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Abstract 

 There has been an extensive body of methodological literature supporting the 

effectiveness of planned missingness (PM) designs for reducing survey length. However, 

in industrial/organizational (I/O) psychology, it is still rarely applied. Instead, when there 

is a need to reduce survey length, the standard practice is to either reduce the number of 

constructs measured or to use short forms rather than full measures. The former is 

obviously unideal. The latter requires prioritizing the measurement of some items over 

that of others and can also quickly become time and labor intensive, as not all measures 

have established short forms.  

 This dissertation presents three studies that compare the relatively unused 

methodology of PM against the common practice of using short forms. First, the two 

approaches are compared in three archival datasets, finding that PM consistently yields 

more accurate correlational estimates than short forms. Second, a Monte Carlo simulation 

is conducted to explore how this comparison may be affected by data characteristics, 

including the number of constructs, construct intercorrelations, sample size, amount of 

missingness, as well as different types of short forms. Average of all conditions 

simulated, short forms produce slightly more accurate estimates than PM when 

empirically developed short forms are readily available for use. When a part of the 

sample needs to be used to first develop short forms, the two approaches perform 

equivalently. When the selection of items for short forms strays from being purely 

empirical, PM outperforms short forms. Lastly, a qualitative survey exploring social 

science researchers’ knowledge about PM finds that most are not familiar with PM or 
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have an inaccurate understanding of the concept despite working with surveys frequently. 

A number of research contexts are identified for which PM may not be suitable.  

 Overall, the findings of this dissertation demonstrate that PM designs are 

technically effective in producing accurate estimates. Its effectiveness, along with its 

convenience, makes it a valuable survey design tool. It is apparent that the road to 

popularizing this technique within the I/O field will require much education in its 

understanding and application, and this dissertation serves as a first step in doing so.  
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Overview 

Surveys are ubiquitously used for research in Industrial/Organizational (I/O) 

psychology and in the social sciences broadly. As a study methodology, surveys are easy 

to implement and very useful for gathering self-report information. Typically, researchers 

collect responses on numerous psychological constructs, each measured by multiple 

items. The measurement of many multi-item constructs can result in an undesirably long 

estimated response time. Facing the need to reduce study length, common approaches 

include prioritizing constructs that are most central to the research questions of interest 

and dropping the others, and using shorter measurement scales. I conduct a series of 

studies that support an alternative solution, namely planned missingness, a survey design 

technique that has the potential to significantly lessen the burden of both researchers 

designing the study and respondents completing the study. However, before introducing 

the concept of planned missingness, the general missing data problem warrants a 

discussion.  

Missingness in data is common in survey research. Unplanned missingness or 

survey nonresponse can occur because of inattentive responding, software malfunction, 

attrition, or intentional decision to skip items (Newman, 2014). In most cases, data 

missingness poses an inconvenience for data analysis as most data analytic procedures 

are not suited for treatment with missing data (Schafer & Graham, 2002).   

Different Types of Data Missingness  

 Missingness in a dataset is of concern to researchers and statisticians because it 

can have an impact on estimates of population parameters. A parameter is biased when it 
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is systematically over- or under-estimated. The effect of missingness on bias is 

influenced by three factors, such that 

Bmis = f (R, M, T) 

where R is the response rate, or the amount of missing data in a dataset; M is the 

missingness mechanism, or whether missingness is not at random, at random, or 

completely at random; and T is the treatment used for missing data (Newman, 2014; 

Newman & Cottrell, 2015).  

 Missingness can be classified according to level of missingness, causal patterns, 

or statistical relations. Level of missingness distinguishes missing data at the item-level, 

construct-level, and person-level (Newman, 2014). This manner of classifying 

missingness is straightforward, as a simple look at the data would suffice. When a 

respondent fails to answer one or more but not all of the items within a scale, missingness 

is at the item-level. When one fails to answer all items of a scale, missingness is at the 

construct-level. When one fails to respond to all constructs of a survey, missingness is at 

the person-level. Thus, item-level missingness is nested under construct-level 

missingness, which is nested under person-level missingness (Newman, 2014).  

Depending on the underlying causes of missingness, missing data can take a few 

different forms with regards the way they are distributed throughout a dataset (Enders, 

2010; Schafer & Graham, 2002). A univariate pattern occurs when there is some 

missingness in only one variable or one set of variables, while the rest is completely 

observed. Enders (2010) has made the distinction between univariate pattern, referring to 

missingness in only one variable, and unit nonresponse pattern, referring to uniform 

missingness in a set of variables. For example, if respondents are instructed to skip items 
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two to four if they answer “no” on item one, and there is no additional, unexpected 

missingness, this would constitute a univariate pattern of missingness. If missingness on 

one item or a set of items automatically lead to subsequent missingness on the next item 

or set of items, a monotone pattern of missingness emerges. An example would be 

attrition in longitudinal data where respondents do not reappear after missing one 

timepoint of data collection. Lastly, an arbitrary pattern (or sometimes called general 

pattern) occurs when any value of any variable could be missing. This is more common 

when there is inattentive responding. While the classification of missingness data patterns 

as univariate, monotone, arbitrary is useful in helping us understand the contextual causes 

for missingness, a comprehensive and accurate understanding of how missing data came 

about is not always feasible. Furthermore, when determining the appropriate treatment 

for missing data, the “distribution of missingness” or “the probabilities of missingness” is 

of more critical interest (Schafer & Graham, 2002, p. 151). This distribution of 

missingness can be represented with a matrix with the same dimensions as the dataset, 

constituting of elements of 1 or 0 for each value to denote whether the value is missing. 

This missingness matrix will be denoted as R going forward, following the convention of 

Schafer and Graham (2002). In other words, the statistical relationship between whether a 

data point is missing and the value of that data point will have important implications for 

how we should deal with missingness.  

 Rubin (1976) classified missingness in terms of how it relates to the data itself 

into missingness at random (MAR), missingness not at random (MNAR), and 

missingness completely at random (MCAR). As denoted by Schafer and Graham (2002), 
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if the complete dataset is denoted as Ycom, part of which may be missing (Ymis) and the 

rest is observed (Yobs), then 

Ycom = (Ymis, Yobs) 

such that the would-be complete dataset can be partitioned into the observed parts of the 

data and the not observed or missing parts of the data. Missingness is classified as MAR 

when the probabilities of missingness does not depend on the missing data but does 

depend on the observed data, such that 

P(R|Ycom) = P(R|Yobs) 

In other words, patterns of missingness (whether a datapoint is missing or observed) is 

associated with at least some of the observed data. Therefore, despite being named 

random, MAR is actually nonrandom missingness. A common example of this is in 

longitudinal data collection. If the first survey collects course grades of first-year college 

students, and the follow-up survey a year later collects grades of their second-year 

courses, whether second-year course grades are missing or observed would be dependent 

on their first-year course grades (whether they passed first-year courses). This constitutes 

a case of MAR.  

 Another interesting example in the industrial/organizational (I/O) psychology 

literature is direct range restriction, also known as Thorndike’s Case 2 (Sackett & Yang, 

2000; Thorndike, 1949). In predictive validity studies, a predictor (e.g., cognitive ability) 

is used to evaluate applicants and make selection decisions. Then a criterion of interest 

(e.g., job performance) is measured to assess the predictive validity of the predictor. 

Thus, only criterion data of individuals selected are available, resulting in the range 

restriction problem (Sackett & Yang, 2000). Traditionally, the attenuated validity due to 
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range restriction is corrected upwards to estimate the true value. However, range 

restriction can also be viewed a missing data problem (Mendoza, 1993; Pfaffel et al., 

2016; Wiberg & Sundström, 2009). Whether a criterion datapoint is missing is dependent 

on the observed predictor scores, constituting a case of MAR mechanism.  

 More stringent conditions define MCAR such that the probabilities of missingness 

do not depend on the missing data or the observed data. In other words, probabilities of 

missingness are truly random such that 

P(R|Ycom) = P(R) 

MCAR can occur when respondents accidentally miss questions or the software used to 

administer questionnaires malfunctions and skips questions. In addition, instances where 

researchers implement planned missingness for purposes of shortening survey lengths or 

preventing respondent fatigue, missingness is MCAR, as each respondent is given a 

randomly chosen subset of items. In these cases, missing data are not expected to be 

related to either observed data or the data that are missing.  

 In contrast, when the distribution of R depends on Ymis, it constitutes a case of 

MNAR. The most common context in which MNAR operates is nonrandom dropout in 

longitudinal data collection, where the dropout rate is associated with the variable(s) 

measured.  

Importance of Distinguishing between MAR, MCAR, and MNAR 

 Whether the missingness is MAR, MCAR, or MNAR will have important 

implications for the extent to which and how the dataset can be used to infer population 

distribution. When the population distribution is interpreted as an infinitely repeated 

sampling distribution, the complete sample dataset is associated with a certain probability 
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among all possible samples. On the other hand, any sampled statistics can also be 

interpreted as the likelihood given what is known about the population parameters from 

the sample. When data are MNAR, the missing data will not represent a proper sampling 

distribution or a proper likelihood. It is for this reason that many of the available 

techniques for treating missing data are not appropriate for cases of MNAR. For example, 

Collins, Schafer, and Kam (2001) demonstrate that methods for treating missingness that 

assume MAR and MCAR may yield biased population estimates when used on data with 

MNAR (Collins et al., 2001). 

 In cases of MAR or MCAR, however, the distribution of Yobs can be written as a 

function of the distribution of Ycom and Ymis, such that  

P(Yobs; q) = ò P(Ycom; q) dYmis (Rubin, 1976; Schafer & Graham, 2002) 

with P(Ycom; q) denoting the population distribution with unknown parameter q from 

which complete data (Ycom) are randomly sampled, then the sampling distribution of 

observed data (P(Yobs; q)) is the definite integral of P(Ycom; q) with respect to missing 

data (Ymis). This equation will yield a proper sampling distribution only when missingness 

is MCAR but will yield a proper likelihood as long as missingness is MAR (Rubin, 

1976). Therefore, different techniques for handling missing data are appropriate for 

different missingness mechanisms depending on the underlying assumptions. Generally, 

while distribution-based treatment methods (e.g., listwise and pairwise deletion) only 

yield valid estimates under MCAR and become biased under MAR, likelihood-based 

methods (e.g., maximum likelihood) yield unbiased estimates under either MAR or 

MCAR (Schafer & Graham, 2002).  
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 In situations of MNAR, treatment methods generally require an explicit 

understanding or modeling of the causes of missingness. It is for this reason that the 

MNAR mechanism is sometimes also referred to as “non-ignorable,” meaning that the 

non-response model is not ignorable, while MAR and MCAR are “ignorable”. It is 

important to note that while MAR, MCAR, and MNAR are often discussed as discrete 

categories, their distinctions are nowhere as clear because rarely is naturally-occurring 

missingness in data purely MAR, MCAR, or MNAR. Other than planned missingness 

which collects MCAR data by definition, any and all unintended missing data are on “a 

continuum between MAR and MNAR” (Graham, 2009, p. 567). Even when data are 

collected with a planned missingness design, additional unintended missingness can 

occur due to a variety of reasons.  

Nevertheless, determining the nature of missingness is important for the 

techniques used to treat it. It is especially important to make the differentiation between 

ignorable and non-ignorable missingness as both MAR and MCAR but not MNAR can 

be appropriately treated with a class of techniques discussed in a later section. 

Unfortunately, this poses somewhat of a Catch-22. As previously defined, MNAR is 

present in datasets where missingness is related with the missing data. Sensitivity 

analyses can be used to statistically suggest missingness nonignorability (e.g., 

Molenberghs & Verbeke, 2006; Verbeke et al., 2001). When parameters under the 

assumptions of nonignorability exert little effect on inferences of interest, ignorable and 

therefore missingness at random may be satisfied (Troxel et al., 2004). However, 

Molenberghs and colleagues (2008) demonstrate that it is not possible to distinguish 

MAR and MNAR empirically because MNAR models cannot be verified by observed 
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data. For every MNAR model fit, there is a MAR counterpart model with identical fit. To 

definitively diagnose MNAR, therefore, the missing values are needed, whose missing 

status composes the MNAR. Thus, it is important to consider the substantive variables 

involved in the study and whether there are any theoretical explanations for why missing 

values might be related to the non-responses. In some cases, such conceptual rationale 

can be easily established. For example, if a longitudinal study measures the level of 

depression in participants over time, it is reasonable to postulate that individuals with 

more severe levels of depression are less likely to respond to surveys. One way to 

diagnose MNAR is to conduct follow-up surveys to non-respondent. For example, 

Fielding et al. (2008) set up a reminder system in their collection of quality of life data, 

which retrieved about 50% of the missing data. The non-missing data were then 

compared with the originally missing data to establish probable MNAR mechanism. 

Although useful, this approach is not always possible and even when done, only provides 

an indicator of potential MNAR.  

Tests of MCAR primarily rely on the conceptual property of random missingness, 

such that cases with missing data and cases without missing data should belong to the 

same population and therefore have equal means and covariances (Kim & Bentler, 2002; 

Rubin, 1976). While a series of independent t tests can be performed to test each variable, 

Little (1988) provides a global, multivariate statistical procedure for testing whether the 

missingness mechanism in a dataset is MCAR. Mean differences are computed across 

subgroups of respondents that share missingness pattern. The resulting weighted sum of 

the mean differences is tested for its statistical significance against the null hypothesis 

that missingness is completely at random.  
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Techniques for Treating Ignorable Missingness 

While researchers may habitually edit data post-hoc (e.g., listwise or pairwise 

deletion) as a simple and convenient way of removing data missingness, these popular 

procedures have problems of their own (Newman, 2014; Newman & Cottrell, 2015). 

Although no method for treating missing data is perfect, some (namely maximum 

likelihood and multiple imputation) are generally better than others (e.g., Little & Rubin, 

2019; Newman, 2014). I briefly review the most common treatment methods below.  

 Listwise Deletion. In opposition with the “fundamental principle of missing data 

analysis” (Newman, 2009, p. 11) that unambiguously advises researchers to use all 

available data, listwise deletion, or otherwise known as complete-case analysis, involves 

removing all data of participants who are missing any amount of data before conducting 

statistical analysis. Newman (2014) explicitly prohibits the use of listwise deletion to 

treat missingness.  

 The most obvious issue with listwise deletion is that all item-level and construct-

level missingness are exacerbated into person-level missingness. Rather than treating 

missingness, this practice introduces more missingness to the data. By doing so, total 

sample size and therefore statistical power is reduced. This procedure of throwing away 

some of the data that have been obtained by using respondents’ energy and time can be 

wasteful and even viewed by some as unethical (Rosenthal, 1994). More seriously, 

listwise deletion introduces bias into both the sample tested as well as the parameter 

estimates (Newman, 2014). Because analyses are only conducted on participants who 

completed the survey in its entirety, such a sample is inherently not representative of the 

population or even the original sample. Under nonrandom missingness (MAR or 
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MNAR), listwise deletion yields biased parameter estimates (Arbuckle & Marcoulides, 

1996; Enders & Bandalos, 2001; Muthén et al., 1987; Newman, 2014; Wothke, 2000). 

Given that a strict case of MCAR is so implausible in practical, empirical settings, 

listwise deletion is generally not recommended.   

Pairwise Deletion. Pairwise deletion, also known as available-case analysis, is 

similar to listwise deletion in the manner that it essentially ignores the missingness of the 

data. It calculates different parameters with the available data that are not missing for the 

particular parameter. Thus, the sample size associated with each of the parameter 

estimates may be different. For example, the mean and standard deviation of each 

variable are calculated using the observed values for that variable, and the correlation 

between each pair of variables is calculated based on the number of cases that have 

observed values for both variables. Additional statistical analyses are then computed 

based on these pairwise values.  

 Because each parameter is estimated from a different set of cases using a pairwise 

deletion approach, it is often difficult to compute estimates of uncertainty like standard 

errors. Further, parameter estimates generated under missingness mechanisms of MAR 

and MNAR have been found to be biased (Arbuckle & Marcoulides, 1996; Muthén et al., 

1987; Wothke, 2000), although the biases have been found to be small in empirical 

examples (Graham, 2009; Schafer & Graham, 2002).  

 Whether pairwise deletion is appropriate depends on the specific pattern of 

missingness in the data. Newman (2014) summarizes that when there is no construct-

level missingness and only item-level missingness, and the proportion of respondents that 

exhibit some level of item-level missingness is below 10%, pairwise deletion performs 
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just as well as maximum likelihood and multiple imputation procedures practically. 

Alternatively, in such a case where there is only item-level missingness, each construct is 

measured by multiple items, and each respondent has reported some data on each 

construct, each individual’s mean across items that measure the same construct can be 

used to represent that construct (Newman, 2014).  

 Single Imputation. Single imputation is another technique infamous for being 

inappropriate at treating missing data (Newman, 2014). Generally, each missing value is 

filled in by a single fixed value. The specific procedure from which the fixed value is 

obtained can vary, the simplest of which is mean substitution (Wilks, 1932). The mean of 

each variable across all respondents can be calculated and used to fill in all missing 

values within that variable, thus retaining maximum sample size (Schafer & Graham, 

2002). 

 Because single mean imputation or unconditional mean imputation fills in all 

missing data with a constant, the procedure artificially reduces the variance of the 

variable and changes its distribution. As a result, multivariate correlation magnitudes are 

also downwardly biased. Further, when the dataset is MCAR, mean substitution 

inherently violates the assumption of missing data being random, introducing bias 

(Newman, 2014). Another major disadvantage of single imputation is that because 

different parameter estimates are associated with different sample sizes, an accurate 

standard error usually cannot be calculated for hypothesis testing (Little & Rubin, 2019). 

Using the complete dataset sample size for partially imputed data results in downwardly 

biased standard errors and increases the probability of Type I errors (Newman, 2014).  
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 More sophisticated single imputation methods attempt to preserve the distribution 

of the variables. For example, hot deck imputation, replaces each missing datum with the 

value from a real respondent who answers similarly on other variables (Ford, 1983); 

conditional mean imputation fills in missing data with the predicted values calculated 

from a regression equation (Buck, 1960). However, systematic biases in correlation 

estimates remain unresolved (Enders, 2010).   

Person mean imputation/prorated scale score. Person mean imputation is a 

more rare type of single imputation, used when there is some data available representing 

each construct for each respondent, or when missingness exists only at the item-level. 

Thus, missing values of each respondent are replaced by the average of the available 

items. While this technique has received less empirical attention, biased parameter 

estimates, such as coefficient alphas, have been found (Enders, 2003). 

More complicated methods of single imputation exist that involve regression 

modeling and corrections. However, when faced with MAR or MCAR, statisticians 

unanimously recommend multiple imputation over single imputation (Newman, 2014; 

Schafer & Graham, 2002).  

Multiple Imputation (MI). The advantage of multiple imputation over single 

imputation lies in the word “multiple.” By using an unbiased single imputation method 

(e.g., stochastic regression imputation where each predicted value from a regression 

equation is augmented with a normally distributed residual term and used to fill in a 

missing value) and performing the imputation routine multiple times, variations across 

different imputations are taken into consideration when calculating standard errors or 

other degrees of uncertainty, making hypothesis testing more accurate. Whereas SEs are 
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usually downwardly biased in single imputation methods because sample size is inflated 

by using the complete dataset sample size when in fact some of the data have been 

imputed, SEs in multiple imputation procedures are corrected upwardly by including the 

between-imputations variance (Newman, 2014; Schafer & Graham, 2002). As such, the 

pooled MI parameter estimates are unbiased when missingness is either MAR or MCAR 

(Newman, 2014).  

 In a typical procedure of multiple imputation, missing data are imputed m times. 

Generally, it is recommended in imputing, all variables that are included in the survey 

design should be used as predictors, as leaving out variables may lead to biased estimates 

(Rubin, 1996). Statistical analyses are computed using each of the m partially imputed 

datasets independently (Royston, 2004). Thus, rather than filling in a missing datum with 

a single value, MI procedures replace the missing value with a set of m plausible values, 

retaining the uncertainty around the datum (Yuan, 2000). Results across the m datasets 

are then pooled, with the overall estimate being simply the average of the m estimates, 

and the uncertainty calculated as a function of both the average within-imputation 

variance and between-imputations variance using Rubin's (1987) formula, such that 
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Maximum Likelihood (ML). The techniques that have been discussed thus far 

either attempt to ignore missingness in the dataset (listwise and pairwise deletion) or try 

to recover the missing data (single and multiple imputation). Maximum likelihood 

techniques are less conceptually straightforward. Rather than estimating the missing data 
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to model the would-have-been complete dataset, ML procedures select the parameter 

estimates that maximize the probability of the observed data (Newman, 2014).  

 Based on the relationships between different values of the parameter estimates 

and the likelihood or probability of the observed data, a likelihood function is generated. 

The parameter estimates that maximize the likelihood function based on the partially 

missing data are then selected. Thus, when missingness is MAR or MCAR, parameter 

estimates yielded by ML routines will be unbiased and standard errors will be accurate 

(Dempster et al., 1977; Enders & Bandalos, 2001; Finkbeiner, 1979). Due to the 

increasing availability of software and different statistical packages designed to allow for 

ML approaches, including LISREL (Joreskog & Sorbom, 1983), AMOS (Arbuckle, 

1995), SPSS, and R, this technique has grown in popularity in recent years.  

 Two major ML techniques are elaborated below: full-information maximum 

likelihood (FIML) and expectation maximization (EM).  

 Full-information maximum likelihood (FIML). FIML aims to identify 

population parameters that have the highest probability of yielding a particular sample of 

data by computing a case-wise likelihood function using only items that are observed for 

each case (respondent) and accumulating and maximizing likelihood functions across all 

cases (Arbuckle & Marcoulides, 1996; Enders, 2010; Enders & Bandalos, 2001).  

 Expectation maximization (EM). The EM algorithm divides a maximum 

likelihood procedure into two steps. In the expectation (E) step, elements in the initial 

estimates of mean and covariance matrix are used to create a function for the expectation 

of the log-likelihood. In the maximization (M) step, parameter estimates are generated to 

maximize the expected log-likelihood function generated in the E-step. The updated 
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parameter estimates are then fed back into the E-step. This iterative process continues 

until elements no longer change between consecutive iterations, and the likelihood 

function has converged (Enders, 2010).  

 Although MI and ML techniques have been repeatedly found to be equivalent 

(e.g., Collins et al., 2001; Graham et al., 2012), each has practical advantages and 

disadvantages. MI requires imputing data and performing any statistical analyses multiple 

times and pooling results. Importantly, it had been suggested that a large number of 

imputed datasets (m) is needed to ensure sufficient power (Graham et al., 2007), making 

analyses computationally demanding. Further, to a non-technical reader, the process of 

imputing data can seem dubious. On the other hand, ML consists of complex 

computational steps that may not be built into existing statistical software. The choice 

between these two techniques should depend on the resources available and the statistical 

analyses that researchers wish to perform. For the quantitative components of this 

dissertation, MI is used to treat missingness incurred by PM.  

Techniques for Treating Non-Ignorable Missingness 

 Handling non-ignorable missingness or MNAR generally requires the 

simultaneous modeling of both the observed data as well as the missingness processes. 

For example, Tsonaka et al. (2009) demonstrate the use of a semi-parametric shared 

parameter model that analyzes longtiduinal responses with nonrandom missingness. It 

has no distributional requirements for the random effects and therefore does not require 

sensitivity analyses. When the joint distribution of response and missingness processes 

needs to be specified, sensitivity analyses are needed. Some recent developments for 

specifying a distribution for unknown parameters of missingness include selection 
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models (e.g., Schafer & Graham, 2002; Kenward, 1998; Diggle & Kenward, 1994; Little, 

1995; Little & Schenker, 1995) and pattern-mixture models (e.g., Andridge & Little, 

2011; Hedeker & Gibbons, 1997; Little, 1993; Schafer & Graham, 2002; Thijs, 

Molenberghs, & Verbeke, 2000). 

Planned Missingness 

Much of the missingness in collected data occurs unintentionally (e.g., attrition, 

inattentive responding, software malfunction) and is regarded as at least an inconvenience 

and sometimes a major challenge. As detailed before, across the different types of 

missingness mechanism, ignorable missingness can be properly handled with multiple 

imputation or full-information maximum likelihood. Therefore, it is not so much of a 

problem but actually poses an opportunity. Planned missingness (PM), also known as 

designed missingness (e.g., Harel et al., 2015), partial or split questionnaire design (e.g., 

Houseman & Milton, 2006; Raghunathan & Grizzle, 1995; Wacholder et al., 1994), or 

matrix sampling (e.g., Munger & Loyd, 1988; Thomas et al., 2006), is a survey design 

technique that deliberately collects incomplete data with an ignorable missingness 

pattern. In a PM design, only a proportion of the study items are administered to each 

respondent such that respondents receive different subsets of items and each item may be 

answered by a different subset of respondents. In the earliest and simplest PM design, all 

items in a study are divided into a number of subsets and each respondent is assigned a 

random subset. These subsets are derived from sampling items without replacement such 

that each item belongs in one subset and one subset only (Munger & Loyd, 1988). The 

randomness with which items are assigned to each participant allows for an even and 

systematic pattern of missingness throughout the survey and across respondents.  
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 A more recent and more popular variation PM design is the three-form design 

(Graham et al., 1996), which is an example of a multi-form design in which each 

respondent is randomly assigned one of the several different forms of a survey (Table 1; 

e.g., Arminger & Sobel, 1990; Raghunathan & Grizzle, 1995; Wacholder, Carroll, Pee, & 

Gail, 1994). Specifically, all items in the survey are divided into four sets (A, B, C, and 

X), with a common set (X) that often contains the items most central to the study 

(Graham et al., 2006). The rest of the items that are not contained in X are equally 

divided into three subsets A, B, and C. All respondents answer items in X and answer 

two other randomly selected subsets of items. Thus, each respondent’s missing data are 

items in A, B, or C. There is also the option to include a subset of respondents with no 

missing data. The 3-form design has been proposed as advantageous to simpler PM 

designs because each pair of items are completed together by at least one-third of the 

respondents, thus allowing better estimation of covariances of the data (Graham et al., 

1996). However, because the common set of items is recommended to be chosen based 

on their importance to the study, having them be answered more frequently than the other 

item sets poses a potential threat to whether the missingness can be considered truly 

random. Other than the inclusion of a common set of items that are administered to all 

respondents, the practice of dividing items into a fixed number of sets to make up several 

different forms appears to be for pragmatic reasons. When a questionnaire could only be 

administered on paper-and-pencil, it is necessary to have just a few alternate forms of the 

questionnaire. However, with technological development and increased use of online 

survey platforms, an alternative PM design is possible.   
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 Each respondent can be assigned a certain percentage of the items, with possible 

overlap in items between different respondents’ items (Table 2). Thus, while each 

respondent exhibits the same level of data missingness, item overlap between two 

different respondents can potentially range from being assigned none of the same items to 

being assigned all of the same items. This will be hereafter referred to as the random 

percentage (RP) design. With proper randomization, a sufficient sample size, and a 

reasonably level of missingness, an RP design allows some data to be obtained about 

each pair of items, just like the 3-form design. In the long run however, no one item 

would be expected to be administered more often than others. On web-based survey 

platforms such as Qualtrics, this can be simply implemented by adding a randomizer in 

the survey flow. Zhang and Yu (In press) simulated planned missingness using the 3-

form and random percentage designs, and found that the two designs yielded almost 

identical estimates when treated with FIML across a range of sample sizes and amount of 

missingness. Therefore, researchers can make the decision of whether or not to have a 

common set of items with no intentional missingness based on the central research 

objectives. Then whether to use a finite number of forms or an RP design in the rest of 

the items measured can depend on practical factors (e.g., administration mode) (Little & 

Rhemtulla, 2013).  

The Present Research: Planned Missingness as an Approach to Reduce Survey 

Length 

In organizational research, a common research strategy is to administer a survey 

containing a number of scales measuring a substantial number of variables of interest. 

Depending on the scope of the study and the variables of concern, survey length can 
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become daunting. In this dissertation I compare two different approaches to shorten 

survey length with regards to their technical effectiveness and researchers’ perceptions of 

them: the commonplace use of short forms and the much less used planned missingness 

design.  

 Given the popularity and convenience of survey research, survey data quality is 

an important issue. Longer surveys have lower completion rates and higher levels of 

unplanned missing data (Bowling et al., 2021; Deutskens et al., 2004; Galesic & Bosnjak, 

2009; Liu & Wronski, 2018). Thus, shortening the survey can be a proactive way of 

reducing unplanned missingness. Further, questions near the end of long surveys tend to 

be answered more quickly, simply, and uniformly (Galesic & Bosnjak, 2009). There have 

been proposals of ideal and maximum survey lengths based on individuals’ average 

attention span (Revilla & Ochoa, 2017). Although there are a number of post-hoc 

methods to identify and exclude inattentive responses (e.g., Berry et al., 2019; Meade & 

Craig, 2012), it would be more efficient to design the survey in ways that are less 

conducive to careless responding.  

In addition to concerns about data quality, logistical constraints are common in 

survey research. An organization may grant a researcher access to employees, with a 

caveat that the survey not take more than a certain number of minutes. The use of subject 

pools at universities is often similarly constrained: researchers are allocated certain 

number of participant time blocks of a fixed number of minutes. Thus, it is often in 

researchers’ interest to shorten the length of their surveys. 

 When facing the challenge of reducing survey length and participant burden, one 

unattractive option is to reduce the number of constructs assessed (e.g., scale back and 
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measure five constructs, rather than the intended eight). Another commonly used 

approach is to reducing survey length without dropping constructs is the use of short 

forms of measures. For example, the 50-item International Personality Item Pool (IPIP) 

Big 5 measure has a shorter version that measures each construct with four items and is 

20 items in total (Donnellan et al., 2006; Goldberg, 1999). In cases in which there are no 

existing short forms, it is common practice to conduct a preliminary study to develop 

them before administering the survey of interest, retaining items with the highest factor 

loadings or those with the strongest relationships with criteria of interest, sometimes also 

with content sampling constraints. Thus, in many scenarios where no short forms exist 

and one has to be developed, a simple survey study can quickly turn into a much more 

time- and resource-consuming project.  

A potential alternative is to use a PM design, in which all items are retained, with 

a randomly selected percentage of items are administered to each respondent (Enders, 

2010; Graham et al., 2006). The resulting dataset has missingness completely at random 

(MCAR), which can be subsequently treated with maximum likelihood or multiple 

imputation (Newman, 2014; Rubin, 1976).  

Planned missingness designs have grown in popularity in some social science 

fields (e.g., Rhemtulla & Hancock, 2016; Rhemtulla & Little, 2012). In developmental 

and educational research, studies have capitalized on multiform PM designs to reduce 

assessment time. For example, Foorman et al. (2015) examined factors regarding 

children’s language and reading and how they related to comprehension. They were able 

to reduce average test time by constructing and administering multiple forms of the 

variables measured. Similarly, Smits and Vors (2007) demonstrated that study skills and 
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motivation measured using three-form and six-form PM designs closely reproduced full 

measures. Conrad-Hiebner et al. (2015), in their development and validation of a scale 

that measures protective factors against child abuse, used the three-form design to reduce 

the burden of the surveys placed on participating caregivers.  

In addition, because of the inherently longitudinal nature of their work, 

developmental and educational psychologists have expanded planned missingness within 

questionnaire to across questionnaires (e.g., Little & Rhemtulla, 2013; Mistler & Enders, 

2012). Longitudinal wave missing or distributed-lag PM designs omit certain repeated 

measurement occasions for respondents or cohorts (e.g., Barbot, 2019; Hogue et al., 

2013; Little et al., 2017; Little & Rhemtulla, 2013). For example, Lin et al. (2014) 

studied the relationship between prenatal stress of Mexican American mothers and the 

infants’ subsequent self-regulatory capacity. They collected data at the prenatal, 6-week, 

and 12-month timepoints from all participants, and administered a wave missing design 

for the follow-ups at 12-, 18-, and 24-weeks. This type of wave missingness can even be 

combined with item-level PM within each measurement occasion, although efficiency in 

estimating rates of change parameter can be reduced (e.g., Rhemtulla et al., 2014; Wood 

et al., 2019). Because change parameters are usually key effects examined in longitudinal 

studies, Wu et al. (2016) developed an algorithm that identifies efficient PM designs for 

longitudinal data collection given the multiple parameters of interest in linear and 

quadrative growth models.  

Another PM design is the two-method design (Graham et al., 2006; Hogue et al., 

2013). Developmental researchers are sometimes faced with two methods for measuring 

the same construct, one considered as the gold standard in terms of measurement quality 
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but more resource-consuming to administer than the other. For example, to examine 

research questions related to children’s attentiveness, the method of independent 

observation can be less prone to bias and can yield a rich list of children’s behaviors. 

However, it is very expensive to conduct on the entire sample. The alternative is a 

teacher- or parental-report that is convenient and inexpensive to administer but faces 

measurement issues such as susceptibility to bias. The two-method PM design provides a 

solution by administering the less expensive method (e.g., other-report questionnaire) to 

all respondents but the more expensive method (e.g., independent observer) to only a 

randomly selected subset of respondents (Rhemtulla & Hancock, 2016; Rhemtulla & 

Little, 2012).  

Interestingly, PM designs have not been solely used for the objective of reducing 

survey length and improving the cost-effectiveness of studies. In randomized trial studies 

of behavioral interventions, PM has presented itself as a solution to the assessment 

reactivity problem, which is when the research procedures other than the specific 

intervention studied impact the group designated as control. The classic example is 

alcohol consumption studies finding a substantial reduction not only in the intervention 

group, but also in the control group (Jenkins et al., 2009). While a number of factors may 

explain this phenomenon such as legitimate changes in consumption behaviors in the 

general population, there is worry that the control group is reacting to the baseline or 

pretest assessment, obscuring the actual effect of the interventions studied. Harel et al. 

(2011, 2015) tested the effectiveness of a suicide prevention intervention using a 

randomized pretest-posttest design, with PM in the pretest questionnaire. Participants 

assigned to the control group were given either the full pretest questionnaire or one of 
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three truncated forms to reduce the amount of information collected from the control 

group, thereby reducing their exposure to any possible assessment reactivity. They found 

that the mere exposure to an item at pretest can have an effect on its response at posttest, 

regardless of the interventions. Using a PM design at pretest allowed them to better tease 

out the efficacy of the intervention from assessment reactivity. 

More recently, social and personality psychology researchers have started 

capitalizing planned missingness designs for large-scale data collection. For example, 

Revelle et al. (2020) collected personality data with what the authors call “massively 

missing at random (MMCAR),” administering a large number of items in total but each 

item to a small proportion of the total sample, and analyzing the resulting variance-

covariance matrix. However, the use of PM designs in substantive research has been 

largely unexplored in the field of I/O psychology. The only exceptions to my knowledge 

are Marcus-Blank et al. (2015) and Yamada (2020), both unpublished. The former 

examined the predictive ability of rationality for various life outcomes in addition to 

cognitive ability, personality, and decision-making style, and implemented 25% PM in all 

control variables in order to reduce study length. The latter investigated perceptions of 

sleep climate and used a PM design to reduce the respondent burden placed on busy 

resident physicians. In I/O survey research, the need to reduce survey length is routinely 

addressed with either compromising the number of constructs measured or using a short 

version of a full-length measure. Planned missingness, although rarely used, presents 

itself as a promising alternative.  
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Study 1: Planned Missingness vs. Short Forms in Existing Data 

One previous study conducted an initial comparison of short form and planned 

missingness as strategies for reducing survey length (Yoon & Sackett, 2016). The authors 

used a dataset containing self-reports of personality and workplace behaviors (Sackett et 

al., 2006). For each of the measures, the authors conducted exploratory factor analyses 

and created half-length short forms based on the highest loading items and computed 

correlation estimates based on short forms. A 50% PM design was implemented by 

randomly removing half of the datapoints per measure for each respondent. Multiple 

imputation was then used to treat the resulting PM dataset. The average absolute 

difference in correlations between those computed in the full dataset (i.e., “truth”) and 

those computed with short forms was .034, and that between truth and PM was .019. 

Results demonstrated that estimates of scale intercorrelations based on the planned 

missingness design more closely approximated those of the full dataset than did estimates 

based on short forms.  

  To examine whether their finding was a function of the specific characteristics 

idiosyncratic to the data used, the current study replicates Yoon and Sackett (2016) in 

two other publicly available datasets. These two datasets were chosen based on several 

criteria. First, a sufficient sample with complete responses was needed. Second, 

constructs need to be measured with multi-item scales. Third, the dataset needs to contain 

multiple constructs. Last, constructs collected should be broadly representative of those 

typically studied in survey research (i.e., self-reports and not ability constructs). In 

addition, I reanalyzed the data used in Yoon and Sackett (2016) with a minor change to 

the original procedure. 
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Method 

Datasets 

 Datasets A and B are public datasets collected by the Open Source Psychometrics 

Project (2018). The quality of these open source datasets had previously been 

demonstrated to be comparable to or better than those collected from Amazon 

Mechanical Turk (Open Source Psychometrics Project, 2018). 

 Dataset A. Dataset A measured the respondents’ dark triad of personality: 

machiavellianism, narcissism, and psychopathy (Paulhus & Jones, 2011). A total of 27 

items measured each of these three constructs with nine items, with values ranging from 

1 (disagree) to 5 (agree). The raw dataset contained 18,192 complete cases with no 

missing data. Reverse items were recoded accordingly.  

Dataset B. Dataset B measured individuals’ vocational interest and personality 

during 2015 to 2018. It includes a 48-item Holland’s RIASEC vocational interest 

measure, with each of the domains measured by eight items (Armstrong et al., 2008). 

Items specified various vocational activities and asked respondents to indicate how much 

they would like to perform that task on a five-point scale ranging from 1 (dislike) to 5 

(enjoy). Also included was the ten-item personality inventory (TIPI; Gosling et al., 2003), 

a vocabulary test, and demographic questions, which were not used in the current study. 

The raw dataset contained 145,828, and complete cases were retained, resulting in a final 

population sample of 90,513.  

Dataset C. Dataset C was the same dataset used in Yoon and Sackett (2016). 

Sackett et al. (2006) used a Web-based survey via email to recruit participants from the 

4,218 full-time employees of a large university in the Midwest. 965 individuals started 
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the study. 65 individuals were deleted from the analysis because of missing or duplicate 

data, resulting in a final sample of 900. Sackett et al. (2006) used a 50-item Big Five 

Personality measure from the International Personality Item Pool (Goldberg, 2001), a 15-

item organizational citizenship behavior measure developed by Laczo (2002), an 18-item 

CWB measure drawn from Bennett and Robinson (2000), and a 17-item CWB developed 

by Laczo (2002). One item from the original 19-item Bennett and Robinson (2000) 

measure of workplace deviance “cursed at someone at work” was excluded because it is 

similar to an item included in another part of their survey. For Big Five measures, they 

used a Likert-type response format: 1 indicates 'strongly disagree', whereas 5 indicates 

'strongly agree'. For OCB and CWB measures, they used a 4-point scale (1 = Never to 4 

= Frequently).  

Procedure 

 In Yoon and Sackett (2016), the entire dataset was used to create short forms. 

However, in a realistic research setting, a study most likely administers a short form to 

measure a construct of interest that was developed based on a separate sample. Therefore, 

in the current study, I first randomly divided each of the datasets into two equal halves: a 

development dataset and a test dataset. Pairwise correlations computed using the full test 

dataset without any missing data are used as true correlation values against which short 

form and planned missingness correlational estimates are compared. 

  Two versions of half-length short forms were created for the Big Five scales in 

Dataset A, the RIASEC scales in Dataset B, and the personality, OCB, and CWB scales 

in Dataset C. First, following the procedure of Yoon and Sackett (2016), an exploratory 

factor analysis was conducted on each scale in each of the development datasets using the 
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R package fungible (Waller, 2020). Half of the items with the highest loadings for each 

scale were used to create loadings-based short forms. Although this approach is simple to 

implement and commonly used in practice, Cortina et al. (2020) prescribe a combination 

of psychometric criteria that should be considered simultaneously for shortening scales, 

including internal consistency reliability, part-total correlations, and construct validity 

and content coverage of the items when applicable. They created an R Shiny app called 

the Optimization App for Selecting Item Subsets (OASIS) to generate short forms based 

on these considerations. By inputting an item-level dataset of the original full-length 

scale as well as any convergent and divergent validation scales if available, the OASIS 

iterates through all possible combinations of items given the desired length of the short 

form and computes Cronbach’s alpha (2), Guttman’s lambda-2 (32), omega-hierarchical 

(4h), part-whole correlation between each item subset and the full scale, and correlations 

with any validation scales. An optimal short scale can then be chosen by simultaneously 

considering the recommended thresholds of 2 > .75, 32 > .75, 4h > .80, correlation with 

convergent validity scale > .70, and correlation with divergent validity scale < .35. Thus, 

a second version of the short forms were created using OASIS. The respective short form 

items in the test datasets were then used to obtain both loadings-based short form 

estimates and OASIS-based short form estimates.  

To simulate a planned missingness design in the datasets, half of the items within 

each measurement scale were randomly selected to be missing for each case in each of 

the test datasets. Multiple imputation was then performed on the resulting MCAR 

datasets to generate 40 imputed datasets using the R package mice (van Buuren & 

Groothuis-Oudshoorn, 2010).  
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Analyses 

For each of the three datasets, coefficient alphas of all measures and correlation 

matrices among constructs were computed based on the full data (“truth”), loadings-

based short forms, OASIS-based short forms, and planned missing and imputed data. 

Then, I calculated the absolute values of the differences between the correlations based 

on the "limited" data sets (short forms and imputed dataset) and the correlation based on 

the full data in order to investigate which limited version is closer to the full data. For 

better comparison, I computed the mean and standard deviation of these absolute values. 

Because I was interested in investigating the differences between the correlations based 

on the short forms and on the imputed data set, I conducted paired-samples t-tests to 

compare the absolute values of the differences between the correlations based on the 

short forms and the correlations based on the full data, and the absolute values of the 

differences between the correlations based on the imputed data and the correlations based 

on the full data. All analyses were conducted in R.  

Results 

Although the three datasets differed in their sample sizes and the constructs they 

measured, results were consistent across samples. With regards to scale internal 

consistencies, data with planned missingness and treated with multiple imputation 

(Tables 3~5) closely replicated the scale coefficient alphas of the full data in all three 

datasets. On the other hand, internal consistencies of short forms created using either 

factor loadings only or multiple criteria via OASIS tended to fall short of those of the full 

measures despite retaining the empirically best-performing items. This is to be expected 

as the number of items for each scale was reduced by half.  
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Related to the short forms’ decreased reliabilities, scale intercorrelations 

computed using short forms tended to be attenuated compared to the “true” 

intercorrelations in the full datasets, whereas imputed data more closely estimated the 

intercorrelations (Tables 6~8). Across all three datasets, both the absolute differences 

between true intercorrelations and loadings-based short form intercorrelations (M = .05, 

SD = .03; M = .07, SD = .04; and M = .06, SD = .05 for datasets A, B, and C respectively) 

and those between true intercorrelations and OASIS-based short form intercorrelations 

(M = .02, SD = .01; M = .07, SD = .04; and M = .06, SD = .04 for datasets A, B, and C 

respectively) were significantly larger and varied more than the absolute differences 

between true intercorrelations and imputed data intercorrelations (M = .01, SD = .01; M 

= .01, SD = .01; and M = .02, SD = .02 for datasets A, B, and C respectively). In other 

words, when short forms were created based strictly on strengths of factor loadings, 

imputed data produced intercorrelations that were significantly closer to “true” 

intercorrelations than short forms by .047 in dataset A (t(2)=3.5, p = .036, 95% CI = 

[.015, .079]), .065 in dataset B (t(13)=6.03, p < .001, 95% CI = [.042, .088]), and .037 in 

dataset C (t(27)=3.57, p < .001, 95% CI = [.015, .058]). Similarly, when short forms were 

created based on multiple psychometric criteria using the OASIS, intercorrelations 

estimates were statistically significantly farther from “true” intercorrelations than those 

computed with imputed data by .061 in dataset B (t(13)=5.49, p < .001, 95% CI = 

[.039, .084]) and .033 in dataset C (t(27)=3.69, p = .001, 95% CI = [.015, .051]). 

Differences in the accuracy of intercorrelation estimates between OASIS-based short 

forms and imputed data were not significantly difference in dataset A. The two versions 

of the short forms did not yield significant different results in all three datasets. 
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The difference in the results obtained in the current study with loadings-based 

short forms in dataset C and those found by Yoon and Sackett (2016) was subtle but 

expected. The original findings were based on short forms that were created and tested on 

the same, full dataset. In the current study, the full sample was divided into a 

development sample, on which exploratory factor analyses were conducted and short 

forms were created, and a test sample, on which reliability and correlation estimates were 

obtained. Therefore, the mean absolute difference between true and short form 

intercorrelations found here (.06) was larger than that found originally (.03).  

Discussion 

Researchers often face a time or length constraint when designing surveys. 

Assuming that the number of constructs or scales to be measured cannot be reduced, a 

common practice is to use short forms. However, this approach inevitably excludes some 

items from being administered altogether and requires much time and resources to first 

develop the short forms when they do not already exist. A much less explored alternative 

is to implement a planned missingness design such that data is collected with missingness 

randomly.  

Yoon and Sackett (2016) conducted the first empirical comparison between these 

two approaches for reducing survey length. Their results demonstrated that correlations 

based on short forms somewhat closely reproduced the correlations found in the full 

dataset. However, implementing the alternative approach (planned missingness design 

paired with multiple imputation) yielded closer estimates.  

To further explore the generalizability of their finding, I replicated this initial 

study on two more large-sample public datasets. I also slightly modified the original 
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procedure such that short forms were created on a sample separate from the one on which 

estimates were based. This is a more realistic representation of standard research practice 

and reduces the risk of overfitting. In addition to creating short forms strictly based on 

factor loadings, I also used a second approach recommended by Cortina et al. (2020) that 

considers multiple indices of internal consistency, part-whole correlation, and convergent 

and divergent validity by using the R Shiny app OASIS. Overall, I reached similar 

conclusions based on all three datasets, namely that a planned missingness design can 

outperform using short measures for reproducing true intercorrelation estimates. 

Intercorrelations calculated using both versions of the short forms face the attenuation 

issue due to decreased reliability associated with the short measure length. Practically, a 

planned missingness design can be easily implemented using the many internet-based 

survey platforms whereas short forms may need to be first developed and validated in 

prior pilot studies. Thus, the planned missingness approach for reducing survey length 

may be advantageous both statistically and practically.  

This study is not without limitations. Although it sought to explore the 

generalizability of the comparison results by using multiple datasets, more systematic 

examination can beneficial. It is unclear whether results were associated with 

characteristics specific to the datasets used. Relatedly, half-length short forms were 

created, constraining the amount of missingness at 50%. It will be valuable to 

systematically vary data characteristics and study procedures to expand the short form 

versus planned missingness comparison across different conditions and explore potential 

boundary conditions of this apparent advantage of planned missingness. A simulation is 

much better suited for these study objectives and is conducted in the following study.  
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Study 2: Systematic Simulation of Short Form vs. Planned Missingness 

With the use of computer-based survey tools, planned missingness designs can be 

much easier to implement than having to develop short forms, and prior results suggest 

they can be advantageous to producing accurate estimates as well. The present study aims 

to expand upon the findings of Yoon and Sackett (2016) and Study 1 in this dissertation. 

With the goal of reproducing “true” scale intercorrelations in the population, I conducted 

a Monte Carlo simulation to explore if and how the short form–planned missingness 

comparison is affected by various data characteristics, including length of short form or 

amount of missingness, sample size, number of scales, and true intercorrelation among 

the scales.  

Method 

 To provide a clear description of the simulation procedures, the term “variable” is 

used throughout to refer to the population and sample characteristics manipulated in the 

simulation. The term “item” is used to refer to the individual items simulated in the data. 

And the term “scale” is used to refer to the items that measure a single construct.  

 First, several population parameters were manipulated. The number of scales (s) 

ranged from two to five, each indicated by ten items (with a total of 20 to 50 items). 

Factor loadings of the ten items on each scale were specified to vary from .30 to .75 

at .05 increments. Further manipulated were the scale intercorrelations. For the two-scale 

conditions, the correlation between the two constructs varied from 0 to .70 at .10 

increments. For each of the three-scale (30-item), four-scale (40-item), and five-scale 

(50-item) conditions, the mean intercorrelation among constructs (Mr) varied from 0 

to .70 at .10 increments, and the standard deviation of construct intercorrelations (SDr) 
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varied from 0 to .30 at .05 increments, resulting in a total of 176 unique combinations of 

population parameters.  

 For each of the unique population parameter combinations, common factor 

correlation matrices are first generated based on normal distributions using Mr and SDr. 

For example, for the population condition of four-scale, intercorrelation mean (Mr) = .50, 

and intercorrelation standard deviation (SDr) = .20, six correlation values are randomly 

generated from N(.50, .202) to fill in the lower triangle of the square matrix then mirrored 

onto the upper triangle. If a number larger than 1 was sampled from the normal 

distribution and therefore impossible for a correlation matrix, it was manually adjusted to 

be .99. The resulting matrices were checked to ensure its positive definiteness. 

 Next, the item-level correlation matrices were created based on the factor 

correlation matrix for each condition and the fixed factor loadings matrix using the 

standard common factor model for a population correlation matrix: 

5 = ΛΦΛ′ + Ω 

Where 5 is the item-level : × : correlation matrix if the total number of items is k, Λ is 

the : × < factor pattern loading matrix for r number of constructs or scales, Φ is the < × < 

factor correlation matrix, and Ω is the : × : diagonal matrix of unique variances, defined 

here as = − >?@A(ΛΦΛ&) (Gnambs & Staufenbiel, 2016; Hong, 1999).   

 For each population (defined by its item-level correlation matrix), independent 

samples were drawn using the mvrnorm function in the R package MASS (Ripley et al., 

2021) with sizes (n) ranging from 100 to 1,000 at 100 increments and varying 

missingness levels (m) per scale from 10% to 80% at 10% increments, consisting of 80 
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unique conditions. Each condition was performed for 100 iterations. See Table 9 for all 

variables that were manipulated and their ranges.  

For each unique condition, four different scenarios for reducing survey length 

were examined, including three scenarios of using short forms and the planned 

missingness approach with the goal of comparing the capacity to which short form and 

planned missingness estimates reproduce true population estimates (Figure 1). Short 

Form A and B both use short forms developed empirically based on exploratory factor 

analysis results, choosing items with the highest loadings. The loadings-based method of 

developing short forms was used because the two methods of empirically creating short 

forms included in Study 1 (i.e., loadings-based and OASIS-based) yielded similar results 

and using factor loadings is much less computationally expensive than using the iterative 

algorithm of OASIS. Short Form A simulates the scenario in which such short measures 

already exist, or factor loadings needed to readily create such short measures have 

already been obtained in a previous study or exist in the literature. In this situation, no 

part of the current sample needs to be spent on first developing short forms. Short Form 

B simulates the scenario in which no established short forms or psychometric information 

needed to readily create short forms exist, and part of the sample needs to first be 

expended on developing them. Short Form C simulates the scenario that items are chosen 

for short measures based on theoretical justifications or item content coverage reasons 

and are therefore not necessarily items with the highest loadings. Lastly, the Planned 

Missingness scenario implements a planned missingness design treated with multiple 

imputation. Specific simulation procedures for each of these four scenarios are elaborated 

below.  
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Short Form A: short forms based on pre-existing factor analysis results 

To simulate the situation that short forms have already been developed prior to 

the study of interest, a separate development sample with sufficient and typical sample 

size (n = 500) was first drawn to conduct exploratory factor analyses for each scale to 

identify the best-performing items per scale; these best-performing items constituted the 

short forms of the scales. The number of items that made up the short form was 

dependent on the variable amount of missingness (m). Then a second test sample was 

drawn (n depending on the sample size specified in the condition), in which only the 

short form items were used to compute the Short Form A estimates.   

As an example, for the two-scale, Mr = .2, n = 100, and m = 50% condition, based 

on the specified population item-level correlation matrix, a sample of 500 cases was first 

drawn to be the development dataset (sample A) on which exploratory factor analyses 

were conducted. For each scale, the five items (50% of ten items) with highest loadings 

on the first factor were retained as the short form. In a different 100-case sample (sample 

T) drawn from the population, the five items per scale previously identified for the short 

form were aggregated to compute the scale scores, and the correlation between the two 

scales was computed as the Short Form A estimate.  

Short Form B: short forms to be developed with part of the sample 

 Scenario Short Form A makes the assumption that prior short forms of the 

measures already exist and the entirety of the second, current sample is used. However, 

another common survey study scenario is when short forms of the measures do not yet 

exist, and the sample that is to be recruited needs to be divided into a development 
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sample to first create short forms and a second sample to administer the short form and 

obtain estimates.  

 Therefore, for Short Form B, I assigned half of the sample to develop the short 

forms. A further complication is the constraint on survey length. Assuming the 

missingness level (m%) in each condition puts a constraint on the maximum number of 

items that can be attentively answered by respondents. The same constraint should be 

applied to the developmental sample and therefore only a portion of it (1-m%) can be 

used to develop each short form.  

 Take again the example of the two-scale, Mr = .2, n = 100, and m = 50% 

condition. The simulated sample T of 100 was first divided into sample T1 for 

developing short forms (n = 50) and sample T2 for testing (n = 50). Because the 

maximum number of items to be administered to each respondent was specified by the 

missingness level of 50% to be 10 (2 scales × 10 items per scale × (1-50% missingness)), 

sample T1 was further divided into two samples of 25, each in charge of developing the 

short form of one scale. The items selected were then applied to sample T2 to obtain 

short form estimates.  

Short Form C: short forms developed based on item content 

 Short Form A and B develop short forms empirically based on factor analysis 

results. However, in situations where researchers have reason to retain items based on 

factors other than empirical loadings (e.g., for construct content coverage, balance 

between positively and negatively coded items, etc.), items retained in the short form do 

not necessarily have the highest loading. I simulated this scenario by choosing items that 
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compose the short forms randomly, then obtaining Short Form C estimates from the 

sample drawn.  

Continuing with the example of the two-scale, Mr = .2, n = 100, and m = 50% 

condition, five items were randomly identified to make up the short form for each scale. 

The correlation between the two scales was computed in the simulated sample T as the 

Short Form C estimate.  

Planned Missingness 

In the Planned Missingness scenario, a number of randomly selected items were 

set to be missing for each case (i.e., respondent), simulating missingness completely at 

random (MCAR). In the example of the two-scale, Mr = .2, n = 100, and m = 50% 

condition, each case in the simulated sample T has data for a different subset of five 

items for each scale. Multiple imputation was implemented to deal with the resulting data 

using the R package mice (van Buuren & Groothuis-Oudshoorn, 2010). The correlation 

between the two scales were computed for each of the 20 imputed datasets and pooled as 

the Planned Missingness estimate.  

 Thus, for each condition, I computed the true scale intercorrelations and four sets 

of estimates: Short Form A, B, and C scale intercorrelations, and the Planned 

Missingness scale intercorrelations. Two sets of criteria were examined: 1) the absolute 

differences between truth and the four sets of estimates; and 2) the differences between 

deviations of each of the Short Form estimates from truth and deviations of Planned 

Missingness estimates from truth (with a positive value indicating Planned Missingness 

estimates were closer to truth than Short Form estimates). Because the criteria were 

calculated for each pair of scales, the pairwise values were aggregated prior to further 
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analyses. To do so, within each condition with more than two scales (i.e., three-, four-, 

and five-scale conditions), the mean across all scale pairs was computed for each 

criterion. 

 Working with a large number of different population parameter combinations, 

simulating the four different length-reduction scenarios with unique combinations of 

amount of missingness and sample size for each of the defined populations, and 

conducting each simulation condition for 100 iterations required tremendous processing 

power. Further, the simulation procedure (including sampling, removing data to simulate 

missingness, and imputation) was very time-consuming given the sheer number of 

conditions. Therefore, computational resources at the Minnesota Supercomputing 

Institute were used. By implementing parallel processing within condition and dividing 

conditions into four scripts that ran simultaneously, the simulation lasted approximately 

114 hours.  

Analyses 

 To systematically compare the performance of different scenarios of using Short 

Forms and the Planned Missingness design under different conditions, the criteria are 

used as dependent variables in separate regression models, with independent variables 

including amount of missingness (m), sample size (n), number of scales (s), 

intercorrelation mean (Mr), and intercorrelation standard deviation (SDr) in the 

population. Step 2 models included all pairwise interaction terms. To aid interpretation of 

intercepts and coefficients, all predictors were centered, and sample sizes were scaled to 

be in units of 100. In addition, results were plotted to allow visual inspections of 

interaction effects. 
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Results 

 Across all conditions, the average absolute deviation of estimates from truth 

was .039 (SD = .024) for short form A, .056 (SD = .036) for short form B, .072 (SD 

= .055) for short form C, and .050 (SD = .042) for planned missingness. 

Regression models were first performed to predict the absolute deviation from 

“truth” of each of short form A, short form B, short form C, and planned missingness 

with the various data characteristics that were manipulated (Table 10). When short forms 

were empirically derived based on factor loadings and regardless of whether they already 

exist or had to be developed using part of the sample, there was a greater absolute 

difference between short form estimates of scale intercorrelations and the true 

correlations in the population (DV1 and DV2) when short forms were shorter (higher 

missingness levels), when samples were smaller, and when the mean of true 

intercorrelations was smaller. The number of scales or the average magnitude of true 

scale intercorrelations did not significantly affect the accuracy of short form estimates.  

Interestingly, short forms behaved similarly to the planned missingness design 

when the items retained in the short forms were chosen at random, such that the deviation 

from true intercorrelations became larger when the scales were shorter, sample size was 

smaller, and when true intercorrelations were stronger overall. Furthermore, when using a 

planned missingness design, deviation from true parameters became larger when the 

number of scales increased and intercorrelation SD became larger.  

Step 2 regression models using this same set of DVs additionally included 

pairwise interaction terms of the five predictors. The sensitivity of p values to sample size 

makes statistical significance difficult to interpret given the large number of conditions 
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and iterations included in the regression. Thus, visualization of the interactions can be 

more helpful in determining their practical significance (Figures 2~11). Interactions that 

notably exacerbated deviation from true population intercorrelations included higher 

missingness level × smaller sample size (Figure 6), especially for the planned 

missingness method, higher missingness level × larger mean scale intercorrelation 

(Figure 7), higher missingness level × larger scale intercorrelation standard deviation 

(Figure 8), and higher mean scale intercorrelation × smaller sample size (Figure 9), 

especially when short form items were chosen randomly.  

The second half of the regression results subtracted the planned missingness 

deviations (DV4) from each of the short form deviations (DVs 1, 2, and 3). Thus, positive 

values indicated that planned missingness was more accurate in reproducing true 

intercorrelations while negative values indicated that the short forms were more accurate. 

Results from Table 11 demonstrated that at average levels of all predictors (missingness 

level = 45%, sample size = 550, number of scales = 3.5, population intercorrelation mean 

= .30, population intercorrelation standard deviation = .11), the intercepts of the models 

were –.014, –.002, and .018, respectively. This means that overall, across all conditions, 

empirically derived short form estimates slightly outperformed planned missingness 

estimates in approximating truth when short forms or data needed to readily create short 

forms already existed. When a proportion of the sample needed to be spent on 

empirically developing short forms, they performed essentially equally with 

implementing planned missingness on average. However, when short forms were created 

not solely empirically, planned missingness tended to reproduce true intercorrelations 

more accurately. Two-way interactions were added at the second steps of the regression 
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models and plotted in Figures 12~21. Visually, several interaction effects favored using 

short forms over planned missingness in reproducing true population intercorrelations: 

larger number of factors × higher missingness level for empirically derived short forms 

A and B (Figure 12), smaller sample size × higher missingness level for all short form 

types (Figure 16), higher missingness level × larger mean scale intercorrelation (Figure 

17) and smaller sample size × larger mean scale intercorrelation (Figure 19) for 

empirically derived short forms. However, across many other conditions, deviations from 

truth when using planned missingness remained around the same magnitude or smaller 

than that when using short forms.  

Discussion 

 The present study systematically varies a number of data characteristics to 

compare the performance of using short form scales and implementing a planned 

missingness design with multiple imputation in order to reduce survey length for 

producing accurate estimates.  

 Findings from the comparison between short form A and planned missingness 

demonstrate that when short scales already exist, using them may produce slightly more 

accurate correlation estimates than implementing planned missingness. This would also 

include scenarios in which no short forms are explicitly available, but there are published 

factor analysis results that enable researchers to readily create short forms with the 

highest-loading items without collecting additional data. Established short forms likely 

retain items that are the best indicators of the constructs, and no subsequent effort is 

needed to impute data as is in the case of planned missingness.  
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 However, when short forms do not yet exist and part of the sample needs to be 

expended for scale development purposes (short form B), the benefit of planned 

missingness is more pronounced. Across different conditions, the two approaches 

perform equivalently in yielding accurate estimates. Furthermore, the additional 

processing power needed to impute data after data collection is negligible compared to 

the time and effort needed to develop and validate short forms.  

 It is worth pointing out that the short form A condition assumes that short forms 

exist for all scales measured, and the short form B condition assumes the opposite for all 

scales. It is more likely that there are existing short scales for some of the constructs 

measured but not others. This scenario would fall in the middle of and be bounded by the 

results of A and B, with short forms producing slightly more accurate estimates than 

planned missingness on average. 

 While short forms A and B compose short forms strictly based on empirical factor 

loadings, this is not the only way to create short scales. An item with a weaker loading 

may be preferred to one with a higher loading to better represent the construct domain, if 

it is more central to the construct theoretically, if it is superior on other psychometric 

properties, if it is less transparent or has higher face validity, if subject matter experts feel 

that it is more relevant or critical to measure, etc. Although an imperfect simulation, short 

forms C tests this by choosing short form items randomly for each iteration. Thus, across 

different iterations, short forms can consist of the highest-loading items, the lowest-

loading items, and everything in between. Findings show that when a non-empirical 

approach is taken to select items for the short forms, planned missingness actually 

outperform short forms in reproducing population estimates on average.  
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 In real research studies, a hybrid approach to short form construction may be 

undertaken where the highest-loading items are retained with some consideration of 

content coverage, theoretical relevance, etc. There was no reliable way to simulate the 

human judgment component of this process, but any hybrid short forms should fall 

somewhere in between short forms B and C.  

 It is important to not overinterpret the differences between the performance of the 

three short forms and planned missingness designs in approximating true estimates. 

Although subtle variations exist, general deviations from population estimates remain 

small, and difference between short form and planned missingness deviations are even 

smaller.   

 This study is a comparison of using short forms and implementing a planned 

missingness design across various different research conditions with regards to strictly 

their technical capacity to produce accurate population estimates. While findings show 

that both approaches have conditions in which they slightly outperform the other, 

technical accuracy is often not the sole consideration when designing a research study. 

When well-developed, empirically based short forms already exist in the literature or 

from prior studies for all scales of a study, administering them will both obtain accurate 

estimates and be minimally effortful. However, when empirically derived short forms do 

not already exist for at least some of the scales intended to be collected, conducting scale 

development studies will likely be much more costly and effortful, whether by collecting 

another independent sample for the empirical approach, recruiting subject matter experts 

for the rational approach, or both for a hybrid approach. The findings of the current 

simulation show that the extra effort of developing short scales does not pay off in more 
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accurate parameter estimates as compared with the simple procedure of implementing 

planned missingness. 

 As with any simulation, the present study is not without limitations. I simulated 

population data with up to five constructs as more number of constructs becomes a strain 

on processing power and computer memory. However, I do not expect results to differ 

significantly with more constructs.  

 Further, I simulated short form and planned missing data by drawing full, 

complete samples, then removing data based on each specified condition. Thus, the 

external generalizability of findings relies on the assumption that individuals respond in 

the same manner to a full measure, a shortened measure, and a subset of items that are 

randomly selected from the full measure. Although an important assumption to point out, 

it is likely a valid one. From any individual respondent’s perspective, being given the 

short form or the planned missingness design will be indistinguishable, as the number of 

items administered will be equal, and any differences in specific items will only be 

apparent if compared side-by-side to those given to another respondent. The full measure 

will differ from both short forms and PM designs in length. However, unless the total 

length of the survey is made very salient, it is unlikely that participants would be aware 

of how many items they are answering and respond in a systematically different manner 

as a result.  

 It is also worth noting that all three types of short forms simulated in this study 

begin with a full measure of a construct and retain a subset of the items within the full 

measure. As is the case with many psychological constructs, often many different 

instruments have been developed to measure the same construct with varying number of 
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items. Identifying a separate, shorter measure that contain completely different items is 

another approach to reduce study length not examined in the present study. The 

effectiveness of such an approach will depend solely on the psychometric properties of 

the shorter measure used.  

 Additionally, there is an important caveat to the use of planned missingness 

designs in certain situations. In this particular study, the specific multiple imputation 

procedure implemented to treat missing data was predictive mean matching (PMM). It is 

the default technique in many statistical software and is a hot deck procedure that imputes 

by identifying and selecting suitable donor cases. Prior research has found that this may 

become problematic in extreme conditions where donor cases are rare, due to a small 

sample size and large amounts of missingness (Kleinke, 2018). In the present study, I 

found that the particular combination of a high level of missingness percentage and a 

small sample size (70% missingness with n = 100 and 80% missingness with n = 100, 

200, or 300) led to high risks of imputation failures (Figure 22). It is possible that in such 

extreme cases, using short form is the only option. No imputation failures occurred for 

missingness levels lower than 70% or sample sizes of 500 or more. The same pattern of 

findings was reported by Zhang and Yu (In press), who simulated planned missingness 

designs and treated the missing data with FIML estimation. In conditions that suffered 

both from a small sample size and a large amount of missingness, FIML estimations 

became increasingly inaccurate and even faced convergence failure issues. Future 

research should systematically test these thresholds under different conditions as well as 

explore the effectiveness of other treatment techniques for such extreme conditions.  
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 Although results in the present study point to 70% missingness as a threshold for 

inaccurate estimates and imputation failure when using planned missingness, I caution 

against using this percentage as a definitive guide for implementing a planned 

missingness design. First, the impact of the proportion of missing data will likely depend 

on the total number of items in the initial, full measure. In this simulation, full measure 

length was fixed at ten items. In a ten-item measure, 70% missingness leaves three items 

per scale to be observed. In a longer measure, a 50-item instrument for example, 70% 

missingness means that 15 items are still observed, providing more information needed 

for imputation or maximum likelihood estimation. Another factor to consider is that no 

unplanned missingness was simulated in this study. Any researcher designing a survey 

might anticipate a degree of naturally occurring missingness, which would increase the 

overall missingness level beyond the amount of missingness planned. Thus, I urge 

researchers to err on the side of caution when determining the level of planned 

missingness.  

In summary, this present study compares the performance of two general 

strategies for shortening survey length while still producing accurate estimates: short 

form and planned missingness. Findings are in favor of implementing a planned 

missingness design when empirically derived short forms are to be developed, as it 

requires much less resources and is able to approximate population estimates well. 

Planned missingness is also recommended if short form items are not selected 

empirically. 
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Study 3: Knowledge and Perceptions of Planned Missingness 

 Studies 1 and 2 demonstrate the technical equivalence at the least and advantage 

in some conditions of the planned missingness approach for reducing survey length to 

using short forms. This study takes a qualitative approach to examine the feasibility of 

planned missingness in practice. Fortunately, planned missingness generally has high 

implementation feasibility with the assistance of many internet-based survey platforms. 

For example, on Qualtrics, planned missingness can be achieved with the simple addition 

of a randomizer within a scale block, and the number of items randomly selected for each 

respondent can be specified with an entry of a number. This current study is interested in 

feasibility with regards to researcher knowledge, sentiment, and receptiveness.  

 The overall goal of this study is to understand why planned missingness designs 

are not used more in the social sciences and at all in industrial/organizational (I/O) 

psychology. I have had several anecdotal experiences that led me to suspect it is 

primarily because of unfamiliarity. Oftentimes when I mentioned the concept of planned 

missingness to a professional I/O colleague, they did not know what I was referring to. 

There also seems to be an inherent distrust of missing data—the sentiment that missing 

data is always a bad thing so we should never deliberately collect missing data. This 

distrust seems to only get worse with the use of planned missingness with multiple 

imputation. As if purposefully collecting incomplete data wasn’t bad enough, now we are 

making up data? 

 I believe that concerns such as these are not unreasonable given the traditional 

statistical training we have received, but can be alleviated with more knowledge and 

understanding of planned missingness. An understanding of the different types of 
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missingness (e.g., ignorable vs. non-ignorable) and their implications will be crucial. 

Planned missingness is a useful tool precisely because the missingness is deliberate, and 

therefore the researcher is in control of its nature and can statistically deal with it 

accordingly. This is fundamentally different from missingness that occurs naturally 

throughout survey implementation for a variety of reasons. The key is to appreciate that 

missing data are not necessarily a bad thing. It might also help to point out that using 

short forms of measures is also collecting missing data, and the researcher needs to make 

the decision beforehand about which items to exclude altogether. Similarly, the 

interpretation of multiple imputation as “making up data” is an understandable but 

superficial one. The imputation of data is merely a process by which population 

parameters can be estimated. There are of course caveats to directly using item-level 

imputed data, but as an intermediate step to obtaining more accurate estimates, it is no 

different from the process of the well-accepted procedure of correcting observed meta-

analytic correlations for measurement unreliability. Akin to unreliability, missing data 

stands in the way of obtaining “true” estimates, and imputing data a number of time and 

pooling the results is just a means to an end. 

 At the same time, it is without question that planned missingness is not 

appropriate across all data collection settings. I talked to an I/O research scientist about 

planned missingness whose work consists of mostly selection testing, and their first 

reaction was the legal implications and risks, and with good reason. It enters dangerous 

territory if applicants are selected based on a test on which they are all given different 

questions, and their item-level imputed responses are used for high-stakes decisions, and 

this is certainly not what I am advocating. However, I also encountered a dataset 
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collected for a concurrent validation study that measured fewer constructs with fewer 

items per construct than the researcher would have wanted because of time constraint. 

When I asked whether using planned missingness approach was considered, the pushback 

was less founded and simply “we can’t do that for a validation study.” Thus, this study 

was devised to explore the research settings or scenarios that people deem appropriate to 

implement planned missingness, and in those that they deem not appropriate, why not.  

Method 

Participants 

 Given the goal of assessing familiarity of and sentiment toward planned 

missingness among working professionals in the I/O psychology or related fields, several 

channels were used for recruitment, including contacting I/O organizations and I/O 

academics, disseminating the study advertisement on social media, and reaching out to 

personal networks.  

Procedure 

 Upon giving consent, respondents were given a 10-minute survey (Appendix A). 

The first part of the survey mainly sought to understand researchers’ prior familiarity 

with planned missingness designs and their past experiences with reducing survey length. 

They were first asked about the frequency at which they collect self-report data and need 

to reduce the length of the study. They were then provided with the short definition “A 

planned missingness (PM) design can be implemented in survey studies, in which a 

randomly selected percentage of items are administered to each respondent. By using a 

PM design, the length of a survey can be reduced,” and asked if they were familiar with 

this concept and if they have implemented it in their past work. Respondents who 
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reported that they have used it in their work were then asked what kind of study they 

were conducting and what missingness treatment techniques they used. Respondents who 

reported that they have not used it were asked why. Lastly, all respondents were inquired 

about the approach(es) that they have taken to reduce survey length.  

 The second part of the survey provided respondents with more detailed 

information about both the short form and the planned missingness approaches, including 

a more elaborate definition of planned missingness, an example of what the two 

approaches would look like, and briefly summarized the simulation findings from study 

2, namely that the two approaches are technically equivalent across many scenarios. 

Respondents were then provided four different test scenarios and asked whether they 

would prefer one approach to the other for any contextual or practical reasons in each 

situation. The four test situations included a personality research study on Amazon 

Mechanical Turk (MTurk), a selection battery, an engagement survey, and a concurrent 

validation study.  

 Lastly, respondents were asked to provide information regarding their educational 

and work background.  

Results 

 A total of 88 research scientists took part in this survey. Of those who provided 

their educational and work information, two obtained Bachelor’s degrees, 16 Master’s, 

and 59 Doctoral. A majority of participants held degrees in I/O psychology (n = 57), 

while 14 had business degrees (including Organizational Behavior, Human Resources, 

etc.). Four respondents held degrees in other non-I/O areas of psychology, and one in 

political science.  
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 With regards to work background, 32 were in academia, 13 in the government 

sector, 25 in private industry, 5 in external consulting, and 1 other. Years of work 

experience ranged from a minimum of .5 to 45 years (M = 9.57, SD = 9.60).  

 All respondents indicated that they have designed or contributed to designing at 

least one self-report data collection effort in their work, with 49 (56%) indicating that 

they have designed more than 20 (Table 12). Further, while four respondents (4.5%) 

indicated that they have never had the need to reduce the length of a self-report study, 

everyone else indicated that they have needed to reduce study length in their work (Table 

12).  

Among those who have had the need to reduce study length, 70 researchers 

(83.3%) reported using short forms, 75 (89.3%) reported cutting down the number of 

scales collected, and 8 (9.5%) reported using planned missingness. 

38 researchers indicated that they were familiar with the concept of planned 

missingness prior to participating in the study while 50 indicated that they were not. Of 

individuals who were familiar with the concept, only ten have actually implemented a 

PM design in their work. Among individuals who have used PM, five have used FIML 

and two have used multiple imputation. In these individuals’ past studies with a PM 

design, seven were conducting survey research studies (e.g., academic research), two 

were conducting concurrent validation studies, none applied it with predictive validation 

studies or missingness-related methodological studies.  

 The 28 individuals who were aware of what PM is, have had a need to reduce 

study length, but have not implemented PM, were asked to provide a free response of 

reason(s) for not having used it. I coded these reasons into several broad categories: lack 
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of understanding, worry about others’ perception, preference for alternative approaches, 

and limitation of PM. Several responses provided reasons across multiple categories.  

Overall, 13 responses reflected a lack of understanding such as general 

unawareness (e.g., “not comfortable using it;” “it creates problems of its own;” “had 

honestly not seen it used in applied settings”), lack of knowledge in subsequent analysis 

(e.g., “unfamiliar with how to analyze”), and a misunderstanding about its effects (e.g., “I 

worry it will reduce the sample size too much”). Ten responses mentioned concerns 

regarding how the methodology would be perceived by others including reviewers (e.g., 

“It’s not clear to me that reviewers will ‘trust’ it”, “hesitant that it will get pushback in 

the review process as a ‘fatal flaw’), management and leadership (e.g., “tough sell to 

management”, “face validity concerns from stakeholders”), and colleagues (e.g., “other 

team members not on board”). Three responses stated that there are alternative methods 

to shorten surveys without pointing to a specific approach. Lastly, three responses 

suggest limitations of PM under certain setting, including “not giving all participants the 

same set of questions.”  

 In the second part of the survey, respondents were given a more detailed 

description of planned missingness and a short summary of results from Study 2, namely 

that the technical effectiveness of planned missingness for reproducing population 

parameters is largely equivalent to that of using short forms across many scenarios 

(Appendix A). Under this technical equivalence, respondents were given four study 

scenarios and asked if they prefer one approach to the other for any contextual reasons. 

For each scenario, if respondents preferred either using short forms or implementing a 

planned missingness design to the alternative, they were invited to provide a free 
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response of the rationale for their preference. The breakdown of respondents’ preferences 

by scenario can be found in Table 13.  

 For scenario 1 (a personality research study using a sample of Amazon 

Mechanical Turk workers), 14 researchers (18.4%) preferred using short forms whereas 

41 (53.9%) preferred implementing a planned missingness design. The rest had no 

preference. Among rationales provided for preferring short forms, eight individuals 

(57.1%) indicated a general lack of understanding or misunderstanding of planned 

missingness, including not having the software or analytical capacity to implement it, and 

that using short forms is generally more intuitive. Two responses (14.3%) stated 

preferring using a short form because it has already been validated. Three responses 

(21.4%) expressed concern about the acceptance of the planned missingness procedure by 

reviewers, clients, external stakeholders, etc. Two responses (21.4%) preferred having the 

same set of items administered to all respondents. Among 33 researchers who provided a 

rationale for preferring implementing planned missingness, 13 (39.4%) suggested that 

having some data on all items is preferrable than having data on only a subset of items. 

Five individuals (15.2%) mentioned that planned missingness can result in better 

construct content coverage and prevent construct deficiency. One response (3.0%) 

mentioned higher reliability as a result of more items as an advantage of planned 

missingness. A few rationales centered specifically around the research scenario. Three 

researchers (15.2%) stated that planned missingness is appropriate for answering 

construct-level research questions such as in a convergent/discriminant validation study. 

One response (3.0%) highlights the MTurk sample pool as it affords a large sample size 

for a planned missingness design. Interestingly, two responses introduced methods of 
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reducing survey length alternative to short forms and planned missingness. One 

researcher preferred planned missingness to short form but preferred dropping the 

number of constructs measures to planned missingness if given the choice. Another 

preferred scale-level rather than item-level planned missingness.  

For scenario 2 (a test battery used to make selection decisions), 54 researchers 

(71.1%) preferred short forms and 10 (13.2%) preferred planned missingness. Of the 49 

rationales given for the preference of using short forms, six (12.2%) mentioned a general 

lack of understanding of planned missingness, and 13 (26.5%) mentioned concern about 

others’ negative reaction or unacceptance of planned missingness. However, the majority 

of the responses pointed to inappropriateness of planned missingness for this scenario 

specifically. 32 (65.3%) regarded administering the exact same items to all respondents 

particularly important in this scenario. 8 (16.3%) emphasized the high-stakes nature of 

this scenario, 18 (36.7%) specifically mentioned concerns about legal defensibility, and 6 

(12.2%) mentioned issues of fairness. One response (2.0%) suggested that administering 

the same items to all candidates will allow investigation of item-level properties and the 

comparison of candidates at the item-level. Among the five rationales provided for 

preferring planned missingness in this scenario, two mentioned that using short forms 

may result in a lower reliability and subsequently a lower observed predictive validity. 

One researcher did not view the specific testing scenario as important for the decision of 

whether to use short forms or implement planned missingness. One response suggested 

that exposing each candidate to only a subset of all items can protect test security. One 

response viewed collecting some data on all items as important.  
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For scenario 3 (an engagement survey administered to employees), 26 (34%) 

preferred short forms and another 26 preferred planned missingness. For the 18 who 

provided a rationale for preferring short forms, six (33.3%) reflected a lack of 

understanding regarding planned missingness, and three (16.7%) expressed concern 

about others’ acceptance of planned missingness. Eight (44.4%) responses pointed to 

administering different items to employees as potentially problematic for making item-

level comparisons across employees or leading to negative reaction. Three responses 

(16.7%) referred to the nature of engagement surveys specifically, including their 

historically low response rates which when combined with planned missingness might 

lead to an overly high proportion of missing data. On the other hand, the 19 rationales 

provided for preferring planned missingness were spread evenly across the importance of 

having data on all items (21.1%), better construct content coverage (26.3%), suitability 

for construct-level comparisons across employees (26.3%), and the low-stakes 

measurement context specific to this scenario (26.3%).  

Lastly, for scenario 4 (a concurrent validation study), 17 (22.7%) preferred short 

forms and 35 (46.7%) preferred planned missingness. Of the 15 rationales given for 

preferring short forms, six responses (40%) showed a lack of understanding in planned 

missingness and two (13.3%) were worried about others’ acceptance of it. Five 

individuals (33.3%) viewed administering a different set of items to each respondent in a 

validation study as potentially indefensible legally. One response mentioned that given 

the nature of some common predictors that are validated, planned missing will be 

unsuitable for tests of maximal performance. One researcher expected that historically 

low response rate among incumbents means that planned missingness is not suitable with 
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such a sample. Among the 20 rationales provided in support of the use of planned 

missingness, the majority viewed collecting some data on all items (60.0%) and having 

better construct content coverage (25.0%) as advantages, with the rest mentioning its 

appropriateness for examining construct-level research questions (5.0%), higher 

reliability (5.0%), and that it is methodologically more interesting (5.0%). One individual 

expressed that the legal implications with a concurrent validation study may be less 

severe than in a high-stakes selection setting, making planned missingness more 

appropriate.  

Discussion 

 The present study explores researchers’ general knowledge and perception of 

planned missingness. As results of studies 1 and 2 show that using short forms and 

implementing a planned missingness design for reducing study length are equivalently 

effective on average, the choice may depend on the research context or other factors. 

Thus, I wanted to qualitatively capture how researchers conceptualize the advantages and 

disadvantages of these two approaches. 

 Findings show that while researchers often have the need to reduce the length of a 

study, the most common approach to do so is to cut down the number of constructs 

measured, followed closely by using short forms of scales. Only a very small proportion 

of individuals have implemented planned missingness. This lack of usage is at least in 

part due to a lack of knowledge and familiarity, as fewer than half of the researchers 

indicated being familiar with the concept of planned missingness. However, even among 

those who were familiar, only a small proportion reported having implemented it, mostly 

in survey research studies as opposed to in operational studies. One respondent stated that 
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they “don’t like purposely having missing data in [their] research studies,” which not 

only reflects a lack of knowledge in planned missingness, but a general misunderstanding 

of the broader missing data problem.  

 Other than a general lack of knowledge about the usefulness of planned 

missingness, researchers converge on several reasons for choosing not to implement a 

PM design, including 1) not having the statistical or software capacity to analyze data 

with a PM design, 2) concern about the methodological complication being confusing to 

upper management or slowing down the publication process, and 3) giving respondents 

different subsets of items being problematic in certain study setting.  

 The admitted inability to implement PM designs or analyzing data with PM is 

arguably the most easily solvable challenge. Most survey platforms have a point-and-

click option to randomly present each respondent with a subset of items. For example, on 

Qualtrics, this involves adding Randomizer in survey flow (Qualtrics, 2021). With 

regards to analytical complications, there exist a number of published papers (e.g., 

Arbuckle & Marcoulides, 1996; Enders & Bandalos, 2001; Graham et al., 2007; 

Newman, 2003; Vink & van Buuren, 2014; Yuan, 2000) and tutorial resources (van 

Buuren, 2018; Vink & van Buuren, 2011) that detail common analyses for data with PM. 

Further, various statistical packages in common software have been developed to make 

FIML estimation and multiple imputation procedures accessible. For example, in R, 

lavaan makes available the FIML estimator for structural equation modeling-type 

analyses (Rosseel et al., 2012). The R packages mice (van Buuren & Groothuis-

Oudshoorn, 2010) and hmi (Speidel et al., 2020) provide a diverse and flexible range of 

multiple imputation capabilities.  
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 Secondly, the concerns regarding how data collected with a PM design would be 

perceived by management, clients, or throughout the publication process are 

understandable. After all, using a shorter version of a scale is much more intuitive and 

familiar than implementing any PM design and the analytical procedures that accompany 

it. However, I believe that any statistical or analytical method now considered standard 

and commonly accepted by management or clients have become so from being unfamiliar 

at first. With thorough research supporting its effectiveness and its efficiency, PM should 

be introduced to and used by stakeholder who can stand to benefit from it.  

 In response to worry about how PM would affect the publication process, I turned 

to scientists in other disciplines who have published substantive research with PM 

designs. I conducted a search on Google Scholar using the key phrase “planned 

missingness,” and emailed 42 corresponding authors who have published with a PM 

design in the past five years. These researchers spanned a variety of expertise areas, from 

substance use and addictions, tourism management, clinical and developmental 

psychology, to education. I briefly introduced my studies, described major findings, and 

asked for any tips or advice, or simply their experience in understanding, applying, and/or 

publishing with PM as “lessons learned” that may be able to guide other researchers. I 

received nine very helpful replies. Overall, researchers have not had much pushback from 

reviewers regarding their use of PM, particularly at quantitative and methodologically 

advanced journals. They recommended alleviating any skepticism due to unfamiliarity by 

providing more detailed explanation of the methodology (i.e., devoting extra space to 

explain the underworking of the method and why it is useful, including a supplemental 

appendix describing the approach, and citing established research on the topic).  
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 Last but not least, the respondents of the current study pointed out that PM may 

not be appropriate in all data collection settings, given that different items are given to 

each individual. The second part of this study explores this point precisely. Armed with at 

least a basic understanding of the concept and the assumption that it is technically 

comparable with using short forms, researchers were asked to choose between the two for 

each of four data collection scenarios. Findings show that preference between using short 

forms and planned missingness does vary depending on the type of data collection being 

conducted. Overall, for the two research scenarios—both an MTurk study investigating a 

new personality scale as well as a concurrent validation study using incumbents—

approximately twice as many researchers preferred planned missingness to short forms 

than vice versa. For an internal engagement survey, an operational study using 

incumbents, preferences were split evenly between short forms and PM. Lastly, the 

majority of researchers preferred using short forms to PM in an operational selection test 

battery using applicants.  

 Many rationales provided for preferring short forms to planned missingness in all 

four scenarios reiterated a lack of knowledge in implementation and analyses of PM 

designs and worry over how it might be perceived by others. However, some context-

specific rationales highlighted the strengths and limitations of PM in different settings. 

For example, while the importance of standardization was mentioned as an advantage of 

using short forms over PM for all scenarios, it was mentioned at the highest frequency by 

far for the selection battery context. Researchers elaborated the importance of this with 

issues of fairness, legal defensibility of selection decisions based on different test items, 

and the need for comparability across individuals’ results. The same issue in the 
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engagement survey context surrounded the potential of negative employee reaction if 

they were presented engagement results on items that were never given to them or 

discover that they received different items than their coworkers, as well as the frequent 

need to report and present item-level analyses.  

 On the other hand, having some data on all items and not limited to items 

included in the short form was mentioned as a reason for preferring planned missingness 

across all scenarios, particularly for the two research scenarios. Researchers mentioned 

that although short forms are usually validated, they do not always preserve the full 

construct coverage and may suffer from construct deficiency. PM would ensure full 

construct coverage reflected in the full measures.  

 Interestingly, researchers mentioned that the two scenarios that target incumbent 

samples (engagement survey and concurrent validation study) face historically low 

response rate, which might make implementing PM designs more difficult. On the other 

hand, the large pool of MTurk workers was mentioned as a factor that could enable 

proper implementation of planned missingness.  

 Overall, although there are research scenarios for which PM designs are not 

suitable for good reasons, the majority of I/O researchers surveyed have not deliberately 

chosen to use an approach other than PM for reducing survey length. Rather, its rare use 

in I/O stems primarily from a lack of familiarity with the technique or an inaccurate 

understanding of it.  

 



 

 61 

General Discussion 

 In a field where surveys are one of the most common study methodologies, I/O 

researchers often face the problem of overly lengthy surveys. Standard solutions include 

either dropping some of the measurement scales that are less central to the questions of 

interest or using short forms rather than full versions of instruments. While the former 

compromises the number of constructs measured and is an unideal option, the latter does 

measure each construct with some items. However, the approach of using short forms 

relies on the existence or development of short forms. In the event of working with 

measures with no short versions, much time and resources needed to be dedicated to 

developing short forms first, including collecting additional samples, evaluating items 

against psychometric criteria, and validating the chosen items. I conducted a series of 

studies to examine an alternative and much more convenient approach to reduce study 

length, namely planned missingness designs.  

 Study 1 replicated Yoon and Sackett (2016) and compared using short forms and 

implementing planned missingness in two additional public datasets. Findings were 

consistent across datasets such that planned missingness yielded smaller deviations from 

true population estimates than short forms, regardless of whether short forms were 

created based on factor loadings alone or based on multiple psychometric criteria using 

OASIS (Cortina et al., 2020). These results suggested initial promise for the effectiveness 

of planned missingness for shortening study length.  

 Study 2 then systematically simulated data with varying characteristics and 

compared short forms and planned missingness under different research conditions. 

Overall, the two approaches performed similarly and resulted in estimates with small 
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deviations from population truths. However, each showed slight advantages over the 

other in different conditions. When empirically based short forms already exist for use or 

information needed to readily compile the short forms can be found in prior studies, short 

forms yielded slightly more accurate estimates than planned missingness on average of 

all the conditions simulated. When there are no existing short forms or psychometric 

information to create short forms, and part of the sample needs to be used to first develop 

short forms, the two approaches performed equally. Lastly, when short forms are created 

not strictly based on factor loadings, planned missingness performed slightly better than 

short forms on average. Across all conditions examined, planned missingness performed 

poorly when a high missingness level was combined with a small sample size, even 

experiencing imputation failures at extreme conditions. This is consistent with Zhang and 

Yu (In press), who reported similar convergence failure issues when treating planned 

missingness data with full-information maximum likelihood estimation. However, 

barring extreme conditions, results present planned missingness as a viable alternative to 

using short forms when the length of a survey needs to be reduced. 

 Across the different conditions simulated in Study 2, short form A was most 

similar to the short forms developed in Study 1, such that short form items are selected 

strictly based on factor loadings, and that short form and planned missingness estimates 

were computed based on the same sample. Whereas Study 1 found that PM produced 

slightly more accurate intercorrelation estimates than short forms, Study 2 found that a 

small advantage favoring short forms when they have already been developed. Although 

a small discrepancy, it highlights the relative benefits and drawbacks of both using real 

data and conducting a simulation. In Study 1, the three large public datasets do exhibit 
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some characteristics that may be more realistic compared to data simulated in Study 2 in 

that the number of constructs varied more (included beyond five scales that were 

simulated in Study 2), the number of items varied across constructs (rather than being 

fixed at 10 in Study 2), and the factor loadings of the items onto each construct varied 

across scales (rather than being fixed at .30~.75 in Study 2). At the same time, datasets 

with very large samples were chosen to minimize sampling error. Having a large sample 

size is particularly important for the effectiveness of planned missingness, potentially 

explaining the findings of Study 1. However, it is important to keep in mind that although 

not impossible, collecting a sample of 100,000 or larger for a single survey is rare. 

Compared with only three datasets included in Study 1 which represented a very limited 

and possibly idiosyncratic combination of data characteristics, Study 2 captured a broader 

universe of data that could be observed. Thus, results from Studies 1 and 2 should be 

interpreted alongside each other. Although either using short forms or implementing a 

planned missingness design may prevail slightly in any one study, differences are likely 

to be small on average and decisions on which method to choose may ultimately depend 

on practical and contextual considerations rather than statistical.  

 In the effort to examine some of these practical considerations, Study 3 captured 

common reasons why planned missingness has not been used more in I/O and related 

fields. Findings show that the lack of use has mainly resulted from a lack of awareness 

and knowledge of what it is, how to implement it, and how to analyze the data. In 

addition, researchers worry about how studies with a PM design would be received by 

others, including reviewers, management, clients, etc. Lastly, results highlight contexts in 

which planned missingness would not be suitable, such as when the purpose of data 
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collection is for making high stakes, operational decisions, when a higher level of 

unplanned missingness is expected, and when negative reactions among respondents is 

particularly worrisome.  

Limitations of planned missingness 

 While planned missingness can be a very useful tool in some scenarios, it is 

important to keep in mind its limitations.  

 First, as data gathered with a PM design need to be subsequently treated with 

either multiple imputation or maximum likelihood estimation, the constraints of such 

statistical procedures apply to the survey design itself. Therefore, in cases where 

imputation or FIML estimation fails or yield inaccurate estimates, PM should not be 

used. This could occur when there is not enough information in the observed data from 

which to impute or produce a covariance structure for proper estimation, due to the 

combination of a large amount of data being missing and an inadequate sample size. 

Luckily, these two factors are determined by the judgment of the researcher for the most 

part. When planning to implement a PM design, the researcher should be prepared to 

gather a reasonably large dataset and be cognizant of the level of missingness designed. 

The specific sample size and missingness level will vary depending on the length of 

original scales, target response time, expectation of completion rate and any unplanned 

missingness, and the type of statistical analyses planned. In the event where certain 

factors have hard constraints (e.g., each respondent only has time for i items; it is only 

possible to have access to n respondents), these constraints should be taken into 

consideration when determining the other components of the study design. When in 
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doubt, it might be helpful to conduct a pilot study to estimate average response time and 

determine the amount of missingness and sample size that are suitable accordingly. 

 Second, as some respondents in Study 3 expressed when asked why they have not 

implemented planned missingness, it can complicate analyses. Even researchers in other 

fields who have published with PM designs warned about this challenge, particularly 

when used in a multi-level study (Folberg, 2020; Lüdtke et al., 2016; Westfall et al., 

2015; Wood et al., 2019). Research has detailed the effectiveness of different PM designs 

and approaches to impute data in cases of multiple measurement, but researchers should 

be prepared for the added complexities.  

 Third, as planned missingness assigns a different subset of items to each 

respondent by design, it is not suitable for all data collection purposes. As the 

respondents in Study 3 pointed out, in high stakes testing situations, this may cause issues 

for fairness and legal defensibility and result in negative applicant reaction. Further, in 

research that collects data from incumbents which typically suffer from low response and 

completion rates, further implemented planned missingness might lead to overly sparse 

data.  

 Overall, planned missingness is not argued to be a substitute for using short forms 

to reduce survey length. It is a valuable and convenient alternative in some contexts, but 

not in situations outlined above. When planned missingness is not a viable option or well 

developed and validated short forms are readily available for use, the standard practice of 

using short version is still recommended. Short forms were created solely based on factor 

loadings in the simulation study to reduce processing time and power, but a number of 

psychometric criteria can also be used to select items for the short form. For researchers 
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who need to develop their own short forms, I recommend following the prescriptions 

provided by Cortina et al. (2020) and using their R Shiny app, OASIS, to ensure 

simultaneous consideration of reliability, content validity, and construct validity.  

Practical Recommendations for Using Planned Missingness 

 Although not without limitations, implementing planned missingness designs can 

pose a number of advantages over using short forms, which can guide researchers’ 

decisions about when and how to use PM. 

 I summarize four conditions that when fulfilled, would characterize a good 

opportunity to implement PM. 

1. There is a need to reduce study length. PM can be very effective for producing 

accurate estimates. However, if there is no length concern on the number of items 

included in the study and participant response burden is estimated to be low, there is no 

need for any method of length reduction. 

2. The study is designed for low stakes, research purposes. Administering a 

different subset of items in a high-stakes setting for purposes of selection or promotion 

decisions can lead to issues of fairness across individuals, legal defensibility, and 

negative applicant reactions. On the other hand, for a research study whose purpose is not 

to make any individual decisions but to advance understanding of certain psychological 

constructs, PM designs are a useful tool for reducing study length, thus minimizing 

participant burden and improving measurement efficiency and data quality.  

3. Short forms of measures have not been previously developed and validated. 

If empirically based short versions of the measures that a researcher hopes to use have 

previously been developed, then no additional researcher effort or participant numbers 
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are needed for scale development. In such cases, using short forms is a perfectly fine 

approach to reduce study length. However, when short forms have yet to be developed or 

are developed at least in part based on human judgment, implementing PM is much more 

inexpensive and convenient and can produce more accurate estimates.  

4. An adequate sample size is expected OR there is unlikely to be a high level of 

unplanned missingness (ideally both). Overall, the effectiveness of PM designs depends 

on the observed data providing enough information that can allow subsequent imputation 

or maximum likelihood estimation. Either a limited availability of recruitment pool or a 

large amount of unplanned missing data will both hurt the effectiveness of PM designs. 

Thus, when facing a large sample (e.g., MTurk workers or incumbents of a high volume 

position), or when there is expectation of reasonable response and completion rate, 

planned missingness can be a great option.  

5. You have the methodological and analytical expertise (or are willing to 

learn). PM may be new to many but for many purposes, learning to use PM does not 

require a big time investment. However, it is worth noting that for some complex 

analyses, more expertise is needed. As some of the researchers who have published 

substantive research with a PM design expressed, PM does have the potential to severely 

complicate analyses, particularly when testing multi-level research questions or structural 

equation models that are complex to begin with (Folberg, 2020; Lüdtke et al., 2016; 

Westfall et al., 2015; Wood et al., 2019). Research has detailed the effectiveness of 

different PM designs and approaches to impute data in cases of multiple measurement, 

but users should be prepared for the added complexities.  
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Conclusion 

 The technical effectiveness of planned missingness designs found in the current 

dissertation along with the practical convenience of their implementation have 

implications that stem beyond the field of I/O and are relevant to all survey research that 

assesses latent constructs. I hope that this series of studies can help researchers better 

understand planned missingness designs, better distinguish planned missingness from 

traditional types of missing data that may be more problematic, and move from reacting 

to to anticipating missing data. I also hope that by demonstrating the conditions under 

which planned missingness is useful and appropriate and those under which it is not, it 

can become simply another methodological tool in our belt.  
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Table 1. Three-Form PM Design at 30% Missingness 

 

  Item Set 
  X A B C 
 Respondent 1 2 3 4 5 6 7 8 9 10 
Form 1 1 1 1 1 1 1 1 1 0 0 0 

2 1 1 1 1 1 1 1 0 0 0 
3 1 1 1 1 1 1 1 0 0 0 

Form 2 4 1 1 1 1 0 0 0 1 1 1 
5 1 1 1 1 0 0 0 1 1 1 
6 1 1 1 1 0 0 0 1 1 1 

Form 3 7 1 0 0 0 1 1 1 1 1 1 
8 1 0 0 0 1 1 1 1 1 1 
9 1 0 0 0 1 1 1 1 1 1 

Note. 1 = item administered. 0 = item not administered.   
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Table 2. Random Percentage PM Design at 30% Missingness 

 

 

 Items 
Respondent 1 2 3 4 5 6 7 8 9 10 

1 0 1 0 1 1 0 1 1 1 1 
2 1 0 1 1 1 1 0 1 1 0 
3 1 1 1 0 0 1 1 1 0 1 
4 0 1 1 1 1 1 1 0 0 1 
5 1 1 1 0 0 0 1 1 1 1 
6 1 1 0 1 1 1 0 0 1 1 
7 0 0 1 1 1 1 1 1 1 0 
8 1 1 1 1 1 0 1 0 1 0 
9 0 1 1 1 1 1 0 1 0 1 

Note. 1 = item administered. 0 = item not administered.   
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Table 3. Scale Internal Consistency in Study 1 Dataset A 

Variable Full 
Loadings-
based SF 

OASIS-based 
SF PM 

Machiavellianism .86 .84 .84 .86 
Narcissism .80 .74 .75 .80 
Psychopathy .80 .79 .76 .79 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets. PM = 
planned missingness. 
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Table 4. Scale Internal Consistency in Study 1 Dataset B 

 
 

Scale Full 
Loadings-
based SF 

OASIS-based 
SF PM 

Realistic .88 .84 .84 .88 
Investigative .89 .88 .86 .90 
Artistic .86 .75 .80 .87 
Social .85 .81 .81 .85 
Enterprising .83 .75 .75 .84 
Conventional .90 .84 .84 .91 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets,.PM = 
planned missingness. 



 

 73 

Table 5. Scale Internal Consistency in Study 1 Dataset C 

 

Scale Full 
Loadings-
based SF 

OASIS-
based SF PM 

Extraversion .88 .79 .79 .88 
Agreeableness .81 .75 .75 .83 
Conscientiousness .78 .68 .70 .79 
Emotional Stability .87 .84 .82 .83 
Openness to Experience .80 .74 .74 .75 
CWB (Laczo) .75 .67 .72 .74 
CWB (B&R) .79 .71 .72 .78 
OCB .82 .75 .74 .80 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets. PM = 
planned missingness. CWB = counterproductive work behaviors. OCB = 
organizational citizenship behaviors. Laczo = Laczo (2002). B&R = Bennett & 
Robinson (2000). 
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Table 6. Scale Intercorrelation in Study 1 Dataset A 

 

    Absolute Difference from Full 

Scale Pair Full 
Loadings-
based SF 

OASIS-
based SF PM 

Loadings-
based SF 

OASIS-
based SF PM 

Machiavellianism–Narcissism .47 .50 .50 .47 .02 .02 .00 
Machiavellianism–Psychopathy .72 .79 .72 .71 .07 .01 .01 
Narcissism–Psychopathy .45 .51 .48 .45 .06 .03 .00 
Mean absolute difference     .05 .02 .01 
SD absolute difference     .03 .01 .01 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets. PM = planned missingness. SD = standard deviation 
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Table 7. Scale Intercorrelation in Study 1 Dataset B 

 
 

     Absolute Difference from Full 

Scale Pair Full 
Loadings-
based SF 

OASIS-
based SF PM 

Loadings-
based SF 

OASIS-
based SF PM 

Realistic–Investigative .30 .25 .23 .30 .05 .07 .00 
Realistic–Artistic .19 .18 .18 .19 .01 .01 .00 
Realistic–Social .09 .06 .09 .10 .02 .00 .01 
Realistic–Enterprising .32 .22 .22 .31 .10 .10 .01 
Realistic–Conventional .48 .34 .34 .48 .13 .14 .00 
Investigative–Artistic .32 .27 .25 .32 .06 .07 .00 
Investigative–Social .22 .15 .15 .22 .06 .07 .00 
Investigative–Enterprising .07 -.01 .00 .07 .08 .07 .00 
Investigative–Conventional  .11 .10 .13 .12 .02 .02 .00 
Artistic–Social .34 .27 .30 .33 .06 .04 .01 
Artistic–Enterprising .31 .21 .18 .30 .10 .13 .01 
Artistic–Conventional .04 .02 .04 .04 .02 .00 .00 
Social–Enterprising .40 .27 .31 .39 .13 .09 .01 
Social–Conventional .20 .14 .16 .19 .06 .04 .00 
Enterprising–Conventional .51 .39 .39 .50 .12 .12 .01 
Mean absolute difference     .07 .07 .01 
SD absolute difference     .04 .04 .01 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets. PM = planned missingness. SD = standard 
deviation 
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Table 8. Scale Intercorrelation in Study 1 Dataset C 

     Absolute Difference from Full 

Scale Pair Full 
Loadings-
based SF 

OASIS-
based SF PM 

Loadings-
based SF 

OASIS-
based SF PM 

EXT–AGR .30 .13 .13 .27 .17 .15 .03 
EXT–CON .04 .02 .02 .05 .02 .04 .01 
EXT–ES .22 .09 .09 .22 .13 .08 .00 
EXT–OPN .25 .23 .23 .24 .02 .02 .01 
EXT–CWB (Laczo) -.06 .06 .06 -.09 .12 .05 .03 
EXT–CWB (B&R) -.11 -.05 -.05 -.10 .06 .03 .01 
EXT–OCB .29 .24 .24 .28 .05 .13 .01 
AGR–CON .27 .20 .20 .25 .07 .03 .02 
AGR–ES .19 .10 .10 .29 .09 .09 .10 
AGR–OPN .18 .18 .18 .18 .00 .01 .00 
AGR–CWB (Laczo) -.26 -.13 -.13 -.28 .13 .11 .02 
AGR–CWB (B&R) -.30 -.20 -.20 -.29 .10 .14 .01 
AGR–OCB .38 .40 .40 .36 .02 .01 .02 
CON–ES .24 .24 .24 .30 .00 .04 .06 
CON–OPN .04 .08 .08 .05 .04 .08 .01 
CON–CWB (Laczo) -.34 -.31 -.31 -.39 .03 .05 .05 
CON–CWB (B&R) -.41 -.29 -.29 -.40 .12 .07 .01 
CON–OCB .29 .28 .28 .28 .01 .03 .01 
ES–OPN .02 .01 .01 .02 .01 .03 .00 
ES–CWB (Laczo) -.28 -.25 -.25 -.33 .03 .01 .05 
ES-CWB (B&R) -.31 -.31 -.31 -.33 .00 .01 .02 
ES–OCB .20 .22 .22 .25 .02 .00 .05 
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OPN–CWB (Laczo) -.04 -.01 -.01 -.04 .03 .03 .00 
OPN–CWB (B&R) -.06 -.04 -.04 -.08 .02 .01 .02 
OPN–OCB .31 .27 .27 .30 .04 .04 .01 
CWB (Laczo)–CWB (B&R) .80 .66 .66 .79 .14 .05 .01 
CWB (Laczo)–OCB -.26 -.13 -.13 -.31 .13 .12 .05 
CWB (B&R)–OCB -.31 -.24 -.24 -.33 .07 .11 .02 
Mean absolute difference     .06 .06 .02 
SD absolute difference     .05 .04 .02 
Notes. SF = short form. OASIS = Optimization App for Selecting Item Subsets. PM = planned missingness. CWB = 
counterproductive work behaviors. OCB = organizational citizenship behaviors. Laczo = Laczo (2002). B&R = Bennett & 
Robinson (2000). SD = standard deviation. 
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Table 9. Variables manipulated in Study 2 

 

Variables manipulated Range 
Population characteristics  

Number of scales (s) 2-5 
Intercorrelation mean (Mr) 0-.70 at .10 increments 
Intercorrelation standard deviation 
(SDr) 

0-.30 at .05 increments (only for 3-5 
scales) 

Sample characteristics  
Sample size (n) 100 to 1,000 at 100 increments 
Amount of missingness (m) 10% to 80% at 10% increments 
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Table 10. Study 2 Simulation Regressions for Absolute Deviations 

 

 DV1: Abs(truth-SFA) DV2: Abs(truth-SFB) DV3: Abs(truth-SFC) DV4: Abs(truth-PM) 
 Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 
(Intercept) .039** (.00) .039** (.00) .056** (.00) .056** (.00) .072** (.00) .072** (.00) .053** (.00) .053** (.00) 
!  .023** (.00) .023** (.00) .036** (.00) .036** (.00) .144** (.00) .144** (.00) .074** (.00) .079** (.00) 
"  -.004** (.00) -.004** (.00) -.007** (.00) -.007** (.00) -.003** (.00) -.003** (.00) -.007** (.00) -.007** (.00) 
s .000     (.00) .000     (.00) .000     (.00) .000     (.00) .000     (.00) .000     (.00)     .004** (.00) .005** (.00) 
#!  -.005** (.00) -.006** (.00) -.004** (.00) -.004** (.00) .135** (.00) .136** (.00) .023** (.00) .030** (.00) 
$%!  .000     (.00) .000     (.00) -.000     (.00) .000     (.00) .000     (.00) .001     (.00)     .005** (.00) .007** (.00) 
! × "   .001** (.00)  -.002** (.00)  .004** (.00)  -.010** (.00) 
! × '   .000*   (.00)  .000     (.00)  .000     (.00)      .022** (.00) 
! ×#!   .114** (.00)  .178** (.00)  .600** (.00)  .248** (.00) 
! × $%!   .008** (.00)  .011** (.00)  -.004** (.00)  .035** (.00) 
" × '   .000     (.00)  .000     (.00)  .000     (.00)      -.001** (.00) 
" ×#!   .004** (.00)  .002** (.00)  .007** (.00)  -.012** (.00) 
" × $%!   .000** (.00)  .000     (.00)  .000*   (.00)  .000** (.00) 
' × #!   .000     (.00)  .000     (.00)  .000     (.00)      .024** (.00) 
' × $%!   .000     (.00)  .000     (.00)  .000     (.00)      .009** (.00) 
#! × $%!   -.004** (.00)  -.001     (.00)  .060** (.00)  .036** (.00) 
R2 .306 .347 .337 .373 .537 .705 .349 .449 
Notes. SF = short form, PM = planned missingness, DV = dependent variable, m = amount of missingness, n = sample size, s = number of 
scales, #!  = true intercorrelation mean, $%! 	= true intercorrelation standard deviation  
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Table 11. Study 2 Simulation Regressions for Differences in Absolute Deviations 

  DV5: DV1-DV4 DV6: DV2-DV4 DV7: DV3-DV4 

 Step 1 Step 2 Step 1 Step 2 Step 1 Step 2 

(Intercept) -.014** (.00) -.015** (.00) -.002** (.00) .001** (.00) .018** (.00) .017** (.00) 

!  -.055** (.00) -.061** (.00) -.048** (.00) -.054** (.00) .065** (.00) .056** (.00) 

"  .003** (.00) .004** (.00) .001** (.00) .001** (.00) .004** (.00) .005** (.00) 

s -.004** (.00) -.005** (.00) -.004** (.00) -.005** (.00) -.004** (.00) -.005** (.00) 

#!  -.030** (.00) -.037** (.00) -.033** (.00) -.039** (.00) .012** (.00) .103** (.00) 

$%!  -.005** (.00) -.007** (.00) -.006** (.00) -.007** (.00) -.004** (.00) -.006** (.00) 

! × "   .014** (.00)  .013** (.00)  .018** (.00) 

! × '   -.022** (.00)  -.023** (.00)  -.022** (.00) 

! ×#!   -.140** (.00)  -.101** (.00)  .336** (.00) 

! × $%!   -.027** (.00)  -.025** (.00)  -.039** (.00) 

" × '   .001** (.00)  .001** (.00)  .001** (.00) 

" ×#!   .016** (.00)  .016** (.00)  .019** (.00) 

" × $%!   .000     (.00)  .000     (.00)  -.001** (.00) 

' × #!   -.024** (.00)  -.025** (.00)  -.025** (.00) 

' × $%!   -.008** (.00)  -.008** (.00)  -.008** (.00) 

#! × $%!   -.044** (.00)  -.044** (.00)  .021** (.00) 

R2 .202 .357 .116 .238 .317 .509 

Notes. SF = short form, PM = planned missingness, DV = dependent variable, m = amount of missingness, n = 

sample size, s = number of scales, #!  = true intercorrelation mean, $%! 	= true intercorrelation standard deviation  
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Table 12. Frequency of Survey Responses in Study 3 

 

Response 

In your work, approximately how 
many self-report data collections 
(e.g., surveys, test batteries) have 
you designed or contributed to 
designing? 

Approximately how many of these 
self-report data collections (e.g., 
surveys, test batteries) have you 
had the need to reduce their length? 

0 0 4 

1-5 9 31 

6-10 15 26 

11-15 8 5 

15-20 7 0 

>20 49 16 
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Table 13. Preference between SF and PM in Study 3 

 

Scenario 
I have no 
preference 

I would prefer 
using short form 

I would prefer 
implementing 

planned 
missingness 

Scenario 1: An Amazon Mechanical Turk research study examining 
the convergent and discriminant validity of a new personality 
measure by administering the new measure along with a number of 
other personality scales 21 14 41 
 
Scenario 2: A battery of tests is administered to applicants of an 
entry-level job and used to make selection decisions 12 54 10 
 
Scenario 3: An engagement survey is being designed to evaluate 
job attitudes and perceptions of organizational norms and culture 
internally 24 26 26 
 
Scenario 4: A number of new selection tools are being developed 
and validated, and they are administered to incumbents for 
validation research purposes only 23 17 35 
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Figure 1. Simulation procedure in Study 2. 
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Figure 2. Deviations from True Population Intercorrelation by Method, Amount of Missingness, and Number of Factors  
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Figure 3. Deviations from True Population Intercorrelation by Method, Sample Size, and Number of Factors
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Figure 4. Deviations from True Population Intercorrelation by Method, Mean Intercorrelation, and Number of Factors
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Figure 5. Deviations from True Population Intercorrelation by Method, Intercorrelation Standard Deviation, and Number of Factors
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Figure 6. Deviations from True Population Intercorrelation by Method, Sample Size, and Amount of Missingness
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Figure 7. Deviations from True Population Intercorrelation by Method, Mean Intercorrelation, and Amount of Missingness
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Figure 8. Deviations from True Population Intercorrelation by Method, Intercorrelation Standard Deviation, and Amount of 
Missingness
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Figure 9. Deviations from True Population Intercorrelation by Method, Sample Size, and Mean Intercorrelation
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Figure 10. Deviations from True Population Intercorrelation by Method, Sample Size, and Intercorrelation Standard Deviation
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Figure 11. Deviations from True Population Intercorrelation by Method, Mean Intercorrelation, and Intercorrelation Standard 
Deviation
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Figure 12. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Amount of Missingness, and 
Number of Factors
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Figure 13. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Sample Size, and the Number of 
Factors
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Figure 14. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Mean Intercorrelation, and the 
Number of Factors
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Figure 15. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Intercorrelation Standard Deviation, 
and the Number of Factors
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Figure 16. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Sample Size, and the Amount of 
Missingness



 

 99 

 
Figure 17. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Mean Intercorrelation, and the 
Amount of Missingness
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Figure 18. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Intercorrelation Standard Deviation, 
and the Amount of Missingness
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Figure 19. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Sample Size, and Intercorrelation 
Mean
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Figure 20. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Sample Size, and Intercorrelation 
Standard Deviation
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Figure 21. Deviation from Truth of Short Forms Compared with Planned Missingness by Method, Mean Intercorrelation, and 
Intercorrelation Standard Deviation
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Figure 22. Percentage of Iterations that Imputed Successfully by Sample Size and the Amount of Missingness
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Appendices 

Appendix A. Planned Missingness Perceptions Study (Study 3) Survey 

Part I 

1. In your work, approximately how many self-reported data collections (e.g., surveys, test 
batteries) have you designed or contributed to designing? 

a. 0 
b. 1-5 
c. 6-10 
d. 11-15 
e. 16-20 
f. >20 

2. Approximately how many of these self-report data collections (e.g., surveys, test 
batteries) have you had the need to reduce their length? 

a. 0 
b. 1-5 
c. 6-10 
d. 11-15 
e. 16-20 
f. >20 

3. A planned missingness (PM) design can be implemented in survey studies, in which a 
randomly selected percentage of items are administered to each respondent. By using a 
PM design, the length of a survey can be reduced. Were you familiar with this concept 
prior to participating in this study? 

a. Yes 
b. No 

4. Have you ever implemented a planned missingness deign in your research/work? 
a. Yes 
b. No 

5. If yes to #2, how did you treat the missingness? 
a. Full information maximum likelihood 
b. Multiple imputation 
c. Other:  

6. If yes to #2, what kind of study were you conducting? 
a. Concurrent validation study 
b. Predictive validation study 
c. Survey research (e.g., engagement survey, academic research) 
d. Methodological study concerning data missingness 
e. Other: 

7. If no to #2, why not? 
a. Never heard of it/do not know what it is 
b. Not appliable to my work because I have not had a need to reduce survey length 
c. Others:  
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8. In your work, what approaches have you taken to make sure a survey is not too lengthy?  
(check all that apply) 

a. Short forms 
b. Planned missingness 
c. Cut down number of constructs/scales 
d. N/A 

 

Part II 

Oftentimes, there is motivation to shorten a survey. Sometimes there is constraint on the amount 
of time respondents have to spend. It can also be beneficial for researchers to reduce the length 
of a survey to prevent respondent fatigue and careless responding.  
 
Two approaches can be used to reduce survey length without cutting down the number of 
constructs measured. First, short forms of scales administered rather than full measures. 
Sometimes, such short forms already exist in the literature; sometimes they have to be 
developed. Second, a planned missingness (PM) design can be implemented, in which a 
randomly selected percentage of items are administered to each respondent. Thus, all 
respondents receive a survey of the same length, but the subset of items given to each individual 
is different and every item is answered by a subset of the sample. Research shows that the true 
covariance structure can be closely replicated with two techniques. When all that is needed for 
subsequent analyses is the covariance matrix, full-information maximum likelihood estimation 
can be used. Alternatively, multiple imputation can be used to fill in each of the missing 
datapoints, and the completed datasets can then be analyzed.  
 
Below is a simple example of what the two approaches would look like if the full survey consists 
of 10 items, but respondents only have time to complete seven items. If using a short form, seven 
items would be chosen to be administered to all respondents. If implementing a planned 
missingness design, each respondent would be given a randomly selected seven items.  
 

 Short form vs. Planned Missingness 

 Items  Items  

Respondent 1 2 3 4 5 6 7 8 9 10  1 2 3 4 5 6 7 8 9 10 

1 1 1 1 1 1 1 1 0 0 0  1 0 0 1 1 0 1 1 1 1 

2 1 1 1 1 1 1 1 0 0 0  0 1 1 0 1 1 0 1 1 1 

3 1 1 1 1 1 1 1 0 0 0  1 1 1 1 0 1 1 0 1 0 

4 1 1 1 1 1 1 1 0 0 0  1 1 1 0 1 0 1 1 0 1 
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5 1 1 1 1 1 1 1 0 0 0  1 0 1 1 0 1 0 1 1 1 

6 1 1 1 1 1 1 1 0 0 0  1 1 0 1 1 1 1 0 1 0 

7 1 1 1 1 1 1 1 0 0 0  0 1 1 1 1 0 1 1 0 1 

8 1 1 1 1 1 1 1 0 0 0  1 0 1 0 1 1 1 0 1 0 

9 1 1 1 1 1 1 1 0 0 0  0 1 1 1 1 1 0 1 0 1 

Note. 1 = item administered. 0 = item not administered.   

 

In a series of simulation studies, I compared the performance of these two approaches for 
reproducing population estimates. Across a wide range of sample sizes, number of variables, 
mean variable intercorrelations, and missingness levels, using short forms and implementing 
planned missingness performed comparably. Please consider the following scenarios in which 
your goal is to reduce study length. Given the technical equivalence of using short forms and 
planned missingness, please indicate whether you would prefer one approach to the other for any 
contextual reasons.  
 

9. An MTurk research study examining the convergent and discriminant validity of a new 
personality measure by administering the new measure along with a number of other 
personality scales.  

a. I would prefer using short forms. 
b. I would prefer implementing planned missingness. 
c. I have no preference.  
d. If A or B, why:  

10. A battery of tests is administered to applicants of an entry-level job and used to make 
selection decision.  

a. I would prefer using short forms. 
b. I would prefer implementing planned missingness. 
c. I have no preference.  
d. If A or B, why:  

11. An engagement survey is being designed to evaluate job attitudes and perceptions of 
organizational norms and culture internally.  

a. I would prefer using short forms. 
b. I would prefer implementing planned missingness. 
c. I have no preference.  
d. If A or B, why:  

12. A number of new selection tools are being developed and validated. They are 
administered to incumbents for validation research purposes only.  

a. I would prefer using short forms. 
b. I would prefer implementing planned missingness. 
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c. I have no preference.  
d. If A or B, why:  

 

Background Info 

13. Highest Degree Earned 
a. Bachelor’s 
b. Master’s 
c. Doctoral  
d. Other:  

14. What is your degree in?  
a. Industrial/Organizational Psychology 
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c. Business (e.g., Organizational Behavior, Human Resources) 
d. Education 
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