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Abstract

The world we live in is extremely connected, and it will become even more so in a decade.

It is projected that by 2030, there will be 125 billion interconnected smart devices

and objects worldwide. These devices are capable of collecting huge amounts of data,

performing complex computational tasks, and providing vital services and information

to significantly improve our quality of life.

My research develops theories and methods for distributed machine learning and

computation, so that future applications can effectively utilize vast of distributed re-

sources such as data, computational power, and storage to become faster, smarter, and

more robust. Specifically, the main research objectives and innovative claims include:

1) Theoretical Foundations for Distributed Machine Learning

The first part of this thesis focuses on theoretical guarantees for distributed learning

and majorly answering the following question: if the agents can only access the gradients

of local functions, what are the fastest rates that any distributed algorithms can achieve,

and how to achieve those rates?

First, we show that there exist difficult problem instances, such that it takes a class of

deterministic distributed first-order methods at least O(1/
√
ξ(G)×L̄/ε) communication

rounds to achieve certain ε-solution 1. Then, we propose (near) optimal methods whose

rates match the developed lower rate bound (up to a ploylog factor). To the best of

our knowledge, this is the first time that lower rate bounds and optimal methods have

been developed for distributed non-convex optimization problems. Next, we propose

stochastic algorithms to further minimize the number of local data samples needed to

be accessed, using the novel variance reduction type of ideas. We show that the proposed

algorithm significantly improves upon the existing works and achives the best known

sample complexity.

2) Machine Learning Advances for Wireless Communication

In the second part of the thesis, we design a novel machine learning-based strategy

1ξ(G) denotes the spectral gap of the graph Laplacian matrix of the underlaying network, and L̄ is
some Lipschitz constant.
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and apply the theory and algorithms developed in Part 1, to improve the real-time per-

formance of modern 5G wireless systems. This task is strongly motivated by the urgent

need to design revolutionary network infrastructure and advanced wireless resource al-

location strategies, so that future generations of a wireless network can cope with the

exponentially growing demand for wireless data.

In specific, we develop a new approach that enables data-driven methods to contin-

uously learn and optimize in a dynamic environment. We propose to build the notion of

continual learning (CL) into the modeling process of learning wireless systems, so that

the learning model can incrementally adapt to the new environments, without forgetting

knowledge learned from the previous environments. Our design is based on a novel

bilevel optimization formulation which ensures certain “fairness” across different data

samples. We demonstrate the effectiveness of the CL approach by integrating it with

two popular DNN based models for power control and beamforming, respectively, and

testing using both synthetic and ray-tracing based data sets. Numerical results show

that the proposed CL approach is not only able to adapt to the new scenarios quickly

and seamlessly, but importantly, it also maintains high performance over the previously

encountered scenarios as well.

To advocate the reproducible research, the code and implementation detail of this

thesis is available online at https://github.com/Haoran-S/Thesis.
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Chapter 1

Introduction

1.1 Motivation

We live in a world where virtually everything is connected. It is predicted that there will

be over 125 billion smart devices connected via the internet worldwide by 2030 1. Many

active and emerging applications will heavily rely on our ability to effectively utilize

geographically distributed resources such as data, storage, and computational power.

For example, consider self-driving cars at an intersection, given the fact that each ve-

hicle generates approximately 40 Gbit/sec of vital data (for positioning, accelerating,

braking, steering, and so on) 2, even the fastest cellular network would be overwhelmed,

making real-time central processing impossible. These and other examples from small

and ordinary (e.g. coordinating multiple smart features in a home) to large and vitally

important (e.g. regional or national power distribution) show how important fast dis-

tributed optimization, information processing, and peer-to-peer coordination will be to

the well-being of, quite literally, billions of people in the future. They reveal that in

the near future we will need a large number of distributed devices at the edge of the

network that can act as mini cloud servers, capable of processing huge local data and

to perform complex computational tasks such as real-time learning and prediction.

Challenges. However, emerging applications arising in the future smart and con-

nected world encounter significant challenges when trying to effectively utilize such

1https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
2https://www.tuxera.com/blog/autonomous-cars-300-tb-of-data-per-year/

1
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Figure 1.1: Illustration of distributed learning with multiple agents; each agent has part of the data, and they
want to utilize the data across all the agents to learn a highly non-linear and non-convex model (such as neural
networks).

distributed resources. For example, to build sophisticated intelligence into the devices

and networks, distributed processing tasks become increasingly complex. For emerging

applications such as distributed dictionary learning, collaborative deep learning, and

drone coordination and networking, the interaction pattern among the nodes, and their

local cost functions can only be modeled by highly nonlinear and non-convex functions,

see illustration in Fig. 1.1. Unfortunately, traditional distributed algorithms based on

convex models and linear interactions are no longer applicable. Further, coordinating a

large population of distributed nodes requires building efficient and flexible algorithms

that guarantee performance, while adaptive to various practical situations such as het-

erogeneity of the nodes and network failure. How to design new classes of algorithms to

meet the stringent requirements on bandwidth, latency and power consumption? What

is the best solution accuracy that can be achieved under system resource limitation?

1.2 Research Goals and Contributions

Motivated by the huge potential of decentralized information and computational re-

sources, as well as the related algorithmic and theoretical challenges, my research mainly

focuses on developing theoretical foundations and effective algorithms to enable large-

scale distributed learning and optimization. Specifically, I am interested in understand-

ing how to best design algorithms and accurately predict solution qualities, so that
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distributed agents can jointly accomplish highly complex tasks as efficient as possible.

Towards this end, my research has been, and will continue to be, focused on developing

fundamental theoretical characterization of decentralized learning, designing efficient

algorithms with performance guarantees, as well as finding applications that best illus-

trate the superiority of large-scale learning and optimization. More specifically, most

significant research contributions of this thesis are summarized below.

1.2.1 Theoretical Foundations for Distributed Machine Learning

The first part of this thesis is to investigate various issues in decentralized learning from

a theoretical standpoint. Our theoretical analysis then leads to the development of a

unifying algorithmic framework, capable of achieving the optimal performance predicted

by theory, in a fully distributed manner. Specifically, we pose and address the following

open research question:

(Q1) How to identify and provably achieve the best possible performance,

measured by rounds and bits of communication, the effort of computation, and

quality of the solution, for distributed optimization and machine learning?

Unlike the majority of existing works that develop specific algorithms, our work offers

a fresh perspective by investigating the performance limits of any distributed algorithms,

and by providing some understanding about the minimum amount of resources required

to attain a given solution accuracy. These bounds are significant because they help

identify performance gaps in existing methods and provide key insights and standards

to guide practical algorithm design. Importantly, such a theoretical investigation leads

to an algorithmic framework that settles the open question (Q1).

The major contributions we have made in the first part of the thesis are summarized

below.

In Chapter 2, for a class of distributed non-convex optimization problems, we an-

alyze fundamental tradeoffs for key metrics such as computation, communication, and

optimality, so as to recognize the best achievable performance for any distributed first-

order algorithm. In particular, we show that there exist difficult problem instances,

such that it takes a class of distributed first-order methods at least O(1/
√
ξ(G)× L̄/ε)

communication rounds to achieve certain ε-solution, where ξ(G) denotes the spectral
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gap of the graph Laplacian matrix of the underlaying network, and L̄ is some Lipschitz

constant.

In Chapter 3, we further develop an algorithmic framework called xFILTER, by com-

bining classical signal processing and modern optimization techniques so that optimal

performance bounds developed in Chapter 2 can be achieved via fully distributed algo-

rithms. The key in the algorithm design is to properly embed the classical polynomial

filtering techniques into modern first-order algorithms.

In Chapter 4, consider the distributed finite sum and stochastic problems, we show

that classical methods suffer significant sampling complexity and we propose algorithms

that only require the minimum number of local data samples, which significantly improve

upon the best existing bounds. In specific, for a distributed system with m agents and

each agent has a large number of samples (denoted as n), we show that, to achieve certain

ε stationary solution of the distributed finite sum problem, the proposed algorithm

achieves an O(mn1/2ε−1) sample complexity and an O(ε−1) communication complexity.

These bounds significantly improve upon the best existing bounds of O(mnε−1) and

O(ε−1), respectively.

In summary, to the best of our knowledge, this is the first time that 1) the theoretical

analysis on the best achievable complexity bounds for a class of distributed learning

problems is established [1] and 2) the optimal algorithm that achieves the best possible

convergence speed [1] or sample complexity [2] have been developed. We believe our

result could offer a comprehensive understanding of the distributed learning problem

and serve as a guideline for modern large-scale distributed system design.

Results of this direction led to publications such as IEEE Transactions on Signal

Processing [1] and International Conference on Machine Learning (ICML) [2]. The

proposed lower bound and the optimal algorithmic framework [3] has been awarded a

Best Student Paper Award at the 52nd Asilomar Conference on Signals, Systems, and

Computers.

1.2.2 Machine Learning Advances for Wireless Communication

In the second part of the thesis, we design a novel machine learning-based strategy and

apply the theory and algorithms developed in Part I, for allocating wireless resources to
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improve the real-time performance of 5G wireless systems. This task is strongly moti-

vated by the urgent need to design revolutionary network infrastructure and advanced

wireless resource allocation strategies, so that future generations of a wireless network

can cope with the exponentially growing demand for wireless data. In particular, we

have developed efficient learning models and optimization algorithms that answer the

following generic question:

(Q2) Can we leverage Deep Neural Networks (DNN) and optimization methods

to help significantly improve wireless tasks in modern 5G systems?

The key idea of the proposed approach is to treat the input and output of an existing

physical layer optimization algorithm as an unknown nonlinear mapping, use a DNN to

approximate it, and use the efficient distributed training algorithms developed in Part

I to train such a neural network, as illustrated in [4, Fig. 1]. This design strategy has

been applied to solve many complicated wireless resource allocation problems, including

but not limited to power allocation [4], channel estimation [5], Time of Arrival (TOA)

Estimation [6] and multi-antenna beamforming problems [7].

In Chapter 5, to further deal with the performance loss in the challenging dynamic

environment of modern data-driven methods, we introduce the notion of continual learn-

ing (CL) to the above-mentioned data-driven framework for wireless system design and

develop a CL formulation together with a training algorithm tailored for core tasks in

wireless communications. Our framework incrementally adapts the DNN models by us-

ing the new incoming data as well as a limited but carefully selected subset of data from

the previous experiences and ensures certain “fairness” across different data samples.

Numerical results show that the proposed CL approach is not only able to adapt to the

new scenarios quickly and seamlessly, but importantly, it maintains high performance

over the previously encountered scenarios as well.

Our work in this direction [4] has been selected as the Best Readings in Machine

Learning in Communications by the IEEE Communications Society 3, and been iden-

tified as being one of the IEEE Signal Processing Society’s most downloaded articles

from January 2018 to November 2020 for IEEE Transactions on Signal Processing on

IEEE Xplore 4.

3https://www.comsoc.org/publications/best-readings/machine-learning-communications
4https://ieeexplore.ieee.org/document/9363504
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Distributed Learning
in Non-Convex World

Theor
y

Complexity Analysis

Lower Bounds [Chapter 2]

Upper Bounds [Chapter 3 & 4]

Applications
ML for WC

Dynamic Environments

[Chapter 5]

Algorithms
xFILTER
Deterministic
[Chapter 3]

D-GPDA
Deterministic
[Chapter 3]

DGET
Stochastic
[Chapter 4] 

Figure 1.2: Thesis Organization

In Chapter 6, we draw some conclusions for this dissertation and discuss some in-

teresting open problems for future exploration. The overall organization of this thesis

is summarized in Fig. 1.2.

1.3 Notations.

Unless otherwise noted, for a given symmetric matrix B, we use λmax(B), λmin(B) and

λmin(B) to denote the maximum, the minimum and the minimum nonzero eigenvalues;

We use IP to denote an identity matrix with size P , use ⊗ to denote the Kronecker

product, and use ◦ to denote the Hadamard product. We use [M ] to denote the set

{1, · · · ,M}. For a vector x we use x[i] to denote its ith element. We use Õ to denote

O(log(M)) where M is the problem dimension. We use i ∼ j to denote two connected

nodes i and j, i.e., for a graph G := {V, E}, i ∼ j if i 6= j, and (i, j) ∈ E .



Chapter 2

Theoretical Limit of Distributed

Non-convex Learning

We consider a class of popular distributed non-convex optimization problems, in which

agents connected by a network G collectively optimize a sum of smooth (possibly non-

convex) local objective functions. We address the following question: if the agents

can only access the gradients of local functions, what are the fastest rates that any

distributed algorithms can achieve (cf. Chapter 2), and how to achieve those rates (cf.

Chapter 3).

In this Chapter, we show that there exist difficult problem instances, such that it

takes a class of distributed first-order methods at least O(1/
√
ξ(G) × L̄/ε) communi-

cation rounds to achieve certain ε-solution [where ξ(G) denotes the spectral gap of the

graph Laplacian matrix, and L̄ is some Lipschitz constant]. To the best of our knowl-

edge, this is the first time that lower rate bounds have been developed for distributed

non-convex optimization problems.

7
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2.1 Introduction

2.1.1 Problem and motivation

In this work, we consider the following distributed optimization problem over a network

min
y∈RS

f̄(y) :=
1

M

M∑
i=1

fi(y), (2.1)

where fi(y) : RS → R is a smooth and possibly non-convex function accessible to agent

i. There is no central controller, and the M agents are connected by a network defined

by an undirected and unweighted graph G = {V, E}, with |V| = M vertices and |E| = E

edges. Each agent i can only communicate with its immediate neighbors, and it can

access one component function fi (by “access” we meant that it will be able to query

the function and obtain its values and gradients; this notion will be defined precisely

shortly).

A common way to reformulate problem (2.1) in the distributed setting is given

below. Introduce M local variables x1, · · · , xM ∈ RS and a concatenation of M variables

x := [x1; · · · ;xM ] ∈ RSM×1, and suppose the graph {V, E} is connected, then the

following formulation is equivalent to the global consensus problem

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E . (2.2)

The main benefit of the above formulation is that the objective function is now separable,

and the linear constraint encodes the network connectivity pattern.

2.1.2 Lower and upper rate bounds analysis

Distributed non-convex optimization has gained considerable attention recently and

many popular algorithms has been developed, see [8–23]. However, despite all the

recent interests and contributions in this field, one major question remains open:

(Q) What is the best convergence rate achievable by any

distributed algorithms for the non-convex problem (2.1)?



9

Question (Q) seeks to find a “best convergence rate”, which is a characterization of the

smallest number of iterations required to achieve certain high-quality solutions, among

all distributed algorithms. Clearly, understanding (Q) provides fundamental insights

to distributed optimization and information processing. For example, the answer to

(Q) offers meaningful optimal estimates on the total amount of communication and

computation effort required to achieve a given level of accuracy. Further, the identified

optimal strategies capable of attaining the best convergence rates will also help guide

the practical design of distributed information processing algorithms.

Question (Q) is easy to state, but formulating it rigorously is quite involved and a

number of delicate issues have to be clarified. Below we provide a high level discussion

on some of these issues.

(1) Fix Problem and Network Classes. A class of problems P and networks N
of interest should be fixed. Roughly speaking, in this work, we will fix P to be the

family of smooth unconstrained problem (2.1), and N to be the set of connected and

unweighted graphs with finite number of nodes.

(2) Characterize High-Quality Solutions. For a properly defined error constant

ε > 0, one needs to define a high-quality solution in distributed and non-convex setting.

Differently from the centralized case, the following questions have to be addressed:

Should the solution quality be evaluated based on the averaged iterates among all the

agents, or on the individual iterates? Shall we include some consensus measure in the

solution characterization? Different solution notion could potentially lead to different

lower and upper rate bounds.

(3) Fix Algorithm Classes. A class of algorithms A has to be fixed. In the classical

complexity analysis in (centralized) optimization, it is common to define the class of

algorithms by the information structures that they utilize [24]. In the distributed and

non-convex setting, it is necessary to specify both the function information that can be

used by individual nodes, as well as the communication protocols that are allowed.

(4) Develop Sharp Upper Bounds. It is necessary to develop algorithms within class

A, which possess provable and sharp global convergence rate for problem/network class

(P,N ). These algorithms provide achievable upper bounds on the global convergence

rates.

(5) Identify Lower Bounds. It is important to characterize the worst rates achievable
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by any algorithm in class A for problem/network class (P,N ). This task involves

identifying instances in (P,N ) that are difficult for algorithm class A.

(6) Match Lower and Upper Bounds. The key task is to investigate whether the

developed algorithms are rate optimal, in the sense that rate upper bounds derived in

(4) match the worst-case lower bounds developed in (5). Roughly speaking, matching

two bounds requires that for the class of problem and networks (P,N ), the following

quantities should be matched between the lower and upper bounds: i) the order of the

error constants ε; ii) the order of problem parameters such as M , or that of network

parameters such as the spectral gap, diameter, etc.

Convergence rate analysis (aka iteration complexity analysis) for convex problems

dates back to Nesterov, Nemirovsky and Yudin [25,26], in which lower bounds and op-

timal first-order algorithms have been developed; also see [27]. In recent years, many

accelerated first-order algorithms achieving those lower bounds for different kinds of

convex problems have been derived; see e.g., [28–30], including those developed for dis-

tributed convex optimization [31]. In those works, the problem is to optimize minx f(x)

with convex f , the optimality measure used is f(x) − f(x∗), and the lower bound can

be expressed as [27, Theorem 2.2.2]

f(xt)− f(x∗) ≤ ‖x
0 − x∗‖L
(t+ 2)2

, (2.3)

where L is the Lipschitz constant for ∇f ; x∗ (resp. x0) is the global optimal solution

(resp. the initial solution); t is the iteration index. Therefore to achieve ε-optimal

solution in which f(xt) − f(x∗) ≤ ε, one needs

√
‖x∗−x0‖L

ε iterations. Recently the

above approach has been extended to distributed strongly convex optimization in [32].

In particular, the authors consider problem (2.1) in which each fi is strongly convex,

and they provide lower and upper rate bounds for a class of algorithms in which the

local agents can utilize both ∇fi(x) and its Fenchel conjugate ∇∗fi(x). We note that

this result is not directly related to the class of “first-order” method, since beyond

the first-order gradient information, the Fenchel conjugate ∇∗fi(x) is also needed, but

computing this quantity requires performing certain exact minimization, which itself

involves solving a strongly convex optimization problem. Other related works in this

direction also include [33] and [34]. In particular, the work [34] is a non-smooth extension
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of [32], where the lower complexity bound under the Lipschitz continuity of the global

and local objective function are discussed and the optimal algorithm is proposed.

When the problem becomes non-convex, the size of the gradient function can be

used as a measure of solution quality. In particular, let h∗T := min0≤t≤T ‖∇f(xt)‖2,

then it has been shown that the classical (centralized) gradient descent (GD) method

achieves the following rate [27, page 28]

h∗T ≤
c0L(f(x0)− f(x∗))

T + 1
, where c0 > 0 is some constant.

It has been shown in [35] that the above rate is (almost) tight for GD. Recently, [36]

has further shown that the above rate is optimal for any first-order methods that only

utilize the gradient information, when applied to problems with Lipschitz gradient.

However, no lower bound analysis has been developed for distributed non-convex prob-

lem (2.19); there are even not many algorithms that provide achievable upper rate

bounds (except for the recent works [10,13,37,38]), not to mention any analysis on the

tightness/sharpness of these upper bounds.

2.1.3 Contribution of this work

In this Chapter, we address various issues that arise in answering (Q). Our main

contributions are given below:

1) We identify a class of non-convex problems and networks (P,N ), a class of distributed

first-order algorithms A, and rigorously define the ε-optimality gap that measures the

progress of the algorithms;

2) We develop the first lower complexity bound for class A to solve class (P,N ): To

achieve ε-optimality, it is necessary for any a ∈ A to perform O(1/
√
ξ(G)× L̄/ε) rounds

of communication among all the nodes, where ξ(G) represents certain spectral gap of

the graph Laplacian matrix, and L̄ is the averaged Lipschitz constants of the gradients

of local functions. On the other hand, it is necessary for any such algorithm to perform

O(L̄/ε) rounds of computation among all the nodes.
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2.2 Preliminaries

2.2.1 The class P, N , A

We present the classes of problems, networks and algorithms to be studied, as well as

some useful results. We parameterize these classes using a few key parameters so that

we can specify their subclasses when needed.

Problem Class. A problem is in class PML if it satisfies the following conditions.

A1. The objective is an average of M functions; see (2.1).

A2. Each component function fi(x)’s has Lipschitz gradient:

‖∇fi(xi)−∇fi(zi)‖ ≤ Li‖xi − zi‖, ∀ xi, zi ∈ RS , ∀ i, (2.4)

where Li ≥ 0 is the smallest positive number such that the above inequality holds

true. Define L̄ := 1
M

∑M
i=1 Li, Lmax := maxi Li, and Lmin similarly.

Define the matrix of Lipschitz constants as:

L := diag([L1, · · · , LM ])⊗ IS ∈ RMS×MS . (2.5)

A3. The function f(x) is lower bounded over x ∈ RMS , i.e.,

f := inf
x
f(x) > −∞. (2.6)

These assumptions are rather mild. For example an fi satisfies [A2-A3] is not required

to be second-order differentiable. Below we provide a few non-convex functions that

satisfy Assumption [A2-A3], and each of those can be the component function fi’s.

Note that the first four functions are of particular interest in learning neural networks,

as they are commonly used as activation functions.

(1) The sigmoid function is given by sigmoid(x) = 1
1+e−x . We have sigmoid(x) ≥ 0,

sigmoid′′(x) ∈ (−1, 1), therefore [A2-A3] are true with L ≤ 1.

(2) The arctan function satisfies arctan(x) ∈ (−π
2 ,

π
2 ), arctan′′(x) = −2x

(x2+1)2 ∈ [−1, 1].

So [A2-A3] hold with L ≤ 1.
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(3) The tanh function satisfies tanh(x) ≥ −1, tanh′′(x) ∈ [−1, 1], so [A2-A3] hold with

L ≤ 1.

(4) The logit function is related to the tanh function as follows

2logit(x) =
2ex

ex + 1
= 1 + tanh(x/2),

then Assumptions [A2-A3] are again satisfied.

(5) The log(1 + x2) function has applications in structured matrix factorization [39].

Clearly it is lower bounded. Its second-order derivative is also bounded.

(6) Other functions like sin(x), sinc(x), cos(x) are easy to verify. Consider f(x) :=

−x1x2 + (x1− 1)2
+ + (−x1− 1)2

+ where (z)2
+ := max{0, z}2. This function is interesting

because it is not second-order differentiable; nonetheless we can verify that [A2-A3] are

satisfied with L =
√

2 + 1.

Network Class. LetN denote a class of networks represented by an undirected and un-

weighted graph G = {V, E}, with |V| = M vertices and |E| = E edges, and edge weights

all being 1. In this paper the term ‘network’ and ‘graph’ will be used interchangeably.

Also, we use NM
D to denote a class of network similarly as above, but with M nodes

and a diameter of D, defined below [where dist(·) indicates the distance between two

nodes]:

D := max
u,v∈V

dist(u, v). (2.7)

Following the convention in [40], we define a number of graph related quantities below.

First, define the degree of node i as di, and define the averaged degree as:

d̄ :=
1

M

M∑
i=1

di. (2.8)

Define the incidence matrix (IM) A ∈ RE×M as follows: if e ∈ E and it connects vertex

i and j with i > j, then Aev = 1/
√
dv if v = i, Aev = −1/

√
dv if v = j and Aev = 0

otherwise; see the definition in [40, Theorem 8.3]. Using these definitions, the graph
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Laplacian matrix and the degree matrix are defined as follows (see [40, Section 1.2]):

L := ATA ∈ RM×M , and P := diag[d1, · · · , dM ] ∈ RM×M . (2.9)

In particular, the elements of the Laplacian are given as:

[L]ij =


1 if i = j

− 1√
didj

if i ∼ j, i 6= j

0 otherwise.

We note that the graph Laplacian defined here is sometimes known as the normalized

graph Laplacian in the literature, but throughout this paper we follow the convention

used in the classical work [40] and simply refer it as the graph Laplacian. For conve-

nience, we also define a scaled version of the IM:

F := AP 1/2 ∈ RE×M . (2.10)

It is known that IM and scaled IM satisfy the following (where 1 ∈ RM is an all one

vector):

F1 = AP 1/2
1 = 0. (2.11)

Define the second smallest eigenvalue of L, as λmin(L):

λmin(L) = inf
x:
∑M
i=1 xidi=0,x 6=0

xTLx∑M
i=1 x

2
i di

. (2.12)

Then the spectral gap of the graph G can be defined below:

ξ(G) =
λmin(L)

λmax(L)
≤ 1. (2.13)

Algorithm Class. Define the neighbor set for node i ∈ E as

Ni := {i | i ∼ j, j 6= i}. (2.14)
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We say that a distributed, first-order algorithm is in class A if it satisfies the following

conditions.

B1. At iteration 0, each node can obtain some network related constants, such as M ,

D, eigenvalues of the graph Laplacian L, etc.

B2. At iteration t + 1, each node i ∈ [M ] first conducts a communication step by

broadcasting the local xti to all its neighbors, through a function Qti(·) : RS → RS .

Then each node will generate the new iterate, by combining the received message

with its past gradients using a function W t
i (·):

vti = Qti(x
t
i)︸ ︷︷ ︸

communication step

, xt+1
i ∈W t

i

(
{{vkj }j∈Ni ,∇fi(xki ), xki }tk=1

)
︸ ︷︷ ︸

computation step

. (2.15)

In this work, we will focus on the case where the Qti(·)’s and W t
i (·)’s are linear

operators.

Clearly A belongs to the class of first-order methods because only local gradient

information is used. It is also a class of distributed algorithms because at each iteration

the nodes only communicate with their immediate neighbors.

Additionally, in practical distributed algorithms such as DSG, ADMM or EXTRA,

nodes are dictated to use a fixed strategy to linearly combine all its neighbors’ informa-

tion. To model such a requirement, below we consider a slightly restricted algorithm

class A′, where we require each node to use the same coefficients to combine its neigh-

bors (note that allowing the nodes to use a fixed but arbitrary linear combination is also

possible, but the resulting analysis will be more involved).

In particular, we say that a distributed, first-order algorithm is in A′ if it satisfies

B1 and the following:

B2’. At iteration t+ 1, each node i ∈ [M ] performs:

vti = Qti(x
t
i), x

t+1
i ∈W t

i

{∑
j∈Ni

vtj ,∇fi(xki ), xki }tk=1

 . (2.16)

We remark that, in both algorithm classes, one round of communication occurs at
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each iteration, where each node broadcasts its local variable xti once. Therefore, the

total iteration number is the same as the total communication rounds. However, the

total times that the entire gradient {∇fi(xi)}Mi=1 is evaluated could be smaller than the

total iteration number/communication rounds. This is because when we compute xt+1
i ,

the operation W t
i (·) can set the coefficient in front of ∇fi(xri ) to be zero, effectively

skipping the local gradient computation.

2.2.2 Solution Quality Measure

Next we provide definitions for the quality of the solution. Note that since we consider

using first-order methods to solve non-convex problems, it is expected that in the end

some first-order stationary solution with small ‖∇f‖ will be computed.

Our first definition is related to a global variable yt ∈ RS . We say that yt is a global

ε-solution if the following holds:

yt ∈ span
{
xti
}M
i=1

, min
t∈[T ]
‖∇g(yt)‖2 ≤ ε. (2.17)

This definition is conceptually simple and it is identical to the centralized criteria in

Section 2.1.2. However it has the following issues. First, no global variable yt will be

formed in the entire network, so criteria (2.17) is difficult to evaluate. Second, there is

no characterization of how close the local variables xti’s are. To see the second point,

consider the following toy example.

Example 1: Consider a network with M = 2 and f1(y) = −y2 and f2(y) = y2. Suppose

that the local variables take the following values: xT1 = −10 and xT2 = 10. Then if we

pick yT = (xT1 + xT2 )/2 = 0, we have

∇g(yT ) =
1

2
(∇f1(yT ) +∇f2(yT )) = 0.

This suggests that at iteration T , there exists one linear combination that makes measure

(2.17) precisely zero. However one can hardly say that the current solution (xT1 , x
T
2 ) =

(−10, 10) is a good solution for problem (2.2). �

To address the above issue, we provide a second definition which is directly related

to local variables {xi ∈ RS}Mi=1. At a given iteration T , we say that {xTi } is a local
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ε-solution if the following holds:

h∗T := min
t∈[T ]

∥∥∥∥ M∑
i=1

∇fi(xti)
M

∥∥∥∥2

+
1

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

√
LiLj‖xti − xtj‖2 ≤ ε. (2.18)

Clearly this definition takes into consideration the consensus error as well as the size

of the local gradients. When applied to Example 1, this measure will be large. Note

that the constant 1
Mλmin(P 1/2LP 1/2)

is needed to balance the two different measures.

Also note that the “ mint∈[T ] ” operation is needed to track the best solution obtained

before iteration T , because the quantity inside this operation may not be monotonically

decreasing.

In our work we will focus on providing answers to the following specific version of

question (Q):

For any given ε > 0, what is the minimum iteration T (as a function of ε) needed for

any algorithm in class A (or class A’) to solve instances in classes (P,N ), so to

achieve h∗T ≤ ε?

2.2.3 Some Useful Facts and Definitions

Below we provide a few facts about the above classes.

On Lipschitz constants. Assume that each fi has Lipschitz continuous gradient with

constant Li in (2.4). Then we have :

‖∇f̄(y1)−∇f̄(y2)‖ ≤
M∑
i=1

1

M
Li‖y1 − y2‖ := L̄‖y1 − y2‖, ∀ y1, y2 ∈ RS , (2.19)

where L̄ is the average of the local Lipschitz gradients. We also have the following

‖∇f(x)−∇f(z)‖2 =
1

M2

M∑
i=1

‖∇fi(xi)−∇fi(zi)‖2, ∀ xi, zi ∈ RS

which implies

‖∇f(x)−∇f(z)‖ ≤ 1

M
‖L(x− z)‖, ∀ x, z ∈ RMS , (2.20)
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where the matrix L is defined in (2.5).

On Quantities for Graph G. This section presents a number of properties for a given

graph G. Define the following matrices:

Σ := diag[σ1, · · · , σE ] � 0, Υ := diag([β1, · · · , βM ]) � 0. (2.21)

Define B ∈ RE×M = |F | where the absolute value is taken component-wise. Then we

have the following:

1

2

(
F TF +BTB

)
= P = diag[d1, · · · , dM ] ∈ RM×M (2.22)

1

2

(
F TΣ2F +BTΣ2B

)
= diag

{ ∑
j:i∼j

σ2
ij

}
j∈N

 := ∆,

where P is the degree matrix defined in (2.9).

For two diagonal matrices Υ2 and Σ2 of appropriate sizes, the generalized Laplacian

(GL) matrix is defined as:

LG = Υ−1F TΣ2FΥ−1, (2.23)

and its elements are given by:

[LG]ij =


∑
q:i∼q σ

2
iq

β2
i

if i = j

− σ2
ij

βi×βj if (ij) ∈ E , i 6= j

0 otherwise

.

Define a diagonal matrix K ∈ RE×E as below:

[K]e,q =

{ √
LiLj if e = q, and e = (i, j)

0 otherwise
. (2.24)

Then when specializing Υ = P 1/2L1/2 and Σ2 = K, the GL matrix becomes:

L̃ := L−1/2P−1/2F TKFP−1/2L−1/2. (2.25)
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Note that if any diagonal element in the matrix L is zero, then L−1 denotes the Moore

- Penrose matrix pseudoinverse. Similarly, when specializing Υ = L1/2 and Σ2 = K,

then the GL matrix becomes:

L̂ := L−1/2F TKFL−1/2. (2.26)

These matrices will be used later in our derivations.

Below we list some useful results about the Laplacian matrix [40–42]. First, all eigen-

values of L lie in the interval [0, 2]. Also because λmin(L) = λmin(P−1/2F TFP−1/2),

we have

λmin(L) ≤ λmin(F TF ). (2.27)

Also we have that [40, Lemma 1.9]

λmin(L) ≥ 1

D
∑

i di
. (2.28)

The eigenvalues of L for a number of special graphs are given below:

1) Complete Graph: The eigenvalues are 0 and M/(M−1) (with multiplicity M−1),

so ξ(G) = 1;

2) Star Graph: The eigenvalues are 0 and 1 (with multiplicity M − 2), and 2, so

ξ(G) = 1/2;

3) Path Graph: The eigenvalues are 1 − cos(πm/(M − 1)) for m = 0, 1, · · · ,M − 1,

and ξ(G) ≥ 1/M2.

4) Cycle Graph: The eigenvalues are 1− cos(2πm/M) for m = 0, 1, · · · ,M − 1, and

ξ(G) ≥ 1/M2.

5) Grid Graph: The grid graph is obtained by placing the nodes on a
√
M ×

√
M

grid, and connecting nodes to their nearest neighbors. We have ξ(G) ≥ 1/M .

6) Random Geometric Graph: Place the nodes uniformly in [0, 1]2 and connect any

two nodes separated by a distance less than a radius R ∈ (0, 1). Then if the connectivity

radius R satisfies [42]

R = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (2.29)
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then with high probability

ξ(G) = O
(

log(M)

M

)
. (2.30)

2.3 Lower Complexity Bounds

In this section we develop the lower complexity bounds for algorithms in class A to

solve problems PML over network N . We will mainly focus on the case where fi’s have

uniform Lipschitz constants, that is, we assume that

Li = U, ∀ i ∈ [M ],

and we denote the resulting problem class as PMU . At the end of this section, general-

ization to the non-uniform case will be briefly discussed.

Our proof combines ideas from the classical proof in Nesterov [24], as well as two

recent constructions [36] (for centralized non-convex problems) and [32] (for strongly

convex distributed problems). Our construction differs from the previous works in a

number of ways, in particular, the constructed functions are only first-order differen-

tiable, but not second-order differentiable. Further, we use the local-ε solution (2.18) to

measure the quality of the solution, which makes the analysis more involved compared

with the existing global error measures in [24,32,36].

To begin with, we construct the following two non-convex functions

h(x) :=
1

M

M∑
i=1

hi(xi), f(x) :=
1

M

M∑
i=1

fi(xi), (2.31)

as well as the corresponding versions that evaluate on a “centralized” variable y

h̄(y) :=
1

M

M∑
i=1

hi(y), f̄(y) :=
1

M

M∑
i=1

fi(y). (2.32)

Here we have xi ∈ RT , for all i, y ∈ RT , and x := (x1, · · ·xM ) ∈ RTM×1. Later we make

our construction so that functions h and h̄ are easy to analyze, while f and f̄ will be

in the desired function class in PMU . Without loss of generality, in the construction we
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21 3 M-1 MM-2

Figure 2.1: The path graph used in our construction.
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Figure 2.2: The functional value, and derivatives of Ψ.
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Figure 2.3: The functional value, and derivatives of Φ.

will assume ∇fi will be Lipschitz with constant U ∈ (0, 1), for all i ∈ [M ].

2.3.1 Path Graph (D = M − 1)

First we consider the extreme case in which the nodes form a path graph with M nodes

and each node i has its own local function hi, shown in Figure 2.1. For notational

simplicity assume that M is a multiple of 3, that is M = 3C for some integer C > 0.

Also assume that T is an odd number without loss of generality.

Let us define the component functions hi’s in (2.31) as follows.

hi(xi) =



Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈
[
1,
M

3

]

Θ(xi, 1), i ∈
[
M

3
+ 1,

2M

3

]

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈
[

2M

3
+ 1,M

]
(2.33)
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Figure 2.4: The functional value for Θ(w, v) = Ψ(w)Φ(v).

where we have defined the following functions

Θ(xi, j) := Ψ(−xi[j − 1])Φ(−xi[j])−Ψ(xi[j − 1])Φ(xi[j]), ∀ j ≥ 2 (2.34a)

Θ(xi, 1) := −Ψ(1)Φ(xi[1]). (2.34b)

The component functions Ψ,Φ : R→ R are given as below

Ψ(w) :=

0 w ≤ 0

1− e−w2
w > 0,

and Φ(w) := 4 arctanw + 2π.

Suppose x1 = x2 = · · · = xM = y, then the average function becomes:

h̄(y) :=
1

M

M∑
j=1

hi(y) = Θ(y, 1) +
T∑
i=2

Θ(y, i)

= −Ψ(1)Φ (y[1]) +

T∑
i=2

[Ψ (−y[i− 1]) Φ (−y[i])−Ψ (y[i− 1]) Φ (y[i])] .

Further for a given error constant ε > 0 and a given averaged Lipschitz constant

U ∈ (0, 1), let us define

fi(xi) :=
150πε

U
hi

(
xiU

75π
√

2ε

)
. (2.35)
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Therefore we also have, if x1 = x2 = · · · = xM = y, then

f̄(y) :=
1

M

M∑
i=1

fi(y) =
150πε

U
h̄

(
yU

75π
√

2ε

)
. (2.36)

First we present some properties of the component functions hi’s.

Lemma 2.3.1. The functions Ψ and Φ satisfy the following.

1. For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.

2. The following bounds hold for the functions and their first and second-order deriva-

tives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R

3. The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (2.37)

4. The function h is lower bounded as follows:

hi(0)− inf
xi
hi(xi) ≤ 10πT , h(0)− inf

x
h(x) ≤ 10πT .

5. The first-order derivative of h̄ (resp. hj) is Lipschitz continuous with constant

` = 75π (resp. `j = 75π, ∀ i).

Proof. Property 1) is obviously true.

To prove Property 2), note that following holds for w > 0:

Ψ(w) = 1− e−w2
, Ψ′(w) = 2e−w

2
w, Ψ′′(w) = 2e−w

2 − 4e−w
2
w2, ∀ w > 0. (2.38)

Obviously, Ψ(w) is an increasing function over w > 0, therefore the lower and upper

bounds are Ψ(0) = 0,Ψ(∞) = 1; Ψ′(w) is increasing on [0, 1√
2
] and decreasing on
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[ 1√
2
,∞], where Ψ′′( 1√

2
) = 0, therefore the lower and upper bounds are Ψ′(0) = Ψ′(∞) =

0,Ψ′( 1√
2
) =

√
2
e ; Ψ′′(w) is decreasing on (0,

√
3
2 ] and increasing on [

√
3
2 ,∞) [this can be

verified by checking the signs of Ψ′′′(w) = 4e−w
2
w(2w2−3) in these intervals]. Therefore

the lower and upper bounds are Ψ′′(
√

3
2) = − 4

e
3
2
,Ψ′′(0+) = 2, i.e.,

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
, − 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0.

Further, for all w ∈ R, the following holds:

Φ(w) = 4 arctanw + 2π, Φ′(w) =
4

w2 + 1
, Φ′′(w) = − 8w

(w2 + 1)2
. (2.39)

Similarly, as above, we can obtain the following bounds:

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4, − 3
√

3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R.

We refer the readers to Fig. 2.2 – Fig. 2.3 for illustrations of these functions.

To show Property 3), note that for all w ≥ 1 and |v| < 1,

Ψ(w)Φ′(v) > Ψ(1)Φ′(1) = 2(1− e−1) > 1

where the first inequality is true because Ψ(w) is strictly increasing and Φ′(v) is strictly

decreasing for all w > 0 and v > 0, and that Φ′(v) = Φ′(|v|).
Next we show Property 4). Note that 0 ≤ Ψ(w) < 1 and 0 < Φ(w) < 4π. Therefore

we have h(0) = −Ψ(1)Φ(0) < 0 and using the construction in (2.33)

inf
xi
hi(xi) ≥ −Ψ(1)Φ(xi[1])− 3

bT/2c∑
j=1

sup
w,v

Ψ(w)Φ(v) (2.40)

≥ −4π − 6πT ≥ −10πT , (2.41)

where the first inequality follows Ψ(w)Φ(v) > 0 and second follows Ψ(w)Φ(v) < 4π, we

reach the conclusion.

Finally we show Property 5), using the fact that a function is Lipschitz if it is

piecewise smooth with bounded derivative. From construction (2.33), the first-order
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partial derivative of hq(y) can be expressed below.

Case I) If i is even, we have

∂hq
∂y[i]

=


3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3 ]

0, q ∈ [M3 + 1, 2M
3 ]

3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M
3 + 1,M ]

.

(2.42)

Case II) If i is odd but not 1, we have

∂hq
∂y[i]

=


3 (−Ψ′ (−y[i]) Φ (−y[i+ 1])−Ψ′ (y[i]) Φ (y[i+ 1])) , q ∈ [1, M3 ]

0, q ∈ [M3 + 1, 2M
3 ]

3 (−Ψ (−y[i− 1]) Φ′ (−y[i])−Ψ (y[i− 1]) Φ′ (y[i])) , q ∈ [2M
3 + 1,M ]

.

(2.43)

Case III) If i = 1, we have

∂hq
∂y[1]

=

{
−Ψ(1)Φ′(y[1]) + 3 (−Ψ′ (−y[1]) Φ (−y[2])−Ψ′ (y[1]) Φ (y[2])) , q ∈ [1, M3 ]

−Ψ(1)Φ′(y[1]), q ∈ [M3 + 1,M ]
.

(2.44)

Obviously,
∂hq
∂y[i] is a piecewise smooth function for any i, q, and it either equals zero

or is separated at the non-differentiable point y[i] = 0 because of the function Ψ.

Further, fix a point y ∈ RT and a unit vector v ∈ RT where
∑T

i=1 v[i]2 = 1. Define

gq(θ; y, v) := hq(y + θv)

to be the directional projection of hq on to the direction v at point y. We will show

that there exists ` > 0 such that |gq ′′(0; y, v)| ≤ ` for all y 6= 0 (where the second-order

derivative is taken with respect to θ).

First we can compute gq
′′(0; y, v) as follows:

g
′′
q (0; y, v) =

T∑
i1,i2=1

∂2

∂y[i1]∂y[i2]
hq (y) v[i1]v[i2] =

∑
δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ],

where we take v[0] := 0 and v[T + 1] := 0.

The second-order partial derivative of hq(y) (∀y 6= 0) is given as follows when i is
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even:

∂2hq
∂y[i]∂y[i]

=


3 (Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i])) , q ∈ [1, M3 ]

0, q ∈ [M3 + 1, 2M
3 ]

3 (Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1])) , q ∈ [2M
3 + 1,M ]

(2.45)

∂2hq
∂y[i]∂y[i+ 1]

=

{
0, q ∈ [1, 2M

3 ]

3 (Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1])) , q ∈ [2M
3 + 1,M ]

(2.46)

∂2hq
∂y[i]∂y[i− 1]

=

{
3 (Ψ′ (−y[i− 1]) Φ′ (−y[i])−Ψ′ (y[i− 1]) Φ′ (y[i])) , q ∈ [1, M3 ]

0, q ∈ [M3 + 1,M ]
.

(2.47)

By applying Lemma 2.3.1 – i) [i.e., Ψ(w) = Ψ′(w) = Ψ′′(w) = 0 for ∀ w ≤ 0], we immedi-

ately obtain that at least one of the terms Ψ (−y[i− 1]) Φ′′ (−y[i]) or−Ψ (y[i− 1]) Φ′′ (y[i])

is zero. It follows that

Ψ (−y[i− 1]) Φ′′ (−y[i])−Ψ (y[i− 1]) Φ′′ (y[i]) ≤ sup
w
|Ψ(w)| sup

v
|Φ′′(v)|.

Similarly,

Ψ′′ (−y[i]) Φ (−y[i+ 1])−Ψ′′ (y[i]) Φ (y[i+ 1]) ≤ sup
w
|Ψ′′(w)| sup

v
|Φ(v)|

Ψ′ (−y[i]) Φ′ (−y[i+ 1])−Ψ′ (y[i]) Φ′ (y[i+ 1]) ≤ sup
w
|Ψ′(w)| sup

v
|Φ′(v)|.

Therefore, take the maximum over equations (2.45) to (2.47) and plug in the above

inequalities, we obtain∣∣∣∣ ∂2hq
∂y[i1]∂y[i2]

∣∣∣∣ ≤ 3 max{sup
w
|Ψ′′(w)| sup

v
|Φ(v)|, sup

w
|Ψ(w)| sup

v
|Φ′′(v)|, sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= 3 max

{
8π,

3
√

3

2
, 4

√
2

e

}
< 25π, ∀ i1 being even, ∀ i2
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where the equality comes from Lemma 2.3.1 – ii).

We can also verify that the above bound for i being odd but not 1 is exactly the

same.

When i = 1 we have following:

∂2hq
∂y[1]∂y[1]

=

{
−Ψ(1)Φ′′(y[1]) + 3 (−Ψ′′ (−y[1]) Φ (−y[2])−Ψ′′ (y[1]) Φ (y[2])) , q ∈ [1, M3 ]

−Ψ(1)Φ′′(y[1]), q ∈ [M3 + 1,M ]

∂2hq
∂y[1]∂y[2]

=

{
3 (−Ψ′ (−y[1]) Φ′ (−y[2])−Ψ′ (y[1]) Φ′ (y[2])) , q ∈ [1, M3 ]

0, q ∈ [M3 + 1,M ]

Again by applying Lemma 2.3.1 – i) and ii),∣∣∣∣ ∂2hq
∂y[1]∂y[i2]

∣∣∣∣ ≤ max{sup
w
|Ψ(1)Φ′′(w)|+ 3 sup

w
|Ψ′′(w)| sup

v
|Φ(v)|, 3 sup

w
|Ψ′(w)| sup

v
|Φ′(v)|}

= max

{
3
√

3

2
(1− e−1) + 24π, 12

√
2

e

}
< 25π, ∀ i2.

Summarizing the above results, we obtain:

|g′′q (0; y, v) | = |
∑

δ∈{0,1,−1}

T∑
i=1

∂2

∂y[i]∂y[i+ δ]
hq (y) v[i]v[i+ δ]|

≤ 25π
∑

δ∈{0,1,−1}

|
T∑
i=1

v[i]v[i+ δ]|

= 25π

(
|
T∑
i=1

v[i]2|+ 2|
T∑
i=1

v[i]v[i+ 1]|

)

≤ 75π

T∑
i=1

|v[i]2| = 75π.

Overall, the first-order derivatives of hq are Lipschitz continuous for any q with constant

` = 75π.

To show the same result for the function h̄, we can apply (2.19). This completes the

proof. Q.E.D.

The following lemma is a simple extension of the previous result.
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Lemma 2.3.2. We have the following properties for the functions f and f̄ defined in

(2.36) and (2.35).

1. We have ∀ x ∈ RTM×1

f(0)− inf
x
f(x) +

1

MU
‖d0‖2 ≤

1650π2ε

U
T,

where we have defined

d0 := [∇f1(0), · · · ,∇fM (0)]. (2.48)

2. We have

∥∥∇f̄(y)
∥∥ =
√

2ε

∥∥∥∥∇h̄( yU

75π
√

2ε

)∥∥∥∥ , ∀ y ∈ RT×1. (2.49)

3. The first-order derivatives of f̄ and that for each fj , j ∈ [M ] are Lipschitz contin-

uous, with the same constant U > 0.

Proof. To show that property 1) is true, note that from the definition of fi(xi) we have

∇fi(xi) =
√

2ε×∇hi
(

xiU

75π
√

2ε

)
.

Therefore the following holds:

1

M
‖d0‖2 =

2ε

M

M∑
i=1

‖∇hi(0)‖2

=
2ε

M

M∑
i=1

|Ψ(1)Φ′(0)|2 = 32ε(1− exp(−1))2. (2.50)

Therefore we have the following:

f(0)− inf
x
f(x) +

‖d0‖2

MU
=

150πε

U

(
h(0)− inf

x
h(x) +

16(1− exp(−1))2

75π

)
.
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Then by applying Lemma 2.3.1 we have that for any T ≥ 1, the following holds

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 150πε

U
× (10πT + 0.03) ≤ 150πε

U
× 11πT.

Property 2) is true due to the definition of f̄ .

Property 3) is true because the following

‖∇f̄(z)−∇f̄(y)‖ =
√

2ε

∥∥∥∥∇h̄( zU

75π
√

2ε

)
−∇h̄

(
yU

75π
√

2ε

)∥∥∥∥ ≤ U‖z − y‖
where the last inequality comes from Lemma 2.3.1 – (5). This completes the proof.

Q.E.D.

Next let us analyze the size of ∇h̄. We have the following result.

Lemma 2.3.3. If there exists k ∈ [T ] such that |y[k]| < 1, then

∥∥∇h̄(y)
∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[k]
hi(y)

∣∣∣∣∣ > 1.

Proof. The first inequality holds for all k ∈ [T ], since 1
M

∑M
i=1

∂
∂y[k]hi(y) is one element

of 1
M

∑M
i=1∇hi(y).

We divide the proof for second inequality into two cases.

Case 1. Suppose |y[j − 1]| < 1 for all 2 ≤ j ≤ k. Therefore, we have |y[1]| < 1. Using

(2.44), we have the following inequalities:

∂

∂y[1]
hi(y)

(i)

≤ −Ψ(1)Φ′(y[1])
(ii)
< −1,∀i (2.51)

where (i) is true because Ψ′(w),Φ(w) are all non-negative from Lemma 2.3.1 -(2); (ii)

is true due to Lemma 2.3.1 – (3). Therefore, we have the following

∥∥∇h̄(y)
∥∥ =

∥∥∥∥∥ 1

M

M∑
i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣ 1

M

M∑
i=1

∂

∂y[1]
hi(y)

∣∣∣∣∣ > 1.

Case 2) Suppose there exists 2 ≤ j ≤ k such that |y[j − 1]| ≥ 1.

We choose j so that |y[j−1]| ≥ 1 and |y[j]| < 1. Therefore, depending on the choices
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of (i, j) we have three cases

∂hi(y)

∂y[j]
=


−3 (Ψ (−y[i− 1]) Φ′ (−y[j]) + Ψ (y[i− 1]) Φ′ (y[j])) , i ∈ [1, M3 ]

0, i ∈ [M3 + 1, 2M
3 ]

−3 (Ψ′ (−y[j]) Φ (−y[i+ 1]) + Ψ′ (y[j]) Φ (y[i+ 1])) , i ∈ [2M
3 + 1,M ]

.

If i ∈ [1, M3 ], because |y[j − 1]| ≥ 1 and |y[j]| < 1, using Lemma 2.3.1 – (3), and the

fact that the negative part is zero for Ψ, and Φ′ is even function, the expression further

equals to

−3 ·Ψ(|y[j − 1]|)Φ′ (|y[j]|)]
(2.37)
< −3, (2.52)

If i ∈ [2M
3 + 1,M ] the expression is obviously non-positive because both Ψ′ and Φ

are nonnegative. Overall, we have

∣∣∣∣∣ 1

M

M∑
i=1

∂hi(y)

∂y[j]

∣∣∣∣∣ >
∣∣∣∣∣∣ 1

M

M/3∑
i=1

3

∣∣∣∣∣∣ = 1.

This completes the proof. Q.E.D.

Lemma 2.3.4. Define x̄ := 1
M

∑M
i=1 xi, and assume that U ∈ (0, 1). Then we have

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2 ≥
1

2

∥∥∇f̄(x̄)
∥∥2
.

Proof. First let us derive a useful property. Define d := [d1; d2; · · · ; dM ] where di is

the degree for node i; further define

x̄ :=
1

M

M∑
i=1

xi, x̃i := xi − x̄, x̃ := [x̃1; x̃2; · · · ; x̃M ].

It is easy to observe that :

x̃T1 = 0, and x̃ /∈ Null(F TF ).
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Then the following holds:

xTF TFx =
∑

(i,j):i∼j

‖xi − xj‖2 =
∑

(i,j):i∼j

‖x̃i − x̃j‖2 = x̃TF TFx̃ ≥ λmin(F TF )‖x̃‖2.

(2.53)

Therefore the following holds:

M∑
i=1

‖x̄− xi‖2 ≤
1

λmin(F TF )

∑
(i,j):i∼j

‖xi − xj‖2 =
1

λmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2.

(2.54)

Based on the above property, we have the following series of inequalities

∥∥∇f̄(x̄)
∥∥2 ≤ 2

∥∥∥∥ 1

M

M∑
i=1

(∇fi(x̄)−∇fi(xi))
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(i)

≤ 2

M

M∑
i=1

∥∥∥∥∇fi( 1

M

M∑
j=1

xj)−∇fi(xi)
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(ii)

≤ 2

M

M∑
i=1

U2

∥∥∥∥ 1

M

M∑
j=1

xj − xi
∥∥∥∥2

+ 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

(iii)

≤ 2U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xj − xi‖2 + 2

∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

,

where in (i) and (iii) we have used the convexity of the function ‖ · ‖2; in (ii) we used

Lemma 2.3.2 – (3); in (iii) we have also used the assumption that U ∈ (0, 1) and (2.54).

Overall we have∥∥∥∥ 1

M

M∑
i=1

∇fi(xi)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2 ≥
1

2
‖∇f(x̄)‖2 .

This completes the proof. Q.E.D.

Lemma 2.3.5. Consider using an algorithm in class A or in class A′ to solve the
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following problem:

min
x∈RTM×1

h(x) =
1

M

M∑
i=1

hi(xi), (2.55)

over a path graph. Assume the initial solution: xi = 0, ∀ i ∈ [M ]. Let x̄ = 1
M

∑M
i=1 xi

denote the average of the local variables. Then the algorithm needs at least (M3 + 1)T

iterations to have xi[T ] 6= 0, ∀ i and x̄[T ] 6= 0.

Proof. For a given k ≥ 2, suppose that xi[k], xi[k + 1], ..., xi[T ] = 0, ∀i, that is,

support{xi} ⊆ {1, 2, 3, ..., k − 1} for all i. Then Ψ′ (xi[k]) = Ψ′ (−xi[k]) = 0 for all i,

and hi has the following partial derivative when k is even:

∂hi(xi)

∂xi[k]
=

{
−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [1, M3 ]

0, i ∈ [M3 + 1,M ]

(2.56)

and the following partial derivative when k is odd and k ≥ 3:

∂hi(xi)

∂xi[k]
=

{
0, i ∈ [1, 2M

3 ]

−3 (Ψ (−xi[k − 1]) Φ′ (−xi[k])) + 3 (Ψ (xi[k − 1]) Φ′ (xi[k])) , i ∈ [2M
3 + 1,M ]

.

(2.57)

Recall that for any algorithm in class A or A′, each agent is only able to compute

linear combination of historical gradient and neighboring iterates [cf. (2.15) and (2.16)].

Therefore, for a given node i, as long as the kth element of the gradient as well as that

of its neighbors have never been updated once, xi[k] remains to be zero. Combining

this observation with the above two expressions for ∂hi(xi)
∂xi[k] , we can conclude that when

support{xi} ⊆ {1, 2, 3, ..., k−1} for all i, then in the next iteration xi[k] will be possibly

non-zero on the node i ∈ [1, M3 ] for even k and i ∈ [2M
3 + 1,M ] for odd k, and all other

nodes still have xj [k] = 0, ∀ j 6= i.

Now suppose that the initial solution is xi[k] = 0 for all (i, k). Then at the first

iteration only ∂hi(xi)
∂xi[1] is non-zero for all i, due to the fact that ∂hi(xi)

∂xi[1] = Ψ(1)Φ′(0) =

4(1 − e−1) for all i from (2.44). If follows that even if every node is able to compute

its local gradient, and can communicate with their neighbors, it is only possible to have

xi[1] 6= 0,∀i. At the second iteration, we can use (2.56) to conclude that it is only
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possible to have ∂hr(xr)
∂xr[k] 6= 0 for some r ∈ [1, M/3], therefore when using an algorithm

in class A, we can conclude that xi[2] = 0 for all i /∈ [1, M/3].

Then following our construction (2.33), we know the nodes in the set [1, M3 ] and the

set [2M
3 + 1,M ] have minimum distance M/3. It follows that using an algorithm in

A or A′, it takes at least M/3 iterations for the non-zero xr[2] and the corresponding

gradient vector to propagate to at least one node in set [2M/3 + 1,M ]. Once we have

xj [2] 6= 0 for some j ∈ [2M/3 + 1, M ], then according to (2.57), it is possible to

have
∂hj(xj)
∂xj [3] 6= 0, and once this gradient becomes non-zero, the corresponding variable

xj [3], j ∈ [2M/3 + 1, M ] can become nonzero.

Following the above procedure, it is clear that we need at least MT
3 iterates and T

computations to make xi[T ] possibly non-zero. Q.E.D.

Theorem 2.3.1. Let U ∈ (0, 1) and ε be positive. Let x0[i] = 0 for all i ∈ [M ]. Then

for any distributed first-order algorithm in class A or A′, there exists a problem in class

PMU and a network in class N , such that it requires at least the following number of

iterations

t ≥ 1

3
√
ξ(G)


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 (2.58)

to achieve the following error

h∗t =

∥∥∥∥ 1

M

M∑
i=1

∇fi(xti)
∥∥∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xti − xtj‖2 < ε. (2.59)

Proof. By Lemma 2.3.5 we have x̄[T ] = 0 for all t < M+3
3 T . Then by applying

Lemma 2.3.2 – (2) and Lemma 2.3.3, we can conclude that the following holds

∥∥∇f̄(x̄[T ])
∥∥ =
√

2ε

∥∥∥∥∇h̄( x̄[T ]U

75π
√

2ε

)∥∥∥∥ > √2ε, (2.60)

where the second inequality follows that there exists k ∈ [T ] such that | x̄[k]U

75π
√

2ε
| =

0 < 1, then we can directly apply Lemma 2.3.3. Then by applying Lemma 2.3.4 gives

h∗(M+3)T/3 > ε.

The third part of Lemma 2.3.2 ensures that fi’s are U -Lipschitz continuous gradient,
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and the first part shows

f(0)− inf
x
f(x) +

‖d0‖2

MU
≤ 1650π2ε

U
T,

Therefore we obtain

T ≥


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 . (2.61)

Summarizing the above argument, we have

t ≥ M + 3

3
T ≥ M + 3

3


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
By noting that for path graph ξ(G) ≥ 1/M2, this completes the proof. Q.E.D.

2.3.2 Generalization

The previous section analyzes the lower complexity bounds for problem PMU over a path

network. The obtained results can be extended in a number of direction.

Uniform Li, Fixed D and M

In this subsection, we would like to generalize Theorem 2.3.1 to a slightly wider class of

networks (beyond the path graph used in our construction). Towards this end, consider

a path-star graph shown in Fig. 2.5. The graph contains a path graph with D−1 nodes,

and the remaining nodes are divided into D−1 groups, each with either bM/(D−1)−1c
or bM/(D − 1) − 1c + 1 nodes, and each group is connected to the nodes in the path

graph by using a star topology. We have the following corollary to Theorem 2.3.1.

Corollary 2.3.1. Let U ∈ (0, 1) and ε be positive, and fix any D and M such that

D ≤ M − 1. For any algorithm in class A or A′, there exists a problem in class PMU
and a network in class NM

D , so that to achieve accuracy h∗t < ε, it requires at least the
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Figure 2.5: The path-star graph used in our construction.

following number iterations

t ≥ D

3


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Alternatively, the above bound can be expressed as the following

t ≥
√

(D − 1)/(2M)

3
√
ξ(G)


(
f(0)− infx f(x) + ‖d0‖2

MU

)
U

1650π2
ε−1

 .
Proof. Fix any D and M such that D ≤M −1, we can construct a path-star graph

as described in Fig.2.5, whose diameter is D.

To show the lower bounds for such a graph, we split all M nodes into three sets

A,B, C based on the main path, each with M
3 nodes (assume M is a multiple of 3),

where A and C has minimum D+2
3 distance (assume D− 1 is a multiple of 3). Then we

construct the component functions hi’s as follows.

hi(xi) =



Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

Θ(xi, 1), i ∈ B

Θ(xi, 1) + 3

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

(2.62)

Since the graph has diameter D in the above construction, and the distance between
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any two elements in A and C is at least D+2
3 (assume D − 1 is a multiple of 3), by a

similar step in Lemma 2.3.5 we can conclude that we need at least (D+2
3 +1)T iterations

to achieve xi[T ] 6= 0. By applying (2.61), we can obtain the desired result.

To show the second result, note that from (2.28) we have

∑
i

diD ≥
1

λmin(L)
(2.63)

For the path-star graph under consideration,

∑
i

di ≤ 2(D − 1)− 2 + 2 (M − (D − 1)) ≤ 2M,

so the following holds:

D2 ≥ D/2M

λmin(L)
≥ (D − 1)/(2M)

λmin(L)
.

The desired result is then immediate. Q.E.D.

Non-uniform Li, Fixed N

Finally, for the problem class with non-uniform Lipschitz constants, we can extend the

previous result to any network in class N (by properly assigning different values of Li’s

to different nodes). In this case the lower bound will be dependent on the spectrum

property of L̂ as defined in (2.26) (expressed below for easy reference)

L̂ := L−1/2F TKFL−1/2. (2.64)

Corollary 2.3.2. Let ε be positive. For any given network in NM
D , and for any al-

gorithm in A, there exists a problem in PML such that to achieve accuracy h∗t < ε, it

requires at least the following iterations

t ≥ 1

3

√
ξ(L̂)


(
f(0)− infx f(x) +

‖d0‖2
L−1

M

)
L̄

1650π2
ε−1

 . (2.65)

To prove this result, we select the values of the coefficient set {Li}Mi=1, so that the
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“effective” network topology becomes a path. In particular, for any given network in

N , we can construct local functions as follows: First, along the longest path of size D,

we distributed the functions into three sets A,B, C, where A and C denotes the first

and last D
3 nodes on the path respectively, and B denotes the rest nodes on the path.

Second, for the rest of the functions not on the path, denoted as set D, set their local

functions to zero (or equivalently, set the corresponding Li’s to zero). Then, the local

function belongs to each set can be expressed as:

hi(xi) =



M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j), i ∈ A

M

D
Θ(xi, 1), i ∈ B

M

D
Θ(xi, 1) +

3M

D

bT/2c∑
j=1

Θ(xi, 2j + 1), i ∈ C

0, i ∈ D

(2.66)

This way the network reduces to a path graph. Note that the Lipschitz constant for the

gradient of h(y) = 1
M

∑M
i=1 hi(y) is still 1, and we can use the similar constructions and

proof steps leading to Theorem 2.3.1 to prove the claim.



Chapter 3

Optimal Algorithms for

Distributed Non-convex Learning

We consider a class of popular distributed non-convex optimization problems, in which

agents connected by a network G collectively optimize a sum of smooth (possibly non-

convex) local objective functions. We address the following question: if the agents

can only access the gradients of local functions, what are the fastest rates that any

distributed algorithms can achieve (cf. Chapter 2), and how to achieve those rates (cf.

Chapter 3).

In this Chapter, we propose (near) optimal methods whose rates match the de-

veloped lower rate bound (up to a ploylog factor) (cf. Chapter 2). The key in the

algorithm design is to properly embed the classical polynomial filtering techniques into

modern first-order algorithms. To the best of our knowledge, this is the first time that

lower rate bounds and optimal methods have been developed for distributed non-convex

optimization problems.

38
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3.1 Introduction

3.1.1 Problem and motivation

In this work, we consider the same distributed optimization problem as in Chapter 2,

min
y∈RS

f̄(y) :=
1

M

M∑
i=1

fi(y), (3.1)

where fi(y) : RS → R is a smooth and possibly non-convex function accessible to agent

i. And its global consensus reformulation can be written as

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E . (3.2)

The main benefit of the above formulation is that the objective function is now separable,

and the linear constraint encodes the network connectivity pattern.

3.1.2 Distributed non-convex optimization

Distributed non-convex optimization has gained considerable attention recently. For

example, it finds applications in training neural networks [20], clustering [43], and dic-

tionary learning [14], just to name a few.

The problem (3.1) and (3.2) have been studied extensively in the literature when

fi’s are all convex; see for example [44–46]. Primal based methods such as distributed

subgradient (DSG) method [44], the EXTRA method [46], as well as primal-dual based

methods such as distributed augmented Lagrangian method [47], Alternating Direction

Method of Multipliers (ADMM) [48,49] have been proposed.

On the contrary, only recently there have been works addressing the more challenging

problems without assuming convexity of fi; see [8–23]. The convergence behavior of the

distributed consensus problem (3.1) has been studied in [8,9,14]. Reference [10] develops

a non-convex ADMM based methods for solving the distributed consensus problem (3.1).

However the network considered therein is a star network in which the local nodes are all

connected to a central controller. References [12,13] propose a primal-dual based method

for unconstrained problem over a connected network, and derives a global convergence
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Table 3.1: The main results of the paper when specializing to a few popular graphs.

Network Instances
Problem Classes

Uniform Lipschitz U Non-uniform Lipschitz {Li} Rate Achieving Algorithm
Complete/Star O(U/ε) O(1/ε×

∑
i Li/M) D-GPDA (proposed)

Random Geometric Õ(U
√
M/(
√

logMε)) Õ(
√
M/(

√
log(M)ε)×

∑
i Li/M) xFILTER (proposed)

Path/Circle Õ(UM/ε) Õ(M/ε×
∑
i Li/M) xFILTER (proposed)

Grid Õ(U
√
M/ε) Õ(

√
M/ε×

∑
i Li/M) xFILTER (proposed)

Centralized O(U/ε) O(1/ε×
∑
i Li/M) Gradient Descent

The entries show the best rate bounds achieved by the proposed algorithms (either D-GPDA or xFIL-
TER) for a number of specific graphs and problem class; Li is the Lipschitz constant for ∇fi [see (2.4)];
for the uniform case U = L1, · · · , LM . For the uniform Lipschitz the lower rate bounds derived for the
particular graph matches the upper rate bounds (we only show the latter in the table). The last row
shows the rate achieved by the centralized gradient descent algorithm. The notation Õ denotes big O
with some polynomial in logarithms, i.e, use Õ to denote O(log(M)) where M is the problem dimension.

rate for this setting. In [11, 16,17], the authors utilize certain gradient tracking idea to

solve a constrained nonsmooth distributed problem over possibly time-varying networks.

The work [18] summarizes a number of recent progress in extending the DSG-based

methods for non-convex problems. References [15,19,20] develop methods for distributed

stochastic zeroth and/or first-order non-convex optimization. It is worth noting that

the distributed algorithms proposed in all these works converge to first-order stationary

solutions, which contain local maximum, local minimum and saddle points.

Recently, the authors of [22,50–52] have developed first-order distributed algorithms

that are capable of computing second-order stationary solutions (which under suitable

conditions become local optimal solutions). Other second-order distributed algorithms

such as [53, 54] are design for convex problems, and they utilize high-order Hessian

information about local problems.

3.1.3 Contribution of this work

Our main contributions in this Chapter are given below:

1) We design two algorithms belonging to A, one based on primal-dual optimization

scheme, the other based on a novel approximate filtering -then- predict and tracking

(xFILTER) strategy, both of which achieve ε-optimality condition with provable global

rates [in the order of O(1/ε)];

2) We show that the xFILTER is an optimal method in A for problem class (P,N ) as

well as a number of its refinements, in that they precisely achieve the lower complexity
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bounds that we derived (up to a ploylog factor).

In Table 3.1, we specialize some key results developed in the paper to a few popular

graphs, and compare them with the achievable rates of centralized GD.

3.2 The Proposed Algorithms

In this section, we introduce two different types of algorithms for solving problem (3.2).

The algorithm is near-optimal, and can achieve the lower bounds derived in Section 2.3

except for a multiplicative polylog factor in M . To simplify the notation, we utilize the

definitions introduced in Section 2.2, and rewrite problem (3.2) in the following compact

form

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. (F ⊗ IS)x = 0. (3.3)

It can be verified that, by using the definition of F , the constraint in this problem is

equivalent to the ones given in (3.2). For notational simplicity, in the following we will

assume that S = 1 (scalar variables). All the results presented in subsequent sections

extend easily to case with S > 1.

3.2.1 The D-GPDA Algorithm

We first present a Distributed Gradient Primal-Dual Algorithm (D-GPDA), which re-

laxes the linear constraint (3.3), and gradually enforces it as the algorithm proceeds.

To describe the algorithm, let us introduce the augmented Lagrangian (AL) function as

AL(x, λ) = f(x) + 〈λ, Fx〉+
1

2
‖ΣFx‖2, (3.4)

where λ ∈ RE is the dual variable; Σ = diag([σ1, · · · , σE ]) ∈ RE×E is a diagonal positive

definite matrix. In the following, we will use the shorthanded notation ALr := AL(xr, λr)

where r is the iteration counter.

Define a penalty matrix as

Υ = diag{[β1, · · · , βM ]} � 0. (3.5)



42

Then the D-GPDA is described in the following table.

(S1). Assign each node i ∈ N with a parameter βi > 0; Assign each
edge (ij) ∈ E with a parameter σij > 0;
(S2). At iteration r = −1, initialize λ−1 = 0 and x−1 = 0;
(S3). At iteration r = 0, set λ0 and x0 using the following:

∇f(x−1) + (2∆ + Υ2)x0 = 0, λ0 = Σ2Fx0; (3.6)

Equivalently x0 can be written as:

x0
i =

(
2
∑
j:j∼i

σ2
ij + β2

i

)−1

∇fi(0)/M, ∀ i ∈ [M ]; (3.7)

(S4). At each iteration r + 1, r ≥ 0, update variables by:

xr+1 = arg min
x
〈∇f(xr) + F Tλr, x− xr〉 (3.8a)

+
1

2
‖ΣFx‖2 +

1

2
‖ΣB(x− xr)‖2 +

1

2
‖Υ(x− xr)‖2

λr+1 = λr + Σ2Fxr+1. (3.8b)

Algorithm 1: The D-GPDA Algorithm

We note that each iteration of the D-GPDA performs a gradient descent type step

on the AL function, followed by taking a step of dual gradient ascent (with a stepsize

matrix Σ2 � 0). The term 1
2‖ΣB(x − xr)‖2 used in (3.8a) is a network proximal term

that regularizes the x update using network structure, and its presence is critical to

ensure separability and distributed implementation (see Remark 3.2.3 below).

The D-GPDA is closely related to many classical primal-dual methods, such as

the Uzawa method [55] (which has been recently utilized to solve linearly constrained

convex problems [56]), and the proximal method of multipliers (prox-MM) [57,58]. The

latter method has been first developed by Rockafellar in [57], in which a proximal

term has been added to the AL in order to make it strongly convex in each iteration.

However, the theoretical results derived for Prox-MM in [57,58] are only valid for convex

problems. It is also important to note that when the matrices Σ and Υ are specialized as

multiples of identity matrices, that is, when Σ = σIM and Υ = κIM for some σ, κ > 0,



43

then the D-GPDA reduces to the Prox-GPDA algorithm briefly discussed in our earlier

work [13, Section 5], for solving a general linearly constrained problem.

3.2.2 The xFILTER Algorithm

Despite the fact that D-GPDA is conceptually simple, we will show shortly that it is

only optimal for special network classes with small diameter [or large gap function ξ(G)],

such as the complete/star networks (see Table 3.1 and our detailed analysis in Section

3.4). Intuitively, the issue is that having the network proximal term imposes very heavy

regularization, enforcing the new iterates to be close to the old ones. This causes slow

information propagation over the network.

In this section, we present a near-optimal algorithm that can achieve the lower

bounds derived in Section 2.3 for a number of different graphs (up to some polylog

factor in the problem dimension). To motivate our algorithm design, observe that the

communication lower bound O(1/
√
ξ(G)× L̄/ε) in Section 2.3 can be decomposed into

the product two parts, O(1/
√
ξ(G)) and O(L̄/ε), corresponding roughly to the com-

munication efficiency and the computational complexity, respectively. Such a product

form motivates us to separate the computation and communication tasks, and design a

double loop algorithm to achieve the desired lower bound.

Our proposed algorithm is based on a novel approximate filtering -then- predict and

tracking (xFILTER) strategy, which properly combines the modern first-order optimiza-

tion methods and the classical polynomial filtering techniques. It is a “double-loop”

algorithm, where in the outer loop local gradients are computed to extract informa-

tion from local functions, while in the inner loop some filtering techniques are used to

facilitate efficient information propagation. Please see Algorithm 1 for the detailed

description, from the system perspective. It is important to note that the algorithm

contains an outer loop (S3)–(S4) and an inner loop (S2), indexed by r and q, re-

spectively. Further, the local gradient evaluation only appears in the outer loop step

(S3).

To understand the algorithm, we note that one important task of each agent is to

update its local variable so that it is close to the average 1
M

∑M
i=1 xi. Let us use di to

denote a local variable that approximates the above average. At the beginning of the

algorithm, di is just a rough estimate of the average, so we have di = 1
M

∑
j xj + ei,
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where ei is the deviation from the true average, and it can be viewed as some kind of

“estimation noise”. To gradually remove such a noise, in step S1) we resort to the

so-called graph based joint bilateral filtering used for image denoising [59, 60], which

can be formulated as the following regularized least squares problem:

xr+1
∗ := arg min

x∈RM
1

2
‖x− dr‖2Υ2 +

1

2
x>F>Σ2Fx, (3.9)

where dr is the noisy signal, F is a penalty high pass filter related to the graph structure

(in our case, F is the adjacency matrix), and Σ2 is a regularization parameter. Its

solution, denoted as xr+1
∗ as given below, will be close to the “unfiltered” signal dr, while

having reduced high frequency components, or high fluctuations across the components:

Rxr+1
∗ = dr, with R := Υ−2F>Σ2F + IM . (3.10)

It is important to note that if xr+1
∗ indeed achieves consensus, then by (2.11) we have

F>Σ2Fxr+1
∗ = 0, implying xr+1

∗ = dr, which says dr should “track” xr+1
∗ .

Unfortunately, the system (3.10) cannot be precisely solved in a distributed manner,

because inverting R destroys its pattern about the network structure embedded in the

product F>Σ2F . More specifically, F>Σ2F is the weighted graph Laplacian matrix

whose (i, j)th entry is nonzero if and only if node i, j are connected, but (Υ−2F>Σ2F +

IM )−1 is a dense matrix without such a property. Therefore in S2), we use a degree-Q

Chebyshev polynomial to approximate xr+1
∗ . The output, denoted as xr+1, stays in

a Krylov space span{dr, Rdr, · · · , RQdr}. Specifically, at each iteration, the only step

that requires communication is the operation Ru, which is given by

(Ruq−1)[i] = (Υ−2F>Σ2Fuq−1)[i] + dq−1[i] (3.11)

=
1

β2
i

∑
j:j∼i

σ2
ij(uq−1[j]− dr[i]) + uq−1[i], ∀ i,

so this step can be done distributedly, via one round of local message exchange.

After completing Q > 0 such Chebyshev iterations (3.13) (C-iteration for short),

the obtained solution xr+1 will be an approximate solution to the system 3.10, with a
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residual error vector εr+1 as given below

Rxr+1 = dr +Rεr+1, with εr+1 := xr+1 − xr+1
∗ . (3.12)

Up to this point, the filtering technique we have discussed aims at removing the

“non-consensus” parts from a vector d = [d1, · · · , dN ]T . However, recall that the goal of

distributed optimization is not only to achieve consensus, but also to optimize the ob-

jective function
∑

i fi(xi). Therefore, a prediction step (S3) is performed to incorporate

the most up-to-date local gradient ∇fi(xi). Then a tracking step (S4) is performed to

update d. Ideally, one would like the new dr+1
i to have the following three properties:

1) It is close to the previous dri ; 2) it takes into consideration the new local gradient

information offered by the “predicted” x̃r+1
i ; 3) it is a “low frequency” signal, meaning

dr+1
i and dr+1

j are relatively close, for all i 6= j. Taking a closer look at the “tracking”

step, we can see that all three components are included: It adds to the previous dr the

differences of the last two predictions, and it removes some non-consensus components

among the local variables. The detailed algorithm is given in the Algorithm 2.

To end this subsection, we emphasize that, the use of the polynomial Chebyshev

filtering requires Q vector communications steps every time that (S2) is performed.

However, such a filtering step is critical to make the proposed algorithm achieve per-

formance lower bounds predicted in Section 2.3. Intuitively, it helps to accelerate infor-

mation propagation across the network. Indeed, as will be shown shortly, the number

Q in (S2) is directly related to properties of the underlying graph. It is also some-

what surprising that the inner problem (3.9) is not required to be solved with increased

accuracy. On the contrary, only a fixed number of filtering steps are needed.

3.2.3 Discussion

In this subsection, we establish some key connections between the two algorithms dis-

cussed so far, and provide some additional remarks.

First, we provide an important interpretation of the xFILTER strategy, which will

help us subsequently provide an unified analysis framework for both D-GPDA and

xFILTER. First, similarly as in the D-GPDA algorithm, let us introduce an auxiliary
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(S1) [Initialization]. Assign each node i ∈ N with βi > 0; Assign each
edge (ij) ∈ E with σij > 0; Initialize x−1 = 0, d−1 = −Υ−2∇f(x−1) and
x̃−1 = x−1 −Υ−2∇f(x−1). Compute R by (3.10);
(S2) [Filtering]. At iteration r + 1, r ≥ −1: For a fixed constant Q > 0, run
the following C-iterations (with parameters {αq, τ})

u0 = xr, u1 = (I − τR)u0 + τdr, (3.13)

uq = αq(I − τR)uq−1 + (1− αq)uq−2 + ταqd
r, q = 2, · · · , Q;

Set xr+1 = uQ;
(S3) [Prediction]. Compute x̃r+1 by:

x̃r+1 = xr+1 −Υ−2∇f(xr+1); (3.14)

(S4) [Tracking]. Compute dr+1 by:

dr+1 = dr + (x̃r+1 − x̃r)−Υ−2F>Σ2Fxr+1. (3.15)

Set r = r + 1, go to (S2).

Algorithm 2: The xFILTER Algorithm

variable λr ∈ RE , which is updated as follows:

λr+1 = λr + Σ2Fxr+1. (3.16)

Suppose λ−1 = 0, then according to (3.15) and (3.14) we have the following relationship

d0 := −Υ−2∇f(x−1) + (x0 −Υ−2∇f(x0)− (x−1 −Υ−2∇f(x−1)))−Υ−2F Tλ0

= x0 −Υ−2∇f(x0)−Υ−2F Tλ0.

By using the induction argument, we can show that for all r ≥ 0, the following holds

dr := xr −Υ−2∇f(xr)−Υ−2F Tλr. (3.17)

Combining (3.10) and (3.17), we obtain the following useful alternative expressions of
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(3.10) and (3.12):

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1

∗ )
)

+(xr+1
∗ − xr) = 0 (3.18a)

Υ−2
(
∇f(xr)+F>(λr + Σ2Fxr+1)

)
+(xr+1− xr) = Rεr+1. (3.18b)

Using (3.18a), it is clear that xr+1
∗ can be equivalently written as the optimal solution

of the following problem:

xr+1
∗ = argmin

x
〈∇f(xr) + F Tλr, x− xr〉+

1

2
‖ΣFx‖2 +

1

2
‖Υ(x− xr)‖2. (3.19)

The relations (3.16) and (3.19) together show that D-GPDA and xFILTER are closely

related. However, we note that when comparing (3.19) with (3.8a), one key difference

is that the network proximal term 1
2‖ΣB(x− xr)‖2 used in D-GPDA is no longer used

in xFILTER.

We have the following additional remarks on the proposed algorithms. Remark 3.2.1.

(Parameters) It is important to note that in both Alg. 1 and 2, in the update of the

primal and dual variables, some “matrix parameters” are used instead of scalar ones. In

particular, the matrix Υ2 is used as the primal “proximal parameter”, while Σ2 is used

as the “dual stepsize”. Using these matrices ensures that we can appropriately design

parameters for each node/link, which is one key ingredient in ensuring the optimal rate.

Remark 3.2.2. (Initialization) The initialization steps in (S2) and (S3) of Alg. 1

can be done in a distributed manner. Each node i only requires to know the neighbors’

σ2
ij ’s in order to update x0

i . Once x0 is updated, λ0 can be updated by using:

λ0
ij = σ2

ij(x
0
i − x0

j ), ∀ (i, j) ∈ E.

Remark 3.2.3. (Distributed Implementation and Algorithm Classes) To see

how the D-GPDA can be executed distributedly, we write down the optimality condition

of (3.8a). For notational simplicity, define:

H := BTΣ2B + Υ2. (3.20)
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Then we have

∇f(xr) + F Tλr + F TΣ2Fxr+1 +H(xr+1 − xr) = 0. (3.21)

Rearranging, and using property (2.22), we have

∇f(xr) + F Tλr + (2∆ + Υ2)xr+1 −Hxr = 0.

Subtracting the same equation from the rth iteration, and use the fact that F T (λr −
λr−1) = F TΣ2Fxr, we have

xr+1 = xr −
(
2∆ + Υ2

)−1
(
∇f(xr)−∇f(xr−1) + (F TΣ2F −H)xr +Hxr−1

)
. (3.22)

According to the above update rule, each node i can distributedly implement (3.22) by

performing the following

xr+1
i = xri −

1

2
∑

j:j∼i σ
2
ij + β2

i

(
1

M
(∇fi(xri )−∇fi(xr−1

i )) (3.23)

− 2
∑
j:j∼i

σ2
ijx

r
j − β2

i x
r
i + β2

i x
r−1
i +

∑
j:j∼i

σ2
ij(x

r−1
j + xr−1

i )

)
.

It is also easy to see that the Chebyshev iteration in xFILTER can be imple-

mented distributedly, since the R matrix defined in (3.10) preserves the network struc-

ture. To see how we can compute the dr vector distributedly, we first note that

d−1 = −Υ−2∇f(0). Then suppose we know dr−1, by combining (3.15) and (3.14)

we have

dr = dr−1 + (xr − xr−1)−Υ−2(∇f(xr)−∇f(xr−1))−Υ−2F TΣ2Fxr.

Therefore each dri can be updated as

dri = dr−1
i + (xri − xr−1

i )− 1

Mβ2
i

(∇fi(xri )−∇fi(xr−1
i )) +

∑
j:j∼i

σ2
ij

β2
i

(xri − xrj). (3.24)
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Combining the above expression with the expression in (3.11) for computing Rdr, it is

clear that all the computation only involves in local communication and local gradient

computation.

These observations also suggest that for a general choice of parameter matrix Σ2 � 0,

both D-GPDA and xFILTER are in class A. Further, if Σ2 is a multiple of identity

matrix (i.e., there exists σ2 > 0 such that Σ2 = σ2IE), then the computations in (3.23)

and (3.24) only involve the sum of neighboring iterates, therefore both algorithms belong

to class A′ as well.

3.3 The Convergence Rate Analysis

In this section we provide the analysis steps of the convergence rate of the D-GPDA

and xFILTER. All the proofs of the results can be found in the appendix. Note that

we use the primal-dual representation discussed in Section 3.2.3 for xFILTER, so that

it can be analyzed together with the D-GPDA.

Step 1. We first analyze the dynamics of the dual variable.

Lemma 3.3.1. Suppose that f(x) is in class PML . Then for all r ≥ 0, the iterates of

D-GPDA satisfy

‖λr+1 − λr‖2Σ−2 ≤ 2κ

(
‖Υ−1L(xr − xr−1)‖2

M2
+ ‖wr+1‖2H

)
. (3.25)

Further, for all r ≥ 0, the iterates of xFILTER satisfy

‖λr+1 − λr‖2Σ−2 ≤ κ̃
(

3

M2
‖Υ−1L(xr − xr−1)‖2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2

)
.

(3.26)

In the above we have defined the following

κ :=
1

λmin(ΣFH−1F TΣ)
, κ̃ :=

1

λmin(ΣFΥ−2F TΣ)
=

1

λmin(LG)
(3.27a)

wr+1 := (xr+1 − xr)− (xr − xr−1). (3.27b)

Step 2. In this step we analyze the dynamics of the AL.
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Lemma 3.3.2. Suppose that f(x) is in class PML . Then for all r ≥ 0, the iterates of

D-GPDA satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M

+ κ

(
2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H

)
. (3.28)

Further, for all r ≥ 0, the iterates of xFILTER satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2

Υ2R− L
M

+ 〈Υ2Rεr+1, xr+1 − xr〉 (3.29)

+ κ̃

(
3

M2
‖Υ−1L(xr − xr−1)‖2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2

)
.

Before moving forward, we provide bounds for the important parameters κ and κ̃.

From (3.27a) we can express κ as

κ =
1

λmin(ΣFΥ−1 (Υ−1BTΣ2BΥ−1 + I)−1 Υ−1F TΣ)

=
1

λmin((Υ−1BTΣ2BΥ−1 + I)−1 LG)

(2.23)
=

1

λmin ((−LG + 2Υ−1∆Υ−1 + I)−1LG)
. (3.30)

Similar derivation applies for κ̃. In summary we have

κ ≤ λmax(2Υ−1∆Υ−1 + I)

λmin(LG)
, κ̃ =

1

λmin(LG)
. (3.31)

Step 3. In this step, we analyze the error sequences {εr+1} generated by the xFILTER.

First we have the following well-known result on the behavior of the Chebyshev iteration;

see, e.g., [61, Chapter 6] and [62, Theorem 1, Chapter 7].

Lemma 3.3.3. Consider using the Chebyshev iteration (3.13) to solve Rx = dr. Define

xr+1
∗ = R−1dr, with

R := Υ−2(F TΣ2F + Υ2). (3.32)
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Define the following constants:

ξ(R) :=
λmin(R)

λmax(R)
≤ 1, ξ(Υ2) :=

λmin(Υ2)

λmax(Υ2)
≤ 1, θ(R) := λmin(R) + λmax(R). (3.33)

Choose the following parameters:

τ =
2

θ(R)
, α1 = 2, αt+1 =

4

4− ρ2
0αt

, ρ0 =
1− ξ(R)

1 + ξ(R)
.

Then for any η ∈ (0, 1), in order to achieve the following accuracy

‖uQ − xr+1
∗ ‖2Υ2 ≤ η‖u0 − xr+1

∗ ‖2Υ2 , (3.34)

it requires the following number of iterations

Q ≥ −1

4
ln(η/4)

√
1/ξ(R).

Recall that in Algorithm 2 the initial and final solutions for the Chebyshev iteration

are assigned to xr and xr+1, respectively. Define ε̃r := u0 − xr+1
∗ , we have

Rxr = Ru0 = R(u0 − xr+1
∗ ) +Rxr+1

∗ := Rε̃r + dr,∀ r ≥ −1.

Plugging in the definition of dr in (3.17), we obtain

Rε̃r = Rxr + Υ−2(∇f(xr) + F Tλr −Υ2xr). (3.35)

Using the definition of εr+1 in (3.18b), and the fact that R is invertible, we obtain the

following key relationship

εr+1 − ε̃r = xr+1 − xr, ∀ r ≥ −1. (3.36)

Recall that εr+1 := xr+1 − xr+1
∗ , and xr+1 = uQ, xr = u0, then (3.34) implies

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (3.37)
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By combining Lemma 3.3.3, (3.36) and (3.37), the following result provides some essen-

tial relationships between the error sequences {εr+1} incurred by running finite number

of C-iterations, with the outer-loop iterations {xr+1}.

Lemma 3.3.4. Choose the inner iteration of xFILTER as

Q = −1

4
ln

(
θ2

16 + 128M max{λmax(Υ2R), 1}

)√
1/ξ(R). (3.38)

where θ := ξ(Υ2R)ξ(Υ2)×min{1, λmin(Υ2)}. Then we have the following inequalities

‖Υ2Rεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (3.39a)

‖εr+1‖2Υ2R ≤
1

16M
‖xr+1 − xr‖2Υ2R, (3.39b)

‖ΥRεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (3.39c)

〈Υ2Rεr+1, xr+1− xr〉 ≤ 3

16
‖xr+1 − xr‖2Υ2R, (3.39d)

〈Υ2Rεr, xr+1− xr〉 ≤ 1

8
‖xr − xr−1‖2Υ2R +

1

16
‖xr+1 − xr‖2Υ2R. (3.39e)

3.3.1 Proof of Lemma 3.3.4

Proof. Let us choose

η = θ2/(4 + 32M max{λmax(Υ2R), 1}). (3.40)

Then from Lemma 3.3.3, it is clear that if Q satisfies (3.38), then

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (3.41)

Note that Υ2R = F>Σ2F + Υ2 � 0, then it follows that

‖Υ2Rεr+1‖2 ≤ λmax(RΥ2Υ2R)

λmin(Υ2)
‖εr+1‖2Υ2

(3.37)

≤ ηλmax(RΥ2Υ2R)

λmin(Υ2)
‖ε̃r‖2Υ2 ≤

ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(Υ2)
‖ε̃r‖2

≤ ηλmax(RΥ2Υ2R)λmax(Υ2)

λmin(RΥ2Υ2R)λmin(Υ2)
‖Υ2Rε̃r‖2 ≤ ηθ−2‖Υ2Rε̃r‖2.
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Using the above relation, we can then obtain the following

‖Υ2Rεr+1‖2 ≤ 2ηθ
−2

(‖Υ2Rεr+1‖2 + ‖Υ2R(εr+1 − ε̃r)‖2)

(3.36)

≤ 2ηθ−2(‖Υ2Rεr+1‖2 + ‖Υ2R(xr+1 − xr)‖2).

Therefore, we obtain

‖Υ2Rεr+1‖2 ≤ 2ηθ−2/(1− 2ηθ−2)‖Υ2R(xr+1 − xr)‖2.

Plugging the definition of η in (3.40), we have

‖Υ2Rεr+1‖2 ≤ λmax(Υ2R)2ηθ−2/(1− 2ηθ−2)‖xr+1 − xr‖2Υ2R

(3.40)

≤ 1/(16M)‖xr+1 − xr‖2Υ2R, ∀ r ≥ −1.

To obtain the second inequality, notice that

‖εr+1‖2Υ2R ≤ θ
−1η‖ε̃r‖2Υ2R ≤ θ

−2η‖ε̃r‖2Υ2R (3.42)

where the last inequality is due to the fact that θ ≤ 1. Then repeating the above

derivation we can obtain the desired result. The third inequality in (3.39) can be derived

in a similar way, and the last two in (3.39) can be obtained by using Cauchy-Swartz

inequality. Q.E.D.

Clearly, using the Chebyshev iteration is one critical step that ensures fast reduction

of the error {εr+1}. In particular, to achieve constant reduction of error, the total

number of required Chebyshev iteration is proportional to
√

1/ξ(R), rather than 1/ξ(R)

in conventional iterative scheme such as the Richardson’s iteration [61]. Such a choice

enables the final bound to be dependent on
√

1/ξ(G), rather than 1/ξ(G).

Step 4. Let us construct the following potential functions (parameterized by constants
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c, c̃ > 0)

Pc(x
r+1, xr, λr+1) := ALr+1 +

2κ

M2
‖Υ−1L(xr+1 − xr)‖2

+
c

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2H+L/M

)
. (3.43a)

P̃c̃(x
r+1, xr, λr+1) := ALr+1 +

3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2 (3.43b)

+
3κ̃

8
‖xr+1 − xr‖2Υ2R +

c̃

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2

Υ2+ Υ2R
4

+ L
M

)
.

For notational simplicity we will denote them as P r+1 and P̃ r+1, respectively. In the

following we show that when the algorithm parameters are chosen properly, the potential

functions will decrease along the iterations.

Lemma 3.3.5. Suppose that f(x) is in class PML , and that the parameters of D-GPDA

are chosen as below

c = max{6κ, 1}, Υ2 � LΥ−2L

M2
, (3.44a)

1

2

(
∆ + Υ2

)
− L

M
− 4κ

M2
LΥ−2L− 2cL

M
� 0. (3.44b)

Then for all r ≥ 0, we have

P r − P r+1 ≥ 1

4
‖xr+1 − xr‖2∆+Υ2 + κ‖wr+1‖2H . (3.45)

Lemma 3.3.6. Suppose that f(x) is in class PML , Q is chosen according to (3.38), and

the rest of the parameters of xFILTER are chosen as below

c̃ = 8κ̃ =
8

λmin(ΣFΥ−2F TΣ)
, Υ2 � LΥ−2L

M2
, (3.46a)

(1/4− 3κ̃− c̃)Υ2R− (1 + 2c̃)L/M − 6κ̃

M2
LΥ−2L � 0. (3.46b)

Then for all r ≥ 0, we have

P̃ r − P̃ r+1 ≥ 1

8
‖xr+1 − xr‖2Υ2R + κ̃‖wr+1‖2Υ2 . (3.47)



55

Step 5. Next we show the lower and upper boundedness of the potential function.

Lemma 3.3.7. Suppose that f(x) is in class PML and the parameters are chosen ac-

cording to (3.44). Then the iterates generated by D-GPDA satisfy

P r+1 ≥ f > −∞, ∀ r > 0, (3.48a)

P 0 ≤ f(x0) +
2

M
dT0 L

−1d0, (3.48b)

where d0 is defined in (2.48).

Similarly, for xFILTER the function P̃ r+1 has the same expression as in (3.48a),

and

P̃ 0 ≤ f(x0) +
5

M
dT0 L

−1d0. (3.49)

Step 6. We are ready to derive the final bounds for the convergence rate of the proposed

algorithms.

Theorem 3.3.1. Suppose that f(x) is in class PML and the parameters are chosen

according to (3.44). Let T denote an iteration index in which D-GPDA satisfies

e(T ) := min
r∈[T ]

∥∥∥∥1/M

M∑
i=1

∇fi(xri )
∥∥∥∥2

+ ‖ΣFxr‖2 ≤ ε. (3.50)

Then we have the following bound for the error:

ε ≤ C1 ×
C2

T
, with C1 := 8

(
f(x0)− f +

2

M
dT0 L

−1d0

)
C2 := 4

∑
(i,j):i∼j

σ2
ij +

M∑
i=1

β2
i + 4. (3.51)

Similarly, for xFILTER when the parameters are chosen according to (3.46) and (3.38),

the same equation

ε ≤ C̃1 ×
C̃2

Tr
(3.52)

holds true (with Tr denoting the total number of outer iterations), with the following
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constants

C̃1 := f(x0)− f +
5

M
dT0 L

−1d0 (3.53a)

C̃2 := 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
. (3.53b)

We note that one key difference between the two rates is that, the constant C2 for

D-GPDA depends explicitly on σe’s, while its counterpart for xFILTER depends on 1/κ̃

instead. Further, for xFILTER, the constant κ̃ in (3.31) only depends on λmin(LG),

while for D-GPDA κ is further dependent on λmax(Υ−1∆Υ−1). These properties will

be leveraged later when choosing algorithm parameters to ensure that optimal rates for

different problems and networks are obtained.

3.4 Rate Bounds and Tightness

In this section we provide explicit choices of various parameters, and discuss the tight-

ness of the resulting bounds for D-GPDA and xFILTER.

3.4.1 Parameter Selection and Rate Bounds for D-GPDA

Let us pick the following parameters for D-GPDA

σ2
ij =

β2
√
LiLj√
didj

, Υ2 = β2L, β2 =
80 max{λmax(W ), 1}
min{λmin(LG), 1}M

. (3.54)

It follows that the following relations hold

∆ = β2W, β2
i = β2Li, ∀ i, κ

(3.31)

≤ 1 + 2λmax(W )

min{λmin(L̃), 1}
. (3.55)

In the above definitions, we have defined W ∈ RM as a diagonal matrix with

[W ]ii =

√
Li√
di

∑
q:q∼i

√
Lq√
dq
,
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and that

[LG]ij =


∑

q:q∼i
1√
dqdi

if i = j

− 1√
didj

if (ij) ∈ E , i 6= j

0 otherwise.

(3.56)

Note that when di = dj , ∀ i, j, we have LG = L. We have the following result.

Theorem 3.4.1. Consider using D-GPDA to solve problems in class (PML ,NM
D ), using

parameters in (3.54). Then the condition (3.44b) will be satisfied. Further, to achieve

e(T ) ≤ ε, it requires at most the following number of iterations

T ≤ 8

ε

(
f(x0)− f +

2

M
‖d0‖2L−1

)
× C2 (3.57)

where C2 is given by [with W and L̃ defined in (3.56)]

C2 ≤
320 max{λmax(W ), 1}

min{λmin(LG), 1}
∑

(i,j):i∼j

( √
LiLj√
didjM

+
L̄

4

)
+ 4. (3.58)

Proof. For D-GPDA, use the parameters in (3.54), we have

c ≤ 6 + 12λmax(W )

min{λmin(LG), 1}
, Υ2 =

80 max{λmax(W ), 1}
min{λmin(LG), 1}M

L.

Therefore to ensure condition (3.44b), it suffices to ensure the following

40 max{λmax(W ), 1}
min{λmin(LG), 1}M

L− (4 + 8λmax(W ))

M80 max{λmax(W ), 1}
L− 1

M
L− 6 + 12λmax(W )

min{λmin(LG), 1}
2

M
L � 0.

(3.59)

It is easy to check that this inequality will be satisfied using the above choice of param-

eters. Using these choices, we can obtain the desired expression for C2. Q.E.D.
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3.4.2 Parameter Selection and Rate Bounds for xFILTER

First, recall that we have defined the matrix L̃ and L̂ as follows [see the definition in

(2.25)]

L̃ = L−1/2P−1/2F TKFP−1/2L−1/2,

L̂ = L−1/2F TKFL−1/2.

Below we will provide two different choices of parameters.

Choice I. We will focus on a class of graphs such that there exists an absolute constant

k > 0 such that the following holds (i.e., the degrees of the nodes are not quite different

from their averages):

kP � d̄IM . (3.60)

The above condition says that the degrees of the nodes are not quite different from their

averages. For example the following graphs satisfy (3.60): Complete graph (k = 1), star

graph (k = 2), grid graph (k = 2), cubic graph (k = 1), path graph (k = 2), and any

regular graph (k = 1).

For the class of graphs satisfy (3.60), let us pick the parameters for xFILTER as

follows

Σ2 =
48× 96k∑
i diλmin(L̃)

K, Υ2 =
96k∑
i di

P 1/2LP 1/2. (3.61)

Using the above choice, we have

β2
i =

96Lidik∑
i di

(3.62)

and that the matrix Υ satisfies the following

Υ2 =
96k∑
i di

P 1/2LP 1/2 � 96

M
L. (3.63)
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Plugging these choices to the generalized Laplacian LG in (2.23) we obtain

LG = Υ−1F TΣ2FΥ−1

=
48

λmin(L̃)
L−1/2P−1/2F TKFP−1/2L−1/2 =

48

λmin(L̃)
L̃. (3.64)

Therefore by (3.31) we have

κ̃ =
λmin(L̃)

48λmin(L̃)
=

1

48
. (3.65)

Also in this case we have

R = Υ−2F TΣ2F + I =
48

λmin(L̃)
P−1/2L−1P−1/2F TKF + I.

By noting that the matrix P−1/2L−1P−1/2F TKF and L̃ has the same set of eigenvalues,

we obtain

λmax(R) ≤

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≤ 50

ξ(L̃)
, λmin(R) = 1, (3.66a)

ξ(R) ≥ 1/

(
48λmax(L̃)

λmin(L̃)
+ 1

)
≥ ξ(L̃)

50
. (3.66b)

Choice II. For general graphs not necessarily satisfying (3.60), let us pick the param-

eters for xFILTER as follows

Σ2 =
48× 96

Mλmin(L̂)
K, Υ2 =

96

M
L. (3.67)

Using the above choice, we have

β2
i =

96Li
M

. (3.68)

We have that

LG = Υ−1F TΣ2FΥ−1 =
48

λmin(L̂)
L−1/2F TKFL−1/2 =

48

λmin(L̂)
L̂. (3.69)
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Therefore by (3.31) we have

κ̃ =
λmin(L̂)

48λmin(L̂)
=

1

48
. (3.70)

Also in this case we have

R = Υ−2F TΣ2F + I =
48

λmin(L̂)
L−1F TKF + I.

By noting that the matrix L−1F TKF and L̂ has the same set of eigenvalues, we obtain

λmax(R) ≤

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≤ 50

ξ(L̂)
, λmin(R) = 1, (3.71a)

ξ(R) ≥ 1/

(
48λmax(L̂)

λmin(L̂)
+ 1

)
≥ ξ(L̂)

50
. (3.71b)

Remark 3.4.1. (Choices of Parameters) The main difference between the above

two choices of parameters is whether Υ2 is scaled with the degree matrix or not. The

resulting bounds are also dependent on the spectral gap for L̃ and L̂, one inversely scaled

with the degree matrix, and the other does not. Note that the spectral gap of L̃ and

L̂ may not be the same. For example for a star graph with Li = Lj , ξ(L̂) = O(1/M)

but ξ(L̃) = O(1). Therefore one has to be careful in choosing these parameters so that

ξ(R) is made as large as possible.

Additionally, since we are mainly interested in choosing the optimal parameters so

that the resulting rate bounds will be optimal in their dependency on problem param-

eters, the absolute constants in the above parameter choices have not been optimized.

The following result is a direct consequence of the second part of Theorem 3.3.1.

Theorem 3.4.2. Consider using xFILTER to solve problems in class (PML ,NM
D ), then

the following holds.

Case I. Further restricting NM
D to a subclass satisfying (3.60). If parameters in (3.61)

is used, then the condition (3.46b) will be satisfied. Further, to achieve e(T ) ≤ ε, it

requires at most the following number of iterations (where T denotes the total iterations

of the xFILTER algorithm)
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T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
16 + 128M max{λmax(Υ2R), 1}

θ2

)√
1/ξ(R)

≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
502(MLmax/Lmin)4 × (16 + 128M max{50× 96kLmax, 1})

ξ3(L̃)×min{1, 962k2L2
min/M

2}

)√
50/ξ(L̃)

(3.72)

where C̃2 is given by

C̃2 ≤ 128

(
96k∑M
i=1 di

M∑
i=1

diLi + 19

)
. (3.73)

Case II. Suppose parameters in (3.67) are used. Then the condition (3.46b) will be

satisfied. Further, to achieve e(T ) ≤ ε, it requires at most the following number of

iterations

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2

× 1

4
ln

(
502(Lmax/Lmin)4 × (16 + 128M max{50× 96Lmax/M, 1})

ξ3(L̃)×min{1, 962L2
min/M

2}

)√
50/ξ(L̃)

(3.74)

where C̃2 is given by

C̃2 ≤ 128

(
96

M

M∑
i=1

Li + 19

)
. (3.75)

We note that compared with the results in Theorem 3.3.1, the additional multi-

plicative term in (3.72) accounts for the Chebyshev iterations that are needed for every

iteration t. It is interesting to observe that comparing with the previous result, the con-

stant C̃2 in (3.73) is independent on any graph parameters. Such a desirable property
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turns out to be crucial for obtaining tight rate bounds.

3.4.3 Tightness of the Upper Rate Bounds

In this section, we present some tightness results of the upper rate bounds for our

proposed D-GPDA and xFILTER. In particular, we compare the expressions derived in

Theorem 3.4.1 – 3.4.2, and the lower bounds derived in Section 2.3, over different kinds

of graphs and for different problems. We will mainly focus on the case with uniform

Lipschitz constants, i.e., Li = U, ∀ i. WE will briefly discuss the case of non-uniform

Lipschitz constants at the end of this section.

First, we consider the problem class PMU with the following properties:

L1 = L2 = · · ·LM =
1

M

M∑
i=1

Li := U, L = UIM . (3.76)

It follows that in this case L̃ = L, and L̂ = P 1/2LP 1/2. Let us first make some

useful observations. Remark 3.4.2. Let us specialize the parameter choices for D-GPDA

algorithm in (3.54) and derive the bounds for C2 in (3.58) for two special graphs.

Complete graph. For complete graphs we have di = dj = M − 1, ∀ i, j, which implies

that LG = L, so λmin(LG) = M/(M − 1). Because Li = Li = U, ∀ i, j, we have

W = IM . Therefore using the expression (3.58) we obtain the following:

Ccomp
2 ≤ 400U + 4. (3.77)

Cycle graph. For cycle graph we have di = dj = 2,∀ i, j, which implies that LG = L,

and λmin(LG) ≥ 1/M2. Because Li = Li = U, ∀ i, j, we have W = IM . Therefore using

the expression (3.58) we obtain the following:

Ccycle
2 ≤ 240UM2 + 4. (3.78)

It is clear that for cycle graph whose diameter is in O(M), the rate bounds is very large.

Remark 3.4.3. Let us specialize the parameter choices for xFILTER algorithm in

(3.61) and derive the bounds for C̃2×1/

√
ξ(L̃) in (3.73) for the following special graphs.

Note that because uniform Li’s are assumed, we have L̃ = L.
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Complete graph. Complete graphs satisfy (3.60) with k = 1. It also satisfies

λmin(L̃) = M/(M − 1) ≥ 1. Therefore using the expression (3.73) we obtain the follow-

ing:

C̃comp
2 × 1√

ξ(L̃)
≤ 12500U + 2560. (3.79)

Grid graph. Grid graphs satisfy (3.60) with k = 2. It also satisfies λmin(L̃) ≥ 1/M .

Therefore using the expression (3.73) we obtain the following:

C̃grid
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
M. (3.80)

Star graph. Star graphs satisfy (3.60) with k = 2. It also has ξ(L̃) = 1/2. Therefore

using the expression (3.73) we obtain the following:

C̃star
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
2. (3.81)

Geometric graph. For geometric graphs which place the nodes uniformly in [0, 1]2

and connect any two nodes separated by a distance less than a radius R ∈ (0, 1). Then

if the connectivity radius R satisfies [42]

R = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (3.82)

then with high probability

ξ(L̃) = O
(

log(M)

M

)
. (3.83)

Further, from the proof of [63, Lemma 10], for any ε and c > 0, if

R = Ω

(√
log1+ε(M)/(Mπ)

)
(3.84)
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then with probability at least 1− 2/M c−1, the following holds

log1+εM −
√

2c logM ≤ di ≤ log1+εM +
√

2c logM, ∀ i. (3.85)

This means that (3.60) is satisfied (with k = 1) with high probability (also see discussion

at the end of [42, Section V]). Therefore using the expression (3.58) we obtain the

following:

C̃geometric
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×O

( √
M√

log(M)

)
. (3.86)

Cycle/Path graph. Cycle/path graphs satisfy (3.60) with k = 2. We also have

λmin(L̃) ≥ 1/M2 (see the discussion in Sec. 2.2.3). Therefore using the expression

(3.73) we obtain the following:

C̃cycle
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×M. (3.87)

From the above comparison, it is clear that the rate bounds for xFILTER is about

O(M) times better than the D-GPDA for the path/cycle graph.

We also note that for the xFILTER algorithm, the fact that Li = U, ∀ i implies that

the matrix Σ2 given in (3.61) is a multiple of identity matrix. Therefore by Remark

3.2.3, we can conclude that in this case xFILTER belongs to both A and A′.
Now we are ready to present our tightness analysis on D-GPDA and xFILTER.

Theorem 3.4.3. We have the following tightness results.

(1) Let D = 1 and consider the class (PMU ,NM
D ). Then D-GPDA is an optimal algo-

rithm, and its convergence rate in (3.57) is tight (up to a universal constant).

(2) Let D = M − 1 and consider the class (PMU ,NM
D ). Then xFILTER is an optimal

algorithm, and its convergence rate in (3.72) is tight (up to a polylog factor).

(3) More generally, consider the problem class PMU , and a subclass of NM
D satisfying

(3.60). Then the convergence rate in (3.72) is tight (up to a polylog factor).

Proof. We divide the proof into different cases.
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Case 1). The network class is a complete graph with M nodes. Using the parameters

in (3.54), C2 is given by (3.77), and we have that Σ2 = 80U
(M−1)M IE . Note that the

following holds

‖Fx‖2 =
∑

(i,j):i∼j

‖xi − xj‖2.

If (3.50) holds, then Theorem 3.3.1 and Theorem 3.4.1 imply

T ≤ 8
(
f(0)− f +

2

MU
‖d0‖2

)
× 400U + 4

ε
.

For complete graph it is easy to check that ξ(G) ≥ 1. Using the definition in (2.18), we

also have

h∗T = min
r∈[T ]

∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥2

+
U

M2
‖Axr‖2

≤ min
r∈[T ]

∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥2

+
1

80
‖ΣAxr‖2 ≤ e(T ) ≤ ε.

By comparing the lower bound derived in Lemma 2.3.2, we conclude that the above

rate bound is tight (up to some universal constants).

Case 2). The network class is a path graph with M = D + 1. From Section 2.2.3 we

have

ξ(G) ≥ 1

M2
. (3.88)

Further we note that condition (3.60) satisfies with k = 2. We have

L̃ = P−1/2F TFP−1/2 = L. (3.89)

Therefore we conclude that

ξ(L̃) ≥ ξ(G) ≥ 1

M2
. (3.90)
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Applying the above estimate to (3.61), we can choose

Σ2 =
4608U

4(M − 2)λmin(L̃)
IE , Υ2 =

96U

4(M − 2)
P. (3.91)

Using these choices, again we will have

ξ(R)
(3.66)

≥ ξ(L̃)

50

(3.90)

≥ 1

50M2
. (3.92)

Using these constants, and note D ≤M , we have

h∗Tr = min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥2

+
U

Mλmin(P 1/2LP 1/2)

∑
(i,j):i∼j

‖xi − xj‖2

≤ min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥2

+
U

λmin(L)M
‖Fxr‖2

(3.91)

≤ min
r∈[Tr]

∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥2

+
1

2304
‖ΣFxr‖2 ≤ e(Tr),

where in the first inequality we have used P � IM . Similarly as in the previous case,

suppose e(Tr) ≤ ε, then according to Theorem 3.4.2 we have

ε ≤
(
f(0)− inf

x
f(x) + ‖d0‖2

5

MU
IM

)
× 128(96U + 19)

Tr
.

Recall that for xFILTER, Tr represents the number of times the dual update (3.16) is

performed. Between two dual updates Q primal iterations are performed, where the

precise number is given in (3.38). According to (3.92) we have

√
1/ξ(R) ≤ 13M. (3.93)

Overall, the total number of iterations required is given by

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128(96U + 19)

× 1

4
ln

(
502M10 × (16 + 128M max{50× 192U, 1})

min{1, 962 × 4U2/M2}

)
× 13M. (3.94)
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This implies that the lower bound obtained in Theorem 2.3.1 is tight up to some uni-

versal constant and a ploylog factor in M , and the bound-achieving algorithm in class

A is the xFILTER.

Case 3). The proof follows similar steps are in the previous case. When Li = Lj , ∀ i 6=
j, and when (3.60) is satisfied, it is easy to verify that the following holds

h∗Tr ≤ e(Tr), and L̃ = L. (3.95)

To bound the total number of iteration required to achieve h∗Tr ≤ ε, note that when

(3.60) is satisfied, we can apply the bound (3.72) in Theorem 3.4.2 and obtain

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128 (96kU + 19)

× 1

4
ln

(
502M4 × (16 + 128M max{50× 96kU, 1})

ξ3(G)×min{1, 962k2U2/M2}

)√
50/ξ(G). (3.96)

Comparing with the lower bound obtained in Theorem 2.3.1, it is clear that apart from

the multiplicative ln(·) term, the remaining bound is in the same order as the lower

bound given in (2.58). Q.E.D.

Remark 3.4.4. (Optimal Number of Gradient Evaluations) It is important

to note that the “outer” iteration of the xFILTER required to achieve ε-local solution

scales with O(U/ε), which is independent of the network size. Because local gradient

evaluation is only performed in the outer iterations, the above fact suggests that the

total number of gradient evaluation required is also in this order, which is optimal

because it is the same as what is needed for the centralized gradient descent.

Remark 3.4.5. (Performance Gap Between D-GPDA and xFILTER) If we

apply D-GPDA to the path or cycle graph, then according to Remark 3.4.3, the corre-

sponding C2, as well as the final upper bound, will be in O(M2U), which is O(M) worse

than the lower bound. Intuitively, this phenomenon happens because of the following:

in order to decompose the entire problem into the individual nodes, the x-update (3.8a)

has to create a proximal term that matches the quadratic penalty ‖ΣAx‖2. But such

an additional term forces the variables to stay close to their previous iteration. In

contrast, xFILTER circumvents the above difficulty by leaving the quadratic penalty

intact, but instead using a few fast and decomposable iterations to approximately solve
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the resulting problem.

Remark 3.4.6. (An Alternative Bound) For problems and graphs in (PMU ,NM
D )

without additional conditions, it can be verified that the second choice of the parameters

(3.67) gives the following convergence rates [cf. (3.74)]

T = Õ

((
f(0)− inf

x
f(x) + ‖d0‖2

5

MU
IM
)
× U

ε
× 1√

ξ(P 1/2LP 1/2)

)
, (3.97)

where the notation Õ denotes O with a multiplicative ploylog factor. The above rate is

proportional to the square root of the eigengap for the matrix P 1/2LP 1/2, which is the

unnormalized Laplacian matrix for graph G.

Remark 3.4.7. (Non-uniform Lipschitz Constants) We comment that for the

general case Li 6= Lj , ∀ i, j, we can use similar steps to verify that the bound (3.74)

derived in Theorem 3.4.2 is optimal, in the sense that they achieve the lower bound

(2.65) predicted in Corollary 2.3.2.

3.5 Numerical Results

This section presents numerical examples to show the effectiveness of the proposed

algorithms. Two kinds of problems are considered, distributed binary classification

and distributed neural networks training. We use the former one to demonstrate the

behavior and scalability of our algorithm and use the latter one to show the practical

performance.

3.5.1 Simulation Setup

In our simulations, all algorithms are implemented in MATLAB R2017a for binary

classification problem and implemented in Python 3.6 for training neural networks,

running on a computer node with two 12-core Intel Haswell processors and 128 GB

of memory (unless otherwise specified). Both synthetic and real data are used for

performance comparison. For synthetic data, the feature vector is randomly generated

with standard normal distribution with zero mean and unit variance. The label vector is

randomly generated with uniformly distributed pseudorandom integers taking the values
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{−1, 1}. For real data, we use the breast cancer dataset 1 for binary classification and

MNIST2 for training neural network. The breast cancer dataset contains a total of 569

samples each with 30 real positive features. The MNIST dataset contains a total of

60,000 handwritten digits, each with a 28 × 28 gray scale image and a label from ten

categories.

3.5.2 Distributed Binary Classification

We consider a non-convex distributed binary classification problem [64]. The global

consensus problem (3.2) can be expressed as follows:

min
x∈RSM

f(x) :=
1

M

M∑
i=1

fi(xi), s.t. xi = xj , ∀ (i, j) ∈ E .

And each component function fi is expressed by

fi(xi) =
1

B

B∑
j=1

log
(
1 + exp(−yijxTi vij)

)
+

S∑
s=1

λαx2
i,s

1 + αx2
i,s

.

Here vij ∈ RS denotes the feature vector with dimension S, yij ∈ {1,−1} denotes

the label for the jth date point in ith agent, and there are total B data points for each

agent. Unless otherwise noted, the graph E used in our simulation is generated using the

random geometric graph and the graph parameter Ra is set to 0.5. The regularization

parameter is set to λ = 0.001, α = 1.

To compare the convergence performance of the proposed algorithms, we randomly

generated MB data points with dimension K and distribute them into M nodes, i.e.

each node contains B data points with K features. Then we compare the proposed

xFILTER and D-GPDA with the distributed subgradient (DSG) method [44], the Push-

sum algorithm [65], and the NEXT algorithm [11]. The parameters for NEXT are

chosen as τ = 1, α[0] = 0.1 and µ = 0.01 as suggested by [11], while the parameters for

xFILTER are chosen based on (3.61).

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
2http://yann.lecun.com/exdb/mnist/
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Figure 3.1: Results on synthetic data: M =
5, B = 200,K = 10
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Figure 3.2: Results on synthetic data: M =
10, B = 200,K = 10
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Figure 3.3: Results on synthetic data: M =
20, B = 200,K = 10
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Figure 3.4: Results on synthetic data: M =
20, B = 50,K = 10
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Figure 3.5: Results on synthetic data: M =
20, B = 100,K = 10
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Figure 3.6: Results on synthetic data: M =
20, B = 400,K = 10
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Figure 3.7: Results on synthetic data: M =
10, B = 20,K = 5
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Figure 3.8: Results on synthetic data: M =
10, B = 20,K = 10
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Figure 3.9: Results on synthetic data: M =
10, B = 20,K = 20
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Figure 3.10: Results on synthetic data: M =
50, B = 2000,K = 10

Simulation results on synthetic data for different M,B,K averaged over 30 realiza-

tions are investigated and shown in Fig. 3.1 to Fig. 3.10, where the x-axis denotes the

total rounds of communications required, and the y-axis denotes the quality measure

(2.18) proposed in Section 2.2. Note that the curves xFILTER (outer) included in these

figures show the number of communication rounds required for xFILTER to perform the

“outer” iterations (which is equivalent to r in Algorithm 2, since in each outer iteration

only one round of communication is required in Step S3). The performance evaluated

on real data is also characterized in Fig. 3.11, in which we choose M = 10, B = 56, and

K = 30. These results show that the proposed algorithms perform well in all parameter

settings compared with existing methods.

We further note that these figures also show (rough) comparison about computation

efficiency of different algorithms. Specifically, for D-GPDA, DSG and Push Sum (resp.
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Figure 3.11: Results on real data: M = 10, B =
56,K = 30

NEXT), the total rounds of communication is the same as (resp. twice as) the total

number of gradient evaluations per node. In contrast, the total rounds of communication

in the outer loop of xFILTER is the same as the local gradient evaluations. Therefore,

the comparison between xFILTER (outer) and other algorithms in Fig. 3.3 to Fig. 3.10

shows the relative computational efficiency of these algorithms. Clearly, xFILTER has

a significant advantage over the rest of the algorithms.

Further, we compare the scalability performance of the proposed algorithms with

increased network dimension M , and the results are shown in Fig. 3.12, Table 3.2 and

Table 3.3. In particular, in Fig. 3.12 we compare the total communication rounds re-

quired for NEXT and the xFILTER for reaching h∗T ≤ 10−10 and h∗T ≤ 10−15, over path

graphs with increasing number of nodes. Overall, we see that the xFILTER performs

reasonably fast.

We do want to point out that although for the unconstrained problems that we

have tested, our proposed algorithms compare relatively favorably with NEXT, NEXT

can in fact handle a larger class of problems because it is designed for nonsmooth and

constrained nonconvex problems. Further, for all the algorithms we have used, we did

not tune the parameters: For xFILTER and D-GPDA, we use the theoretical upper

bound suggested in Theorem 3.3.1, and for NEXT we use the parameters suggested in

the paper [11]. For all our tested problems and algorithms, it is possible to fine-tune

the stepsizes to make them faster, but since this paper is mostly on the theoretical
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Figure 3.12: Comparison of NEXT and xFILTER over path graphs with increasing number of nodes (M ∈
[10, 150] in (a) and M ∈ [5, 50] in (b)). Each point in the figure represents the total number of communication
needed to reach h∗T ≤ ε.

Table 3.2: Optimality gap after 200 rounds of communications (B = 200,K = 10)

number of nodes M D-GPDA xFILTER

10 3.96× 10−4 2.50× 10−11

20 5.45× 10−4 1.92× 10−9

30 1.20× 10−4 4.71× 10−11

40 2.95× 10−4 4.07× 10−10

50 3.88× 10−4 8.47× 10−11

properties of rate optimal algorithms, we choose not to go down that path.

3.5.3 Distributed Neural Network Training

In our second experiment, we present some numerical results under a more realistic

setting. We consider training a neural network model for fitting the MNIST data set.

The dataset is first randomly partitioned into 10 subsets, and then gets distributed over

10 machines. A fully connected neural network with one hidden layer is used in the

experiment. The number of neurons for the hidden layer and the output layer are set as

128 and 10, respectively. The initial weights for the neural network are drawn from a

truncated normal distribution centered at zero with variance scaled with the number of

input units. The algorithms are written in Python, and the communication protocol is

implemented using the Message Passing Interface (MPI). The empirical performance of
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Table 3.3: Optimality gap after 1000 rounds of communications (B = 200,K = 10)

number of nodes M D-GPDA xFILTER

10 8.24× 10−13 1.93× 10−33

20 9.41× 10−12 1.43× 10−32

30 2.09× 10−13 2.26× 10−32

40 1.52× 10−11 4.19× 10−33

50 2.30× 10−10 6.48× 10−33

the xFILTER is evaluated and compared with the DSG algorithm [66]. Fig. 3.13 shows

that, compared with DSG, the proposed algorithm achieves better communication and

computation efficiency, and has improved classification accuracy.

Note that despite the fact that some global parameters (such as the Lipschitz con-

stants) are unknown, the rules provided in (3.61) or (3.67) still can help us roughly

estimate a set of good parameters. For example, we choose the following parameters

Σ2 =
σ∑

i diλmin(L̃)
, Υ2 =

βP∑
i di

, (3.98)

and tune the parameter β and σ by searching from the set {0.1, 0.2, 0.5, 1, 2, 5, · · · , 100, 200, 500}.
Based on the best practical performance over 10 runs, we choose β = 100 and σ = 20

for xFILTER and α = 0.1 for DSG.

3.6 Proofs of Lemmas and Theorems

3.6.1 Proof of Lemma 3.3.1

Proof. First we show that for all r ≥ −1 the following holds for D-GPDA

∇f(xr) + F Tλr + F TΣ2Fxr+1 +H(xr+1 − xr) = 0. (3.99)

Note that for the initialization (3.6) we have

∇f(x−1) + (2∆ + Υ2)x0 = ∇f(x−1) + (F TΣ2F +H)x0 = 0.
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Figure 3.13: Comparison of DSG and xFILTER over path graphs on distributed training neural networks;
Plot (a) shows the dynamic of the categorical cross-entropy loss, and plot (b) shows the training classification
accuracy. The parameters are chosen based on their best practical performance through grid search. The curves
xFILTER (outer) and xFILTER (total) again represent the number of outer iteration, and the total number of
iterations required for xFILTER.

Setting x−1 = 0, λ−1 = 0 and using (3.6), we obtain

∇f(0) + F Tλ−1 + F TΣ2Fx0 +H(x0 − x−1) = 0. (3.100)

Further, the optimality condition of the x update (3.8a) suggests that (3.99) holds for

all r ≥ 0, therefore (3.99) is proved.

Second, by using (3.99) and the y update (3.8b), we obtain

F Tλr+1 = −∇f(xr)−H(xr+1 − xr), ∀ r ≥ −1. (3.101)

Then subtracting the previous iteration leads to

F T (λr+1 − λr) = −(∇f(xr)−∇f(xr−1))−Hwr+1, ∀ r ≥ 0.

Note that the matrix H � 0, Σ2 � 0, then we have

H−1/2(ΣF )TΣ−1(λr+1 − λr) = −H−1/2(∇f(xr)−∇f(xr−1))−H1/2wr+1. (3.102)
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Then using the fact that

Σ−1(λr+1 − λr) = ΣFxr+1 ∈ col(ΣF ),

we can square both sides and obtain the following

λmin(ΣFH−1F TΣ)‖Σ−1(λr+1 − λr)‖2

≤ 2‖H−1/2(∇f(xr)−∇f(xr−1))‖2 + 2(wr+1)THwr+1

≤ 2‖Υ−1(∇f(xr)−∇f(xr−1))‖2 + 2(wr+1)THwr+1

(2.20)

≤ 2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H , ∀ r ≥ 0. (3.103)

This concludes the proof of the first part.

To show the second part, note that according to (3.18b), xr+1 generated by xFILTER

is given by (for all r ≥ −1)

∇f(xr) + F T (λr + Σ2Fxr+1) + Υ2(xr+1 − xr) = Υ2Rεr+1. (3.104)

Then use the same analysis steps as in the first part, we arrive at the desired result.

Q.E.D.

3.6.2 Proof of Lemma 3.3.2

Proof. Using the Lipschitz gradient assumption (2.20), we have

AL(xr+1, λr)− AL(xr, λr) ≤ 〈∇f(xr) + fTλr + F TΣ2Fxr, xr+1 − xr〉

+
1

2M
‖xr+1 − xr‖2L +

1

2
‖ΣF (xr+1 − xr)‖2

= 〈∇f(xr) + F Tλr +ATΣ2Fxr+1, xr+1 − xr〉

+ 〈H(xr+1 − xr), xr+1 − xr〉+
1

2M
‖xr+1 − xr‖2L

+
1

2
‖ΣF (xr+1 − xr)‖2 − ‖xr+1 − xr‖H+FTΣ2F

(3.99),(2.22)

≤ −(xr+1 − xr)T
(

∆

2
− L

2M
+ Υ2

)
(xr+1 − xr). (3.105)
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Using the update rule of the dual variable, and combine the above inequality, we obtain

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M + 〈λr+1 − λr, Axr+1〉

= −1

2
‖xr+1 − xr‖2∆+2Υ2−L/M + ‖Σ−1(λr+1 − λr)‖2

Combined with Lemma 3.3.1 we complete the first part.

The second part follows similar steps. The modifications are that H is replaced by

Υ2, and that there is an additional error term in the optimality condition; cf. (3.18b).

Q.E.D.

3.6.3 Proof of Lemma 3.3.5 and Lemma 3.3.6

Proof. Using the optimality condition (3.99), we have

〈F Tλr+1 +∇f(xr) +H(xr+1 − xr), xr+1 − x〉 = 0, ∀ r ≥ −1

This implies that for all r ≥ 0

〈F T (λr+1 − λr) +∇f(xr)−∇f(xr−1) +Hwr+1, xr+1 − xr〉 = 0.

It follows that

1

2
‖ΣFxr+1‖2 +

1

2
‖xr+1 − xr‖2H ≤

1

2
‖ΣFxr‖2 +

1

2
‖xr − xr−1‖H −

1

2
‖wr+1‖2H (3.106)

+
1

2M
‖xr+1 − xr‖2L +

1

2M
‖xr − xr−1‖2L, ∀ r ≥ 0.

Then combining Lemma 3.3.2 and (3.106), for all r ≥ 0 we have

P r+1 − P r ≤ −
( c

2
− 2κ

)
‖wr+1‖2H

− 1

2
(xr+1 − xr)T

(
∆ + 2Υ2 − L

M
− 4κ

M2
LΥ−2L− 2cL

M

)
(xr+1 − xr).

Therefore, in order to make the potential function decrease, we need to follow (3.44).

To show a similar result for the xFILTER, consider the following optimality condition
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derived from (3.104)

〈F Tλr+1 +∇f(xr) + Υ2(xr+1 − xr)−Υ2Rεr+1, xr+1 − x〉 = 0, ∀ x.

Following similar steps as in (3.106), and use (3.39), we have

1

2
‖ΣFxr+1‖2 +

1

2
‖xr+1 − xr‖2Υ2 ≤

1

2
‖ΣFxr‖2 +

1

2
‖xr − xr−1‖Υ2 −

1

2
‖wr+1‖2Υ2

(3.107)

+ 1/(2M)‖xr+1 − xr‖2L + 1/(2M)‖xr − xr−1‖2L
+ 1/4‖xr+1 − xr‖2Υ2R + 1/4‖xr − xr−1‖2Υ2R, ∀ r ≥ −1.

Then combining Lemma 3.3.2, (3.106), and the estimate of the size of ε in (3.39), we

have

P̃ r+1 − P̃ r ≤ −1

2
(xr+1 − xr)TV (xr+1 − xr)−

(
c̃

2
− 3κ̃

)
‖wr+1‖2Υ2 .

with

V :=

(
Υ2R− (1 + 2c̃)

L

M
− 6κ̃

M2
LΥ−2L− Υ2R(24κ̃+ 6 + 16c̃)

16

)
.

Therefore in order to make the potential function decrease, we need to follow (3.46).

Q.E.D.

3.6.4 Proof of Lemma 3.3.7

Proof. For D-GPDA, we can express the AL as (for all r ≥ 0)

ALr+1 − f(xr+1) = 〈λr+1,Σ−2(λr+1 − λr)〉+
1

2
‖ΣFxr+1‖2

=
1

2

(
‖Σ−1λr+1‖2−‖Σ−1λr‖2+ ‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2

)
.

Since infx f(x) = f is lower bounded, let us define

ÂL
r+1

:= ALr+1 − f, f̂(x) := f(x)− f ≥ 0, P̂ r+1:= P r+1 − f.
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Therefore, summing over r = −1 · · · , T , we obtain

T∑
r=−1

ÂL
r+1

=
1

2

(
‖Σ−1λT+1‖2 − ‖Σ−1λ−1‖2

)
+

T∑
r=−1

(
f̂(xr+1) +

1

2
‖ΣFxr+1‖2 +

1

2
‖Σ−1(λr+1 − λr)‖2

)
.

Using the initialization λ−1 = 0, then the above sum is lower bounded by zero. This

fact implies that the sum of P̂ r+1 is also lower bounded by zero (note, the remaining

terms in the potential function are all nonnegative)

T∑
r=0

P̂ r+1 ≥ 0, ∀ T > 0,

Note that if the parameters of the system are chosen according to (3.44), then P r+1 is

nonincreasing, which implies that its shifted version P̂ r+1 is also nonincreasing. Com-

bined with the nonnegativity of the sum of the shifted potential function, we can con-

clude that

P̂ r+1 ≥ 0, and P r+1 ≥ inf f(x), ∀ r ≥ 0. (3.108)

Next we compute P 0. By using (2.22), we have

P 0 = AL0 +
2κ

M2
‖Υ−1Lx0‖2 +

c

2

(
‖x0‖22∆+Υ2+L/M

)
(3.109)

AL0 ≤ f(x0) + 2‖ΣFx0‖2

x0 (3.6)
= (2∆ + Υ2)−1 1

M
[∇f1(0); · · · ;∇fM (0)]

= (2∆ + Υ2)−1 1

M
d0 (3.110)

where in the last equality we have used the definition of d0 in (2.48). Use the above

relations, we have

P 0 ≤ f(x0) + (x0)TZx0 (3.111)
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with the matrix Z defined as

Z =
2κ

M2
LΥ−2L+

c(2∆ + Υ2 + L/M)

2
+ 2FΣ2F � 4c(2∆ + Υ2)

where the last inequality follows from our choice of parameters in (3.44b), and the fact

c ≥ 1. Note that

4c‖x0‖22∆+Υ2 ≤
4c

M2
dT0 (2∆ + Υ2)−1(2∆ + Υ2)(2∆ + Υ2)−1d0

=
4c

M2
dT0 (2∆ + Υ2)−1d0 ≤

2

M
dT0 L

−1d0 (3.112)

where the last inequality comes from the choice of the parameters (3.44b), which implies

that 2∆ + Υ2 � 2LcM . These constants combined with (3.109) shows the desired result.

For xFILTER, the proof for the lower boundedness is the same. To bound the size

of P̃ 0, first note that we again have

ALr+1 − f(xr+1) =
1

2

(
‖Σ−1λr+1‖2−‖Σ−1λr‖2+ ‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2

)
.

By letting r = −1, and use the fact that x−1 = 0 and λ−1 = 0, we obtain

AL0 − f(x0) =
1

2

(
2‖Σ−1λ0‖2 + ‖ΣFx0‖2

)
=

3

2
‖Σ−1λ0‖2. (3.113)

Then we have

P̃ 0 = AL0 +
3κ̃

M2
‖Υ−1Lx0‖2 +

3

8
κ̃‖x0‖2Υ2R

+
c̃

2

(
‖ΣFx0‖2 + ‖x0‖2Υ2+Υ2R/4+L/M

)
, (3.114)

AL0 ≤ f(x0) + 2‖ΣFx0‖2, x−1 = 0, λ−1 = 0, (3.115)

x0 (3.18b)
= R−1Υ−2∇f(0)− ε0, ε̃−1 (3.35)

= R−1Υ−2∇f(0). (3.116)

Use the above relation, we have

P̃ 0 ≤ f(x0) + (x0)T Z̃x0 (3.117)
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with the matrix Z defined as

Z̃ =
3κ̃

M2
LΥ−2L+

(
3

8
κ̃+ c̃

)
Υ2R+

c̃L

2M
+ 2FΣ2F � 3Υ2R

where the last inequality follows from our choice of parameters in (3.46b). Therefore

we have

(x0)T Z̃x0 ≤ 3(x0)TΥ2Rx0

≤ 3(∇f(0)−Υ2Rε0)TR−1Υ−2(∇f(0)−Υ2Rε0)

(i)

≤ 6(∇f(0))TR−1Υ−2∇f(0) + 6(ε0)TΥ2Rε0

≤ 3M(∇f(0))TL−1∇f(0) +
3

8M
‖x0‖2Υ2R (3.118)

where in (i) we have used the Cauchy-Swartz inequality; the last inequality uses (3.39),

the choice of the parameters (3.46b) (which implies Υ2R ≥ 4L/M). The above series

of inequalities imply that

2‖x0‖2Υ2R ≤
(

3− 3

8M

)
‖x0‖2Υ2R ≤ 3M(∇f(0))TL−1∇f(0).

Therefore overall we have

(x0)T Z̃x0 ≤ 3(x0)TΥ2Rx0 ≤ 5M(∇f(0))TL−1∇f(0). (3.119)

Finally, by observing 1
M2d

T
0 d0 = ‖∇f(0)‖2, the desired result is obtained. Q.E.D.

3.6.5 Proof of Theorem 3.3.1

Proof. To show the first part, we consider the optimality condition (3.101), and mul-

tiply both sides of it by the all one vector, and use the fact that 1TAT = 0 to obtain

1T∇f(xr) + 1TH(xr+1 − xr) = 0, ∀ r ≥ −1.
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Squaring both sides and rearranging terms, we have

∥∥∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥∥∥2

≤ (xr+1 − xr)TH11TH(xr+1 − xr)

≤ (xr+1 − xr)TH(xr+1 − xr)× 1TH1

≤ ‖xr+1 − xr‖2H ×
(

4
∑

(i,j)i∼j

σ2
ij +

M∑
i=1

β2
i

)
, ∀ r ≥ −1.

Combining with (3.45), we obtain, for all r ≥ 0

∥∥∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥∥∥2

≤ ‖xr+1 − xr‖2H

(
4
∑
e∈E

σ2
e +

M∑
i=1

β2
i

)

≤ 8
(
P r − P r+1

)(
4
∑
e∈E

σ2
e +

M∑
i=1

β2
i

)
. (3.120)

where in the last inequality we used 2(∆ + Υ2) � H. We then bound the consensus

error. Lemma 3.3.1 implies

‖ΣFxr+1‖2 ≤ κ
(

2

M2
‖Υ−1L(xr − xr−1)‖2 + 2‖wr+1‖2H

)
(3.44a)

≤ 2κ

(
4‖wr+1‖2H +

2

M2
‖Υ−1L(xr+1 − xr)‖2

)
. (3.121)

Therefore

‖ΣFxr‖2 ≤ 4κ

(
4‖wr+1‖2H +

2

M2
‖Υ−1L(xr+1 − xr)‖2

)
+ 2‖ΣF (xr+1 − xr)‖2.

(3.122)

Combining with (3.45), and using the fact that [cf. (3.44b)]

∆ + Υ2 � 8κLΥ−2L

M2
, 2∆ � FΣ2F (3.123)
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we have

‖ΣFxr‖2 ≤ 16κ‖wr+1‖2H + 5‖xr+1 − xr‖2∆+Υ2

(3.45)

≤ 20(P r − P r+1). (3.124)

Also note that by the definition of e(T ) we have

T × e(T ) ≤
T∑
r=1

(
‖ΣFxr‖2 +

∥∥∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥∥∥2
)

(3.125)

Then combining the above with (3.45) and (3.124), and the fact that the potential

function is lower bounded by f , we obtain the desired result.

To show the result for xFILTER, multiply both sides of the optimality condition

(3.104) by the all one vector, and use the fact that F1 = 0 to obtain

1T∇f(xr) + 1TΥ2(xr+1 − xr) = 1TΥ2Rεr+1. (3.126)

Squaring both sides and rearranging terms we have

∥∥∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥∥∥2

≤ 2(xr+1 − xr)TΥ211TΥ2(xr+1 − xr) + 2(εr+1)TΥ2R11TΥ2Rεr+1

(3.39)

≤ 2(xr+1 − xr)TΥ2(xr+1 − xr)× 1TΥ21 +M/(4M)‖xr+1 − xr‖2Υ2R

≤ ‖xr+1 − xr‖2Υ2R × 2

(
1 +

M∑
i=1

β2
i

)
, ∀ r ≥ −1.

where in the last inequality we have used the fact that Υ2R = Υ2 + F TΣ2F � Υ2.

To bound the consensus error, we first use (3.39) and obtain

‖Υ2R(εr+1 − εr)‖2 ≤ 1

4M
‖xr+1 − xr‖2Υ2R +

1

4M
‖xr − xr−1‖2Υ2R.
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Similarly as the first part, we use Lemma 3.3.1 and obtain

‖ΣFxr+1‖2

≤ 3κ̃

(
‖xr+1 − xr‖2Υ2R

4M

+ ‖wr+1‖2Υ2 + ‖xr − xr−1‖2Υ2R
4M

+LΥ−2L
M2

)
≤ 2‖xr+1 − xr‖2Υ2R + 3κ̃‖wr+1‖2Υ2 + 2‖xr − xr−1‖2Υ2R, ∀ r ≥ 0 (3.127)

where the last inequality comes from (3.46b), that

2Υ2R � 3κ̃

(
LΥ−2L

M2
+ Υ2R

)
. (3.128)

By combining (3.127) and the following inequality

‖ΣFxr‖2 ≤ 2‖ΣF (xr+1 − xr)‖2 + 2‖ΣFxr+1‖2,

we have

‖ΣFxr‖2 ≤ 4‖xr+1 − xr‖2Υ2R+FTΣ2F + 6κ̃‖wr+1‖2Υ2 + 4‖xr − xr−1‖2Υ2R

(3.47)

≤ 64(P̃ r − P̃ r+1) + 64(P̃ r−1 − P̃ r), ∀ r ≥ 1

‖ΣFx0‖2 ≤ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R.

So overall we have that

Tr∑
r=0

(∥∥∥∥ 1

M

M∑
i=1

∇fi(xri )
∥∥∥∥2

+ ‖ΣFxr‖2
)

≤ 64

(
1 +

M∑
i=1

β2
i + 1

)
Tr∑
r=1

((P̃ r − P̃ r+1) + (P̃ r−1 − P̃ r))

+ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R

≤ 128

(
1 +

M∑
i=1

β2
i + 2

)
(P̃ 0 − f) + 4‖x0‖2Υ2R. (3.129)

where the last inequality utilizes the descent property of P̃ 0 in Lemma 3.3.6. Note that
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from (3.113), (3.114) and use c̃ = 8κ̃ in (3.46a), we obtain

P̃ 0 ≥ f(x0) + κ̃‖x0‖2Υ2R. (3.130)

Therefore From (3.49) and Lemma 3.3.7 we have that

4‖x0‖2Υ2R ≤
4
(
P̃ 0 − f(x0)

)
κ̃

(3.49)

≤
4
(
f(x0) + 5

M d>0 L
−1d0 − f

)
κ̃

:=
4C̃1

κ̃
.

Combining the above two relations leads to

1

Tr

Tr∑
r=0

(∥∥∑M
i=1∇fi(xri )

M

∥∥2
+ ‖ΣFxr‖2

)

≤ 128

(
M∑
i=1

β2
i + 3 +

1

32κ̃

)
C̃1/Tr.

This completes the proof. Q.E.D.



Chapter 4

Improved Stochastic Algorithms

for Distributed Non-convex

Learning

Many modern large-scale machine learning problems benefit from decentralized and

stochastic optimization. Recent works have shown that utilizing both decentralized

computing and local stochastic gradient estimates can outperform state-of-the-art cen-

tralized algorithms, in applications involving highly non-convex problems, such as train-

ing deep neural networks. In this work, we propose a decentralized stochastic algorithm

to deal with certain smooth non-convex problems where there are m nodes in the sys-

tem, and each node has a large number of samples (denoted as n). Differently from

the majority of the existing decentralized learning algorithms for either stochastic or

finite-sum problems, our focus is given to both reducing the total communication rounds

among the nodes, while accessing the minimum number of local data samples. In par-

ticular, we propose an algorithm named D-GET (decentralized gradient estimation and

tracking), which jointly performs decentralized gradient estimation (which estimates the

local gradient using a subset of local samples) and gradient tracking (which tracks the

global full gradient using local estimates). We show that, to achieve certain ε station-

ary solution of the deterministic finite sum problem, the proposed algorithm achieves

an O(mn1/2ε−1) sample complexity and an O(ε−1) communication complexity. These

86
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bounds significantly improve upon the best existing bounds of O(mnε−1) and O(ε−1),

respectively. Similarly, for online problems, the proposed method achieves anO(mε−3/2)

sample complexity and an O(ε−1) communication complexity.

4.1 Introduction

Recent advances of decentralized optimization enable us to utilize distributed resources

to significantly improve the computation efficiency [67, 68]. Compared to the typical

parameter-server type distributed system with a fusion center, decentralized optimiza-

tion has its unique advantages in preserving data privacy, enhancing network robustness,

and improving the computation efficiency [66, 68–70]. Furthermore, in many emerging

applications such as collaborative filtering [71], federated learning [72] and dictionary

learning [73], the data is naturally collected in a decentralized setting, and it is not

possible to transfer the distributed data to a central location. Therefore, decentralized

computation has sparked considerable interest in both academia and industry.

Motivated by these facts, in this paper we consider the following decentralized opti-

mization problem,

min
x∈Rmd

f(x) =
1

m

m∑
i=1

f i(xi), (4.1)

s.t. xi = xk, ∀(i, k) ∈ E .

where f i(·) : Rd → R denotes the loss function which is smooth (possibly non-convex),

and m is the total number of such functions. We consider the scenario where each node

i ∈ [m] := {1, · · · ,m} can only access its local function f i(·), and can communicate

with its neighbors via an undirected and unweighted graph G = {E ,V}. And x stacks

all the variables: x := [x1; x2; · · · ; xm] ∈ Rmd.
In this work, we consider two typical representations of the local cost functions:

1. Finite-Sum Setting: Each f i(·) is defined as the average cost of n local samples,

that is:

f i(·) =
1

n

n∑
j=1

f ij(·),∀i (4.2)

where n is the total number of local samples at node i, f ij(·) denotes the cost for
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jth data sample at ith node.

2. Online Setting: Each f i(·) is defined as:

f i(·) = Eξ∼Di [f
i
ξ(·)],∀i (4.3)

where Di denotes the data distribution at node i.

For the above decentralized non-convex problem (4.1), one essential task is to find an ε

stationary solution x∗ := [x∗1; · · · ; x∗m] ∈ Rmd such that the optimality gap h∗ satisfies∥∥∥∥∥ 1

m

m∑
i=1

∇f i(x∗i )

∥∥∥∥∥
2

+
1

m

m∑
i

∥∥∥∥∥x∗i − 1

m

m∑
i

x∗i

∥∥∥∥∥
2

≤ ε. (4.4)

This solution quality measure encodes both the size of local gradient error for classical

centralized non-convex problems and the consensus error for decentralized optimization.

Many modern decentralized methods can be applied to obtain the above mentioned

ε stationary solution for problem (4.1). In the finite-sum setting (4.2), determinis-

tic decentralized methods [3, 74–76], which process the local dataset in full batches,

typically achieve O(ε−1) communication complexity (i.e., O(ε−1) rounds of message

exchanges are required to obtain ε stationary solution), and O(mnε−1) sample com-

plexity.1 Meanwhile, stochastic methods [68, 77–79], which randomly pick subsets of

local samples, achieve O(mε−2) sample and O(ε−2) communication complexity. These

complexity bounds indicate that, when the sample size is large (i.e., ε−1 = o(n)), the

stochastic methods are preferred for lower sample complexity, but the deterministic

methods still achieve lower communication complexity. On the other hand, in the on-

line setting (4.3), only stochastic methods can be applied, and those methods again

achieve O(mε−2) sample and O(ε−2) communication complexity [77].

4.1.1 Our Contribution

Compared with the majority of the existing decentralized learning algorithms for either

stochastic or deterministic problems, the focus of this work is given to both reducing the

total communication and sample complexity. Specifically, we propose a decentralized

1Note that for the finite sum problem (4.2), the “sample complexity” refers to the total number of
samples accessed by the algorithms to compute sample gradient ∇f ij (xi)’s. If the same sample j ∈ [ni]
is accessed k times and each time the evaluated gradients are different, then the sample complexity
increases by k.
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Algorithm Constant Stepsize Finite-Sum Online Communication

DGD [85] 7 O(mnε−2) 7 O(ε−2)
SONATA [76] 3 O(mnε−1) 7 O(ε−1)
Prox-PDA [74] 3 O(mnε−1) 7 O(ε−1)
xFILTER [3] 3 O(mnε−1) 7 O(ε−1)
PSGD [68] 7 O(mε−2) O(mε−2) O(ε−2)
D2 [77] 3 O(mε−2) O(mε−2) O(ε−2)
GNSD [79] 3 O(mε−2) O(mε−2) O(ε−2)
D-GET (this work) 3 O(m

√
nε−1) O(mε−3/2) O(ε−1)

Lower Bound [3, 80] O(
√
mnε−1) - O(ε−1)

gradient estimation and tracking (D-GET) approach, which uses a subset of samples to

estimate the local gradients (by utilizing modern variance reduction techniques [80,81]),

while using the differences of past local gradients to track the global gradients (by

leveraging the idea of decentralized gradient tracking [75,82]). Remarkably, the proposed

approach enjoys a sample complexity of O(mn1/2ε−1) and communication complexity

of O(ε−1) for finite sum problem (4.2), which outperforms all existing decentralized

methods. The sample complexity rate is
√
m worse than the known sample complexity

lower bound for centralized problem [80], and the communication complexity matches

the existing communication lower bound [3] for decentralized non-convex optimization

(in terms of the dependency in ε). Furthermore, the proposed approach is also able

to achieve O(mε−3/2) sample complexity and O(ε−1) communication complexity for

the online problem (4.3), reducing the best existing bounds (such as those obtained

in [77,79,83]) by factors of O(ε−1/2) and O(ε−1), respectively, through a more restrictive

mean-squared smoothness assumption [84]. The rate O(mε−3/2) is m worse than the

centralized stochastic lower bound O(ε−3/2) for non-convex problems [84]. We illustrate

the main results of this work and compare the gradient and communication cost for

state-of-the-art decentralized non-convex optimization algorithms in Table 4.1.2 Note

that in Table 4.1, by constant step-size we mean that it is not dependent on the target

accuracy ε, nor the iteration number.
2For batch algorithms DGD, NEXT, Prox-PDA and xFILTER, the bounds are obtained by multiply-

ing their convergence rates with m× n, since when applied to solve finite-sum problems, each iteration
requires O(1) full gradient evaluation.
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4.1.2 Related Works

Decentralized Optimization. Decentralized optimization has been extensively stud-

ied for convex problems and can be traced back to the 1980s [86]. We refer the read-

ers to the recent survey [87] and the references therein for a complete review. When

the problem becomes non-convex, many algorithms such as primal-dual based meth-

ods [74, 88], gradient tracking based methods [75, 89], and non-convex extensions of

DGD methods [85] have been proposed, where the O(ε−1) iteration and communication

complexity have been shown. Note that the above algorithms all require O(1) full gra-

dient evaluations per iteration, so when directly applied to solve problems where each

f i(·) takes the form in (4.2), they all require O(mnε−1) local data samples.

However, due to the requirement that each iteration of the algorithm needs a full

gradient evaluation, the above batch methods can be computationally very demanding.

One natural solution is to use the stochastic gradient to approximate the true gradi-

ent. Stochastic decentralized non-convex methods can be traced back to [8, 90], and

recent advances including DSGD [91], PSGD [68], D2 [77], GNSD [79] and stochastic

gradient push [78]. However, the large variance coming from the stochastic gradient

estimator and the use of diminishing step-size slow down the convergence, resulting at

least O(mε−2) sample and O(ε−2) communication cost.

Variance Reduction. Consider the following non-convex finite sum problem:

min
w∈Rd

f(w) =
1

mn

mn∑
j=1

fj(w).

If we assume that f(·) has Lipschitz gradient, and directly apply the vanilla gradient

descent (GD) method on f(w), then it requires O(mnε−1) gradient evaluations to reach

‖∇f(w)‖2 ≤ ε [92]. When m × n is large, it is usually preferable to process a sub-

set of data each time. In this case, stochastic gradient descent (SGD) can be used to

achieve an O(ε−2) convergence rate [93]. To bridge the gap between the GD and SGD,

many variance reduced gradient estimators have been proposed, including SAGA [94]

and SVRG [95]. The idea is to reduce the variance of the stochastic gradient estimators

and substantially improves the convergence rate. In particular, the above approaches

have been shown to achieve sample complexities of O((mn)2/3ε−1) for finite sum prob-

lems [96–98] and O(ε−5/3) for online problem [98]. Recent works further improve the
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above gradient estimators and achieve O((mn)1/2ε−1) sample complexity for finite sum

problems [80, 99–101] and O(ε−3/2) sample complexity for online problems [80, 100].

At the same time, the O((mn)1/2ε−1) sample complexity is shown to be optimal when

m× n ≤ O(ε−2) [80].

Decentralized Variance Reduction. The variance reduced decentralized optimiza-

tion has been extensively studied for convex problems. The DSA proposed in [102]

combines the algorithm design ideas from EXTRA [103] and SAGA [94], and achieves

the first expected linear convergence for decentralized stochastic optimization. Recent

works also include the DSBA [104], diffusion-AVRG [105], ADFS [106], SAL-Edge [107],

GT-SAGA [108], Network-DANE [109], and [110], just to name a few. However, when

the problem becomes non-convex, to the best of our knowledge, no algorithms with

provable guarantees are available.

4.2 The Finite Sum Setting

In this section, we consider the non-convex decentralized optimization problem (4.1)

with finite number of samples as defined in (4.2), which is restated below:

min
x∈Rmd

f(x) =
1

mn

m∑
i=1

n∑
j=1

f ij(xi), (P1)

s.t. xi = xk, ∀(i, k) ∈ E .

We make the following standard assumptions on the above problem:

Assumption 1. The objective function has Lipschitz continuous gradient with constant

L:

‖∇f i(xi)−∇f i(x′i)‖ ≤ L‖xi − x′i‖,∀i (4.5)

while the component function has average Lipschitz continuous gradient with constant

L:

Ej‖∇f ij(xi)−∇f ij(x′i)‖ ≤ L‖xi − x′i‖, ∀i (4.6)

Assumption 2. The mixing matrix W is symmetric, and satisfying the following

|
¯
λmax(W)| := η < 1, W1 = 1, (4.7)
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where
¯
λmax(W) denotes the second largest eigenvalue of W ∈ Rm×m.3

Remark 4.2.1. Note that many choices of mixing matrices satisfy the condition in

Assumption 2. Here we give three commonly used mixing matrices [111, 112], where di

denotes the degree of node i, and dmax = maxi{di}:

• Metropolis-Hasting Weight

wij =


1

1+max{di,dj} , if {i, j} ∈ E ,

1−
∑
{i,k}∈E wik, if i = j,

0, otherwise.

(4.8)

• Maximum-Degree Weight

wij =


1

dmax
, if {i, j} ∈ E ,

1− di
dmax

, if i = j,

0, otherwise.

(4.9)

• Laplacian Weight

wij =


γ if {i, j} ∈ E ,

1− γdi, , if i = j,

0 otherwise.

(4.10)

If we use L to denote the graph Laplacian matrix, and λmax,
¯
λmin as the largest and

second smallest eigenvalue, then one of the common choices of γ is 2
λmax(L)+

¯
λmin(L) .

Next, let us formally define our communication and sample complexity measures.

Definition 4.2.1. (Sample Complexity) The Incremental First-order Oracle (IFO)

is defined as an operation in which, one node i ∈ [m] takes a data sample j ∈ [n], a point

3For notation simplicity when dealing with mixing matrix multiplication, but without loss of gener-
ality, we will assume that the optimization variable xi in (4.1) is a scalar. The results can be extended
to vector case via the Kronecker product.
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w ∈ Rd, and returns the pair (f ij(w),∇f ij(w)). The sample complexity is defined as the

total number of IFO calls required across the entire network to achieve an ε stationary

solution defined in (4.4).

Definition 4.2.2. (Communication Complexity) In one round of communication,

each node i ∈ [m] is allowed to broadcast and received one d-dimensional vector to and

from its neighbors, respectively. Then the communication complexity is defined as the

total rounds of communications required to achieve an ε stationary solution defined in

(4.4).

4.2.1 Algorithm Design

In this section, we introduce the proposed algorithm named Decentralized Gradient Es-

timation and Tracking (D-GET), for solving problem (P1). To motivate our algorithm

design, we can observe from our discussion in Section 4.1.2 that, the existing deter-

ministic decentralized methods typically suffer from the high sample complexity, while

the decentralized stochastic algorithms suffer from the high communication cost. Such

a phenomenon inspires us to find a solution in between, which could simultaneously

reduce the sample and the communication costs.

One natural solution is to incorporate the modern variance reduction techniques

into the classical decentralized methods. Our idea is to use some variance reduced

gradient estimator to track the full gradient of the entire problem, then perform decen-

tralized gradient descent update. The gradient tracking step gives us fast convergence

with a constant step-size, while the variance reduction method significantly reduces the

variation of the estimated gradient.

Unfortunately, the decentralized methods and variance reduction techniques cannot

be directly combined. Compared with the existing decentralized and variance reduction

techniques in the literature, the key challenges in the algorithm design and analysis are

given below:

1) Due to the decentralized nature of the problem, none of the nodes can access

the full gradient of the original objective function. The (possibly uncontrollable) con-

sensus error always exists during the whole process of implementing the decentralized

algorithm. Therefore, it is not clear that the existing variance reduction methods could
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be applied at each individual node effectively, since all of those require accurate global

gradient evaluation from time to time.

2) It is then natural to integrate some procedure that is able to approximate the

global gradient. For example, one straightforward way to perform gradient tracking is

to introduce a new auxiliary variable y as the following [75, 79], which is updated by

only using local estimated gradient and neighbors’ parameters:

yri =
∑
k∈Ni

Wiky
r−1
k +

1

|Sr2 |
∑
j∈Sr2

∇f ij(xri ) (4.11)

− 1

|Sr−1
2 |

∑
j∈Sr−1

2

∇f ij(xr−1
i ),

where Sr2 and Sr−1
2 are the samples selected at the r and r − 1th iterations, respec-

tively. If the tracked yi’s were used in the (local) variance reduction procedure, there

would be at least two main issues of decreasing the variance resulted from the tracked

gradient as follows: i) at the early stage of implementing the decentralized algorithm,

the consensus/tracking error may dominate the variance of the tracked gradient, since

the message of the full gradient has not been sufficiently propagated through the net-

work. Consequently, performing variance reduction on yi’s will not be able to increase

the quality of the full gradient estimation; ii) even assuming that there was no consensus

error. Since only the stochastic gradients, i.e.,
∑

j∈Sr2
∇f ij(xri ), were used in the track-

ing, the yri ’s themselves had high variance, resulting that such (possibly low-quality) full

gradient estimates may not be compatible to variance reduction methods as developed

in the current literature (which often require full gradient evaluation from time to time).

The challenges discussed above suggest that it is non-trivial to design an algorithm

that can be implemented in a fully decentralized manner, while still achieving the su-

perior sample complexity and convergence rate achieved by state-of-the-art variance

reduction methods. In this work, we propose an algorithm which uses a novel decentral-

ized gradient estimation and tracking strategy, together with a number of other design

choices, to address the issues raised above.

To introduce the algorithm, let us first define two auxiliary local variables vi and

yi, where vi is designed to estimate the local full batch gradient 1
n

∑n
j=1∇f ij(xi) by

only using sample gradient ∇f ij(xi)′s, while yi is designed to track the global average

gradient 1
mn

∑m
i=1

∑n
j=1∇f ij(xi) by utilizing vi’s. After the local and global gradient
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estimates are obtained, the algorithm performs local update based on the direction of

yi; see the main steps below.

1) Local update using estimated gradient (x update): Each local node i first com-

bines its previous iterates xr−1
i with its local neighbors xr−1

k , k ∈ Ni (by using the kth

row of weight matrix W), then makes a prediction based on the gradient estimate yr−1
i ,

i.e.,

xri =
∑
k∈Ni

Wikx
r−1
k − αyr−1

i . (4.12)

2) Estimate local gradients (v update): Depending on the iteration r, each local

node i either directly calculates the full local gradient ∇f i(xri ) when mod(r, q) = 0

vri = ∇f i(xri ), (4.13)

or estimates its local gradient via an estimator v using |S2| random samples otherwise,

vri =
1

|S2|
∑
j∈S2

[
∇f ij(xri )−∇f ij(xr−1

i )
]

+ vr−1
i , (4.14)

where q > 0 is the interval in which local full gradient will be evaluated once.

3) Track global gradients (y update): Each local node i combines its previous local

estimate yr−1
i with its local neighbors yr−1

k , k ∈ Ni, then makes a new estimation based

on the fresh information vri , i.e.,

yri =
∑
k∈Ni

Wiky
r−1
k + vri − vr−1

i . (4.15)

In the following table, we summarize the proposed algorithm in a more compact

form. Note that we use x ∈ Rmd, v ∈ Rmd, y ∈ Rmd, ∇f(x) ∈ Rmd and ∇fj(x) ∈ Rmd

to denote the concatenation of the xi ∈ Rd, vi ∈ Rd, yi ∈ Rd, ∇f i(xi) ∈ Rd and

∇f ij(xi) ∈ Rd across all nodes.

Remark 4.2.2. This is a “double loop” algorithm, where each outer iteration (i.e.,

mod (r, q) = 0) is followed by q−1 inner iterations (i.e., mod (r, q) 6= 0). The inner loop

estimates the local gradient via stochastic sampling at every iteration r, while the outer

loop aims to reduce the estimation variance by recalculating the full batch gradient at

every q iterations. The local communication, update, and tracking steps are performed
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Input: x0, α, q, |S2|
v0 = ∇f(x0), y0 = ∇f(x0)
for r = 1, 2, . . . , T do

xr = Wxr−1 − αyr−1

if mod(r, q) = 0 then
Calculate the full gradient
vr = ∇f(xr)

else
Each node draws S2 samples from [n] with replacement
vr = 1

|S2|
∑

j∈S2

[
∇fj(xr)−∇fj(xr−1)

]
+ vr−1

end if
yr = Wyr−1 + vr − vr−1

end for
Output: xR where R ∈ [0, T ] is the uniformly distributed random
variable.

Algorithm 3: D-GET Algorithm for finite sum problem (P1)

at both inner and outer iterations.

Remark 4.2.3. In D-GET, the total communication rounds is in the same order as

the total number of iterations, since only two rounds of communications are performed

per iteration, via broadcasting the local variable xr−1
i and yr−1

i to their neighbors, and

combining local xr−1
k and yr−1

k ’s, k ∈ Ni. On the other hand, the total number of

samples used per iteration is either m|S2| (where inner iterations are executed) or mn

(where outer iterations are executed).

Remark 4.2.4. Note that our x and y updates are reminiscent of the classical gradient

tracking methods [75], and v update takes a similar form as the SARAH/SPIDER

estimator [80, 81]. However, it is non-trivial to directly combine the gradient tracking

and the variance reduction together, as we mentioned at the beginning of Section 4.2.1.

The proposed D-GET uses a number of design choices to address these challenges. For

example, two vectors v and y are used to respectively estimate the local and global

gradients, in a way that the local gradient estimates do not depend on the (potentially

inaccurate) global tracked gradients; to reduce the variance in y, we occasionally use

the full local gradient to perform tracking, etc. Nevertheless, the key challenge in the
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analysis is to properly bound the accumulated errors from the two estimates v and y.

4.2.2 Convergence Analysis

To facilitate our analysis, we first define the average iterates x̄ and ȳ among all m nodes,

x̄r :=
1

m

∑
i

xri , v̄r :=
1

m

∑
i

vri , ȳr :=
1

m

∑
i

yri . (4.16a)

We use r to denote the overall iteration number. The total number of outer iterations

until iteration r as below:

nr := br/qc+ 1, such that (nr − 1)q ≤ r ≤ nrq − 1.

Next, we outline the proof steps of the convergence rate analysis.

Step 1. We first show that the variance of our local and global gradient estimators

can be bounded via x and y iterates. The bounds to be given below is tighter than the

classical analysis of decentralized stochastic methods, which assume the variance are

bounded by some universal constant [68, 77, 91]. This is an important step to obtain

lower sample/communication complexity, since later we can show that the right-hand-

side (RHS) of our bound shrinks as the iteration progresses.

Lemma 4.2.1. (Bounded Variance) Under Assumption 1 - 2, the sequence generated

by the inner loop of Algorithm 3 satisfies the following inequalities (for all (nr − 1)q ≤
r ≤ nrq − 1):

E‖ȳr − 1

m

m∑
i=1

∇f i(xri )‖2 (4.17)

≤ 8L2

m|S2|

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2 +
4α2L2

m|S2|

r∑
t=(nr−1)q

E‖yt − 1ȳt‖2

+
4α2L2

|S2|

r∑
t=(nr−1)q

E‖ȳt‖2 + E‖ȳ(nr−1)q − 1

m

m∑
i=1

∇f i(xi(nr−1)q)‖2.
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E‖vr −∇f(xr)‖2 ≤ L2

|S2|

r∑
t=(nr−1)q

E‖xt+1 − xt‖2

+ E‖v(nr−1)q −∇f(x(nr−1)q)‖2. (4.18)

Step 2. We then study the descent on E[f(x̄r)], which is the expected value of the cost

function evaluated on the average iterates.

Lemma 4.2.2. (Descent Lemma) Suppose Assumptions 1 - 2 hold, and for any r ≥ 0

satisfying mod(r, q) = 0, the following holds for some ε1 ≥ 0:

E

[
‖ȳr − 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri )‖2
]
≤ ε1. (4.19)

Algorithm 3 ensures the following relation for all r ≥ 0,

E[f(x̄r+1)] ≤ E[f(x̄0)] (4.20)

−
(
α

2
− α2L

2
− 4α3L2q

|S2|

) r∑
t=0

E‖ȳt‖2

+

(
αL2

m
+

8αL2q

m|S2|

) r∑
t=0

E‖xt − 1x̄t‖2

+
4α3L2q

m|S2|

r∑
t=0

E‖yt − 1ȳt‖2 + α(r + 1)ε1.

A key observation from Lemma 4.2.2 is that, in the RHS of (4.20), besides the

negative term in E‖ȳk‖2, we also have several extra terms (such as E‖xk − 1x̄k‖2 and

E‖yk−1ȳk‖2) that cannot be made negative. Therefore, we need to find some potential

function that is strictly descending per iteration.

Note that ε1 in (4.19) comes from the variance of vr in estimating the full local

gradient at each outer loop nr. For Algorithm 3, where we calculate a full batch gradient

per outer loop in step (4.37), ε1 = 0. However, we still would like to include ε1 in the

above result because, later when we analyze the online version (where such a variance

will no longer be zero), we can re-use the above result.

Step 3. Next, we introduce the contraction property, which combined with E[f(x̄r)]

will be used to construct the potential function.
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Lemma 4.2.3. (Iterates Contraction) Using the Assumption 2 on W and applying

Algorithm 3, we have the following contraction property of the iterates:

E‖xr+1 − 1x̄r+1‖2 (4.21)

≤(1 + β)η2E‖xr − 1x̄r‖2 + (1 +
1

β
)α2E‖yr − 1ȳr‖2,

E‖yr+1 − 1ȳr+1‖2 (4.22)

≤(1 + β)η2E‖yr − 1ȳr‖2 + (1 +
1

β
)E‖vr+1 − vr‖2,

where β is some constant such that (1 + β)η2 < 1.

If we further assume for all r ≥ 0 satisfying mod(r, q) = 0, the following holds for

some ε2 ≥ 0:

E‖vr −∇f(xr)‖2 ≤ ε2. (4.23)

Then we have the following bound:

r∑
t=0

E‖vt+1 − vt‖2 ≤ 48L2
r∑
t=0

E‖xt − 1x̄t‖2

+ 24L2α2
r∑
t=0

E‖yt − 1ȳt‖2

+ 24L2α2
r∑
t=0

E‖1ȳt‖2 + 6(r + 1)ε2, ∀ r ≥ 0. (4.24)

Again, ε2 comes from the variance of the estimating the local gradient in each outer

loop, and we have ε2 = 0 for Algorithm 3. Note that (4.21) can also be written as

following

E‖xr+1 − 1x̄r+1‖2 − E‖xr − 1x̄r‖2

≤
(
(1 + β)η2 − 1

)
E‖xr − 1x̄r‖2

+ (1 +
1

β
)α2E‖yr − 1ȳr‖2. (4.25)

One key observation here is that we have (1 + β)η2 − 1 < 0 by properly choosing β.
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Therefore, the RHS of the above equation can be made negative by properly selecting

the step-size α.

Step 4. This step combines the descent estimates obtained in Step 2-3 to construct a

potential function, by using a conic combination of E[f(x̄r)], E‖xr − 1x̄r‖2 and E‖yr −
1ȳr‖2.

Lemma 4.2.4. (Potential Function) Constructing the following potential function

H(xr) := E[f(x̄r)] +
1

m
E‖xr − 1x̄r‖2 +

α

m
E‖yr − 1ȳr‖2.

Under Assumption 1 - 2 and Algorithm 3, if we further pick q = |S2| and define ε1 and

ε2 as in (4.19) and (4.23), we have

H(xr+1)−H(x0)

≤− C1

r∑
t=0

E‖ȳt‖2 − C2

r∑
t=0

1

m
E‖xt − 1x̄t‖2

− C3

r∑
t=0

1

m
E‖yt − 1ȳt‖2 + ε3,

where

C1 :=

(
1

2
− αL

2
− 4α2L2 − 24(1 +

1

β
)α2L2

)
α, (4.26a)

C2 :=

(
1− (1 + β)η2 − 48α(1 +

1

β
)L2 − 9αL2

)
, (4.26b)

C3 :=α− (1 + β)αη2 − (1 +
1

β
)α2

− 24(1 +
1

β
)α3L2 − 4α3L2, (4.26c)

ε3 :=α(r + 1)(ε1 + 6
1

m
(1 +

1

β
)ε2). (4.26d)

Step 5. We can then properly choose the step-size α, and make C1, C2, C3 to be positive.

Therefore, our solution quality measure E‖ 1
m

∑m
i=1∇f i(xri )‖2 + 1

mE‖xr − 1x̄r‖2 can be

expressed as the difference of the potential functions and the proof is complete.

Theorem 4.2.1. Consider problem (P1) and under Assumption 1 - 2, if we pick
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α = min{K1,K2,K3} and q = |S2| =
√
n, then we have following results by apply-

ing Algorithm 3,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤C0 ·
Ef(x0)−

¯
f

T
,

where
¯
f denotes the lower bound of f , and the constants are defined as following

K1 :=
−L

2 +
√

(L2 )2 + 48(1 + 1
β )L2 + 8L2

48(1 + 1
β )L2 + 8L2

,

K2 :=
1− (1 + β)η2

48(1 + 1
β )L2 + 9L2

,

K3 :=
−(1 + 1

β )

48(1 + 1
β )L2 + 8L2

+

√
(1 + 1

β )2 + 4(1− (1 + β)η2)(24(1 + 1
β ) + 4L2)

48(1 + 1
β )L2 + 8L2

,

C0 :=

(
8α2L2 + 2

C1
+

16L2 + 1

mC2
+

8α2L2

mC3

)
,

in which η denotes the second largest eigenvalue of the mixing matrix from (4.7), β

denotes a constant satisfying 1 − (1 + β)η2 > 0, for example, β = (1 − η2)/(2η2), and

C1, C2, C3 are defined in (4.26a)-(4.26c).

By directly applying the above result, we have the upper bound on gradient and

communication cost by properly choosing T based on ε.

Corollary 1. To achieve the following ε stationary solution of problem (P1) by Algo-

rithm 3,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2 ≤ ε,

the total number of iterations T and communication rounds required are both in the

order of O(ε−1), and the total number of samples evaluated across the network is in the
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order of O(mn+mn1/2ε−1).

Note that our metric is evaluated on individual variable xi and our algorithm also

output xi as each agent i’s final solution. If we choose to use the average x̄ = 1
m

∑
xi

as our final solution, one can show that the metric on average iterates x̄ is also small

through simple derivations.

Corollary 2. To achieve the following ε stationary solution of problem (P1) by Algo-

rithm 3,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(x̄t)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2 ≤ ε,

the total number of iterations T and communication rounds required are both in the

order of O(ε−1), and the total number of samples evaluated across the network is in the

order of O(mn+mn1/2ε−1).

If we further take expectation over the iteration t, we can have the convergence guar-

antee on our algorithm output xRi (or x̄R similarly), where R ∈ [0, T ] is the uniformly

distributed random variable.

Corollary 3. To achieve the following ε stationary solution of problem (P1) by Algo-

rithm 3,

E‖ 1

m

m∑
i=1

∇f i(xRi )‖2 +
1

m
E‖xR − 1x̄R‖2 ≤ ε,

the total number of iterations T and communication rounds required are both in the

order of O(ε−1), and the total number of samples evaluated across the network is in the

order of O(mn+mn1/2ε−1). The expectation E here is taken over the iteration R and

the randomness from the random sampling step (4.14).

4.3 The Online Setting

In this section, we discuss the online setting (4.3) for solving problem (4.1), where the

problem can either be expressed as the following
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min
x∈Rmd

f(x) =
1

m

m∑
i=1

Eξ∼Di
[
f iξ(xi)

]
, (P2)

s.t. xi = xj , ∀(i, j) ∈ E ,

where ξ represents the data drawn from the data distribution Di at the ith node, or

in form (P1) such that the number of samples n is too large to calculate the full batch

even occasionally. In either one of these scenarios, full batch evaluations at the local

nodes are no longer performed for each outer iteration.

The above setting has been well-studied for the centralized problem (with large or

even infinite number of samples). For example, in SCSG [98], a batch size O(ε−1) is used

when the sample size is large or the target accuracy O(ε) is moderate, improving the

rate to O(ε−5/3) from O(ε−2) compared to the vanilla SGD [93]. Recently, SPIDER [80]

further improves the results to O(ε−3/2), while the SpiderBoost [100] uses a constant

step-size and is amenable to solve non-smooth problem at this rate.

4.3.1 The Proposed Algorithm

To begin with, we first introduce two additional commonly used assumptions in the

online learning setting, together with our Assumption 1 and 2.

Assumption 3. At each iteration, samples are independently collected, and the stochas-

tic gradient is an unbiased estimate of the true gradient:

Eξ[∇f iξ(xi)] = ∇f i(xi),∀i. (4.27)

Assumption 4. The variance between the stochastic gradient and the true gradient is

bounded:

Eξ[‖∇f iξ(xi)−∇f i(xi)‖2] ≤ σ2,∀i. (4.28)

To present our algorithms, note that compared to problem (P1), the main difference

of having the expectation in (P2) is that the full batch gradient evaluation is no longer

feasible. Therefore, we need to slightly revise our algorithm in Section 4.2 and redesign

the local gradient estimation step (i.e., the v update). Specifically, different from (4.13)

where we sample the full batch, here we randomly draw S1 samples, the size of which is

inversely proportional to the desired accuracy ε. We have the following updates on v:
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Depending on the iteration r, each local node i either estimates its local gradient

using |S1| random samples when mod(r, q) = 0,

vri =
1

|S1|
∑
ξ∈S1

∇f iξ(xri ), (4.29)

or uses |S2| random samples otherwise,

vri =
1

|S2|
∑
ξ∈S2

[
∇f iξ(xri )−∇f iξ(xr−1

i )
]

+ vr−1
i . (4.30)

It is easy to check that the following relation on average iterates is obvious when

mod(r, q) = 0 and ȳ0 = v̄0,

ȳr = v̄r =
1

m|S1|

m∑
i=1

∑
ξ∈S1

∇f iξ(xri ). (4.31)

The rest of the updates on x and y are same as the finite sum setting; see Algorithm 4

below for details.

Input: x0, α, q, |S1|, |S2|
Draw S1 samples with replacement
v0 = 1

|S1|
∑

ξ∈S1
∇fξ(x0), y0 = v0

for r = 1, 2, . . . do
xr = Wxr−1 − αyr−1

if mod(r, q) = 0 then
Draw S1 samples with replacement
vr = 1

|S1|
∑

ξ∈S1
∇fξ(xr)

else
Draw S2 samples with replacement
vr = 1

|S2|
∑

ξ∈S2

[
∇fξ(xr)−∇fξ(xr−1)

]
+ vr−1

end if
yr = Wyr−1 + vr − vr−1

end for
Output: xR where R ∈ [0, T ] is the uniformly distributed random
variable.

Algorithm 4: D-GET Algorithm (global view) (online)
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4.3.2 Convergence Analysis

The analysis follows the same steps as described in Section 4.2.2 and it is easy to verify

that our Lemma 4.2.1 to Lemma 4.2.4 still hold true for Algorithm 4. However, for

online setting where we no longer sample a full batch, the variance ε1 and ε2 cannot be

eliminated. The lemma given below provides the bounds on ε1 and ε2.

Lemma 4.3.1. (Bounded Variance) Under Assumption 1 to 4, the sequence generated

by the outer loop of Algorithm 4 satisfies the following relations (for all r such that

mod(r, q)=0)

E‖vr −∇f(xr)‖2 ≤ mσ2

|S1|
,

E‖ȳr − 1

m

m∑
i=1

∇f i(xri )‖2 ≤
σ2

|S1|
.

By using the above lemma, we can then choose the sample size inversely proportional

to the targeted accuracy and obtain our final results.

Theorem 4.3.1. Suppose Assumption 1 - 4 hold, and pick the following parameters for

problem (P2):

α = min{K1,K2,K3}, q = |S2| =
√
|S1|,

|S1| = (4C0α(7 +
6

β
)σ2 + 8σ2)/ε.

Then we have the following result by applying Algorithm 4,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤ C0 ·
Ef(x0)−

¯
f

T
+
ε

2
.

Corollary 4. By using Algorithm 4, to achieve the ε stationary solution of problem

(4.1), i.e.,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2 ≤ ε,

the total number of iterations T and communication rounds required are both in the
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order of O(ε−1), and the total sample complexity is in the order of O(mε−3/2).

4.4 Experimental Results

In this section, we demonstrate the performance of the proposed algorithms on two

classical smooth non-convex problems: a) decentralized logistic regression with non-

convex regularizer and b) non-convex robust linear regression, the detailed objective

functions are stated as the following:

a) Decentralized logistic regression with non-convex regularizer

The problem is stated as follows

min
x∈Rnd

f(x) :=
1

m

m∑
i=1

 1

n

n∑
j=1

`(x>i vij ,y
i
j) +

d∑
k=1

αx2
i,k

1 + x2
i,k

 , (4.32)

where vij ∈ Rd,∀i, j denote the features of node i and sample j, yij ∈ {+1,−1},∀i denote

the labels of node i and sample j, and the loss function is defined as the cross-entropy

loss

`(x>i vij ,y
i
j) := −yij log

(
1

1 + e−x>i vij

)
−
(
1− yij

)
log

(
1− 1

1 + e−x>i vij

)
. (4.33)

The regularization parameter for non-convex term is set to α = 0.01 in our simulation.

b) Non-convex robust linear regression

The problem is stated as follows

min
x∈Rnd

f(x) :=
1

m

m∑
i=1

1

n

n∑
j=1

`(yij − xTi vij), (4.34)

where vij ∈ Rd denotes the features of node i and sample j, yi ∈ {+1,−1} denotes the

labels of node i and sample j, and the loss function is defined as the following

`(u) := log

(
u2

2
+ 1

)
. (4.35)

Next, we provide experimental results on the above mentioned decentralized logistic

regression and robust linear regression problems. In particular, we demonstrate the
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Figure 4.1: Logistic regression on the a9a dataset over the path graph

performance of the algorithms in terms of the loss function as stated in (4.32) and

(4.34) and the optimality gap defined in (4.4). For all algorithms considered, we set

their learning rates to be 0.01. For each experiment, we initialize all the algorithms at

the same point generated randomly from the normal distribution. Also, we choose a

fixed mini-batch size 64 and set the epoch length q to be n/64 such that all algorithms

pass over the entire dataset once in each epoch.

The simulation results in terms of both sample complexity and the communication

complexity averaged over 10 realizations on the a9a dataset (n = 32561, d = 123)

are shown in Figure 4.1 and Figure 4.2, and the performance on the w8a dataset
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Figure 4.2: Robust linear regression on the a9a datatset over the path graph

(n = 49749, d = 300) are reported in Figure 4.3 and Figure 4.4, where the x-axis de-

notes total number of required (a)(c) epochs and (b)(d) communication rounds. Then

we compare the proposed D-GET with the NEXT [76], PSGD [68] and GNSD [79] over

the path communication graph E . It can be observed that the proposed D-GET could

achieve much faster convergence in terms of sample complexity, while matches the com-

munication complexity as the deterministic algorithms, as claimed in Theorem 4.2.1 and

4.3.1.
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Figure 4.3: Logistic regression on the w8a dataset over the path graph

4.5 Proofs of Lemmas and Theorems

Before we formally conduct the analysis, we note three simple facts about Algorithm 3.

First, according to (4.12) and the definition (4.16a), the update rule of the average

iterates can be expressed as:

x̄r = x̄r−1 − αȳr−1. (4.36)

Second, if the iteration r satisfies mod(r, q) = 0 (that is, when the outer iteration

is executed), from (4.13) and (4.15) it is easy to check that the following relations hold
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Figure 4.4: Robust linear regression on the w8a dataset over the path graph

(given v0 = y0):

v̄r =
1

m

m∑
i=1

∇f i(xri ) =
1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ), (4.37)

ȳr = v̄r, if mod(r, q) = 0. (4.38)
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Third, if mod(r, q) 6= 0, we have the following relations:

v̄r =
1

m|S2|

m∑
i=1

∑
j∈S2

[
∇f ij(xri )−∇f ij(xr−1

i )
]

+ v̄r−1, (4.39)

ȳr = ȳr−1 + v̄r − v̄r−1, if mod(r, q) 6= 0. (4.40)

4.5.1 Proof of Lemma 4.2.1

Proof. Define E[·|Fr] as the expectation with respect to the random choice of sample

j, conditioned on x0, · · · ,xr, v0, · · · ,vr−1 and y0, · · · ,yr−1.

First, we have the following identity (which holds true when mod(r, q) 6= 0)

E[v̄r − v̄r−1|Fr]

(4.39)
= E

 1

m|S2|

m∑
i=1

∑
j∈S2

[
∇f ij(xri )−∇f ij(xr−1

i )
] ∣∣∣∣Fr


=

1

m

m∑
i=1

[
∇f i(xri )−∇f i(xr−1

i )
]
. (4.41)

To see why the second equality holds, note that when xr,yr−1,vr−1 are known and

fixed, the second expectation is taken over the random selection of S2. The second

equality follows because S2 is sampled from [n] uniformly with replacement, and it is

an unbiased estimate of the averaged gradient.

Second, it is straightforward to obtain the following equality,∥∥∥∥∥ȳr − 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

(4.42)

(4.40)
=

∥∥∥∥∥ȳr−1 + v̄r − v̄r−1 − 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

=

∥∥∥∥∥ȳr−1 − 1

m

m∑
i=1

∇f i(xr−1
i )

∥∥∥∥∥
2

+

∥∥∥∥∥v̄r − v̄r−1 +
1

m

m∑
i=1

∇f i(xr−1
i )− 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

+ 2

〈
ȳr−1 − 1

m

m∑
i=1

∇f i(xr−1
i ), v̄r − v̄r−1 +

1

m

m∑
i=1

∇f i(xr−1
i )− 1

m

m∑
i=1

∇f i(xri )

〉
,
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where in the second equality, we add and subtract a term 1
m

∑m
i=1∇f i(x

r−1
i ).

The cross term in (4.42) can be eliminated if we take the conditional expectation

conditioning on Fr. Since under Fr, we have xr,xr−1,vr−1,yr−1, ȳr−1 are all known

and fixed. Further applying (4.41) we have

E

[
v̄r − v̄r−1 +

1

m

m∑
i=1

∇f i(xr−1
i )− 1

m

m∑
i=1

∇f i(xri )
∣∣∣∣Fr
]

= 0. (4.43)

Further taking the full expectation on (4.42) we have

E

∥∥∥∥∥ȳr − 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

(4.2)(4.39)(4.43)
= E

∥∥∥∥∥ȳr−1 − 1

m

m∑
i=1

∇f i(xir−1)

∥∥∥∥∥
2

(4.44)

+ E

∥∥∥∥∥ 1

m|S2|

m∑
i=1

∑
j∈S2

∇f ij (xri )−
1

m|S2|

m∑
i=1

∑
j∈S2

∇f ij (xr−1
i ) +

1

mn

m∑
i=1

n∑
k=1

∇f ik(xi
r−1)− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri )

∥∥∥∥∥
2

.

Since each j ∈ S2 is sampled from [n] uniformly, we have the following conditional

expectation:

Ej

[
1

m

m∑
i=1

∇f ij(xri )−
1

m

m∑
i=1

∇f ij(xr−1
i )− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ) +
1

mn

m∑
i=1

n∑
k=1

∇f ik(xir−1)

∣∣∣∣Fr
]

= 0.

(4.45)

Then the second term of RHS of (4.44) can be further bounded through following
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(where E[·] is the full expectation)

E

∥∥∥∥∥ 1

m|S2|

m∑
i=1

∑
j∈S2

∇f ij (xri )−
1

m|S2|

m∑
i=1

∑
j∈S2

∇f ij (xr−1
i )− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ) +
1

mn

m∑
i=1

n∑
k=1

∇f ik(xi
r−1)

∥∥∥∥∥
2

=
1

|S2|2
E

∥∥∥∥∥∑
j∈S2

(
1

m

m∑
i=1

∇f ij (xri )−
1

m

m∑
i=1

∇f ij (xr−1
i )− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ) +
1

mn

m∑
i=1

n∑
k=1

∇f ik(xi
r−1)

)∥∥∥∥∥
2

(i)
=

1

|S2|2
∑
j∈S2

E

∥∥∥∥∥ 1

m

m∑
i=1

∇f ij (xri )−
1

m

m∑
i=1

∇f ij (xr−1
i )− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ) +
1

mn

m∑
i=1

n∑
k=1

∇f ik(xi
r−1)

∥∥∥∥∥
2

(ii)

≤ 1

|S2|
E

∥∥∥∥∥ 1

m

m∑
i=1

∇f ij (xri )−
1

m

m∑
i=1

∇f ij (xr−1
i )

∥∥∥∥∥
2

(iii)

≤ 1

m|S2|
E

[
m∑
i=1

‖∇f ij (xri )−∇f ij (xr−1
i )‖2

]
(iv)

≤ L2

m|S2|
E‖xr − xr−1‖2, (4.46)

In step (i) of the above relation, we use the fact that for two random variables ui, uj

which are independent conditioning on F , the following holds

E[〈u`, uj〉] = EFE[〈u`, uj〉 | F ] = EF 〈E[u` | F ],E[uj | F ]〉. (4.47)

Plugging uj as below and u` similarly,

uj =
1

m

m∑
i=1

∇f ij(xri )−
1

m

m∑
i=1

∇f ij(xr−1
i )− 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri ) +
1

mn

m∑
i=1

n∑
k=1

∇f ik(xir−1)

(4.48)

and note that (4.45) holds true, we can show that the cross terms in the step before (i)

can all be eliminated. In step (ii) of (4.46), we use the property that E‖wj−E(wj)‖2 ≤
E‖wj‖2 and E‖wj‖2 = E‖wk‖2 with wj := 1

m

∑m
i=1∇f ij(xri ) −

1
m

∑m
i=1∇f ij(x

r−1
i ); in

(iii) we use the Jensen’s inequality, and the last inequality (iv) follows Assumption 1.

Therefore, by combining (4.44) and (4.46), we have for all (nr−1)q+1 ≤ r ≤ nrq−1,

E

∥∥∥∥∥ȳr − 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

≤ E

∥∥∥∥∥ȳr−1 − 1

m

m∑
i=1

∇f i(xir−1)

∥∥∥∥∥
2

+
L2

m|S2|
E
∥∥xr − xr−1

∥∥2
.

(4.49)
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Next, note that we have the following bound on E‖xr − xr−1‖2 for all r ≥ 1:

E‖xr − xr−1‖2 (4.12)
= E‖Wxr−1 − αyr−1 − xr−1‖2

(i)

≤ 2E‖Wxr−1 − xr−1‖2 + 2α2E‖yr−1‖2

(ii)

≤ 2E‖(W − I)(xr−1 − 1x̄r−1)‖2 + 2α2E‖yr−1‖2

(iii)

≤ 8E‖xr−1 − 1x̄r−1‖2 + 4α2E‖yr−1 − 1ȳr−1‖2 + 4α2E‖1ȳr−1‖2, ∀ r ≥ 1

(4.50)

where in (i) we apply the Cauchy-Schwarz inequality, (ii) follows that W1 = 1 from

Assumption 2, and (iii) applies the fact ‖W− I‖ ≤ ‖W‖+‖I‖ ≤ 2 (due to Assumption

2 and the Cauchy-Schwarz inequality).

Telescoping the above inequality (4.49) over the nr-th inner loop, that is from (nr−
1)q + 1 to r, we obtain the following series of inequalities

E‖ȳr − 1

m

m∑
i=1

∇f i(xri )‖2

≤ L2

m|S2|

r∑
t=(nr−1)q+1

E‖xt − xt−1‖2 + E‖ȳ(nr−1)q − 1

m

m∑
i=1

∇f i(xi(nr−1)q)‖2

(4.50)

≤ 8L2

m|S2|

r∑
t=(nr−1)q+1

E‖xt−1 − 1x̄t−1‖2 +
4α2L2

m|S2|

r∑
t=(nr−1)q+1

E‖yt−1 − 1ȳt−1‖2

+
4α2L2

m|S2|

r∑
t=(nr−1)q+1

E‖1ȳt−1‖2 + E‖ȳ(nr−1)q − 1

m

m∑
i=1

∇f i(xi(nr−1)q)‖2

(i)

≤ 8L2

m|S2|

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2 +
4α2L2

m|S2|

r∑
t=(nr−1)q

E‖yt − 1ȳt‖2

+
4α2L2

|S2|

r∑
t=(nr−1)q

E‖ȳt‖2 + E‖ȳ(nr−1)q − 1

m

m∑
i=1

∇f i(xi(nr−1)q)‖2,

where in (i) we change the index in the summation, and add three non-negative terms

(one for each sum). This concludes the first part of this lemma.

Next we show that (4.18) holds true. First, by using the same argument as in (4.41),
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we can obtain the following

E[vr − vr−1|Fr]
(4.13)

= E

 1

|S2|
∑
j∈S2

[
∇fj(xr)−∇fj(xr−1)

] ∣∣∣∣Fr
 = ∇f(xr)−∇f(xr−1).

By using the above fact, and that conditioning on Fr, xr,xr−1 and vr−1, we obtain the

following:

E[〈vr−1 −∇f(xr−1),vr − vr−1 −∇f(xr) +∇f(xr−1)〉|Fr] = 0. (4.51)

Then it is straightforward to obtain following:

E‖vr −∇f(xr)‖2

= E‖vr−1 −∇f(xr−1) + vr − vr−1 −∇f(xr) +∇f(xr−1)‖2

(4.51)
= E‖vr−1 −∇f(xr−1)‖2 + E‖vr − vr−1 −∇f(xr) +∇f(xr−1)‖2

(4.13)
= E‖vr−1 −∇f(xr−1)‖2

+ E‖ 1

|S2|
∑
j∈S2

∇fj(xr)−
1

|S2|
∑
j∈S2

∇fj(xr−1)−∇f(xr) +∇f(xr−1)‖2

(i)

≤ E‖vr−1 −∇f(xr−1)‖2 +
1

|S2|
E‖∇fj(xr)−∇fj(xr−1)‖2

(ii)

≤ E‖vr−1 −∇f(xr−1)‖2 +
L2

|S2|
E‖xr − xr−1‖2,

where (i) and (ii) follow the similar arguments as in (4.46).

Telescoping the above inequality over r from (nr − 1)q + 1 to r, we obtain that

E‖vr −∇f(xr)‖2 ≤ E‖v(nr−1)q −∇f(x(nr−1)q)‖2 +
L2

|S2|

r∑
t=(nr−1)q+1

E‖xt − xt−1‖2

≤ E‖v(nr−1)q −∇f(x(nr−1)q)‖2 +
L2

|S2|

r∑
t=(nr−1)q

E‖xt+1 − xt‖2.

This completes the proof of the second part of this lemma. Q.E.D.
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4.5.2 Proof of Lemma 4.2.2

Proof. We first establish the relation of function values between the iterates. According

to the gradient Lipschitz continuity (Assumption 1), we have

f(x̄r+1) ≤ f(x̄r) + 〈∇f(x̄r), x̄r+1 − x̄r〉+
L

2
‖x̄r+1 − x̄r‖2

(i)
= f(x̄r)− α〈∇f(x̄r), ȳr〉+

α2L

2
‖ȳr‖2

(ii)
= f(x̄r)− α〈∇f(x̄r)− ȳr, ȳr〉 − α‖ȳr‖2 +

α2L

2
‖ȳr‖2

(iii)

≤ f(x̄r) +
α

2
‖∇f(x̄r)− ȳr‖2 − α

2
‖ȳr‖2 +

α2L

2
‖ȳr‖2

(iv)

≤ f(x̄r)−
(
α

2
− α2L

2

)
‖ȳr‖2 + α‖∇f(x̄r)− 1

m

m∑
i=1

∇f i(xri )‖2

+ α‖ 1

m

m∑
i=1

∇f i(xri )− ȳr‖2,

where we simply plug in the iterates (4.36) in (i), add and subtract a term ȳr in (ii),

and apply the Cauchy-Schwarz inequality in (iii) and (iv).

Then the third term can be further quantified as below,

E‖∇f(x̄r)− 1

m

m∑
i=1

∇f i(xri )‖2

(i)

≤ 1

m

m∑
i=1

E‖∇f i(x̄r)−∇f i(xri )‖2

(ii)

≤ 1

m

m∑
i=1

L2E‖xri − x̄ri ‖2

=
L2

m
E‖xr − 1x̄r‖2

where in (i) we use the Jensen’s inequality and in (ii) we use the Lipschitz Assumption

1.

Taking expectation on both sides and combining with (4.17) in Lemma 4.2.1, we
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have

E[f(x̄r+1)]

≤ E[f(x̄r)]−
(
α

2
− α2L

2

)
E‖ȳr‖2 +

αL2

m
E‖xr − 1x̄r‖2

+
8αL2

m|S2|

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2 +
4α3L2

m|S2|

r∑
t=(nr−1)q

E‖yt − 1ȳt‖2

+
4α3L2

|S2|

r∑
t=(nr−1)q

E‖ȳt‖2 + αE‖ȳ(nr−1)q − 1

m

m∑
t=1

∇f t(xt(nr−1)q)‖2

≤ E[f(x̄r)]−
(
α

2
− α2L

2

)
E‖ȳr‖2 +

αL2

m
E‖xr − 1x̄r‖2 +

8αL2

m|S2|

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2

+
4α3L2

m|S2|

r∑
t=(nr−1)q

E‖yt − 1ȳt‖2 +
4α3L2

|S2|

r∑
t=(nr−1)q

E‖ȳt‖2 + αε1,

where in the last inequality we use the definition of ε1 in (4.19).

Next, telescoping over one inner loop, that is r from (nr − 1)q to r, we have

E[f(x̄r+1)] ≤ E[f(x̄(nr−1)q)]−
(
α

2
− α2L

2

) r∑
t=(nr−1)q

E‖ȳt‖2 +
αL2

m

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2

+
8αL2

m|S2|

r∑
t=(nr−1)q

t∑
k=(nr−1)q

E‖xk − 1x̄k‖2 +
4α3L2

m|S2|

r∑
t=(nr−1)q

t∑
k=(nr−1)q

E‖yk − 1ȳk‖2

+
4α3L2

|S2|

r∑
t=(nr−1)q

t∑
k=(nr−1)q

E‖ȳk‖2 + α
r∑

t=(nr−1)q

ε1

(i)

≤ E[f(x̄(nr−1)q)]−
(
α

2
− α2L

2
− 4α3L2q

|S2|

) r∑
t=(nr−1)q

E‖ȳt‖2 +
αL2

m

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2

+
8αL2q

m|S2|

r∑
t=(nr−1)q

E‖xt − 1x̄t‖2 +
4α3L2q

m|S2|

r∑
t=(nr−1)q

E‖yt − 1ȳt‖2 + α

r∑
t=(nr−1)q

ε1,

where (i) follows the fact that, for any sequence {ai}, and an index r ≤ nrq − 1, we
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have

r∑
t=(nr−1)q

t∑
k=(nr−1)q

ak ≤
r∑

t=(nr−1)q

r∑
k=(nr−1)q

ak ≤ q
r∑

k=(nr−1)q

ak. (4.52)

Then utilizing the fact that

E[f(x̄r+1)]− E[f(x̄0)] (4.53)

=E[f(x̄r+1)]− E[f(x̄(nr−1)q)] + · · ·+ E[f(x̄2q)]− E[f(x̄q)] + E[f(x̄q)]− E[f(x̄0)],

we have

E[f(x̄r+1)] ≤ E[f(x̄0)]−
(
α

2
− α2L

2
− 4α3L2q

|S2|

) r∑
t=0

E‖ȳt‖2 +
αL2

m

r∑
t=0

E‖xt − 1x̄t‖2

+
8αL2q

m|S2|

r∑
t=0

E‖xt − 1x̄t‖2 +
4α3L2q

m|S2|

r∑
t=0

E‖yt − 1ȳt‖2 + α(r + 1)ε1,

which completes the proof. Q.E.D.

4.5.3 Proof of Lemma 4.2.3

Proof. First, using the Assumption 2 on W, we can obtain the contraction property

of the iterates disagreement, i.e.,

‖Wxr − 1x̄r‖ = ‖W(xr − 1x̄r)‖ ≤ η‖xr − 1x̄r‖. (4.54)

To see why the inequality holds true, note that 1T (xr − 1x̄r) = 0, that is, xr − 1x̄r is

orthogonal 1, which is the eigenvector corresponding to the largest eigenvalue of W.

Combining with the fact that |
¯
λmax(W)| = η < 1, we obtain the above inequality.

Then applying the definition of x iterates (4.12) and the Cauchy-Schwartz inequality,
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we have

‖xr+1 − 1x̄r+1‖2 (4.12)
= ‖Wxr − αyr − 1(x̄r − αȳr)‖2

≤(1 + β)‖Wxr − 1x̄r‖2 +

(
1 +

1

β

)
α2‖yr − 1ȳr‖2

(4.54)

≤ (1 + β)η2‖xr − 1x̄r‖2 +

(
1 +

1

β

)
α2‖yr − 1ȳr‖2,

where β is some constant parameter to be tuned later. Then, taking expectation on the

both sides of the above inequality we are able to obtain (4.21).

Similarly, we have

‖yr+1 − 1ȳr+1‖2 (4.15)
= ‖Wyr + vr+1 − vr − 1(ȳr + v̄r+1 − v̄r)‖2

≤ (1 + β)‖Wyr − 1ȳr‖2 +

(
1 +

1

β

)∥∥∥∥(I− 11T

m

)
(vr+1 − vr)

∥∥∥∥2

≤ (1 + β)η2‖yr − 1ȳr‖2 +

(
1 +

1

β

)
‖vr+1 − vr‖2,

where in the last inequality we also use ‖I− 1
m11T‖ < 1.

After taking expectation on the both sides of the above inequality and combining

the following inequalities, the proof for (4.22) is complete.

To further bound the term ‖vr+1 − vr‖2, consider that we have (nr − 1)q ≤ r ≤
nrq − 1, that is r is taken within one inner loop. We will divide the analysis into two

cases.

Case 1) For all (nr−1)q ≤ r ≤ nrq−2, we have mod(r+1, q) 6= 0 and the following

is straightforward:

E‖vr+1 − vr‖2 (4.13)
= E‖ 1

|S2|
∑
j∈S2

[
∇fj(xr+1)−∇fj(xr)

]
‖2

(i)

≤ 1

|S2|
E
∑
j∈S2

‖∇fj(xr+1)−∇fj(xr)‖2

(ii)

≤ L2E‖xr+1 − xr‖2, (4.55)

where in (i) we use the Jensen’s inequality and in (ii) we use Assumption 1.
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Case 2) If r = nrq − 1, we have mod(r + 1, q) = 0. Therefore,

E‖vr+1 − vr‖2 = E‖vr+1 −∇f(xr+1) +∇f(xr+1)−∇f(xr) +∇f(xr)− vr‖2

(i)

≤ 3E‖vr+1 −∇f(xr+1)‖2 + 3E‖∇f(xr+1)−∇f(xr)‖2 + 3E‖∇f(xr)− vr‖2

(ii)

≤ 3ε2 + 3L2E‖xr+1 − xr‖2 + 3

r∑
t=(nr−1)q

L2

|S2|
E‖xt+1 − xt‖2 + 3ε2,

(4.56)

where in (i) we use the Cauchy-Schwarz inequality; in (ii) we apply (4.18) from Lemma 4.2.1,

Assumption 1, and E‖vr −∇f(xr)‖2 ≤ ε2 for all mod(r, q) = 0.

Next, telescoping ‖vr+1 − vr‖2 over r from (nr − 1)q to r. Since r ≤ nrq − 1, we

have at most one follows (4.56) and all the rest follow (4.55). Therefore, we obtain

r∑
t=(nr−1)q

E‖vt+1 − vt‖2 ≤
r∑

t=(nr−1)q

L2E‖xt+1 − xt‖2 + 6ε2 + 2L2E‖xr+1 − xr‖2

+
r∑

t=(nr−1)q

3L2

|S2|
E‖xt+1 − xt‖2

≤
r∑

t=(nr−1)q

6L2E‖xt+1 − xt‖2 + 6ε2.

Through a similar step as (4.53), the following is obvious

r∑
t=0

E‖vt+1 − vt‖2 ≤ 6(r + 1)ε2 +
r∑
t=0

6L2E‖xt+1 − xt‖2.

By combining (4.50), i.e.,

E‖xr+1 − xr‖2 ≤ 8E‖xr − 1x̄r‖2 + 4α2E‖yr − 1ȳr‖2 + 4α2E‖1ȳr‖2, ∀ r ≥ 0,

we complete the proof. Q.E.D.
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4.5.4 Proof of Lemma 4.2.4

Proof. We first introduce an intermediate function P(xr) to facilitate the analysis,

P(xr) := E‖xr − 1x̄r‖2 + αE‖yr − 1ȳr‖2.

Obviously, we have H(xr) = E[f(x̄r)] + 1
mP(xr).

By applying (4.21) and (4.22) in Lemma 4.2.3 we have

P(xr+1)− P(xr)

≤ (1 + β)η2E‖xr − 1x̄r‖2 + (1 +
1

β
)α2E‖yr − 1ȳr‖2 + α(1 + β)η2E‖yr − 1ȳr‖2

+ α(1 +
1

β
)E‖vr+1 − vr‖2 − E‖xr − 1x̄r‖2 − αE‖yr − 1ȳr‖2

= −
(
1− (1 + β)η2

)
E‖xr − 1x̄r‖2 −

(
α− α(1 + β)η2 − (1 +

1

β
)α2

)
E‖yr − 1ȳr‖2

+ α(1 +
1

β
)E‖vr+1 − vr‖2.

Next, summing over the iteration from 0 to r we obtain

P(xr+1)− P(x0) ≤−
(
1− (1 + β)η2

) r∑
t=0

E‖xt − 1x̄t‖2 (4.57)

−
(
α− α(1 + β)η2 − (1 +

1

β
)α2

) r∑
t=0

E‖yt − 1ȳt‖2

+ α(1 +
1

β
)

r∑
t=0

E‖vt+1 − vt‖2.

If we further pick q = |S2|, then Lemma 4.2.2 becomes

E[f(x̄r+1)] ≤E[f(x̄0)]−
(
α

2
− α2L

2
− 4α3L2

) r∑
t=0

E‖ȳt‖2 (4.58)

+
9αL2

m

r∑
t=0

E‖xt − 1x̄t‖2 +
4α3L2

m

r∑
t=0

E‖yt − 1ȳt‖2 + α(r + 1)ε1.
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Similarly, equation (4.24) of Lemma 4.2.3 becomes

r∑
t=0

E‖vt+1 − vt‖2 (4.59)

≤48L2
r∑
t=0

E‖xt − 1x̄t‖2 + 24L2α2
r∑
t=0

E‖yt − 1ȳt‖2 + 24L2α2
r∑
t=0

E‖1ȳt‖2 + 6(r + 1)ε2.

Therefore, combine (4.57), (4.58) and (4.59), we have

H(xr+1)−H(x0) ≤ −
(
α

2
− α2L

2
− 4α3L2 − 24(1 +

1

β
)α3L2

) r∑
t=0

E‖ȳt‖2

−
(

1− (1 + β)η2 − 48α(1 +
1

β
)L2 − 9αL2

)
1

m

r∑
t=0

E‖xt − 1x̄t‖2

−
(
α− α(1 + β)η2 − (1 +

1

β
)α2 − 24(1 +

1

β
)α3L2 − 4α3L2

)
1

m

r∑
t=0

E‖yt − 1ȳt‖2

+ α(r + 1)(ε1 + 6
1

m
(1 +

1

β
)ε2).

This completes the proof. Q.E.D.

4.5.5 Proof of Theorem 4.2.1

Proof. To begin with, we notice that by applying the update rule from Algorithm 3,

then for all mod(r, q) = 0, the following holds true

E‖vr −∇f(xr)‖2 (4.13)
= 0, (4.60)

E‖ȳr − 1

mn

m∑
i=1

n∑
k=1

∇f ik(xri )‖2
(4.37)

= 0, (4.61)

which implies ε1 = ε2 = 0 for Lemma 4.2.2, Lemma 4.2.3, and Lemma 4.2.4.

Next, if we further pick β such that 1 − (1 + β)η2 > 0 and choose 0 < α <
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min{K1,K2,K3}, we can rewrite Lemma 4.2.4 as below

H(xr+1)−H(x0) ≤ −C1

r∑
t=0

E‖ȳt‖2 − C2

r∑
t=0

1

m
E‖xt − 1x̄t‖2 − C3

r∑
t=0

1

m
E‖yt − 1ȳt‖2,

(4.62)

where C1 > 0, C2 > 0, C3 > 0.

Therefore the upper bound of the optimality gap can be quantified as the following

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤ 2

T

T∑
t=0

E‖ȳt‖2 +
2

T

T∑
t=0

E‖ȳt − 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2,

where we use the Cauchy-Schwarz inequality.

Applying (4.17) from Lemma 4.2.1 with E‖ȳ(nr−1)q − 1
m

∑m
i=1∇f i(xi(nr−1)q)‖2 = 0,

telescoping over r from 0 to T (follows similar reasoning as (4.52) and (4.53)), and using

the choice of |S2| = q =
√
n, we have

r∑
t=0

E‖ȳt − 1

m

m∑
i=1

∇f i(xti)‖2

≤8L2

m

r∑
t=0

E‖xt − 1x̄t‖2 +
4α2L2

m

r∑
t=0

E‖yt − 1ȳt‖2 + 4α2L2
r∑
t=0

E‖ȳt‖2.

Combining the above two inequalities we can obtain

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤
(

16L2

mT
+

1

mT

) T∑
t=0

E‖xt − 1x̄t‖2 +
8α2L2

mT

T∑
t=0

E‖yt − 1ȳt‖2 +

(
8α2L2

T
+

2

T

) T∑
t=0

‖ȳt‖2.
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Further combining with (4.62), we have

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤C0 ·
H(x0)−H(xT+1)

T
≤ C0 ·

E[f(x0)]−
¯
f

T
, (4.63)

where

C0 :=

(
8α2L2 + 2

C1
+

16L2 + 1

mC2
+

8α2L2

mC3

)
,

and the last inequality follows from

H(x0) := E[f(x̄0)] + E‖x0 − 1x̄0‖2 + αE‖y0 − 1ȳ0‖2 = E[f(x̄0)],

H(xr) := E[f(x̄r)] + E‖xr − 1x̄r‖2 + αE‖yr − 1ȳr‖2 ≥ E[f(x̄r)] ≥
¯
f.

This completes the proof. Q.E.D.

4.5.6 Proof of Corollary 1

Proof. If we pick T = bC0 ·
Ef(x0)−

¯
f

ε c+ 1 ≥ C0 ·
Ef(x0)−

¯
f

ε , then we can obtain following

from Theorem 4.2.1

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤ C0 ·
Ef(x0)−

¯
f

T
≤ ε.

Therefore, the total samples needed will be the sum of outer loop complexity (dTq e
times full (n) gradient evaluations per node) plus inner loop complexity (T times |S2|
gradient evaluations per node), by letting q = |S2| =

√
n, we conclude that the total
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samples needed are

m×
(
dT
q
e · n+ T · |S2|

)
≤ m×

((
T√
n

+ 1

)
n+ T

√
n

)
≤ m

(
n+ 2C0 ·

Ef(x0)−
¯
f

ε

√
n+ 2

√
n

)

= O
(
m×

(
n+

√
n

ε

))
.

This completes the proof. Q.E.D.

4.5.7 Proof of Corollary 2

Proof. In previous proof of Theorem 4.2.1 and Corollary 1 we already show the con-

vergence respect to both gradient size and consensus error

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2.

To show our results also holds true when the gradient metric is evaluated at the “aver-

age” of the output x̄ = 1
m

∑m
i=1 xi, we only need following relations (by using Jensen’s

inequality).

‖ 1

m

m∑
i=1

∇f i(x̄)‖2 =‖ 1

m

m∑
i=1

∇f i(x̄)− 1

m

m∑
i=1

∇f i(xi) +
1

m

m∑
i=1

∇f i(xi)‖2 (4.64)

(i)

≤2‖ 1

m

m∑
i=1

∇f i(x̄)− 1

m

m∑
i=1

∇f i(xi)‖2 + 2‖ 1

m

m∑
i=1

∇f i(xi)‖2 (4.65)

(ii)

≤ 2

m

m∑
i=1

‖∇f i(x̄)−∇f i(xi)‖2 + 2‖ 1

m

m∑
i=1

∇f i(xi)‖2 (4.66)

(iii)

≤ 2L2

m

m∑
i=1

‖xi − x̄‖2 + 2‖ 1

m

m∑
i=1

∇f i(xi)‖2 (4.67)
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where in (i) we use the Cauchy-Swahitz inequality, in (ii) we use the Jensen’s inequality

to move the average outside the Euclidean norm, and the last inequality uses the As-

sumption 1. The proof is complete by further combining (4.63) in Theorem 4.2.1 and

similar reasoning in Corollary 1. Q.E.D.

4.5.8 Proof of Lemma 4.3.1

Proof.

First recall the definition of E[·|Fr] in Lemma 4.2.1, which is the expectation with

respect to the random choice of sample ξ, conditioning on x0, · · · ,xr, v0, · · · ,vr−1 and

y0, · · · ,yr−1.

Let us define a random variable uξ as below and u` similarly,

uξ =
1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri ). (4.68)

Note that uξ and u` are independent random variables conditioning on F . Further, we

have the following from Assumption 3

Eξ

[
1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )
∣∣∣∣Fr
]

= 0. (4.69)

Therefore we have

E[〈uξ, u`〉] = EFE[〈uξ, u`〉 | F ] = EF 〈E[uξ | F ],E[u` | F ]〉 = 0. (4.70)

Following the update rule from Algorithm 4, we have the following relations for all
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mod(r, q) = 0

E

∥∥∥∥∥ȳr − 1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

(4.31)
= E

∥∥∥∥∥∥ 1

m|S1|

m∑
i=1

∑
ξ∈S1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥∥
2

(i)
=

1

|S1|2
E

∥∥∥∥∥∥
∑
ξ∈S1

(
1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )

)∥∥∥∥∥∥
2

(ii)
=

1

|S1|2
E
∑
ξ∈S1

∥∥∥∥∥ 1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

(iii)
=

1

|S1|
E

∥∥∥∥∥ 1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )

∥∥∥∥∥
2

(iv)

≤ 1

m|S1|

m∑
i=1

E
∥∥∇f iξ(xri )−∇f i(xri )∥∥2

≤ σ2

|S1|
,

where in (i) we take out the constant |S1|; in (ii) we eliminate the cross terms via (4.70);

in (iii) we use the fact that the following term

E‖ 1

m

m∑
i=1

∇f iξ(xri )−
1

m

m∑
i=1

∇f i(xri )‖2 (4.71)

are equal across different samples ξ; in (iv) we use the Jensen’s inequality, and the last

inequality follows the Assumption 4.
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Similarly, we have

E‖vr −∇f(xr)‖2 (4.30)
= E

∥∥∥∥∥∥ 1

|S1|
∑
ξ∈S1

∇fξ(xr)−∇f(xr)

∥∥∥∥∥∥
2

=
1

|S1|
E‖∇fξ(xr)−∇f(xr)‖2

≤ 1

|S1|

m∑
i=1

E‖∇f iξ(xr)−∇f i(xr)‖2

≤mσ
2

|S1|
.

This completes the proof. Q.E.D.

4.5.9 Proof of Theorem 4.3.1

Proof.

Note that it is easy to check that Lemma 4.2.1, Lemma 4.2.2, Lemma 4.2.3 and

Lemma 4.2.4 still hold true. And the quantity ε1 and ε2 can be determined by Lemma 4.3.1,

i.e., ε1 = σ2

|S1| and ε2 = mσ2

|S1| . Therefore, Lemma 4.2.4 can be rewritten as below if we

follow Algorithm 4,

H(xr+1)−H(x0) ≤ −C1

r∑
t=0

E‖ȳt‖2 − C2

r∑
t=0

1

m
E‖xt − 1x̄t‖2 − C3

r∑
t=0

1

m
E‖yt − 1ȳt‖2 + ε3,

(4.72)

with ε3 = α(r + 1)(1 + 6(1 + 1
β )) σ2

|S1| .

Therefore the upper bound of the optimality gap can be derived in a similar way as
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Theorem 4.2.1,

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤ 2

T

T∑
t=0

E‖ȳt‖2 +
2

T

T∑
t=0

E‖ȳt − 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤
(

16L2

mT
+

1

mT

) T∑
t=0

E‖xt − 1x̄t‖2 +
8α2L2

mT

T∑
t=0

E‖yt − 1ȳt‖2

+

(
8α2L2

T
+

2

T

) T∑
t=0

‖ȳt‖2 +
2

T

T∑
t=0

σ2

|S1|
.

Further combining (4.72) we have

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2

≤C0

(
H(x0)−H(xT+1) + ε3

T

)
+

2T + 2

T

σ2

|S1|

≤C0 ·
E[f(x0)]−

¯
f

T
+ C0 ·

α(T + 1)(7 + 6
β )σ2

T |S1|
+

2T + 2

T

σ2

|S1|
.

After picking |S1| =
4C0α(7+ 6

β
)σ2+8σ2

ε , we complete the proof. Q.E.D.

4.5.10 Proof of Corollary 4.3.1

Proof.

If we pick the following constants for Algorithm 4:

|S1| =
4C0α(7 + 6

β )σ2 + 8σ2

ε
, q = |S2| =

√
|S1|,

T = 2bC0 ·
Ef(x0)−

¯
f

ε
c+ 2 ≥ 2C0 ·

Ef(x0)−
¯
f

ε
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then from Theorem 4.3.1 we can obtain

1

T

T∑
t=0

E‖ 1

m

m∑
i=1

∇f i(xti)‖2 +
1

T

T∑
t=0

1

m
E‖xt − 1x̄t‖2 ≤ C0 ·

Ef(x0)−
¯
f

T︸ ︷︷ ︸
≤ ε

2

+
ε

2
≤ ε.

Therefore we have that the per-node sample evaluations are given as

dT
q
e · |S1|+ T · |S2| ≤

(
T√
|S1|

+ 1

)
|S1|+ T

√
|S1| = O(

1

ε
+

1

ε3/2
).

This completes the proof. Q.E.D.



Chapter 5

Applications in Wireless

Resources Management

There has been a growing interest in developing data-driven, and in particular deep neu-

ral network (DNN) based methods for modern communication tasks. For a few popular

tasks such as power control, beamforming, and MIMO detection, these methods achieve

state-of-the-art performance while requiring less computational efforts, less resources

for acquiring channel state information (CSI), etc. However, it is often challenging for

these approaches to learn in a dynamic environment.

This work develops a new approach that enables data-driven methods to contin-

uously learn and optimize resource allocation strategies in a dynamic environment.

Specifically, we consider an “episodically dynamic” setting where the environment statis-

tics change in “episodes”, and in each episode the environment is stationary. We pro-

pose to build the notion of continual learning (CL) into wireless system design, so that

the learning model can incrementally adapt to the new episodes, without forgetting

knowledge learned from the previous episodes. Our design is based on a novel bilevel

optimization formulation which ensures certain “fairness” across different data samples.

We demonstrate the effectiveness of the CL approach by integrating it with two pop-

ular DNN based models for power control and beamforming, respectively, and testing

using both synthetic and ray-tracing based data sets. These numerical results show

that the proposed CL approach is not only able to adapt to the new scenarios quickly

131
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and seamlessly, but importantly, it also maintains high performance over the previously

encountered scenarios as well.

5.1 Introduction

Deep learning (DL) has been successful in many applications such as computer vision

[113], natural language processing [114], and recommender system [115]; see [116] for

an overview. Recent works have also demonstrated that deep learning can be applied

in communication systems, either by replacing an individual function module in the

system (such as signal detection [6, 117], channel decoding [118], channel estimation

[5, 119]), or by jointly representing the entire system [120, 121] for achieving state-of-

the-art performance. Specifically, deep learning is a data-driven method in which a large

amount of training data is used to train a deep neural network (DNN) for a specific task

(such as power control). Once trained, such a DNN model will replace conventional

algorithms to process data in real time. Existing works have shown that when the

real-time data follows similar distribution as the training data, then such an approach

can generate high-quality solutions for non-trivial wireless tasks [4–6,117–119,122–127],

while significantly reducing real-time computation, and/or requiring only a subset of

channel state information (CSI).

Dynamic environment. However, it is often challenging to use these DNN based

algorithms when the environment (such as CSI and user locations) keeps changing.

There are three main reasons.

1) It is well-known that naive DL based methods typically suffer from severe perfor-

mance deterioration when the environment changes, that is, when the real-time data

follows a different distribution than those used in the training stage [125].

2) One can adopt the transfer learning and/or online learning paradigm, by updating

the DNN model according to data generated from the new environment [125]. How-

ever, these approaches usually degrade or even overwrite the previously learned mod-

els [128,129]. Therefore they are sensitive to outlier because once adapted to a transient

(outlier) environment/task, its performance on the existing environment/task can de-

grade significantly [130]. Such kinds of behavior are particularly undesirable for wireless

resource allocation tasks, because the unstable model performance would cause large
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outage probability for communication users.

3) If the entire DNN is periodically retrained using all the data seen so far [130], then

the training can be time and memory consuming since the number of data needed keeps

growing.

Due to these challenges, it is unclear how state-of-the-art DNN based communication

algorithms could properly adapt to new environments quickly without experiencing sig-

nificant performance loss over previously encountered environments. Ideally, one would

like to design data-driven models that can adapt to the new environment efficiently

(i.e., by using as little resource as possible), seamlessly (i.e., without knowing when the

environment has been changed), quickly (i.e., adapt well using only a small amount of

data), and continually (i.e., without forgetting the previously learned models).

Continual Learning. In the machine learning community, continual learning (CL)

has recently been proposed to address the “catastrophic forgetting phenomenon”. That

is, the tendency of abruptly losing the previously learned models when the current

environment information is incorporated [129]. Specifically, consider the setting where

different “tasks” (e.g., different CSI distributions) are revealed sequentially. Then CL

aims to retain the knowledge learned from the early tasks through one of the following

mechanisms: 1) regularize the most important parameters [130,131]; 2) design dynamic

neural network architectures and associate neurons with tasks [132–134]; or 3) introduce

a small set of memory for later training rehearsal [135–137]. However, most of the above

mentioned methods require the knowledge of the task boundaries, that is, the time stamp

where an old task terminates and a new task begins. Unfortunately, such a setting does

not suit wireless communication problems well, since the wireless environment usually

changes continuously, without a precise changing point. Only limited recent CL works

have focused on boundary-free environments [138–140], but they all focus on proposing

general-purpose tools without considering any problem-specific structures. Therefore,

it is unclear whether they will be effective in wireless communication tasks.

Contributions. The main contribution of this paper is that we introduce the no-

tion of CL to data-driven wireless system design, and develop a tailored CL formulation

together with a training algorithm. Specifically, we consider an “episodically dynamic”

setting where the environment changes in episodes, and within each episode the distribu-

tion of the CSIs stays relatively stationary. Our goal is to design a learning model which
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D1 D2

M

Dt−1 Dt DT

Memory Set

DNN Model

Distribution A Distribution B Distribution C

Episode A Episode B Episode C

Figure 5.1: Proposed CL framework for the episodically dynamic environment. The data is feeding in a
sequential manner (thus the system can only access Dt at time t) with changing episodes and distributions,
and the model has a limited memory set M (which cannot store all data D1 to Dt). To maintain the good
performance over all experienced data from D1 to Dt, the proposed framework optimizes the data-driven model
at each time t, based on the mixture of the current data Dt and the memory setM. The memory setM is then
updated to incorporate the new data Dt.

can seamlessly and efficiently adapt to the changing environment, while maintaining the

previously learned knowledge, and without knowing the episode boundaries.

Towards this end, we propose a CL framework for wireless systems, which incremen-

tally adapts the DNN models by using data from the new episode as well as a limited

but carefully selected subset of data from the previous episodes; see Fig. 5.1. Compared

with the existing heuristic boundary-free CL algorithms [138–140], our approach is based

upon a clearly defined optimization formulation that is tailored for the wireless resource

allocation problem. In particular, our CL method is based on a bilevel optimization

which selects a small set of important data samples into the working memory according

to certain data-sample fairness criterion. We further relax the lower level of constrained

non-convex bilevel problem using a smooth approximation, and propose and analyze

practical (stochastic) algorithms for model training. Moreover, we demonstrate the ef-

fectiveness of our proposed framework by applying it to two popular DNN based models

(one for power control and the other for beamforming). We test our CL approach using

both synthetic and ray-tracing based data. To advocate reproducible research, the code

of our implementation is available online at https://github.com/Haoran-S/TSP_CL.
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5.2 Literature Review

5.2.1 Deep learning for Wireless Communication

Recently, DL has been used to generate high-quality solutions for non-trivial wireless

communication tasks [4–6,117–119,122–127]. These approaches can be roughly divided

into following two categories:

End-to-end Learning

For the classic resource allocation problems such as power control, the work [4] shows

that DNNs can be exploited to learn the optimization algorithms such as WMMSE [141],

in an end-to-end fashion. Subsequent works such as [122] and [123] show that unsu-

pervised learning can be used to further improve the model performance. Different

network structures, such as convolutional neural networks [122] and graph neural net-

works [124,142], and different modeling techniques, such as reinforcement learning [143],

are also studied in the literature. Nevertheless, all the above mentioned methods belong

to the category of end-to-end learning, where a black-box model (typically deep neural

network) is applied to learn either the structure of some existing algorithms, or the

optimal solution of a communication task.

Deep Unfolding

Alternatively, deep unfolding based methods [144] unfold existing optimization algo-

rithms iteration by iteration and approximate the per-iteration behavior by one layer of

the neural network. In the machine learning community, well-known works in this di-

rection include the unfolding of the iterative soft-thresholding algorithm (ISTA) [145],

unfolding of the non-negative matrix factorization methods [146], and the unfolding

of the alternating direction method of multipliers (ADMM) [147]. Recently, the idea

of unfolding has been used in communication task such as MIMO detection [148–150],

channel coding [151], resource allocation [152], channel estimation [153], and beamform-

ing problems [154]; see a recent survey paper [144].
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5.2.2 Continual Learning

CL is originally proposed to improve reinforcement learning tasks [155] to help allevi-

ate the catastrophic forgetting phenomenon, that is, the tendency of abruptly losing

the knowledge about the previously learned task(s) when the current task information

is incorporated [129]. It has later been broadly used to improve other machine learn-

ing models, and specifically the DNN models [128, 130]. Generally speaking, the CL

paradigm can be classified into the following categories.

Regularization Based Methods

Based on the Bayesian theory and inspired by synaptic consolidation in Neuroscience,

the regularization based methods penalize the most important parameters to retain

the performance on old tasks [130]. Some most popular regularization approaches

include Elastic Weight Consolidation (EWC) [130] and Learning without Forgetting

(LwF) [131]. However, regularization or penalty based methods naturally introduce

tradeoff between the performance of old and new tasks. If a large penalty is applied to

prevent the model parameters from moving out of the optimal region of old tasks, the

model may be hard to adapt to new tasks; if a small penalty is applied, it may not be

sufficient to force the parameters to stay in the optimal region to retain the performance

on old tasks.

Architectures Based Methods

By associating neurons with tasks (either explicitly or not), many different types of dy-

namic neural network architectures are proposed to address the catastrophic forgetting

phenomenon [132]. However, due to the nature of the parameter isolation, architecture

based methods usually require the knowledge of the task boundaries, and thus they

are not suitable for wireless settings, where the environment change is often difficult to

track.

Memory Based Methods

Tracing back to the 1990s, the memory (aka. rehearsal) based methods play an impor-

tant role in areas such as reinforcement learning [156]. As its name suggests, memory
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based methods store a small set of samples in memory for later training rehearsal, ei-

ther through selecting and storing the most represented samples [135] or use generative

models to generate representative samples [136]. However, all above methods require

the knowledge of the task boundaries, which are not suitable for wireless settings. Only

recently, the authors of [140] proposed boundary-free methods by selecting the samples

through random reservoir sampling, which fills the memory set with data that is sam-

pled from the streaming episodes uniformly at random. More complex mechanisms are

also introduced recently to further increase the sampling diversity, where the diversity

is measured by either the samples’ stochastic gradient directions [139] or the samples’

Euclidean distances [138].

5.2.3 Related methods

In this section, we discuss a few methods which also deal with streaming data, and

compare them with the CL approach.

Online Learning

Online learning deals with the learning problems where the training data comes se-

quentially, and data distribution over time may or may not be consistent [157]. The

ultimate goal of online learning is to minimize the cumulative loss over time, utilizing

the previously learned knowledge. In particular, when data sampling is independently

and identically distributed, online gradient descent is essentially the stochastic gradient

descent method, and all classic complexity results can be applied. On the other hand,

when data sampling is non-stationary and drifts over time, online learning methods are

more likely to adapt to the most recent data, at the cost of degrading the performance

on past data [158].

Transfer Learning (TL)

Different from online learning, TL is designed to apply the knowledge gained from

one task to another task, based on the assumption that related tasks will benefit each

other [159]. By transferring the learned knowledge from old tasks to new tasks, TL

can quickly adapt to new tasks with fewer samples and less labeling effort. A typical
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application is the model fine-tuning on a (potentially small) user-specific problem (e.g.,

MNIST classification) based on some offline pre-trained model using a comprehensive

dataset (e.g. ImageNet dataset). By applying the gained knowledge from the original

dataset, the model can adapt to the new dataset quickly with a few samples. Similar

ideas have been applied in wireless settings recently [125,160,161] to deal with scenarios

that network parameters changes. However, since the model is purely fine-tuned on

the new dataset, after the knowledge transfer, the knowledge from the original model

may be altered or overwritten, resulting in significant performance deterioration on the

original problem [130].

5.3 The Episodic Wireless Environment

The focus of this paper is to design learning algorithms in a dynamic wireless environ-

ment, so that the data-driven models we build can seamlessly, efficiently, and continually

adapt to new environments. This section provides details about our considered dynamic

environment, and discuss potential challenges.

Specifically, we consider an “episodically dynamic” setting where the environment

changes relatively slowly in “episodes”, and during each episode the learners observe

multiple batches of samples generated from the same stationary distribution; see Fig.

5.1. We use Dt to denote a small batch of data collected at time t, and assume that

each episode k contains a set of Tk batches, and use Ek = {Dt}t∈Tk to denote the data

collected in episode k. To have a better understanding about the setting, let us consider

the following example. Again, we do not have knowledge about the episode boundaries.

5.3.1 A Motivating Example

Suppose a collection of base stations (BSs) run certain DNN based resource allocation

algorithm to provide coverage for a given area (e.g., a shopping mall). The users’

activities can contain two types of patterns: 1) regular but gradually changing patterns

– such as daily commute for the employees and customers, and such a kind of pattern

could slowly change from week to week (e.g., the store that people like to visit in the

summer is different in winter); 2) irregular but important patterns – such as large events

(e.g., promotion during the anniversary season), during which the distribution of user
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population (and thus the CSI distribution) will be significantly different compared with

their usual distributions, and more careful resource allocation has to be performed. The

episode, in this case, can be defined as “a usual period of time”, or “an unusual period

of time that includes a particular event”.

For illustration purposes, suppose that each BS solves a weighted sum-rate (WSR)

maximization problem for single-input single-output (SISO) interference channel, with

a maximum of K transmitter and receiver pairs. Let hkk ∈ C denote the direct channel

between transmitter k and receiver k, and hkj ∈ C denote the interference channel from

transmitter j to receiver k. The power control problem aims to maximize the weighted

system throughput via allocating each transmitter’s transmit power pk. For a given

snapshot of the network, the problem can be formulated as the following:

max
p1,...,pK

R(p; h) :=

K∑
k=1

αk log

(
1 +

|hkk|2pk∑
j 6=k |hkj |2pj + σ2

k

)
s.t. 0 ≤ pk ≤ Pmax, ∀ k = 1, 2, . . . ,K, (5.1)

where Pmax denotes the power budget of each transmitter; {αk > 0} are the weights.

Problem (5.1) is known to be NP-hard [162] but can be effectively approximated by many

optimization algorithms [141]. The data-driven methods proposed in recent works such

as [4, 122–125] train DNNs using some pre-generated dataset. Here Dt can include a

mini-batch of channels {hkj}, and each episode can include a period of time where the

channel distribution is stationary.

For illustration purposes, let us consider the following scenario. At the beginning of

a period, a DNN model for solving problem (5.1) (pretrained using historical data, D0)

is preloaded on the BSs to capture the regular patterns in the shopping mall area. The

question is, what should the BSs do when the unexpected patterns appear? Say every

morning a morning model is loaded to allocate resources up until noon. During this

time the BSs can collect batches of data Dt, t = 1, 2, · · · . Then shall the BS update its

morning model immediately to capture the dynamics of the user/demand distribution?

If so, shall we use the entire data set, including the historical data and the real-time

data, to re-train the neural network (which can be time-consuming), or shall we use TL

to adapt to the new environment on the fly (which may result in overwriting the basic
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morning model)?

To address the above questions, we propose to adopt the notion of CL, so that our

model can incorporate the new data Dt on the fly, while keeping the knowledge acquired

from D0:t−1. In the next section, we will detail our proposed CL formulation to achieve

such a goal.

5.4 CL for Learning Wireless Resource

5.4.1 Memory-based CL

Our proposed method is based upon the notion of the memory-based CL proposed

in [135, 138, 139], which allows the learner to collect a small subset of historical data

for future re-training. The idea is, once Dt is received, we fill in memory Mt (with

fixed size) with the most representative samples from all experienced episodes D0:t−1,

and then train the neural network at each time t with the dataMt ∪Dt. Several major

features of this approach are listed below:

• The learner does not need to know where a new episode starts (that is, the boundary-

free setting) – it can keep updating Mt and keep training as data comes in.

• If one can control the size of the memory well, then the training complexity will be

made much smaller than performing a complete training over the entire data set D0:t,

and will be comparable with TL approach which uses Dt.
• If the size of a given data batch Dt is very small, the learner is unlikely to overfit

because the memory size is kept as fixed during the entire training process. This makes

the algorithm more robust than the TL technique.

As mentioned before, existing memory-based CL methods include the random reser-

voir sampling algorithm [140], and sample diversity based methods [138,139,163]. How-

ever, these works have a number of drawbacks. First, for the reservoir sampling, if

certain episode only contains a very small number of samples, then samples from this

episode will be poorly represented in Mt because the probability of having samples

from an episode in the memory is only dependent on the size of the episode. Second,

for the diversity based methods, the approach is again heuristic, since it is not clear

how the “diversity” measured by large gradient or Euclidean distances can be directly
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linked to the quality of representation of the dataset. Third, and perhaps most impor-

tantly, the ways that the memory sets are selected are independent of the actual learning

tasks at hand. The last property makes these algorithms broadly applicable to differ-

ent kinds of learning tasks, but also prevents them from exploring application-specific

structures. It is not clear whether, and how well these approaches will work for the

wireless communication applications of interest in this paper.

5.4.2 The Proposed Approach

In this work, we propose a new memory-based CL formulation that is tailored to the

wireless resource allocation problem. Our approach differs from the existing memory-

based CL approaches discussed in the previous subsection, because we intend to directly

use features of the learning problem at hand to build our memory selection mechanism.

To explain the proposed approach, let us begin with presenting two common ways

of formulating the training problem for learning optimal wireless resource allocation.

First, one can adopt an unsupervised learning approach, which directly optimizes some

native measures of wireless system performance, such as the throughput, Quality of

Service, or the user fairness [164, 165], and this approach does not need any labeled

data. Specifically, a popular DNN training problem is given by

min
Θ

∑
i∈D0:T

`(Θ; h(i)), (5.2)

where h(i) is the ith CSI sample; Θ is the DNN weight to be optimized; `(·) is the

negative of the per-sample sum-rate function, that is: `(Θ; h(i)) = −R(π(Θ; h(i)); h(i)),

where R is defined in (5.1) and π(Θ; h(i)) is the output of DNN which predicts the

power allocation. The advantage of this class of unsupervised learning approach is that

the system performance measure is directly built into the learning model, while the

downside is that this approach can get stuck at low-quality local solutions due to the

non-convex nature of DNN [166].

Secondly, it is also possible to use a supervised learning approach. Towards this

end, we can generate some labeled data by executing a state-of-the-art optimization

algorithm over all the training data samples [4]. Specifically, for each CSI vector h(i),

we can use algorithms such as the WMMSE [141] to solve problem (5.1) and obtain a
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high-quality solution p(i). Putting the h(i) and p(i) together yields the ith labeled data

sample. Specifically, a popular supervised DNN training problem is given by

min
Θ

∑
i∈D0:T

`(Θ; h(i),p(i)), (5.3)

where `(·) can be the Mean Squared Error (MSE) loss, that is: `(Θ; x(i),p(i)) = ‖p(i)−
π(Θ,x(i))‖2. Such a supervised learning approach typically finds high-quality models

[4,166], but often incurs significant computation cost since generating high-quality labels

can be very time-consuming. Additionally, the quality of the learning model is usually

limited by that of label-generating optimization algorithms.

Our idea is to leverage the advantages of both training approaches to construct a

memory-based CL formulation. Specifically, we propose to select the most representative

data samples h(i)’s into the working memory, by using a sample fairness criteria. That

is, those data samples that have relatively low system performance are more likely to

be selected into the memory. Meanwhile, the DNN is trained by performing either

supervised or unsupervised learning over the selected data samples. We expect that as

long as the learning model can perform well on these challenging and under-performing

data samples, then it should work well for the rest of the samples in a given episode.

To proceed, let us first assume that the entire dataset D0:T is available. Let us use

`(·) to denote a function measuring the per-sample training loss, u(·) a loss function

measuring system performance for one data sample, Θ the weights to be trained, x(i)

the ith data sample and p(i) the ith label. Let π(Θ; x(i)) denote the output of the

neural network. Let us consider the following bilevel optimization problem

min
Θ

∑
i∈D0:T

λ
(i)
∗ (Θ) · `(Θ; x(i),p(i)) (5.4a)

s.t. λ∗(Θ) = arg max
λ∈B

∑
i∈D0:T

λ(i) · u(Θ; x(i),p(i)), (5.4b)

where B denotes the simplex constraint

B :=

λ

∣∣∣∣ ∑
i∈D0:T

λ(i) = 1, λ(i) ≥ 0, ∀ i ∈ D0:T

 .
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In the above formulation, the upper level problem (5.4a) optimizes the weighted

training performance across all data samples, and the lower level problem (5.4b) assigns

larger weights to those data samples that have higher loss u(·) (or equivalently, lower

system level performance). The lower level problem has a linear objective, so the optimal

λ∗ is always on the vertex of the simplex, and the non-zero elements in λ∗ all have the

same weight. Such a solution naturally selects a subset of data for the upper level

training problem to optimize.

Remark 5.4.1. (Choices of Loss Functions) One feature of the above formulation

is that we decompose the training problem and the data selection problem, so that we

can have the flexibility of choosing different loss functions according to the applications

at hand. Below we discuss a few alternatives.

First, the upper layer problem trains the DNN parameters Θ, so we can adopt any

existing training formulation we discussed above. For example, if supervised learning is

used, then one common training loss is the MSE loss:

`MSE(Θ; x(i),p(i)) = ‖p(i) − π(Θ,x(i))‖2. (5.5)

Second, the lower level loss function u(·) can be chosen as some adaptive weighted

negative sum-rate for the ith data sample, which is directly related to system perfor-

mance

u(Θ,x(i),p(i)) =− αi(Θ; x(i),p(i)) ·R(π(Θ,x(i)); x(i)). (5.6)

If we choose αi(Θ; x(i),p(i)) ≡ 1, ∀ i , then the channel realization that achieves the

worst throughput by the current DNN model will always be selected, and the subsequent

training problem will try to improve such “worst case” performance. Alternatively, when

the achievable rates at samples across different episodes vary significantly (e.g., some

episodes can have strong interference), then it is likely that the previous scheme will

select data only from a few episodes. Alternatively, we can choose αi(Θ; x(i),p(i)) =

1/R̄(x(i)), where R̄(x(i)) is the rate achievable by running some existing optimization

algorithm on the sample x(i). This way, the data samples that achieve the worst sum-rate

“relative” to the state-of-the-art optimization algorithm is more likely to be selected.

Empirically the ratio R(π(Θ,x(i)); x(i))/R̄(x(i)) should be quite uniform across data
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samples [4], so if there is one sample whose ratio is significantly lower than the rest,

then we consider it as “underperforming” and select it into the memory.

Remark 5.4.2. (Special Case) As a special case of problem (5.4), one can choose

`(·) to be the same as u(·). Then the bilevel problem reduces to the following minimax

problem, which optimizes the worst case performance (measured by the loss `(·))) across

all samples:

min
Θ

max
λ∈B

∑
i∈D0:T

λ(i) · `(Θ; x(i),p(i)). (5.7)

When `(·) is taken as the negative per-sample sum-rate defined in (5.2), problem (5.7) is

related to the classical minimax resource allocation [164,167,168], with the key difference

that it does not achieve fairness across users, but rather to achieve fairness across data

samples.

Compared to the original bilevel formulation (5.4), the minimax formulation (5.7)

is more restrictive but its properties have been relatively better understood. Many

recent works have been developed for solving this problem, such as the two-time-scale

Gradient Descent Ascent (GDA) algorithm [169]; see [170] for a recent survey about

related algorithms.

At this point, neither the bilevel problem (5.4) nor the minimax formulation (5.7)

can be used to design CL strategy yet, because solving these problems requires the full

data D0:T . To make these formulations useful for the considered CL setting, we make

the following approximation. Suppose that at t-th time instance, we have the memory

Mt and the new data set Dt available. Then, we propose to solve the following problem

to select data points at time t:

min
Θ

∑
i∈Mt∪Dt

λ
(i)
t (Θ) · `(Θ; x(i),p(i)) (5.8)

s.t. λt(Θ) = arg max
λ∈Bt

∑
i∈Mt∪Dt

λ(i) · u(Θ; x(i),p(i)),

where Bt denotes the simplex constraint

Bt :=

{
λ

∣∣∣∣ ∑
i∈Mt∪Dt

λ(i) = 1, λ(i) ≥ 0, ∀ i ∈Mt ∪ Dt

}
.
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More specifically, at a given time t, we will collect M data points j ∈ Mt ∪ Dt whose

corresponding λ(j)’s are the largest. These data points will form the next memoryMt+1,

and problem (5.8) will be solved again. The entire procedure will be shown shortly in

Algorithm 5.

5.4.3 Reformulation

In the previous section, we have proposed the CL framework and its optimization for-

mulations. In this section, we will propose practical (stochastic) algorithms to solve

those problems, and provide some basic analysis.

In general, at each time t, the non-convex bilevel problem (5.8) is very challenging

to solve. Recent works on bilevel problems typically focus on solving problems with

unconstrained and strongly convex inner problems [171]. However, there is no generic

theoretical guarantee available when the outer problem is non-convex, and the inner

problem is constrained. In this section, instead of directly solving the bilevel problem

(5.8), we relax the original non-convex constrained lower level problem using a softmax

function [116], which is a smooth approximation of the argmax function:

min
Θ

∑
i∈Mt∪Dt

λ
(i)
∗ (Θ) · `(Θ; x(i),p(i)) (5.9)

s.t. λ
(i)
∗ (Θ) =

eu(Θ;x(i),p(i))∑
j∈Mt∪Dt e

u(Θ;x(j),p(j))
∈ (0, 1), ∀i.

After using the above approximation, λ is now implicitly constrained and can be

computed in a closed-form. It is clear that the obtained λ∗(Θ) still allocates larger

weights to larger loss values u(·). Further, we no longer need to solve two problems

simultaneously, since we can easily obtain a single level problem by plugging the lower

level problem into the upper problem.

Formally, at a given time t, problem (5.9) can be written as the following composi-

tional optimization form:

min
Θ

F t(Θ) = f̄ t(ḡt(Θ); Θ), (5.10)
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where we have defined:

f̄ t(z; Θ) :=

∑
i∈Mt∪Dt

eu(Θ;x(i),p(i)) · `(Θ; x(i),p(i))

|Mt ∪ Dt| · z
, (5.11a)

ḡt(Θ) :=
1

|Mt ∪ Dt|
·
∑

i∈Mt∪Dt

eu(Θ;x(i),p(i)). (5.11b)

5.4.4 Optimization Algorithms and Convergence

In this subsection, we will design algorithms for solving problem (5.10) (for a given time

instance t). We first make the following standard assumptions.

Assumption 5 (Boundedness). The function value, the gradient and the Hessian of

both upper level loss function `(·) and lower level loss function u(·) are bounded for all

Θ, and for all p ∈ [0,1× Pmax], and all realizations of h:

‖`(Θ; x,p)‖ ≤ C`0 , ‖u(Θ; x,p)‖ ≤ Cu0 ,

‖∇Θ`(Θ; x,p)‖ ≤ C`1 , ‖∇Θu(Θ; x,p)‖ ≤ Cu1 ,∥∥∇2
Θ`(Θ; x,p)

∥∥ ≤ C`2 , ∥∥∇2
Θu(Θ; x,p)

∥∥ ≤ Cu2 .

Remark 5.4.3. Assumption 5 is reasonable in our specific problems. We can show

that it can be satisfied if we choose `(·) and u(·) as suggested in (5.5) and (5.6), and

use a neural network π(·) that have bounded gradient and Hessian [172]. The details

verifying Assumption 5 will be left to the supplemental material 5.6.2.

Since the compositional problem (5.10) is essentially a single level problem, we can

update Θ using the conventional gradient descent (GD) algorithm:

Θk+1 = Θk − α∇ḡt(Θk)∇1f̄
t(ḡt(Θk); Θk) (5.12)

− α∇2f̄
t(ḡt(Θk); Θk),

where α is the stepsize, and the two gradients are defined as

∇1f̄
t(a, ·) :=

∂f̄ t(a, ·)
∂a

, ∇2f̄
t(·,b) :=

∂f̄ t(·,b)

∂b
,

for all a,b of appropriate sizes.
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We have the following convergence result.

Theorem 5.4.1. Suppose Assumption 5 hold, then the GD update (5.12) achieves the

following convergence rate

min
0≤k≤K

‖∇F t(Θk)‖2 ≤ c0 · L̄ · (F t(Θ0)− F t,∗)
K + 1

,

where c0 is some universal positive constant, L̄ is the Lipschitz constant of function

∇F t(Θ), and F t,∗ is the optimal value of F t(·) as defined in (5.10).

Proof. From Assumption 5 we can conclude that the function F t has Lipschitz

continuous gradient with constant L̄, where the proof and precise definition of L̄ is

relegated to Lemma 5.6.1 in the supplemental material 5.6.4. Then the desired result

immediately follows from the classical gradient descent analysis on non-convex problems;

see [173, Section 1.2.3].

However, the above update needs to evaluate ḡt(Θ), ∇ḡt(Θ) and ∇f̄ t(z,Θ), and

the evaluation of each term requires the entire datasetMt∪Dt. This practically means

that we need to perform full GD to train a (potentially large) neural network, which is

computationally expensive, and typically results in poor performance.

A more efficient solution is to perform a stochastic gradient descent (SGD) type

update, which first samples a mini-batch of data, then computes stochastic gradients

to update. To be specific, the algorithm samples a subset of data ξ and φ uniformaly

randomly at each iteration from the dataset Mt ∪ Dt. Then the sampled versions of

f̄ t(z; Θ) and ḡt(Θ) are given by:

f(z; Θ; ξ) :=

∑
i∈ξ e

u(Θ;x(i),p(i)) · `(Θ; x(i),p(i))

|ξ| · z
, (5.13a)

g(Θ;φ) :=
1

|φ|
·
∑
i∈φ

eu(Θ;x(i),p(i)), (5.13b)

where the notations |φ| and |ξ| denote the number of samples in the mini-batch φ and

ξ, respectively. It is common to assume that the sampling mechanism can obtain ξ and

φ randomly and independently, that is, the following unbiasedness property holds.
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Assumption 6 (Unbiased Sampling). The sampling oracle satisfies the following rela-

tions, where z is a deterministic variable

Et [g(Θ;φ)] = ḡt(Θ),

Et [∇g(Θ;φ)] = ∇ḡt(Θ),

Et [∇1f(z; Θ; ξ)] = ∇1f̄
t(z; Θ)

Et [∇2f(z; Θ; ξ)] = ∇2f̄
t(z; Θ).

Note that we have used the simplified notation Et[·] to indicate that the expectation is

taken over the sampling process from the data set Mt ∪ Dt.

Based on the above assumption, problem (5.10) can be equivalently written as:

min
Θ

F t(Θ) = Et[f(Et[g(Θ;φ)]; Θ; ξ)]. (5.14)

Then we can write down the following stochastic update, where the update direction

dk is an unbiased estimator of ∇F t(Θk):

Θk+1 = Θk − αdk, (5.15)

where we have defined:

dk := ∇g(Θk;φk)∇1f
(
Et
[
g(Θk;φk)

]
; Θk; ξk

)
+∇2f

(
Et
[
g(Θk;φk)

]
; Θk; ξk

)
.

Unfortunately, computing dk is still costly due to the need to evaluate Et
[
g(Θk;φk)

]
(i.e., evaluating ḡt(Θk)), which still involves the full data. One can no longer directly

replace Et
[
g(Θk;φk)

]
by its stochastic samples g(Θk;φ) because such an estimator is

biased, that is:

Et[∇g(Θk;φk)∇1f(g(Θk;φk); Θk; ξk)] 6=∇ḡt(Θk)∇1f̄
t(ḡt(Θk); Θk).

To proceed, we introduce an auxiliary sequence {yk+1} to track Et[g(Θk;φk)]. The
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Input: Memory M0 = ∅, memory size M , max iterations R, step-sizes α, β
while receive Dt do

Set Gt =Mt ∪ Dt

for k = 1 : K do
Θk+1 ← Θk − αk∇g(Θk;φk)∇1f(yk+1; Θk; ξk)

−αk∇2f(yk+1; Θk; ξk)
yk+1 ← (1− βk)

(
yk + g(Θk;φk)− g(Θk−1;φk)

)
+βkg(Θk;φk)

end
if |Gt| < M then
Mt+1 = Gt

else

I = TopM ({λ(i)
t }∀i)

Mt+1 = {G(i)
t }i∈I

end

end

Algorithm 5: The Proposed stochastic CL Algorithm

resulting SGD-type algorithm is given below:

Θk+1 = Θk − αk∇g(Θk;φk)∇1f(yk+1; Θk; ξk)− αk∇2f(yk+1; Θk; ξk), (5.16a)

yk+1 = (1− βk)
(
yk + g(Θk;φk)− g(Θk−1;φk)

)
+ βkg(Θk;φk), (5.16b)

where {αk} and {βk} are sequences of stepsizes. The rationale is that, if the auxiliary

variable yk+1 can track the true value ḡt(Θk) reasonably well, then (5.16a) will be able

to approximate an unbiased estimator of the true gradient.

Finally, the overall stochastic algorithm for approximately solving problem (5.4) is

given in Algorithm 5. For each time period t, we first solve the relaxed problem (5.9)

in line 4-8, by performing the stochastic updates described in (5.16a) – (5.16b) for K

times (where K is a predetermined number). Next, we construct the memory setMt in

line 9-13. We sort the elements of {λ(i)
t } (defined in (5.9)) and pick M largest elements’

index set I (In line 12 of the table); Then we assign the data points associated with the

index set I to the new memory set Mt+1 (In line 13 of the table).

Remark 5.4.4. Note that the use of the auxiliary variable y, first appeared in solving
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stochastic compositional optimization problems in the form of

min
Θ

Eξ[f(Eφ[g(Θ, φ)], ξ)], (5.17)

see recent works [174,175], and the references therein. In particular, the authors of [175]

provided the exact update form of (5.16b), and showed that the resulting algorithm

enjoys the same sample efficiency as directly applying the SGD to solve problem (5.17).

However, problem (5.17) is not exactly the same as our problem (5.14) because our

problem includes an extra variable Θ in the definition of f(·), so the update (5.16a)

includes an additional term −αk∇2f(yk+1; Θk; ξk). Therefore, more refined analysis

steps have to be taken compared to [175].

Below, we analyze the convergence of the Θ and y updates given in line 4-8 of

Algorithm 1. The following lemma is an immediate consequence of Assumption 5 and

6. Its proof is similar to Lemma 5.6.2 in the supplementary material Sec. 5.6.4.

Lemma 5.4.1. Suppose Assumption 5 – 6 hold, then we have

(1) The stochastic function g(Θ;φ) has bounded variance, that is, there exits a positive

constant Vg such that:

Et
[
‖g(Θ;φ)− ḡt(Θ)‖2

]
≤ Vg, ∀ Θ,

where φ denotes the random data sampled from Mt ∪Dt, ḡt and g are defined in (5.11)

and (5.13), respectively.

(2) The stochastic gradient of g is bounded in expectation, that is, there exists a positive

constant Cg such that

Et [‖∇g(Θ;φ)‖] ≤ Cg, ∀ Θ. (5.18)

(3) Fixing any sample φ, the stochastic gradient of g is Lg-smooth, that is, for any

Θ,Θ′ ∈ Rd, we have:

‖∇g(Θ;φ)−∇g(Θ′;φ)‖ ≤ Lg‖Θ−Θ′‖.

Next, we show that the tracking error of the auxiliary variable y is shrinking.
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Lemma 5.4.2 (Tracking Error Contraction [175, Lemma 1]). Consider Fk as the collec-

tion of random variables, i.e., Fk :=
{
φ0, . . . , φk−1, ξ0, . . . , ξk−1

}
. Suppose Assumption

5 and 6 hold, and yk+1 is generated by running iteration (5.16b) conditioned on Fk.

The mean square error of yk+1 satisfies

Et
[
‖ḡt(Θk)− yk+1‖2 | Fk

]
≤(1− βk)2‖ḡt(Θk−1)− yk‖2 + 4(1− βk)2C2

g‖Θk −Θk−1‖2 + 2β2
kV

2
g ,

where Cg and Vg are defined in Lemma 5.4.1.

Proof. The above analysis is the same as the one presented for solving stochastic

compositional optimization problems in the form of (5.17) (see [175, Lemma 1]). We

include the steps in the supplemental material 5.6.3 for completeness.

We are now ready to show our main results about the convergence of the sequence

{(Θk,yk)}Kk=1 in Algorithm 1.

Theorem 5.4.2 (Convergence Analysis). Consider Algorithm 5, and fix a time instance

t. Let K be the total number of iterations used at time t to update the tuple {(Θk,yk)}
. Suppose Assumptions 5 and 6 hold, and that the sequence of the auxiliary variable

{yk} is bounded away from zero, i.e., ‖yk‖ ≥ Cy, ∀ k, for some positive constant Cy.

Let us choose the stepsizes as αk = βk/L0, ∀ k, for some appropriately chosen L0 > 0

(defined in (5.21) in the Appendix). Then the iterates {Θk} generated by the algorithm

satisfies:

1

K

K−1∑
k=0

Et[‖∇F t(Θk)‖2] ≤ 2F t(Θ0) + 2C̃√
K

,

where C̃ is some universal constant, dependent on Assumption 5, 6 and Cy.

Proof. The full proof is relegated to Appendix 5.6.1, and C̃ is defined in (5.22).

Remark 5.4.5. The key idea of the proposed method is to use an auxiliary variable

y to track the expected value Et[g(Θ;φ)] (or equivalently ḡt(Θ)). Lemma 5.4.2 shows

that the tracking error ‖y− ḡt(Θ)‖ is shrinking given that α and β are small. Theorem

5.4.2 implies that, for a given time instance t, the sequence {(Θk,yk)}Kk=1 converges in

the order of O(K−
1
2 ), which is the same order achieved by generic SGD methods for

non-compositional non-convex problems.
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Note that compared with Theorem 5.4.1, we have made an additional assumption

that the size of the iterates {yk} is bounded away from zero. Although such an as-

sumption cannot be verified a priori, in our numerical result it appears to always hold.

Intuitively, this assumption makes sense since y tracks ḡt(·), and ḡt(·) is bounded away

from zero by its definition (5.11). Therefore, as long as the tracking error is small (cf.

Lemma 5.4.2), we can assume yk to be bounded away from zero.

Nonetheless, we would like to emphasize that, the main contribution of this work

is the development of the CL formulation and approximation problem (5.9), as well

as a set of practical algorithms for solving them. The convergence analysis helps us

justify our design principle, but ultimately the efficiency of the proposed formulation

and algorithms has to be tested in practice. This is what we plan to do in the next

section.

5.5 Experimental Results

In this section, we illustrate the performance of the proposed CL framework. We choose

two applications where the end-to-end learning based DNN is used: 1) power control

for weighted sum-rate (WSR) maximization problem [4] with single-input single-output

(SISO) interference channel defined in (5.1); 2) coordinated beamforming problem for

the millimeter wave system [176], with up to 256 antennas per BS.

5.5.1 Simulation Setup

The experiments are conducted on Ubuntu 18.04 with Python 3.6, PyTorch 1.6.0, and

MATLAB R2019b on one computer with two 8-core Intel Haswell processors and 128

GB of memory. The codes are made available online through https://github.com/

Haoran-S/TSP_CL.

5.5.2 Randomly Generated Channel

We first demonstrate the performance of our proposed framework using randomly gen-

erated channels, for a scenario with K = 10 transmitter-receiver pairs. We choose three

standard types of random channels used in previous resource allocation literature [4,123]

stated as following:
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Rayleigh fading: Each channel coefficient hij is generated according to a standard

normal distribution, i.e.,

Re(hij) ∼
N (0, 1)√

2
, Im(hij) ∼

N (0, 1)√
2

, ∀i, j ∈ K. (5.19)

Rician fading: Each channel coefficient hij is generated according to a Gaussian dis-

tribution with 0dB K-factor, i.e.,

Re(hij) ∼
1 +N (0, 1)

2
, Im(hij) ∼

1 +N (0, 1)

2
, ∀i, j ∈ K.

Geometry channel: All transmitters and receivers are uniformly randomly distributed

in a R×R area. The channel gains |hij |2 follow the pathloss function

|hij |2 =
1

1 + d2
ij

|fij |2, ∀ i, j,

where fij is the small-scale fading coefficient follows CN (0, 1), dij is the distance between

the ith transmitter and jth receiver.

Then we use these coefficients to generate four different episodes: the Rayleigh fading

channel, the Ricean fading channel, and the geometry channel (with nodes distributed

in a 10m× 10m and a 50m× 50m area, respectively). We use such drastically changing

environments to simulate (perhaps overly harsh) “toy” scenarios. Later we will utilize

real data to generate more practical scenarios. For each episode, we generate 20, 000

channel realizations for training and 1, 000 for testing. We also stacked the test data

from all episodes to form a mixture test set, i.e., containing 4, 000 channel realizations.

During the training stage, a total of 80, 000 channel realizations are available. A batch

of 5, 000 realizations is revealed each time, and the memory space contains only 2, 000

samples from the past. That is, |D1:16| = 80, 000, |Dt| = 5, 000, |Mt| = 2, 000, ∀ t.
For the data-driven model, we use the end-to-end learning based fully connected

neural network model as implemented in [4]. For each data batch of 5, 000 realizations

at time t, we train the model Θt using the following six different approaches for 20

epochs (with the previous model Θt−1 as initialization):
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1. Transfer learning (“TL”) [125] – update the model using the current data batch

(a total of 5, 000 samples);

2. Reservoir sampling based CL (“Reservoir”) [138] – update the model using both

the current data batch and the memory set (a total of 7, 000 samples), where data

samples in the memory set are uniformly randomly sampled from the streaming

episodes;

3. Proposed fairness based CL (“Bilevel”) in Algorithm 5 – update the model using

both the current data batch and the memory set (a total of 7, 000 samples), where

data samples in the memory set are selected according to the proposed data-

sample fairness criterion (5.8) using Algorithm 5. Unless otherwise specified, as

suggested in Section 5.4.2, the training loss `(·) is chosen as the MSE loss (5.5), the

system performance loss u(·) is chosen as the adaptive weighted negative sum-rate

loss (5.6), and the weights is chosen as the sum-rate achievable by the WMMSE

method [141].

4. Proposed minimax based CL (“Minimax”) – this is the special case of Algorithm

1, as described in remark 5.4.2; In particular, we update the model using both

the current data batch and the memory set (a total of 7, 000 samples), where

data samples in the memory set are selected according to the proposed minimax

criterion (5.7), the training loss `(·) and the system performance loss u(·) are

chosen as the MSE loss (5.5); The model is trained using the gradient descent

ascent (GDA) [169].

5. Joint training (“Joint (equal)”) – update the model using all accumulated data

up to current time (up to 80, 000 samples); All data points are treated equally,

that is, λ(i) in (5.4) are equal for all i, and there is no lower level problem.

6. Joint training (“Joint (weighted)”) – update the model using all accumulated data

up to current time (up to 80, 000 samples); The proposed fairness based formu-

lation (5.9) is applied but replace the training set Mt ∪ Dt with all accumulated

data.

The simulation results of six different approaches are compared and shown in Fig.
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Figure 5.2: Testing sum-rate performance on randomly generated channels for (a) each individual episode and
(b) average of all episodes. Each sub-figure of (a) represents the testing performance on the data generated from
a particular episode (indicated in the y-axis). The grey line indicates the time instances where a new episode
starts, which is unknown during training time.

5.2. Specifically, each subplot of Fig. 5.2 (a) shows the performance of the time-

varying models trained by different approaches as training data is streaming in, while

evaluated at test samples drawing from the episode specified by each subplot. The

grey lines indicate the transition points for two consecutive training episodes. The x-

axis represents the number of training data that has been seen by the model, while

the y-axis represents the sum-rate achieved on the test data. Fig. 5.2 (b) shows the

average of all four subplots from Fig. 5.2 (a). Note that the joint training method uses

up to 80, 000 in memory spaces and thus violates our memory limitation (i.e., 7, 000

in total), and the transfer learning method adapts the model to new data each time

and does not use any additional memory spaces. One can observe that the proposed

CL based methods perform well over all tasks, nearly matching the performance of the

joint training method, whereas the TL suffers from some significant performance loss as

the “outlier” episode comes in (i.e., geometry channel in our case).

5.5.3 Real Measured Channel

To validate our approach under more realistic scenarios, we further consider the outdoor

‘O1’ ray-tracing scenario generated from the DeepMIMO dataset [177]. The used dataset

consists of two streets and one intersection, with the top-view showed in Fig. 5.3. The

user grid is located along the horizontal street, with a length of 550m and a height of
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Figure 5.3: Top view of the DeepMIMO ray-tracing scenario, showing the two streets (grey rectangular), the
buildings (blue rectangular), and the 10 base stations (red circle).
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Figure 5.4: Average sum-rate comparison on real measured channels

36m. This street is divided into a 181 × 2751 grid, and the users could be located on

any grid point. We index the first column from the right as C1, and the last column

from the left as C2751.

An episode is generated by using a particular user distribution. More specifically,

the users for episode 1 are all drawn from columns C551 - C1100, and similarly, users

from episode 2-3 are from C1101 - C1650, and C1651 - C2200, respectively. For each

episode, we generate 20, 000 channel realizations for training and 1, 000 for testing. For

each channel realization, we generate the channel based on 10 BSs (i.e., red circles in Fig.

5.3), and randomly pick K = 10 user locations from the selected user population. The

BS is equipped with single antenna and has the maximum transmit power pk = 30dBm.

The noise power is set to −80 dBm.
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Figure 5.5: Fairness Comparison. (a) PDF and (b) CDF distribution of the per-sample sum-rate ratio evaluated
at the last time stamp (x = 60, 000) on the test set of all three episodes.

Average sum-rate comparison

We first show the system performance measured by the achieved sum-rate for different

approaches in Fig. 5.4. For each subplot of Fig. 5.4 (a), it displays a similar result

as each subfigure in Fig. 5.2 (a). It can be observed that, after experiencing all the

samples (x = 60, 000), our proposed fairness based method obtains reasonable sum-rate

for all three episodes, while the performance of both TL and reservoir sampling degrades

when encountering test data from the old episodes. This can be attributed to the fact

that the proposed method can focus on under-performing episodes (i.e. episode 1 and

2) while relaxing on outperforming episodes (i.e. episode 3). If we further average the

sum-rate performance on all three episodes from Fig. 5.4 (a), we obtained Fig. 5.4 (b),

in which it is clear that our proposed method is able to perform much better than TL

and reservoir sampling.

Another interesting observation (from subplot 3 of Fig. 5.4 (a)) is that the proposed

method is able to outperform the joint training (which uses the accumulated data) in

terms of the average sum-rate, as can be seen in Fig. 5.4 (b) for 40, 000 ≤ x ≤ 60, 000.

One possible explanation is that the joint training will treat all samples equally, and

thus only 1/3 of training data will contribute to improve the performance of episode 3,

resulting a slow adaption to new episodes. Instead, our proposed fairness based method

focuses more on data points that generate the highest cost, so it achieves higher average

performance.
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Fairness comparison

Next, we show that the proposed CL method outperforms other CL-based methods,

not only in terms of the average sum-rate, but also in the sample fairness over all

tasks. In Fig. 5.5, we show the test data sum-rate ratio distributions for the final

models generated by different approaches (i.e., when all the models have seen all 60, 000

data points). Specifically, the sum-rate ratio R(π(Θ,x(i)); x(i))/R̄(x(i)) is computed

according to Remark 5.4.2. That is, for a given test sample x(i), we divide the achievable

sum-rate generated from the learning model, by what is achievable by the WMMSE

algorithm [141]. It can be observed that our proposed approach contains fewer samples

in the low sum-rate region, while TL and reservoir sampling perform worse on those

data points. This result suggests that that the proposed approach indeed incorporates

the problem structure and advocates fairness across the data samples.

Gradual scenario change

In the previous experiments, the sets of users from different episodes do not overlap with

each other. That is, we were simulating scenarios where the environment is experiencing

some rapid changes. In this subsection, we further simulate scenarios where the environ-

ment changes slowly. Towards this end, we generate episodes such that the neighboring

ones share some common areas. Specifically, we have five episodes, and users for episode

1 to 5 are drawn from columns C551-C1100, C826-C1375, C1101-C1650, C1376-C1925,

and C1651-C2200, respectively. Simulation results are shown in Fig. 5.6. It can be

observed that our proposed methods are still effective under this setting.

5.5.4 Beamforming Experiments

Next, we further validate our CL based approach, by applying it to a coordinated

beamforming problem for the millimeter wave system, where a number of BSs are si-

multaneously serving one mobile user over the 60 GHz band [176]. Different from the

previous sections where only single antenna is adopted, we consider the multi-antenna

setup with four BSs (3,4,5,6 in Fig. 5.3), and each BS uses uniform planar array (UPA)

consisting of a total of 256 antenna elements (32 columns and 8 rows), and use 30dBm

transmit power.
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Figure 5.6: Average sum-rate comparison on real measured channels over slowly changing environment
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Figure 5.7: Achievable rate comparison of deep-learning coordinated beamforming strategies, genie-aided solu-
tion (perfectly knows the optimal beamforming vectors), and traditional mmWave beamforming techniques.
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We adopt the problem formulation developed in [4, 176], where the idea is to use

the uplink pilot signal received at the terminal BSs with only omni or quasi-omni beam

patterns to learn and predict the best RF beamforming vectors. The learning based

method we adopt is the fully connected network as suggested in [4,176]. By leveraging

the intuition that the received signal renders an RF defining signature for the user

location and its interaction with the surrounding environment, the authors of [176]

showed that the DL solution performs almost as well as the genie-aided solution that

perfectly knows the optimal beamforming vectors.

In our simulation, we define three episodes, where the user distributions are drawn

from columns C551 - C650, C826 - C925, C1101 - C1200, respectively. For each episode,

we generate 15, 000 samples for training and 1, 000 for testing. The simulation results

over different approaches are compared and reported in Fig. 5.7, where the x-axis

represents the number of data samples that has been observed, and the y-axis denotes

the effective achievable rate. For our proposed approach (Bilevel), both the training

loss `(·) and the system performance loss u(·) are chosen as the MSE loss (5.5). It can

be observed that the proposed algorithm (Bilevel) almost matches the joint training

and the optimal genie-aided performances, with only limited memory usage, and it

outperforms the TL approach.

Lastly, we compare the computational cost of all methods during the entire training

stage. We record the required training time for all approaches when they experiencing

all three episodes, then plot their achieved training loss (i.e., the MSE loss in this case,

evaluated on the mixture dataset of all three episodes) versus the consumed cpu time

in Fig. 5.8. It can be observed that the joint training and proposed CL approach can

achieve zero training loss for all episodes (after 1,100 and 400 seconds, respectively),

while the TL approach can never achieve zero training loss for all episodes although it

takes less time. The proposed fairness based CL methods strike a good balance between

the time complexity and the prediction accuracy.
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5.6 Proofs of Lemmas and Theorems

5.6.1 Proof of Theorem 5.4.2

Proof. First, we need to establish the gradient smoothness condition of the compo-

sitional function F t(Θ) as defined in (5.14). That is, for some L > 0, the following

holds:

‖∇F t(Θ)−∇F t(Θ′)‖ ≤ L‖Θ−Θ′‖,

where the gradient is computed as

∇F t(Θ) =∇ḡt(Θ)∇1f̄
t(ḡt(Θ),Θ) +∇2f̄

t(ḡt(Θ),Θ).

The proof is relegated to Lemma 5.6.2 in the supplemental material 5.6.4 for complete-

ness.

Then, using the smoothness of ∇F t(Θk), we have

F t(Θk+1) ≤ F t(Θk) + 〈∇F t(Θk),Θk+1 −Θk〉+
L

2
‖Θk+1 −Θk‖2

(5.16a)
= F t(Θk)− αk〈∇F t(Θk),∇g(Θk;φk)∇1f(yk+1,Θ; ξk)〉

− αk〈∇F t(Θk),∇2f(yk+1,Θ; ξk)〉+
L

2
‖Θk+1 −Θk‖2

= F t(Θk)− αk‖∇F t(Θk)‖2 +
L

2
‖Θk+1 −Θk‖2

+ αk〈∇F t(Θk),∇ḡt(Θk)∇1f̄
t(ḡt(Θk),Θ)〉

− αk〈∇F t(Θk),∇g(Θk;φk)∇1f(yk+1,Θ; ξk)〉

+ αk〈∇F t(Θk),∇2f̄
t(ḡt(Θk),Θ)−∇2f(yk+1,Θ, ξk)〉.

Conditioned on Fk, taking expectation over the sampling process of φk and ξk from
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the data set Mt ∪ Dt on both sides, we have

Et
[
F t(Θk+1)|Fk

] (a)

≤F t(Θk)− αk‖∇F t(Θk)‖2 +
L

2
Et[‖Θk+1 −Θk‖2|Fk]

+ αk

∥∥∥∇F t(Θk)
∥∥∥ Et

[
‖∇g(Θk;φk)‖2|Fk

] 1
2

× Et
[
‖∇1f(g(Θk); Θk; ξk)−∇1f(yk+1,Θk; ξk)‖2|Fk

] 1
2

+ αk

∥∥∥∇F t(Θk)
∥∥∥

× Et
[
‖∇2f(g(Θk); Θk, ξk)−∇2f(yk+1; Θk, ξk)‖|Fk

]
(b)

≤F t(Θk)− αk‖∇F t(Θk)‖2 + LC2
gC

2
f1
α2
k + LC2

f2
α2
k

+ (αkCgLf11 + αkLf21) ‖∇F t(Θk)‖

× Et
[
‖g(Θk)− yk+1‖2|Fk

] 1
2

(c)

≤F t(Θk)− αk‖∇F t(Θk)‖2 + LC2
gC

2
f1
α2
k + LC2

f2
α2
k

+
α2
kC

2
gL

2
f11

+ α2
kL

2
f21

2βk
‖∇F t(Θk)‖2

+ βkEt
[
‖g(Θk)− yk+1‖2|Fk

]
≤F t(Θk)− αk

(
1−

αkC
2
gL

2
f11

+ αkL
2
f21

2βk

)
‖∇F t(Θk)‖2

+ βkEt
[
‖g(Θk)− yk+1‖2|Fk

]
+ LC2

gC
2
f1
α2
k + LC2

f2
α2
k,

where in (a) we use the Cauchy-Schwartz inequality; in (b) we use the update rule (5.15),

the boundedness of ‖∇g‖, ‖∇1f‖ and ‖∇2f‖ and the Lipschitz continuous gradient of

f from Lemma 5.6.2 in the supplemental material 5.6.4; and in (c) we use the Young’s

inequality.

Define the Lyapunov function

Vk = F t(Θk) + ‖g(Θk−1)− yk‖2.
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It follows that

Et[Vk+1|Fk] (5.20)

≤ Vk − αk

(
1−

αkC
2
gL

2
f11

+ αkL
2
f21

2βk

)
‖∇F t(Θk)‖2

+ LC2
gC

2
f1
α2
k + LC2

f2
α2
k

+ (1 + βk)Et
[
‖g(Θk)− yk+1‖2|Fk

]
− ‖g(Θk−1)− yk‖2

(a)

≤ Vk − αk

(
1−

αkC
2
gL

2
f11

+ αkL
2
f21

2βk

)
‖∇F t(Θk)‖2

+ LC2
gC

2
f1
α2
k + LC2

f2
α2
k + 2(1 + βk)β

2
kV

2
g

+
(
(1 + βk)(1− βk)2 − 1

)
‖g(Θk−1)− yk‖2

+ 8(1 + βk)(1− βk)2C2
g

(
C2
gC

2
f1

+ C2
f2

)
α2
k

(b)

≤ Vk − αk

(
1−

αkC
2
gL

2
f11

+ αkL
2
f21

2βk

)
‖∇F t(Θk)‖2

+ LC2
gC

2
f1
α2
k + LC2

f2
α2
k + 2(1 + βk)β

2
kV

2
g

+ 8C2
g

(
C2
gC

2
f1

+ C2
f2

)
α2
k,

where (a) follows from Lemma 5.4.2, and (b) uses that (1 + βk)(1 − βk)
2 = (1 −

β2
k)(1 − βk) ≤ 1. The corresponding constant Vg is defined in Lemma 5.4.1 and

L,Cg, Cf1 , Cf2 , Lf11 , Lf21 are defined in Lemma 5.6.2 in the supplemental material 5.6.4.

Select (with βk ∈ (0, 1))

αk =
βk

C2
gL

2
f11

+ L2
f21

:=
βk
L0

(5.21)

so that 1−
αkC

2
gL

2
f11

+αkL
2
f21

2βk
= 1

2 , and define

C̃ : = LC2
gC

2
f1

+ LC2
f2

+ 4
(
C2
gL

2
f11

+ L2
f21

)2
V 2
g

+ 8C2
g

(
C2
gC

2
f1

+ C2
f2

)
. (5.22)
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Further taking expectation over Fk on both sides of (5.20), then it follows that

Et[Vk+1] ≤ Et[Vk]−
αk
2
Et[‖∇F t(Θk)‖2] + C̃α2

k. (5.23)

Telescoping over k and rearranging terms, we have∑K
k=0 αkEt[‖∇F t(Θk)‖2]∑K

k=0 αk
≤

2V0 + 2C̃
∑K

k=0 α
2
k∑K

k=0 αk
.

Choosing the stepsize as αk = 1√
K

leads to

∑K−1
k=0 Et[‖∇F t(Θk)‖2]

K
≤ 2V0 + 2C̃√

K
.

By initializing of y0 = g(Θ−1), we have

V0 = F t(Θ0) + ‖g(Θ−1)− y0‖2 = F t(Θ0).

The proof is complete.

5.6.2 Verify Assumptions

In this section, we show that for power allocation problem (5.1), Assumption 5 can be

satisfied.

Claim 5.6.1. Consider the power allocation problem (5.1) with K transmitter and

receiver pairs, pick `(·) and u(·) as suggested in (5.5) and (5.6). Let H indicate a set of

bounded channel coefficients with dimension K ×K. Suppose that the neural network

π(Θ; h) ∈ [0,pmax] has bounded Jacobian Jπ ∈ RK×d and Hessian Hπ ∈ RK×d×d

for all Θ ∈ Rd, h ∈ H and p ∈ [0,pmax] with pmax ∈ RK+ , where Jπi,j = ∂πi(Θ;h)
∂Θj

,

Hπ
k,i,j = ∂2πk(Θ;h)

∂Θi∂Θj
. Then Assumption 5 holds true, that is, there exist some positive
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constants C`0 , C`1 , C`2 , Cu0 , Cu1 , Cu2, such that the following holds:

‖`(Θ; x,p)‖ ≤ C`0 , ‖u(Θ; x,p)‖ ≤ Cu0 , ∀ h ∈ H,∀ Θ

‖∇Θ`(Θ; x,p)‖ ≤ C`1 , ‖∇Θu(Θ; x,p)‖ ≤ Cu1 , ∀ h ∈ H,∀ Θ∥∥∇2
Θ`(Θ; x,p)

∥∥ ≤ C`2 , ∥∥∇2
Θu(Θ; x,p)

∥∥ ≤ Cu2 , ∀ h ∈ H,∀ Θ.

Proof. First, based on our specific problem (5.1), we know that the allocated

power p ∈ [0,pmax], and output of the neural network π(Θ; x) ∈ [0,pmax] are bounded.

Then we have:

`(Θ; x,p) = ‖p− π(Θ,x)‖2 ∈ R,

∇Θ`(Θ; x,p) = 2
(
Jπ(Θ;x)

)T
(π(Θ,x)− p) ∈ Rd×1,

∇2
Θ`(Θ; x,p) = 2

∑
k

[
H
π(Θ;x)
k,:,: (πk(Θ,x)− pk)

]
+ 2(Jπ(Θ;x))TJπ(Θ;x) ∈ Rd×d.

Since by assumption, we know Jacobian Jπ and HessianHπ are bounded, then, `(Θ; x,p),

∇Θ`(Θ; x,p) and ∇2
Θ`(Θ; x,p) are all bounded.

Similarly, we can also show that u(Θ; x,p), ∇Θu(Θ; x,p), and ∇2
Θu(Θ; x,p) are

bounded. Towards this end, we first compute the elements in ∇πR(π(Θ,x); x) and

∇2
πR(π(Θ,x); x):

R(π(Θ,x); x) =
K∑
k=1

log

(
1 +

|xkk|2πk∑
i 6=k |xki|2πi + σ2

k

)
,

∇πR(π(Θ,x); x) = [∇πkR(π(Θ,x); x)]k=1:K ,

∇πkR(π(Θ,x); x) =
|xkk|2∑K

i=1 |xki|2πi + σ2
k

+
∑
j 6=k

−|xjj |2πj |xjk|2(∑
i 6=j |xji|2πi + σ2

j

)(∑K
i=1 |xji|2πi + σ2

j

) ,
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∇2
πR(π(Θ,x); x) =

[
∇2
πkt
R(π(Θ,x); x)

]
k=1:K,t=1:K

,

∇2
πkt
R(π(Θ,x); x)|t6=k =

−|xkk|2|xkt|2(∑K
i=1 |xki|2πi + σ2

k

)2

+
∑
j 6=k,t

|xjj |2πj |xjk|2|xjt|2
(∑

i 6=j |xji|2πi +
∑K

i=1 |xji|2πi + 2σ2
j

)
(∑

i 6=j |xji|2πi + σ2
j

)2 (∑K
i=1 |xji|2πi + σ2

j

)2

−
|xtt|2|xtk|2

(∑
i 6=t |xti|2πi + σ2

t

)
(∑

i 6=t |xti|2πi + σ2
t

)(∑K
i=1 |xti|2πi + σ2

t

)2 ,

∇2
πkt
R(π(Θ,x); x)|t=k =

−|xkk|2|xkt|2(∑K
i=1 |xki|2πi + σ2

k

)2

+
∑
j 6=k

|xjj |2πj |xjk|2|xjt|2
(∑

i 6=j |xji|2πi +
∑K

i=1 |xji|2πi + 2σ2
j

)
(∑

i 6=j |xji|2πi + σ2
j

)2 (∑K
i=1 |xji|2πi + σ2

j

)2 .

Because all elements of hij , πi, and σk are bounded, it is clear that both∇πR(π(Θ,x); x)

and ∇2
πR(π(Θ,x); x) are bounded.

Next, we derive the bounds for u(Θ; x,p), ∇Θu(Θ; x,p), and ∇2
Θu(Θ; x,p),

u(Θ; x,p) = R(π(Θ,x); x) =
K∑
k=1

αk log

(
1 +

|xkk|2πk∑
j 6=k |xkj |2πj + σ2

k

)
,

∇Θu(Θ; x,p) = (Jπ(Θ;x))T · ∇πR(π(Θ,x); x),

∇2
Θu(Θ; x,p) =

∑
k

[
(H

π(Θ;x)
k,:,: )T · ∇πkR(π(Θ,x); x)

]
+ (Jπ(Θ;x))T · ∇2

πR(π(Θ,x); x) · Jπ(Θ;x),

given all of Jπ, Hπ, ∇πR(π(Θ,x); x) and ∇2
πR(π(Θ,x); x) are bounded, the proof is

complete. Finally, we note that the assumption of boundedness of Jacobian Jπ and

Hessian Hπ are reasonable; see for example [172, Theorem 3.2], where the Lipschitz

continuous and Lipschitz continuous gradient constants of neural networks are explicitly

characterized.
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5.6.3 Proof of Lemma 5.4.2

Claim 5.6.2 (Tracking Error Contraction [175, Lemma 1]). Consider Fk as the collec-

tion of random variables, i.e., Fk :=
{
φ0, . . . , φk−1, ξ0, . . . , ξk−1

}
. Suppose Assumption

6 and 5 hold, and yk+1 is generated by running iteration (5.16b) conditioned Fk. The

mean square error of yk+1 satisfies

Et
[
‖ḡt(Θk)− yk+1‖2 | Fk

]
≤(1− βk)2‖ḡt(Θk−1)− yk‖2 + 4(1− βk)2C2

g‖Θk −Θk−1‖2 + 2β2
kV

2
g ,

where Cg and Vg are defined in Lemma 5.4.1.

Proof. From the update (5.16b), we have that

yk+1 − ḡt(Θk)

= (1− βk)(yk − ḡt(Θk−1)) + (1− βk)(ḡt(Θk−1)− ḡt(Θk)) + βk(g(Θk;φk)− ḡt(Θk))

+ (1− βk)(g(Θk;φk)− g(Θk−1;φk))

= (1− βk)(yk − ḡt(Θk−1)) + (1− βk)T1 + βkT2 + (1− βk)T3, (5.24)

where we define the three terms as

T1 := ḡt(Θk−1)− ḡt(Θk) T2 := g(Θk;φk)− ḡt(Θk) T3 := g(Θk;φk)− g(Θk−1;φk).

Conditioned on Fk, taking expectation over the sampling process of φk from the data

set Mt ∪ Dt, we have

Et
[
(1− βk)T1 + βkT2 + (1− βk)T3|Fk

]
= 0 and Et

[
T2|Fk

]
= 0. (5.25)
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Therefore, taking a conditional expectation on the norm square of both sides of (5.24),

we have

Et[‖yk+1 − ḡt(Θk)‖2|Fk]
(5.24)

= Et[‖(1− βk)(yk − ḡt(Θk−1))‖2|Fk] + Et
[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2|Fk

]
+ 2Et

[〈
(1− βk)(yk − ḡt(Θk−1)), (1− βk)T1 + βkT2 + (1− βk)T3

〉
|Fk
]

(5.25)
= (1− βk)2‖yk − ḡt(Θk−1)‖2 + Et

[
‖(1− βk)T1 + βkT2 + (1− βk)T3‖2|Fk

]
(i)

≤(1− βk)2‖yk − ḡt(Θk−1)‖2 + 2Et
[
‖(1− βk)T1 + βkT2‖2|Fk

]
+ 2(1− βk)2Et

[
‖T3‖2|Fk

]
=(1− βk)2‖yk − ḡt(Θk−1)‖2 + 2(1− βk)2Et[‖T1‖2 | Fk] + 2β2

kEt[‖T2‖2 | Fk]

+ 4βk(1− βk)
〈
T1,Et[T2 | Fk]

〉
+ 2(1− βk)2Et

[
‖T3‖2|Fk

]
(ii)

≤ (1− βk)2‖yk − ḡt(Θk−1)‖2 + 2(1− βk)2Et
[
‖ḡt(Θk)− ḡt(Θk−1)‖2|Fk

]
+ 2(1− βk)2Et

[
‖g(Θk;φk)− g(Θk−1;φk)‖2|Fk

]
+ 2β2

kV
2
g

(iii)

≤ (1− βk)2‖yk − ḡt(Θk−1)‖2 + 4(1− βk)2C2
g‖Θk −Θk−1‖2 + 2β2

kV
2
g ,

where in (i) we use the Cauchy–Schwartz inequality, in (ii) we use the bounded variance

property from Lemma 5.4.1 and the unbiasedness (5.25), and in (iii) we use the property

that the ḡt(Θ) and g(Θ;φ) are Lipschitz continuous from (5.18). The proof is then

complete.

5.6.4 Additional Lemmas

Lemma 5.6.1. Suppose Assumption 5 holds, then function F t(·) has Lipshictz contin-

uous gradient with some universal constant L̄, where

L̄ := C̄f1L̄g + C̄2
g L̄f11 + C̄gL̄f12 + C̄gL̄f21 + L̄f22 ,
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and

L̄f11 := 2Cl0e
4Cu0 , L̄f12 = L̄f21 := Cu1Cl0e

3Cu0 + Cl1e
3Cu0 ,

L̄f22 :=
(
C2
u1
C`0 + Cu2C`0 + 2Cu1C`1 + C`2

)
e2Cu0 , L̄g := C2

u1
eCu0 + Cu2e

Cu0 ,

C̄f1 := Cl0e
3Cu0 , C̄f2 := Cu1Cl0e

2Cu0 + Cl1e
2Cu0 , C̄g := Cu1e

Cu0 .

Proof. To begin with, we show that f̄ t and ḡt are bounded. Given Assumption 5

and f̄ t, ḡt are defined as (5.11), we have

ḡt(Θ) :=
1

|D|
·
∑
i∈D

eu(Θ;x(i),p(i)) ∈
[
e−Cu0 , eCu0

]
,

f̄ t(ḡt(Θ′); Θ) :=

∑
i∈D e

u(Θ;x(i),p(i)) · `(Θ; x(i),p(i))

|D| · ḡt(Θ′)
∈
[
−Cl0e2Cu0 , Cl0e

2Cu0
]
,

where D :=Mt∪Dt, and C`0 , Cu0 are defined in xxx. Note that we abused the notation

a bit by omitting the subscript pf t when defining D.

Next, we show that the gradients of f̄ t and ḡt are bounded. We obtain their gradients

as following

∇ḡt(Θ) =
1

|D|
·
∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇u(Θ; x(i),p(i))

)
,

∇1f̄
t(z; Θ) = −

∑
i∈D e

u(Θ;x(i),p(i)) · `(Θ; x(i),p(i))

|D| · z2
,

∇2f̄
t(z; Θ) =

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇u(Θ; x(i),p(i)) · `(Θ; x(i),p(i))

)
|D| · z

+

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇`(Θ; x(i),p(i))

)
|D| · z

.

Combining the boundedness property from Assumption 5, we conclude that for any Θ

and Θ′,

∥∥∇ḡt(Θ)
∥∥ ≤ Cu1e

Cu0 := C̄g,∥∥∇1f̄
t(ḡt(Θ′); Θ)

∥∥ ≤ Cl0e3Cu0 := C̄f1 ,∥∥∇2f̄
t(ḡt(Θ′); Θ)

∥∥ ≤ Cu1Cl0e
2Cu0 + Cl1e

2Cu0 := C̄f2 .

(5.27)
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Next, we show that functions ∇f̄ t and ∇ḡt are Lf - and Lg-smooth by bounding the

Hessian of ‖f̄ t‖ and ‖ḡt‖, where we have

∇2
11f̄

t(z; Θ) =
2 ·
∑

i∈D e
u(Θ;x(i),p(i)) · `(Θ; x(i),p(i))

|D| · z3
,

∇2
12f̄

t(z; Θ) = −
∑

i∈D e
u(Θ;x(i),p(i)) · ∇u(Θ; x(i),p(i)) · `(Θ; x(i),p(i))

|D| · z2

−
∑

i∈D e
u(Θ;x(i),p(i)) · ∇`(Θ; x(i),p(i))

|D| · z2
,

∇2
21f̄

t(z; Θ) = −

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇u(Θ; x(i),p(i)) · `(Θ; x(i),p(i))

)
|D| · z2

−

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇`(Θ; x(i),p(i))

)
|D| · z2

,

∇2
22f̄

t(z; Θ) =

∑
i∈D

(
eu(Θ;x(i),p(i)) ·

∥∥∇u(Θ; x(i),p(i))
∥∥2 · `(Θ; x(i),p(i))

)
|D| · z

+

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇2u(Θ; x(i),p(i)) · `(Θ; x(i),p(i))

)
|D| · z

+
2 ·
∑

i∈D

(
eu(Θ;x(i),p(i)) · ∇u(Θ; x(i),p(i)) · ∇`(Θ; x(i),p(i))

)
|D| · z

+

∑
i∈D

(
eu(Θ;x(i),p(i)) · ∇2`(Θ; x(i),p(i))

)
|D| · z

,

∇2ḡt(Θ) =
1

|D|
·
∑
i∈D

(
eu(Θ;x(i),p(i)) ·

∥∥∥∇u(Θ; x(i),p(i))
∥∥∥2

+ eu(Θ;x(i),p(i)) · ∇2u(Θ; x(i),p(i))

)
.
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Further considering that the Assumption 5, we can conclude that for any Θ and Θ′

∥∥∇2
11f̄

t(ḡt(Θ′); Θ)
∥∥ ≤ 2Cl0e

4Cu0 := L̄f11 ,∥∥∇2
12f̄

t(ḡt(Θ′); Θ)
∥∥ ≤ Cu1Cl0e

3Cu0 + Cl1e
3Cu0 := L̄f12 ,∥∥∇2

21f̄
t(ḡt(Θ′); Θ)

∥∥ ≤ Cu1Cl0e
3Cu0 + Cl1e

3Cu0 := L̄f21 ,∥∥∇2
22f̄

t(ḡt(Θ′); Θ)
∥∥ ≤ (C2

u1
C`0 + Cu2C`0 + 2Cu1C`1 + C`2

)
e2Cu0 := L̄f22 ,∥∥∇2ḡt(Θ)

∥∥ ≤ C2
u1
eCu0 + Cu2e

Cu0 := L̄g.

Or in other words, when z = ḡt(·), the following holds true:

‖∇1f̄
t(z, ·)−∇1f̄

t(z′, ·)‖ ≤ L̄f11‖z− z′‖,

‖∇1f̄
t(z,Θ)−∇1f̄

t(z,Θ′)‖ ≤ L̄f12‖Θ−Θ′‖,

‖∇2f̄
t(z, ·)−∇2f̄

t(z′, ·)‖ ≤ L̄f21‖z− z′‖,

‖∇2f̄
t(z,Θ)−∇2f̄

t(z,Θ′)‖ ≤ L̄f22‖Θ−Θ′‖,

‖∇ḡt(Θ)−∇ḡt(Θ′)‖ ≤ L̄g‖Θ−Θ′‖.

(5.28)

Then, we are ready to establish the smoothness condition of the gradient of the compo-

sitional function F t(Θ) = f̄ t(ḡt(Θ),Θ), we have

∇F t(Θ) =∇ḡt(Θ)∇1f̄
t(ḡt(Θ),Θ) +∇2f̄

t(ḡt(Θ),Θ),

and

‖∇F t(Θ)−∇F t(Θ′)‖ ≤‖∇ḡt(Θ)∇1f̄
t(ḡt(Θ),Θ)−∇ḡt(Θ′)∇1f̄

t(ḡt(Θ),Θ)‖

+ ‖∇ḡt(Θ′)∇1f̄
t(ḡt(Θ),Θ)−∇ḡt(Θ′)∇1f̄

t(ḡt(Θ′),Θ′)‖

+ ‖∇2f̄
t(ḡt(Θ),Θ)−∇2f̄

t(ḡt(Θ′),Θ′)‖

≤C̄f1L̄g‖Θ−Θ′‖+ C̄gL̄f11‖ḡt(Θ)− ḡt(Θ′)‖+ C̄gL̄f12‖Θ−Θ′‖

+ L̄f21‖ḡt(Θ)− ḡt(Θ′)‖+ L̄f22‖Θ−Θ′‖

≤L̄‖Θ−Θ′‖,

where in the second inequality we use the boundedness of ‖∇ḡt‖, ‖∇f̄ t‖ and the Lipschitz

continuous gradient of ḡt and f̄ t, see (5.27) and (5.28), and in the third inequality we
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use the Lipschitz continuity of ḡt and f̄ t (implied by the boundedness of ‖∇ḡt‖, ‖∇f̄ t‖),
and L̄ is defined as

L̄ := C̄f1L̄g + C̄2
g L̄f11 + C̄gL̄f12 + C̄gL̄f21 + L̄f22 .

The proof is complete.

Then, follows the same reasoning, we will have following results when stochastic

sampling is used,

Lemma 5.6.2. Suppose Assumption 5 and 6 hold, f(·) and g(·) are defined as (5.13),

and the first input of f(z; Θ; ξ) is bounded away from zero as ‖z‖ ≥ Cz, then the

following holds:

(1) The stochastic gradients of f and g are bounded in expectation, that is, there

exist positive constants Cg, Cf1 , Cf2, such that the following relations hold

Et [‖∇g(Θ;φ)‖] ≤ Cg,

Et [‖∇1f(z; Θ; ξ)‖] ≤ Cf1 ,

Et [‖∇2f(z; Θ; ξ)‖] ≤ Cf2 ,

where the constants are defined as:

Cf1 := Cl0e
Cu0/C2

z , Cf2 := Cu1Cl0e
Cu0/Cz + Cl1e

Cu0/Cz, Cg := Cu1e
Cu0 .

(2) Functions ∇f and ∇g are Lf - and Lg-smooth, that is, for any Θ,Θ′ ∈ Rd, and

z, z′ satisfying ‖z‖ ≤ Cz and ‖z′‖ ≤ Cz, we have:

‖∇1f(z,Θ; ξ)−∇1f(z′,Θ; ξ)‖ ≤ Lf11‖z− z′‖,

‖∇1f(z,Θ; ξ)−∇1f(z,Θ′; ξ)‖ ≤ Lf12‖Θ−Θ′‖,

‖∇2f(z,Θ; ξ)−∇2f(z′,Θ; ξ)‖ ≤ Lf21‖z− z′‖,

‖∇2f(z,Θ; ξ)−∇2f(z,Θ′; ξ)‖ ≤ Lf22‖Θ−Θ′‖,

‖∇g(Θ;φ)−∇g(Θ′;φ)‖ ≤ Lg‖Θ−Θ′‖,

(5.29)
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where

Lf11 := 2Cl0e
Cu0/C3

z , Lf12 = Lf21 :=
(
Cu1Cl0e

Cu0 + Cl1e
Cu0
)
/C2

z ,

Lf22 :=
(
C2
u1
C`0 + Cu2C`0 + 2Cu1C`1 + C`2

)
eCu0/Cz, Lg := C2

u1
eCu0 + Cu2e

Cu0 .

Proof. The derivation of this result is similar to those presented in Lemma 5.6.1,

except the change of i ∈ D with i ∈ ξ or i ∈ φ in derivations, and the usage of z = y

instead of z = ḡt(·).



Chapter 6

Summary and Future Directions

In the last chapter, we provide a summary of the main results discussed in this thesis,

and also point out a few promising directions for future research.

6.1 Thesis Summary

This thesis presented a set of contributions at the intersection of optimization theory,

machine learning advances, and applications in modern wireless systems. The focus

was on building fundamental connections between methodologies from optimization,

machine learning, and networking communities, and developing interdisciplinary ap-

proaches for the modern large-scale non-convex problem.

In the first part of the thesis, which contains Chapters 2–4, the aim is to develop the-

oretical guarantees for distributed non-convex optimization that arising in the modern

big data era.

Chapters 2 and 3 represent the first work that investigates the performance of op-

timal first-order non-convex algorithms for distributed information processing and op-

timization problems. We first set our scope by defining the problem, network, and

algorithm classes (P,N ,A) that are under consideration. We then provide a lower

complexity bound that characterizes the worst-case performance for any first-order dis-

tributed algorithm in class A, and finally propose and analyze two algorithms that are

capable of (nearly) achieving the lower bound in various settings. The various bounds

174
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Figure 6.1: Graphical comparison of various bounds analyzed in this work,
illustrated over a path graph with M nodes.

discussed in the work is illustrated in Fig. 6.1 through a M -node path graph as an ex-

ample. To the best of our knowledge, the proposed algorithms in Chapter 3 are the first

and the only available distributed non-convex algorithms in class A that can optimally

reduce both the size of the gradient and the consensus error for (P,N ), and achieving

the (near) optimal rate performance for problem/network classes (P,N ).

In Chapter 4, we proposed a joint gradient estimation and tracking approach (D-

GET) for fully decentralized non-convex optimization problems. By utilizing modern

variance reduction and gradient tracking techniques, the proposed method improves

the sample and/or communication complexities compared with existing methods. In

particular, for decentralized finite sum problems, the proposed approach requires only

O(mn1/2ε−1) sample complexity and O(ε−1) communication complexity to reach the ε

stationary solution. For online problem, our approach achieves an O(mε−3/2) sample

and an O(ε−1) communication complexity, which significantly improves upon the best

existing bounds of O(mε−2) and O(ε−2) as derived in [77]. The main results can be

summarized as in Fig. 6.2.

The second part of the thesis, which includes Chapters 5, introduced a class of

learning-based approaches for modern wireless systems, utilizing the theory and algo-

rithms proposed in part I of the thesis. The key message is: DNNs have great potential as

computationally cheap surrogates of expensive optimization algorithms for quasi-optimal

and real-time wireless resource allocation. In particular, we design a new “learning to

continuously optimize” framework for optimizing wireless resources in dynamic envi-

ronments, where parameters such as CSIs keep changing. By introducing continual
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Figure 6.2: Comparison of the sample and communication complexities for a number of decentralized methods.
Existing deterministic methods enjoy lower sample complexity at smaller sample sizes, but such complexity scales
linearly when the number of samples increases. Stochastic methods generally suffer from high communication
complexity. The proposed D-GET bridges the gap between existing deterministic and stochastic methods, and
achieves the optimal sample and communication complexities. Note that online methods can also be applied for
finite sum problems, thus the actual sample complexity of D-GET is the minimum rate of both cases.

learning (CL) into the modeling process, our framework is able to seamlessly and ef-

ficiently adapt to the episodically dynamic environment, without knowing the episode

boundary, and most importantly, maintain high performance over all the previously

encountered scenarios. The proposed approach is validated through two popular wire-

less resource allocation problems (one for power control and one for beamforming), and

uses both synthetic and ray-tracing based data sets. Simulation results show that our

framework is consistently better than naive transfer learning method, and it achieves

better performance than classical CL based approaches. Our empirical results make us

believe that our approaches can be extended to many other related problems.

6.2 Future Research Directions

Moving forward, I will continue my research on developing machine learning and opti-

mization theories and tools for modern applications. My work represents a preliminary

step towards understanding the capability of distributed non-convex learning and deep

learning for wireless problems. There are many interesting questions to be addressed in

the future, and some of them are listed below:

• Is it possible to merge the inner Chebyshev iteration with the outer dual update to

design a single-loop algorithm and to extend the proposed algorithms to problems



177

with nonsmooth regularizers and constraints?

• Is it possible to design second order methods to further speed up the convergence?

• Is it possible to design global information free algorithms that only require local

structures to initialize the parameters?

• Is it possible to design theoretical results for the proposed stage-wise bilevel opti-

mization problem (5.8) or even the global bilevel optimization problem (5.4)?

• Is it possible to quantify the generalization performance of the proposed fairness

framework?

• How to further reduce the computational complexity of DNNs?

In the end, we live in a highly smart and connected world, and the exponentially

increasing number of smart devices has posed a great challenge for modern distributed

learning tasks. My long-term research objective is to formally establish links between

theoretical limits and design principles of distributed optimization and learning, and

ultimately contribute to the vision of a highly smart and connected world.
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[44] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-agent op-

timization,” IEEE Transactions on Automatic Control, vol. 54, no. 1, pp. 48–61,

2009.

[45] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying directed

graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615,

2015.

[46] W. Shi, Q. Ling, G. Wu, and W. Yin, “Extra: An exact first-order algorithm for

decentralized consensus optimization,” SIAM Journal on Optimization, vol. 25,

no. 2, pp. 944–966, 2014.



183
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[66] A. Nedić, A. Olshevsky, A. Ozdaglar, and J. N. Tsitsiklis, “On distributed av-

eraging algorithms and quantization effects,” IEEE Transactions on Automatic

Control, vol. 54, no. 11, pp. 2506–2517, 2009.

[67] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed optimiza-

tion and statistical learning via the alternating direction method of multipliers,”

Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.

[68] X. Lian, C. Zhang, H. Zhang, C.-J. Hsieh, W. Zhang, and J. Liu, “Can decentral-

ized algorithms outperform centralized algorithms? a case study for decentralized

parallel stochastic gradient descent,” in Advances in Neural Information Process-

ing Systems (NIPS), pp. 5330–5340, 2017.

[69] J. Chen and A. H. Sayed, “Diffusion adaptation strategies for distributed opti-

mization and learning over networks,” IEEE Transactions on Signal Processing,

vol. 60, no. 8, pp. 4289–4305, 2012.

[70] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized gradient

descent,” SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835–1854, 2016.

[71] K. Ali and W. Van Stam, “TiVo: making show recommendations using a dis-

tributed collaborative filtering architecture,” in Proceedings of the International

Conference on Knowledge Discovery and Data Mining (SIGKDD), pp. 394–401,

2004.
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