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ABSTRACT 

Shirisha Jonnalagadda, Novel Monocarboxylate Transporter 1 and 4 Inhibitors: In Vitro 

and In Vivo Studies as Potential Anticancer Agents, Doctor of Philosophy (Integrated 

Biosciences), University of Minnesota.  

The primary goal of my research project is to develop novel drug candidates that 

target cancer cell glycolysis and oxidative phosphorylation via MCT1 and/or MCT4 

inhibition for the treatment of cancers. We have discovered several candidate compounds 

based on CHC and coumarin templates with low nanomolar potency. The current research 

is innovative because the compounds presented in this thesis are among the very first to be 

used as dual monocarboxylate transporters 1 and 4 inhibitors (MCT1 and MCT4) for cancer 

treatment. These dual MCT1 and MCT4 inhibitors have low cell proliferation inhibition 

and are well tolerated in mice at high dosages. These inhibitors have been tested in in vivo 

tumor models and these studies indicate significant tumor growth inhibition in MCT1 

expressing WiDr, 4T1-luc2 and GL261-luc2 and MCT4 expressing MDA-MB-231 

xenograft/syngraft models. Our recently discovered highly potent dual MCT1 and MCT4 

inhibitors are easy to synthesize, generally non-toxic, water soluble, and effective in 

arresting the tumor growth in vivo as single agents as well as in combination with clinical 

drugs. The impact of this project will be an enhanced, and improved anticancer agents and 

a longer and better quality of life for cancer patients with MCT1 and/or MCT4 expressing 

cancers. As MCT1 and/or MCT4 are expressed in a wide variety of cancers, these inhibitors 

can also be used as a broad-spectrum anticancer agents for the treatment of solid tumors. 

 



 

iii 

 

TABLE OF CONTENTS 

Acknowledgements………………………………………………………………... i 

Abstract……………………………………………………………………………. ii 

Table of contents………………………………………………………………….. iii 

List of schemes……………………………………………………………………. xiv 

List of figures……………………………………………………………………… xvi 

List of tables………………………………………………………………………. xxii 

List of abbreviations………………………………………………………………. xxiv 

 

CHAPTER 1: Introduction………………………………………………………. 1 

1.1 Evolution of hallmarks of cancer: A focus on tumor metabolism……. 1 

1.2 Glycolysis and its relation to Warburg effect…………………………. 2 

1.3 Reverse Warburg effect in cancer cells………………………………... 4 

1.4 Monocarboxylic acid transporters and their importance in metabolism...6 

1.5 MCT1 expression in cancers…………………………………………… 8 

1.6 MCT4 expression in cancers…………………………………………… 9 

1.7 Triple negative breast cancer and MCT4……………………………… 10 

1.8 Significance of caveolin-1 in TNBC…………………………………… 13 

1.9 Metabolic plasticity in cancer……………………………………….... 15 

1.10 Other processes involved in cancer cell survival………………….... 17 

  1.10.1 Oxidative stress and reactive oxygen species……………… 17 

  1.10.2 Autophagy…………………………………………………. 19 



 

iv 

 

  1.10.3 Glutaminolysis…………………………………………….. 20 

1.11 MCT1 inhibitors reported in the literature…………………………... 21 

 1.11.1  α-Cyano-4-hydroxy cinnamic acid (CHC)………………… 21 

 1.11.2 Disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate…. 24 

 1.11.3 Quercetin and lonidamine………………………………….. 25 

 1.11.4 Gabapentin enacarbil……………………………………… 26 

 1.11.5 3-Bromopyruvic acid (3-BPA) and its analog NEO218…… 27 

 1.11.6 AstraZeneca’s AZD3965 and ARC155858……………….. 28 

 1.11.7 Substituted pteridine diones and triones…………………… 29 

 1.11.8 Coumarin derivatives 7AAC1 and 7AAC2……………….. 30 

 1.11.9 Pyrazole methylpropanoic acid derivatives……………….. 31 

1.12 Conclusions…………………………………………………………... 32 

1.13 Thesis objective and hypothesis……………………………………….33 

 

CHAPTER 2: Structure-activity relationship studies of α-cyano-4- 

hydroxycinnamic acid: Discovery of novel drug candidates with  

improved MCT1 inhibition properties……………………………………………... 35 

2.1 Structural modification of CHC………………………………………... 35 

2.1.1  Structural modification of CHC via Knoevenagel 

condensation……………………………………………………….. 36 

2.1.2 Synthesis of electron withdrawing group containing  

CHC derivatives 2.1a-2.1e…………………………………………. 37 



 

v 

 

2.1.3 Synthesis of electron donating group containing  

CHC derivatives 2.1f-2.1i…………………………………………. 38 

2.1.4 Synthesis of 4-alkyl substituted CHC derivatives 2.1j-2.1m 39 

2.1.5 Evaluation of compounds 2.1a-2.1m for MCT1 

inhibition using 14C-lactate uptake assay………………………… 40 

 2.2 Synthesis of N,N-dialkyl CHC derivatives…………………………….. 44 

  2.2.1 Synthesis of N,N-dialkyl CHC derivatives 2.2a and 2.2b…. 45 

  2.2.2 Evaluation of N,N-dialkyl CHC derivatives 2.2a and 2.2b  

for MCT1 inhibition………………………………………………. 46 

2.2.3 Synthesis of N,N-dialkyl CHC derivatives 2.2c-2.2j……… 47 

2.2.4 Synthesis of N,N-dialkyl CHC derivatives 2.2k and 2.2l… 49 

2.2.5 Synthesis of N,N-diphenyl CHC derivative 2.2m…………. 51 

2.2.6  Evaluation of N,N-dialkyl CHC derivatives 2.2c-2.2m  

for MCT1 inhibition……………………………………………… 52 

2.3 Discussion…………………………………………………………….. 57 

2.4 Conclusions…………………………………………………………… 60 

 

CHAPTER 3: Structure-activity relationship studies of N,N-dialkyl/diaryl  

o-substituted CHC derivatives as MCT1 inhibitors: In vitro and in vivo  

studies as potential anticancer agents…………………………………………… 61 



 

vi 

 

3.1 Synthesis of N,N-dialkyl o-methoxy CHC derivatives 3a-3g………… 61 

  3.1.1  Synthesis of N,N-dialkyl o-methoxy CHC derivatives  

3h and 3i…………………………………………………………… 64 

3.1.2  Synthesis of N,N-diphenyl o-methoxy CHC derivative 3j… 66 

3.1.3 Synthesis of N,N-dialkyl o-allyloxy CHC derivative 3k….. 67 

 3.2 Evaluation of N,N-dialkyl/diaryl o-substituted CHC derivatives  

3a-3k for MCT1 inhibition properties: Results and discussion…………… 68 

3.3 Cell proliferation/cytotoxicity study of compounds 3a-3k:  

Results and discussion……………………………………………………... 73 

3.3.1 Cell proliferation inhibition of compounds 3a-3k  

using MTT assay…………………………………………………… 73 

3.3.2 Cytotoxicity evaluation of compounds 3a-3k  

using SRB assay……………………………………………………. 76 

3.4 Cell proliferation inhibition of test compounds in various cancer cell  

lines under hypoxic conditions using MTT assay: Results and discussion... 81 

3.5 Cell cycle analysis of compound 3j in WiDr and MDA-MB-231  

cell lines: Results and discussion………………………………………….. 83 

3.6 Systemic toxicity evaluation of N,N-dialkyl/diaryl o-methoxy  

CHC derivatives 3h-3k in CD-1 mice: Results and discussion…………… 88 

3.7 In vivo anticancer efficacy studies using lead candidate compounds:  

Results and discussion…………………………………………………… 92 



 

vii 

 

3.7.1 Anticancer efficacy of compounds 3b and 3j in MCT1  

expressing WiDr flank model……………………………………… 92 

3.7.2 Chemoprevention study of compound 3j in MCT1 

expressing WiDr flank model……………………………………… 95 

3.7.3 Anticancer efficacy of lead candidate compound 3j  

in syngeneic 4T1-luc2 flank model………………………………… 97 

3.8 Evaluation of compound 3j for pharmacokinetic parameters:  

Results and discussion……………………………………………………. 100 

3.9 Conclusions……………………………………………………………. 102 

 

CHAPTER 4: Structure-activity relationship studies of 7-N,N-dialkyl 3-carboxy  

coumarins as MCT1 inhibitors: In vitro and in vivo studies as potential  

anticancer agents………………………………………………………………….. 103 

   4.1 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin derivatives 4a and 4b. 103 

    4.1.1 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin  

    derivatives 4c-4g…………………………………………………. 106 

    4.1.2 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin  

    derivative 4h……………………………………………………….. 108 

    4.1.3 Synthesis of 7-N,N-diphenyl 3-carboxy coumarin  

    derivative 4i……………………………………………………… 109 

  



 

viii 

 

4.2 Evaluation of 7-N,N-dialkyl/diaryl carboxy coumarins 4a-4i  

for MCT1 inhibition: Results and discussion……………………………… 110 

4.3 Cell proliferation inhibition of compounds 4a-4i in GL261-luc2 and  

MDA-MB-231 cell lines using MTT assay: Results and discussion……… 115 

4.4 Cell cycle analysis of compound 4g in MDA-MB-231 cell line:  

Results and discussion…………………………………………………… 117 

4.5 In vitro protein binding, Caco-2 permeability and metabolic stability  

studies: Results and discussion……………………………………………. 118 

4.5.1 Protein binding studies of compounds 3g, 3h, 3j, 3k and 

4g in human plasma………………………………………………. 120 

4.5.2 Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k  

and 4g………………………………………………………………. 121 

4.5.3 Metabolic stability assay in mouse and human liver microsomes  

using compounds 3g, 3h, 3j, 3k and 4g……………………………. 124 

4.6 Systemic toxicity evaluation of the lead candidate compound 4g in  

CD-1 mice: Results and discussion…………………………………………128 

4.7 Anticancer efficacy of lead compound 4g in a glioblastoma tumor  

model: Results and discussion……………………………………………... 130 

4.8 Conclusions…………………………………………………………….. 133 

 

 

 



 

ix 

 

CHAPTER 5: Evaluation of N,N-dialkyl/diaryl o-substituted CHC derivatives  

and 7-N,N-dialkyl/diaryl  3-carboxy coumarins as MCT4 inhibitors:  

In vitro and in vivo studies as potential anticancer agents………………………. 134 

5.1 Evaluation of compounds 3a-3k and 4a-4i for MCT4 inhibition  

in MDA-MB-231 cell line: Results and discussion……………………….. 134 

5.2 Effect of lead compounds 3j and 4g on glycolysis and mitochondrial  

OxPhos……………………………………………………………………... 142 

5.2.1 Glycolysis stress test in MDA-MB-231 and WiDr cell lines  

using 3j and 4g……………………... ……………………………... 144 

5.2.2 Glycolysis stress test in 4T1 cell line using 3j and 4g...……... 153 

5.2.3 Mitochondrial stress test in MDA-MB-231 and WiDr  

cell lines using 3j and 4g…………………………………………. 155 

5.2.4 Mitochondrial stress test in 4T1 cell line using 3j…………...  166 

5.2.5 Glycolysis stress test in MDA-MB-231 and WiDr cell lines  

using 3b and 3j…………………………………………………... 168 

5.2.6 Mitochondrial stress test in MDA-MB-231 and WiDr cell lines  

using 3b and 3j…………………………………………………….. 171 

5.3 Florescence microscopy study of compound 3j in MDA-MB-231 and  

WiDr cell lines…………………………………………………………….. 176 

5.4 Anticancer efficacy of lead candidate compounds in MDA-MB-231-luc  

tumor xenograft models……………………………………………………. 179 

5.4.1 Anticancer efficacy of compound 3j in MDA-MB-231-luc  



 

x 

 

tumor xenograft model…………………………………………… 180 

5.4.2 Anticancer efficacy of compound 3j compared to doxorubicin  

in MDA-MB-231-luc tumor xenograft model……………………... 182 

5.4.3 Anticancer efficacy of compound 3j at a higher dosage in  

MDA-MB-231-luc flank model……………………………………. 184 

5.4.4 Anticancer efficacy of the lead candidate compound 4g in  

MDA-MB-231-luc tumor model……………………………………186 

5.5 In vitro and in vivo evaluation of reverse Warburg effect in  

TNBC MDA-MB-231……………………………………………………….188 

5.5.1 Optimization of seeding concentration of cells for co-culture  

of 3T3 MEFs WT and 3T3 MEFs KO fibroblasts with  

MDA-MB-231 cell line……………………………………………..188 

5.5.2 Cell proliferation inhibition of compounds 3h-3k in  

MDA-MB-231, and co-cultures with 3T3 MEF WT and  

3T3 MEF KO under normal conditions……………………………. 191 

5.5.3 Cell proliferation inhibition of compounds 3h-3k in  

MDA-MB-231, and co-cultures with 3T3 MEF WT and  

3T3 MEF KO under hypoxic conditions………………………… 192 

5.6 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc  

based orthotopic models…………………………………………………… 193 

5.6.1 Anticancer efficacy of lead MCT inhibitor 3j in  

MDA-MB-231-luc orthotopic model………………………………. 194 



 

xi 

 

5.6.2 Anticancer efficacy of lead MCT inhibitor 3j in  

MDA-MB-231-luc orthotopic model co-injected with  

3T3 MEF WT cells………………………………………………… 195 

5.6.3 Anticancer efficacy of lead MCT inhibitor 3j in  

MDA-MB-231-luc orthotopic model co-injected with  

3T3 MEF KO cells…………………………………………………. 197 

5.7 Conclusions…………………………………………………………….. 201 

 

CHAPTER 6: Experimental procedures and spectral characterization……………. 203 

 6.1 Chemicals and methods of compound characterization……………….. 203 

6.2 Cell lines and culture conditions………………………………………. 204 

6.3 Representative synthesis of (E)-2-cyano-3-(4-fluorophenyl)acrylic  

acid 2.1a……………………………………………………………………. 206 

6.4 Representative synthesis of (E)-2-cyano-3-(4-methoxyphenyl)acrylic  

acid 2.1f……………………………………………………………………..207 

6.5 Representative synthesis of (E)-2-cyano-3-(4-methylphenyl)acrylic  

acid 2.1j……………………………………………………………………..208 

6.6 Representative synthesis of (E)-2-cyano-3-(4-(dipropylamino)phenyl) 

acrylic acid 2.2c……………………………………………………………. 209 

6.7 Representative synthesis of (E)-2-cyano-3-(4-(dipropylamino) 

-2-methoxyphenyl) acrylic acid 3a………………………………………… 210 

 



 

xii 

 

6.8 Synthesis of (E)-3-(2-(allyloxy)-4-(diethylamino)phenyl) 

-2-cyanoacrylic acid 3k……………………………………………………..212 

6.9 Representative procedure for the synthesis of 7-(dipropylamino) 

-2-oxo-2H-chromene-3-carboxylic acid 4c…………………………………213 

 6.10 Spectral characterization of synthesized compounds………………… 215 

6.11 Western blot of RBE4, MDA-MB-231, WiDr and 4T1-luc2 cell lines. 253 

6.12 MCT1 inhibition using 14C-lactate uptake assay…………………….. 254 

6.13 MCT4 inhibition using 14C-lactate uptake assay……………………... 255 

6.14 Sulforhodamine-B assay……………………………………………… 256 

6.15 MTT assay……………………………………………………………. 257 

6.16 MTT assay in hypoxic conditions…………………………………….. 258 

6.17 Cell cycle analysis using propidium iodide…………………………... 259 

 6.18 Ethical considerations for animal studies……………………………. 260 

6.19 General procedure for systemic toxicity evaluation…………………. 261 

6.20 Anticancer efficacy of compound 3j in MCT1 expressing WiDr  

flank model………………………………………………………………… 262 

6.21 Chemoprevention study of compound 3j in MCT1 expressing  

WiDr flank model………………………………………………………….. 263 

6.22 Anticancer efficacy of MCT1 inhibitor in 4T1-luc2 flank model……. 263 

6.23 Evaluation of pharmacokinetic parameters in CD-1 mice……………. 264 

 6.24 Protein binding studies……………………………………………….. 267 



 

xiii 

 

 6.25 Caco-2 permeability studies………………………………………….. 267 

 6.26 Microsomal stability studies………………………………………….. 268 

6.27 Seahorse XFe96® assessment of glycolysis and mitochondrial  

Respiration…………………………………………………………………. 269 

6.28 Florescence microscopy study………………………………………... 270 

6.29 Anticancer efficacy in MDA-MB-231-luc flank xenograft  

tumor model……………………………………………………………….. 271 

6.30 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc  

orthotopic model…………………………………………………………… 272 

6.31 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc  

orthotopic model co-injected with 3T3 MEF WT cells…………………… 272 

6.32 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc  

orthotopic model co-injected with 3T3 MEF KO cells……………………. 273 

6.33 Statistical analysis……………………………………………………. 273 

References…………………………………………………………………………. 274 

Appendix………………………………………………………………………….. 282 

 



 

xiv 

 

LIST OF SCHEMES 

Scheme 2a: Synthesis of CHC derivatives 2.1a-2.1e with electron  

withdrawing groups at para position…………………………………………… 37 

Scheme 2b: Synthesis of CHC derivatives 2.1f-2.1i with electron donating  

group a para position…………………………………………………………… 38 

Scheme 2c: Synthesis of CHC derivatives 2.1j-2.1m with alkyl group substitutions  

at para position………………………………………………………………… 39 

Scheme 2d: Synthesis of (E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylic  

acid 2.2a and (E)-2-cyano-3-(4-(diethylamino)phenyl)acrylic acid 2.2b.……… 45 

Scheme 2e: Synthesis of (E)-2-cyano-3-(4-(dialkylamino)phenyl)acrylic  

acids 2.2c-2.2j …………………………………………………………………… 48 

Scheme 2f: Synthesis of (E)-2-cyano-3-(4-(pyrrolidin-1-yl)phenyl)acrylic  

acid 2.2k and (E)-2-cyano-3-(4-(piperidin-1-yl)phenyl)acrylic acid 2.2l……….. 50 

Scheme 2g: Synthesis of (E)-2-cyano-3-(4-(diphenylamino)phenyl)acrylic  

acid 2.2m………………………………………………………………………… 51 

Scheme 2h: Structure-activity relationship studies on cyanoacrylic acid unit… 58 

Scheme 3a: Synthesis of (E)-2-cyano-3-(4-(dialkylamino)-2-methoxyphenyl) 

acrylic acids 3a-3g……………………………………………………………… 63 

 

 



 

xv 

 

Scheme 3b: Synthesis of (E)-2-cyano-3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl) 

acrylic acid 3h and (E)-2-cyano-3-(2-methoxy-4-(piperidin-1-yl)phenyl)acrylic  

acid 3i….………………………………………………………………………… 65 

Scheme 3c: Synthesis of (E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl) 

acrylic acid 3j…………………………………………………………………… 66 

Scheme 3d: Synthesis of (E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2- 

cyanoacrylic acid 3k……………………………………………………………. 67 

Scheme 4a: Synthesis of 7-(dimethylamino)-2-oxo-2H-chromene-3-carboxylic  

acid 4a and 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid 4b………… 105 

Scheme 4b: Synthesis of 7-(dialkylamino)-2-oxo-2H-chromene-3-carboxylic  

acids 4c-4g………………………………………………………………..……….. 107 

Scheme 4c: Synthesis of 2-oxo-7-(pyrrolidin-1-yl)-2H-chromene-3-carboxylic  

acid 4h………………………………………………………………..……………. 108 

Scheme 4d: Synthesis of 7-(diphenylamino)-2-oxo-2H-chromene-3-carboxylic  

acid 4i ………………………………………………………………..……………. 109 

  

 

 

 



 

xvi 

 

LIST OF FIGURES 

Figure 1a: Important hallmarks of cancer and their characteristics………………. 1 

Figure 1b: Metabolic symbiosis and Warburg effect in cancer cells…………… 3 

Figure 1c: Stromal-epithelial metabolic coupling and reverse Warburg effect…. 5 

Figure 1d: Inhibition of MCT1 and/or MCT4 leads to a decrease in tumor growth.7 

Figure 1e: Breast cancer is classification based on the receptor status…………. 10 

Figure 1f: Tumor heterogeneity and metabolic plasticity in cancer cells…………. 16 

Figure 1g: Structure of CHC…………….…………….…………….……………. 21 

Figure 1h: Structures of MCT1 inhibitors DIDS, quercetin, lonidamine  

and gabapentin enacarbil…………….…………….…………….………………… 24 

Figure 1i: Structures of 3-bromopyruvic acid and NEO218……………………….27 

Figure 1j: Structures of AZD3965 and AR-C158858…………….………………. 28 

Figure 1k: Structures of substituted pteridine trione and diones….………………. 29 

Figure 1l: Structures of aminocarboxy coumarins 7ACC1 and 7ACC2…………. 30 

Figure 1m: Representative example of 2-((1-(2-chlorobenzyl)-5-(3-substituted  

phenyl)-1H-pyrazol-3-yl)methoxy)-2-methylpropanoic acid…………………….. 31 

Figure 2a: Possible positions on CHC for structure-activity relationship studies… 35 

Figure 2b: Knoevenagel condensation reaction…………………………………… 36 

Figure 2c: Western blot analysis of MCT1 and MCT4 expressions in  

RBE4, MDA-MB-231, 4T1-luc2, and WiDr cell lines…….…………………… 40 

Figure 2d: MCT1 IC50 of CHC derivatives 2.1a-2.1e……….…………………… 41 



 

xvii 

 

Figure 2e: MCT1 IC50 of CHC derivatives 2.1f-2.1i……….……………………. 42 

Figure 2f: MCT1 IC50 of CHC derivatives 2.1j-2.1m……….…………………… 43 

Figure 2g: Replacement of OH group with N,N-dialkyl group in CHC………….. 44 

Figure 2h: MCT1 IC50 (nM) of N,N-dialkyl CHC derivatives 2.2a-2.2m in  

RBE4 cell line. …………….………………….…………….…………………… 53 

Figure 2h: Proposed modification of ortho position of N,N-dialkyl CHC  

derivative with a methoxy group…………….……………………………………. 49 

Figure 2i: Structure-activity relationship and MCT1 inhibition of  

N,N-dialkyl CHC derivatives…………….………………………………………. 59 

Figure 3a: Proposed modification of ortho position of N,N-dialkyl  

CHC derivative with a methoxy group….………………………………………. 61 

Figure 3b: MCT1 inhibition of N,N-dialkyl/diaryl o-substituted cyanoacetic  

acids 3a-3k in RBE4 cell line. …………….………………………………………. 69 

Figure 3c: Optimized structural features required for potent MCT1 inhibition….. 72 

Figure 3d: Cell cycle analysis of compound 3j at 1X and 2X of the IC50  

concentration of in WiDr cell line. …………….………………………………….. 84 

Figure 3e: Cell cycle analysis of MDA-MB-231 cell line treated with  

lead compound 3j…………….……………………………………………………. 85 

Figure 3f: Lead candidate compounds 3h-3k for further in vivo studies…………. 88 

Figure 3g: Systemic toxicity study of compounds in CD-1 mice…………………. 90 

 



 

xviii 

 

Figure 3h: 1,4-addition and reversibility of cyanocinnamic acid  

based MCT1 inhibitors……………………………………………………………. 91 

Figure 3i: Anticancer efficacy of lead compounds in a WiDr flank model……. 94 

Figure 3j: Chemoprevention of lead compounds in a WiDr flank model……… 96 

Figure 3k: Anticancer efficacy of lead compounds in a 4T1-luc2 flank model…. 98 

Figure 3l: Pharmacokinetic time-concentration profile in CD-1 mice…………. 100 

Figure 4a: CHC and coumarin derivatives……………………………………… 103 

Figure 4b: Structures of the biologically active coumarin derivatives…………… 104 

Figure 4c: MCT1 inhibition of N,N-dialkyl/diaryl 3-carboxy coumarins 4a-4i  

in RBE4 cell line. …………….……………………………………………………. 111 

Figure 4d: Cell cycle analysis of compound 4g at IC50 concentration in  

MDA-MB-231 cell line…………….……………………………………….……... 118 

Figure 4e: Lead molecules chosen for further in vitro studies……………………. 119 

Figure 4f: Body weight changes in systemic toxicity study of compound  

4g in CD-1 mice. …………….……………………………………………………. 128 

Figure 4g: 1,4-addition and reversibility of carboxy coumarin based  

MCT1 inhibitors…………………………………………………………………… 129 

Figure 4h: Anticancer efficacy of lead compound 4g in a GL261-luc2  

flank model…………….…………………………………………………………... 131 

Figure 5a: MCT4 IC50 (nM)* of N,N-dialkyl/diaryl o-methoxy CHC  

derivatives 3a-3k in MDA-MB-231 cell line…………….………………………... 137 

 



 

xix 

 

Figure 5b: Lead compounds evaluated for extracellular flux analysis  

using Seahorse XFe96 based GST and MST…………….………………………… 143 

Figure 5c: Glycolysis stress test profiles in MDA-MB-231 cell line using  

compound 3j, 4g, CHC and AZD3965 at 10 and 30 µM concentrations………….. 146 

Figure 5d: Glycolysis stress test profiles in WiDr cell line using  

compound 3j, 4g, CHC and AZD3965 at 10 and 30 µM concentrations………….. 147 

Figure 5e: Effect of compounds 3j, 4g, CHC and AZD on glycolysis…………… 148 

Figure 5f: Effect of compounds 3j, 4g, CHC and AZD on glycolytic capacity…. 150 

Figure 5g: Effect of compounds 3j, 4g, CHC and AZD on glycolytic reserve…. 152 

Figure 5h: Glycolysis stress test of compounds 3j and 4g in 4T1 cell line……….. 154 

Figure 5i: Mitochondrial stress test profiles in MDA-MB-231 cell line using  

compound 3j, 4g, CHC and AZD3965 at 10 and 30 µM concentrations………….. 157 

Figure 5j: Mitochondrial stress test profiles in WiDr cell line using  

compound 3j, 4g, CHC and AZD3965 at 10 and 30 µM concentrations………….. 158 

Figure 5k: Effect of compounds 3j, 4g, CHC and AZD on maximal respiration… 159 

Figure 5l: Effect of compounds 3j, 4g, CHC and AZD on ATP production…… 161 

Figure 5m Effect of compounds 3j, 4g, CHC and AZD on proton leak………… 163 

Figure 5n: Effect of compounds 3j, 4g, CHC and AZD on  

spare respiratory capacity…………………………………………………………. 165 

Figure 5o: Mitochondrial stress test of compound 3j in 4T1 cell line……………. 167 

Figure 5p: Glycolysis stress test of compounds 3b and 3j in  

MDA-MB-231 cell line……………………………………………………………. 169 



 

xx 

 

Figure 5q: Glycolysis stress test of compounds 3b and 3j in  

WiDr cell line………………………………………………………………………. 170 

Figure 5r: Mitochondrial stress test of compounds 3b and 3j in  

MDA-MB-231 cell line……………………………………………………………. 172 

Figure 5s: Mitochondrial stress test of compounds 3b and 3j in  

WiDr cell line………………………………………………………………………. 173 

Figure 5t: Representative fluorescence microscopy images of MDA-MB-231  

cells treated with compound 3j and labeled with mitotracker red…….…………… 177 

Figure 5u: Representative fluorescence microscopy images of WiDr cells  

treated with compound 3j and labeled with mitotracker red. ……………………. 178 

Figure 5v: Tumor growth inhibition study with compound 3j in  

MDA-MB-231-luc tumor xenograft model. ……………………………………… 181 

Figure 5w: Anticancer efficacy with compound 3j and doxorubicin in  

MDA-MB-231-luc tumor xenograft model. ……………………………………… 183 

Figure 5x: In vivo anticancer efficacy study using compound  

3j in MDA-MB-231 xenograft model. …………………………………………… 185 

Figure 5y: Anticancer efficacy of lead compound 4g in MDA-MB-231-luc  

flank model…………….…………………………………………………………... 187 

Figure 5z: Determination of optimal seeding concentration of 3T3 MEFs cells…. 189 

Figure 5aa: Determination of optimal seeding concentration of MDA-MB-231  

cells with 3T3 MEFs cells. ……………………………………………………….. 190 

 



 

xxi 

 

Figure 5ab: In vivo anticancer efficacy study in MDA-MB-231-luc  

orthotopic model. …………………………………………………………………. 194 

Figure 5ac: In vivo anticancer efficacy study in  

MDA-MB-231-luc + 3T3 MEF WT orthotopic model.…………………………. 196 

Figure 5ad: In vivo anticancer efficacy study in  

MDA-MB-231-luc + 3T3 MEF KO orthotopic model.…………………………. 198 

Figure 5ae: Tumor growth in control groups on day-24 after tumor  

inoculation in MDA-MB-231-luc, MDA-MB-231-luc co-injected  

with 3T3 MEF WT, and MDA-MB-231-luc co-injected with 3T3 MEF KO……. 200  



 

xxii 

 

LIST OF TABLES 

Table 2a: MCT1 IC50 (nM)* of N,N-dialkyl CHC derivatives 2.2a-2.2m in  

RBE4 cell line……………………………………………………………………... 54 

Table 3a: MCT1 IC50 (nM)* of N,N-dialkyl/diaryl o-substituted CHC 

derivatives 3a-3k in RBE4 cell line………………………………………………. 70 

Table 3b: MTT assay IC50* values of N,N-dialkyl o-methoxy CHC  

derivatives in 4T1-luc2 and GL261-luc2, WiDr and MDA-MB-231 cell lines……. 75 

Table 3c: SRB assay IC50
* values of N,N-dialkyl o-methoxy CHC  

derivatives in 4T1-luc2 and GL261-luc2, WiDr and MDA-MB-231 cell lines……. 77 

Table 3d: MTT assay IC50* values of N,N-dialkyl o-methoxy CHCs in  

4T1-luc2, GL261-luc2 and MDA-MB-231 cell lines in hypoxic conditions……. 82 

Table 4a: MCT1 IC50 (mM)* of 7-N,N-dialkyl/aryl carboxy coumarins  

4a-4i in RBE4 cell line………………………………………………….…………. 112 

Table 4b: MTT assay IC50* values of 7-N,N-dialkyl/diaryl carboxy  

coumarins 4a-4i in GL261-luc2 and MDA-MB-231 cell lines…………………… 115 

Table 4c: In vitro protein binding studies (protein binding: plasma, human)…….. 120 

Table 4d: A-B Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k and 4g... 122 

Table 4e: B-A Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k and 4g…123 

Table 4f: Metabolic stability in human liver microsomes for compounds  

3g, 3h, 3j, 3k and 4g………………………………………………………………. 125 

 



 

xxiii 

 

Table 4g: Metabolic stability in mouse liver microsomes for compounds  

3g, 3h, 3j, 3k and 4g………………………………………………………………. 126 

Table 5a: MCT4 IC50 (nM)* of N,N-dialkyl/diaryl o-methoxy CHC  

derivatives 3a-3k in MDA-MB-231 cell line……………………………………... 138 

Table 5b: MTT assay IC50
* values of compounds 3h-3k in MDA-MB-231,  

and co-cultures with 3T3 MEF WT and 3T3 MEF KO under normal conditions…. 191 

Table 5c: MTT assay IC50
* values of compounds 3h-3k in MDA-MB-231,  

and co-cultures with 3T3 MEF WT and 3T3 MEF KO under  

hypoxic conditions…….…………………………………..……………………… 192 

Table 6a: HPLC conditions of analyte and internal standard (diazepam)……….. 265 

  



 

xxiv 

 

LIST OF ABBREVIATIONS 

ATP   adenosine triphosphate 

MCT   monocarboxylic acid transporter 

SLC16   solute carrier 16 

kDa   kilo Dalton 

OxPhos  oxidative phoshprylation 

ER   estrogen receptor 

HER-2   human epidermal growth factor-2 

TNBC   triple negative breast cancer 

PR   progesterone receptor 

Cav   caveolin 

ROS   reactive oxygen species 

RNS   reactive nitrogen species 

HIF-1α   hypoxia inducing factor 

NF-κB   nuclear factor kappa-light-chain-enhancer 

DNA   deoxyribonucleic acid 

GLS   glutaminase 

GDH   glutamate dehydrogenase 

αKG   α-ketoglutarate 

CHC   α-Cyano-4-hydroxy cinnamic acid 

µmol   micromoles 

LLc   Lewis lung carcinoma 



 

xxv 

 

mM   millimolar 

CAM   chicken chorioallantoic membrane 

DIDS   disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate 

IC50   inhibition of 50% of the activity or cell growth 

Ki   inhibitor constant 

VDAC   voltage-dependent anion channel 

MPC   mitochondrial pyruvate carrier 

FDA   food and drug administration 

3-BPA   3-bromopyruvic acid 

mg/Kg   dosage in milligram per kilogram of mouse  

NSG   NOD/LtSz-scid IL-2Rγ null mice 

RBE4   rat brain endothelial 4 cell line 

F   fluoro 

Br   bromo 

CN   cyano functional group 

NO2   nitro functional group 

CH3CN  acetonitrile 

NH4Ac   ammonium acetate 

dpm   disintegrations per minute 

OH   hydroxy functional group 

DMF   N,N-dimethylformamide 

POCl3   phosphorus (V) oxychloride 



 

xxvi 

 

R-Br   alkyl/aryl bromide 

H2O   water 

Bu4NI   tetra-n-butyl ammonium iodide 

CNCH2COOH  cyanoacetic acid 

HBr   hydrobromic acid 

H2SO4   sulfuric acid 

PBr3   phosphorous tribromide 

nM   nanomolar 

SEM   standard error of the mean 

SAR   structure-activity relationship 

K2CO3   potassium carbonate 

SRB   sulforhodamine-B 

MTT   3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide 

MEM   minimum essential medium 

DMEM  Dulbecco’s minimum essential medium 

PI   propidium iodide 

FCM   flow cytometry 

acetyl CoA  acetyl coenzyme A 

DMSO   dimethyl sulfoxide 

ip   intraperitoneal 

bid   twice a day 

qd   once a day 



 

xxvii 

 

CYP   cytochrome P450 enzyme 

PBS   phosphate buffered saline 

EtOH   ethanol 

NaOH   sodium hydroxide 

BBr3   boron tribromide 

HEPES  (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

GST   glycolysis stress test 

MST   mitochondrial stress test 

ECAR   extracellular acidification rate 

OCR   oxygen consumption rate 

mpH   milli pH 

pmol   pico moles 

AZD   AZD3965 

FCCP   carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

ETC   electron transport chain 

Dox   doxorubicin 

WT   wild type 

KO   knock out 

1H NMR  Proton (1H ) nuclear magnetic resonance spectrum 

13C NMR  Carbon (13C) nuclear magnetic resonance spectrum 

HRMS   high resolution mass spectrometer 

FBS   fetal bovine serum 



 

xxviii 

 

ATCC   American type cell culture 

TLC   thin layer chromatography 

HCl   hydrochloric acid 

Hz   Hertz 

MHz   Mega Hertz 

J   Coupling constant 

CDCl3   deuterated chloroform 

mA   milli amperes 

PBST   phosphate buffered saline with Tween 20 

 



 

1 

 

CHAPTER 1: Introduction 

1.1 Evolution of hallmarks of cancer: A focus on tumor metabolism 

Hanahan and Weinberg summarized the evolution of major hallmarks of cancer in 

2000 and updated them in 2011 to incorporate new developments in cancer research  

(Figure 1a).1,2 It has been widely accepted by research community to target these hallmarks 

for therapeutic intervention to prevent, treat and eliminate cancer.3 Mutational events, 

multiple signaling pathways, and highly heterogeneous nature are some of the important 

characteristics of cancer cells which are responsible for tumorigenesis. It is also clear from 

several key studies that many of the altered signaling pathways are related to tumor cell 

metabolism and these alterations seem to be critical for malignant transformation of tumor 

cells.4 Based on these studies, alteration in cellular metabolism has become an important 

hallmark of cancer and a very attractive target to explore cancer therapeutics.  

 

Figure 1a: Important hallmarks of cancer and their characteristics2 
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1.2 Glycolysis and its relation to Warburg effect 

   

  Some of the important cellular metabolic pathways for generation of energy include 

aerobic glycolysis, mitochondrial oxidative phosphorylation (OxPhos), glutaminolysis, 

fatty acid metabolism, etc. Adaptation of glycolysis is a critical survival mechanism for 

many advanced stage tumors.5 Glycolysis is a process of metabolism which involves the 

conversion of glucose to lactate and pyruvate. Tumors contain oxygen rich (aerobic) and 

oxygen deficient (hypoxic) regions. In tumor hypoxia, cancer cells consume large 

quantities of glucose which results in the production of lactic acid and pyruvic acid as by-

products. Glycolysis is a very inefficient process as just two moles of ATP are produced 

per one mole of glucose, but it occurs at a rapid pace to fuel the hypoxic cells.6 The nearby 

aerobic cancer cells take up this lactic acid for energy generation through mitochondrial 

OxPhos which produces 30-36 moles of ATP.7 Lactic acid, as an energy substitute for 

survival, prevents the aerobic cells from consuming large quantities of glucose.5 Thus, the 

limited glucose available to the tumor is used most efficiently via a synergistic metabolic 

symbiosis called Warburg effect (Figure 1b).7,8 Tumor hypoxia also leads to treatment 

failure, relapse and, patient mortality as these cells are generally resistant to standard 

chemo- and radiation therapy. 
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Figure 1b: Metabolic symbiosis and Warburg effect in cancer cells  
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1.3 Reverse Warburg effect in cancer cells 

 

Tumor microenvironment is heterogeneous in nature and consists of epithelial cells 

and stromal fibroblast cells. Lactic acid as an energy substitute for cancer cell survival 

prevents the aerobic cells from consuming large quantities of glucose. Aerobic glycolysis 

takes place in cancer-associated stromal fibroblasts rather than in epithelial cancer cells. 

Epithelial cancer cells initiate oxidative stress in their neighboring stromal fibroblasts 

resulting in mitochondrial dysfunction and aerobic glycolysis (Warburg Effect). These 

fibroblasts undergo myofibroblastic differentiation and release lactic acid and pyruvic acid 

which are then taken up by the adjacent epithelial cells via monocarboxylic acid 

transporters (MCTs) for mitochondrial OxPhos, ATP production and further proliferation. 

Thus, the limited glucose available to the tumor is used most efficiently as the tumor 

stromal fibroblasts and epithelial cancer cells develop a host-parasite relationship called 

reverse Warburg Effect (Figure 1c).9,10  
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Figure 1c: Stromal-epithelial metabolic coupling and reverse Warburg effect 
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1.4 Monocarboxylic acid transporters and their importance in metabolism 

MCTs belong to the SLC16 gene family of proton-linked plasma membrane 

transporters that shuttle small molecules such as lactic acid, pyruvic acid and other ketone 

bodies across biological membranes of cells.11,12 There are 14 known isoforms of MCTs, 

and among these, MCT1 and MCT4 have been known to be highly involved in metabolic 

processes. MCT1 is encoded by SLC16A1 gene and it is a 40 kDa protein consisting of 12 

transmembrane domains which are assumed to have hydrophobic α-helical segments.11,13 

MCT1 has intracellular N-terminal and C-terminal with loops spanning across the cellular 

transmembrane. Although the crystal structure of MCT1 is unknown, few homology 

models have been identified.14,15  Among MCTs 1-14, MCT1 is a predominant isoform and 

it is known to be expressed ubiquitously throughout the body. MCT1 has low affinity for 

lactic acid compared to MCT4.11,16 As discussed in Warburg effect, the lactic acid produced 

in hypoxic cancer cells is transported out of the cells via MCT1 and imported into the 

nearby aerobic cancer cells via MCT4 for energy generation through OxPhos, which 

produces 30-36 moles of ATP. Thus, cancer cells survive as glucose is taken up only by 

hypoxic cells whereas lactate is consumed by aerobic cells.8,11,12 A symbiotic relationship 

is maintained in the tumor microenvironment by MCT1 and MCT4 contributing to the 

Warburg and reverse Warburg effects. Hence, MCT1 and MCT4 can be considered as 

important targets for cancer treatment. Inhibition of MCT1 and/or MCT4 results in the 

increase of intracellular pH leading to cell acidosis, and eventually, aerobic cells do not 

receive lactic acid for OxPhos which results in the suppression of tumor growth (Figure 

1d).  
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Figure 1d: Inhibition of MCT1 and/or MCT4 leads to a decrease in tumor growth 
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1.5 MCT1 expression in cancers 

Excessive glycolysis and consequent production of lactic acid in cancer cells lead 

to cellular acidosis, apoptosis and necrosis. To avoid these processes, cancer cells 

overexpress several glycolytic enzymes and transporters including MCTs to shuttle the 

excess lactic acid out of the cells. As a result, extracellular pH decreases leading to the 

upregulation of angiogenic factors and subsequent tumor growth, invasion and 

metastasis.17 High MCT1 expression is also associated with poor patient prognosis in breast 

and lung cancer patients.17,18 An analysis of ~126 cases of colorectal carcinomas revealed 

that MCT1 is overexpressed in this cancer, and especially, plasma membrane expression 

of MCT1 correlates to the vascular invasion of colorectal carcinomas.19 Literature reports 

also suggest that MCT1 and MCT4 expression is chaperoned by CD147, an extracellular 

matrix metalloproteinase inducer.18,20–22 High MCT1 and CD147 expressions correlate 

with decreased survival rate in gastrointestinal stromal tumors as well as in urothelial 

carcinomas.21,22 
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1.6 MCT4 expression in cancers 

 

MCT4 is a 43 kDa protein consisting of transmembrane domains and is encoded by 

SLC16A3 gene. MCT4 is expressed in various tissues that undergo vigorous glycolysis 

such as astrocytes, muscle cells, white blood cells, white skeletal muscle fibers, 

chrondrocytes.23 MCT4 is mainly involved in the efflux of glycolysis by-products lactic 

acid and pyruvic acid in the cell. The affinity of MCT4 for various substrates is very low 

when compared to that of MCT1 with Km values for pyruvic acid being > 100 mM, whereas 

the affinity of MCT4 towards lactic acid is known to be 30 mM.  

MCT4 is expressed in many cancers. A cohort of 223 surgically resected patient 

samples of pancreatic ductal carcinoma were evaluated for MCT4 expression and this study 

showed that the presence of MCT4 resulted in poor patient prognosis. In MCT4 expressing 

cell lines PL45 and MIAPaCa2, the rate of glycolysis was found to be very high. When 

MCT4 expression is knocked out in these cell lines, the rate of glycolysis was also 

substantially reduced when compared to the original cell lines.24 High MCT4 expression 

correlates with poor patient prognosis in several other cancers including prostate cancer, 

triple negative breast cancer, colorectal carcinomas, and head and neck cancer.10,19,24–27 

Owing to the importance of MCT4 expression and its association with several cancers, 

MCT4 could be considered as a potential biomarker and druggable target for cancer 

treatment. 
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1.7 Triple negative breast cancer and MCT4 

 

Although there are ~60 major and ~200 subtypes of cancers, breast cancer is 

number one in terms of incidence and number two in terms of mortality.28 Breast cancer 

can occur in both women and men, but it is most common in women. One out of eight 

women is affected by breast cancer in United States. Breast cancer can be broadly classified 

into three categories based on receptor status (Figure 1e).29 

 

 

Figure 1e: Breast cancer is classification based on the receptor status. Hormone positive 

(HR+), human epidermal growth factor recptor-2 (HER-2), and triple negative breast 

cancer (TNBC). HR+ can be further classified into three types based on estrogen and 

progesterone receptors: ER+/PR+, ER+/PR- and ER-/PR+ 
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Triple negative breast cancer (TNBC) constitutes 10–15% of all breast cancers and 

it is associated with aggressive tumor growth, recurrence, metastasis and poor patient 

outcome.30 Despite numerous advances in tumor diagnosis, surgical procedures, and 

radio/chemotherapy, prognosis has not improved significantly for patients with TNBC in 

25 years. Generally, breast cancers are targeted for receptor markers such as ER, PR and 

HER2 for treatment. Tamoxifen, raloxifen, are the drugs used for ER+ breast cancers. The 

absence of well-defined molecular targets such as estrogen/progesterone receptors or 

HER2 receptors makes TNBC treatment very challenging.31 The present treatment options 

include surgical resection, radiation therapy and chemotherapy with cytotoxic drugs. 

Paclitaxel (taxanes), carboplatin, cisplatin and anthraquinones such as doxorubicin are used 

for TNBC treatment.32 Anticancer agents used for TNBC treatment are hindered as they 

are non-specific in nature and cause serious side-effects that include permanent damage to 

the immune system. Most patients initially respond to the standard chemotherapy and 

radiation therapy but majority of them relapse and become drug resistant.32 Other pathways 

which involve in tumor proliferation needs to be explored and these pathways should be 

targeted for personalized treatment of TNBC.  

Recently, it was reported that MCT4 expression in tumor-associated stromal 

fibroblasts is a functional marker of aggressive aerobic glycolysis, and lactic acid efflux.10 

High stromal MCT4 levels are associated with decreased overall survivability with <18% 

of TNBC patients surviving 10-year post diagnosis. In complete contrast, patients with no 

stromal MCT4 expression had excellent prognosis with ~97% of the patients surviving 10-

year post diagnosis. TNBC has increased expression of MCT4 and inhibition of MCT4 
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leads to cellular acidosis in hypoxic regions and their inhibition in aerobic regions cause 

greater glucose consumption instead of lactic acid, thus resulting in further stress and death 

of the hypoxic cancer cells.10 Hence, MCT4 could be targeted as a biomarker and MCT4 

inhibition could lead to tumor growth suppression in TNBC. 
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1.8 Significance of caveolin-1 in TNBC 

Caveolins (Cav) are scaffolding proteins and their functions in cellular processes 

involve endocytosis, signal transduction and cholesterol transport. Of the known three 

isoforms, Cav-1 and Cav-2 are ubiquitously expressed and Cav-3 is mainly expressed in 

muscle cells.33 Cav-1 is considered to be one of the tumor suppressor genes.34 Recent 

studies indicate that acute loss of stromal Cav-1 leads to oxidative stress, mitochondrial 

dysfunction and aerobic glycolysis in cancer related fibroblasts.35 It has also been proven 

that dysfunctional mitochondria are removed from fibroblasts via autophagy/ mitophagy 

resulting in even more aggressive aerobic glycolysis.36 The glycolytic end products are 

then transferred from tumor-associated fibroblasts to adjacent cancer cells, which in turn 

stimulate mitochondrial biogenesis and generate ATP via oxidative phosphorylation 

(reverse Warburg effect). Importantly, a loss of stromal Cav-1 in TNBC is associated with 

aggressive tumor initiation, growth, recurrence, angiogenesis, metastasis, and poor clinical 

outcome.37 High patient mortality is also observed in Cav-1 deficient hormone positive 

(ER+ and PR+) and HER2+ breast cancer patients. Similar results were observed in brain 

tumors, prostate cancer and melanoma highlighting the importance of stromal Cav-1 in 

other types of cancers.25,38,39  

  Loss of stromal Cav-1 also leads to tamoxifen resistance, early tumor recurrence, 

lymph node metastasis and high patient mortality in hormone positive breast cancers.40 

TNBC patients with loss of stromal Cav-1 expression can be classified as high-risk group. 

Absence of tumor epithelial Cav-1 has no prognostic importance. Stunningly, the 10-year 

survival rate for patients with high stromal Cav-1 is ~91% vs less than 25% rate for patients 
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with absent stromal Cav-1 expression. This data clearly show the significance of tumor 

associated stromal Cav-1 in TNBC.41 Hence, reduced Cav-1 expression can be utilized as 

biomarker to determine the treatment for high-risk group of cancer patients.26 TNBC 

patients with high stromal Cav-1 have a good 5-year survival rate (~75%), while those with 

moderate Cav-1 levels have ~40% and absent stromal Cav-1 have just ~9% survival rate. 

Similar results were observed in prostate cancer and melanoma highlighting the importance 

of stromal Cav-1 in other types of cancers.25,38 Loss of stromal Cav-1 and high stromal 

MCT4 are inversely related and are associated with aggressive tumor growth, recurrence 

and metastasis. Only ~2% of the patient population (out of ~160) had high stromal 

expression of both Cav-1 and MCT4 indicating that these two gene products are mutually 

exclusive events.10 

  TNBC patients with loss of stromal Cav-1 and high MCT4 expression can be 

classified as high-risk group and these markers can also be utilized for risk assessment and 

personalized cancer treatment.9,26 The targeted inhibition of MCT4 has potential to prevent 

the glycolytic process in tumor associated stromal fibroblasts and restrict the nutrient 

supply to epithelial cancer cells arresting their growth. Tumor epithelial MCT4 expression 

and absence of epithelial Cav-1 had no prognostic importance indicating that the reverse 

Warburg effect is in fact the determining factor and conventional Warburg mechanism has 

less clinical importance.9,10,26,36  
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1.9 Metabolic plasticity in cancer 

Tumor microenvironment is highly heterogeneous in nature, poorly vascularized at 

the center and exists in highly nutrient-poor conditions with limited glucose and oxygen. 

Interestingly, the mitochondrial electron transport chain can operate with oxygen levels as 

low as 0.5% albeit with low efficiency.42 To compensate for suboptimal OxPhos, cancer 

cells exhibit high levels of mitochondrial biogenesis and generate a greater mitochondrial 

mass.43,44 OxPhos pursuing cancer cells also oxidize the glycolytic end product lactic acid 

to pyruvic acid and establish a symbiotic metabolic plasticity with glycolytic cancer 

epithelial cells (Figure 1f). These above-mentioned observations indicate that glycolysis 

and OxPhos are coupled within the tumor and this dynamic symbiosis can be recognized 

as an Achilles’ heel for pharmacological intervention.  
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Figure 1f: Tumor heterogeneity and metabolic plasticity in cancer cells 
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1.10 Other processes involved in cancer cell survival 

 

1.10.1 Oxidative stress and reactive oxygen species 

Oxidative stress represents the imbalance between the production and 

manifestation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). 

Oxidative stress impairs the ability of a system to efficiently eliminate these reactive 

intermediates before they cause any cellular damage.45 Mitochondrial ROS includes singlet 

oxygen, hydroxyl radical and hydrogen peroxide. These species inhibit electron transport 

processes involved in ATP production. Initially, cancer cells secrete hydrogen peroxide 

that in turn triggers oxidative stress in adjacent fibroblasts. The mechanism of oxidative 

stress involves stromal autophagal destruction of Cav-1, which aggravates further 

oxidative stress and activation of autophagic inducers HIF-1α and NF-κB leading to the 

onset of inflammation, autophagy, mitophagy, and aerobic glycolysis.46 Cancer cells also 

take up products from autophagy such as nucleotides, amino acids, and fatty acids for 

further energy production and also as cellular building blocks. Oxidative stress and the 

generation of ROS in cancer associated fibroblasts have an adverse effect on the cancer 

cells leading to DNA damage and genetic instability further driving tumor-stroma co-

evolution.47 

In response to autophagy and mitophagy, stromal cells pursue aerobic glycolysis 

and at the same time, epithelial cancer cells undergo mitochondrial biogenesis to amplify 

their capacity for oxidative phosphorylation.35,36,48 These processes result in non-selective 

autophagy and mitochondrial selective mitophagy leading to mitochondrial dysfunction in 
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tumor associated stromal cells. When cancer cells are co-cultured with normal fibroblasts, 

mitochondrial mass is increased in cancer cells and loss of mitochondria is observed in 

fibroblasts.49 Here, the aggressive cancer cells act as parasites and use oxidative stress as a 

weapon to derive energy rich nutrients from surrounding stromal fibroblasts.36 The cancer 

cells utilize these nutrients for further proliferation. This evolution of cellular metabolism 

allows the cancer cells to seed anywhere without any angiogenesis for food supply. This 

evolutionary process also explains how cancer cells survive during metastasis.50  

 

  



 

19 

 

1.10.2 Autophagy 

Autophagy is a cellular homeostatic mechanism involving protein and organelle 

degradation and this process has an important role in human physiology and pathogenesis 

of several diseases.47 Tumors constantly shape their stroma and establish an abnormal 

hetero-ecosystem (tumor-stroma co-evolution). Similar type of co-evolution also exists in 

the autophagic tumor stroma and adjacent cancer cells.51 Cancer cells induce oxidative 

stress in fibroblasts and establish the autophagic tumor stroma resulting in energy-rich fuel 

supply to adjacent epithelial cancer cells. Stromal catabolism via autophagy and mitophagy 

fuels the anabolic growth of tumor cell progression and metastasis. This new paradigm 

shifting process is called “The autophagic tumor stroma model of cancer metabolism”, or 

the “reverse Warburg effect”. This evolution of tumor microenvironment leads to cancer 

cell DNA damage, genomic instability, and evasion of cellular apoptosis. These factors are 

very crucial in cancer growth, advancement, and eventually metastasis.45,52 Autophagy is 

also induced via another metabolic process called glutaminolysis.53,54 
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1.10.3 Glutaminolysis 

Apart from vigorous glycolysis, cancer cells are often addicted to glutaminolysis 

for ATP generation to meet energy demands for rapid proliferation. Glutaminolysis is a 

process in which glutamine influxes into the tumor cells and undergoes double deamination 

in the presence of enzymes glutaminase and glutamate dehydrogenase to form α-

ketoglutarate (αKG).53,54 To compensate the loss of pyruvic acid from glycolysis in normal 

cells, αKG enters into TCA cycle via OxPhos to degrade into pyruvic acid, lactic acid, 

alanine, and citrate and produce ATP to sustain energy levels in the cell. The diffusible by-

product of glutaminolysis is ammonia, which is a potent inducer of autophagy.9,46,55 

Glutamine also serves as nitrogen precursor for the synthesis of proteins and nucleotides 

required for tumor growth.9 This glutamine addiction by cancer cells is another way of 

inducing autophagy in the stromal microenvironment and introducing aerobic glycolysis. 

This vicious cycle of Cav-1 deficiency, oxidative stress, autophagy/mitophagy, aerobic 

glycolysis, and oxidative metabolism of energy rich nutrients explains the heterogeneity of 

tumor microenvironment.56 
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1.11 MCT1 inhibitors reported in the literature 

As discussed above, glycolysis and mitochondrial OxPhos are the main sources of 

energy pathways pursued by cancer cells and, MCT1 and MCT4 play an important role in 

these two critical processes in cancer cells. Inhibition of MCT1 and/or MCT4 could lead 

to anticancer efficacy and targeting these transporters has become an emerging hallmark 

of cancer as many tumors overexpress MCT1 and/or MCT4. Owing to the importance of 

targeting MCTs for cancer therapy, many MCT inhibitors have been developed in the past 

decade. Some of the literature reported MCT1 and MCT4 inhibitors have been summarized 

below. 

 

1.11.1 α-Cyano-4-hydroxy cinnamic acid (CHC) 

CHC is a known inhibitor of MCT1 and has been studied as a plant growth 

regulator, mitochondrial pyruvate carrier inhibitor, and for other biochemical functions 

(Figure 1g). Several in vitro transport studies and in vivo anticancer efficacy studies have 

been conducted using CHC by targeting MCT1 in various cancers.6,57  

 

Figure 1g: Structure of CHC 
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Sonveaux et al. reported that the treatment of human cervix squamous cell 

carcinoma SiHa and human colorectal adenocarcinoma WiDr cells with 5 mmol CHC 

resulted in a switch from lactate-fueled respiration to glycolysis.6 These cells also showed 

an increase in extracellular lactic acid concentration. MCT1 inhibition with CHC also 

caused cell death in SiHa and WiDr cell lines.6 Intraperitoneal administration of 25 µmol 

CHC (in 200 µL saline) in Lewis lung carcinoma (LLc) bearing syngeneic C57BL6/J mice 

and WiDr tumor bearing athymic BALB/c mice significantly slowed the tumor growth. 

MCT1 inhibition via treatment with CHC also radiosensitized LLc tumor in mice.6 A study 

using mouse hepatocarcinoma transplantable liver tumor  (TLT) bearing syngeneic 

Rj:NMRI mice revealed that CHC did not exhibit anticancer efficacy as TLT do not express 

MCT1. 

 In another study, MCT1 expressing U87-MG human glioblastoma cells were 

intracranially implanted in Crl:NIH-rnu rats and after 14 days, an osmotic pump was 

implanted in the brain to deliver 40 mM CHC directly to the tumor site. After 120 days of 

tumor implantation, 50% survival rate was observed in the mice treated with CHC.57 

Histological analysis of the resected tumors revealed complete necrosis of the tumor, 

whereas no necrosis was observed in areas surrounding the tumor site. This study clearly 

indicated that MCT1 inhibition with CHC leads to an increased survival rate in gliomas.57  

 In 2013, CHC was tested for its effect on cell viability using sulforhodamine-B 

(SRB) assay in 8 high-grade glioma cell lines: SW1088, SW1783, U87-MG, A172, SNB-

19, GAMG, U251 and U373.58 This study indicated that CHC exhibited IC50 values in the 

range of 2.5-10.8 mM. Glucose consumption study also revealed that the cells treated with 
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5 and 10 mM CHC lead to a significant decrease in glucose consumption in U251 cell line 

compared to less CHC sensitive SW1088 cell line.58 CHC also reduced migration and 

invasion in U251 cell line as assessed by wound-healing and invasion assays. Another 

study was conducted using chicken chorioallantoic membrane (CAM) assay in chicken 

embryos. U251 cell line was implantated in chicken embryos, and a treatment with 5 mM 

CHC for 3 days resulted in a significant decrease in the perimeter of tumors as well as the 

vascularization of tumors compared to the control group.58 CHC also exhibited significant 

anticancer efficacy in U2OS/MTX and ZOS osteosarcoma tumor xenograft models using 

BALB/c nude mice.59 
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1.11.2 Disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate 

Disodium 4,4'-diisothiocyanatostilbene-2,2'-disulfonate (DIDS, Figure 1h) is a 

known anion exchange blocker and anti-apoptotic agent. DIDS inhibits voltage-dependent 

anion channel (VDAC) and results in mitochondrial dysfunction.60 DIDS also leads to an 

irreversible inhibition of MCT1 with an IC50 value of 100 µM and a Ki value of 40 µM in 

rat erythrocytes due to the presence of reactive isothiocyanate groups.61   

 

Figure 1h: Structures of MCT1 inhibitors DIDS, quercetin, lonidamine and gabapentin 

enacarbil 
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1.11.3 Quercetin and lonidamine 

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one (quercetin, Figure 

1h) is a natural flavonoid which has been identified as a potent MCT1 inhibitor.62 

Lonidamine is an indazole carboxylic acid with 2,4-dichlorobenzyl substitution on N, and 

this compound is also known to inhibit MCT1 in Xenopus laevis oocytes (Figure 1h). This 

compound is also found to inhibit glycolysis and mitochondrial OxPhos, and also 

mitochondrial pyruvate carrier.63 In another study, the efficacy of CHC, quercetin and 

lonidamine were tested in several human breast cancer cell lines such as MDA-MB-468, 

MDAMB-231, Hs578T, BT-20, MCF-7/AZ and SkBr3. Most of these cell lines express 

either MCT1 or MCT4 or both, whereas CD147 was expressed in all these cell lines. 

Glucose consumption study revealed that of all these cell lines, only MDA-MB-468, SkBr3 

and Hs578T exhibited an increased lactate production.64 After treatment with CHC, 

quercetin and lonidamine, MDA-MB-468 and SkBr3 cell lines showed a significant 

reduction in glucose consumption as well as lactate production. Cell migration assay also 

revealed that these MCT inhibitors significantly decreased cell invasion in a TNBC MDA-

MB-468 cell line.64 
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1.11.4 Gabapentin enacarbil 

 

 Gabapentin enacarbil, a prodrug of gabapentin, is used as an anticonvulsant and 

analgesic agent (Figure 1h). It has increased oral availability compared to gabapentin and 

approved by FDA in 2011 for the treatment of restless leg syndrome. Gabapentin enacarbil 

is also a substrate for MCT1 and sodium-dependent multivitamin transporter. This 

compound is also known to inhibit MCT1 in a 14C lactic acid transport assay in human 

embryonic kidney cells that express MCT1.65,66 
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1.11.5 3-Bromopyruvic acid (3-BPA) and its analog NEO218 

  

3-BPA is a brominated derivative of pyruvic acid and a known inhibitor of MCT1 

that induces cell death in various cancer cells that overexpress MYC oncogene. 3-BPA was 

tested for its anticancer efficacy in MCT1 expressing Kelly tumor xenograft model at 

dosage of 2.5 mg/Kg. Mice treated with 3-BPA significantly reduced tumor burden 

compared to the control group.67 Recently, a perillyl alcohol conjugated 3-BPA was 

developed as an MCT1 inhibitor (Figure 1i). This molecule was designated as NEO218, 

and this compound exhibited excellent IC50 in various cell lines with high MCT1 

expression and this activity is dependent on the level of MCT1 expression.68 For example, 

NEO218 showed high micromolar activity in low MCT1 expressing cell line MCF7. 

Furthermore, this compound exhibited potent activity in 3-BPA resistant cell lines.68 

 

 

Figure 1i: Structures of 3-bromopyruvic acid and NEO218 
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1.11.6 AstraZeneca’s AZD3965 and ARC155858 

AstraZeneca developed potent MCT1 inhibitors and the lead candidate compounds 

AZD3965 and ARC155858 were shown in the Figure 1j.67,69–73 These compounds have 

specificity towards MCT1 inhibition and are also known to have excellent 

immunosuppression properties and good oral bioavailability. Currently, AZD3965 is in 

phase-I clinical trials for the treatment of diffuse large B-cell lymphoma, Burkitt lymphoma 

and other solid tumors. 

 

Figure 1j: Structures of AZD3965 and AR-C158858 

 

L-lactate transport study in rat erythrocytes and Xenopus oocytes revealed that 

ARC155858 showed Ki value of 2.3 nM and 100 nM, respectively.69 In a study of human 

lung small cell carcinoma COR-L103 xenografts in male nonobese diabetic scid-γ mice, 

treatment with AZD3965 at a dosage of 100 mg/Kg lead to significant anticancer efficacy 

and increased intracellular lactate concentrations in vivo.73 In another study, luciferase-

expressing CA46 Burkitt lymphoma tumor cells have been injected in NOD/LtSz-scid IL-

2Rγ null (NSG) mice via tail vein, and treatment with AZD3965 at a dosage of 100 mg/Kg 

resulted in a significant reduction of tumor burden.74   
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1.11.7 Substituted pteridine diones and triones  

  

Wang et al. reported substituted pteridine diones and triones as MCT1 inhibitors 

(Figure 1k). These derivatives were evaluated for their MCT1 inhibition using 14C lactic 

uptake assay in MCF7 cell line engineered to overexpress MCT1. These studies indicated 

that pteridine trione derivative had MCT1 IC50 of 548 nM, whereas pteridine diones a-c 

exhibited IC50 values of 669 nM, 192 nM, 116 nM, respectively. These compounds were 

also tested for their cytotoxicity in MCT1 expressing human Raji lymphoma cell line and 

these results also indicated that these compounds inhibited 50% cell proliferation at 37-150 

nM concentrations.75 

 

Figure 1k: Structures of substituted pteridine trione and diones 
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1.11.8 Coumarin derivatives 7AAC1 and 7AAC2 

Draoui et al. reported few coumarin analogs as potent MCT1 inhibitos.76,77 Amino 

carboxy coumarins with N,N-diethyl and N-benzyl-N-methyl substitutions have been 

identified as lead compounds (Figure 1l). These compounds 7ACC1 and 7ACC2 exhibited 

excellent cytotoxicity in SiHa cancer cell line with IC50 values of 1.8 and 0.22 µM, 

respectively. Lactate uptake inhibition study show that these compounds inhibit MCT1 

with IC50 values 0.86 and 0.059 µM, respectively.76 

 

Figure 1l: Structures of aminocarboxy coumarins 7ACC1 and 7ACC2 

 

 These potent compounds have also been tested for their anticancer efficacy in 

MCT1 expressing SiHa and HCT-116 and low MCT1 expressing UM-UC-3 tumor 

xenograft models using NMRI female nude mice. Treatment of these tumors with 

compound 7AAC1 and 7ACC2 at a dosage of 3 mg/Kg indicated that these compounds 

exhibit significant anticancer efficacy in MCT1 expressing SiHa and HCT-116 tumors, but 

did not affect UM-UC-3 tumors.77 Another anticancer efficacy study has been conducted 

using MCT1 expressing MCF7 tumor orthotopic model using more potent 7ACC2, and 

this study also indicate that 7ACC2 exhibits excellent tumor growth inhibition. 
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1.11.9 Pyrazole methylpropanoic acid derivatives 

 Recently, a library of 2-((1-(2-chlorobenzyl)-5-(3-substituted phenyl)-1H-pyrazol-

3-yl)methoxy)-2-methylpropanoic acids have been reported as specific MCT4 inhibitors. 

All these compounds were evaluated for MCT4 inhibition activity in MCT4 expressing 

MDA-MB-231 cell line and most of the pyrazole derivatives exhibited potent MCT4 

inhibition in nM range. Specifically, isobutyl substituted pyrazole methylpropanoic acid 

depicted in Figure 1m showed 1 nM IC50 for MCT4 inhibition, whereas the same compound 

showed an IC50 of 5600 nM for MCT1 inhibition in MCT1 expressing BT20 cell line.78  

 

Figure 1m: Representative example of 2-((1-(2-chlorobenzyl)-5-(3-substituted phenyl)-

1H-pyrazol-3-yl)methoxy)-2-methylpropanoic acid  
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1.12 Conclusions 

 Cancer cells utilize aggressive glycolysis to produce energy required for 

proliferation, cancer progression and metastasis. MCT1 and MCT4 play an important role 

in shuttling the glycolysis end products pyruvic acid and lactic acid involved in Warburg 

and reverse Warburg effects. Cancer cells also shift their metabolism from glycolysis to 

OxPhos and vice versa depending on the microenvironment and their metabolic needs. As 

MCT1 and MCT4 are overexpressed in many types of cancers, they could be considered 

as metabolic biomarkers and their inhibition could to lead to the disruption of energy, 

cellular acidosis and eventual cell death. Owing to the importance of MCT1 and MCT4 

and its inhibition in cancer therapy, we proposed to design, synthesize and evaluate novel 

CHC based monocarboxylic acids for their in vitro and in vivo activity in various cancers, 

including colorectal cancer, breast cancer and gliomas. 
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1.13 Thesis objective and hypothesis 

As discussed in the introduction, glycolysis and OxPhos are critical energy 

producing processes for cancer cell proliferation and progression. Many cancers pursue 

vigorous glycolysis and the end products lactic acid and pyruvic acid are effluxed via 

MCT4. These end products are then shuttled into adjacent cancer cells via MCT1 for 

further energy production by mitochondrial OxPhos. Thus, cancer cells maintain a 

symbiotic relationship called Warburg effect to continue cancer progression. Literature 

reports also indicate that cancer associated stromal fibroblasts undergo glycolysis and these 

glycolytic by-products are then taken up by adjacent epithelial cancer cells via MCTs for 

mitochondrial OxPhos to continue further proliferation. The fibroblastic tumor stroma and 

epithelial cancer cells develop a host-parasite relationship which is called as reverse 

Warburg effect. Recent studies indicate that conventional Warburg effect has less clinical 

importance and in fact, reverse Warburg effect is the defining factor for cancer prognosis 

depending on the MCT4 expression. Because of the highly heterogeneous nature of tumors, 

cancer cells not only depend on glycolysis, but also pursue OxPhos or intermediate 

phenotype as important energy sources. This malleability between one metabolic process 

to other is called metabolic plasticity and this process depends on the availability of 

nutrients and oxygen and dictate glycolytic or oxidative phenotypes.  

We envision that energetic pathways such as conventional Warburg effect, reverse 

Warburg effect and metabolic plasticity are significant contributors for cell survival under 

dynamic and nutritionally challenged tumor microenvironment. MCT1 and MCT4 play a 

critical role in facilitating these metabolic processes via shuttling of lactic acid and other 
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ketone bodies in cancer cells. We hypothesize that targeted inhibition of MCT1 and/or 

MCT4 prevents glycolytic process, mitochondrial OxPhos, and/or metabolic plasticity, 

thereby affecting the symbiotic relationship in the tumor ecosystem. Although there are 

few MCT1 inhibitors currently under development, when we started this project, there was 

only one known selective MCT1 inhibitor reported by AstraZeneca. Owing to the 

importance of MCTs in tumor metabolism and their role in cancer cell progression, we 

undertook the project of developing new MCT inhibitors as potential anticancer agents. 

The main objective of this thesis is to design and synthesize a library of CHC and coumarin 

based derivatives and evaluate the in vitro and in vivo efficacy of these novel derivatives. 

 

 

  



 

35 

 

CHAPTER 2: Structure-activity relationship studies of α-cyano-4-hydroxycinnamic 

acid: Discovery of novel drug candidates with improved MCT1 inhibition properties 

 

2.1 Structural modification of CHC 

As mentioned in chapter-1, α-cyano-4-hydroxycinnamic acid (CHC) is a known 

MCT1 inhibitor with an IC50 values in high µM range (>100 µM). Our preliminary studies 

also demonstrated that CHC inhibited MCT1 function in rat brain endothelial 4 (RBE4) 

cell line at ~150 µM. CHC also exhibited in vivo efficacy in various tumor models in mice 

but due to its low potency, most of the studies were done at high concentrations which 

cannot be translated into clinic for human usage. For this reason, we envisioned to carry 

out a detailed structure-activity relationship study to develop novel CHC derivatives that 

can inhibit MCT function at low µM to nM range. CHC has five possible sites (Figure 2a) 

for structural modifications to create novel chemical entities and study their effects on 

MCT1 inhibition. 

 

Figure 2a: Possible positions on CHC for structure-activity relationship studies 
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2.1.1 Structural modification of CHC via Knoevenagel condensation 

Knoevenagel reaction is an important C-C bond forming reaction in which a 

carbonyl group and an activated methylene group are condensed in the presence of a base 

to create α,β-unsaturated systems efficiently (Figure 2b).79 We envisaged that utilizing this 

condensation reaction will provide novel CHC derivatives and we could swiftly generate a 

library of structurally modified CHC derivatives.   

 

Figure 2b: Knoevenagel condensation reaction 
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2.1.2 Synthesis of electron withdrawing group containing CHC derivatives 2.1a-2.1e 

In this regard, we first focused our attention on the phenolic hydroxy group in CHC 

for structural modification with various substituents. This approach will cause minimal 

structural disturbance to CHC template by retaining other four structural components of 

CHC. First, we generated a small library of compounds by replacing hydroxy group at para 

position of CHC with several electron withdrawing groups such as F, Cl, Br, CN and NO2. 

These compounds 2.1a-2.1e were synthesized starting from their respective aldehydes 

using Knoevenagel condensation with cyanoacetic acid, in the presence of stoichiometric 

sodium bicarbonate and a catalytic amount of sodium hydroxide in dioxane-water mixture 

(Scheme 2a). 

 

Scheme 2a: Synthesis of CHC derivatives 2.1a-2.1e with electron withdrawing groups at 

para position 
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2.1.3 Synthesis of electron donating group containing CHC derivatives 2f-2i 

Similarly, we also synthesized CHC derivatives by replacing hydroxy group at para 

position with electron donating groups containing oxygen-based substitutions. For this 

purpose, we utilized various aldehydes such as 4-anisaldehyde, 3,4,5-trimethoxy 

benzaldehyde, vanillin, and piperonal, which were subjected to Knoevenagel condensation 

with cyanoacetic acid in the presence of piperidine as a base in acetonitrile to obtain 

corresponding cyanoacrylic acids 2.1f-2.1i, respectively (Scheme 2b).  

 

Scheme 2b: Synthesis of CHC derivatives 2.1f-2.1i with electron donating groups at para 

position 
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2.1.4 Synthesis of 4-alkyl substituted CHC derivatives 2.1j-2.1m 

We then synthesized 4-alkyl substituted CHC derivatives using tolualdehyde, 4-

ethylbenzaldehyde, 4-isopropylbenzaldehyde, and 4-tertbutylbenzaldehyde. These 

aldehydes were reacted with cyanoacetic acid in the presence of ammonium acetate in 

toluene to obtain corresponding cyanoacetic acids 2.1j-2.1l, respectively (Scheme 2c). In 

the case of 4-tertbutylbenzaldehyde, piperidine was used as a base to obtain the 

corresponding cyanoacetic acid 2.1m in good yield.  

 

Scheme 2c: Synthesis of CHC derivatives 2.1j-2.1m with alkyl group substitutions at para 

position 
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2.1.5 Evaluation of compounds 2.1a-2.1m for MCT1 inhibition using 14C-lactate uptake 

assay 

 The synthesized compounds 2.1a-2.1m were evaluated for MCT1 inhibition in 

RBE4 cell line using 14C-lactate uptake assay. RBE4 cell line was chosen because of its 

high MCT1 expression, as confirmed by Western Blot analysis (Figure 2c-A). When a test 

compound is added to these cells in the presence of 14C-lactate, the inhibition of the amount 

of lactate entering the cells can be measured by lysing the cells and measuring the amount 

of radioactivity in disintegrations per minute (dpm).  

 

 

Figure 2c: Western blot analysis of MCT1 and MCT4 expressions in RBE4, MDA-MB-

231, 4T1-luc2, and WiDr cell lines 
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Evaluation of MCT1 inhibition in electron withdrawing groups containing CHC 

derivatives revealed that fluoro, chloro and bromo derivatives 2.1a-2.1c exhibited IC50 

values of ~1 µM, and cyano derivative 2.1d showed an IC50 value of ~5 µM, whereas nitro 

derivative 2.1e showed the IC50 value at ~50 µM (Figure 2d). 

 

Figure 2d: MCT1 IC50 of CHC derivatives 2.1a-2.1e 
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We next evaluated electron donating group containing CHC derivatives 2.1f-2.1i 

for MCT1 inhibition. Methoxy, trimethoxy, piperonal and vanillin derivatives 2.1f-2.1i 

showed IC50 values of ~1, 10, 7 and 50 µM, respectively (Figure 2e).  

 

Figure 2e: MCT1 IC50 of CHC derivatives 2.1f-2.1i 
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We also evaluated MCT1 inhibition for alkyl group containing CHC derivatives 

2.1j-2.1m. These studies showed that methyl derivative 2.1j exhibited an IC50 value of 0.77 

µM, whereas ethyl and isopropyl derivatives 2.1k and 2.1l showed IC50 values of 0.38 and 

0.48 µM, respectively. The tert-butyl derivative 2.1m exhibited an IC50 value of ~1 µM 

(Figure 2f). These studies indicated that alkyl group containing derivatives of CHC are 

superior to electron donating group containing 2.1a-2.1e or electron donating group 

containing 2.1f-2.1i derivatives. 

 

Figure 2f: MCT1 IC50 of CHC derivatives 2.1j-2.1m 
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2.2 Synthesis of N,N-dialkyl CHC derivatives 

Since increasing lipophilicity through alkyl group substitutions provided enhanced 

MCT1 inhibition compared to CHC, we further synthesized several derivatives with N,N-

dialkyl groups at para position of CHC (Figure 2g). This would provide greater 

lipophilicity with an electron donating group in the para position. We hypothesized these 

characteristics will further improve MCT inhibition.80 Moreover, most of the drugs used 

for various diseases contain at least one N atom, and nitrogen containing compounds are 

usually considered pharmacologically and pharmaceutically privileged structures for 

clinical application.  

 

Figure 2g: Replacement of OH group with N,N-dialkyl groups in CHC 
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2.2.1 Synthesis of N,N-dialkyl CHC derivatives 2.2a and 2.2b 

To explore this working hypothesis, we first synthesized N,N-dimethyl CHC 2.2a 

starting from 4-(dimethylamino)benzaldehyde. This aldehyde was subjected to 

Knoevenagel condensation to obtain (E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylic 

acid 2.2a (Scheme 2d). We also synthesized N,N-diethyl CHC derivative (E)-2-cyano-3-

(4-(diethylamino)phenyl)acrylic acid 2.2b using similar procedure starting from 4-

(diethylamino)benzaldehyde. 

 

Scheme 2d: Synthesis of (E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylic acid 2.2a and 

(E)-2-cyano-3-(4-(diethylamino)phenyl)acrylic acid 2.2b 

 

  



 

46 

 

2.2.2 Evaluation of N,N-dialkyl CHC derivatives 2.2a and 2.2b for MCT1 inhibition 

After synthesizing N,N-dimethyl 2.2a and N,N-diethyl 2.2b CHC derivatives, we 

evaluated their MCT1 inhibition properties using 14C-lactate uptake assay in RBE4 cell 

line. As we anticipated, introduction of nitrogen atom with the alkyl group at the para 

position greatly enhanced MCT1 inhibition with the observed IC50 values of ~138 nM for 

2.2a and ~66 nM for 2.2b. The increase in the alkyl chain also increased the MCT1 

inhibition of 2.2b compared to 2.1a. Excited by these results, we carried out detailed 

structure-activity relationship studies of N,N-dialkyl/diaryl derivatives.  
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2.2.3 Synthesis of N,N-dialkyl CHC derivatives 2.2c-2.2j 

We synthesized other N,N-dialkyl substituted CHC derivatives starting from 

aniline, which was dialkylated using various alkyl bromides in the presence of catalytic 

amount of tetrabutylammonium iodide in water. We utilized propyl, butyl, isobutyl, pentyl, 

hexyl, allyl, propargyl and benzyl bromides and obtained corresponding N,N-dialkylated 

anilines. These N,N-dialkylated anilines were then subjected to Vilsmeier-Hack 

formylation using POCl3 in DMF. The resulting aldehydes were treated with cyanoacetic 

acid for Knoevenagel condensation in the presence of piperidine in acetonitrile to obtain 

corresponding (E)-2-cyano-3-(4-(dialkylamino)phenyl)acrylic acids 2.2c-2.2j (Scheme 

2e). 



 

48 

 

 

Scheme 2e: Synthesis of (E)-2-cyano-3-(4-(dialkylamino)phenyl)acrylic acids 2.2c-2.2j 
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2.2.4 Synthesis of N,N-dialkyl CHC derivatives 2.2k and 2.2l 

We also synthesized cyclic derivatives 4-pyrrolidinyl and 4-piperidinyl CHCs 2.2k 

and 2.2l. 1,4-dibromobutane was synthesized via bromination of THF with HBr and 

H2SO4, whereas 1,5-dibromopentane was synthesized via dibromination of 1,5-pentanol 

with PBr3. Dialkylation of aniline with 1,4-dibromobutane and 1,5-dibromopentanes 

resulted in corresponding N,N-dialkylated anilines. These anilines were then reacted with 

POCl3 under Vilsmeier-Haack conditions to yield corresponding aldehydes, which were 

then treated with cyanoacetic acid for Knoevenagel condensation to get corresponding 

cyanoacetic acids (E)-2-cyano-3-(4-(pyrrolidin-1-yl)phenyl)acrylic acid 2.2k and (E)-2-

cyano-3-(4-(piperidin-1-yl)phenyl)acrylic acid 2.2l, respectively (Scheme 2f). 
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Scheme 2f: Synthesis of (E)-2-cyano-3-(4-(pyrrolidin-1-yl)phenyl)acrylic acid 2.2k and 

(E)-2-cyano-3-(4-(piperidin-1-yl)phenyl)acrylic acid 2.2l 
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2.2.5 Synthesis of N,N-diphenyl CHC derivative 2.2m 

Apart from N,N-dialkyl CHC derivatives 2.2a-2.2l, we also synthesized an N,N-

diphenyl CHC derivative 2.2m starting from triphenylamine. This amine was 

monoformylated under Vilsmeier-Haack conditions to obtain 4-

(diphenylamino)benzaldehyde, which was then reacted with cyanoacetic acid to form (E)-

2-cyano-3-(4-(diphenylamino)phenyl) acrylic acid 2.2m (Scheme 2g). 

 

Scheme 2g: Synthesis of (E)-2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid 2.2m 
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2.2.6 Evaluation of N,N-dialkyl CHC derivatives 2.2c-2.2m for MCT1 inhibition 

The MCT1 inhibition of all these derivatives 2.2c-2.2m were evaluated using 14C-

lactate uptake assay in RBE4 cell line. To our excitment, N,N-dialkyl derivatives 2.2c-2.2m 

exhibited low to high nanomolar IC50 values in the range of 13-876 nM (Figure 2h and 

Table 2a). With an increase in the carbon content of alkyl groups in methyl to butyl 

derivatives 2.2a-2.2d, the IC50 values improved from 138 nM to 28 nM, but with further 

increase in carbons in pentyl 2.2e and hexyl 2.2f derivatives, the IC50 values increased to 

137 and 876 nM, respectively. The optimal alkyl chains that provided efficient MCT1 

inhibition were propyl 2.2c or butyl 2.2d with IC50 values of 13 and 28 nM respectively. 

When the butyl group is branched such as in isobutyl derivative 2.2e, MCT1 inhibition was 

decreased with an IC50 value of 102 nM. In the case of diallyl 2.2h and dipropargyl 2.2i 

derivatives, MCT1 inhibition did not improve as evidenced by the IC50 values of 114 and 

396 nM, respectively. For the compound 2.2j with dibenzyl substitution, the IC50 value was 

found to be ~29 nM. Cyclic derivatives 2.2k and 2.2l also showed good IC50 values of 70 

and 142 nM, respectively. The N,N-diphenyl derivative 2.2m exhibited excellent MCT1 

inhibition with an IC50 value of 26 nM (Figure 2h and Table 2a). The candidate compounds 

propyl 2.2c, butyl 2.2d and phenyl 2.2m showed ~5700-11,000 times potency for MCT1 

inhibition than parent CHC. 
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Figure 2h: MCT1 IC50 (nM) of N,N-dialkyl CHC derivatives 2.2a-2.2m in RBE4 cell line. 

The average+sem of at least three independent experiments were presented in the bar 

graph. 
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Table 2a: MCT1 IC50 (nM)* of N,N-dialkyl CHC derivatives 2.2a-2.2m in RBE4 cell line 

Sl. No. Compound MCT1 IC50 

2.2a 

 

138±52 

2.2b 

 

66±21 

2.2c 

 

13±6 

2.2d 

 

28±2 

2.2e 

 

102±47 
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2.2f 

 

137±23 

2.2g 

 

876±182 

2.2h 

 

114±32 

2.2i 

 

395±22 

2.2j 

 

29±5 
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2.2k 

 

70±5 

2.2l 

 

142±30 

2.2m 

 

26±2 

*Average±SEM of three independent experiments 
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2.3 Discussion 

CHC is a known MCT1 inhibitor with IC50 value of >150 µM.  This compound is 

highly non-toxic and exhibits anticancer efficacy in in vivo tumor models. Typically, CHC 

requires millimolar to high micromolar concentration to provide significant in vivo 

efficacy. However, in a clinical setting involving human subjects, achieving this level of 

high concentration is impractical and non-translatable. Hence, we wanted to improve the 

potency of CHC by carrying out a structure-activity relationship study for potential use as 

an anticancer agent. In this regard, we initially replaced the para-hydroxy group in CHC 

with various electron withdrawing, electron donating, and alkyl groups. We synthesized 

various para-substituted CHC derivatives 2.1a-2.1m and evaluated their MCT1 inhibition 

properties using 14C-lactate uptake assay in RBE4 cell line.  

This structure-activity relationship study revealed that replacing the hydroxy group 

with an alkyl group resulted in ~190-390 times potency for MCT1 inhibition when 

compared to its parent CHC molecule. We also replaced the cyano group with hydrogen 

and carboxylic acid groups, reduced the double bond in acrylic acid in CHC and tested 

these derivatives for MCT1 inhibition. These modifications resulted in a total loss or 

significant decrease of MCT1 inhibition to high micromolar concentration (Figure 2h). 
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Scheme 2h: Structure-activity relationship studies on cyanoacrylic acid unit 

 

Based on these studies, we inferred that cyanoacrylic acid is a key pharmacophore 

which is responsible for providing MCT1 inhibition properties. Hence, we further modified 

the para-position on CHC with N,N-dialkyl groups that have more hydrophobic properties 

than simple methyl or ethyl groups. In this regard, we synthesized a small library of 

cyanocinnamic acids 2.2a-2.2m with various alkyl/aryl groups such as propyl, butyl, 

benzyl, phenyl, branched alkyl groups such as isobutyl, and cyclic groups such as 

pyrrolidine and piperidine.  

All these compounds were evaluated for MCT1 inhibition and these studies 

indicated that the increase in homologation from ethyl to propyl and butyl chain resulted 

in increased MCT1 inhibition. Further increase in the carbon chain to pentyl and hexyl 

resulted in decreased MCT1 inhibition. Substitution with allyl and propargyl groups, and 

also the presence of cyclic N,N-dialkyl groups also resulted in decreased activity for MCT1 

inhibition. Diphenyl substitution resulted in greatly improved MCT1 inhibition with low 
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nM IC50 value. Propyl, butyl and phenyl derivatives 2.2c, 2.2d and 2.2m were considered 

as lead molecules in this study as they exhibited ~5700-11,000 times potency for MCT1 

inhibition compared to CHC. Importantly, for potent MCT1 inhibition, cyanoacrylic acid 

unit is required and the para-position should constitute N,N-dipropyl/dibutyl/diphenyl 

groups (Figure 2i). Cyanoacrylic acid is a doubly activated system with two electron 

withdrawing groups on the double bond and acts as a powerful 1,4-acceptor, which could 

react with various nucleophilic residues of MCT1 transporter. The presence of alkyl/aryl 

groups on the para-Nitrogen could potentially interact with the hydrophobic pockets of the 

protein. The critical role of hydrophobicity has been validated with various non-hydroxy 

CHC derivatives 2.1a-2.1m and 2.2a-2.2m. 

 

Figure 2i: Structure-activity relationship and MCT1 inhibition of N,N-dialkyl CHC 

derivatives  
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2.4 Conclusions 

 We synthesized and evaluated MCT1 inhibition of several CHC derivatives by 

replacing para hydroxy with various substituents. Compounds 2.1a-2.1e with para-

position substituted with electron withdrawing groups resulted in increased potency 

compared to parent CHC, but compounds 2.1f-2.1m substituted with electron donating 

groups provided even higher efficacy of MCT1 inhibition. Especially, substitution with 

alkyl groups resulted in an increased efficacy compared to methoxy type substitutions. 

Also, compounds 2.2a-2.2m with N,N-dialkyl substitution at para position afforded 

nanomolar potency for MCT1 inhibition when compared to parent compound CHC. These 

results suggest that cyanoacrylic acid unit in combination with para-N,N-dialkyl groups 

are necessary for potent MCT1 inhibition properties. 
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Chapter 3: Structure-activity relationship studies of N,N-dialkyl/diaryl o-substituted 

CHC derivatives as MCT1 inhibitors: In vitro and in vivo studies as potential 

anticancer agents 

 

3.1 Synthesis of N,N-dialkyl o-methoxy CHC derivatives 3a-3g 

The structure-activity relationship study with various substitutions on the para 

position in CHC resulted in the discovery of N,N-dialkyl/diaryl groups that increased the 

MCT1 inhibition significantly compared to the parent CHC (Figure 2h, Table 2a). Since 

cyanoacrylic acid group was found to be a critical structural unit for MCT1 inhibition, we 

did not make any further changes to this unit. Hence, we focused our attention on the ortho 

substitution for further structure-activity relationship studies. In this regard, we chose 

methoxy group as a representative example (Figure 3a).80 

 

 

 

Figure 3a: Proposed modification of ortho position of N,N-dialkyl CHC derivative with a 

methoxy group 
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We synthesized N,N-dialkyl o-methoxy CHC derivatives starting with the 

commercially available m-anisidine. Dialkylation of m-anisidine with alkyl bromides in the 

presence of sodium stearate in water-isopropanol yielded the corresponding N,N-dialkyl o-

methoxy anilines (Scheme 3a). Propyl, butyl, isobutyl, pentyl, allyl, propargyl and benzyl 

bromides were used for alkylations. These dialkylated anilines were subjected to Vilsmeier-

Haack formylation in the presence of POCl3 and DMF to obtain corresponding aldehydes, 

which were subsequently treated with cyanoacetic acid under Knoevenagel conditions to 

obtain the (E)-2-cyano-3-(4-(dialkylamino)-2-methoxyphenyl)acrylic acids 3a-3g 

(Scheme 3a). 
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Scheme 3a: Synthesis of (E)-2-cyano-3-(4-(dialkylamino)-2-methoxyphenyl)acrylic acids 

3a-3g 
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3.1.1 Synthesis of N,N-dialkyl o-methoxy CHC derivatives 3h and 3i 

Apart from the above-mentioned compounds 3a-3g, we also synthesized cyclic 

CHC derivatives 4-pyrrolidinyl and 4-piperidinyl o-methoxy CHCs. As described in the 

previous chapter, 1,4-dibromobutane was synthesized via bromination of THF in the 

presence of HBr and H2SO4, whereas 1,5-dibromopentane was synthesized via 

dibromination of 1,5-pentanol in the presence of PBr3. Dialkylation of m-anisidine with 

1,4-dibromobutane and 1,5-dibromopentanes resulted in the corresponding N,N-

dialkylated o-methoxy anilines. These anilines were then reacted with POCl3 in DMF under 

Vilsmeier-Haack conditions to yield corresponding aldehydes, which were then treated 

with cyanoacetic acid for Knoevenagel condensation to obtain (E)-2-cyano-3-(2-methoxy-

4-(pyrrolidin-1-yl)phenyl)acrylic acid 3h and (E)-2-cyano-3-(2-methoxy-4-(piperidin-1-

yl)phenyl)acrylic acid 3i, respectively (Scheme 3b). 
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Scheme 3b: Synthesis of (E)-2-cyano-3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)acrylic 

acid 3h and (E)-2-cyano-3-(2-methoxy-4-(piperidin-1-yl)phenyl)acrylic acid 3i 

  

  



 

66 

 

3.1.2 Synthesis of N,N-diphenyl o-methoxy CHC derivative 3j 

Similarly, we also synthesized an N,N-diphenyl o-methoxy CHC derivative starting 

from commercially available 3-methoxy-N,N-diphenylaniline which was monoformylated 

under Vilsmeier-Haack conditions to obtain 4-(diphenylamino)-2-methoxybenzaldehyde. 

The aldehyde was then reacted with cyanoacetic acid in the presence of piperidine to form 

(E)-2-cyano-3-(4-diphenylamino)-2-methoxyphenyl)acrylic acid 3j (Scheme 3c). 

 

 

Scheme 3c: Synthesis of (E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl)acrylic 

acid 3j 
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3.1.3 Synthesis of N,N-dialkyl o-allyloxy CHC derivative 3k 

      

To further study the effect of ortho position on the biological activity, we replaced 

the methoxy group with an allyloxy group. As a representative example, we started with a 

commercially available starting material 4-(diethylamino)-2-hydroxybenzaldehyde. This 

salicylaldehyde was treated with allyl bromide in the presence of K2CO3 in acetone to 

obtain 2-(allyloxy)-4-(diethylamino)benzaldehyde. This o-allyloxy product was then 

subjected to Knoevenagel condensation with cyanoacetic acid to get (E)-3-(2-(allyloxy)-4-

(diethylamino)phenyl)-2-cyanoacrylic acid 3k in 73% yield (Scheme 3d). 

 

 

Scheme 3d: Synthesis of (E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2-cyanoacrylic acid 

3k 
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3.2 Evaluation of N,N-dialkyl/diaryl o-substituted CHC derivatives 3a-3k for MCT1 

inhibition properties: Results and discussion 

The MCT1 inhibition of N,N-dialkyl/diaryl o-methoxy CHC derivatives 3a-3k 

were then tested using 14C-lactate uptake assay in RBE4 cell line. Excitingly, the N,N-

dialkyl/diaryl derivatives 3a-3k exhibited further increase in MCT1 inhibition activity at 

low nanomolar IC50 values in the range of 8-130 nM (Figure 3b, Table 3a). In this case 

also, with an increase in the carbon content of alkyl groups from propyl 3a to pentyl 3d, 

the IC50 values decreased from 8 nM to 23 nM. With a branched diisobutyl derivative 3c, 

the IC50 value was found to be 11 nM, which is same as straight chained butyl derivative 

3b (8 nM). With diallyl 3e, the IC50 value was slightly decreased to 27 nM, whereas for 

dipropargyl 3f, the IC50 value (130 nM) was decreased compared to other derivatives 3a-

3e. With dibenzyl substitution in 3g, the IC50 value was found to be slightly decreased to 

~29 nM. Cyclic derivatives 3h and 3i also showed moderate IC50 values of 44 and 61 nM, 

respectively. The diphenyl derivative 3j exhibited excellent MCT1 inhibition with an IC50 

value of 8 nM, whereas o-allyloxy derivative 3k exhibited an IC50 value of 9 nM. Overall, 

N,N-dialkyl/diaryl o-substituted derivatives 3a-3j exhibited even higher MCT1 inhibition 

compared to their non o-substituted derivatives 2.2c-2.2m (Figure 2h, Table 2a). 
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Figure 3b: MCT1 inhibition of N,N-dialkyl/diaryl o-substituted cyanoacetic acids 3a-3k 

in RBE4 cell line. The average+sem of at least three independent experiments were 

presented in the bar graph.  
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Table 3a: MCT1 IC50 (nM)* of N,N-dialkyl/diaryl o-substituted CHC derivatives 3a-3k in 

RBE4 cell line 

Sl. No. Compound MCT1 IC50 

3a 

 

10±1 

3b 

 

8±1 

3c 

 

11±1 

3d 

 

23±4 



 

71 

 

3e 

 

27±3 

3f 

 

130±14 

3g 

 

19±5 

3h 

 

44±9 

3i 

 

61±16 

3j 

 

8±1 
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3k 

 

9±1 

 

* average±sem of minimum three independent experiments 

 

As discussed in the previous chapter, substituting hydroxy group in CHC with N,N-

dialkyl/diaryl groups in the para-position increased MCT1 inhibitory activity 

exponentially when compared to the parent CHC molecule. The presence of double bond, 

cyano and carboxylic acid groups is also critical for potent MCT1 inhibition. Additionally, 

replacing hydrogen with a methoxy group in the ortho-position further enhanced MCT1 

inhibition as seen in the derivatives 3a-3j, when compared to their non methoxy derivatives 

2c-2m. We presume that methoxy group increases hydrogen bonding interactions with the 

MCT1 protein due to which more potent inhibition is observed. All the optimized structural 

features required for potent MCT1 inhibition are depicted in the Figure 3c.  

 

Figure 3c: Optimized structural features required for potent MCT1 inhibition 
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3.3 Cell proliferation/cytotoxicity study of compounds 3a-3k: Results and discussion 

3.3.1 Cell proliferation inhibition of compounds 3a-3k using MTT assay 

As these derivatives exhibited potent MCT1 inhibition, we then evaluated these 

compounds for cell proliferation/cytotoxicity inhibition to explore their potential as 

anticancer agents. Initial cell proliferation studies of the synthesized compounds 3a-3k 

were carried out using in vitro cell proliferation using 3-(4,5-dimethylthiazol-2-yl)-2,5-

diphenyltetrazolium bromide (MTT) assay. This colorimetric assay measures the reduction 

of MTT to formazan by cellular mitochondrial reductase as a measure of cell viability. For 

this assay, we utilized four cell lines which include MCT1 expressing human colorectal 

adenocarcinoma cell line WiDr, murine metastatic breast cancer cell line 4T1-luc2, and 

murine glioma cell line GL261-luc2 and MCT4 expressing human triple negative breast 

cancer cell line MDA-MB-231. Compared to their parent compound CHC, some of the test 

compounds exhibited several fold increased cell proliferation inhibitions (Table 3b). 

In 4T1-luc2 cell line, propyl derivative 3a showed an IC50 value of 0.12 mM, 

whereas butyl and isobutyl derivatives 3b and 3c exhibited IC50 values of 0.05 and 0.06 

mM, respectively. The benzyl derivative 3g showed an IC50 value of 0.09 mM, whereas 

the phenyl derivative 3j exhibited excellent cytotoxicity with an IC50 value of 0.05 mM. 

CHC exhibited an IC50 value of 5.35 mM whereas candidate compounds 3a, 3e, 3f, 3h, 3i 

and 3k did not show cytotoxicity up to 0.25 mM concentration.  

In GL261-luc2 cell line, propyl, butyl and isobutyl derivatives 3a-3c exhibited high 

IC50 values of 0.16-0.18 mM, whereas benzyl derivative 3g showed an IC50 value of 0.10 

mM. The phenyl derivative 3j exhibited moderate cytotoxicity with an IC50 value of 0.09 
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mM. CHC exhibited an IC50 value of 5.27 mM whereas candidate compounds 3e, 3f, 3h, 

3i and 3k did not show cytotoxicity up to 0.25 mM concentration. 

In WiDr cell line, the compounds were tested to a maximum concentration of 0.025 

mM as these compounds have significantly more cell proliferation inhibition values. CHC 

did not exhibit cytotoxicity up to 0.5 mM. All the other compounds 3a-3j were very potent 

with IC50 values in the range of 0.0024-0.0125 mM. Benzyl 3g and phenyl 3j showed low 

IC50 values compared to other compounds in this study. 

In MDA-MB-231 cell line propyl, butyl and isobutyl derivatives 3a, 3b and 3c 

exhibited similar IC50 values ~0.12-0.13 mM, whereas benzyl derivative 3g showed 

slightly higher IC50 value of 0.11 mM. The phenyl derivative 3j exhibited good cytotoxicity 

with an IC50 value of 0.08 mM. CHC exhibited an IC50 value of 5.71 mM whereas candidate 

compounds 3e, 3f, 3h, 3i and 3k did not show cytotoxicity up to 0.25 mM concentration.  
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Table 3b: MTT assay IC50
* values of N,N-dialkyl o-methoxy CHC derivatives in 4T1-luc2 

and GL261-luc2, WiDr and MDA-MB-231 cell lines 

Sl. No 4T1-luc2 GL261-luc2 WiDr MDA-MB-231 

CHC  5.35±1.35 5.27±0.33 >0.5 5.71±0.44 

3a 0.12±0.00 0.16±0.01 0.0027±0.000 0.12±0.01 

3b 0.05±0.01 0.16±0.01 0.0056±0.001 0.13±0.01 

3c 0.06±0.01 0.18±0.00 0.0024±0.000 0.13±0.01 

3e >0.25 >0.25 0.0044±0.000 >0.25 

3f >0.25 >0.25 ND >0.25 

3g 0.09±0.01 0.10±0.01 0.0125±0.004 0.11±0.01 

3h >0.25 >0.25 0.0027±0.000 >0.25 

3i >0.25 >0.25 0.0036±0.000 >0.25 

3j 0.05±0.01 0.09±0.00 0.0077±0.000 0.08±0.01 

3k >0.25 >0.25 ND >0.25 

 

* IC50 values reported in mM, average ± SEM of minimum three separate experimental 

values 
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3.3.2 Cytotoxicity evaluation of compounds 3a-3k using SRB assay 

The effects on cell survival of the synthesized compounds 3a-3k were carried out 

using a standard sulforhodamine-B (SRB) assay. This assay is based on the ability of SRB 

to bind to cellular protein. We utilized same cell lines as in MTT assay and found that the 

SRB assay results were similar to that of the MTT assay (Figure 3c). 

In 4T1-luc2 cell line, butyl and isobutyl derivatives 3b and 3c exhibited IC50 values 

of 0.11 and 0.08 mM, respectively whereas benzyl derivative 3g showed an IC50 value of 

0.06 mM. The phenyl derivative 3j exhibited good cytotoxicity with an IC50 value of 0.08 

mM. CHC exhibited an IC50 value of 4.66 mM whereas candidate compounds 3a, 3e, 3f, 

3h, 3i and 3k did not show cytotoxicity up to 0.25 mM concentration.  

In GL261-luc2 cell line, propyl, butyl and isobutyl derivatives 3a-3c exhibited IC50 

values of 0.08-0.12 mM, whereas benzyl derivative 3g showed an IC50 value of 0.12 mM, 

which is two times the IC50 compared to MDA-MB-231 and 4T1-luc2 cell lines. The 

phenyl derivative 3j exhibited moderate cytotoxicity with an IC50 value of 0.11 mM. CHC 

exhibited a high IC50 value of 6.49 mM whereas candidate compounds 3e, 3f, 3h, 3i and 

3k did not show cytotoxicity up to 0.25 mM concentration.  

In WiDr cell line, the compounds were tested to a maximum concentration of 0.025 

mM. This concentration was chosen because of selective cell proliferation inhibition values 

of these derivatives based on MTT. CHC showed an IC50 value of 2.16 mM and phenyl 

derivative 3j gave an IC50 value of 0.0042 mM. However, all the other compounds 3a-3i 

and 3k did not exhibit cytotoxicity up to 0.025 mM concentration.  
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In MDA-MB-231 cell line, propyl, butyl and isobutyl derivatives 3a-3c exhibited 

similar IC50 values ~0.12-0.14 mM, whereas benzyl derivative 3g showed excellent IC50 

value of 0.06 mM. The phenyl derivative 3j exhibited good cytotoxicity with an IC50 value 

of 0.08 mM. CHC exhibited an IC50 value of 5.57 mM whereas candidate compounds 3e, 

3f, 3h, 3i and 3k did not show cytotoxicity up to 0.25 mM concentration.  

 

Table 3c: SRB assay IC50* values of N,N-dialkyl o-methoxy CHC derivatives in 4T1-luc2 

and GL261-luc2, WiDr and MDA-MB-231 cell lines 

Sl. No. 4T1-luc2 GL261-luc2 WiDr MDA-MB-231 

CHC 4.66±0.43  6.49±1.41 2.16±0.52 5.57±0.99 

3a >0.25 0.10±0.02 >0.025 0.14±0.02 

3b 0.11±0.02 0.08±0.04 >0.025 0.12±0.02 

3c 0.08±0.01 0.12±0.01 >0.025 0.13±0.02 

3e >0.25 0.13±0.01 >0.025 >0.25 

3f >0.25 >0.25 >0.025 >0.25 

3g 0.06±0.01 0.12±0.01 >0.025 0.06±0.00 

3h >0.25 >0.25 >0.025 >0.25 

3i >0.25 >0.25 >0.025 >0.25 

3j  0.08±0.01 0.11±0.00 0.0042±0.000 0.08±0.01 

3k >0.25 >0.25 >0.025 >0.25 

* IC50 values reported in mM, average ± SEM of minimum three separate experimental 

values 
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While the compounds have good cell proliferation inhibition towards MCT1 

expressing cell line WiDr, they exhibited moderate activity towards other MCT1 

expressing cell lines 4T1-luc2 and GL261-luc2 and in MCT4 expressing MDA-MB-231 

cell line. Although we observed low nanomolar range MCT1 inhibition, this did not 

translate into potent cell proliferation inhibition and cytotoxicity. There may be several 

reasons for the observed differences in IC50 values between MTT and SRB studies in WiDr 

cell line. SRB shows a weaker effect of test compounds on cytotoxicity because SRB assay 

estimates total cellular protein whereas MTT estimates cell proliferation based on enzyme 

activity. Treatment with test compounds could also have a stronger effect on one cell line 

(WiDr) than others (MDA-MB-231 and GL261-luc2) due to their possible differences in 

drug efflux activity, breakdown of compound in cells, differences in pathways regulating 

cell cycle and apoptosis, differences in the growth media with low or high glucose (MEM, 

DMEM), etc.  

 

We also attribute the low IC50 values of compounds in MTT assay due to less free 

compound that is available in comparison to their MCT1 inhibition. It is also known that 

potent inhibition of MCT1 (low nanomolar) may not lead to corresponding levels of cell 

proliferation inhibition as cells may survive on other metabolic pathways.81 However, 

chronic administration of the inhibitors in in vivo system will lead to disruption of 

glycolysis and OxPhos which in turn results in energy crisis and tumor growth inhibition. 

The 1000-fold difference between IC50 values for MCT1 inhibition and MTT assay could 

be explained due to the differences in the assay medium used for these experiments. For 
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MCT1 inhibition studies, the growth medium was replaced with HEPES buffer before the 

addition of compounds. For MTT and SRB assays, the compounds were added directly to 

the growth media, which contains FBS. These compounds are highly protein bound 

(>99%). The protein binding assay results are discussed in chapter 4. Hence, the observed 

differences between MCT1 inhibition and cell proliferation inhibition values could be 

attributed to the high protein binding properties of the candidate compounds as less free 

drug is available to interact with MCT and other cellular components.  

 

Potent inhibition of MCT1 by candidate compounds generally don’t cause high 

cytotoxicity or inhibit cell proliferation that is usually observed in chemotherapeutic drugs 

with traditional mechanisms involving DNA, microtubules and other cellular components. 

The MCT1 inhibitors cause cell proliferation inhibition by targeting glycolysis and/or 

OxPhos pathways. If MCT1 expressing cancer cells predominantly undergo OxPhos, two 

scenarios arise: in one case, cells require more glucose and in second case, they utilize less 

glucose. If these cells use less glucose, inhibition of MCT1 could cause extracellular 

acidification as lactic acid and pyruvic acid cannot enter the cell. In this case, glucose will 

be consumed rapidly and the transport of precursors (lactic acid and pyruvic acid) for 

OxPhos is already inhibited, thereby reducing mitochondrial activity. This was observed 

in WiDr cell line as indicated by the results for MTT assay and MCT1 inhibition. To 

reconfirm these results, glycolysis and mitochondrial stress tests were performed in MCT1 

expressing WiDr cell line and the details were included and discussed in chapter 5. In the 

second scenario, if there is a greater need for glycolysis in MCT1 expressing cancer cells, 
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inhibition of MCT1 could result in redirecting the glycolytic metabolites (lactic acid and 

pyruvic acid) towards TCA cycle. In this case, cancer cells could potentially evolve and 

carry out other energy producing pathways including aggressive glycolysis even if MCT1 

expressing cells typically utilize OxPhos.  
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3.4 Cell proliferation inhibition of test compounds in various cancer cell lines under 

hypoxic conditions using MTT assay: Results and discussion 

 

Tumors are highly heterogenous in nature with hypoxic and aerobic regions and 

tumor hypoxia leads to drug resistance and aggressive cell proliferation. In this regard, we 

carried out cell proliferation inhibition of candidate compounds in oxygen limiting 

conditions (10% CO2, 1% O2 and 89% N2).
43 Four selected compounds 3g, 3j, 3h and 3k 

were chosen for this experiment. Compound 3g with benzyl group was advanced for further 

studies due to its potent MCT1 and MCT4 inhibition and relatively high cytotoxic 

properties. Pyrrolidinyl derivative 3h was selected due to its high water-solubility and 

nontoxic nature at high concentrations. Compound 3j with phenyl groups was chosen based 

on its potent MCT1 inhibition and higher cell proliferation inhibition. Finally, compound 

3k with an o-allyloxy group instead of o-methoxy was chosen due to its structural diversity, 

high solubility and excellent MCT1 inhibition properties. Cell proliferation inhibition of 

these candidate compounds under hypoxic conditions indicated no significant differences 

in the IC50 values (Table 3d).  
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Table 3d: MTT assay IC50* values of N,N-dialkyl o-methoxy CHCs in 4T1-luc2, GL261-

luc2 and MDA-MB-231 cell lines in hypoxic conditions 

Compound 4T1-luc2 GL261-luc2 MDA-MB-231 

CHC 3.21±0.34 4.57±0.35 4.93±0.55 

3g 0.04±0.01 0.08±0.01 0.09±0.00 

3h >0.25 >0.25 >0.25 

3j 0.05±0.01 0.08±0.01 0.09±0.00 

3k >0.25 >0.25 >0.25 

*IC50 values reported in mM, average ± SEM of minimum three separate experimental 

values 

 

These results suggest that under in vitro conditions, the tumor cell lines can adapt 

their metabolism to other pathways and maintain cell viability. Also, in vitro hypoxia, most 

of the metabolic processes are slowed down to a greater extent due to the lack of oxygen 

as the cells are under stress. In contrast, in in vivo systems, cancer cells are critically 

dependent on ATP generation via vigorous glycolysis for survival and proliferation. Hence, 

chronic administration of a potent MCT1 inhibitor in vivo will hamper the glycolytic 

process leading to severe energy crisis and cell death. 
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3.5 Cell cycle analysis of compound 3j in WiDr and MDA-MB-231 cell lines: Results 

and discussion 

We investigated the ability of the compound 3j to disrupt the cell cycle in vitro. 3j 

was chosen as a lead candidate compound for its higher cell proliferation inhibition and 

cytotoxicity. In this regard, we carried out propidium iodide (PI) based flow cytometry 

(FCM) analysis. PI is a fluorescent DNA intercalating agent widely used to evaluate cell 

cycle phase distributions in proliferating cells and the differences due to compound 

treatment with respect to cell-cycle phase distributions in control cultures can be evaluated. 

To test whether the cell cycles of WiDr cells were affected by lead compound 3j, these 

cells were treated for 24 hours with concentrations corresponding to 1X and 2X of IC50 

values and analyzed for DNA content and cell cycle distributions. As CHC did not exhibit 

cytotoxicity up to 0.5 mM, CHC was not tested for cell cycle analysis in WiDr cell line. 

Remarkably, WiDr cells treated at 2X the cell proliferation inhibition IC50 of compound 3j 

resulted in an abrupt block in S-phase (Figure 3d), indicating that treated cells did not enter 

the G2/M phase. This may suggest that disruption of metabolic processes with compound 

3j may ultimately cause cell cycle arrest and defective DNA processing. Moreover, WiDr 

cells are less glycolytic in nature and pursue more OxPhos, and as the compound 3j inhibits 

OxPhos parameters (as discussed in chapter 5). This could be the reason why the cell cycle 

is halted at the S phase, as G0/G1 phase mostly corresponds to glycolysis. 
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Figure 3d: Cell cycle analysis of compound 3j at 1X and 2X of the IC50 concentration in 

WiDr cell line.  

 

Interestingly, MCT4 expressing MDA-MB-231 cells treated with compound 3j at 

2X the proliferation IC50 resulted in a statistically significant cell cycle arrest in the G2/M 

phase at the expense of G1 (Figure 3e). In the case of CHC, even at 2X, there was no 

significant effect on cell cycle at any phase. This FCM data indicates that compound 3j 

allows cells to replicate and enter the G2 phase, but these cells are not able to leave G2/M 

phase to form proliferating daughter cells. A lack of cells in the G1 phase with accumulating 

G2/M phase may suggest a disruption of the mitotic machinery. As MDA-MB-231 cells 

are more glycolytic in nature and the lead candidate compound 3j inhibits glycolytic 

parameters (as discussed in chapter 5), the cell cycle is halted at G0/G1 phase as this phase 
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corresponds to glycolysis. This data also suggests that the phase of cell cycle arrest in the 

presence of MCT1 inhibitor 3j may depend on the cell type and MCT status, as differential 

cell-cycle perturbations have been observed in MCT1 and MCT4 expressing cell lines, 

respectively. The differential phase of cell cycle arrest observed in compound 3j treated 

WiDr and MDA-MB-231 may be a DNA-damage response of different cell types. 

 

Figure 3e: Cell cycle analysis of MDA-MB-231 cell line treated with lead compound 3j 
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The intricate connection between cellular metabolism (ATP generating) and 

proliferation (ATP consuming) is highly complex and involves crosstalk between both 

metabolic and cell-cycle machineries. Hence, inhibition of metabolic processes can be 

reasoned to disrupt cell proliferation. Rapid cell proliferation observed in cancer cells is 

dependent on both bio-energetic and bio-synthetic thresholds, and control of the cell cycle 

is highly regulated through energy sensing and biosynthetic mechanisms. It can be 

reasoned that potent inhibition of glycolysis and lactate transport compound 3j may lead 

to a cellular metabolic crisis that prompts cell cycle machinery to stop proliferating during 

phases of the cell cycle that are dependent on the genetic make-up of the cell. Furthermore, 

it can be envisioned that the activation of cell death pathways may be dependent on the 

integrity of several molecular players such as p53. WiDr and MDA-MB-231 are p53 

mutant cell lines, and responses to cellular and metabolic stress may result in unpredictable 

cell-cycle arrest and cell death responses as p53 is an important mediator between 

metabolic and proliferative states. Specifically, p53 has been shown to modulate MCT1 

status through direct interaction with the MCT1 gene promoter along with alterations in the 

stability of MCT1 mRNA. Hence, the differential phase of cell-cycle arrest in WiDr and 

MDA-MB-231 may be a result of a combination of cell type, MCT expression, metabolic 

preference, and p53 mutation status.   

Specific molecular mechanisms by which the above-mentioned metabolic cell-

cycle regulators function may also play a role in the phase at which the cell cycle is 

disrupted. The availability of acetyl CoA plays important roles in the cells ability to induce 

transcription and cell-cycle machineries, and metabolic dysfunction caused by compound 
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3j can lead to the alteration of the availability of acetyl CoA. These mechanisms also may 

result in arrest in other cell cycle phases such as S-phase observed in WiDr (Figure 3d) as 

a result of aberrant p53 activity. However, starvation of bio-synthetic building blocks 

through MCT1 inhibition may limit the cells ability to synthesize nucleotides necessary for 

completing replication and advancing from S to the G2/M phase. Hence, limiting 

replication units after treatment with compound 3j may result in the S-phase arrest 

observed in WiDr cells. Also, several metabolically related enzymes have been shown to 

play crucial roles in regulating G2/M transitions, as evidenced by cell cycle data in MDA-

MB-231 (Figure 3e). In this regard, metabolic dysfunction initiated by treatment with 

compound 3j has numerous implications in the cells ability to progress through the cell 

cycle. As mentioned, it is quite possible that compound 3j may exhibit off target effects 

due to its ability to cross the lipid bilayer and interact with intracellular components. Hence, 

compound 3j may directly interact with DNA processes that could result in the cell-cycle 

effects observed in both WiDr and MDA-MB-231.  
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3.6 Systemic toxicity evaluation of N,N-dialkyl/diaryl o-methoxy CHC derivatives 3h-3k 

in CD-1 mice: Results and discussion 

 

As the compounds 3a-3k showed excellent nanomolar potency of MCT1 inhibition, 

we then evaluated the systemic toxicity of some of the lead compounds in healthy CD-1 

mice. We chose inhibitors 3h-3k as lead derivatives (Figure 3f) for the further preclinical 

development based on their excellent dual MCT1 inhibition properties and their structural 

variations.  

 

 

 

Figure 3f: Lead candidate compounds 3h-3k for further in vivo studies 
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To improve the solubility, these lead candidate compounds 3h-3k were converted 

into their corresponding sodium salts. Compound 3j has an optimal solubility (1 mg/mL in 

water) and excellent MCT1 potency and higher cytotoxicity. Compound 3k was chosen 

because of its with high solubility (> 40 mg/mL) and excellent MCT1 inhibition. Although 

3h and 3i have less MCT1 inhibition than 3j and 3k, they have good water solubility (>14 

mg/mL) and have structurally diverse pyrrolidinyl and piperidinyl groups. The compounds 

readily dissolved in 10% DMSO in saline with 3k soluble up to ~2 mg/mL, 3h and 3i 

soluble up to ~7 mg/mL.  

Mice were randomly assigned into groups (n = 6 mice per group) with similar 

average body weights and were treated with compound 3h at 70 mg/Kg, ip, bid, and 

compound 3i at 70 mg/Kg, ip, bid, compound 3j at 50 mg/Kg, ip, qd, compound 3k was 

administered at 20 mg/Kg, ip, qd,. The control groups received vehicle (10% DMSO in 

saline). At the end of the study, the treatment groups did not show any visible toxic effects 

such as abnormal grooming, hunchback, morbidity. The treatment groups had no 

significant differences in body weights compared to control groups (Figures 3g-A-D). 
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Figure 3g: Systemic toxicity study of compounds in CD-1 mice treated with: (A) 3h at 70 

mg/Kg, ip, bid, (B) 3i at 70 mg/Kg, ip, bid, (C) 3j at 50 mg/Kg, ip, qd and (D) 3k at 20 

mg/Kg, ip, qd. (E & F) RBC and WBC counts after treatment with 3j 
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These results may appear surprising because of the presence of a doubly activated 

α,β-unsaturated system with two electron withdrawing groups -CN and –COOH on 

candidate compounds 3h-3k. Having an olefin attached to electron withdrawing groups 

cyano and carboxylic acid will these inhibitors powerful 1,4-acceptors and electrophiles. 

However, upon addition of a nucleophile, the α-hydrogen next to carboxylic acid and cyano 

is highly acidic which is rapidly abstracted with concomitant release of the nucleophile 

making it a reversible inhibitor (Figure 3h).82 This aspect makes these cyanocinnamic acid 

based MCT1 inhibitors generally well tolerated in mice when administered systemically.  

 

 

Figure 3h: 1,4-addition and reversibility of cyanocinnamic acid based MCT1 inhibitors 

 

We also carried out the red blood cell (RBC) and white blood cell (WBC) counts 

after the treatment with lead candidate compound 3j and control (vehicle). There was no 

significant difference in red blood cell and white blood cell blood counts in treatment group 

and control group (Figures 3g-E and 3g-F).  
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3.7 In vivo anticancer efficacy studies using lead candidate compounds: Results and 

discussion 

3.7.1 Anticancer efficacy of compounds 3b and 3j in MCT1 expressing WiDr flank model 

  

 We then evaluated the lead candidate compounds 3b and 3j for in vivo efficacy in 

colorectal adenocarcinoma WiDr tumor flank model. We selected WiDr cell line because 

it has high expression of MCT1 and readily forms tumors in nude mice. Compound 3j was 

selected for in vivo anticancer efficacy study because of its higher cytotoxicity and potent 

MCT1 inhibition. Compound 3b was selected for this study as it has two butyl groups and 

one phenyl group instead of three phenyl groups as in 3j, and this compound has similar 

MCT1 inhibition compared to 3j. We also included the parent compound CHC for 

comparison with candidate compounds. 

 

 5 x 106 WiDr cells in a 1:1 mixture of Matrigel:PBS were inoculated onto the flank 

of female BALB/c nude mice. After the average tumor volume reached ~120 mm3, mice 

were randomly assigned into 4 groups (n = 8 mice per group). Group 1 was treated with 3j 

10 mg/Kg, ip, bid, group 2 was given 3b 8 mg/Kg, ip, bid and group 3 was administered 

with CHC 238 mg/Kg, ip, bid. High concentration of CHC was used based on the literature 

reports.6 Group 4 was assigned as a control group and was treated with 10% DMSO in 

saline. Body weights and tumor volume were measured every 2-3 days and after 21 days 

of treatment, mice were euthanized, and tumors were resected and weighed.  
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 From this study, 3j, 3b and CHC showed 33, 35 and 44% tumor growth inhibition, 

respectively, based on the tumor volumes (Figure 3i-A-C). These compounds 3j, 3b and 

CHC showed 29, 34 and 46% tumor growth inhibition, respectively, based on the isolated 

tumor weights (Figure 3i-D). Although tumor growth inhibition was found to be moderate 

due to the low dosage used for this study, the lead compounds 3b and 3j exhibited efficacy 

similar to that of CHC, which was used at ~50 times higher concentration. During this 

study, average body weights of mice in the treatment groups were not significantly 

different compared to the control group (Figure 3i-E). 
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Figure 3i: Anticancer efficacy of lead compounds in a WiDr flank model based on tumor 

volumes (A) 3b, (B) 3j and (C) CHC (D) Tumor growth inhibition based on tumor mass 

(E) Body weight changes during the treatment period. 
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3.7.2 Chemoprevention study of compound 3j in MCT1 expressing WiDr flank model 

  

 As the lead candidate compound 3j exhibited significant anticancer efficacy, we 

conducted another study in a WiDr flank model. In this study, the treatment was initiated 

on day-6 after tumor cell inoculation. In groups 1 and 2, the lead compound was 

administered in at a high dosage of 50 mg/Kg, ip, and 100 mg/Kg, oral gavage, 

respectively. The third group was assigned as the control group, which was treated with 

10% DMSO in saline. At day-21, mice were euthanized and from this study, mice in group 

1 and group 2 treatment groups exhibited 45 and 56% tumor growth inhibition, respectively 

(Figure 3j-A). In this study also, the average body weight changes in the treatment groups 

were not significantly different compared to the control group (Figure 3j-B). 
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Figure 3j: Chemoprevention of lead compound 3j in a WiDr flank model. (A) Tumor 

growth inhibition based on tumor volume (B) Body weight changes during the treatment 

period. 
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3.7.3 Anticancer efficacy of lead candidate compound 3j in syngeneic 4T1-luc2 flank model 

 

Cancer metastasis poses a critical challenge in the long term and overall survival of 

cancer patients. Hence, we studied the therapeutic application of our potent MCT1 inhibitor 

in an aggressive 4T1-luc2 murine tumor model system.  Spontaneous metastasis occurs in 

liver, lungs, bone and brain while the primary tumor in growing in situ.23 This cell line 

predominantly expresses MCT1 but not MCT4 (Figure 2c).  

 

The flank of female BALB/c mice (4 weeks old) were injected with 1 × 105 cells 

4T1-luc2 cells. Mice were randomized in to 3 groups (n = 6 mice per group) after 48 hours 

of tumor inoculation. Mice in groups 1 were administered with lead molecule 3j at a dosage 

of 25 mg/Kg, ip, and doxorubicin was administered at 0.5 mg/Kg, i.p. five days a week as 

a positive control in group 2. Mice in group 3 were used as a control group and were 

administered with vehicle (10% DMSO in saline). Tumors were measured every 3-4 days. 

At the end of the study (day-21), mice were euthanized, and tumor samples were retrieved 

and weighed. From this study, 3j and doxorubicin exhibited 38 and 36% tumor growth 

inhibition, respectively, based on tumor volume (Figure 3k-A), and 20 and 39% tumor 

growth inhibition based on weights from the resected tumors (Figure 3k-B).  
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Figure 3k: Anticancer efficacy of 3j compared with doxorubicin in a 4T1-luc2 flank model 

(A) Tumor growth inhibition using 3j based on tumor volume; (B) Tumor growth inhibition 

using 3j based on isolated tumor weights. 

 

 The initial anticancer efficacy study at 8-10 mg/Kg in MCT1 expressing WiDr 

tumor xenograft model with two candidate compounds butyl 3b and phenyl 3j showed 

~35% tumor growth inhibition based on the recorded tumor volumes. Our second study at 

high concentration of 50-100 mg/Kg in the same tumor model provided ~45-55% tumor 

growth inhibition. This dose-dependent anticancer efficacy could be attributed to many 

factors such as low bioavailability, low metabolic stability, rapid elimination, high drug 

efflux ratio, etc. It is quite possible that inhibition of MCT1 may lead to tumors pursuing 

other pathways for energy generation.  

 Anticancer efficacy study in extremely aggressive and highly metastatic 4T1-luc2 

at 25 mg/Kg dosage provided 38% tumor growth inhibition based on measured tumor 
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volumes. In this case, this tumor being highly aggressive with short survival period may 

be pursuing various metabolic pathways simultaneously and inhibition of one pathway may 

only lead to partial suppression of the tumor growth.   
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3.8 Evaluation of compound 3j for pharmacokinetic parameters: Results and discussion 

 To understand the metabolic stability of the lead candidate compounds, we further 

evaluated the 3j for its pharmacokinetic parameters in CD-1 mice. The concentration-time 

profile was plotted for ip (Figure 3l-A) and oral administration of 3j (Figure 3l-B). From 

the graph, the t1/2 of 3j was found to be 15 minutes for ip and 30 minutes for oral gavage 

routes of administration. These low t1/2 values can be attributed to metabolically vulnerable 

phenyl groups which could have been oxidized by CYP enzymes.  

 

Figure 3l: Pharmacokinetic time-concentration profile in CD-1 mice for (A) 

intraperitoneal administration of 3j and (B) intragastrical administration of 3j. 
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 The compound 3j reached peak plasma concentration within 15-30 minutes time 

and most of the drug is eliminated in 1-2 hours from the system. In retrospect, this result 

may not be surprising as unsubstituted phenyl rings are highly susceptible for cytochrome 

P450 (CYP) enzymatic hydroxylation, subsequent glucuronidation, and elimination. We 

also attribute this rapid elimination of compound 3j to be one of the major reasons for the 

moderate in vivo efficacy at low concentrations and dose-dependent efficacy at high 

concentrations.  
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3.9 Conclusions 

 In conclusion, we synthesized several N,N-dialkyl/diaryl o-substituted CHC 

derivatives 3a-3k and evaluated them for MCT1 inhibition. These studies indicated that 

the compounds 3a-3k exhibited potent MCT1 inhibition in RBE4 cell line. In vitro 

cytotoxicity evaluation in cancer cells expressing MCT1 and MCT4 under normoxic and 

hypoxic conditions revealed that compound 3j exhibited good cytotoxicity in 4T1-luc2, 

GL261-luc2, WiDr, and MDA-MB-231 cell lines. Systemic toxicity study demonstrated 

that the candidate compounds 3h-3k were well tolerated in mice with no significant body 

weight changes. Anticancer efficacy studies in MCT1 expressing WiDr and 4T1-luc2 flank 

models showed that the lead candidate compound 3j provide anticancer efficacy in a dose 

dependent manner. Pharmacokinetic analysis showed that the lead compound 3j has low 

biological half-life in mice. These novel N,N-dialkyl/diaryl o-substituted CHC derivatives 

could be used for the treatment of various MCT1 expressing cancers, as a single agent as 

well as in combination with other chemotherapeutic agents. 
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CHAPTER 4: Structure-activity relationship studies of 7-N,N-dialkyl 3-carboxy 

coumarins as MCT1 inhibitors: In vitro and in vivo studies as potential anticancer 

agents 

 

4.1 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin derivatives 4a and 4b 

  The lead compound CHC based diphenyl derivative 3j exhibited potent MCT1 

inhibition and significant tumor growth inhibition in MCT1 expressing WiDr and 4T1-luc2 

models in mice. However, 3j required high concentrations (50-100 mg/Kg) to achieve 

significant tumor growth inhibition due to its low metabolic stability. Hence, we further 

modified the N,N-dialkyl CHC template and designed 7-N,N-dialkyl 3-carboxy coumarins 

(Figure 4a) to improve metabolic stability and therapeutic efficacy at low concentrations.83  

 

 

Figure 4a: CHC and coumarin derivatives. 

    

   Coumarins are heterobicyclic compounds with a proven track record of 

successfully making it into clinic and are considered as pharmacologically privileged 

structures. Some of the coumarin based biologically active drugs are depicted in the Figure 

4b.  
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Figure 4b: Structures of the biologically active coumarin derivatives 
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  Our SAR studies on CHC indicated that cyanocinnamate unit was essential for 

MCT1 inhibition. In this regard, we envisioned that carboxycoumarin can stereo 

electronically mimic cyanocinnamate unit in its interaction with MCT1 protein. Since 

introduction of N,N-dialkyl/N,N-diaryl units on to the CHC provided low nM potency for 

inhibition for MCT1 inhibition, we also envisioned that these groups should translate 

similar type of activity onto the carboxycoumarin template. Based on this working 

hypothesis, we first synthesized N,N-dimethyl and N,N-diethyl carboxy coumarins 4a and 

4b starting from commercially available aldehydes 4-(dimethylamino)-2-

hydroxybenzaldehyde and 4-(diethylamino)-2-hydroxybenzaldehyde. These 

salicylaldehydes were condensed with diethyl malonate, and the resulting diesters were 

hydrolyzed and with NaOH and subsequently cyclized under acidic conditions to obtain 

the corresponding products 4a and 4b (Scheme 4a). 

 

Scheme 4a: Synthesis of 7-(dimethylamino)-2-oxo-2H-chromene-3-carboxylic acid 4a 

and 7-(diethylamino)-2-oxo-2H-chromene-3-carboxylic acid 4b 
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4.1.1 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin derivatives 4c-4g 

   

   We then synthesized various N,N-dialkyl substituted carboxycoumarins 4c-4g 

starting from o-aminophenol. Amine group was selectively alkylated with various 

bromides in the presence of K2CO3 in DMSO or ethanol as solvents. For alkylation, we 

used propyl, butyl, allyl, propargyl and benzyl bromides. The dialkylated aminophenols 

were then formylated using POCl3 in DMF to obtain corresponding aldehydes. These 

aldehydes were condensed with diethyl malonate and hydrolyzed as mentioned in the 

scheme 4a to obtain corresponding 7-(dialkylamino)-2-oxo-2H-chromene-3-carboxylic 

acids 4c-4g (Scheme 4b). 
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Scheme 4b: Synthesis of 7-(dialkylamino)-2-oxo-2H-chromene-3-carboxylic acids 4c-4g  
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4.1.2 Synthesis of 7-N,N-dialkyl 3-carboxy coumarin derivative 4h 

We also synthesized cyclic pyrrolidinyl carboxy coumarin 4h via dialkylation of o-

aminophenol with 1,4-dibromobutane (Scheme 4c). 

Scheme 4c: Synthesis of 2-oxo-7-(pyrrolidin-1-yl)-2H-chromene-3-carboxylic acid 4h 

 

  

  



 

109 

 

4.1.3 Synthesis of 7-N,N-diphenyl 3-carboxy coumarin derivative 4i 

 

Diphenyl carboxy coumarin 4i was also synthesized starting from aminophenol. In 

this case, commercially available 3-methoxy-N,N-diphenylaniline was selectively 

demethylated using BBr3, followed by formylation via Vilsmeier-Haack conditions and 

subsequent treatment with diethyl malonate and hydrolysis to obtain 4i (Scheme 4d).  

Scheme 4d: Synthesis of 7-(diphenylamino)-2-oxo-2H-chromene-3-carboxylic acid 4i  
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4.2 Evaluation of 7-N,N-dialkyl/diaryl carboxy coumarins 4a-4i for MCT1 inhibition: 

Results and discussion 

 

The synthesized 7-N,N-dialkyl/diaryl carboxy coumarins 4a-4i were then evaluated 

for MCT1 inhibitory properties using 14C-lactate uptake assay in RBE4 cell line. We found 

that with an increase in the length of carbon chain methyl to butyl, there was a decrease in 

MCT1 inhibitory activity from 72 to 333 nM. Methyl derivative 4a showed an IC50 value 

of 72 nM, whereas ethyl, propyl and butyl carboxy coumarins 4b, 4c and 4d exhibited IC50 

values of 97, 299 and 333 nM, respectively (Figure 4c, Table 4a). This result was a contrast 

to their counterparts in CHC based N,N-dialkyl/diaryl derivatives, where MCT1 inhibition 

was increased with an increase in alkyl chain. With diallyl 4e, the IC50 value was 254 nM, 

whereas for dipropargyl 4f, the IC50 value was found to be 151 nM. However, with dibenzyl 

substitution in 4g, the IC50 value was improved to 57 nM. Cyclic derivatives 4h gave an 

IC50 value 229 nM, which was comparable to propyl derivative 4b, whereas the diphenyl 

carboxy coumarin 4i exhibited an  IC50 value of 131 nM. Overall, the dibenzyl carboxy 

coumarin 4g showed highest MCT1 inhibition and was chosen as  the lead candidate 

compound for further studies. 
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Figure 4c: MCT1 inhibition of N,N-dialkyl/diaryl 3-carboxy coumarins 4a-4i in RBE4 cell 

line. The average+sem of at least three independent experiments were presented in the bar 

graph.  
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Table 4a: MCT1 IC50 (mM)* of 7-N,N-dialkyl/aryl carboxy coumarins 4a-4i in RBE4 cell 

line 

Sl. No. Compound MCT1 IC50 

4a 

 

72±22 

4b 

 

97±14 

4c 

 

299±43 

4d 

 

333±19 

4e 

 

254±71 
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4f 

 

151±14 

4g 

 

57±6 

4h 

 

229±13 

4i 

 

131±11 

* average±sem of three independent experiments 

 

 From the MCT1 inhibition studies in RBE4 cell line, all the candidate N,N-

dialkyl/diaryl substituted carboxy coumarins 4a-4i were found to be less potent than the 

corresponding N,N-dialkyl/diaryl substituted CHC derivatives 2.2a-2.2m and 3a-3j. 

Compounds 4a-4i have doubly activated system with carboxylic acid and cyclic ester 

groups whereas CHC derivatives 2.2a-2.2m and 3a-3j have carboxylic acid and cyano 
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groups. In terms of electron withdrawing capability, nitrile and ester have similar capacity 

as measured by the acidity of α-Hydrogens with pKa values ~25. We attribute higher 

potency of CHC derivatives for lesser sterics of CHC system which provides optimal 

interactions with MCT1 compared to bicylic coumarin system. However, carboxy 

coumarins 4a-4i still exhibit nanomolar to low micromolar range IC50 values for MCT1 

inhibition and were highly potent compared to parent CHC molecule.  
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4.3 Cell proliferation inhibition of compounds 4a-4i in GL261-luc2 and MDA-MB-231 

cell lines using MTT assay: Results and discussion 

 We then evaluated cell proliferation inhibition of 7-N,N-dialkyl carboxy coumarins 

4a-4i in MCT1 expressing GL261-luc2 and MCT4 expressing MDA-MB-231 cell line. 

The compounds were tested up to a maximum concentration of 0.25 mM, and all these 

compounds did not show any cell proliferation, except for dibenzyl carboxy coumarin 4g, 

which showed an IC50 of 0.24 mM in MDA-MB-231 cell line (Table 4b). 

 

Table 4b: MTT assay IC50* values of 7-N,N-dialkyl/diaryl carboxy coumarins 4a-4i in 

GL261-luc2 and MDA-MB-231 cell lines 

Compound GL261-luc2 MDA-MB-231 

4a  >0.25 >0.25 

4b >0.25 >0.25 

4c >0.25 >0.25 

4d >0.25 >0.25 

4e >0.25 >0.25 

4f >0.25 >0.25 

4g >0.25 0.24±0.01 

4h >0.25 >0.25 

4i >0.25 >0.25 

*IC50 values reported in mM, average±SEM of minimum three separate experimental 

values  
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From the cell proliferation inhibition studies using MTT assay, the candidate 

carboxy coumarins 4a-4i were found to be generally non-toxic up to 0.25 mM 

concentration in MCT1 expressing GL261-luc2 and MCT4 expressing MDA-MB-231. The 

dibenzyl carboxy coumarin 4g with an MCT1 IC50 value of 57 nM was found to inhibit cell 

proliferation in MDA-MB-231 with an IC50 value of 0.24 mM. Compound 4g was also 

evaluated for cell proliferation inhibition in MCT1 expressing WiDr cell line and the IC50 

value was found to be 0.023 mM. It should be noted that the CHC derivatives dibutyl 3b, 

dibenzyl 3g and diphenyl 3j showed much higher cell proliferation inhibition with IC50 

values of 0.0056, 0.0125, and 0.0077 mM, respectively. This higher potency may be due 

to higher nucleophilic accepting capacity of CHC derivatives due to lower sterics compared 

to carboxy coumarins. As mentioned in chapter 3, potent MCT1 inhibition may not 

translate to higher cell proliferation inhibition as cells may adapt to other metabolic 

processes for survival under in vitro conditions.  
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4.4 Cell cycle analysis of compound 4g in MDA-MB-231 cell line: Results and discussion 

As the lead compound 4g did not exhibit cell proliferation inhibition in GL261-luc2 

cell line, we tested whether the cell cycle of MDA-MB-231 was affected by this compound. 

For this purpose, the cells were treated with compound 4g for a period of 24 hours with 

concentrations corresponding to the of IC50 value and analyzed for DNA content and cell 

cycle distributions (Figure 4d). Interestingly, MCT4 expressing MDA-MB-231 cells 

treated with compound 4g inhibited S phase where DNA replication occurs in the cell cycle 

at 250 µM concentration and G2/M phase is considerably increased compared to the 

control. As discussed in chapter 3.5, these results suggest that disruption of metabolic 

processes with compound 4g may ultimately cause cell cycle arrest and defective DNA 

processing. 
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Figure 4d: Cell cycle analysis of compound 4g at IC50 concentration in MDA-MB-231 

cell line  
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4.5 In vitro protein binding, Caco-2 permeability and metabolic stability studies: Results 

and discussion 

 

To evaluate their pharmaceutical properties, N,N-dialkyl/diaryl CHC derivatives 

3g, 3h, 3j, 3k and N,N-dibenzyl carboxy coumarin 4g were tested for in vitro human plasma 

protein binding, bidirectional Caco-2 cell monolayer permeability, and metabolic stability 

in human and mouse liver microsomes using standard reported protocols.84,85 Due to its 

potent MCT1 inhibition and moderate cell proliferation inhibition, we assigned 4g as the 

lead candidate compound which consists of N,N-dibenzyl on the 7-position of  the aromatic 

system. We compared this lead compound 4g with N,N-dibenzyl o-methoxy CHC 

derivative 3g as its counterpart. We also chose the lead molecule 3j described in chapter 3, 

and compounds 3h and 3k due to their high solubility to carry out further in vitro metabolic 

stability studies (Figure 4e).  

 

Figure 4e: Lead molecules chosen for in vitro metabolic stability studies 
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4.5.1 Protein binding studies of compounds 3g, 3h, 3j, 3k and 4g in human plasma 

 

The compounds 3g, 3h, 3j, 3k and 4g were tested for their protein binding capacity 

in human plasma. From this study, all of these compounds were found to be highly protein 

bound (>99%) with excellent recovery values (Table 4c). Acebutolol, quinidine, and 

warfarin with low, medium and high protein binding values, respectively, were used as 

controls. 

 

Table 4c: In vitro protein binding studies (protein binding: plasma, human) 

Compound Test 

Concentration 

% Protein Bound % Recovery 

1st 2nd Mean 1st 2nd Mean 

3g 1.0E-05 M >99.9 100 >99 91 95 93 

3h 1.0E-05 M 99.5 100 >99 97 99 98 

3j 1.0E-05 M 99.5 100 >99 89 94 91 

3k 1.0E-05 M 99.8 100 >99 97 92 94 

4g 1.0E-05 M 99.7 100 >99 93 91 92 

Acebutolol 1.0E-05 M 21 18 19 118 118 118 

Quinidine 1.0E-05 M 71 71 71 105 110 108 

Warfarin 1.0E-05 M 99 99 99 83 86 84 

  



 

121 

 

4.5.2 Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k and 4g 

 

Caco-2 permeability assays for compounds 3g, 3h, 3j, 3k and 4g in both apical to 

basolateral (A-B) and basolateral to apical (B-A) directions were carried out to predict their 

oral bioavailability. Caco-2 is a heterogeneous human epithelial colorectal adenocarcinoma 

cell line that mimics the human enterocytic intestinal layer. This assay estimates human 

intestinal permeability and drug efflux of the compounds, predicts oral bioavailability. 

Compounds 3g and 3j exhibited relatively low A-B and B-A permeability values whereas 

compounds 3h and 3k showed relatively low A-B and moderate B-A permeability, 

respectively (Tables 4d and 4e). Compound 4g exhibited high A-B and low B-A 

permeability. Propranolol (highly permeable), labetalol (moderately permeable), ranitidine 

(poorly permeable), and colchicine (P-glycoprotein substrate) were used as controls.  
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Table 4d: A-B Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k and 4g:  

A-B permeability (Caco-2, pH 6.5/7.4) 

Compound Test 

Concentration 

Permeability (10-6 cm/s) Percent Recovery (%) 

1st 2nd Mean 1st 2nd Mean 

3g 1.0E-05 M 5.9 5.15 5.5 28 30 29 

3h 1.0E-05 M 3.08 2.43 2.8 76 67 71 

3j 1.0E-05 M 5.96 6.15 6.1 28 28 28 

3k 1.0E-05 M 3.65 2.78 3.2 67 64 66 

4g 1.0E-05 M 30.32 33.73 32 33 35 34 

colchicine 1.0E-05 M 0.36 0.32 0.3 75 75 75 

labetalol 1.0E-05 M 8.68 8.31 8.5 61 71 66 

propranolol 1.0E-05 M 41.45 40.34 40.9 67 66 67 
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Table 4e: B-A Caco-2 permeability studies of compounds 3g, 3h, 3j, 3k and 4g:  

B-A permeability (Caco-2, pH 6.5/7.4) 

Compound Test 

Concentration 

Permeability (10-6 cm/s) Percent Recovery (%) 

1st 2nd Mean 1st 2nd Mean 

3g 1.0E-05 M 4.39 5.41 4.9 26 39 33 

3h 1.0E-05 M 41.12 43.92 42.5 80 73 77 

3j 1.0E-05 M 5.28 5.78 5.5 31 29 30 

3k 1.0E-05 M 48.26 47.19 47.7 75 75 75 

4g 1.0E-05 M 6.32 6.54 6.4 53 58 55 

colchicine 1.0E-05 M 15.25 15.39 15.3 81 82 81 

labetalol 1.0E-05 M 34.59 38.49 36.5 72 73 72 

propranolol 1.0E-05 M 38.02 44.94 41.5 80 80 80 

ranitidine 1.0E-05 M 3.59 3.85 3.7 88 82 85 
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4.5.3 Metabolic stability assay in mouse and human liver microsomes using compounds 

3g, 3h, 3j, 3k and 4g 

The half-life of compounds 3g, 3h, 3j, 3k and 4g in human and mouse liver 

microsomes were determined in order to assess their hepatic clearance rates because liver 

microsomes contain many enzymes that are responsible for metabolism of drugs. 

Compounds 3g, 3h, 3k and 4g exhibited good metabolic stability (T1/2 ≥50 minutes) in both 

human and mouse liver microsomes with high intrinsic clearance rates (Tables 4f and 4g). 

Surprisingly, the diphenyl derivative 3j exhibited low stability (T1/2 = 12 min) in human 

liver microsomes. Propranolol, imipramine, verapamil and terfenadine were used as 

controls with high, medium and low metabolic stabilities, respectively. 
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Table 4f: Metabolic stability in human liver microsomes for compounds 3g, 3h, 3j, 3k and 

4g: 

Intrinsic clearance (liver microsomes, human) 

Compound Test 

Concentration 

Half-Life (minute) Clint 

1st 2nd Mean 

3g 1.0E-07 M 103.4 75.5 >60 <115.5 

3h 1.0E-07 M >60 >60 >60 <115.5 

3j 1.0E-07 M 12.9 11.5 12 571.1 

3k 1.0E-07 M 210.7 153.3 >60 <115.5 

4g 1.0E-07 M  922.2 >60 >60 <115.5 

imipramine 1.0E-07 M 213.9 194.4 >60 <115.5 

propranolol 1.0E-07 M 334.4 373 >60 <115.5 

terfenadine 1.0E-07 M 9.8 9.1 9 736.8 

verapamil 1.0E-07 M 21.1 21.5 21 324.8 
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Table 4g: Metabolic stability in mouse liver microsomes for compounds 3g, 3h, 3j, 3k and 

4g: 

Intrinsic clearance (liver microsomes, mouse, CD-1) 

Compound Test 

Concentration 

Half-Life (minute) Clint 

1st 2nd Mean 

3g 1.0E-07 M 46.8 53.6 50 138.6 

3h 1.0E-07 M 1077.4 >60 >60 <115.5 

3j 1.0E-07 M 52.6 71.2 >60 <115.5 

3k 1.0E-07 M 455.9 299.3 >60 <115.5 

4g 1.0E-07 M 90.6 73.5 >60 <115.5 

imipramine 1.0E-07 M 15.7 15.4 16 446.2 

propranolol 1.0E-07 M 9.1 9.5 9 744.5 

terfenadine 1.0E-07 M 7.5 6.1 7 1027.4 

verapamil 1.0E-07 M 17.6 17.5 18 394.6 

 

From these in vitro studies, coumarin based lead compound 4g showed good 

metabolic stability in mouse and human liver microsomes. This compound also exhibited 

low efflux ratio of 0.2, whereas CHC based derivatives 3g, 3h, 3j and 3k exhibited efflux 

ratio values of 0.9, 15.2, 0.9, and 14.9, respectively. A drug efflux ratio of <2 indicated that 

CHC derivatives 3g, 3j and carboxy coumarin derivative 4g were not good substrates for 

drug efflux pumps, thereby have the capability to be inside the cell for a longer time period 

to elicit anticancer efficacy. Caco-2 permeability studies also indicated that carboxy 
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coumarin 4g exhibited good oral bioavailability with 33% absorption whereas CHC 

derivatives 3g, 3h, 3j and 3k had lower absorption values in the range of 2.8-6.1%. Due to 

its high metabolic stability, oral bioavailability, low drug efflux ratio, the lead candidate 

4g was chosen for further in vivo systemic toxicity in healthy CD-1 mice and anticancer 

efficacy evaluation in mouse models. 
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4.6 Systemic toxicity evaluation of the lead candidate compound 4g in CD-1 mice: 

Results and discussion 

 We next tested the lead candidate compound 4g for systemic toxicity in CD-1 mice. 

Mice were procured and acclimatized for one week and randomly assigned into three 

groups (n = 6 mice per group) based on average body weights. Mice in group-1 was 

administered with 4g once daily at a high dosage of 100 mg/Kg via oral gavage. Mice in 

group-2 was given 4g at a low dosage of 20 mg/Kg, ip, once daily. The control group was 

treated with vehicle (10% DMSO in saline). The treatment continued for 14 days and at 

the end of the study, mice in groups 1 and 2 did not show any toxicity compared to control 

group based on their average body weight (Figure 4f). 

 

Figure 4f: Body weight changes in systemic toxicity study of compound 4g in CD-1 mice. 
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Carboxy coumarin 4g has a doubly activated α,β-unsaturated system with two 

electron withdrawing cyclic ester and carboxylic acid groups. This doubly activated α,β-

unsaturated system is a powerful 1,4-acceptor but upon addition of a nucleophilic residue, 

the highly acidic α-hydrogen is rapidly abstracted with concomitant release of the 

nucleophile making it a reversible inhibitor similar to that of CHC derivatives (Figure 4g). 

This aspect makes these carboxy coumarin based MCT1 inhibitors generally well tolerated 

in mice when administered systemically.  

 

Figure 4g: 1,4-addition and reversibility of carboxy coumarin based MCT1 inhibitors 
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4.7 Anticancer efficacy of lead compound 4g in a glioblastoma tumor model: Results 

and discussion 

  Glioblastoma multiforme is a highly aggressive brain malignancy associated with 

rapid tumor growth, recurrence, metastasis and poor patient outcome even after surgery 

followed by chemo/radiation therapy. Currently, temozolomide is the only 

chemotherapeutic used for the treatment of glioblastoma. The absence of well-defined 

molecular targets and the inability of most drugs to cross the blood-brain barrier make 

glioblastoma treatment very challenging. Hence, we planned to evaluate the efficacy of 

carboxy coumarins for the treatment of glioblastoma.  

  In this regard, we chose GL261 cell line for tumor inoculation. GL261 is an 

established murine model system for the study of human gliomas and predominantly 

expresses MCT1 as confirmed by western blot (Figure 2c). GL261 gliomas have reduced 

growth following anti-angiogenic effects induced by therapeutic down regulation of HIF-

1α, are sensitive to radiation following chemotherapy, respond to vascular disrupting 

agents, and display properties of invasiveness along micro vessels.86,87 All these features 

of human glioblastoma are therefore modeled with GL261 model system, and hence are 

highly suitable for analysis of the effect of MCT1 inhibition on tumor vasculature and the 

hypoxic environment of solid brain tumors. GL261 syngeneic gliomas introduced into the 

C57BL/6 mouse is an established model of human glioblastoma. Hence, we utilized 

C57BL/6J mice for this study. 

  Briefly, mice were injected with a mixture of 5 x 106 cells in 1:1 matrigel and 1X 

PBS. After tumor volume reached ~200 mm3, mice were randomly assigned into three 
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groups. Group-1 was administered once daily with 4g at a dosage of 20 mg/Kg, ip, and 

group-2 was treated with clinical glioblastoma drug temozolomide at a dosage of 20 

mg/Kg, ip, and group-3 was injected with vehicle (10% DMSO in saline). After 14 days, 

based on tumor volume, mice treated with lead compound 4g exhibited 70% tumor growth 

inhibition whereas mice in temozolomide treatment group showed 76% tumor growth 

inhibition compared to the control group (Figure 4h-A). These results correlate with 

isolated tumor mass, where 4g treatment group exhibited 77% tumor growth inhibition, 

whereas temozolomide treatment group showed 81% tumor growth inhibition (Figure 4h-

B). 

Figure 4h: Anticancer efficacy of lead compound 4g in a GL261-luc2 flank model (A) 

Tumor growth inhibition based on tumor volume; (B) Tumor growth inhibition based on 

tumor weights.  

 When the carboxy coumarin 4g was tested in MCT1 expressing GL261-luc2 glioma 

syngraft tumor model, this compound exhibited significant tumor suppression which was 
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comparable to clinical glioblastoma drug temozolomide. Also, as discussed in chapter 1, 

Draoui et. al. also synthesized similar coumarin derivatives 7ACC1 and 7ACC2 and these 

compounds were tested in MCT1 expressing breast cancer MCF7, cervical cancer SiHa, 

colorectal cancer HCT-116 tumor models. These carboxy coumarins exhibited significant 

tumor growth inhibition in all these tumor models and also exhibited excellent synergy 

when treated with chemotherapeutic agent cisplatin.77  
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4.8 Conclusions 

 In conclusion, we synthesized several N,N-dialkyl/diaryl 3-carboxy coumarins 4a-

4i and evaluated them for MCT1 inhibition. These studies indicated that these compounds 

4a-4i exhibited good MCT1 inhibition with nanomolar to low micromolar range IC50 

values in RBE4 cell line. In vitro cytotoxicity evaluation in MCT1 expressing GL261-luc2 

and MCT4 expressing MDA-MB-231 cell lines showed that carboxy coumarins did not 

exhibit good cell proliferation inhibition up to 0.25 mM concentration. Lead carboxy 

coumarin 4g with high potency was further studied for its in vitro human plasma protein 

binding, bidirectional Caco-2 cell permeability, and metabolic stability in human and 

mouse liver microsomes. In these studies, 4g was also compared with CHC based MCT1 

inhibitors 3g, 3h, 3j and 3k. All the tested derivatives were found to be highly protein 

bound with excellent percent recovery. Compound 4g was found to exhibit good metabolic 

stability and oral bioavailability. Systemic toxicity study in healthy CD-1 mice showed that 

the lead compound 4g was well-tolerated in mice with no significant body weight changes. 

Anticancer efficacy studies in MCT1 expressing GL261-luc2 flank model demonstrated 

that the lead candidate compound 4g provides significant anticancer efficacy comparable 

to clinical drug temozolomide. Based on our in vivo anticancer efficacy results, and also 

based on excellent anticancer efficacy results from other groups, the lead candidate 

compound 4g has an excellent potential to be developed as a single agent anticancer 

therapy. Candidate compound 4g could also be used in combination with other 

chemotherapeutic agents for the treatment of wide variety of MCT1 expressing cancers. 

  



 

134 

 

CHAPTER 5: Evaluation of N,N-dialkyl/diaryl o-substituted CHC derivatives and 7-

N,N-dialkyl/diaryl  3-carboxy coumarins as MCT4 inhibitors: In vitro and in vivo 

studies as potential anticancer agents 

 

MCTs are transmembrane proteins which transport small monocarboxylate 

compounds such as lactic acid, pyruvic acid and other ketone bodies. MCT4 is 

overexpressed in many tumors and high MCT4 expression is corelated with poor patient 

prognosis and therefore, MCT4 is a good therapeutic target for the treatment of cancer. As 

discussed in the previous chapters, CHC derivatives 3a-3k and carboxy coumarins 4a-4i 

exhibited potent MCT1 inhibition, were well tolerated in mice, and showed anticancer 

efficacy in various MCT1 expressing tumor models. MCT1 is involved in influx of lactic 

acid and MCT4 for efflux of lactic acid in cancer cells, and these processes are pH 

dependent. We envisioned that our synthesized compounds with the doubly activated α,β-

unsaturated system could act as MCT4 inhibitor also.  

 

5.1 Evaluation of compounds 3a-3k and 4a-4i for MCT4 inhibition in MDA-MB-231 cell 

line: Results and discussion 

We evaluated CHC based N,N-dialkyl/diaryl derivatives 3a-3k and carboxy 

coumarins 4a-4i for MCT4 inhibition. For this purpose, we utilized a TNBC cell line MDA-

MB-231, which predominantly expresses MCT4 (Figure 2c). Although MCT1 is associated 

with lactate influx and MCT4 is associated with lactate efflux in cells, in in vitro systems, 

transport of lactate is a reversible process and is highly dependent on the pH of the assay 
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media and anion gradients. Therefore, high pH (basic) assay media favors lactate influx 

and low pH (acidic) favors lactate efflux. For this reason, in MCT4 inhibition assay, a low 

pH assay media (HEPES buffer, pH 7.0) was used to facilitate lactate influx to measure 

lactate uptake. 

All the candidate compounds were evaluated for their MCT4 inhibition properties 

using this modified 14C lactate uptake assay in MCT4 expressing MDA-MB-231 cell line. 

CHC derivatives 3a-3k exhibited excellent inhibitory activity against MCT4 with IC50 

values in the range of 11-85 nM (Table 5a, Figure 5a).88 Similar to MCT1 inhibition, with 

an increase in the carbon content of alkyl groups from propyl 3a to pentyl 3d, the MCT4 

IC50 values increased from 11 nM to 85 nM. With a branched diisobutyl derivative 3c, the 

IC50 value was found to be 17 nM, which showed slightly lower potency than its straight 

chain butyl derivative 3b which exhibited IC50 of 14 nM. With diallyl 3e, the IC50 value 

was slightly decreased to 28 nM, whereas for dipropargyl 3f, the IC50 value was found to 

be 50 nM which was less potent compared to other derivatives 3a-3e. With dibenzyl 

substitution in 3g, the IC50 value was found to be slightly increased to 32 nM. Cyclic 

derivatives 3h and 3i also showed decreased potency with IC50 values of 53 and 58 nM, 

respectively. The diphenyl derivative 3j exhibited potent MCT4 inhibition with an IC50 

value of 23 nM, whereas o-allyloxy derivative 3k exhibited an IC50 value of 12 nM. 

Overall, N,N-dialkyl/diaryl o-substituted derivatives 3a-3k exhibited excellent MCT4 

inhibition. Compared to the MCT1 and MCT4 IC50 values of their parent compound CHC 

(IC50 >150 µM), 3a-3k exhibited several thousand-fold greater potencies for MCT4 

inhibition. Specificity towards MCT1 or MCT4 inhibition was not observed for these 
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candidate compounds, and they showed equal potency for both MCT1 and MCT4 

inhibitory activity. In most cases, MCT1 inhibition is same as or slightly greater (lower 

IC50) than MCT4 inhibition.  

7-N,N-dialkyl carboxy coumarins 4a-4i did not show exhibit any significant MCT4 

inhibition up to a concentration of 1000 nM, except for the lead candidate compound 4g, 

which showed MCT4 inhibition with an IC50 of ~200 nM. These results suggest that 7-

N,N-dibenzyl carboxy coumarin 4g selectively inhibits MCT1 over MCT4.  
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Figure 5a: MCT4 IC50 (nM)* of N,N-dialkyl/diaryl o-methoxy CHC derivatives 3a-3k in 

MDA-MB-231 cell line 
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Table 5a: MCT4 IC50 (nM)* of N,N-dialkyl/diaryl o-methoxy CHC derivatives 3a-3k in 

MDA-MB-231 cell line 

Sl. No. Compound MCT4 IC50 

3a 

 

11±1 

3b 

 

14±2 

3c 

 

17±2 

3d 

 

85±8 
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3e 

 

28±5 

3f 

 

50±9 

3g 

 

32±3 

3h 

 

53±4 

3i 

 

58±13 

3j 

 

23±4 
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3k 

 

12±2 

4g 

 

202±47 

 

* average±sem of minimum three independent experiments 

 

  

 MCT4 inhibition studies revealed that N,N-dialkyl/diaryl compounds 3a-3k 

exhibited low nanomolar potency in MCT4 expressing MDA-MB-231 cell line. These 

compounds did not show any selectivity towards MCT4 inhibition when compared to their 

MCT1 IC50 values. In most of the cases, candidate compounds were equipotent towards 

MCT1 and MCT4 inhibition, and in few cases, these compounds were slightly more potent 

towards MCT1 inhibition. Although MCT4 is primarily involved in the efflux of lactic 

acid, depending on the intracellular and extracellular pH, MCT4 could also lead to the 

influx of lactic acid. Hence, N,N-dialkyl/diaryl CHC compounds acted as bidirectional-

transporter inhibitors based on the results of MCT1 and MCT4 IC50 values. The presence 

of doubly activated α,β-unsaturated system in cyanoacrylic acid unit with lower steric 

factors facilitate optimal interactions with both MCT1 and MCT4 transporter proteins and 

inhibit the activity of these transporters. Homology modeling and computational docking 
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studies on MCT1 and MCT4 using compound 3j also revealed that the there was no 

difference in the docking position of lead compound 3j on MCT1 and MCT4. This study 

also showed that the phenyl rings of compound 3j interact with hydrophobic residues of 

MCT1 and MCT4 and the polar groups on 3j potentially interact with polar amino acid 

residues via hydrogen bond formation. These studies explain the dual selectivity of the lead 

compound 3j for MCT1 and MCT4 inhibition. 

 In contrast, most of the 7-N,N-dialkyl/diaryl 3-carboxy coumarins did not show 

MCT4 inhibition up to 1000 nM concentration, except for the dibenzyl derivative 4g, which 

exhibited an IC50 value of ~200 nM. Thus, coumarin derivatives 4a-4i could be considered 

as selective inhibitors of MCT1. It is quote possible that the combination of lower 

electrophilic capacity of doubly activated α,β-unsaturated system and higher sterics of 

bicyclic coumarin moiety could interfere with the interactions of these compounds with 

transporter proteins. 
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5.2 Effect of lead compounds 3j and 4g on glycolysis and mitochondrial OxPhos 

Since, influx and efflux of lactic acid and other ketone bodies via MCTs could have 

direct or indirect impact on rate of glycolysis and mitochondrial OxPhos, we evaluated the 

ability of CHC based N,N-dialkyl/diaryl compounds  for their effect on these parameters. 

For this purpose, we compared dual MCT1 and MCT4 inhibitor 3j with predominantly 

MCT1 inhibitor 4g, as well as with parent CHC compound, and a known specific MCT1 

inhibitor, AZD3965 (Figure 5b). We evaluated glycolysis stress test (GST) and 

mitochondrial stress test (MST) parameters to understand the effects on these compounds 

on glycolysis and mitochondrial OxPhos. Seahorse XFe96 extracellular flux analyzer was 

used to carry out GST and MST. This instrument records the changes in extracellular 

acidification rate (ECAR) and mitochondrial oxygen consumption rate (OCR) in real time, 

which are key indicators of glycolysis and mitochondrial respiration, respectively. The flux 

plate has 96-wells and the cartridge plate consists of four drug delivery ports and optical 

sensors that record ECAR in mpH/minute and OCR in pmol/minute. 
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Figure 5b: Lead compounds evaluated for extracellular flux analysis using Seahorse 

XFe96 based GST and MST 
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5.2.1 Glycolysis stress test in MDA-MB-231 and WiDr cell lines using 3j and 4g 

GST parameters that we studied included glycolysis, glycolytic capacity and 

glycolytic reserve. In this assay, glycolysis is defined as an increase in the ECAR due to 

the addition of saturated concentration of glucose in the second drug delivery port after the 

addition of test compound in the first drug delivery port. If the compound inhibits 

glycolysis, the ECAR recorded in real time should be less when compared to the control. 

The third drug delivery port is injected with ATP synthase inhibitor oligomycin A, and this 

addition leads to a decreased mitochondrial ATP production and consequently, the cells 

are under stress and redirect the energy generation towards glycolytic pathway. As a result, 

ECAR drastically increases in the control wells. The maximum increase in the ECAR when 

compared to glycolysis is defined as glycolytic capacity. When OxPhos is inhibited by 

oligomycin A, all the energy needs are driven towards glycolysis. In hypoxic conditions, 

when OxPhos is minimum, this stage could be considered as vigorous glycolysis. The final 

drug delivery port is injected with glycolysis inhibitor 2-deoxy-glucose. With this addition, 

ECAR is reduced to basal levels and the difference between glycolysis and glycolytic 

capacity can be defined as glycolytic reserve, which indicates the flexibility of cells to 

overcome stressful conditions. 
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At 10 μM concentration, compounds 3j, 4g, CHC and AZD slightly decreased or 

had no effect on glycolysis in MCT4 expressing MDA-MB-231 cell line (Figures 5c-A and 

5e-A). In the case of MCT1 expressing WiDr cell line all the candidate compounds had 

practically no effect on glycolysis at 10 μM concentration (Figures 5d-A and 5e-C). At 30 

μM concentration, only compounds 3j and 4g exhibited a decrease in glycolysis as 

evidenced by low ECAR compared to the control in MDA-MB-231 cells (Figures 5c-B 

and 5e-B). In the case of WiDr cells, compound 3j showed a slight decrease in glycolysis 

compared to control, but compared to CHC and AZD, 3j exhibited a significant decrease 

in glycolysis (Figures 5d-B and 5e-D). Similarly, coumarin 4g also showed a significant 

inhibition of glycolysis compared to CHC and AZD compounds. As CHC is a weak MCT1 

and MCT4 inhibitor, this compound did not inhibit glycolysis even at a high concentration 

of 30 μM. MCT1 specific inhibitor AZD did not affect glycolysis in MCT4 expressing 

MDA-MB-231 cell line and showed an increased glycolysis in WiDr cell line.  

  



 

146 

 

 

Figure 5c: Glycolysis stress test profiles in MDA-MB-231 cell line using compound 3j, 

4g, CHC and AZD3965 at (A) 10 and (B) 30 µM concentrations 
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Figure 5d: Glycolysis stress test profiles in WiDr cell line using compound 3j, 4g, CHC 

and AZD3965 at (A) 10 and (B) 30 µM concentrations 
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Figure 5e: Effect of compounds 3j, 4g, CHC and AZD on glycolysis in (A) MDA-MB-

231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM concentration; 

In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 μM 

concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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In the case of glycolytic capacity, at 10 μM concentration, candidate compounds 3j 

and 4g exhibited significant inhibition compared to that of control, whereas CHC and AZD 

showed a slight decrease in the glycolytic capacity in MDA-MB-231 cell line (Figure 5f-

A). At 30 μM concentration, compounds 3j and 4g showed significant decrease in 

glycolytic capacity (Figure 5f-B). In the case of CHC and AZD, the effect on glycolytic 

capacity at 10 and 30 μM concentration was similar. In WiDr cell line, at 10 μM 

concentration, compounds 3j, 4g and AZD exhibited significant reduction of glycolytic 

capacity, whereas CHC did not have any effect on glycolytic capacity (Figure 5f-C). At 30 

μM concentration, compounds 3j and 4g exhibited significant decrease in glycolytic 

capacity (Figure 5f-D). Although AZD exhibited significant inhibition, compounds 3j and 

4g were found to be superior to AZD in reducing glycolytic capacity. As expected, AZD, 

being a specific inhibitor of MCT1, showed efficacy in glycolysis inhibition in MCT1 

expressing WiDr cell line, compared to MCT4 expressing MDA-MB-231 cell line. 
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Figure 5f: Effect of compounds 3j, 4g, CHC and AZD on glycolytic capacity in (A) MDA-

MB-231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM 

concentration; In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 

μM concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated.  
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Although compounds 3j, 4g, CHC and AZD did not affect glycolytic reserve at 10 

μM concentration in MDA-MB-231 cell line, compounds 3j and 4g exhibited significant 

decrease in glycolytic reserve at 30 μM concentration (Figures 5g-A and 5g-B). As 

expected, MCT1 specific inhibitor AZD did not show any effect on glycolytic reserve in 

this cell line. In MCT1 expressing WiDr cell line, compounds 3j, 4g and AZD showed 

significant reduction in glycolytic reserve at both 10 and 30 μM concentrations. In contrast, 

CHC exhibited activity only at 30 μM concentration (Figure 5g-C and 5g-D). 
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Figure 5g: Effect of compounds 3j, 4g, CHC and AZD on glycolytic reserve in (A) MDA-

MB-231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM 

concentration; In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 

μM concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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5.2.2 Glycolysis stress test in 4T1 cell line using 3j and 4g 

 

We also evaluated GST parameters of CHC based lead derivative 3j and coumarin 

based lead candidate 4g in MCT1 expressing 4T1 cell line. These compounds were tested 

at 30 μM concentration because at this concentration, significant inhibition of GST 

parameters was observed in WiDr cell line. This study revealed that glycolysis, glycolytic 

capacity and glycolytic reserve were significantly decreased in the presence of 30 μM of 

3j and 4g (Figures 5h-A-D). These results are not surprising as both these candidate 

compounds exhibit potent MCT1 inhibition, thereby reducing the ECAR in this cell line.  
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Figure 5h: Glycolysis stress test of compounds 3j and 4g in 4T1 cell line (A) Glycolysis 

stress test profile; (B) Effect of compounds 3j and 4g on glycolysis; (C) Effect of 

compounds 3j and 4g on glycolytic capacity; (D) Effect of compounds 3j and 4g on 

glycolytic reserve. The values are generated using wave software, and an average+SEM of 

minimum three independent experiments were calculated. 
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5.2.3 Mitochondrial stress test in MDA-MB-231 and WiDr cell lines using 3j and 4g 

 

Because of the presence of lipophilic groups, the candidate compounds may cross 

the cell membrane, enter the cytoplasm, interact directly or indirectly and alter the 

mitochondrial function. To evaluate the effects of these candidate compounds, we studied 

the MST parameters such as maximal respiration, ATP production, proton leak and spare 

respiratory capacity. MST targets various electron transport chain components such as ATP 

synthase, ETC complexes I, III and V. After the addition of test compound via first drug 

delivery port, ATP synthase inhibitor oligomycin A was added through second drug 

delivery port. This decrease in the OCR after the addition of oligomycin constitutes ATP-

linked respiration and considered to be ATP production. The basal OCR after the inhibition 

of ATP production is considered to be proton leak. Here, ATP production and proton leak 

are complementary to each other. An increase in the ATP production leads to a decrease in 

proton leak, and vice-versa.  

The addition of a proton uncoupler 2-[[4-(trifluoromethoxy)phenyl] 

hydrazinylidene]propanedinitril (FCCP) in the third drug delivery port leads to the stress 

of the cells as FCCP disrupts the ATP synthesis by hindering the entry of protons into 

mitochondrial membrane and redirecting them out of the membrane. As a result, the cells 

have an urgent need to overcome energy demands and operates at a high capacity by 

oxidizing other substrates such as fatty acids, amino acids, etc. to produce ATP. This 

process, in fact, increases OCR significantly and the cell achieves maximum possible 

respiration. This increase in the OCR is considered as maximum respiration. The flexibility 
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of the cells to adapt to these stressful conditions to produce maximum energy is called 

spare respiratory capacity, which can be calculated by the difference between the value of 

OCR at first injection and the value of maximum OCR. The fourth drug delivery port is 

injected with a cocktail of rotenone and antimycin-A, which inhibit ETC complexes I and 

III, respectively. This results in a complete shutdown of respiration and leads to a minimal 

OCR, which can be considered as non-mitochondrial respiration. 

 

From these studies, CHC derivative 3j and coumarin compound 4g decreased OCR 

at 10 and 30 µM concentrations in both MCT4 expressing MDA-MB-231 and MCT1 

expressing WiDr cell lines (Figures 5i-A-B and 5j-A-B). In MDA-MB-231 cell line, all of 

the test compounds did not exhibit any effect on maximal respiration at 10 μM 

concentration, whereas compounds 3j and 4g showed a significant reduction in maximal 

respiration at 30 μM concentration (Figures 5k-A and 5k-B). In WiDr cell line, compounds 

3j and 4g significantly decreased maximal respiration at both 10 and 30 μM concentrations 

(Figures 5k-C and 5k-D). Again, in this case also, CHC did not show any effect on maximal 

respiration as it is a weak MCT1 and MCT4 inhibitor. AZD being a specific MCT1 

inhibitor, did not affect maximal respiration in both the cell lines even at 30 μM 

concentration.   
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Figure 5i: Mitochondrial stress test profiles in MDA-MB-231 cell line using compound 

3j, 4g, CHC and AZD3965 at (A) 10 and (B) 30 µM concentrations 
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Figure 5j: Mitochondrial stress test profiles in WiDr cell line using compound 3j, 4g, CHC 

and AZD3965 at (A) 10 and (B) 30 µM concentrations 
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Figure 5k: Effect of compounds 3j, 4g, CHC and AZD on maximal respiration in (A) 

MDA-MB-231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM 

concentration; In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 

μM concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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In MDA-MB-231 cell line, the test compounds 3j, 4g, CHC and AZD did not 

decrease ATP production at 10 μM concentration, whereas compound 3j significantly 

decreased ATP production at 30 μM concentration (Figures 5l-A and 5l-B). Similarly, in 

WiDr cell line, only compound 3j exhibited a significant decrease in ATP production at 10 

and 30 μM concentrations, whereas coumarin 4g decreased ATP production only at 30 μM 

concentration (Figures 5l-C and 5l-D). CHC and AZD did not affect ATP production at 

both concentrations in MDA-MB-231 and WiDr cell lines.  
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Figure 5l: Effect of compounds 3j, 4g, CHC and AZD on ATP production in (A) MDA-

MB-231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM 

concentration; In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 

μM concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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     While proton leak is significantly increased in both the cell lines at 10 and 30 μM 

concentrations using compound 3j, the other compounds 4g, CHC and AZD did not show 

any effect on proton leak (Figures 5m-A-D). These results indicate that while decreasing 

ATP production, proton leak is not affected, hence, the compound 3j could be considered 

as proton uncoupler.  
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Figure 5m: Effect of compounds 3j, 4g, CHC and AZD on proton leak in (A) MDA-MB-

231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM concentration; 

In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 μM 

concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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In MDA-MB-231 cell line, compounds 3j and 4g reduced spare respiratory capacity 

at 10 and 30 μM concentrations, whereas compounds CHC and AZD did not affect this 

parameter (Figures 5n-A-D). In the case of MCT1 expressing WiDr cell line, compounds 

3j, 4g and CHC significantly decreased spare respiratory capacity.  
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Figure 5n: Effect of compounds 3j, 4g, CHC and AZD on spare respiratory capacity in 

(A) MDA-MB-231 cell line at 10 μM concentration; (B) MDA-MB-231 cell line at 30 μM 

concentration; In (C) WiDr cell line at 10 μM concentration and (D) WiDr cell line at 30 

μM concentration. The values are generated using wave software, and an average±SEM of 

minimum three independent experiments were calculated. 
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5.2.4 Mitochondrial stress test in 4T1 cell line using 3j  

We also evaluated MST parameters of CHC based lead derivative 3j in MCT1 

expressing 4T1 cell line. This study revealed that maximal respiration, ATP production 

and spare respiratory capacity were significantly decreased in the presence of 30 μM of 3j 

compared to the control wells (Figures 5o-A-C and 5o-E). In this cell line, proton leak was 

found to be significantly increased, reiterating that the compound 3j acts as a proton 

uncoupler (Figure 5o-D).  
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Figure 5o: Mitochondrial stress test of compound 3j in 4T1 cell line (A) Mitochondrial 

stress test profile; (B) Effect of compound 3j on maximal respiration; (C) Effect of 

compound 3j on ATP production; (D) Effect of compound 3j on proton leak; (E). Effect 

of compound 3j on spare respiratory capacity. The values are generated using wave 

software, and an average+SEM of minimum three independent experiments were 

calculated. 
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5.2.5 Glycolysis stress test in MDA-MB-231 and WiDr cell lines using 3b and 3j 

We also compared the GST parameters of N,N-diphenyl substituted derivative 3j 

with an N,N-dibutyl substituted derivative 3b in MCT4 expressing MDA-MB-231 and 

MCT1 expressing WiDr cell lines. These compounds were tested at both 10 and 30 μM 

concentrations. At 10 μM concentration, both 3b and 3j did not decrease glycolysis in both 

the cell lines (Figures 5p-A, 5p-B, 5q-A and 5q-B). At 30 μM concentration, only 

compound 3j exhibited a decrease in glycolysis in MDA-MB-231 cells (Figure 5p-B). In 

the case of WiDr cells, compound 3j showed a significant decrease in glycolysis compared 

to control wells (Figure 5q-B). In the case of glycolytic capacity, compound 3j showed 

significant inhibition at 10 and 30 μM concentrations whereas compound 3b inhibited only 

at 30 μM concentration in MDA-MB-231 cell line (Figure 5p-C). Also, both compounds 

exhibited significant reduction in glycolytic reserve in MDA-MB-231 cell line (Figure 5p-

D). In WiDr cell line, glycolytic capacity and glycolytic reserve were significantly reduced 

by both the compounds at both the concentrations (Figures 5q-D).  
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Figure 5p: Glycolysis stress test of compounds 3b and 3j in MDA-MB-231 cell line (A) 

Glycolysis stress test profile; (B) Effect of compounds 3b and 3j on glycolysis; (C) Effect 

of compounds 3b and 3j on glycolytic capacity; (D) Effect of compounds 3b and 3j on 

glycolytic reserve. The values are generated using wave software, and an average+SEM of 

minimum three independent experiments were calculated. 
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Figure 5q: Glycolysis stress test of compounds 3b and 3j in WiDr cell line (A) Glycolysis 

stress test profile; (B) Effect of compounds 3b and 3j on glycolysis; (C) Effect of 

compounds 3b and 3j on glycolytic capacity; (D) Effect of compounds 3b and 3j on 

glycolytic reserve. The values are generated using wave software, and an average+SEM of 

minimum three independent experiments were calculated. 
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5.2.6 Mitochondrial stress test in MDA-MB-231 and WiDr cell lines using 3b and 3j 

We also compared the MST parameters of N,N-diphenyl substituted derivative 3j 

with an N,N-dibutyl substituted derivative 3b in MCT4 expressing MDA-MB-231 and 

MCT1 expressing WiDr cell lines. Like GST, these compounds were also tested at both 10 

and 30 μM concentrations. At 10 μM concentration, both 3b and 3j did not decrease 

maximal respiration in MDA-MB-231 cell line but showed significant reduction only at 30 

μM concentration (Figures 5r-A, 5r-B). In WiDr cell line both compounds 3b and 3j 

exhibited a significant decrease in maximal respiration at both concentrations (Figures 5s-

A and 5s-B). In both cell lines, ATP production was reduced in the presence of compounds 

3b and 3j (Figures 5r-C and 5s-C). Proton leak was significantly increased at 30 μM 

concentration in MDA-MB-231 and WiDr cells with compounds 3b and 3j whereas proton 

leak was increased only with compound 3j in both cells at 10 μM concentration (Figures 

5r-D and 5s-D). Also, both compounds exhibited significant reduction in spare respiratory 

capacity in MDA-MB-231 cell line only at 30 μM concentration, whereas only both 

compounds 3b and 3j decreased spare respiratory capacity at 10 μM concentration in WiDr 

cell line (Figures 5r-E and 5s-E). 
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Figure 5r: Mitochondrial stress test of compounds 3b and 3j in MDA-MB-231 cell line 

(A) Mitochondrial stress test profile; (B) Effect of compounds 3b and 3j on maximal 

respiration; (C) Effect of compounds 3b and 3j on ATP production; (D) Effect of 

compounds 3b and 3j on proton leak; (E). Effect of compounds 3b and 3j on spare 

respiratory capacity. The values are generated using wave software, and an average+SEM 

of minimum three independent experiments were calculated. 
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Figure 5s: Mitochondrial stress test of compounds 3b and 3j in WiDr cell line (A) 

Mitochondrial stress test profile; (B) Effect of compounds 3b and 3j on maximal 

respiration; (C) Effect of compounds 3b and 3j on ATP production; (D) Effect of 

compounds 3b and 3j on proton leak; (E). Effect of compounds 3b and 3j on spare 

respiratory capacity. The values are generated using wave software, and an average+SEM 

of minimum three independent experiments were calculated. 
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As previously hypothesized, dual MCT1 and/or MCT4 inhibition could interrupt 

the transport of glycolytic metabolites lactic acid and pyruvic acid in cancer cells, and 

hence, energy flow in cells will be disrupted which causes lactic acid acidosis. This could 

be clearly observed by the increase in the intracellular pH of cells as evidenced by GST in 

MCT4 expressing TNBC MDA-MB-231 cell line. The lead MCT1 and/or MCT4 inhibitors 

3b, 3j and 4g also significantly inhibited glycolysis and mitochondrial parameters using 

Seahorse XFe96 analyzer, indicating that these compounds have the potential to target 

metabolic plasticity in cancer cells.  

 

All these results from GST and MST suggest that these compounds effect these 

processes in negative way. Basal ECAR and Basal OCR reading from GST and MST, 

respectively suggest that MDA-MB-231 is more glycolytic and less oxidative in nature, 

whereas WiDr is less glycolytic and more oxidative in nature. This can be seen even after 

the addition of glucose in GST where high rate of glycolysis was observed in MDA-MB-

231 cell line compared to WiDr cell line. After the addition of oligomycin-A in GST, all 

the OxPhos related processes were completely inhibited, and to meet the energy demands, 

higher rates of glycolysis was observed. At high concentrations, compounds 3b, 3j and 4g 

did not allow these processes to occur suggesting the vigorous glycolysis was inhibited to 

a greater extent in these cell lines. Although there is an equal need for glycolysis 

ubiquitously observed in several cell lines, the process of aggressive glycolysis is observed 

in various fast-growing cells including cancer cells. Metabolic plasticity is dependent on 

altering mainly glycolysis and OxPhos. These GST and MST studies point towards 
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disruption of both these processes simultaneously using our dual MCT1 and MCT4 

inhibitors. Although N,N-dibutyl derivative 3b exhibited significant inhibition of GST and 

MST parameters, N,N-diphenyl derivative 3j exhibited superior efficacy in inhibiting the 

above mentioned parameters compared to 3b. Hence, compound 3j was selected as a lead 

candidate compound for further in vitro and in vivo studies. 
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5.3 Florescence microscopy study of compound 3j in MDA-MB-231 and WiDr cell lines 

The lead compound 3j exhibited significant effect on mitochondrial parameters, 

and this activity could be observed only if the compound 3j crosses the cell membrane and 

interact directly or indirectly with mitochondria. The phenyl rings attached to the nitrogen 

atom in conjugation with cyanoacrylic acid makes 3j a fluorescent compound and it 

fluoresces at 470/40 excitation and 525/50 emission. To test the ability of the compound 

3j to cross the cell membrane, we utilized MDA-MB-231 and WiDr cell lines and studied 

fluorescence by labeling mitochondria with MitoTracker Red. The images were obtained 

using Nikon epifluorescence microscope. These studies indicated that in MDA-MB-231 

cells, compound 3j is localized in areas surrounding mitochondria, but not co-localized 

with mitochondria (Figure 5t). The same results were observed in WiDr cells also (Figure 

5u).  
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Figure 5t: Representative fluorescence microscopy images of MDA-MB-231 cells treated 

with compound 3j and labeled with mitotracker red. Scale bar is 25 µm. 
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Figure 5u: Representative fluorescence microscopy images of WiDr cells treated with 

compound 3j and labeled with mitotracker red. Scale bar is 25 µm. 
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5.4 Anticancer efficacy of lead candidate compounds in MDA-MB-231-luc tumor 

xenograft models 

 

 Compound 3j showed significant tumor growth inhibition in MCT1 expressing 

WiDr colorectal and 4T1-luc2 tumor models and exhibited potent MCT4 inhibition. This 

compound also exhibited significant inhibition of glycolysis and mitochondrial parameters 

as evidenced by GST and MST discussed above. Hence, compound 3j was chosen for 

carrying out in vivo studies in the predominantly MCT4 expressing TNBC MDA-MB-231-

luc flank xenograft model. MDA-MB-231 is a mesenchymal like grade 3 ductal carcinoma. 

This cell line forms poorly differentiated cancer in nude mice and serves an excellent model 

to evaluate the therapeutic efficacy of the lead inhibitor. 
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5.4.1 Anticancer efficacy of compound 3j in MDA-MB-231-luc tumor xenograft model 

 Female NOD SCID mice were injected with 107 MDA-MB-231-luc cancer cells in 

1:1 PBS-matrigel combination in their flanks. The tumors were allowed to reach ~150 mm3 

volume before starting the treatment. The mice were randomly chosen by chance and 

assigned into 2 groups (n = 6 mice per group). Group 1 was designated as the control group 

(10% DMSO in saline) and group 2 mice were administered with compound 3j once daily 

by ip at a dose of 25 mg/kg. However, after 1 week of treatment, moderate levels of tumor 

growth inhibition was observed as measured by external tumor volume with calipers. 

Consequently, the dosage was increased to 50 mg/kg and the tumor growth reduction was 

higher with this elevated dosage. At the end of the study (22 days), the mice were 

euthanized, and tumor masses were isolated and weighed. The tumor growth inhibition was 

found to be 29% compared to the control group based on tumor volume (Figure 5v-A) and 

20% based on tumor weight (Figure 5v-B). At this dosage, compound 3j did not exhibit 

any toxicity and was well tolerated in tumor bearing mice as evidenced in Figure 5v-C. 
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Figure 5v: Tumor growth inhibition study with compound 3j in MDA-MB-231-luc tumor 

xenograft model. (A) Based on tumor volume; (B) Based on tumor weights; (C) Body 

weight changes during the treatment regimen.  
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5.4.2 Anticancer efficacy of compound 3j compared to doxorubicin in MDA-MB-231-luc 

tumor xenograft model 

 

Because we observed tumor growth inhibition at higher dosage, another study was 

conducted using the MDA-MB-231 tumor xenograft model to compare compound 3j with 

the clinically relevant compound doxorubicin. Female NOD SCID mice were inoculated 

with cancer cells (1 x 107) and allowed to grow to a volume of ~240 mm3. This time, group-

1 mice were administered with 3j at 50mg/kg, ip, qd and group-2 mice were given 

doxorubicin at 0.5mg/kg, ip, five days per week. Group-3 was treated with a combination 

of 3j and doxorubicin. At the end of the study (17 days), mice were euthanized, and tumors 

were isolated and weighed. Gratifyingly, excellent synergy was observed between MCT 

inhibitor 3j and DNA topoisomerase poison doxorubicin. Tumor growth inhibition of 

group-1 was found to be same as group-2, whereas tumor growth inhibition in the 

combination therapy (group-3) was 47% compared to group-2 based on tumor volume 

(Figure 5w-A) and 44% compared to group-2 based on isolated tumor mass (Figure 5w-

B). In this study, significant body weight changes were not observed compared to 

doxorubicin or combination groups (Figure 5w-C). From this study, the combination 

therapy was found to be highly effective than single agent action either by 3j or 

doxorubicin.  
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Figure 5w: Anticancer efficacy with compound 3j and doxorubicin in MDA-MB-231-luc 

tumor xenograft model. (A) Based on tumor volume; (B) Based on tumor weights; (C) 

Body weight changes during the treatment regimen. 
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5.4.3 Anticancer efficacy of compound 3j at a higher dosage in MDA-MB-231-luc flank 

model 

Because we observed significant tumor growth inhibition at higher doses, we also 

carried out another study by further increasing in dosage of compound 3j and doxorubicin 

in the MDA-MB-231 tumor model. The treatment was started when the tumor volume 

reached 195 mm3. Group-1 was administered with 3j at 70 mg/kg, ip, bid, group-2 was 

treated with a combination of 3j and doxorubicin at 1mg/kg, ip, 5 times a week, group-3 

was given doxorubicin and group-4 was the control group which was administered with 

vehicle (10% DMSO in saline). After four days, ~12% body weight loss was observed in 

group-1 mice and hence the dosage was readjusted to once daily dosage (70 mg/kg, ip, qd). 

Tumor volume was measured every three days and body weights were measured every day. 

The treatment was stopped at day 18 in both groups and at the end of the study on day 20, 

the mice were euthanized, and tumor masses were isolated. Based on the tumor volume, 

tumor growth inhibitions were found to be ~61%, 58% and 71% in groups 1, 2, and 3, 

respectively (Figure 5x-A). Based on the tumor weights, tumor growth inhibitions were 

found to be ~56%, 52% and 67% in groups 1, 2, and 3, respectively (Figure 5x-B). These 

studies clearly exhibit the potential of MCT1 and MCT4 inhibitors in a dose-dependent 

manner in TNBC treatment.  
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Figure 5x: In vivo anticancer efficacy study using compound 3j in MDA-MB-231 

xenograft model. (A) Tumor volume during the treatment. (B) Tumor growth inhibition 

based on isolated tumor mass.  
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5.4.4 Anticancer efficacy of the lead candidate compound 4g in MDA-MB-231-luc tumor 

model 

 The coumarin based candidate compounds did not exhibit potent MCT4 

inhibition compared to CHC based derivatives, except for compound 4g which showed 

~200 nM IC50 for MCT4 inhibition. Since this compound had significant effect on 

mitochondrial parameters in MST, 4g was tested for its anticancer efficacy in an MCT4 

expressing MDA-MB-231-luc tumor model. After tumor inoculation, the treatment was 

initiated when the tumors reached a volume of ~100 mm3. Groups 1 and 2 were treated 

with 4g at 20 mg/Kg, ip, and 100 mg/Kg via oral gavage, respectively. Group-3 was 

administered with clinical breast cancer drug doxorubicin at a dosage of 0.5 mg/Kg, ip, 

five times a week, and group-4 was designated as a control group and injected with vehicle 

(10% DMSO in saline). In this study, although the treatment was continued for 28 days, 

treatment groups 1 and 2 did not exhibit any tumor growth inhibition, whereas mice treated 

with doxorubicin showed 50% tumor growth inhibition based on tumor volume (Figure 5y-

A). When resected tumor weights were compared, similar result was obtained with 

compound 4g, whereas doxorubicin exhibited 43% tumor growth inhibition (Figure 5y-B). 

These results prove our hypothesis that 7-N,N-dialkyl carboxy coumarins show selective 

MCT1 inhibition  and may not have off-target effects. Also, as discussed in chapter 1, 

Draoui et al. also synthesized similar coumarin derivatives 7ACC1 and 7ACC2 and when 

these compounds were tested in low MCT1 expressing UM-UC-3 tumor model, these 

compounds did not show anticancer efficacy, further confirming that our coumarin 

derivatives do not exhibit off target effects.  
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Figure 5y: Anticancer efficacy of lead compound 4g in MDA-MB-231-luc flank model. 

Tumor growth inhibition (A) based on tumor volumes; (B) based on tumor weights 
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5.5 In vitro and in vivo evaluation of reverse Warburg effect in TNBC MDA-MB-231 

As discussed in the introduction chapter-1, acute loss of stromal caveolin-1 leads 

to oxidative stress, mitochondrial dysfunction and aerobic glycolysis in cancer related 

fibroblasts.6 It has also been proven that dysfunctional mitochondria are removed from 

fibroblasts via autophagy/ mitophagy resulting in even more aggressive aerobic 

glycolysis.18 The energy rich glycolytic end products such as lactate and ketone bodies are 

then transferred from fibroblasts to adjacent cancer cells via monocarboxylate transporters 

(MCT1 and MCT4), which in turn stimulate mitochondrial biogenesis and generate ATP 

via oxidative phosphorylation (Reverse Warburg Effect).7 To test the reverse Warburg 

hypothesis in vitro, we co-cultured TNBC MDA-MB-231 cells with caveolin-1 expressing 

3T3 MEF WT and caveolin-1 knock out 3T3 MEF KO fibroblasts and evaluated the lead 

MCT1 and MCT4 inhibitors for their cytotoxicity.  

 

5.5.1 Optimization of seeding concentration of cells for co-culture of 3T3 MEFs WT and 

3T3 MEFs KO fibroblasts with MDA-MB-231 cell line 

 We utilized a SRB assay to evaluate the growth curves for 3T3 MEF WT and 3T3 

MEF KO cells. Cells (3T3 MEF WT and 3T3 MEF KO) were cultured at four different 

concentrations in duplicates in 48-well plates. Growth medium in each row was removed 

each day for six days and the wells were washed with PBS and dried at the end of day-6. 

SRB (0.5% in 1% acetic acid) was added to the wells and incubated for 30-45 minutes. The 

wells were washed 3 times with 1% acetic acid and dried. The cellular protein was 
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dissolved in trizma base (10mM, pH 10.2) and absorbance was recorded at 540 nm. Percent 

survival was calculated using the formula 

 % 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 =
Abs𝑡𝑒𝑠𝑡 𝑐𝑜𝑚𝑝𝑜𝑢𝑛𝑑

Abs𝑐𝑜𝑛𝑡𝑟𝑜𝑙
× 100.  

 A graph was generated using GraphPad by plotting number of days on x-axis and 

% survival on y-axis (Figure 5z). This study determined optimal seeding concentration as 

1x104 cells/mL and 0.5x104 cells/mL for 3T3 MEF WT and 3T3 MEF KO cells 

respectively.  

 

Figure 5z: Determination of optimal seeding concentration of 3T3 MEFs cells. (i) Growth 

curve of 3T3 MEF WT cells: A) 5x104 cells/mL, B) 2x104 cells/mL, C) 1x104 cells/mL and 

D) 0.5x104 cells/mL (cells in 400µL of growth media); (ii) Growth curve of 3T3 MEF KO 

cells: A) 1x104 cells/mL, B) 0.5x104 cells/mL, C) 0.25x104 cells/mL and D) 0.1x104 

cells/mL (cells in 400µL of growth media). 
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Similarly, we utilized SRB assay to determine the optimal concentration of MDA-

MB-231 for co-culturing them with fibroblast cells 3T3 MEF WT and 3T3 MEF KO. We 

co-cultured MDA-MB-231 cells at four different concentrations with 3T3 MEF WT and 

3T3 MEF KO by keeping their concentration at 1x104 and 0.5x104 cells/mL respectively. 

SRB assay was performed and the optimal concentration of MDA-MB-231 was determined 

as 5x104 cells/mL (Figure 5aa). 

 

Figure 5aa: Determination of optimal seeding concentration of MDA-MB-231 cells with 

3T3 MEFs cells. (i) Growth curve for co-culture of MDA-MB-231 and 3T3 MEF WT cells 

(1x104 cells/mL): A) 20x104 cells/mL, B) 10x104 cells/mL, C) 5x104 cells/mL and D) 

2.5x104 cells/mL (cells in 400µL of growth media); (ii) Growth curve for co-culture of 

MDA-MB-231 and 3T3 MEF KO cells (0.5x104 cells/mL): A) 20x104 cells/mL, B) 10x104 

cells/mL, C) 5x104 cells/mL and D) 2.5x104 cells/mL (cells in 400µL of growth media) 
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5.5.2 Cell proliferation inhibition of compounds 3h-3k in MDA-MB-231, and co-cultures 

with 3T3 MEF WT and 3T3 MEF KO under normal conditions 

 

 We evaluated cell proliferation of lead compounds 3h-3k using MTT assay in 

normal conditions (5% CO2 atmosphere at 37o C). These results indicate that compound 3j 

did not show significant difference of IC50 values among MDA-MB-231 cells and their co-

culture with 3T3 MEF WT and KO. Compounds 3h, 3i, and 3k did not show any 

cytotoxicity in single cell as well as in cocultures (Table 5b). 

 

Table 5b: MTT assay IC50
* values of compounds 3h-3k in MDA-MB-231, and co-cultures 

with 3T3 MEF WT and 3T3 MEF KO under normal conditions 

Compound MDA-MB-231 MDA-MB-231 

+ 3T3 MEF WT 

MDA-MB-231 

+ 3T3 MEF KO 

3h >0.25 >0.25 >0.25 

3i >0.25 >0.25 >0.25 

3j 0.08±0.01 0.08±0.01 0.06±0.01 

3k >0.25 >0.25 >0.25 

* IC50 values reported in mM, average ± SEM of minimum three separate experimental 

values 
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5.5.3 Cell proliferation inhibition of compounds 3h-3k in MDA-MB-231, and co-cultures 

with 3T3 MEF WT and 3T3 MEF KO under hypoxic conditions 

   

 Cells were cultured in 96-well plates and incubated for 24 hours. After the addition 

of test compounds, the plates were placed in a hypoxic chamber (flushed with 10% CO2, 

1% O2 and 89% N2 for 5 minutes) and incubated for 72 hours. The plates were processed 

and IC50 was calculated similar to the MTT assay. These results indicate that compound 3j 

showed decreased IC50 values in co-cultured cells. Compounds 3h, 3i, and 3k did not show 

any cytotoxicity in single cell as well as in cocultures (Table 5c). 

  

Table 5c: MTT assay IC50
* values of compounds 3h-3k in MDA-MB-231, and co-cultures 

with 3T3 MEF WT and 3T3 MEF KO under hypoxic conditions 

Compound MDA-MB-231 MDA-MB-231 

+ 3T3 MEF WT 

MDA-MB-231 

+ 3T3 MEF KO 

3h >0.25 >0.25 >0.25 

3i >0.25 >0.25 >0.25 

3j 0.09±0.00 0.13±0.00 0.14±0.00 

3k >0.25 >0.25 >0.25 

*IC50 values reported in mM, average ± SEM of minimum three separate experimental 

values 
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5.6 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc based orthotopic 

models 

 All above-mentioned cytotoxicity studies were carried out in in vitro systems where 

the cells are cultured in monolayers. In in vivo systems, tumors have a complex network of 

microenvironment that is highly heterogeneous in nature, containing primary cancer cells, 

fibroblasts, lymphocytes, macrophages etc.  Hence, translation of in vitro to in vivo based 

on cytotoxicity may not be similar. Also, evaluation of anticancer efficacy in flank-based 

xenograft models provided valuable in vivo data, but it is crucial to translate these results 

into orthotopic models. Therefore, we evaluated MCT1 and MCT4 inhibitors in MDA-

MB-231 orthotopic models, which include co-injection of WT and KO fibroblasts. 
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5.6.1 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

  

 Female NOD SCID mice (Jacksons laboratory) were employed for this study. 

Tumors were allowed to reach ~160 mm3 (day-16) before grouping and the treatment was 

started in groups 1 and 2 using 3j at 25 mg/Kg, ip, bid and 40 mg/Kg, ip, bid, respectively.  

Group 3 was treated with doxorubicin at 0.5 mg/Kg, ip, five days a week and group 4 was 

assigned as control group and injected with vehicle (10% DMSO in saline). Treatment was 

continued for nine days and the study was terminated, and tumors were isolated. From this 

study, lead compound 3j exhibited 26, 35 and 24% tumor growth inhibition in groups 1, 2 

and 3, respectively, compared to the control group (Figure 5ab). 

 

Figure 5ab: In vivo anticancer efficacy study in MDA-MB-231-luc orthotopic model. 

Treatment with compound 3j at 25 and 40 mg/Kg, ip, bid compared to doxorubicin 

treatment  
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5.6.2 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

co-injected with 3T3 MEF WT cells 

 

 We carried out another study with a co-injection of MDA-MB-231-luc (5x106 cells) 

with 3T3 MEF WT (1 x 106 cells) into mammary gland surgically, under anesthesia. In this 

case, tumors were allowed to reach ~140mm3 (day-11) tumor volume before grouping (n 

= 6 mice per group) and the treatment was started in groups 1 and 2 using 3j at higher doses 

of 40 mg/Kg, ip, bid and 55 mg/Kg, ip, bid. Group 3 was treated with doxorubicin at 0.5 

mg/Kg, ip, five times a week, and group 4 was assigned as control group and injected with 

vehicle (10% DMSO in saline). Treatment was continued for 13 days and the study was 

terminated, and tumors were isolated. From this study, treatment groups 1, 2 and 3 

exhibited 43, 35 and 37% tumor growth inhibition, respectively, based on the tumor 

volume measurements (Figures 5ac-A and 5ac-B), whereas these groups showed 10, 27 

and 21% tumor growth inhibition, respectively, based on isolated tumor masses (Figure 

5ac-C). 
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Figure 5ac: In vivo anticancer efficacy study in MDA-MB-231-luc + 3T3 MEF WT 

orthotopic model. (A) Tumor growth inhibition with treatment of 3j at 40 mg/Kg, ip, bid, 

in comparison to doxorubicin (B) Tumor growth inhibition with treatment of 3j at 55 

mg/Kg, ip, bid, in comparison to doxorubicin, (C) Tumor growth inhibition based on 

isolated tumor mass.  
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5.6.3 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

co-injected with 3T3 MEF KO cells 

 

We then evaluated anticancer efficacy of compound 3j using MDA-MB-231-luc 

(5x106 cells) co-injected with 3T3 MEF KO (5 x 105 cells) into mammary gland surgically, 

under anesthesia. In this study, tumors were allowed to reach ~215 mm3 (day-15) tumor 

volume before grouping (n = 6 mice per group) and the treatment was started in groups 1 

and 2 using 3j at doses of 40 mg/Kg, ip, qd and 55 mg/Kg, ip, qd. Group 3 was treated with 

vehicle (10% DMSO in saline). Treatment was continued for 11 days and the study was 

terminated, and tumors were isolated. From this study, groups 1 and 2 showed 44 and 53% 

tumor growth inhibition, respectively, based on the tumor volume measurements (Figure 

5ad-A), whereas these groups exhibited 39 and 42% tumor growth inhibition based on 

isolated tumor masses (Figure 5ad-B). 

  



 

198 

 

 

Figure 5ad: In vivo anticancer efficacy study in MDA-MB-231-luc + 3T3 MEF KO 

orthotopic model. (A) Tumor growth inhibition with treatment of 3j at 40 mg/Kg, ip, qd, 

and 55 mg/Kg, ip, qd (B) Tumor growth inhibition based on isolated tumor mass.  
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 The lead inhibitor 3j caused dose-dependent tumor growth inhibition as a single 

agent in flank TNBC MDA-MB-231 based xenograft models in NOD SCID mice. In 

combination with clinical breast cancer chemotherapeutic agent doxorubicin, 3j also 

exhibited synergistic effect of tumor growth inhibition in MDA-MB-231 model. Reverse 

Warburg effect also plays an important role in cancer progression and in MCT4 expressing 

cancers such as TNBC, the key factors include the down regulation of tumor suppressor 

gene Cav-1, pursuance of aerobic glycolysis, production of energy rich nutrients, 

mitochondrial biogenesis, OxPhos, genomic instability and evading cellular apoptosis. In 

all these factors, MCTs play an important role in glycolysis and OxPhos and inhibition of 

these transporters have therapeutic implications in TNBC treatment. Since the reverse 

Warburg effect is a common factor in most cancers, this strategy could be applicable to the 

treatment of several other cancers also. 

In vivo anticancer efficacy studies in a TNBC MDA-MB-231-luc co-injected with 

caveolin-1 wild type and knock out fibroblasts in orthotopic models were carried out using 

dual MCT1 and MCT4 inhibitor 3j as a single agent. These studies showed that the tumor 

growth in control groups of MDA-MB-231-luc and MDA-MB-231-luc co-injected with 

3T3 MEF WT were similar, whereas in MDA-MB-231-luc co-injected with 3T3 MEF KO, 

control group showed significantly high tumor growth on day-9 after treatment (Figure 

5ae). These results indicate that caveolin-1 KO results in high tumor growth, and caveolin-

1 WT and normal MDA-MB-231-luc exhibit low tumor growth. The anticancer efficacy 

exhibited by the lead candidate compound 3j was also significantly higher in MDA-MB-

231-luc co-injected with 3T3 MEF KO, compared to WT tumors, indicating that caveolin-
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1 KO results in high MCT4 expression and hence, our MCT4 inhibitor 3j also exhibited 

high anticancer efficacy in TNBC models. 

 

Figure 5ae: Tumor growth in control groups on day-9 after treatment in MDA-MB-231-

luc, MDA-MB-231-luc co-injected with 3T3 MEF WT, and MDA-MB-231-luc co-injected 

with 3T3 MEF KO. 
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5.7 Conclusions 

 

In conclusion, we evaluated N,N-dialkyl o-alkoxy CHC derivatives 3a-3k for 

MCT4 inhibition and found that these compounds show potent and dual MCT1 and MCT4 

inhibition. 7-N,N-dialkyl 3-carboxy coumarins were also evaluated for MCT4 inhibition, 

and these compounds were found to be specific MCT1 inhibitors. Especially, compounds 

3a, 3b, 3j and 3k exhibited nM potency for MCT4 inhibition. CHC derivative 3j, coumarin 

derivative 4g were evaluated for their metabolic properties using Seahorse XFe96 based 

glycolysis and mitochondrial stress tests. These studies indicated that the compounds 3b 

and 3j exhibited significant inhibition of glycolytic capacity, glycolytic reserve, maximal 

respiration, ATP production, and spare respiratory capacity in MCT1 expressing WiDr and 

4T1, and MCT4 expressing MDA-MB-231 cell line. Compound 4g inhibited the above-

mentioned parameters only in WiDr and 4T1 cell lines, as it is a selective MCT1 inhibitor. 

Fluorescence microscopy studies in MDA-MB-232 and WiDr cell lines using MitoTracker 

red revealed that compound 3j was also localized in areas surrounding mitochondria.   

 

CHC based lead compound 3j was evaluated for in vivo tumor growth inhibition in 

predominantly MCT4 expressing MDA-MB-231 flank and orthotopic tumor models. 

These in vivo studies indicated that compound 3j significantly inhibited tumor growth in 

both tumor models. Compound 3j was effective as a single agent and had a synergistic 

effect with doxorubicin. Coumarin lead compound 4g did not exhibit any anticancer 

efficacy in MDA-MB-231 flank mode. Evaluation of anticancer efficacy in MDA-MB-
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231-luc co-injected with caveolin-1 WT and caveolin-1 KO orthotopic models revealed 

that candidate compound 3j exhibited significant tumor growth reduction in KO orthotopic 

model compared to WT orthotopic model. These results indicated that Warburg effect and 

reverse Warburg effect could be targeted via MCT1 and MCT4 inhibitors to treat various 

MCT1 and MCT4 expressing cancers. 
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CHAPTER 6: Experimental procedures and spectral characterization 

 

6.1 Chemicals and methods of compound characterization 

Aniline and potassium carbonate were obtained from Fisher Scientific, aldehydes, 

m-anisidine, propyl bromide, butyl bromide, isobutyl bromide, pentyl bromide, hexyl 

bromide, allyl bromide, phosphorous (V) oxy chloride, cyanoacetic acid, and piperidine 

were purchased from Millipore-Sigma, tetrabutylammonium bromide was purchased from 

AKSci, L-[14C]-lactic acid sodium salt was purchased from Perkin Elmer. All other 

chemicals were of reagent grade quality and purchased from Millipore-Sigma. The 1H- and 

13C-NMR spectra were recorded on a Varian Oxford-500 spectrometer. High-resolution 

mass spectra (HRMS) were recorded using a Bruker BioTOF II ESI mass spectrometer. 

Elemental analysis (CHN) results were obtained from Atlantic Microlab services.  
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6.2 Cell lines and culture conditions 

RBE4 cells were obtained as a gift from Dr. Drewes’s lab. These cells were cultured 

in a medium consisting of 1:1 mixture of α-MEM and Ham’s F-10 nutrient mix with 

HEPES (Gibco), heat inactivated FBS (10%, Atlanta Biologicals), basic fibroblast growth 

factor (1 ng/mL, US Biologicals), geneticin G418 (0.3 mg/mL, VWR International), and 

antibiotic-antimycotic (10,000 U/mL of penicillin, 10,000 µg/mL of streptomycin, and 25 

µg/mL of Fungizone, Gibco).  

MDA-MB-231 cells were purchased from ATCC and were cultured in DMEM 

supplemented with FBS (10%, Atlanta Biologicals) and penicillin-streptomycin (50 U/mL, 

50 µg/mL, Invitrogen).  

4T1-luc2 cells were purchased from Caliper Life Sciences and were cultured in 

RPMI-1650 supplemented with heat inactivated FBS (10%) and penicillin-streptomycin 

(50 U/mL, 50 µg/mL). 

WiDr cells were purchased from ATCC and were cultured in MEM supplemented 

with FBS (10%) and penicillin-streptomycin (50 U/mL, 50 µg/mL).  

GL261-luc2 cells were purchased from Perkin-Elmer and cultured in DMEM 

supplemented with geneticin G418 (50 µg/mL), FBS (10%) and penicillin-streptomycin 

(50 U/mL, 50 µg/mL). 

MDA-MB-231-luc cells were purchased from Cell Biolabs (AKR-231). The cells 

were cultured in DMEM supplemented with FBS (10%) and penicillin-streptomycin (50 

U/mL, 50 µg/mL). 
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3T3 MEF WT and 3T3 MEF KO cells were purchased from ATCC. The cells were 

cultured in DMEM supplemented with FBS (10%) and penicillin-streptomycin (50 U/mL, 

50 µg/mL). 

The antibodies used for Western blot were rabbit polyclonal IgG antibody for 

MCT1 (Santa Cruz Inc.), rabbit polyclonal IgG antibody for MCT4 (Santa Cruz Inc.), goat 

anti-rabbit IgG horseradish peroxidase-conjugated antibodies (Jackson Immunoresearch). 

  



 

206 

 

 

6.3 Representative synthesis of (E)-2-cyano-3-(4-fluorophenyl)acrylic acid 2.1a 

To a solution of 4-fluorobenzaldehyde (10 mmol) dissolved in dioxane (20 mL), 

another solution of cyanoacetic acid (15 mmol) dissolved in 1:1 dioxane-water (10 mL 

each) was added, followed by the addition of sodium hydroxide (15 mmol) and sodium 

bicarbonate (15 mmol), and the reaction mixture was heated at 100oC for 8 hours. Upon 

completion (TLC), the reaction mixture was poured into ice-cold 3M HCl and water and 

stirred. The resulting product was filtered using Buchner funnel, washed with water, and 

dried. The crude product was recrystallized in ethylacetate-hexane (10:1) to get pure (E)-

2-cyano-3-(4-fluorophenyl)acrylic acid 2.1a in 87% yield. 

 

  



 

207 

 

 

6.4 Representative synthesis of (E)-2-cyano-3-(4-methoxyphenyl)acrylic acid 2.1f 

To a solution of 4-methoxybenzaldehyde (10 mmol) dissolved in acetonitrile (20 

mL), cyanoacetic acid (15 mmol) and piperidine (13 mol) were added and the reaction 

mixture was heated at 80oC for 10-20 hours. Upon completion (TLC), the reaction mixture 

was poured into ice-cold 3M HCl and water and stirred. The resulting product was filtered 

using Buchner funnel, washed with water, and dried. The crude product was recrystallized 

in ethylacetate-hexane (10:1) to get pure (E)-2-cyano-3-(4-methoxyphenyl)acrylic acid 

2.1f in 76% yield. 
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6.5 Representative synthesis of (E)-2-cyano-3-(4-methylphenyl)acrylic acid 2.1j 

To a solution of 4-methylbenzaldehyde (10 mmol) dissolved in toluene (20 mL), 

cyanoacetic acid (15 mmol) and ammonium hydroxide (15 mol) were added and the 

reaction mixture was refluxed for 8-24 hours. Upon completion (TLC), the reaction 

mixture was poured into ice-cold 3M HCl and water and stirred. The resulting product was 

filtered using Buchner funnel, washed with water, and dried. The crude product was 

recrystallized in ethylacetate-hexane (10:1) to get pure (E)-2-cyano-3-(4-

methylphenyl)acrylic acid 2.1j in 83% yield. 
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6.6 Representative synthesis of (E)-2-cyano-3-(4-(dipropylamino)phenyl)acrylic acid 

2.2c 

Aniline (10 mmol) was dissolved in a mixture of ethanol-water (10 mL each) and 

propyl bromide (40 mmol), K2CO3 (20 mmol) and tetrabutyl ammonium iodide (1 mmol) 

were added and the reaction mixture was refluxed at 80oC for 20 hours. After the 

completion of reaction, the reaction mixture was extracted with ether and water. Without 

further purification, the crude dipropyl amine was formylated using dropwise addition of 

POCl3 (12 mmol) in the solvent DMF (30 mL) at 0oC and the reaction mixture was stirred 

for 4-6 hours. Once the reaction is complete (TLC 5% Ethyl acetate and hexane), the 

reaction mixture was added slowly into saturated solution of Na2CO3. The product was 

extracted with ether and volatiles were evaporated. The crude aldehyde was dissolved in 

acetonitrile (20 mL) and 15 mmol of piperidine and cyanoacetic acid were added and 

refluxed for 8 hours. Upon completion, the reaction contents were added into 5 mL of 6M 

HCl and ice and stirred for 1 hour. The resulting yellow solid was filtered and washed with 
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water, hexane and ether, and recrystallized in methanol and ethyl acetate. The resulting 

cyanocinnamate was obtained in three step yield of 52%. 

 

6.7 Representative synthesis of (E)-2-cyano-3-(4-(dipropylamino)-2-methoxyphenyl) 

acrylic acid 3a 

3-methoxy aniline (10 mmol) was dissolved in a mixture of isopropanol-water (10 

mL each) and propyl bromide (40 mmol), K2CO3 (20 mmol) and sodium stearate (1 mmol) 

were added and the reaction mixture was refluxed at 100oC for 20 hours. After the 

completion of reaction, the reaction mixture was extracted with ether and water. Without 

further purification, the crude dipropyl amine was formylated using dropwise addition of 

POCl3 (12 mmol) in the solvent DMF (30 mL) at 0oC and the reaction mixture was stirred 

for 4-6 hours. Once the reaction is complete (TLC 5% Ethyl acetate and hexane), the 

reaction mixture was added slowly into saturated solution of Na2CO3. The product was 

extracted with ether and volatiles were evaporated. The crude aldehyde was dissolved in 
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acetonitrile (20 mL) and 15 mmol of piperidine and cyanoacetic acid were added and 

refluxed for 8 hours. Upon completion, the reaction contents were added into 5 mL of 6M 

HCl and ice and stirred for 1 hour. The resulting yellow solid was filtered and washed with 

water, hexane and ether, and recrystallized in methanol and ethyl acetate. 
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6.8 Synthesis of (E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2-cyanoacrylic acid 3k 

N,N-diethyl salicylaldehyde (10 mmol) was dissolved in acetone (40 mL) and allyl 

bromide (20 mmol) and K2CO3 (20 mmol) were added and the reaction mixture was 

refluxed for 10 hours. The product was extracted with ether and volatiles are evaporated. 

The crude aldehyde was dissolved in acetonitrile (20 mL) and 15 mmol of piperidine and 

cyanoacetic acid are added and refluxed for 8 hours. Upon completion of the reaction was 

added into 5 mL of 6M HCl and ice and stirred for 1 hour and the yellow solid was filtered 

and washed with plenty of water and hexane and ether and recrystallized in methanol and 

ethyl acetate. 
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6.9 Representative procedure for the synthesis of 7-(dipropylamino)-2-oxo-2H-

chromene-3-carboxylic acid 4c 

 3-amino phenol (10 mmol) was dissolved in ethanol (30 mL) and propyl bromide 

(40 mmol) and K2CO3 (20 mmol) were added and the reaction mixture was refluxed at 

100oC for 12 hours. After the completion of reaction, the reaction mixture is extracted with 

ethyl acetate and water and organic volatiles were evaporated. Without further purification 

the crude dipropyl amine was formylated using dropwise addition of POCl3 (12 mmol) in 

the solvent DMF (30 mL) at 0oC. Once the reaction is complete (TLC 10% Ethyl acetate 

and hexane), the reaction mixture was added slowly into saturated solution of Na2CO3. The 

product was extracted with ether and volatiles are evaporated. The crude aldehyde was 

dissolved in ethanol (20 mL) and 15 mmol of piperidine and diethyl malonate were added 

and refluxed for 8 hours. Upon completion, the reaction was extracted with ethylacetate 

and the volatiles were evaporated. The crude diethyl malonate product was then refluxed 

in ethanol (30 mL) and 10% NaOH (40 mmol) for 2-4 hours. Upon hydrolysis (TLC), the 
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reaction contents were brought to pH 7.0 with 3M HCl in ice. The resulting yellow solid 

was filtered and washed with water and hexane and recrystallized in ethanol. 
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6.10 Spectral characterization of synthesized compounds 

 

(E)-2-cyano-3-(4-fluorophenyl)acrylic acid, 2a 

 

1H-NMR (500 MHz, acetone-d6):  

δ 8.30 (s, 1H), 8.09 (d, J = 15.0 Hz, 2H), 7.39 (t, J = 15.0 Hz, 2H) 

 

13C-NMR (125 MHz, acetone-d6): 

δ 166.17, 163.87, 153.68, 134.07, 128.88, 117.25, 116.67, 104.50 

 

 

(E)-3-(4-bromophenyl)-2-cyanoacrylic acid, 2b 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.31 (s, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.5 Hz, 2H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 163.76, 153.85, 133.07, 133.02, 131.40, 127.55, 116.57, 105.21 
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(E)-2-cyano-3-(4-cyanophenyl)acrylic acid, 2c  

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.16 (s, 1H), 7.95 (d, J = 8.5 Hz, 2H), 6.93 (d, J = 8.0 Hz, 2H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 164.72, 163.23, 154.75, 134.36, 123.34, 117.62, 117.0, 99.10 

 

 

(E)-2-cyano-3-(4-nitrophenyl)acrylic acid, 2d 

 

1H-NMR (500 MHz, acetone-d6): 

δ 8.45 (s, 1H), 8.405 (d, J = 5.0 Hz, 2H), 8.24 (d, J = 10.0 Hz, 2H) 

 

13C-NMR (125 MHz, acetone-d6): 

δ 162.82, 151.94, 149.84, 137.82, 131.57, 124.04, 115.08, 108.09 
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(E)-2-cyano-3-(4-methoxyphenyl)acrylic acid, 2e 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.16 (s, 1H), 7.98 (d, J =10.0 Hz, 2H), 7.06 (d, J = 10.0 Hz, 2H), 3.82 (s, 3H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 164.47, 163.91, 154.46, 133.88, 124.69, 117.34, 115.46, 100.19, 56.29 

 

 

(E)-2-cyano-3-(3,4,5-trimethoxyphenyl)acrylic acid, 2f 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.25 (s, 1H), 7.46 (s, 2H), 3.79 (s, 6H), 3.68 (s, 3H) 

 

13C-NMR (125 MHz, DMSO-d6): 

δ 164.15, 155.04, 153.55, 142.41, 127.20, 117.33, 117.20, 109.28, 102.62, 60.99, 56.67.   
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(E)-3-(benzo[d][1,3]dioxol-5-yl)-2-cyanoacrylic acid, 2g 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.19 (s, 1H), 7.71 (s, 1H), 7.51 (d, J = 10.0 Hz, 1H), 7.02 (d, J = 10.0 Hz, 1H), 6.15 (s, 

2H) 

 

13C-NMR (125MHz, DMSO-d6):  

δ 164.22, 154.23, 125.57, 148.94, 129.79, 126.26, 116.36, 108.84, 108.27, 102.84, 100.27.   

 

 

(E)-2-cyano-3-(4-hydroxy-3-methoxyphenyl)acrylic acid, 2h 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.06 (s, 1H), 7.64 (s, 1H), 7.50 (d, J = 7.0 Hz, 2H), 6.84 (d, J = 7.0 Hz, 2H), 3.72 (s, 3H)  

 

13C-NMR (125 MHz, DMSO-d6): 

δ 164.67, 154.99, 152.91, 148.40, 127.56, 123.62, 117.70, 116.58, 114.33, 98.98, 56.15. 
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(E)-2-cyano-3-(p-tolyl)acrylic acid, 2i 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.21 (s, 1H), 7.88 (s, 2H), 7.33 (s, 2H), 2.35 (s, 3H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 164.13, 154.89, 144.61, 131.45, 130.53, 129.50, 116.50, 102.97, 21.97.   

 

 

(E)-2-cyano-3-(4-ethylphenyl)acrylic acid, 2j  

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.25 (s, 1H), 7.93 (d, J = 8.5 Hz, 2H), 7.36 (d, J = 8.5 Hz, 2H), 2.64 (q, J = 8, 15.5 Hz, 

2H), 1.16 (t, J = 8 Hz, 3H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 164.14, 154.93, 150.62, 131.57, 129.76, 129.36, 116.92, 103.07, 29.0, 15.66.   
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(E)-2-cyano-3-(4-isopropylphenyl)acrylic acid, 2k  

 

1H-NMR (500 MHz, CD3OD):  

δ 8.21 (s, 1H), 7.91 (d, J = 7.0 Hz, 2H), 7.36 (d, J = 6.5 Hz, 2H), 2.95-2.93 (m, 1H), 1.24 

(s, 6H) 

 

13C-NMR (125 MHz, CD3OD): 

δ 164.14, 154.93, 150.62, 131.57, 129.76, 129.36, 116.92, 103.07, 29.0, 15.66.   
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(E)-2-cyano-3-(4-(dimethylamino)phenyl)acrylic acid, 2m  

 

1H-NMR (500 MHz, DMSO-d6):  

δ 13.291 (s, 1H), 8.037 (s, 1H), 7.926 (d, J = 9.5 Hz, 2H), 6.833 (d, J = 9.0 Hz, 2H), 3.06 

(s, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.561, 154.543, 154.217, 134.224, 119.112, 118.666, 112.378, 94.158  
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(E)-2-cyano-3-(4-(diethylamino)phenyl)acrylic acid, 2n  

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.02 (s, 1H), 7.9 (d, J = 10.0 Hz, 2H), 6.78 (d, J = 10.0 Hz, 2H), 3.44 (q, J = 5.0 Hz, 16.0 

Hz, 4H), 1.11 (t, J = 10.0 Hz, 3H) 

 

13C-NMR (125 MHz, DMSO-d6): 

δ 165.64, 154.29, 152.07, 134.59, 118.73, 118.61, 111.98, 93.47, 13.08.   
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(E)-2-cyano-3-(4-(dipropylamino)phenyl)acrylic acid, 2o 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.11 (s, 1H), 7.97 (d, J = 9.0 Hz, 2H), 6.69 (d, J = 9.5 Hz, 2H), 3.38 (t, J = 7.5 Hz, 4H), 

1.70 (m, 4H), 1.00 (t, J = 7.0 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6): 

δ 190.1, 152.9, 132.4, 129.4, 124.8, 111.9, 111.0, 53.0, 20.6, 11.6  

 

Anal. Calcd for C16H20N2O2 (272.35): C 70.56, H 7.40, N 10.29  

Found: C 70.70, H 7.46, N 10.32 
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(E)-2-cyano-3-(4-(dibutylamino)phenyl)acrylic acid, 2p 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.03 (s, 1H), 7.92 (d, J = 9.0 Hz, 2H), 6.80 (d, J = 9.0 Hz, 2H), 3.40 (t, J = 7.5 Hz, 4H), 

1.54 (m, 4H), 1.34 (m, 4H), 0.93 (t, J = 7.0 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.6, 154.3, 152.5, 134.5, 118.7, 118.6, 112.1, 105.0, 50.6, 29.6, 20.2, 14.5 

 

Anal. Calcd for C18H24N2O2 (300.40): C 71.97, H 8.05, N 9.33.  

Found: C 71.83, H 8.38, N 9.35 
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(E)-2-cyano-3-(4-(diisobutylamino)phenyl)acrylic acid, 2q 

 

1H-NMR (500 MHz, CDCl3):  

δ 8.11 (s, 1H), 7.96 (d, J = 9.0 Hz, 2H), 6.71 (d, J = 9.0 Hz, 2H), 3.31 (d, J = 7.0 Hz, 4H), 

2.17-2.11 (m, 1H), 0.97 (d, 12H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 170.1, 155.8, 152.9, 134.9, 118.9, 117.5, 112.4, 92.1, 60.3, 27.0, 20.5 

 

Anal. Calcd for C18H24N2O2 (300.40): C 71.97, H 8.05, N 9.33.  

Found: C 71.48, H 8.49, N 9.23 
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(E)-2-cyano-3-(4-(dipentylamino)phenyl)acrylic acid, 2r 

 

1H-NMR (500 MHz, CDCl3):  

δ 8.10 (s, 1H), 7.96 (d, J = 9.0 Hz, 2H), 6.67 (d, J = 5.0 Hz, 2H), 3.39 (t, J = 8.0 Hz, 4H), 

1.68-1.62 (m, 4H), 1.43-1.33 (m, 8H), 0.95 (t, J = 7.0 Hz, 6H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 170.0, 155.8, 152.7, 135.1, 118.8, 117.6, 111.6, 91.8, 51.4, 29.4, 27.2, 22.7, 14.2.0 

 

Anal. Calcd for C20H28N2O2 (328.46): C 73.14, H 8.59, N 8.53.  

Found: C 72.61, H 8.37, N 8.16 
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(E)-2-cyano-3-(4-(dihexylamino)phenyl)acrylic acid, 2s 

 

1H-NMR (500 MHz, CDCl3):  

δ 8.10 (s, 1H), 7.97 (d, J = 9.0 Hz, 2H), 6.68 (d, J = 9.0 Hz, 2H), 3.39 (t, J = 7.5 Hz, 4H), 

1.65 (br m, 4H), 1.36 (br m, 12H), 0.93 (t, J = 6.0 Hz, 6H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 170.4, 155.8, 152.7, 135.2, 118.8, 117.6, 111.7, 91.8, 51.5, 31.8, 27.4, 26.9, 22.8, 14.2 

 

Anal. Calcd for C22H32N2O2 (356.51): C 74.12, H 9.05, N 7.86.  

Found: C 74.18, H 9.99, N 7.74 
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(E)-2-cyano-3-(4-(diallylamino)phenyl)acrylic acid, 2t 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.06 (s, 1H), 7.92 (d, J = 8.0 Hz, 2H), 6.81 (d, J = 8.0 Hz, 2H), 5.90-5.84 (m, 2H), 5.19-

5.14 (m, 4H), 4.08 (d, J = 3.0 Hz, 4H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.4, 154.4, 152.9, 134.1, 133.6, 119.5, 118.5, 117.1, 112.7, 94.6, 53.0 

 

Anal. Calcd for C16H16N2O2 (268.32): C 71.62, H 6.01, N 10.44.  

Found: C 70.98, H 6.66, N 11.36 
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(E)-2-cyano-3-(4-(di(prop-2-yn-1-yl)amino)phenyl)acrylic acid, 2u 

 

1H-NMR (500 MHz, CDCl3): 

δ 8.10 (s, 1H), 7.95 (d, J = 9.0 Hz, 2H), 6.94 (d, J = 9.0 Hz, 2H), 4.21 (d, J = 2.0 Hz, 4H), 

2.36 (s, 2H) 

 

13C-NMR (125 MHz, CDCl3:DMSO-d6(1:1)):  

δ 165.5, 164.9, 151.3, 133.7, 121.9, 117.4, 113.8, 97.0, 78.1, 73.4, 40.2.  

 

Anal. Calcd for C16H12N2O2 (264.28): C 72.72, H 4.58, N 12.11. 

Found: C 70.62, H 4.70, N 10.28 
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(E)-2-cyano-3-(4-(dibenzylamino)phenyl)acrylic acid, 2v 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.03 (s, 1H), 7.86 (d, J = 8.5 Hz, 2H), 7.33-7.32 (m, 5H), 7.26 (br m, 5H), 6.84 (d, J = 

8.5 Hz, 2H), 4.84 (s, 4H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.3, 154.3, 152.9, 138.2, 134.1, 129.4, 129.3, 127.7, 127.2, 119.9, 118.3, 113.0, 95.2, 

54.6. 

 

Anal. Calcd for C24H20N2O2 (368.44): C 78.24, H 5.47, N 7.60. 

Found: C 77.30, H 5.33, N 7.88 
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(E)-2-cyano-3-(4-(pyrrolidin-1-yl)phenyl)acrylic acid, 2w 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.01 (s, 1H), 7.88 (br s, 2H), 6.63 (br s, 2H), 3.34 (br s, 4H), 1.95 (br s, 4H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.5, 154.5, 151.6, 134.3, 118.8, 118.0, 93.3, 48.1, 25.5 

 

Anal. Calcd for C14H14N2O2 (242.28): C 69.41, H 5.82, N 11.56. 

Found: C 68.75, H 5.50, N 11.20 
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(E)-2-cyano-3-(4-(piperidin-1-yl)phenyl)acrylic acid, 2x 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.05 (s, 1H), 7.91 (d, J = 9.0 Hz, 2H), 9.02 (d, J = 9.0Hz, 2H), 3.47 (t, J = 5.0 Hz, 4H), 

1.62-1.61(m, 2H), 1.57-1.56 (m, 4H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.4, 154.2, 154.2, 134.3, 119.8, 118.4, 113.8, 48.1, 25.6, 24.6 

 

Anal. Calcd for C15H16N2O2 (256.31): C 70.29, H 6.29, N 10.93. 

Found: C 70.51, H 6.45, N 11.01 
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(E)-2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid, 2y 

 

1H-NMR (500 MHz, acetone-d6):  

δ 8.18 (s, 1H), 8.00 (d, J = 9 Hz, 2H), 7.46 (m, 4H), 7.28 (6H), 6.99 (d, J = 9 Hz, 2H) 

 

13C-NMR (125 MHz, acetone-d6):  

δ 205.6, 153.9, 152.7, 146.1, 133.3, 130.2, 126.9, 125.9, 123.7, 118.9, 116.8, 98.0 
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(E)-2-cyano-3-(4-(dipropylamino)-2-methoxyphenyl)acrylic acid, 3a 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.43 (s, 1H), 8.22 (d, J = 9.0 Hz, 1H), 6.52 (d, J = 9.5 Hz, 1H), 6.19 (s, 1H), 3.90 (s, 

3H), 3.41 (t, J = 7.0 Hz, 4H), 1.61 (m, 4H), 0.93 (t, J = 7.0 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 166.2, 162.4, 154.9, 146.9, 130.6, 119.3, 108.3, 106.2, 93.8, 91.3, 56.4, 52.6, 20.9, 11.8. 

 

Anal. Calcd for C17H22N2O3 (302.37): C 67.53, H 7.33, N 9.26.  

Found: C 67.52, H 7.51, N 9.28 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+: 325.15, found 325.15 
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(E)-2-cyano-3-(4-(dibutylamino)-2-methoxyphenyl)acrylic acid, 3b 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 13.0 (br, s, 1H), 8.42 (s, 1H), 8.21 (d, J = 9.0 Hz, 1H), 6.50 (d, J = 9.5 Hz, 1H), 6.17 (s, 

1H), 3.89 (s, 3H), 3.44 (t, J = 7.5 Hz, 4H), 1.55 (m, 4H), 1.35 (m, 4H), 0.94 (t, J = 7.5 Hz, 

6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 166.2, 162.3, 154.7, 146.8, 130.6, 119.3, 108.2, 106.2, 93.8, 91.3, 56.4, 50.7, 29.8, 20.3, 

14.5.  

 

Anal. Calcd for C19H26N2O3 (330.43): C 69.06, H 7.93, N 8.48.  

Found: C 68.83, H 7.90, N 8.46 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+ : 353.18 , found 353.18 
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(E)-2-cyano-3-(4-(diisobutylamino)-2-methoxyphenyl)acrylic acid, 3c 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 13.05 (br s, 1H), 8.43 (s, 1H), 8.20 (d, J = 9.5 Hz, 1H), 6.56 (d, J = 9.5 Hz, 1H), 6.23 (s, 

1H), 3.89 (s, 3H), 3.35 (d, J = 7.0 Hz, 4H), 2.09-2.03 (m, 2H), 0.91 (d, J = 6.5 Hz, 12H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 166.1, 162.1, 155.0, 146.9, 130.4, 119.2, 108.3, 106.9, 94.7, 91.6, 59.5, 56.4, 27.2, 20.6.  

 

Anal. Calcd for C19H26N2O3 (330.43): C 69.06, H 7.93, N 8.48.  

Found: C 68.93, H 7.81, N 8.58 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+ : 353.18 , found 353.18 
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(E)-2-cyano-3-(4-(dipentylamino)-2-methoxyphenyl)acrylic acid, 3d 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.43 (s, 1H), 8.22 (d, J = 9.5 Hz, 1H), 6.50 (d, J = 9.5 Hz, 1H), 6.17 (s, 1H), 3.90 (s, 3H), 

3.43 (t, J = 7.5 Hz, 4H), 1.58 (m, 4H), 1.37-1.30 (m, 8H), 0.91 (t, J = 6.5 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 166.2, 162.4, 154.7, 146.9, 130.6, 119.3, 108.2, 106.2, 93.8, 91.4, 56.4, 50.9, 29.2, 27.3, 

22.7, 14.7 

 

Anal. Calc’d for C21H30N2O3 (358.48): C 70.36, H 8.44, N 7.81.  

Found: C 70.36, H 8.50, N 7.81 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+ : 381.22 , found 381.21  
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3e 

 

1H-NMR (500 MHz, CD3OD):  

δ 8.59 (s, 1H), 8.28 (d, J = 9.0 Hz, 1H), 6.44 (d, J = 9.5 Hz, 1H), 6.25 (s, 1H), 5.96-5.89 

(m, 2H), 5.25-5.19 (m, 4H), 4.11-4.10 (m, 4H), 3.88 (s, 3H) 

 

13C-NMR (125 MHz, CD3OD):  

δ 166.5, 162.3, 155.4, 147.9, 132.8, 130.4, 118.2, 115.9, 109.4, 105.6, 93.9, 55.0, 52.9.  

 

Anal. Calcd for C17H18N2O3 (298.34): C 68.44, H 6.08, N 9.39.  

Found: C 68.14, H 6.16, N 9.30 
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3f 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.51 (s, 1H), 8.24 (d, J = 9.0 Hz, 1H), 6.71 (d, J = 9.0 Hz, 1H), 6.55 (s, 1H), 4.41 (s, 4H), 

3.94 (s, 3H), 3.30 (s, 2H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.49, 161.70, 153.81, 147.48, 130.14, 118.50, 110.52, 107.58, 96.97, 95.39, 79.90, 

76.17, 56.70. 

 

Anal. Calcd for C17H14N2O3 (294.31): C 69.38, H 4.79, N 9.52.  

Found: C 69.89, H 4.99, N 9.78 
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(E)-2-cyano-3-(4-(dibenzylamino)-2-methoxyphenyl)acrylic acid, 3g 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.36 (s, 1H), 8.10 (d, J = 7.5 Hz, 1H), 7.33-7.27 (m, 10H), 6.53 (d, J = 6.5 Hz, 1H), 6.30 

(s, 1H), 4.86 (s, 4H), 3.66 (s, 3H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.7, 161.8, 155.2, 147.0, 138.3, 130.3, 129.3, 127.8, 127.4, 118.8, 106.2, 106.8, 95.4, 

93.2, 56.2, 54.9 
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(E)-2-cyano-3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)acrylic acid, 3h 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.43 (s, 1H), 8.20 (d, J = 9.0 Hz, 1H), 6.35 (d, J = 7.5 Hz, 1H), 6.09 (s, 1H), 3.90 (s, 3H), 

3.41 (m, 4H), 1.99 (m, 4H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 166.2, 162.2, 153.8, 147.1, 130.4, 119.4, 108.4, 106.6, 94.2, 90.8, 56.4, 48.3, 25.5.  

 

Anal. Calc’d for C15H16N2O3 (272.30): C 66.16, H 5.92, N 10.29.  

Found: C 65.21, H 5.95, N 9.92 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+: 295.11, found 295.10  
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(E)-2-cyano-3-(2-methoxy-4-(piperidin-1-yl)phenyl)acrylic acid, 3i 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.40 (s, 1H), 8.17 (d, J = 9 Hz, 1H), 6.68 (d, J = 9.5 Hz, 1H), 6.43 (s, 1H), 3.87 (s, 3H), 

3.50 (m, 4H), 1.60 (m, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.7, 162.2, 156.2, 146.7, 130.3, 118.8, 109.0, 107.2, 95.5, 56.4, 48.1, 25.6, 24.4  

 

Anal. Calcd for C16H18N2O3 (286.33): C 67.12, H 6.34, N 9.78  

Found: C 66.43, H 6.22, N 9.80 
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(E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl)acrylic acid, 3j 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.44 (s, 1H), 8.11 (d, J = 9.0 Hz, 1H), 7.43 (m, 5H), 7.25 (m, 5H), 6.43 (d, J = 9.5 Hz, 

1H), 6.41 (s, 1H), 3.65 (s, 3H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.2, 161.2, 154.6, 147.1, 145.7, 130.7, 130.3, 127.4, 126.6, 118.1, 112.6, 111.7, 100.9, 

97.1, 56.3.  

 

Anal. Calc’d for C23H18N2O3 (370.41): C 67.97, H 5.46, N 6.89  

Found: C 66.0, H 5.39, N 6.28 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+ : 393.12 , found 393.12 
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Sodium (E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl)acrylate, sodium salt of 3j 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.14 (s, 1H), 7.95 (d, J = 14.0 Hz, 1H), 7.36 (m, 4H), 7.14 (m, 6H), 6.45 (m, 2H), 3.61 

(s, 3H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 165.2, 159.5, 151.8, 146.7, 141.8, 130.5, 129.4, 126.3, 125.4, 120.8, 115.6, 113.2, 110.4, 

103.6, 56.1.  

 

Anal. Calcd for C23H17N2NaO3 (392.39): C 64.48, H 4.94, N 6.54  

Found: C 64.08, H 5.06, N 6.46 

 

HRMS (ESI) m/z: calc’d for C17H22N2O3 [M+Na]+ : 415.10, found 415.10  
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(E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2-cyanoacrylic acid, 3k 

 

1H-NMR (500 MHz, D2O):  

δ 8.21 (s, 1H), 7.80 (d, J = 10.0 Hz, 1H), 5.97-5.84 (m, 2H), 5.71 (s, 1H), 5.24 (d, J = 17.5 

Hz, 1H), 5.15 (d, J = 10.5 Hz, 1H), 4.67 (s, 1H), 4.30 (d, J = 5.5 Hz, 2H), 3.08-3.04 (m, 

4H), 0.93-0.85 (m, 6H) 

 

13C-NMR (125 MHz, D2O):  

δ 170.74, 159.94, 152.55, 145.89, 133.11, 129.76, 121.35, 117.48, 108.22, 104.88, 97.02, 

94.39, 69.09, 44.51, 12.07 

 

Anal. Calcd for C17H20N2O3 (300.36): C 67.98, H 6.71, N 9.33 

Found: C 67.86, H 6.75, N 9.29 
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7-(dipropylamino)-2-oxo-2H-chromene-3-carboxylic acid, 4c 

 

1H-NMR (500 MHz, DMSO-d6): δ 12.51 (s, 1H), 8.60 (s, 1H), 7.64 (d, J = 9.0 Hz, 1H), 

6.70 (dd, J = 9.0, 2.5 Hz, 1H), 6.58 (s, 1H), 3.40 (t, J = 8.0 Hz, 4H), 1.62-1.55 (m, 4H), 

0.92 (t, J = 7.5 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.21, 160.24, 158.53, 154.12, 150.15, 132.44, 110.95, 108.09, 107.88, 96.80, 52.67, 

20.70, 11.69 

 

Anal. Calcd for C16H19NO4 (289.33): C 66.42, H 6.62, N 4.84 

Found: C 66.54, H 6.76, N 4.91 
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7-(dibutylamino)-2-oxo-2H-chromene-3-carboxylic acid, 4d 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 8.59 (s, 1H), 7.64 (d, J = 9.0 Hz, 1H), 6.78 (d, J = 9.0 Hz, 1H), 6.54 (s, 1H), 3.42 (t, J = 

7.5, 4H), 1.57-1.51 (m, 4H), 1.39-1.33 (m, 4H), 0.931 (t, J = 7.5 Hz, 6H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 165.20, 160.23, 158.51, 154.00, 150.14, 132.46, 110.89, 108.08, 107.86, 96.74, 50.88, 

29.61, 20.22, 14.52 

 

Anal. Calcd for C18H23NO4 (317.39): C 68.12, H 7.30, N 4.41 

Found: C 68.16, H 7.35, N 4.50 
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7-(diallylamino)-2-oxo-2H-chromene-3-carboxylic acid, 4e 

 

1H-NMR (500 MHz, CDCl3):  

δ 12.35 (s, 1H), 8.67 (d, J = 5.0 Hz, 1H), 7.47 (dd, J = 9.0, 3.0 Hz, 1H), 6.70 (d, J = 7.5 

Hz, 1H), 6.59 (s, 1H), 5.90-5.83 (m, 2H), 5.29 (d, J = 10 Hz, 2H), 5.20 (d, J = 17 Hz, 2H), 

4.08 (d, J = 2.5 Hz, 4H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 165.65, 164.52, 157.92, 155.15, 150.73, 132.03, 131.34, 117.77, 111.82, 109.42, 106.73, 

98.16, 53.53 

 

Anal Calc’d for C16H15NO4 (285.30): C 67.36, H 5.30, N 4.91  

Found: C 67.38, H 5.19, N 4.98 
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7-(di(prop-2-yn-1-yl)amino)-2-oxo-2H-chromene-3-carboxylic acid, 4f 

 

1H-NMR (500 MHz, DMSO-d6): δ 8.67 (s, 1H), 7.77 (d, J = 9.0 Hz, 1H), 6.99 (dd, J = 9.0, 

2.5 Hz, 1H), 6.82 (s, 1H), 4.39 (d, J = 2.0 Hz, 4H), 3.28 (t, J = 2.0 Hz, 2H) 

 

13C-NMR (125 MHz, DMSO-d6): 165.21, 160.25, 158.54, 154.12, 150.15, 132.44, 110.95, 

108.10, 107.88, 52.70, 52.67, 20.70, 11.69 

 

Anal. Calcd for C16H11NO4 (281.27): C 68.32, H 3.94, N 4.98 Found: C 68.39, H 3.97, N 

4.86 
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7-(dibenzylamino)-2-oxo-2H-chromene-3-carboxylic acid, 4g 

 

1H-NMR (500 MHz, CDCl3):  

δ 12.31 (s, 1H), 8.69 (s, 1H), 7.48-7.23 (m, 11H), 6.86 (dd, J = 8.5, 1.5 Hz, 1H), 6.67 (s, 

1H), 4.84 (s, 4H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 165.53, 164.24, 157.89, 155.60, 150.75, 135.84, 132.23, 129.46, 128.16, 126.52, 112.02, 

109.79, 107.24, 98.63, 55.03 

 

Anal. Calc’d for C24H19NO4 (385.42): C 74.79, H 4.97, N 3.63  

Found: C 74.87, H 4.56, N 3.84 
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2-oxo-7-(pyrrolidin-1-yl)-2H-chromene-3-carboxylic acid. 4h 

 

1H-NMR (500 MHz, CDCl3):  

δ 12.38 (s, 1H), 8.68 (s, 1H), 7.47 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 7.0 Hz, 1H), 6.44 (s, 

1H), 3.49 (m, 4H), 2.15 (m, 4H) 

 

13C-NMR (125 MHz, CDCl3):  

δ 165.76, 164.56, 158.00, 153.43, 150.72, 132.01, 111.95, 109.06, 105.99, 97.66, 48.48, 

25.55 

 

Anal. Calc’d for C14H13NO4 (259.26): C 64.86, H 5.05, N 5.40  

Found: C 64.21, H 4.87, N 5.12 
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7-(diphenylamino)-2-oxo-2H-chromene-3-carboxylic acid, 4i 

 

1H-NMR (500 MHz, DMSO-d6):  

δ 12.83 (s, 1H), 8.62 (s, 1H), 7.66 (d, J = 8.00 Hz, 1H), 7.46-7.23 (m, 10H), 6.72 (d, J = 

7.0 Hz, 1H), 6.44 (s, 1H) 

 

13C-NMR (125 MHz, DMSO-d6):  

δ 164.93, 158.22, 157.26, 153.94, 149.55, 145.52, 132.12, 130.90, 127.56, 126.99, 115.56, 

112.59, 111.40, 103.32 
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6.11 Western blot of RBE4, MDA-MB-231, WiDr and 4T1-luc2 cell lines 

The cells were grown to confluence in a 75 cm2 culture flask and the growth 

medium was removed. The cells were washed twice with 1X phosphate buffered saline 

(PBS) and lysed by adding 200 µL of SDS boiling buffer (5% SDS, 10% glycerol, and 

60mM tris base and pH to 6.8) and scraped into a 1.6 mL Eppendorf vial. The cells were 

homogenized and denatured at 90oC for 10 minutes and stored at -80oC until further use. 

Cell lysates were equilibrated using BCA protein assay and equal protein amounts (10 µg) 

were loaded on to the polyacrylamide gel along with precision ladder for standard 

electrophoresis at 60 mA for ~1 hour. The proteins were then transferred on to a 

nitrocellulose membrane under 200 mA for 1.5 hours. The membranes were then blocked 

using 10% milk block in PBST and treated with 1o antibody at -4oC overnight. Next day, 

the membranes were washed with PBST and treated with 2o antibody for 1 hour at 37oC. 

The membranes were once again washed and treated with a mixture of luminol 

supersignal® west pico luminol enhancer and supersignal® west pico stable peroxide 

solution for two minutes. The membranes were then imaged and analyzed using Licor 

imager.  
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6.12 MCT1 inhibition using 14C-lactate uptake assay 

Briefly, 2 x 105 cells/mL were seeded in a 24-well plate (500 µL in each well) and 

incubated for 18-24 hours prior to the addition of the test compounds. The growth media 

in the wells was washed twice with HEPES buffer at pH 7.43 (140 mM NaCl, 5 mM KCl, 

2 mM CaCl2, 2 mM MgCl2, and 10 mM HEPES). Test compounds were diluted in a 

solution containing 3 µM 14C-lactic acid sodium salt, 2 µM lactic acid sodium salt, and 

HEPES buffer. Test compounds were added to the wells and incubated for 20 minutes. This 

solution was then replaced with ice-cold cold buffer containing 100 µM CHC and placed 

on ice. The wells were washed three times with cold buffer and a solution of 0.1 M NaOH 

in 5% triton X-100 was added to solubilize the cells. This solution was then transferred to 

a 7 mL plastic scintillation vial that contained 4 mL of ecolite (+). The vials were then 

placed in a Beckman scintillation counter to obtain dpm readings for 14C content. The % 

uptake and % inhibition of lactate were then obtained using % uptake = (Test 

compound/DMSO control)x100, and % inhibition = 100-(% uptake). The % inhibition 

values were then plotted on y-axis and logC were plotted on x-axis in GraphPad Prism and 

analyzed using interpolation of sigmoidal curve in four-parameter logistic logC to obtain 

IC50 values. 
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6.13 MCT4 inhibition using 14C-lactate uptake assay 

Briefly, 4 x 105 cells/mL were seeded in a 24-well plate (500 µL in each well) and 

incubated for 18-24 hours prior to the addition of the test compounds. The growth media 

in the wells was washed twice with HEPES buffer (pH 7.40). Test compounds were diluted 

in a solution containing 3 µM 14C-lactic acid sodium salt, 2 µM lactic acid sodium salt, and 

HEPES buffer. Test compounds were added to the wells and incubated for 1 hour. This 

solution was then replaced with ice-cold cold buffer (pH 7.43) containing 100 µM CHC 

and placed on ice. The wells were washed three times with cold buffer and a solution of 

0.1 M NaOH in 5% triton X-100 was added to solubilize the cells. This solution was then 

transferred to a 7 mL plastic scintillation vial that contained 4 mL of ecolite (+). The vials 

were then placed in a Beckman scintillation counter to obtain dpm readings for 14C content. 

The IC50 values were calculated using same procedure as MCT1 14C-lactate uptake assay. 
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6.14 Sulforhodamine-B assay 

Briefly, 5 x 104 cells/mL (400 µL) were plated in 48-well plates and incubated in 

5% CO2 atmosphere at 37oC for 24 hours. Stock solution of compound was made up at 250 

mM concentration in DMSO. The final concentration of DMSO in the wells were < 0.01%. 

Concentration range of compounds from 250 µM to 0.98 µM was tested by adding 2x 

concentration of test compound to the first well and then the serial dilutions by going from 

well to well. All the compounds were tested in duplicates. After 72 hours of treatment, 

growth media was aspirated, and the cells were washed with 1x PBS. The plates were left 

to be dried at room temperature overnight and SRB assay was performed. 100 µL of 0.5% 

SRB (0.5 g of SRB dissolved in 1% acetic acid) was added in each well and incubated at 

37oC for 45 minutes. SRB solution was removed and the wells were washed three times 

with 1% acetic acid solution and dried at room temperature overnight.  The fixed cells were 

dissolved in 400 µL of 10 mM Tris base (pH 10.2) and absorbance was recorded at 540 nm 

using BioTek Synergy 2 plate reader. The absorbance is directly proportional to the cell 

survival. % Survival was calculated using the formula  

% survival = (absorbance of test compound/absorbance of control) x 100%.  

IC50 was calculated using GraphPad Prism software, by plotting a dose-response 

curve with log[concentration] on x-axis and % survival on y-axis and analyzing via 

nonlinear regression with variable slope.  
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6.15 MTT assay 

Cells (5 x 103 cells/well) were cultured in 96-well plates and incubated for 24 hours. 

Stock solution of compound was made up at 250 mM concentration in DMSO. The final 

concentration of DMSO in the wells were < 0.01%. Concentration range of compounds 

from 250 µM to 0.98 µM was tested by adding 2x concentration of test compound to the 

first well and then the serial dilutions by going from well to well. All the compounds were 

tested in duplicates. After 72 hours of treatment, 10 µL of MTT (5 mM in 1x PBS) was 

added into the wells and the cells were incubated for a period of 4 hours. At this point, the 

conversion of MTT to formazan was quenched by the addition of 100 µL of SDS (1 g of 

SDS dissolved in 0.01 N HCl) and the cells were incubated for further 4 hours. The 

absorbance was recorded at 570 nm using BioTek Synergy 2 plate reader. The absorbance 

is directly proportional to the cell viability. % Survival was calculated using the formula  

% survival = (absorbance of test compound/absorbance of control) x 100%.  

IC50 was calculated using GraphPad Prism software, by plotting a dose-response 

curve with log[concentration] on x-axis and % survival on y-axis and analyzing via 

nonlinear regression with variable slope. 
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6.16 MTT assay in hypoxic conditions 

 Cells (5 x 103 cells/well) were cultured in 96-well plates and incubated for 24 hours. 

After the addition of test compounds, the plates were placed in a hypoxic chamber (flushed 

with 10% CO2, 1% O2 and 89% N2 for 5 minutes) and incubated for 72 hours. The plates 

were processed and IC50 was calculated same as the MTT assay as described in the previous 

page. 
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6.17 Cell cycle analysis using propidium iodide 

5x105 MDA-MB-231 and WiDr cells were seeded in 10 cm culture dishes and 

incubated for 24 hours at 37⁰C in 5% CO2 atmosphere. Cells were then treated with test 

compound at concentrations corresponding to 1X and 2X the IC50 value of cell proliferation 

inhibition as indicated by the MTT assay for 24 hours (one cell cycle). 0.1% DMSO treated 

cells were used as negative control. Cells were then rinsed with cold PBS, trypsinized and 

fixed in 85% ethanol for at least one hour at -20⁰C. Cells were then resuspended in DNA-

staining solution (20 µg/mL propidium iodide (Sigma, Cat. No. P4170, PI), 100µg/mL 

RNase A (Machery-Nagel GmbH & Co., cat. no. R1622S), in PBS containing 0.1% sodium 

citrate and 0.05% Tween (PBST)) and incubated for 30 min at 37⁰C. Cellular PI content 

was then analyzed through flow cytometry using a Becton Dickinson FACSCalibur flow 

cytometer. Doublet-discrimination was performed by gating single cell populations (PI-

width:PI-area). Histograms were generated, and intracellular accumulation of PI resulted 

in fluorescent intensities corresponding to 2N DNA (G0/G1 phase) 4N DNA (G2/M phase), 

and between 2N and 4N DNA (S phase) which were deconvoluted with ModFitLT 5.0 

software. Data shown are representative of at least three independent experiments. 
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6.18 Ethical Considerations for animal studies 

The experimental procedures involving animals that were conducted at the 

University of Minnesota Duluth were in compliance with the U.S. National Institutes of 

Health Guide for Care and Use of Laboratory Animals and approved by the Institutional 

Animal Care and Use Committee at the University of Minnesota (UMN). The remaining 

animal studies were conducted by GenScript Corporation (Piscataway, NJ) according to 

their approved IACUC protocols. The following is the list of IACUC protocols for all the 

animal studies conducted for this thesis. 

Systemic toxicity study in CD-1 mice: IACUC1307-30773A and 1311-31063A (UMN) 

WiDr flank model in BALB/c mice: IACUC075.03 

WiDr chemoprevention study in BALB/c mice: GSIACUC-184115 

Pharmacokinetic study in CD-1 mice: IACUC 003.04 

GL261-luc2 study in C57BL/6J mice: 1312-31108A (UMN) 

MDA-MB-231-luc study using 4g in SCID Beige mice: GS-PAMD1401SN052 

MDA-MB-231-luc flank study using 3j and Dox in NOD SCID mice: GSIACUC-363793 

and GS-PANM1301SN024 

MDA-MB-231-luc, MDA-MB-231-luc + 3T3 MEF WT and MDA-MB-231-luc + 3T3 

MEF KO orthotopic studies using 3j and Dox in NOD SCID mice: IACUC 1411-32085A 

(UMN) 
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6.19 General procedure for systemic toxicity evaluation 

 Mice were procured from Charles River, and acclimatized at room temperature for 

a period of 7 days. The mice were weighed and randomized into groups (n = 6 mice per 

group) based on same average weights. Mice were housed as two mice per cage. One of 

the mice was identified by marking the tail with a black sharpie. Treatment was started via 

i.p. or oral gavage and body weights were monitored for a period of 14-21 days. At the end 

of the study, mice were euthanized using CO2, followed by decapitation.  
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6.20 Anticancer efficacy of compound 3j in MCT1 expressing WiDr flank model 

5 x 106 WiDr cells were suspended in a mixture of 1:1 matrigel-PBS and loaded on 

to a 0.3 mL syringe and the syringe was kept on ice until mice were ready to be injected. 

These cells were then injected subcutaneously onto the right flank of BALB/c nude mice 

and tumors were measured via calipers and the tumor volume was calculated using the 

formula 

𝑉 =  
1

2
× 𝑎 × 𝑏2  

where ‘a’ is the long diameter of the tumor and ‘b’ is the short diameter of the tumor.  Mice 

were assigned into groups (n = 8 mice per group) when the average tumor volume reached 

117 mm3 and the treatment was initiated and continued for a period of 21 days. Tumor 

volume was recorded every 2-3 days and at the end of the study, mice were euthanized, 

and tumors were resected and weighed. The tumor growth inhibition amount was 

determined using the formula  

% 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑖𝑜𝑛 =
(𝐶−𝑇)

𝐶
× 100  

where C is average tumor weight of the control group and T is the average tumor weight 

of the test group.  
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6.21 Chemoprevention study of compound 3j in MCT1 expressing WiDr flank model 

In this study, BALB/c nude mice were injected subcutaneously with 5 x 106 WiDr 

cells and the mice were randomly assigned (n = 8 mice per group) based on average body 

weights and the treatment was initiated on day-6 of tumor inoculation. On day-21 of tumor 

inoculation, the study was terminated, and tumors were resected and weighed. During the 

study, tumor volume was recorded every 2-3 days via caliper measurements. 

 

6.22 Anticancer efficacy of MCT1 inhibitor in 4T1-luc2 flank model 

 In this study, 1 × 105 4T1-luc2 cells in a mixture of 1:1 PBS-matrigel were 

implanted on the right flank of BALB/c mice. The mice were randomly assigned into 

groups on day-3 of tumor inoculation and the treatment was initiated on the same day and 

continued for a period of 21 days. During this time, tumor volumes were recorded every 2-

4 days via caliper measurements.  
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6.23 Evaluation of pharmacokinetic parameters in CD-1 mice 

For this study, 60 CD-1 mice were separated into 2 groups with n = 30 mice per 

group, for intraperitoneal (ip) and intragastrical (oral gavage) administration of compound 

3j. The mice in these two groups were further assigned into 10 groups with n = 3 mice per 

each time point for blood collection via orbital sinus method. All these mice were injected 

with 100 mg/Kg of compound 3j via ip and oral gavage in groups 1 and 2, respectively. 

Blood collection times after the treatment of compound was 0, 0.083, 0.25, 0.5, 1, 2, 4, 6, 

8, 24 hours. After extracting blood in anticoagulant tubes, the mice were euthanized 

immediately. Blood samples were maintained at room temperature for 30 minutes and then 

placed in ultracentrifuge with 10,000 rpm for 5 minutes at 4oC. After plasma was separated 

from the blood samples, the resulting serum was then used immediately for analysis of 

concentration of 3j using LC-MS/MS or stored at -80oC. Phamacokinetic parameters 

maximum plasma concentration (Cmax), time of maximum drug concentration (Tmax), half-

life of the drug (t1/2), area under the curve (AUC0-last), apparent total drug clearance (CL/F), 

etc. were then obtained using standard non-compartmental model. 

   LC-MS/MS method was used for analysis of compound 3j in mouse plasma. The 

HPLC system included ternary pumps (model LC-20AD, Shimadzu), a solvent degasser 

(model DGU-20A5, Shimadzu), an autosampler (model SIL-20AC, Shimadzu), a column 

oven (model CTO-20A) and a system controller for communication (model CBM-20A, 

Shimadzu). The conditions of HPLC are shown in Table 6a. 
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Table 6a: HPLC conditions of analyte and internal standard (diazepam) 

Column ACE phenyl column (4.6 × 50 mm, 5 µm, S/N: A63134) 

Mobile 

Phase 

Time 

(min) 

Phase A Phase B 

0.01~0.50 80% 20% 

0.50~1.50 80→10% 20→90% 

1.50~2.50 10% 90% 

2.50~2.70 10→80% 90→20% 

3.70-3.50 80% 20% 

Total 

flow 

1.0 mL/min 

Autosampler 

Cooler 

Temp. 

10oC 

Oven Temp. 35oC 

Valco Valve 

Total Time (min) Position 

1.0 B 

3.0 A 

RT (min) 

3j: 2.34 min; 

Diazepam:   2.23 min. 
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The analyte was detected and quantified using a triple quadruple mass spectrometer 

(API4000, Applied Biosystems) equipped with a Turbo IonsprayTM interface. The mass 

spectrometer was operated in the positive ionization mode with multiple reactions 

monitoring (MRM). Analyst® 1.5 was used to control the mass spectrometer and to 

analyze and process data. 
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6.24 Protein binding studies 

 The assay was performed in a 96-well format in a dialysis block constructed from 

Teflon. The dialysate compartment was loaded with PBS (pH 7.4) and the sample side was 

loaded with 1:1 mixture of test compound (10 μM) and protein matrix (human bovine 

albumin). Protein matrix without test compound (without dialysis) was considered as 

control. The dialysis plate was sealed and incubated at 37 °C for 4 h. Samples from each 

compartment were diluted with PBS, followed by addition of acetonitrile and centrifuged. 

The supernatants were analyzed using HPLC-MS/MS analysis. The percent of test 

compound bound to proteins and the recovery were calculated as  𝑃𝑟𝑜𝑡𝑒𝑖𝑛 𝑏𝑖𝑛𝑑𝑖𝑛𝑔 % =

𝑎𝑟𝑒𝑎𝑝− 𝑎𝑟𝑒𝑎𝑏

𝑎𝑟𝑒𝑎𝑝
 × 100 and 𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 % =

𝑎𝑟𝑒𝑎𝑝+ 𝑎𝑟𝑒𝑎𝑏

𝑎𝑟𝑒𝑎𝑐
 × 100, where areap = peak area of 

analyte in the protein matrix, areab = peak area of analyte in the assay buffer and areac = 

peak area of analyte in control sample. The recovery determination serves as an indicator 

of reliability of the calculated protein binding value.  

 

6.25 Caco-2 permeability studies 

 Briefly, Caco-2 cells were seeded at 1 x 105 cells/cm2 in 96-well MultiscreenTM 

plates (Millipore). Permeability assays were performed with the cells at day 21-25 post-

seeding. Test compounds (10 μM in HEPES pH 7.4) were added to the donor side and was 

incubated at 37 °C with gentle shaking for 60 min for A-B and 40 min for B-A assay. 

Samples were aliquoted from the donor side at time zero and the end point, and from the 

receiver side at the end point. Samples were analyzed by HPLC-MS/MS using selected 

reaction monitoring. Fluorescein permeability was assessed in the A-B direction at pH 7.4 
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on both sides after the permeability assay with test compounds. The cell monolayer with a 

fluorescein permeability of less than 1.5 x 10-6 cm/s was considered intact. The apparent 

permeability coefficient (Papp) of the test compound and its recovery were calculated as 

𝑃𝑎𝑝𝑝(cm/s) =
𝑉𝑅× 𝐶𝑅,𝑒𝑛𝑑

Δt
×

1

𝐴×(𝐶𝐷,𝑚𝑖𝑑−𝐶𝑅,𝑚𝑖𝑑)
 and Recovery(%) =

𝑉𝐷× 𝐶𝐷,𝑒𝑛𝑑+𝑉𝑅×𝐶𝑅,𝑒𝑛𝑑

𝑉𝐷×𝐶𝐷0
×

100, where A = surface area of the cell monolayer (0.11 cm2), C = concentration of the test 

compound expressed as peak area, D = donor and R = receiver, 0, mid, and end denote time 

zero, mid-point, and end of the incubation, Δt = incubation time and V = volume of the 

donor or receiver. 

 

6.26 Microsomal stability studies 

 Test compounds were pre-incubated with pooled liver microsomes in phosphate 

buffer (pH 7.4) for 5 min in a 37ºC shaking water bath. The reaction was initiated by adding 

10mM NADPH and incubated for 0, 15, 30, 45, and 60 min and the reaction was quenched 

by adding acetonitrile/methanol. Samples were then mixed vigorously, centrifuged and 

supernatants were analyzed using HPLC-MS/MS where the peak areas corresponding to 

the test compound were recorded. The compound remaining was calculated by comparing 

the peak area at each time point to time zero. The half-life was calculated from the slope 

of the initial linear range of the logarithmic curve of compound remaining (%) vs. time, 

assuming first order kinetics. The intrinsic clearance (CLint) was calculated from the half-

life using the following equation.  

𝐶𝐿𝑖𝑛𝑡 (µL/min/mg protein) =
0.693

𝑇1
2

 ×𝑝𝑟𝑜𝑡𝑒𝑖𝑛 𝑐𝑜𝑛𝑐.
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6.27 Seahorse XFe96® assessment of glycolysis and mitochondrial respiration 

20,000 cells/well were plated in 96-well Seahorse plates (Agilent, part no. 101085-

004) and incubated 16-24 hours at 37⁰C at 5% CO2. Flux pack sensors (Agilent, part no. 

102416-100) were hydrated with XF calibrant solution (Agilent, part no. 100840-000) 

overnight at 37⁰C in a non-CO2 incubator. Serum free assay media were prepared using 

Seahorse base medium (Agilent, part no. 102353-100) with the addition of glutamine 

(1mM) and sodium pyruvate (1mM) for glycolysis stress test, whereas for mitochondrial 

stress test, glucose (10mM), glutamine (1uM), and sodium pyruvate (1mM) were used. The 

pH of these media was adjusted to 7.4 and warmed to 37oC. An 8X stock concentration of 

test compounds was prepared for microplate injections in port A. Stock solutions of 

glucose, oligomycin, and 2-deoxyglucose (Chem Impex) were prepared such that their final 

working concentrations are 10mM, 1μM and 50mM, respectively, for glycolysis stress test. 

For mitochondrial stress test, stock solutions of oligomycin, FCCP, rotenone+antimycin A 

were prepared such that their final concentrations are 1 µM, 0.25-1 µM, and 0.5µM, 

respectively. Under glycolytic stress test, the cells were treated with test compounds, 

followed by the addition of glucose, oligomycin and 2-deoxyglucose at 14.29, 33.8, 53.35, 

72.87 minutes, respectively. Under mitochondrial stress test, cells were treated with test 

compounds, followed by the addition of oligomycin, FCCP, and rotenone+antimycin A, at 

14.29, 33.8, 53.35, 72.87 minutes, respectively. Extracellular acidification rates (ECAR) 

and oxygen consumption rates (OCR) were recorded in real-time for glycolysis and 

mitochondrial stress tests, respectively, using a Seahorse XFe96® analyzer (Agilent). The 
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parameters related to glycolytic and mitochondrial functions were calculated utilizing the 

Wave 2.4.0 software (Agilent) according to manufactures protocol. 

 

6.28 Florescence microscopy study 

The cells (2 mL) were seeded at a concentration of 5x104 cells/mL in a 2 cm MatTek 

(MatTek Corp, #P35G010C) culture dish with glass bottom and were incubated at 37oC in 

5% CO2 atmosphere for 48 hours. The growth medium was removed and 2 mL of fresh 

growth medium with compound 3j at IC50 concentration was added to the culture dish. The 

cells were incubated for a period of one hour, and the medium was aspirated and washed 

once with 5% FBS in 1X PBS solution, and further 2 mL of 5% FBS was added to the 

culture dish. The cells were then imaged to observe the localization of compound in the 

cells. In the case of MitoTracker Red CMXROS (Invitrogen, M7512), the compound was 

incubated for 45 minutes, and a 20 µL solution of mitotracker red (100 nM) was added to 

the cells and further incubated for 15 minutes and cells were washed and replaced with 5% 

FBS solution for imaging.  
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6.29 Anticancer efficacy in MDA-MB-231-luc flank xenograft tumor model 

In this study, NOD SCID mice were injected subcutaneously with 1 x 107 MDA-

MB-231-luc cells and the mice were randomly assigned into groups (n = 6 mice per group) 

when the average tumor volumes reached 195-280 mm3 and the treatment was initiated. 

After a period of 20 day-treatment, the study was terminated, and tumors were resected 

and weighed. During the study, tumor volume was recorded every 2-3 days via caliper 

measurements.  
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6.30 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

After procuring mice, they were acclimatized for a week. Mice were anesthesized 

under 5% isoflurane and surgical incision site was scrubbed with a disinfective agent 

betadine starting from the center of the site and moving outwards and repeated with 70% 

ethanol and repeated until the surgical site is free of debris. Then, a 5 mm dorsoventral 

incision is made through the skin close to the nipple of the 4th mammary gland. The skin 

is reflected and 5x106 MDA-MB-231-luc cells (in 50 μL of 1:1 PBS and Matrigel) were 

transplanted in the gland. The incision then was closed with wound clips in skin and mice 

were injected with 5 mg/kg ketofen (sc) at the end of surgery, and three days post-surgery. 

Mice were monitored for three days post-surgery for wound healing at the site of incision, 

food and water intake, bedding, grooming, posture, etc. Once the tumors reached ~150 

mm3 average volume, mice were randomized into groups (n = 6 mice per group) and the 

treatment was initiated. Compounds 3j and Dox were administered intraperitoneally for a 

period of 9 days. Tumor volumes were recorded via caliper measurements every 2-3 days. 

 

6.31 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

co-injected with 3T3 MEF WT cells 

In this study, a mixture of 5x106 MDA-MB-231 cells and 1 x 106 cells 3T3 MEF 

WT cells (in 50 μL of 1:1 PBS and Matrigel) were implanted via orthotopic surgery as 

described above. Mice were assigned into groups (n = 6 mice per group) and the treatment 

was started when average tumor volumes reached ~140 mm3 and the treatment was 
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continued for 13 days. Tumor volumes were recorded via caliper measurements every 2-3 

days. 

 

6.32 Anticancer efficacy of lead MCT inhibitor 3j in MDA-MB-231-luc orthotopic model 

co-injected with 3T3 MEF KO cells 

In this study, a mixture of 5x106 MDA-MB-231 cells and 5 x 105 cells 3T3 MEF 

KO cells (in 50 μL of 1:1 PBS and Matrigel) were implanted via orthotopic surgery as 

described above. Mice were assigned into groups (n = 6 mice per group) and the treatment 

was started when average tumor volumes reached ~200 mm3 and the treatment was 

continued for 11 days. Tumor volumes were recorded via caliper measurements every 2-3 

days. 

 

6.33 Statistical analysis 

 For in vitro Seahorse based assays, repeated measures one-way ANOVA was used 

to calculate statistical significance. For all in vivo mouse models, Mann-Whitney’s test was 

used to estimate statistical significance between treatment and control groups. GraphPad 

Prism 7.0 software was used to generate all the graphs presented in this thesis. *, P < 0.05, 

**, P < 0.01, ***, P < 0.001, ****, P < 0.0001.  
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Representative IC50 graphs for MCT1 inhibition: 
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(E)-2-cyano-3-(4-(diethylamino)phenyl)acrylic acid, 2n  
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(E)-2-cyano-3-(4-(dipropylamino)phenyl)acrylic acid, 2o 
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(E)-2-cyano-3-(4-(dibutylamino)phenyl)acrylic acid, 2p 
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(E)-2-cyano-3-(4-(diisobutylamino)phenyl)acrylic acid, 2q 
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(E)-2-cyano-3-(4-(dipentylamino)phenyl)acrylic acid, 2r 
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(E)-2-cyano-3-(4-(dihexylamino)phenyl)acrylic acid, 2s 
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(E)-2-cyano-3-(4-(diallylamino)phenyl)acrylic acid, 2t 
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(E)-2-cyano-3-(4-(di(prop-2-yn-1-yl)amino)phenyl)acrylic acid, 2u 
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(E)-2-cyano-3-(4-(dibenzylamino)phenyl)acrylic acid, 2v 
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(E)-2-cyano-3-(4-(pyrrolidin-1-yl)phenyl)acrylic acid, 2w 
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(E)-2-cyano-3-(4-(piperidin-1-yl)phenyl)acrylic acid, 2x 
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(E)-2-cyano-3-(4-(diphenylamino)phenyl)acrylic acid, 2y 
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(E)-2-cyano-3-(4-(dipropylamino)-2-methoxyphenyl)acrylic acid, 3a 
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(E)-2-cyano-3-(4-(dibutylamino)-2-methoxyphenyl)acrylic acid, 3b 
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(E)-2-cyano-3-(4-(diisobutylamino)-2-methoxyphenyl)acrylic acid, 3c 
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(E)-2-cyano-3-(4-(dipentylamino)-2-methoxyphenyl)acrylic acid, 3d 
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3e 
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3f 
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(E)-2-cyano-3-(4-(dibenzylamino)-2-methoxyphenyl)acrylic acid, 3g 
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(E)-2-cyano-3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)acrylic acid, 3h 
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(E)-2-cyano-3-(2-methoxy-4-(piperidin-1-yl)phenyl)acrylic acid, 3i 
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(E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl)acrylic acid, 3j 
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(E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2-cyanoacrylic acid, 3k 
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Representative IC50 graphs for MCT4 inhibition: 

 

(E)-2-cyano-3-(4-(dipropylamino)-2-methoxyphenyl)acrylic acid, 3a 
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(E)-2-cyano-3-(4-(dibutylamino)-2-methoxyphenyl)acrylic acid, 3b 

- 2 - 1 0 1 2 3 4

0

5 0

1 0 0

l o g [ c o n c ]  n M

%
 i

n
h

ib
it

io
n

1 3 . 6 8

 

  



 

309 

 

 

(E)-2-cyano-3-(4-(diisobutylamino)-2-methoxyphenyl)acrylic acid, 3c 
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(E)-2-cyano-3-(4-(dipentylamino)-2-methoxyphenyl)acrylic acid, 3d 
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3e 
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(E)-2-cyano-3-(4-(diallylamino)-2-methoxyphenyl)acrylic acid, 3f 
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(E)-2-cyano-3-(4-(dibenzylamino)-2-methoxyphenyl)acrylic acid, 3g 
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(E)-2-cyano-3-(2-methoxy-4-(pyrrolidin-1-yl)phenyl)acrylic acid, 3h 

- 2 - 1 0 1 2 3 4

0

5 0

1 0 0

l o g [ c o n c ]  n M

%
 i

n
h

ib
it

io
n

5 2 . 7 6

 

  



 

315 

 

 

(E)-2-cyano-3-(2-methoxy-4-(piperidin-1-yl)phenyl)acrylic acid, 3i 
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(E)-2-cyano-3-(4-(diphenylamino)-2-methoxyphenyl)acrylic acid, 3j 
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(E)-3-(2-(allyloxy)-4-(diethylamino)phenyl)-2-cyanoacrylic acid, 3k 
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NMR SPECTRA 
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