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Abstract

Meta-analysis is an important and widely used tool for synthesizing information from mul-

tiple independent but related studies. While many meta-analyses, such as those of ran-

domized controlled trials, focus on the synthesis of treatment effects across studies, this

dissertation will focus on the meta-analysis of prevalence and normative data. The first

part of this thesis concerns the multivariate meta-analysis of prevalence data. When con-

ducting a meta-analysis involving prevalence data for an outcome with several subtypes,

each of them is typically analyzed separately using a univariate meta-analysis model. Re-

cently, multivariate meta-analysis models have been shown to correspond to a decrease in

bias and variance for multiple correlated outcomes compared with univariate meta-analysis,

when some studies only report a subset of the outcomes. Chapter 2 of this thesis proposes

a novel Bayesian multivariate random effects model to account for the natural constraint

that the prevalence of any given subtype cannot be larger than that of the overall preva-

lence. Extensive simulation studies show that this new model can reduce bias and variance

when estimating subtype prevalences in the presence of missing data, compared with stan-

dard univariate and multivariate random effects models. The data from a rapid review on

occupation and lower urinary tract symptoms by the Prevention of Lower Urinary Tract

Symptoms Research Consortium are analyzed as a case study to estimate the prevalence

of urinary incontinence and several incontinence subtypes among women in suspected high

risk work environments.

The second part of this thesis concerns estimating a reference range from a meta-analysis.

Clinicians frequently must decide whether a patient’s measurement reflects that of a healthy

“normal” individual. Thus, the reference range is defined as the interval in which some

proportion (frequently 95%) of measurements from a healthy population is expected to fall.

One can estimate it from a single study, or preferably from a meta-analysis of multiple
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studies to increase generalizability. This range differs from the confidence interval for the

pooled mean or the prediction interval for a new study mean in a meta-analysis, which do

not capture natural variation across healthy individuals. Chapter 3 proposes three methods

for estimating the reference range from a meta-analysis of aggregate data that incorporate

both within and between-study variations. The results of a simulation study are presented

demonstrating that the methods perform well under a variety of scenarios, though users

should be cautious when the number of studies is small and between-study heterogeneity is

large. These methods are applied to two examples: pediatric time spent awake after sleep

onset and frontal subjective postural vertical measurements. Chapter 4 provides a guide for

clinicians and epidemiologists explaining the three approaches for estimating the reference

range presented in Chapter 3: a frequentist, a Bayesian, and an empirical method. Each

method is also extended to individual participant data (IPD) meta-analysis, with the latter

being the gold standard when available. These approaches are illustrated using a clinical

scenario about the normal range of a liver stiffness test.
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Chapter 1

Introduction

Meta-analysis allows for the synthesis of results across multiple independent studies and

therefore plays an important role in evidence-based medicine [1, 2]. The number of meta-

analyses published has increased sharply in the past several decades, increasing by 20-fold

between 1994 and 2014 [2]. New methods developed for meta-analysis include those for net-

work meta-analysis, which allows for the synthesis of studies assessing multiple treatments,

and multivariate meta-analysis, which allows for multiple outcomes [3]. In addition, many

methods have been developed for the evaluation of diagnostic tests [4–6]. However, while

meta-analyses often include the results of clinical trials or other experimental data, there are

many examples of meta-analyses of observational data, including prevalence and normative

data [7–14]. Normative data refers to data assumed to be drawn from a predefined healthy

population that can provide a reference when determining whether the measurements or

results in a new population are normal or not [15]. This thesis focuses on methods for

meta-analysis of prevalence data and normative data.

The second chapter of this thesis demonstrates how an arm-based network meta-analysis

model can be applied to the multivariate meta-analysis of prevalence data. It also proposes

a new parameterization that accounts for natural constraints in the data, decreasing bias

and increasing precision. There has been much work investigating the benefits of the joint
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meta-analysis of multiple related outcomes, particularly in the presence of missing data,

due to the multivariate models “borrowing strength” across outcomes [3, 16]. However,

there have only been several previous examples of multivariate meta-analysis of prevalence

data in the literature [10,11,17], none of which have accounted for natural constraints in the

underlying prevalences and observed counts when several outcomes are subsets of an overall

outcome. While Trikalinos et al. [18] proposed a multivariate meta-analysis model using

a multinomial distribution that could be applied for multiple category prevalences if the

outcomes were mutually exclusive, many prevalence outcomes with multiple categories are

not mutually exclusive, such as the proportion of individuals in a study with different types

of food allergies [13]. This is also true for the motivating example described in Chapter 2,

which consists of the results of a systematic review investigating the prevalence of women

in high risk working environments with different non-mutually exclusive types of urinary

incontinence: stress urinary incontinence and urgency urinary incontinence [19].

Chapter 3 proposes methods for establishing reference ranges for continuous measure-

ments from meta-analyses of normative data and illustrates them through several case stud-

ies. A reference range is defined as an interval that captures some predefined proportion

of measurements (such as 95%) from a healthy population that can serve as a reference for

future comparison. Alternatively, it can be defined as a prediction interval for the measure-

ment of a new individual [20, 21]. Previously, no guidance has existed in the literature for

how to estimate a reference range from a meta-analysis, particularly when only aggregate

data are available for each study. When conducting a meta-analysis to estimate a reference

range, practitioners can expect to have information on the observed mean, standard devia-

tion, and sample size of measurements from each study. There may also be some aggregate

demographic information, such as the proportion of males and females in the study, or the

mean age of participants. However, individual participant data (IPD) often are not avail-

able. Therefore, it is important to develop methods that allow for estimating a reference

range based only on the aggregate data. Chapter 3 will propose three such methods: one
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frequentist, one Bayesian, and one empirical, and demonstrate their performance through

simulations.

Finally, while Chapter 3 proposes three methods to estimate the reference range from a

meta-analysis, filling an important gap in the literature, it is aimed at a statistical, rather

than clinical audience. Therefore, in Chapter 4, we provide a guide for clinicians and

epidemiologists that introduces practitioners to the three methods proposed in Chapter 3.

This also demonstrates how these methods can be extended in the case IPD are available.

The differences between a reference range, a confidence interval for the pooled mean, and the

prediction interval for a new study mean are further explained, as some practitioners have

previously reported the pooled mean and its corresponding confidence interval as a“reference

value.” This chapter also considers ideas such as heterogeneity and applicability. When

estimating a reference range, it is important to carefully consider the target population

and establish inclusion and exclusion criteria that ensure the reference range will apply

to the population of interest. However, if the population of interest consists of several

distinct subgroups with different normal measurements, separate reference ranges for these

subgroups would likely be more informative. These concepts are illustrated through a

clinical scenario regarding the normal range for a non-invasive liver stiffness test.

Chapter 5 summarizes the findings in the previous chapter and describes future work

related to these topics.
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Chapter 2

A Bayesian Multivariate Meta-Analysis

of Prevalence Data

2.1 Introduction

Meta-analysis plays an important role in synthesizing evidence from multiple sources, sup-

porting the recent rapid growth of “evidence-based medicine” [1]. Multivariate and network

meta-analysis (NMA) methods have been developed for meta-analyses of data consisting of

multiple outcomes, multiple treatments, or multiple diagnostic tests [3, 6, 18, 22–30]. NMA

uses both indirect and direct comparisons of multiple treatments within a network, while

multivariate meta-analysis allows for the joint analysis of multiple outcomes by incorpo-

rating information about their correlations [25, 27]. These models are therefore able to use

information normally unavailable when each treatment or outcome is analyzed separately, a

statistical concept known as “borrowing strength” that is particularly useful in the presence

of missing data [16,24,31]. For example, Williams and Bürkner (2017) [32] jointly modeled

the effects of intranasal oxytocin on multiple symptoms of schizophrenia in a Bayesian mul-

tivariate meta-analysis, resulting in increased precision compared to previous analyses that

modeled symptoms separately.
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Multivariate meta-analysis models have also been increasingly used in the evaluation of

diagnostic tests, as they allow for the joint modeling of accuracy indices such as sensitivity

and specificity [4, 5, 33–35]. The use of NMA in meta-analyses of clinical trials assessing

multiple treatments has also increased sharply over the past decade [27, 36, 37]. However,

many practitioners conducting systematic reviews involving multiple correlated outcomes of

interest still analyze these individually using separate univariate models, thus ignoring any

correlations between outcomes. Riley (2009) [16] suggested that reasons for this hesitancy

may include “tradition, the increased complexity of the multivariate approach, the need for

speciali[zed] statistical software and a lack of understanding of the consequences of ignoring

correlation in meta-analysis”, which are all still relevant issues.

This widespread use of separate univariate models is especially prevalent in the context

of observational data. For instance, we found only three examples of multivariate meta-

analysis of observational data in the literature: 1) Fawcett et al. (2018) [10] presented

a multivariate method that used data on prevalences of individual disorders in order to

estimate their overall prevalence. To our knowledge, this is the only study to perform a

multivariate meta-analysis of prevalence and incidence data. 2) The Fibrinogen Studies

Collaboration (2009) [11] used a bivariate random effects meta-analysis in order to jointly

model partially and fully adjusted estimates of the association between fibrinogen level and

incidence of coronary heart disease, and 3) Lin and Chu (2018) [17] proposed a Bayesian

multivariate meta-analysis simultaneously analyzing multiple factors. While meta-analyses

are most frequently conducted in order to estimate effect sizes such as odds ratios (OR’s),

risk differences, or mean differences, they can also be used to estimate the pooled disease fre-

quency such as incidence rates and prevalence proportions [38]. This may include multiple

related outcomes consisting of an overall prevalence and several subtypes of the measured

outcome. For example, Rona et al. (2007) [13] conducted univariate meta-analyses estimat-

ing the prevalence of any food allergy as well as the prevalences of specific types such as

allergies to peanuts and shellfish. Similarly, Williams et al. (2006) [14] separately estimated
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the prevalences of typical autism and all autism spectrum disorders (ASD). For this type

of data, it is reasonable to expect that the prevalence of any given subtype will be both

correlated with and constrained by the overall prevalence. Therefore, these outcomes are

not independent. Additionally, the subtypes measured in observational data may be par-

ticularly susceptible to outcome reporting bias (ORB). If a study is smaller or performed

in a population in which the overall prevalence is expected to be lower, investigators may

be more likely to only report the overall outcome [18].

Multivariate meta-analysis models have been shown to be effective in reducing ORB

when there is correlation between outcomes, in addition to providing more precise estimates

in the presence of missing data [16,18,27,31,39]. Modeling multiple correlated prevalences

using univariate models ignores studies in which each particular prevalence is not reported.

This can result in biased estimates if any of the studies are subject to ORB. Instead, mul-

tivariate models allow us to “borrow” information on missing observations across outcomes

using the within-study correlations [27]. However, one reason that practitioners may be

reluctant to use multivariate meta-analysis methods, is that these within-study correlations

have to be estimated [3]. In this paper, we address that issue through the use of a Bayesian

multivariate meta-analysis framework. This framework also gives us greater flexibility in

parameterizing the multivariate random effects model. Prevalences of individual subtypes

are subject to the natural constraint that they cannot be larger than the overall prevalence.

While Trikalinos et al. (2013) [18] jointly modeled multiple categorical outcomes that are

mutually exclusive or subsets of each other using a multinomial distribution, our method

differs in that the multiple subtypes modeled need not imply a set of mutually exclusive

categories. We introduce a case study as a motivating example in Section 2.2. We then

present fully Bayesian univariate and multivariate models for estimating the prevalence of

each outcome in Section 2.3, including a novel parameterization of the multivariate random

effects model that accounts for the natural constraints in the data, thereby incorporating

additional information into the model. We then compare these three different approaches in
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simulation studies (Section 2.5) and when applied to the case study (Section 2.6). Section

2.6.2 presents a sensitivity analysis of the missing at random (MAR) assumption for the

case study. Section 2.7 gives a brief discussion of these results.

2.2 A Motivating Study

Recently, members of the PLUS research consortium [40] conducted a rapid review of studies

reporting lower urinary tract symptoms in women in suspected high risk working environ-

ments [19]. Of the studies collected, 26 report the overall number of women in the study as

well as the number experiencing any form of urinary incontinence (UI). Additionally, many

studies provide data on two subtypes of UI: stress urinary incontinence (SUI) and urgency

urinary incontinence (UUI). We present the data in Table A.1, which was not included in

the original paper by Markland et al. (2018) [19]. Let yi0, yi1, and yi2 denote the number

of women experiencing any UI, SUI and UUI in study i, respectively, and let ni denote

the total number of women in each study. While all studies provide counts for the total

number of women experiencing any urinary incontinence, many studies do not report one

or both subtype counts. We note that yi0 ≥ yi1, yi2 and the counts for each subtype do

not necessarily sum to the overall UI count when they are all reported, as they are not

mutually exclusive. Therefore a model based on a multinomial distribution such as that

used by Trikalinos et al. (2013) [18] would not be appropriate. Our goal is to estimate

the population-averaged marginal prevalence of urinary incontinence (π0), as well as that

of each subtype (π1, π2).

Currently, standard practice would be to estimate each prevalence individually, using

univariate random-effects models. However, it is reasonable to expect that the prevalences of

the different subtypes of urinary incontinence outcomes will be correlated with one another,

in addition to being correlated with the overall prevalence. This can allow us to use data

from non-missing outcomes to address ORB and increase the precision of our pooled subtype

estimates. Therefore, we first fit a Bayesian multivariate random effects model in order to
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incorporate information about the correlations between the UI outcomes (π0, π1, π2). We

then compare these results to those found using a novel parameterization of the model that

incorporates the natural constraint that π0 ≥ π1, π2. Finally, we compare the results found

using both of these models to those found using separate univariate random effects models.

2.3 Methodology

2.3.1 A univariate random effects model

As mentioned previously, one way to model the overall and subtype prevalences of a con-

dition, is to model each using separate univariate random effects models [41]. In using

random effects models, we assume that the true prevalences vary across studies. Let πij be

the probability of having the jth outcome in study i ∈ {1, ..., N}, where j ∈ {0, 1, ..., J},

and let ni be the number of participants in study i. Here, πi0 refers to the overall prevalence

in study i, while πi1, ..., πiJ refer to the J subtype prevalences. Let Si be the set of outcomes

that are reported in study i, and Di = {(yij , ni), j ∈ Si} denote the available data from

study i. Let φ(z) and Φ(·) denote the probability density function and cumulative density

function (CDF) of the standard normal distribution, respectively. If we use a probit link

function to separately model the number of cases yij for each of the J + 1 total outcomes,

we have

yij ∼ Binomial(ni, πij),Φ
−1(πij) = µj + vij , vij ∼ N(0, σ2

j ), j ∈ Si, i = 1, ..., N, (2.1)

where µj is the fixed effect for each outcome, while vij is the random effect for outcome j

within study i. Therefore, σj describes the between-study variability in outcome j. If we

assume that conditional on the πij ’s, the yij ’s are independent, this gives us the following

observed data likelihood function combining the J + 1 independent random effects models:
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L1 ∝
N∏
i=1

∏
j∈Si

∫ ∞
−∞

[Φ(µj + σjz)]
yi [1− Φ(µj + σjz)]

ni−yiφ(z)dz. (2.2)

The population averaged prevalence for each outcome can be estimated as πj = E[πj |µj , σj ] =

Φ

(
µj√
1+σ2

j

)
[30], j ∈ {0, 1, ..., J}.

2.3.2 A multivariate random effects model

We can extend this univariate approach to jointly estimate the prevalences for multiple

outcomes, using a multivariate Bayesian random effects model. This incorporates the corre-

lations between outcomes to improve estimation when missing data are present, otherwise

known as borrowing strength. Zhang et al. (2014) [30] present a hierarchical Bayesian ran-

dom effects model with a probit-link in the context of “arm-based” network meta-analysis.

In “arm-based” NMA, the focus is on calculating the event probabilities for each treat-

ment arm [30, 42, 43]. Therefore, we adapt this framework in order to estimate the event

probabilities for our overall outcome and each of the subtypes, treating them as separate

“arms.”

We first let each yij be independently binomially distributed, conditional on πij . We

then let the probit-transformed (πi0, ..., πiJ)T follow a multivariate normal distribution:

yij ∼ Binomial(ni, πij)

[Φ−1(πi0),Φ−1(πi1), ...,Φ−1(πiJ)]T = (µ0 + vi0, µ1 + vi1, ..., µJ + viJ)T ,

vi = (vi0, vi1..., viJ)T ∼MVN(0,ΣJ+1), j ∈ Si,

(2.3)

where ΣJ+1 = diag(σ)RJ+1diag(σ). RJ+1 is the within-study correlation matrix and

the σ2
j terms capture the between study variation in each outcome. Let Lij denote the

conditional likelihood given vij , defined as

Lij(yij ;µj , vij) = [Φ(µj + vij)]
yij [1− Φ(µj + vij)]

ni−yij . (2.4)
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Then the observed data likelihood function can be written as follows:

L2 ∝
N∏
i=1

∫
RJ

∏
j∈Si

Lij(yij ;µk, vij)

 exp(−1
2vTi Σ−1

J+1vi)

(2π)(J+1)/2|ΣJ+1|1/2
dvi, (2.5)

where RJ is the J-dimensional real space. The population averaged prevalence for each

outcome can be estimated using the same method used in the univariate model as πj =

Φ

(
µj√
1+σ2

j

)
, j ∈ {0, 1, .., J}.

2.3.3 A new multivariate random effects model accounting for the natural con-

straint

While the above multivariate model allows us to incorporate information about the correla-

tion between outcomes into our estimation of the population-averaged prevalences, it fails

to account for the natural constraint in the data when we model an overall outcome along

with the prevalence of different subtypes. We present a different parameterization of the

previous model in order to account for this natural constraint: yi0 ≥ yi1, yi2, ..., yiJ , without

requiring the subtypes be mutually exclusive.

First, let yi0 be binomially distributed with parameter πi0 as for the other two ap-

proaches. Then, let pij denote the proportion of cases in study i that fall into the subtype

j ∈ {1, ..., J}. Therefore, yij is binomially distributed with denominator yi0 and probability

pij . Let µ0 denote the fixed effect for the overall outcome, and vi0 are the within-study

random effects for this overall outcome. Let µ∗j be the fixed effect corresponding to the

proportion of outcomes that fall into subtype j and the v∗ij ’s be the corresponding random

effects. We again use a probit link function to model πi0 and pij :

yi0 ∼ Binomial(ni, πi0),Φ−1(πi0) = µ0 + vi0,

yij ∼ Binomial(yi0, pij),Φ
−1(pij) = µ∗j + v∗ij , j ∈ {1, ..., J}, j ∈ Si,

v∗i = (vi0, v
∗
i1, ..., v

∗
iJ)T ∼MVN(0,Σ∗J+1),

(2.6)
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where Σ∗J+1 = diag(σ∗)R∗J+1diag(σ∗). R∗J+1 is the within-study correlation matrix

and the σ∗2j terms capture the between study variation in the overall outcome and proportion

of events that fall into each subtype. The key difference between ΣJ+1 and Σ∗J+1 is that the

final J variance components σ∗21 , ..., σ
∗2
J in Σ∗J+1 describe the within-study random effects

in the proportions of the overall outcome that fall into the individual subtypes (v∗i1, ..., v
∗
iJ)T ,

while σ2
1, ..., σ

2
j in ΣJ+1 describe the within-study random effects in the prevalences of the

individual subtypes (vi1, ..., viJ)T . Furthermore, the correlation terms between subtypes can

be interpreted as reflecting the correlation between the subtype event rates, conditional on

the overall count in each study.

This results in the following observed data likelihood function:

L3 ∝
N∏
i=1

∫
RJ

∏
j∈Si

Lij(yij ;µ
∗
k, v
∗
ij)

 exp(−1
2v∗Ti Σ−1

J+1v
∗
i)

(2π)(J+1)/2|Σ∗J+1|1/2
dv∗i, (2.7)

where the conditional likelihood Li0 is defined as

Li0(yi0;µ0, vi0) = [Φ(µ0 + vi0)]yi0 [1− Φ(µ0 + vi0)]ni−yi0 , (2.8)

and the conditional likelihood Lij for j ∈ {1, ..., J} is defined as

Lij(yij ;µ
∗
j , v
∗
ij) =

[
Φ(µ∗j + v∗ij)

]yij [1− Φ(µ∗j + v∗ij)
]yi0−yij . (2.9)

We can then estimate π0 by:

π0 = E[πi0|µ0, σ0] =

∫ ∞
−∞

Φ(µ0 + σ0z)φ(z)dz = Φ

(
µ0/
√

1 + σ2
0

)
, (2.10)

where Φ(·) denotes the standard normal cumulative distribution function, Z ∼ N(0, 1), and

φ(·) is the density of the standard normal distribution. Let (X,Y ) be a standard bivariate

normal with covariance CovX,Y = 1√
1+σ2

0

√
1+σ∗2

j

Σ∗1,j+1. As shown in the Supplementary

11



Materials, we can estimate πj = E[πi0pij |µ0, µ
∗
j , σ0, σ

∗
j ], j ∈ {1, .., J} using:

πj =

∫ ∞
−∞

∫ ∞
−∞

Φ(µ0 + σ0z0)Φ(µ∗j + σ∗j zj)φ(z0, zj)dz0dzj

= P

X <
µ0√

1 + σ2
0

, Y <
µ∗j√

1 + σ∗2j

 .

(2.11)

This new parameterization of the multivariate random effects model truncates the density

of each study-level subtype prevalence at the current estimate for the overall prevalence.

We hypothesized that this would decrease bias and increase precision when estimating the

population-averaged subtype prevalences.

2.3.4 Prior specifications

We use Markov chain Monte Carlo (MCMC) methods to obtain Bayesian posterior esti-

mates for each πj and Σ∗J+1, with N(0, 1000) priors for each µj . For the univariate models,

we put a Unif(0, 10) prior on each σj . The inverse-gamma(ε, ε), where ε is small, has pre-

viously been a popular choice of prior for σ2
j , as it is conditionally conjugate [44]. However,

the results can be sensitive to the choice of ε, particularly for small σ [44]. We use the

same choice of priors with a spherical decomposition for both Σ∗J+1 and ΣJ+1. The com-

monly used conjugate inverse-Wishart prior for the precision matrix of multivariate normal

random vectors can result in inflated estimates of the variances and shrinkage of the corre-

lations towards zero, particularly when the true variances are small [29, 45]. Thus, we use

a separation strategy [46] in order to specify the priors on ΣJ+1 and Σ∗J+1, which involves

modeling the variance and correlation components separately. Specifically, in this case we

use the spherical decomposition described by Lu and Ades (2009) [47] and Wei and Higgens

(2013) [29] and implemented in the “pcnetmeta” R package [48], with Unif(0, π) priors on

the coordinate parameters [47].
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2.4 Missing at random (MAR) assumption

While these methods do not require that all studies measure each outcome, they do require

the assumption that the data are missing at random (MAR). That is, the probability of

an outcome being measured for any given study may depend only the observed outcomes

for that study. Since we are currently assuming that the overall outcome is observed for

all studies, when we simulate data that are MAR, we let the probability of being missing

depend only on the overall prevalence.

To illustrate, let mij = 1 if the number of events yij for the jth outcome of the ith study

is not reported. We can then model the probability that mij = 1 by:

logit (P (mij = 1)) = α0j + α1jf(πi0) + α2jg(πij), (2.12)

where f(·) and g(·) can be any functions. The specific functions we used in our simulation

studies are described in Section 2.5.1. The likelihood function modeling the missing data is

Lm ∝
∏N
i=1

∏J
j=1 P (mij = 1)mij [1 − P (mij = 1)]1−mij . Multiplying the likelihood for the

observed data as in equation (2.5) or (2.7) with Lm, we obtain the total likelihood function

which incorporates the missing mechanism. If the data are missing completely at random

(MCAR), then α1j = α2j = 0, and the probability of the jth outcome being missing is

some constant determined by α0j . If the data are missing at random, then α2j = 0 and the

probability of being missing only depends on the underlying event rates for the data that

are fully observed. Finally, if α2j 6= 0, then the data are missing not at random (MNAR),

since the probability of an outcome being missing depends directly on the underlying event

rate. We can evaluate the impact of the missing data assumptions by simulating patterns

of missingness that correspond to different values of α1j and α2j .
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2.5 Simulation Studies

2.5.1 Methods of simulation

In order to compare the performance of the univariate models, the standard multivariate

model, and the new multivariate model, we performed two main sets of simulations: one

with data for the two subtypes under MCAR and one under MAR. For each setting, we

simulated 2000 data sets containing 30 studies. Each data set contains the overall count

for each study (yi0), the counts for two subtypes (yi1, yi2), and the overall number of par-

ticipants in each study (ni). We let yi0 be distributed binomial with denominator ni and

success probability πi0, and yi1 and yi2 each be distributed binomial with denominator yi0

and success probabilities pi1 and pi2, respectively. The
(
Φ−1(πi0),Φ−1(pi1),Φ−1(pi2)

)
are

distributed as a multivariate normal with different variances. For simplicity, we let all of

the pairwise correlations be identical and equal to ρ. The overall count yi0 is observed

in all studies, while the mean probabilities of missing each subtype across all studies, m̄.1

and m̄.2 are 0.5. Each condition is repeated twice, with ni, the sample size for each study,

equal to 100 or 500. All models are fit using JAGS version 4.3.0 [49], run using R version

3.3.3 [50] and packages “rjags” [51] and “coda” [52], and consist of 2 independent chains with

20,000 samples each. We also use a burn-in period of 5,000 samples and a thinning interval

of 2. The 2,000 simulations for each condition were run in parallel using the Minnesota

Supercomputing Institute (MSI) resources.

We first simulated data for 30 studies (N = 30), where observations for the two subtypes

(yi1; yi2) were all MCAR with probability 0.5. We set the pairwise correlations between

Φ−1(πi0), Φ−1(pi1), Φ−1(pi2) to all be equal to ρ, which had possible values of (0, 0.4, 0.8).

The (σ0, σ1, σ2) were set to be either (0.5, 0.5, 0.5) or (0.5, 1, 1). The µ0, µ1 and µ2

are set such that the population-averaged prevalence (π0, π1, π2) were equal to (0.3, 0.15,

0.05), respectively. This corresponded to 6 different conditions, which we repeated with

ni = (100, 500) for each of the 30 studies, for a total of 12 conditions. To investigate the
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performance of proposed methods under small number of studies, we also included a set of

simulations when the number of studies N = 10 and the sample size per study ni = 100,

giving an additional 6 scenarios.

Second, we repeat each of the MCAR conditions described above, but with yi1 and yi2

under MAR and the marginal probability of being missing across all studies P (mij = 1) =

0.5 for j = 1, 2. We let the probability of missingness for the jth subtype of the ith study,

P (mij = 1) depend on πi0, the observed overall study-specific prevalence. For simplicity,

we assume P (mi1 = 1) = P (mi2 = 1), since these only depend on the overall study-specific

prevalence. From equation (2.12), we let α0j = logit(0.5), α1j = 3, j = 1, 2, and f(πi0) =

logit(πi0)− logit(π̄i0) such that P (mij = 1) is inversely proportional to the difference in the

logit of overall study-specific prevalence and its mean, i.e.,

P (mij = 1) = logit−1(logit(0.5)− 3(logit(πi0)− logit(π̄.0)). (2.13)

Therefore, studies with smaller prevalence will be more likely to be missing, leading to ORB

as described in Section 2.1.

Finally, we also repeated each of the 6 conditions where ni = 100 for the case were

there were no missing data. This included separate cases where each data set included 30

studies or 10 studies. Overall, this corresponded to 18 MCAR and MAR conditions and 12

no missing data conditions, for a total of 48 conditions.
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Table 2.1: (N = 30, ni = 100, MCAR) Bias, 95% credible interval width (CIW) and

coverage probability (Cov.) for univariate model, original multivariate model, and new

parameterization, across 2000 simulations containing 30 studies, where ni = 100, the true

prevalences are (0.3, 0.15, 0.05), and data are missing completely at random (MCAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5), ρ = 0

Univariate 0.003 0.121 0.95 0.009 0.127 0.96 0.008 0.078 0.96

Original 0.003 0.122 0.96 0.007 0.102 0.95 0.008 0.071 0.95

New Param. 0.004 0.124 0.96 0.002 0.097 0.95 0.005 0.061 0.95

σ = (0.5, 0.5, 0.5), ρ = 0.4

Univariate 0.003 0.121 0.95 0.010 0.143 0.97 0.011 0.094 0.97

Original 0.003 0.122 0.96 0.007 0.109 0.96 0.009 0.076 0.95

New Param. 0.004 0.124 0.96 0.003 0.103 0.95 0.006 0.066 0.94

σ = (0.5, 0.5, 0.5), ρ = 0.8

Univariate 0.002 0.121 0.96 0.012 0.158 0.97 0.013 0.105 0.96

Original 0.002 0.121 0.95 0.006 0.114 0.96 0.007 0.074 0.96

New Param. 0.003 0.122 0.96 0.004 0.107 0.96 0.005 0.066 0.95

σ = (0.5, 1, 1), ρ = 0

Univariate 0.002 0.121 0.95 0.013 0.162 0.96 0.018 0.132 0.97

Original 0.003 0.123 0.96 0.012 0.146 0.95 0.021 0.133 0.95

New Param. 0.004 0.124 0.96 0.001 0.121 0.96 0.010 0.089 0.95

σ = (0.5, 1, 1), ρ = 0.4

Univariate 0.002 0.121 0.96 0.015 0.183 0.97 0.023 0.153 0.97

Original 0.003 0.123 0.96 0.012 0.152 0.96 0.022 0.137 0.95

New Param. 0.004 0.124 0.96 0.003 0.129 0.96 0.011 0.097 0.95

σ = (0.5, 1, 1), ρ = 0.8

Univariate 0.002 0.121 0.96 0.018 0.203 0.97 0.025 0.166 0.96

Original 0.002 0.121 0.96 0.010 0.148 0.96 0.018 0.123 0.96

New Param. 0.003 0.122 0.96 0.004 0.132 0.95 0.011 0.096 0.95

2.5.2 Simulation results

Table 2.1 summarizes the results where N = 100 and approximately 50% of the subtype data

are MCAR across studies. All three models gave similar results for the fully observed overall

outcome, with the univariate model having slightly less bias and shorter credible intervals

than the two multivariate models. However, using the new parameterization reduced both
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bias and 95% credible interval width (CIW) for the two subtypes under all conditions,

outperforming both the univariate and original multivariate models. This reduction in bias

and CIW for the two subtypes became larger as both ρ and the subtype variance increased.

The original multivariate model still reduced bias and CIW over the univariate approach,

except when ρ = 0, where it corresponded to a larger bias, CIW, or both. We observe

qualitatively similar results for each condition when N = 500, as well as the conditions

where each data set contained only 10 studies, which are given in Tables A.2 and A.4 in the

Supplementary Materials, respectively.
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Table 2.2: (N = 30, ni = 100, MAR) Bias, 95% credible interval width (CIW) and cov-

erage probability (Cov.) for for univariate model, original multivariate model, and new

parameterization, across 2000 simulations containing 30 studies, where ni = 100, the true

prevalences are (0.3, 0.15, 0.05), and data are missing at random (MAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5), ρ = 0

Univariate 0.003 0.121 0.95 0.064 0.127 0.38 0.027 0.081 0.65

Original 0.003 0.123 0.96 0.017 0.121 0.94 0.014 0.089 0.93

New Param. 0.004 0.124 0.96 0.002 0.092 0.96 0.005 0.057 0.96

σ = (0.5, 0.5, 0.5), ρ = 0.4

Univariate 0.003 0.121 0.95 0.078 0.150 0.35 0.037 0.102 0.56

Original 0.003 0.122 0.96 0.014 0.116 0.94 0.013 0.080 0.94

New Param. 0.004 0.124 0.96 0.005 0.099 0.95 0.007 0.060 0.96

σ = (0.5, 0.5, 0.5), ρ = 0.8

Univariate 0.003 0.121 0.96 0.092 0.161 0.27 0.045 0.108 0.42

Original 0.003 0.121 0.95 0.013 0.113 0.94 0.010 0.070 0.95

New Param. 0.003 0.122 0.96 0.008 0.104 0.95 0.007 0.058 0.94

σ = (0.5, 1, 1), ρ = 0

Univariate 0.003 0.121 0.95 0.068 0.189 0.65 0.040 0.159 0.83

Original 0.004 0.124 0.96 0.032 0.195 0.95 0.038 0.185 0.93

New Param. 0.004 0.124 0.96 0.002 0.114 0.96 0.011 0.084 0.95

σ = (0.5, 1, 1), ρ = 0.4

Univariate 0.003 0.121 0.96 0.090 0.202 0.50 0.052 0.171 0.67

Original 0.004 0.123 0.96 0.025 0.172 0.95 0.029 0.152 0.93

New Param. 0.005 0.124 0.97 0.007 0.123 0.96 0.013 0.087 0.95

σ = (0.5, 1, 1), ρ = 0.8

Univariate 0.003 0.121 0.96 0.112 0.210 0.34 0.063 0.173 0.55

Original 0.003 0.121 0.96 0.016 0.141 0.93 0.016 0.104 0.95

New Param. 0.004 0.123 0.96 0.011 0.128 0.94 0.011 0.084 0.94

The reduction in bias for the two subtypes for the two multivariate parameterizations

increased when the data were MAR, as shown in Table 2.2 (N = 100) and Table A.3 (N =

500). This includes the conditions in the MCAR scenarios (where ρ = 0) where the original

multivariate model sometimes had larger bias than the univariate models for the subtype

outcomes. In the MAR case where ρ = 0, σ = (0.5, 1, 1), and N = 100, using the original
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multivariate parameterization reduced bias by 52.9% and 5.0% for subtypes 1 and 2, respec-

tively, while using the new parameterization reduced it by 97.1% and 72.5%, respectively,

when compared to the univariate models. As expected, the coverage probabilities for the

univariate models were quite low when the data were MAR (as low as 23.4% for the N =

500, σ = (0.5, 0.5, 0.5), ρ = 0.8 scenario). We again observed similar results when N = 10

(Table A.5).

The results for the cases where there were no missing data are presented in Tables

A.6 and A.7 in the Supplementary Materials for N = 30 and N = 10, respectively. Here,

the original multivariate model provided little to no benefit over using separate univariate

models. Under many conditions, this model had larger bias and wider credible intervals on

average than the separate univariate models. We hypothesize that without any missing data,

the original multivariate model’s ability to borrow information across outcomes may not

make up for the additional model complexity. These results are also consistent with previous

literature [16, 31]. However, the new parameterization still had reduced bias and credible

interval widths even without missing data. We hypothesize that this is due to the reduction

in density where the subtypes would have greater prevalence than the overall outcome.

Furthermore, in the case where the subtype outcomes are distributed as binomial with the

denominator equal to the overall count, the probit (or logit) transformed prevalences likely

do not follow a normal distribution. This could further explain the reduction in bias found

with the new parameterization.

In summary, using the two multivariate parameterizations did not improve performance

when focusing solely on estimating the overall prevalence. However, these models improved

estimation of the prevalences of the two subtypes over using separate univariate models,

particularly under the MAR conditions, with the new parameterization outperforming the

original multivariate model under all conditions.
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2.6 The Case Study

2.6.1 Results under missing at random assumption

Table 2.3a presents estimates of the overall urinary incontinence (UI) prevalence and that of

each subtype (SUI, UUI) found using separate univariate models, the multivariate model,

and the new parameterization accounting for the subtype constraint. Each model was

fit using 3 independent chains with 250,000 samples each and a burn-in period of 5,000

samples. We used a substantially larger number of iterations for the case study in order

to generate smooth plots of the estimated density of the posterior predictive distribution.

We also report the posterior mean and standard deviation of the between study variances

and the correlations between outcomes in Table 2.3b. We expect the estimates of the

covariance matrices to differ between the two parameterizations, since the random effects

for the subtypes in the new parameterization refer to the variability in the proportion

of overall cases that fall into that subtype, rather than the variability in study specific

prevalence.
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Table 2.3: Case Study Results

Model UI CIW SUI CIW UUI CIW

Univariate 0.274 (0.024) 0.096 0.127 (0.022) 0.088 0.066 (0.021) 0.082

Multivariate 0.275 (0.025) 0.098 0.128 (0.022) 0.088 0.064 (0.019) 0.072

New Parameterization 0.275 (0.025) 0.099 0.123 (0.02) 0.078 0.061 (0.016) 0.064

(a) Posterior mean (SD) of marginal prevalences for overall outcome (UI) and two subtypes (SUI, UUI) with

corresponding 95% credible interval width (CIW)

σ̂1 σ̂2 σ̂3

Univariate 0.383 (0.060) 0.435 (0.089) 0.607 (0.131)

Multivariate 0.394 (0.062) 0.457 (0.093) 0.6 (0.121)

σ̂∗1 σ̂∗2 σ̂∗3

New Param. 0.399 (0.064) 0.755 (0.160) 0.683 (0.157)

ρ̂12 ρ̂13 ρ̂23

Multivariate 0.462 (0.204) 0.681 (0.158) 0.395 (0.220)

ρ̂∗12 ρ̂∗13 ρ̂∗23

New Param. -0.115 (0.249) 0.364 (0.233) 0.103 (0.270)

(b) Posterior mean (SD) of components in estimated covariance matrices for original

multivariate model and new parameterization (Σ̂, Σ̂∗)

All three models gave similar results for the overall prevalence of UI. The estimates of

the SUI prevalence differed slightly across the three models, with the new parameterization

giving the smallest estimate. The proportion falling into the SUI subtype also had low

correlation with the overall outcome under the new parameterization (-0.115) and larger

variance (0.755). The 95% credible interval was wider for the original parameterization,

than the univariate model, similar to the σ = (0.5, 1, 1) and ρ = 0 scenarios from Section
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2.5.2. However, the new parameterization still reduced 95% credible interval width by 11.4%

compared to the univariate model.

The estimated marginal prevalence of UUI was highest under the univariate model, and

lowest under the new parameterization. The proportion falling into the UUI category had

a higher estimated correlation with the overall outcome under the new parameterization

(0.364) and slightly lower estimated variance (0.600) when compared to the SUI outcome.

Jointly modeling the outcomes resulted in a 12.2% and 22.0% reduction in 95% credible

interval width for the original and new multivariate parameterizations, respectively. Based

off of the original model, the estimated unconditional correlation between the SUI and

UUI subtypes was relatively low (0.395). As estimated by the new parameterization, the

estimated correlation conditional on the overall count was even smaller (0.103).

Figure 2.1 presents forest plots for each outcome, showing the shrunken estimates for

the study-level prevalences under the three different models. The estimates and credible

intervals are similar across all three methods for the overall prevalence of UI, as well for the

subtypes in studies where the given outcome is observed. While the univariate model cannot

estimate study level prevalence for unobserved subtypes, the two multivariate parameter-

izations can do so using information from the correlations and observed outcomes. The

new parameterization gave narrower credible intervals than the original multivariate model

when estimating subtype prevalence corresponding to the unobserved outcomes. Similarly,

Figure A.1 presents posterior density plots for each outcome, by model. This illustrates the

reduction in density at larger values when using the new parameterization.

22



Figure 2.1: Forest Plot of Study Level Estimates Posterior mean and 95% credible interval

of marginal and study level prevalences for each of the three outcomes across 26 studies
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(b) Study Level Estimates of SUI Prevalence for Each Model
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(c) Study Level Estimates of UUI Prevalence for Each Model
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Figure 2.2: Bivariate Density Plots for Predicted Prevalences in New Study (a) Overall

and SUI posterior predicted prevalences for new study based on original multivariate model

results, (b) Overall and UUI with original multivariate model, (c) Overall and SUI with

new parameterization, (d) Overall and UUI with new parameterization
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We further investigated this reduction in joint density by the new parameterization using

the posterior predictive bivariate density plots, as shown in Figure 2.2. We estimated these

posterior predictive distributions by drawing a random sample representing the prevalences

of a future study from the joint posterior distributions of parameters at each of the 750,000

total iterations. Of the samples generated according to the results from the original mul-

tivariate model, 64 samples and 1 sample gave estimates where the overall UI prevalence

was smaller than the corresponding estimates for the SUI and UUI prevalences, respectively.

The new parameterization on the other hand specifically prevents this from occurring, which

explains the reduction in density between (a) and (c) in Figure 2.2. Finally, we tested the

sensitivity to the choice of the separation strategy prior on the covariance matrix by rerun-

ning the two multivariate models using an inverse-Wishart prior. The results are included in

Table A.8 in the Supplementary Materials, and are similar to those found using the previous

choice of prior.
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Figure 2.3: Sensitivity Analysis Posterior mean and 95% credible intervals for UI, SUI, and

UUI marginal prevalence across values of α2
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2.6.2 Sensitivity analysis results under MNAR

When fitting each model, we assume that the probability of each study missing a subtype

outcome does not directly depend on the underlying prevalence. As we cannot directly test

whether the data are MNAR, we conduct a sensitivity analysis assuming several different

patterns of missingness to evaluate the impact of different degrees of MAR violations. We

assume that mij ∼ Ber(qij), where qij is the probability of subtype j for study i being
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missing. Specifically, we specify a logistic model for qij as logit (qij) = α0j + α2jπij , where

α2j is not identifiable. Instead, we specify values for α2j ∈ [−2, 2], with increments of 0.1

and observe how the estimates of the marginal prevalences π0, π1, π2 vary when (2.12) is

incorporated into the likelihoods for the original multivariate model (2.5) and new param-

eterization (2.7). For simplicity, we let α21 = α22 = α2 for each α2j ∈ [−2, 2].

Figure 2.3 presents the posterior means and 95% credible intervals of π0, π1, and π2 for

the two models under each value of α2 ∈ [−2, 2]. As expected, the posterior mean for the

overall UI prevalence (π0) remained approximately constant across values of α2, since it

is fully observed. However, the posterior means for the two subtype prevalences (π1, π2)

generally increased with α2. Larger values of α2 corresponded to studies with larger πij

missing with higher probability, thus the estimated prevalence became larger in order to

incorporate this fact. The posterior mean of π1 ranged from (0.123, 0.133) and from (0.120,

0.126) for the original and new parameterizations, respectively, while the posterior mean

of π2 ranges from (0.061, 0.067) and from (0.059, 0.064). Therefore, violating the MAR

assumption to this extent led to a slightly larger difference in estimates for the original

model than for the new parameterization. We also note that the upper limit of the 95%

credible interval from the new parameterization is consistently lower than that from the

original model for the SUI and UUI panels of Figure 2.3.

In general, the mechanism of MNAR is unobservable. The sensitivity analysis above

was intended to examine the risk of bias under a few MNAR mechanisms. Missingness may

depend on other unobserved characteristics of the study population and even if missingness

is only related to subtype prevalences, the dependency may differ from what we considered.

2.7 Discussion

Jointly modeling the overall and each subtype prevalence using multivariate random effects

models generally improved both bias and precision for the marginal subtype estimates by
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“borrowing strength” across outcomes. Incorporating the natural subtype constraint im-

proved estimation further, likely by eliminating density in regions where the subtype preva-

lence would be larger than the overall prevalence for an individual study. This occurred

even under the few conditions where the original multivariate parameterization failed to im-

prove estimation, including when there were no missing data. Using the original multivariate

model was the least beneficial when correlations between outcomes were low, variances were

large, and the data were MCAR. We hypothesize that the multivariate models cannot bor-

row much information when ρ = 0. In this case, the multivariate model required estimating

far more parameters than the univariate models, thus increasing variability. However, the

new parameterization improved estimation under these conditions by taking into account

the natural constraint in the data. Both models improved bias when the data were MAR

and correlations were large, with the new parameterization still outperforming the original

multivariate model.

This behavior was reflected in the results of the case study. The SUI subtype had low

correlation with the overall outcome under the new parameterization and slightly larger

variance. This likely led to the original multivariate model giving a wider 95% credible in-

terval than the univariate model, while the new parameterization having a slightly narrower

credible interval. The UUI subtype had a slightly higher correlation with the overall out-

come and slightly lower variance. In this case, the original multivariate model had a slightly

shorter 95% credible interval than the univariate model, consistent with the results of the

simulations. We were also able to directly observe the reduction in density in the posterior

predictive distributions for a single study associated with using the new parameterization,

as shown in Figure 2.2. Finally, using the original and new multivariate parameterizations

to jointly model the case study outcomes allowed us to estimate the correlation between

subtypes both unconditionally and conditioned on the overall outcome.

Because the simulation conditions were generated under the new parameterization in or-

der to ensure the subtype counts did not exceed the overall counts, the correlations used to
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generate the data correspond to the overall outcome and proportions falling into each sub-

type. Large positive or negative correlations between the two subtypes would imply that

the subtypes had a high co-morbidity or tended toward mutual exclusivity, respectively.

Therefore, we hypothesize that using the new parameterization would be the most advanta-

geous when a disease or set of outcomes are suspected to have either of these characteristics.

However, if the subtypes were known to be mutually exclusive, a multinomial model would

be more appropriate. We also caution that the methods may not be appropriate in the case

of very rare diseases, resulting in very sparse counts, as the resulting estimates may not be

stable.

Because we based the simulated marginal prevalences on those observed in the case

study, all simulations were conducted using (π0, π1, π2) = (0.3, 0.15, 0.05). Therefore, the

elimination of density by the new parameterization excluded all values above approximately

0.3, omitting about 70% of the original space. Furthermore, we hypothesize that this

reduction in density may have the most impact in cases where at least one subtype has a high

prevalence relative to the overall outcome. In this situation, the original multivariate model

would likely have a greater number of samples where the subtype prevalence estimate was

incorrectly higher than the overall prevalence. While we assume in this paper that the overall

outcome is fully observed, these methods could be used when some studies do not report the

overall count, such as in the food allergy [13] and autism spectrum disorder (ASD) [14] meta-

analyses mentioned in Section 2.1. While both multivariate methods can be implemented

with multiple subtypes, the estimates may become unstable in higher dimensions depending

on the amount of missing data, variances, and correlations between outcomes. More work

would be needed to evaluate these models’ performance in higher dimensional scenarios.

As mentioned in Section 2.12, both multivariate methods require that any missing data

be MAR or MCAR. Our analysis of the case study data included a sensitivity analysis of

a specific MNAR mechanism, but the true missingness mechanism remains unknowable.

However, we hypothesize that it may be less common for the type of prevalence data we
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have described to be MNAR. If the data were MNAR, the probability of a given subtype

being missing would directly depend on the underlying prevalence of each study. One

such scenario would be given by investigators choosing not to report the prevalence of a

subtype with a low count. We view this as unlikely, since if a study aiming to estimate

the prevalence of a subtype encountered a lower frequency than expected, the outcome

would still be of interest. Furthermore, while we have described in Section 2.1 the possible

situation of studies measuring a lower overall prevalence being less likely to measure the

lower frequency subtypes, this would be a case of the data being MAR, as the probability

of being missing would depend on the overall count.

As discussed in Section 2.3.4, we use the separation strategy initially proposed by

Barnard et al. (2000) [46] for the priors on the covariance matrices in the two multivariate

models. The separation strategy has been shown to improve estimation of the variance and

covariance terms over the use of an inverse-Wishart conjugate prior by adding more flexi-

bility. However, this method also greatly increased computational time, as the multivariate

models took up to a few hours to fit, depending on the number of iterations used. Using an

HMC sampler such as STAN may decrease computational time over JAGS (a Gibbs based

sampler) [45].

To the best of our knowledge, there is only one other existing multivariate meta-analysis

of multivariate prevalence data [10]. This serves as a case study illustrating the potential

improvement in estimation by jointly modeling multivariate prevalence data, particularly

when incorporating additional natural constraints into the model parameterization. The

methods used in this analysis allowed us to better compare prevalence rates of specific

lower urinary tract symptom types across different occupation types in working women.

These comparisons have informed future research on a wider range of lower urinary tract

symptoms, in addition to urinary incontinence.
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Chapter 3

Estimating the Reference Range from a

Meta-Analysis

3.1 Introduction

The number of published meta-analyses has increased sharply over the past several decades

[1, 37]. While most meta-analyses aim to provide a more precise estimate of the effect of a

treatment or a risk factor’s association with a disease [1], the literature has many examples

of meta-analyses of normative data [7–9,12,53–59]. These studies generally aim to establish

“typical” or “normal” values for a measurement or outcome using “healthy” populations

from multiple studies, to serve as a reference. However, most often these meta-analysis

studies report the pooled mean as the “reference value,” which has limited interpretability

when determining whether a measurement is “normal”. Although Bohannon [53] noted that

measurements lying outside the confidence interval for the pooled mean could be considered

above or below “average”, a reference range would be more useful in determining whether

an observed measurement was within the range of values measured on healthy individuals.

Horn et al. [21] define a reference range or interval as “a set of values within which some

percentage, 95% for example, of the values of a particular analyte in a healthy population
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would fall.” In a meta-analysis, this requires accounting for the natural variability in the

healthy population as reflected by variation both within and between studies.

Several medical systematic reviews have estimated and reported reference ranges using

a meta-analysis of healthy individuals from multiple studies [7, 9, 56, 58, 60–63]. However,

some of these studies have used the confidence interval for the pooled mean as the “reference

range” [7,61,62], which reflects uncertainty in the estimated mean, not natural variation in

the population. Venner et al. [63] used the measurement ranges reported in each study when

available to construct reference ranges based on the overall minimum and maximum values

across studies. While this better reflects natural variation across healthy individuals than

the confidence interval for the pooled mean, only four out of the twelve studies included in

the meta-analysis reported ranges, and this method requires setting the desired percentage

of individuals captured in the reference range to 100%.

However, several studies estimate reference ranges containing a specified proportion of

measurements from a healthy target population based on the observed mean, standard de-

viation, and sample size from each study [9, 56, 58, 60]. Conceição et al. [9] use a method

similar to the empirical approach proposed later in this paper in order to estimate normal

ranges for how accurately healthy participants perceive whether they are oriented verti-

cally in space. Wyman et al. [58] use the fixed effects model by Laird and Mosteller [64]

in order to establish normative ranges for non-invasive bladder function measurements in

healthy women. Németh et al. [56] estimate a reference range for normal concentrations of

asymmetric dimethylarginine in the plasma of healthy individuals, though their method for

estimating the marginal reference range across all studies is not clear. Finally, Khoshdel et

al. [60] simulate individual patient data based on the summary statistics from each study,

then use fractional polynomials to estimate age-specific reference ranges for pulse wave

velocity.

It is unknown what proportion of measurements from the“true”overall populations these

reference ranges capture. Currently, the literature gives no guidance on how to approach
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the question of estimating reference ranges based on meta-analyses. Several authors have

recently advocated reporting prediction intervals for a new study [65–68], but they have not

addressed prediction for an individual. To the best of our knowledge, the present paper is

the first to propose methods for estimating reference ranges based on meta-analyses.

The first two proposed methods build on the commonly used random effects model.

Section 3.2 motivates this choice and introduces notation. Section 3.3 proposes three ap-

proaches for estimating reference ranges. The first uses results from a frequentist method

such as restricted maximum likelihood estimation (REML), while the second is a Bayesian

approach using a posterior predictive interval. The final method is an empirical approach

similar to that used by Conceição et al. [9]. We call these the frequentist, Bayesian, and

empirical approaches. All three of these approaches use the means, standard deviations,

and sample sizes reported in each study and do not require individual patient data. Section

3.4 presents simulation studies illustrating the performance of the three approaches, which

we then apply to two examples in Section 3.5. Finally, Section 3.6 discusses some of the

key distributional assumptions required by these approaches and potential areas of future

work.

3.2 Random effects model

3.2.1 Choice of model

Three models are commonly used in meta-analysis: the common effect, random effects, and

fixed effects models. The common effect model assumes the underlying true mean or effect

is the same in each study and that variation between studies in estimated mean arises purely

from sampling variation [69, 70]. This is often called a fixed effect model, which is easily

confused with the fixed effects model of Laird and Mosteller [64]. We follow Bender et al. [69]

by using the term “common effect model”. This model imposes a strong assumption that

each study population has the same underlying true mean, which may not be appropriate
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for situations in which the observed means from the studies differ for reasons other than

sampling variability [71]. When there is considerable heterogeneity between studies, as is

often the case in meta-analyses of continuous outcomes [72], it may instead be desirable to

assume that each study has a different true mean and that these means are drawn from

separate distributions, as in the fixed effects model of Laird and Mosteller [64]. However,

because this model makes no assumptions about how the effects in the different studies

are related, it may not be used to draw any conclusions about a new study measuring

the same outcome, much less about a new individual. Therefore, we will instead focus

on the random effects model. This model allows the true means to differ between study

populations but assumes they follow some underlying distribution, which is most often a

normal distribution [69, 70]. It is common to interpret this assumption as meaning that

each study in the meta-analysis was randomly sampled from a population of theoretically

possible studies, including the population studied and methods of measurement. However,

Higgins et al. [73] point out that this stronger assumption is often violated, as later studies

are often designed based on the results of previous studies. However, Higgins et al. [73]

focus on random effects models comparing treatment effects in two groups, while we focus

on estimating normal ranges from a group of healthy subjects. Thus, this assumption may

be reasonable.

3.2.2 Notation

Let ȳi denote the observed mean for study i = {1, ..., N}, θi be study i’s true mean, µRE

be the overall mean of the distribution of study means, and σ2
i be study i’s within-study

variance. Also, let τ2 be the variance of the θi across studies. Then, we have

ȳi ∼ N(θi, σ
2
i /ni), θi ∼ N(µRE , τ

2) (3.1)

In the frequentist framework, the overall mean µRE is traditionally estimated as a
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weighted average of the study-specific means [69,74]:

µ̂RE =

∑k
i=1 yiwi,RE∑k
i=1wi,RE

, for wi,RE =
1

s2
i /ni + τ̂2

, (3.2)

where s2
i is study i’s within-study sample variance though there has been some debate about

how to estimate τ2. Here, we use the restricted maximum likelihood (REML) estimate, as

implemented in the “meta” package [75]. The commonly-used estimate originally proposed

by DerSimonian and Laird [74] has been shown to underestimate the true between-study

variance, particularly when the number of studies k is small [76–78]. The overall variance in

µ̂RE can be estimated by VRE = 1∑k
i=1 wi,RE

. The following is commonly used as an α-level

confidence interval for µ̂RE : µ̂RE ± zα/2×
√
VRE , where zα/2 is the standard normal critical

value for the chosen significance level (α).

Alternatively, one can take a Bayesian approach and place prior distributions on µRE

and τ as described in Section 3.3.2 [41,73]. Because we consider the fixed mean assumption

in the common effect model inappropriate in most situations, we use a random effects model

for the two model-based approaches presented below. However, one could easily alter these

methods to reflect a common effect assumption.

3.3 Methods for estimating the reference range from a meta-analysis

In estimating a 95% normal reference range, we aim to find an interval that contains approx-

imately 95% of individuals in the target population [79, 80]. Because the models described

in Section 3.2 only allow inference on the pooled mean, we need additional methods and

assumptions to estimate the 95% normal reference range for an individual. First, we must

make an assumption about the distribution of the data within each study, assuming we do

not have access to the study’s individual patient data (IPD). In this paper, we assume the

individual-patient data in each study were generated from either a normal or log-normal

distribution, with the family of distribution being consistent across all studies. We present
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three approaches to estimating the normal reference range: a frequentist approach, a fully

Bayesian approach, and an empirical approach. The frequentist and Bayesian methods

assume the within-study distributions have the same variance in all studies, while the em-

pirical approach does not. We present each of our three proposed methods under normality,

and then show how to apply them under a log-normality assumption.

3.3.1 A frequentist approach

Under the random effects model, if we assume observations within each study are normally

distributed, the within-study variances are the same in all studies, and the study-specific

means follow a normal distribution, then we have yij ∼ N(µRE , σ
2
T ), where σ2

T = τ2 + σ2

and σ2 is the common within-study variance. We can estimate µ̂RE and τ̂ as described in

Section 3.2, e.g., using REML, and estimate σ2 as the unbiased pooled sample variance:

σ̂2 =

∑k
i=1(ni − 1)s2

i∑k
i=1(ni − 1)

. (3.3)

Substituting µ̂RE , τ̂
2, and σ̂2 into the marginal distribution of yij , the marginal distribu-

tion of individuals, marginal to studies, can be estimated asN(µ̂RE , σ̂
2
T ), where σ̂2

T = τ̂2+σ̂2.

The α/2 and 1−α/2 percentiles of this distribution can then be taken as the bounds of the

α-level normal reference range: µ̂RE ± z1−α/2
√
σ̂2 + τ̂2. Because σ̂2 and τ̂2 were estimated,

this suggests that a t-distribution may be appropriate instead of a normal. However, most

meta-analyses will have a large enough total sample size across studies that the appropriate

t-distribution will be closely approximated by a normal distribution. Alternatively, the fully

Bayesian method presented in Section 3.3.2 accounts for the uncertainty in σ̂2 and τ̂2.

3.3.2 A Bayesian approach

A fully Bayesian approach places prior distributions on µRE and τ . As in the frequentist

approach, we assume that the true variances are the same in all studies, and now we use the
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normal-theory sampling distribution of the sample variance to capture uncertainty about

the within-study variance σ2, according to this model:

ȳi ∼ N(θi, σ
2/ni)

θi ∼ N(µRE , τ
2)

(ni − 1)s2
i ∼ gamma

(
ni − 1

2
,

1

2σ2

)
.

(3.4)

We place a N(0,1000) prior on µRE and Unif(0,100) priors on τ and σ, then sample from

the posterior predictive distribution for a new individual to incorporate into the normal

reference range uncertainty about each of the parameter estimates:

ynew ∼ N(µRE , σ
2 + τ2), (3.5)

where the predictive density of ynew given the data {yij} is given by:

f(ynew|{yij}) =

∫ ∫ ∫
f(ynew|µRE , σ2, τ2)f(µRE , σ

2, τ2|{yij})dµREdσ2dτ2 (3.6)

The limits of the α-level normal reference range can then be estimated by the α/2 and

1− α/2 percentiles of ynew’s predictive distribution.

3.3.3 An empirical approach

The third approach is a simple empirical approach that does not assume the studies all

have the same within-study variances and does not specify the distribution of yij within

each study. However, like the frequentist approach in Section 3.3.1, it does not account

for estimation uncertainty and assumes the population captured across all studies follows a

normal distribution. First, estimate the overall mean across all studies, weighted by study

sample size:

µ̂emp =

∑N
i=1 niȳi∑N
i=1 ni

. (3.7)
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This is equivalent to the pooled mean in Laird and Mosteller’s [64]’s fixed effects model,

weighted by sample size. Then estimate the marginal variance across studies using the

conditional variance formula V ar(Y ) = E[V ar(Yij |S = i)] + V ar[E(Yij |S = i)]:

σ̂2
T,emp =

∑N
i=1(ni − 1)s2

i∑N
i=1(ni − 1)

+

∑N
i=1(ni − 1)(ȳi − µ̂)2∑N

i=1(ni − 1)
(3.8)

The limits of the α-level normal reference range are then given by the α/2 and (1−α/2)

percentiles of a N(µ̂emp, σ̂
2
T,emp) distribution: µ̂emp ± z1−α/2 × σ̂T,emp. Conceição et al. [9]

used this method but weighted by n rather than n−1 in the variance calculation. We prefer

the unbiased estimate of the variance, but weighting by n will generally give similar results.

3.3.4 Lognormal distribution for yij

Each of the above methods can also be applied when each study’s observations are assumed

to be drawn from a lognormal(θi, σ
2
i ) distribution, so that log(yij) ∼ N(θi, σ

2
i ). In this

case, first transform the observed study means and sample variances to the log scale using

Equation (3.9) before estimating the reference range:

ȳ∗i = log

 ȳi√
1 +

ni−1

ni
s2i

ȳ2i


s2∗
i = log

(
1 +

ni−1
ni

s2
i

ȳ2
i

). (3.9)

This transformation uses the method of moments estimators for the location and scale

parameters of the lognormal distribution. For more details, see the Appendix. The normal

reference range can then be estimated as before, substituting ȳ∗i and s∗i for the observed

study-level means and standard deviations. Finally, exponentiate the limits of the resulting

range to give the normal reference range:
(
eµ̂−z1−α/2σ̂T , eµ̂+z1−α/2σ̂T

)
. This method requires

that the ȳ∗i ’s be normally distributed, an assumption that should be checked using a method
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such as a Q-Q plot. Depending on the distribution of ȳi, the distribution of the ȳ∗i ’s can be

quite skewed.

3.4 Simulations

3.4.1 Methods of simulation

To assess how well each of the three methods captures a true 95% normal reference range, we

conducted simulations under a variety of different conditions. In all conditions, we assumed

the true distributions within studies were normal and that the true study-specific means

varied according to the random effects model in Section 3.2. For each condition, we then

considered different values of true between-study variation (τ2) as a proportion of total

variability (τ2 + σ2). In all conditions, each study had 50 subjects, with the total number

of studies (N) being 5, 10, 20, or 30. The overall pooled mean (µ) was set to 8 and the true

total variance (σ2 + τ2) was 1.25 for all conditions. We conducted 1000 simulations for each

condition. We considered scenarios where the true study-level variances were equal, as well

as cases where they were not equal. For the frequentist approach, we used the R package

“metagen” [81] to fit the random effects model using REML. For the Bayesian approach,

we used JAGS version 4.3.0 with the packages “rjags” [51] and “coda” [52], in R version

3.6.0 [82]. We ran two chains each with 10,000 samples and after discarding 1,000 samples

for burn-in.

Equal variances

For the equal variance scenario, we first generated the true study-level means (θi’s) according

to a N(µ, τ2) distribution. For each study i, we then generated the individual-level data

according to a N(θi, σ
2) distribution, where σ2 was constant across studies. We summarized

the means and standard deviations for each study to give the observed summary data, fit

each of the three models, frequentist, Bayesian, and empirical, then found the area under
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the probability density function of a N(µ, σ2 +τ2) distribution between the upper and lower

limits of the estimated 95% normal reference ranges.

Unequal variances

Data were simulated in the unequal variance scenario as in the equal variance scenario except

that we generated σi, the true within-study standard deviation, from a doubly-truncated

normal distribution, with both the left truncation point and mean equal to X and the

right truncation point equal to X + 1, for X ranging from 0 to 0.64, with increments of

0.02. For each X, we estimated E[σ2
i ] by simulating from the doubly-truncated normal

distribution. These estimates ranged from 0.291 to 1.246. We let τ2 = 1.25− Ê[σ2
i ] so as X

increased, Ê[σ2
i ] increased as a proportion of the total variance. Because we truncated the

normal distribution, the variance of σi remained constant throughout all conditions. We

approximated the true reference distribution for yij by simulating from the full conditional

distributions: σi|X, θi|µ, σi, and yij |θi, σi, τ .
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Figure 3.1: Simulation Results, Equal Variances. Median, 2.5th percentile, and 97.5th

percentile of the proportion of the true population distribution captured by the estimated

95% reference range, for different numbers N of studies. The horizontal axis is τ2 as a

proportion of the total variance.
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3.4.2 Simulation results

We first generated the data under the equal within-study variance scenario and measured

the fraction of the true population distribution captured by each of the three reference
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range methods, which we call the “coverage” (Figure 1). For example, when the between

study variance comprised 25% of the overall variance, the frequentist reference ranges based

on 1000 simulated meta-analyses containing 30 studies captured a median of 94.9% of a

N(µ, σ2+τ2) distribution, the true distribution of individual measurements. This can also be

interpreted as the frequentist reference ranges excluding a median of 5.1% of extreme values.

The observed median and variability of coverage depended on the true ratio of between-

study variance (τ2) to total variance (τ2 +σ2) and the number of studies N included in the

meta-analysis. For the frequentist and empirical methods, the median coverage decreased

as τ2 increased as a fraction of the total variance; this decrease was most pronounced

when the number of studies included was small (N = 5 or 10). In these conditions, the

empirical method’s coverage decreased more quickly than the frequentist method’s. Also,

variation in coverage increased as τ2 increased and decreased as N increased. While the

variation in coverage also increased with τ2 for the Bayesian posterior predictive interval,

this effect was less dramatic. In contrast with the frequentist and empirical methods, the

Bayesian method’s median coverage increased with τ2. This increase began for smaller τ2

and was more extreme for small N . This increase in variation with τ2 appears to reflect the

additional estimation uncertainty when τ2 is large, particularly when N is small. Unlike the

frequentist and empirical methods, the Bayesian method accounts for posterior uncertainty

about each parameter and thus appears more conservative. The results for the unequal

within-study variances case were qualitatively similar to the equal variance case (Figure

3.2).
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Figure 3.2: Simulation Results, Unequal Variances. Median, 2.5th percentile, and 97.5th

percentile of the proportion of the true population distribution captured by the estimated

95% reference range, for different numbers N of studies. The horizontal axis is τ2 as a

proportion of the total variance.
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3.5 Examples

3.5.1 Example 1: Pediatric Nighttime Sleep

Galland et al. [12] sought to establish “reference values” for pediatric nighttime sleep out-

comes measured by actigraphy, based on a systematic review and subsequent meta-analysis

of 79 studies. We focus on the outcome wake after sleep onset (WASO) time in hours. The

authors found 24 studies reporting WASO, with most participants belonging to the same

age group (9-11 years) so they focused on the pooled mean across all age groups. In our

review of these studies, one study included in this meta-analysis [83] did not appear to

actually report WASO but rather reported the average length of wake bouts. We excluded

this study from our analysis, which therefore contained 23 studies. Figure 3.3 shows the

pooled mean and corresponding standard errors. In this case, only one of the 95% confi-

dence intervals for the study means overlapped with the point estimate of the pooled mean.

Galland et al. [12] explain that this variability reflects inconsistency across studies in how

waking bouts were defined as well as a low specificity when using actigraphy to identify

wakefulness. The authors also used meta-regression to investigate regional differences in

sleep as a source of variation but did not observe a difference across study regions. This

large variation in estimated WASO time across studies provides further evidence that the

pooled mean may not provide a full picture of what constitutes a “normal” WASO time and

that a reference range may be more useful. To better visualize the heterogeneity in WASO

time within and across studies, we also present frequentist 95% prediction intervals based

on a t-distribution for each study in the same figure [65, 66]. Because Galland et al. [12]

only reported study means and standard errors, we obtained the standard deviations di-

rectly from each study’s paper. When the paper did not report the standard deviation, we

estimated the standard deviation using the standard error reported by Galland et al. [12]

and a normal approximation. Therefore, our results should be interpreted as merely an

illustration of the proposed methods.
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Figure 3.3: WASO Mean (95% CI) and 95% predictive interval for a new individual for

each study, overall estimate of pooled mean (95% CI) based on REML , 95% predictive

interval for a new study mean, and 95% reference ranges based on Bayesian, empirical, and

frequentist methods.
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We checked whether the study means deviated from normality using a QQ-plot (see

Supplementary Materials); no apparent departure from normality is observed except a few

points at the end of both tails. As in the simulations, we used the R package “metagen” [81]

to fit the random effects model using REML. We also used this to estimate the pooled mean
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across studies and to obtain the prediction interval for a new study [73]. For the Bayesian

approach, we again used JAGS version 4.3.0 with the packages “rjags” [51] and “coda” [52],

in R version 3.6.0 [82]. We ran two chains each with 50,000 samples and after discarding

5,000 samples for burn-in. Convergence was assessed using MCMC standard error and

visual inspection of trace plots.

The estimated 95% normal reference ranges were (-0.47, 2.24), (-0.54, 2.32), and (-0.33,

2.34) for the frequentist, Bayesian, and empirical methods, respectively. We truncated these

at zero because negative WASO values are meaningless, giving (0, 2.25), (0, 2.32), and (0,

2.34). Based on the frequentist result, we would expect about 95% of healthy children to

have WASO time between 0 and 2.25 hours based on actigraphy. This reflects the large

amount of variability between individuals included in the meta-analysis. Before truncation,

the Bayesian reference range was widest, followed by the frequentist reference range; the

empirical method gave the narrowest interval. This is consistent with simulation results and

is likely due to the Bayesian method accounting for uncertainty about the parameters σ, τ ,

and µ. The code and results for both case study examples are included in the Supplementary

Materials.

3.5.2 Example 2: Frontal SPV

Accurate perception of verticality is an important part of everyday functioning and can be

altered in individuals such as “aged people, patients with vestibular disorders, Parkinson’s

disease, idiopathic scoliosis, and stroke patients” [9]. Accurate perception of verticality has

also been associated with better functioning in patients following a stroke [84]. A person’s

subjective postural vertical (SPV) can be measured by placing them in a tilting chair while

blindfolded and asking them to tell an examiner how to adjust the chair so they perceive

that they are in an upright position. Frontal and sagittal SPV refer to deviation (in degrees)

of the specified position from true verticality in the frontal and sagittal planes. Because SPV

measurements can be used to assess neurological functioning, it is important to establish a
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reference range in healthy persons.

In their meta-analysis, Conceição et al. [9] sought to establish reference ranges for frontal

and sagittal SPV from 15 studies measuring frontal SPV and 5 studies measuring sagittal

SPV. They estimated the reference range using the empirical approach except that they

weighted by n rather than n − 1 in the variance calculation. We re-analyze the data for

frontal SPV using REML to estimate the pooled mean across all studies and the 95%

predictive interval for a new study. We then used the same methods as in Section 3.5.1 to

estimate the three reference ranges.
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Figure 3.4: Frontal SPV Mean (95% CI) and 95% predictive interval for a new individual

for each study, overall estimate of pooled mean (95% CI) based on REML , 95% predictive

interval for a new study mean, and 95% reference ranges based on Bayesian, empirical, and

frequentist methods.
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We again checked for non-normality of the study-means using a Q-Q plot (see Supple-

mentary Materials); no apparent departure from normality is observed except a few points at

the upper tail. Figure 3.4 presents the reference range results as well as the estimated pooled

mean and predictive interval for a new study. Conceição et al. [9] estimated the frontal SPV
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reference range as (−2.87◦, 3.11◦). The frequentist, Bayesian, and empirical methods gave

estimated reference ranges (−2.92◦, 3.15◦), (−3.07◦, 3.20◦), and (−2.89◦, 3.13◦), respectively.

As expected, the empirical method’s results are quite similar to those reported by Conceição

et al. [9], while the frequentist and Bayesian methods give slightly wider intervals.

3.6 Discussion

This paper proposes three methods of estimating reference ranges for an individual from

a meta-analysis. The methods are simple to implement and can serve as a starting point

for future development. Based on the simulations, all three methods tended to perform

best when the number of studies was large and between-study variability was relatively

small. However, while the frequentist and empirical methods tended to underestimate the

width of the reference range as between-study heterogeneity increased (particularly for small

N), the Bayesian posterior predictive interval did not. This is likely because the Bayesian

method accounts for estimation uncertainty about the parameters, while the other methods

do not. Instead, the posterior predictive interval more often overestimated the width of the

interval. Depending on how the reference range is used, one might consider this behavior

conservative. We recommend using caution when the number of studies is small, such as

5 or 10. If the number of studies is very small and the estimated between-study variation

makes up more than 50% of total estimated variation, it may be more useful to report

reference ranges specific to each study, rather than a pooled range.

As for which method might be most appropriate in which circumstance, the simulation

results suggest that when the number of studies is large (at least 20), and the normality

assumptions hold, the three methods will likely perform similarly. Conceição et al. [9]

used the empirical approach but weighted by n instead of n − 1. This suggests that the

calculations required are intuitive and could easily be implemented by clinicians. The

frequentist method, by contrast, requires familiarity with random effects models, although

investigators are often interested in the pooled mean and thus likely to use this approach
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anyway. Finally, the Bayesian predictive interval requires familiarity with Bayesian methods

and a software such as JAGS, though it is still a simple model to implement and can account

for estimation uncertainty.

Each method makes distributional assumptions beyond those needed when estimating

the pooled mean. Besides the usual assumption made when using likelihood methods to

analyze random effects models — that the study-means are normally distributed — the

frequentist and Bayesian approaches also assume a normal distribution for individuals within

a study. While this may appear problematic, prediction intervals for a new observation based

on a single study regularly impose this assumption [85]. Unfortunately, if only study means

and standard deviations are available, this assumption cannot be validated. Section 3.3.4

extended our approaches to allow individuals within studies to be lognormally distributed,

but we caution that the transformed means on the log scale must be approximately normally

distributed. This paper focuses on meta-analyses in which individual participant data (IPD)

are not available; when IPD are available, non-parametric approaches using order statistics

may be possible, as they are currently used in non-parametric estimates of reference ranges

based on single studies [20,21].

Another key assumption of the frequentist and Bayesian methods is that the true within-

study variances are the same in all studies and that any observed differences are due to

sampling variability. Differences between studies in sampling methods or measurement

techniques could render this assumption invalid. However, Section 3.4.2’s simulation re-

sults suggest that these methods may be robust to deviations from this assumption when

the true study-specific standard deviations vary between studies according to a truncated

normal distribution. Further work is needed to assess the models’ performance under other

deviations from this assumption.

Finally, we reiterate that random effects models for estimating the pooled mean, on

which we built the frequentist and Bayesian methods, require the study-specific means

to be normally distributed. This is true of most random effects methods, except for the
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method of moments estimator developed by DerSimonian and Laird [74], which is known

to underestimate between-study variability and therefore give results with inappropriately

high precision [76–78]. It is a common misconception that normality of the study means is

guaranteed by the central limit theorem (CLT) [68]. At best, the CLT only ensures that the

sampling distribution of an observed average for a single study has an approximate normal

distribution, not that the true means of the collected studies follow a normal distribution.

One way of assessing departures from this assumption is the use of a normal Q-Q plot.

Although our methods make specific distributional assumptions, they do provide a start-

ing point for additional development. Future work should generalize these methods to ad-

dress instances where the assumptions used here are likely not met. This could involve cases

with or without IPD. Section 3.4.2’s simulation results show that our approaches work well in

cases with many studies and relatively low between-study variability. However, future stud-

ies should compare these methods with new methods incorporating IPD. Future methods

should also improve performance when the number of studies is small or the between-study

variation is large. The proposed methods may also be extended to cases where the data from

each study are assumed to follow truncated normal distributions. Finally, these methods

could be extended to a meta-regression setting to include characteristics such as age or sex,

at either the individual or the study level.
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Chapter 4

A Guide to Estimating the Reference

Range from a Meta-Analysis Using

Aggregate or Individual Participant

Data

4.1 Clinical Scenario

A 50-year-old healthy man without significant past medical history presents to his primary

care physician for a preventive health exam. He is concerned because his sister was diagnosed

with “liver fibrosis”. Although the patient has normal liver transaminases, INR, platelets,

and albumin levels, he has been overweight his entire life and drank alcohol heavily during

his college days. A liver biopsy, which is the gold standard diagnostic tool, is too invasive and

costly to be performed on a healthy asymptomatic individual. A noninvasive ultrasound-

based test called transient elastography was introduced in 2003. However, the normal range

for this test is not known and has been reported from several heterogeneous studies of
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patients with various races, ethnicities, and other demographic characteristics. Bazerbachi

et al. [7] conducted a systematic review and meta-analysis of these studies measuring liver

stiffness in healthy adults where individual participant data were available. The authors

estimated the mean stiffness in healthy non-obese individuals and reported the confidence

interval for the mean as the reference range, despite this interval reflecting only uncertainty

in the pooled mean rather than the variation across individuals. We revisit their analysis

in order to construct a reference range that incorporates natural variability across healthy

individuals in addition to the uncertainty in the estimated mean.

4.2 Introduction

Often clinicians would like to know whether a patient’s measurement falls within some “nor-

mal” range for healthy individuals. While meta-analysis most frequently involves summariz-

ing one or more treatment effects on an outcome, there are many examples of meta-analyses

of normative data [7–9,12,54,56,58,60–63,86,87]. Normative data are assumed to be drawn

from a predefined healthy population (e.g., with certain inclusion and exclusion criteria)

that can serve as a reference for future comparison [15]. Therefore, these studies aim to

establish “normal” values for continuous measurements using data from healthy individuals

across multiple studies. These data may be drawn from normative studies of healthy in-

dividuals, cohort studies, the control arms of case-control studies, or baseline values from

randomized-controlled trials in healthy populations [7, 9, 12]. In most cases, a reference

range, or an interval in which we would expect the measurements of a specified proportion

of a healthy population (e.g., 95%) to fall [20, 21], would provide the most information in

determining whether a patient’s measurement is “normal.” This can also be defined as a

prediction interval for the value of a new healthy individual conditional on the normative

data from existing evidence [21]. While several studies in the biomedical literature have

used ad-hoc methods to report reference ranges estimated from meta-analyses consistent

with this definition [9, 56, 58, 60], we have recently proposed three methods for estimating
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the reference range from a meta-analysis with aggregated data [88]. Here to provide some

practical guidance, we describe how to calculate the reference range from a meta-analysis

and outline how it differs from the confidence interval for the pooled mean and the pre-

diction interval for the mean of a new study [67, 73]. We provide an overview of the three

methods and apply them to a systematic review and meta-analysis of studies measuring

normative liver stiffness in adults. We consider using aggregate data from publications, but

also extend this to using individual participant data.

4.3 What aggregate data are typically available and needed for a

reference range meta-analysis?

Often, when conducting a meta-analysis of multiple studies to estimate the reference range,

only aggregate data are available from published studies. The required aggregate data

typically include the observed means, standard deviations, and sample sizes from each

study. Studies may also report demographic information, such as the proportion of males

and females, or the mean age of participants in the study.

4.4 Defining the population of interest

To determine whether the studies included in a meta-analysis have enrolled participants who

belong to the pre-specified target population for which a reference range is being sought,

we suggest evaluating two sources of information. The first is the inclusion and exclusion

criteria of the meta-analysis. The second is the observed demographic information provided

in the manuscripts of included studies (e.g., mean age, proportion of males or females).

Based on these two sources of data a judgment needs to be made about whether the studies

include representative participants from the target population whose reference range is being

sought. It is also important to consider whether some studies have enrolled participants with

occult disease and exclude such studies. For example, healthy volunteers who have occult
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fatty liver disease and enroll in hepatology studies is a well recognized phenomenon [89].

Thus, included studies should perform sufficient testing to rule out occult disease when

possible.

Each of the proposed methods for estimating the reference range allow the underlying

means of each study included in the meta-analysis to differ (this is also known as a “random

effects” assumption). In other words, variation in the observed means across studies can be

attributed to actual differences and sampling variability [67]. One can often achieve this

by carefully defining certain inclusion and exclusion criteria in the systematic review. In

particular, we assume that the studies included in the meta-analysis are a representative or

random sample from a greater “superpopulation” of potential studies and are interested in

the marginal (overall) distribution of individuals across all of these potential studies (Figure

4.1). Determining whether this sample is representative also requires investigating possible

heterogeneity sources, as described in the next section. We prefer to focus on the overall

distribution, rather than conditioning on a specific study, since it may be unclear which

theoretical study population a patient who presents to a clinic would belong to in practice.

These study-specific underlying populations would likely differ in size, though knowledge of

these true population sizes is not necessary under the random effects assumption.
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Figure 4.1: Target Population Marginal (overall) distribution and a selection of possible

transient elastography liver stiffness measurement study populations according to a random-

effects model where µ = 4, σ = 1, τ = 0.5. The distributions of study means and individuals

within each study are all normal. Each of the meta-analysis methods presented allows for

true differences between sub-populations, and the target population is the overall distribu-

tion that captures each of these.
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In the clinical scenario described previously, the overall target population consists of

healthy non-obese individuals without evidence of liver steatosis or fibrosis across all poten-

tial studies, as we aim to characterize liver stiffness measurements that would be extreme

for patients with healthy livers while incorporating the full variability found across differ-

ent populations of healthy patients. Therefore, studies of obese patients would have been
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excluded when estimating the reference range.

4.5 Investigating sources of heterogeneity

The random effects assumption described earlier to account for between-study heterogeneity

assumes that there are many possible studies and that the underlying study means follow a

distribution, typically a normal distribution. This assumption is consistent with small varia-

tions across studies such as those due to slightly different but overlapping study populations,

similar but not identical equipment, or different personnel collecting measurements. If it

is believed that the overall population can be partitioned into several distinct subpopula-

tions with different measurements, the random effects model would likely be inappropriate.

Instead, separate reference ranges corresponding to each population would be more infor-

mative. For example, if measurements are suspected to vary by subgroups, such as biologic

sex or age, separate reference ranges specific to these groups, based on stratified analysis or

meta-regression, may be more clinically meaningful. Hypothesized sources of heterogeneity

could be investigated using subgroup analyses or meta-regression methods [90], although

this often lacks power. Because the overall mean and variance across individual participants

are of equal interest when estimating the reference range, heterogeneity in the within-study

variances should also be carefully explored. For example, differences in the variances in

individual measurements within each study can be investigated visually using a forest plot

of the observed study standard deviations and their corresponding confidence intervals.

4.6 Meta-analysis methods for estimating the reference range

We previously proposed three methods for estimating the reference range using aggregate

data [88]; these methods are summarized in Table 4.1 and described in further detail in

Appendix C. The first two methods, the frequentist method, and the Bayesian posterior
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predictive interval, assume that 1) values of the variable of interest follow a normal distri-

bution for each study population; 2) the variances of individual measurements within each

study are equal across studies; 3) that the true study means are also normally distributed.

These assumptions then imply that the overall distribution across studies is also normal.

The frequentist approach involves estimating the shared within-study variance, fitting a

random-effects model on the aggregate data, and then using the estimated pooled mean and

within and between-study variances to approximate the overall distribution of individuals.

The bounds of the estimated 95% reference range are then given by finding the 2.5th and

97.5th quantiles of this overall normal distribution, assuming the estimated parameters are

fixed quantities (i.e., ignoring their uncertainty).

The Bayesian method requires fitting a random effects model on the aggregate data

where the shared within-study variance is estimated using the sampling distribution of

the sample variance. The bounds of the 95% reference range are then given by the 2.5th

and 97.5th quantiles of the posterior predictive distribution for a new individual. This

differs from the other two methods in that the reference range becomes wider with greater

uncertainty by considering the variation of parameters, consistent with the definition of the

reference range as a prediction interval. While it may be possible to introduce this behavior

with the frequentist approach using a t-distribution, the appropriate degrees of freedom are

unclear and likely require approximation. Furthermore, the degrees of freedom will depend

on both the estimated within and between-study variances and will likely be high when the

number of studies is large or when the between-study variance is small relative to the total

variance. Under those conditions, the t-distribution will strongly resemble that of a normal

distribution, meaning that incorporating estimation uncertainty will make little difference

in the width of the reference range. Additionally, depending on the application, it may

be more prudent to flag a truly healthy individual as abnormal, thus necessitating more

investigations, rather than failing to discern pathology in a sick patient. In such scenario, it

may be preferable to omit the estimation uncertainty of parameters from the width of the
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interval, because under the Bayesian approach, the estimated interval may contain greater

than 95% of measurements in the case of large estimation uncertainty (e.g., when the number

of studies is small, the between-study variance may be estimated with greater uncertainty).

Conversely, if avoiding over-diagnosis is of greater concern, the estimated interval from the

Bayesian approach may be preferred.

The frequentist and Bayesian methods also make the usual random effects assumption

that the study means (random effects) follow a normal distribution [73]. It is often incor-

rectly assumed that the central limit theorem (CLT) guarantees this [68]. The CLT only

guarantees normality of the sampling distribution of the mean from a single study, not the

overall collection of study means. Instead, this assumption should also be visually assessed.

Methods have also been developed for estimating prediction intervals for a new study effect

that do not require this normality assumption, such as those based on bootstrap sampling

methods [68, 91]. Future work could expand these methods to prediction on the individual

level.

The third aggregate data approach, the empirical approach, does not require the data

within each study to be normally distributed or equal within-study variances, only that the

overall distribution across all studies is normal. Instead, the pooled mean is estimated as a

weighted average of the study means, and the total variance is estimated as the sum of a

weighted average of the sample variances, and the sample variance of the study means. This

empirical method could also likely be used when the overall distribution is assumed to be

any other distribution that is entirely determined by its mean and variance. Furthermore,

while the methods mentioned thus far assume that the data within each study are normally

distributed, we also describe in the Appendix how to handle aggregate data that are believed

to follow a lognormal distribution.
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Table 4.1: Methods for Estimating the Reference Range

20 
 

 

1A. Frequentist Approach (Aggregate Data): 
1) Estimate the pooled mean (µRE) and between-study variation (t2) using a frequentist random-effects model such 

as REML  

2)  𝜎"! = ∑ ($!%&)(!
"#

!$%
∑ ($!%&)#
!$%

, where 𝑠)! is the sample variance from study 𝑖 ∈ {1,… ,𝑁} 

3) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of a 𝑁(𝜇̂*+ , 𝜎"! + 𝜏̂!)	distribution 

1B. Frequentist Approach (Individual Participant Data): 
1) Fit a frequentist random-effects model (linear mixed model) directly using the individual participant data 
2) 𝜏̂! = Estimated variance of the random effects 
3) 𝜎"!	= Estimated residual variance  
4) 𝜇̂*+ = Estimated pooled mean (fixed effect) 
5) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of a 𝑁(𝜇̂*+ , 𝜎"! + 𝜏̂!)	distribution 

1C. Bayesian Approach (Aggregate Data): 
1) 𝑦5) 	~	𝑁 7𝜃) ,

,"

$!
9 , 𝜃) 	~	𝑁(𝜇*+ , 𝜏!), (𝑛) − 1)𝑠)!	~	𝑔𝑎𝑚𝑚𝑎	(

$!%&
!
, &
!,"

) 

2) Place N(0, 1000) prior on µRE and Uniform(0, 100) priors on s and t 
3) Use MCMC sampler (such as JAGS, Stan, or WinBugs) to sample from posterior predictive distribution for a 

new individual: 𝑦$-.	~	𝑁(𝜇̂*+ , 𝜎"! +	 𝜏̂!) 
4) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of ynew samples 

1D. Bayesian Approach (Individual Participant Data): 
1) 𝑦)/ 	~	𝑁(𝜃) , 𝜎!), 𝜃) 	~	𝑁(𝜇*+ , 𝜏!) 
2) Place N(0, 1000) prior on µRE and Uniform(0, 100) priors on s and t 
3) Use MCMC sampler (such as JAGS, Stan, or WinBugs) to sample from posterior predictive distribution for a 

new individual: 𝑦$-.	~	𝑁(𝜇̂*+ , 𝜎"! +	 𝜏̂!) 
4) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of ynew samples 

1E. Empirical Approach (Aggregate Data):  
1) Empirically estimate the pooled mean and total variance:  

 𝜇̂-01 =	
∑ $!2&333
#
!$%
∑ $!#
!$%

, 	𝜎"4,-01! =		∑ ($!%&)	(!
"#

!$%
∑ ($!%&)#
!$%

+	
∑ ($!%&)	(2&333%78'())#
!$%

"

∑ ($!%&)#
!$%

   

2) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of a 𝑁?𝜇̂-01, 𝜎"4,-01! @	distribution 

1F. Empirical Approach (Individual Participant Data):  
1) Empirically estimate the pooled mean and total variance as the observed mean and variance of the pooled 

individual participant data:  

 𝜇̂-01 =
∑ ∑ 2!*

+!
*$%

#
!$%

∑ $!#
!$%

, 	𝜎"4,-01! =	
∑ ∑ (2!*%78'())"

+!
*$%

#
!$%

9∑ $!#
!$% :%&	

	   

2) Limits of the estimated reference range: a/2 and 1 - a/2 quantiles of a 𝑁?𝜇̂-01, 𝜎"4,-01! @	distribution 

Simulation results suggest that each of the proposed aggregate data approaches perform

similarly when the between-study heterogeneity is relatively small, and the number of stud-

ies in the meta-analysis is large (at least 20) [88]. However, some caution should be used in

cases of large between-study heterogeneity or very few studies. It may be more appropriate
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to construct reference ranges separately for subgroups or studies of different populations

in these situations. In particular, if there is unexplained between-study heterogeneity that

comprises approximately 30-50% or more of the total estimated variance, it is important

to consider the interpretability of the estimated reference range carefully. While the equal

within-study variation assumption made by the frequentist and Bayesian methods is ar-

guably quite strong, Siegel et al. demonstrated through simulations that these methods

might be robust to small differences in the true variances across studies [88]. However, if

the within-study variances plausibly differ according to some characteristic of the studies,

such as the proportion of males vs. females, separate reference ranges for these groups may

be more clinically meaningful regardless of the distributional assumptions of the method

used.

4.7 Applied example

We now re-analyze the data used in the clinical scenario [7] in order to construct a reference

range that reflects natural variability across healthy individuals rather than the uncertainty

in the estimated pooled mean.

4.7.1 Defining the population of interest

Individuals were included in the original analysis if they had a BMI less than 30, and did not

have hypertension, dyslipidemia, hepatic steatosis on ultrasound, or diabetes mellitus. This

resulted in 3652 individuals across 20 studies. Because one of these studies only contained

four individuals meeting the inclusion criteria, we further excluded these four patients from

the analysis. This resulted in a final dataset containing 3648 individuals across 19 studies.
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4.7.2 Derivation of aggregate data

In order to replicate the scenario where only aggregate data were available, rather than IPD,

we summarized the data within each study by the mean, standard deviation, and sample

size (Table C.2).

4.7.3 Application of methods

We present a typical forest plot for the study-specific means and pooled mean, with their

corresponding confidence intervals in Figure 4.2. The pooled mean was estimated using

the aggregate data and a frequentist random effects model (using REML estimation) im-

plemented in the R package “meta” [75]. Because liver stiffness measurements cannot be

negative and the observed distribution of measurements was slightly right-skewed, we first

log-transformed the liver stiffness measurements and then exponentiated the results for

the means and 95% confidence intervals. Because we were using aggregate data, this log-

transformation required using the approximation described in the Appendix and Table C.1.
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Figure 4.2: Forest Plot of Study Means for Clinical Scenario Estimated mean (95% con-

fidence interval) for each transient elastography liver stiffness measurement study and es-

timated pooled mean (95% confidence interval) based on aggregate data. All calculations

were completed on the log-scale, and the resulting estimates were exponentiated.
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We next applied each of the proposed methods for estimating the 95% reference range

(Table 4.2) using the aggregate data. As previously mentioned, we used the R package

“meta”[75] to fit the frequentist random-effects model with aggregate data. We implemented

the Bayesian models in JAGS using the R packages “rjags” and “coda” [51, 52]. For the

Bayesian models, we ran two chains with 100,000 iterations each and a burn-in period of

5,000 iterations and assessed convergence based on trace plots, the MCMC error, and the

potential scale reduction factor. All analyses were conducted using R version 3.6.3 [50].

63



Table 4.2: Reference Range Results for Clinical Scenario with Aggregate Data Estimated

95% reference ranges for liver stiffness measurement using each of the methods presented

with aggregate data. The reference ranges were estimated on the log-scale, and the resulting

intervals were exponentiated.

Method Estimated 95% Reference Range

Frequentist (2.55 kPa, 7.90 kPa)

Bayesian (2.52 kPa, 7.94 kPa)

Empirical (2.57 kPa, 7.86 kPa)

The estimated reference ranges were similar across each of the methods used (Table 4.2,

Figure 4.3). The Bayesian posterior predictive interval was slightly wider, followed by the

frequentist method, then the empirical approach. We would expect the Bayesian method

to give a wider reference range as it incorporates uncertainty in the parameter estimates.

Figure C.1, included in the Appendix, displays the observed standard deviations of the

log of liver stiffness within each study and their respective 95% confidence intervals. This

allows us to assess the equal within-study variance assumption imposed by the frequentist

and Bayesian methods for estimating the reference range. In general, this figure shows

that most of the observed study standard deviations are very similar and that there is a

high degree of overlap in their respective confidence intervals. However, studies 9 and 16

look to have a slightly different standard deviations from the other studies. We therefore

performed a sensitivity analysis where we removed studies 9 and 16 and compared the

estimated reference ranges with and without them. The results of this sensitivity analysis

are given in Table C.3 in the Appendix; the results with and without these two studies are

similar.
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Figure 4.3: Forest Plot of Results for Clinical Scenario 95% confidence interval for each

study mean, 95% frequentist prediction interval for a new individual’s transient elastography

liver stiffness measurement by study, 95% confidence interval for the pooled mean, 95%

prediction interval for a new study mean, and estimated 95% reference ranges using the

four methods presented. All calculations were completed on the log-scale and the resulting

estimates were exponentiated
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Each of the estimated reference ranges can be interpreted as the predicted interval in

which we would expect 95% of liver stiffness measurements of healthy individuals to fall.

For example, based on the Bayesian individual participant data reference range, we would

expect 95% of healthy patients to have liver stiffness measurements between 2.52 kPa and

7.94 kPa. Therefore, if our hypothetical patient who is concerned about his family history

of liver fibrosis, had a liver stiffness measurement of 9.00 kPa, this may necessitate further
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investigations, as this degree of liver stiffness is atypical of a healthy individual.

The 95% confidence interval for the pooled mean ([4.29 kPa, 4.69 kPa]), is much narrower

than any of the estimated reference ranges. This demonstrates the difference that incorpo-

rating natural within-person variability makes when constructing the reference range. This

is also true when comparing the estimated reference ranges to the frequentist 95% prediction

interval for the mean of a new study: (3.67 kPa, 5.49 kPa) instead of the measurement of

an individual [67,68]. This interval is wider than the 95% confidence interval for the pooled

mean, as it reflects between-study variance and its corresponding estimation uncertainty.

However, unlike the reference ranges, it still does not reflect within-study variation across

healthy individuals. We can also compare the results to the 2.5th and 97.5th quantiles of the

individual measurements, ignoring study assignment: (2.70 kPa, 7.49 kPa). The estimated

reference ranges that incorporate study assignment are slightly wider than this because they

allow for between-study variation and the possibility of more extreme measurements in a

future study. The confidence interval for the pooled mean and the prediction interval for

a new study mean are far narrower and do not capture healthy individuals’ full variation.

The different interpretations of the reference ranges, the confidence interval for the pooled

mean, and the prediction interval for a new study are summarized in Table 4.3.
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Table 4.3: Comparison of Interpretations of Intervals Described in Paper

21 
 

 
Interval Pooled Mean  95% Prediction Interval for a New 

Study   
 

95% Reference Range (proposed) 

Interpretation Frequentist 95% Confidence 
Interval (a, b):  
“We are 95% confident that the mean 
across all studies is between a and b.”  
 

Prediction interval (c,d): 
“The mean of a new study (from the same 
overall target population) is expected to fall 
between c and d with 95% probability.”  
 

Reference range (e,f): 
“The measurement of a new individual is expected to 
fall between e and f with 95% probability.”  

Bayesian 95% Credible Interval 
(a,b):  
“The true mean across all studies lies 
between a and b with 95% 
probability.”  
 

Assumptions Under a random-effects model:  
• Study means follow a normal 

distribution1 
• The means are exchangeable 

across studies  
• The studies included are 

representative of some 
superpopulation of interest 
 

Under a random-effects model:  
• Study means follow a normal distribution 
• The means are exchangeable across 

studies 
• The studies included are representative of 

some superpopulation of interest 
 

Frequentist:  
• Measurements within each study follow a normal 

distribution 
• Study means follow a normal distribution and 

are exchangeable 
• Constant within-study variance 

Bayesian: 
• Same as frequentist  

Empirical:  
• Measurements across all studies follow a normal 

distribution 
Estimation Frequentist:  

𝜇̂!" ± 𝑡#$%;%$'.')/+	𝑆𝐸(	𝜇̂!") 
(where N = # of studies) 

Frequentist: 
𝜇̂!" ± 𝑡#$+;%$'.')/+*𝑉𝑎𝑟. (𝜇̂!") + 𝜏̂+  [67] 

See Box 1 

Bayesian:  
2.5th and 97.5th quantiles of the 
posterior distribution of the pooled 
mean (𝜇!") 

Bayesian:  
2.5th and 97.5th quantiles of the posterior 
predictive distribution of a new study: 
𝑁(𝜇!" , 𝜏#), where 𝜇!" and 𝜏# refer to their 
posterior distributions 

 
1 * The method proposed by DerSimonian and Laird [74] does not require the study means to be normally distributed but can underestimate the between-study variance, particularly when the number of 
studies is small [76] 

4.8 Estimating the reference range using individual participant data

(IPD)

All three approaches are designed for the meta-analysis of aggregate data, where only the

study means, standard deviations, and sample sizes are known. Because of this, we also

include how the reference range could be calculated using IPD without first aggregating

the data (i.e., a one-step approach) (Table 4.1). These approaches are one-step analogs of

each of the three approaches described previously, though the two versions of the empirical

approach are in theory equivalent. The estimated reference ranges based on individual

participant data ultimately serve as a “gold-standard”.
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Furthermore, individual participant data allows for a more detailed exploration of the

modeling assumptions. Each of the methods previously discussed assumes that the in-

dividuals across all studies follow an overall normal distribution. Both the Bayesian and

frequentist approaches also assume that the data within each study are normally distributed

and that the within-study variances are equal across studies. Unlike with aggregate data,

if IPD are available, these normality assumptions can be visually assessed using methods

such as histograms and normal Q-Q plots. Because of this, access to IPD even for 1 or

2 studies could be valuable in investigating these distributional assumptions before using

an aggregate data method to estimate the reference range. Similarly, with aggregate data,

we cannot directly log-transform the individual measurements. Instead, the approximation

given in the Appendix Table C.1 must be used.

4.8.1 Applied example with individual participant data

Here, we present the results for the clinical scenario using both the aggregate (two-step)

approaches as well as the one-step frequentist and Bayesian approaches based on the IPD.

In all cases, the data are first log-transformed (before aggregating) and the resulting ranges

are exponentiated. While the aggregate data approaches are still valid even when individual

participant data are available, the one-step (IPD) approaches are the gold standard.
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Table 4.4: Reference Range Results for Clinical Scenario with IPD Estimated 95% reference

ranges for liver stiffness measurement using IPD. The reference ranges were estimated on

the log-scale and the resulting intervals were exponentiated

Method Estimated 95% Reference Range

Frequentist AD (2.62 kPa, 7.74 kPa)

Bayesian AD (2.61 kPa, 7.79 kPa)

Empirical AD (2.64 kPa, 7.69 kPa)

Frequentist IPD (2.63 kPa, 7.72 kPa)

Bayesian IPD (2.52 kPa, 7.94 kPa)

Empirical IPD (2.64 kPa, 7.69 kPa)

A histogram of the pooled log liver stiffness measurements (Figure C.3) as well as his-

tograms by study (Figure C.4) are included in the Appendix and demonstrate no clear

violations to the overall and within-study normality assumptions described previously. We

were able to assess these normality assumptions using IPD, whereas this would not be possi-

ble with only aggregate data. As expected, the frequentist method using IPD gave a slightly

narrower estimated reference range than the Bayesian method with IPD. With IPD avail-

able, we directly obtained the mean and standard deviation on the log scale for each study.

This is different from computing the mean and standard deviation in the log scale using

the methods presented in Appendix Table C.1 with only the reported mean and standard

deviation in the original scale. Because the log-transformation differed between this analy-

sis and the aggregate data analysis presented previously in Table 4.2, we would expect the

results to be slightly different from the previous analysis even amongst the aggregate data

approaches. Notably, the results using the aggregate data are comparable to those based

on the IPD (Table 4.4). This supports the validity of the aggregate data approaches in this

case, an important point given that IPD are rarely available for all studies included in a

meta-analysis. We also repeated the sensitivity analysis described in the previous section
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with the IPD, and again observed similar results with and without studies 9 and 16, as

shown in the Appendix (Table C.4).

4.9 Interpretation of results

Because there has been little guidance in the literature on estimating reference ranges from a

meta-analysis, many meta-analytical studies have reported the pooled mean as a “reference

value” [8, 12, 53]. While the pooled mean can establish a point of reference, it does not

capture natural variation across healthy individuals. As a result, some studies have also

reported the 95% confidence interval for the pooled mean as a “reference range” [7, 61, 62],

although this better reflects the uncertainty in the estimated pooled mean, not the range

of predicted values for a new individual. For example, as the number of studies included in

the meta-analysis increases, we would expect the confidence interval for the pooled mean

to narrow, reflecting increased precision in the estimate. However, we would not expect the

width of the estimated reference range to approach zero as the total sample size increases.

Similarly, some have recently advocated for the reporting of a prediction interval for the

mean or effect size of a new study when conducting meta-analyses in order to better describe

between-study heterogeneity [65–68]. Riley et al. [67] describe a random effects meta-

analysis example where there is a statistically significant pooled treatment effect, but the

prediction interval for the treatment effect in a new study is [-0.79, 0.09]. They explain that

the majority of the interval being below zero suggests that the treatment in question works

in most settings, but that the small amount of the interval falling above zero indicates that

the treatment may not be effective in some situations [67]. This example clearly illustrates

how the confidence interval for the pooled mean does not necessarily represent the variation

across study populations. However, the prediction interval for the mean of a new study still

does not reflect the full variation on the individual participant level and would therefore

not be suitable as a reference range either.
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Figure 4.4: Comparison of Intervals Estimated in Meta-Analysis 95% Confidence interval

for the pooled mean, 95% prediction interval for the mean of a new study, and estimated

95% reference range for µ̂ = 4, σ̂ = 1, and τ̂ = 0.5 and different within study sample size

(n) and number of studies (N).
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The differences in these intervals are illustrated in Figure 4.4, which shows the 95%

confidence interval for the pooled mean, 95% prediction interval for a new study, and the

estimated 95% reference range based on the same estimates of the pooled mean and within

and between-study variances, but varying the numbers of studies included in the meta-

analysis (N) and the number of individuals within each study (n). We can see that as the

number of studies or number of participants within each study increases, the confidence

interval for the pooled mean narrows. The prediction interval for a new study mean also

narrows slightly, but this is due to greater perceived precision in the estimated parameters.

Figure 4.4 also shows the estimated 95% reference ranges for each of these meta-analyses

when using the frequentist method proposed by Siegel et al. [88]. This method does not

incorporate uncertainty in the estimated parameters, so the width of the reference range

does not change for different sample sizes. However, the Bayesian posterior predictive

reference range interval, also proposed by Siegel et al. [88], can naturally incorporate the
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uncertainty in the estimated parameters. Despite this difference, the estimated reference

ranges in Figure 4.4 are still wider than other intervals. This is because they reflect both the

estimated within-study and between-study variances, rather than only the between-study

variance as does the prediction interval for the mean of a new study, or neither as does the

confidence interval for the pooled mean.

4.10 Certainty about the estimated reference range

To be able to apply research evidence to patient care properly, evidence users (clinicians,

patients, and guideline developers) need to know how certain or trustworthy is the evidence.

Therefore, when a reference range is estimated, we need to consider applicability, risk of

bias, heterogeneity and precision [92]. If possible, studies at high risk of bias (e.g., due

to poor ascertainment of the measured laboratory test or because of a large proportion

of patients lost to follow up) [93] could be excluded from the reference range estimation.

If biased studies are included, the estimated between-study heterogeneity will reflect both

true clinical differences in the study populations and heterogeneity caused by this bias [67].

If excluding these studies is not feasible, and we are left with a reference range estimated

from studies at high risk of bias, certainty in this range will be low. If heterogeneity

between the studies used to estimate the range was high and not explained by subgroup

analyses, certainty will also be low. If the total sample size of included studies was small,

the estimation of this range will also be imprecise and warrants lower certainty.

Furthermore, the Bayesian posterior predictive interval method for estimating the ref-

erence range incorporates the estimation uncertainty of parameters into the width of the

interval, while the other methods do not. However, as previously mentioned, investigators

primarily concerned about failing to diagnose a non-healthy patient may prefer not to use

this method as the estimated reference range can contain greater than 95% of individual

measurements. In this case, one could estimate the reference range using the frequen-

tist or empirical method and then investigate uncertainty by comparing the results to the
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Bayesian posterior predictive interval. If the Bayesian posterior predictive interval is con-

siderably wider than the interval estimated using one of the other two methods, this would

suggest a high degree of estimation uncertainty. However, there is still a need for further

work to develop methods for quantifying the degree of uncertainty in the reference range

limits estimated from a meta-analysis.

4.11 Discussion

This empirical application introduces the aggregate data approaches to estimating reference

ranges proposed by Siegel et al. [88] and two one-step approaches using individual partici-

pant data. Overall, the results across all methods are similar in the clinical scenario, demon-

strating that the aggregate data approaches with the corresponding log-transformation pro-

vide an adequate approximation to the results using the individual participant data. Each

of the proposed methods is relatively easy to use. The Bayesian methods (both one and

two-step) differ from the other methods in that the width of the estimated ranges increases

with greater uncertainty. The frequentist and empirical approaches also do not require

setting prior distributions for the model parameters and may be easier to implement in

practice than the Bayesian methods. The frequentist methods can be implemented using

existing software packages, while the empirical approach only uses simple formulas based

on the aggregate data.

The assumptions used by each of the proposed methods should be considered when

estimating the reference range, preferably by investigating distributional assumptions using

IPD from at least 1-2 data sets, and further work is still needed to address situations

where these assumptions are not met. However, each of the methods provides information

about the variability of a measurement across healthy individuals beyond that provided by

the pooled mean. The applied example using liver stiffness measurements also illustrates

how these methods more accurately describe variation across healthy individuals than the

confidence interval for the pooled mean or the prediction interval for the mean of a new
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study. These methods are recommended to be used when estimating a reference range from

a meta-analysis.
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Chapter 5

Conclusion

5.1 Summary of major findings

This thesis proposed several methods for the meta-analysis of prevalence and normative

data, two areas that have previously gained less attention in meta-analysis than the meta-

analysis of randomized controlled trials or diagnostic test studies. Chapter 2 proposed a

novel parameterization of a multivariate meta-analysis model for the joint meta-analysis of

the prevalence of an overall outcome as well as several subtype outcomes. This parameter-

ization accounted for the natural constraint that neither the underlying prevalence nor the

observed counts of the subtypes can exceed those of the overall outcome. Simulation stud-

ies demonstrated that accounting for these natural constraints as well as the correlations

between outcomes can reduce bias and increase precision, compared to both analyzing the

outcomes univariately. This was also true when comparing this new parameterization to

a multivariate model that does not account for these natural constraints. The simulations

demonstrated these gains were largest in the presence of missing data, particularly when

these data were missing at random. We hypothesize the reduced bias and increased preci-

sion are likely driven by the truncation of density in regions where the subtype outcomes

would have higher prevalences than the overall outcome. These methods were demonstrated
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using data from Markland et al. [19] on the prevalence of stress, urgency, or any type of

urinary incontinence.

Chapter 3 proposed methods for estimating a reference range from a meta-analysis.

No methodological guidance previously existed in the literature for estimation reference

ranges using the results from multiple studies, particularly when only aggregate data are

available. Siegel et al. [88] proposed three main approaches for estimating the meta-analysis

that only require information on the sample size, observed mean, and standard deviation

from each study included in the meta-analysis: a frequentist, a Bayesian, and an empirical

approach. Simulation studies demonstrated that all three methods perform well in capturing

the middle 95% of values when the true overall distribution was normal, the number of

studies was relatively large (e.g. at least 20), and the between-study variance was relatively

low compared to the overall variance (less than 30-50%). This was the case for both equal

and unequal within-study variances. These methods were illustrated using two applied

examples: pediatric waking time after sleep onset (WASO) and frontal subjective postural

vertical measurements.

Finally, because Chapter 3 is written primarily for a statistical audience, Chapter 4

provides a guide aimed at a clinical and epidemiological audience describing how the three

methods proposed in Chapter 3 can be used. Chapter 4 also extends these methods to the

case where individual participant data are available. These methods are presented in the

context of a clinical scenario about a patient at risk for liver fibrosis and who may undergo

a non-invasive measure of liver stiffness for which there has previously been no established

reference range. In this chapter, the concepts of heterogeneity, applicability, the target

population, and the reference range’s interpretation are explored more deeply. Finally, in

the results for the clinical scenario, the estimated reference ranges using aggregate data are

very similar to those using individual participant data, suggesting that the aggregate data

approaches provide a valid alternative when individual participant data are not available.
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5.2 Future research

The findings described in the previous section lead to many opportunities for future work.

The first area stems from the work presented in Chapter 2 on reparameterizing multivariate

meta-analysis models for binary outcomes to account for natural constraints in the data:

5.2.1 Bayesian Multivariate Meta-analysis of Serologic Test Accuracy: With Ap-

plication to COVID-19

Serologic tests may measure the presence of multiple types of antibodies to determine

whether a patient has a disease. For example, a recent systematic review and meta-analysis

of COVID-19 antibody tests [94] assessed the sensitivity and specificity of different COVID-

19 serologic tests when detecting IgG, IgM, or either type of antibody. In this case, the

sensitivity when detecting either type of antibody cannot exceed the sensitivity when detect-

ing either antibody individually, with the converse true for the specificities. Methods have

previously been developed for the multivariate meta-analysis of diagnostic tests that jointly

model sensitivity and specificity in order to account for the correlation between these two

measures [4,5]. Hong et al. [42] also developed methods for meta-analysis in the case of both

multiple treatments and multiple outcomes that could be easily applied to the diagnostic

test setting. However, none of these methods account for the natural constraints described

previously. We will extend the model proposed in Chapter 2 for multivariate meta-analysis

of prevalences to the diagnostic test setting by also allowing for sensitivity and specificity

to be jointly modeled in addition to the multiple antibody types.

5.2.2 Estimating the Reference Range from a Fixed Effects Meta-Analysis

The frequentist and Bayesian methods proposed in Chapter 3 for estimating the reference

range from a meta-analysis are based on a random effects model. However, if only a small

number of studies are included in the meta-analysis, it may be impossible to reliably estimate

the between-study variance. Alternatively, the random effects normality assumption for the
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study means may not appear reasonable in some cases. In these settings, one may prefer

to estimate the reference range using a fixed effects model [64], which does not assume

any particular relationship between study means. Cao et al. [95] recently proposed a novel

method in addition to highlighting the empirical method proposed by Siegel et al. [88] for

estimating the reference range from a meta-analysis using a fixed effects model. Further

work is needed to establish when avoiding the assumptions made by the random effects

model may be beneficial, as well as in which cases one of the two fixed effects methods

proposed may be preferred over the other.

5.2.3 Incorporating Covariates when Estimating the Reference Range from a

Meta-Analysis

When estimating the reference range, it is important to assess heterogeneity to establish

whether it may be preferable to estimate separate reference ranges for subgroups, such as

males and females. However, how these separate reference ranges are estimated requires

further exploration. If only aggregate data are available and covariates are on the study

level (e.g. study country, age groups), reference ranges can be estimated individually using

separate models. However, if either the within or between-study variances can be assumed

to be the same across subgroups, it may be more efficient to borrow information across

groups by fitting a single meta-regression model. We will explore the relative benefits of

different meta-regression models under a variety of settings as well as whether using model

selection criteria (e.g. DIC in Bayesian settings) results in an appropriate choice of reference

range model.

5.2.4 Estimating the Reference Range when Both Aggregate Data and IPD are

Available

Chapter 3 proposes methods for estimating the reference range from a meta-analysis when

only aggregate data are available and Chapter 4 extends these methods to cases where
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IPD are available. However, if a meta-analysis contained some studies with IPD and some

with only aggregate data, using the currently proposed methods, the studies with IPD

would first need to be aggregated, then the three methods proposed in Chapter 3 could be

applied. Future work is needed to develop methods for estimating the reference range that

could be fit directly on both the aggregate data and IPD. This could potentially lead to

greater efficiency and may allow for the use of individual patient level covariates while still

incorporating information from the aggregated studies.

5.2.5 Nonparametric Estimation of the Reference Range from a Meta-Analysis

All of the proposed methods for estimating reference ranges [88,95] make some parametric

assumptions, either regarding the distributions of individuals’ measurements within studies,

the overall distribution across studies, or the distribution of the means of measurements

across studies. The frequentist and Bayesian methods described in Chapters 3 and 4 make

assumptions about all three. In some cases, these parametric assumptions may be deemed

inappropriate, leading to the need to develop non-parametric methods for estimating the

reference range.

5.2.6 Software

Finally, while the Web Supplement for the paper by Siegel et al. [88] presented in Chapter

3 provides code for implementing each of the proposed methods, developing software such

as an R package or SAS macro will be important for increasing their use. The intended

audience of Chapter 4 is comprised of clinicians and epidemiologists who may feel more

comfortable implementing the proposed methods if they have access to user-friendly soft-

ware. Eventually, this software will provide options for estimating the reference range from

a meta-analysis using a variety of different methods depending on the modeling assumptions

desired and availability of IPD.
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Appendix A

Supplementary Materials for “A

Bayesian Multivariate Meta-Analysis of

Prevalence Data”

A.1 Marginal Event Rate for Subtypes

In this section we derive Equation (2.11), which describes how to find the population aver-

aged prevalence (πj) for each subtype j.

This is given by:

πj = E[πij ] = E[πi0pij ] =

∫ ∞
−∞

∫ ∞
−∞

Φ(µ0 + σ0z0)Φ(µj + σ∗j zj)φ(z0, zj)dz0dzj , (A.1)

where φ(z0, zj) denotes the probability density function of a bivariate standard normal

distribution.
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This is equivalent to:

E[P (Y1 ≤ µ0 + σ0Z0)P (Y2 ≤ µj + σ∗jZj)]

=E[P (Y1 − σ0Z0 ≤ µ0)P (Y2 − σ∗jZj) ≤ µ∗j ],
(A.2)

where Y1 and Y2 are two independent standard normal random variables. Because

Y1−σ0z0 ∼ N(0, 1+σ2
0) and Y2−σ∗j zj ∼ N(0, 1+σ∗2j ), we can do the transformation: T1 =

Y1−σ0Z0√
1+σ2

0

and T2 =
Y2−σ∗

jZj√
1+σ∗2

j

, where T1 and T2 are both distributed N(0, 1) with correlation

ρ. Therefore, this is equal to:

E

P (T1 ≤
µ0√

1 + σ2
0

)
P

T2 ≤
µj√

1 + σ∗2j

 (A.3)

Since Z0 and Zj are distributed bivariate standard normal, we can see that (T1, T2) are

distributed bivariate normal with means (0,0), variances (1,1) and some Cov[T1, T2].

We can then solve for this covariance:

Cov[T1, T2] = Cov

Y1 − σ0Z0√
1 + σ2

0

,
Y2 − σ∗jZj√

1 + σ∗2j


=

1√
1 + σ2

0

√
1 + σ∗2j

Cov
[
Y1 − σ0Z0, Y2 − σ∗jZj

]
=

1√
1 + σ2

0

√
1 + σ2

j

Cov
[
σ0Z0, σ

∗
jZj
]

(A.4)

Cov
[
σ0Z0, σ

∗
jZj

]
is equal to Σ∗

1,j+1, which we are already estimating. Therefore, we

can estimate πj using:

πj = P

X <
µ0√

1 + σ2
0

, Y <
µj√

1 + σ∗2j

 (A.5)
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where X and Y are distributed bivariate normal with means = (0, 0), variances = (1, 1),

and covariance: Cov [X,Y ] = 1√
1+σ2

0

√
1+σ∗2

j

Σ∗
1,j+1.

95



A.2 Tables and Figures

Figure A.1: Posterior Density Plot Posterior prevalence density plots for overall UI and

subtypes (SUI, UUI) for univariate model, multivariate model, and new parameterization
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Table A.1: Case Study Data Author, publication year, sample size (N), and counts for

any urinary incontinence (UIPrev), stress incontience (SUIPrev), or urgency incontinence

(UUIPrev)

Author PubYear N UIPrev SUIPrev UUIPrev

1 Araki 2005 3734 624 456 76

2 Azuma 2008 975 220 42 9

3 Bailey 2010 200 55 28 28

4 Bo 2011 685 181 47 10

5 Buschbaum 2002 149 75 23 18

6 Davis 1999 563 175

7 Fischer 1999 274 72 51 7

8 Fitzgerald 2000 1113 234 197

9 Fitzgerald 2002 269 78 20 1

10 Fultz 2005 3364 1480 148 548

11 Liao 2007 445 120 62 8

12 Liao 2009 907 82 25 14

13 Nygaard 1997 791 127 23 17

14 Liu 2014 5433 1684

15 Kaya 2016 281 51 25 14

16 Kim 2016 5928 445

17 Hart 1999 1113 234

18 Lam 1992 2631 510

19 Palmer 2015 113 60

20 Pierce 2017 2907 930

21 Peyrat 2002 1700 357 161 21

22 Saadoun 2006 2640 554

23 Sexton 2009 2820 722

24 Singh 2013 3000 657 484 62

25 Wan 2016 636 297 122 73

26 Zhang 2013 1070 482 349 225
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Table A.2: (N = 30, ni = 500, MCAR) Bias, 95% credible interval width (CIW) and

coverage probability (Cov.) for univariate model, original multivariate model, and new

parameterization across 2000 simulations containing 30 studies, where ni = 500, the true

prevalences are (0.3, 0.15, 0.05), and data are missing completely at random (MCAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.003 0.118 0.95 0.009 0.121 0.96 0.007 0.070 0.95

Original 0.004 0.120 0.96 0.007 0.098 0.96 0.008 0.064 0.95

New Param. 0.004 0.121 0.96 0.002 0.093 0.96 0.005 0.057 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.003 0.118 0.96 0.010 0.138 0.96 0.009 0.083 0.97

Original 0.003 0.119 0.96 0.007 0.104 0.96 0.007 0.067 0.96

New Param. 0.004 0.121 0.96 0.003 0.100 0.96 0.005 0.061 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.003 0.118 0.96 0.011 0.153 0.96 0.011 0.094 0.96

Original 0.003 0.118 0.96 0.006 0.106 0.95 0.006 0.063 0.95

New Param. 0.003 0.119 0.96 0.004 0.103 0.95 0.005 0.059 0.95

σ = (0.5, 1, 1),ρ = 0

Univariate 0.003 0.118 0.95 0.013 0.159 0.97 0.017 0.122 0.97

Original 0.004 0.121 0.96 0.015 0.147 0.95 0.020 0.126 0.96

New Param. 0.005 0.121 0.96 0.003 0.119 0.96 0.009 0.085 0.96

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.003 0.118 0.96 0.016 0.181 0.97 0.020 0.139 0.96

Original 0.004 0.120 0.96 0.014 0.153 0.97 0.020 0.127 0.95

New Param. 0.004 0.121 0.96 0.004 0.126 0.96 0.011 0.093 0.95

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.003 0.118 0.96 0.017 0.198 0.97 0.023 0.155 0.96

Original 0.003 0.119 0.96 0.010 0.146 0.97 0.015 0.111 0.96

New Param. 0.003 0.120 0.96 0.005 0.129 0.95 0.010 0.092 0.97
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Table A.3: (N = 30, ni = 500, MAR) Bias, 95% credible interval width (CIW) and coverage

probability (Cov.) for univariate model, original multivariate model, and new parameteri-

zation, across 2000 simulations containing 30 studies, where ni = 500, the true prevalences

are (0.3, 0.15, 0.05), and data are missing at random (MAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.003 0.118 0.954 0.009 0.121 0.963 0.007 0.070 0.953

Original 0.004 0.120 0.959 0.007 0.098 0.958 0.008 0.064 0.949

New Param. 0.004 0.121 0.963 0.002 0.093 0.962 0.005 0.057 0.960

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.004 0.118 0.960 0.078 0.143 0.309 0.036 0.092 0.503

Original 0.004 0.119 0.964 0.014 0.114 0.946 0.012 0.074 0.942

New Param. 0.005 0.121 0.967 0.005 0.096 0.956 0.006 0.056 0.959

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.003 0.118 0.960 0.092 0.154 0.234 0.044 0.098 0.381

Original 0.004 0.118 0.961 0.009 0.106 0.953 0.008 0.061 0.945

New Param. 0.004 0.119 0.963 0.007 0.101 0.953 0.006 0.055 0.948

σ = (0.5, 1, 1),ρ = 0

Univariate 0.004 0.118 0.954 0.069 0.187 0.630 0.039 0.150 0.804

Original 0.005 0.121 0.962 0.036 0.201 0.951 0.038 0.180 0.923

New Param. 0.005 0.121 0.961 0.003 0.111 0.965 0.011 0.081 0.954

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.004 0.118 0.963 0.088 0.199 0.487 0.051 0.161 0.661

Original 0.005 0.120 0.966 0.024 0.173 0.959 0.028 0.147 0.934

New Param. 0.005 0.121 0.965 0.006 0.120 0.961 0.012 0.084 0.948

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.003 0.118 0.957 0.111 0.205 0.322 0.062 0.164 0.510

Original 0.004 0.119 0.959 0.014 0.139 0.945 0.014 0.098 0.947

New Param. 0.004 0.120 0.962 0.009 0.126 0.947 0.010 0.081 0.945
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Table A.4: (N = 10, ni = 100, MCAR) Bias, 95% credible interval width (CIW) and

coverage probability (Cov.) for univariate model, original multivariate model, and new

parameterization across 2000 simulations containing 10 studies, where ni = 100, the true

prevalences are (0.3, 0.15, 0.05), and data are missing completely at random (MCAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.009 0.226 0.96 0.040 0.332 0.97 0.052 0.314 0.96

Original 0.012 0.237 0.97 0.033 0.278 0.97 0.053 0.289 0.96

New Param. 0.013 0.241 0.97 0.007 0.198 0.98 0.022 0.162 0.98

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.008 0.225 0.96 0.046 0.363 0.98 0.059 0.340 0.97

Original 0.011 0.235 0.97 0.036 0.299 0.97 0.054 0.297 0.96

New Param. 0.012 0.240 0.97 0.008 0.210 0.97 0.023 0.170 0.97

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.008 0.225 0.96 0.048 0.378 0.97 0.067 0.364 0.96

Original 0.009 0.232 0.97 0.034 0.298 0.97 0.055 0.297 0.97

New Param. 0.011 0.235 0.97 0.010 0.214 0.97 0.025 0.176 0.97

σ = (0.5, 1, 1),ρ = 0

Univariate 0.007 0.225 0.95 0.051 0.389 0.97 0.077 0.397 0.96

Original 0.011 0.238 0.97 0.052 0.358 0.96 0.086 0.384 0.94

New Param. 0.011 0.240 0.97 0.004 0.226 0.97 0.028 0.192 0.96

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.006 0.224 0.96 0.058 0.421 0.98 0.081 0.408 0.96

Original 0.009 0.234 0.97 0.054 0.374 0.97 0.083 0.382 0.95

New Param. 0.010 0.237 0.97 0.006 0.238 0.97 0.029 0.200 0.96

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.006 0.223 0.96 0.060 0.436 0.97 0.082 0.413 0.97

Original 0.008 0.229 0.96 0.047 0.364 0.97 0.073 0.360 0.96

New Param. 0.008 0.231 0.96 0.007 0.244 0.96 0.030 0.207 0.96
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Table A.5: (N = 10, ni = 100, MAR) Bias, 95% credible interval width (CIW) and coverage

probability (Cov.) for univariate model, original multivariate model, and new parameteri-

zation across 2000 simulations containing 10 studies, where ni = 100, the true prevalences

are (0.3, 0.15, 0.05), and data are missing at random (MAR).

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.009 0.226 0.96 0.089 0.342 0.83 0.070 0.332 0.86

Original 0.012 0.238 0.97 0.060 0.336 0.95 0.072 0.344 0.93

New Param. 0.013 0.240 0.97 0.006 0.185 0.98 0.022 0.146 0.97

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.009 0.225 0.96 0.101 0.356 0.77 0.079 0.341 0.80

Original 0.012 0.236 0.97 0.058 0.332 0.95 0.066 0.326 0.93

New Param. 0.013 0.239 0.97 0.012 0.196 0.98 0.024 0.150 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.009 0.225 0.96 0.112 0.364 0.73 0.084 0.338 0.73

Original 0.011 0.232 0.96 0.052 0.312 0.95 0.056 0.295 0.92

New Param. 0.012 0.237 0.97 0.017 0.202 0.97 0.025 0.150 0.94

σ = (0.5, 1, 1),ρ = 0

Univariate 0.009 0.226 0.96 0.103 0.417 0.86 0.100 0.432 0.90

Original 0.013 0.238 0.97 0.090 0.438 0.94 0.117 0.465 0.92

New Param. 0.013 0.238 0.97 0.006 0.210 0.98 0.029 0.175 0.96

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.009 0.225 0.96 0.120 0.428 0.81 0.112 0.440 0.84

Original 0.013 0.236 0.97 0.084 0.425 0.94 0.109 0.449 0.92

New Param. 0.013 0.237 0.97 0.014 0.224 0.97 0.034 0.184 0.95

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.009 0.224 0.95 0.137 0.430 0.74 0.117 0.432 0.77

Original 0.011 0.232 0.96 0.069 0.385 0.94 0.082 0.386 0.92

New Param. 0.012 0.234 0.96 0.021 0.234 0.95 0.034 0.189 0.93
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Table A.6: (N = 30, ni = 100, No Missing Data) Bias, 95% credible interval width (CIW)

and coverage probability (Cov.) for univariate model, original multivariate model, and new

parameterization across 2000 simulations containing 30 studies, where ni = 100, the true

prevalences are (0.3, 0.15, 0.05), and the data are fully observed.

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.003 0.121 0.95 0.004 0.081 0.96 0.003 0.044 0.95

Original 0.003 0.123 0.96 0.005 0.083 0.96 0.004 0.045 0.95

New Param. 0.004 0.124 0.96 0.002 0.081 0.96 0.003 0.043 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.003 0.121 0.95 0.005 0.092 0.96 0.004 0.051 0.96

Original 0.003 0.123 0.96 0.006 0.094 0.96 0.005 0.052 0.96

New Param. 0.004 0.124 0.96 0.004 0.092 0.96 0.004 0.050 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.003 0.121 0.96 0.005 0.102 0.96 0.005 0.058 0.96

Original 0.006 0.134 0.95 0.009 0.119 0.95 0.008 0.073 0.95

New Param. 0.003 0.122 0.96 0.005 0.100 0.96 0.004 0.054 0.95

σ = (0.5, 1, 1),ρ = 0

Univariate 0.003 0.121 0.96 0.006 0.104 0.96 0.007 0.071 0.96

Original 0.004 0.124 0.96 0.008 0.106 0.96 0.009 0.075 0.96

New Param. 0.005 0.125 0.96 0.003 0.099 0.96 0.005 0.063 0.96

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.003 0.121 0.96 0.007 0.118 0.96 0.009 0.082 0.96

Original 0.004 0.123 0.96 0.008 0.119 0.97 0.010 0.084 0.96

New Param. 0.005 0.125 0.96 0.005 0.112 0.96 0.007 0.073 0.96

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.003 0.121 0.96 0.008 0.131 0.96 0.010 0.090 0.96

Original 0.003 0.122 0.96 0.008 0.130 0.96 0.010 0.088 0.96

New Param. 0.003 0.122 0.96 0.006 0.122 0.95 0.008 0.079 0.96
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Table A.7: (N = 10, ni = 100, No Missing Data) Bias, 95% credible interval width (CIW)

and coverage probability (Cov.) for univariate model, original multivariate model, and new

parameterization across 2000 simulations containing 10 studies, where ni = 100, the true

prevalences are (0.3, 0.15, 0.05), and the data are fully observed.

Overall Subtype 1 Subtype 2

Bias CIW Cov. Bias CIW Cov. Bias CIW Cov.

σ = (0.5, 0.5, 0.5),ρ = 0

Univariate 0.008 0.224 0.96 0.012 0.165 0.96 0.013 0.113 0.96

Original 0.011 0.235 0.97 0.016 0.175 0.96 0.016 0.125 0.95

New Param. 0.013 0.244 0.97 0.007 0.166 0.97 0.010 0.104 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.4

Univariate 0.007 0.223 0.95 0.015 0.185 0.95 0.016 0.133 0.96

Original 0.009 0.231 0.96 0.017 0.193 0.96 0.019 0.141 0.96

New Param. 0.012 0.240 0.97 0.011 0.183 0.96 0.013 0.118 0.96

σ = (0.5, 0.5, 0.5),ρ = 0.8

Univariate 0.007 0.222 0.96 0.016 0.203 0.96 0.020 0.153 0.96

Original 0.009 0.231 0.96 0.019 0.212 0.97 0.021 0.155 0.96

New Param. 0.010 0.233 0.97 0.014 0.196 0.96 0.016 0.131 0.96

σ = (0.5, 1, 1),ρ = 0

Univariate 0.007 0.224 0.96 0.017 0.209 0.97 0.029 0.194 0.97

Original 0.011 0.241 0.97 0.024 0.226 0.97 0.040 0.221 0.95

New Param. 0.013 0.246 0.97 0.005 0.194 0.97 0.018 0.147 0.97

σ = (0.5, 1, 1),ρ = 0.4

Univariate 0.006 0.224 0.96 0.020 0.236 0.97 0.034 0.216 0.97

Original 0.009 0.236 0.97 0.026 0.247 0.97 0.042 0.233 0.96

New Param. 0.011 0.242 0.97 0.010 0.214 0.98 0.023 0.166 0.97

σ = (0.5, 1, 1),ρ = 0.8

Univariate 0.006 0.223 0.96 0.023 0.259 0.97 0.038 0.235 0.97

Original 0.007 0.229 0.97 0.025 0.260 0.97 0.038 0.232 0.97

New Param. 0.008 0.232 0.97 0.014 0.230 0.97 0.025 0.180 0.97
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Table A.8: Case Study Results with Inverse Wishart Prior

Model UI CIW SUI CIW UUI CIW

Univariate 0.274 (0.024) 0.096 0.127 (0.022) 0.088 0.066 (0.021) 0.082

Multivariate 0.273 (0.023) 0.090 0.123 (0.019) 0.075 0.058 (0.014) 0.056

New Parameterization 0.273 (0.023) 0.090 0.122 (0.018) 0.069 0.057 (0.014) 0.053

(a) Posterior mean (SD) of marginal prevalences for overall outcome (UI) and two subtypes (SUI, UUI) with

corresponding 95% credible interval width (CIW)

σ̂1 σ̂2 σ̂3

Univariate 0.383 (0.06) 0.435 (0.089) 0.607 (0.131)

Multivariate 0.364 (0.053) 0.401 (0.072) 0.525 (0.093)

σ̂∗1 σ̂∗2 σ̂∗3

New Param. 0.363 (0.053) 0.641 (0.117) 0.567 (0.111)

ρ̂12 ρ̂13 ρ̂23

Multivariate 0.462 (0.204) 0.684 (0.157) 0.398 (0.22)

ρ̂∗12 ρ̂∗13 ρ̂∗23

New Param. -0.11 (0.251) 0.396 (0.231) 0.093 (0.273)

(b) Posterior mean (SD) of components in estimated covariance matrices for original

multivariate model and new parameterization (Σ̂, Σ̂∗)
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Appendix B

Supplementary Materials for

“Estimating the Reference Range from

a Meta-Analysis”

B.1 Method of moments estimators for lognormal distribution

In (3.9), we use the method of moments estimators for the location and scale parameters of

the lognormal distribution in order to transform the observed mean and variance to the log

scale, where the observations would be normally distributed. Suppose Y = {y1, ..., yn} ∼

Lognormal(µ, σ2). Then the first two moments of the lognormal distribution are given

by [96]:

E[Y ] = eµ+ 1
2
σ2

E[Y 2] = e2µ+2σ2
.

(B.1)
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We can then set:

eµ+ 1
2
σ2

=
1

n

n∑
j=1

yj = ȳ

e2µ+2σ2
=

1

n

n∑
j=1

y2
j .

(B.2)

Solving for µ and σ2, we have:

µ̂MM = log

 ȳ2√
ȳ2 + n−1

n s2

 = log

 ȳ√
1 +

n−1
n
s2

ȳ2


σ̂2
MM = log

(
ȳ2 + n−1

n s2

ȳ2

)
= log

(
1 +

n−1
n s2

ȳ2

)
,

(B.3)

where s2 = 1
n−1

∑n
i=1 (yi − ȳ)2.

Therefore for each study i in a meta-analyses, we can let:

ȳ∗i = log

 ȳj√
1 +

ni−1

ni
s2i

ȳ2i


s2∗
i = log

(
1 +

ni−1
ni

s2
i

ȳ2
i

). (B.4)

We can then treat ȳ∗i and s2∗
i as approximations of the sample mean and sample variance

of the study on the log scale.
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B.2 Figures

Figure B.1: WASO Q-Q Plot Normal Q-Q plot of the study means.
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Figure B.2: SPV Q-Q Plot Normal Q-Q plot of the study means.
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Appendix C

Supplementary Materials for “A Guide

to Estimating the Reference Range

from a Meta-Analysis using Aggregate

or Individual Participant Data”

C.1 Methods for Estimating the Reference Range

C.1.1 Frequentist approach using a random-effects model

Aggregate data

The first method we proposed uses the results of a frequentist random-effects model, which

assumes that the underlying study means in the meta-analysis follow a normal distribution

with mean µRE and variance τ2. We then add the additional assumptions that the data

within each study are normally distributed and that the within-study variance (σ2) is con-

stant across studies. This implies that each of the individuals included in the meta-analysis

are marginally distributed N(µRE , σ
2 + τ2). To estimate the reference range, first estimate
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the pooled mean across all studies (µRE) and the between-study variation (τ2) using a fre-

quentist random-effects model. We use the restricted maximum likelihood (REML) model

implemented in the R package “meta” [75], but other methods and software could also be

used. Next, use the pooled sample variance as an estimate of the common within-study

variance (Table 4.1). Finally, the bounds of an (1 − α)100% level reference range can be

estimated by the α/2 and 1− α/2 quantiles of a N(µRE , σ
2 + τ2) distribution (Table 4.1).

Individual participant data

If individual participant data are available, any of the methods based on aggregate data

described in this guide can still be used by first aggregating the data by study to get the

study means, standard deviations, and sample sizes. However, a frequentist random effects

model (linear mixed model) can also be fit directly using the individual participant data

without first aggregating. We use the R package “lme4,” but many other choices of software

are available. Let τ2 be the estimated variance of the random effects, σ2 be the estimated

residual variance, and µRE be the estimated pooled mean from the model. Then, the bounds

of an (1-α)100% level reference range can be estimated by the α/2 and 1 - α/2 quantiles of

a N(µRE , σ
2 + τ2) distribution (Table 4.1).

C.1.2 Bayesian posterior predictive interval

Aggregate data

The second method we proposed uses the posterior predictive distribution of a new individ-

ual from a Bayesian random-effects model. This imposes the same distributional assump-

tions as with the frequentist approach. The sampling distributions of the study-means and

standard deviations can be used to estimate the posterior distributions of µRE , σ2, and τ2

using Markov Chain Monte Carlo sampling (Table 4.1). An (1-α)100% level reference range

can then be estimated by the α/2 and 1 - α/2 quantiles of samples from a N(µRE , σ
2 + τ2)

distribution, the posterior predictive distribution for a new individual. We place a N(0,
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1000) prior on µRE , and Uniform(0,100) priors on σ and τ , as shown in Table 4.1. The

main difference between this and the frequentist methods is that the posterior predictive

interval incorporates the uncertainty in the estimated parameters into the reference range,

whereas the frequentist methods do not.

Individual participant data

However, if individual participant data are available, a Bayesian random effects model can

also be fit directly on the individual observations, just as with the frequentist approach.

Instead of using the sampling distributions for the study means and standard deviations,

we can use the likelihood for an individual observation (Table 4.1). We still place the

same priors on each of the estimated parameters, and the resulting range has the same

interpretation as the posterior predictive interval based on the aggregate data.

C.1.3 Empirical approach

Aggregate data

Finally, we proposed a simple empirical approach using aggregate data, which is similar to

the method used by Conceição et al. [9] to estimate reference ranges for normal Subjective

Postural Vertical (SPV) measurements. This does not make the same assumption about

constant within-study variance, but still assumes the data are normally distributed. First,

empirically estimate the pooled mean (µemp), weighting by the sample size in each study.

This is equivalent to the mean estimate in the fixed effects model proposed by Laird and

Mosteller [64] when weighting by sample size. Then, estimate the total variance both

within and across studies (σ2
T ) (Table 4.1). An (1-α)100% level reference range can then be

estimated by the α/2 and 1 - α/2 quantiles of a N(µemp, σ
2
T ) distribution.
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Individual participant data

If individual participant data are available, one could equivalently pool the data across

studies and estimate the pooled mean (µemp) as the mean of these individual measurements.

The total variance within and across studies could similarly be estimated as the variance

of these pooled samples (σ2
T ) (Table 4.1). Then, an (1-α)100% level reference range can be

estimated by the α/2 and 1 - α/2 quantiles of a N(µemp, σ
2
T ) distribution.

C.2 Lognormally distributed data

In some cases, such as when a measurement cannot take on negative values, it may be

more reasonable to assume that the data within each study follow a lognormal distribution.

If individual participant data are available, the preferred approach would be to first log-

transform the individual observations, estimate the reference interval, then exponentiate

the resulting bounds. However, if only aggregate data are available, the observed means

and standard deviations need to be transformed to the log scale. Suppose Y = {y1, . . . , yn}

denotes a set of continuous observations. Because, 1
n

∑n
i=1 log(yi) 6= log

(
1
n

∑n
i=1 yi

)
, the

observed means and sample variances on the log-scale must be estimated. The method of

moments estimators for the mean and variance of log(Y) are given in Table 4.3. These

equations can be used to estimate the observed means and sample variances, which can

then be used in each of the methods described to estimate the reference range. Finally,

the resulting range can be exponentiated in order to return to the original scale. We note

that when performing either of these transformations, the normality assumption for the

study means now applies to the log-transformed data and should be still be assessed using

methods such as a normal Q-Q plot, as the transformed means may be skewed.
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Table C.1: Estimating the Study Means and Sample Variances on the Log Scale with

Aggregate Data

30 
 

 
Let 𝑦𝑖!!! , 𝑠!" , and 𝑛𝑖 be the sample mean, sample variance, and sample size for study i, 
respectively. The method of moments estimators for the location and scale parameters of 
the log-normal distribution are given by: 
 

𝑦𝑖!!!
∗ = log	

⎝

⎜
⎜
⎜
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⎛
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We can then use 𝑦"$∗ and 𝑠$%

∗ as estimates of the mean and sample standard deviation on the 
log scale when individual participant data are not available. 
 
Note: We assume 𝑠𝑖2 =

%
&'%

∑ 8𝑦!( −	𝑦!!9
"&!

()%   
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C.3 Clinical Scenario

C.3.1 Tables

Table C.2: Aggregate Data for Liver Stiffness Example

Study Mean SD Sample Size

1 1.00 4.66 1.38 581

2 2.00 4.11 0.89 530

3 3.00 3.97 1.00 67

4 4.00 4.57 1.29 248

5 5.00 4.53 1.30 206

6 6.00 4.99 1.08 183

7 7.00 4.20 1.18 60

8 8.00 4.67 1.18 35

9 9.00 5.05 4.42 34

10 10.00 4.82 1.22 132

11 11.00 5.20 1.39 420

12 12.00 4.83 1.25 90

13 13.00 5.09 1.18 433

14 14.00 4.52 1.51 498

15 15.00 5.45 1.87 52

16 16.00 5.18 0.68 29

17 17.00 5.17 1.13 9

18 18.00 3.83 0.67 15

19 19.00 4.36 1.37 26
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Table C.3: Sensitivity Analysis with Aggregate Data Results when removing studies 9 and

16 and estimating reference ranges using aggregate data.

95% Reference Range

Frequentist AD (2.58, 7.74)

Bayesian AD (2.57, 7.84)

Empirical AD (2.61, 7.75)

Table C.4: Sensitivity Analysis with IPD Results when removing studies 9 and 16 and

estimating reference ranges using IPD.

95% Reference Range

Frequentist AD (2.62, 7.74)

Bayesian AD (2.61, 7.79)

Empirical AD (2.64, 7.69)

Frequentist IPD (2.63, 7.72)

Bayesian IPD (2.52, 7.94)

Empirical IPD (2.64, 7.69)
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C.3.2 Figures

Figure C.1: Forest Plot of Study Standard Deviations from Clinical Scenario Standard

deviations of the log of liver stiffness measurements for each study and corresponding 95%

confidence intervals. The observed standard deviations in studies 9 and 16 look as though

they may differ from the others. The vertical dotted line represents the estimated pooled

standard deviation.
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Figure C.2: Normal Q-Q plot of log-transformed means of liver stiffness
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Figure C.3: Histogram of the pooled log-transformed liver stiffness measurements across

all 19 studies.

0

100

200

300

400

500

1 2 3
Log Liver Stiffness (kPa)

C
ou

nt

118



Figure C.4: Histograms of the log-transformed liver stiffness measurements by study.
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