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Chapter 1:  Introduction 
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Chronic rhinosinusitis: epidemiology, etiology, and treatment 

Epidemiology 

 Rhinosinusitis (RS) is an inflammatory syndrome affecting 6-15% of the general 

population (Fokkens et al., 2020; National Center for Health Statistics, 2019). RS 

encompasses a wide range of sinonasal symptoms including nasal congestion or discharge, 

facial pain or pressure, loss of the sense of smell, polyposis, mucopurulent discharge, and 

edema or obstruction of the sinuses and nasal cavity (Fokkens et al., 2020; Orlandi et al., 

2016). Chronic rhinosinusitis (CRS) is the persistence of symptoms beyond 12 weeks and 

has a prevalence of 5% of the general population (Hoggard et al., 2017). The costs of CRS 

are substantial at the individual and population levels (Bhattacharyya, 2011). This 

debilitating disease causes a significant decline in quality of life, including a reduction in 

physical wellbeing, and loss of the ability to work (Fokkens et al., 2020; Orlandi et al., 

2016). Individuals with CRS experience a significantly greater number of primary care 

visits compared to the general population (Bhattacharyya, 2011). The estimated economic 

burden of CRS in the United States to be $22 billion USD in direct and indirect costs, 

translating to $8,200-$10,500 per patient (Smith et al., 2015). 

Etiology 

 Although CRS has been researched for decades, its etiology remains unclear. Early 

studies favored an infection model of disease, whereby a pathogenic microorganism is 

causal to CRS. Until recently, the sinuses were considered sterile, and any presence of 

microorganisms to be pathogenic (Cook and Haber, 1987; Hamad et al., 2009; Sobin et al., 

2009). A 1981 study by Itzhak Brook was the first the document aerobic and anaerobic 
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microbiology in the healthy human sinuses. Since then, it is now accepted that microbial 

life exists in the upper respiratory tracts of individuals with and without respiratory disease. 

Additionally, the prevalence of canonical pathogens such as Staphylococcus aureus in the 

upper respiratory tract of up to 50% healthy individuals without any sinonasal symptoms 

has been confounding (Bassis et al., 2014; Gorwitz et al., 2008; Wertheim et al., 2005). 

More recently, hypotheses implicating genetic, atopic, and inflammatory processes in 

immune barrier dysfunction have become more prominent (Hoggard et al., 2017; Lam et 

al., 2015). The most inclusive models suggest both barrier disruption and microbial 

pathogenesis to be intertwined in the development of CRS, however mechanisms of host-

microbial feedback in the progression to a state of chronic inflammation have not been 

characterized. 

 Genetic susceptibility constitutes at least one basis for CRS development. Several 

syndromes with established genetic components have CRS as a clinical consequence, 

including primary ciliary dyskinesia, and cystic fibrosis (CF) (Hsu et al., 2013). It is 

estimated that 90% of people with CF have CRS, making it an important comorbidity to 

study in this population (Chaaban et al., 2013; Hamilos, 2016). Indeed, even carriers of 

mutations in the CFTR gene (whose gene product absence or dysfunction is responsible 

for CF) are at higher risk of CRS development (Wang et al., 2005), underlying the 

importance of homeostatic mechanisms maintaining barrier function at respiratory mucosal 

surfaces. Sinonasal pathogen colonization has been linked to lung infections that are the 

primary cause of most morbidity and mortality in the CF population, suggesting both 

microbial and inflammatory processes in the sinuses are integral to the health of a unified 



 4 

airway (Illing and Woodworth, 2014). Chapters 2 and 3 of this dissertation focus on CF-

associated CRS, and explore the relationship between pulmonary and CRS microbiota. 

 Aside from genetic factors, the majority of hypotheses for CRS etiology focus on 

prolonged abnormal inflammatory response, responsiveness to treatments, and associated 

environmental stimuli such as allergens, toxins, and microorganisms. The most frequently 

used method for categorizing CRS is based on the presence or absence of nasal polyps, 

termed CRSwNP and CRSsNP, respectively (Fokkens et al., 2020). This is the context in 

which most current etiological theories are framed, however, there is no current 

explanation that completely supports the division of cases into these two subtypes. 

Regardless, obstruction of the upper airway passages is universal to both CRSwNP and 

CRSsNP. 

 Efforts to define disease “endotypes” consider the additional involvement of 

immune barrier dysfunction in CRS (Fokkens et al., 2020; Lam et al., 2015). Defects in 

physical properties of the mucosal layer, mucociliary clearance, antimicrobial peptide 

production and cell surface receptor function, and integrity of epithelial cell tight junctions 

are considered in this model, and it is most inclusive to CRSwNP and CRSsNP. Allergy 

and atopic disease may likely constitute another disease endotype, however the association 

is still poorly defined (Marcus et al., 2019). 

 Finally, there is consensus that bacterial infection is an integral component to 

pathogenesis in CRS. It is still unclear whether the dysfunctional inflammatory response, 

sinus blockage, and reduced mucociliary clearance in CRS result in, or are caused by shifts 

in sinus bacteria. Current hypotheses include single pathogen virulence (e.g. 
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Staphylococcus aureus superantigen expression), bacterial biofilm formation, and 

microbiome dysbiosis (Foreman et al., 2011; Hoggard, Biswas, et al., 2017; Ou et al., 

2014). It is likely the development of CRS is multifactorial, involving both infection and 

host-inflammatory components. 

Treatment 

 Antibiotics are a mainstay of rhinosinusitis (RS) treatment. In a five-year study, 

antibiotics were prescribed in 80% of all outpatient visits with a diagnosis of RS, and 50% 

of CRS visits (S. Smith et al., 2013). During that period RS/CRS made up 11% of all adult 

clinic visits resulting in an antibiotic prescription, the highest of any other measured 

diagnosis (S. Smith et al., 2013). These data are remarkable, because a number of medical 

consensus reports do not recommend antibiotics as part of standard clinical care for RS 

(Fokkens et al., 2020; Orlandi et al., 2016), and the use of antibiotics in CRS is 

controversial (Hoggard, Mackenzie, et al., 2017). Several clinical trials have shown limited 

evidence for the efficacy of antibiotics in the treatment of CRS. One review found that 

antibiotics benefitted the patient only when prescribed post-surgery (Lim et al., 2008). 

Other studies have shown antibiotics improve patient outcomes only in culture-directed 

scenarios where a known antibiotic-susceptible pathogen was identified, and symptoms 

such as purulent secretions, site pain, and fever point to acute bacterial infection (Huang 

and Govindaraj, 2013; Lim et al., 2008). Hypotheses for reduced efficacy of antibiotic 

treatment in CRS include inflammation-mediated blockage of the sinuses - reducing access 

to the infection site, polymicrobial biofilm formation, and antibiotic resistance mechanisms 

(Kennedy and Borish, 2013).  
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 In contrast to current recommendations for antibiotic treatment of CRS, there is 

evidence for the efficacy of treatments that reduce inflammation and relieve sinonasal 

blockage. Topical steroids and hypertonic saline rinses have both been associated with CRS 

symptom relief (Huang and Govindaraj, 2013; Rudmik et al., 2012). Functional endoscopic 

sinus surgery (FESS) employed to remove polyps, physically debride the sinuses, and open 

up the sinonasal cavity has also been shown to have largely positive outcomes for CRS 

patients who have failed prior medical interventions (Chester et al., 2008). The higher rates 

of effectiveness of these treatments underscores the convergence of etiological hypotheses 

on sinus blockage and inflammation as major drivers of this disease.  

 The high prevalence and heterogeneity of CRS call for the development of new 

treatments. One concern is the contribution of antibiotic use for RS and CRS to the global 

public health issue of antibiotic resistance, however clinical perspectives on antibiotic use 

for the treatment of RS and CRS are beginning to change (Essack and Pignatari, 2013; 

Kennedy and Borish, 2013). Although more proven, FESS is an invasive procedure, and 

between 17-25% of CRS patients will require further surgical treatment within 10 years of 

undergoing FESS (T. L. Smith et al., 2019). This thesis presents an improved 

understanding of the microbial ecology in CRS, which may guide the development of more 

strategic treatment of pathogenic bacteria in CRS. 
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Bacteriology of Chronic Rhinosinusitis 

The Bacterial contribution to CRS 

 Unifying all potential causes of CRS is the resulting mucus stasis, which contrasts 

the constant movement of mucus out of the healthy respiratory system. Mucociliary 

clearance, facilitated by the synchronized beating of cilia lining the pseudostratified 

epithelium of the airways, allows the constant movement of particulates - including 

microorganisms - to be shuttled out of the airways. In CRS, this process becomes 

dysfunctional, leading to microenvrionmental perturbations that both impact and are 

potentially influenced by microorganisms present in this niche. Bacterial proliferation and 

virulence, polymicrobial biofilm formation, or changes in the diversity of bacteria 

(presence and abundance), are all considered potential pathogenic mechanisms in CRS that 

are not mutually exclusive (Hoggard, Mackenzie, et al., 2017). While the bacteriology of 

healthy and CRS sinuses is increasingly well described, the role of bacteria in CRS 

pathogenesis remains unclear, and our ability to understand the disease is constrained when 

observations are limited to a single timepoint in a cross-sectional study design. 

 

Early culture work 

 Early culture-based studies contextualized any bacterial presence in the sinuses to 

be pathogenic, and often focused on the recovery and in vitro characterization of a 

causative pathogenic organism. Bacteria commonly recovered in these studies included 

Staphylococcus aureus, Moraxella spp., Haemophilus influenzae, and Pseudomonas 

aeruginosa (Hoggard, Mackenzie, et al., 2017). These organisms remain the most 
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frequently identified pathogens in CRS by culture, however, numerous culture-based 

surveys have expanded our knowledge of sinus-associated bacteria to include more 

members of the aerobic and facultative anaerobic genera Staphylococcus, Haemophilus, 

Pseudomonas, Streptococcus, and Corynebacterium (Bhattacharyya and Kepnes, 1999; 

Brown et al., 1998; Finegold et al., 2002; Hauser et al., 2015; Kaspar et al., 2015; Nadel et 

al., 1998). A study by Kaspar et al. found 139 different bacterial species in a cohort of 16 

non-CRS and 18 CRS patients, and showed Streptococcus epidermidis, S. aureus, 

Propionibacterium acnes, Propionibacterium avidum, Propionibacterium granulosum, 

Corynebacterium accolens, Corynebacterium tuberculostearicum, and Finegoldia magna, 

comprised the most frequently isolated organisms, regardless of disease state (Kaspar et 

al., 2015). The greatest diversity was seen in the genus Corynebacterium, with 23 different 

species identified. The study stressed a lack of bacterial identification associated with CRS 

status, and confirmed high inter-subject variability seen in other studies. Indeed, 

asymptomatic prevalence of S. aureus in the sinonasal cavity of adults is estimated ~50% 

(Bassis et al., 2014; Gorwitz et al., 2008; Wertheim et al., 2005). Occurrence of these 

organisms in both healthy and CRS subjects suggests that the potential for virulence of any 

single organism depends on factors controlled by the infection microenvironment such as 

available nutrients and co-colonizing organisms. These parameters are difficult to 

approximate in vitro. 

 In an effort to describe bacteriology unique to CRS, a hypothesis emerged that 

anaerobic bacteria were prevalent and associated with pathogenesis. Besides the 

recognized inflammation and reduction in mucociliary clearance, characterization of the 



 9 

physical and chemical aspects of the CRS sinus environment, including oxygen 

consumption by aerobic organisms and innate immune cells, hypoxia-induced mucus 

hypersecretion, and increased sinus pressure, support the idea that the CRS sinuses provide 

a low-oxygen niche for anaerobe proliferation. The association of anaerobes with chronic 

infections is not unprecedented and has been described at other epithelial sites. For 

example, Flynn et al. demonstrated mucin-degrading consortia can be isolated from CF 

sputum, and mucin-degradation byproducts can augment growth of P. aeruginosa (Flynn 

et al., 2016). Additionally, in chronic wounds, anaerobe co-occurrence with common 

wound pathogens such as S. aureus has also been described (Choi et al., 2018; Wolcott et 

al., 2016). 

 Several studies support a role for anaerobic bacteria in CRS. In a 2011 review, 18 

studies using culture-based techniques found that anaerobes comprised 8-93% of isolates 

from 32-100% of patients tested (Brook, 2011). Variability in recovery may be the result 

of differences in sampling and/or culture technique, but also may indicate that the presence 

of anaerobic bacteria may have a temporal relationship with CRS disease progression. In 

one of the only longitudinal microbiology surveys of CRS to date, Brook and colleagues 

evaluated sinus aspirates in five patients with repeated failures of antibiotic management 

over the course of 34-50 days, nearing the threshold for defined chronic disease (12 weeks) 

(I Brook et al., 1996). Results suggested that failure to respond to antibiotic therapy was 

associated with the presence of antibiotic resistant aerobic bacteria, and the emergence of 

Fusobacterium nucleatum, pigmented Prevotella, Porphyromonas spp., and 

Peptostreptococcus spp. in the subsequent aspirate. Symptoms in these patients were only 
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resolved through the administration of an antibiotic cocktail with activity against these 

organisms, or surgical sinus drainage. In one of the most detailed studies of the diversity 

of anaerobic organisms in CRS, Finegold and colleagues found that while antibiotic 

treatment failure was more associated with aerobic bacteria S. aureus and P. aeruginosa, 

the recurrence of CRS symptoms after successful treatment were twice as frequent when 

anaerobes were present at greater than 103 colony forming units (Finegold et al., 2002). 

Interestingly, Brook and Frazier found that anaerobes were associated with CRS patients 

who had not had previous sinus surgery (Itzhak Brook and Frazier, 2001). Taken together, 

these results suggest that selective pressures exist in the establishment of CRS that promote 

growth of anaerobic bacteria. Without surgical management anaerobes may establish 

synergistic polymicrobial communities that become difficult to eradicate.  

 Similar to the aerobic culture results, differential identification of anaerobes 

associated with CRS is still confounded by their regular isolation from non-CRS sinuses. 

Kasper et al. described isolation of species from Finegoldia, Fusobacterium, Prevotella, 

Veillonella, Anaerococcus, Parvimonas, Clostridium, and Peptoniphilus from the sinuses 

regardless of CRS status (Kaspar et al., 2015). The high similarity of bacterial taxa found 

in both CRS and non-CRS sinuses calls for new approaches to determine their pathogenic 

contribution of bacteria in this niche. 

 

The Sequencing Perspective 

 Clinical culture remains the gold standard for pathogen identification and guidance 

of antibiotic administration in sinusitis cases, however, clinical cultures fail to grow 
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bacteria in up to 45% of CRS cases, suggesting that cultivability is a barrier to bacterial 

identification (Hauser et al., 2015; Mantovani et al., 2010). Use of culture-independent 

methods that depend on nucleic acids for identification of microorganisms relieves the 

culture constraint and is demonstrably better at capturing bacterial diversity among human-

associated microbiota. A frequently used method of molecular identification is targeted 

sequencing of the variable regions of the 16S rRNA gene, which are able to 

phylogenetically differentiate bacteria. In CRS, 16S rRNA gene sequencing (16S) 

identifies up to an order of magnitude greater bacterial taxa compared to culture alone 

(Bassiouni et al., 2015; Hauser et al., 2015; Ramakrishnan et al., 2015). Even in the 

ambitious culture-based study by Kasper et al., 16S recovered more unique bacterial taxa, 

albeit species resolution was accomplished less often. This increased ability to identify 

bacteria in the CRS niche allows for better approximation of bacterial diversity.  

 In agreement with culture-based studies, 16S surveys demonstrate high interpatient 

variability in microbial community composition and identify the most prevalent genera in 

sinus communities regardless of disease status are Staphylococcus, Corynebacterium, and 

Propionibacterium. Without the constraint of cultivation, detection of anaerobic bacteria 

in the sinuses is common in molecular surveys and are detected in both CRS and non-CRS 

samples (Hoggard, Mackenzie, et al., 2017). Despite many attempts at using these high-

resolution techniques to compare CRS to non-CRS microbiota, no strong patterns have 

emerged. When 16S genes are quantitated, there is no significant difference in gene copy 

number between CRS and non-CRS subjects, suggesting that increased bacterial load 

cannot explain pathogenesis completely in CRS. Several studies have shown that sinus 
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bacterial communities demonstrate a spectrum of diversity with CRS microbiota generally 

considered to be less diverse than non-CRS, however the significance of this comparison 

varies (Abreu et al., 2012; Biswas et al., 2015; Feazel et al., 2012; Ramakrishnan et al., 

2015). In two separate studies, Ramakrishnan et al. found lower diversity communities to 

be associated with comorbidities asthma and purulent sinus secretions, while cigarette 

smoking was associated with lower diversity in both non-CRS and CRS subjects. 

Furthermore, patients whose samples exhibited higher bacterial diversity had better 

outcomes after surgery (Ramakrishnan et al., 2015; Ramakrishnan and Frank, 2015). 

Currently, the description of bacterial diversity has had limited value in differentiating the 

bacterial communities of CRS from non-CRS. These data indicate, however, that use of 

patient clinical parameters, coupled with longitudinal sampling and larger cohorts are 

promising ways of stratifying CRS disease for more informative diversity comparisons. 

 Molecular surveys have also been used to identify associations of individual 

organisms with CRS. Abreu et al. used the 16S-based PhyloChip approach to show 

increased relative abundance of Corynebacterium tuberculostearicum in CRS. 

Importantly, this is the only study of CRS microbiota to corroborate their findings in vivo. 

In a murine model of CRS, C. tuberculostearicum inoculation in animals with antibiotic-

depleted sinus microbiota exhibited goblet cell hyperplasia - a common indicator of sinus 

pathology (Abreu et al., 2012). In contrast, another study found C. tuberculostearicum to 

be associated with better FESS outcomes and milder disease compared to S. aureus 

(Ramakrishnan et al., 2015). In a study by Cope et al., samples clustered into subgroups 

based on the dominance of either Streptococcaceae, Pseudomonadaceae, 
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Corynebacteriaceae, or Staphylococcaceae, with non-CRS subjects only appearing in 

clusters dominated by Streptococcaceae and Corynebacteriaceae (Cope et al., 2017). 

Interestingly, several studies have now demonstrated a reciprocal relationship between S. 

aureus and Corynebacterium spp. abundance, and antagonistic interactions in vitro (Lina 

et al., 2003; Mackenzie et al., 2017; Ramsey et al., 2016; Yan et al., 2013). Pathogenic 

mechanisms may not be revealed through bacterial identification alone.  

 Given the results of both culture-dependent and independent surveys, it is apparent 

that the contribution of sinus microbiota to chronic disease is complicated. The high 

variability seen in CRS necessitates stratification of the disease in clinically meaningful 

ways. To this end, Chapters 1 and 2 contribute much needed molecular surveys of sinus 

and lung microbiota in CF-specific CRS. Conclusions made from recent studies discussed 

in this section are (a) the mere detection of a suspected pathogenic bacterium in the sinuses 

is not necessarily associated with disease, and (b) high interpatient variability in both health 

and disease. These conclusions serve to point research objectives in a new direction that 

explores ecological parameters of the CRS microenvironment. These include bacterial 

community facilitated functions that may loosely be related to taxonomy but have a large 

impact on disease. 
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New hypotheses: Mucin-microbe interactions in CRS 

 Mucus is a viscous secreted gel matrix that coats many epithelial surfaces in the 

body. In the healthy human respiratory tract, mucus sits on top of a periciliary fluid layer 

and is in constant motion across the pseudostratified epithelium, propelled by coordinated 

ciliary beat function. Mucus serves several roles for maintaining homeostasis including 

maintaining hydration and carrying out innate immune barrier functions. Despite its major 

role in protecting the epithelium, respiratory mucus is also the site of dense microbial life. 

Mucus-mediated mechanisms involved in microbial pathogenesis have been investigated 

for decades, yet our understanding of this dynamic relationship is still evolving. 

 There are at least three mucus-related processes that occur in CRS. First is goblet 

cell hyperplasia, or increased development of mucus secreting cells in the sinus epithelium 

(Majima et al., 1997; Petruson, 1994; Tos and Mogensen, 1984). Second is increased 

mucus production observed both in expression-based studies, and patient symptom 

presentation (Ding and Zheng, 2007; Kim et al., 2004). Third is the slowing of mucus 

clearance, mediated by reduced ciliary beat and inflammatory swelling (Stevens et al., 

2015). Based on these mechanisms, static mucus becomes a dominant component of the 

CRS microenvironment. 

 The major components of mucus are mucins - glycoproteins that are heavily 

decorated with O-linked glycans attached to tandem repeating elements rich in proline, 

serine and/or threonine residues. N- and C- termini are cysteine-rich regions important for 

its multimeric gel-forming properties (Wagner et al., 2018). By weight, glycans make up 

80% of the mass of these molecules (Bansil and Turner, 2006). The complex and diverse 
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glycan structures scaffolded on protein backbones are composed primarily of five 

monosaccharides (galactose, N-acetylglucosamine (GlcNAc), N-acetylgalactosamine 

(GalNAc), fucose, sialic acid) (Bansil and Turner, 2006). Mucin glycoproteins produced 

in the respiratory tract include MUC5B, MUC5AC, MUC1, MUC4, and MUC16 (Zanin et 

al., 2016). 

 Mucins have several functions with implications for microbial ecology and 

virulence potential. The immense diversity of glycan structures on mucins have been 

appreciated as cues for microbial metabolism, virulence, interbacterial interaction, and 

aggregation (Wagner et al., 2018). The oligomerization of mucins results in a physical 

matrix that creates nutrient and oxygen gradients which are hypothesized to be important 

for spatial niche partitioning and stable assembly of multi-species in the gastrointestinal 

tract (Wagner et al., 2018). Finally, mucins can act as a nutrient source to those 

microorganisms with specialized enzymes to degrade them (Bradshaw et al., 1994; Derrien 

and Passel, 2010; Hoeven and Camp, 1991; Wickström et al., 2009). Most microorganisms 

do not have the enzymatic repertoire to completely degrade a mucin glycoprotein, 

therefore, mucin as a nutrient source is thought to promote metabolically stable 

communities with diverse enzymatic functions that act to competitively exclude less well 

adapted organisms. The ecological function of competitive exclusion is often seen as a 

positive outcome of stability of mucin-utilizing communities in the gut and oral cavity 

(Bergstrom and Xia, 2013; Buffie and Pamer, 2013; Hibbing et al., 2010; Malago, 2015). 

Alternatively, this stability may contribute to chronic infection in the sinuses by reducing 

therapeutic effectiveness and producing metabolites and chemical signals that may 
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potentiate virulence in commensal microorganisms. In Chapter 4, we predict the presence 

of anaerobic mucin-degrading communities in CRS sinus mucus, show their presence in in 

vitro enrichment experiments, and demonstrate their ability to alter S. aureus growth and 

transcription. 

 Taken together, mucin glycoproteins likely influence many aspects of microbial 

behavior seen in the sinuses. This thesis presents a novel investigation into bacterial mucin 

degradation with respect to CRS pathogenesis. 
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Chapter 2:  16S rRNA gene sequencing reveals site-specific signatures of the upper 

and lower airways of cystic fibrosis patients† 
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Summary 

 Metastasis of sinus microbiota in cystic fibrosis (CF) patients may have significant 

implications in the development of chronic lung disease. Here, we compare bacterial 

communities of matched sinus and lung mucus samples from CF subjects undergoing 

endoscopic surgery for treatment of chronic sinusitis. Mucus was isolated from the sinuses 

and lungs of twelve patients. 16S rRNA gene sequencing was then performed to compare 

the structure and function of CF airway microbiota. Bacterial richness was comparable 

between airway sites, though the sinuses harbored a higher prevalence of dominant 

microorganisms. Ordination analyses revealed that samples clustered more consistently by 

airway niche rather than by individual. Finally, predicted metagenomes suggested that 

anaerobiosis was enriched in the lung environment. Our findings indicate that while the 

paranasal sinuses and lungs may comprise a unified airway in which the lungs are seeded 

by individual sinus pathogens, discrete airway microenvironments harbor distinct bacterial 

communities.  
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Introduction 

Defective CFTR ion transport at the sinus epithelium leads to decreased 

mucociliary clearance and obstruction of sinus ostia (Robertson et al., 2008). Secondary 

events such as the impairment of host defenses render this niche susceptible to bacterial 

colonization and chronic rhinosinusitis (CRS) (Becker, 2010; Robertson et al., 2008). 

Notably, there is a striking incidence of CRS in the CF population relative to non-CF 

subjects (~16% (Babinski and Trawinska-Bartnicka, 2008)). This is particularly evident in 

CF patients with classical mutations (class I-III), who, based on radiological evidence, have 

a CRS incidence rate of nearly 100% (Robertson et al., 2008).  

Culture-based studies have revealed that CF-associated CRS (CF-CRS) patients 

harbor distinct microbiota, including Staphylococcus aureus and Haemophilus influenzae 

in pediatric patients, followed by Pseudomonas aeruginosa and other pathogens as patients 

age (Roby et al., 2008). This dynamic generally follows the same succession of CF lung 

microbiota (Cox et al., 2010) and several groups have demonstrated similarities in upper 

and lower airway bacteriology in CF subjects (Bonestroo et al., 2010; Fischer et al., 2014). 

In fact, evidence has implicated the sinuses as infection foci for lung pathogens, where they 

first adapt to the host before descending into the lungs (Ciofu et al., 2013; Hansen et al., 

2012; Johansen et al., 2012; Mainz et al., 2009, 2012; Rudkjøbing et al., 2014; Syed et al., 

2016). Genotypic analyses suggest a direct exchange between sites; P. aeruginosa isolates 

cultured simultaneously from the sinuses and lungs were genetically identical in 38 of 40 

subjects (Johansen et al., 2012). These data are supported by studies of CF lung transplants, 

where recipient allografts were re-colonized by the same P. aeruginosa clones found prior 
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to transplantation (Ciofu et al., 2013; Syed et al., 2016). Altogether, these observations 

support the notion of a sinus pathogen reservoir and a unified airway, in which the 

treatment of CRS could have profound benefits for CF lung disease management. 

While P. aeruginosa and S. aureus are commonly isolated from the CF sinuses 

(Mainz et al., 2009), culture-independent studies also suggest colonization by anaerobes 

(e.g. Cutibacterium) and other non-canonical pathogens (Rudkjøbing et al., 2014). These 

data are consistent with microbiome profiles of CF lung disease, which is recognized to 

have a polymicrobial etiology (Coburn et al., 2015; Cox et al., 2010). Recent sequencing 

studies have evaluated relationships between oral, nasal and lung microbiota in adult CF 

patients (Boutin et al., 2015; Caldas and Boisramé, 2015), but to our knowledge, molecular 

approaches have not been used to assess relationships between sinuses and lungs at a 

microbial community level. From a clinical perspective, these data could be of considerable 

therapeutic benefit; sinus culture can be invasive and time consuming, and to date, sputum 

culture-guided therapies for CRS have been largely ineffective, with many subjects 

ultimately requiring surgical intervention (Lavin et al., 2013; Osborn et al., 2011). 

Therefore, a deeper understanding of microbiological relationships between the sinuses 

and lungs may not only improve upon CF-CRS management, but may also motivate the 

use of less-invasive sinonasal sampling to help inform patient therapy (Fischer et al., 2014; 

Mainz et al., 2009; Mainz and Koitschev, 2012). 
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Materials and Methods 

Patient cohort and specimen collection 

 Twelve participants with CF undergoing functional endoscopic sinus surgery 

(FESS) were recruited at the University of Minnesota Department of Otolaryngology. 

Informed consent was obtained from all subjects. Prior to FESS, each patient spit to discard 

saliva, followed by sputum expectoration into a collection tube. All samples were assessed 

macroscopically for salivary contamination, and none were rejected. Sinus secretions were 

obtained from a single maxillary sinus (middle meatal region) under endoscopic 

visualization by suction into mucus traps (Cardinal Health, Dublin, OH). Clinical data were 

also obtained (Table S1, Appendix A), including CFTR genotype, FESS procedures, 

clinical cultures, spirometry (FEV1%) and sinonasal outcome test (SNOT-22) scores. The 

UMN Institutional Review Board approved these studies (#1403M49021).  

 

Quantitative PCR 

Bacterial burden was estimated by quantifying 16S copy number from DNA 

extracted from clinical specimens using quantitative PCR. Reactions were prepared in 

triplicate using QuantiTect SYBR Green (Qiagen) and Universal 16S rRNA qPCR primers 

(Abreu et al., 2012). Details can be found in the supplemental data (Appendix A).  

 

DNA sequencing and analysis 

 Genomic DNA was extracted from 300 μL of mucus using Powersoil Kits (MoBio, 

Carlsbad, CA) and was submitted to the UMN Genomics Center (UMGC) for 16S library 
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preparation using a two-step PCR protocol (Gohl et al., 2016). The V4 region was 

amplified and sequenced using Illumina MiSeq TruSeq 2 × 300 paired-end technology. 

Water and reagent control samples were also submitted but were below detection 

thresholds. Raw sequence files were deposited in the NCBI Sequence Read Archive 

(accession #PRJNA374847). Data were analyzed using a pipeline developed by the UMN 

Informatics Institute in collaboration with UMGC. Details are provided in the supplemental 

data (Appendix A). 

 

Metagenomic prediction 

Metagenomes were inferred from 16S rRNA data using Phylogenetic Investigation 

of Communities by Reconstruction of Unobserved States (PICRUSt) (Langille et al., 

2013). PICRUSt uses marker gene survey data to predict metagenome content through 

ancestral state reconstruction of quality-filtered 16S sequence data. We also used BugBase 

(Ward et al., 2017) to summarize predicted metagenomes by bacterial phenotype. BugBase 

scripts were run with default settings using filtered sequence data used in PICRUSt. Details 

are provided in the supplemental data (Appendix A). 

 

Statistical analyses 

Analyses were performed in GraphPad Prism 6.0 unless stated otherwise. Significance was 

assessed at the α = 0.05 level. Hypothesis testing was conducted assuming a paired sample 

study design. Student's t-tests were used where data passed the Kolmogorov-Smirnov test 
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for normality. Statistics implemented in beta diversity and BugBase analyses are 

documented in the supplemental data (Appendix A). 
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Results 

Patient Cohort 

Twelve CF adults with CRS undergoing functional endoscopic sinus surgery 

(FESS) each provided an expectorated sputum sample. Sinus mucus was collected at the 

beginning of FESS. These samples are herein referred to as “sinus” and “lung” samples, 

denoting their anatomical origin. Clinical data, including CF genotype, microbiology 

cultures, prior FESS procedures, spirometry and sino-nasal outcome test (SNOT-22) scores 

were also collected (Table S1, Appendix A). Six patients were homozygous ΔF508, five 

were heterozygous ΔF508, and two had heterozygous non-ΔF508 mutations. Sinus culture 

data were available for 11 of 12 sinus samples. Of these, 6 were positive for P. aeruginosa, 

and 5 were positive for S. aureus. Predominant lung pathogens detected by sputum culture 

were also recorded (Table S2, Appendix A). 

 

Bacterial load in sinus and lung samples 

qPCR of 16S ribosomal RNA (rRNA) gene copy number was used to estimate bacterial 

load (Figure 2.1). On average, sinus specimens contained 2.72 × 103 (IQR = 2.69 × 102 − 

1.72 × 103) 16S gene copies per ng genomic DNA, while lung sputum harbored 5.33 × 104 

(IQR = 6.18 × 102 − 5.02 × 104). These data suggest a modest difference in 16S gene 

abundance between sample types (Figure 2.1A, P = 0.0637). Interestingly, patient age was 

positively associated with 16S gene abundance in sinus samples, but this relationship was 

not observed for the lung (Figure 2.1B). We also assessed the relationship between 

bacterial load and two clinical metrics, FEV1% and SNOT-22, neither of which 
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significantly correlated with 16S copy number in either sample group (Figure 2.1B). Taken 

together, these data suggest that the specific composition of each bacterial community 

rather than bacterial abundance contributes to disease states in both sinus and lung niches. 

 

Bacterial community membership varies with location 

Bacterial composition was profiled using 16S rRNA gene sequencing. After 

filtering for quality and subsampling to an even depth, 51 genera were identified across 

samples (Figure 2.2). To investigate genera that accounted for the majority of sequences, 

we adopted the definition of a dominant genus (the most abundant genus with over twice 

the abundance of the second most abundant genus) (Coburn et al., 2015). A dominant genus 

was present in 100% of sinus samples but only 33% of lung samples. Pseudomonas and 

Staphylococcus were dominant genera in five sinus samples each (42%), while 

Streptococcus and Burkholderia were each dominant in a single sample (Figure 2). As 

expected, only P. aeruginosa and S. aureus were dominant lung pathogens. Species-level 

identification for abundant pathogens was determined by culture data, when available 

(Table S2, Appendix A). The median relative abundance of the predominant genus was 

0.88 (IQR = 0.75–0.99) in each sinus sample, and 0.42 (IQR = 0.34–0.78) for lung samples. 

The most abundant sinus OTUs were assigned to Pseudomonas, Staphylococcus, and 

Streptococcus. By contrast, lung samples harbored an abundance of Pseudomonas, 

Veillonella, and Prevotella, consistent with previous studies (Coburn et al., 2015; Cox et 

al., 2010). Interestingly, although many taxa were shared between sample pairs, the 

absence of a pathogen (e.g. Pseudomonas, Achromobacter) in one sample was not 
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predictive of its absence in its paired sample sequence data. For example, subjects 5 and 

12 harbored Achromobacter in their upper airways, despite being undetectable in sputum. 

This was also true of Staphylococcus in subject 6. Conversely, subjects 1 and 11 harbored 

an abundance of known CF pathogens (Pseudomonas and Haemophilus, respectively) in 

the lung that were not associated with upper airway infection. These examples demonstrate 

that infections at either site can be perpetuated by different pathogen within an individual, 

and that sputum cultures and 16S rRNA sequence data are not always representative of 

upper airway infection. 

Based on these examples, we then determined the extent to which genera were 

shared between sites. Spearman correlations between genera in matched pairs revealed that 

within-patient similarities allowed for significant positive correlation between sites in ten 

of twelve sample pairs (average Spearman ρ = 0.45) (Table S3, Appendix A). However, a 

group-wise comparison of paired samples showed a weaker correlation (Spearman ρ = 

0.32, P = 0.001). These results highlight the potential for bacterial communities of the 

upper and lower airways to be similar within a given patient, yet the group correlation 

underlines the general dissimilarity in microbiota between sinus and lung 

microenvironment. 

 

Bacterial diversity varies between upper and lower airways 

As described above, few taxa dominated most sequences in each sample. To 

investigate this further, two alpha diversity metrics, observed operational taxonomic units 

(OTUs) and Shannon diversity, were used as measures of richness (biodiversity) and 
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evenness (equitability) (Hill, 1973). Observed OTUs in lung samples were greater than in 

sinuses, indicating greater richness, though the difference was not significant (Figure 

2.3A). Using the Shannon diversity index, sinuses were characterized by greater 

unevenness relative to lung samples, consistent with the high prevalence of dominant sinus 

genera (Figure 2.3B). When ordered by rank, an average of 10 and 20 genera accounted 

for 99% of sequences in sinus and lung samples, respectively (Figure 2.3C). These data 

indicate that the lung bacterial community is greater in both richness and evenness relative 

to the sinuses.  

Spearman correlations were then calculated to assess relationships between 

bacterial load, alpha diversity and patient clinical data (Figure 2.3D). These data revealed 

a significant inverse correlation between Shannon diversity in the sinus and lung (ρ = − 

0.664, P = 0.022). Because the data show a similar richness between sites, and both sinus 

and lung Shannon diversity revealed positive relationships with observed OTUs (sinus ρ = 

0.881, P = 3.35 × 10−4; lung, ρ = 0.774, P = 0.007), we infer that diversity differences are 

driven by evenness in these niches. Lung Shannon diversity was also positively correlated 

with lung 16S rRNA copy number (ρ = 0.678, P = 0.019), and these data reiterate the 

positive correlation between sinus 16S rRNA gene copy number and patient age (ρ = 0.624, 

P = 0.033; Figure 2.1B). There was no correlation found between alpha diversity metrics, 

or relative abundance of Staphylococcus/Pseudomonas and antibiotics prescribed three 

days prior to surgery for both sample types (Table S4, Appendix A). Altogether, these 

results demonstrate that bacterial diversity differs between sinus and lung niches, and that 

a decrease in diversity at either site is associated with the decrease in even distribution of 
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bacterial taxa. 

Airway location as a descriptor of phylogenetic variance.  

 Beta diversity of airway microbiota was then visualized using ordination. Of 

interest was whether bacterial communities would cluster more closely by patient or 

sampling site. Previous studies characterizing upper and lower airway microbiota revealed 

shared taxa between sites, but also inter-individual variation (Boutin et al., 2015; Charlson 

et al., 2011; Fischer et al., 2014). Evidence also suggests that bacterial metastasis between 

the sinuses and lung is commonplace (Mainz et al., 2009). Based on these previous studies, 

we hypothesized that samples would cluster more closely by patient, rather than by 

sampling site. To address this hypothesis, we compared samples utilizing weighted 

Unifrac, an abundance-sensitive, phylogenetically relevant diversity metric (Lozupone and 

Knight, 2005). This metric was calculated to determine phylogenetic pairwise distances 

between each sample, then plotted using principal coordinates analysis (PCoA). Contrary 

to our hypothesis, within-patient sample pairs did not cluster together nearly as strongly as 

they did by sampling site (Figure 2.4A), which rejected the null hypothesis the groupings 

(sinuses and lungs) had the same centroid (PERMANOVA, P = 0.019). Lung samples also 

demonstrated considerable phylogenetic variation when compared to sinus samples (Figure 

2.4A). When relative abundances from dominant taxa (Pseudomonas and Staphylococcus) 

were overlaid, there was a strong association with the PCoA sample distribution (Figure 

2.4B). These analyses demonstrate that overall community structure is largely driven by 

dominant genera, and that upper and lower airways select for unique bacterial community 

structures, despite sharing individual taxa. 
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Predicted metagenomes show phenotypic conservation between sites 

 To gain insight into bacterial community function, PICRUSt (Langille et al., 2013) 

was implemented to infer bacterial metagenomes based on 16S rRNA gene content. 

Sequences derived from each sample had a low Nearest Sequenced Taxon Index average 

of 0.017, indicating a high relatedness between bacteria found in the samples to sequenced 

genomes, and a high prediction accuracy for the dataset. Twenty unique KEGG pathways 

were represented among inferred metagenomes and showed striking similarity between 

sinus and lung samples (Figure S1, Appendix). This suggests that the functional capacity 

of lung and sinus bacterial communities is relatively similar, despite taxonomic differences. 

 To further summarize PICRUSt output, we utilized BugBase, a bioinformatics tool 

that infers community-wide phenotypes from predicted metagenomes (Ward et al., 2017). 

BugBase identified that gene functions associated with anaerobiosis were enriched in lung 

samples (P = 0.01), and could be attributed to three genera: Veillonella, Prevotella, and 

Porphyromonas (Figure 5A). Gram-negative ultrastructure and biofilm formation are two 

bacterial phenotypes often associated with airway pathogenicity, however, our analysis 

showed that these phenotypes did not differ significantly between sites. Gram-negative 

genera contributing to this phenotype were more varied in lung samples and included 

Veillonella, Prevotella, Neisseria, Stenotrophomonas, supporting the increased richness 

observed in these samples. Biofilm-forming bacteria were observed in both sinus and lung 

predicted metagenomes. This phenotype was influenced by the presence of Pseudomonas 

in both airway sites, but Burkholderia and Achromobacter both differentiated sinus from 

lung samples, while Neisseria and Stenotrophomonas were more highly represented in lung 
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samples. Altogether, these data point towards the lung environment being a more anaerobic 

niche, but that other phenotypes classically linked to bacterial pathogenicity, such as 

biofilm formation, are similar between sites. 
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Discussion 

 It is poorly understood how complex bacterial communities promote the 

development of sinus disease. It is also not known how upper airway microbiota 

contributes to lower airway infections that are a primary cause of CF patient morbidity. 

The sinuses have been proposed as a reservoir in which individual pathogens adapt to the 

host prior to lung colonization, but it is unclear whether polymicrobial community 

composition of the CF lung can be a reasonable surrogate for upper airway microbiota and 

treatment of CF-CRS. We therefore took an ecological approach towards exploring 

bacterial diversity throughout the airways. 

 Our cohort showed striking variability in bacterial community membership 

between subjects. Despite this variability, we found that lung samples harbored an 

increased diversity (evenness) relative to sinuses which were dominated by either 

Staphylococcus or Pseudomonas. The abundances of these two canonical pathogens are 

commonly revealed by sinus culture (Mainz et al., 2009), though many other taxa identified 

in our study are not. For example, when compared to summarized culture data comparing 

the upper and lower CF airways (Fischer et al., 2014), the most striking difference between 

analyses was the identification of obligate anaerobes. These differences highlight the utility 

of molecular-based methods in detecting fastidious and anaerobic bacterial taxa. Given the 

emerging evidence of anaerobes being causative agents of pulmonary disease (Flynn et al., 

2016), increased use of culture-independent diagnostics to detect these bacteria throughout 

the airways is warranted. 
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 Our most intriguing data were that several sinus samples harbored canonical CF 

pathogens, yet these bacteria were absent in the paired lung samples. Conversely, the lungs 

of several subjects were colonized by a dominant pathogen that went undetected in the 

upper airways. This study outcome has significant clinical implications; respiratory 

cultures and sequence data from the two sites are not necessarily interchangeable for the 

determination of antibiotic therapy. These findings are consistent with those of Muhlebach 

(Muhlebach et al., 2006) who showed that bronchoalveolar lavage and oropharyngeal 

cultures are poor predictors (40–50% accuracy) of sinus bacteriology in children. Together, 

these observations may partially explain why patient response to therapy is poor, and 

suggest that the expanded use of non-invasive, sequence-based sinonasal sampling 

measures could be beneficial in steering patient therapies. 

 Often in microbiome surveys, bacterial membership may differ dramatically 

between samples, but functional capabilities remain conserved (Huttenhower et al., 2012). 

Here, we highlight this relationship in the airways. Contrasting differences in bacterial 

diversity and community composition between sinuses and lungs, we found that the 

predicted functional capacity in both niches was similar. In the context of bacterial 

contribution to CF disease, it is plausible that there are many similarities in the 

microenvironments of the upper and lower airways that may contribute, or even result from 

these conserved functions. 

 This exploratory study reveals many opportunities for future research. Notably, this 

work focuses on a small adult cohort with lung function lower than 70% predicted (mean). 

While the inter-individual variability reported is not unfounded, it highlights the need for 
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increased enrollment for assessing clinical and sequencing variables. Moreover, future 

work should extend to both pediatric and adult subjects across the spectrum of disease 

severity, as our conclusions may not be generalizable to all subjects. For example, it is 

possible that in patients where lung-adapted strains differ in prominence, the influence of 

bacterial trafficking from the upper airways on bacterial structure also varies. Likewise, 

longitudinal studies are warranted to investigate microbiota trafficking dynamics over time 

as patients age. Our work also does not account for airway microenvironments harboring 

distinct microbiomes. For example, a single maxillary sinus may not capture an infectious 

agent present in another sinus, whereas sputum may reflect multiple lower airway niches. 

Prior studies have shown that the middle meatus is a valid representation of the sinus cavity 

(Ramakrishnan et al., 2016), though multiple samples that define the biogeography of the 

upper airways will be informative for infection management. Finally, a common concern 

in sputum-based studies is the potential for salivary contamination. Though we cannot rule 

out the contribution of oral flora to our analyses, samples from lung explants and 

bronchoalveolar lavage have clearly demonstrated the presence of oral-associated 

anaerobes in the lung (Blainey et al., 2012; Hogan et al., 2016). Moreover, others suggest 

that contamination of sputum is limited during transit through the oral cavity (Blainey et 

al., 2012; Charlson et al., 2011). Moving forward, oropharyngeal swabs should be included 

in analyses to help define the site of sequence origin, particularly for diagnostic purposes. 

 Despite these limitations, our data shed important light on microbial community 

relationships throughout the CF airways. Though airway niche spaces differ in diversity, 

shared taxa between the sample pairs reflects the interconnectedness of the airway and does 
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not discount the sinuses as a source of lower airway colonization. However, the distinct 

bacterial community structures suggest sinus and lung microenvironments play a critical 

role in governing the prevalence and abundance of canonical CF pathogens. These data can 

be translated to the clinic by informing caregivers to utilize respiratory specimens 

originating from the site of infection. In the context of our findings, we advocate for the 

use of 16S rRNA gene sequences in the clinical setting to supplement culture data in the 

assessment and informed therapeutic approach towards the management of CF-associated 

CRS infections. 
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Figures 

 

 

Figure 2.1 Bacterial Load in Sinus and Lung Samples. 16S gene copies are greater in CF lung 

sputum compared to sinus samples, and correlate with patient age. Quantitative PCR was 

used to enumerate 16S rRNA gene copies ng of genomic DNA isolated from sinus and 

lung samples. A. Comparison of 16S rRNA gene copies in sinus and lung sample pairs by 

qPCR. (Paired Student's t-test P = 0.0637). B. Spearman correlations with 16S rRNA gene 

copies and patient clinical data. In sinus samples, 16S copies are positively and 

significantly correlated with patient age. 
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Figure 2.2 Bacterial community composition of the upper and lower airways. Stacked bar 

plots of relative abundances of genera in paired sinus and lung samples demonstrate 

dominance of Pseudomonas, Staphylococcus, and Streptococcus genera. Red patient 

numbers indicate samples where bacterial membership was significantly correlated within 

pairs. Data for these relationships is presented in Table S2. Pie charts show the average 

abundance of genera for each sample type across the patient cohort. 
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Figure 2.3 Alpha diversity of CF maxillary sinuses differs from CF lung sputum. A. Observed 

OTUs are modestly greater in lung samples compared to the sinuses. Lung samples display 

significantly greater evenness in OTU distribution relative to sinus samples (paired 

Student's t-test, P = 0.0127). B. Rank abundance curves reveal that both sinus and lung 

bacterial communities are dominated by a few organisms. 10 and 20 genera represent 99% 

of the sequences for sinus and lung samples, respectively. C. Spearman correlation heat 

map shows association of bacterial diversity (observed OTUs, Shannon), bacterial 16S 

gene abundance, and clinical factors. (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001).  
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Figure 2.4 Ordination of weighted Unifrac distances. Principal Coordinate Analysis shows 

clustering by sample type and dominant organism. A. Samples show more similarity by 

sample type rather than sampled individual (PERMANOVA, P = 0.019). Color and shape 

denote patient and sample type, respectively. Sinus and lung samples do not cluster by 

patient, but do show clustering by sample type. B. PCoA colored by relative abundance of 

dominant organisms (defined in text), shows sinus sample grouping is highly dependent on 

relative abundance of Pseudomonas and Staphylococcus.  
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Figure 2.5 BugBase analysis of PICRUSt-predicted metagenomes. BugBase was used to 

summarize PICRUSt analysis results into categories based on bacterial phenotype. A. 

Anaerobic metabolism is significantly enriched in lung samples (Wilcoxon signed-rank 

test, P = 0.01). B. Biofilm formation does not differ significantly with sample type 

(Wilcoxon signed-rank test, P = 0.57). C. Gram-negative phenotype is driven by presence 

of Veillonella, Prevotella and Pseudomonas in lung samples (Wilcoxon signed-rank test, 

P = 0.47). (*P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001). 
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Chapter 3:  The microbiome of chronic rhinosinusitis in a cystic fibrosis patient 

cohort at University of Minnesota 
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Summary 

 Chronic rhinosinusitis (CRS) affects nearly all individuals with cystic fibrosis (CF) 

and is thought to serve as a reservoir for pathogens that subsequently colonize the lung. To 

better understand the microbial ecology of CRS, we generated a 16S rRNA gene 

sequencing profile of sinus mucus from CF-CRS patients. We show that CF-CRS sinuses 

harbor bacterial diversity not entirely captured by clinical culture. Culture data consistently 

identified the dominant organism in most patients, though lower abundance bacteria were 

not always identified. We also demonstrate that bacterial communities dominated by 

Staphylococcus spp. were significantly more diverse compared to those dominated by 

Pseudomonas spp. Diversity was not significantly associated with clinical factors or patient 

age, however, younger subjects yielded a much wider range of bacterial diversity. These 

data mirror bacterial community dynamics in the lung and provide additional insight into 

the role of sinus microbiota in chronic airway disease progression.  



 42 

Introduction 

 Chronic rhinosinusitis (CRS) reaches a strikingly high prevalence among CF adults 

(>99%) (Chaaban et al., 2013). While there are several proposed causes of CF-associated 

CRS (CF-CRS), including abnormal sinus anatomy and aberrant immune responses 

(Benninger et al., 2003), bacterial infection remains widely implicated (Hoggard, 

Mackenzie, et al., 2017; Vickery et al., 2019). The “unified airway” model, whereby 

bacterial pathogens adapt to the upper airways before migration to the lungs has become a 

major impetus for studying CF-CRS microbiology (Godoy et al., 2011; Illing and 

Woodworth, 2014). 

 16S rRNA gene sequencing has significantly improved our understanding of CF 

microbial ecology. Cross-sectional and longitudinal studies of sputum have established that 

bacterial diversity decreases into adulthood, concomitant with lung function decline (Cox 

et al., 2010; Zhao et al., 2012). Fewer studies have investigated these dynamics in the upper 

airways, however, CF sinuses harbor significantly lower bacterial diversity compared to 

non-CF-CRS and non-CRS patients (Cope et al., 2017). Clinical culture has shown that 

Staphylococcus aureus and Pseudomonas aeruginosa are both prevalent and abundant in 

CF-CRS (L. Sobin et al., 2017), while their genotypes show within-individual concordance 

between upper and lower airways (Johansen et al., 2012). This relationship is particularly 

striking in lung transplant recipients (K. J. Choi et al., 2018; Ciofu et al., 2013; Mainz et 

al., 2009; Syed et al., 2016), supporting the notion that sinuses serve as a reservoir for CF 

lung pathogens. 
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 To better understand microbial community ecology in CF-CRS and its role in CF 

disease progression, we performed 16S rRNA gene sequencing on sinus mucus derived 

from patients undergoing endoscopic sinus surgery (ESS). We explored bacterial diversity 

with respect to dominance of canonical CF pathogens, patient demographics, and clinical 

parameters. We discuss these data in the context of interspecies interactions as 

determinants of CF pathogenesis.  
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Materials and Methods 

Study design 

The UMN Institutional Review Board (approval number #1403M49021) approved this 

study. Informed consent was obtained from all participants. Adult patients with CF (n=25) 

undergoing endoscopic sinus surgery for the treatment of CRS were enrolled at the 

University of Minnesota Department of Otolaryngology. Samples from 3 patients did not 

yield sequencing depth that exceeded 2000 reads and were excluded from analysis. 

Twenty-two patients were included in further analysis (Table 3.1). 

 

Sample collection DNA extraction 

 Sinus secretions were obtained from a single maxillary sinus (middle meatal region) 

under endoscopic visualization by suction into Argyle Mucus Traps (Cardinal Health, 

Dublin, OH) which were frozen at -80°C. Demographic data, recent clinical history, recent 

antibiotic and medication use (less than 3 months prior procedure date), and comorbidities 

such as presence of polyps, diagnosed asthma or allergies, GERD, were collected at time 

of surgery. 

 Genomic DNA was extracted from 300 µL of sinus mucus using DNeasy Powersoil 

kits (Qiagen, Carlsbad, CA) and submitted to the UMN Genomics Center (UMGC) for 16S 

rRNA gene library preparation1. The V4 region was amplified and sequenced using 

Illumina MiSeq TruSeq 2x300 paired-end technology. Reagent control samples were also 

sequenced. The samples were run as part of larger sample groups across four different 

sequencing runs. 

https://app.readcube.com/library/7dadd566-e3aa-430c-88b3-34eef373518b/all?item_ids=e97be739-a497-4e85-b5ca-c2354f01e394,uuid:8e73c9a2-b376-4b42-b8b1-1421fee1ac0e
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16S rRNA gene sequencing and analysis 

 Sequence analyses, statistical analysis, and data visualizations were performed in 

R (v.4.0.0). Cutadapt (v.2.6) (Martin, 2011) was used to remove primer sequences, with 

size filtering set to 215bp (minimum) and 285bp (maximum). DADA2 (v.1.17.0) (Callahan 

et al., 2016) was used to trim sequences and filter for quality. DADA2 inferred a parametric 

error model used to identify and correct sequencing errors. Reads were de-replicated, 

paired ends merged, and chimeric reads removed using default options. Genus-level 

taxonomy was assigned using the Ribosomal Database Project (RDP) Bayesian classifier 

(Q. Wang et al., 2007) and SILVA-132 taxonomy training set (Quast et al., 2013). Species-

level taxonomy was assigned only if an amplicon sequence variant (ASV) unambiguously 

matched a sequence in SILVA-132 or eHOMD databases (Escapa et al., 2018). A 

phylogenetic tree was approximated by first performing a multiple-alignment using 

DECIPHER (v.2.14.0) (Wright, 2016). Phangorn (v.2.5.5) was used to construct a 

phylogenetic tree (Schliep, 2011). 

 Functions from the Phyloseq (v.1.33.0) (McMurdie and Holmes, 2013) and 

ampvis2 (v.2.6.0) (Andersen et al., 2018) R packages were used for abundance-related 

filtering of ASVs from the dataset, and diversity analyses. First, the resulting ASV table 

was rarified without replacement to 2000 sequences. Phyla with ambiguous taxonomic 

assignments, total feature prevalence less than 10, or mean feature prevalence of 1 were 

removed, as were ASVs with a mean relative abundance below 1x10-4. Ordination using 

double principal coordinate analysis (DPCoA) was carried out using the rarified ASV data 

transformed to proportions. Permutational multivariate analysis was carried out using 
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adonis in the vegan (v. 2.5-6) R package (Oksanen et al., 2013) and was used to test for 

differences in beta diversity centroids across patient data. The Shannon diversity metric 

was calculated for each sample individually using the rarified dataset. 

 

Data availability 

Code for all analyses in this section has been made available at: 

https://github.com/hunterlabumn/CF-CRS-Microbiome 

  

https://github.com/hunterlabumn/CF-CRS-Microbiome
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Results 

 Using 16S rRNA gene sequencing, we profiled bacterial community membership 

of CF-CRS mucus. Double principal coordinate analysis (DPCoA) was used to assess 

sample similarity with respect to taxonomic identity, phylogenetic relationships, and 

relative abundance (Figure 3.1A,B). Samples clustered into three groups defined by 

Firmicutes and Proteobacteria, with 52.3% of variation described on the first axis. 

Multivariate analysis showed no association between clinical parameters or comorbidities 

(polyps, GERD, asthma, allergies, prior sinus surgery, CFTR genotype) and the DPCoA 

(Figure 3.2A-F). 

 Hierarchical clustering and heatmapping were used to visualize relative abundances 

of bacterial genera (Figure 3.1C). Indeed, samples were differentiated by Firmicutes 

(Streptococcus, Staphylococcus) or Proteobacteria (Pseudomonas). Other Proteobacteria 

(Haemophilus, Achromobacter, and Burkholderia) were abundant, but at lower prevalence, 

and accounted for second axis variation. Several amplicon sequence variants (ASVs) were 

assigned specific epithets (i.e. 100% sequence identity without multiple database matches) 

(Table 3.2), allowing for comparisons to culture-based data (Figure 31D). With exceptions, 

the dominant genus identified by sequencing was also identified by culture, though the 

second most abundant genus was often not. Notably, Streptococcus was third most 

abundant and comprised primarily of ASVs assigned to S. intermedius. However, S. 

intermedius is not generally recovered clinically, underscoring the utility of molecular 

methods for bacterial identification.  
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 Many taxa identified by sequencing, particularly those with fastidious growth 

requirements (e.g. anaerobiosis) are not reported by clinical culture. This was particularly 

apparent in Staphylococcus-dominated samples, which tended to have greater bacterial 

diversity overall. Notwithstanding their lower abundance, we note that fastidious 

organisms (e.g. Prevotella, Veillonella) may also play a role in CRS, either through their 

own pathogenic potential or by affecting pathogen biology via interspecies interactions. 

 In most cases (21 of 22 samples), communities were structured by a taxon that was 

more than twice as abundant as the next highest-ranking taxon (Figure 3.3A). The top two 

dominant genera were Pseudomonas (9 samples, 41%) and Staphylococcus (7 samples, 

32%). Achromobacter, Burkholderia, Haemophilus, Streptococcus, and Veillonella were 

dominant in one sample each. Veillonella was noteworthy as it is not commonly considered 

pathogenic. We then compared alpha diversity (richness and evenness) between samples. 

Staphylococcus-dominated communities were significantly more diverse than those 

dominated by Pseudomonas (Wilcoxon, p=0.012) (Figure 3.3B). S. aureus is a known early 

colonizer of the CF lung, but as patients age, colonization with P. aeruginosa becomes 

more prevalent and coincides with a reduction in bacterial diversity (Coburn et al., 2015). 

Here, a significant relationship between age and Shannon diversity was not observed 

(Figure 3.3C), though diversity in samples from younger patients (16-25 years old) varied 

greatly compared to older age groups. Additionally, samples dominated by Staphylococcus 

in this group (50%) were greater than any other age. These data are consistent with the 

temporal acquisition of S. aureus and P. aeruginosa in the CF lung. 
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 Finally, colonization of the lung by either S. aureus or P. aeruginosa has been 

associated with pulmonary function decline (Ahlgren et al., 2015; Coburn et al., 2015). 

Given the “unified airway” hypothesis, we asked whether pathogen dominance in the 

sinuses fits this association (Figure 3.3D). While we found no statistically significant 

relationship, almost all patients with moderate to severe lung disease (FEV1%<70) yielded 

sinus mucus dominated by Pseudomonas. These data suggest that sinus microbiology may 

reflect lung function among a larger patient cohort. 
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Discussion 

 CRS studies commonly use CF as an exclusionary criterion, limiting both culture-

based and molecular surveys of CF-CRS microbiota. However, the importance of sinus 

microbial ecology is underscored by the concordance of bacterial genotypes between upper 

and lower CF airways (Johansen et al., 2012). Data presented here support the notion that 

CF sinuses serve as a site for pathogen adaptation prior to chronic lung infection.  

 Bacterial diversity in CF sputum negatively correlates with age and pulmonary 

function decline (Cox et al., 2010; Klepac-Ceraj et al., 2010). Similarly, lung infections by 

the two most prevalent CF pathogens, S. aureus and P. aeruginosa, correlate with age; S. 

aureus is generally isolated from young CF patients and P. aeruginosa becomes the 

primary pathogen in adulthood (Salsgiver et al., 2016). Co-colonization also occurs and is 

associated with poor clinical outcomes (Limoli et al., 2016). Interestingly, many of these 

trends were observed in our CF-CRS cohort; (i) nearly all sinus mucus was dominated by 

either Pseudomonas or Staphylococcus (ii) 13 of 22 (59%) were co-colonized, (iii) 

community diversity and Staphylococcus-dominated samples were highest among younger 

subjects and declined with increasing age, and (iv) most sinus samples from patients 

exhibiting moderate to severe lung function were dominated by Pseudomonas. 

Collectively, these data suggest that CRS microbial dynamics may reflect, or even 

prognosticate, trajectories of CF lung infections. 

 By using amplicon sequence variants (ASVs), we improved upon the resolution by 

which microbiota associated with CF-CRS are surveyed (Table 3.2). We showed an 

increased diversity of bacterial species in Staphylococcus-dominated communities, 
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including those from Veillonella (V. dispar, V. parvula), Megasphaera (M. 

micronuciformis), Prevotella (P. melaninogenica, P. salivae), Corynebacterium (C. 

tuberculostearicum), several Streptococcus spp., and others. While contributions of these 

less prevalent and less abundant species to overall community stability and pathogenesis 

is currently unknown, their presence raises the question of whether interbacterial 

interactions are determinants of canonical CF pathogen dominance and/or virulence 

potential. Expanding in vitro investigations of interbacterial interactions will be critical to 

identify the contributions of community ecology to CF-CRS. 

 Sinusitis and its contributions to CF pathogenesis are poorly understood. Once 

thought to be sterile, sinuses are now known to harbor diverse polymicrobial communities 

that influence chronic bacterial colonization of the lung. Data presented here add to our 

emerging understanding of this important airway niche and its role in CF morbidity. 
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Tables 

Table 3.1 CF-CRS patient clinical information 
Subject 

ID 
Age Gender 

CFTR 

Mutation 1 
CFTR Mutation 2 

Homozygous 

dF508 
Polyps GERD Asthma Allergies 

Prior 

FESS 

# Prior 

FESS 
FEV1(%) 

4 25 M dF508 R553X - + + - + - 0 66 

9 22 F dF508 dF508 + - + - + + > 4 76 

36 31 F dF508 1717-1G>A - + + - - + > 4 117 

38 22 M dF508 dF508 + + + - + + > 4 110 

51 33 M dF508 dF508 + - + - - + 2 69 

11 28 M dF508 dF508 + + + - - - 0 74 

18 22 F N1303K A1087P - + + - - + NA 85 

21 42 M dF508 dF508Polyp T  + + + - + + > 4 55 

47 16 M dF508 dF508 + + + - - + > 4 122 

61 31 M dF508 dF508 + + - - + + 2 NA 

85 26 M G551D 2789+5G>A - + - - + + NA 105 

87 19 F NA NA NA - - - - + > 4 NA 

94 26 F dF508 1717-1G>A - - - - - + 1 98 

102 32 F dF508 dF508 + + - + + + 1 31 

112 36 M dF508 L558S - - - + + - 0 26 

115 48 M dF508 W1282X - - - + - + 1 76 

130 22 F dF508 394delTT - - - - - + 2 101 

131 41 M 1717-1G-7A 3849+10kbc-T1 - + - - - + 1 72 

133 18 F dF508 dF508 + - - - - - 0 105 

158 36 F dF508 dF508 + - - - - + 1 61 

169 21 M dF508 dF508 + + - - - + > 4 94 

171 31 M dF508 394delTT - + - - - + 3 57 
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Table 3.2 Prevalence and abundance of ASVs of top 20 genera in CF-CRS samples 

Taxonomic Feature 
Prevalence 

in Samples 

Average Relative  

Abundance (%) 

Burkholderia 1 99.70 

Burkholderia 1 99.70 

Streptococcus 11 67.43 

Streptococcus 7 1.48 

Streptococcus intermedius 2 51.20 

Streptococcus pneumoniae 1 14.30 

Streptococcus sanguinis 1 0.45 

Pseudomonas 22 46.75 

Pseudomonas 2 0.10 

Pseudomonas aeruginosa 20 46.65 

Haemophilus 5 41.28 

Haemophilus 3 38.35 

Haemophilus parainfluenzae 2 2.93 

Veillonella 19 36.22 

Veillonella 7 7.12 

Veillonella atypica 1 25.95 

Veillonella denticariosi 1 1.10 

Veillonella dispar 4 0.56 

Veillonella parvula 4 0.79 

Veillonella rogosae 2 0.70 

Achromobacter 5 34.08 

Achromobacter 1 9.00 

Achromobacter xylosoxidans 4 25.08 

Staphylococcus 19 30.23 

Staphylococcus 19 30.23 

Prevotella 21 9.26 

Prevotella 4 1.61 

Prevotella conceptionensis 1 0.15 

Prevotella histicola 2 2.23 

Prevotella melaninogenica 4 2.45 

Prevotella nanceiensis 1 0.15 

Prevotella nigrescens 2 0.10 

Prevotella oulorum 1 0.15 
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Prevotella pallens 2 1.20 

Prevotella salivae 4 1.23 

Stenotrophomonas 2 6.85 

Stenotrophomonas 1 6.70 

Stenotrophomonas maltophilia 1 0.15 

Klebsiella 3 6.43 

Klebsiella 3 6.43 

Capnocytophaga 5 4.20 

Capnocytophaga gingivalis 2 0.23 

Capnocytophaga leadbetteri 2 3.73 

Capnocytophaga sputigena 1 0.25 

Megasphaera 3 4.13 

Megasphaera micronuciformis 3 4.13 

Peptoniphilus 1 3.90 

Peptoniphilus 1 3.90 

Enterobacter 1 3.65 

Enterobacter 1 3.65 

Actinobacillus 2 3.38 

Actinobacillus 2 3.38 

Campylobacter 6 3.22 

Campylobacter 1 2.50 

Campylobacter concisus 5 0.72 

Neisseria 2 2.35 

Neisseria 2 2.35 

Corynebacterium 6 1.67 

Corynebacterium 1 0.15 

Corynebacterium tuberculostearicum 5 1.52 

Moraxella 3 1.50 

Moraxella 3 1.50 

Cutibacterium 7 0.49 

Cutibacterium acnes 7 0.49 
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Figures 
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Figure 3.1 CF-CRS sinus communities differentiate by Proteobacteria or Firmicutes. (A-B) Double principal coordinates analysis (DPCoA) 

of CF-CRS sinus bacterial communities. In (A) each point represents a single sample/community (n=22) (B) Shows corresponding 

ASVs, colored by Phylum. (C) Hierarchical clustered heatmap of CF-CRS samples with the top 20 genera by mean relative abundance. 

(D) Clinical culture results corresponding to each of the samples in the order of the heatmap in (C).
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Figure 3.2 DPCoA of bacterial community composition with clinical factors. Double principal 

coordinate analysis (DPCoA) of CF-CRS bacterial communities (n=22) colored by (A) 

polyps, (B) asthma, (C) gastroesophageal reflux disease (GERD), (D) allergies, (E) prior 

FESS, and (F) homozygous F508 genotype. Adonis (‘vegan’ R package) was used to test 

whether each clinical parameter explains a significant amount of DPCoA distances 

between communities. 
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Figure 3.3. Shannon diversity and dominant Pseudomonas or Staphylococcus. (A) Number 

and proportion of samples with a dominant genus present (n = 22). (B) Shannon diversity 

compared between Pseudomonas or Staphylococcus dominance (Wilcoxon test, p = 

0.012). (C) Shannon diversity compared to CF patient age (Kruskal-Wallis, p  = 0.3). Points 

are colored by dominant genus. (D) Lung function measured by FEV1% compared between 

dominant genera (Wilcoxon test, p = 0.14). Dashed line denotes level below which lung 

function is considered to be moderate to severe.  
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Chapter 4:  Anaerobic mucin degrading bacterial communities differentiate the 

microbiome in chronic rhinosinusitis and can impact physiology of nasal pathobiont 

Staphylococcus aureus 
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Summary 

 Chronic rhinosinusitis (CRS) describes a group of inflammatory disorders 

characterized by chronic sinonasal inflammation for which the etiology is incompletely 

understood. Culture-based and genomic methods have provided support for the presence 

of similar bacterial taxa in the CRS and non-CRS sinuses, confounding the role of bacteria 

in pathogenesis. The presence of anaerobic bacterial taxa has been associated with CRS 

cases that are recalcitrant to treatment, suggesting they may play a role in pathogenesis 

either directly or through community-level interactions. 16S rRNA gene sequencing data 

presented in this chapter demonstrates the increased relative abundance of anaerobic 

bacterial genera belonging to Streptococcus, Prevotella, and Fusobacterium in CRS sinus 

mucus, in contrast with the higher relative abundance of Actinobacteria in non-CRS sinus 

mucus. From these data, we hypothesized that bacterial consortia associated with CRS 

would have an anaerobic mucin-degrading phenotype, and that anaerobic mucin 

degradation could augment CRS pathogen S. aureus growth in vitro. Functional predictions 

made from the amplicon sequence variants were compared to the carbohydrate active 

enzyme database (CAZy) and suggest increased genetic potential for mucin degradation in 

CRS-associated communities. Anaerobic enrichments of CRS sinus mucus in minimal 

medium with mucin (MMM) as the sole nutrient source yielded communities that degraded 

high-molecular weight mucins and were characterized by genera Streptococcus, 

Prevotella, and Fusobacterium. We demonstrated that in vitro aerobic growth of S. aureus 

on cell-free supernatants (CFS) derived from CRS-enrichment cultures is enhanced 
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compared to MMM alone. Finally, transcriptional profiles of S. aureus grown on CFS 

revealed that mucin degradation and fermentation products can alter metabolism- and 

virulence-associated gene expression. From these experiments we conclude that there is an 

anaerobic mucin-degrading phenotype associated with bacterial communities found in the 

CRS sinonasal cavity. Furthermore, cooperative mucin-degradation by these communities 

can affect S. aureus physiology and virulence potential in vitro. This research provides 

novel insight into the metabolic activities and interbacterial interactions of CRS 

communities that may influence chronic infection by S. aureus in the sinonasal niche. 

  



 

 62 

Introduction 

 Chronic sinusitis (CRS) is a heterogeneous inflammatory disease of the upper 

airways that affects 2-13% of the US population (Bhattacharyya and Gilani, 2018). Despite 

its prevalence, the complex pathogenesis of CRS is poorly understood. The disease has 

been linked to anatomic variation, immune dysfunction, host genetics, impaired mucus 

clearance, and microbial dysbiosis2, but the importance of these factors and the order in 

which they occur remains controversial (Hoggard, Mackenzie, et al., 2017; Ooi et al., 

2008). General consensus is that bacterial infection is integral to CRS pathogenesis. Thus, 

antibiotic therapy remains standard-of-care (Hoggard, Mackenzie, et al., 2017). However, 

given the low efficacy of conventional treatment regimens and rising concerns about 

multidrug resistance (Essack and Pignatari, 2013; Kennedy and Borish, 2013; Manarey et 

al., 2004), there remains a critical need to understand the precise role(s) of upper airway 

microbiota in CRS. 

 S. aureus is recognized as a primary pathogen of CRS and is the most common 

bacterium isolated from both inpatient and outpatient cultures (Busaba et al., 2004; Feazel 

et al., 2012; Ramakrishnan et al., 2013). Paradoxically, S. aureus also resides, persistently 

or intermittently, in the nasal cavity of up to 50% of adults without complications (Bassis 

et al., 2014; Gorwitz et al., 2008; Wertheim et al., 2005). Individuals colonized by S. aureus 

tend to retain the same strain over time, and S. aureus infections tend to be caused by the 

carried strain (Bode et al., 2010; Pugliese and Favero, 2001; H. F. L. Wertheim et al., 2004). 

Interestingly, total bacterial load is not significantly different between CRS and non-CRS 

https://paperpile.com/c/kYWtSe/YZrT
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subjects colonized by S. aureus (Abreu et al., 2012; Ramakrishnan et al., 2013). This 

observation suggests that extrinsic host and environmental variables, not bacterial 

overgrowth, are determinants of the commensal versus pathogenic lifestyle of S. aureus 

within the upper airways. 

 S. aureus pathogenesis can be attributed to its vast repertoire of virulence factors 

whose expression is dependent on complex regulatory networks, growth phase, and diverse 

environmental stimuli (Balasubramanian et al., 2017; Jenul and Horswill, 2018). 

Interactions with co-colonizing microbiota can also affect S. aureus pathogenicity, 

particularly in the sinonasal cavity, where S. aureus thrives as part of a complex microbial 

community. For example, it has been suggested that Cutibacterium spp. can inhibit S. 

aureus growth through propionic acid production, and decrease virulence via extracellular 

porphyrins (Y. Wang et al., 2014; Wollenberg et al., 2014). Similarly, Corynebacterium 

spp. restrict S. aureus pathogenesis through bactericidal activity (Hardy et al., 2019) or by 

suppressing the expression of virulence factors (Ramsey et al., 2016). Early culture-based 

studies found facultative and obligate anaerobic bacteria to be associated with CRS (I 

Brook et al., 1994; Erkan et al., 1994, 2009), significantly so in comparison to non-CRS 

subjects (Klossek et al., 1998). A longitudinal study also implicated colonization by 

facultative and obligately anaerobic bacteria as a significant risk factor in CRS 

development (I Brook et al., 1996). However, mechanistic contributions of anaerobes to 

CRS pathogenesis, either directly or through interactions with S. aureus, have not yet been 

identified. 
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 We recently demonstrated that commensal microbiota potentiate the growth and 

virulence of airway pathogens through the degradation of mucin glycoproteins (Flynn et 

al., 2020). Specifically, fermentation of O-linked oligosaccharides by oral-associated 

anaerobes generates amino acids and mixed-acid fermentation metabolites that P. 

aeruginosa can then use as nutrient sources. Building on our prior work and reports of 

hypoxia and increased mucin expression (MUC5B, MUC5AC) in CRS (Ding and Zheng, 

2007; Kim et al., 2004), here we tested the hypothesis that CRS microbiota are 

characterized by anaerobic mucin-degrading activity. Using 16S rRNA gene sequencing 

we found that, as expected, S. aureus abundance did not differ between CRS mucus and 

non-CRS controls. However, a significant decrease in the relative abundance of 

Actinobacteria (Corynebacterium, Cutibacterium) in CRS was observed that inversely 

correlated with an increase in Bacteroidetes (Prevotella) and Fusobacteria. We then 

hypothesized that an increase of these known mucin-degrading taxa would alter the 

nutritional landscape of the sinuses and drive a shift in S. aureus physiology from 

commensalism to pathogenesis. Indeed, we discovered that by degrading and fermenting 

mucins into bioavailable substrates, S. aureus growth was supported. Finally, RNAseq 

analysis demonstrated that mucin-degrading bacterial consortia differentially modulate 

gene expression in S. aureus, including several genes associated with central metabolism 

and virulence. This work reveals a mechanism whereby bacterial metabolic functions and 

interactions have critical implications for the onset, progression, and treatment of chronic 

sinus disease.  
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Materials and Methods 

FESS Sample Collection  

 69 participants with a positive diagnosis of CRS undergoing functional endoscopic 

sinus surgery (FESS) and 19 participants with no history of CRS, but undergoing unrelated 

sinonasal surgery, were recruited at the University of Minnesota Department of 

Otolaryngology. Exclusion criteria were diagnosis of cystic fibrosis, granulomatous 

polyangiitis, sarcoidosis, or Churg-Strauss syndrome. Informed consent was obtained from 

all subjects. Prior to surgery, each patient completed a sino-nasal outcomes test (SNOT-

22) (Kennedy et al., 2013). Sinus secretions were obtained from a single maxillary sinus 

(middle meatal region) under endoscopic visualization by suction into Argyle Mucus Traps 

(Cardinal Health, Dublin, OH) which were frozen at -80°C. Clinical data were also 

obtained for each subject (Table 4.1). The UMN Institutional Review Board approved these 

studies (#1403M49021).  

 

DNA extraction, 16S rRNA gene sequencing, and analysis  

 Genomic DNA was extracted from 300 µL of mucus using DNeasy Powersoil kits 

(Qiagen, Carlsbad, CA) and submitted to the UMN Genomics Center (UMGC) for 16S 

rRNA gene library preparation (Gohl et al., 2016). The V4 region was amplified and 

sequenced using Illumina MiSeq TruSeq 2x300 paired-end technology. Reagent control 

samples were also submitted and were below detection thresholds. 
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 Sequence analyses, statistical analysis, and data visualizations were performed in 

R. Cutadapt/2.6 (Martin, 2011) was used to remove primer sequences, with size filtering 

set to 215bp (minimum) and 285bp (maximum). DADA2/1.14 (Callahan et al., 2016) was 

used to trim sequences and filter for quality. DADA2 inferred a parametric error model 

used to identify and correct sequencing errors. Reads were de-replicated, paired ends 

merged, and chimeric reads removed using default options. Genus-level taxonomy was 

assigned using the RDP bayesian classifier (Q. Wang et al., 2007) and SILVA-132 

taxonomy training set (Quast et al., 2013). Species-level taxonomy was assigned only if an 

amplicon sequence variant (ASV) unambiguously matched a sequence in SILVA-132 or 

eHOMD databases (Escapa et al., 2018). A phylogenetic tree was approximated by first 

performing a multiple-alignment using DECIPHER/2.14.0 (Wright, 2016). Phangorn/2.5.5 

(Schliep, 2011) was used to construct a phylogenetic tree. Resulting data were filtered to 

include samples with greater than 2000 reads. Phyla with ambiguous taxonomic 

assignments, total feature prevalence less than 10, or mean feature prevalence of 1 were 

removed, as were ASVs with a mean relative abundance below 1x10-4. 

 PICRUSt2 (Douglas et al., 2020) was used to perform hidden-state prediction of 

metagenomic content, summarized into enzyme classes (ECs). Carbohydrate active ECs 

were identified through comparison to the Carbohydrate Active Enzyme Database (CAZy) 

(Lombard et al., 2014), downloaded from the dbCAN2 meta server (Zhang et al., 2018). 

EC count abundances were normalized to relative abundances of the top ten contributing 

ASVs in each subject group (CRS/non-CRS). 
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Bacterial strains and culture conditions. 

 Enrichments of mucin-degrading microbial communities were obtained through 

inoculation of a defined minimal mucin medium (MMM) (Flynn et al., 2016) with 100 uL 

of FESS-derived mucus. Cultures were incubated at 37°C under anaerobic conditions 

(5%H2, 5%CO2 90% N2) in a Coy anaerobic chamber (Coy Lab Products, Grass Lake, MI) 

without mixing for 48 hours, sub-cultured 1:100 into fresh MMM, and incubated for 

another 48 hours. Aliquots for 16S rRNA gene sequencing and 20% glycerol stocks were 

retrieved from each enrichment culture and stored at -80°C. Cell-free supernatants (CFS) 

were generated through inoculation of MMM from glycerol stocks and incubated for 48 

hours at 37°C under anaerobic conditions. Each culture was then sub-cultured 1:100 in 

MMM and incubated for 48 hours. Cells were removed by centrifugation at 7000 x g for 

10 min, followed by filtration through a 0.2 um polyethersulfone (PES) membrane filter. 

Filtrates were stored at -80°C until use. 

 S. aureus strain USA300 LAC (Diep et al., 2006) was maintained on tryptic soy agar 

(TSA). Prior to all growth experiments, overnight cultures were grown in tryptic soy broth shaking 

at 220 RPM at 37°C. Cells were washed three times with phosphate buffered saline (PBS) and 

diluted to an optical density (OD600) of 0.02 in MMM or CFS. Amendments to MMM included 

0.25% glucose (MMMG), 0.5% lactate (0.5%) (MMML), casamino acids (0.5%) (MMMC), or 

lactate (0.5%) and casamino acids (0.5%) (MMMLC). Respiratory conditions were induced in 

anaerobic cultures by addition of 3mM sodium nitrate. OD600 measurements were obtained using 

a Synergy H1 plate reader (BioTek, Winooski, VT) with continuous orbital shaking (282 cycles 
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per minute) at 37°C. Growth experiments were performed in triplicate using three biological 

replicates. 

 

FPLC/HPLC analysis of CFS 

 Fast protein liquid chromatography (FPLC) was used to evaluate the integrity of 

high molecular weight mucins. Using an Ӓkta Pure FPLC (GE Healthcare Bio-Sciences, 

Marlborough, MA) at 4C, 500 uL of MMM or CFS was injected and subject to an isocratic 

run at a flow rate of 0.4 mL/min for 1.5 CV with 50 mM phosphate buffer (pH 7.2) and 

150 mM NaCl on a 15mL column volume (CV) 10/200mm Tricorn column packed with 

Sepharose 2B-CL beads. Data were collected using Unicorn 7 software (GE Healthcare 

Bio-Sciences AB, Uppsala, SE) and analyzed using a custom R script. 

 High-performance liquid chromatography (HPLC) was used to measure concentrations of 

acetate, butyrate, propionate, lactate, succinate, and pyruvate using pure standards ranging from 

0.1 mM to 10 mM. To remove high molecular weight glycoproteins, CFS were filtered using 

regenerated cellulose protein concentrators (3000 MWCO; Amicon, MilliporeSigma). Eluent was 

analyzed using a Dionex UltiMate 3000 UHPLC (Thermo Fisher) system equipped with an 

Acclaim Organic Acid Column (5um, 120A, 4.0x250mm). A 32-minute isocratic instrument 

method was used for analysis consisting of an 8-minute equilibration period followed by a 24-

minute sample run at 1.0ml/min at 30°C. Sodium sulfate (100mM, pH 2.6) was the mobile phase. 

All samples were analyzed at a wavelength of 210nm. Chromeleon 7 software (Dionex, Sunnyvale, 

CA, USA) was used to visualize and process data, and Cobra Wizard was used to identify and 

automatically gate chromatogram peaks of interest. 
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RNA Isolation, RNA-Seq, and data analysis 

Total RNA was extracted from 5 mL cultures grown to early stationary phase in CFS, or 

MMMG following a previously described method (Carroll et al., 2014) with modifications. 

Briefly, cells were pelleted by centrifugation for 5 minutes at 7000 x g and snap frozen in 

liquid nitrogen before storage at -80°C overnight. RNA was extracted from cell pellets 

using an RNeasy Mini kit (Qiagen). DNaseI treatment was carried out as part of the RNA 

Clean and Concentrator kit (Zymo, Irvine CA). RNA quality (RIN ≥ 9.8) and quantity were 

assessed using an Agilent Bioanalyzer. Paired-end 75bp libraries were prepared by UMGC 

using Illumina TruSeq Stranded RNA workflow with bacterial ribosomal reduction using 

Ribo-Zero (Illumina, San Diego, CA). Libraries were sequenced using the Illumina 

NextSeq platform. 

 Raw fastq files were checked for quality and adapter sequences using FastQC. 

Sequences were then aligned to the USA300_FPR3757 genome (NCBI RefSeq 

NC_007793.1) (Diep et al., 2006) using the Subread aligner, implemented using RSubread 

(Liao et al., 2013, 2019). Gene counting for each sample was performed using 

‘featureCounts’, also using RSubread. Sample ordination was carried out on regularized-

log transformed counts using ‘rlog’ and ‘pcomp’ functions within DESeq2/3.9 (Love et al., 

2014). The ‘deseq’ function was used to estimate size factors, carry out variance-stabilizing 

transformation and statistical testing via the Wald Test. Genes with a log2 fold-change 

greater than 1 (set using the lfcThreshold parameter) with two-tailed Benjamini-Hochberg 

adjusted p<0.05 were considered significant.  
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Data availability 

Code for all analyses in this section has been made available at: 

https://github.com/hunterlabumn/CRS-mucin-degradation 

  

https://github.com/hunterlabumn/CRS-mucin-degradation
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Results 

CRS is associated with an anaerobic mucin-degrading bacterial phenotype 

 To first test our hypothesis that CRS sinuses harbor an increased prevalence of 

anaerobic microbiota, we obtained sinus mucus from CRS (n=61) and non-CRS (n=19) 

subjects. Community composition was described using taxonomy derived from amplicon 

sequence variants (ASVs) generated from 16S rRNA gene sequence analysis. 

Demographic and clinical data associated with each subject were also obtained (Table 4.1). 

A comparison of bacterial communities using double principal coordinate analysis 

(DPCoA) revealed considerable within-group variation among CRS microbiota (Figure 

4.1A). With exceptions, non-CRS samples clustered more closely compared to CRS 

samples. The split plot demonstrated 53.5% variation represented along the first axis which 

suggests that CRS samples deviate from non-CRS based on the presence/absence of 

Actinobacteria, Bacteroidetes, and Fusobacteria. Indeed, a greater relative abundance of 

Actinobacteria was significantly associated with non-CRS samples (Wilcoxon, P < 0.001) 

(Figure 4.1B). A greater relative abundance of Actinobacteria was also significantly 

associated with samples from patients with no prior history of FESS (Wilcoxon, P = 0.015) 

(Figure 4.1C), suggesting an association with earlier stages of disease. Actinobacteria also 

exhibited an inverse relationship with the relative abundance of both Bacteroidetes and 

Fusobacteria (Wilcoxon, P < 0.001, Figure 4.1D). Second axis variance in the DPCoA 

(11%, Figure 4.1A) was primarily driven by Proteobacteria. Relative abundances of phyla 

across all samples are shown in Figure 4.2. These analyses demonstrate that while CRS 
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and non-CRS samples share many of the same bacterial taxa, differences between groups 

occur at the phylum level. 

 Where identification of obligate anaerobes in CRS has been previously hindered by 

cultivability, sampling, or database representation, we leveraged the increased resolution 

of ASVs over conventional use of molecular operational taxonomic units (OTUs) to 

provide a detailed characterization of bacterial diversity in the sinus cavity (Table 2). At 

the genus level (Figure 4.1E), relative abundances of Staphylococcus spp. did not 

appreciably differ between CRS (11%) and non-CRS (15%), as expected. These data 

support previous culture-based and culture-independent studies demonstrating similar 

prevalence and abundance of S. aureus between patient groups (Abreu et al., 2012; 

Ramakrishnan et al., 2013). In agreement with the DPCoA (Figure 4.1A), non-CRS 

samples were distinguished by Actinobacteria – Corynebacterium (14% vs 6%), 

Cutibacterium (3.6% vs 1.1%), and Actinomyces (1.1% vs 0.2%) – consistent with their 

roles as commensal inhabitants of the upper airways while attenuating S. aureus 

pathogenicity (Hardy et al., 2019; Ramsey et al., 2016; Y. Wang et al., 2014; Wollenberg 

et al., 2014). ASVs belonging to Pseudomonas and Staphylococcus were second and third 

most abundant in CRS, respectively, consistent with their role as airway pathogens. Most 

notable, however, was that Streptococcus was highly abundant in CRS at an average 

relative abundance of 17.2% compared to 6.8% in non-CRS subjects. Prevotella and 

Fusobacterium, both obligate anaerobes, were also more abundant in CRS. Together, these 
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data suggest that the CRS sinus bacterial communities exhibit a loss of commensal taxa, 

and favors (and/or is driven by) growth of facultative and obligate anaerobes. 

 Given the association of Streptococcus, Prevotella, and Fusobacterium with oral- 

and gut-associated bacterial communities known for metabolizing host-derived mucin 

glycoproteins (Argüeso et al., 1998; Beighton and Whiley, 1990; Bradshaw et al., 1994; 

Byers et al., 2000; Homer et al., 1996; Kiyohara et al., 2010; Mondal et al., 2014; Rho et 

al., 2005; Sanders et al., 2007; Tailford et al., 2015; Terra et al., 2010; Wickström et al., 

2009; D. P. Wright et al., 2000), we then hypothesized that CRS microbiota would exhibit 

the functional capacity to degrade mucins, which are increased in expression in CRS (Ding 

and Zheng, 2007; Kim et al., 2004). To test this hypothesis, we used PICRUSt2 (Douglas 

et al., 2020) to predict metagenomic content based on 16S rRNA sequencing data, which 

was then summarized into enzyme categories (ECs) and compared to the Carbohydrate 

Active Enzyme (CAZy) database (Lombard et al., 2014). Selection of the top CAZy EC 

classes by relative functional abundance revealed that glycoside hydrolases and 

polysaccharide lyases were more prevalent in CRS predicted metagenomes (Figure 4.3A), 

including many with previously defined roles in mucin degradation (β-glucuronidase, β-

galactosidase, hyaluronate lyase, exo-α-sialidase, and chitinase). By contrast, 

metagenomes predicted from non-CRS samples were characterized by the presence of ECs 

with glycotransferase (GT) and carbohydrate esterase (CE) functions (Figure 4.3B). These 

in silico analyses are predictive of CRS microbiota having increased capacity for cleavage 

of glycosidic bonds and degradation of mucin oligosaccharides. 
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 To validate our metagenome predictions, and to demonstrate that CRS microbiota 

retain their mucin degradation capacity in vivo, we used an anaerobic enrichment scheme 

(Flynn et al., 2016) in which sinus mucus was serially passaged in a defined growth 

medium containing 15g L-1 purified MUC5AC as the carbon source (minimal mucin 

medium, MMM). After two passages of 48h, bacterial composition pre- and post-

enrichment was profiled. Similar to our initial sequencing data (Figure 4.1), CRS subjects 

harbored diverse bacterial communities, often dominated by a single recognized pathogen 

(Figure 4.4A). Post-enrichment mean relative abundances of Prevotella (19.4%), 

Veillonella (19.7%), Fusobacterium (13.3%) and Streptococcus (15.3%) all increased 

across samples (Figure 4.4B). Enrichment cultures were similar between patients, even 

when original community membership differed (Figure 4.4C), suggesting a core mucin-

degrading consortium. FPLC was also used to assess integrity of high-molecular weight 

mucins included in the enrichment medium. As predicted, chromatograms (Figure 4.4D) 

show that the peak area derived from each bacterial community was markedly decreased, 

reflecting reduced mucin integrity as a result of enrichment. Together, these data support 

our hypothesis that anaerobic microbiota alter the CRS microenvironment via degradation 

of mucin glycoproteins. 

 

S. aureus growth on mucin is inefficient and respiration dependent. 

 When Staphylococcus ASVs were present in the original sample (subjects B-F, H), 

they were notably absent from the enrichment (Figure 4.4A). This suggests that 
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Staphylococcus spp. are either (i) inhibited by enrichment communities, (ii) unable to 

efficiently use mucins or degradation byproducts as nutrients, or (iii) unable to do so under 

oxygen limitation, despite fermentative capacity. To test these possibilities, S. aureus strain 

USA300 LAC was first grown aerobically in MMM. Growth was limited on MMM alone, 

suggesting that metabolic requirements are not met by intact high-molecular weight 

mucins. However, growth rate and yield were significantly increased when supplemented 

with casamino acids, lactate, and glucose, which mimic metabolites generated via mucin 

degradation and fermentation (Figure 4.5A). Growth on these supplements was restricted 

under anaerobic (fermentative) conditions but was partially restored with the addition of 

3mM sodium nitrate as an electron acceptor (Figure 4.5B). From these results it can be 

concluded that S. aureus does not efficiently use mucins as a nutrient source. As expected, 

the in vitro conditions support growth when additional nutrients are supplied, particularly 

under respiratory conditions.  

 

Secondary metabolites from mucin degradation support S. aureus growth. 

 To test whether degradation and fermentation by other bacteria could provide 

nutrients to S. aureus, and to ensure that S. aureus was not inhibited by co-colonizing 

microbiota, LAC was cultured on cell-free supernatants (CFS) derived from enrichment 

samples (A-H in Figure 4.4) under aerobic and anaerobic (respiratory and non-respiratory) 

conditions. Under aerobic conditions, LAC exhibited equal or improved growth in all CFS, 

despite having less total carbon in the growth medium (i.e. it was removed by anaerobes 
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during enrichment) (Figure 4.6A). Interestingly, communities A, E, and G which generated 

CFS supporting low S. aureus growth yields were enriched from samples in which 

Staphylococcus ASVs were absent or at very low abundance (see Figure 4.4A). 

 Anaerobic growth yields after 24h showed a similar pattern, signifying the presence 

of fermentable metabolites (e.g. glucose, galactose) as a result of mucin degradation 

(Figure 4.6B). Establishment of respiratory conditions with the addition of sodium nitrate 

(3mM) resulted in increased growth yields in all conditions. We conclude that aerobic and 

anaerobic growth of S. aureus can be supported by metabolites liberated or produced by 

CRS-derived mucin-degrading bacteria. 

 Byproducts of fermentation by mucin degrading communities constitute one source 

of metabolites that can alter S. aureus physiology. We used high performance liquid 

chromatography (HPLC) to measure fermentation byproducts acetate, propionate, 

butyrate, and lactate in the CFS (n = 1 replicate for each). We found these metabolites to 

be present in the millimolar range, and highly variable across supernatants. CFS-A with 

very low levels of SCFA, Succinate/Pyruvate, and CFS-E, with high levels of Acetate and 

Propionate, were also associated with the lowest growth rate and yield under aerobic 

conditions (Figure 4.6A). The two CFS-F and -H resulted in the greatest growth rates and 

yields, and also had higher levels of lactate, however, high lactate could not explain growth 

patterns seen in the other supernatants. There are likely many more other metabolites 

resulting from mucin-degradation not measured here that influence S. aureus growth in our 

in vitro conditions.  
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Mucin degradation supernatants influence S. aureus transcription 

 Increased S. aureus growth on CFS also raised the question of how metabolism, 

virulence, or other cell processes were modified at the transcriptional level. To gain insight 

into pathways that were differentially expressed in response to anaerobic mucin 

degradation, we used RNAseq to profile S. aureus gene expression during growth on cell-

free supernatants (CFS) relative to growth on MMM supplemented with glucose 

(MMMG), a preferred carbon source of S. aureus during infection (Vitko et al., 2016). CFS 

samples D, F, and H were selected for their consistent ability to support S. aureus growth 

under both aerobic and anaerobic conditions. 

 Differential gene expression in all three supernatants relative to MMMG is shown 

in Figure 4.7A. Across samples, 93 genes (79 upregulated, 14 downregulated) were 

differentially expressed (2-fold or greater, P < 0.05). Common to all supernatants was 

increased expression of genes in the nan locus involved in transport and catabolism of sialic 

acid (N-acetylneuraminic acid [Neu5Ac]) (Olson et al., 2013) (Figure 4.7 A, B). PTS-

dependent glucose and ManNAc transporter glcC (Vitko et al., 2016), was also 

differentially expressed. 

 Interestingly, there was increased expression of NAD-dependent formate 

dehydrogenase (fdh) and formyltetrahydrofolate synthetase (fhs), implying formate 

catabolism. However, these genes were not accompanied by increases in pyruvate formate 

lyase (pflA, pflB) expression, whose gene products supply formate to FDH and pyruvate 

for substrate-level phosphorylation (Leibig et al., 2010). The gene involved in the 
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conversion of acetate to acetyl-CoA (acsA) was also significantly increased (Figure 4.7C), 

but not the reverse process (pta, ackA). Altogether, these data suggest that mixed-acid 

fermentation metabolites such as formate and acetate are provided exogenously to S. 

aureus by CRS anaerobes. 

 An increase in expression of genes associated with glutamate import (gltS) and 

synthesis via catabolism of arginine (rocF, rocD, rocA) and proline (putA, rocA) was 

observed in the supernatant conditions (Figure 4.7A,C) (Halsey et al., 2017). Increased 

expression of gudB signifies glutamate conversion to 2-oxoglutarate for entry into the TCA 

cycle. Additionally, expression of genes associated with the left side of the TCA cycle and 

gluconeogenesis (sucA, sucC, sdhA, fumC, mqo1, pckA) were all significantly increased, 

indicating that amino acids may be fueling gluconeogenesis under the conditions tested. 

Other functional categories of genes consistently expressed across supernatants include 

peptidoglycan recycling (murQ) (Borisova et al., 2016), fatty acid metabolism (fadA, fadB, 

fadD, fadE, fadX) (Kenny et al., 2009), biotin biosynthesis (bioA, bioB, bioD, bioF, bioW, 

bioY) (Satiaputra et al., 2018), and virulence (spa and a gene encoding a putative 

immunoglobulin-blocking virulence protein, RS09510) (Balasubramanian et al., 2017). 

The differential transcription of these genes indicates that S. aureus metabolism is 

significantly altered in comparison to growth on glucose. 

 Several transcripts were differentially expressed between supernatants conditions. 

Hierarchical clustering revealed that the S. aureus transcriptome from CFS-H was distinct 

from CFS-D and CFS-F (Figure 4.7D). Transcripts associated with amino acid transport 
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and biosynthesis were more abundant in CFS-D/F. Of note was expression of the ilv-leu 

operon involved in branched-chain amino acid (BCAA) synthesis, accompanied by 

increased expression of genes encoding ɑ-acetolactate decarboxylase (budA) and ɑ-

acetolactate synthase (budB) (Kaiser and Heinrichs, 2018). Genes required for galactose 

import (lacCDEF) (Rosey et al., 1991) were also upregulated in CFS-D/F, suggestive of 

its availability in these supernatants. Genes involved in cysteine-sulfur-methionine 

homeostasis (ssuABC, metICFH-mdf operons) (Schoenfelder et al., 2013) and peptide 

transport (opp3DAF) (Lehman et al., 2019) were also seen at higher levels in CFS-D/F.  

 Virulence-related gene transcription also differentiated supernatant growth 

conditions. Notably, transcription of the agr operon and RNAIII (hld) were higher in CFS-

H. Protease transcripts staphopain B (sspB), aureolysin (aur), and immunodominant 

antigen B (isaB) were also more abundant in this condition. Supernatants CFS-D/F yielded 

transcriptomes that exhibited more of a biofilm-like phenotype, with increased prevalence 

of transcripts for holin protein (cidA) and exopolysaccharide (icaABC) (Cramton et al., 

1999; Rice et al., 2007). Taken together, these data demonstrate that, in addition to 

supporting S. aureus growth, expression of genes associated with metabolism, virulence, 

and other cellular processes is highly dependent on the specific composition of their co-

colonizing microbiota and the metabolites they exchange.  
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Discussion 

 S. aureus is consistently associated with the development of CRS, and the 

inefficacy of clinical therapies (Bhattacharyya and Kepnes, 1999; Ramakrishnan et al., 

2015). However, S. aureus is also present in the nasal passages of ~50% of healthy 

individuals (Bassis et al., 2014; Gorwitz et al., 2008; H. F. Wertheim et al., 2005), 

suggesting that the sinus microenvironment and bacterial activities within, may tip the 

balance between commensalism and pathogenesis of S. aureus in vivo. Here we 

demonstrate differences in CRS and non-CRS bacterial communities and implicate mucin 

as a nutrient source supporting anaerobic bacterial diversity in the sinuses. Moreover, we 

show that the degradation of mucins by CRS-derived communities impacts S. aureus 

growth and alters its transcriptional profile. 

 Research spanning several decades has described the microbiology of CRS, both 

by culture and molecular methods (Hoggard, Mackenzie, et al., 2017). There is general 

agreement in the prevalence of potential pathogenic bacteria implicated in disease, 

including S. aureus. However, surveying bacterial diversity in this niche is subject to bias 

in the observation of low abundance or fastidious organisms based on sampling methods, 

cultivability, and representation in databases for taxonomic assignment (Hoggard, 

Mackenzie, et al., 2017). Observation of anaerobes in CRS has therefore varied across 

studies (Itzhak Brook, 2011). Here, we leverage the use of ASVs for taxonomic 

assignment, resulting in high-resolution observations that both confirm species-level 

identification of anaerobes in culture-based studies (e.g. P. melaninogenica, F. nucleatum), 
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and contribute previously unreported bacterial species (e.g. F. periodonticum, Dialister 

invisus, Porphyromonas pasteri) (Table 2). Although this resolution is useful for 

generating hypotheses about potential interbacterial interactions, differences in bacterial 

consortia in CRS and non-CRS can also be seen at the phylum level. Actinobacteria relative 

abundance differentiates CRS subjects from non-CRS subjects, and within CRS subjects, 

is negatively correlated with the number of therapeutic surgical interventions (FESS). 

Interestingly, Corynebacterium (Actinobacteria) presence in the sinuses prior to FESS has 

been linked with better patient outcomes (Ramakrishnan et al., 2015), suggesting it is a 

member in a less inflammatory community. Furthermore, the relative abundance of 

Actinobacteria have an inverse relationship with both Bacteroidetes and Fusobacteria, 

suggesting that the presence of anaerobes may represent a distinct dysbiotic stage in CRS 

disease progression. 

 Hypersecretion of mucus is a hallmark of CRS disease (Ding and Zheng, 2007; 

Kim et al., 2004). Due to their complex structure, mucins, the main component of mucus, 

paradoxically provide both mucosal barrier protection and a rich source of nutrients for 

organisms that can degrade them (Wagner et al., 2018). In better characterized ecosystems 

such as the gut and oral cavity, mucins act as important mediators of microbial community 

assembly, requiring a diversity of glycolytic and proteolytic enzymatic functions for 

degradation (Wagner et al., 2018). Metagenomic prediction showing increased 

carbohydrate active enzyme abundances from CRS associated bacterial communities led 

us to hypothesize that mucins support anaerobic bacterial taxa in this niche. We found 
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mucins support the major anaerobic taxa observed in our original analysis, recovering 

communities dominated by Streptococcus, Veillonella, Prevotella, and Fusobacteria. The 

similarity across enrichment communities despite dissimilar original samples was striking. 

Interestingly, diverse metabolic phenotypes are represented within and between the top 

genera. Several species of Streptococcus and Prevotella have been noted for their 

saccharolytic capabilities necessary to break down mucin glycans (Bradshaw et al., 1994; 

Derrien and Passel, 2010; Wickström et al., 2009; D. P. Wright et al., 2000). By contrast, 

characterization of F.  nucleatum indicates it is only minimally saccharolytic, and instead 

relies on amino acid catabolism and peptide assimilation (Bradshaw et al., 1994; Loesche 

and Gibbons, 1968). Carbohydrate fermentation has not been described for Veillonella spp. 

which instead rely on fermentation byproducts such as lactate for growth (Ng and 

Hamilton, 1971). These results indicate that under anaerobic conditions, mucin degradation 

alone can support diverse bacterial metabolisms within a community. 

 A critical component of S. aureus’ capacity for colonization and virulence potential 

is its ability to adopt metabolic states given a range of nutrient sources and respiratory 

conditions (Carvalho et al., 2017; Halsey et al., 2017; Krismer et al., 2014; Spahich et al., 

2016), However, S. aureus use of mucins as a nutrient source has not been described, and 

our results demonstrate that intact, high molecular weight mucins do not support robust 

growth. Lactate, amino acids, and glycolytic substrates have all been indicated as important 

metabolites in models of S. aureus survival and pathogenicity (Spahich et al., 2016; Vitko 

et al., 2016), and their addition to MMM demonstrates that these metabolites support 



 

 83 

growth under our experimental conditions. Proposed sources of these metabolites are host 

and S. aureus activities such as collagen degradation and carbohydrate fermentation 

(Halsey et al., 2017; Lehman et al., 2019). We hypothesized that co-colonizing bacteria in 

CRS can also provide these and other metabolites through mucin degradation and cross-

feed S. aureus. Counter to this prediction was the observation that the genus 

Staphylococcus was not recovered in any of our enrichment cultures, suggesting that 

antagonistic bacterial interactions, competition, or lack of oxygen or other nutrients was 

inhibiting Staphylococcal survival. However, when we used cell-free supernatants from 

CRS mucin-degrading communities, we showed that S. aureus grew to higher densities 

compared to mucin alone. Our results suggest that mucin degradation can supply nutrients 

to support S. aureus growth. Interbacterial interactions governing S. aureus co-existence 

with mucin-degrading communities, and the metabolic parameters that shape these 

relationships, are the subject of ongoing investigation.  

 The mechanisms whereby the microenvironment influences S. aureus ability to 

colonize mucosal surfaces, subvert the immune system, and initiate infection continue to 

be an active area of research. Respiratory microbiota have been shown to impact the 

microenvironment at the respiratory mucosa in non-trivial ways. For example, cleavage of 

sialic acids from host proteins is a well-documented characteristic of various members of 

the Streptococci seen in our study (Blanchette et al., 2016; Bradshaw et al., 1994). Our 

transcriptome analysis of S. aureus growth on three different supernatants from CRS-

derived mucin-degrading communities revealed upregulation of sialic acid transport and 
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catabolism genes from the nan locus, indicating a response to this carbon and nitrogen 

source. Current models of S. aureus metabolic adaptation under changing respiration and 

nutrient levels support a strong link between the metabolite pool, metabolic state, and 

virulence (Jenul and Horswill, 2018). Expression profiles revealed upregulation of many 

of the same pathways deemed important for S. aureus survival and virulence potential in 

these models, such as glutamate synthesis via arginine and proline (Halsey et al., 2017). 

Separately, the supernatants impacted virulence-related gene transcription in different 

ways. Genes of the agr locus, a master regulatory system controlling the expression of 

virulence factors including extracellular proteases (Jenul and Horswill, 2018), were 

upregulated only when S. aureus was grown in CFS-H. The transcriptional profiles of S. 

aureus grown in CFS-D/F exhibited gene expression associated with nitrosative stress 

tolerance, clumping, adhesion, and biofilm formation (Carvalho et al., 2017; Cramton et 

al., 1999; Rice et al., 2007). S. aureus exacerbation of CRS disease is complex, likely 

involving both inflammation-inducing virulence factor expression, and aggregation and 

biofilm formation known to reduce efficacy of antibiotic therapies (Archer et al., 2011). 

Altogether, our data show that mucin-degradation contributes to the microenvironment in 

significant ways, altering S. aureus growth and transcription. 

 The scope of our results is limited in that our observations only include bacteria. 

We acknowledge that fungi may be present in our samples as well, and mucin-fungal 

interactions have been reported previously. Additionally, we did not look further into the 

impact of community-derived proteins and small molecules in the supernatants that may 
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directly impact S. aureus growth and gene expression phenotypes, though there is 

precedence for these interactions. For example, Corynebacterium spp. quench S. aureus 

quorum sensing via small molecule interference (Ramsey et al., 2016). Finally, our 

observations of S. aureus growth and transcription were all conducted in monoculture, 

which excludes spatial and contact-dependent polymicrobial interactions, such as the 

recently demonstrated aggregate formation with Fusobacterium nucleatum (Lima et al., 

2019). Observations of increased virulence through protease expression, or biofilm 

formation will need to be tested in vivo to better understand the contribution of these 

interactions to the development and persistence of CRS. 

 Overall, our results suggest that a reduction in the relative abundance of 

Actinobacteria, including Corynebacterium, and increase in Bacteroides and Fusobacteria 

may represent a dysbiotic state in CRS. Members of Bacteroidetes, Fusobacteria and 

anaerobic Firmicutes are common members of mucin degrading communities, which can 

be isolated from CRS sinus mucus, and whose collective metabolic activities can support 

S. aureus growth and alter gene transcription. Our findings provide a basis for further 

characterization of anaerobe-S. aureus interactions and determination of their importance 

in vivo. 
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Tables 

Table 4.1 Demographic and clinical data for FESS patients 

CRS Diagnosis CRS (n = 61) Non-CRS (n = 19) 

Age (mean ± S.D.) 49.5 ±13.8 43.1 ±14.4 

SNOT22 (mean ± S.D.) 1.9 ± 1.0 0.93 ± 0.8 

Sex (% Female) 52.5 42.1 

Polyps (%) 42.6 0 

GERD (%) 23.0 15.8 

Asthma (%) 50.8 5.3 

Allergies (%) 36.1 21.1 
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Table 4.2 Prevalence and average relative abundance of anaerobe features in CRS and non-

CRS samples † 

 
Prevalence in 

Samples 

Average Relative 

Abundance (%) 
 

 

Taxonomic Feature 

(CRS) 
(Non-

CRS) 
 (CRS) 

 (Non-

CRS) 

Species 

Assignment 

Database 

(SILVA/HOMD) 

Actinomyces           

Actinomyces 9 4 0.03 0.59   

Actinomyces graevenitzii 7 3 0.04 0.03 SILVA/HOMD 

Actinomyces odontolyticus 17 9 0.16 0.59 SILVA 

Total 33 16 0.23 1.22   

Akkermansia           

Akkermansia muciniphila 2 0 0.13 0.00 SILVA 

Total 2 0 0.13 0.00   

Anaerococcus           

Anaerococcus 7 6 0.57 0.22   

Anaerococcus nagyae 2 1 0.01 0.01 SILVA 

Anaerococcus octavius 6 8 0.19 0.37 SILVA/HOMD 

Anaerococcus provenciensis 1 3 0.00 0.27 SILVA 

Total 16 18 0.77 0.87   

Atopobium           

Atopobium parvulum 6 2 0.03 0.02 SILVA/HOMD 

Atopobium rimae 1 1 0.02 0.03 SILVA/HOMD 

Total 7 3 0.05 0.05   

Bacteroides           

Bacteroides 3 1 1.25 0.17   

Bacteroides acidifaciens 2 1 0.20 0.19 SILVA 

Total 5 2 1.46 0.36   

Campylobacter           

Campylobacter 6 4 0.07 0.36   

Campylobacter concisus 15 3 0.15 0.48 SILVA 

Campylobacter gracilis 5 0 0.28 0.00 SILVA/HOMD 

Campylobacter ureolyticus 1 2 0.00 0.07 SILVA/HOMD 

Total 27 9 0.50 0.91   

Capnocytophaga           

Capnocytophaga gingivalis 2 1 0.01 0.01 SILVA/HOMD 

Capnocytophaga leadbetteri 7 2 0.06 0.06 SILVA/HOMD 

Capnocytophaga ochracea 1 0 0.03 0.00 SILVA 

Total 10 3 0.09 0.07   

Cutibacterium           

Cutibacterium acnes 36 13 0.96 3.43 SILVA/HOMD 
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Cutibacterium granulosum 9 8 0.13 0.20 HOMD 

Total 45 21 1.08 3.62 SILVA/HOMD 

Dialister         SILVA 

Dialister invisus 7 2 0.05 0.07   

Dialister micraerophilus 0 1 0.00 0.09   

Dialister pneumosintes 8 3 0.33 0.06   

Dialister propionicifaciens 2 3 0.04 0.06 SILVA/HOMD 

Total 17 9 0.42 0.28   

Eikenella           

Eikenella 1 0 0.02 0.00 SILVA/HOMD 

Eikenella corrodens 4 0 0.05 0.00   

Total 5 0 0.07 0.00   

Finegoldia           

Finegoldia magna 11 9 1.16 0.50 SILVA/HOMD 

Total 11 9 1.16 0.50 SILVA/HOMD 

Fusobacterium         SILVA/HOMD 

Fusobacterium 16 2 1.53 0.08   

Fusobacterium necrophorum 1 0 0.02 0.00   

Fusobacterium nucleatum 18 5 3.39 2.94   

Fusobacterium periodonticum 14 4 0.45 0.43   

Total 49 11 5.39 3.46   

Gemella         HOMD 

Gemella 14 8 0.15 0.24 SILVA/HOMD 

Total 14 8 0.15 0.24   

Granulicatella           

Granulicatella adiacens 14 8 0.12 1.72   

Granulicatella elegans 6 2 0.04 0.03   

Total 20 10 0.16 1.74   

Oribacterium         SILVA/HOMD 

Oribacterium 2 0 0.02 0.00   

Total 2 0 0.02 0.00   

Parvimonas           

Parvimonas micra 15 1 0.36 0.02 SILVA 

Total 15 1 0.36 0.02 SILVA/HOMD 

Peptoniphilus           

Peptoniphilus 7 8 0.05 0.83   

Peptoniphilus duerdenii 1 0 0.03 0.00 SILVA/HOMD 

Peptoniphilus lacrimalis 1 0 0.04 0.00   

Total 9 8 0.13 0.83   

Peptostreptococcus           

Peptostreptococcus stomatis 8 2 0.11 0.02 SILVA 

Total 8 2 0.11 0.02 SILVA 

Porphyromonas         SILVA 

Porphyromonas 3 1 0.06 0.27   

Porphyromonas endodontalis 9 3 0.54 0.34   
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Porphyromonas gingivalis 1 0 0.01 0.00   

Porphyromonas pasteri 8 3 0.23 0.14 SILVA/HOMD 

Total 21 7 0.84 0.76 SILVA 

Prevotella         SILVA/HOMD 

Prevotella 19 7 2.18 0.76 SILVA/HOMD 

Prevotella baroniae 3 0 0.04 0.00 SILVA 

Prevotella conceptionensis 2 0 0.06 0.00 SILVA/HOMD 

Prevotella dentalis 3 0 0.05 0.00 SILVA/HOMD 

Prevotella denticola 2 1 0.00 0.06 SILVA/HOMD 

Prevotella disiens 1 0 0.03 0.00 SILVA/HOMD 

Prevotella histicola 7 4 0.37 0.51 SILVA/HOMD 

Prevotella intermedia 2 1 0.19 0.54 SILVA/HOMD 

Prevotella loescheii 3 0 0.02 0.00 SILVA/HOMD 

Prevotella melaninogenica 16 5 0.42 0.71 SILVA/HOMD 

Prevotella nanceiensis 6 3 0.07 0.07 SILVA/HOMD 

Prevotella nigrescens 9 3 0.70 0.15 SILVA/HOMD 

Prevotella oris 14 2 0.90 0.04 SILVA/HOMD 

Prevotella pallens 7 5 0.13 0.17   

Prevotella salivae 9 6 0.29 0.62   

Prevotella shahii 1 1 0.00 0.11   

Prevotella veroralis 0 1 0.00 0.07 SILVA/HOMD 

Total 104 39 5.45 3.81 SILVA/HOMD 

Rothia           

Rothia 5 5 0.02 1.22   

Rothia dentocariosa 12 6 0.06 1.12   

Rothia mucilaginosa 10 5 0.10 0.55 SILVA 

Total 27 16 0.19 2.88 SILVA 

Selenomonas         SILVA/HOMD 

Selenomonas 12 4 0.13 0.28 SILVA 

Selenomonas artemidis 2 1 0.02 0.00   

Selenomonas infelix 2 0 0.02 0.00   

Selenomonas noxia 4 0 0.17 0.00 SILVA/HOMD 

Selenomonas sputigena 7 2 0.03 0.05   

Total 27 7 0.38 0.33   

Solobacterium           

Solobacterium moorei 3 2 0.01 0.04 HOMD 

Total 3 2 0.01 0.04 HOMD 

Streptococcus         HOMD 

Streptococcus 31 16 5.60 6.00 SILVA 

Streptococcus anginosus 3 1 0.02 0.00 HOMD 

Streptococcus constellatus 2 1 0.02 0.25 HOMD 

Streptococcus intermedius 8 1 2.80 0.01   

Streptococcus oralis 3 0 0.04 0.00   

Streptococcus pneumoniae 15 2 8.76 0.12 SILVA/HOMD 

Streptococcus sanguinis 10 2 0.04 0.27   
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Total 72 23 17.29 6.65   

Tannerella           

Tannerella forsythia 7 1 0.12 0.02 HOMD 

Total 7 1 0.12 0.02 SILVA 

Treponema         SILVA 

Treponema 3 0 0.06 0.00 SILVA/HOMD 

Treponema denticola 3 1 0.07 0.01 SILVA/HOMD 

Treponema lecithinolyticum 1 1 0.00 0.03 SILVA 

Treponema medium 2 2 0.03 0.19   

Treponema putidum 3 0 0.07 0.00   

Treponema socranskii 3 2 0.02 0.01   

Treponema vincentii 1 2 0.01 0.07 HOMD 

Total 16 8 0.27 0.31 HOMD 

Veillonella         HOMD 

Veillonella 23 10 1.86 2.87   

Veillonella dispar 15 5 0.12 1.09   

Veillonella parvula 14 8 0.30 0.65 HOMD 

Veillonella rogosae 10 3 0.13 0.28 SILVA/HOMD 

Total 62 26 2.41 4.89   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

_________________________ 

† Taxonomic features are ASVs aggregated at the lowest level of classification available (genus or 

species) and belonging to select anaerobic and facultative anaerobic bacterial taxa. 
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Figures 

 

Figure 4.1 Bacterial diversity differs between CRS and non-CRS samples. (A) DPCoA 

ordination biplot shows dissimilarity in presence and abundance of bacteria in CRS and 

non-CRS samples. (B) Percent abundance of Actinobacteria is associated with non-CRS 

status (Wilcoxon, p<.0001). (C) Among CRS samples, percent abundance of 

Actinobacteria is associated with no prior FESS treatment (Wilcoxon, p<.05). (D) Percent 

abundance of Actinobacteria is negatively correlated with percent abundance of both 

Bacteroidetes and Fusobacteria. (E) Heat map representation of the top 15 genera in each 

sample group (CRS, Non-CRS).  
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Figure 4.2 Relative abundance of Bacterial phyla in CRS and non-CRS samples. The relative abundance of ASVs grouped by phylum are 

shown for each sample.  
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Figure 4.3 Carbohydrate active enzyme classes in PICRUSt2-predicted metagenomes from 

CRS and non-CRS 16S sequences. Average relative functional abundances of each enzyme 

class (EC) represented in the CAZy database for the top ten taxa by relative abundance in 

(A) CRS and (B) non-CRS samples. CAZy classes: Auxiliary Activity (AA), Carbohydrate 

Esterase (CE), Glycoside Hydrolase (GH), Glycoside Transferase (GT), and 

Polysaccharide Lyase (PL). 
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Figure 4.4 Anaerobic mucin enrichment cultures of CRS sinus mucus.  (A) Heatmap showing 

relative abundance of ASVs grouped at the genus level for each original sample and 

enrichment culture. (B) Mean relative abundances for the top 20 genera in original sample 

and enrichment culture. (C) DPCoA biplot comparing proportional data from original 

samples and enrichment cultures with associated phyla. (D) FPLC chromatogram of high 

molecular weight mucin proteins in MMM and CFS from 48 hour CRS mucin enrichment 

cultures.  
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Figure 4.5 S. aureus growth on mucin under aerobic and anaerobic conditions. S. aureus LAC 

grown in minimal mucin medium (MMM), supplemented with 0.5% casamino acids 

(MMMC), 0.5% lactate (MMML), 0.25% glucose (MMMG), or a combination of these 

(MMMLC, MMMGC). (A) growth curves measured under aerobic conditions, points 

represent the mean and standard deviation; n=3. (B) Growth measured at O.D.600nm after 

24 hours of growth under anaerobic conditions with and without the addition of 3mM 

nitrate; Data shown are the mean of n = 6 (MMM, MMMC, MMML, MMMLC), n=3 

(MMMG, MMGC) biological replicates; Error bars are s.d.; significance determined by t-

test with Holm-Bonferroni adjustment. 
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Figure 4.6. S. aureus growth on CFS from CRS mucin-degrading communities. (A) S. aureus 

LAC aerobic growth curves on CFS from CRS derived mucin-degrading communities. (B) 

S. aureus anaerobic growth after 24 hours in CFS from CRS derived mucin-degrading 

communities A-H with and without sodium nitrate (3 mM). Error bars are s.d.; significance 

determined by t-test with Holm-Bonferroni adjustment. (C) HPLC measurement of 

fermentation metabolites Acetate, Propionate, and Lactate in CFS A-H. (D) HPLC 

measurements of metabolites pyruvate and succinate in CFS A-H. 
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Figure 4.7. RNA-seq reveals impact of mucin degradation and fermentation on S. aureus 

transcription. (A) Differential expression of genes (79 up, 14 down) in cell-free supernatant 

conditions from communities D, F, and H compared to MMMG controls. Wald test was 

used to assign significance for genes with |FC| > 2, and FDR adjusted p-value < 0.05. (B, 

C) Transcripts involved in sialic acid degradation and central metabolism were 

differentially increased in expression in supernatant conditions compared to glucose. (D) 

Select genes with significant differences between each CFS condition. Significance was 

determined using the likelihood-ratio test, keeping only genes with a |LFC| >2 and FDR 

adjusted p-value < 1x10-10. Data presented are differences from the mean for each gene 

calculated from regularized log-transformed counts. All data are representative of three 

biological replicates per condition.
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Chapter 5:  Conclusion 
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Summary of research 

This thesis addresses the microbial ecology of bacteria associated with chronic 

rhinosinusitis (CRS). The heterogeneity of this disease complicates our understanding of 

bacterial contributions to pathogenesis. Genomic, bioinformatic, and classical 

microbiology techniques were used in this work to describe bacterial diversity in the 

sinuses, then make novel inferences into the functions carried out by microbiota in the CRS 

niche. 

The first section of this thesis focused on CRS in the cystic fibrosis (CF) population, 

where it is seen at a prevalence close to 100%. Chronic sinus colonization has been 

implicated as a source of pulmonary infections that are associated with loss of lung 

function, and the primary cause of morbidity and mortality in this population. In Chapter 

2, we explored the relationship of bacterial diversity in paired sinus and lung samples from 

CF patients. We demonstrated that there is high interindividual variability between 

bacterial communities across CF patients, and interestingly, many taxa are shared between 

the upper and lower airways. We also demonstrate that obligate anaerobes are prevalent in 

the CF lung. 

Since publishing this study in 2017, the topic of anaerobes in CF sputum has been 

the subject of a larger debate in the field (Caverly and LiPuma, 2018).The question of 

whether anaerobes identified in sputum are members of polymicrobial communities in the 

lungs of CF patients, or simply a byproduct of oral contamination during sputum collection 

remains controversial. A later study comparing bacterial communities of the sinuses and 
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lungs of CF patients instead used endoscopically obtained bronchial brushings, comparing 

their work to ours (Pletcher et al., 2019). The study did not confirm our results showing 

significant differences in diversity between grouped sinus and lung samples. However, the 

similarity in bacterial membership between the two sites within patients was again 

demonstrated. Moreover, bronchial brushings of recent lung transplants (LTx) showed 

increased diversity including the presence of anaerobic taxa. At 4.5 months post-transplant, 

one bronchial brushing showed little resemblance to a paired sinus sample, however the 

other sample pair, collected 9 months after LTx already showed presence of the dominant 

genus in the sinuses (Pseudomonas). Moving forward, sequential sampling of the upper 

and lower airways of CF patients will provide better insight into the relationship between 

the bacterial communities in each niche. Furthermore, the increased resolution in bacterial 

genomics afforded from metagenomic sequencing will enable strain-level tracking of 

bacteria within the airways, and how they are trafficked between sites. 

Further investigation of CF-CRS bacterial communities is presented in Chapter 3. 

Similar to Chapter 2, dominance of either Pseudomonas or Staphylococcus in each sample 

is apparent. Research into virulence mechanisms of these canonical pathogens have 

revealed a great deal about their physiology in vitro. Comparatively less attention has been 

paid to the polymicrobial context of the upper and lower airways in CF. We found an 

interesting result when comparing communities dominated by Pseudomonas, and 

communities dominated by Staphylococcus: Staphylococcus-dominated communities were 

more diverse. The prevalence of S. aureus and P. aeruginosa in the CF airways has been 
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associated with patient age, with S. aureus colonization occurring early in life, and P. 

aeruginosa becoming more prominent in adulthood (Cystic Fibrosis Foundation Patient 

Registry, 2019). Mechanisms that govern this transition are not well understood. Patterns 

in the data suggest there is an age-related relationship with diversity and Staphylococcus 

dominance, however a larger cohort will be needed to test this. Apart from the association 

with age, these data introduce the idea that interbacterial interactions of a more diverse 

community may influence S. aureus physiology and pathogenic potential, and community 

dominance in the chronically colonized sinuses. While not addressed in this thesis, the 

question has been posed by our group before (Flynn et al., 2016) that anaerobic organisms 

present in S. aureus-associated communities may also play a role in conditioning the 

airway niche for P. aeruginosa colonization of the upper airways – a process that is thought 

to precede pulmonary infection (Folkesson et al., 2012; Hansen et al., 2012). 

The final study presented in this thesis investigates how host-derived mucin 

glycoproteins support bacterial diversity in CRS. 16S rRNA sequencing, metagenomic 

prediction, and bioinformatic analysis led to the observation that there may be a mucin-

degrading bacterial phenotype in CRS. Using classical enrichment experiments to maintain 

metabolic dependencies, this study became the first to isolate mucin-degrading bacterial 

communities from CRS patient sinus mucus. Growth assays were paired with RNA-seq to 

demonstrate that the metabolic activities of mucin-utilizing communities influence S. 

aureus growth and gene transcription. Previous research investigating interbacterial 

interactions of S. aureus focused on pairs of co-abundant organisms such as P. aeruginosa, 
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Haemophilus influenzae, or Corynebacterium spp. (Filkins et al., 2015; Margolis et al., 

2010; Ramsey et al., 2016; Yan et al., 2013). Rarely is the physiology of S. aureus 

considered in response to the metabolic activities of bacterial consortia. This chapter 

reveals that the transcription of several genes involved in staphylococcal metabolism and 

virulence are differentially expressed in response to metabolites liberated from mucin 

degradation. These results form the basis for future experiments explicitly testing the effect 

of mucin degradation by anaerobic bacteria on S. aureus virulence.  

Future Directions 

Brooke et al. demonstrated the association of anaerobes with the progression of 

acute rhinosinusitis to CRS, yet this study has not been replicated either by culture or 

molecular methods (I Brook et al., 1996). Results presented in this thesis reiterate a need 

for longitudinal sampling of a large cohort of patients to overcome the heterogeneity seen 

in CRS and gain a better understanding of bacterial diversity changes over time. 

Additionally, a limitation of our work is that the methods only consider the bacterial 

component of microbial communities in the sinuses, although some research has shown 

that viral and fungal community members are associated with pulmonary exacerbations in 

CF (Kiedrowski and Bomberger, 2018; Soret et al., 2020). To date, there are no published 

metagenomic analyses of sinonasal microbiota. Future metagenomic analysis would allow 

for inclusion of fungal, viral, and archaeal detection providing a more comprehensive 

picture of CRS associated communities. 
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Our results demonstrate that mucin-degradation byproducts are able to improve S. 

aureus growth and alter gene transcription, however, it is unclear whether these happen in 

more physiologically relevant settings, and an impact on S. aureus virulence has not been 

explicitly tested. A first step would be to use a multi-omics approach to describe the 

taxonomic identities and transcriptional profiles of bacterial communities from CRS 

patients who are culture-positive for S. aureus. Metagenomic profiling of CRS sinus mucus 

will provide taxonomic identities that can be used to build a reference database. This 

database can then be used for metatranscriptomic comparison to test the hypothesis that 

mucinase gene expression is occurring in vivo. Furthermore, S. aureus genes identified in 

Chapter 4 as differentially abundant during growth on mucin degradation products can be 

verified in vivo. 

Our lab recently developed a respiratory anaerobic co-culture (RACC) system that 

can be used to study anaerobic bacteria at the epithelial cell surface (unpublished data). 

Using this model, we can test a variety of host-microbe co-culture scenarios that impact 

respiratory epithelial cells. First, while our research focused on how mucin-degradation by 

anaerobic bacteria impacts the physiology of S. aureus, it is important to test whether the 

metabolic byproducts of mucin degradation and fermentation are inflammatory to the host 

on their own. Mirkovic et al. reported a dose-dependent expression of pro-inflammatory 

cytokine IL-8 in response to short chain fatty acids in conventional bronchial epithelial cell 

culture (Mirković et al., 2015). Using the RACC experimental model, anaerobic mucin-

degrading communities isolated from CRS sinuses can be applied to the anoxic apical 
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surface of the cells, and mucin integrity, epithelial cell tight junction integrity, cell viability 

and inflammatory signaling can be measured using methods established in our lab. 

These proposed experiments will produce baseline knowledge for how polarized, 

differentiated respiratory cells react to mucin degradation. Building upon this knowledge, 

we can use the RACC experimental system again, but include a S. aureus challenge 

following growth of mucin-degrading consortia. In addition to the variables of epithelial 

cell layer integrity listed above, RNA-seq can be used to measure both host cell 

inflammation and S. aureus virulence gene transcription. Altogether, these experiments 

will contribute an in vivo perspective to complement the research presented in this thesis, 

and provide mechanistic detail to the pathogenic contribution of anaerobic bacteria to CRS. 

Concluding Remarks 

 Work presented here combines molecular based surveys, bioinformatics, and 

classical microbiology techniques to better understand the biology of understudied 

members of CRS-associated microbiota. This research stresses the need for future research 

to incorporate systems biology approaches to understanding bacterial pathogenesis in 

chronic infections. 

 Importantly, studying how CRS-associated anaerobes impact the pathogenic 

potential of S. aureus has implications for other types of chronic infections where it is also 

the dominant organism. For example, an analysis of 2,963 chronic non-healing wound 

patients established that, compared to P. aeruginosa, when S. aureus was the dominant 

organism it was accompanied by increased diversity of bacteria in the polymicrobial 
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biofilm, including many of the same anaerobe genera seen in CRS (Wolcott et al., 2016). 

Corollaries like this suggest that there are likely important interactions between S. aureus 

and anerobic bacteria that promote chronic infection in varied sites of infection. Further 

investigation of the intriguing relationships between S. aureus and comparatively less well 

studied anaerobic bacteria are needed.  

 Where our understanding of the pathogenic potential of organisms like S. aureus 

and P. aeruginosa are increasingly well understood, the physiology of many anaerobic 

bacteria is comparatively less well studied. The requisite laboratory cultivation that enabled 

such great strides in understanding the biology of these aerobic pathogens inherently 

disrupts microbial metabolic relationships that may be essential to understanding the 

biology of polymicrobial communities with anaerobe constituents. However challenging, 

further study of these organisms is warranted by their involvement in chronic infections in 

CRS and elsewhere. Just as the classical “Staph Streak” procedure enables Haemophilus 

isolation, microbiological methods such as enrichment and co-culture may be essential to 

reveal novel and medically important bacterial interactions and reveal unrealized biological 

diversity. To this end, the inclusion of complex glycoproteins such as mucins, which 

support diverse and discrete microbial metabolic niches should be considered in media 

preparation when studying members of the airway microbiome in isolation or in 

communities. Additionally, recently developed high resolution imaging techniques 

incorporating multiplexed fluorescent staining (e.g. CLASI-FISH) can provide great 
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insight into spatial organization of polymicrobial communities (Valm et al., 2011). These 

imaging methods have not yet been applied to study microbiota in CRS. 

 Finally, it is tempting to extend what has been learned here to propose antibiotic 

therapies for CRS, and indeed other chronic infections, that target anaerobes. However, it 

is becoming increasingly clear that a loss in microbial diversity and pathogen dominance 

is associated with increased disease burden in CRS. Moreover, antibiotic resistance is 

already seen widely in anaerobic bacteria(Hecht, 2004). With the known efficacy of FESS, 

sinus drainage, and debridement, and the microbiology associated with its failure of these 

treatments, other regimens should be explored that combine destabilization the low-oxygen 

infection site, while re-establishing microbial diversity associated with health. Use of 

probiotic therapies to treat CRS and other airway infections such as asthma and COPD is 

an active area of investigation. 

 CRS is a complex disease. If we are to understand the nature of the microbial 

contribution to CRS pathogenesis, we must build upon decades of reductionist 

microbiological research to make meaningful mechanistic hypotheses that don’t exclude 

bacterial interactions with each other and the surrounding infection microenvironment. 

With this approach, new treatment methods can be established, and new biology 

uncovered. 
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Appendix A:  Supplementary Information for Chapter 2 - 16S rRNA gene sequencing 

reveals site-specific signatures of the upper and lower airways of cystic fibrosis 

patients † 
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specific signatures of the upper and lower airways of cystic fibrosis patients.” © European 



 

 133 

Cystic Fibrosis Society. Originally published by Elsevier B.V. in Journal of Cystic 

Fibrosis 17 (2018) 204-212. 

 



 

 134 

Table S1. Summary of subject clinical data 

Patient Sex Age CFTR Genotype 
FEV1/FVC 

(FEV1%) 
SNOT-22 

Prior FESS 

(#) 
Polyposis 

1 M 25 FX 60 21 
  

Yes 

2 M 31 FF 54 41 Yes(2) Yes 

3 M 28 FF 77 21   Yes 

4 M 42 FF 50   Yes(4) Yes 

5 M 31 FF 76 20 Yes(2) Yes 

6 M 26 G551D/2789+5G>A 86 8   Yes 

7 F 19 F−G 71 50 Yes(4)   

8 F 26 F−G 72 59 Yes(1) Yes 

9 F 32 FF 51 34 Yes(1) Yes 

10 M 41 
1717-1G-

7A/3849+10kbc-T1 
76 23 Yes(1) Yes 

11 F 36 FF 70 36 Yes(1)   

12 M 31 Fdel 54 58 Yes(3) Yes 

Avg. +/- s.d.   30.5 +/- 6.5   66.4 +/- 12.1 35 +/- 17.2     
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Table S2. Sinus and Sputum clinical culture results. 

Sinus Cultures 

Patient 
Dominant 16S 

OTU 

Pseudomonas 

aeruginosa 

(mucoid strain) 

Pseudomonas 

aeruginosa 

Staphylococcus 

aureus 

Coagulase 

Negative 

Staphylococcus 

(CONS) 

Streptococcus 

pneumoniae 

Burkholderia 

cepacia 

complex 

Achromobacter 

xylosoxidans 

1 Streptococcus - - - - - - - 

2 Staphylococcus - + - + - - - 

3 Pseudomonas - ++ - + - - - 

4 Pseudomonas - ++ ++ - - - - 

5 Staphylococcus - - - - - - ++ 

6 Staphylococcus - - +++ - - - - 

7 Staphylococcus NA NA NA NA NA NA NA 

8 Pseudomonas + - + - - - - 

9 Pseudomonas - + - + - - - 

10 Burkholderia - - - - - ++ - 

11 Staphylococcus - + +++ (MRSA) - - - - 

12 Pseudomonas - +++ +++ (MRSA) - - - +++ 

Lung Sputum Cultures 

Patient 
Dominant 16S 

OTU 

Pseudomonas 

aeruginosa 

(mucoid strain) 

Pseudomonas 

aeruginosa 

Staphylococcus 

aureus 

Coagulase 

Negative 

Staphylococcus 

(CONS) 

Streptococcus 

pneumoniae 

Burkholderia 

cepacia 

complex 

Achromobacter 

xylosoxidans 

1 NA ++ ++ - - - - - 

2 Pseudomonas + + +++ - - - - 

3 Pseudomonas +++ + - - - - - 
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4 NA ++ - +++ - - - - 

5 NA - - - - - - - 

6 NA NA NA NA NA NA NA NA 

7 Staphylococcus - - + - - - - 

8 NA - - +++ - - - - 

9 NA ++ - - - - - - 

10 NA - - - - - ++ - 

11 NA - ++ +++ (MRSA) - - - - 

12 Pseudomonas - + +++ (MRSA) - - - ++ 

(+) Light growth, (++) Moderate Growth, (+++) Heavy Growth 
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Table S3. Spearman correlations between bacterial genera in sample pairs 

Sample Pair Correlation coefficient Nonparametric p-value CI (lower) CI (upper) 

1 0.3422 0.014 0.0736 0.5646 

2 0.2542 0.065 -0.023 0.4951 

3 0.6692 0.001 0.4826 0.7977 

4 0.7089 0.001 0.5385 0.8236 

5 0.3489 0.012 0.0811 0.5697 

6 0.1056 0.473 -0.1751 0.3704 

7 0.4129 0.003 0.155 0.6181 

8 0.6026 0.001 0.3921 0.7531 

9 0.2869 0.027 0.0123 0.5213 

10 0.2862 0.043 0.0116 0.5207 

11 0.3089 0.022 0.0364 0.5386 

12 0.5761 0.001 0.3573 0.735 
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Table S4. Antibiotics and route of delivery prescribed three days prior to FESS surgery. 

Patient Azithromycin Cayston Colistin Tobramycin Doxycycline Gentamicin Ciprofloxacin Bactrim Amoxicillin 

1 Oral Inhalation  -   -   -   -  Oral  -   -  

2 Oral Inhalation  -   -   -   -   -   -   -  

3 Oral  -   -  Oral  -   -   -   -   -  

4  -   -   -   -   -   -   -   -   -  

5  -   -  Inhalation  -   -   -   -   -  Oral 

6  -   -   -   -   -  Intravenous  -   -   -  

7 Oral  -   -  Inhalation  -   -   -  Oral  -  

8 Oral Inhalation Inhalation  -   -   -   -   -   -  

9 Oral Inhalation  -  Inhalation  -   -   -   -   -  

10 Oral  -   -  Inhalation  -   -   -   -   -  

11 Oral Inhalation  -   -  Oral  -   -   -   -  

12  -  Inhalation  -   -   -   -   -   -   -  
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Figure S1. KEGG Pathways identified in sinus and lung samples through PICRUSt analysis. KEGG 

pathways represented in PICRUSt predicted metagenomes (>1%) exhibited similar composition and 

abundance between sinus and lung samples. Common predicted pathways between sinus and lung niches 

belong to bacterial secretion systems, and ABC transporters. 
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SUPPLEMENTAL METHODS 

 

Quantitative PCR. Bacterial burden was estimated by quantifying 16S copy number from DNA 

extracted from clinical specimens using qPCR. Universal 16S rRNA qPCR primers 338F and 518R 

were used (36, 37). QuantiTect SYBR Green (Qiagen, Valencia, CA) was used according to 

manufacturer’s instructions. Reactions were prepared in triplicate as described previously, with 

adjustments to the amplification protocol (22). Briefly, reactions (25 μL) each contained 12.5 μL 

2X QuantiTect SYBR Green Master Mix, 2.5 μL each of 3 μM forward and reverse primers, and 

6.5 μL H2O. Each sample was diluted to 10ng/μl and 1 μl of each of these dilutions was added to 

their respective reactions. Amplification was done using a CFX96 Real-Time PCR System (Bio-

Rad, Hercules, CA) with the following cycling conditions: 95˚C for 15 min followed by 40 cycles 

of 94˚C for 15 s, 55˚C for 30 s, 72˚C for 30 s with data acquisition at 72˚C. Quantification cycle 

(Cq) values were calculated using instrument software (CFX Manager, v.3.1). A standard curve 

with a range from 5x106 to 5x102 16S rDNA gene copies was used for quantification of 16S copy 

number and prepared using serial dilutions of DNA extracted from a pure culture of Escherichia 

coli MG1655 (ATCC 47076), known to have seven 16S rDNA gene copies per genome. 

 

DNA extraction, Library Preparation, and Sequencing. The Powersoil DNA Isolation Kit 

(MoBio, Carlsbad, CA) was used to extract genomic DNA from 300 µL of mucus, following the 

manufacturer’s protocol. Purified DNA was submitted to the UMN Genomics Center (UMGC) for 

16S library preparation using a two-step PCR protocol (23). The V4 region of the 16S gene was 

amplified and sequenced on an Illumina MiSeq using TruSeq version 3 2x300 paired-end 

technology. Water and reagent control samples were also submitted for sequencing and did not pass 

quality control steps due to 16S rRNA gene content below detection thresholds. Raw 16S rRNA 

gene sequence data were deposited as fastq files in the NCBI Sequence Read Archive under 

accession number PRJNA374847.  

 Sequence analysis. Sequence data were obtained from UMGC and analyzed using a 

pipeline developed by the UMN Informatics Institute in collaboration with the UMGC and the 

Research Informatics Solutions (RIS) group at the UMN Supercomputing Institute (38). Briefly, 

this pipeline implements Trimmomatic (39) to trim Illumina TruSeq adapter sequences using 

default options, followed by PANDAseq (40) to align paired-end reads. Consensus sequences were 

then clustered into operational taxonomic units (OTUs) at 97% identity to the Greengenes database 

(v.13.8) (41), through implementation of the pick_open_reference_otus.py script with the 

usearch61 algorithm provided through the Quantitative Insights Into Microbial Ecology (QIIME) 

software (v.1.9.1) (42).  

 The OTU table was then filtered such that only OTUs present in the Greengenes database 

were evaluated. OTUs representing less than 0.005% relative abundance in each sample were 

excluded as were OTUs representing mitochondrial and plastid sequences. The median number of 

sequences/sample at this stage was 59774 (interquartile range (IQR)=25002-124256). For 

calculation of alpha diversity metrics and ordination for principal coordinates analysis, sequences 

were subsampled to 1674 reads per sample. For principal coordinates analysis, count data in the 

OTU table was transformed to proportions of the total sequences in each sample. Permutational 

analysis of variance (PERMANOVA) and homogeneity of dispersion tests were carried out using 

the ‘adonis’, ‘betadisper’, and ‘permutest’ functions in the ‘vegan’ R package (43). 

 Prediction of sinus and lung metagenomes based on 16S rRNA data. Metagenomes were 

inferred from 16S rRNA data using Phylogenetic Investigation of Communities by Reconstruction 
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of Unobserved States (PICRUSt) (v. 1.0.0) (24). PICRUSt uses marker gene survey data to predict 

metagenome functional content of microorganisms through ancestral state reconstruction. We 

implemented PICRUSt scripts to infer metagenomes from the quality filtered OTU table. Briefly, 

OTUs were normalized by 16S copy number using the script normalize_copy_number.py. 

Normalized OTUs were used to predict KEGG orthology (KO)-based metagenomes of our samples 

through input into the script predict_metagenomes.py with an additional per-sample Nearest 

Sequenced Taxon Index (NTSI) calculation. Finally, predicted metagenomes were further 

categorized by KEGG pathways using the categorize_by_function.py script. Output of this script 

was filtered to only include those pathways that accounted for 1% of count data in each sample.  

 We then used BugBase (https://bugbase.cs.umn.edu) to summarize predicted metagenomes 

by bacterial phenotype. BugBase combines functionalities of PICRUSt, Integrated Microbial 

Genome comparative analysis system (IMG4) (44), the PATRIC bacterial bioinformatics database 

(45), and the KEGG database (46), to identify specific OTUs that contribute to a community-wide 

phenotype. The main script was run with default settings using the same filtered OTU table as used 

in PICRUSt. BugBase implements the non-parametric Wilcoxon matched-pairs signed rank test to 

assess significance. Within-patient and between-sample type taxonomy correlations were 

calculated using the QIIME script compare_taxa_summaries.py using Spearman correlation with 

999 permutations (42).  
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Appendix B:  Bioorthogonal non-canonical amino acid tagging reveals translationally 

active subpopulations of the cystic fibrosis lung microbiota† 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

† Reprinted from Nature Communications. (2020) 11:2287. Talia D. Valentini, Sarah K. 

Lucas, Kelsey A. Binder, Lydia C. Cameron, Jason A. Motl, Jordan M. Dunitz, and Ryan 

C. Hunter. “Bioorthogonal non-canonical amino acid tagging reveals translationally active 

subpopulations of the cystic fibrosis lung microbiota.” © Creative Commons Attribute 4.0 

International License. 
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Abstract 

 Culture-independent studies of cystic fibrosis lung microbiota have provided few 

mechanistic insights into the polymicrobial basis of disease. Deciphering the specific contributions 

of individual taxa to CF pathogenesis requires comprehensive understanding of their ecophysiology 

at the site of infection. We hypothesize that only a subset of CF microbiota are translationally active 

and that these activities vary between subjects. Here, we apply bioorthogonal non-canonical amino 

acid tagging (BONCAT) to visualize and quantify bacterial translational activity in expectorated 

sputum. We report that the percentage of BONCAT labeled (i.e. active) bacterial cells varies 

substantially between subjects (6-56%). We use fluorescence-activated cell sorting (FACS) and 

genomic sequencing to assign taxonomy to BONCAT-labeled cells. While many abundant taxa are 

indeed active, most bacterial species detected by conventional molecular profiling show a mixed 

population of both BONCAT labeled and unlabeled cells, suggesting heterogeneous growth rates 

in sputum. Differentiating translationally active subpopulations adds to our evolving understanding 

of CF lung disease and may help guide antibiotic therapies targeting bacteria most likely to be 

susceptible. 

 

Introduction 

 

 The increased viscosity and impaired clearance of mucus secretions in cystic fibrosis (CF) 

airways creates a favorable environment for chronic microbial colonization, the primary cause of 

morbidity and mortality (1). Pseudomonas aeruginosa and Staphylococcus aureus have long been 

recognized as primary CF pathogens and are the targets of common therapeutic regimens (2), 

though recent culture-independent studies have revealed a more complex polymicrobial community 

harboring facultative and obligately anaerobic bacteria that are relatively understudied (3–5). While 

the specific contributions of individual community members to disease progression remain poorly 

understood and at times controversial (6), cross-sectional studies of both pediatric and adult cohorts 

have revealed compelling relationships between bacterial community composition and disease 

stage, antibiotic use, age, and other phenotypes (7–12). These data have challenged the field to 

reconsider therapeutic strategies in a polymicrobial community context (13,14).  

 Relatively fewer studies have identified within-subject perturbations in bacterial 

community structures that coincide with acute and complex disease flares known as pulmonary 

exacerbations (PEx). Though no standardized definition of PEx is broadly accepted (15), these 

episodes are generally characterized by increased respiratory symptoms (e.g., shortness of breath, 

sputum production) and acute decreases in lung function that can, but not always, be resolved in 

response to antibiotic therapy. While this would suggest a bacterial etiology, sputum cultures 

generally demonstrate that airway pathogens are recovered at similar densities before, during, and 

after disease flares (16–19). Culture independent studies show similar trends; with exceptions 

(9,20–22), longitudinal sequencing analyses of sputum from individual subjects frequently reveal 

unique, subject-specific bacterial communities whose diversity and composition remain stable 

during PEx onset and upon resolution of disease symptoms (16,23,24). This lack of association 

between lung microbiota and disease dynamics may reflect the inability of both culture-based and 

sequencing approaches to capture changes in bacterial activity, which likely have a critical impact 

on disease progression and therapeutic effectiveness. 

 To date, there have been few studies of bacterial growth and metabolism within the CF 

airways (25–30). RNA-based profiling of stable CF subjects has shown consistencies between RNA 



 

 145 

and DNA signatures suggesting that many bacterial taxa identified by 16S rRNA gene sequencing 

are metabolically active, though these data have also corroborated that bacterial community 

membership is not necessarily predictive of growth activity (25,26). Further, rRNA/DNA ratio 

methods are inherently constrained for use on complex bacterial communities with varying growth 

strategies (i.e., human microbiota) (31,32). Interactions between respiratory pathogens and the host 

and/or co-colonizing microbiota can influence growth rates, metabolism, virulence factor 

production, and antimicrobial susceptibility without an accompanying change in bacterial 

abundance (33–38). And finally, growth rates of respiratory pathogens can vary substantially 

between subjects and even within a single sputum sample (27,28), the heterogeneity of which is 

not captured using conventional molecular profiling. There remains a need for novel methods to 

characterize bacterial activity and its role in disease progression. 

 Bioorthogonal non-canonical amino-acid tagging (BONCAT) has been used to 

characterize the activity of uncultured microbes in soil and marine samples (39–43). BONCAT 

relies on the cellular uptake of a non-canonical amino-acid (e.g., L-azidohomoalanine (AHA), a L-

methionine analog) carrying a chemically-modifiable azide group (44). After uptake, AHA exploits 

the substrate promiscuity of methionyl-tRNA synthetase and is incorporated into newly synthesized 

proteins. Translationally active cells can then be identified through a bioorthogonal azide-alkyne 

click reaction in which a fluorophore-tagged alkyne is covalently ligated to AHA, resulting in a 

fluorescently labeled population of translationally active cells that can be further studied using a 

variety of microscopy and analytical methods.  

 BONCAT has been shown to correlate with other established methods of quantifying 

microbial activity (40,43) and represents a robust tool for characterization of bacterial communities 

and a range of other organisms in their native growth environment. BONCAT has also recently 

been used to study bacterial pathogens in vitro (45–48), though it has seen limited use in the study 

of host-associated bacterial communities (40,49). Samples derived from the CF airways provide a 

unique opportunity to do so, as the site of infection is amenable to longitudinal studies and the 

bacterial growth environment is relatively stable upon removal from the host (50). Exploiting these 

advantages, here we use BONCAT together with imaging, fluorescence-activated cell sorting 

(FACS) and 16S rRNA gene sequencing to characterize the translational activity of bacterial 

communities within sputum derived from a cohort of seven clinically stable CF subjects. We reveal 

that active bacteria represent only a subset of microbiota captured using conventional 16S rRNA 

gene sequencing and discuss these results in the context of progression and treatment of chronic 

airway disease. 

 

Results 

 

BONCAT differentiates translationally active bacteria 

 

 To optimize the BONCAT experimental approach, we first grew P. aeruginosa, a canonical 

CF pathogen, to mid-log phase followed by supplementation with 6 mM L-azidohomoalanine 

(AHA) for 3h. Post-AHA treatment, azide-alkyne click chemistry using Cy5-labeled 

dibenzocyclooctyne (Cy5–DBCO), permitted fluorescent detection of translationally active cells 

(Fig. 1a). Quantification of average Cy5 pixel intensity per cell revealed active protein synthesis in 

~98% of the population. By contrast, supplementation of the growth medium with 6 mM L-

methionine (MET) or pretreatment of P. aeruginosa with tobramycin, chloramphenicol, and 

tetracycline (to arrest de novo protein synthesis) prior to AHA resulted in negligible fluorescence 
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(Fig. 1b, c). These data were also confirmed by SDS-PAGE (Supplementary Fig. 1). Finally, when 

two AHA-labeled cultures (one treated with antibiotics, one without) were combined in a 1:1 ratio 

prior to Cy5–DBCO labeling, a bimodal distribution of fluorescence intensities were observed, 

representing a mix of active and inactive cells (Fig.1d). Together, these data demonstrate the utility 

of BONCAT for characterizing P. aeruginosa translational activity in an amino-acid-rich growth 

environment. 

 To assess whether BONCAT is broadly suitable for labeling polymicrobial communities 

found in the airways, we then performed mixed activity labeling as described above on 

representative isolates of common CF-associated microbiota;(51) Achromobacter xylosoxidans, 
Burkholderia cenocepacia, Escherichia coli, Fusobacterium nucleatum, Prevotella 

melaninogenica, Rothia mucilaginosa, Staphylococcus aureus, Stenotrophomonas maltophilia, 

Streptococcus parasanguinis, and Veillonella parvula (Fig. 2). Each mixed culture (+/−antibiotics 

in a 1:1 ratio) exhibited a similar labeling pattern to P. aeruginosa, suggesting that BONCAT can 

be used to characterize translational activity among diverse bacterial taxa associated with the CF 

airways. Notably, all species tested demonstrated BONCAT labeling. In addition, AHA did not 

affect the growth phenotype of any species under our experimental conditions (Supplementary Fig. 

2), consistent with previous studies showing that BONCAT permits labeling of microbiota without 

concomitant changes in growth rate or protein expression (40,52). 

 

 

BONCAT identification of active CF microbiota 

 

 The BONCAT protocol optimized for lab-grown cultures was then modified for analysis 

of CF bacterial communities in sputum. To do so, sputum was collected from clinically stable 

subjects and immediately supplemented with cycloheximide to reduce AHA incorporation by host 

cells (Supplementary Fig. 3). Samples were then divided into three equal-volume aliquots, 

supplemented with either 6 mM AHA, 6 mM methionine, or antibiotics (30 µg mL−1 

chloramphenicol, 200 µg mL−1 tetracycline, and 10 µg mL−1 tobramycin) plus 6 mM AHA, and 

incubated at 37°C under oxic conditions for 3 h. Incubation time was chosen to maximize labeling 

while minimizing changes in bacterial growth conditions such that they closely reflected the in vivo 

chemical environment. AHA concentration (6 mM) was based on average methionine content in 

CF sputum (0.6 mM) (53) and a 10:1 AHA:MET ratio (or greater) required for effective labeling 

(Supplementary Fig. 4). 

 Representative micrographs (Fig. 3a) reveal BONCAT-labeled sputum obtained from three 

individual CF subjects (Supplementary Table 1, subjects 1–3). Consistent with previous reports of 

heterogeneous growth rates (27,28,54), notable differences in Cy5 fluorescence are apparent at 

higher magnification (Fig. 3b); several individual cells and cell aggregates show moderate to 

intense labeling whereas others are unlabeled. Treatment with methionine instead of AHA did not 

result in fluorescent signal, ruling out non-specific labeling and residual dye that could not be 

removed by washing (Supplementary Fig. 5). Similarly, treatment of sputum with antibiotics prior 

to AHA addition also resulted in a significant reduction in fluorescence intensity. However, this 

reduction was incomplete, which may reflect the development of antimicrobial tolerance that arises 

among CF pathogens. Finally, though cycloheximide treatment results in a significant reduction in 

AHA uptake by macrophages (Supplementary Fig. 3), we note that host-cell contributions to 

BONCAT fluorescence cannot be ruled out. Despite this possibility, average pixel intensity per cell 

(Fig. 3c) further emphasizes the range of bacterial translational activity and the likely slower growth 
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rates of CF microbiota in sputum compared to cultures grown in vitro (compare Fig. 3c and Fig. 

1a). These analyses demonstrate that BONCAT labeling can be used to characterize bacterial 

activity within complex sputum samples. Moreover, these data suggest that translationally active 

bacteria represent only a subpopulation of the CF lung microbiota. 

 

Flow cytometric analysis of BONCAT-labeled CF microbiota 

 

 BONCAT combined with fluorescence-activated cell sorting (FACS) has previously been 

used to study microbial activity within soils and marine sediments (39,42). We therefore sought to 

use FACS to characterize and isolate BONCAT-labeled (i.e., active) cells and bacterial aggregates 

within sputum samples derived from clinically stable CF subjects (Supplementary Table 1, Subjects 

4–6). Our experimental workflow is shown in Fig. 4. Upon sputum collection, a small aliquot 

(original) was removed and stored at −80°C prior to conventional 16S rRNA gene amplicon 

analysis. Remaining sputum was then treated with cycloheximide and divided into four aliquots, 

three of which were supplemented with AHA (6 mM). As a control, the remaining aliquot was 

treated with 6 mM methionine, and all samples were then incubated under oxic conditions at 37 °C 

for 3h. Samples were subjected to Cy5–DBCO labeling and counterstaining, followed by removal 

of another aliquot (sort input) to determine community profile changes as a result of chemical 

fixation and sputum incubation ex vivo. Remaining samples were homogenized and filtered to 

remove host cells, followed by FACS to isolate Cy5− (sort-negative) and Cy5+ (sort-positive) cells. 

 Given the potential heterogeneity of a single sputum plug, triplicate aliquots from each CF 

sputum sample were BONCAT-labeled and analyzed by FACS and 16 S rRNA gene sequencing 

to assess the consistency of results (Supplementary Figs. 7 and 8). Representative FACS plots are 

shown in Fig.5a. Cy5−and Cy5+ gates were sample-specific and were established first by using an 

AHA−(MET+) aliquot to define the negative gate for each sample. Positive gates were then 

conservatively assigned by comparing the AHA+ aliquots to the AHA− control (see Supplementary 

Fig. 9 for gating scheme). AHA+ samples underwent notable shifts along the Cy5+ axis (Fig. 5a) 

and cells that fell within the Cy5+ gate exhibited a higher geometric mean off fluorescence intensity 

in the Cy5 channel (Supplementary Fig.10). These data confirm BONCAT labeling and are 

reflective of translational activity (Fig. 5a). Sort specificity was validated by immunostaining using 

an anti-Cy5 antibody, which revealed estimated false-negative and false-positive rates of 6.8% and 

12%, respectively (Supplementary Fig. 6). Based on total events (~6.5 million counts per sample, 

on average; Supplementary Table 2), we consistently found that only a subset of the overall 

bacterial population was Cy5+. For the three individuals surveyed, replicate averages of the Cy5-

labeled population were 6.2% (+/−1.21), 42.6% (+/−5.62), and 56.1% (+/−9.57) for subjects 4,5, 

and 6, respectively. These data reflect labeling patterns shown by microscopy (Fig. 3) and suggest 

that expectorated sputum harbors bacterial communities with a range of translational activity. 

 

Taxonomic identities of active sputum microbiota 

 

 16S rRNA gene sequencing was applied to original, sort input, sort-negative, and sort-

positive fractions from each sample to determine bacterial community composition. Sequence data 

were analyzed using the DADA2 pipeline (55) to reduce potential loss of biological sequence 

variation due to clustering by similarity and to improve observation of fine-scale variation 

(including species-level resolution) in bacterial populations. Using this approach, sequence data 

derived from AHA-labeled samples (sort input, sort-negative, and sort-positive) were compared to 
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their paired original sample to characterize translationally active subpopulations. For each subject, 

sample replicates were compared by proportions of the top-ranking taxa (Supplementary Fig. 8a), 

and variation related to sample type was visualized using a double principle coordinates analysis 

(DPCoA) (Supplementary Fig. 8b). Replicate samples showed considerable agreement, thus, 

relative abundances were averaged for further analysis. 

 Each subject harbored lung microbiota of low to moderate complexity (Fig. 5b), and 

community profiles were consistent with prior 16S rRNA gene surveys of CF sputum in which 

Pseudomonas and Streptococcus were dominant genera (3–5,9–12). We also achieved species-level 

resolution for less abundant taxa, including several obligate and facultative anaerobes (e.g., 

Prevotella sp., Rothia sp.). In general, AHA labeling did not result in substantial changes in 

bacterial membership; for the most abundant taxa (>1%), community composition was comparable 

before (original) and after (sort input) BONCAT labeling, demonstrating that AHA treatment and 

chemical fixation had minimal effect on relative bacterial abundance. Interestingly, bacterial 

populations recovered from BONCAT–FACS analysis (sort-negative, sort-positive) also showed 

similarities among the most abundant community members relative to the original sample (i.e., 

those detected by conventional 16S rRNA gene sequencing). Notable exceptions were 

Staphylococcus aureus and Rothia sp. for subject 4, which despite efficient labeling in laboratory 

culture, were of negligible abundance in the positive fraction, suggesting low translational activity. 

Less abundant taxa (Supplementary Fig. 11), showed greater variation between fractions, but most 

were also generally detectable in both sort-negative and sort-positive gates. Together, these data 

suggest that a subset of most taxa detected by conventional 16 S rRNA gene sequencing are 

translationally active. Moreover, each taxon appears to exhibit heterogeneous growth activity, 

which may have important implications for the progression and treatment of CF disease. 

 To better observe changes in the relative abundances of translationally active bacterial taxa, 

we calculated fold-change differences between sort-negative, sort-positive, and sort input fractions 

for each subject (Fig. 5c and Supplementary Figs. 12 and 13). Some genera/species present in fold-

change plots do not appear in taxa plots (Fig. 5b) because they were less than 1% relative 

abundance, but we note that activity among these less abundant populations may also be 

determinants of CF pathogenesis. In general, ranks of relative abundance were not appreciably 

different between sort-positive and sort-negative fractions (denoted by heatmaps in Fig. 5c). The 

most abundant organism in all subjects, Pseudomonas (ASV1/ASV4), was always in greater 

relative abundance in the positive sort (Fig. 5c), reflecting its active growth in sputum and 

underscoring its recognized importance as a CF pathogen. However, this trend of agreement 

between relative abundance and fold-change did not always hold. For example, Leptotrichia 

(ASV5) in subject 6 was high in rank abundance (see heatmaps), but its fold difference between 

positive and negative fractions was 0.22 (~4.5-fold greater in the negative sort), indicating lower 

relative translational activity than its co-colonizing microbiota. This was also observed for 

Streptococcus (ASV2) in subject 4, which was the second most abundant taxon yet showed low 

translational activity. Conversely, some low abundance organisms were in higher relative 

abundance in the positive sort. Most notably, Streptococcus (ASV12) and Rothia dentocariosa 

(ASV37) in subject 5 had average relative abundances of 1.3% and 2.3%, respectively, in the 

negative sort, but were 4.5- and 5.25-fold more prominent in the positive fraction. Other low 

abundance ASVs assigned as Actinomyces, Enterococcus, Peptostreptococcus, and 

Capnocytophaga sputigena showed similar trends, which were also confirmed by additional 

comparisons between sort-input/sort-positive and sort-input/sort-negative fractions (Supplemental 

Figs. 12 and 13). 
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 Taken together, these BONCAT data reveal the extensive heterogeneity of translational 

activity among CF microbiota. Each individual harbors a unique bacterial community, though 

community membership and relative abundance are not necessarily predictive of translational 

activity. Ultimately, profiling of bacterial communities in this manner may help guide therapeutic 

strategies by identifying subpopulations of translationally active bacteria. 

 

Discussion 

 

 16S rRNA gene sequencing has become the gold standard for culture-independent 

characterization of CF airway bacterial communities. Despite the wealth of data that have emerged 

regarding the complexity of lung microbiota, we have little understanding of bacterial activity at 

the site of infection and the specific contributions of individual species to pathogenesis. Expanding 

on recent studies employing BONCAT as a means of characterizing the ecophysiology of microbial 

communities in their natural growth environment (39–43), we use this approach in combination 

with FACS and 16 S rRNA gene sequencing to shed light on bacterial activity in CF sputum. We 

demonstrate that only a subset of each taxon is detectable by metabolic labeling. Identification and 

characterization of this subpopulation is not achievable using conventional sequencing approaches 

and may provide a more precise representation of relevant microbiota within the CF lung. 

 BONCAT-based studies of translationally active bacteria challenge our thinking on the 

microbial ecology of the CF airways. Each subject harbored a unique bacterial community 

consisting primarily of canonical lung pathogens (e.g., Pseudomonas). Consistent with previous 

studies using RNA-based methods (25,26), BONCAT–FACS-based sequencing data indicate these 

most abundant taxa are also active in situ, reinforcing a probable role for these genera in CF 

pathogenesis. However, we also revealed that low abundance community members not commonly 

associated with CF lung disease comprise many taxa that exhibited increased abundance in the 

positive sort, indicating that community membership is not always predictive of translational 

activity. In conventional 16S rRNA datasets, rare taxa (i.e., <1%) can be challenging to detect 

among high abundance organisms (or they are commonly grouped into an ‘other’ category). 

Moreover, longitudinal dynamics among low abundance taxa can be masked in standard taxa plots 

and may explain why observed within-subject differences in bacterial community composition 

rarely track with disease symptoms (9,16,23). While we cannot rule out that some AHA-negative 

cells are a result of impaired AHA uptake or instrument detection limits, our data suggest that dead 

and/or dormant biomass comprise a substantial proportion of sequence reads generated via 16S 

rRNA gene sequencing of CF sputum. We hypothesize that low abundance organisms represent 

keystone members of the lung microbiota, whose activity dynamics are determinants of acute 

inflammation, either by directly impacting the host, or indirectly through modulating the growth 

and virulence of higher abundance pathogens. 

 BONCAT imaging of sputum and fold-change plots between sort-positive and sort-

negative fractions demonstrated both population-wide and taxon-specific translational 

heterogeneity. This spectrum of metabolic states may confer a significant advantage for bacteria 

and optimize their fitness in the complex environment of the CF lung. In vivo, airway microbiota 

face a dynamic milieu shaped by microbial competitors, antimicrobials, the host immune response, 

nutrient limitation, and other chemical stimuli that can be unfavorable to growth. Under these 

conditions, adopting a bet-hedging strategy in which only a subpopulation of cells is active may 

ensure that a given bacterial species is prepared to contend with environmental stress (56). In 

addition, the transition between translationally active and dormant states may help to explain the 
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periodicity of PEx, faced with a favorable growth environment, more cells of a given taxon (or 

taxa) may be induced into active growth and elicit a heightened host response. 

 The balance between growth states may also be a critical determinant of host response to 

therapy. By adopting a persister-like strategy in which reduced cellular activity confers a temporary 

multidrug-resistant phenotype, a dormant subpopulation could ensure persistence during an 

antibiotic challenge. Once antibiotic-selective pressure is relieved, antimicrobial tolerant 

populations may emerge. This heterogeneity may also help explain instances in which a subject’s 

clinical response is not predicted by the in vitro drug susceptibility of a given pathogen. We posit 

that clinical sensitivity panels are poorly predictive of antibiotic efficacy because, among other 

limitations, they do not account for the heterogeneous translational activity described here. 

 While active cells are likely more responsible for pathogenesis, inactive cells (Cy5−) are 

also of importance to CF lung disease as bacteria do not necessarily have to be translationally active 

to influence their greater community. For example, it is known that largely dormant populations 

can drive geochemical processes in their growth environment (e.g., mineralizing organic carbon to 

CO2) (57–59). Translationally inactive cells can also shape their growth environment through 

nutrient exchange, secretion of virulence factors and small metabolites, electrostatic interactions, 

and stimulation of the host immune response. Further characterization of activity heterogeneity, the 

contributions of both active and dormant populations to disease, the frequency of transition between 

states and the factors that stimulate those transitions will help us to better understand disease 

dynamics and nature of these. 

 Though BONCAT represents a useful tool for the study of CF microbiota, we note 

limitations, several of which have been described previously (39,40,60). First, bacterial cell sorting 

by flow cytometry is imperfect, as each species has characteristic sort properties. When defining 

our gating scheme, Cy5+and Cy5−gates were conservatively chosen (requiring a gap in between 

gates) such that the selection of inactive cells in the positive gate was minimized, and vice versa. 

However, with this gap a subset of the active population is not collected. Similarly, there is a high 

probability of selecting active cells in the negative gate due to flow migration characteristics (e.g., 

F. nucleatum shifts differently than a much smaller V. parvula cell). Finally, bacterial aggregates, 

in which only some cells are active (see Fig. 3b) could be pulled into the negative gate by the 

inactive population of that aggregate. We are currently exploring alternative approaches, including 

optimization of gating strategies, to improve upon the sorting efficiency of BONCAT-labeled cells. 

 It is also possible that our experimental conditions were selective against certain taxa. As 

an example, the 3h AHA incubation is performed under oxic conditions, which may induce an 

aerobe bloom or inhibit less aero-tolerant bacteria ex vivo. Electrode analyses have shown that 

steep oxygen gradients are retained in expectorated mucus plugs and are stable over time (50), but 

it is notable that after AHA treatment, Rothia mucilaginosa (ASV8), Prevotella salivae (ASV30), 

Veillonella (ASV13), and other anaerobes were far more prevalent in the negative sort. However, 

this was not always the case (e.g., R. dentocariosa and S. wiggsiae increased in subjects 5 and 6) 

making it difficult to determine whether the observed fold-differences reflect growth constraints 

during BONCAT labeling or a true slow growth (or dormant) phenotype. Though each bacterium 

tested in vitro demonstrated the ability to uptake AHA (Fig.2), it is also expected that each species 

will incorporate AHA into new proteins at different rates. Similarly, it is possible that catabolism 

of AHA may skew bacterial composition or induce metabolic changes (61). Future work will be 

aimed at optimizing reaction conditions and incubation times to minimize the effect of the 

experimental approach biasing FACS and sequencing data. 
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 Despite these limitations, BONCAT can be used to extend our understanding of the role of 

specific microbiota in chronic lung disease. Here we focused on a cross-sectional cohort of stable 

CF subjects, but the approach can be used to address important questions about microbial 

community dynamics over time. For example, (i) how do active populations vary with disease 

state? Future studies will focus on longitudinal analyses of within-subject microbial dynamics and 

how active species correlate with disease symptoms. By identifying bacterial sub-populations most 

active either preceding or during an acute disease flare (i.e., PEx), more effective therapeutic 

strategies are likely to be identified. (ii) Why are only some subjects responsive to antimicrobial 

therapy? As mentioned above, in vivo drug efficacy is often inconsistent with clinical sensitivity 

panels. By obtaining sputum and amending small aliquots with different classes of antibiotics, 

BONCAT analysis of the ensuing changes in bacterial activity can be used to predict how CF 

subjects might respond to treatment. (iii) How do specific taxa respond to environmental stimuli? 

It is known that bacteria are dynamically responsive to their growth environment, yet how CF 

microbiota adapt to perturbations in the sputum milieu is poorly understood. BONCAT 

characterization of sputum samples amended with specific nutrients or incubation under varying 

environmental conditions (e.g., low pH) will help to shed light on parameters that constrain or 

potentiate bacterial growth in vivo. (iv) How is translational activity spatially arranged? With the 

exception of small bacterial aggregates (Fig.3), the approach described here offers limited insight 

on the spatial distribution of bacterial activity. As an alternative to FACS-based sequencing, 

BONCAT could be combined with species-specific fluorescence in situ hybridization (FISH) 

probes and histological analysis of sputum (or lung tissue) to visualize spatial relationships between 

translationally active bacteria (39,40,62). 

 In summary, we demonstrate that BONCAT is a powerful tool for the visualization and 

identification of translationally active bacteria and provides a measure of microbial activity not 

captured by conventional molecular profiling. Our use of BONCAT lays the foundation for a more 

detailed understanding of the ecophysiology of CF microbiota and has important implications for 

the development of new therapeutic strategies and improved clinical outcomes. In addition, the 

approach is broadly applicable to other airway diseases (e.g., COPD, ventilator associated 

pneumonias, and sinusitis) where the activity of complex bacterial communities is central to disease 

states. We are currently using this approach to study microbial community dynamics in a variety 

of infectious disease contexts. 

 

Methods 

 

Bacterial strains and culture conditions 

 

 Bacterial strains are listed in Table 1. Fusobacterium nucleatum, Prevotella 

melaninogenica, Veillonella parvula, and Streptococcus parasanguinis were derived from the 

American Tissue Type Collection and obtained from Microbiologics (St. Cloud, MN). Rothia 

mucilaginosa was obtained from the Japan Collection of Microorganisms (Riken, Tokyo). 

Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa were obtained from D. K. 

Newman (California Institution of Technology), and Burkholderia cenocepacia was obtained from 

C.H. Mohr (University of Minnesota). Achromobacter xylosoxidans and Stenotrophomonas 

maltophilia were isolated from individuals undergoing treatment at the UMN Adult CF Center. 

Aerobes were maintained on Luria-Bertani (LB) agar, while anaerobes were maintained on Brain-

Heart Infusion (BHI) agar supplemented with a 5% vitamin K-hemin solution (Hardy Diagnostics 
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#Z237) in an anaerobic chamber (Coy) under a 90% N2/5% CO2/5% H2 atmosphere. Bacterial 

growth curves were performed in triplicate in BHI broth containing either 6 mM L-

azidohomoalanine (AHA) or 6 mM L-methionine (MET). 

 

Bioorthogonal non-canonical amino-acid tagging (BONCAT) 

 

 BONCAT labeling was performed as described by Hatzenpichler (40) with modifications. 

Briefly, for imaging of lab-grown cultures (see below), P. aeruginosa, B. cenocepacia, A. 

xylosoxidans, S. maltophilia, R. mucilaginosa, E. coli, and S. aureus were grown aerobically in LB, 

while S. parasanguinis, V. parvula, P. melaninogenica, and F. nucleatum were cultured under 

anaerobic conditions in BHI broth supplemented with hemin and vitamin K. Cultures were grown 

overnight and diluted 1/100 in 10 mL of fresh medium. Upon reaching mid-log phase, cultures 

were supplemented with either 6 mM AHA or 6 mM methionine (MET) and incubated for 3 h at 

37 °C. When indicated, an antibiotic cocktail consisting of chloramphenicol (30 µg mL−1), 

tetracycline (200 µg mL−1), and tobramycin (10 µg mL−1) was added 30 min prior to AHA addition 

to arrest protein synthesis. After incubation, cultures were pelleted via centrifugation (5 min at 

10,000 × g), fixed in 4% paraformaldehyde (PFA) for 2 h at 4 °C, resuspended in phosphate 

buffered saline (PBS, pH 7.4) and stored at 4 °C. All growth curves were performed in triplicate (n 

= 3). 

 Sputum samples used for imaging were treated with cycloheximide (100 µg mL−1) upon 

expectoration and divided into three equal volumes. Aliquots were supplemented with either AHA 

(6 mM), methionine (6 mM), or AHA (6 mM) with chloramphenicol/tetracycline/tobramycin as 

described above, incubated at 37 °C for 3 h, followed by fixation in 4% PFA overnight at 4 °C. 

Samples collected for flow cytometry were divided into five 300−500 µL aliquots. One control 

aliquot was immediately frozen at −80 °C and later used for conventional 16 S rRNA gene 

sequencing. Cycloheximide (100 µg mL−1) was added to the remaining four aliquots, three of which 

were supplemented with AHA (6 mM). One was also supplemented with MET (6 mM), followed 

by incubation of all samples at 37 °C for 3 h. Labeled samples (and unlabeled controls) were then 

fixed in 4% PFA for 2 h, pelleted via centrifugation (5 min at 10,000 × g), resuspended in PBS, and 

stored at 4 °C. 

 

Click Chemistry 

 

 For each bacterial culture and sputum sample, strain-promoted azide-alkyne cycloaddition 

(click chemistry)63 was also performed as described previously (40). Briefly, fixed biomass was 

pelleted, resuspended in freshly prepared 2chloroacetamide (100 mM) and incubated for 1 h at 46 

°C, shaking at 450 r.p.m. in the dark. Cy5-dibenzocyclooctyne (Cy5–DBCO) (Click Chemistry 

Tools) was then added to a final concentration of 10 µM followed by incubation for 30 min at 46 

°C. Samples were washed three times in PBS and further processed for imaging and flow cytometry 

(see below). 

 

SDS-PAGE 

 P. aeruginosa was grown to late-exponential phase as described above and supplemented 

with varying concentrations of AHA (100 µM–1 mM) for 1 h prior to fixation. Similarly, P. 
aeruginosa was grown in the presence of varying ratios of MET:AHA. Bacterial pellets were 

resuspended in extraction buffer (1% sodium dodecyl sulfate, 50 mM NaCl, 100 mM EDTA, 1 mM 
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MgCl2 at pH 8.4) and boiled for 30 min. After boiling, samples underwent click chemistry as 

described above. A mixture of methanol:chloroform:water (12:3:8) was then added to each sample 

followed immediately by centrifugation for 5 min at 16,000 × g. The water/ methanol phase was 

then carefully removed, and protein recovered from the interface was washed three times in 100% 

methanol. After the final wash, supernatant was removed and pellets were air dried. Protein was 

resuspended in 100 μl 1X LDS (lithium dodecyl sulfate) sample buffer and denatured at 70 °C for 

10 min. Ten microliter of protein was run on an 8% Bis-Tris gel with MOPS (3-(N-

morpholino)propanesulfonic acid)-sodium dodecyl sulfate (SDS) running buffer to which sodium 

bisulfite had been freshly added. Gels were run at 150 V, fixed for 30 min in a 1:2:7 

acetate:methanol:water mix, and imaged with a Typhoon FLA 9500 scanner (GE Healthcare) using 

an excitation wavelength of 635 nm. 

 

Fluorescence microscopy 

 

 BONCAT-labeled bacterial cultures and sputum were spotted on Superfrost Plus 

microscope slides and counterstained using 1.6 µM STYO64 in PBS. Slides were then washed 

twice in PBS, mounted using Prolong Diamond Antifade and imaged using an Olympus IX83 

microscope with a transmitted Koehler illuminator and a ×60 oil objective lens (NA 1.42). Images 

were captured on a Hamamatsu ORCA-Flash4.0 V2 digital CMOS camera, and post-acquisition 

image analysis was performed using cellSens software (v.1.14, Olympus). SYTO64 and Cy5 were 

visualized using excitation/emission wavelengths of 562 nm/583 nm and 628/640 nm, respectively. 

 Image analysis was performed using FIJI (64). Briefly, images were subjected to 

background subtraction using a rolling ball radius of 150 pixels. Individual cells were identified by 

adjusting thresholds of SYTO64 images using Huang’s fuzzy thresholding method (65). Images 

were also segmented using a watershedding algorithm that assumes each maximum belongs to a 

discrete particle. The Analyze Particles operation was used to detect and record locations of 

individual bacterial cells in a given image. For clinical samples, particles were constrained between 

100 and 1000 pixels to minimize detection of host cells and sputum debris. Mean pixel intensity at 

647 nm (Cy5) was then quantified for each assigned particle. Imaging experiments were performed 

in triplicate for each bacterial species, and ten images for each sample were captured (n > 1000 

particles per sample). 

 

Flow cytometry 

 

 Prior to sorting, Cy5–DBCO-labeled sputum was collected by centrifugation and 

counterstained with 1.6 µM SYTO9 (Invitrogen) in PBS for 30 min. Sputum samples were also 

stained with 1 µg ml−1 of phycoerythrin (PE) antihuman CD45RO in PBS (BioLegend) for 30 min 

to stain activated and memory T cells, some B-cell subsets, activated monocytes/macrophages, and 

granulocytes. All samples were washed in PBS containing 1% BSA and 1 mM EDTA, 

homogenized using 16- and 22-gauge needles and filtered through a 40 μm cell strainer. To separate 

AHA + and AHA- bacterial populations, clinical samples were analyzed and sorted on a 

FACSAriaIIu Cell Sorter (Beckton Dickinson) with a 70μm nozzle at 70 psi. Contaminating human 

leukocytes staining positive for PE antihuman CD45RO were excluded from bacterial populations 

of interest in the initial sorting gate (Supplementary Fig. 9). An AHA- control was then matched to 

each sample to determine the level of non-specific Cy5–DBCO binding and was used to establish 

Cy5+ (i.e., active) and Cy5− (i.e., inactive) sorting gates. Forward scatter and side scatter gates 
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were then applied to remove large particulates and debris, and liberal doublet discrimination was 

used to minimize loss of bacterial aggregates. Collected samples were stored at 4 °C and processed 

within 24 h. FlowJo software (v.10.5.0) was used for data analysis and presentation. 

 Cy5+ and Cy5− sorted populations were assessed for post-sort purity by flow cytometry, 

while collected fractions were visualized by anti-Cy5 immunostaining. To do so, BONCAT-labeled 

sputum samples were spread across Superfrost Plus microscope slides using a sterile pipette tip and 

allowed to air dry for 30 min. Slides were washed 3X in PBS and blocked using 1% goat serum in 

PBS for 1 h, followed by treatment with an anti-Cy5 monoclonal antibody (C1117, Sigma–Aldrich) 

(1:100 dilution) in incubation buffer (1% goat serum, 0.3% Triton X100 and 10 mg mL−1 bovine 

serum albumin) overnight at 4 °C. Slides were washed 3×, and incubated with Cy3 goat anti-mouse 

secondary antibody (1:250) in incubation buffer for 45 min. Slides were washed 2×, counterstained 

using 0.1% Hoescht in PBS and mounted using Prolong Diamond Antifade. Slides were imaged as 

described above. 

 

DNA extraction 

 

 Genomic DNA (gDNA) was extracted using a modified phenolchloroform method 

previously described (66). Briefly, FACS-sorted samples were collected onto 0.22 µm 

polycarbonate membranes (EMD Millipore), which were then transferred to 1 mL of TENS buffer 

(50 mM Tris-HCl [pH 8.0], 20 mM EDTA, 100 mM NaCl, 1% SDS) containing lysozyme (0.2 mg 

mL−1) and lysostaphin (0.02 µg mL−1) and incubated at 37 °C for 30 min. Sodium dodecyl sulfate 

(SDS) and proteinase K were added to final concentrations of 1% and 1.2 mg mL−1, respectively, 

and samples were incubated overnight at 55 °C. Enzymes were deactivated by incubating samples 

at 90 °C for 30 min, and sample liquid (including membrane) was transferred to a 5 mL conical 

tube containing an equal volume of phenol:chloroform:isoamyl alcohol (P:C:I, 25:24:1, pH 7.9), 

which dissolved the membrane. The resulting sample was then split into two Lysing Matrix E tubes 

(MP Biomedicals) and processed twice by bead beating for 30 seconds. Contents of both tubes 

were recombined and centrifuged at 3200 × g for 20 min. The aqueous layer was transferred to a 

new tube and P:C:I extraction was repeated, followed by a chloroform:isoamyl alcohol (24:1) 

extraction. A 1/10th volume of sodium acetate (3 M, pH 5.2) was then added and nucleic acid was 

precipitated using one volume of isopropanol followed by centrifugation at 21,130 × g for 20 min. 

Supernatant was removed, the pellet was washed with 80% ethanol, and centrifuged at 21,130 × g 

for 10 min. Finally, the gDNA pellet was air dried, resuspended in 10 mM Tris buffer (pH 8.0), and 

stored at −80 °C until sequencing. 

 

DNA sequencing and analysis 

 

 gDNA derived from sputum samples was submitted to the University of Minnesota 

Genomics Center (UMGC) for 16 S rRNA gene library preparation using a two-step PCR protocol 

(67). The V4 variable region was amplified using V4_515F and V4_806R primers with common 

adapter sequences (5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGGTGCCAG 

CMGCCGCGGTAA-3’, 5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACA 

GGGACTACHVGGGTWTCTAAT-3’), followed by the addition of dual indices and Illumina 

flow cell adaptors in a secondary amplification using primers 5’-AAT 

GATACGGCGACCACCGAGATCTACACXXXXXXXXTCGTCGGCAGCGTC-3’ and 5’-

CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTCTCGTGGGCT CGG-3’. Amplicons 
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were sequenced on an Illumina MiSeq using TruSeq (v.3) 2 × 300 paired-end technology. FACS 

sheath fluid and DNA extraction reagent control samples were also submitted for sequencing. These 

control samples did not pass quality control steps due to DNA content below detection thresholds 

but were incorporated into downstream analyses. An average of 67,793 sequences per sample were 

obtained. Sequence data are available at NCBI sequence read archive under Bioproject ID 

PRJNA604587. 

 Sequence quality was assessed using the DADA2 R package (v.1.2.1) (55). Cutadapt (68) 

was used to remove primer and Illumina adapter sequences, with size filtering set to a minimum 

and maximum of 215 bp and 285 bp, respectively. DADA2 functions were used to trim and filter 

sequences, model and correct Illumina sequence errors, align paired-end sequences, and filter 

chimeric reads. Specifically, forward and reverse sequences were trimmed to 250 bp and 200 bp, 

respectively, and a post-trimming minimum length filter of 175 bp was applied. All other DADA2 

pipeline parameters were run using default options. Resulting amplicon sequence variants (ASVs) 

were assigned taxonomy using RDP classifier (69) and the SILVA SSU database (Release 132, 

December 2017) (70,71). Species-level taxonomy was assigned using the DADA2 addSpecies 

function only if an ASV unambiguously matched a sequence in the SILVA-132 database. A 

phylogenetic tree was approximated using the phangorn R package (72) and sequences were 

aligned using DECIPHER. The phangorn package was then used to construct a neighbor-joining 

tree, which was then used to fit a GTR + G + I maximum likelihood tree. 

 The Decontam package (v.1.2.0) (73) was used to reproducibly filter out contaminant 

sequences. The function isContaminant was used with method = “either” and a probability 

threshold set to 0.5. Frequency was determined from 16 S qPCR data obtained from UMGC. A 

total of 28 taxa were removed from the dataset based on frequency and prevalence in the sample 

when compared with DNA extraction control. An average of 40,773 sequences were recovered 

from DADA2/Decontam analysis corresponding to 357 ASVs. 79.55% of ASVs were assigned to 

the genus level, and 22.97% had an unambiguous species assignment. 

 ASV count data, taxonomic assignment, and the phylogenetic tree were used within the 

analysis framework of the Phyloseq R package (v.1.26.0)(74–80). ASVs were filtered when they 

did not belong to the domain Bacteria, or when not assigned taxonomy at the phylum level. Phyla 

that had low prevalence and abundance (including Acidobacteria, Chloroflexi, Dependentiae, 

Planctomycetes, and Synergistetes) were removed from the dataset, as were singleton ASVs or 

those that did not belong to the original or input samples. Finally, ASVs at a relative abundance 

below 0.001 (0.1%) were removed. After filtering there remained 45 unique taxonomic assignments 

with 22 assigned at the species level. Fold-change in relative abundance for each ASV were 

calculated between sort input and sort-positive fractions for each study subject. For all figures, a 

specific epithet was used when assigned exactly from the SILVA database. 

 

Data availability 

 

 Raw 16 S rRNA gene sequence data (Fig. 5 and Supplementary Figs. 8, 11-13) that support 

the findings of this study were deposited and are available as fastq files in the NCBI sequence read 

archive under Bioproject ID PRJNA604587. Source data and full gel scans underlying Figs. 1, 3, 

5, and Supplementary Figs. 1, 2, 4, 6, 12, and 13 are provided in the Source Data file. 
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Code availability  

 

 Previously published software packages and versions used to analyze 16 S rRNA sequence 

data are cited in the methods above. The custom R function used in sequence analysis is available 

on Github:  https://github.com/hunterlabumn/Valentini_et_al_2020 
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Tables 

 

Table 1. Bacterial strains used in this study 

Bacterial Species Comment Source 

Achromobacter xylosoxidans CF clinical isolate MN001 75 

Burkholderia cenocepacia CF Clinical isolate K56-2 76 

Escherichia coli UQ950 77 

Fusobacterium nucleatum ATCC 25586 ATCC 

Prevotella melaniniogenica ATCC 25845 ATCC 

Pseudomonas aeruginosa 
Clincial isolate UCBPP-
PA14 78 

Rothia mucilaginosa JCM 10910 79 

Staphylococcus aureus Clinical isolate MN8 80 

Stenotrophomonas maltophilia CF clinical isolate CHB83-1 This study 

Streptococcus parasanguinis ATCC 15912 ATCC 

Veillonella parvula ATCC 10790 ATCC 
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Figures 

 

 
 
Figure 1. BONCAT labeling of P. aeruginosa differentiates translationally active and inactive 

cells. P. aeruginosa was incubated in the presence of a AHA, b methionine (MET), and c antibiotics 

prior to AHA (ABX). Actively growing cells were identified via strain-promoted click chemistry 

(Cy5, magenta; SYTO64, blue). Histograms associated with each image represent average Cy5 

pixel intensity (relative fluorescence units, RFU) per cell. d Two AHAtreated cultures (one with 

antibiotics, one without) were mixed in a 1:1 ratio prior to Cy5–DBCO labeling. These data 

demonstrate that BONCAT can differentiate translationally active and inactive bacterial cells in a 

complex nutritional milieu. Scale bar = 10 µm. n refers to the number of cells examined over ten 

images from each of three independent experiments. Source data are provided as a Source Data 

file. 
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Figure 2. BONCAT can identify active cells among diverse CF microbiota. Two cultures (one 

treated with antibiotics, one without) of each species were grown in the presence of AHA and 

mixed 1:1 prior to Cy5–DBCO (magenta) labeling and SYTO64 counterstaining (blue). These data 

demonstrate that BONCAT can differentiate between active and inactive bacterial cells among 

diverse CF microbiota. Scale bars; Ax, Bc, Fn, Ec, Pm, Rm = 20 µm; Sa, Sm, Sp = 10 µm; Vp = 5 

µm. Images are representative of ten images from each of three biologically independent 

experiments for each organism. 
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Figure 3. CF microbiota exhibit heterogeneous translational activity within sputum. a Sputum 

was incubated in the presence of 6 mM AHA immediately upon expectoration. BONCAT labeling 

with Cy5–DBCO (magenta) and counterstaining with SYTO64 (blue) reveals heterogeneous AHA 

incorporation (i.e., translational activity). b Higher magnification images further emphasize the 

range of bacterial activity at the single-cell level. c Average Cy5 pixel intensity per cell suggests 

slow and heterogeneous translational activity among bacterial cells in situ. Scale bars; a = 100 µm, 

b = 5 µm. Source data are provided as a Source Data file. 
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Figure 4. Experimental workflow for BONCAT. Analysis of CF sputum. 

  



 

 165 

 

O
rig

in
al

S
or

t I
np

ut

S
or

t N
eg

at
iv
e

S
or

t P
os

iti
ve

0

25

50

75

100

O
rig

in
al

S
or

t I
np

ut

S
or

t N
eg

at
iv
e

S
or

t P
os

iti
ve

0

25

50

75

100

O
rig

in
al

S
or

t I
np

ut

S
or

t N
eg

at
iv
e

S
or

t P
os

iti
ve

0

25

50

75

100

Actinomyces
Actinomyces graevenitzii
Actinomyces odontolyticus
Alloprevotella
Atopobium parvulum

Enterococcus
Fusobacterium
Gemella
Granulicatella
Leptotrichia

Other < 1%
Porphyromonas pasteri
Prevotella
Prevotella melaninogenica
Prevotella pallens

Pseudomonas
Rothia
Rothia mucilaginosa
Solobacterium moorei
Staphylococcus aureus

Staphylococcus haemolyticus
Streptococcus
Streptococcus anginosus
Tannerella
Veillonella

a

b

c

R
e

la
ti
v
e
 A

b
u
n

d
a

n
c
e

 (
%

 r
e

a
d
s
)

R
e

la
ti
v
e
 A

b
u
n

d
a

n
c
e

 (
%

 r
e

a
d
s
)

R
e

la
ti
v
e
 A

b
u
n

d
a

n
c
e

 (
%

 r
e

a
d
s
)

Actinomyces (ASV29)

Atopobium parvulum (ASV32)

Rothia mucilaginosa (ASV8)

Gemella (ASV15)

Granulicatella (ASV14)

Porphyromonas pasteri (ASV16)

Solobacterium moorei (ASV45)

Actinomyces graevenitzii (ASV26)

Prevotella melaninogenica (ASV6)

Streptococcus (ASV7)

Parvimonas micra (ASV44)

Leptotrichia (ASV5)

Prevotella salivae (ASV30)

Streptococcus (ASV2)

Actinomyces odontolyticus (ASV9)

Streptococcus (ASV17)

Veillonella (ASV13)

Alloprevotella (ASV24)

Prevotella (ASV25)

Campylobacter concisus (ASV42)

Alloprevotella (ASV31)

Peptostreptococcus stomatis (ASV52)

Fusobacterium (ASV3)

Scardovia wiggsiae (ASV48)

Pseudomonas (ASV1)

Bergeyella (ASV36)

Prevotella pallens (ASV19)

Streptococcus anginosus (ASV46)

Capnocytophaga sputigena (ASV49)

Actinomyces (ASV43)

Streptococcus (ASV12)

Rothia dentocariosa (ASV37)

0 1 2 3 4 5

0

2

4

6

Rothia (ASV11)

Staphylococcus haemolyticus (ASV21)

Staphylococcus aureus (ASV20)

Rothia mucilaginosa (ASV8)

Achromobacter (ASV57)

Actinomyces (ASV29)

Actinomyces odontolyticus (ASV9)

Streptococcus (ASV39)

Streptococcus (ASV2)

Streptococcus (ASV7)

Atopobium parvulum (ASV32)

Pseudomonas (ASV1)

Pseudomonas (ASV4)

Enterococcus (ASV33)

Streptococcus (ASV17)

0 1 2 3 4 5

2

4

6

Actinomyces (ASV29)

Rothia mucilaginosa (ASV8)

Leptotrichia (ASV5)

Actinomyces odontolyticus (ASV9)

Veillonella (ASV13)

Capnocytophaga granulosa (ASV47)

Prevotella salivae (ASV30)

Scardovia wiggsiae (ASV48)

Atopobium parvulum (ASV32)

Tannerella (ASV28)

Streptococcus (ASV2)

Actinomyces (ASV43)

Veillonella (ASV27)

Rothia dentocariosa (ASV37)

Granulicatella (ASV14)

Gemella (ASV15)

Streptococcus (ASV23)

Prevotella melaninogenica (ASV6)

Prevotella pallens (ASV19)

Streptococcus (ASV12)

Streptococcus (ASV17)

Pseudomonas (ASV1)

Peptostreptococcus stomatis (ASV52)

Bergeyella (ASV36)

Streptococcus (ASV7)

0.0 0.5 1.0 1.5

0

2

4

6

8

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

R
e

la
ti
v
e

 A
b

u
n

d
a

n
c
e

Subject 4

Subject 4 Subject 5 Subject 6

Subject 6

Subject 5

N
e

g

P
o

s

N
e

g

P
o

s

N
e

g

P
o

s

Fold Change

Fold Change

Fold Change



 

 166 

Fig. 5 BONCAT, FACS, and sequencing of CF sputum reveals the taxonomic identities of 

translationally active microbiota. a FACS of BONCAT-labeled sputum reveals Cy5− and Cy5+ 

subpopulations. Percentages shown reflect % of parent population post-CD45RO gating. b 

Original, sort input, sortnegative (Cy5−), and sort-positive (Cy5+) fractions were analyzed by 16 

S rRNA gene sequencing. Taxa plots summarize sequencing data by subject and averaged relative 

abundances between triplicate-positive and -negative sorted fractions. c Fold-changes between 

relative abundances of taxa in the sortpositive compared to the negative fraction. Point color 

indicates taxa that were increased (pink) and decreased (blue) in relative abundance in the 

sortpositive fraction, representing translationally active microbiota. The single gray points indicate 

ASVs seen only in the negative sample. Heatmap sidebars represent square root transformed 

relative abundances. 
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Supplementary Figures 

 

 
 
Figure S1. BONCAT labeling of P. aeruginosa is specific for AHA and translational activity. 

SDSPAGE visualization of BONCAT labeling of laboratory cultures of P. aeruginosa PA14. 

Labeling is specific for AHA and inhibited by antibiotics (Abx = chloramphenicol, tetracycline, 

tobramycin). Full gel scans are provided as a Source Data file. 
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Figure S2. AHA-incubation has negligible effect on bacterial growth. Growth curves were 

performed in triplicate for each species under each growth condition (6mM L-azidohomoalanine 

(AHA) or 6mM methionine (MET)). Error bars represent standard deviation of the mean of three 

biological replicates. Source data are provided as a Source Data file. 
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Figure S3. Cycloheximide Inhibition of host cell BONCAT labeling. RAW 264.7 macrophages 

(Sigma Aldrich 91062702) were cultured in T25 flasks containing high glucose Dulbecco’s 

Modified Eagle’s Medium supplemented with GlutaMAX and pyruvate (Thermo, 10569044). 

Cycloheximide was added to one flask at a final concentration of 100 µg/mL, and another was left 

untreated. AHA was then added to a final concentration of 6mM to both flasks and incubated for 

3h. Cells were detached using 0.25% trypsin solution in EDTA (Sigma T4049) and fixed in 1mL 

of 4% PFA in PBS for 2 h prior to imaging. Imaging was performed as described in the main text. 

Representative images of two biologically independent experiments are shown. (a) BONCAT 

labeling of macrophages to which cycloheximide was added were inhibited relative to (b) untreated 

(i.e. AHA+ cells). Bar = 20 µM. 
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Figure S4. Supplementary Figure 4. SDS-PAGE determination of MET:AHA ratio required for 

BONCAT labeling of P. aeruginosa. Cells were grown in varying concentrations of MET:AHA 

prior to labeling with Cy5-DBCO. Based on these profiles, a 1:10 ratio was selected for labeling of 

in vitro bacterial cultures and expectorated sputum samples. These data are representative of three 

independent experiments. Full gel scans are provided as a Source Data file. 
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Figure S5. BONCAT labeling of sputum microbiota is specific for AHA. Expectorated sputum 

samples were supplemented with 6mM AHA and incubated for 3h prior to Cy5-DBCO labeling 

(Cy5; magenta) and counterstaining (SYTO64; blue). Negligible background fluorescence was 

observed in paired sputum samples incubated with methionine (MET). Incubation with antibiotics 

prior to AHA labeling (ABX+AHA) resulted in a moderate decrease in fluorescence that may 

reflect antimicrobial tolerance among airway microbiota. Bar = 100 µm. Abx = chloramphenicol, 

tetracycline, tobramycin. Data are representative of ten images from each patient sample. 
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Figure S6. Supplementary Figure 6. Validation of BONCAT-FACS. During sorting, the Cy5 label 

is subject to photobleaching; we therefore used immunostaining (Cy3 anti-Cy5 antibody), 

fluorescence microscopy and quantitative image analysis in FIJI to validate FACS sort integrity. 

Pixel intensity was calculated as described in Methods. Anti-Cy5 labeling of sort input, sort 

negative and sort positive fractions demonstrates that BONCAT-FACS effectively removes host 

cells and translationally inactive bacteria from downstream 16S rRNA gene sequencing analysis. 

As expected, more cells in the positive fraction were anti-Cy5 reactive, confirming AHA uptake 

and translational activity among this bacterial subpopulation. However, some collected cells 

appeared unlabeled by the Cy3-labeled antibody. If we assume a mean pixel intensity of 10,000 as 

the cutoff between AHA-/AHA+ cells, these data suggest false negative and false positive sort rates 

of 6.8% and 12.0%, respectively. Bar = 10 µm. Source data are provided as a Source Data file. 
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Figure S7. FACS of BONCAT-labeled sputum reveals consistency of Cy5- and Cy5+ 

subpopulations between replicates. Percentages shown reflect % of parent population post-

CD45RO gating.  
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Figure S8. 16s rRNA gene sequencing reveals concordance of sort positive and sort negative 

replicates. (a) Stacked bar graphs of taxa relative abundance including all samples in analysis 

(triplicate positive and negative sort). (b) Double Principle Coordinate Analysis (DPCoA) shows 

grouping of samples by sample type. 
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Figure S9. Representative gating scheme for AHA+ and AHA- populations. (a) AHA- control 

samples were first gated based on PE anti-human CD45RO staining to remove human leukocytes. 

Next, the negative control was used to measure background Cy5 fluorescence to define Cy5+ (i.e. 

active) and Cy5- (i.e. inactive) sorting gates. (b) shows a subject-matched AHA+ sample and the 

gating used to isolate populations of interest. The gating strategy involved, i) excluding human 

leukocytes using PE anti-human CD45RO, ii) using Cy5+ and Cy5- gates based on the subject-

matched AHA- control, iii) creating forward scatter and side scatter plots to remove large, complex 

particulates and debris, and liberal doublet discrimination to minimize the loss of bacterial 

aggregates. The gating shown in panel ii corresponds to FACS data panels shown in Figures 5, S7, 

and S10. 
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Figure S10. Confirmation of BONCAT Labeling. Flow cytometry histograms represent the 

number of events (cell counts) versus the log fluorescent intensity of Cy5 (blue = Cy5- population, 

magenta = Cy5+ population). Numbers in the upper left-hand corner represent the geometric means 

of Cy5 intensity. The Cy5+ population exhibited a higher geometric mean of fluorescent intensity 

validating AHA uptake and BONCAT labeling of the active subpopulation from CF sputum 

samples. 
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Figure S11. Low abundance community members are translationally active. Bacterial community 

membership of taxa with relative abundances less than 10% exhibit notable differences between 

“sort positive” community composition (i.e. translational activity) relative to the “original” 

fraction.  
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Figure S12. Fold difference in taxon relative abundance between “sort input” and “sort positive” 

fractions. Pink and black markers indicate taxa that were higher in relative abundance in the positive 

and input fractions, respectively. Source data are provided as a Source Data file. 
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Figure S13. . Fold difference in taxon relative abundance between “sort input” and “sort negative” 

fractions. Black and blue markers indicate taxa that were higher in relative abundance in the input 

and negative fractions, respectively. Source data are provided as a Source Data file. 
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Supplementary Tables 

 

Table S1. Cohort clinical data 

Subject Age Sex FEV1% 
CFTR 

genotype 
Bacterial Cultures Current Antibiotics 

1 23 F 38 ∆F508/∆F508 A. xylosoxidans 
azithromycin, colistin, 

doxycycline 

2 38 M 31 ∆F508/∆F508 

A. xylosoxidans,  

B. cepacia complex, 

P. aeruginosa 

azithromycin, 

aztreonam, doxycycline, 

meropenem, 

sulfamethoxazole-

trimethoprim, zosyn 

3 23 M 56 ∆F508/∆I507 
P. aeruginosa,  

S. aureus 

azithromycin, 

aztreonam, tobramycin 

4 26 F 42 
∆F508/N1303

K 

S. aureus,  

P. aeruginosa,  

A. xylosoxidans 

azithromycin, colistin, 

gentamicin, 

sulfamethoxazole-

trimethoprim 

5 40 F 39 
1898+1g>a/38

49+10kbC>t 
P. aeruginosa 

azithromycin, 

aztreonam, ciprofloxacin 

6 42 M 38 
F508del/621+

1G->T 
P. aeruginosa 

azithromycin, 

aztreonam, doxycyline 
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Table S2. BONCAT-FACS summary 

Subject Replicate 

# of Cy5- 

events 

collected 

# of 

Cy5+ 

events 

collected 

% of 

Parent 

populationa 

in Cy5- 

gate 

% of 

Parent 

populationa 

in Cy5+ 

gate 

Geometric 

mean of 

fluorescent 

intensity 

(Cy5)b in 

Cy5- gate 

Geometric 

mean of 

fluorescent 

intensity 

(Cy5)b in 

Cy5+ gate 

 1 1,632,712 4,000,000 7.2 57.4 1047 4514 

4 2 3,061,496 4,010,359 11.2 45.9 1057 4605 

 3 1,329,894 4,000,000 5.5 64.9 1026 4345 

 1 1,983,509 4,001,293 22.5 43.2 1010 4738 

5 2 2,770,068 4,003,957 21.5 47.9 1744 5535 

 3 4,000,000 4,003,615 32.6 36.7 970 5352 

 1 4,000,000 2,144,345 51.8 6 565 3138 

6 2 4,000,000 3,845,123 55.3 7.5 626 3035 

 3 4,000,000 1,717,276 53.1 5.1 583 2693 

 

a Percentages reflect % of parent population post-CD45RO gating. Remaining counts fell 

outside Cy5-/Cy5+ gates.  

b Histograms are shown in Supplementary Figure 8. 
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