zheng, and Yang Pian. Prerequisite-driven

deep knowledge tracing. In 2018 IEEE International Conference on Data Mining

(ICDM), pages 39–48. IEEE, 2018.

[91] Andrew S Lan, Andrew E Waters, Christoph Studer, and Richard G Baraniuk.

Sparse factor analysis for learning and content analytics. The Journal of Machine

Learning Research, 15(1):1959–2008, 2014.

[92] Radek Pelánek. Modeling students’ memory for application in adaptive educa-

tional systems. International Educational Data Mining Society, 2015.

[93] Paul R Pintrich. The role of goal orientation in self-regulated learning. In Hand-

book of self-regulation, pages 451–502. Elsevier, 2000.

[94] Barry J Zimmerman. Self-regulated learning and academic achievement: An

overview. Educational psychologist, 25(1):3–17, 1990.

[95] Jacquelynne S Eccles and Allan Wigfield. Motivational beliefs, values, and goals.

Annual review of psychology, 53(1):109–132, 2002.

[96] Edward L Deci and Richard M Ryan. The” what” and” why” of goal pur-

suits: Human needs and the self-determination of behavior. Psychological inquiry,

11(4):227–268, 2000.

[97] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[98] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

[99] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat base-

line for sentence embeddings. 2016.

117

[100] Lee Averell and Andrew Heathcote. The form of the forgetting curve and the fate

of memories. Journal of Mathematical Psychology, 55(1):25–35, 2011.

[101] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[102] Haw-Shiuan Chang, Hwai-Jung Hsu, and Kuan-Ta Chen. Modeling exercise rela-

tionships in e-learning: A unified approach.

[103] Zhenya Huang, Qi Liu, Yuying Chen, Le Wu, Keli Xiao, Enhong Chen, Haiping

Ma, and Guoping Hu. Learning or forgetting? a dynamic approach for tracking

the knowledge proficiency of students. ACM Trans. Inf. Syst., 38(2), February

2020.

[104] Youngduck Choi, Youngnam Lee, Dongmin Shin, Junghyun Cho, Seoyon Park,

Seewoo Lee, Jineon Baek, Byungsoo Kim, and Youngjun Jang. Ednet: A large-

scale hierarchical dataset in education. arXiv, pages arXiv–1912, 2019.

[105] Xu Wang, Diyi Yang, Miaomiao Wen, Kenneth Koedinger, and Carolyn P Rosé.

Investigating how student’s cognitive behavior in mooc discussion forums affect

learning gains. International Educational Data Mining Society, 2015.

[106] Chao-Yuan Wu, Amr Ahmed, Alex Beutel, Alexander J Smola, and How Jing.

Recurrent recommender networks. In Proceedings of the tenth ACM international

conference on web search and data mining, pages 495–503. ACM, 2017.

[107] Florent Garcin, Christos Dimitrakakis, and Boi Faltings. Personalized news rec-

ommendation with context trees. arXiv preprint arXiv:1303.0665, 2013.

[108] EL Deci and RM Ryan. (1985b). intrinsic motivation and self-determination in

human behavior. new york: Plenum. 1985.

[109] John Sweller. Cognitive load theory. In Psychology of learning and motivation,

volume 55, pages 37–76. Elsevier, 2011.

118

[110] Allan Collins and Richard Halverson. Rethinking education in the age of tech-

nology: The digital revolution and schooling in America. Teachers College Press,

2018.

[111] David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation.

Journal of machine Learning research, 3(Jan):993–1022, 2003.

[112] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng

Cai. What to do next: Modeling user behaviors by time-lstm.

[113] Alex Beutel, Paul Covington, Sagar Jain, Can Xu, Jia Li, Vince Gatto, and Ed H

Chi. Latent cross: Making use of context in recurrent recommender systems. In

Proceedings of the Eleventh ACM International Conference on Web Search and

Data Mining, pages 46–54. ACM, 2018.

[114] Srijan Kumar, Xikun Zhang, and Jure Leskovec. Predicting dynamic embed-

ding trajectory in temporal interaction networks. In Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pages 1269–1278, 2019.

[115] Aristides Gionis et al. Similarity search in high dimensions via hashing.

[116] Qinyong Wang, Hongzhi Yin, Zhiting Hu, Defu Lian, Hao Wang, and Zi Huang.

Neural memory streaming recommender networks with adversarial training. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pages 2467–2475, 2018.

[117] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. Em-

bedding temporal network via neighborhood formation. In Proceedings of the

24th ACM SIGKDD International Conference on Knowledge Discovery & Data

Mining, pages 2857–2866. ACM, 2018.

[118] Tomoharu Iwata, Amar Shah, and Zoubin Ghahramani. Discovering latent influ-

ence in online social activities via shared cascade poisson processes. In Proceedings

of the 19th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 266–274. ACM, 2013.

119

[119] Scott Linderman and Ryan Adams. Discovering latent network structure in point

process data. In International Conference on Machine Learning, pages 1413–1421,

2014.

[120] Mehrdad Farajtabar, Safoora Yousefi, Long Q Tran, Le Song, and Hongyuan

Zha. A continuous-time mutually-exciting point process framework for prioritizing

events in social media. arXiv preprint arXiv:1511.04145, 2015.

[121] Mehrdad Farajtabar, Yichen Wang, Manuel Gomez-Rodriguez, Shuang Li,

Hongyuan Zha, and Le Song. Coevolve: A joint point process model for informa-

tion diffusion and network evolution. The Journal of Machine Learning Research,

18(1):1305–1353, 2017.

[122] Balázs Hidasi, Alexandros Karatzoglou, Linas Baltrunas, and Domonkos Tikk.

Session-based recommendations with recurrent neural networks. arXiv preprint

arXiv:1511.06939, 2015.

[123] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei

Yin. Graph neural networks for social recommendation. In The World Wide Web

Conference, pages 417–426. ACM, 2019.

[124] Ashwin Paranjape, Austin R Benson, and Jure Leskovec. Motifs in temporal

networks. In Proceedings of the Tenth ACM International Conference on Web

Search and Data Mining, pages 601–610, 2017.

[125] Xia Jing and Jie Tang. Guess you like: course recommendation in moocs. In

Proceedings of the International Conference on Web Intelligence, pages 783–789,

2017.

[126] Jiezhong Qiu, Jie Tang, Tracy Xiao Liu, Jie Gong, Chenhui Zhang, Qian Zhang,

and Yufei Xue. Modeling and predicting learning behavior in moocs. In Proceed-

ings of the ninth ACM international conference on web search and data mining,

pages 93–102, 2016.

[127] Yu Sun, Nicholas Jing Yuan, Xing Xie, Kieran McDonald, and Rui Zhang. Col-

laborative intent prediction with real-time contextual data. ACM Transactions

on Information Systems (TOIS), 35(4):1–33, 2017.

120

[128] Philip H Winne. Learning analytics for self-regulated learning. Handbook of

learning analytics, pages 241–249, 2017.

[129] Alyssa Friend Wise. Learning analytics: Using data-informed decision-making to

improve teaching and learning. In Contemporary technologies in education, pages

119–143. Springer, 2019.

[130] Alyssa Friend Wise. Designing pedagogical interventions to support student use

of learning analytics. In Proceedings of the fourth international conference on

learning analytics and knowledge, pages 203–211, 2014.

[131] Fareedah ALSaad, Assma Boughoula, Chase Geigle, Hari Sundaram, and ChengX-

iang Zhai. Mining mooc lecture transcripts to construct concept dependency

graphs. International Educational Data Mining Society, 2018.

[132] Zenun Kastrati, Ali Shariq Imran, and Arianit Kurti. Integrating word embed-

dings and document topics with deep learning in a video classification framework.

Pattern Recognition Letters, 128:85–92, 2019.

[133] Iz Beltagy, Kyle Lo, and Arman Cohan. Scibert: A pretrained language model

for scientific text. arXiv preprint arXiv:1903.10676, 2019.

[134] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,

Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.

Google’s neural machine translation system: Bridging the gap between human

and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[135] He Bai, Peng Shi, Jimmy Lin, Luchen Tan, Kun Xiong, Wen Gao, and Ming Li.

Segabert: Pre-training of segment-aware bert for language understanding. arXiv

preprint arXiv:2004.14996, 2020.

[136] Tomas Mikolov, Edouard Grave, Piotr Bojanowski, Christian Puhrsch, and Ar-

mand Joulin. Advances in pre-training distributed word representations. arXiv

preprint arXiv:1712.09405, 2017.

121

[137] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph

embedding by translating on hyperplanes. In Aaai, volume 14, pages 1112–1119.

Citeseer, 2014.

[138] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

arXiv preprint arXiv:1412.6980, 2014.

[139] Yuanyuan Qiu, Hongzheng Li, Shen Li, Yingdi Jiang, Renfen Hu, and Lijiao Yang.

Revisiting correlations between intrinsic and extrinsic evaluations of word embed-

dings. In Chinese Computational Linguistics and Natural Language Processing

Based on Naturally Annotated Big Data, pages 209–221. Springer, 2018.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Thesis statement
	Thesis Outline and Original Contribution
	Chapter 3: Vision and Design of POSLS
	Chapter 4: Student Knowledge Modeling
	Chapter 5: Interest prediction: Thread Recommendation
	Chapter 6: Goal Understanding: Learning Trajectory Recommendation

	Bibliographic Statement

	Background and Related Work
	Personalized Learning system
	Student Knowledge Modeling
	Attention Mechanism
	MOOC Thread Recommendation
	Student Profile Learning
	MOOC Entities representation learning
	Concept Pre-requisite Prediction
	Lecture Recommendation
	Pre-trained Representation Learning in NLP

	Vision and Design of POSLS
	POSLS Vision and Objectives
	POSLS Framework
	Modeling Entities in online learning system

	Student Knowledge Modeling
	Theoretical Framework
	SAKT: Self-Attentive model for Knowledge Tracing
	RKT : Relation-Aware Self-Attention for Knowledge Tracing
	Model Overview
	Exercise Representation
	Exercise-Relation Matrix Computation
	Personalized Relation Modeling
	Input Embedding Layer
	 Relation-Aware Self-attention Layer
	Prediction Layer
	Network Training

	Experimental Settings
	Datasets
	Implementation Details
	Metrics
	Approaches

	Results and Discussion
	Student Performance Prediction (RQ1)
	Ablation Study (RQ2)
	Attention weights visualization (RQ3)

	KT models on Large-Scale Dataset
	Data
	Evaluation Setting
	Results and Discussions

	Interest prediction: Thread Recommendation
	Theoretical Framework
	Student Interest Trajectory for MOOC Thread Recommendation (SITRec)
	Text Representation
	Embedding layer
	Update operation
	Projection Operation
	Recommendation
	Network Training

	Experimental Settings
	Dataset
	Comparison Approaches
	Evaluation Methodology

	Results and Discussion
	Performance Evaluation
	Ablation Study

	Thread Recommendation on Generalized Platforms
	Notations, Definitions, and Preliminaries
	Model Architecture
	Network training

	Experimental Settings
	Performance Comparison (RQ1)
	Analysis of IACN (RQ2)

	Goal Understanding: Learning Trajectory Recommendation
	Theoretical Framework
	Meaningful Learner Profiling
	Representation Learning for POSLS
	MERIT: A Unified Representation of MOOC Entities using Graph-Informed Transformer
	MOOC Entity Representation Evaluation

	Experimental Settings
	Dataset
	Evaluation Tasks
	Implementation Details

	Results and Discussion
	Concept Pre-requisite Prediction (RQ1)
	Lecture Recommendation (RQ2)
	Ablation Study (RQ3)

	Conclusion
	Bibliography

