
Towards More Effective Traffic Analysis in the Tor
Network.

A THESIS

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Se Eun Oh

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Nicholas Hopper

February, 2021

© Se Eun Oh 2021

ALL RIGHTS RESERVED

Acknowledgements

Above all, I would like to extend my deepest gratitude to my advisor, Nick Hopper, for

his valuable advising and boundless encouragement. His eternal support always made

me thrilled to conduct the anonymity research throughout the graduate program. I have

learned a lot from his insightful suggestions as well as from his profound knowledge.

I also wish to thank other committee members, Stephen McCamant, Kangjie Lu,

Andrew Odlyzko, and Matthew Wright, for their time and support. In particular, I

thank Matthew Wright who allowed me to visit his lab as a visiting scholar. It was not

only beneficial, but also enjoyable to communicate with other cyber security researchers.

I’m grateful to all my research collaborators, Shuai Li, Erik Lindeman, Nate Math-

ews, Mohammad Saidur Rahman, Saikrishna Sunkam, Danyang Wang, and Taiji Yang,

for their helpful contributions to all my research projects. I also thank my lab mates

for helpful research and personal discussions, John Geddes, James Holland, Shuai Li,

Saugata Paul, Mike Schliep, Max Schuchard, and Jaskaran Veer Singh.

Last but not least, I’m deeply indebted to my family. I appreciate my parents, Chang

Seok Oh and In Gyu Kwack, for their never-ending support and love. I’m extremely

grateful to my wonderful husband and another invaluable collaborator, Ki Bum Noh,

for his endless support to take care of our kids and patience towards my busy timeline.

It would have been impossible to maintain a work-life balance without him. Special

thanks to my amazing daughter, Grace Noh, who has been patient with me during my

entire graduate life and helped a lot to take care of my lovely little son, Daniel Noh.

i

Dedication

To my lord, Jesus Christ for his love

ii

Abstract

Tor is perhaps the most well-known anonymous network, used by millions of daily users

to hide their sensitive internet activities from servers, ISPs, and potentially, nation-state

adversaries. Tor provides low-latency anonymity by routing traffic through a series of

relays using layered encryption to prevent any single entity from learning the source

and destination of a connection through the content alone.

Nevertheless, in low-latency anonymity networks, the timing and volume of traffic

sent between the network and end systems (clients and servers) can be used for traffic

analysis. For example, recent work applying traffic analysis to Tor has focused on

website fingerprinting, which can allow an attacker to identify which website a client

has downloaded based on the traffic between the client and the entry relay.

Along with website fingerprinting, end-to-end flow correlation attacks have been

recognized as the core traffic analysis in Tor. This attack assumes that an adversary

observes traffic flows entering the network (Tor flow) and leaving the network (exit flow)

and attempts to correlate these flows by pairing each user with a likely destination.

The research in this thesis explores the extent to which the traffic analysis tech-

nique can be applied to more sophisticated fingerprinting scenarios using state-of-the-

art machine-learning algorithms and deep learning techniques. The thesis breaks down

four research problems. First, the applicability of machine-learning-based website fin-

gerprinting is examined to a search query keyword fingerprinting and improve the appli-

cability by discovering new features. Second, a variety of fingerprinting applications are

introduced using deep-learning-based website fingerprinting. Third, the work presents

data-limited fingerprinting by leveraging a generative deep-learning technique called a

generative adversarial network that can be optimized in scenarios with limited amounts

of training data. Lastly, a novel deep-learning architecture and training strategy are

proposed to extract features of highly correlated Tor and exit flow pairs, which will

reduce the number of false positives between pairs of flows.

iii

Contents

Acknowledgements i

Dedication ii

Abstract iii

List of Tables viii

List of Figures xiii

1 Introduction 1

1.1 Research Problems . 2

1.2 Contributions and Outline . 3

2 Background 5

2.1 Tor . 5

2.2 Website Fingerprinting . 6

2.2.1 WF Attacks . 7

2.2.2 WF Defenses . 8

2.3 End-to-End Flow Correlation . 8

2.4 Classification . 9

2.4.1 Classification Algorithms . 9

2.4.2 Binary and Multiclass Classification 12

3 Search Query Traffic Analysis 14

3.1 Related Work . 16

iv

3.2 KF Setup . 17

3.2.1 Threat Model . 17

3.2.2 Data Collection . 18

3.2.3 Keyword Set Details . 19

3.2.4 Two Search Query Settings . 20

3.2.5 Data Preparation . 21

3.3 Feature Analysis . 21

3.3.1 Prior WF Features . 22

3.3.2 Additional Features . 23

3.3.3 Preprocessing . 25

3.3.4 Feature Evaluation . 26

3.3.5 Feature Dimensions . 28

3.4 Evaluation . 29

3.4.1 Search Query Trace Identification 30

3.4.2 Closed World Accuracy . 30

3.4.3 Open World Scenario . 32

3.5 Fingerprintability Analysis . 39

3.6 KF Deployment and Mitigation . 42

4 Traffic Analysis with Deep Learning 45

4.1 Related Work . 47

4.1.1 Automated Website Fingerprinting 47

4.1.2 Deep Fingerprinting . 48

4.1.3 Onionsite Fingerprintability . 48

4.2 p-FP Overview . 50

4.2.1 Threat Model . 50

4.2.2 DNN Architectures . 50

4.2.3 Metrics . 52

4.2.4 Hyperparameter Tuning . 53

4.2.5 Datasets . 55

4.3 Feature Extraction . 56

4.3.1 Features with Autoencoder . 56

v

4.3.2 Feature Engineering with AEs 57

4.4 Website Classification . 59

4.4.1 Website Fingerprinting on Tor 60

4.4.2 Search Query Fingerprinting on Tor 64

4.4.3 WF with TLS Proxies . 65

4.4.4 WF on Tor with WF Defenses 67

4.5 Fingerprintability Prediction . 70

4.5.1 Dataset and HTML Features . 70

4.5.2 Predicting Fingerprintability . 72

5 Data-Limited Traffic Analysis 78

5.1 Related Work and Bakground . 80

5.1.1 Low-Data WF . 81

5.1.2 WF with Subpages . 82

5.1.3 Generative Adversarial Networks 83

5.2 Datasets . 84

5.2.1 Index Webpage Set . 84

5.2.2 Subpage Set . 85

5.3 Semi-Supervised Learning with GANs 86

5.3.1 SGAN Overview . 87

5.3.2 Feature Matching Loss . 87

5.4 GANDaLF . 89

5.4.1 Threat Model . 89

5.4.2 Sources of Unlabeled Data . 90

5.4.3 SGAN Optimization for GANDaLF 92

5.5 Evaluation . 96

5.5.1 Experimental Setting . 96

5.5.2 Fingerprinting Websites with Index Pages 98

5.5.3 Fingerprinting Websites with Subpages 104

6 More Efficient Correlated Flow Traffic Analysis 109

6.1 Motivation . 113

6.2 DeepCoFFEA Attacks . 116

vi

6.2.1 Feature Embedding Networks for Correlation Study 116

6.2.2 Correlation Methodology . 118

6.2.3 FEN Architecture . 120

6.2.4 DeepCoFFEA Evaluation Methodology 121

6.3 Evaluation Details . 122

6.3.1 Input Preprocessing . 122

6.3.2 Window Partitioning . 124

6.3.3 Hyperparameter Optimization 125

6.3.4 Metrics . 127

6.3.5 Thresholds . 128

6.4 Evaluation Results . 128

6.4.1 DeepCoFFEA Performance . 130

6.4.2 Comparison to State-of-the-art 134

6.4.3 Amplification in DeepCorr. 138

6.4.4 Countermeasures . 140

7 Conclusion and Future Research 142

7.1 Future Work . 144

7.1.1 Traffic Analysis Defenses. 144

7.1.2 More Rigorous GANDaLF Experimental Settings 145

7.1.3 More Realistic DeepCoFFEA Evaluation 147

References 149

vii

List of Tables

3.1 Comparison of the request and response portions of Search Query Traces 24

3.2 Sum of squares, mean of squares, and χ2 of feature sets, returned by

Chi-square test statistic, and accuracy of feature sets, evaluated using

the SVM classifier over 100 parent keywords. Each feature is described

in Sections 3.3. 26

3.3 Google trace identification . 28

3.4 Bing trace identification . 28

3.5 Duck trace identification . 29

3.6 Closed-world accuracy of various feature sets. 31

3.7 Closed-world accuracy (Acc), TPR, FPR, and within-monitored accu-

racy (WM-acc) comparing to existing classifiers. (All results in %) . . 31

3.8 TPR, FPR, and Precision when we use 100 instances of 100 monitored

Google query traces and 1 instance of 10,000 background traces. 31

3.9 Precision(P), recall(R), and within-monitored accuracy(W) (%) to de-

tect 3,000 and 8,000 traces of top-ranked and AOL search keywords and

3,000 traces of Google blacklisted keywords using binary and multiclass

classification against 50k–80k background keyword traces. Variance in

all figures was less than 0.1%. 34

3.10 Analysis of HTML and search results screenshot for Top-ranked keywords

and AOL search queries. We counted the number of content types among

text links, images, videos, SNS, and maps, and computed the fraction of

HTML responses (t-html), that consist only of text links and include no

other contents such as images. 35

viii

3.11 Binary classification (TPR (%)). We did not report the standard devia-

tion, which is less than 0.1. 37

3.12 Multiclass classification (WM-accuracy (%)). We did not report the stan-

dard deviation, which is less than 0.1. 37

3.13 Accuracy (%) under Tamaraw when varying incoming (row) and outgoing

(column) padding intervals as well as padding lengths (100–500) 37

3.14 Statistics of traces from best fingerprintable keywords. Note that Avg

means traces from all 300 parent keywords (30 instances for each) regard-

less of fingerprintability. 39

3.15 Analysis of Dynamic and Static contents embedded in HTML 40

3.16 Unmonitored keyword set analysis . 41

4.1 DNN Hyperparameter tuning using HyperOpt (W: WF, WH: WF with

TorHS, K: KF, T: TLS-encrypted traces, Full: Fully-connected layer,

Conv: Convolutional layer, and O: Others) 54

4.2 The best performance after 20 iterations (A(n): n AE features, TRT:

Training time, DC: Distance Computation time, m: minutes). We em-

pirically selected n yielding the best result. 58

4.3 Performance of state-of-the-art machine learning algorithms with AE fea-

tures (Dim: feature dimension). 58

4.4 WF with p-FP(M) with 30k monitored dataset and varying size of un-

monitored sets (TPR(T), FPR(F), and BDR(B) (%), and H=Tor HS).

Note that all results are based on the confidence threshold tuned to yield

higher TPR. 60

4.5 WF with p-FP(C) with 30k monitored dataset and varying size of un-

monitored sets (TPR(T), FPR(F), and BDR(B) (%), and H=Tor HS)

Note that all results are based on the confidence threshold tuned to yield

higher TPR . 60

4.6 KF with p-FP(M), and p-FP(C) using RESP and cell traces. ((b):binary

classification, (m):multiclass classification) 64

4.7 p-FP(C) performance using sequence of TCP packet sizes(TC) and TLS

record sizes(TL) after being sorted by time (1: Top1, 3: Top3, T:TPR(%),

F:FPR(%)). 66

ix

4.8 p-FP(M) and p-FP(C) performance against BuFLO(B) and Tamaraw(T)

(T: Top n accuracy and all metrics are %) For bandwidth overhead,

BuFLO-Wang=217%, Tamaraw-Wang=181%, BuFLO-WTT=179%, and

Tamaraw-WTT=175%. Note that for undefended WTT-time dataset, we

measured 90% using p-FP(M), 91% using p-FP(C), and 96% using DF,

and for undefended Wang dataset, we got 86% using p-FP(M), 92% using

p-FP(C), and 96% using DF. 67

4.9 Top-1 accuracy of p-FP(C) for varying parameters in BuFLO (minimum

padding time τ , interpacket interval ρ (seconds)) and Tamaraw (padding

length multiple (padL)) using Wang dataset. Note that BO is bandwidth

overhead and all numbers are %. 68

4.10 The performance of p-FP(C) classifiers against WTF-PAD. For Top k

analysis, we chose the confidence threshold yielding optimal accuracy

(Bandwidth overhead=37.7%). 69

4.11 The performance of p-FP classifiers against Walkie-Talkie. For Top (T)

k analysis, we chose the confidence threshold leading optimal accuracy.

Note that Undef means traces, collected without the defense and Def

indicates traces, collected under the defense (Bandwidth overhead=24.8%). 69

4.12 Top 15 HTML features based on the Gini importance when using p-

FP(M). (c) means common top features, which also appear in p-FP(C)

top features (Table 4.13). 73

4.13 Top 15 HTML features based on gini index when using PFP(C). Note

that (c) means common top features, which appear in PFP(M)’s top 15

features (Table 4.12). 74

4.14 Most Informative features (F) appearing in both p-FP(M) and p-FP(C),

and average value of each feature for more fingerprintable (Accuracy ≥
98%), and less fingerprintable (Accuracy ≤ 35%) websites. Refer to Ap-

pendix D of the paper [1] for the description of each feature index in

columns. 74

5.1 The data setup for GANDaLF in Section 5.5 (Note that (): the number

of instances per class, L: labeled set, U: unlabeled set, GF: GDLF, n:

{5, 10, 20, 50, 90}). 85

x

5.2 Hyperparameter optimization showing the chosen parameters and search

spaces for the WF-I and WF-S scenarios (G: generator, D: discriminator,

[Conv]: 1D convolutional layer block, [Full]: fully-connected layer block,

Up: Upsampling layer, act: activation function, and #: number). . . . 93

5.3 Comparison to k-FP, DF, Var-CNN, and TF using 5-90 training in-

stances. We do not show standard deviations less than 1%. We measured

the time (s: seconds) for testing 42k testing samples. Other numbers are

%. 99

5.4 Impact of circuit diversity on labeled training data (DF set [2]). We used

DF as labeled data and AWF2 as unlabeled data. All standard deviations

are less than 0.5%. 99

5.5 Comparison to k-FP, DF, Var-CNN (Var), and TF using 5-90 training

instances. For unlabeled sets, we used AWF1 (GF(A)) or GDLF-OW-

old (GF(G)). We do not show standard deviations less than 1%. We

measured the time (s: seconds) for testing 12k testing samples. Other

numbers are %. 104

5.6 GANDaLF CW accuracy (Acc) according to different labeled set by vary-

ing the number of subpages (s) and instances (i) in the labeled set. All

numbers are %. 105

5.7 Various unlabeled data settings using AWF1, AWF-OW (AOW), and

GDLF-OW-old (GOW). We reported the trace count (size), whether

or not the network setting was different from the GDLF25 setting (net-

work), and time gap (y: years, and m: months). 107

6.1 Mean total packet count per window. 124

6.2 Chosen hyper-parameters and search spaces used in the hyper-parameter

optimization. 126

6.3 The number of packets for each of 11 windows (Total flow duration: 25

seconds). 134

6.4 TPRs of DeepCorr (DC) and DeepCoFFEA (DCF when loss ≈ 0.006)

by fixing FPRs(#FPs) when tested with 2,093 Tor connections resulting

in 2,093 correlated and 2,093 × 2,092 uncorrelated flow pairs. 135

xi

6.5 Time complexity (seconds) of DeepCorr (DC) and DeepCoFFEA (DCF)

by varying the size of testing flow pairs. 135

6.6 DeepCorr and DeepCoFFEA performance against obfs4 pluggable trans-

port. 138

6.7 DeepCorr performance for each window when κ=34 (Note that pkt# is

the packet count and TPRs/FPRs (%)). 138

xii

List of Figures

2.1 Threat model of website fingerprinting. 6

2.2 Threat model of the end-to-end correlation attack: two types of adver-

saries: one controls ISPs (blue) and the other runs their own relays (red). 8

3.1 Principal Components Analysis (PCA) Plot of Google and Duckduckgo

query traces and background webpage traces based on CUMUL feature set 14

3.2 TLS records in two Google query traces. (+) indicates outgoing packets

and (-) indicates incoming packets . 24

3.3 Mean Ranks Distribution of Aggr4, roundedTCP, and cumulTLS. 25

3.4 Precision and recall for binary classification and within-monitored accu-

racy for multiclass classification when varying the number of monitored

and background keywords . 32

3.5 Within-monitored accuracy, precision, and recall to detect 8,000 top-

ranked Google keyword traces when varying Tor browser settings (JS

enabled vs. disabled) . 35

3.6 Closed-world accuracy for 8,000 WF defense applied Google traces when

considering different feature dimensions (Note that with no defense, ac-

curacy is 64.03%) . 38

3.7 PCA plot of best fingerprintable keyword traces and non-fingerprintable

keyword traces . 39

4.1 WF evaluation using 40k unmonitored set(a,b), and using 300 instances

of each of 100 monitored sites (c,d). 61

4.2 Comparison to SDAE and DF using 300 instances of each of 100 websites

and 40k unmonitored traces in WTT-time dataset. 63

4.3 KF(RESP) with p-FP(M) and p-FP(C) by varying the confidence threshold 65

xiii

4.4 The feature importance of the fingerprintability prediction for p-FP(M)

and p-FP(C) with the FP threshold (tfp) 70, 80, and 90%. 75

5.1 Generative adversarial networks (GANs). 81

5.2 GANDaLF architecture (FC: Fully-connected layer, Conv: convolu-

tional layer, r: ReLU, t: Tanh, and l: LeakyReLU). Note that in WF-I,

we used one fully connected layer for the generator. 88

5.3 Distribution of euclidean distances between labeled and unlabeled data

(A1: AWF [3] set consisting of 100 websites, A2: AWF set consisting of

100 websites (different from A2), and D: DF set [2]). 91

5.4 Comparison to k-FP and TF. We used 360k background traces for k-FP

and TF. 103

5.5 GANDaLF OW experiment by varying the background sizes and unla-

beled sets. 107

6.1 Example DeepCoFFEA Scenario: In this example, we had ten (ti, xi)

flow pairs and five windows (W1,...,W5). First, we performed the non-

overlapping window partition to generate two training sets, Ttr and Xtr,

and ten testing sets, Tte1,..,Tte5,Xte1,..Xte5. Then, we trained the Deep-

CoFFEA feature embedding network (FEN) with Ttr and Xtr and gen-

erated the feature embedding vectors using A and P/N models for each

testing set, (Ttew ,Xtew) where w=1,...,5. We then computed the pair-wise

cosine similarity scores for each testing window and voted with 1 if the

score was greater than τ or 0 otherwise. Finally, we aggregated those

results and determined that the flow pair was correlated if it had at least

four 1 votes. 116

6.2 ROC with different evaluation methods (Note that x-axis is log scale and

RG is Random Guess.) . 118

6.3 Overlapping window partition. 124

6.4 Performance of DeepCoFFEA across various settings (Note that RG is

Random Guess and all x-axes except Figure 6.4b are log scale). 129

6.5 ROC of state-of-the-art and DeepCoFFEA attacks (Note that x-axis is

log scale, DC: DeepCorr, DC-DIV: DeepCorr with the DIV set, DCF:

DeepCoFFEA (loss ≈ 0.006), and RG: Random Guess.) 133

xiv

6.6 BDRs of state-of-the-art and DeepCoFFEA (loss ≈ 0.006) against TPRs

(Note that x-axis is log scale, DC: DeepCorr, and DCF: DeepCoFFEA

(loss ≈ 0.006)). 133

6.7 ROC of DeepCorr (DC) by varying the flow length (i.e., the number of

packets) (Note that x-axis is log scale and DC(w) is when evaluating

DeepCorr in the window setting). 134

xv

Chapter 1

Introduction

Online activities that include details of the user’s life may be targeted for censorship or

surveillance. As a defense, users rely on encrypted traffic and anonymous networks to

conceal their connections. However, no security protections hide the size and timing of

traffic between a client and server, As a result, website fingerprints are created allowing

machine learning (ML) algorithms to identify which websites the users visited. Tor is

one of the most well-known anonymous networks used by millions of daily users. It

relays traffic through three proxies and each proxy is only aware of the subsequent

destination and prior source to hide the user’s identity and destinations from network

surveillance conducting traffic analysis. However, researchers have shown that Tor does

not guarantee user anonymity because it allows network adversaries to identify which

website the user visited based on the size and timing of traffic between the client and

server. This process is called website fingerprinting (WF). Adversaries are also able to

observe traffic flows entering and leaving the network. They then attempt to correlate

these flows by pairing each user with a likely destination. This thesis explores the

extent to which the traffic analysis technique can be extended to achieve more advanced

fingerprinting goals. The research of the thesis was inspired by four research problems

which will be detailed in Section 1.1 and aims to solve these problems.

1

2

1.1 Research Problems

• The queries a user makes to search engines necessarily contain a great deal of

private and personal information about the user and popular search engines such

as Bing and Google are in a position to collect sensitive details about users. The

first part of the thesis studies the extent to which a WF can be extended to different

attack scenario we call keyword fingerprinting (KF) differentiating between search

query traffic from a website. This attack eventually identifies search keywords the

users typed, which further enables the adversaries to infer many details of users’

private information. This work investigates the feasibility of KF across a variety

of experimental settings.

• Since 2017, WF researchers [4, 2] have become more interested in the applica-

bility of deep-learning models that apply to WF classifiers due to their powerful

classification capability. The second part of the thesis investigates this problem

and further presents three deep-learning applications for WF research by utilizing

both generative and discriminative deep neural networks (DNNs). Our applica-

tions will include automated feature extraction for traditional machine-learning

(ML) algorithms, website fingerprint classification, and website fingerprintability

analysis.

• Although the use of DNNs have led to more accurate classification results than

traditional ML-based WF, the effectiveness of DNN classifiers can be only guaran-

teed with an enormous training set that has to be frequently updated to maintain

good quality classifiers. Thus, the third part of the thesis focuses on developing

classifiers supporting low-data training through the capability of generative ad-

versarial networks (GANs), which are one of the most impactful generative DNNs

in the last decade.

• By monitoring both ends of the Tor network, we can correlate these flows using

traffic analysis to deanonymize the user and destination, called end-to-end flow

correlation. Researchers [5, 6] have investigated this problem by comparing all N2

incoming and outgoing flows to identify N correlated pairs. This pairwise nature

makes the attack even more unrealistic due to a low base rate (i.e., 1
N) probability

3

that both end flows are actually correlated. The fourth part of the thesis proposes

a novel flow correlation framework using two DNNs jointly trained on optimal N

triplets, resulting in much lower complexity while achieving superior performance

against state-of-the-art attacks.

1.2 Contributions and Outline

The thesis consists of four research problems and corresponding key contributions are

summarized. The organization of the thesis is as follows.

Search Query Traffic Analysis (Chapter 3)

This chapter first empirically shows that traditional WF features [7, 8, 9] have not

worked for KF. We also discuss the task-specific, new feature set to make a KF effective,

leading to a svmResp classifier. After evaluating svmResp in various experimental

settings, we discuss its effectiveness across settings. Lastly, the chapter shows why

certain keywords are more fingerprintable than others based on the fingerprintability

analysis of keywords.

Traffic Analysis with Deep Learning (Chapter 4)

This chapter introduces three applications using traffic analysis with deep learning.

First, by leveraging the generative ability of an autoencoder (AE), the first part of

the chapter shows that the feature engineering used in traditional machine-learning

algorithms can be automated. Incorporating AE techniques have made all state-of-the-

art WF based on machine learning algorithms more effective and efficient. In the second

part of the chapter, classifiers based on convolutional neural network (CNN) models are

evaluated using various fingerprinting scenarios including WF over a Tor network, KF

over a Tor network, WF over TLS-encrypted traffic, and WF over defended Tor traffic.

These classifiers perform effectively across various experimental scenarios. The third

part of the chapter presents more influential website design-level features that impact

the fingerprintability of websites. These features can help guide website developers to

design better websites that are robust against WF attacks.

4

Data-Limited Traffic Analysis (Chapter 5)

The primary contribution of this chapter is to explore GANs in a semi-supervised set-

ting and devise data-limited WFs by leveraging a vast amount of unlabeled data and

a few labeled samples. The chapter introduces GAN for data-limited fingerprinting

(GANDaLF). This technique requires only a few samples of labeled data to train GAN

in a semi-supervised fashion. Since we can use any public WF datasets for unlabeled

data, we have to gather only a very small training dataset to train the classifier. This

approach greatly reduces the efforts researchers need to collect the WF dataset. The

chapter shows the effectiveness of GANDaLF in two WF scenarios: to fingerprint the

front pages (i.e., index webpages) of websites, and to fingerprint the subpages (i.e.,

non-index webpages) of websites. The results are more extensive compared to related

data-limited WF studies [10, 11].

More Efficient Correlated Flow Traffic Analysis (Chapter 6)

This chapter introduces a new end-to-end flow correlation attack on Tor, which is more

scalable and practically effective than state-of-the-art attacks. The chapter first details

the primary challenge in applying prior work to large-scale traffic analysis (i.e., low

Bayesian detection rates (BDRs) due to the pairwise nature of flow correlation attacks).

It then proposes DeepCoFFEA, which stands for Deep Correlated Flow Feature Ex-

traction and Amplification, to reduce false positives (FPs), leading to higher BDRs.

By extending the triplet network (or feature embedding network) to be a suitable fea-

ture extractor for amplified flow correlation, DeepCoFFEA is based on a pair of FENs,

which are jointly trained using the triplet loss function. By evaluating DeepCoFFEA

in various experimental settings, the chapter demonstrates that this new architecture

and attack paradigm significantly improves state-of-the-art flow correlation attacks at

the cost of acceptable time complexity.

Chapter 2

Background

2.1 Tor

Tor is a popular low-latency anonymous network system involving thousands of relays,

with eight million daily users [12]. A Tor client creates a circuit of three Tor relays

randomly selected to communicate with the destination such as websites. This set of

relays consists of a guard node that the Tor client connects to, an exit node which

connects to the destination, and a middle node that is located between the guard node

and exit node. In this way, Tor provides anonymity protection for users since each

connection only knows its predecessor and successor but no other entities in the circuit.

Furthermore, Tor encrypts the traffic using layered encryption to prevent network-level

attackers such as ISPs from decoding the traffic.

Tor is designed to be robust against traffic analysis because all traffic between the

client and the guard node is communicated through a single TLS connection and Tor

flows down all connections in 512-byte cells which is a unit of communication in Tor.

However, while Tor provides anonymity against basic traffic inspection, it has been

shown that more sophisticated traffic analysis based on machine-learning algorithms

and DNNs can be used to recover some information about Tor traffic. This thesis fo-

cuses on two types of traffic analysis that predate Tor anonymity, website fingerprinting

(Section 2.2) and end-to-end flow correlation attacks (Section 2.3).

5

6

Entry

Middle

Exit

User
Tor

Web

Figure 2.1: Threat model of website fingerprinting.

2.2 Website Fingerprinting

Many security researchers have demonstrated that Tor is somewhat vulnerable to many

network-level traffic analysis attacks. It is particularly vulnerable to website fingerprint-

ing attacks that monitor and analyze network traffic between a Tor entry guard and the

client to identify the websites visited by the user. To perform this attack, as shown in

Figure 2.1 the adversary first makes a series of connections to sites of interest and saves

the traffic patterns to create a labeled dataset consisting of pairs: (traffic pattern,

website) The adversary then uses this dataset to train a machine-learning classifier

to recognize these websites based on traffic patterns observed from the victim’s online

activity. This type of attack can be successful because the observable traffic patterns

across multiple visits to the same webpage are relatively consistent and often fairly dis-

tinct from the patterns seen when visiting other sites. Because these attacks depend

solely on traffic metadata (rather than the traffic content), WF attacks are success-

ful even when the traffic is encrypted or under the protection of privacy enhancing

technologies such as VPNs or Tor.

An important consideration in the study of WF is whether an evaluation uses a

closed-world setting or an open-world setting. In a closed-world setting, which is typi-

cally used to make baseline comparisons between models, the victim is assumed to be

visiting one of a fixed set of sites that the attacker is interested in and can train on,

known as the monitored set. In contrast, an experiment in the open-world setting also

uses a large set of sites outside of the monitored set, known as the unmonitored set, and

7

allows the victim to visit a site in either set. In practice, a user could be visiting any site

on the web, so an open-world evaluation model is a more realistic scenario. It should

be noted, however, that open-world evaluations cannot test every possible unmonitored

site on the Web – attacks tend to degrade in accuracy as larger unmonitored sets are

used in an evaluation. Additionally, neither scenario considers the rate at which users

actually visit different sites while using Tor (the base rate of each site). Attacks will be

more accurate in practice when including popular sites in the monitored set than when

looking for less popular sites.

2.2.1 WF Attacks

The first WF attack on Tor was introduced by Herrmann et al. [13] using a Naive Bayes

Classifier based on the packet length frequency. Panchenko et al. [14] further improved

WF performance by using a support vector machine (SVM) and investigating various

feature sets. Other researchers [9, 7, 8] have since explored different classifiers and new

feature sets to develop more effective WF models. Wang et al. [7] adapted a k-Nearest

Neighbor (k-NN) classifier for classification by applying different weights to different

features to accommodate the large feature set in a more effective manner. By working

with a reference set for classification, k-NN was also able to model the multi-modal

nature of some websites, enabling the attack to achieve closed-world accuracy of 95%

on a set of 100 possible websites.

Panchenko et al. [8] significantly improved the performance of the SVM classifier

with a new feature set, called CUMUL, based on the cumulative sizes of TCP packets,

lengths of TLS records, and number of Tor cells. Hayes and Danezis [9] proposed

the k-fingerprinting (k-FP) attack, which leverages a Random-Forest classifier and a

statistics-based feature set to achieve high performance. In their open-world evaluation,

they computed the hamming distances between RF leaves and used these in a k-NN

classifier. This allowed them to tune their attack towards either high precision or high

recall by varying the value of k.

8

2.2.2 WF Defenses

To defend against these ever-more powerful attacks, researchers have devised methods

to confuse the attacker’s classifiers while aiming to keep bandwidth and latency over-

heads reasonable. BuFLO [15] adds dummy packets to fill in timing gaps and further

extends the transmission to send packets of fixed length at fixed intervals. Tamaraw [16]

improves BuFLO to be a more efficient and effective defense by using different padding

intervals for incoming and outgoing packet directions and sending outgoing packets at a

lower rate, which reduces the overhead in the common case of infrequent outgoing traf-

fic. WTF-PAD [17] is a lighter-weight defense that focuses on hiding large gaps between

traffic bursts by adding fake bursts. WTF-PAD significantly decreases bandwidth over-

head and latency compared to BuFLO and Tamaraw while yielding good performance

against the k-NN attack. Walkie-Talkie [18] is an efficient WF defense technique based

on half-duplex communication, which makes many packet sequences the same, and burst

molding, which adds fake cells to mold burst sequences into identical supersequences.

Figure 2.2: Threat model of the end-to-end correlation attack: two types of adversaries:
one controls ISPs (blue) and the other runs their own relays (red).

2.3 End-to-End Flow Correlation

Perhaps the most fundamental traffic analysis attack on a low-latency anonymity system

is the end-to-end flow correlation attack: an adversary observes traffic flows entering

the network and leaving the network and attempts to correlate these flows, pairing each

9

user with a likely destination (Figure 2.2). Such attacks were known and discussed in

the context of system designs that predate Tor such as the Onion Routing network [19]

and the Freedom network [20].

End-to-end flow correlation attacks are mentioned in some of the earliest work on

low-latency anonymous communications. They are typically referred to as Last/First

attacks or Packet Counting attacks [19, 20, 21]. Since designs like the Freedom Network

and Tor introduce a basic amount of padding that defeats simple packet counting, later

works on passive end-to-end attacks used statistical measures of correlation (e.g. nor-

malized distance metrics, Pearson and cosine correlation, empirical mutual information)

between flows entering and exiting the network [22, 23, 24, 25]. A separate line of work

has pursued active flow correlation attacks that insert “watermarks” into network flows

– by delaying or dropping packets – that can survive the transformations introduced by

various network conditions [26, 27, 28].

While Tor does not attempt to defend against global passive adversaries, Feamster

and Dingledine [29] introduced the idea of AS-level adversaries and showed that such

adversaries could potentially observe the entry and exit flows of a significant fraction of

the Tor network. Following this work, many researchers have investigated how routing

dynamics and potential manipulation of the routing infrastructure could position an

adversary to observe a larger fraction of traffic flows into and out of the Tor network [30,

31, 32, 33, 34, 6, 35, 36, 37], and introduced systems intended to reduce the fraction of

potentially observed flows [38, 39, 40, 41].

2.4 Classification

2.4.1 Classification Algorithms

In this section, we briefly discuss support vector machines (SVMs), multilayer percep-

tron (MLP), convolutional neural network (CNN), which are methods for supervised

learning, and autoencoder (AE), which is an unsupervised learning method. In partic-

ular, we built our classifiers or correlation methodologies based on SVMs in Chapter 3,

MLP, CNN, and AE models in Chapter 4, and CNN models in Chapter 5 and 6.

10

Support Vector Machines.

Many researchers have used SVMs to construct effective fingerprinting attacks [7, 42, 8].

The SVM algorithm finds the maximum-margin hyperplane in a high dimensional space

to which we map our samples, which gives the largest distance to the nearest training-

data point for all classes.

In Chapter 3, we used a non-linear classifier with a radial basis function (RBF) and

n-fold cross-validation to determine the C and γ leading to the highest accuracy, which

are inputs of the RBF. We varied C between 0.0078125 and 128, and γ from 0.03125

to 4. The cross-validation accuracy refers to computing the number of examples in

each fold that were correctly classified. In Section 3.4, we ran 10-fold cross validation to

avoid over-fitting as well as to compute the overall metrics more correctly during testing.

In addition, since the cross validation is the most expensive operation, we parallelized

it using multiple python workers supported by the Libsvm library [43]. We used 16

workers when the size of background classes was up to 10,000 and 24 workers when it

was more than that.

Multilayer Perceptron.

An MLP [44, 45] is a basic neural network, which is a type of feed forward network.

It is also known as a backpropagation algorithm with at least 3 layers. It consists of

an input layer, one or more fully-connected hidden layers and an output layer. In the

fully-connected layers, all nodes have full connections to all activations in the previous

layer. Activation functions are computed using a matrix multiplication, followed by a

bias offset.

MLP has two procedures, forward propagation, which initialize weights and is a

forward pass through multiple layers to produce the output, and back propagation,

which calculates the errors of the output layer, and then updates the weights layer by

layer. A single pass-through is called an epoch and consists of multiple batches.

We applied the softmax function to the output layer, which is the generalization of

the binary logistic regression to the multiclass settings. It takes the vector of arbitrary

real values and a vector of values in [0,1], where the sum is 1. This real-valued score

is a normalized class probability. Since we used a cross entropy to compute the loss,

11

we analyzed it as an unnormalized log probability for each class and applied a cross-

entropy loss, E=−
∑nClass

i tilog(yi), where i is a class index, nClass is the total number

of classes, ti is a target probability, and yi is the output probability. The total loss is

computed by the mean of E over all training samples.

In Section 4.4, MLP is used to construct p-FP(M) classifiers in Chapter 4.

Convolutional Neural Network.

A CNN [46] consists of one or more convolutional layers, followed by one or more fully

connected layers. The forward propagation runs three series of operations, convolution,

pooling, and classification. The convolution operation extracts features from the input

by learning the features using small squares of input, called filters or kernels. That is, we

slide filters across the width and height of the input and calculate dot products between

entries of the filter and the input to generate a 2D feature map. Sliding different filters

over the same feature generates different feature maps. CNN can learn the meaningful

patterns using this procedure.

Pooling reduces the dimension of the feature maps and thus the number of parame-

ters and computation in the network. The max pooling layer operates by selecting the

max element from the feature map for resizing spatially. Then, the high-level features

learned by convolutional and pooling layers are fed into MLP for classification. For the

back propagation, it keeps track of the index of max activation so routing the gradient

becomes simpler than a general backward pass.

In Section 4.4, CNN is adopted to build p-FP(C) classifiers in Chapter 4and to

develop feature embedding networks in Chapter 6.

Autoencoder.

An AE [47] is an unsupervised neural network with two neural networks, an encoder,

which learns lower-dimensional data abstractions, and a decoder, which recovers the

original data. It aims to predict the input by using fewer hidden neurons than input

nodes to learn as much information as it can about hidden neurons. More specifically,

since the number of hidden nodes in each hidden layer is less than the dimension of the

original input vector, the network is forced to learn a compressed representation of the

input data and then reconstruct the input. Through these procedures, the network can

discover the interesting structure of the data.

12

One advantage with an AE is that at the end of training, weights can lead to the

hidden layer, and we can train using certain inputs. Furthermore, when we use other

data later, we can reduce the dimensionality using those weights without retraining.

Thus, this approach helps reduce the feature dimensionality for data visualization

and reduces the noise in the data. Hidden units in an encoder retain as much information

as possible while denoising the data. Moreover, we can elaborate on feature extraction

using encoded data through the cost function since we have numerous choice on the

cost function and can adjust the weight for each class and sample. This power can be

used to reflect certain phenomena in the dataset, eventually leading to more efficient

and meaningful data representation. In Section 4.3.2, we focus on the functionality

of dimensionality reduction [48] and use an MLP for an encoder and a decoder, while

varying the number of hidden units in a hidden layer of the encoder.

To construct a more generative model, variational AE (VAE) was introduced by

Kingma and Welling [49] and Rezende et al. [50]. Instead of memorizing a fuzzy data

structure, it generates latent vectors following Gaussian distribution by forcing a con-

straint to an encoder. Subsequently, to compute the loss of a VAE, two types of losses

must be considered: the error between the input and reconstructed data, and the loss

between latent variables and the unit Gaussian, reflected by KL divergence. Training

VAE is tricky due to the trade-off between these two different losses. Improving the

generalization also promotes the quality of data reconstruction by a decoder.

2.4.2 Binary and Multiclass Classification

Binary Classification.

Binary classification is used to classify instances into one of two possible outcomes.

However, since we have a multi-labeled dataset, we investigate two approaches. The

first is to train classifiers based on binary-label learning by converting all data to be

labeled with 1 or -1. The second is to train classifiers with class labels, and convert all

monitored labels output by the classifier to 1, and the unmonitored label to -1. In this

setting, when we compute the True Positive Rate (TPR) and False Positive Rate (FPR),

we ignore the confusion between monitored traces. In other words, we recognize it as

a TP because, although the classifier classifies a monitored trace into a different label

13

in monitored traces, the attacker is still able to determine that it is a monitored trace.

We used both binary-label learning and multi-label learning in the binary classification

stage for closed and open world experiments.

If we assume that the censor’s goal is to block or detect monitored webpages, the

precision indicates how many innocent users are misclassified as visiting “monitored

webpages” and recall explains how many guilty users evade detection by being mis-

classified as visiting “background webpages”. If the censor is interested in a particular

decision among multiple choices to determine if it is a particular webpage, they should

focus on reducing false positives (FPs), which would result in increased precision. If

the censor is more interested in determining whether any monitored webpage is visited,

they will focus on false negatives (FNs), which are measured by the recall.

Multiclass Classification.

Multiclass classification is used to classify instances into one of multiple possible out-

comes. To support the multiclass classification using SVMs, we can reduce the problem

to multiple binary classification problems with two different strategies: One-against-one

(OAO) and One-against-all (OAA). The OAO approach is more popularly used with

SVMs since it is faster than the OAA. OAO classification trains k(k−1)
2 classifiers (if

we have k labels) per all possible pairs of labels while OAA trains k classifiers since

its purpose is to classify a single label against all remaining labels. It is well known

that OAA is more accurate than OAO in most cases when we use SVMs [51]. For our

experiment, we decided to use OAO, yielding more reasonable computational cost for

multi-class classification as other researchers have done [52, 53, 42, 8].

To solve the issue of how to count the confusion between monitored query traces

as either FPs or FNs, in Chapter 3, we additionally suggest a new metric, “within-

monitored accuracy”, which computes the accuracy within monitored query traces. This

better represents the probability of the correct classification of individual keywords

between monitored query traces. Therefore, in the open-world experiment, we measure

success using “within-monitored accuracy.”

Chapter 3

Search Query Traffic Analysis

In this chapter, we describe a new application of these attacks on Tor, Keyword Finger-

printing (KF). In this attack model, a local passive adversary attempts to infer a user’s

search engine queries, based only on analysing traffic intercepted between the client and

the entry guard in the Tor network. A KF attack proceeds in three stages. First, the

attacker must identify which Tor connections carry the search result traces of a particu-

lar search engine against the other webpage traces. The second is to determine whether

a target query trace is in a list of “monitored queries” targeted for identification. The

third goal is to classify each query trace correctly to predict the query (keyword) that

the victim typed.

Note that while KF and WF attacks share some common techniques, KF focuses

on the latter stages of this attack, distinguishing between multiple results from a single

-1 0 1 2 3 4 5

PCA1 ×10
7

-2

-1

0

1

2

P
C

A
2

×10
6

Backgroud Webpage Trace

Google Query Trace

(a) Google

-1 0 1 2 3 4 5

PCA1 ×10
7

-2

-1

0

1

2

P
C

A
2

×10
6

Backgroud Webpage Trace

Duckduckgo Query Trace

(b) Duckduckgo

Figure 3.1: Principal Components Analysis (PCA) Plot of Google and Duckduckgo
query traces and background webpage traces based on CUMUL feature set

14

15

web application, which is challenging for WF techniques. Figure 3.1 illustrates this

distinction; it shows the website fingerprints (using the CUMUL features proposed by

Panchenko et al. [8]) of 10,000 popular web pages in green, and 10,000 search engine

queries in blue. Search engine queries are easy to distinguish from general web traf-

fic, but show less variation between keywords. Hence, while direct application of WF

performs the first step very well and can perform adequately in the second stage, it

performs poorly for differentiating between monitored keywords. Thus, the different

level of application as well as the multi-stage nature of the attack make it difficult to

directly use or compare results from the WF setting.

The primary contribution of this chapter is to demonstrate the feasibility of KF

across a variety of settings. We collect a large keyword dataset, yielding about 160,000

search query traces for monitored and background keywords. Based on this dataset, we

determine that WF features do not carry sufficient information to distinguish between

queries, as Figure 3.1 illustrates. Thus we conduct a feature analysis to identify more

useful features for KF; adding these features significantly improves the accuracy that

can be achieved in the second and third stages of the attack.

Using these new features, we explore the effectiveness of KF, by considering different

sizes of “monitored” and “background” keyword sets; both incremental search (e.g.

Google Instant1) and “high security” search (with JavaScript disabled); across popular

search engines — Google, Bing, and Duckduckgo; and with different classifiers, support

vector machines (SVM), k-Nearest Neighbor, and random forests (k-fingerprinting).

We show that well-known high-overhead WF defenses [15, 16] significantly reduce the

success of KF attacks but do not completely prevent them with standard parameters.

We examine factors that differ between non-fingerprintable (those with recall of 0%)

and fingerprintable keywords. Overall, our results indicate that use of Tor alone may

be inadequate to defend the content of users’ search engine queries.

1Google Instant is a predictive search for potential responses as soon as or before the user types key-
words into the search box. By default, Google Instant predictions are enabled only when the computer
is fast enough.

16

3.1 Related Work

Side Channel Attacks and Defenses on Encrypted Network Traffic

The idea of inferring meaningful information based on analyzing encrypted SSL pack-

ets was introduced in 1996 [54]. Many studies have exploited side channel leaks in

web applications through traffic analysis and investigated their countermeasures. Chen

et al. [55] showed that financial information, health profiles, and search queries were

leaked over HTTPS and WPA by packet inspection. Schaub et al. [56] and Sharma et

al. [57] specifically focused on side channel leaks in Google. Sharma et al. discovered the

relationship between typed characters and their exchanged encrypted packet lengths,

although this attack has not worked since 2012,2 and Schaub et al. presented enhanced

side channel attacks with stochastic algorithms. For defenses, Zhang et al. [58] devel-

oped Sidebuster, based on program analysis to quantify side channel leaks via traffic

analysis. Chapman et al. [59] also presented a black-box tool for side channel weakness

quantification using the Fisher criterion. Backes et al. [60] adopted a formal approach,

enabling information flow analysis to detect side channel attacks.

In contrast, KF targets Tor where all traffic is encrypted, the size of packets is padded

to multiples of 512 bytes, and multiple sessions are sent over the same circuit, which

makes the traffic patterns less distinct than other encrypted channels. In particular,

KF considers broader feature sets beyond traditional feature sets for better classifier

performance.

Privacy Protection in Search Engines

Apart from Tor and traffic analysis against defenses, there have been other lines of

research on improving privacy guarantee in user search queries based on Private Infor-

mation Retrieval (PIR) and obfuscating user profiles. Howe et al. [61] and Domingo-

Ferrer et al. [62] used bogus queries to mask actual queries and prevent servers from

tracing identifiable user information in query logs. Balsa et al. [63] performed an in-

depth analysis of privacy properties in web searches and systematically evaluated ex-

isting obfuscation-based methods; they found that these methods did not adequately

2Since 2012, Google has supported many possible sequences of packet lengths for a given search
query to make such prediction more challenging. KF is still effective despite this change, because we
did not require a deterministic relationship.

17

mask a user’s actual queries from the search engine. Juarez and Torra [64] proposed a

proxy-based approach to dissociate user queries with acceptable overhead in browsing.

RePriv [65] proposed in-browser data mining to ensure individual privacy and improving

the quality of search by requiring user consent before transferring sensitive information.

3.2 KF Setup

3.2.1 Threat Model

Our attack model for KF follows the standard WF attack model, in which the attacker

is a passive attacker who can only observe the communication between the client and

the Tor entry guard. He cannot add, drop, modify, decrypt packets, or compromise

the entry guard. The attacker has a list of monitored phrases and hopes to identify

packet traces in which the user queries a search engine for one of these phrases, which

we refer to as keywords. We also assume that search engine servers are uncooperative

and consequently users relay their queries through Tor to hide the link between previous

and future queries. Thus, our threat model only monitors traces entering through the

Tor network.

The attacker will progress through two sequential fingerprinting steps. First, he

performs website fingerprinting to identify the traffic traces that contain queries to the

targeted search engine, rather than other webpage traffic. Traffic not identified by this

step is ignored. We refer to the remaining traces, passed to the next step, as search

query traces or keyword traces. Second, the attacker performs KF to predict keywords

in query traces. The attacker will classify query traces into individual keywords, creat-

ing a multiclass classifier. Depending on the purpose of the attack, the attacker trains

classifiers with either binary or multiclass classifications. For example, binary classi-

fication will detect monitored keywords against background keywords while multiclass

classification will infer which of the monitored keywords the victim queried.

We assume the adversary periodically re-trains the classifiers used in both steps with

new training data; since both training and acquiring the data are resource-intensive, we

used data gathered over a three-month period to test the generalizability of our results.

18

3.2.2 Data Collection

We describe the Tor traffic capture tool and data sets collected for our experiment. To

collect search query traces on Tor, we used the Juarez et al. Tor Browser Crawler [52, 66],

built based on Selenium, Stem, and Dumpcap to automate Tor Browser browsing and

packet capture.

We added two additional features to the crawler for our experiments. The first is

to identify abnormal Google responses due to rate limiting and rebuild the Tor cir-

cuit. When an exit node is rate-limited by Google, it responds (most often) with a

CAPTCHA, thus, we added a mechanism to detect these cases and reset the Tor pro-

cess, resulting in a different exit node.

Among 101,685 HTML files for Google queries and 125,245 HTML files for Bing,

we manually inspected those of size less than 100KB, yielding 3,315 HTML responses

for Google and 9,985 for Bing, and found that a simple size threshold of 10KB for

the response document was sufficient to distinguish rate-limit responses from normal

results with perfect accuracy. In contrast, seemingly more sophisticated methods such

as testing for the standard response URL (ipv4.google.com/sorry) or for an em-

bedded CAPTCHA script (google.com/recaptcha/api.js) produced occasional false

negatives when a rate-limited node received other abnormal results (such as permission

denied).

The second additional feature is to simulate the user’s keyword typing in the search

box. Google supports auto-complete and Google Instant for faster searches. This can

lead to unintentional incremental searches. For instance, when the user loads www.

google.nl and types “kmart”, the result for “kmar” will appear just before the user

types ‘t’. Therefore, to support more realistic user actions, we choose a delay of d seconds

uniformly at random from the interval (0.1, 0.7) before typing each letter. Since Google

Instant sometimes does not show the result as soon as typing the last letter, we enforce

typing RETURN after the last letter is typed. As a consequence, traffic related to

suggestion lists, auto-complete, and Google Instant is captured all together with the

actual search result traffic.

Since result pages can dynamically modify their content after loading, we wait 5

seconds after the result page is loaded, and then pause 5–10 additional seconds between

ipv4.google.com/sorry
google.com/recaptcha/api.js
www.google.nl
www.google.nl

19

queries to capture all traffic related to changes made to the result webpage after load-

ing completes. To collect query traces of monitored keywords, we recorded up to 110

instances of each keyword, evenly divided among 6 batches. Each batch starts with a

list of remaining keyword instances, and repeatedly selects an instance at random from

the list, queries the keyword, and removes it from the list until no instances remain.

Background keyword traces were collected in 1 batch with 2 instances per keyword. On

average, the time gap between batch groups was 3 days.

With these additions and settings in the crawler, we collected several sets of Tor

traces to be used in our experiment; they were collected from March to October in

2016. We used the Tor Browser version 4.0.8. (We further collected AOL search query

traces from January to February in 2017.)

3.2.3 Keyword Set Details

We used the following three different keyword datasets to investigate the performance

of KF across different sets of monitored search queries. Note that we collected “search

query traces,” labelled them with the corresponding keywords for supervised learn-

ing (using the classifiers discussed in Section 2.4.1) and inferred “keywords” based on

predicted labels returned by classifiers. For this reason, we refer to KF as keyword

fingerprinting rather than search query fingerprinting.

Top-Ranked Keywords.

We harvested 300 parent keywords by identifying the top 20 ranked keywords for each

alphabet character, a–z, based on Google’ s auto-complete [67] (more specifically, http:

//keywordtool.io via Tor). We collected the top 650–750 suggested keywords for each

of 100 parent keywords selected randomly from these 300 keywords. This yielded a

set of about 80,000 keywords to be used as the background set. For example, if we

have a parent keyword, “airline”, its suggested keywords returned by auto-complete are

“airline pilot” and “airline ticket purchase.”

AOL Search Queries.

As another source of monitored and background queries, we downloaded anonymized

AOL search logs provided by Dudek [68], and extracted the queries from these logs. The

logs are split among 10 files, where each user’s queries appear in one log. We randomly

http://keywordtool.io
http://keywordtool.io

20

partitioned these logs into two sets, one from which we randomly selected 100 queries

to serve as monitored keywords and the other from which we randomly selected 40,000

queries to serve as background keywords.

Google Blacklisted Keywords.

Several previous studies have collected lists of keywords blocked by Google. Among

them, we used Google blacklisted keywords reported by www.2600.com website [69] to

gather Google blacklisted keywords. For these keywords, searches using Google Instant

fail. However, if submitted as normal queries, we were sometimes able to get Google

query results for those blacklisted keywords, and sometimes the Google result indicated

that the content was blocked. This would allow KF to be used to identify “blacklisted”

keywords.

Background sets.

Note that in both the “top-ranked” and AOL data sets, the maximum size of background

keyword set we could use for an experiment was 80,000 queries. This is roughly 1–2

seconds worth of worldwide query traffic processed by Google [70], and in line with

or larger than the size of background sets used in open-world studies of WF, which

generally target coverage of a much broader background space. The use of two differently

generated background sets also lends confidence that our results will generalize.

3.2.4 Two Search Query Settings

We considered the following different query settings. Note that we collected Google

traces in both settings, Bing traces in the incremental query setting, and Duckduckgo

traces in the one-shot query setting.

One-shot Query Setting.

The Tor Browser download page [71] recommends disabling JavaScript (via configuring

Noscript(S) to “Forbid scripts globally” for later versions than Tor Browser Bundle

3.5, or “about:config”) in order to provide better anonymity and security. To reflect

this, we collected traces of the queries introduced above assuming that there is no

interaction with a search box. This was achieved for both Duckduckgo and Google

by directly requesting a search query url. (e.g., google.com/search?q=“keyword” for

www.2600.com
google.com/search?q=

21

Google). Hence, collected traces contain packets for requesting search result HTML and

responding with HTML, and requesting embedded web objects in HTML and responding

with the corresponding embedded contents. This also mimics the process of typing a

query in the search or address bar of Tor Browser when DuckDuckGo is selected as the

default search engine.

Incremental Query Setting.

By default, Tor browser enables JavaScript and therefore, traffic related to the user’s

interaction with the search box has to be captured in addition to all traffic from the

previous setting. For Bing, this addition is the traffic related to the suggestion list.

For Google, all traffic related to request and response in incremental search results is

additionally captured. Including results of both query types allows us to test whether

incremental search improves the accuracy of KF.

3.2.5 Data Preparation

We reconstructed full TLS records using tshark [72], similar to T. Wang and Goldberg’s

work [53]. In addition, we removed faulty packets if they were empty, lacked TLS

segments, or if the capture file was cut short in the middle of a packet. The latter

is a result message from tshark when a capture file is not yet flushed out, before a

copy is made, in which case the end of the file is not a proper record, since we saved

all capture files during a live capture. To correct for occasional out-of-order delivery

and re-transmitted packets, we re-ordered all packets according to the TCP sequence

number.

3.3 Feature Analysis

After collecting the query traces, we extracted features from the traces to use in classifier

experiments. We computed many features previously identified as useful for website

fingerprinting, including total number of incoming and outgoing packets and cells, Tor

cell traces, rounded TCP and TLS traces, unique packet sizes, outgoing burst data, and

cumulative TLS records.

22

3.3.1 Prior WF Features

Packet and Cell totals (Total).

This is a general feature set widely used in existing work [13, 14, 7, 15]. We computed

the total number of packets, total number of incoming packets, total number of outgoing

packets, total number of incoming Tor cells, and total number of outgoing Tor cells.

Tor Cell Trace (torCell).

We created a sequence of the number of Tor cells sent in each direction based on the

sequence of TLS record sizes. For example, if the sequence of TLS records between the

client and guard have sizes 1000, -1500, 700, 500, (where negative numbers indicating

incoming packets) the corresponding sequence of Tor Cells is 1, -2, 2 based on the fact

that the size of single Tor cell is 512 bytes. We used + to indicate outgoing packets and

- to indicate incoming packets.

Rounded TCP (roundedTCP) and TLS (roundedTLS).

We rounded the packet size by increments of 600, as Cai et al. [42] and T. Wang and

Goldberg [53] suggested in their work. These are packet sequences for the rounded size

of TCP packets and the rounded size of TLS records.

Unique packets (Unique).

In the Tor network, certain packet sizes frequently appear. We compiled a list of such

common packet sizes; in our experiment, we used the range of [-1050,1050], and marked

each packet with 1 if it was on the list and with 0 if it was not. This is similar to the

work by T. Wang and Goldberg [53].

Burst of outgoing packets .

T. Wang et al. [7] introduced bursts of outgoing packets as an identifying feature,

where a burst is defined as “a sequence of outgoing packets, in which there are no two

adjacent incoming packets.” They used statistics of bursts as features; e.g., maximum

burst length, number of bursts, etc.

Cumulated TLS records (cumulTLS).

This feature is used by Panchenko et al. [8]. First, we extracted a sequence of TLS

records’ size. If the sequence T=(p1, ..., pN) where pi is the size of TLS record, we

23

calculated the cumulative sizes, which constitutes C=(c1, ..., cN), where c1=p1 and

ci=ci−1+pi. In this project, we only consider the size of TLS records in cumulTLS

feature set while they considered size of TCP and Tor cells in their CUMUL feature

set.

3.3.2 Additional Features

Since search engine result pages often embed CSS, script and advertisement elements,

search query traces typically contain multiple request and response pairs; however,

the number of such pairs is on average less than those in popular webpages carrying

interactive and multimedia content. Additionally, in the incremental setting, after the

web browser requests each character in the query, the server responds accordingly to

show an updated suggestion list. Subsequently, the web browser requests an HTML

document with a keyword and the server responds. Then the web browser requests

any embedded web objects such as images. If Google Instant is enabled for Google

searches, these interactions are repeated several times. Since the HTML responses are

generated by a single programmatic template, the overall timing and size patterns do

not have much distinguishing power. As a result, the KF phase will need access to more

fine-grained features based on individual TLS records. Thus our experimental results

in Section 3.4 consider the following sets of additional features.

Burst of incoming packets.

Based on the concept of “burst” suggested by T. Wang et al. [7], but not exactly fol-

lowing their approach, we defined a burst of incoming packets as a sequence of incoming

packets comprising more than 2 incoming packets in which there are no outgoing pack-

ets. For each such burst, we computed the total number of packets, mean, maximum,

and sum of the TLS record sizes (burstIncoming).

Cumulative TLS data in the response for embedded objects (Resp).

All query traces in our dataset include a giant sequence of incoming packets, which is

red in Figure 3.2 and occupies more than 50% of packets in the trace (see Table 3.1).

We identify this sequence as the largest incoming burst in a query trace, and call it the

“response” portion of the trace, while the sequence before the response portion is the

“request” portion.

24

Table 3.1: Comparison of the request and response portions of Search Query Traces

Metric
Google DuckDuckgo

RQ RP RQ RP

Avg of # of packets 140 223 102 193

Max # of packets 288 559 251 801

Avg of total payload(KB) 115 496 89 434

Max of total payload(KB) 350 1,246 295 1,669

SVM Accuracy(%) 13.9 17.2 14.7 20.8

0 100 200 300 400

TLS record index

-4

-2

0

2

S
iz

e
 o

f
T

L
S

 r
e
c
o
rd

s
 (

K
B

)

Request

Response

(a) Keyword pizza

0 100 200 300

TLS record index

-4

-2

0

2

4

S
iz

e
 o

f
T

L
S

 r
e
c
o
rd

s
 (

K
B

)

Request

Response

(b) Keyword craigslist

Figure 3.2: TLS records in two Google query traces. (+) indicates outgoing packets
and (-) indicates incoming packets

In the request portion, we are able to capture traffic related to requesting and

downloading the HTML response, and requesting the embedded objects. Furthermore,

the request portion includes traffic generated by the user’s interaction with the search

box, e.g. suggestion lists and preliminary HTML results in the case of Google Instant.

However, since search query traces from a single web application follow a very similar

HTML template and have similar traffic pattern for the interaction with the search

box and the predicted search if they are same keywords, we expect this portion of the

sequence to be less informative about queries than the response portion. Table 3.1

details results of a small-scale study to confirm this intuition, in which we collected 100

traces for 100 keywords and trained multiclass classifiers on the request and response

portions of the traces, respectively. The response portion achieved higher accuracy, 17%

compared to 14% of the request portion in Google. When reversing the sequence, as

discussed in the next section, the distinction becomes much greater.

25

(a) Aggr4 (b) roundedTCP (c) cumulTLS

Figure 3.3: Mean Ranks Distribution of Aggr4, roundedTCP, and cumulTLS.

Based on this observation, we extracted feature sets from the response portion:

we created the tuple RespTotal consisting of the total number of TLS records, max-

imum TLS record size, average TLS record size, and sum of TLS record sizes; the

sequence of TLS record sizes (RespTLS); the sequence of cumulative sizes of TLS

records (cumulRespTLS); and the sequence of the corresponding number of Tor cells

(cumulRespTorCell).

For example, if the response portion of a query trace consists of three TLS records of

sizes 2080, 3108, and 1566, then the RespTLS feature vector is (−2080,−3108,−1566)

(following the convention that sign indicates packet direction). The corresponding cu-

mulRespTLS feature vector is (−2080,−5188,−6754) and cumulRespTorCell is (4, 10, 13).

In the following sections, we refer to features extracted from the response portion by

prefixing them with Resp; as we show in Section 3.4, feature sets in Resp as well as ag-

gregated feature sets including Resp outperform existing feature sets for the new, second

and third stage classification.

3.3.3 Preprocessing

Since both SVM and k-NN classifiers require all input vectors to have the same dimen-

sion, we additionally reversed the sequence of cumulative record sizes and tor cells, so

that truncation would preserve the end of the sequence, which cumulatively includes

information about the earlier portions of the sequence. To show that this improves accu-

racy versus early truncation, for cumulRespTLS, we computed the accuracy of an SVM

26

Table 3.2: Sum of squares, mean of squares, and χ2 of feature sets, returned by Chi-
square test statistic, and accuracy of feature sets, evaluated using the SVM classifier
over 100 parent keywords. Each feature is described in Sections 3.3.

Feature SS MS H Acc

roundedTCP 4.5e+10 4.55e+8 1353 12.73

roundedTLS 6.35e+10 6.42e+8 1905 15.16

cumulTLS 7.08e+10 7.15e+8 2123 18.67

Total 2.15e+11 2.17e+9 6461 35.48

burstIncoming 2.8e+11 2.83e+9 8402 26.7

RcumulRespTLS 2.22e+11 2.24e+9 6667 53.79

RcumulRespTorCell 2.17e+11 2.19e+9 6528 53.43

classifier when trained on the first 140 packets of both the original and reversed cumu-

lative traces, for a test set of 100 instances of 100 keywords. As a result, the reversed

sequences, RcumulRespTLS, gave us better accuracy (53.79%, compared to 21.33% when

using truncated cumulRespTLS). Therefore, we used RcumulRespTLS and RcumulResp-

TorCell for aggregated feature sets, rather than cumulRespTLS and cumulRespTorCell.

3.3.4 Feature Evaluation

There are several statistical methods to compare the distributions of two sample popu-

lations. The Kolmogorov-Smirnov two-sample test decides if two datasets are from the

same distribution by comparing their empirical distribution functions and the Mann-

Whitney U test supports the comparison of two groups of continuous, non-normally

distributed data. In contrast, the the Kruskal-Wallis H Test [73] is a widely used

non-parametric technique to test for statistically-significant differences between multi-

ple groups of continuous data, using ranks for each feature instead of actual values.

Since comparing features extracted from keyword traces involves comparing more

than two groups, we decided to use the Kruskal-Walls H test to determine what set of

features to use for classification in the KF phase. We applied it to various combinations

of the feature vectors described in the previous section, for a data set consisting of 100

instances of 100 keywords. We ran the Kruskal-Wallis H Test for each feature set, which

eventually returns an ANOVA table consisting of sum of squares, degrees of freedom,

H, and p-value for each keyword group. Since there are g entries in the ANOVA table,

27

(where g is the number of keywords in the data set) H is treated as a χ2 statistic with

g − 1 degrees of freedom to determine the p-value. Given the translation into ranks, H

is computed as

H =
12

N(N + 1)
× Σ

TR2
g

Ng
− 3× (N + 1) , where

• N is the total number of features

• TRg is the rank total for each group

• Ng is the number of features in each group

Because of the translation to rank data, mean ranks of groups are comparable across

feature sets. For features that are well-separated, we expect more variation in mean

rank across groups (since the features within a group will all have similar rank), and for

features that have low distinguishing power we expect the mean ranks of each keyword

group to be more similar.

The full results of this test, for the dataset consisting of 100 instances each of 100

keywords, appear in Table 3.2; most of the features gave a p-value of less than 0.01, but

H values for some classic features were not as high as for the new features described

above. Based on these results, we decided to test different combinations of feature

sets whose H (after scaling for differences in dimensionality) was higher than 6,000.

As expected, when we included new feature sets Resp and burstIncoming, we found a

higher variance between each group. To illustrate this, we computed TR2
g/Ng, for each

keyword group in three feature sets: Aggr4, which combines the Total, cumulRespTLS,

RespTotal, and cumulRespTorCell features; roundedTCP; and cumulTLS). As shown in

Figure 3.3, it is clear that compared to Figure 3.3a, all keyword groups in Figure 3.3b

and Figure 3.3c are close to each other, which prevents differentiating keyword groups

based on this feature.

In the end, we found that it is least likely that samples in each group in Aggr4,

aggregated based on Total, RespTotal, RcumulRespTLS, and RcumulRespTorCell, are from

the same distributions, which leads to better keyword classification results.

28

Table 3.3: Google trace identification

Background Size 40k 80k 100k

TPR(%) 99.2 98.6 98.6

FPR(%) 0 0 0

precision(%) 100 100 100

Table 3.4: Bing trace identification

Background Size 40k 80k 100k

TPR(%) 99.7 99.9 99.8

FPR(%) 0 0 0

precision(%) 100 100 100

3.3.5 Feature Dimensions

Because of the need to truncate feature vectors to a fixed dimension and because longer

feature vectors linearly increase the computational cost of training both k-NN and SVM

classifiers, we ran a separate experiment to determine the dimension, nbest, that gives

the best tradeoff between accuracy and training time, similarly to Panchenko et al. [8].

As Aggr4 was determined to show the highest variation across keywords, we used this

feature set to see the relationship between the number of features and corresponding

computational cost. To discover nbest, we varied the number of features composing

Aggr4 by varying the number of features in RcumulRespTLS and RcumulRespTorCell

before aggregation since Total and RespTotal have fewer than 5 features. We trained the

SVM with 10,000 top-ranked keyword traces and used 24 python workers to parallelize

the 10-fold cross validation (Note that we used 24 CPUs and 32GB memory for this

analysis). This work is similar to Panchenko et al.’ s work [8].

Finally, we decided to use 247 features as it gave the best accuracy as well as

acceptable running time, since increasing the dimension of the feature vectors above 250

did not yield better accuracy, while linearly increasing the running time. In addition,

note that since training classifiers is an offline process and we use a three-month period

training (as discussed in Section 3.6), 188 seconds is acceptable for training.

29

Table 3.5: Duck trace identification

Background Size 40k 80k 100k

TPR(%) 99.6 99.6 99.6

FPR(%) 0 0 0

precision(%) 100 100 100

3.4 Evaluation

In this section, we evaluate the feasibility of the KF attack through a series of exper-

iments. First, we show that query traces of a targeted search engine can be identified

with nearly perfect accuracy against other webpage traces. With the traffic identified as

traces of the target search engine, we evaluate KF in both closed-world and open-world

settings across several different experimental conditions.

In particular, we investigate the extent to which our new feature sets described

in Section 3.3 outperform existing WF feature sets [13, 14, 53, 15, 42, 8] to identify

keywords. Furthermore, we focus on investigating whether both identifying monitored

keyword traces and differentiating keyword traces from a single search engine are feasi-

ble with our new task-specific feature sets, even with 80,000 background keywords. In

addition, to achieve this new task, fingerprinting keywords, we consider new variables

affecting the performance of classifiers such as different Tor Browser settings and search

engines. We also evaluate different classifiers on search query traces to suggest the best

method for keyword fingerprinting and evaluate KF under two WF mitigation mecha-

nisms, BuFLO [15] and Tamaraw [16]. Lastly, we further explore the open questions of

what factors affect the fingerprintability of keywords.

Throughout this section, we use a variety of metrics to evaluate classifiers:

• FPR: The fraction of traces from background keywords classified as monitored

keywords.

• TPR and Recall: The fraction of traces from monitored keywords classified as

monitored keywords, a more useful metric in the case that most traces are from

the set of monitored keywords.

• Precision: The fraction of positive classifications that are correct, a more useful

metric in the case that most traces are not from the monitored set.

30

• Accuracy: The overall fraction of traces that are correctly classified.

• Within-monitored (WM) Accuracy: The number of monitored keyword traces

classified with the correct label over the total number of monitored traces. This

metric is only used for multi-class classification, as discussed in Section 2.4.2.

3.4.1 Search Query Trace Identification

We trained SVM classifiers using Panchenko et al.’s cumulTLS features [8], drawing

positive examples from our search engine traces and negative examples from 111,884

webpage traces provided by Panchenko et al. [8] without Google, Bing, or Duckduckgo

search queries.

The monitored set consisted of 100 instances of each of 100 different keywords,

while the size of the background set was varied from 40,000 to 100,000. As shown in

Tables 3.3, 3.4, and 3.5 even with 100,000 background queries, we were able to detect

query traces with a minimum of 98.6% TPR and 0% FPR. This result is plausible since

we are distinguishing one specific class of page from all other traffic, and query responses

follow a more restricted format with fewer embedded objects than other webpages. This

distinction is illustrated by the PCA plot shown in Figure 3.1. In the following sections,

we restrict the input traces to query traces from the target search engine.

3.4.2 Closed World Accuracy

In the closed world scenario, we assume that the victim may query 100 keywords and

seek to classify which of those 100 keywords a given Google query trace represents. As

other researchers have pointed out [52, 71], the closed world scenario relies on unrealistic

assumptions. However, accuracy in the closed-world setting is a minimal requirement

for plausibility. We performed multiclass classification with each feature set in Table 3.6,

labeling each trace according to its keyword.

We used 10-fold cross-validation — partitioning the traces into 10 folds of 1,000 —

to get the best C and γ for each feature set and to ensure that the training sets and

testing sets did not overlap. Finally, we obtained 1,000 predictions for each fold (for a

total of 10,000 predictions). As shown in Table 3.6, feature sets using information from

the Response portion of a query trace outperformed all previously used WF feature

31

Table 3.6: Closed-world accuracy of various feature sets.

Feature Accuracy(%)

Total 35.5

torCell 7.5

roundedTCP 12.7

roundedTLS 15.2

burstIncoming 26.7

cumulTLS 18.7

RespTotal 26.1

RespTLS 17.2

RcumulRespTorCell 53.4

RcumulRespTLS 53.8

Aggr2 (Total+RcumulRespTLS) 62.2

Aggr3 (Aggr2+RespTotal) 63.4

Aggr4 (Aggr3+RcumulRespTorCell) 64.0

Table 3.7: Closed-world accuracy (Acc), TPR, FPR, and within-monitored accuracy
(WM-acc) comparing to existing classifiers. (All results in %)

Metric Acc TPR FPR WMAcc

cumulTLS[8] 18.7 35.0 3.9 8.9

k-FP(k = 1)[9] 40.3 65.4 0.03 35.8

k-NN[7] (k = 1) 44.5 88.2 22.9 41.1

k-NN (k = 2) 42.3 32.9 4.70 24.5

k-NN (k = 3) 43.7 18.7 1.7 16.1

svmResp 64.0 82.6 8.1 56.5

Table 3.8: TPR, FPR, and Precision when we use 100 instances of 100 monitored Google
query traces and 1 instance of 10,000 background traces.

Metric Binary-label Multi-label

TPR(%) 93.1 82.6

FPR(%) 14.9 8.1

Precision(%) 86.3 91.1

32

(a) Binary-Label Learning (b) Multi-Label Learning (c) Within-monitored accuracy

Figure 3.4: Precision and recall for binary classification and within-monitored accuracy
for multiclass classification when varying the number of monitored and background
keywords

sets [13, 14, 53, 15, 42, 8] for KF. In particular, our best feature set (Aggr4) showed

much better performance than the feature set (cumulTLS) used for WF by Panchenko

et al. [8], achieving a closed-world accuracy of 64.0% compared with only 18.7%. These

results clearly show that feature sets tailored to keyword fingerprinting can improve the

quality of KF attacks.

3.4.3 Open World Scenario

In the open-world scenario, the attacker maintains a set of monitored keywords to iden-

tify, while the victim may query arbitrary keywords. This is a more realistic scenario

in the real world, because if the attacker tries to capture victims’ search query traces

to infer user-typed keywords, the collected data will be expected to include more back-

ground keywords than monitored keywords. This section evaluates the performance of

several variations of KF in an open-world setting.

Classifier Comparison

First, we compared k-NN [7], CUMUL [8], and k-FP [9] with svmResp to determine the

best classifier for KF. In this experiment, we used 100 traces for each of 100 keywords

from the top-ranked keyword set, and used 1 trace for each of 10,000 keywords from the

background set. We then trained and evaluated classifiers using 10-fold cross validation

in the multi-label learning setting, where each monitored trace was labeled with its

corresponding keyword, and all background traces were assigned a single “background”

33

label. Note that we used the Aggr4 feature set for k-NN and k-FP.

The results are summarized in Table 3.7. As expected, CumulTLS based on the first

104 features had worse performance than svmResp because the previously used features

do not vary enough between query traces from a single search engine. The k-FP classifier

was able to differentiate between monitored and un-monitored keywords quite well,

achieving a FPR of just 0.03%, but did not do well in identifying the precise monitored

keyword for a given query trace. We hypothesize that bagging based on subsets of

features discards too much useful sequencing information in the RcumulRespTLS and

RcumulRespTorCell feature vectors.

Although k-NN with k = 1 had the highest TPR, its FPR was the highest as well. As

expected, with higher k ∈ {2, 3}, we see a reduced FPR but TPR significantly decreases

as well. Note that the FPR is much higher than observed when applying k-NN to

website fingerprinting; combined with the observed low FPR of the k-FP classifier, this

suggests that the feature vectors of query traces are too densely packed in `1 space for

k-NN to take advantage of the multi-modality of keyword classes. svmResp produced the

best within-monitored accuracy rate, which is important in the keyword identification

phase of KF. Thus we continue to use svmResp as the classifier for the remainder of the

chapter.

Effect of label learning.

We also evaluated KF in the binary-label learning setting, where each trace was given

a binary label according to whether it belonged to the monitored or background set.

As shown in Table 3.8, multi-label learning achieved higher recall (93% vs. 83%) while

binary-label learning resulted in better precision (91% vs. 86%).

Furthermore, multi-label learning continues to ensure better precision while binary-

label learning results in higher recall across different C and γ pairs. This is because

the probability a trace is classified as a FN is lower in binary-label learning since we

converted all monitored keyword labels into a single label. Thus classifiers were trained

with more instances of the monitored label than those in multi-label learning. For

instance, if we select 30 instances for each of 100 monitored keywords, the binary-label

classifier is trained with 3,000 instances for a single monitored label. In contrast, the

probability a trace is classified as a FP is lower in multi-label learning since the classifier

34

Table 3.9: Precision(P), recall(R), and within-monitored accuracy(W) (%) to detect
3,000 and 8,000 traces of top-ranked and AOL search keywords and 3,000 traces of
Google blacklisted keywords using binary and multiclass classification against 50k–80k
background keyword traces. Variance in all figures was less than 0.1%.

Background Size Top(3,000) Black(3,000) AOL(3,000)
P R W P R W P R W

50k 83 32 22 77 24 24 70 12 12

60k 82 29 20 77 23 23 72 10 9

70k 84 28 19 77 22 22 75 8 8

80k 85 29 20 76 22 22 76 6 6

Background Size
Top(8,000) AOL(8,000)
P R W P R W

50k 90 58 41 80 31 29

60k 90 55 40 80 28 26

70k 91 54 40 80 24 23

80k 91 53 39 82 20 19

is trained with fewer instances for each monitored label than in binary-label learning.

Based on these results, if the attacker wants to correctly identify individual moni-

tored keywords, multi-label learning will have better performance, while also ensuring

fewer incidences of censoring non-monitored keywords. If the attacker’s goal is to re-

strict access to keywords in the monitored group, binary-label learning is better since

it is more important to ensure that fewer targeted queries evade filtering.

Effect of monitored and background set size.

To determine how the sizes of the monitored and background sets change our results,

we selected monitored sets of 100, 200 and 300 keywords, collecting 80 traces for each

keyword, and varied the size of the background set between 10,000 and 80,000. In a

sense, increasing the size of the background set represents an attempt to capture the

large variation in non-monitored search engine queries. Figure 3.4 shows that for binary-

label classification, the precision has almost no variation with the size of the monitored

set in binary-label learning and minimal variation in multi-label learning, but decreases

for both settings with a larger background set. The recall always decreases by increasing

the size of either set and is more sensitive to the size of background set in multi-label

learning. For multiclass classification, Figure 3.4c shows that increasing the size of either

35

Table 3.10: Analysis of HTML and search results screenshot for Top-ranked keywords
and AOL search queries. We counted the number of content types among text links,
images, videos, SNS, and maps, and computed the fraction of HTML responses (t-html),
that consist only of text links and include no other contents such as images.

Dataset HTML size(KB) # of contents t-html(%)

Top-ranked 429±131 3.5±0.7 12.0

AOL 384±98 1.2±0.8 63

(a) Incremental Query Setting (b) One Shot Query Setting

Figure 3.5: Within-monitored accuracy, precision, and recall to detect 8,000 top-ranked
Google keyword traces when varying Tor browser settings (JS enabled vs. disabled)

set results in a decrease in within-monitored accuracy. However, all of the metrics seem

to stabilize with background sets of size 50,000 suggesting these experiments accurately

capture the variability in search engine result fingerprints.

Effect of monitored keyword set.

To determine how the set of monitored keywords impacts our results, we further con-

structed two additional monitored sets using AOL search queries and Google blacklisted

keywords. Using 30 instances for each of 100 top-ranked, AOL, and Google blacklisted

keywords, Table 3.9 illustrates that KF is more effective for top-ranked keywords. How-

ever, with more training data using 80 instances, KF is still able to distinguish between

100 monitored AOL keywords with recall of 31% and WM-accuracy of 29%.

Thus, we can make KF work adequately on different monitored datasets with suffi-

cient training data while the specific set of monitored keywords does somewhat impact

the performance of classifiers. To further explore why top-ranked keywords are better

36

targets for KF, we examined search result screenshots and HTML responses for top-

ranked keywords and AOL dataset. According to Table 3.10, we found that top-ranked

keyword traces contained more diverse types of contents as well as larger embedded ob-

jects than AOL search queries and these impact the performance of KF. In Section 3.5,

we furthermore intensively investigate the relationship between specific types of contents

and fingerprintability.

Effect of different query setting.

For users who disable JavaScript in Tor Browser as discussed in Section 3.2.2, we also

investigated KF in the “one-shot query setting,” which includes neither interaction with

the search box nor the incremental results returned by Google Instant. We classified

100 instances of 100 top-ranked keywords with varying background set sizes. As Fig-

ure 3.5 shows, all metrics except precision in one-shot query traces were worse than

those in incremental search query traces. In particular, within-monitored accuracy was

significantly lower. (17% vs. 48% for 100 monitored and 40,000 background keywords)

The main reason is that incremental traces carry additional rich information such

as traffic for auto-complete and Google Instant search results, which are highly likely to

be consistent in the same keyword group. Additional regular traffic makes Aggr4 more

distinguishable than features only based on incoming traffic for embedded objects in

HTML responses returned by the one-shot query. Thus, the incremental query setting

is more vulnerable to KF, indicating that disabling JavaScript also helps to mitigate

the KF attack.

Effect of search engine.

We evaluated classifiers for binary and multiclass KF trained using 100 monitored top-

ranked keywords and varying background sets across three different search engines,

Google (Instant), Bing, and Duckduckgo. As shown in Tables 3.11 and 3.12, for binary

classification, TPR is higher with Google as the size of background set increases. For

multiclass classification, WM accuracy is consistently highest for Google, due to the

extra information leaked by incremental search. Overall, this study shows that our

approach can be applicable to most search engines since their query traces follow a

similar format, containing a large and informative response portion in their TLS record

sequences.

37

Table 3.11: Binary classification (TPR (%)). We did not report the standard deviation,
which is less than 0.1.

Background Size Google Bing Duck

10k 81.2±.1 78.4±.1 75.2±.1

20k 77.2 74.9 71.4±.1

30k 71.8 66.2 60.0±.2

40k 67.2±.1 61.2±.2 56.2±.1

Table 3.12: Multiclass classification (WM-accuracy (%)). We did not report the stan-
dard deviation, which is less than 0.1.

Background Size Google Bing Duck

10k 54.5±.1 44.3±.2 44.4±.1

20k 52.0±.1 42.0±.1 41.9±.1

30k 45.1 37.7±.1 35.8±.1

40k 48.2±.1 34.9 33.7

Effect of WF defenses.

We evaluated the effect of two WF defenses on KF in the closed-world setting: Bu-

FLO [15], and Tamaraw [16]. BuFLO enforces packet sizes and inter-packet timing to

be constant and pads with dummy packets until the total number of packets reaches

a threshold; Tamaraw allows different inter-packet timing for incoming and outgoing

traffic and pads incoming and outgoing packets to the nearest multiple of the “padding

length” parameter.

We simulated 80 query traces for each of 100 monitored keywords under each defense.

However, since both defenses interleave padded outgoing packets with the response

portion, the RcumulRespTLS and RcumulRespTorCell feature sequences extracted from

these traces were often shorter than the full 120 records used in previous sections: for

Table 3.13: Accuracy (%) under Tamaraw when varying incoming (row) and outgoing
(column) padding intervals as well as padding lengths (100–500)

Interval 0.04 0.02 0.01

0.005 5.86±0.25 5.73±0.25 5.89±0.31

0.012 5.24±0.7 5.17±0.88 5.45±0.62

0.02 4.53±0.09 4.66±1.11 5.85±0.89

0.05 6.09±1.2 6.74±0.93 7.39±0.37

38

(a) Accuracy(%) under
BuFLO

(b) Bandwidth overhead
under BuFLO

(c) Accuracy(%) under
Tamaraw

(d) Bandwidth overhead
under Tamaraw

Figure 3.6: Closed-world accuracy for 8,000 WF defense applied Google traces when
considering different feature dimensions (Note that with no defense, accuracy is 64.03%)

Tamaraw with padding length 100, only 2,300 traces had at least 40 records, and for

BuFLO with 10 seconds of minimum time for padding, only 7800 traces had the full 120

records. For both defenses, if we use larger bandwidth parameters (e.g, 200–3,000 for

Tamaraw and 30–100 seconds for BuFLO), fewer than 10 records remain in the response

portion of most traces.

For Tamaraw, first, we need to find the effective incoming and outgoing padding

intervals, that give the least accuracy. We realized that as shown in Table 3.13, KF works

poorly with incoming padding intervals less than 0.02 seconds and chose 3 incoming and

outgoing interval pairs, which yielded the worst accuracy, for further investigation of

KF performance against Tamaraw.

As shown in Figure 3.6, larger bandwidth parameters (minimum padding time in

BuFLO and padding length in Tamaraw), led to lower accuracy as well as higher band-

width overhead. BuFLO completely defeated KF at the expense of 660% bandwidth

overhead (with 0.03 seconds padding interval and 100 seconds for padding time) while

the “standard parameters” used by other WF work applied to KF with 100 monitored

keyword traces led to accuracy of 10.1% at the expense of 146% overhead. Under Tama-

raw, KF became no better than random guessing with 458% bandwidth overhead (0.02

seconds padding interval for both directions and 3,000 for padding length) while per-

forming adequately (6.4% accuracy) with 191% overhead against the parameters used in

previous work. This experimental result shows that Tamaraw ensures lower bandwidth

overhead compared to BuFLO for perfect defense and existing padding-based defense

mechanisms are able to frustrate KF attacks at the cost of bandwidth overhead.

Apart from padding-based defenses, there are other defenses intended to prevent the

39

Table 3.14: Statistics of traces from best fingerprintable keywords. Note that Avg
means traces from all 300 parent keywords (30 instances for each) regardless of finger-
printability.

Metric Top-FP Non-FP Avg

of outgoing packets 84 71 77

of tor cells 964 883 873

of packets in Resp 247 193 180

Cumul payload(KB) 462 420 414

-1.5 -1 -0.5 0 0.5 1 1.5

PC1
×10 6

-6

-4

-2

0

2

4

6

P
C

2

×10 5

Top-FP1

Top-FP2

Top-FP3

Top-FP4

Non-FP1

Non-FP2

Non-FP3

Non-FP4

Figure 3.7: PCA plot of best fingerprintable keyword traces and non-fingerprintable
keyword traces

search engine from building accurate user search profiles, as described in Section 3.1.

We leave the evaluation of KF against those defenses as future work.

3.5 Fingerprintability Analysis

We observed that even in settings where KF had high within-monitored accuracy, some

keywords were correctly classified with high probability while others were never cor-

rectly classified. To investigate factors that might contribute to fingerprint resistance,

we trained a classifier with 30 instances each of 300 monitored keywords and 47000

background keywords from the Google one-shot data set. We selected the 4 “most

fingerprintable” keywords (Top-FP, with TPR from 35%–87%) and 4 “non fingerprint-

able” keywords (Non-FP, TPR of 0%). Table 3.14 gives summary statistics for these

40
Table 3.15: Analysis of Dynamic and Static contents embedded in HTML

DS Contents Non-FP(%) FP(%)

Dynamic

RHS-DIV 59 45
News 57 42

Twitter 17 15
Stock 11 9

Reviews 9 5
People also ask[74] 22 5
See result about[75] 22 0

People also search for[76] 22 32

Static

Images 10.8 20
Video 2 17

Dictionary 4 32
UI(e.g.,inner searchbox) 17 26

groups, not showing significant differences outside of the Resp features. We plot them in

Figure 3.7, showing that Top-FP keywords are all tightly clustered whereas the Non-FP

keywords are more widely spread; however, we found that several Non-FPs not plotted

in Figure 3.7 constructed tighter clusters, discussed later.

Therefore, for a more precise comparison, we chose the 33 most fingerprintable

keywords (with TPRs from 17% to 87%) and 52 Non-FP keywords to evaluate how

several factors contribute to fingerprintability:

Screenshot equivalence.

First, for each of the 85 keyword groups, we checked if screenshots of the instances

recorded by the crawler after loading were the same. Second, for groups whose screen-

shots of instances were the same, we further investigated the contents carried by the

HTML responses to identify what specific types of contents vary between the FP and

non-FP groups.

We found that 58% of FP keywords and 44% of Non-FP keywords have the same

screenshots in all instances. We further analyzed their embedded contents in HTML.

Table 3.15 shows that Non-FP keywords generally delivered more dynamic contents3

than FP keywords. For example, 59% of Non-FP traces include a large right-hand side

DIV block — containing various dynamic contents such as stock price and user reviews

3The definition of dynamic contents is that the content is variable enough to be changed within
0.2–54.7 hours.

41

Table 3.16: Unmonitored keyword set analysis

(a) Euclidean distance in PCA
plot. (Note that scale is e+5)

Dist same other back

FP 4 7.7 7.8

NFP 3.5 6.3 5.7

(b) Within-monitored accu-
racy(%) with different back-
ground keywords

Ratio .2 .3 .4

back-c 21 29 34

back-v 47.7 47.9 48

— versus 45% of FP traces. Dynamic contents make traces more inconsistent leading

to worse accuracy.

Unmonitored keyword set.

We discovered that while the feature vectors of Top-FP groups were generally tightly

clustered in PCA space, the feature vectors of Non-FP groups could either be tightly

clustered or more widely spread. Thus, we further computed the average PCA Euclidean

distance between instances in the same group and to instances in different groups for

each Non-FP and FP keyword and compared them to examine the difference according

to fingerprintability.

Table 3.16a shows that average distance between each FP instance and other key-

word instances was larger than for Non-FP instances, however, the gap was not high.

After investigating confusions, interestingly, most Non-FP keywords were misclassified

as “background” labels. Therefore, we re-calculated their average distances to back-

ground keyword instances and the distinction became more pronounced. In addition,

we trained classifiers with 200 monitored keywords and two different 24,000 background

keyword sets, “back-c” and “back-v”, and tested each classifoer with the same back-

ground set used in Figure 3.4b. Traces in “back-v” are more widely-spread than in

“back-c,” with an average PCA Euclidean distance between instances in the background

group of 1.02e+6 versus 3.12e+5, and an average distance to instances in the monitored

group of 9.40e+5 versus 3.07e+6. Table 3.16b shows that the WM accuracy was better

with “back-v.”

Tor restart/out of order or dropped packets.

We had often received CAPTCHAs during Google trace captures. We examined how

often the Tor process had been restarted for each keyword group and further how it

affected query results. We found no instances showing a major difference in search

42

results due to the location difference led by a different exit chosen. (For example, we

get different search results for a keyword ’man’ when we use Google Italia and Google

US.) In addition, 54% of FP keywords received a CAPTCHA during collection and the

Tor process had been restarted 60 times on average (35% and 23 times for Non-FP

keywords). Furthermore, unstable network conditions can lead to dropped, duplicated,

or out of order packets. We got the result that 38% of FP traces had such events,

whereas 17% of Non-FP contained those.

These results indicate that both CAPTCHA and unstable network condition did not

affect the fingerprintability in our experiment.

Page loading time.

We expected that the diversity and number of contents in the resulting HTML affected

the page loading time. However, the page load time did not show significant difference

between FP keywords and Non-FP keywords. (0.08 sec vs. 0.06 sec on average) In fact,

page loading time is highly affected by the network condition at that time.

3.6 KF Deployment and Mitigation

In the real world, users are likely to visit other webpages and could be involved in other

tasks such as listening to music at the same time as using search engines. Furthermore,

users do not announce when they are querying a search engine to allow the adversary to

begin recording a trace. In addition, search traces and results can be sensitive to when

and where users send queries. In this section, we discuss how these issues complicate

application of KF to the real world and present strategies that an adversary might

deploy to deal with them.

Single query trace identification.

First, we need to split a full Tor connection sequence into sessions. T. Wang and Gold-

berg [77] proposed “split” strategies based on timing and machine learning to perform

this separation under more realistic conditions. Similarly, we can use a pre-defined du-

ration t, for which users pause before moving to another webpage or performing some

other action such as clicking a link, to determine the splitting point. Such t can be

determined experimentally or empirically.

43

To ensure a better result, we might additionally use the *Resp* feature sets to char-

acterize a single query session and use existing feature sets to represent other webpage

sessions. Even though the degree of difficulty as well as feasibility is not in the scope

of this chapter, this machine-learning based approach to identify a query session is vi-

able based on the work of T. Wang and Goldberg [77]. To handle noise, they further

proposed adding similar high-bandwidth noise to testing data rather than removing the

noise to get better accuracy. A similar technique could clearly be applied to KF attacks.

Caching, location and time effect on search results.

In our experiment, we did not consider the user customization effect since Tor Browser

by default disables caching and cookie storage between browser sessions. Therefore, we

assumed that the same content always is returned to different users if they type the same

keyword. For the location effect, based on our Tor crawler logs, the exit nodes were

selected among 43 different countries, which should capture a significant representation

of the diversity by exit location seen by typical Tor users. In addition, Google has

not publicly reported how often they update search results. As McDonald’s blog [78]

mentioned, it is presumed to be 4–5 times a year. Juarez et al. [52] reported that WF

accuracy goes down to around 0% if the gap between collection of training data and

testing data is more than 90 days. Therefore, to ensure good results, training classifiers

every 1 to 3 months seems like a fair choice.

Mitigation.

As we explored in Section 3.4, padding-based defenses deteriorate the performance of

KF since insertion of outgoing dummy packets makes identifying the response portion

more difficult in addition to concealing traditional features. More sophisticated outgoing

padding that focuses on the largest incoming burst to make it less distinguishable among

different keywords in terms of the length of the burst, in a method similar to the sequence

padding used in Walkie-Talkie [79], and the size of TLS in the response portion seem

likely to reduce the bandwidth overhead while further diminishing the performance of

KF attacks.

Based on the results in Section 3.4, Tor alone does not have enough power to protect

privacy in search queries against targeted traffic analysis. To avoid bandwidth overhead

from padding approaches, cryptography and obfuscation based techniques (as discussed

44

in Section 3.1) could be adopted to help conceal the link between users and their search

queries, but more work is needed to evaluate the value of these techniques in the context

of KF.

Chapter 4

Traffic Analysis with Deep

Learning

In this chapter, we explore the applications of DNNs to traffic analysis, including their

use in feature extraction and selection, fingerprinting attacks, and fingerprint prediction.

We evaluate their performance at these tasks across diverse experimental scenarios using

different datasets, classification settings, and attack and communication scenarios not

covered in previous work [4, 2].

We summarize our key contributions as follows.

Feature Engineering.

To isolate the benefits of DNNs as feature extractors versus classifiers, we investigate

the use of an autoencoder (AE), an unsupervised learning technique, to extract low-

dimensional representations of a dataset, in combination with the classifiers used in

state-of-the-art WF attacks. We notice that when AE-generated features are fed into

state-of-the-art WF attacks, classifiers become more powerful than when using hand-

tailored feature sets from recent WF attacks while requiring less computational cost.

In particular, even with feature vectors reduced to as few as 40 dimensions, classifier

accuracy is still improved. This suggests that AEs can be a powerful technique for

feature engineering in new traffic analysis attacks.

45

46

Varying Classification Tasks.

We studied the suitability of Multilayer Perceptrons (MLP) and Convolutional Neu-

ral Networks (CNN) as p-FP classifiers (we use the names p-FP(M) for MLP and p-

FP(C) for CNN) in a wider range of settings than Rimmer et al. [4] and Sirinam et

al. [2]: in addition to identifying top Alexa web sites in the closed-world and open-

world binary settings, we also study the performance of these architectures in other WF

tasks including open-world multi-class classification, search query (keyword) fingerprint-

ing [80], Onion Service fingerprinting, TLS-encrypted website fingerprinting, and WF

against four traffic padding schemes – BuFLO [15], Tamaraw [16], WTF-PAD [17] and

Walkie-Talkie [79].

We show that for all of these tasks, DNNs can achieve equivalent or better results to

those published in the literature. In particular, p-FP(C) based on CNNs is capable of

identifying 100 monitored websites against 40,000 unmonitored websites with 94% true

positive rate and 0.009% false positive rate, using 30,000 traces of monitored training

data. We also show that BuFLO, WTF-PAD, and Walkie-Talkie are less effective against

p-FP than previous classifiers, since we successfully conduct multiclass classification on

100 websites with 15%, 57%, and 49% accuracy, respectively.

Predicting Fingerprintability

Say that a website w is p-Fingerprintable by classifier c if open-world training with w

in the monitored set produces a classifier that correctly identifies at least fraction p of

instances of site w. In light of the success of DNN-based classifiers, we revisit the study

of Overdorf et al. [81] to study the influence on fingerprintability by these classifiers

using feature sets that only focus on elements in HTML documents, such as statistics

about links and embedded web content, which we call HTML features. To the best of

our knowledge, this is the first fingerprintability study using DNNs and focusing only

on website design-specific features.

We find that several common features are influential for fingerprintability by both

DNN and traditional classifiers, and identify ranges for these features that are common

to less-fingerprintable sites. These results suggest that website designers interested in

helping users avoid WF attacks (or onion service designers interested in protecting the

location of their servers) can use the features we idenifty to predict the vulnerability of

47

content pages and alter the HTML source code of those pages accordingly.

4.1 Related Work

In this section, we review three recent studies of WF that are closely related to our

work [81, 2, 4] and discuss the differences between their work and ours.

4.1.1 Automated Website Fingerprinting

In their work on Automated Website Fingerprinting (AWF), Rimmer et al. [4] inves-

tigated three DNN architectures – LSTM, CNN, and Stacked Denoising Autoencoder

(SDAE) – for WF from Tor network traces. Our work differs from theirs in three aspects:

we use a different evaluation methodology, evaluate a wider variety of application sce-

narios, and investigate the utility of autoencoding for feature extraction independently

of the use of DNNs for classification.

Although we do not conduct a systematic closed-world study, we demonstrate the

multinomial classification ability of DNNs in an open-world evaluation. To show the

impact of the monitored dataset, we also evaluate p-FP(M) and p-FP(C) using the

AWF and Tor Hidden Service (HS) datasets. As opposed to their work, our open-world

evaluation follows the methodology of most other recent work on WF [9, 2, 82, 83, 52], in

which the adversary trains WF models using both monitored websites and unmonitored

websites, allowing better comparison across classifier models.

Application Scenarios.

We explore a more diverse set of WF tasks using deep learning, including fingerprinting

search query traces over Tor [80], Tor traces defended by recent WF defenses [15, 16, 18,

17], TLS-encrypted (non-Tor) traces, and predicting the fingerprintability of websites

(Section 4.5).

Autoencoder.

Rimmer et al. use a Stacked Denoising Autoencoder (DAE) architecture for feature

extraction, based on the DAE, which is a variant of AEs designed to give better gen-

eralization. However, the AWF study did not attempt to isolate the effectiveness of

AEs for feature extraction from the effectiveness of DNNs for classification using these

48

features. We address this gap by investigating the use of AE-extracted feature vectors

as input to other classification algorithms. In Section 4.3, we use the low-dimensional

feature vectors extracted by an AE to train three state-of-the-art machine learning

techniques – SVM, k-NN, and k-FP [9] – and compare the effectiveness of the resulting

classifiers with that of CUMUL [8], k-NN [7], and k-FP [9] using their features.

4.1.2 Deep Fingerprinting

Concurrently to our preliminary work, Sirinam et al. [2] showed the importance of the

details of the CNN architecture by demonstrating that a more tailored “Deep Finger-

printing” (DF) CNN can achieve very high WF performance against Tor traces, even

against lightweight defenses such as WTF-PAD and Walkie-Talkie. The CNN archi-

tecture they propose has superior performance to the architectures we evaluated for

defended Tor traces, but as with the AWF paper, the DF paper did not explore the

same breadth of WF scenarios as our work, nor did it examine the use of DNNs for

feature extraction independently of classification. Moreover, their open-world analysis

focuses on binary rather than multinomial classification.

In contrast, our experiments consider both binary and multiclass classification; we

also explore a more diverse set of DNN models, MLP, CNN, and AE, and evaluate

them across diverse fingerprinting scenarios (i.e., search query and TLS-encrypted trace

fingerprinting) and datasets (i.e., the AWF and Tor HS datasets).

In addition, we explore different CNN architectures based on 2-2D convolutional

layers with Local Response Normalization (LRN) while DF uses 8 1D convolutional

layers with batch normalization. It has been shown [84, 85] that LRN handles ReLU 1

neurons, which have unbounded activations, and detects high frequency features with

large response properly.

4.1.3 Onionsite Fingerprintability

The “Onionsite Fingerprintability Study” (OFS) of Overdorf et al. [81] used both

network-level features based on the onion sites’ network traces for state-of-the-art WF

1Rectified Linear Units, a fast, non linear function giving x for positive x and 0 for negative x

49

attacks [9, 8, 7] and site-level features based on HTML files and HTTP headers to de-

termine the best predictors for WF outcomes. Our study has key differences in terms

of features considered, methodology, and fingerprintability scoring.

Features and Methodology.

Overdorf et al. studied which of these network-level and site-level features were the most

important for WF prediction using the relative difference between inter- and intra-class

variance of network-level features and a random forest regressor, respectively.

In contrast, we only use features based on Alexa websites’ HTML source code,

design-level features such as the number of tags and characters in data fields. These

features are easy to gather and measure without deploying the site as an onion service

and have less variation due to external factors (such as network conditions), which

makes the predictions easier to obtain and more stable.

Our goal is to identify which design-level features influence predictability by specific

classifiers such as MLPs, CNNs, or k-FP. Thus, our study is in a different setting (open-

world vs. closed-world), and it produces features that can be applied directly to a site’s

HTML source code before deployment.

Fingerprintability Scores.

In order to study what makes a website vulnerable to fingerprinting, we must choose

some way to assign a label or “fingerprintability score” to a website. The OFS used

the F1 score from an ensemble classifier, combining the precision and recall of three

classifiers [9, 8, 7].

We use multiple classifiers – MLP, CNN, k-FP, and SVM – independently and com-

pute the score for each of them. We use the accuracy of each classifier for a website,

calculated as the fraction of correctly identified instances for each website, as the fin-

gerprintability score; this is more appropriate to our goal of predicting the influence of

features on the performance of a single classifier as opposed to the OFS goal of measuring

the influence of features on a broad range of classifiers.

50

4.2 p-FP Overview

In this section, we introduce our adversary model, DNN architectures, metrics to eval-

uate the performance of our classifiers, hyperparameter tuning to find the optimal pa-

rameters to train DNN models, and the datasets used to evaluate our DNN models.

4.2.1 Threat Model

As in all prior work on website fingerprinting over Tor, we assume a network-level,

passive adversary who is only able to monitor network traces, sent and received by

users. In situations involving Tor traffic, the adversary is only able to observe network

traffic between the client and a Tor entry guard, and does not control any other relays

or servers involved in the communication.

Our attacker is interested in two types of classification problems. In binary classifi-

cation the goal is to determine whether a captured trace is from a small list of monitored

pages. In multiclass classification, the adversary additionally predicts which of these

monitored pages was visited.

4.2.2 DNN Architectures

We discuss general background on DNN models in Section 2.4.1, and details about the

selection of the hyperparameters for our networks in Section 4.2.4.

Experiment Setup.

We used Tensorflow [86] with the TFLearn [87] front end for the implementation of DNN

classifiers. We split the dataset into training, validation, and testing datasets with size

ratios 54:6:40, which led to better generalization of the trained models and helped to

avoid overfitting. To train our models, we built five models for each experiment and

selected one model yielding the best performance. We then evaluated this model using

20 different iterations, where each iteration consisted of randomly chosen background

instances and monitored samples, and each monitored website had the same number of

instances.

We used 32 cores and 256GB of memory for all classifiers and the longest job, which

trained a CNN consisting of two 2-D convolutional layers and two fully connected layers,

51

was finished within five days. With GPUs, this running time would be considerably

reduced.

MLP.

The p-FP(M) model consists of one input layer allowing a single vector, two hidden fully

connected layers, and one output layer with softmax function. We used L2 regulariza-

tions for the first two hidden layers and the dropout between those layers to minimize

the impact of overfitting. We chose Stochastic Gradient Descent (SGD) as the optimizer

and used the categorical cross entropy for the loss function.

CNN.

The p-FP(C) model is comprised of an input layer accepting input data, two convo-

lutional layers with 128 filters, each followed by a max pooling layer, followed by one

hidden fully connected layer and a softmax output layer.

For the input shape, rather than n by n matrix (with original feature vector of size

n2), we constructed a 1 by n matrix, so that the vector of 2,500 features is represented

as a 1 x 2500 matrix, which is better suited to WF. We also adjusted the format of

filters, using 1 x f rather than f x f filters, because network traffic traces are time series

rather than spatial data and we would not expect to find useful patterns in multiple

spatial dimensions. We applied L2 regularization for each layer and the categorical cross

entropy to compute the loss. Between layers, we used LRN.

AE.

An autoencoder consists of an encoder and a decoder network, each consisting of two

fully connected layers. We varied the number of units in the second hidden layer to get

various feature dimensions to be evaluated with SVM, k -NN, and k -FP classifiers. To

extract AE-encoded features from target traces, we saved a trained model and retrieved

weights of the second hidden layer to derive compressed vectors of those inputs. We

used the mean squared error to compute the loss. We used a ratio of 45:5:50 for training,

validation, and testing datasets, and extracted AE features based on two testing datasets

after two iterations.

52

4.2.3 Metrics

Traditional Metrics.

For the open-world experiments, we used the following metrics, adopted in prior WF

work [8, 80, 9].

• True positive rate (TPR): The proportion of positive samples that are predicted

as positive.

• False positive rate (FPR): The proportion of negative samples that are mispre-

dicted as positive.

• For both binary and multiclass classification, we trained DNN models using dis-

tinct labels for each monitored class plus one additional label for all unmonitored

traces. The difference between the settings is whether we count the confusion

between monitored classes as a TP. In binary classification, if a monitored trace

is assigned any of the monitored labels, it is counted as a TP, whereas in the

multiclass setting, a monitored trace is only considered a TP if the correct la-

bel is predicted. This is consistent with previous WF attack evaluations in the

literature [88, 2, 8].

• Bayesian detection rate (BDR): Since reporting accuracy without consideration

of the base rate or a prior may have led to bias in early attempts to evaluate WF

attacks, we follow the suggestion of Juarez et al. [52] and also report the BDR,

computed as P (M |V) = P (V |M)P (M)
P (V |M)P (M)+P (V |U)P (U) , where V indicates the event that

a webpage is classified as monitored, M is the event that the webpage actually

belongs to the monitored set, and U is the event that the page belongs to the

unmonitored set, i.e. P (U) = 1 − P (M). P (V |M) is approximated by TPR

and P (V |U) is estimated by FPR. We computed BDR in the same way as prior

work [9, 52].

• Within-monitored accuracy (WMacc): For KF experiments, we used within-monitored

accuracy as proposed by Oh et al. [80] to measure the performance of multiclass

classifiers. This is computed by the number of TPs divided by the total number

of monitored samples.

53

Confidence Threshold.

In our DNNs, the output layer returns vectors with prediction probabilities for all labels.

Even though the label with the highest probability is selected as a predicted label, if

this probability is low, this indicates the classifier has low confidence in its prediction.

To avoid using low-confidence predictions, if the highest probability is less than a confi-

dence threshold, we regard this case as being classified as “others”. We also varied this

confidence threshold to study how this factor affects the performance of DNNs. In Sec-

tion 4.4, for fair comparison to prior WF attacks [2, 4], we use the Receiver Operating

Characteristic (ROC) curve, which is a parametric curve that summarizes the tradeoff

between TPR (y-axis) and FPR (x-axis) of a classifier as the confidence threshold varies

from 0 to 1.

Top-K Analysis.

The prediction probability vector returned by the output layer enables us to consider

other meaningful labels if their probabilities are high enough to be trustworthy even

if they are not the highest. Such labels are candidates for the top k list. We studied

the performance of these “top k” predictions as k varied from 1 to 5, where if a correct

monitored label appears in the top k list, we count it as a TP.

Because of the possibility that the features of Top Alexa websites have a common

bias, we treat the appearance of the unmonitored label in the top k list more importantly.

In the open world experiments, if the negative (unmonitored) label is included in the

top k list and the actual label is positive (monitored), we always treat this as a false

negative (FN) even if the top k list includes a true label. For example, if the top 3

list includes monitored sites M1 and M2 with probabilities 0.89 and 0.1, respectively,

as well as the unmonitored label U with probability 0.01, then even if the true label

is M1, this outcome is coded as FN. We applied top k analysis to evaluate KF attacks

(Section 4.4.2) and defended traffic analysis (Section 4.4.4).

4.2.4 Hyperparameter Tuning

Training DNNs requires selecting many different hyper-parameters that can impact

the quality of predictions. We used the hyperopt library [89] to implement the Tree

of Parzen Estimators (TPE) [90], a form of Bayesian optimization, to automate the

54

Table 4.1: DNN Hyperparameter tuning using HyperOpt (W: WF, WH: WF with
TorHS, K: KF, T: TLS-encrypted traces, Full: Fully-connected layer, Conv: Convo-
lutional layer, and O: Others) .

DNN MLP AE

HyperParam Choice Space Choice Space

input dim
W WH K

0∼ 10k 5000 0∼ 5000
5000 2500 10k

optimizer SGD SGD,Adam Adam SGD,Adam
learning rate 0.03 0.001∼0.1 0.001 0.001∼0.1

epoch ≤50 10∼1000 10 10∼1000
batch ≤50 10∼100 256 10∼300

number of Full 4 2∼7 4 2∼7
hidden units 1000∼ 3000 500∼10000 200∼ 300 10∼5000

dropout 0.3∼0.5 0.2∼0.9 - -
activation tanh tanh, relu, sigmoid relu tanh, relu

DNN CNN

HyperParam Choice Space

input dim
T O

700∼ 5000
1600 5000

optimizer SGD SGD,Adam,RMSProp
learning rate 0.05 0.001∼0.1

epoch 40∼100 10∼1000
batch ≤30 28∼128

number of Full 2 2∼7
number of Conv 2 1∼4

hidden units 200∼ 300 500∼10000
dropout 0.8 0.2∼0.9

activation tanh tanh, leaky-relu, elu
number of filters 128 4∼200

filter size 12 2∼16
kernel size 10 2∼50

55

search for optimal hyper-parameters. First, we described the search space, as shown in

Table 4.1, and constructed DNNs using the tflearn library [87]. Then, DNN models

were trained and the prediction results were passed to the optimizer, which selected

parameter values for the next iteration to minimize the prediction error. We summarize

the search space and chosen values for each DNN model used in our experiments in

Table 4.1.

4.2.5 Datasets

We detail how we collected our datasets and categorize the network traffic traces for

different experimental scenarios.

Data Collection.

We used a modified version of Tor Browser Crawler (TBC) [91] and Tor version 0.4.0.8

to collect our datasets. Our modified version of TBC reset the Tor process after each

website visit, but otherwise used the default options. In addition, we used the page

source option provided by Selenium and the Beautifulsoup library to extract the

HTML source code for each downloaded page.

Website Tor traces (WTT).

We collected the WTT dataset with a time gap of one week between batches (We named

this dataset WTT-time). Each batch executed one week after the previous batch. For

the monitored dataset, we collected 10 different batches where each batch collects 100

traffic instances, HTML source code, and screenshots of each of 100 websites. For the

unmonitored dataset, we harvested 10 batches, in which each batch was comprised of

6,000 different Alexa websites ranked between 200 and one million. The collection of

this dataset ran from August through December of 2018, which was long enough to

capture the impact of dynamic web objects in our collection.

Some instances resulted in abnormal HTML files (for example, due to server errors

or network conditions). We noticed that these instances always had HTML files less

than 10KB in length, but since some sites also had normal HTML files below this length,

we filtered out these failures by manually inspecting the screenshot of any instance with

a HTML file of size less than 10KB.

After excluding instances with abnormal capture files or HTML files and sampling

56

uniformly at random from the 10 batches comprising the remaining instances, we ended

up with 300 instances each for 100 websites and one instance of each of 50,000 unmoni-

tored websites. Since we failed to extract HTML files for some websites such as netflix

since the Beautifulsoup library could not parse their HTML document structure, our

final set of 100 monitored websites were selected from the Alexa top 150 sites.

Since Tor encapsulates all data into cells of 512 bytes, we extracted Tor cell se-

quences from the set {1,−1}, indicating that the client sent one cell or received one cell,

respectively, from each website trace. We determined the optimal feature dimension

using hyperparameter tuning, as described in Section 4.2.4.

To evaluate our models with other datasets, we also used Wang dataset, provided

by Wang et al. [7], the “Tor HS dataset”, shared by Hayes and Danezis [9], and the

AWF dataset of Rimmer et al. [4].

Keyword Tor Traces (KTT).

For both monitored and background traces, we used Google search query traffic in-

stances [80], which include 100 instances of each of 100 top-ranked monitored keywords

and 80,000 unmonitored keywords.

Website SSL (Non Tor) Traces (WST).

To collect TLS-encrypted traces, we build a normal Firefox web browser crawler using

Selenium’s web driver after removing the Tor settings in TBC [66]. This set consists of

9,000 instances (90 instances each) of the Alexa top 100 websites for a monitored set

and 9,000 Alexa websites excluding monitored sites for an unmonitored set.

4.3 Feature Extraction

In this section, we demonstrate that DNNs can be used to perform automated, unsu-

pervised feature extraction even for use with traditional classification algorithms.

4.3.1 Features with Autoencoder

An AE is a widely used unsupervised technique for learning data representations and

feature dimensionality reduction, because an encoder network projects the original fea-

ture vector into a lower-dimensional representation. This feature compression can both

57

discover useful features and make classifiers more efficient because their training time

often depends on the dimension of the input data. Previously, Nasr et al. [92] proposed

the use of linear projection algorithms from compressed sensing to enable WF [7] and

flow correlation attacks [93] with reduced storage and computation cost, at a slight

loss in accuracy. In contrast, we use a deep learning framework to do the dimension

reduction, which has previously been shown to be an effective methodology to learn

structural data representations more efficiently, compared to compressed sensing [94].

We trained an encoder and a decoder network and captured feature vectors com-

pressed by the second hidden layer of the encoder network. We also varied the number

of units from 10-100 in this hidden layer to compress the original features into various

low-dimensional representations. We evaluated SVM, k -NN, and k -FP classifiers with

encoded features and reproduced state-of-the-art WF attacks to compare their perfor-

mance. This analysis shows that an AE can learn interesting structure about the data

while reducing its dimension.

We additionally tested a variational autoencoder (VAE) [49, 50] and extracted en-

coded features as explained above; however, we failed to extract meaningful traces.

With VAE features, we achieved 2% TPR for multiclass classification and 3% TPR for

binary classification. While VAEs perform nicely for datasets where the latent space is

continuous, allowing random sampling or interpolation to learn variations on data [95],

website traffic instances are less likely to have a reasonable local density.

A DAE is another type of AE, adopted by Rimmer et al. [4] to prevent overfitting.

By using stochastically corrupted input such as adding noise to the input, a DAE avoids

learning the identity function. Since we did not experience significant overfitting with an

AE and our generated features make the standard classifiers more effective (Table 4.2),

we leave evaluation using a DAE as future work although we acknowledge that it is

another powerful method for feature engineering.

4.3.2 Feature Engineering with AEs

We revisited previous state-of-the-art WF attacks [9, 7, 8] and used features learned by

an AE (AE features) to train k-NN, SVM, and k-FP classifiers. The feature engineering

performed by the authors of these works [9, 8], requires a considerable amount of human

effort such as manually inspecting the traffic pattern and experimentally deciding the

58

Table 4.2: The best performance after 20 iterations (A(n): n AE features, TRT: Train-
ing time, DC: Distance Computation time, m: minutes). We empirically selected n
yielding the best result.

Data Wang WTT-time

Metrics TPR FPR TPR FPR TRT DC

k -NN 90.2 10.3 91.7 26.6 7.3m -

A(80)+k -NN 97.9 2.1 93.7 14.9 1.1m -

k -FP 88 0.5 90.1 5.4 39m 82m

A(100)+k -FP 95.9 1.4 91.3 7.8 1.2m 32m

CUMUL 96.6 9.6 86.9 11.3 84m -

A(80)+SVM 97.6 1.5 91.4 7.8 87m -

Table 4.3: Performance of state-of-the-art machine learning algorithms with AE features
(Dim: feature dimension).

Dim 40 80 100
TPR FPR TPR FPR TPR FPR

k -NN 92±1 15±1 93±1 15±1 92±1 15±1

SVM 88±1 11±1 91±1 7±1 90±1 7±1

k -FP 90±1 8±1 91±2 7±1 91±1 7.8

optimal dimension of feature vectors. Feature extraction based on AEs offers the poten-

tial to automate this process. We used 90 instances of each of 100 monitored websites

and 9,000 background websites in Wang dataset [7] and 300 instances of 100 website

traces and 20,000 unmonitored instances in WTT-time dataset.

We used the classifier implementations of CUMUL [8] and k-FP [9] directly after

removing the feature extraction code. However, since Wang’s implementation of k -

NN [7] is suited to features based on a Tor cell trace, we implemented k -NN using

sklearn.neighbors with weight learning that computes the inverse of the distance

between neighbors to handle AE features, which may not be in {−1, 0, 1}, in a better

manner. For k-FP, we tuned the number of estimators to have the optimal number of

trees finding that dimension 1,000 was best for features suggested by their work [9] and

dimension 100 was best for AE features. We used both 1 and 3 for k.

To understand the effect of AE feature dimension on the performance of classifiers,

we varied the number of units in the hidden layer, which encoded website traffic vectors,

from 10-100. We saved a trained AE model and computed the compressed features on

target data using an encoder network by loading the trained model.

Since the dimension of encoded features was significantly lower than the length of

59

the original input vector, this leads to dimensionality reduction while yielding similar

or better performance. As shown in Table 4.3, we found that the dimension of hidden

units of an AE did not impact the performance of the machine learning algorithms

significantly. Furthermore, the degree of improvement is not proportional to the number

of features since with 100 features, k-NN classifiers yielded slightly worse results than

with 80 features.

In Table 4.2, we also reproduced the results of state-of-the-art WF attacks [9, 7, 8]

using WTT-time and Wang datasets in the open-world setting. For the WTT-time

dataset, we alse report Training time (TRT), which includes feature extraction time,

along with TPR and FPR to show the effect of dimensionality reduction on the com-

putational cost. Since computing all pairwise hamming distances is the most expensive

operation in k-FP, we isolated this time in the table. For both datasets, AE features

outperformed all traditional WF features with much lower computational cost.

For Wang dataset, we achieved lower FPR than k -NN [7] and higher TPR than

k -FP [9] while completely automating the feature engineering.2 In comparison to CU-

MUL [8], we obtained similar results in much shorter training time excluding the feature

extraction (39 minutes vs. 4 hours).

For the WTT-time dataset, k-NN requires seven minutes for feature extraction while

training and testing an AE takes only one minute to generate its features. k-FP takes

36 minutes for feature extraction and 82 minutes for distance computation while k-

FP with AE features reaches similar performance with much lower computational cost.

With k increased from 1 to 3, k-FP with 80 AE features yielded 83% TPR and 4% FPR.

Compared to CUMUL, since the feature dimension is very similar, where we have 80

features for AE and 100 features for CUMUL, training cost is very similar. However,

AE features achieved better performance with 91% TPR and 7.8% FPR.

4.4 Website Classification

In this section, we evaluate the applicability of DNNs to various website fingerprinting

attack goals.

2For Wang dataset, Panchenko et al. [8] reported 89.61% TPR and 10.63% for k-NN and 96.64%
TPR and 9.61% FPR for CUMUL (SVM), and Hayes and Danezis [9] presented 87% TPR and 0.9%
FPR for k-FP when using 4,500 unmonitored fingerprints.

60

Table 4.4: WF with p-FP(M) with 30k monitored dataset and varying size of unmoni-
tored sets (TPR(T), FPR(F), and BDR(B) (%), and H=Tor HS). Note that all results
are based on the confidence threshold tuned to yield higher TPR.

.

Size
Multiclass Binary

T F B T F B

20k 89±1 15±1 90±1 90±1 10±1 94±1

40k 87±1 5±1 90±1 88±1 7±1 93±1

30k(H) 94±2 3 70±1 96±1 0.06 97

Table 4.5: WF with p-FP(C) with 30k monitored dataset and varying size of unmoni-
tored sets (TPR(T), FPR(F), and BDR(B) (%), and H=Tor HS) Note that all results
are based on the confidence threshold tuned to yield higher TPR

.

Size
Multiclass Binary

T F B T F B

20k 95±1 1±1 97±1 95±1 0.007 98±1

40k 93.77 1±1 98±1 94±1 0.009 98±1

20k(H) 98.49 3.69 78±1 98.91 0.18 98.6

4.4.1 Website Fingerprinting on Tor

First, we explore the effect of various experimental settings on the accuracy of DNNs in

WF attacks. Across all experiments, we evaluated both p-FP(M) and p-FP(C) classifiers

in the open-world setting.

Unmonitored Set.

To show the effect of unmonitored set size, we trained p-FP(M) and p-FP(C) classifiers

with the WTT-time dataset, where we have 300 traffic instances of each of 100 monitored

websites and one traffic instance each of either 20,000 or 40,000 background websites.

Increasing the number of unmonitored website traffic instances weakened the per-

formance of both classifiers but not significantly, since we measured 94% TPR and 2%

FPR for p-FP(C) multiclass classification even against 40,000 background sites, giving

BDRs ranging from 97-98% (Table 4.5). Tables 4.4 and 4.5 show that p-FPs are very

successful at open-world WF attacks and in particular, p-FP(C) achieved very low FPR

in predicting whether a trace was monitored or not.

61

0.0 0.2 0.4 0.6 0.8
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

TP
R
an

d
FP

R

tpr_20k
tpr_30k
fpr_20k
fpr_30k

(a) Binary p-FP(M),varying the train-
ing data size

0.0 0.2 0.4 0.6 0.8
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

TP
R
an

d
FP

R

tpr_20k
tpr_30k
fpr_20k
fpr_30k

(b) Multiclass p-FP(M),varying the
training data size

0.0 0.2 0.4 0.6 0.8
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

TP
R
an

d
FP

R

tpr_30
tpr_50
tpr_80
fpr_30
fpr_50
fpr_80

(c) Binary p-FP(C),varying training
epochs

0.0 0.2 0.4 0.6 0.8
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

TP
R
an

d
FP

R

tpr_30
tpr_50
tpr_80
fpr_30
fpr_50
fpr_80

(d) Multiclass p-FP(C), varying train-
ing epochs

Figure 4.1: WF evaluation using 40k unmonitored set(a,b), and using 300 instances of
each of 100 monitored sites (c,d).

62

Monitored Set Size.

We also evaluated both p-FP(M) and p-FP(C) when using 200 and 300 instances each of

100 monitored sites. While going from 20,000 monitored instances to 30,000 monitored

instances did not have a noticeable effect on the results of p-FP(C), increasing the size of

the monitored set somewhat improves the results of p-FP(M) as shown in Figures 4.1a

and 4.1b.

Number of Training Epochs.

More epochs improve the quality of classification for both models, as presented in Fig-

ure 4.1c and 4.1d. However, after 50 epochs, both TPR and FPR started to decrease.

Thus, we chose 50 epochs as the optimal number of epochs to train p-FP(C) models.

Dataset.

To explore the effect of different datasets on the performance of p-FP classifiers, we

also used the Tor HS dataset 3 ((H) in Tables 4.4 and 4.5). Both classifiers performed

more effectively with 94-98% TPR and 3-4% FPR. These results suggest that p-FPs can

achieve very low open-world FPR regardless of the monitored set, but some monitored

sets will result in better TPR than others.

Confidence Threshold.

The confidence threshold represents the reliability of decisions by classifiers. We applied

confidence thresholds ranging from 0 to 90% (0 corresponds to argmax) to the prediction

probabilities of our classifiers, and evaluated both classifiers using both 20,000 and

30,000 monitored traces with 40,000 background traces. As expected, we found that

increasing the confidence threshold reduced the number of confident TPs, which lowered

TPR, and increased the number of TNs, which decreased FPR (Figure 4.1).

Network Architecture.

As shown in Tables 4.4 and 4.5, p-FP(C) performed much better across all sizes of back-

ground sets and both classification tasks. In particular, p-FP(C) yields very low FPR in

the WTT-time dataset. More interestingly, p-FP(C) exhibits much better performance

for multinomial classification; the number of TPs does not change significantly if we

switch the classification task from binary to multiclass classification. In other words,

3Comprised of 90 instances each of 30 onion services and 30,000 background website traces

63

with p-FP(C), the number of confusions between monitored classes decreases.

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.7

0.8

0.9

1.0

TP
R

SDAE
DF
PFP(C)

(a) ROC

0.8 0.9 1.0
Recall

0.85

0.90

0.95

1.00

1.05

Pr
ec

isi
on

SDAE
DF
PFP(C)

(b) Precision-Recall Curve

Figure 4.2: Comparison to SDAE and DF using 300 instances of each of 100 websites
and 40k unmonitored traces in WTT-time dataset.

Prior Work.

We also trained and evaluated SDAE [4] and DF [2] networks using the WTT-time

dataset, to compare their performance. Although Rimmer et al. also evaluated WF

using CNN and LSTM networks, we only evaluated their SDAE architecture since it

achieved the best performance in open-world experiments in their paper [4]. As shown

in Figures 4.2a and 4.2b, DF outperformed SDAE and p-FP(C). p-FP(C) produced very

low FPRs (high precision) even for lower confidence thresholds, with FPRs of 0.008%

for p-FP(C) vs. 14.29% for DF and 15.88% for SDAE. However, the TPR of p-FP(C)

was significantly lower compared to other attacks, with a TPR of 74.84% for p-FP(C)

vs. 97.59% for DF and 86.75% for SDAE. This means that with very high confidence

thresholds – greater than 0.96 – p-FP(C) predicts that more monitored samples are

unmonitored. With a much larger dataset, the degree of drop in TPR would be reduced,

however, we leave detailed investigation of the tradeoff between network architecture

and required dataset size for future work.

Summary.

p-FP classifiers have been shown to be effective for WF across the different experimental

scenarios; compared to related work, although p-FP shows less stable performance than

DF, it yields lower FPR across different types of monitored dataset.

64

4.4.2 Search Query Fingerprinting on Tor

We study the more fine-grained classification ability of DNNs by applying them to

KF, which fingerprints Google search query traces over the Tor network. We used 100

instances of each of 100 monitored Google keywords and 10,000 background keyword

traffic instances in the KTT dataset; we also used two feature sets, RESP traces (defined

below) and Tor cell traces.

Table 4.6: KF with p-FP(M), and p-FP(C) using RESP and cell traces. ((b):binary
classification, (m):multiclass classification)

Metrics RESP(C) RESP(M) Cell(M)

TPR(b) 86±1 88±1 59±2

FPR(b) 5 5±1 11±2

BDR(b) 95 95±1 85±2

WMacc(m) 22±1 27±1 22±1

BDR(m) 59±2 63±1 50±1

Features.

RESP features are extracted from the “response portion” of a Tor trace, defined as

the largest sequence of incoming packets, and in previous work, oh2017fingerprinting

et al. [80] extracted the sequence of cumulative sizes of TLS records from the response

portion. In this work, we ignored the cumulative setting because it gave us lower

accuracy.

Since oh2017fingerprinting et al. [80] found that RESP-based features improved the

performance of KF attacks using SVMs, we explored whether this is true with p-FPs.

Compared to Tor cell traces, Table 4.6 shows that RESP features substantially enhanced

the p-FP(M) classifiers’ performance. Furthermore, with RESP features, we achieved

better performance (88% TPR and 5% FPR) than svmResp [80] in binary classification

since svmResp yielded 82.6% TPR and 8.1% FPR. RESP features rather than cell traces

help DNNs do better KF classification.

Top-K Analysis.

Compared to binary classification, multinomial classification results using p-FP classi-

fiers were not as powerful, as shown in Table 4.6. To further investigate the performance

of multiclass classifiers, we conducted top-k analysis. When using the top 5 analysis,

65

MLP classifiers achieved higher WMacc than svmRESP [80] (62% vs. 55%).

(a) p-FP(M) (b) p-FP(C)

Figure 4.3: KF(RESP) with p-FP(M) and p-FP(C) by varying the confidence threshold

Confidence Threshold and Network.

As expected, increasing the confidence threshold deteriorates the performance of both

classifiers. p-FP(C) also exhibits larger standard deviation with high confidence thresh-

olds than p-FP(M). One possible explanation for this is that since there is much less

distinction power between keyword traces, fewer local patterns are learned by filters,

making CNNs a less ideal choice for this task. However, this bottleneck can be improved

with more training data, which would make the prediction results more consistent across

different portions of the dataset.

Summary.

As opposed to general WF, researcher-selected RESP features enhance the performance

of p-FP classifiers for KF, and using top-k analysis, p-FP classifiers provide better KF

results than prior work [80]. However, there is still room for improvement in KF by

discovering different features or training other types of networks, which we leave as

future work.

4.4.3 WF with TLS Proxies

We evaluated both p-FP(M) and p-FP(C) classifiers for WF attacks on TLS-encrypted

traces using Firefox, to simulate the use of a TLS proxy. We experimented with several

66

Table 4.7: p-FP(C) performance using sequence of TCP packet sizes(TC) and TLS
record sizes(TL) after being sorted by time (1: Top1, 3: Top3, T:TPR(%), F:FPR(%)).

Binary Multi
TC(1) TL(1) TL(3) TC(1) TL(1) TL(3)

T 93±1 93±1 96±1 93±1 93±1 96±1

F 4±1 3 1 5±1 4±1 1

trace representations for this task.

Packet Direction.

We extracted the sequence of TCP packet directions from each trace, with entries of

-1 for incoming packets, and 1 for outgoing packets; traces shorter than the minimum

length were padded with 0 entries. This resulted in 82.9% TPR and 6.8% FPR for

binary classification and 82.6% TPR and 8.4% FPR for multiclass classification using

p-FP(C).

TCP Packet Sequence.

We also evaluated a representation based on the size and direction of TCP packets,

sorted based on transmission time, resulting in the column labelled TC in Table 4.7.

TLS Record Sequence.

We also extracted the sequence of TLS record sizes and directions and sorted it based

on the transmission time, resulting in the columns labeled TL in Table 4.7). As shown

there, this representation achieved almost the same results as with TCP packet-based

features when differentiating between the Alexa top 100 websites.

MLP vs CNN.

We further evaluated p-FP(M) classifiers using all representations discussed above, how-

ever, they failed to yield better performance than p-FP(C). Compared to Tor trace WF,

p-FP(C) is a much better model to fingerprint TLS-encrypted network traces since CNNs

produce stronger representations of the step by step interactions in website downloads

based on the local input patterns in TLS-encrypted traffic.

Summary.

Filters in p-FP(C) successfully learn patterns related to the size of TCP packets and TLS

67

records. However, the performance of p-FP(C) for this task was surprisingly lower than

the results against Tor traces due to the use of a smaller dataset. We leave evaluation

on larger datasets for future work.

4.4.4 WF on Tor with WF Defenses

We evaluated p-FP classifiers against several recent WF defenses: BuFLO [15], Tama-

raw [16], WTF-PAD [17], and Walkie-Talkie [79]. This study helps to understand how

automated feature learning by DNNs is impacted by recent WF defenses. We used Wang

dataset and the WTT-time dataset consisting of 300 instances of each of 100 websites

and applied each defense to those datasets to generate defended network traces. We

further evaluated DF [2] on those defended traces for comparison.

Table 4.8: p-FP(M) and p-FP(C) performance against BuFLO(B) and Tamaraw(T) (T:
Top n accuracy and all metrics are %) For bandwidth overhead, BuFLO-Wang=217%,
Tamaraw-Wang=181%, BuFLO-WTT=179%, and Tamaraw-WTT=175%. Note that
for undefended WTT-time dataset, we measured 90% using p-FP(M), 91% using p-
FP(C), and 96% using DF, and for undefended Wang dataset, we got 86% using p-
FP(M), 92% using p-FP(C), and 96% using DF.

p-FP(M) p-FP(C) DF

WTT Wang WTT Wang WTT

T B T B T B T B T B T

1 9 15 16 16±1 17 13 15 7 15 11

2 14 23 19 29±1 22 21±1 24 12 22 18

After hyperparameter tuning, we built the optimal CNN architecture using one con-

volutional layer, followed by two fully-connected layers, to fingerprint defended traces.

Note that it is a different architecture than used in Sections 4.4.1, 4.4.2, and 4.4.3.

BuFLO/Tamaraw.

Due to padding, traffic instances captured under WF defenses result in longer cell traces:

for p-FP(M) classifiers and Wang dataset, we used 20,164- and 15,129-dimensional fea-

ture vectors for BuFLO and Tamaraw, respectively; for CNN classifiers and Wang

dataset, we used 30,000- and 25,000-dimensional feature vectors. For the WTT-time

dataset, we always use 10,000-dimensional features in p-FP and 5,000-dimensional fea-

tures in DF. In Table 4.8, we show the performance of classifiers using Wang and

68

WTT-time datasets in the closed-world setting, following the analysis of Hayes and

Danezis [9].

Table 4.9: Top-1 accuracy of p-FP(C) for varying parameters in BuFLO (minimum
padding time τ , interpacket interval ρ (seconds)) and Tamaraw (padding length multiple
(padL)) using Wang dataset. Note that BO is bandwidth overhead and all numbers
are %.

(a) BuFLO

min. padding time τ (s)

ρ (s) BO 10 50 100

0.02 434 15.59 10.53 5.62

0.03 290 18.58 12.15 6.02

0.04 217 20.16 11.98 5.37

(b) Tamaraw

padL BO Acc

100 181 15.66

1000 248 5.61

1500 284 3.14

For Wang dataset, as shown in Table 4.8, p-FP and DF classifiers performed much

better than other WF attacks against Tamaraw [9]. This demonstrates that padding-

based defenses are not able to completely defeat WF using deep learning, which en-

ables more sophisticated and automated feature analysis. All three classifiers performed

slightly worse than k-FP [9] against BuFLO, while still significantly outperforming ran-

dom guessing. In particular, despite padding at a constant rate, both defenses still

expose some information about statistics such as the total size of TCP packets, which

is learned by DNN models and results in increased accuracy (16-29%) especially against

Tamaraw. For both Wang and the WTT-time datasets, Top-1 analysis of p-FP(C)

shows slightly better performance than DF.

We also varied the parameters used in BuFLO and Tamaraw to study their impact

on the classifiers. For BuFLO, we varied minimum padding time (τ) and packet interval

(ρ) of dummy packets in Table 4.9a, and for Tamaraw, we explored different padding

multiples (L), with fixed outgoing and incoming padding intervals of 0.04 and 0.012, as

shown in Table 4.9b. As expected, longer padding length and padding time decrease

the accuracy, however, even with 100 seconds padding time in BuFLO and padding

multiple 1500 in Tamaraw, the accuracy of p-FP(C) still exceeds random guessing.

WTF-PAD.

We evaluated p-FP(C) against WTF-PAD using the defended WTT-time dataset after

applying WTF-PAD with normal fits [17]. Although we followed the configuration

69

Table 4.10: The performance of p-FP(C) classifiers against WTF-PAD. For Top k anal-
ysis, we chose the confidence threshold yielding optimal accuracy (Bandwidth over-
head=37.7%).

DF p-FP(C)

Topk Undef Def Undef Def

Top1 96±1 93 91 57±1

Top2 97±1 95 94 62±1

that yielded the lowest accuracy in that work, this distribution might not be the ideal

setting for our dataset since the overhead was lower than in the original work. We

leave further investigation of the impact of these settings to future work. According

to Sirinam et al. [2], DF achieved accuracy around 91% against WTF-PAD; Table 4.10

shows consistent results with the defended WTT-time dataset as well. DF yielded 93%

accuracy while p-FP(C) achieved 57% accuracy. The quality of prediction by both

DF and p-FP(C) is much higher than against BuFLO and Tamaraw since WTF-PAD

exposes the original sizes of most bursts and these remaining traffic patterns are learned

by the CNN’s filters.

Table 4.11: The performance of p-FP classifiers against Walkie-Talkie. For Top (T) k
analysis, we chose the confidence threshold leading optimal accuracy. Note that Undef
means traces, collected without the defense and Def indicates traces, collected under
the defense (Bandwidth overhead=24.8%).

DF p-FP(M) p-FP(C)

Topk Undef Def Undef Def Undef Def

T1 86 45±1 81±1 49±1 82±1 48±1

T2 93 66±1 89±1 56±1 83±1 56±1

Walkie-Talkie.

Using the dataset provided by Wang and Goldberg [79], we trained and tested p-FP and

DF against Walkie-Talkie. Table 4.11 shows that even though Walkie-Talkie reduced the

accuracy of the DF and p-FP classifiers, both classifiers outperform previously known

attacks [79]. More surprisingly, both classifiers can reach accuracy of nearly 50% with

confidence threshold 0.5. Compared to DF, although p-FP achieved lower accuracy

70

than DF for undefended traces, p-FP had slightly higher Top-1 accuracy against Walkie-

Talkie (49% vs. 45%).

Combined with the WTF-PAD results, these experiments show that defenses based

only on concealing burst patterns do not sufficiently mitigate against DNN-based WF

attacks, and more research is needed to design light-weight defenses for these attacks.

Summary.

p-FP classifiers perform more effectively against light-weight defenses than against

padding-based defended traces. Compared to DF, p-FP classifiers show comparable

or slightly better performance against BuFLO, Tamaraw, and Walkie-Talkie while DF

is still the most successful attack against WTF-PAD.

4.5 Fingerprintability Prediction

As noted previously, websites exhibit varying levels of fingerprintability; since DNN

models are particularly powerful fingerprinting tools, we revisit the question of what

features influence fingerprintability by these classifiers. Although Overdorf et al. [81]

previously found that the fingerprintability of website traffic instances is primarily af-

fected by the size of websites, our analysis focuses on discovering website design fea-

tures that impact open-world fingerprintability by DNNs. This analysis may also lead

to lighter-weight WF defenses based on safer website design principles.

4.5.1 Dataset and HTML Features

To construct a dataset for FP prediction, we downloaded 29,000 HTML document files

from 100 websites ranked in the Alexa top 150, and then extracted the following HTML

features from these files:

Links and Domains.

First, we fetched all links and extracted features based on the number of links and do-

mains in a site’s HTML DOM. In particular, due to popular usage of Content Delivery

Networks (CDNs) and cloud platforms, websites contain many links to resources hosted

by these services. In order to show the impact of these links, we extracted the number of

71

links to third party websites. This feature helps understand whether or not download-

ing web objects (or content) from different web servers makes the network-level traffic

pattern more identifiable than when all downloads occur from a single web server.

Tag Paths.

We also extracted features about each site’s tag paths as a measure of the site’s design

complexity. We built the tag paths for a site by scanning a site’s DOM and iteratively

adding a tag to the current path if it was nested. For example, for a document consisting

of tags < html >< body >< a >< /a >< b >< /b >< /body > < /html >, there

are 4 tag paths, < html > (depth=1), < html >< body > (depth=2), < html ><

body >< a > (depth=3), and < html >< body >< b > (depth=3). Based on this

computation, we extracted numerical features including the number of tags in each tag

path, the frequency of increase or decrease in the size of tag paths, and the depth of tag

paths. Including these features captures the complexity of HTML document structure

and allows us to investigate its impact on the fingerprintability of the website.

Tags and Other Elements.

The size of an HTML DOM as well as the website can be estimated based on features

computed from the number of tags, attributes, and comments, and the number of char-

acters and words in data and style attributes. We extracted these features to validate

the relationship between the size of a site’s HTML DOM and the fingerprintability of

the website.

Embedded Files.

Different types of files are embedded in an HTML DOM and the network traffic associ-

ated with fetching those resources may influence the website’s vulnerability against WF

attacks. Based on the finding that all image and video contents are nested in an img tag,

we computed the number and the proportion of image and video files and furthermore,

we identified specific file extensions to obtain counts and proportions (e.g., jpg, gif, ico,

html, etc.). Since these features impact the size of websites, this analysis contributes to

a more detailed understanding of the impact of website size on the fingerprintability.

In all, we extracted 62 total features (list in Appendix D in the paper [1]), named

HTML features, from the DOM of each site and we normalized the data by computing

the rank for each feature by looking at each column in the matrix.

72

For example, if we had 3 instances, [[3,19,10], [7,10,201], [17,7,25]], we converted

those features into the rank information, [[1,3,1], [2,2,3], [3,1,2]] and used these vectors

as the inputs to classifiers to determine whether a website is fingerprintable. Note that

we used the ratio 50:50 for training and testing set and did such partitioning before we

compute the rank for each feature in both sets. For instance, after constructing training

and testing data, we replaced each non-normalized feature with its rank in the training

or testing set, respectively.

4.5.2 Predicting Fingerprintability

We evaluated the how the ability of DNNs to fingerprint a website was influenced by

our new task-specific feature set based on a site’s HTML DOM.

Fingerprintability Score.

Fingerprintability is a measurement of the vulnerability of a website to fingerprinting

over Tor. In this section, our goal is to predict, from its HTML features, whether the

Tor network trace of a website w will be fingerprintable by the classifier c. To measure

the fingerprintability, we compute the accuracy of each website w by training and testing

the classifier c using 300 instances each of the 100 top-ranked Alexa web sites, and a

single instance each of 20,000 and 40,000 background websites. We used 10 iterations,

where each iteration randomly selects training and testing data with the ratio 60:40.

Then, based on the WF results of c, we computed the fraction of instances of each site

labelled as True Positives as the fingerprintability of the site.

For choices of c, we used k-FP [88], p-FP(M) and p-FP(C), using the same Tor

network trace features for all classifiers. If we choose p-FP(C) as c for WF, we derive

the FP score by training and testing p-FP(C). If we choose others, we computed the

score using that classifier. Thus, we evaluated each classifier independently to show how

its fingerprintability was influenced by our features.

Predicting Fingerprintability

After we calculated the score for each w, we labelled the 62-dimensional HTML feature

vector for each visit to w, discussed in Section 4.5.1, with either 1 or 0, depending on

whether the corresponding website’s accuracy was greater than a threshold value tfp

(in other words, whether the website is at least tfp-fingerprintable) or not, respectively.

73

Table 4.12: Top 15 HTML features based on the Gini importance when using p-FP(M).
(c) means common top features, which also appear in p-FP(C) top features (Table 4.13).

.
Rank Top 15 Features

1 total number of avi files in HTML DOM

2 (c)proportion of ico files in HTML DOM

3 (c)total number of ico files in HTML DOM

4 proportion of image tags over all tag paths

5 (c)total number of links from same domain

6 (c)min depth of tag paths

7 (c)total number of min depth in tag paths

8 (c)std of number of unique tags per a path

9 proportion of html files in HTML DOM

10 median of number of unique tags per a path

11 total number of unique domains in links

12 total number of domains in links

13 proportion of js files in HTML DOM

14 total number of mp3 files in HTML DOM

15 (c)total number of links

For instance, when the threshold is 30%, the websites whose accuracy is greater than

30% were labeled more fingerprintable and those with an accuracy less than 30% were

labeled less fingerprintable.

Finally, we attempted to train both MLP and CNN classifiers to predict tfp-fingerprintability

given the normalized HTML features of a site. We used a 50 : 50 ratio to build training

and testing HTML datasets, which were randomly sampled every epoch for 50 epochs.

Unfortunately, the success of DNN classifiers led to an imbalanced number of instances

for each class (fingerprintable and not fingerprintable). Across different FP thresholds,

the level of imbalance varies but was always present to some degree; even with thresh-

old 90% only 2,030 out of 14,500 training examples were labelled “less fingerprintable.”

Furthermore, we closely looked at two groups of HTML feature vectors whose finger-

printability score was less than 90% (less) and greater than 90% (more). Most feature

vectors in the less group had accuracy around 80% and the webpage design features in

both groups did not have much statistical difference. As a result, we were not able to

train a classifier to make useful predictions with this data set.

74

Table 4.13: Top 15 HTML features based on gini index when using PFP(C). Note that
(c) means common top features, which appear in PFP(M)’s top 15 features (Table 4.12).

Rank Top 15 Features

1 (c)total number of links

2 total number of characters in attribute

3 (c)total number of ico files in HTML DOM

4 toal number of css files in HTML DOM

5 portion of jpg files in HTML DOM

6 (c)proportion of ico files in HTML DOM

7 (c)min depth of tag paths

8 (c)total number of links from same domain

9 total number of max depth in tag paths

10 total number of image tags in HTML DOM

11 total number of positive direction in tag paths

12 total number of js files in HTML DOM

13 (c)std of number of unique tags per a path

14 sum of number of unique tags per a path

15 (c)total number of min depth in tag paths

Table 4.14: Most Informative features (F) appearing in both p-FP(M) and p-FP(C),
and average value of each feature for more fingerprintable (Accuracy ≥ 98%), and less
fingerprintable (Accuracy ≤ 35%) websites. Refer to Appendix D of the paper [1] for
the description of each feature index in columns.

F-Index 1 2 11 19 25 47

≥98% 52258 45999 2137 1450 1450 580

≤35% 489427 439476 725 870 870 1749

75

(a) p-FP(M) (b) p-FP(C)

Figure 4.4: The feature importance of the fingerprintability prediction for p-FP(M) and
p-FP(C) with the FP threshold (tfp) 70, 80, and 90%.

76

Informative Features.

Instead, to gain insight into how more- and less-fingerprintable websites differed in

their HTML features, we computed the Gini importance of each HTML feature for each

website’s tfp-fingerprintability score. Gini importance [96], also called Mean Decrease

in Impurity, is widely used as a feature importance measurement. For each feature, the

importance score is computed as the sum over the number of splits across all trees in

an ensemble that includes that feature. The improvement in each split criterion at each

split is the importance score and it is accumulated over all trees for each variable. To

investigate which of our design-level features was most informative, we used Random

Forests using the scikit-learn library with importance score derived by the total decrease

in node impurity, averaged over all trees in the ensemble. Figure 4.4 shows that many of

the same important features appeared in common across different accuracy thresholds.

To summarize those informative HTML features, we computed the sum of the scores

for each feature and selected the top 15 features for predicting fingerprintability by

p-FP(M) in Table 4.12 and p-FP(C) in Table 4.13.

There are several top features that appear in predicting fingerprintability by both

p-FP(M) and p-FP(C). For each of these features, we accumulated these feature values

and averaged them for two groups of sites, one with accuracy less than 35%, and the

other with accuracy greater than 98%. The total number of links (feature 1), total

number of third-party links and links pointing to webpages within the same domain

were the most important features. As shown in Table 4.14, these features indicate that

less fingerprintable websites carry more embedded web objects and involve traffic re-

layed to third party websites, which renders the resulting download traffic pattern less

distinguishable. In addition, the structure of the webpage, which is represented by tags

and tag paths (features 11, 19, and 25), is also among the most informative features

for both classifiers. More fingerprintable websites have more complicated webpage de-

sign structure than less fingerprintable ones. All of these top common features highly

influence fingerprintability across different FP thresholds and classifiers, as shown in

Figure 4.4. These results provide a more detailed view of fingerprintability than the

observation by Overdorf et al. [81] that smaller websites are harder to fingerprint.

77

WF Defenses.

The ability to predict fingerprintability based on document features suggests a new ap-

proach to defense for privacy-aware developers. Based on the most informative features

for FP prediction, we can guide developers in designing websites more resistant against

traffic analysis by suggesting “safe” ranges for these features. This could prevent the

website from leaking the web browsing activity of vulnerable users, or help onion services

to better conceal their location.

Chapter 5

Data-Limited Traffic Analysis

More recent work has sought to apply methods from Deep Learning to automate the

process of selecting classifiers and extracting features from a network trace [97, 1, 4, 2].

By training classifiers on a much larger data set, using raw traffic traces, and applying

techniques to search for the best classifiers within a set of models, this work has led to

the discovery of classifiers with over 95% accuracy, and which automatically perform

feature extraction without requiring prior domain knowledge.

Attaining superior classification performance with these models, however, is only

feasible when using a huge training set, such as 800 samples per site. As Juarez et

al. [52] pointed out, most websites are regularly updated and modified, requiring the

attacker to frequently collect new training traces for each site. This leads to questions

about the feasibility of WF attacks for all but the most powerful attackers.

To demonstrate that WF attacks are a serious threat that even less powerful ad-

versaries can use to undermine the privacy of Tor users, researchers have further inves-

tigated more advanced deep learning models that can be optimized in scenarios with

limited amounts of training data. Var-CNN [11] adapts the ResNet [98] network model

with dilated convolution for traffic analysis with relatively smaller training sets. Triplet

Fingerprinting (TF) [10] applies triplet networks with N-shot learning to learn a WF

feature extractor that can be used for classification with only a few training samples.

In this chapter, we pursue the same objective, data-limited fingerprinting, but using

generative adversarial networks (GANs) to achieve even better performance for realistic

low-data training. Compared to previous work [11, 10], our approach is more efficient,

78

79

requiring fewer samples than Var-CNN, and offering better performance than TF with-

out the need for pre-training.

To support training with limited data, we propose the novel GANDaLF architecture,

which leverages a small amount of labeled data and a larger unlabeled set to train two

networks, a generator and a discriminator. In our setting, the generator is trained

to convert random seeds into fake traces from the same statistical distribution as the

training data, while the discriminator is trained to correctly classify the labeled data

while also discriminating between real traces and fake traces output by the generator.

To the best of our knowledge, this represents the first application of semi-supervised

learning using a GAN in a WF attack. We show that the GANDaLF approach leverages

the generator as an additional source of data to help improve the performance of the

discriminator, which enables WF to be effective even in low-data settings.

In addition, our work is the first to examine the performance of low-data WF attacks

in a more realistic WF scenario, in which users visit both index and non-index webpages.

We present how the generator effectively generates fake traces resulting in a better

discriminator (that is, classifier) even when the intra-class variance is much larger than

in the standard WF scenario. Note that this second scenario makes GANDaLF more

promising, especially when the corpus of site subpages is enormous and requires some

limited selection of training subpages. We show that the discriminator can be trained

even with very few subpages and work even on previously unseen subpages.

We summarize our contributions as follows:

• WF with GANs. Ours is the first study to investigate the applicability of semi-

supervised learning with GANs to WF models. In this chapter, we introduce

GANDaLF, an extension of the SGAN model of Saliman et al. [99] that is opti-

mized for website fingerprinting. Our modifications include adding deeper gener-

ator and discriminator networks, applying regularization techniques in a different

way, and adopting improved feature matching loss [100]. In addition, we empiri-

cally study the choice of hyperparameters and investigate the optimal labeled and

unlabeled data settings that result in a more effective WF attack.

• Subpage Fingerprinting Study. We study the applicability of GANDaLF and

other recent data-limited WF attacks to two WF scenarios, WF with index pages

80

(WF-I) and WF with both index and non-index subpages (WF-S). Although other

researchers [82, 80] have explored WF-S in the past, to the best of our knowledge,

our study is the largest subpage fingerprinting analysis to date and sheds light

on the potential of GAN-based fingerprinting. In particular, using the largest

website subpage dataset, we revisited state-of-the-art WF classifiers, including

traditional machine-learning-based WF, deep-learning-based WF, and more re-

cently published data-limited fingerprinting techniques in both the closed- and

open-world scenarios.

• Enhanced Low-Data Training. In our closed-world lowest data setting using

five instances, GANDaLF outperforms Var-CNN [11] by a +40% margin in the

WF-I scenario. Even though TF becomes more powerful using five instances in the

closed-world WF-I scenario, TF performed poorly in the open-world setting, show-

ing that using the generator of GANDaLF as another data source of “monitored”

traces may lead to better generalization in a real-world scenario than the label-

based pre-trained network used in TF. Besides the performance improvement,

GANDaLF has significant advantages over TF. Unlike the pre-training approach

of TF, which still requires regular collection of a large labeled dataset, GANDaLF

uses unlabeled data that can often be collected from the same vantage point as

used to collect data for the attack itself by running a Tor guard or middle node.

In the WF-S scenario, GANDaLF outperforms both Var-CNN and TF in all set-

tings by +20-30% and +16-43% margins, respectively. However, we found that

k-FP becomes more effective using more limited training data (i.e., 5-20 instances)

and in the open-world setting, since feature engineering based on packet statistics

is better able to handle large intra-class variance in our subpage dataset. We show

that manual feature engineering is helpful in WF-S, while GANDaLF outperforms

all other DL-based classifiers.

5.1 Related Work and Bakground

In this section, we discuss recent WF models based on advanced DNN techniques that

specialize in maximizing performance in low-data scenarios and GANs we leveraged to

develop GANDaLF.

81

(a) Vanilla GANs (b) Semi-supervised learning with
GANs

Figure 5.1: Generative adversarial networks (GANs).

5.1.1 Low-Data WF

The AWF and DF models were trained using hundreds of samples for every website in

the monitored set. Sirinam et al. noted that collecting such large datasets would require

an attacker to run between 8-24 PCs continuously [10], where the dataset needs to be

refreshed every few weeks at least to maintain high accuracy [52, 3]. Given this, one can

criticize the attacks as being unrealistic except for powerful adversaries who could use

the resources to instead perform other attacks on Tor. To address this, researchers have

begun focusing on the design of WF attacks that overcome the cost and time to obtain

training data. Two recent works [11, 10] focus on the optimization of DNN architectures

to achieve state-of-the-art performance when few fresh samples are available for training.

These attacks allow hypothetical adversaries to quickly apply ready-to-use models, even

when subjected to such constraints.

Var-CNN.

To achieve comparable classification performance in low-data scenarios, Bhat et al. [11]

introduced Var-CNN, an optimized DNN architecture based on ResNet [98] with dilated

causal convolutions. They also proposed to combine direction and timing information

together. Those improvements enabled their model to get 97.8% accuracy using just

100 training instances per website across 100 websites.

82

Triplet Fingerprinting.

To achieve high performance with as few fresh training samples as possible, Sirinam et

al. [10] pursued the concept of N-shot learning with their Triplet Fingerprinting (TF)

attack. For this attack, the adversary first pre-trains a feature extractor using large,

publicly available training sets such as the AWF dataset [3]. The feature extractor is

trained to produce a vector as output that captures the feature information in a way

that minimizes the distances between traces from the same website and maximizes the

distances between traces from different websites. Using the features derived from this

feature extractor, a small dataset of fresh samples are then used to train and test a

simple distance-based classifier, such as k-NN. This attack was shown to reach 94%

accuracy when only using 10 instances per website to train the classifier.

Although Sirinam et al. addressed the problem of data-limited fingerprinting, it re-

quires pre-training a model using a large labeled training dataset. While such datasets

are available, such as the AWF dataset collected in 2016, Sirinam et al. found a signif-

icant loss in performance when using data from three years before [10]. It is likely that

the attacker would still need to regularly update the labeled dataset to maintain a high

performance level. In contrast, GANDaLF uses a large unlabeled dataset. This dataset

can be obtained by eavesdropping on potential victims from the same vantage points as

used to perform the attack. For example, the attacker could run a Tor guard or middle

node or use malware to compromise the DSL modems through which users connect to

the Internet. From these vantage points, they can collect unlabeled data to train the

GAN as well as the data for performing the actual WF attack, without significant ad-

ditional cost. As such, to properly update WF models using a fresh dataset, the use of

unlabeled data can make WF attacks more portable while keeping high performance.

5.1.2 WF with Subpages

For the majority of the experiments performed in the aforementioned works, researchers

have used a website’s index page to represent the site (e.g. going to http://www.

cnn.com/ by typing it into the browser’s URL bar). This attack strategy limits the

applicability of the attack as it severely limits the amount of traffic instances that may

be viably fingerprinted in the real-world. Panchenko et al. were the first to identify this

issue [82]. An attacker would be interested to instead identify a website using traffic

http://www.cnn.com/
http://www.cnn.com/

83

samples generated from any webpage on the site (e.g. news stories on CNN.com reached

by following links from the homepage or social media). In this scenario, the attacker

can use both index pages and non-index pages (also referred to as subpages) for website

identification. To distinguish between these settings, we use the phrases WF with index

pages (WF-I) and WF with subpages (WF-S).

When Panchenko et al. first studied this scenario, they used a small dataset of 20

websites, each represented by 51 subpages, for which up to 15 samples were collected

(i.e. 20x51x15). In this chapter, we extend this study further by collecting a larger

dataset of size 24x90x90 and perform a thorough comparison of WF attacks in this

setting.

Tangentially, Oh et al. studied the fingerprintability of keyword search queries for

popular search engines when visited over the Tor network [101]. This work is similar to

that of WF-S, since the webpage generated by each keyword search query represents a

unique subpage of the search engine website domain. Our work is different, however,

in that each search term’s subpages are identified as their own class, allowing for the

identification of individual pages within a domain. For non-search cases, this would be

equivalent to trying to classify the subpages separately (e.g. https://www.cnn.com/

politics as different from https://www.cnn.com/business) instead of as members of

the same class (e.g. for CNN.com in general). We use the term subpage identification

to describe this type of attack scenario. For this chapter, we have limited our study to

WF-S and do not explore subpage identification.

5.1.3 Generative Adversarial Networks

Generative Adversarial Networks (GANs) were first introduced in 2014 by Goodfellow

et al. for creating images [102]. Figure 5.1a depicts a vanilla GAN, which consists of two

components: a discriminator and a generator. The discriminator is a two-class classifier

that is trained to distinguish between real data samples and fake data samples that are

generated by the generator. The generator is trained to create those fake data samples

in a way that is as hard to distinguish from the real samples as possible. If both models

are successfully trained, the generator will become good at producing samples that are

indeed very similar to the original data distribution, such as realistic-looking images.

The discriminator uses a mostly standard convolutional neural network (CNN) that

CNN.com
https://www.cnn.com/politics
https://www.cnn.com/politics
https://www.cnn.com/business
CNN.com

84

takes the image as input and outputs a single value in the range [0, 1) that can be

interpreted as a measure of how real the input image is, i.e. the likelihood that it comes

from the distribution of real data, pdata(x). The generator, on the other hand, is given a

noise vector pz(z) as input and effectively operates as a reverse CNN, repeatedly using

a method called deconvolution to transform the noise into image features and create an

output in the shape of an image.

The vanilla GAN thus alternately minimizes two different loss functions to achieve

these two different goals:

min
G

max
D

Ex∼pdata(x)[logD(x)]+Ez∼pz(z)[log(1-D(G(z)))]

In words, the discriminator, D, is trained to maximize the probability of assigning the

correct label to both original and reconstructed samples from the generator, G, while

G is trained to minimize log(1−D(G(z))).

5.2 Datasets

In this section, we discuss the details of the datasets used for our attack evaluation in

Section 5.5. The datasets we use are organized into two different types: index-page only

data for use in WF-I, and datasets containing a mix of subpages to be used for WF-S.

5.2.1 Index Webpage Set

For the WF-I scenario, we use the large datasets collected by Rimmer et al. in 2016 [3].

To the best of our knowledge, they provided the largest dataset, comprising 2,500 in-

stances of each of 900 monitored websites and 400,000 unmonitored websites. The sites

were chosen among top Alexa websites [103].

To produce the dataset used for our evaluations, we chose 200 websites randomly

sampled from their monitored dataset. We further partitioned this data into two distinct

sets containing samples for 100 websites each, which we denote AWF1 and AWF2.

For our WF-I experiments, we use AWF1 as our monitored dataset and use the AWF

unmonitored dataset (AWF-OW) as is. We then use the AWF2 dataset to act as the

unlabeled dataset when training GANDaLF. This is also the dataset we use to pretrain

the TF attack. Furthermore, to investigate the impact of labeled data and unlabeled

data on the performance of GANDaLF , we adopt DF set (DF) provided by Sirinam

85

Table 5.1: The data setup for GANDaLF in Section 5.5 (Note that (): the number of
instances per class, L: labeled set, U: unlabeled set, GF: GDLF, n: {5, 10, 20, 50, 90}).

WF-I WF-S

CW OW CW OW

L
AWF1 AWF1&AWF-OW GF25 GF25&GF-OW

(n) (n&100×n) (n) (n&25×n)

U
AWF2 AWF2&AWF-OW AWF1 AWF1&AWF-OW
(2500) (2500&33k) (2490) (2490&400k)

et al. [2] that was collected using 40 circuits and labelled with the circuit index along

with the website class.

All traces in AWF and DF set consisted of the packet direction information in which

each column was marked as -1 if it is an incoming packet and 1 otherwise.

5.2.2 Subpage Set

In order to evaluate the effectiveness of subpage fingerprinting we needed to collect

a new dataset using Tor Browser Crawler [91]. Before beginning the data crawl, we

first harvested a list of non-index URLs for websites sampled from the Alexa top 200

rankings.

We then downloaded those websites locally using torsocks wget and identified

candidate URLs using the find command. Finally, we eliminated domains that had

low subpage counts and trimmed our final list of URLs to subpages within 25 domains.

Next, we randomly selected an equal number of non-index pages for each website,

which we visited many times in a round-robin fashion. After collecting the traffic for

each visit, we filtered out traces that failed to load and that contained less than 150

packets. We then trimmed the dataset such that the number of non-index pages and

samples per non-index page were equal for every examined website. This process left us

with 39 instances per subpage and 96 subpages per website, for a total of 3,744 instances

for each of our 25 websites. We will refer to this dataset as GDLF25 from here on out.

For WF-S CW experiments, we use all 25 domains in GDLF25 as our monitored

dataset. To evaluate WF-S in the OW setting, we further crawled the unmonitored

subpage dataset using urls provided by other researchers [3], leading to 70,000 subpages

(GDLF-OW). Finally, we use the AWF1 dataset to act as the unlabeled and pretraining

86

data for the GANDaLF and TF attacks. Table 5.1 summarizes the dataset usage for

two different scenarios: WF-I and WF-S.

5.3 Semi-Supervised Learning with GANs

Given that GANs have achieved success for various generative applications, researchers

have become interested to see if they can also help in classification tasks as well.

In particular, GANs have been applied to the problem of semi-supervised learning

(SSL) [104, 105]. The goal of SSL with GANs is to transform the discriminator into

a multi-class classifier that learns from a relatively small amount of labeled data (the

supervised part) while also learning from a larger body of unlabeled data (the unsu-

pervised part). As shown in Figure 5.1b, this classifier (the discriminator D) outputs

not only a single value that measures whether the input was real (closer to 1) or fake,

but also it outputs a set of K individual class probabilities that can be used to identify

the label for any real samples. The generator G is trained as before only to produce

samples that appear real without necessarily fitting any of the classes in particular,

which eventually helps classify the dataset.

The benefit of this approach is that it can achieve high performance on the classifi-

cation task while only using a relatively small sample of labeled data. In many tasks,

unlabeled data is readily available, but obtaining large quantities of data with accu-

rate labels is often expensive. The insight of using a GAN is that, during the process

of learning how to discriminate real samples from fake ones, the discriminator is also

learning how to extract meaningful features from the data by utilizing a large amount

of unlabeled data. Having built up this feature extraction capability, the model is then

able to learn how to distinguish between different sites with relatively few samples. In-

deed, Saliman et al. [99] showed the potential of this idea by improving the performance

of a classification task using GANs in this way. In this chapter, the overall GANDaLF

design is based on their GAN, which is called SGAN. We next provide a brief overview

of the SGAN design.

87

5.3.1 SGAN Overview

SGAN is composed of a generator and a discriminator, which are trained together in

the same way as a vanilla GAN. The key difference from the vanilla GAN is in the loss

functions of the generator and discriminator. Saliman et al. [99] introduced a new loss

function, called feature matching loss, to be used as the generator loss. We will discuss

this loss function in detail in Section 5.3.2. The discriminator loss is a combination of

the supervised loss, based on how well it classifies labeled inputs into the K classes, and

unsupervised loss, based on how well it can distinguish real inputs from the unlabeled

dataset and the fake inputs from the generator.

The original concept of the supervised loss was to optimize the classification over

K + 1 labels where K is the number of classes in the labeled set, and there is one

additional label for fake data. However, since the classifier with K + 1 softmax outputs

is overparameterized, as an efficient implementation [106], Saliman et al. suggested to

fix the unnormalized logit as 0 for fake data, which in turn, leads the supervised loss to a

categorical cross-entropy loss over the softmax output of K classes and the discriminator

D to be D(x) =
Z(x)

Z(x) + exp(lfake(x))
=

Z(x)

Z(x) + 1
, where Z(x) =

∑K
k=1 exp(lk(x)) where

l is the output logits.

5.3.2 Feature Matching Loss

State-of-the-art GANs have been shown to generate excellent samples for many tasks [107],

but training GANs is difficult and very sensitive to the hyperparameter settings. A par-

ticular issue is that the two models can end up focusing too much on mistakes the other

model is making without actually improving on the core task. For example, if the gen-

erator is adding a blue blob to the corner of nearly every image, then the discriminator

will heavily emphasize this blob in its decisions, improving its score without improving

its function. The generator in turn may learn to change the color of the blob to red

without removing it. This can create a fruitless back-and-forth that does not yield good

images.

To solve this problem, Saliman et al. [99] proposed a new loss function for the

generator, called feature matching loss, to prevent it from overtraining on the current

discriminator. Feature matching loss is computed on the output of an intermediate layer

88

Figure 5.2: GANDaLF architecture (FC: Fully-connected layer, Conv: convolutional
layer, r: ReLU, t: Tanh, and l: LeakyReLU). Note that in WF-I, we used one fully
connected layer for the generator.

of the discriminator, which can be thought of as a representation of the features that

the convolutional layers have found. By seeking to minimize the difference between the

features found in real data and the features found in its generated samples, the gener-

ator can avoid focusing unduly on a single mistake it is making that would be heavily

emphasized in the final discriminator output. This strategy makes GANs more stable in

training, and we leverage it in GANDaLF as well. In GANDaLF, the feature matching

loss was computed for both WF-I and WF-S scenarios by capturing the feature vectors

in the flatten layer prior to the last convolutional 1D layer, as shown in Figure 5.2.

89

5.4 GANDaLF

In this section, we introduce our new attack, GANDaLF, starting with the threat model,

then a discussion of the intuition behind the choice of SGAN for WF, and present details

of its design and network architecture. Furthermore, we emphasize the contribution of

GANDaLF based on our experiences and findings when tuning the GAN for WF in the

semi-supervised setting and in comparison to prior WF attacks.

5.4.1 Threat Model

We assume a network-level, passive adversary who can only observe the network traces

between the client and the middle node of a Tor circuit, possibly by operating the entry

guard or middle node. The attacker is not able to drop or modify packets that have

been sent and received from servers or collude with web servers.

The attacker requires training data, but since collecting data from a client-based

web crawl can be expensive, this attacker seeks to run an entry guard or middle node

to both perform the attack and simultaneously gather live Tor traffic that can be used

as unlabeled data. Note that while the middle node position has less direct information

about the client, Jansen et al. [108] showed how an attacker can use the middle node to

perform attacks such as WF.

The attacker is interested in two attack scenarios, both of which we explore in

this chapter. The first goal is to train GANDaLF using website index pages and then

fingerprint visits to index pages only. This approach has been used by most previous

WF research [2, 3, 1, 88]. We call this scenario WF-I, referring to fingerprinting websites

with index pages.

The attacker’s second goal, which might include more realistic scenarios, is to

train GANDaLF using both index and subpages (i.e. non-index pages) from a web-

site and then try to identify visits to any subpage of a website. For example, the

attacker may want to classify any page of amazon.com as Amazon. Note that the at-

tacker only needs a subset of the subpages from each website instead of all pages to

train the model, and can test it using unseen subpages by leveraging the generative

ability of GANDaLF. We call this scenario WF-S, referring to fingerprinting websites

with index and non-index pages.

90

We explore WF-I and WF-S scenarios in both closed-world (CW) and open-world

(OW) settings. In CW experiments, the attacker keeps a webpage fingerprint database

and assumes that users will only visit webpages in this database. In the more realistic

OW setting, the attacker keeps a set of monitored sites and attempts to classify whether

a particular trace is to a site in this set or outside the monitored set. To achieve this,

the attacker collects traces of both monitored and unmonitored websites to train the

classifier and predicts unseen webpages using this trained model to answer whether or

not they are monitored.

5.4.2 Sources of Unlabeled Data

Several groups of WF researchers [3, 2, 11, 1] have demonstrated the effectiveness of

convolutional neural networks (CNNs) to model the distribution of website traces, re-

sulting in WF attacks with high classification accuracy. Based on CNNs, we built an

SGAN model with a generator and a discriminator, in which the discriminator becomes

a K+1 class WF classifier (K is the number of websites in the labeled set). This clas-

sifier utilizes three different sources of training data: labeled website traces collected

by the attacker, unlabeled websites traces that could be from a publicly available WF

database or fresh Tor traffic collected by running entry guards or middle nodes, and

fake website traces produced by the generator.

The combination of different training sources enables GANDaLF to learn from a

broader perspective, which leads to more precise WF classification only using a few

labeled samples for training. In contrast, the learning capacity of supervised WF tech-

niques is limited to the data distribution when using a small set of training samples,

which leads to significantly weaker performance in the limited-data setting.

Since GANDaLF needs multiple data sources, the choice of unlabeled data im-

pacts its classification performance. SGAN [99] constructed both labeled and unlabeled

datasets from the same data distribution. In a WF attack, however, this would require

the attacker to collect a very large unlabeled set to be aligned with the labeled data,

which contradicts the goal of low-data training. Thus, to investigate the applicability

of SGAN to low-data WF, we studied how different the unlabeled data distribution is

from the labeled data distribution if we construct them from different datasets.

We explored three datasets – WF-I, and WF-S, and the MNIST computer vision

91

Figure 5.3: Distribution of euclidean distances between labeled and unlabeled data
(A1: AWF [3] set consisting of 100 websites, A2: AWF set consisting of 100 websites
(different from A2), and D: DF set [2]).

dataset to serve as a baseline. For MNIST, we built both labeled and unlabeled data

from the MNIST set. For WF-I, we constructed the labeled set using the AWF1 set [3]

and three different unlabeled sets: (i) one based on the same AWF1 set (WF-I in

Figure 5.3), (ii) one based on the AWF2 set (WF-I-A2), and (iii) one based on the DF

set collected with different network settings (WF-I-D). For WF-S, we used GDLF21 to

be used as labeled set and build two unlabeled sets: (i) one from the same GDLF21

set (WF-S in Figure 5.3) and (ii) one from AWF1 (WF-S-A1). Then we computed the

pair-wise Euclidean distances between labeled and unlabeled data in these settings; the

distributions of these distances are shown in Figure 5.3.

Figure 5.3 shows that WF-I-A2 is close to WF-I, which indicates that if the traces are

collected in the same network environment, their distance distributions are almost the

same, even though they comprise different website traces. In WF-I-D, as the DF set was

collected in different network settings, the distances had more variance. Similarly, the

distance distributions of WF-S-A1 and WF-S became more different from each other,

which we assumed as the most difficult data setup for GANDaLF. We will empirically

show in Section 5.5 the impact of using unlabeled data chosen from other distributions,

and conclude that it has minimal impact on the classification accuracy, but it does affect

the stability of training and somewhat restricts the capacity of supervised learning.

With this preliminary analysis, we see that SGAN is promising to explore WF in

the low-data setting by using a small labeled set together with a large unlabeled set

to help train the discriminator. Furthermore, we will study more optimal labeled and

unlabeled data settings to maximize the classification power of GANDaLF in Section 5.5.

92

Compared to MNIST with a normally distributed curve, however, Figure 5.3 shows more

variance in the distances between labeled and unlabeled data for WF data. This means

that we need careful tuning of SGAN to ensure better performance, which we discuss

in Section 5.4.3.

In addition, we expect that WF-S is a more challenging task than WF-I, because

traces in WF-S are more different than WF-I as they are plotted on a wider curve

in Figure 5.3. This results in additional difficulty to simulate realistic fake subpage

fingerprints as well as to classify fingerprints to correct website labels.

5.4.3 SGAN Optimization for GANDaLF

Saliman et al. [99] proposed several SGAN architectures optimized for different datasets,

including MNIST, CIFAR-10, and SVHN. Among these architectures, we selected the

one optimized for CIFAR-10 as our starting point, since it yielded better initial accuracy

on the AWF1 set.

In this section, we discuss the technical challenges we addressed to find the optimal

SGAN architecture for WF tasks and key design decisions. First, we found several

aspects of SGAN to be problematic when applied directly to the WF problem.

• SGAN was built based on two-dimensional (2D) convolutional layers. As pointed

out by Sirinam et al., however, network traffic features do not carry a meaning-

ful 2D spatial pattern in the same way as the images that most CNNs operate

on [2]. Thus, we had to incorporate one-dimensional (1D) convolutional layers

into SGAN, and further, tune the model towards WF classification tasks. The ap-

plication of 1D convolutional layers to SGAN revealed several additional problems

that we needed to address to improve the performance of GANDaLF.

• SGAN used neither a batch normalization (BN) nor dropout in the generator.

However, building the initial SGAN architecture to use 1D convolutional layers

made training unstable. Thus, we explored whether adding BN or dropout layers

to both generator and discriminator would help improve the training process.

• Saliman et al. proposed feature matching loss using the mean absolute difference

(i.e., L1 loss) between the expected features of real data and the expected features

93

Table 5.2: Hyperparameter optimization showing the chosen parameters and search
spaces for the WF-I and WF-S scenarios (G: generator, D: discriminator, [Conv]: 1D
convolutional layer block, [Full]: fully-connected layer block, Up: Upsampling layer,
act: activation function, and #: number).

Scenario → WF-I

HyperParam ↓ Choice
Search Space

G D

[Conv] layer# 9 8 4∼12
[Conv] filter# 64∼ 512 32∼ 256 10∼1,000
[Conv] filter size 5 5 2∼10
[Conv] stride size 1 1∼2 1∼4
[Conv] dropout rate - 0.3 0.2∼0.9
[Conv] act ReLU LeakyReLU ReLU, LeakyReLU, ELU
[Conv] Up# 4 - 2∼9

[Full] layer# 1 5 1∼6
[Full] node# 316 512∼ 2,048 128∼2,048
[Full] dropout rate - 0.5 0.2∼0.9
[Full] act ReLU ReLU ReLU,LeakyReLU

input dim 5,000 5,000
z dim 100 50∼700
optimizer Adam Adam
learning rate 2e−4 5e−5 1e−5 ∼ 0.1
epoch ≤30(CW), ≤150(OW) 10∼1,000
batch 32 16∼128

Scenario → WF-S

HyperParam ↓ Choice
Search Space

G D

[Conv] layer# 9 8 4∼12
[Conv] filter# 32∼ 256 32∼ 256 10∼1,000
[Conv] filter size 20 20 2∼30
[Conv] stride size 1 1∼4 1∼4
[Conv] dropout rate 0.3 0.3 0.2∼0.9
[Conv] act ReLU LeakyReLU ReLU, LeakyReLU, ELU
[Conv] Up# 4 - 2∼10

[Full] layer# 3 5 1∼5
[Full] node# 316 512∼ 2,048 10∼2,048
[Full] dropout rate 0.5 0.5 0.2∼0.9
[Full] act ReLU ReLU ReLU, LeakyReLU

input dim 5,000 3,000∼8,000
z dim 100 50∼700
optimizer Adam Adam
learning rate 2e−4 5e−5 1e−5 ∼ 0.1
epoch ≤10(CW), ≤100(OW) 10∼1,000
batch 16 16∼128

94

of the generated data. However, since webpage traces are different from image

features, we also investigated different feature matching loss functions (L2 vs L1

distance).

• The choice of hyperparameters impacts the performance of SGAN. Thus, we had

to empirically find the optimal parameters for WF-I and WF-S, respectively.

To overcome these limitations of the original SGAN architecture, we introduced

the following technical innovations. Note that we used the same architecture for WF-I

and WF-S, but we empirically selected hyperparameters for each scenario as shown in

Table 5.2.

Deeper 1D-Based Design. The initial SGAN implementation [106] with feature

matching was based on the generator containing four deconvolutional 2D layers 1 and a

discriminator consisting of seven 2D convolutional layers. After simply switching from

2D convolutional layers to 1D layers, we trained it using 90 instances per website and

it reached 78% CW accuracy in the WF-I setting. As shown in Figure 5.2, we added

more 1D convolutional layers, which resulted in a higher accuracy. This change led to

a classifier that obtained 95% accuracy with 90 training instances for each of the 100

websites.

Dropout and BN. We found that selective use of dropout layers and the full use of BN

layers in the generator helps to make the training more stable in WF-S. More specifically,

we added a dropout layer after all convolutional layers except the first and last layers

as shown in Figure 5.2. In contrast, for WF-I, we only used BN layers in the generator,

since the use of dropout layers in any location worsened the performance. Furthermore,

we added several fully connected layers, followed by dropout layers between the flattened

layers, where we captured features to compute the feature matching loss, and the last

output layer.

Different Generator Loss. We noticed that the same L1 feature matching loss works

properly for WF-I, while L2 loss improved the testing accuracy in the WF-S scenario

more than L1 loss. However, in both scenarios, generator loss started with very low value

1A deconvolution is the inverse operation of the convolution, which means performing the convolution
in the back propagation.

95

around 0 and did not decrease much, while discriminator loss continually decreased.

This indicates that the generator did not generate actual good fake traces, while the

supervised performance was constantly improved. This is because intra-class variation

in WF traces is more significant than for images such as MNIST, which made it harder

for GANDaLF to reduce the feature matching loss. Furthermore, when using AWF1 set

as unlabeled data in WF-S, the generator loss kept increasing even as the discriminator

loss was decreasing. We will investigate this problem in detail in Section 5.5.3.

Stride and Kernel Choice in WF-S. Furthermore, we found that a greater length

of strides and kernels helped improve the performance of GANDaLF in WF-S. This was

consistent with our expectation that increasing the stride length and kernel sizes, which

shrinks the output volume after the convolutions, might lead the network to better

handle WF-S having greater intra-class variation than WF-I and capture meaningful

features. This resulted in the number of features used to compute the feature matching

loss in WF-I being 20,224, while it was 1,280 in WF-S scenario. As such, losing some

details by increasing the stride and kernel sizes helps to better capture the traffic pattern

when features are more variable within each class.

Input Representation for WF-S. Most DL-based WF attacks represent a website

trace as a sequence of ±1’s that indicate packet direction. In our investigations, we

explored several alternative data representations, such as inter-packet delay (IPD) and

Tik-Tok [97] sequences, for both WF-I and WF-S scenarios. In the WF-S scenario,

we found that IPD yielded +9% and +8% better CW accuracy than the direction and

Tik-Tok features. Hence, we used IPD sequences in WF-S scenarios throughout the

chapter.

Parameter Tuning. Along with the architectural tuning, we also explored different

combinations of parameters involved in the architecture for WF-I and WF-S. Since the

GDLF dataset is different from the AWF dataset, we conducted hyperparameter tuning

separately for each scenario. We used 90 instances of AWF1 and all of AWF2 for tuning

WF-I, and 90 instances of GDLF25 and all of AWF1 for tuning WF-S. In this way, we

can ensure that the overlap is minimal between the tuning sets and the testing sets used

in Section 5.5.

96

The parameter search space and chosen parameters are reported in Table 5.2. Be-

yond these parameters, we also adjusted other components in SGAN. First, the SGAN

of Saliman et al. [106] used weight normalization (WN) [109] in the discriminator, while

we applied batch normalization since WN barely impacted the performance, and BN

is easier to implement. Second, we applied different learning rates to the discriminator

and generator during the optimization based on findings by Heusel et al. [110] that

this ensures better convergence to Nash equilibrium, and further, led GANs such as

DCGAN [107] to achieve better performance.

Summary. Overall, the most effective design for GANDaLF is to go much deeper

by adding fully-connected layers and more convolutional layers. As shown by Sirinam

et al. [2], more layers help the model learn the inner structure of website traces more

effectively since WF set has more inter- and intra-class variances than the image set.

On the downside, this may make the model more complicated, resulting in more chances

of overfitting. Thus, we added dropout and batch normalization layers to relieve this

concern.

5.5 Evaluation

In this section, we evaluate the performance of GANDaLF in various experimental

scenarios. First, we compare GANDaLF to the state-of-the-art WF techniques in the

WF-I setting (index pages) with limited training data. Then we further investigate

the applicability of GANDaLF and other data-limited attacks in the WF-S setting

(subpages).

5.5.1 Experimental Setting

Setup.

We implemented GANDaLF using Tensorflow; each experiment was conducted on a

Tesla P100 GPU with 16GB of memory. Using pseudocode, we provide details of

the GANDaLF experimental setup in Algorithm 1. We evaluated each technique using

five trials and added more experiments up to a maximum of 20 when the standard

deviation was greater than 1%.

97

Algorithm 1: GANDaLF training.
Input : Labeled examples (xl, yl) ∼ pd1 , Unlabeled examples (xu) ∼ pd2 , latent variable

z ∼ p(z), number of iterations i, α1=2e−4, α2=5e−5, and β=0.5.

1 G – generator network
2 D – discriminator network
3 f – output of the flatten layer of D
4 LD – discriminator loss
5 LG – generator loss
6 ω – parameters of discriminator
7 θ – parameters of generator
8 for i = 1 to m do
9 x̃ ← G(z)

10 x̂z, fz ← D(x̃)
11 x̂l, fl ← D(xl)
12 x̂u, fu ← D(xu)
13 Ls ← CrossEntropy(x̂l, yl)
14 Lu ← - logsumexp(x̂u) + softplus(logsumexp(x̂u)) + softplus(logsumexp(x̂z))
15 LD ← Ls + Lu /* supervised+unsupervised loss */

16 ω ← Adam(∇ω 1
m

∑
L

(i)
D , ω, α2) /* D optimizer */

17 LG ← MAE(fz, fu) /* MSE in WF-S */

18 θ ← Adam(∇θ 1
m

∑
L

(i)
G , θ, α1, β) /* G optimizer */

19 end

To implement state-of-the-art WF techniques, we adopt the original implementations

provided by researchers [82, 88, 2, 10, 11]. We made few changes when necessary for the

data loading pipeline and for hyperparameter tuning. When tuning k-FP, we explored

different numbers of trees from 500 to 2,000 and finally chose 2,000 for both scenarios.

For DL-based WF attacks, we explored different mini-batch and convolutional stride

sizes, as these are parameters that are significant for GANDaLF. Both DF and TF

were also allowed to train for additional epochs until validation loss increased for five

consecutive epochs. Since TF [10] used 1-20 training instances per website for the N-

shot learning, we chose similar training set sizes, however, we increased the size up to

90 instances to see how much DL-based classifiers are benefited by additional training

instances. That is, to construct the training labeled set, we randomly sampled 5, 10,

20, 50, and 90 instances for 100 websites in WF-I. In WF-S (subpages), we randomly

chose one instance using each of ns subpages per site in which ns = 5, 10, 20, 50, and

90 (i.e., total 1× ns instances).

For GANDaLF, we randomly sampled these instances rather than using one subpage

per site, since this approach yielded slightly higher closed world accuracy, which will

98

be detailed in Section 5.5.3. For other classifiers, we chose 1 × ns achieving a higher

accuracy. In either case, the standard deviations between trials in WF-S are greater

than WF-I, most likely due to much larger intra-class variance.

Metrics.

We summarize the metrics for CW and OW evaluation as follows.

• Accuracy : The percentage of predictions that are correct. This metric is tradi-

tionally used to evaluate classifiers in the CW setting in prior WF work, which

we adhere to.

• Precision: The percentage of positive predictions (i.e. predicted as “monitored”)

that are correct. If the classifier is tuned for high precision, it minimizes the

number of users being misdetected as “guilty,” but may miss some instances that

were truly monitored.

• Recall : The percentage of monitored-site instances that are classified as “moni-

tored.” A classifier tuned for high recall will reliably identify when a sensitive site

has been visited, but may also misidentify “innocent” websites as sensitive.

A WF adversary must consider both the precision and recall of their classifier when

evaluating the results of a real-world attack, so we show precision-recall curves for our

OW experiments.

5.5.2 Fingerprinting Websites with Index Pages

In this section, we evaluate the classification ability of GANDaLF and other WF tech-

niques in a low-data setting by training and testing with website index pages.

CW Performance.

We trained GANDaLF, k-FP, DF, Var-CNN, and TF classifiers using 5-90 instances

per website, randomly sampled from the AWF1 dataset. To train GANDaLF, we used

AWF2 as the unlabeled data. For a fair comparison, we also used the AWF2 dataset for

the pre-training phase of the TF attack. The performance for each technique is shown

in Table 5.3. The best results for a given number of training instances is shown in bold.

99

Table 5.3: Comparison to k-FP, DF, Var-CNN, and TF using 5-90 training instances.
We do not show standard deviations less than 1%. We measured the time (s: seconds)
for testing 42k testing samples. Other numbers are %.

TrainN GANDaLF k-FP DF Var-CNN TF

5 70±2 61 60±2 25.9 78±1

10 81±1 72.5 79±2 69.1 81.6

20 87±1 77.3 89±2 90.8 83.1

50 93±1 82.8 95.1 97.1 83.9

90 95±1 85.5 97.1 98.3 84.2

time 5.5s 1.1s 7.6s 43.6s 8.5s

Our experiments show that GANDaLF is effectively tied with TF when using 10

samples per class. However, the testing cost of GANDaLF was lower than TF, DF, and

Var-CNN. For 50 samples and above, Var-CNN is the best classifier, but it was much less

effective when limited to 5 or 10 samples, with accuracies of 26% and 69%, respectively.

In the lowest data setting with 5 samples, TF was the most accurate classifier due to

its pre-trained WF model. Across all classifiers, if the attacker can afford this larger

cost for data collection, the payoff is worthwhile for closed-world classification of index

pages. In particular, when either DF or Var-CNN is trained on many more instances,

performance is much improved. When trained on 90 instances, the accuracy of DF and

Var-CNN improves to 97% and 98% respectively. This is important evidence to suggest

that these models require very large labeled training datasets to learn effective feature

representations in the WF-I scenario.

Table 5.4: Impact of circuit diversity on labeled training data (DF set [2]). We used
DF as labeled data and AWF2 as unlabeled data. All standard deviations are less than
0.5%.

Train (25) Acc Train (90) Acc

1 circuit 86.6 slow 93.4

5 circuits 86.8 fast 92.9

40 circuits 87.1 random90 93.5

Impact of Circuit Diversity.

The attacker using GANDaLF needs to gather and use a smaller dataset of labeled

data than in other attacks, so the source of that data may impact attack accuracy.

100

Algorithm 2: Data sampling to generate labeled sets by varying the circuit
diversity.
Input : DF dataset (D = (X,Yl, Yc)), total circuit index array (C = {1, 2, ..., 40}), circuit

count (nc), website count (nw), labeled sample count per class (nl), and testing
sample count per class (nt).

Output: Training data (Itr) and testing data (Ite).

1 Shuffle D. /* (samples, labels, circuit labels) */

2 Shuffle C.
3 Initialize Ctr, Cte,Dtr, Dte, Itr, Ite.
4 Ctr ← randomly chosen nc entries in C.
5 for (x, yl, yc) in D do
6 if yc in Ctr then
7 Dtr ← Dtr ∪ (x, yl)
8 end
9 if nc < 36 then

/* To ensure that circuits in Cte should have at least 9,500 entries since each

circuit subset consists of 95×25. */

10 Cte ← {C − Ctr}.
11 if yc in Cte then
12 Dte ← Dte ∪ (x, yl)
13 end

14 else
15 Dte ← randomly chosen nw × nt entries in {D −Dtr}
16 end

17 end
/* sampling for each website subset. */

18 for i in ({1, 2, ..., nw}) do
19 Itr ← randomly chosen nl instances in Di

tr

20 Ite ← randomly chosen nt instances in Di
te

21 end

101

Algorithm 3: Data sampling to simulate the victims with fast or slow circuits.
Input : DF dataset (D = (X,Yl, Yc)), total circuit index array (C = {(1, t1), ..., (40, t40)}),

website count (nw), labeled sample count per class (nl), and testing sample count
per class (nt).

Output: Training data (Itr) and testing data (Ite).

1 Shuffle D. /* (samples, labels, circuit labels) */

2 Shuffle C. /* (circuit index, mean of site loading time). */

3 Cindex ← {1, 2, ..., 40} /* index. */

4 Ctime ← {t1, t2, ..., t40} /* mean loading time. */

5 Initialize Cf with top 4 indices in reverse(Ctime).
6 Initialize Cs with top 4 indices in Ctime.
7 Initialize Ctr, Cte,Dtr, Dte, Itr, Ite.
8 if choice == “fast” then
9 Cte ← Cf /* use fast subsets as testing data. */

10

11 else
12 Cte ← Cs /* use slow subsets as testing data. */

13

14 end
15 Ctr ← {Cindex − Cte}
16 for (x, yl, yc) in D do
17 if yc in Ctr then
18 Dtr ← Dtr ∪ (x, yl)
19 end
20 if yc in Cte then
21 Dte ← Dte ∪ (x, yl)
22 end

23 end
/* sampling for each website subset. */

24 for i in ({1, 2, ..., nw}) do
25 Itr ← randomly chosen nl instances in Di

tr

26 Ite ← randomly chosen nt instances in Di
te

27 end

102

In particular, the circuits used to collect this data might be slow, fast, or otherwise

not representative of the kinds of conditions faced by the victim. To investigate the

impact on GANDaLF of the diversity of circuits used to gather labeled training data,

we examine how the number of circuits used to gather data impacts accuracy. We used a

subset of the DF dataset collected using 40 circuits, and split it into 40 smaller subsets,

one per circuit. Each subset consists of 25 instances of each of 95 websites. Thus, we

randomly sampled 95 websites and 25 instances (95×25) within one subset, four subsets,

and 40 subsets to construct three training labeled sets and 100 instances of each of 95

websites within all 40 subsets to build one testing set (We detailed this data sampling

in Algorithm 2). Then we trained three different models using each labeled set and

tested them using the testing set. As shown in Table 5.4, the performance somewhat

improved with increasing number of circuits, though it is far from critical in performing

the attack.

Impact of Network Conditions.

While the attacker would likely use multiple circuits to gather labeled training data, the

victim may have a particularly slow or fast circuit. Thus, we examine how the speed of

the victim’s circuit impacts the attack. We use the same 40 subsets of the DF dataset as

when testing circuit diversity. We split out the four fastest circuits and the four slowest

circuits by using the total website load times.

We then constructed fast (or slow) testing sets by randomly sampling 95×100 in-

stances from data gathered using the four fast circuits (or slow circuits), which was the

same testing set size used in DF [2]. To train GANDaLF, we randomly chose 95×90

instances over the remaining 36 subsets. We described this data sampling details in

Algorithm 3.

As a baseline, we further trained GANDaLF using randomly chosen 95×90 samples

over 40 subsets and tested it using another randomly chosen 95×100 instances over 40

subsets. As shown in Table 5.4, GANDaLF performs modestly worse when identifying

traces using fast circuits and about the same on slow circuits. The small margins indicate

that the network condition when collecting the victim’s traffic minimally impacts the

performance of GANDaLF.

103

Figure 5.4: Comparison to k-FP and TF. We used 360k background traces for k-FP
and TF.

Impact of Unlabeled Data.

To understand the impact of the choice of unlabeled data, we also trained GANDaLF us-

ing the AWF1 set as both labeled and unlabeled data. In other words, this models the

case that both sample groups come from the same distribution. Interestingly, this

change only led to a 1% increase in the accuracy of CW classification. We further

trained GANDaLF using the DF set (which was collected in different network settings)

and GANDaLF yielded 87% CW accuracy when using 20 labeled training instances

per website. Even though the distributions of distances between labeled and unlabeled

sets were somewhat different as shown in Figure 5.3, this result shows that the gap

did not critically impact the classification ability of GANDaLF. This suggests that the

unlabeled data does not require either any of the monitored sites in the labeled set or

the same network setting for the unlabeled data collection to provide a useful basis for

semi-supervised learning.

OW Performance.

Since GANDaLF and TF performed more effectively in the low-data CW setting (i.e., 5-

10 instances), we further evaluated them in the open-world scenario. In this evaluation,

the classifiers were trained using 20 instances for each monitored site in AWF1 and 2,000

unmonitored site instances from AWF-OW. We then tested using a background set of

360,000 unmonitored website samples, which is the same size as the largest background

set explored by TF in their OW evaluations [10]. We further varied the size of the

unmonitored set from 5,000 to 360,000 to show the impact of the background set on the

104

performance of GANDaLF. As shown in Figure 5.4, GANDaLF outperformed k-FP and

TF and increasing the unmonitored set size degraded GANDaLF performance. Com-

pared to the CW setting, GANDaLF provides better performance than TF by a more

significant margin in detecting monitored websites versus unmonitored websites. The

better effectiveness in OW scenarios is mainly because the discriminator using additional

supervised loss also became more benefited by the binary classification setting.

5.5.3 Fingerprinting Websites with Subpages

In this section, we investigate the classification ability of GANDaLF and other tech-

niques in the WF-S setting. This scenario not only represents a more realistic scenario

for attacks, but also a more challenging one, as the inclusion of many subpage traffic

instances results in high intra-class variation.

Table 5.5: Comparison to k-FP, DF, Var-CNN (Var), and TF using 5-90 training in-
stances. For unlabeled sets, we used AWF1 (GF(A)) or GDLF-OW-old (GF(G)). We
do not show standard deviations less than 1%. We measured the time (s: seconds) for
testing 12k testing samples. Other numbers are %.

TrainN GF(A) GF(G) k-FP DF Var TF

5 30±1 31±2 41 4 5±1 14±1

10 39±3 38±2 46 5±1 6±2 17±1

20 46±3 47±3 52 47±2 9±2 18

50 57±2 56±3 57 49±2 21±6 18

90 62±1 62±3 61 61 25±7 19

time 2.3s 2.3s 3.1s 5.1s 12.07s 8.2s

CW Performance.

For the WF-S CW experiments, we trained each technique in a low-data setting with

between 5-90 training instances per site, where each instance was randomly sampled.

This means that, at best, the attacker is able to train on one sample per subpage within

each site in our dataset. Consequently, during experiments where the training sample

count is below 90, there are subpages within the testing set on which the attack did

not train. We believe this challenging CW scenario appropriately models the real-world

difficulty of accurately profiling an entire website under reasonable data restrictions.

As shown in Table 5.5, this difficult training scenario and the higher intra-class

105

Table 5.6: GANDaLF CW accuracy (Acc) according to different labeled set by varying
the number of subpages (s) and instances (i) in the labeled set. All numbers are %.

s× i 2× 10 10× 2 20× 1 random

Acc 42.78±2.3 46.03±3.5 45.91±2.0 46.7±2.0

variance reduced the performance for all WF methods. GANDaLF performed the most

effectively using 90 instances per site and ties with k-FP when using 50 instances per

site. In the lower data settings, however, k-FP is more accurate. We believe that

the categorical features such as the total number of packets enabled k-FP to gain an

enhanced understanding about subpage traces even using more limited training data.

In contrast, deep learning models must learn feature representations from scratch using

the few training samples provided, inevitably resulting in the network gaining a poorer

understanding of the data.

TF and Var-CNN achieved worse performance than anticipated for all cases. The

poor performance of Var-CNN may be explained by how heavily tuned the model is to

the traditional WF-I scenario. The expanded receptive field of the dilated convolutions

used by the network may cause the model to miss meaningful local patterns.

For TF, it seems that the distinctions between AWF websites did not help the model

generate good features for the subpage traces, because the decision boundary for the

classification in WF-S was different from WF-I. Since the pre-trained model was trained

using labels, the decision boundary became more biased towards WF-I, leading to poor

feature embeddings for subpage traces.

In contrast, GANDaLF was trained by additional unsupervised loss and feature

matching loss, enabling it to learn a broader view of AWF1 traces without labels rather

than focusing on the differentiation between AWF websites based on labels. This makes

GANDaLF performance solid even when learning from a different distribution (WF-S

versus WF-S-A1 in Figure 5.3).

Impact of Subpages in Labeled Data.

We further varied the number of subpages used to represent each website in the training

data. More specifically, we varied the number of subpage classes by fixing the total

instance count at 20. For example, we varied the subpage count s and instance count

i to be s × i = 20. We first randomly selected s subpages among 96 subpages and

106

then randomly sampled i instances for each subpage. This scenario allows us to better

see the effects of the increased intra-class variance as the number of subpages (i.e., s)

increases to labeled training data and further guides us to build the optimal labeled set

to maximize the GANDaLF performance.

Based on Table 5.6, building the labeled set by random sampling without considering

s performed slightly better than other cases while GANDaLF performance remarkably

worsened with more limited subpages when s=2. This indicates that enough variance

between subpages in the labeled set is important to maximize the performance of GAN-

DaLF.

Impact of Unlabeled Data.

As briefly discussed in Section 5.4.3, we studied the effect of unlabeled sets to the

classification performance as well as the generator loss. In this experiment, we used

two unlabeled sets, AWF1 and GDLF-OW-old which has a three-month time gap with

GDLF25 set, and one labeled set from GDLF25. The generator loss somewhat decreased

with GDLF-OW-old while it kept increasing with AWF1. Even though the GDLF-

OW-old set made training more stable, the CW accuracy was comparable across most

settings based on Table 5.5 (GF(A) versus GF(G)). However, the use of unlabeled set

built from different data distribution degraded the generator ability, which led to more

biased training towards a better discriminator and may eventually result in limiting

the upper-bound of supervised learning capacity since Lu in Algorithm 1 also hardly

decreased.

To create good fake samples against a greater number of classes than examined by

Saliman et al. [99], we should feed a much larger unlabeled set of subpage traces in which

the corpus of the websites, subpages, and instances is tremendous to train the generator

effectively. As a result, both generator and discriminator may reach the optimal Nash

equilibrium while gaining powerful supervised performance with a high CW accuracy.

We leave further investigation on the usage of more optimal unlabeled data as future

work.

OW Performance.

We further conducted an OW evaluation of GANDaLF and k-FP in the WF-S setting,

since they had better performance than other WF attacks in the CW evaluation. For this

107

(a) Comparison to k-FP. (b) Impact of unlabeled set.

Figure 5.5: GANDaLF OW experiment by varying the background sizes and unlabeled
sets.

Table 5.7: Various unlabeled data settings using AWF1, AWF-OW (AOW), and GDLF-
OW-old (GOW). We reported the trace count (size), whether or not the network
setting was different from the GDLF25 setting (network), and time gap (y: years, and
m: months).

setup AWF1-AOW AWF1-GOW AOW GOW

size 649k 329k 400k 80k

network no-no no-yes no yes

timegap 3y-3y 3y-3m 3y 3m

experiment, we trained both classifiers using the labeled set consisting of 90 instances

of 25 monitored sites and 2,250 unmonitored subpages. In addition, we used AWF1

and AWF-OW sets as unlabeled data for GANDaLF. Figure 5.5a shows that as we

increase the size of the unmonitored set, GANDaLF becomes less effective, as expected.

In particular, k-FP outperformed GANDaLF in the OW setting, which indicates that

the handcrafted features provide a more consistent basis to identify pages from sites in

the monitored set than the GANDaLF model.

We further investigated how combining unlabeled sets could amplify the performance

of GANDaLF. For this experiment, we adopted AWF1, AWF-OW, and GDLF-OW-old.

We created combined datasets of AWF1 with AWF-OW and AWF1 with GDLF-OW-

old, and compared these against AWF-OW and GDLF-OW-old by themselves. See

Table 5.7 for details.

Figure 5.5b shows that both of the combined unlabeled sets performed slightly more

effectively. This suggests that the amount and perhaps variety of unlabeled data played

108

a role in enhancing the performance of GANDaLF, even though some of the data was

collected three years prior to the labeled data and from different network conditions (i.e.,

AWF-AOW in Table 5.7). Furthermore, GANDaLF improved with the inclusion of the

GDLF-OW-old set, which suggests that the unlabeled subpage traces help generate

good fake samples to distinguish monitored subpages from unmonitored subpages by

lowering Lu and LG in Algorithm 1.

Summary.

We find that GANDaLF outperforms other DL-based classifiers on subpages. Surpris-

ingly, however, k-FP was even more effective in both the CW and OW settings. The

greater intra-class variation made it harder for automatic feature extraction to work ef-

fectively, while manually defined features can still work consistently in such a challenging

setting.

Chapter 6

More Efficient Correlated Flow

Traffic Analysis

The Tor design [111] explicitly acknowledges that such attacks can be effective and

concentrates on a more limited threat model. In turn, many published analyses of

the security of Tor treat flow correlation as a core primitive and simply account for

the fraction of flows that can be observed by an adversary [30, 31, 32, 26, 6, 33, 29,

38, 39, 36, 37, 40]. These works typically describe methods to increase or limit the

fraction of flows that an adversary can observe through some combination of internal

manipulation of Tor protocols, manipulation of the Internet routing infrastructure, or

network positioning and resources, and assume that flow correlation will work on these

observations.

Despite this assumption, the extent to which end-to-end flow correlation attacks are

a realistic threat against the Tor network remains somewhat unclear. One problem with

the direct application of these attacks to Tor traffic is that traffic between the client and

entry relay is not identical to traffic between the exit relay and the destination server,

due to a variety of factors such as multiplexing of encrypted traffic; the use of fixed-

size cells to carry data between Tor nodes; and delays caused by buffering, congestion,

interaction between circuits, and Tor’s flow control mechanisms. For example, when Sun

et al. [6] applied Spearman’s rank correlation to a small set of Tor flows, they found

that nearly 100MB of traffic was required per flow to obtain adequate performance.

109

110

Nasr, Bahramali and Houmansadr [5] addressed this limitation by using deep neural

networks (DNNs) to learn a more effective Tor-specific flow correlation metric; the

resulting metric, DeepCorr, classifies pairs of flows as correlated or uncorrelated with

very high accuracy using much less traffic.

However, another fundamental limitation of existing work on end-to-end correlation

of Tor flows is the pairwise nature of the attack. To decide if a flow entering and leaving

the Tor network are on the same Tor connection, these attacks compute the correlation

between the two flow vectors (consisting of packet times and sizes); to deanonymize a

set of flows, the attacks must compute the correlation between all possible incoming

and outgoing flows. Thus, to deanonymize N Tor connections, they will perform N2

comparisons.

This approach results in poor Bayesian Detection Rates (BDRs) since it has a very

low base rate, the probability that both ends of a Tor connection are correlated (i.e.,
1
N). In particular, any correlation metric with a fixed False Positive Rate (FPR) of ρ

will incorrectly classify ρN exit flows as being correlated with each entry flow, so that

the probability that a given pair is actually correlated given that the metric classifies

them that way is 1
1+ρN , which approaches 0 as N increases. Concretely, DeepCorr was

shown to achieve a FPR of around 10−5 when tuned to minimize False Positives (FPs);

so when trying to correlate a particular exit flow with the roughly 106 simultaneous

entry flows, it would incorrectly label 10 entry flows as correlated, so that even if the

True Positive Rate (TPR) was 1, the BDR would be only 9%.

This chapter presents a novel approach to flow correlation designed to further re-

duce the number of FPs between pairs of flows to improve the BDR of this pair-wise

comparison. Our approach uses a novel DNN architecture and training strategy to ex-

tract features of highly-correlated flow pairs. Then, we divide flows into multiple short

time segments (which we call windows) by allowing some overlap between windows and

correlate flow pairs in each window to amplify the difference in True Positives (TPs)

and FPs. We call the resulting attack DeepCoFFEA, for Deep Correlated Flow Feature

Extraction and Amplification.

At a high level, DeepCoFFEA works by learning two DNN models, G and H, that

can be applied to entry flows (called Tor flows since they are wrapped in the Tor cell

protocol) and exit flows, respectively; G and H should have the property that if Tor

111

flow t and exit flow x are correlated, then d(G(t), H(x)) ≥ τ for some correlation metric

d and thresholds τ , but if they are not correlated, then d(G(t), H(x)) < τ . Then, we

apply G or H to k consecutive flow segments (windows) to extract feature embedding

vectors such that a larger fraction of correlated pairs of flows (than non-correlated pairs)

will have a strong correlation measured by d. If two flows are seen as correlated by d in

at least k− ` windows, we say the flows are correlated, and otherwise they are not; this

exponentially amplifies the difference in TPs and FPs.

Note that DeepCoFFEA is still efficient despite its pairwise computation of correla-

tion metrics since we only compute lower -dimensional 2kN feature embedding vectors

(i.e., N Tor and N exit vectors) rather than computing N ×N DNN. Furthermore, our

evaluation is based on a cosine similarity matrix requiring relatively lower complexity

than previous metrics. We highlight that these results are at a much lower computa-

tional cost than DeepCorr.

In practice, G and H may not always produce matching output on correlated win-

dows. This is addressed by “aggregating votes” across multiple windows. We show that

DNNs can be used to develop the feature extractors G and H, resulting in significantly

higher TPRs with higher BDRs than DeepCorr on the same data set (97% TPR vs. 6%

TPR to yield 99% BDR). We further demonstrate that DeepCoFFEA (1) successfully

identifies correlated flows on disjoint evaluation and training circuits; (2) can effectively

identify flows collected several months later than training data; and (3) can identify cor-

related flows protected with the obfs4-iat1 padding protocol with 61% TPR and 10−1%

FPR. In particular, DeepCoFFEA is capable of performing the correlation investigation

for both defended and undefended traces at the same time by training on both types of

flows.

Combined with the DeepCorr results and recent advances in website fingerprint-

ing [2], these results show an urgent need to develop and deploy traffic analysis coun-

termeasures to protect the users of Tor.

We summarize our key contributions as follows.

• Correlated Flow Feature Extraction: A Novel Attack Framework. We

introduce a new attack framework by training DNN models using windows, testing

the models against flows in each window, and aggregating the voting results of

112

multiple windows. We show that this strategy improves the resulting predictions,

significantly extending the state-of-the-art approach at a reasonable computational

cost. In particular, DeepCoFFEA can conduct the correlation analysis of 10,000

connections 540 times faster than DeepCorr. Furthermore, by creating overlap-

ping windows, we can further boost the amplification capability. This improved

strategy enables DeepCoFFEA to gain much higher TPRs with 94% TPR and 0%

(empirical) FPR (i.e., 100% BDR).

• New Architecture and Training Methods. We develop feature embedding

networks to learn two types of embeddings, namely Tor and exit flow embed-

dings, by extending Triplet Fingerprinting (TF) [10] and FaceNet [112] to be more

suited to Correlated Flow Feature Extraction on Tor. This chapter also includes

an empirical study to find the optimal DeepCoFFEA implementation, network

architecture, features, and similarity metric (d) to achieve the best performance

of DeepCoFFEA. We further evaluate DeepCoFFEA in various experimental set-

tings using flows collected with arbitrary circuits, defense protocol, and some time

gap to training flows, to show the viability of DeepCoFFEA-style attack in the

real world.

• Focus on BDR. DeepCoFFEA is the first flow correlation to be evaluated using

BDR. As Juarez et al. [52] pointed out, a low base rate can reduce the success

rate of traffic analysis attacks even when there are high TPRs and low FPRs.

This could be seen as one reason for skepticism about the threat of state-of-the-

art flow correlation attacks at scale. However, we show that due to the use of

amplification, DeepCoFFEA can achieve high BDR with much lower FPs, even

at scale. We evaluate the BDRs of state-of-the-art flow correlation attacks and

DeepCoFFEA, showing that, as expected, DeepCoFFEA significantly outperforms

prior work.

113

6.1 Motivation

In this section, we sketch the adversary models of DeepCoFFEA and then discuss why

and how DeepCoFFEA improves the state-of-the-art correlation metrics.

Threat Model.

As shown in Figure 2.2, we assume a passive network adversary who is able to monitor

“Tor” traces t0, t1, . . . between clients and tor guards, and “exit” traces x0, x1, . . . be-

tween exit relays and destination servers, but does not interfere with these traces. After

observing a pair of such flows t and x, the adversary conducts a correlation analysis

between t and x to identify whether the two flows are on the same Tor connection, which

we then refer to as “correlated” or “uncorrelated”. This analysis results in leaking the

identities of clients and servers, which breaks the anonymity of Tor. The adversary

builds input feature vectors based on packet timing and size and identifies whether t is

correlated to x using machine learning techniques or other correlation techniques, such

as cosine similarity (cos) [26]. Adversaries can perform this analysis by running their

own relays or controlling autonomous systems (ASes).

Problems in State-of-the-art Attacks.

In previous work on flow correlation attacks [6, 5], the adversary had a correlation metric

d(t, x) and computed d(ti, xj) for every pair of traces observed in a given time window

and if d(ti, xj) ≥ τ for some threshold τ , concluded that ti and xj were “the same”

flow. This approach requires adversaries to collect long flow sequences in the case of

RAPTOR [6] or to evaluate an expensive metric on all n2 flow pairs of n connections

to use the DNN classifier [5].

For example, in evaluating the RAPTOR attack [6], Sun et al. computed Spearman’s

rank correlation coefficients for every pair of 50 Tor connections, where each connection

captured 300 seconds of traffic, and selected the exit trace with the highest coefficient

as the best match for the Tor trace. DeepCorr [5] trained CNN models to learn a metric

d(t, x) and then, computed this metric using all pairings of 5,000 input and output

flows, where the number of associated pairs was 5,000 and non-associated pairs was

5, 000 × 4, 999, in the testing phase. In particular, they built feature vectors based on

two-dimensional arrays, Fi,j=[ti;xj], where i, j ∈ {1, ..., 5, 000} and trained models to

114

minimize the following loss function:

− 1

|D|
∑

Fi,j∈D
yi,jlogΨ(Fi,j) + (1− yi,j)log(1−Ψ(Fi,j))

where D is the training set, yi,j = 1 if ti and xj are correlated and yi,j = 0 otherwise,

and Ψ is the output logit of the DeepCorr network.

All previous passive correlation attacks were based on a pairwise flow comparison,

which can be problematic because even if the metric M is good, it will yield an imprac-

tically low base rate leading to a poor BDR, because each ti is compared to every xj .

For instance, even if the FPR is 10−5 and there are a million flows entering the Tor

network, on average, each xi will be matched with 10 uncorrelated Tor flows, giving a

BDR of 0.1, at most.

Our Approach.

We introduce a new type of correlation attack, which addresses both the computational

complexity and the low BDRs of previous approaches to flow correlation in Tor using

a combination of two techniques: Feature Embedding Networks (FENs) and Amplifica-

tion.

To avoid directly learning based on all pairs of flows, DeepCoFFEA first trains a

DNN consisting of three networks: anchor, positive, and negative, which are jointly

trained using the triplet loss function. The anchor (a) model is evaluated on Tor traces

while the positive (p) and negative (n) models are evaluated on correlated and uncor-

related exit flows, respectively, and share their weights. If we have two flow pairs, (t1,

x1) and (t2, x2), the possible a, p, and n triplets, (Ia, Ip, In), will be (t1, x1, x2) or (t2,

x2, x1). Using the triplet loss, DeepCoFFEA trains these embedding networks towards

maximizing the similarity between a and p while minimizing the similarity between a

and n.

This new type of network model makes the evaluation phase much less expensive

because it only requires FENs to generate 2n lower-dimensional feature embeddings

and then computes the pair-wise cosine similarity of n2 embeddings. This substantially

reduces the complexity of DeepCorr style attacks evaluating n2 pairs to investigate n

Tor connections. Furthermore, our models do not learn based on labels; rather, they

learn statistical differences between correlated and uncorrelated flow pairs, leading to

115

more effective feature extraction as well as a generalized model to handle other types of

testing sets. For example, by including some amount of defended flows in training data,

FENs are able to detect both correlated defended and undefended traces simultaneously.

To reduce the number of FPs, we borrow the concept of amplification from ran-

domized algorithms, in which a randomized decision procedure that has any significant

gap between acceptance probabilities for positive and negative cases can be repeated

multiple times to create a decision procedure with exponentially small false positive and

false negative rates. In the context of DeepCoFFEA, we apply amplification by using

“window partitioning” to divide the flow into several smaller non-overlapping or over-

lapping subflows (windows). Then, we evaluate each window separately and aggregate

the results using voting in an ensemble fashion.

In particular, we train FENs to learn two functions, G(t) and H(x). These functions

have the property that when t and x are correlated, cos(G(t), H(x)) ≥ τ and when t

and x are not correlated, then usually cos(G(t), H(x)) < τ . By dividing t and x into

k discrete windows and computing the similarity between G and H on the subflows in

each window, we end up with k-dimensional vectors comprised of 1s if the subflows are

correlated and 0s otherwise, which are votes from k windows. Then, we aggregate these

votes to determine the final decision: if at least k − ` votes are positive, we say the

flows are correlated, and otherwise we say they are uncorrelated. For example, if k = 5

and ` = 1 and the vote is [1, 1, 1, 0, 1], for a given flow pair, this pair is predicted as

correlated. By adjusting k and ` for a given anticipated flow set size n, we can push

the false positive rate below the base rate of 1/n, giving a BDR that does not trend

asymptotically to 0.

Compared to DeepCorr [5], instead of learning a comparison metric d(t, x), we learn

a pair of functions G(t) and H(x) using the triplet loss. Then, the adversary computes

G(t) for every Tor trace and H(x) for every exit trace in k successive windows. We

expect only one exit trace, xj , to line up with the same Tor trace, ti, with at least k− `
1 votes. We show that amplification can further reduce the number of FPs against a

pair-wise cosine similarity computation and consequently, DeepCoFFEA becomes more

effective with a much lower FPR and higher BDR than the state-of-the-art correlation

techniques in Section 6.4.

116

6.2 DeepCoFFEA Attacks

Figure 6.1: Example DeepCoFFEA Scenario: In this example, we had ten (ti, xi)
flow pairs and five windows (W1,...,W5). First, we performed the non-overlapping
window partition to generate two training sets, Ttr and Xtr, and ten testing sets,
Tte1,..,Tte5,Xte1,..Xte5. Then, we trained the DeepCoFFEA feature embedding network
(FEN) with Ttr and Xtr and generated the feature embedding vectors using A and P/N
models for each testing set, (Ttew ,Xtew) where w=1,...,5. We then computed the pair-
wise cosine similarity scores for each testing window and voted with 1 if the score was
greater than τ or 0 otherwise. Finally, we aggregated those results and determined that
the flow pair was correlated if it had at least four 1 votes.

In this section, first, we detail how we extended previous work [10, 112] to train

the DeepCoFFEA FENs to generate Tor and exit flow embeddings. Next, we describe

several methods to compute whether two embedded vectors are correlated and discuss

the architecture of the DeepCoFFEA FENs and the hyperparameters involved. Finally,

we describe our evaluation methodology with an example scenario.

6.2.1 Feature Embedding Networks for Correlation Study

To develop FENs for use in the DeepCoFFEA attack, we started with the TF network

architecture [10] and adapted it for the flow correlation attack model. As a preliminary

step, we tried using their networks directly (that is, having the A,P, and N networks

117

all share weights) when trained with Tor flow, exit flow, and exit flow triplets, but as

expected we found that triplet loss did not decrease with training. We then made the

following key changes to improve this initial result.

Two Different Networks.

Using the TF architecture, the triplet loss did not converge, due to two factors. First,

Tor and exit flows are different traffic collected at different points in that the Tor

trace is collected between the client and guard node and the exit traffic is collected

between the exit relay and the web server. Second, if we used the same network for

Tor and exit flows, it would increase the amount of padding to exit traces because they

contained a relatively lower number of packets than the Tor traces. Thus, in contrast to

FaceNet [112] and TF, we adopted two separate network models: one for the A network

and another common model to the P and N networks. This approach led to reduction

of the initial loss value, and further, helped achieve decreasing loss curves with training.

However, we still ended up with an overall small drop in the training loss. For further

improvement, we modified the triplet generator, as described next.

Triplet Epoch Generator.

The TF implementation chose triplets from positive and negative examples without

regard to whether a particular negative had already been used in a previous input,

which led to many exit flows being selected both as a positive (Ip) and as a negative

(In). This quickly froze the triplet loss at some value because some flow pairs were

used interchangeably to both maximize and minimize the correlation in the triplet loss

function. To resolve this issue, we divided the exit flows into two sets and implemented

the triplet generator to choose Ip from one set and In from the other set. In this way,

we guaranteed that Ip and In were always different within a batch. However, we found

that we could obtain a better loss curve when that guarantee was extended to an epoch.

Note that we set 128 batches for an epoch in all experiments in the chapter. Thus, we

kept shuffling the exit trace set and dividing it into two separate pools for every epoch.

With this epoch generator, we were able to reach a training loss value closer to zero.

Loss Function.

We had to decide a correlation metric to be computed in the triplet loss function so we

explored both cosine similarity and Euclidean distance metrics, as proposed by previous

118

research [112]. Interestingly, with the Euclidean distance function, the loss never de-

creased. Thus, the DeepCoFFEA FENs were trained to minimize the following triplet

loss function:

LDeepCoFFEA = max(0, cos(G(Ia), H(In))− cos(G(Ia), H(Ip)) + α)

In other words, the goal of FENs is to learn embeddings G and H that satisfy

cos(G(Ia), H(In)) < cos(G(Ia), H(Ip)) − α. Further, to make the process of selecting

hard-negatives more efficient, this margin α was also used as a boundary radius to

select semi-hard-negatives. Thus, semi-hard-negatives are further from positives while

being within distance α of the anchor point. As such, by tuning α, we could adjust

the margin that was enforced between positive and negative pairs. We chose this value

using hyper-parameter tuning in Section 6.3.3.

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

cosine

softmax

k-NN

RG

Figure 6.2: ROC with different evaluation methods (Note that x-axis is log scale and
RG is Random Guess.)

6.2.2 Correlation Methodology

The DeepCoFFEA attack proceeds as follows. First, once the two FENs G (A network)

and H (P/N network), are trained, we extract the Tor and exit flow embeddings, G(ti,w)

and H(xi,w) in which ti are the Tor flows, and xi are exit flows, and 0≤ i < n, and

1 ≤ w ≤ k for n flow pairs and k windows. Second, we compute correlation metrics,

d(G(ti,w), H(xj,w)) in which 0 ≤ i, j < n, for each window w ∈ 1, . . . , k, for each of

the n2 potential flow pairings. Third, based on the thresholds, τ , we record a 1 vote if

d(G(ti,w), H(xj,w)) ≥ τ and 0 otherwise. Finally, we decide that t and x are correlated

119

if they received at least k − ` 1 votes.

In this section, we empirically studied the cosine similarity, softmax function, and

k-NN classifiers to compute d and the correlation thresholds τ .

Cosine Similarity.

The cosine similarity measures the cosine of the angle between two vectors projected in

a multi-dimensional space. It captures the angle, not magnitude, such as the Euclidean

distance. Since the FENs were trained using triplet loss based on the cosine similarity

(cos), we naturally studied this similarity score as the similarity metric for DeepCoF-

FEA. That is, we computed the similarity scores for each window w of all Tor and exit

embedding pairs, (ti,w, xj,w), in which 0 ≤ i, j < n for n testing flow pairs. For each

pair, if cos(G(ti,w), H(xj,w)) ≥ τ for some threshold τ , we recorded a vote of 1 and 0

otherwise. We present how we chose τ in Section 6.3.5.

Softmax.

We applied the softmax function, which normalizes the embedding into a vector follow-

ing a probability distribution with a sum of 1, to the feature embeddings. Based on this

probability vector, we could determine a predicted “label” by taking the logit with the

highest probability. To investigate the Tor and exit flow pair (t, x), we computed the

top-h labels for t and x based on argsort(soft(G(t))) and argsort(soft(H(x))) in which

soft(xi)=
exi

Σnj=1e
xj . We chose h=10 as it led to a relatively better TPR. If the top 10

labels had at least one common label, each window was voted with 1, and 0 otherwise.

k-NN with Clustering.

We trained k-NN classifiers using the Tor flows and tested them using the exit flows. We

further trained the classifiers using the exit flows and tested them using the Tor flows to

find the best setting. For either direction, we first had to label the flows in the training

set before training. We explored k-means [113] and Spectral clustering [114] to label

training flows. For both clusters, we varied k from 5 to 295, resulting in 5-295 labels to

be trained. After training k-NN models using Tor (or exit) flows labeled by clustering,

we evaluated the models using exit (or Tor) flows. We then conducted the pair-wise

comparison over the predicted labels of exit flows and labels of Tor flows decided by the

clustering algorithm. If the labels are the same in the correlated flows, they are TPs.

If they are the same in the uncorrelated flows, they are FPs. Based on the preliminary

120

experiments, we decided to train k-NN models using Tor flows and further test them

using exit flows. We also empirically chose k-means with `2 normalization to label the

Tor flows.

Finally, we evaluated all methods using five non-overlapping windows, five seconds

for the window interval, 5 for k, and 1 for `. Based on Figure 6.2, the cosine similar-

ity approach outperformed other methodologies. Since the DeepCoFFEA FENs were

trained to maximize the cosine similarity between the correlated pairs and minimize the

similarity between the uncorrelated pairs, the feature embeddings of the associated and

non-associated flow pairs should reflect the margin in terms of the cosine similarity. We

adopted this methodology when evaluating DeepCoFFEA throughout the remainder of

the chapter.

6.2.3 FEN Architecture

As shown in previous work [5, 2, 1, 5], CNNs typically learn more useful features for

analysis of Tor traffic. Thus, we further explored two different architectures, one based

on 1D convolutional (Conv) layers and the other based on 2D Conv layers. We adopted

the DF [2] and DeepCorr [5] architectures for these two architectures since they have

been effective in generating website fingerprints based on traces between the client and

the guard node and correlational flow features based on inflow and outflow to the Tor

network. We empirically concluded that the 1D CNN-based DF architecture performed

better; more specifically, we were unable to reduce the triplet loss below 0.01 with the

DeepCorr architecture.

As shown in Figure 6.1, the two FEN models are learned, and in the testing phase,

the A network maps inputs from Tor flows to feature embedding vectors, while the P/N

network maps inputs from exit flows to feature embedding vectors. Each FEN consists

of four 1D Conv blocks, including two 1D Conv layers, followed by one max pooling

layer. After that, there was a fully connected output layer, which generated the feature

embedding. We chose the input and output dimensions, optimizer, and learning rate

based on parameter optimization as shown in Table 6.2.

121

6.2.4 DeepCoFFEA Evaluation Methodology

We outline an example DeepCoFFEA evaluation scenario in Figure 6.1 and detail each

step as follows.

Window Partitioning.

Based on the DeepCorr dataset that we describe in detail in Section 6.3.1, we created the

sets T = {t1, ..., tn} and X = {x1, ..., xn} of Tor and exit flows, respectively. Then, we

computed statistics on the distribution of the number of packets and total flow duration

of each flow to identify candidates for the number of windows k and the window interval

length. Once these were chosen based on hyper-parameter tuning (Section 6.3.3), we

divided each flow T and X into five windows, W1, . . . ,W5 of five seconds each in the

scenario shown in Figure 6.1. To maintain the same dimension for all windows, |W1| =
· · · = |W5|, we padded the traces of shorter flows with zeros and truncated the traces

of longer flows. Note that the sizes of the flow traces for windows in Tor and the exit

traces are different since we used a partition strategy based on time. For example, if

we used 5 seconds for the interval, the flow lengths for a Tor and exit flow collected in

5 seconds were different.

Even though we only showed non-overlapping window partitioning in this example,

we further studied overlapping window partitioning to create windows which partially

overlap each other. We will discuss it in detail in Section 6.3.2.

Training/Testing Set Partition.

We constructed the training and testing sets using windows. For example, when we used

five windows, we had [Tw] for Tor traces and [Xw] for exit traces, where w ∈ {1, . . . , 5}.
We split them into one pair of training sets, Ttr = {T1, . . . , T5} and Xtr = {X1, . . . , X5};
and five pairs of testing sets, (Tte1, Xte1),. . . ,(Tte5, Xte5)=(T1, X1), . . . , = (T5, X5). Note

that the training data contained all windows while each of the five testing set pairs

corresponded to an individual window.

In addition, if we had n training correlated flow pairs and m testing pairs, the FENs

were trained only with n triplets, and each of the two trained FENs were applied to

only m flows to determine the correlation of m2 pairs of Tor and exit flows.

122

Training and Testing.

We trained FENs with Ttr and Xtr and tested models for each of the 5 testing sets

(Ttew,Xtew).

Evaluation.

For each testing window w, we generated feature embeddings for each ti,w and xj,w and

computed the cosine similarity scores for all pairs of t and x. Then, we recorded the

output to determine whether they were correlated (1) or not (0), which we call votes.

To evaluate the aggregation of those votes over all of the k windows, we counted as TPs

the cases where there were at least k − ` positive (i.e., 1) votes for correlated pairs and

FPs the cases when there were at least k − ` positive votes for uncorrelated pairs.

6.3 Evaluation Details

In this section, we detail the experimental settings including the dataset, features, win-

dow partition, hyper-parameter optimization, and metrics to evaluate DeepCoFFEA in

Section 6.4.

6.3.1 Input Preprocessing

Dataset.

We used the dataset collected by Nasr, Bahramali and Houmansadr [5] to evaluate the

DeepCoFFEA attack. To the best of our knowledge, this is the most comprehensive flow

correlation dataset collected on the Tor network and reflects the effect of different circuit

usage and time gaps between training and testing data. Since we need to reconstruct

the original packet traces based on the timestamps in which the outgoing and incoming

packets were interleaved, we re-parsed the raw captures of DeepCorr set instead of using

the preprocessed data in which the outgoing and incoming packets were separated. We

further selectively chose the flow pairs to ensure that all connection destinations are

unique, resulting in 12,503 flow pairs. This ensures that there should be no overlapping

destinations between training and testing sets.

To show the impact of various experimental settings, we built diverse sets based

on the DeepCorr dataset. First, to investigate the impact of diversity in the dataset

123

on the performance of DeepCoFFEA, we constructed two different sets, one (JAN)

including only flows collected in January 2018; and the other (DIV) involving flows

collected in January, February, and April, with more diverse circuits, to train and test

DeepCoFFEA. We also included defended traces collected with the obfs4 in DIV to

enable FENs to generate feature embeddings for both defended and undefended traces.

Note that 10% of DIV comprises defended traces. For comparison, we also constructed

an UDEF set consisting of only undefended flows. Second, to show the impact of

different circuit usage in collecting the training and testing sets, we built a TWO set

by filtering out flows collected using two arbitrary circuits in the DIV set. Then, we

named the remaining flows in the DIV set as an ALL set. In this way, circuits to collect

the TWO set are different from circuits to harvest the ALL set.

Window Pooling.

In contrast to DeepCorr, in which n correlated flow pairs could be used to create up to

n2 input pairs, in DeepCoFFEA each correlated flow pair can only produce at most one

triplet, creating many fewer training examples for the FEN models. Instead of feeding

all possible pairs to FENs, for each anchor point, we selected one semi-hard-negative

that was more optimal through triplet mining. For example, if we have three flow pairs,

(t1,x1), (t2,x2), and (t3,x3), our approach results in three input pairs such as [(t1,x1,x2),

(t2,x2,x1), (t3,x3,x2)]. Based on our epoch generator, only first and third triplets can

appear in the same epoch.

By partitioning the flows into k windows, we were able to pool the correlated pairs

across windows, increasing the FEN training set size by a factor of k. More specifically,

we divided each flow based on a predefined time interval chosen during the tuning

(Section 6.3.3), and constructed the training set. Based on 10,410 pairs of training

flows, we built a training set using all k flow windows, resulting in k · 10, 410 correlated

flow pairs. In contrast, we constructed k testing sets separately for each window in which

there are 2,093 pairs. Thus, this setup resulted in testing DeepCoFFEA using 2,093 Tor

and exit flows across k windows. We detail the window partitioning in Section 6.3.2.

Features

As in DeepCorr [5], we used inter-packet delay (IPD) and packet size information to

124

Table 6.1: Mean total packet count per window.

Interval 2 3 4 5 6 7 8

Tor flow 68 105 137 171 224 266 273

Exit flow 42 65 85 106 139 166 169

construct the feature vectors from the flows. Since we chose 1D CNN models for Deep-

CoFFEA, we constructed one-dimensional arrays, vi = [Ii||Si] for the bi-directional Tor

and exit flows by concatenating the vector of IPDs and packet sizes. Here, the vec-

tor Ii consists of upstream IPDs (Iu) and downstream IPDs (-Id) and the vector Si is

comprised of upstream packet sizes (Su) and downstream packet sizes (-Sd).

We also evaluated DeepCoFFEA based on other combinations, such as vi = [Iui ||Sui ||Idi ||Sdi]

or [Iui ||Idi ||Sui ||Sdi] and these feature vectors led to much worse performance, perhaps be-

cause the local interleaving of upstream and downstream traffic allowed the (local) CNN

filters to extract more relevant features. Similarly, we tried training FENs based on fea-

ture sets using only the IPD vectors or the packet size vectors and found that these

were less effective as well.

Lastly, we evaluated DeepCoFFEA using feature vectors based only on packet sizes.

The cosine similarity scores between correlated flow pairs were higher when considering

both packet timing and size information.

Figure 6.3: Overlapping window partition.

6.3.2 Window Partitioning

We tested two partition strategies, one based on time intervals and the other based on

the number of packets, and then decided to use time intervals as the window interval,

which yielded a better triplet loss curve. To determine the number of windows and the

interval, we computed the total flow duration of Tor and exit traces in the DeepCorr

125

set. We found that the majority of the traces were captured in 20-40 seconds. To decide

the most effective number of windows, we further computed the mean of packet counts

for various intervals, 2-8 seconds (Table 6.1). To ensure that the packet count of the

windows was greater than 100 for both Tor and exit flows, we had to choose intervals

greater than 4 seconds. We finally chose 5-8 seconds as more promising intervals because

they could yield enough windows (i.e., at least 5 windows) over 40 seconds.

We further explored overlapping window partitioning to create overlapping windows

with some interval overlap (δ) between subsequent windows, which we refer to as δ-on

partitioning. As shown in Figure 6.3, when the window interval length is t and total

flow duration is d, then δ-off partitioning leads to dd−tt e + 1 intervals, where window

w is the interval [t × w, t × w + t). In contrast, δ-on results in dd−tt−δ e + 1 intervals,

where window w is the interval [(t − δ) × w, (t − δ) × w + t). For example, when

t = 5, d = 25, and δ = 3, the 5 δ-off windows are the intervals [0,5), [5,10), ..., [20,25),

while the 11 δ-on windows are the intervals [0,5), [2,7), ..., [20,25). As such, with δ-on,

we create more windows, leading to more training flow pairs and boosting difference

in TPs and FPs by aggregating results from more windows. In other words, δ-on

increases the amplification of DeepCoFFEA, improving the performance dramatically,

as demonstrated in Section 6.4.1.

6.3.3 Hyperparameter Optimization

We implemented FEN models using Keras [115] with Tensorflow [116] backend. The

choice of hyperparameters is crucial to improve the DeepCoFFEA performance, and

particularly the behavior of the FENs, to result in lower triplet loss. Thus, we explored

parameter search spaces shown in Table 6.2 using training data of DIV set and one

Nvidia RTX 2080 and one Tesla P100 GPUs. Note that we only considered the δ-off

setting in Table 6.2 for more efficient optimization. Even though we also confirmed

that all chosen parameters except window count behaved similarly in the δ-on setting

using a small scaled DIV training set, the evaluation results in the δ-on setting may be

improved with further parameter optimization.

First, the triplet loss aimed to separate the positive pair from the negative by a

distance margin, α. We tuned α to maximize the distinction between the cosine simi-

larity scores of the correlated pairs and those of the uncorrelated pairs. With α=0.1,

126

Table 6.2: Chosen hyper-parameters and search spaces used in the hyper-parameter
optimization.

Param Chosen Param Search Space

α 0.1 {5 · 10−2, . . . , 5 · 10−1}
Tor flow size 238 {97, . . . , 300}
Exit flow size 140 {68, . . . , 170}

Total flow duration 25 {20, . . . , 45}
Window count 5 {4, 5}

Window interval 5 {5, 6, 7, 8}
Epoch generator 1 {1, . . . , 10}

Output node 64 {10, . . . , 100}
Optimizer SGD SGD, Adam

Learning rate 10−3 {10−3, . . . , 10−4}

the FENs attained the lowest loss.

Second, based on 25-40 second traces, we tested different combinations of the window

count and window interval (e.g., 5 sec × 5 windows, 6 sec × 5 windows) to occupy at

maximum 40 seconds, to be used as the search space. We then empirically found

that t=5 and k=5 yielded the best results and computed the minimum and maximum

number of packets corresponding to 5 seconds based on the Tor and exit flows. Finally,

this analysis resulted in 97 and 300 packets for Tor flows and 68 and 170 packets for

the exit traces. We used these numbers for the FEN hyperparameter search spaces, as

shown in Table 6.2.

Third, as discussed in Section 6.2.1, we implemented our own triplet epoch generator

which selected triplets for the positive and negative networks from separate pools. We

further tuned the number for how frequently those separate pools needed to be updated

(i.e., shuffled and divided into two pools). Eventually, the FEN performance improved

when updating the pools more frequently. Thus, we recommend updating them every

epoch rather than every 2-10 epochs.

Finally, we further tuned the learning rate of SGD optimization and the number

of output nodes, which is the dimension of the feature embeddings generated by the

trained FENs.

127

6.3.4 Metrics

In this section, we introduce the definitions of the TPR, FPR and BDR metrics used

in Section 6.4 and highlight how TPR and FPR in our metrics are different from those

used by DeepCorr [5].

First, we review the standard TPR, FPR, and BDR and then, discuss how we

computed them to incorporate the results for multiple windows.

• TPR: The true positive rate is the fraction of correlated flow pairs that are clas-

sified as “correlated”.

• FPR: The false positive rate is the fraction of uncorrelated flow pairs that are

classified as “correlated”.

• BDR: The Bayesian detection rate is not measured by state-of-the-art attacks;

however, this metric represents the feasibility of attacks since it considers the base

rate (or prior). For example, even with a high TPR and low FPR, the success rate

of the correlation attack would be very low if the prior was low. BDR in the flow

correlation is the probability that a correlated pair is actually “correlated” given

that the correlation function detected it as “correlated” and it can be computed

as follows. Compared to the precision rate, BDR is more directly impacted by the

base rate.
P (P |C) =

P (C|P)P (P)

P (C|P)P (P) + P (C|N)P (N)

where P (P) is the probability that the pair is correlated, P (C) is the probability

that the pair will be decided by the flow correlation as correlated, and P (C|P)

and P (C|N) are replaced with TPR and FPR, respectively.

As outlined in Section 6.2.4, we tested DeepCoFFEA by aggregating predictions for

each window. To compute the TPR and FPR, we vote for each window of all flow pairs

based on the cosine similarity scores and the threshold, τ . That is, we vote with 1 if the

similarity score is greater than τ and 0 otherwise. If the flow pair obtained at least k−`
1 votes, we counted the pair as a TP for correlated samples and as FP for uncorrelated

samples.

128

In addition, we measured the performance of state-of-the-art attacks and DeepCoF-

FEA using ROC curves by varying the correlation threshold parameter. Note that we

also plotted these curves for RAPTOR and DeepCorr and computed the TPR, FPR,

and BDR for our evaluation set while varying the tradeoff parameter for these attacks.

Note that while the parameter has different units for all three attacks – a Spearman

correlation coefficient for RAPTOR, sigmoid output for DeepCorr, and cosine similarity

in DeepCoFFEA– we still see a smooth TPR/FPR tradeoff characteristic. We further

discuss how we chose the thresholds for DeepCoFFEA in Section 6.3.5.

6.3.5 Thresholds

In DeepCoFFEA, the embedded feature correlation threshold τ acts to control the

number of exit traces that are classified as “possibly correlated” with each Tor trace in

a given time window. We can either control this number indirectly by setting a global

threshold τ that is applied to all cosine similarities (so that, generally, as τ increases,

fewer pairs will be classified as possibly correlated); or we can control this number

directly by classifying only the closest κ exit traces to a given Tor trace ti (as measured by

cos(G(ti), H(xj))) as possibly correlated. This latter choice corresponds to computing a

local threshold for each ti by sorting the list di,1,di,n, where di,j = cos(G(ti), H(xj)),

and selecting the κth element as the threshold for ti.

We explored both approaches and empirically found that, by directly controlling

the rate of positive results, the local threshold approach yields a better ROC curve.

As shown in Figure 6.4b in Section 6.4, the TPR and FPR per window are directly

proportional to κ. The ROC curves of DeepCoFFEA in Section 6.4 were generated

using κ as the curve parameter.

6.4 Evaluation Results

In this section, we evaluate the overall performance of DeepCoFFEA using the experi-

mental setup and metrics discussed in Section 6.3.4. We explore various configurations

of DeepCoFFEA to find the most effective setting in Section 6.4.1. Then we compare the

effectiveness and efficiency of DeepCoFFEA to state-of-the-art attacks in Section 6.4.2.

129

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

3-on

2-on

1-on

off

RG

(a) ROC for δ-on/off (loss ≈
0.02).

0.2 0.4 0.6 0.8 1.0
thresholds (k) 1e3

0.0

0.2

0.4

0.6

0.8

1.0

m
e
tr
ic
s TPR

FPR

BDR

(b) TPR,FPR, and BDR with
varying positive counts κ when
loss ≈ 0.006.

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

7 votes

8 votes

9 votes

10 votes

11 votes

RG

(c) ROC with k = 11 win-
dows and ` = 0, 1, 2, 3, 4 (loss
≈ 0.006).

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

0.02

0.01

0.008

0.007

0.006

RG

(d) ROC at various triplet
training losses.

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

DIV

JAN

APR

UDEF

RG

(e) ROC for FENs trained using
DIV, JAN, APR, and UDEF
datasets (loss ≈ 0.01).

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0
T
P
R

obfs4-iat0

obfs4-iat1

TWO_.02

ALL_.02

TWO_.01

ALL_.01

RG

(f) ROC to show the impact of
defended traces and testing set
circuits (loss ≈ 0.006 for obfs4).

Figure 6.4: Performance of DeepCoFFEA across various settings (Note that RG is
Random Guess and all x-axes except Figure 6.4b are log scale).

130

6.4.1 DeepCoFFEA Performance

Window Partition

First, we investigated the impact of δ-on/off settings for varying δ. As discussed in

Section 6.3.2, δ-on creates d25−5
5−δ e+ 1 windows, that is, it creates 6 windows for δ = 1, 8

windows for δ = 2, and 11 windows for δ = 3. Note that we omitted δ = 4 since with 21

windows the resulting cosine similarity matrix for 218,610 training flow pairs was too

large to compute using our resources, so we could not select semi-hard-negatives.

We reported results of ` = 2 for the 3-on and the 2-on and ` = 1 for the 1-on setting

in Figure 6.4a. The overlapping windows clearly made DeepCoFFEA more effective.

Furthermore, since increasing δ further improved the amplification capability with more

training flow pairs as well as more voting results, Figure 6.4a shows that a larger δ led to

superior ROC curves with higher TPRs using more votes. This also indicates that more

resourceful adversaries could further improve the 3-on results by using the 4-on setting.

Based on Figure 6.4a, we evaluated DeepCoFFEA in the 3-on setting throughout the

remainder of the section.

Threshold Parameter

Using the experiment setup described in the previous section, we evaluated the effect

of the positive correlation parameter κ as described in Section 6.3.5. Figure 6.4b shows

the results of this evaluation and the overall performance of DeepCoFFEA. Both the

TPR and FPR increased by increasing the threshold, while the BDR decreased. We

note some points of interest on the curve: for 10−3 FPR, the TPR was 0.995; for 3 ·10−4

FPR, it was 0.991, and for 10−5 FPR the TPR was 0.977. DeepCoFFEA successfully

reached 0.95 TPR with only 2 FPs and 0.94 TPR without FPs (i.e., 0 FPR). These

results indicate that DeepCoFFEA achieved almost perfect performance correlating the

Tor and exit flows.

Vote Threshold.

After computing the cosine similarity scores for all testing pairs for each window, we

decided that the flow pair would be correlated if it had at least nine 1 votes across

11 windows. Figure 6.4c, shows how the performance changes when requiring positive

correlation in 7-11 windows.

131

Triplet Loss.

When training FENs, the triplet loss started with 0.09-0.1 and decreased monotonically

with training time; our experiments halted training when the loss hit 0.006. In this

section, we investigate the performance of DeepCoFFEA when training stops at different

loss values; this experiment gives insight on choosing a stopping point for training FENs.

Based on Figure 6.4d, the DeepCoFFEA performance continually improved as the triplet

loss decreased even though the degree became insignificant after the loss reached 0.008.

Dataset.

Previous related work [112, 10] required very large data sets for training and testing. To

study the impact of the dataset diversity on FEN training, we used the DIV, and JAN

sets to train and test FENs. As Figure 6.4e shows, the performance of DeepCoFFEA was

improved with the DIV set in which more variance between Tor traces existed because

the traces were collected with more circuits for a longer period (i.e., four months) and

some traffic with the obfs4 defense. However, even the DIV set is much smaller than the

training set used in TF. For example, the FENs were trained using 114,510 triplets every

epoch while TF [10] was trained with 232,500 triplets. This indicates that DeepCoFFEA

performance could be further improved with a much larger dataset.

Since we included defended flows in the DIV set, we further investigated the UDEF

set to study how this affected the performance of DeepCoFFEA. Based on Figure 6.4e,

when we trained and tested DeepCoFFEA using only undefended traces, this change

minimally impacted the performance. In contrast, as shown in Figure 6.5, the Deep-

Corr degraded using the DIV set because the intra-class variances became larger with

defended flows. Since DeepCoFFEA does not learn based on labels, the inclusion of de-

fended traces added more diversity to the set, which enabled DeepCoFFEA to broaden

the learning scope to better distinguish correlated flows from uncorrelated flows.

Testing Set.

TF [10] could be applied to data collected from a different distribution from the training

set; in particular they used a TF model trained on one data set to successfully identify

website traces collected on different data sets collected up to three years apart. We

explored the same goal for correlation attacks using different testing sets. Using a

training set collected in January 2018, we evaluated the performance of DeepCoFFEA

132

on a testing set collected in the same month, the JAN set, and on a testing set collected

three months later, the APR set. As shown in Figure 6.4f, both experiments presented

comparable performance.

Circuit Impact.

We investigated the effect of circuits used in the training and testing sets. This exper-

iment helps understand how much DeepCoFFEA successfully detects correlated flows

which were collected using arbitrary circuits. We trained FENs using training data of

the All set. As shown in Figure 6.4f, when we used the TWO set as testing flows and

the loss value was 0.02, the performance became slightly less effective although the dis-

crepancy was not critical. However, as the triplet loss decreased, both TWO and ALL

sets showed comparable performance, indicating that DeepCoFFEA still successfully

detected correlated testing flows collected using arbitrary circuits.

Defended Traces.

Nasr, Bahramali and Houmansadr [5] evaluated DeepCorr against traces protected by

the obfs4 pluggable transport (PT), the PT recommended by the Tor project [71]. obfs4

encrypts and transforms the traffic between the client and the guard node to avoid

potential traffic analysis-based censorship. In particular, it obfuscates packet sizes by

appending random padding. To add extra security, obfs4 also provides an IAT (Inter-

Arrival Timing) mode that randomizes inter-arrival times, which is enabled when IAT

mode = 1 (obfs4-iat1) and disabled when IAT mode = 0 (obfs4-iat0). In this study, we

explored the obfs4 PT with both modes as shown in Figure 6.4f.

Note that we trained FENs using the DIV set and tested them using the obfs4-

iat1 and obfs4-iat0 flows. Even though the performance was worse than undefended

flow correlation, DeepCoFFEA still performed better than random guessing with 0.76

TPR when FPR was 10−3 against obfs4-iat0. In particular, even against obfs4-iat1,

DeepCoFFEA achieved 0.61 TPR with 10−3 FPR, which indicates that the obfs4 PT

did not defeat DeepCoFFEA completely and Tor must be equipped with more robust

defenses against DeepCoFFEA-style correlation attack.

133

10-5 10-4 10-3 10-2 10-1 100

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

Cosine

RAPTOR

DC500

DC_DIV

DCF

RG

Figure 6.5: ROC of state-of-the-art and DeepCoFFEA attacks (Note that x-axis is log
scale, DC: DeepCorr, DC-DIV: DeepCorr with the DIV set, DCF: DeepCoFFEA (loss
≈ 0.006), and RG: Random Guess.)

0.0 0.2 0.4 0.6 0.8 1.0
TPR

0.0

0.2

0.4

0.6

0.8

1.0

B
D
R

Cosine

RAPTOR

DC500

DCF

Figure 6.6: BDRs of state-of-the-art and DeepCoFFEA (loss ≈ 0.006) against TPRs
(Note that x-axis is log scale, DC: DeepCorr, and DCF: DeepCoFFEA (loss ≈ 0.006)).

134

Table 6.3: The number of packets for each of 11 windows (Total flow duration: 25
seconds).

window 0 1 2 3 4 5 6 7 8 9 10 total

Tor 100 126 169 211 244 261 261 251 237 225 231 1,148

Exit 77 101 130 150 162 162 157 148 140 137 140 672

10-5 10-4 10-3 10-2 10-1

FPR

0.0

0.2

0.4

0.6

0.8

1.0

T
P
R

DC300

DC500

DC700

DC900

DC(w)

RG

Figure 6.7: ROC of DeepCorr (DC) by varying the flow length (i.e., the number of
packets) (Note that x-axis is log scale and DC(w) is when evaluating DeepCorr in the
window setting).

6.4.2 Comparison to State-of-the-art

In this section, we compare the performance of DeepCoFFEA to other state-of-the-art

attacks using 2,093 flow pairs of the DIV set.

Tuning State-of-the-art.

For a fair comparison, we need to tune each attack to obtain the best performance

on our evaluation set. First, we empirically chose the best feature dimension (number

of packets) for all three attacks and additionally determined the number of training

flow pairs for DeepCorr. The dimension is important because all three prior attacks

require both Tor and Exit flow feature vectors to have the same length, and using longer

vectors will induce padding that decreases accuracy, while using shorter vectors might

truncate useful information. Through experimentation, using 900 packets for Cosine

Similarity and RAPTOR gave the best performance; the corresponding parameters

used for DeepCoFFEA are shown in Table 6.3.

However, for DeepCorr, we found that the performance became notably worse using

the DIV set due to the defended traces and better when trained and tested with the

preprocessed feature vectors included with the released DeepCorr data set. Thus, we

135

Table 6.4: TPRs of DeepCorr (DC) and DeepCoFFEA (DCF when loss ≈ 0.006) by
fixing FPRs(#FPs) when tested with 2,093 Tor connections resulting in 2,093 correlated
and 2,093 × 2,092 uncorrelated flow pairs.

FPR 10−3(4400) 3 · 10−4(1300) 9 · 10−5(400) 2 · 10−7(1)

DC 0.791 0.662 0.506 0.06

DCF 0.995 0.993 0.989 0.942

Table 6.5: Time complexity (seconds) of DeepCorr (DC) and DeepCoFFEA (DCF) by
varying the size of testing flow pairs.

Size 100 1,000 5,000 10,000

DeepCorr 56 5,438 137,000 549,000

DeepCoFFEA 2 9 150 584

DC:DCF 28:1 604:1 913:1 940:1

decided to use their preprocessed set. We further noticed that flow pairs in which one

flow required a large amount of padding reduced the accuracy of DeepCorr, so to make

the most optimistic estimation of the DeepCorr performance, we further selectively

chose the 5,000 training and 2,093 testing flow pairs that minimize the total padding

amount. We also stopped training if the testing TPR and FPR did not improve for a

day.

Based on Figure 6.7, we decided to use 500 packets as the flow length since the

performance became more effective than other flow lengths. If we use a smaller number

of flow pairs in which we can further reduce the amount of padding for all flows, the

performance may improve with an increased feature dimension; however, this would not

reflect the variable length of Tor flows in the real world.

DeepCorr with DIV.

As shown in Figure 6.5, DeepCorr became much less effective using the DIV set because

the inclusion of defended traces led to much higher intra-class variances for both labels

(i.e., correlated or uncorrelated). Such diversity in the training data weakened the

learning capability of label-based, supervised DeepCorr models while it improved the

feature extraction ability of FENs.

136

Overall Performance.

The results of our comparison are shown in Figures 6.5 and 6.6. DeepCoFFEA outper-

formed all other correlation attacks, reaching a much higher TPR for any given FPR.

This substantial improvement correspondingly led to a higher BDR. As shown in Fig-

ure 6.6, DeepCorr and DeepCoFFEA were both able to achieve a BDR of 1.0 for our

small evaluation set, while RAPTOR and cosine similarity were unable to reach a FPR

of 0 with a positive TPR. However, for BDRs closer to 1, the TPR of DeepCorr de-

grades considerably while DeepCoFFEA can still detect most associated pairs correctly

(i.e., more than 94% of the entire set). For example, to exceed 99% BDR, DeepCorr

must use a threshold so high that TPR dropped to 6%, while DeepCoFFEA was still

able to achieve 95% TPR. Further comparisons between the tradeoffs among TPR,

FPR, and BDR for DeepCorr and DeepCoFFEA are shown in Table 6.4. DeepCoFFEA

outperformed DeepCorr by significant margins, +20-88%, at fixed FPRs.

Previous literature [5] suggested that DeepCorr might be applied in a multi-stage

attack in which the correlation analysis is first done in N flow pairs using the first p

packets and then, extended to only M flows (i.e., M < N) identified as correlated in the

first phase of attack using p + l packets. In this way, DeepCorr might improve BDRs

due to the increased base rate. However, as shown in Figure 6.7, in our experiments,

longer flow observations (i.e., 700 and 900 packets) did not yield better performance in

DeepCorr, which indicates that this hierarchical concept will not achieve better TPRs

and FPRs than one-stage attack using 500 packets. Note that using a 7,093 flow pair set,

the performance did not improve after 500 packets. Hence, it remains unclear whether

a multi-stage approach can fundamentally resolve the low BDR issue.

To sum up, the combination of feature embedding and amplification help to improve

the state-of-the-art performance significantly, to the point that a DeepCoFFEA-based

end-to-end correlation attack may be feasibly deployable at Tor scale.

Time Complexity.

We further compared the running time of DeepCorr and DeepCoFFEA by varying the

testing set size (tn) from 100 to 10,000 flow pairs. We used one Tesla P100 GPU with

16GB memory and 900 packets for DeepCorr. We computed the total running time to

complete the full tn × tn flow attack including data loading and the correlation metric

137

computation; for DeepCoFFEA, we measured the total time for loading testing flows,

generating feature embeddings, computing cosine similarity scores, and aggregating the

resulting votes across 11 windows.

We report the mean value of five runs for each attack in Table 6.5. Compared to

DeepCorr, DeepCoFFEA achieved much lower computational costs, in particular, to

conduct the correlation analysis for 10,000 flow pairs, DeepCoFFEA performed around

940 times faster than DeepCorr. We also note that the cost gap between DeepCorr and

DeepCoFFEA further increased as the flow pair count increased.

There are two reasons for this discrepancy. First, we only needed to evaluate the

Tor FEN 11× tn times and the Exit FEN 11× tn times to generate all feature embed-

dings, rather than evaluating t2n instances of the DeepCorr CNN. Second, even though

the similarity score computation over the generated t2n embeddings became more ex-

pensive for larger testing set, we further optimized the cosine similarity computation

by converting the embedding vectors into matrices, and using the vectorized routine of

sklearn.metrics.pairwise.cosine similarity.

Even though the multi-stage setting which we discussed earlier can somewhat reduce

the complexity overhead of DeepCorr for longer flows, we found that the complexity

of correlating shorter flows was still considerable. For example, when we applied a

DeepCorr model optimized for the first 300 packets to correlate 10,000 flow pairs, the

attack still took 2.2·105 seconds for this first stage, or more than two orders of magnitude

more computation than DeepCoFFEA. Moreover, the performance improvement by

a multi-stage attack is somewhat doubtful. As mentioned previously and shown in

Figure 6.7, we found that the increased padding with longer flows offsets the potential

accuracy gains for the smaller number of flows that reached this length. Hence, even

with this hierarchical approach, it is hard to expect that DeepCorr can achieve either

better performance or lower computational cost than DeepCoFFEA.

Time Gap between Training and Testing Set.

As discussed in Section 6.4.1 and shown in Figure 6.4e, DeepCoFFEA perfectly detected

whether or not a flow pair was correlated when using a testing set (APR) with a different

distribution from the JAN training set (0.99 TPR and 10−3 FPR). In contrast, the TPR

of DeepCorr decreased by 50% at a FP of 10−3 [5].

138

Table 6.6: DeepCorr and DeepCoFFEA performance against obfs4 pluggable transport.

Attack
IAT = 0 IAT = 1

TPR FPR TPR FPR

DeepCorr 0.50 0.0005 0.10 0.001

DeepCoFFEA 0.69 0.0005 0.61 0.001

Table 6.7: DeepCorr performance for each window when κ=34 (Note that pkt# is the
packet count and TPRs/FPRs (%)).

Window 0 1 2 3 4

Pkt# 100 200 238 238 238

5 seconds 69/2 53/2 32/2 10/2 7/2

Pkt# 100 100 100 100 100

100 packets 87/5 16/2 5/2 5/2 5/2

This indicates that the FENs used in DeepCoFFEA require less frequent re-training

than the DeepCorr CNN. We speculate that this is because the triplet loss function

gives the FENs a significantly higher degree of freedom in separating correlated and

uncorrelated pairs than the supervised learning loss function required in DeepCorr.

This unsupervised learning process seems to lead to less overfitting to the training set

and result in more generalized FEN models. We leave further investigation using much

older testing sets as future work.

Robustness against Defense.

Figure 6.4f shows that DeepCoFFEA significantly outperformed random guessing even

against obfs4-iat1. We further compared this result to DeepCorr. As shown in Table 6.6,

DeepCoFFEA outperformed DeepCorr by 19% in obfs4-iat0, and by 51% in obfs4-iat1.

This indicates that DeepCoFFEA has superior performance to DeepCorr against obfs4-

protected traffic and further, does not require tuning and training new models better

tailored to detect correlated defended flows; thus, we can use FENs for both undefended

and defended correlation studies.

6.4.3 Amplification in DeepCorr.

Amplification, or window partitioning, is a key technique to reduce the number of FPs

in DeepCoFFEA. In this section, we investigate whether this strategy could also be

139

applied to DeepCorr, e.g. whether amplification can be applied independently of feature

embedding to improve the performance of end-to-end correlation attacks. To provide a

fair comparison, we applied the local threshold approach as explained in Section 6.3.5.

Even though we only explored the δ-off setting in this experiment, we do not expect the

performance improvement with the δ-on settings because DeepCorr performed poorly

on all windows except the first window, which will be discussed in detail later.

First, we evaluated DeepCorr in the same window setting (i.e., amplification) using

five windows, five seconds per window, and 238 for the flow length. The only difference

with DeepCoFFEA setting is that the DeepCorr architecture requires using the same

number of packets for both Tor and exit flows, which requires more padding or trun-

cation of feature vectors (Refer to Table 6.3). We found that this loss of detail highly

reduced the accuracy of the DeepCorr metric, resulting in an accuracy for each window

of less than 10%.

Since the length of traces was more consistent within individual windows, we also

tried to train separate DeepCorr models per window, finding the optimal flow length

for each window. However, this Amplified DeepCorr still performed worse than the

original DeepCorr settings shown in Figure 6.7. When investigating each window result

separately, Table 6.7 shows that the performance became worse in later windows, in

particular, TPR degraded quickly enough that very few flow pairs would get a 1 vote in

windows 2, 3, or 4. This is also consistent with our observation that the DeepCoFFEA

embedded feature vectors for earlier windows were generally more highly correlated than

those in later windows, although the drop was not as extreme as seen here.

Finally, we also tried partitioning flows into windows based on 100-packet segments,

however, this resulted in much worse performance than the previous scenario. In par-

ticular, DeepCorr attained lower TPR (≈ 5-16%) for windows 1-4 even though the first

100 packets had shown stronger correlation based on Table 6.7. This is because after

the first window, the start packets of the two flows have different timestamps, thus the

order of packets in subsequent windows carry less and less useful information about the

correlation between flows.

Note that this performance could be improved by tuning each window model more

thoroughly, however, it is still obscure how much DeepCorr could benefit from amplifica-

tion due to two factors. First, the number of packets in a specific duration varies highly

140

by flow, meaning any window-based approach would result in frequent padding and

truncation of flows, substantially impacting the performance of the DeepCorr model.

Second, the subflows in a correlated pair become more varied in later windows, result-

ing in more considerable intra-class variance and a lower TPR. These limitations are

significant obstacles to training supervised models.

We summarize the benefits of DeepCoFFEA compared to DeepCorr as follows.

• The pairwise nature of correlation metrics used in DeepCorr resulted in low BDRs

and required high computational complexity to achieve minimally effective perfor-

mance. DeepCoFFEA illustrates that these limitations do not preclude real-world

correlation attacks on Tor with high BDRs and much lower time complexity.

• Our new attack framework — incorporating multiple DNNs (FENs), trained using

triplet loss and window partitioning — enabled us to achieve a lower computa-

tional cost by extracting only O(n) feature embedding pairs of Tor and exit flows

based on FEN models. Furthermore, this new framework significantly reduced the

number of FPs, by aggregating votes from multiple windows.

• DeepCoFFEA performed effectively against a testing set collected three months

later than the training set. This result demonstrates that FEN models can be

reused for a short-term period, such as three months, which requires less frequent

re-training than DeepCorr, which requires updating models every three weeks.

• The obfs4 traces failed to defeat DeepCoFFEA completely. Even in the highest

security setting, DeepCoFFEA still significantly reduced the anonymity set, with

0.61 TPR while DeepCorr achieved 0.10 TPR to yield 10−3 FPR. Furthermore,

DeepCoFFEA can conduct flow correlation analysis for both undefended and de-

fended traces without training separate models.

6.4.4 Countermeasures

In this section, we discuss possible countermeasures to thwart DeepCoFFEA-style at-

tacks. Figure 6.4f demonstrates that the obfs4 defense mechanism with IAT mode = 1

degraded the DeepCoFFEA performance by around 39% margin at 10−3 FPR compared

to undefended flow correlation. As such, we recommend using obfs4-iat1 as an initial

141

defense. Relay selection algorithms [38, 31, 40, 41] designed to hinder potentially mali-

cious ASes from monitoring both ends of Tor connections may also help to deteriorate

the effectiveness of DeepCoFFEA as prior work [5] also pointed out.

We expect that, if implemented, higher-overhead traffic analysis countermeasures

such as BuFLO [15] and Tamaraw [16] would be effective against DeepCoFFEA attacks

as well. Since both defenses hide the total packet statistics by padding dummy packets

until the flows reach their thresholds such as the total number of packets or transmitted

bytes, they can make Tor flows much less distinguishable from each other, which may

further make correlated flow features less effective. However, given the high bandwidth

overhead of the constant rate padding, it could be more interesting to explore the

effectiveness of lighter-weight website fingerprinting defenses such as WTF-PAD [17] and

Walkie-Talkie [79] in defeating flow correlation. Since these defenses have never been

evaluated against triplet network-based attacks, adjusting them to defeat DeepCoFFEA

is a compelling topic for future work.

Chapter 7

Conclusion and Future Research

In this thesis, we introduced various types of traffic analysis techniques that can be

applied to achieve several more sophisticated fingerprinting goals by discovering more

fine-grained features or adopting more advanced deep learning techniques.

First, we described a novel attack, keyword fingerprinting, to identify search engine

queries over Tor, using new feature sets focusing on incoming packets in the response

portion of a search query trace. We performed feature analysis to select appropriate

new features for this classification task and analyzed the effect of several variations on

the attack, including the choice of classifier, size and contents of the monitored set,

the size and contents of the background training set, and the search engine and query

method. Across these variations, the results show acceptable performance and suggest

that new work is needed to understand how to defend against keyword fingerprinting

attacks. This work is critical given the importance of protecting the contents of search

engine queries.

Second, we extensively explored the effectiveness of DNNs in three different appli-

cations: automated feature engineering, fingerprinting attacks, and prediction of finger-

printability. As a feature extractor, lower dimensional representations learned by an

AE have made state-of-the-art WF attacks more effective as well as more efficient. For

fingerprinting attacks, DNNs have performed well across various traffic datasets and

different fingerprinting tasks, as well as against recent WF defenses. Lastly, we showed

that several features of the HTML-level design of a website influence the fingerprint-

ability using DNN models. This finding shows the possibility that future work on WF

142

143

defense can use HTML features.

Third, we introduced a novel attack, GANDaLF, using GANs in a semi-supervised

setting, in which the generator minimizes the difference between real trace and fake

trace distribution. The discriminator is trained to distinguish between real and fake

samples and further improve classification over the labeled set by leveraging both la-

beled and unlabeled traces. Because it requires only a small amount of labeled data,

we investigated the applicability of this variant of GANs in a low-data setting for WF

attacks. Furthermore, we evaluated GANDaLF by exploring the index and non-index

pages of both sites using various experimental scenarios. Finally, our empirical study

showed that GANDaLF had better performance than Var-CNN and TF, the most re-

cent low-data WF attacks at non-index fingerprinting with a particularly significant

performance advantage in the open-world setting. However, in WF-S, GANDaLF was

not more effective than k-FP by leveraging the total packet statistics.

Fourth, we developed a new end-to-end flow correlation attack on Tor, DeepCoF-

FEA, which is more scalable and practically effective than state-of-the-art attacks. First,

we explored the primary challenge in applying prior work to large-scale traffic analysis,

low BDRs, due to the pairwise nature of flow correlation attacks. We then developed

DeepCoFFEA to reduce FPs, leading to higher BDRs. By extending the triplet network

so it is a suitable feature extractor for amplified flow correlation, we developed a pair

of FENs that were jointly trained using the triplet loss function. By evaluating Deep-

CoFFEA in various experimental settings, we demonstrated that this new architecture

and attack paradigm significantly improves state-of-the-art flow correlation attacks at

the cost of acceptable time complexity.

In the next section, we introduce several future research directions for traffic analysis

defenses and GANDaLF and DeepCoFFEA projects.

144

7.1 Future Work

7.1.1 Traffic Analysis Defenses.

Defense Evaluation.

In the last decade, security researchers have developed several types of WF defenses

including constant padding, adaptive padding, and supersequence-based padding. In

particular, defenses based on periodical padding [15, 16] are straightforward and pow-

erful mechanisms in terms of increasing the number of false positives; however, they

struggle with high enough bandwidth overhead to impact the service. In an effort to

design more efficient padding, several researchers have adopted adaptive padding to

develop relatively lighter-weight defenses such as WTF-PAD [17] by sending dummy

packets only when it detects noticeable large gaps between packets. However, DL-based

WF studies [2] have successfully defeated this defense with 90% accuracy. Later, other

types of padding that mimic supersequence (i.e., representative traffic in each group of

websites) have made website traces similar enough to each other to only allow up to a

50% detection rate. However, this defense leaked the timing information, and thus was

successfully detected by timing-based WF attacks [97].

These weaknesses have become a major hurdle for the Tor project to deploy defenses

in Tor. Recently, a more sophisticated approach to hide burst patterns was introduced

by FRONT [117] and RegulaTor defenses [118]. To defeat DF, the former adds more

randomness in the location and volume of dummy packets while the latter regulates

burst shapes and sizes by sending dummy packets to incoming bursts and then decaying

the packet sending rates. However, the extent to which these misclassification rates and

bandwidth and latency overheads are consistent when they are implemented in the real-

world is questionable. Therefore, similar to Juarez et al., who conducted this type of

analysis against WF attacks [52], researchers need to evaluate defenses against realistic

WF scenarios such as webpages and multi-tab fingerprinting and various client location

and circuit usage. This study will help the Tor project and users better understand the

practicality of recent WF defenses.

New Defenses.

As shown in both FRONT and RegulaTor, sending or delaying dummy packets located

145

in selective burst locations is a good strategy to weaken WF performance, even though

it comes with some overhead costs. However, given that both defended traces still

somewhat expose packet timing information [118], further study to hide the timing

pattern seems to be an interesting future work.

For the other types of defense, efforts to extend our study in Section 4.5 are needed

including more extensive fingerprintability analysis based on HTML features using thou-

sands of Alexa top websites to locate more impactful website design properties. This

could enable us to develop tools implemented in either of the client-side or server-side

to further inspect websites and suggest safer designs for traffic analysis.

In addition, our study in Chapter 6 requests an urgent need to develop defenses to

defeat DeepCoFFEA-style attacks are also needed. Since we found that DeepCoFFEA

became much less effective with the packet count-based window partitioning, further

investigation on the way to efficiently pad or delay packets in each window to have

similar packet counts could be an important next step to design the defense.

7.1.2 More Rigorous GANDaLF Experimental Settings

Better WF-S Setting for TF and GANDaLF.

Since we used website fingerprints rather than subpage fingerprints as unlabeled data fed

into the discriminator in the WF-S scenario, our experimental results in Table 5.5 were

not based on the best setting. A larger-scale subpage set in terms of the number of

websites, subpages, and training instances per subpage will lead to better accuracy. In

particular, it will generate better fake subpage samples based on the feature of match-

ing the loss to subpage data, which will help the discriminator classify more variable

subpages as the correct class.

Similarly, this approach may improve the quality of the feature extractor of TF [10]

by being pre-trained using a much larger subpage set, because the triplet network can

better learn to distinguish between different websites based on subpage traces.

Incorporate Categorical Features.

As shown in Table 5.5, k-FP [88] had very good WF-S classification accuracy based on

all of the statistics-based features. This result suggests a promising future research ap-

proach investigating how to aggregate these features into GANDaLF . In our preliminary

146

experiments, we confirmed that directly using k-FP features did not help improve the

performance of GANDaLF. Thus, it may be achieved by an ensemble classifier based on

k-FP (or other optimal classifier) with these categorical features, and GANDaLF, which

aggregates the prediction decisions from the models. As shown with Var-CNN [11], this

ensemble classifier may lead to enhanced classification performance.

Different Generator.

We can improve the ability of the generator to produce better fake samples. We may

incorporate conditional GANs [119] into the SSL. Since the generator can be conditioned

on some extra label information, we can generate fake trace samples conditioned on

specific class labels. Thus, based on the discriminator classification result, we may force

the generator to generate samples for target websites that produce more confusion during

classification. Additionally, we can improve the generator by exploring other generative

networks such as an autoencoder and variational autoencoder [120]. Moreover, building

more traffic-specific generators may be an interesting future direction. This approach

may be more tuned to create better fake trace samples to conduct better WF. For

example, we may perturb burst patterns that are similar to cropping, resizing, and

rotating images to create better fake samples that will be validated by a target classifier

such as DF. That is, we can incorporate this generator into the SSL framework and

maximize the classification ability by training the generator and classifier jointly.

Other WF Scenarios.

As we briefly mentioned in Section 5.1.2, the subpage identification challenge is an

interesting scenario that has yet to be explored in detail. This setting poses a unique

challenge in that classifiers must learn to handle data that have a wide range of inter-

class variation. More precisely, classifiers must be able to distinguish between pages from

different domains (high variance) as well as pages within the same domain (relatively

lower variance). It would be interesting to investigate this new task in a low-data

setting. Moreover, we can apply GANDaLF to resolve other unrealistic assumptions, as

identified by Juarez et al. [52]. For example, GANDaLF may be aptly suited to detect

websites that are visited from different versions of the Tor Browser Bundle. In this

scenario, GANDaLF, when trained on a large variety of unlabeled data, can learn more

robust decision boundaries. since the generator can generate fake samples to fill the

147

gap between the bundle versions. However, further architectural optimization is needed

to elaborate on such feature generation when the intra-class variance is expected to be

more significant.

7.1.3 More Realistic DeepCoFFEA Evaluation

Evaluation against WF Defenses.

The most pressing open question is whether the adaptive padding [25] defense under de-

velopment by the Tor project will be an effective countermeasure to DeepCoFFEA style

attacks. Given recent results showing that DNNs can defeat similar countermeasures

such as WTF-PAD [2] and Walkie-Talkie [97] in the context of website fingerprinting, we

should further investigate what mechanisms can be effectively deployed against DNN-

based traffic analysis attacks. Our results suggest that these may be the most important

questions anonymity researchers and developers currently face.

Even though WF defenses can be utilized to defend the end-to-end flow correlation

attacks, defenses that are more specific to the correlation attacks have not been actively

explored. Further study to adjust the padding mechanism to hide the traffic pattern

in time-based windows is also an interesting future research direction to propose more

powerful defenses against DeepCoFFEA-style attacks.

More Advanced Flow Correlation Analysis.

Since the DeepCorr dataset was collected using a SOCKS proxy server running Tor

clients inside of virtual machines, it is possible that more realistic Tor traffic is somehow

different. These changes may lead to less correlated features. We plan to further evaluate

DeepCoFFEA using more realistic data settings by employing volunteer Tor clients and

varying the client locations to show this impact.

Given that WF attacks have been evaluated in low-data settings, another interesting

question is whether more advanced DNN architectures such as ResNet used in Var-

CNN [11] can be applied to DeepCoFFEA. With this approach, we could make the

flow correlation analysis more scalable by decreasing the size of the training set while

yielding comparable performance.

In addition, evaluating DeepCoFFEA using more challenging testing sets collected a

couple of years prior to the training set will be an important next step to further decrease

148

the training complexity of DeepCoFFEA while maintaining good quality of DeepCoF-

FEA. Finally, further investigation of the DeepCoFFEA architecture for stepping-stone

detection and correlation of VPN or HTTPS proxy services might also yield interesting

results.

References

[1] Se Eun Oh, Saikrishna Sunkam, and Nicholas Hopper. p1-fp: Extraction, classifi-

cation, and prediction of website fingerprints with deep learning. Proceedings on

Privacy Enhancing Technologies, 2019(3):191–209, 2019.

[2] Payap Sirinam, Mohsen Imani, Marc Juarez, and Matthew Wright. Deep fin-

gerprinting: Undermining website fingerprinting defenses with deep learning. In

Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communi-

cations Security, pages 1928–1943, 2018.

[3] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter

Joosen. Automated website fingerprinting through deep learning. In Network &

Distributed System Security Symposium (NDSS), 2018.

[4] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter

Joosen. Automated website fingerprinting through deep learning. arXiv preprint

arXiv:1708.06376, 2017.

[5] Milad Nasr, Alireza Bahramali, and Amir Houmansadr. Deepcorr: strong flow

correlation attacks on tor using deep learning. In Proceedings of the 2018 ACM

SIGSAC Conference on Computer and Communications Security, pages 1962–

1976. ACM, 2018.

[6] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer Rexford,

Mung Chiang, and Prateek Mittal. {RAPTOR}: Routing attacks on privacy

in tor. In 24th {USENIX} Security Symposium ({USENIX} Security 15), pages

271–286, 2015.

149

150

[7] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. Effec-

tive attacks and provable defenses for website fingerprinting. In 23rd {USENIX}
Security Symposium ({USENIX} Security 14), pages 143–157, 2014.

[8] Andriy Panchenko, Fabian Lanze, Jan Pennekamp, Thomas Engel, Andreas Zin-

nen, Martin Henze, and Klaus Wehrle. Website fingerprinting at internet scale.

In NDSS, 2016.

[9] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website

fingerprinting technique. In 25th {USENIX} Security Symposium ({USENIX}
Security 16), pages 1187–1203, 2016.

[10] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew

Wright. Triplet fingerprinting: More practical and portable website fingerprinting

with n-shot learning. In Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pages 1131–1148, 2019.

[11] Sanjit Bhat, David Lu, Albert Kwon, and Srinivas Devadas. Var-CNN: A data-

efficient website fingerprinting attack based on deep learning. Proceedings on

Privacy Enhancing Technologies, 2019(4):292–310, 2019.

[12] Akshaya Mani, T Wilson-Brown, Rob Jansen, Aaron Johnson, and Micah Sherr.

Understanding Tor usage with privacy-preserving measurement. In Internet Mea-

surement Conference, pages 175–187, 2018.

[13] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprint-

ing: attacking popular privacy enhancing technologies with the multinomial näıve-

bayes classifier. In Proceedings of the 2009 ACM workshop on Cloud computing

security, pages 31–42, 2009.

[14] Andriy Panchenko, Lukas Niessen, Andreas Zinnen, and Thomas Engel. Website

fingerprinting in onion routing based anonymization networks. In Proceedings of

the 10th annual ACM workshop on Privacy in the electronic society, pages 103–

114, 2011.

151

[15] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-

a-boo, i still see you: Why efficient traffic analysis countermeasures fail. In 2012

IEEE symposium on security and privacy, pages 332–346. IEEE, 2012.

[16] Xiang Cai, Rishab Nithyanand, Tao Wang, Rob Johnson, and Ian Goldberg. A

systematic approach to developing and evaluating website fingerprinting defenses.

In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Commu-

nications Security, pages 227–238, 2014.

[17] Marc Juarez, Mohsen Imani, Mike Perry, Claudia Diaz, and Matthew Wright.

Toward an efficient website fingerprinting defense. In European Symposium on

Research in Computer Security, pages 27–46. Springer, 2016.

[18] Tao Wang and Ian Goldberg. Walkie-Talkie: An efficient defense against passive

website fingerprinting attacks. In USENIX Security Symposium, 2017.

[19] Paul Syverson, Gene Tsudik, Michael Reed, and Carl Landwehr. Towards an Anal-

ysis of Onion Routing Security. In H. Federrath, editor, Proceedings of Designing

Privacy Enhancing Technologies: Workshop on Design Issues in Anonymity and

Unobservability, pages 96–114. Springer-Verlag, LNCS 2009, July 2000.

[20] Philippe Boucher, Adam Shostack, and Ian Goldberg. Freedom Systems 2.0 Ar-

chitecture. White paper, Zero Knowledge Systems, Inc., December 2000.

[21] Jean-François Raymond. Traffic Analysis: Protocols, Attacks, Design Issues, and

Open Problems. In H. Federrath, editor, Proceedings of Designing Privacy En-

hancing Technologies: Workshop on Design Issues in Anonymity and Unobserv-

ability, pages 10–29. Springer-Verlag, LNCS 2009, July 2000.

[22] Xinyuan Wang, Douglas S. Reeves, and S. Felix Wu. Inter-packet delay based cor-

relation for tracing encrypted connections through stepping stones. In Proceedings

of ESORICS 2002, pages 244–263, October 2002.

[23] Brian N. Levine, Michael K. Reiter, Chenxi Wang, and Matthew K. Wright.

Timing attacks in low-latency mix-based systems. In Ari Juels, editor, Proceedings

of Financial Cryptography (FC ’04), pages 251–265. Springer-Verlag, LNCS 3110,

February 2004.

152

[24] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. On flow

correlation attacks and countermeasures in mix networks. In Proceedings of Pri-

vacy Enhancing Technologies workshop (PET 2004), volume 3424 of LNCS, pages

207–225, May 2004.

[25] Vitaly Shmatikov and Ming-Hsiu Wang. Timing analysis in low-latency mix net-

works: Attacks and defenses. In European Symposium on Research in Computer

Security, pages 18–33. Springer, 2006.

[26] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. Non-blind watermarking

of network flows. IEEE/ACM Transactions on Networking, 22(4):1232–1244, 2013.

[27] Xinyuan Wang, Shiping Chen, and Sushil Jajodia. Network flow watermarking

attack on low-latency anonymous communication systems. In 2007 IEEE Sympo-

sium on Security and Privacy (SP’07), pages 116–130. IEEE, 2007.

[28] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. Rainbow: A robust and

invisible non-blind watermark for network flows. In NDSS, 2009.

[29] Nick Feamster and Roger Dingledine. Location diversity in anonymity networks.

In Proceedings of the 2004 ACM workshop on Privacy in the electronic society,

pages 66–76. ACM, 2004.

[30] Aaron Johnson, Chris Wacek, Rob Jansen, Micah Sherr, and Paul Syverson. Users

get routed: Traffic correlation on tor by realistic adversaries. In Proceedings of the

2013 ACM SIGSAC conference on Computer & communications security, pages

337–348. ACM, 2013.

[31] Rishab Nithyanand, Oleksii Starov, Adva Zair, Phillipa Gill, and Michael

Schapira. Measuring and mitigating as-level adversaries against tor. arXiv preprint

arXiv:1505.05173, 2015.

[32] Matthew Edman and Paul Syverson. As-awareness in tor path selection. In Pro-

ceedings of the 16th ACM conference on Computer and communications security,

pages 380–389. ACM, 2009.

153

[33] Masoud Akhoondi, Curtis Yu, and Harsha V Madhyastha. Lastor: A low-latency

as-aware tor client. In 2012 IEEE Symposium on Security and Privacy, pages

476–490. IEEE, 2012.

[34] Steven J Murdoch and Piotr Zieliński. Sampled traffic analysis by internet-

exchange-level adversaries. In International workshop on privacy enhancing tech-

nologies, pages 167–183. Springer, 2007.

[35] Ryan Wails, Yixin Sun, Aaron Johnson, Mung Chiang, and Prateek Mittal. Tem-

pest: Temporal dynamics in anonymity systems. Proceedings on Privacy Enhanc-

ing Technologies, 2018(3), June 2018.

[36] Gerry Wan, Aaron Johnson, Ryan Wails, Sameer Wagh, and Prateek Mittal.

Guard placement attacks on path selection algorithms for tor. Proceedings on

Privacy Enhancing Technologies, 2019(4):272–291, 2019.

[37] Axel Arnbak and Sharon Goldberg. Loopholes for circumventing the constitution:

Warrantless bulk surveillance on americans by collecting network traffic abroad,

2014.

[38] Joshua Juen, Aaron Johnson, Anupam Das, Nikita Borisov, and Matthew Caesar.

Defending tor from network adversaries: A case study of network path prediction.

Proceedings on Privacy Enhancing Technologies, 2015(2):171–187, 2015.

[39] Henry Tan, Micah Sherr, and Wenchao Zhou. Data-plane defenses against routing

attacks on tor. Proceedings on Privacy Enhancing Technologies, 2016(4):276–293,

2016.

[40] Armon Barton and Matthew Wright. Denasa: Destination-naive as-awareness

in anonymous communications. Proceedings on Privacy Enhancing Technologies,

2016(4):356–372, 2016.

[41] Yixin Sun, Anne Edmundson, Nick Feamster, Mung Chiang, and Prateek Mittal.

Counter-raptor: Safeguarding tor against active routing attacks. In 2017 IEEE

Symposium on Security and Privacy (SP), pages 977–992. IEEE, 2017.

154

[42] Xiang Cai, Xin Cheng Zhang, Brijesh Joshi, and Rob Johnson. Touching from a

distance: Website fingerprinting attacks and defenses. In Proceedings of the 2012

ACM conference on Computer and communications security, pages 605–616, 2012.

[43] Chih Chang and Chih Lin. LIBSVM: A library for support vector machines. ACM

Transactions on Intelligent Systems and Technology, 2:27:1–27:27, 2011. Software

available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[44] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal

representations by error propagation. Technical report, California Univ San Diego

La Jolla Inst for Cognitive Science, 1985.

[45] M.W Gardner and S.R Dorling. Artificial neural networks (the multilayer percep-

tron)—a review of applications in the atmospheric sciences. Atmospheric Envi-

ronment, 32(14-15):2627–2636, aug 1998.

[46] S. Lawrence, C.L. Giles, Ah Chung Tsoi, and A.D. Back. Face recognition: a

convolutional neural-network approach. IEEE Transactions on Neural Networks,

8(1):98–113, 1997.

[47] Pierre Baldi. Autoencoders, unsupervised learning, and deep architectures. In

Proceedings of ICML Workshop on Unsupervised and Transfer Learning, pages

37–49, 2012.

[48] G. E. Hinton and R. R. Salakhutdinov. Reducing the Dimensionality of Data with

Neural Networks. Science, 313(5786), 2006.

[49] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114, 2013.

[50] Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-

propagation and approximate inference in deep generative models. arXiv preprint

arXiv:1401.4082, 2014.

[51] Fereshteh Falah Chamasemani and Yashwant Prasad Singh. Multi-class Support

Vector Machine (SVM) Classifiers – An Application in Hypothyroid Detection and

http://www.csie.ntu.edu.tw/~cjlin/libsvm

155

Classification. In 2011 Sixth International Conference on Bio-Inspired Computing:

Theories and Applications, pages 351–356. IEEE, Sep 2011.

[52] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A

critical evaluation of website fingerprinting attacks. In Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security, pages

263–274, 2014.

[53] Tao Wang and Ian Goldberg. Improved website fingerprinting on tor. In Proceed-

ings of the 12th ACM workshop on Workshop on privacy in the electronic society,

pages 201–212, 2013.

[54] David Wagner, Bruce Schneier, et al. Analysis of the ssl 3.0 protocol. In The

Second USENIX Workshop on Electronic Commerce Proceedings, pages 29–40,

1996.

[55] Shuo Chen, Rui Wang, XiaoFeng Wang, and Kehuan Zhang. Side-channel leaks

in web applications: A reality today, a challenge tomorrow. In Proceedings - IEEE

Symposium on Security and Privacy, pages 191–206, 2010.

[56] Alexander Schaub, Emmanuel Schneider, Alexandros Hollender, Vinicius

Calasans, Laurent Jolie, Robin Touillon, Annelie Heuser, Sylvain Guilley, and

Olivier Rioul. Attacking Suggest Boxes in Web Applications Over HTTPS Using

Side-Channel Stochastic Algorithms. Risks and Security of Internet and Systems,

2015.

[57] Sampreet A. Sharma and Bernard L. Menezes. Implementing side-channel attacks

on suggest boxes in web applications. In Proceedings of the First International

Conference on Security of Internet of Things - SecurIT ’12, pages 57–62, New

York, New York, USA, 2012. ACM Press.

[58] K Zhang, Z Li, R Wang, X F Wang, and S Chen. Sidebuster: Automated detec-

tion and quantification of side-channel leaks in web application development. In

Proceedings of the ACM Conference on Computer and Communications Security,

pages 595–606, 2010.

156

[59] Peter Chapman and David Evans. Automated Black-Box Detection of Side-

Channel Vulnerabilities in Web Applications. Proceedings of the 18th ACM confer-

ence on Computer and communications security - CCS ’11, (October):263, 2011.

[60] M Backes, G Doychev, and B Köpf. Preventing Side-Channel Leaks in Web Traffic:

A Formal Approach. NDSS, 2013.

[61] Daniel C. Howe and Helen Nissenbaum. TrackMeNot: Resisting Surveillance in

Web Search. Lessons from the Identity Trail: Anonymity, Privacy and Identity

in a Networked Society, pages 417–436, 2009.

[62] Josep Domingo - Ferrer, Agusti Solanas, and Jordi Castella - Roca. h(k)−private

information retrieval from privacy-uncooperative queryable databases. Online In-

formation Review, 33(4):720–744, Aug 2009.

[63] Ero Balsa, Carmela Troncoso, and Claudia Diaz. OB-PWS: Obfuscation-based

private web search. In Proceedings - IEEE Symposium on Security and Privacy,

pages 491–505, 2012.

[64] Marc Juarez and Vicenc Torra. DisPA: An Intelligent Agent for Private Web

Search. pages 389–405. Springer International Publishing, 2015.

[65] Matthew Fredrikson and Benjamin Livshits. RePriv: Re-imagining Content Per-

sonalization and In-browser Privacy. In 2011 IEEE Symposium on Security and

Privacy, pages 131–146. IEEE, May 2011.

[66] Tor-Browser-Crawler. https://github.com/webfp/tor-browser-crawler.

[67] Keyword-Tool. http://keywordtool.io.

[68] Gregory Dudek. Aol-user-ct-collection. http://www.cim.mcgill.ca/~dudek/

206/Logs/AOL-user-ct-collection//.

[69] Google-Instance-Disliked-Blacklist-Words. https://www.2600.com/googleblacklist/.

[70] Internet live stats. http://www.internetlivestats.com/one-second/

#google-band.

http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection//
http://www.cim.mcgill.ca/~dudek/206/Logs/AOL-user-ct-collection//
http://www.internetlivestats.com/one-second/#google-band
http://www.internetlivestats.com/one-second/#google-band

157

[71] Tor project. https://www.torproject.org/.

[72] tshark. https://www.wireshark.org/docs/man-pages/tshark.html.

[73] William H Kruskal and W Allen Wallis. Use of Ranks in One-Criterion Variance

Analysis. Source Journal of the American Statistical Association, 4710087:583–

621, 1952.

[74] Google’s people also ask. http: //www.internetmarketingninjas.com/blog/search-

engine-optimization/googles-people-also-ask-related-questions/.

[75] Google launches knowledge graph, ‘first step in next generation search’.

https://searchenginewatch.com/sew/news/2175783/google-launches-knowledge-

graph-step-generation-search.

[76] Google adds “people also search for” thumbnails to search results.

http://www.thesempost.com/google-adds-people-also-search-for-thumbnails-

to-search-results/.

[77] Tao Wang and Ian Goldberg. On Realistically Attacking Tor with Website Fin-

gerprinting. Proceedings on Privacy Enhancing Technologies, (4):21–36, 2016.

[78] Brooke McDonald. How often does google update

its search results? https://hdwebpros.com/blog/

how-often-does-google-update-its-search-results.html, 2013.

[79] Tao Wang and Ian Goldberg. Walkie-talkie: An efficient defense against pas-

sive website fingerprinting attacks. In 26th {USENIX} Security Symposium

({USENIX} Security 17), pages 1375–1390, 2017.

[80] Se Eun Oh, Shuai Li, and Nicholas Hopper. Fingerprinting keywords in search

queries over tor. Proceedings on Privacy Enhancing Technologies, 2017(4):251–

270, 2017.

[81] Rebekah Overdorf, Mark Juarez, Gunes Acar, Rachel Greenstadt, and Claudia

Diaz. How unique is your. onion? an analysis of the fingerprintability of tor onion

services. In Proceedings of the 2017 ACM SIGSAC Conference on Computer and

Communications Security, pages 2021–2036, 2017.

https://www.torproject.org/.
https://hdwebpros.com/blog/how-often-does-google-update-its-search-results.html
https://hdwebpros.com/blog/how-often-does-google-update-its-search-results.html

158

[82] Andriy Panchenko, Fabian Lanze, Andreas Zinnen, Martin Henze, Jan Pen-

nekamp, Klaus Wehrle, and Thomas Engel. Website fingerprinting at Internet

scale. In Network & Distributed System Security Symposium (NDSS), 2016.

[83] Tao Wang, Xiang Cai, Rishab Nithyanand, Rob Johnson, and Ian Goldberg. Effec-

tive attacks and provable defenses for website fingerprinting. In USENIX Security

Symposium, pages 143–157, 2014.

[84] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet classification

with deep convolutional neural networks. In Advances in Neural Information

Processing Systems (NeurIPS), pages 1097–1105, 2012.

[85] Alan E Robinson, Paul S Hammon, and Virginia R de Sa. Explaining brightness

illusions using spatial filtering and local response normalization. Vision Research,

47(12):1631–1644, 2007.

[86] Tensorflow. https://www.tensorflow.org/.

[87] Tflearn. http://tflearn.org/.

[88] Jamie Hayes and George Danezis. k-fingerprinting: A robust scalable website

fingerprinting technique. In USENIX Security Symposium, pages 1187–1203, 2016.

[89] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures.

In International Conference on Machine Learning, pages 115–123, 2013.

[90] James Bergstra, Daniel Yamins, and David Cox. Making a science of model search:

Hyperparameter optimization in hundreds of dimensions for vision architectures.

In International conference on machine learning, pages 115–123, 2013.

[91] Tor browser crawler. https://github.com/webfp/tor-browser-crawler.

[92] Milad Nasr, Amir Houmansadr, and Arya Mazumdar. Compressive traffic analy-

sis: A new paradigm for scalable traffic analysis. In ACM Conference on Computer

and Communications Security (CCS). ACM, 2017.

https://www.tensorflow.org/
http://tflearn.org/
https://github.com/webfp/tor-browser-crawler

159

[93] Amir Houmansadr, Negar Kiyavash, and Nikita Borisov. Non-blind watermarking

of network flows. IEEE/ACM Transactions on Networking, 22(4):1232–1244, 2014.

[94] Ali Mousavi, Ankit B Patel, and Richard G Baraniuk. A deep learning approach

to structured signal recovery. In Communication, Control, and Computing (Aller-

ton), 2015 53rd Annual Allerton Conference on, pages 1336–1343. IEEE, 2015.

[95] Christos Louizos, Kevin Swersky, Yujia Li, Max Welling, and Richard Zemel. The

variational fair autoencoder. arXiv preprint arXiv:1511.00830, 2015.

[96] Random forests. Machine Learning, 45(1):5–32, 2001,

/dx.doi.org/10.1023%2FA%3A1010933404324.

[97] Mohammad Saidur Rahman, Payap Sirinam, Nate Mathews, Kantha Girish Gan-

gadhara, and Matthew Wright. Tik-Tok: The utility of packet timing in website

fingerprinting attacks. Proceedings on Privacy Enhancing Technologies, 2020(3):5–

24, 2020.

[98] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[99] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,

and Xi Chen. Improved techniques for training gans. In Advances in neural

information processing systems, pages 2234–2242, 2016.

[100] Bruno Lecouat, Chuan-Sheng Foo, Houssam Zenati, and Vijay R Chandrasekhar.

Semi-supervised learning with gans: Revisiting manifold regularization. arXiv

preprint arXiv:1805.08957, 2018.

[101] Se Eun Oh, Shuai Li, and Nicholas Hopper. Fingerprinting keywords in search

queries over Tor. Proceedings on Privacy Enhancing Technologies, 2017(4):171–

190.

[102] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In

160

Advances in Neural Information Processing Systems (NeurIPS), pages 2672–2680,

2014.

[103] Does Alexa have a list of its top-ranked websites ? – Alexa

support. https://support.alexa.com/hc/en-us/articles/

200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-.

[104] Jost Tobias Springenberg. Unsupervised and semi-supervised learning with cate-

gorical generative adversarial networks. arXiv preprint arXiv:1511.06390, 2015.

[105] Ilya Sutskever, Rafal Jozefowicz, Karol Gregor, Danilo Rezende, Tim Lillicrap,

and Oriol Vinyals. Towards principled unsupervised learning. arXiv preprint

arXiv:1511.06440, 2015.

[106] Code for the paper ”improved techniques for training GANs. https://github.

com/openai/improved-gan.

[107] Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation

learning with deep convolutional generative adversarial networks. arXiv preprint

arXiv:1511.06434, 2015.

[108] Rob Jansen, Marc Juarez, Rafa Galvez, Tariq Elahi, and Claudia Diaz. Inside job:

Applying traffic analysis to measure Tor from within. In Network & Distributed

System Security Symposium (NDSS), 2018.

[109] Tim Salimans and Durk P Kingma. Weight normalization: A simple reparame-

terization to accelerate training of deep neural networks. In Advances in Neural

Information Processing Systems (NeurIPS), pages 901–909, 2016.

[110] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and

Sepp Hochreiter. GANs trained by a two time-scale update rule converge to a

local Nash equilibrium. In Advances in Neural Information Processing Systems

(NeurIPS), pages 6626–6637, 2017.

[111] Paul Syverson, R Dingledine, and N Mathewson. Tor: The second generation

onion router. In Usenix Security, 2004.

https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://support.alexa.com/hc/en-us/articles/200449834-Does-Alexa-have-a-list-of-its-top-ranked-websites-
https://github.com/openai/improved-gan
https://github.com/openai/improved-gan

161

[112] Florian Schroff, Dmitry Kalenichenko, and James Philbin. Facenet: A unified em-

bedding for face recognition and clustering. In Proceedings of the IEEE conference

on computer vision and pattern recognition, pages 815–823, 2015.

[113] K Krishna and M Narasimha Murty. Genetic k-means algorithm. IEEE Trans-

actions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(3):433–439,

1999.

[114] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis

and an algorithm. In Advances in neural information processing systems, pages

849–856, 2002.

[115] Keras: The python deep learning library. https://keras.io/.

[116] Tensorflow. https://www.tensorflow.org/.

[117] Jiajun Gong and Tao Wang. Zero-delay lightweight defenses against website fin-

gerprinting. In 29th {USENIX} Security Symposium ({USENIX} Security 20),

pages 717–734, 2020.

[118] James K Holland and Nicholas Hopper. Regulator: A powerful website finger-

printing defense. arXiv preprint arXiv:2012.06609, 2020.

[119] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv

preprint arXiv:1411.1784, 2014.

[120] Weidi Xu, Haoze Sun, Chao Deng, and Ying Tan. Variational autoencoder for

semi-supervised text classification. In AAAI Conference on Artificial Intelligence,

2017.

	Acknowledgements
	Dedication
	Abstract
	List of Tables
	List of Figures
	Introduction
	Research Problems
	Contributions and Outline

	Background
	Tor
	Website Fingerprinting
	WF Attacks
	WF Defenses

	End-to-End Flow Correlation
	Classification
	Classification Algorithms
	Binary and Multiclass Classification

	Search Query Traffic Analysis
	Related Work
	KF Setup
	Threat Model
	Data Collection
	Keyword Set Details
	Two Search Query Settings
	Data Preparation

	Feature Analysis
	Prior WF Features
	Additional Features
	Preprocessing
	Feature Evaluation
	Feature Dimensions

	Evaluation
	Search Query Trace Identification
	Closed World Accuracy
	Open World Scenario

	Fingerprintability Analysis
	KF Deployment and Mitigation

	Traffic Analysis with Deep Learning
	Related Work
	Automated Website Fingerprinting
	Deep Fingerprinting
	Onionsite Fingerprintability

	p-FP Overview
	Threat Model
	DNN Architectures
	Metrics
	Hyperparameter Tuning
	Datasets

	Feature Extraction
	Features with Autoencoder
	Feature Engineering with AEs

	Website Classification
	Website Fingerprinting on Tor
	Search Query Fingerprinting on Tor
	WF with TLS Proxies
	WF on Tor with WF Defenses

	Fingerprintability Prediction
	Dataset and HTML Features
	Predicting Fingerprintability

	Data-Limited Traffic Analysis
	Related Work and Bakground
	Low-Data WF
	WF with Subpages
	Generative Adversarial Networks

	Datasets
	Index Webpage Set
	Subpage Set

	Semi-Supervised Learning with GANs
	SGAN Overview
	Feature Matching Loss

	GANDaLF
	Threat Model
	Sources of Unlabeled Data
	SGAN Optimization for GANDaLF

	Evaluation
	Experimental Setting
	Fingerprinting Websites with Index Pages
	Fingerprinting Websites with Subpages

	More Efficient Correlated Flow Traffic Analysis
	Motivation
	DeepCoFFEA Attacks
	Feature Embedding Networks for Correlation Study
	Correlation Methodology
	FEN Architecture
	DeepCoFFEA Evaluation Methodology

	Evaluation Details
	Input Preprocessing
	Window Partitioning
	Hyperparameter Optimization
	Metrics
	Thresholds

	Evaluation Results
	DeepCoFFEA Performance
	Comparison to State-of-the-art
	Amplification in DeepCorr.
	Countermeasures

	Conclusion and Future Research
	Future Work
	Traffic Analysis Defenses.
	More Rigorous GANDaLF Experimental Settings
	More Realistic DeepCoFFEA Evaluation

	References

