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Abstract

Deep brain stimulation (DBS) is an effective treatment for a variety of neurological
disorders, including Parkinson’s disease (PD). However, the success of DBS relies
on selecting stimulation parameters which relieve symptoms while simultaneously
avoiding stimulation-induced side-effects. Currently, DBS is programmed through a
time-intensive trial-and-error process in which the clinician systematically evaluates
stimulation settings, requiring hours of effort and multiple patient visits. Additionally,
advances in DBS lead technology and stimulation algorithms are adding additional
free parameters, further increasing the difficulty of programming these devices. This
doctoral thesis advanced the programming of DBS arrays by: (1) developing the slid-
ing windowed infinite Fourier transform (SWIFT), an efficient method of extracting
oscillatory neural features which can be used to program DBS systems, (2) developing
the Bayesian adaptive dual controller (ADC), a type of Active Learning DBS which
can be used to learn optimal stimulation parameters, and (3) demonstrating the ef-
ficacy of the Bayesian ADC in an animal model of PD. The primary findings of this
dissertation suggest that the Bayesian ADC is capable of efficiently and autonomously
learning stimulation parameters for DBS in order to optimize a selected biomarker.
Furthermore, it was demonstrated that parameters learned by the Bayesian ADC
performed as well as control parameters identified through a standard trial-and-error
programming process. Together, these results suggest that the Bayesian ADC should
be clinically translatable for tuning DBS in future studies.
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Chapter 1

Introduction

Deep brain stimulation (DBS) is an effective treatment for multiple neurological dis-

orders, ranging from Parkinson’s disease (PD) to emerging applications such as de-

pression. However, in order to be effective, DBS must be tuned to each patient to

match their specific anatomy and pathophysiology. Currently, DBS is tuned in a

difficult and time-consuming trial-and-error process, wherein only a small fraction of

all possible settings can be tested; thus DBS has yet to reach its full potential for

each patient.

In this dissertation, we focused on the development of active learning algorithms (a

type of machine learning), which can autonomously and efficiently learn stimulation

parameters for DBS in an individualized manner. We developed these algorithms in

the context of PD, the most common indication for DBS. First, we developed an algo-

rithm for efficiently computing and extracting oscillatory neural features, which can

be used in active learning DBS (AL-DBS) systems. Next, we developed an AL-DBS

algorithm, the Bayesian adaptive dual controller (ADC), in a computational model of

PD. Finally, we tested the Bayesian ADC’s performance in an animal model of PD.

Active learning systems, such as the Bayesian ADC developed in this dissertation,
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Chapter 1: Introduction

have the potential to improve therapeutic outcomes, as well as increase access, for

patients around the world.

1.1 Parkinson’s Disease

PD is the most common movement disorder, and second most common neurodegen-

erative disease, affecting 0.1–0.2 % of the population worldwide (S. Y. Chen and Tsai

2010; Tysnes and Storstein 2017). Prevalence of PD increases with age, rising to 1 %

of the population above 60 years of age (Lau and Breteler 2006; Von Campenhausen

et al. 2005). The “shaking palsy” was first described by James Parkinson, whose

name the disease now bears. In this landmark essay, Dr. Parkinson outlined the

major motor signs of the disease: bradykinesia, rigidity, and rest tremor (Parkin-

son 1817); other motor symptoms of PD include akinesia, postural instability, and

gait dysfunction. PD also has numerous non-motor symptoms, including depression,

genitourinary problems, sleep disturbances, and autonomic dysfunction (Chaudhuri,

Healy, and Schapira 2006).

1.1.1 Cause and Pathology

While the cause of PD remains unclear (George and Brundin 2017), it has long

been known that PD develops from both genetic (Allan 1937; Bell and Clark 1926;

Lazzarini et al. 1994; Paisàn-Rùız et al. 2005) and environmental factors. Genetic

research has shown that approximately 5–10 % of patients suffer from a monogenic

form of PD (Deng, Wang, and Jankovic 2018), with an additional 26 PD risk loci

identified through genome-wide association studies (Lill 2016).

Neuropathologically, PD is defined by loss of dopaminergic neurons in the sub-

stantia nigra pars compacta (SNc) of the midbrain, along with abnormal accumu-

lations of the protein α-synuclein, called Lewy bodies, in remaining neurons (Braak

2



Chapter 1: Introduction

et al. 2003; Goedert 2001; Lewy 1912). The loss of dopaminergic cells in the SNc

causes pathophysiological neuronal activity patterns, which reverberate throughout

the basal ganglia thalamocortical network. It is these network-level changes which

are thought to underlie the motor symptoms of Parkinson’s disease (Caligiore et al.

2016; Matthew D Johnson, Svjetlana Miocinovic, et al. 2008; Svjetlana Miocinovic

et al. 2013). Figure 1.1 shows some of the key structures and projections of the basal

ganglia thalamocortical system which play a major role in the disease.

1.1.2 Therapies

Currently, there is no known cure for PD, nor is there a treatment to slow disease

progression (Krack et al. 2017; Oertel and Schulz 2016). However, there exist several

therapies to treat the symptoms of the disease, which can provide robust improvement

in quality of life for PD patients. Dopamine replacement therapy is usually the first

treatment, both for motor and some non-motor symptoms, and is usually given in the

form of levodopa (Oertel and Schulz 2016). Initially, dopamine replacement therapy

provides substantial symptom relief. However, the efficacy of the therapy decreases

over the course of 3–5 years, and patients begin to experience motor side effects, such

as dyskinesias shortly after taking a dose, and akinesia towards the end of the dose

(Nutt 1990). DBS has emerged as a complementary therapy that can provide effective

and reversible treatment for medication-refractory PD (Kleiner-Fisman et al. 2006;

Okun and Foote 2010; Schuepbach et al. 2013) and can limit the manifestation of

motor fluctuations with dopamine replacement therapies.
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Cortex

SNc

Basal Ganglia Thalamocortical System

Striatum
D2 D1

GPe

STN

GPi/SNr

Thalamus

Brainstem

Excitatory
Inhibitory

Figure 1.1: Simplified basal ganglia thalamocortical circuit diagram. Not all connections

between these structures are shown. Black lines indicate excitatory connections, and red

lines indicate inhibitory connections. The loss of dopaminergic neurons in the SNc leads

to changes in firing rates, patterns, and oscillatory activity throughout the motor control

network. GPe, globus pallidus externus; GPi, globus pallidus internus; SNc, substantia

nigra pars compacta; SNr, substantia nigra pars reticulata; STN, subthalamic nucleus.
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1.2 Deep Brain Stimulation

1.2.1 History

The earliest surgical attempts to treat PD were not based on electrical stimulation. In

1955, Hassler began using stereotaxic lesioning of the thalamus (Hassler and Riechert

1955) and later the pallidum (Svennilson et al. 1960) to treat PD, to great effect

(A. M. Lozano et al. 1995). However, lesioning therapy had a significant drawback—

the lesions were irreversible. If the lesions were off target or too large, serious side

effects could occur.

During lesioning surgeries, electrical stimulation was often used to help identify the

lesioning target and verify the positioning of coagulant electrodes (Hassler, Riechert,

et al. 1960; Schwalb and Hamani 2008). Interestingly, electrical stimulation was found

to have temporary and reversible effects, and was capable of both increasing or reduc-

ing symptoms depending on stimulation frequency, with high frequency stimulation

(>100 Hz) being particularly effective (Albe Fessard et al. 1963; Laitinen, Bergenheim,

and Hariz 1992). The first use of chronic deep stimulation for movement disorders oc-

curred in 1963 (BEKHTEREVA et al. 1963), but was published in Russian, and thus

not widely received. In the early 1970s, there were several reports of using chronic

stimulation of the thalamus for chronic pain (Hosobuchi, Adams, and Rutkin 1973;

Mazars, Merienne, and Cioloca 1974), and in 1977, Irving S. Cooper placed elec-

trodes in the thalamus of over 200 patients to treat palsy, spasticity and epilepsy and

reported excellent results (I. S. Cooper 1978), but subsequent double-blind studies

failed to show an effect (Schwalb and Hamani 2008).

In the late 1960s, surgical interventions, including lesioning and stimulation, for

PD fell out of favor with the introduction of levodopa (P. L. Gildenberg 2000; Philip

L. Gildenberg 2006). Despite the decline, many groups continued to perform surgical
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interventions for other diseases, especially for tremor. In 1991, two groups reported

on chronic stimulation of the thalamus for tremor, which was shown to be safer

than thalamotomy, in what has become known today as DBS (Benabid et al. 1991;

Blond and Siegfried 1991). Shortly thereafter, stimulation of the globus pallidus

and subthalamic nucleus (STN) were both shown to be effective for PD (Laitinen,

Bergenheim, and Hariz 1992; Pollak et al. 1993).

Thalamic DBS for tremor was approved by the FDA in 1997, and globus pallidus

internus (GPi) and STN DBS for PD were also approved in 2002. Today, DBS is

a standard treatment for PD typically used in conjunction with levodopa or other

dopamine replacement medication. While medication is still the first-line treatment,

DBS is often added later in disease progression as the efficacy of medication wears off

and side effects emerge (Okun and Foote 2010).

1.2.2 Mechanisms of DBS

Multiple hypotheses have emerged to explain the efficacy of DBS for PD. The earliest

hypotheses attempted to reconcile the similarities between the outcomes of DBS and

lesioning by relating their mechanisms; it was initially proposed that DBS inhibited

neurons and decreased output of the stimulation target. Indeed, inhibition of the

stimulation target has been observed in both STN and GPi stimulation, and it was

hypothesized that the mechanism of action was due to stimulation of presynaptic

inhibitory afferents to the target structure (Benazzouz et al. 2000; J. O. Dostrovsky

et al. 2000; Jonathan O. Dostrovsky and Andres M. Lozano 2002; Welter et al. 2004).

However, DBS of the STN, which has excitatory efferents, has been shown to increase

neuronal activity in downstream nuclei (Hashimoto et al. 2003), and DBS of the GPi,

which has inhibitory efferents, has been shown to inhibit activity in downstream

nuclei (Anderson, Postupna, and Ruffo 2003; Montgomery 2006; Vitek et al. 2012),

apparently contradicting previous results showing decreased firing in the STN and
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GPi. Computational modeling studies have helped to resolve this apparent paradox

by suggesting that electrical stimulation preferentially activates axons, both efferents

as well as afferents, which in the basal ganglia often release GABA to suppress local

cell bodies (Cameron C. McIntyre, Warren M. Grill, et al. 2004; Cameron C. McIntyre,

Savasta, et al. 2004). However, this does not help explain why lesioning, which

destroys the target nuclei, and DBS, which increases the output of the target nuclei,

have similar therapeutic effects.

DBS not only modulates firing rates, but perhaps more importantly, also modu-

lates firing patterns of the stimulated nuclei (J. O. Dostrovsky et al. 2000; McCairn

and Turner 2009; Meissner et al. 2005) and its efferent targets (Anderson, Postupna,

and Ruffo 2003; Hashimoto et al. 2003; Montgomery 2006; Vitek et al. 2012). Ax-

onal responses have been shown to be time-locked to the stimulus, thus regularizing

the neural activity (Hashimoto et al. 2003; Matthew D Johnson and Cameron C

McIntyre 2008; Cameron C. McIntyre, Savasta, et al. 2004). This led to the hypoth-

esis that DBS acts by regularizing activity within the basal ganglia thalamocortical

network. This highly regularized activity reduces the information content of the net-

work, creating an “informational lesion” which is theorized to prevent pathological

activity from being transmitted through the network (Warren M Grill, Snyder, and

Svjetlana Miocinovic 2004). While experimental studies have shown informational

lesions induced in the stimulated nucleus (Agnesi, Allison T Connolly, et al. 2013),

other studies suggest that DBS may improve the informational content of the broader

network (Guo et al. 2008; Matthew D Johnson, Svjetlana Miocinovic, et al. 2008),

and that DBS-induced regularization restores the responsiveness of thalamocortical

neurons to incoming information, resulting in improved motor function (Guo et al.

2008; Rubin and Terman 2004).
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1.2.3 Biomarkers and Feedback Signals for DBS

A biomarker which can be used to assess the efficacy of DBS therapy could help not

only further elucidate the mechanisms of DBS, but also be used to assist in targeting

and programming. Such biomarkers could be used as feedback signals to closed-loop

or adaptive DBS systems, or even be used to tune stimulation parameters over time.

A variety of biomarkers for PD have been proposed. Oscillations in the beta-band

(approximately 13–35 Hz) within the STN, GPi, and cortical regions are currently the

most studied neurophysiological biomarker for PD, and there is mounting evidence

that beta oscillations are, if not causal, then at least correlated with symptoms and

the reduction thereof with therapeutic effect. Elevated beta-band oscillations have

long been associated with PD, as observed in the human STN (P. Brown 2007; A. A.

Kühn, Trottenberg, et al. 2005; Solages et al. 2011; Zaidel et al. 2010) and globus

pallidus (P. Brown 2007; A. T. Connolly et al. 2015; J. A. Goldberg et al. 2004;

Leblois et al. 2007). Additionally, the effects of dopamine-replacement therapy have

been shown to correlate with reduction of power in the beta-band (A. A. Kühn,

Kupsch, et al. 2006; A. A. Kühn, Tsui, et al. 2009; Ray et al. 2008), and effective

DBS has also been shown to reduce beta power, while sub-clinical DBS does not

(Bronte-Stewart et al. 2009; A. Eusebio et al. 2011; A. A. Kühn, Kempf, et al. 2008;

Meissner et al. 2005; Ray et al. 2008).

However, it is too simplistic to label all beta oscillations as bad; Beta band oscilla-

tions are also present in the healthy state (A. T. Connolly et al. 2015; Courtemanche,

Fujii, and Graybiel 2003); beta power is robustly modulated by movement in healthy

subjects, and suppression is found to correlate with upcoming action (Doyle, Yarrow,

and Peter Brown 2005; Andrea A. Kühn et al. 2004; Leventhal et al. 2012). Beta

power rebounds following movement, and can even be enhanced by stopping a pre-

planed movement (Wijk, Beek, and Daffertshofer 2012). Accordingly, beta has been

conceptualized as an “idling rhythm” responsible for maintaining the status quo (En-
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gel and Fries 2010; Gilbertson et al. 2005), and stabilizing the current motor set

(Engel and Fries 2010) in the healthy state.

As such, more nuanced metrics of beta activity are coming under active investi-

gation, most notably the duration and frequency of periods of elevated beta activity

(Deffains, Iskhakova, et al. 2018; Tinkhauser, Alek Pogosyan, Little, et al. 2017; Tin-

khauser, Alek Pogosyan, Tan, et al. 2017; Torrecillos et al. 2018), with the theory

that prolonged beta activity is pathological, while transient periods of elevated beta

activity are not. Indeed, beta bursts have been shown to be predictive of motor per-

formance (Torrecillos et al. 2018), but continuous DBS does not modulate beta bursts

(Schmidt et al. 2019; Tinkhauser, Alek Pogosyan, Little, et al. 2017), indicating that

they may serve as a poor biomarker of DBS efficacy.

Another potential oscillatory biomarker is phase-amplitude coupling (PAC) be-

tween the phase of low frequency oscillations and amplitude of high frequency os-

cillations and spiking activity, within and between the STN, globus pallidus, and

cortex. Exaggerated PAC has been observed in PD (Hemptinne, E. S. Ryapolova-

Webb, et al. 2013; Shimamoto et al. 2013), and been shown to be correlated with

parkinsonian severity (A. T. Connolly et al. 2015), and therapeutic DBS reduces

PAC (Hemptinne, Nicole C Swann, et al. 2015) in human patients. Furthermore, the

consistency of the phase of PAC has been suggested to impact information transfer

(Sauseng and Klimesch 2008; Siegel, Warden, and Miller 2009), and thus PAC in PD

may disrupt proper coding of information (A. T. Connolly et al. 2015).

Biomarkers need not only be associated with therapeutic effect, but could also be

associated with the emergence of side-effects. One such side-effect, dyskinesia, is asso-

ciated with dopaminergic medications, as well as DBS. Levodopa-induced dyskinesias

are associated with an increase in gamma oscillatory power (30–100 Hz) in the cortex

and basal ganglia in a rodent model (Halje et al. 2012). More recently, dyskinesias

were reported to be associated with the emergence of narrowband gamma oscillations
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in human PD patients (Nicole C. Swann et al. 2016). These results indicate that

narrowband gamma activity could be a biomarker for therapy-induced dyskinesias.

Evoked compound action potentials (ECAPs) have also been suggested as a pos-

sible biomarker for DBS efficacy (Gmel, Hamilton, et al. 2015; Gmel, Parker, and

Hamilton 2014). ECAPs, as their name suggests, are thought to be caused by bulk

activation of surrounding neural tissue, and thus may serve as a direct measure of the

neural response to stimulation. Changes in ECAPs have been observed to correlate

with changes in therapeutic state, and could be used to titrate stimulation parame-

ters (Gmel, Hamilton, et al. 2015). However, unlike beta oscillations or PAC, ECAPs

are not inherent features of the brain which correlate with parkinsonian symptoms,

and only exist in the context of stimulation. Therefore, instead of serving as a direct

biomarker for parkinsonian symptoms, it can only serve as an indirect measure of

neuronal activation, which, depending on the lead location and targeting accuracy,

may or may not correlate with therapy.

1.2.4 Other Indications

Beyond PD and tremor, DBS was approved for the treatment of medication-refractory

epilepsy in 2018, and has gained Humanitarian Device Exemption status for treat-

ment of dystonia and obsessive-compulsive disorder. Furthermore, DBS is under ac-

tive investigation for many other disorders, including Tourette syndrome, treatment-

resistant depression, addiction, chronic pain, memory dysfunction, cluster headache,

and more (K. H. Lee, Duffy, and Bieber 2017). To date, more than 150,000 DBS

leads have been implanted worldwide.
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1.3 Challenges with DBS

There are two major technical challenges associated with achieving good outcomes

for DBS patients: accurate lead placement and optimal stimulator programming.

1.3.1 DBS Lead Placement

The proximity of target brain structures to brain regions known to induce side-effects

requires lead placement with millimeter precision (Butson et al. 2007); accurate DBS

lead placement allows for precise stimulation of the target brain region while simulta-

neously avoiding neighboring regions known to cause side-effects (Rezai et al. 2006).

As a result, DBS lead placement surgeries are highly individualized procedures. The

target is localized prior to surgery using pre-operative imaging techniques including

CT and MRI scans (Machado et al. 2006). Stereotactic techniques are used to accu-

rately deliver the DBS lead upon a pre-planned trajectory. However, intra-operative

brain shifts can introduce errors of 1–2 mm (Halpern et al. 2007; Khan et al. 2007;

Miyagi, Shima, and Sasaki 2007), and must be corrected for. Microelectrode record-

ings and micro stimulation are used during the procedure to help the surgical team

to localize the target, and help correct for any errors.

The Medtronic 3387 and 3389 DBS leads are commonly used, which consist of

four stacked 1.5 mm cylindrical electrodes separated by 1.5 mm or 0.5 mm around

a 1.27 mm diameter shaft. This allows the programmer to compensate for leads

that are placed either to deep or too shallow (Barbe et al. 2014; Chaturvedi, Foutz,

and Cameron C. McIntyre 2012). However, cylindrical electrodes create relatively

omnidirectional electric fields, and stimulation targets are often non-symmetrical and

oblong (Contarino et al. 2014), and consist of intricate sub-regions (Nambu et al.

1996; Parent and Hazrati 1995) related to therapeutic, non-clinical, and side-effect

behaviors (Butson et al. 2007; Krack et al. 2017). The programming process can help
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overcome minor errors in lead placement. However, grossly mis-implanted leads must

undergo revision surgery to correct lead placement (Ellis et al. 2008).

1.3.2 DBS Programming

After the lead is placed, the device is programmed by a trained clinician. There

are four primary variables in a conventional DBS system: stimulation electrode (or

electrodes), amplitude, pulse train frequency, and pulse width. The programming pro-

cess typically begins with a “monopolar review” in which the clinician determines the

clinical efficacy and side-effects induced by stimulation through each electrode. For

each electrode, stimulation amplitude is systematically increased while the clinician

assesses therapeutic efficacy and watches for the emergence of side-effects. Other

stimulation parameters are held constant throughout the monopolar review (Volk-

mann et al. 2002). This process requires hours of effort and tedious trial-and-error

evaluation (Hunka et al. 2005). Additionally, it can take seconds to hours for thera-

peutic effects to fully manifest, varying by patient and symptom (Scott Evan Cooper

et al. 2011; Scott E. Cooper et al. 2014; Keresztenyi et al. 2007; Lopiano et al. 2003;

Temperli et al. 2003), further confounding the programming process.

Beyond the initial programming session, patients normally return four to five times

over three to six months to fine-tune and optimize DBS parameters (Bronstein et al.

2011). In these return visits, clinicians will occasionally explore previously neglected

parameters, such as frequency, pulse width, or bipolar or multi-polar stimulation mon-

tages. However, these visits are usually devoted to smaller adjustments of amplitude

to balance side effect and therapy as the patient’s brain adapts to stimulation.
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1.4 Advances in DBS Technologies

The field of DBS continues to evolve; new technologies are emerging which have the

potential to improve therapeutic outcomes. However, these same technologies may

also further increase the complexity and difficulty of the programming process.

1.4.1 Lead Design

New ”directional” DBS lead designs are advancing through regulatory processes and

are emerging into the marketplace. Boston Scientific’s Vercise lead made a modest

improvement on existing designs, and is essentially an eight-electrode version of the

Medtronic 3389. In addition to adding more electrodes along the shaft of the lead,

segmented electrodes are becoming more common. The Boston Cartesia and Abbot

6172 are similar to the Medtronic 3389, both with four rows of electrodes, but with

the center two rows segmented into three individual electrodes each, for a total of

eight electrodes. The Medtronic SureStim has forty electrodes arranged in ten rows.

Using cylindrical electrodes, clinicians could move the electric field up or down

along the lead, but had no ability to steer the field around the lead. Leads with

segmented electrodes give clinicians the ability to shape the electric field in order to

improve the specificity of neural tissue activated (Contarino et al. 2014; Mahlknecht,

Limousin, and Foltynie 2015; Martens et al. 2011; Pollo et al. 2014; Steigerwald et al.

2016).

While these new leads have the potential to improve outcomes through more se-

lective activation, they will also further increase the complexity of an already difficult

programming process. Monopolar reviews already require hours of trial-and-error

evaluation for four contact leads; eight and even forty electrode leads drastically in-

crease the number of electrodes which must be considered, even without considering

multipolar stimulation montages. Recording physiological signals as mentioned above
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may play a critical role to reduce the dimensionality of the programming process.

1.4.2 Implantable Pulse Generators

Advances in implantable pulse generator (IPG) technologies are also emerging. New

systems, such as the Medtronic PC+S (Stanslaski et al. 2018) and Neuropace Respon-

sive Neural Stimulator (B. Lee et al. 2015), are capable of not only stimulating, but

also sensing neural activity with and without stimulation. Additionally, these sys-

tems have on-board processing capabilities, opening the door to creating closed-loop

or adaptive DBS algorithms (E. Ryapolova-Webb et al. 2014).

1.4.3 Adaptive DBS

New stimulation algorithms, which seek to improve on conventional isochronal DBS

by adapting stimulation according to the state of the patient, are under active inves-

tigation. These algorithms, known as adaptive DBS (aDBS) algorithms (also called

responsive DBS or closed-loop DBS (CL-DBS)) seek to improve therapeutic outcomes

by increasing the specificity of when and/or how stimulation is delivered, depending

upon the state of the system. These algorithms use a feedback signal, which can be

neurological, kinematic, or other, to modulate stimulation. To date, several different

aDBS algorithms have been proposed and tested.

Key to the development of aDBS algorithms is a suitable feedback signal, which

must be sensitive to the state of the patient, and respond more or less instanta-

neously to the intervention (Little and Peter Brown 2012). Several of the biomarkers

discussed previously are under active investigation as potential feedback signals for

aDBS systems.

Amplitude-responsive aDBS for the treatment of PD modulates stimulation based

upon the amplitude in the beta band of the local field potential (LFP), measured from
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the area around the lead. In this strategy, stimulation is turned on or off when the beta

amplitude goes above or below a pre-defined threshold. Amplitude-responsive aDBS

has been tested in humans, and been shown to be effective in relieving symptoms

(Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013; Velisar et al. 2019).

Phase-responsive aDBS for tremor and PD modulates stimulation based upon the

phase of an oscillation. In this strategy, single pulses or short bursts of stimulation

are delivered only during a specific phase of the recorded oscillation. In tremor, the

phase of the tremor measured by an accelerometer attached to the patient’s hand

has been used to trigger stimulation, and shown to be effective in relieving symptoms

in some cases (Cagnan, Brittain, et al. 2013; Cagnan, Pedrosa, et al. 2016). In PD,

phasic stimulation triggered by the phase of the beta oscillation of the LFP has been

proposed and tested in a computational model (Grado, Matthew D. Johnson, and

Theoden I. Netoff 2018; Abbey B Holt and Theoden I Netoff 2014; Abbey B. Holt et

al. 2016), but not yet in humans. Figure 1.2 shows a diagram comparing amplitude-

and phase-responsive aDBS.

aDBS is also under active investigation for other disorders, such as epilepsy (Mor-

rell 2011; Sun, Morrell, and Wharen 2008). Neuropace’s Responsive Neural Stimula-

tor system detects seizure events by measuring neural activity in seizure onset zones

and delivers stimulation in order to suppress seizure events (B. Lee et al. 2015). aDBS

is also under investigation for psychological disorders such as PTSD and addiction

(Bina and Langevin 2018).

While all of these systems have the potential to improve therapy by delivering

individualized stimulation when and how the patient needs it, they also all share a

common drawback: each of these algorithms adds additional parameters, which will

further increase the difficulty of programming these devices.
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improvement on the earlier study. However, no direct
comparisons between aDBS and cDBS were made.

An additional animal study trialed amplitude-
responsive DBS of the STN in a single nonhuman pri-
mate MPTP-model of PD.36 The study found aDBS to
be as good, if not better, than cDBS in reducing rigid-
ity despite stimulation being present for only about
50% of the time and that reaching speed was not
changed by either treatment. However, only cDBS
reduced the speed of the return from a reach with the
upper limb in a cue reaching task.

Together these studies suggest that, at least under
acute testing conditions, aDBS is effective despite
involving substantially less energy than cDBS. This
reduction in energy raises the hope that side effects
will be correspondingly less for a given voltage or
current of stimulation than with cDBS and that the

goal of a widened therapeutic window might be met.
Several studies support this hypothesis. Both a case
report and a case series of bilateral aDBS in freely
moving PD patients have used a scalar approach
where stimulation voltages varied according to LFP
beta changes through a personalized algorithm,
rather than the binary approach of turning DBS on
and off used in other studies (Fig. 1B, lower green
panel). aDBS substantially reduced the dyskinesias in
patients on medication.37,38 In addition, the acute
impact of aDBS on speech was assessed in 10 PD
patients in a further study.28 The patients received
bilateral aDBS and cDBS, but only cDBS caused an
acute deterioration in speech, assessed through the
blinded assessment of the speech intelligibility test.
This was despite the better motor improvement with
aDBS in this cohort.

FIG. 1. Schematic summary displaying different forms of DBS. A shows conventional DBS where pulses occur at a constant frequency. B depicts two
forms of amplitude responsive DBS; upper green panel, event-dependent control where stimulation is triggered and terminated when a signal, like beta-
amplitude, rises above and falls below a threshold, respectively and green lower panel, continuous-time control where stimulation varies proportionately
to the amplitude of the signal. C shows phase-responsive DBS where pulses of high-frequency stimulation are timed to a particular phase by either
event-dependent (upper orange panel) or continuous time control (lower orange panel). [Color figure can be viewed at wileyonlinelibrary.com]

M E I D A H L E T A L

812 Movement Disorders, Vol. 32, No. 6, 2017

Figure 1.2: Diagram comparing conventional DBS, amplitude-responsive DBS, and phase-

responsive DBS. In conventional DBS (A), stimulation occurs at a constant frequency,

regardless of neural state. Amplitude-responsive DBS (B) modulates stimulation based

upon the amplitude of a signal (such as beta oscillations). Phase-responsive DBS (C)

delivers stimulation locked to the phase of the oscillation, either turning stimulation on at

specific phases or adjusting the amplitude. Adapted from (Meidahl et al. 2017)
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1.5 Active Learning for DBS

New hardware and stimulation algorithms have the potential to improve therapy, but

they will also increase the difficulty of the already-difficult and tedious programming

process. New segmented leads promise to deliver more specific activation of neu-

ral tissue, but also increase the number of electrode configurations to be considered.

aDBS algorithms promise to deliver stimulation on demand, thus reducing side-effects

and increasing efficacy, but they also add additional parameters which must be ad-

justed by the clinician. As these new technologies become a reality, programming

DBS systems with current trial-and-error methods will no longer be feasible.

Active learning algorithms for DBS have the potential to help solve these pro-

gramming challenges, alleviate the burden on the clinician and patient, and improve

patient outcomes. Active learning is a type of machine learning in which the algo-

rithm is able to interactively query the system, and can thus learn optimal stimulation

parameters autonomously to achieve its goal. An active learning DBS system could

learn the optimal stimulation parameters to reduce a selected biomarker, such as beta

power or PAC, without the need for a clinician or programming sessions. Such a sys-

tem could operate 24 hours a day, seven days a week, constantly tuning stimulation

to meet the individuals’ needs. Furthermore, the system could evaluate parameters

over seconds, minutes, or hours, allowing for longer timescale effects of stimulation.

An active learning DBS system must be capable of balancing exploitation and explo-

ration, striking a compromise between using the best parameters known so far while

simultaneously searching for new parameters which may provide more benefit in the

future. If properly constructed, such a system could be used to tune any DBS system,

conventional or adaptive, for any disease, given an appropriate biomarker. Figure 1.3

shows a comparison between conventional DBS, aDBS, and active learning DBS.
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stimulator patientstimulation

(a) Conventional DBS (b) Adaptive DBS

stimulator patientstimulation

feedback

(c) Active Learning DBS

stimulator patient

learner

biomarker

stimulation

update 
parameters

feedback

Figure 1.3: Types of DBS algorithms. (a) In conventional DBS, stimulation is delivered

constantly, irrespective of the state of the patient. (b) In adaptive DBS (also know as

closed-loop DBS or responsive DBS), stimulation is modulated by a feedback signal from

the patient, adjusting stimulation on short timescales according to the current state of

the patient. (c) In active learning DBS, a learner actively adjusts the parameters of the

stimulator, and measures a biomarker from the patient, searching for parameters which

optimally control the biomarker.

18



Chapter 1: Introduction

1.6 Objectives and Research Goals

This dissertation seeks to address the challenge of programming DBS systems through

the creation of an active learning DBS system, capable of autonomously learning

stimulation parameters in order to control a selected biomarker.

Chapter 2 describes a new method for recursively computing the phase and am-

plitude of a signal in real-time, called the sliding windowed infinite Fourier transform

(SWIFT). Real-time, accurate, and efficient methods of computing phase and am-

plitude are critical for the development of amplitude- and phase- responsive aDBS

algorithms as well as AL-DBS algorithms. The SWIFT requires less computation

and less memory, has less spectral leakage, and is more stable than previous recursive

Fourier transforms.

Chapter 3 describes the development of the Bayesian ADC for DBS, a type of

active learning DBS system. We then tested the Bayesian ADC’s ability to tune

aDBS in a computational model of PD in order to reduce the amplitude of beta oscil-

lations. The Bayesian ADC was able to efficiently find parameters which minimized

beta oscillations, and was shown to effectively balance exploration and exploitation.

Additionally, the Bayesian ADC was shown to be superior to other optimization

strategies.

In Chapter 4, we evaluated the Bayesian ADC’s ability to tune stimulation in a

non-human primate animal model of PD. We tested the algorithm’s ability to learn

optimal stimulation parameters to reduce beta power over several days, and then

evaluated the efficacy of the learned stimulation parameters for reducing parkinso-

nian motor symptoms. The data showed that the Bayesian ADC was able to learn

stimulation parameters consistently over days. Furthermore, the learned parameters

performed as well as the stimulation parameters identified through a trial and error

monopolar review for reducing parkinsonian motor symptoms.
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The Sliding Windowed Infinite

Fourier Transform

Most of the adaptive DBS algorithms discussed in section 1.4.3 depend on accurately

computing the phase or amplitude of a signal in real time. The Fourier transform

can be used to directly compute these quantities but it is computationally ineffi-

cient to re-compute the Fourier transform at the rate required to accurately detect

phase or amplitude crossings. Instead, these algorithms typically rely on less accu-

rate but more efficient measures, such as zero-crossings for phase or bandpass fil-

tering/rectifying/smoothing for amplitude. The sliding discrete Fourier transform

(SDFT), which is a method of recursively computing the Fourier transform, provides

a potential solution. However, the SDFT uses a rectangular window, which equally

weights recent and past samples, and is numerically unstable, which can cause the

system to malfunction.

Here, we developed a novel type of sliding Fourier transform, called the sliding

windowed infinite Fourier transform (SWIFT), which is more efficient than previous

methods, places emphasis on recent samples, and guaranteed stable. The SWIFT
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could readily be implemented in an implantable pulse generator. The following

chapter was originally published in IEEE Signal Processing Magazine, c©2017 IEEE.

Reprinted with permission, from

Grado, L. L., Johnson, M. D., & Netoff, T. I. (2017). The Sliding Windowed

Infinite Fourier Transform. IEEE Signal Processing Magazine, 34(5), 183188.

https://doi.org/10.1109/MSP.2017.2718039

2.1 Introduction

The sliding discrete Fourier transform (SDFT), first developed by Springer in 1988

(Springer 1988), and then improved and popularized by Jacobsen and Lyons in 2003

(E. Jacobsen and R. Lyons 2004; Eric Jacobsen and Richard Lyons 2003), is a recursive

algorithm that computes the discrete Fourier transform (DFT) on a sample-by-sample

basis. The SDFT is efficient, but suffers from potential instabilities and spectral

leakage.

Here, we present a windowed sliding discrete-time Fourier transform (DTFT),

called the sliding windowed infinite Fourier transform (SWIFT). The SWIFT retains

many of the advantages of the SDFT, but with improved computational efficiency,

frequency resolution, reduced spectral leakage, and reduced memory requirements.

In this paper we briefly review the sliding DFT (SDFT), introduce the SWIFT,

and then compare the performance and efficiency of the SDFT and SWIFT algo-

rithms. We will then describe an improved windowed version of the SWIFT, which

we call the αSWIFT, and conclude by comparing all three algorithms with a brief

numerical simulation.
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2.2 The Sliding DFT

The sliding DFT (SDFT) performs an N-point DFT on samples within a sliding

rectangular window. The DFT is initially computed on the first N samples. The time

window is then advanced one sample and a new N-point DFT is calculated directly

from the results of the previous DFT. The SDFT can be expressed compactly as

Xn[k] = Xn−1[k]e2jπk/N − x[n−N ] + x[n]. (2.1)

The SDFTs output is discrete in frequency space, and is limited to normalized

frequencies of 2πk/N , k ∈ Z. Using this method, the DFT can be efficiently re-

calculated at each sample using only a few operations.

The single-bin SDFT algorithm can be implemented as an infinite-impulse re-

sponse (IIR) filter with a comb filter followed by a complex resonator. The recursive

nature of the SDFT dictates that some initialization method is required; the output

Xn[k] is only valid if Xn−1[k] was valid. There are two methods for initializing the

algorithm: 1) Reset all Xn−1[k]s to zero, and then begin cycling data; after N samples

have cycled, the output will be valid. 2) Initialize all Xn−1[k] with an fast Fourier

transform (FFT) of the previous N samples. For a full description of the SDFT, see

Jacobsen and Lyons (E. Jacobsen and R. Lyons 2004; Eric Jacobsen and Richard

Lyons 2003).

While the SDFT is an efficient algorithm, use of a rectangular window results in

spectral leakage. To address this, Jacobsen and Lyons described how to implement

time-domain windowing via frequency-domain convolution. This can be done with al-

most any finite window, but significantly increases the computational complexity and

compromises the simplicity of the SDFT. This article describes a new sliding Fourier

transform (SFT) algorithm that reduces spectral leakage without increasing compu-

tational complexity, improves frequency-domain sampling, and gives more weight to
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more recent samples, allowing for improved real-time spectral and phase analysis.

2.3 The Sliding Windowed Infinite Fourier Trans-

form

The SWIFT is a type of DTFT windowed with an infinite-length, causal, exponential

function

w[m] =

{
em/τ m ≤ 0

0 m > 0
, (2.2)

where w[m] is the window function, m = 0 is the current sample, and τ > 0 is

the time constant of the window, with units of samples. The exponential window

gives more weight to more recent samples, allowing the SWIFT to be more sensitive

to transient changes in signal power than the rectangular window. The exponential

windowed DTFT is

Xn(ω) =
0∑

m=−∞

em/τx[n+m]e−jωm, (2.3)

where ω has normalized units of radians/sample (ω = 2πf/fs), and is continuous

in frequency space. We can derive a recursive formula for (Equation 2.2) by relating

Xn+1(ω) back to Xn(ω) as follows:
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Xn+1(ω) =
0∑

m=−∞

em/τx[n+m+ 1]e−jωm

=
1∑

m=−∞+1

e(m−1)/τx[n+m]e−jω(m−1)

=
0∑

m=−∞

e(m−1)/τx[n+m]e−jω(m−1)

+ e(1−1)/τx[n+ 1]e−jω(1−1)︸ ︷︷ ︸
x[n+1]

− e(−∞−1)/τx[n−∞]e−jω(−∞−1)︸ ︷︷ ︸
0

= e−1/τejω
0∑

m=−∞

em/τx[n+m]e−jωm︸ ︷︷ ︸
Xn(ω)

+x[n+ 1]

= e−1/τejωXn(ω) + x[n+ 1]

(2.4)

Finally, we decrement the result of (Equation 2.4) one sample to yield the recursive

SWIFT formulation:

Xn(ω) = e−1/τejωXn−1(ω) + x[n] (2.5)

The SWIFT operates by rotating the phase of previous DTFT by ω, decaying the

amplitude by e−1/τ , and adding in the new data sample. Figure 3.1a demonstrates how

the SWIFTs window advances one sample at a time, picking up the new data sample

and updating the previous samples. The incremental advance and infinite nature of

the time window leads to the name sliding windowed infinite Fourier transform.
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Figure 2.1: (a) Signal windowing for the SWIFT algorithm. The data samples and

window used for the first computation (blue) and second computation (green). (b) Impulse

response and (c) pole/zero map for a single bin SWIFT with τ = 50 samples, and ω = π/10

radians/sample.

2.3.1 Derivation and equivalence

The SWIFT is derived directly from, and shows exact equivalence to, the windowed

DTFT; therefore there is no loss of information or distortion tradeoff with the SWIFT

as compared to other means of calculating the DTFT. The SWIFT algorithm calcu-

lates Xn(ω) by phase shifting and decaying the previous Xn−1(ω) and adding the

current x[n] sample; thus the SWIFT requires only one complex multiply and one

real add per sample per bin.

2.3.2 Initialization

Like the SDFT, the SWIFT can be initialized by sliding onto the data, or by calcu-

lating the DTFT with an exponential window on all previous data. However, because

the window is infinite in length, the output will never truly become valid, but will
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instead asymptote to the true value with a time constant of τ . In practice, however,

if τ is short enough this is not an issue.

2.3.3 Transfer Function and Impulse Response

The z-domain transfer function of the SWIFT filter with normalized angular frequency

is given by:

HSWIFT(z) =
1

1− e−1/τejωz−1
(2.6)

The SWIFT IIR filter has one zero at the origin and a single pole lying inside the

unit circle at e−1/τejω. The SWIFTs impulse response and pole/zero map are shown

in Figure 3.1b and Figure 3.1c, with τ = 50 samples, and ω = π/10 radians/sample.

2.3.4 IIR Filter Implementation

Like the SDFT algorithm, the SWIFT algorithm can be implemented as an IIR filter

with a complex resonator, as shown in Figure 2.2a. The major difference between

the SWIFT and SDFT filters Figure 2.2b is that the SWIFT filter does not require

a comb filter. Any arbitrary number of frequency bins can be calculated by adding

more complex resonators at the desired frequencies.

2.4 SWIFT vs SDFT

The SWIFT has several advantages over the SDFT, which are summarized below.
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Figure 2.2: (a) Single bin SWIFT filter structure, and (b) single bin SDFT filter structure.

2.4.1 Computational Efficiency

The SWIFT is more efficient than the SDFT. In order to objectively compare the algo-

rithms, we will consider only the costs of computing a single bin for each algorithm.

Both the SWIFT and SDFT share the property that the number of computations

required to calculate Xn(ω) from Xn−1(ω) (or Xn[k] from Xn−1[k]) is fixed and inde-

pendent of the window length. However, the SWIFT requires one complex multiply

and one real add to compute the next output, whereas the SDFT requires one com-

plex multiply and two real adds. In addition to increased computational efficiency, the

SWIFT has drastically reduced memory requirements. To facilitate comparison, we

have converted complex operations into real operations, assuming that one complex

multiply requires 2 real adds and 4 real multiplies (although it is possible to compute

with 3 real multiplies and 5 additions (R. G. Lyons 2004)). Both the SWIFT and

SDFT require storing one previous complex output and one complex constant (four

floating points). However, the SDFT must store N previous input samples, while

the SWIFT does not require storage of any previous input samples. The storage

and retrieval of N previous samples may be a significant limitation for small sensors
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Table 2.1: Single-bin comparison of the computational cost and memory requirements of

computing the next Xn[k]/Xn(ω) using the DFT, SDFT and SWIFT.

Method Real Multiplies Real Adds Memory (floats)

DFT 2N 2N N
DTFT 4 4 N+4
SWIFT 4 3 3

and embedded devices. Table 2.1 compares the computational efficiency and memory

requirements of the SDFT and SWIFT algorithms.

2.4.2 Frequency-domain sampling

The SDFTs output, as a type of DFT, is limited to normalized frequencies of 2πk/N ,

k ∈ Z. In order to achieve finer frequency-domain sampling, the SDFT requires

a larger N , reducing temporal resolution thus producing a tradeoff between time

and frequency resolution. Conversely, the SWIFTs output, as a type of DTFT, is

continuous in the frequency domain, providing the SWIFT with great flexibility in

tuning the frequencies of interest.

2.4.3 Time-Frequency tradeoff

When operating multiple SWIFTs in parallel, each time constant can be tuned to the

frequency bin of interest without increasing computational complexity, e.g., τ can be

set as a multiple of the period, such that τ = c/f , where c is a unitless constant and

f is the center frequency. Conversely, to achieve a similar effect with parallel SDFTs,

one must add additional comb filters for each SDFT bin, further increasing compu-

tational complexity and memory requirements. This allows the SWIFT algorithm

to be implemented with a multi-resolution property, similar to a wavelet transform,
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providing better time resolution at higher frequencies and better frequency resolution

at lower frequencies.

2.4.4 Stability

The SWIFT is guaranteed stable, whereas the SDFT is only marginally stable. The

SWIFT is guaranteed stable because its pole resides within the Z-domains unit circle.

In contrast, the SDFTs pole resides on the Z-domains unit circle, which can lead to

instabilities if numerical rounding causes the pole to move outside the unit circle. In

order to guarantee stability, the SDFT must add a damping factor, but this causes

the SDFTs output to no longer be exactly equivalent to the N -point DFT. Other

SDFTs have been developed which are both accurate and guaranteed stable, but at

the cost of increased computational complexity (Duda 2010).

2.4.5 Spectral Leakage

The SWIFTs exponential window reduces spectral leakage as compared to the SDFTs

rectangular window, shown in Figure 2.3. It was difficult to directly compare the

leakage of finite length windows to infinite length windows; therefore, instead of

requiring each window have the same length, we required that each window have the

same halfmass, i.e. the length of the window in which half of the area is contained.

For instance, a rectangular window of length N = 20 and an exponential window

with τ = 14.43 both have a halfmass of 10. The exponential window has a narrower

main lobe and smoother falloff compared to the rectangular window. We can further

reduce the SWIFTs spectral leakage with another window, which we will introduce

in the αSWIFT algorithm.

Despite these advantages, there may be situations where the traditional SDFT is

called for. For instance, the sharpness of the SWIFT/αSWIFTs window may be to
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Figure 2.3: Normalized Fourier transform of four windows: rectangular (blue, N = 20),

hanning (black, N = 20), exponential (green, τ = 14.4) and α (red τslow = 14.4, τfast =

2.89).

narrow for some applications which require tracking a broad oscillation. Additionally,

any window can be implemented with the SDFT (at the cost of increased complexity),

while the SWIFT is limited to the exponential window. The SDFT is also more

directly comparable to the FFT.
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2.5 αSWIFT

The spectral leakage of the SWIFT can be further mitigated by removing the ex-

ponential windows discontinuity at m = 0. The discontinuity can be removed by

modifying the window function to be the difference of two exponentials:

wα[m] =

{
em/τslow − em/τfast m ≤ 0

0 m > 0
, (2.7)

where τslow > τfast > 0. We will refer to this as the α function, which goes

smoothly to 0 at m = 0. Figure 2.3 compares the spectral leakage of the α window

against the exponential, rectangular, and Hanning windows. We have chosen to

compare the αSWIFT to the Hanning SDFT, which is among the simplest windowed

SDFTs and was presented by Jacobsen and Lyons in 2003 (Eric Jacobsen and Richard

Lyons 2003). As compared to the exponential window, the α window has a similarly

narrow main lobe but has significantly faster fall off at surrounding frequencies. On

the other hand, the Hanning window has a significantly wider main lobe, but its side

lobes fall off faster than the α functions.

2.5.1 Derivation

The αSWIFT cannot be derived using the same method as the SWIFT because

wα[0] = 0, and so the αSWIFT cannot be written as a difference equation in the form

of Xn(ω)α = aXn−1(ω)α+x[n]. However, the αSWIFT can be solved as the difference

between two SWIFTs with different time constants through the linearity property of

the Fourier transform:

Xn(ω)α = Xn(ω)slow −Xn(ω)fast, (2.8)
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Figure 2.4: (a) Signal windowing for the αSWIFT algorithm. The data samples and

window used for the first computation (blue) and second computation (green). (b) Impulse

response and (c) pole/zero map for a single bin αSWIFT with τslow = 50, τfast = 10 samples,

and ω = π/10 radians/sample.

whereXn(ω)α is the αSWIFT, andXn(ω)slow andXn(ω)fast are individual SWIFTs

with τs equal to the slow and fast time constants, respectively. We call this form of

the αSWIFT the parallel form. The αSWIFT can be seen operating on an example

signal in Figure 2.4.

2.5.2 Transfer Function and Direct Form

We can solve for the Z-domain transfer function of Equation 2.8 by substituting in

Equation 2.6, one for each of the slow and fast SWIFTs, to yield:

HαSWIFT (z) =
(β − γ)z−1

1− (β + γ)z−1 + βγz−2
,

where β = e−1/τslowejω,

γ = e−1/τfastejω.

(2.9)
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From this form, we can easily analyze the poles/zeros of the system. We can then

derive the discrete difference form of the αSWIFT from the inverse Z-transform of

Equation 2.6:

Xn(ω)α = (β + γ)Xn−1(ω)α

− βγXn−2(ω)α

+ (β − γ)x[n− 1],

(2.10)

which we call the direct form. The αSWIFTs impulse response and pole/zero

map are shown in Figure 2.4b and Figure 2.4c, with τslow = 50 samples, τfast = 10

samples, and ω = π/10 radians/sample.

2.5.3 IIR Filter Implementation

The αSWIFT can also be implemented as an IIR filter in either the parallel or direct

form, shown in Figure 2.5a and Figure 2.5b. Both filters produce identical impulse

responses and pole/zero maps. However, the parallel form is more efficient than the

direct form, requiring 3 fewer memory locations (8 floating points vs. 11), and 2 fewer

real multiplies to compute the next Xn(ω)alpha.

2.5.4 Computational Efficiency

Like windowed SDFTs, the αSWIFT compromises computational efficiency for re-

ducing spectral leakage. However, the αSWIFT is far more efficient than comparable

windowed SDFTs. A comparison of the computational costs and memory require-

ments of the αSWIFT and Hanning-windowed SDFT are shown in Table 2.2.

33



Chapter 2: SWIFT

×

×
z-2

Xn (ω )αx[n] +

×
z-1

β + γ

βγ
−

z-1

β −γ

x[n]

+

+
+

×
z-1

×
z-1

Xn (ω )α

Xn−1(ω )slow

−

Xn−1(ω ) fast

e−1/τ fast e jω

e−1/τ slowe jω

β = e−1/τ slowe jω

γ = e−1/τ fast e jω

(a) (b)

Figure 2.5: a) Parallel αSWIFT filter structure and (b) direct αSWIFT filter structure.

Table 2.2: Single-bin comparison of the computational cost and memory requirements of

computing the next Xn[k]/Xn(ω) using the Hanning-windowed SDFT and αSWIFT.

Method Real Multiplies Real Adds Memory (floats)

Hanning SDFT 18 14 N+15
αSWIFT 8 8 8
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2.6 Numerical Simulation

To demonstrate the differences between the three types of SFTs, Figure 2.6 depicts

each transform operating on a chirp signal. Each transforms center frequency is 50 Hz,

which the chirp crosses 5 s into the simulation (denoted by the dashed black line).

To facilitate comparison, each window was set to have the same halfmass. Both

the SDFTs rectangular window (N = 100) and the SWIFTs exponential window

(τ = 72.1) have a halfmass of 50 samples. As compared to the SDFT, both the

SWIFT and αSWIFT have narrower peaks and less spectral leakage. In addition,

both the SWIFT and SDFT have noise in their outputs, which is reduced in the

αSWIFT. Each transform peaks at slightly different times as well. The SDFT, with

a rectangular window, peaks 0.05 s (or 50 samples) after the chirp passes 50 Hz. This

corresponds well with the halfmass of the window. The SWIFT and αSWIFT behave

differently, however, peaking 0.121 s and 0.134 s after the chirp passes 50 Hz, despite

also having halfmasses of 0.05 s.

2.7 Summary

The SWIFT algorithm for spectral analysis was presented and shown to have several

advantages over the SDFT algorithm, especially for applications that require succes-

sive calculations and real-time analysis. The SWIFT provides improved stability and

frequency resolution while reducing computational complexity, memory requirements,

and spectral leakage. Additionally, we presented the αSWIFT, which further reduces

spectral leakage and reduces noise.
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Figure 2.6: Comparison of an SDFT (N = 100), SWIFT (τ = 72.1), and αSWIFT

(τslow = 72.1, τfast = 14.2) with center frequencies at 50 Hz and comparable window lengths

operating on a chirp signal (fs = 1 kHz).
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Bayesian Adaptive Dual Control of

Deep Brain Stimulation in a

Computational Model of

Parkinson’s Disease

The following chapter describes the development of the Bayesian adaptive dual con-

troller (ADC) for tuning deep brain stimulation (DBS), a type of active learning DBS

(AL-DBS). We first describe the components of the Bayesian ADC, and then test it in

a computational model of Parkinson’s disease (PD). We also show that the Bayesian

ADC is superior to other potential forms of AL-DBS. The following was originally

published in PLoS Computational Biology in 2018.

Grado, L. L., Johnson, M. D., & Netoff, T. I. (2018). Bayesian adaptive

dual control of deep brain stimulation in a computational model of Parkinsons

disease. PLoS Computational Biology, 14(12), 123.

https://doi.org/10.1371/journal.pcbi.1006606
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3.1 Introduction

Deep brain stimulation (DBS) is an effective therapy for treating the motor symptoms

of Parkinson’s disease (PD), and is often used to complement dopamine replacement

therapy in patients who have progressed to severe stages of PD (Okun and Foote

2010). The clinical success of DBS relies on selecting stimulation parameters that

both relieve symptoms and avoid persistent stimulation-induced side effects. Iden-

tifying clinically optimized stimulation settings, or in other words programming the

pulse generator, is conducted by a movement disorders specialist through a laborious

trial-and-error process. The process involves parsing through several free parameters

including electrode configuration, stimulation amplitude, pulse frequency, and pulse

width. However, because the programming process is both time-intensive and ex-

hausting for the patient (Deuschl, Paschen, and Witt 2013; Volkmann et al. 2002),

most clinical programming visits focus on a truncated set of four monopolar elec-

trode configurations in which stimulation amplitude is increased for each setting to

the point of inducing persistent side effects.

Recent advances in DBS technology have rendered the programming process even

more challenging. For instance, directional DBS leads with eight (Pollo et al. 2014)

or as many as thirty-two contacts (Contarino et al. 2014) are emerging for clinical

use, and new stimulation algorithms are increasing the dimensionality of the pro-

gramming process, adding additional free parameters (Cagnan, Little, et al. 2014;

Cagnan, Pedrosa, et al. 2016; Abbey B Holt and Theoden I Netoff 2014; Abbey B.

Holt et al. 2016; Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013; Meidahl

et al. 2017). As these new technologies become more widely available, programming

next-generation DBS systems will no longer be feasible with current trial-and-error

approaches (Santaniello et al. 2011).

Implantable DBS systems have been designed to deliver stimuli and record the
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resulting neural responses, thus providing a framework for implementing closed-loop

DBS algorithms (E. Ryapolova-Webb et al. 2014) that can intelligently select the

optimal stimulation parameters for each patient at any point in time. Key to the

development of a closed-loop DBS strategy is defining a biomarker as feedback for a

controller; the biomarker must correlate well with PD symptoms, although it need not

be causal. Synchronous activity in the beta range (12–35 Hz) of local field potentials

(LFPs) is one possible candidate. While the precise role of beta oscillations in the

basal ganglia are under debate, increased beta band activity within the basal ganglia

has been associated with anti-kinetic symptoms of PD (P. Brown 2007). Specifically,

elevated beta power has been observed in the dorsolateral portion of the subthalamic

nucleus (STN) in human patients (A. A. Kühn, Trottenberg, et al. 2005; Solages et al.

2011; Zaidel et al. 2010) as well as the globus pallidus, but to lesser extent (A. T.

Connolly et al. 2015; J. A. Goldberg et al. 2004; Leblois et al. 2007). There is also

evidence that a reduction in beta power, either by medication (A. A. Kühn, Kupsch,

et al. 2006; A. A. Kühn, Tsui, et al. 2009; Ray et al. 2008) or DBS (A. A. Kühn,

Kempf, et al. 2008), correlates with improved unified Parkinson’s disease rating scale

(UPDRS) scores.

Two separate types of beta-based feedback stimulation policies have been pro-

posed: power or amplitude feedback and phase feedback. In the former implemen-

tation, an amplitude-responsive adaptive STN-DBS algorithm initiated stimulation

only when the amplitude in the beta band of STN LFPs exceeded a manually set

threshold (Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013). This ap-

proach resulted in significant reduction in parkinsonian motor signs and overall re-

duction in stimulation on-time compared to isochronal, conventional DBS (cDBS).

In the latter case, stimulation was triggered off of the phase of the beta oscillation,

delivering phase-locked bursts to optimally disrupt beta oscillations for PD (Abbey

B Holt and Theoden I Netoff 2014; Abbey B. Holt et al. 2016) or low frequency
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oscillations for tremor (Cagnan, Little, et al. 2014; Cagnan, Pedrosa, et al. 2016).

However, while both stimulation policies are closed-loop, neither is autonomous; each

requires manually setting yet another free parameter. A visualization of these two

differing stimulation policies are show in Figure 3.1, as well as a combined phase and

power feedback stimulation policy. We will use the term “power” here, as opposed

to “amplitude”, to disambiguate this parameter from other stimulation parameters.

As one can readily convert between power and amplitude, the terms are essentially

vinterchangeable.

In this study, we designed and tested a Bayesian adaptive dual control algorithm

that can efficiently and autonomously learn the parameters of both phase and power

feedback stimulation, as well as other stimulation parameters. We evaluated the

algorithm in a computational mean-field model of the basal ganglia-thalamacortical

system that simulated beta rhythms and response to electrical stimulation, and we

compared the algorithms performance to other optimization strategies.

3.2 Methods

3.2.1 Computational modeling of the basal

ganglia-thalamocortical system

In order to develop and test the adaptive dual control algorithm, we used a physiologi-

cally realistic mean-field model of the basal ganglia-thalamocortical system (BGTCS),

developed by van Albada and Robinson (S J van Albada and Robinson 2009; S. J.

van Albada et al. 2009). The BGTCS modeled the mean firing rate and voltage of

nine cortical and subcortical structures with second-order differential equations, the

structure of which is shown below in Figure 3.2. The model was capable of simulat-

ing both the nave state, as well as a dopamine depleted (DD) state, with a strong
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Figure 3.1: Beta-based feedback stimulation policies. (row 1) Simulated LFP. (row

2, 3) Power and phase calculated from the LFP using the αSWIFT algorithm. The dotted

lines indicate the manually set power threshold and phase trigger for stimulation. (row 4)

Power-based stimulation: high frequency stimulation is turned on when the power is above

threshold. (row 5) Phase-based stimulation: individual pulses are delivered when the phase

crosses the trigger. (row 6) Combined phase/power-based stimulation: individual pulses

are delivered when the phase crosses the trigger, but only if the power is above threshold.

beta rhythm. In this study we tested the Bayesian adaptive dual controller in the

dopamine-depleted state of the model to suppress its beta oscillation. For a detailed

description of the equations governing the model and how parameters were set, see

van Albada and Robinson, 2009 (S J van Albada and Robinson 2009; S. J. van Al-
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bada et al. 2009). The BGTCS model produced LFP signals generally comparable in

spectral content to those measured in humans with Parkinson’s disease undergoing

DBS surgery.
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ventral lateral, and 
centromedian-parafasciculs)
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Figure 3.2: Basal ganglia-thalamocortical system (BGTCS) mean-field model

structure. Black arrows represent excitatory connections, red circles represent inhibitory

connections. Simulated DBS was applied to the STN, and local field potentials (LFPs) were

recorded from the GPi. Adapted from van Albada and Robinson, 2009 (S J van Albada

and Robinson 2009; S. J. van Albada et al. 2009).

In order to simulate the effects of DBS within the model, stimuli were incorporated

as a direct current injection into the target structure. As the integration timestep of

the model (1 ms) was much greater than the duration of the first phase of a typical

DBS pulse (60–240 µs), the stimulus pulse was integrated to obtain the total charge,

which was then divided by the membrane capacitance to yield the change in voltage
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due to a single DBS pulse. The resultant ∆V was added directly to the voltage of the

target structure. Figure 3.3 shows example voltage traces from the globus pallidus

internus (GPi) of the BGTCS in the nave, DD, and DD with cDBS states, as well as

the power spectrum from each trace.
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Figure 3.3: Example BGTCS results. (a) time-series data and (b) PSD analysis in

three conditions: nave, DD, and DD with cDBS in the STN. The model produced a spectral

peak at 29 Hz, which increased and widened in the DD state. When cDBS was applied to

the STN of the model, the spectral power in beta band decreased.

The power spectra revealed several salient features of the BGTCS. First, it pro-

duced an oscillation in the beta range (at 29 Hz), and the power of that oscillation

increased in the DD state. Second, simulated cDBS at 130 Hz, similar to what has

been used clinically, reduced the power of the 29 Hz oscillation. Thus, the model of

the dopamine-depleted state 1) produced oscillations with a pronounced beta peak, and

2) responded to cDBS in a realistic manner. This model was then used to design,

test, and evaluate the Bayesian adaptive dual controller.
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3.2.2 Adaptive dual control for DBS

The tuning of stimulation parameters for DBS was formulated as a control problem:

We have a system (the patient) whose symptoms we wish to control (i.e. reduce)

with stimulation. However, unlike normal control problems, here we have dual goals:

We wish to control the patient’s symptoms as well as possible using the best known

stimulation parameters, but also must explore the parameter space to identify new

parameters that may be better than the current best, thus allowing for better control

in the future. This balance between control and information gathering, or exploitation

and exploration leads to the concept of dual control (Wittenmark 2004).

In order to accomplish these conflicting goals, we implemented an adaptive dual

controller (ADC) for DBS, which is composed of two components: (1) an inner pa-

rameterized stimulator and (2) an outer parameter adjustment loop. The inner loop

can be any stimulator with parameters to tune, from a traditional cDBS system to

new closed-loop DBS algorithms, and may or may not incorporate feedback from the

patient. For example, a power-based DBS algorithm would turn stimulation on or off

based upon the power of an oscillation measured from the patient. Conversely, cDBS

would not measure any feedback signals.

The outer parameter adjustment loop acts to tune the parameters of the stimula-

tor, and operates on a relatively long timescale. The outer loop is given a specification,

or goal, which it attempts to meet through an iterative process: selecting a parameter

value (or values), observing the effect of that value on its goal, estimating the effects

of new values, and then selecting the next value. For example, with an power-based

DBS algorithm, the outer loop would begin by selecting a power threshold for the

inner loop. The inner loop would then execute stimulation with that parameter value

for some pre-determined amount of time, after which the outer loop would observe the

effects of that value on some biomarker and select a new value. The general structure

of an adaptive dual controller for DBS is shown in Figure 3.4.
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Figure 3.4: Adaptive dual controller (ADC) for DBS. The ADC has dual goals

(exploitation and exploration), and is composed of two loops: an inner parameterized stim-

ulator and an outer parameter adjustment loop. The inner loop may incorporate feedback

from the patient to alter stimulation. The outer loop is composed of an estimator and a

design block, and is given a specification. The estimator builds a model of the relationship

between stimulation parameters and some measure of patient outcome, which it passes on

to the design block. The design block then incorporates this information with the speci-

fication to select new parameters for the inner loop. The inner loop operates on a much

shorter timescale than the outer loop.

Traditional cDBS can be viewed as a simplistic ADC, where an isochronal stim-

ulator takes the place of the parameterized stimulator, and the clinician acts as the

parameter adjuster. The clinician’s specification is to improve the patients quality

of life. During a clinic visit, they select stimulation parameters and observe the ef-

fects. The clinician uses his or her experience to build a mental estimation of the

relationship between parameters and quality of life, and uses this map to intelligently

determine which parameter combinations to try. At the end of the visit, however, the

loop is broken and the patient is sent home with the clinician-optimized settings.

Here, we designed a Bayesian ADC with two components: an inner phase/power

feedback stimulator, and an outer Bayesian optimization parameter adjustment loop.
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We first describe the components individually, and then describe the combined Bayesian

ADC.

3.2.3 Inner loop - real-time phase/power feedback stimula-

tion

The inner feedback stimulator had three parameters: (1) oscillation phase trigger, (2)

oscillation power threshold, and (3) stimulus amplitude. In order to implement phase

and power feedback stimulation, a real-time method of accurately estimating both the

phase and power of an oscillation was paramount. Previously, phasic stimulation had

been accomplished by band-pass filtering the signal and then using the time since the

preceding zero crossing to approximate phase (Cagnan, Pedrosa, et al. 2016). Power-

based stimulation had been achieved by rectifying and smoothing the band-passed

signal for 400 ms (Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013). The

Hilbert transform is often used to extract the phase and power of a signal. However,

the Hilbert transform is acausal, making it impossible to implement in real time.

We recently developed a novel sliding Fourier transform, called the sliding win-

dowed infinite Fourier transform (SWIFT)

Xn(ω) = e−1/τejωXn−1(ω) + x[n], (3.1)

along with the αSWIFT,

Xn(ω)α = Xn(ω)slow −Xn(ω)fast, (3.2)

described in (Grado, Matthew D. Johnson, and Theoden I. Netoff 2017). Unlike other

methods of phase/power estimation, the SWIFT directly and efficiently calculates the

Fourier transform of the signal in real time, centered on ω = 2πf/fs and windowed
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with an infinite length, causal exponential window. In fact, the SWIFT is a causal

approximation of the Hilbert transform. The αSWIFT employs the α window (the

difference between two exponentials with different time constants), and has improved

frequency resolution. Here, we used the αSWIFT to calculate the phase and power

of the beta oscillation in real time.

The SWIFT has two parameters which control its behavior: the center frequency

ω, and the time constant τ (or two time constants, τslow and τfast for the αSWIFT).

The center frequency, ω was set to match the center frequency of the beta peak in the

model. The (slow) time constant controls the time-frequency tradeoff of the SWIFT:

a shorter time constant leads to higher temporal resolution, but lower frequency

resolution (wider frequency response). To balance this tradeoff, we matched the

width of the SWIFT’s frequency response to the width of the model’s beta peak at

−6 dB (or 50 % power reduction). The model’s beta peak had a width of ±1.15 Hz at

−6 dB, and so we set τslow = 0.240 s to match, which can be readily calculated from the

Fourier transform of the SWIFT’s exponential window. τfast was set to τslow/5, which

smooths the output without significantly altering the SWIFT’s frequency response.

Figure 3.1 shows the phase/power feedback stimulation algorithm operating on an

example LFP, extracting phase/power using the αSWIFT, and triggering stimulation

off phase when the power is above threshold.

In this context, the SWIFT’s parameters are selected to filter the signal around

the oscillation produced by the BGTCS. The SWIFT parameters for a physiological

signal could be selected in a similar manner: The center frequency and width can

be estimated from the power spectral density measured from a sample signal. A

concern is that a physiological signal’s center frequency may wander more than the

BGTCS model; this could be addressed by periodically re-estimating the SWIFT

parameters from the raw signal. Alternatively, Jackson et al, 2016 described a method

of estimating the real time phase of a frequency-modulated signal by combining three
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real time Fourier transforms (RTFTs) operating at neighboring frequencies, which

produces a flat frequency response over the frequency band of interest. Their method

could easily be augmented to use the SWIFT in the place of the RTFT (Jackson et al.

2015).

3.2.4 Outer loop - Bayesian optimization of stimulation pa-

rameters

While many optimization algorithms could be used for the outer loop, the problem of

creating an ADC for DBS has several constraints which make Bayesian optimization

(BayesOpt) ideal. The goal of BayesOpt is to find the minimum of the objective

function with as few evaluations as possible (Donald R Jones, Schonlau, and Welch

1998; Kushner 1964; Locatelli 1997; Mockus, Tiesis, and Zilinskas 1978), and indeed

is among the most efficient algorithms at doing so (Donald R. Jones 2001; Donald R

Jones, Schonlau, and Welch 1998; Mockus 1994; Sasena 2002; Streltsov and Vakili

1999). BayesOpt also provides a framework for explicitly balancing exploration and

exploitation in order to efficiently find the global minimum. To reduce the number of

function evaluations, BayesOpt only approximates the objective function accurately in

regions where it is profitable to do so, and samples coarsely everywhere else (Martinez-

Cantin et al. 2009). This is ideal for tuning stimulation parameters as the patient

is likely to have little tolerance for exploration, and so we wish to find their optimal

settings with as few steps as possible.

The power and efficiency of BayesOpt stems from the incorporation of prior belief

about the objective function with available evidence (through Bayes theorem) to build

a model of the objective function,

P (M |E) ∝ P (E|M)P (M). (3.3)
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That is, the posterior probability of a model M given some evidence E, is proportional

to the likelihood of E given M multiplied by the prior probability of M . BayesOpt

then uses this model to direct sampling and trade off exploration and exploitation

(Brochu, Cora, and Freitas 2010).

BayesOpt consists of three steps. First, a prior distribution is defined over the

objective function. Second, a set of N previously gathered measurements, D1:N , are

combined with the prior through Bayes rule to obtain a posterior distribution. Finally,

the acquisition function, which is a function of the posterior distribution that predicts

the utility of sampling, is used to determine where next to sample to maximize the

utility.

Defining the prior

First, we place a prior distribution over the objective function, f(θ). In our case, the

objective function was the mean beta power (measured over several seconds), and

was a function of the stimulation parameters, θ. While many models can be used as

the prior, Gaussian process (GP) priors are favored and are well suited as they satisfy

the “simple and natural” conditions: (i) continuity of the objective function f(θ), (ii)

homogeneity of the prior P , and (iii), independence of mth differences (Mockus 1994).

f(θ) ∼ GP
(
m(θ), k(θ, θ′)

)
. (3.4)

A GP can be thought of as a distribution over functions, completely specified by its

mean function, m(θ), and its covariance function (often referred to as the kernel),

k(θ, θ′), which computes the “similarity” of any two points, θ and θ′. Instead of

returning a single value at each point in the parameter space, the GP returns two

values: the mean and variance of a normal distribution. The prior mean is often

assumed to be zero everywhere, m(θ) = 0, although in our case we learn the mean
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function as the mean of the training data. The prior covariance matrix is computed

using a kernel between the inputs. We used the Matern kernel, which we modified

to be periodic in phase. The parameters of the kernel (length scale and noise level)

were learned by maximum a posteriori (MAP) estimation.

Computing the posterior

We then compute the posterior distribution by combining a set of n previously gath-

ered measurements, D1:n = {θi, f(θi)}ni=1, with the prior through Bayes rule. Let us

denote the value of the function at the arbitrary point θi as fi = f(θi), and the vector

of previous points as f1:n = [f1, ..., fn]T . The formula for the predictive distribution

can be readily derived as

P (fn+1|D1:n, θn+1) = N
(
µn(θn+1), σ

2
n(θn+1)

)
, (3.5)

where

µn = kTK−1f1:n, (3.6)

σ2
n = k(θn+1, θn+1)− kTK−1k, (3.7)

are the mean and variance of the posterior distribution (Rasmussen and Williams

2006). Here k denotes the vector of kernels k(θn+1, θi) for i = 1, ..., n, and K is the

full kernel matrix of θ1:n whose ijth entry is given by k(θi, θj) for i = 1, ..., n and

j = 1, ..., n.

Minimizing the acquisition function

Finally, BayesOpt directs where next to sample by minimizing the acquisition func-

tion, u(θ). The acquisition function serves to guide the search to the optimum by
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modeling the expected utility of sampling at θn+1. Typical acquisition functions

achieve low values in regions where either the predicted mean is low, the uncertainty

is high, or both. We chose to use the Gaussian process lower confidence bounds

(GP-LCB) acquisition function:

GP-LCB(θn+1) = µn(θn+1)− κσn(θn+1), (3.8)

where κ ≥ 0. BayesOpt thus selects the next evaluation point, θn+1, by minimizing

the acquisition function, e.g. sampling at arg minθn+1 u(θn+1|D1:n). The acquisition

function also governs the trade-off between exploration and exploitation. In GP-LCB,

the κ parameter determines the exploration-exploitation trade-off; high κ encourages

exploration, while a low κ encourages exploitation. With κn =
√
ντn, ν = 1, and

τn = 2 log(nd/2+2π2/3δ), it can be shown that this method is no regret with high

probability. For a full description and proof, see Srinivas et al., 2010 (Srinivas et al.

2009). However, in our situation we chose to favor exploitation, and so set v = 0.25.

Bayesian optimization example

Figure 3.5 shows a typical run of BayesOpt on a 1D problem. The optimization started

with 3 points, from which it fitted a GP. BayesOpt then computed an acquisition

function from the GP (which incorporated both the mean and variance of the GP to

model the utility of sampling) and minimized it to determine where to sample next.

Finally, the objective function was sampled at the new point, and the process was

repeated. For a detailed description of Bayesian optimization, see Brochu, Cora, &

Freitas, 2010, and Rasmussen & Williams, 2004 (Brochu, Cora, and Freitas 2010;

Rasmussen and Williams 2006).
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Figure 3.5: Bayesian optimization example. Three iterations of Bayesian optimization

minimizing a 1D function. The figure shows a Gaussian process (GP) approximation (solid

black line and blue shaded region) of the underlying objective function (dotted black line).

The figure also shows the acquisition function (green). The acquisition function (GP-LCB)

is the difference of the mean and variance of the GP (multiplied by a constant), which

Bayesian optimization minimizes to determine where to sample next.

3.2.5 Bayesian adaptive dual controller

Putting the above components together, we constructed a Bayesian adaptive dual

controller. The controller had two components: an inner feedback stimulation loop,

which applied stimulation based on the phase/power of the beta oscillation, and an

outer Bayesian parameter adjustment loop which optimized the parameters of the

inner feedback stimulator to maximally suppress the beta oscillation.

Inner loop. The inner loop of the Bayesian ADC was composed of a closed-loop

phase/power feedback stimulator. The stimulator measured the LFP from the GPi
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of the BGTCS (Figure 3.2), and triggered stimulation off of the phase and power

of the beta oscillation, estimated in real time using the αSWIFT (Figure 3.1). The

inner loop had three parameters: (1) oscillation phase trigger, (2) oscillation power

threshold, and (3) stimulus amplitude, which were optimized by the outer loop. The

inner loop operated on a timescale of 1 ms, the same as the BGTCS.

Outer loop. The outer loop of the Bayesian ADC employed Bayesian opti-

mization to intelligently sample the parameter space and select the optimal set of

parameters. The outer loop operated on a timescale of 20 s, much longer than the

inner loop. After selecting a new parameter set, the outer loop would wait 10 s, which

allowed the BGTCS to settle into a steady state. The outer loop would then estimate

the power of the beta oscillation over the next 10 s by keeping a running average of

the oscillation power. It then would update its internal Gaussian process with the

new observation, minimize its acquisition function, and select the next parameters

to sample. The Bayesian ADC’s control diagram is shown in Figure 3.6a, and an

overview of how the Bayesian ADC functions is shown in Fig Figure 3.6b.

3.3 Results

The Bayesian ADC was tested in the BGTCS. First, we show that the BGTCS

responded differentially across the 3D parameter space of the feedback stimulator,

and that there existed a minimum. Next, we present a 1D example of the Bayesian

ADC optimizing stimulus phase trigger in the model. Finally, we show that the

Bayesian ADC converged quickly to the global minimum in all cases, and compared

the Bayesian approach to other standard optimization methods.
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Figure 3.6: Overview of the Bayesian ADC. (a) Bayesian ADC control diagram. The

Bayesian ADC’s inner loop was composed of a phase/power based feedback stimulator. The

outer Bayesian optimization loop was composed of a Gaussian process (GP), and acquisition

function. The Gaussian process builds a model of how the stimulation parameters affect

the feedback signal, and the acquisition function uses this information to select the next

parameter set. (b) Overview of the Bayesian ADC’s cyclic operation. The Bayesian ADC

sets the stimulator parameters and applies phase/power based stimulation to the BGTCS

for 20s. It then estimates the effect of those parameters on beta power, and updates its GP

with the new observation. Finally, it optimizes its acquisition function, and selects the next

parameter set.

3.3.1 Parameter sweep

In order for the Bayesian ADC to find an optimal parameter set, there must exist

at least one minimum over the feedback stimulator’s parameter space. We swept

the space on a 643 grid (oscillation phase trigger, oscillation power threshold, and

stimulus amplitude), and measured the average beta power over the last 50 s of a

100 s simulation. Figure 3.7 shows three 2D slices through the parameter space (with

the third parameter held constant at its global minimum). We see that the model’s

54



Chapter 3: Bayesian ADC of DBS in a Computational Model

beta power responded to all three parameters, and that a minimum existed. The

sweep also revealed a complex underlying landscape with flat regions, nonlinearities,

and local minima, which may prove difficult for optimization algorithms to navigate.

Figure 3.7 only shows three 2D slices through 3D volumetric data; there are other

complex interactions which are not seen in these planes. Most importantly, however,

the parameter sweep revealed that the BGTCS has a global minimum. Next, we

tested the Bayesian ADC’s ability to efficiently locate the global minimum in this

complex landscape.

Figure 3.7: Beta power as a function of stimulation parameters. Feedback stim-

ulator parameter sweep over stimulus phase trigger, power threshold, and amplitude. The

sweep revealed a global minimum of −28.6 dB at 〈2.24 rad, 2.37 mA, −28.6 dB〉, denoted

with dashed black lines. The sweep revealed a complex underlying landscape with flat

regions (in response to power threshold), nonlinearities (in response to stimulation ampli-

tude), and shallow local minima (high power thresholds). The red and yellow lines indicate

the isoclines of the beta power with DBS OFF and cDBS, respectively.
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3.3.2 Individual runs

After having verified the existence of a global minima, we ran the Bayesian ADC

in all 7 parameter combinations. In the 1 and 2D cases, the variable(s) not being

optimized over were fixed at their global minimum. Figure 3.8 shows a 1D example

of the Bayesian ADC optimizing the stimulus phase trigger, with stimulus amplitude

and power threshold held constant. By the 6th function evaluation, the Bayesian

ADC was already sampling near the optimal stimulus phase. The Bayesian ADC was

able to build an accurate representation of the BGTCS’ response to stimulation in

relatively few function evaluations. The ADC took few exploratory steps, and did so

to optimally cover the space and gather information about the underlying function.

In this example, we see that at function evaluation 16, the Bayesian ADC chose to

explore near −π, before returning to the optimal region around 3π/4.

3.3.3 Empirical analyses

Finally, we empirically analyzed the Bayesian ADC, and compared the BayesOpt

outer loop’s performance to other optimization strategies. We chose to compare

to two types of algorithms: gradient-approximating algorithms, such as the Nelder-

Mead simplex (NM) (Nelder and Mead 1965), and global algorithms such as DI-

viding RECTangles (DIRect) (D. R. Jones, Perttunen, and Stuckman 1993). Each

algorithm was bounded on the same interval, and initial conditions were selected uni-

formly at random. We selected NM because we expected it to outperform most other

gradient-approximating algorithms, most of which are not robust to noise. The NM

approximates the gradient using a simplex, whose vertices are often far enough apart

to return the correct search direction, even in the presence of noise. We selected

DIRect due to its ability to quickly blanket the search space.

Approaching the minimum. We first compared the algorithms ability to find
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Figure 3.8: Bayesian ADC optimizing stimulus phase trigger. Example 1D op-

timization of stimulus phase trigger. The simulation was run for 25 iterations in which

Bayesian optimization was used to select the stimulus phase trigger while holding stimulus

amplitude and power threshold constant (2.37 mA, −28.6 dB). (top) Gaussian process built

from observations. (bottom) Power as a function of iteration, and minimum value found.

The color of each dot represents the iteration at which each parameter setting was visited

during the simulation.

the global minimum in the fewest number of function evaluations. Each algorithm

was run 1000 times, and the mean and standard deviation of the minimum beta

power found after each evaluation are reported in Figure 3.9. BayesOpt and DIRect

performed equally well in all cases, both were able to find the global minimum ro-

bustly, and both approached the global minimum at approximately the same rate.

Conversely, NM had more difficulty in reliably finding the global minimum. In 1D,
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the NM performed comparably in optimizing phase trigger and stimulus amplitude,

but was unable to reliably find the global minimum in power threshold. In 2D, the

NM performed comparably in the phase & amplitude case, but fell short in the other

two cases, as well as in the 3D case.
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Figure 3.9: Minimum beta power found by each algorithm as a function of iter-

ation. BayesOpt (blue) is compared against the Nelder-Mead (orange) and DIRect (green)

algorithms, with the shaded region indicating the standard deviation. Each algorithm was

run 1000 times in all 7 parameter combinations, and compared for their ability to find the

global minimum in as few function evaluations as possible. BayesOpt and DIRect perform

comparably in all cases, while NM falls behind in cases where power threshold is optimized.

The dotted lines represent the global minimum beta power, as well as the beta power with

DBS OFF and cDBS for comparison.

Staying at the minimum. While both BayesOpt and DIRect were able to reli-
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ably find the global minimum, their sampling patterns differed greatly. To illustrate

this difference, and compare to NM, Figure 3.10 shows histograms of the parameters

chosen by each algorithm at each iteration over 1000 trials in the 1D cases, as well

as the underlying 1D response surfaces. We see that each algorithm approached the

optimal parameter values differently. BayesOpt clustered most tightly on the optimal

values, followed by NM, while the DIRect algorithm continued to explore through-

out the simulation. As a gradient-approximating method, NM exploited well, but

explored poorly, and was easily trapped by local minima and flat regions. Conversely,

as a global search algorithm, DIRect was able to find the global minimum quickly and

efficiently. However, it could not transition from exploration to exploitation, and so

the algorithm continued to explore the space throughout the simulation. BayesOpt

balanced exploration and exploitation; the algorithm exploited well, as the parame-

ter values quickly clusted on the optimum, more tightly than either NM or DIRect.

Additionally, we can see the global exploration steps that BayesOpt took throughout

the simulation, allowing it to build a model of the entire space to ensure that it found

the global minimum.

Regret. A natural performance metric that encapsulates both exploration and

exploitation properties is the average cumulative regret; i.e. the loss in reward due

to not knowing the global minimum before hand. Whereas the minimum found as

a function of each iteration (Figure 3.9) shows how quickly the algorithm found a

minimum, the average cumulative regret quantifies both how quickly an algorithm

finds the global minimum, and how well it exploits it. At each iteration, we in-

cur instantaneous regret rt = f(θt) − f(θ∗), where f(θ∗) is the function value at

the best parameters, θ∗. The cumulative regret after T iterations is RT =
∑T

t=1 rt,

and a desirable asymptotic property of an optimization algorithm is to be no-regret :

limT→∞RT/T = 0 (Srinivas et al. 2009). Therefore, an algorithm who’s average

cumulative regret asymptotes to a lower value can be considered superior. The per-
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Figure 3.10: Histograms of the parameters selected by each algorithm in 1D.

Histograms of the parameters selected by each algorithm (rows 2-4) over 1000 trials of 100

function evaluations are show, as well as the underlying response surfaces (top row). Each

row shows the sampling patterns of an algorithm as it attempted to minimize beta power in

each of the 1D cases (columns). BayesOpt clustered most tightly on the optimum parameter

values in all cases. The NM algorithm explored the space the least and was easily trapped

in flat regions or in a local minimum. The DIRect algorithm continually explored the space,

and never transitioned to exploitation.

formance of each algorithm was quantized by fitting an exponential decay function
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of the form RT/T = α+ T0 exp(−T/τ), which asymptotes to α with a time constant

of τ . Figure 3.11a shows the mean average regret (the mean across 1000 trials of

the average regret up to iteration T ), and Table 3.1 reports the asymptotes and time

constants fit to each algorithm in the 3D case. BayesOpt had the lowest asymptote,

reflecting the algorithms ability to reliably find and stay at the global minimum.

However, NM had the shortest time constant, reflecting its ability to quickly descend

towards a minimum (be it local or global).

Table 3.1: Asymptote and time constant of each algorithm in the 3D case.

Algorithm α τ

BayesOpt 2.78± 0.02 45.7± 0.26
DIRect 5.43± 0.03 68.3± 0.45
Nelder-Mead 6.12± 0.04 32.8± 0.52

Noise tolerance. Finally, we quantified the performance of the three different

algorithms under increasingly noisy conditions. To test each algorithm, we added

normally distributed noise ε ∼ N (0, σ2) to the beta power measurement passed to the

optimization algorithms. To quantify the signal-to-noise ratio (SNR), we estimated

the signal amplitude as the standard deviation of beta power across the search space,

and the baseline noise amplitude as the standard deviation of repeated measures. For

each algorithm, we ran 500 trials under increasing noise, and estimated the asymptotic

regret, α, shown in Figure 3.11b. As expected, we see that all three algorithms’

asymptotes increase as the SNR decreases from baseline, with BayesOpt continuing to

outperforming the other algorithms at moderate to high SNRs. As the SNR degrades

below 5 dB, BayesOpt’s asymptote sharply increases, putting it in line with the other

algorithms. At this point, each of the three algorithms’ asymptotic performance is

comparable to cDBS. As it takes many iterations to reach the asymptote, a static
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solution (such as cDBS) may be preferable under noisy conditions.
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Figure 3.11: Mean average regret and noise tolerance. (a) The mean of the average

regret (RT /T ) across 1000 trials for each algorithm in the 3D case. BayesOpt asymptotes

to the lowest regret, while NM asymptotes fastest but to higher regret. (b) Asymptotic

constant, α, under increasingly noisy conditions. As the SNR degrades, each algorithms’

asymptotic performance deteriorates. BayesOpt continues to outperform the other algo-

rithms at moderate to high SNRs and performs similarly at poor SNRs. The horizontal

dotted lines indicate the regret incurred with DBS OFF and cDBS, while the vertical line

represents the baseline SNR.

In summary:

• NM is able to descend faster than both BayesOpt and DIRect, but is unable to

reliably find the global minimum;

• DIRect reliably finds the global minimum, but continues to explore and so has

high regret;

• BayesOpt reliably finds the global minimum, and has the lowest regret;

• BayesOpt is more robust to noise.
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3.4 Discussion

In this paper, we present a Bayesian adaptive dual control algorithm for optimizing

DBS stimulation parameters to suppress pathological oscillations. The Bayesian ADC

was tested in a computational model of the basal ganglia-thalamocortical system,

which exhibited an emergent oscillation in the dopamine-depleted state that was

suppressed by cDBS. The use of the BGTCS model (as opposed to a simple coupled

oscillator model), provides more directly translatable results, and allows us to draw

several physiologically relevant conclusions about how closed-loop stimulation might

function in a real system. The Bayesian ADC algorithm was composed of two pieces:

an inner feedback controller and an outer parameter optimization loop. The inner

feedback loop was shown to have the potential to be more effective at suppressing the

model’s pathological oscillation than cDBS, but was sensitive to parameter changes.

The outer BayesOpt parameter adjustment loop was shown to be more efficient in

selecting the optimal parameters for the inner loop than other optimization methods.

While the focus of this paper was on suppressing an oscillation seen in the dopamine-

depleted state of a computational model, the Bayesian ADC is general both for the

feedback signal optimized by the outer loop and for the stimulator employed by the

inner loop.

3.4.1 Biological insights into closed-loop stimulation

Through examination of the optimization landscape (Figure 3.7), we can draw sev-

eral key insights regarding the nature of closed-loop stimulation in the context of a

biological system, and relate these results to other studies in the field.

Phasic Stimulation. The use of phasic stimulation to suppress pathological

oscillations has been previously proposed and tested, both in computational models

(Azodi-Avval and Gharabaghi 2015; Abbey B Holt and Theoden I Netoff 2014; Abbey
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B. Holt et al. 2016; M. G. Rosenblum and A. S. Pikovsky 2004; M. Rosenblum and A.

Pikovsky 2004) and in human tremor patients (Cagnan, Little, et al. 2014; Cagnan,

Pedrosa, et al. 2016). While the mechanisms of phasic stimulation are well understood

in the context of simple models of coupled oscillators (Azodi-Avval and Gharabaghi

2015; M. G. Rosenblum and A. S. Pikovsky 2004; M. Rosenblum and A. Pikovsky

2004), the precise mechanisms of phasic stimulation in the context of the brain is

not well understood. The computational model used to simulate the response of the

basal ganglia to phasic stimulation displayed several interesting features which may

provide insight into the potential mechanisms of phasic stimulation.

We hypothesize that oscillations can be generated by two separate mechanisms

in the basal ganglia: 1) under pathological conditions neurons start to fire in bursts

generating beta rhythms, or 2) an inhibitory and excitatory reciprocally connected

neuronal populations, such as the STN and globus pallidus externus (GPe), start

generating oscillations that have matched resonances and produce beta oscillations.

These oscillations could be suppressed in a number of manners. First, phasic stimula-

tion could simply suppress the firing rate of the neurons. However, in this model the

firing rates are not significantly affected. Second, phasic stimulation could alter the

temporal spiking relationship between connected neurons, and through spike-timing

dependent plasticity (STDP), alter the strength of synaptic connections within and

between oscillating structures (Cagnan, Brittain, et al. 2013; Cagnan, Pedrosa, et al.

2016). However, as STDP is not incorporated in this model we can rule out this effect

in the model presented here. Third, phasic stimulation could interact with individual

spike timing within an oscillating population. By stimulating at certain phases, the

population can be desynchronized so that they no longer produce burst dynamics

(Abbey B. Holt et al. 2016). However, as the BGTCS does not model individual neu-

rons, we can rule out this effect in this model as well. Fourth, phasic stimulation could

simply mask the oscillation through destructive interference by applying stimulation
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to excite neurons out-of-phase, when they are most suppressed. Finally, the stimulus

can interact with the instantaneous frequency of an oscillator, effectively moving the

system closer to, or further from, peak resonance (Ermentrout 1996; Smeal, Bard

Ermentrout, and White 2010). This is the mechanism observed in models of coupled

oscillators.

This leaves us with the task of determining if the oscillations are being suppressed

by destructive interference or by modulating the resonance dynamics. Upon closer

inspection, we notice several features which support the modulation of resonance dy-

namics. First, we notice that the optimal stimulus phase for suppression (2.24 rad)

occurs during the downward phase of the oscillation1 (here 0 rad and ±π rad aligns to

the peak and trough of the oscillation, respectively), while the optimal phase for en-

hancement occurs ±π rad out, during the rising phase of the oscillation. Furthermore,

we see that the optimal stimulus phase for suppression depends on stimulus ampli-

tude: As stimulus amplitude increases, the optimal stimulus phase precesses towards

peak depolarization (from 2.24 rad to 1.57 rad). The optimal phase for enhancement

does not depend upon the stimulus amplitude.

If the oscillations were suppressed/enhanced by destructive/constructive interfer-

ence, we would expect that 1) the optimal phase for suppression/enhancement would

align with the trough/peak (±π /0 rad), and 2) we would not expect the optimal

phase to change with the amplitude of the stimulation. This in our opinion rules

out destructive interference. We hypothesize that instead the stimulation effectively

changes the resonance properties of the reciprocal excitatory/inhibitory coupling be-

tween the STN and GPe. Stimulation during the falling phase of the oscillation

results in a transient phase delay, moving the STN/GPe away from peak resonance.

1While we are recording and estimating the phase from the GPi, which is downstream of the
stimulation target, the STN, the model’s synaptic delay (1 ms) between the STN and GPi is short
enough relative to the period of the oscillation (34.5 ms) that there is little appreciable difference
between the recorded phase of the GPi and the actual phase of the STN when stimulation is delivered.
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The magnitude of this phase delay is amplitude dependent, and can even become

a phase advance at large amplitudes, explaining the amplitude-dependence of the

optimal suppression phase. Conversely, stimulation during the rising phase results

in a transient phase advance, resulting in stronger resonance between the two struc-

tures (Azodi-Avval and Gharabaghi 2015). This prediction is one that can be tested

experimentally, and might provide insight into the mechanism of beta suppression.

Power thresholded stimulation. There are also several studies which use

beta power to turn stimulation on or off, but to our knowledge, no one has tried to

combine phase and power based stimulation. Power thresholded stimulation has been

implemented in two different ways: (a) a threshold is used to turn stimulation on or

off (Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013), and (b) stimulation

amplitude is ramped up or down based on either beta (Rosa, Arlotti, Ardolino, et al.

2015; Rosa, Arlotti, Sara Marceglia, et al. 2017) or tremor power (Malekmohammadi

et al. 2016). The idea behind a beta threshold is to turn off/down stimulation when

it’s not needed, e.g. when beta is low. Here, we see a straightfoward effect of the

power threshold on beta power: given the optimal stimulus phase and amplitude,

the model’s beta power is drawn down to the power threshold, until reaching the

model minimum. Therefore, a power threshold parameter could be explicitly used as

a “beta thermostat”, allowing for the avoidance of side-effects that could be induced

by over-suppressing beta power.

3.4.2 Advantages

The Bayesian ADC’s key advantages stem from fitting a GP to data, and then using

the GP to intelligently sample, explicitly balancing exploration and exploitation to

find the global minimum. Through fitting the GP, BayesOpt is able to learn and

account for both the length scale of the parameters as well as the noise level, and

is among the most efficient algorithms in terms of number of function evaluations
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required to find the minimum. The Bayesian ADC is also able to balance exploration

and exploitation: it is able to find the minimum quickly and exploit it, but continues

to explore intelligently to ensure that it has arrived at the global minimum. Gradient-

approximating methods (such as NM) can quickly descend towards a minimum, but

are unable to explore globally, are sensitive to initial conditions, and are vulnerable

to becoming trapped in local minima or wandering around flat regions. Global explo-

ration methods (such as DIRect), do not rely on gradients and can quickly find the

global minimum. However, such algorithms are often purely exploratory, and never

transition to exploitation.

When trying to optimize stimulation parameter settings, balancing exploration

and exploitation is critical. We need to approach the minimum as quickly as possible,

but also avoid local minima while preventing unnecessary exploration, as the patient

is likely to have little tolerance for wildly varying stimulation parameters. BayesOpt

provides a framework for balancing exploration and exploitation in a way that most

other algorithms do not.

Of course, selecting the optimal balance between exploration and exploitation is

not a trivial task. All acquisition functions have a hyperparameter which controls the

exploration/exploitation tradeoff. The GP-LCB algorithm we emplyed is no regret in

the limit as N →∞ with ν = 1. However, we are less interested in achieving 0 regret

than we are with achieving a low regret quickly. Thus, a smaller ν should be chosen,

such as ν = 0.25, to encourage exploitation. Furthermore, this hyperparameter could

be adapted over time: if the patient feels like too many exploratory settings are being

chosen, ν could be decreased.

3.4.3 Limitations

The Bayesian ADC is not without its limitations. First and foremost, because

Bayesian optimization relies on calculating and inverting the covariance matrix of
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the inputs, the complexity grows as O(n3), where n is the number of observations.

Therefore, the time it takes to compute the next parameter set increases as the cube

of the number of samples. However, in this case, and many clinical applications, the

time it takes to assess the effects of a single parameter set is relatively long (seconds

in this model, minutes in the clinic, or hours or even days at home). Therefore, as

long as it takes less time to compute the next parameter set than it does to evaluate

a parameter set, this will not be an issue.

Additionally, the Bayesian ADC assumes the existence of a static response sur-

face, although this need not be the case. If the patient’s response to stimulation is

changing over the course of the measurements, the Bayesian ADC will not converge.

However, if the time-course of this change is long relative to the time-course of the

measurements, this could be overcome. Furthermore, instead of using all previous

observations, we could limit the algorithm to use only the most recent N , thereby

allowing the algorithm to “forget”, forcing it to re-explore changing areas. This “for-

getting” strategy could be used to solve the aforementioned complexity problem as

well. Finally, neural networks (NNs) could be used to estimate the GP, which would

address both the scalability problem (becoming linear in n, instead of cubic), and the

stationarity problem (as NNs naturally “forget” training data far in the past) (Snoek

et al. 2015; Springenberg et al. 2016).

3.4.4 Generalizability

The Bayesian ADC framework we present here has broad applicability for tuning

stimulation parameters across diseases and devices. At its heart, the Bayesian ADC

framework is simply a method for efficiently optimizing the parameters of a controller

using some feedback signal. Both the inner loop and the feedback signal can be

designed to fit the problem at hand.

Inner loop. In our Bayesian ADC, we used a phase/power feedback controller
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for the inner loop. However, any controller, closed- or open-loop, could be used for

the inner loop. This means that the Bayesian ADC can be used to tune stimula-

tion parameters for any stimulator, from current open-loop cDBS to state-of-the-art

closed-loop algorithms.

Feedback signals and objective functions. The Bayesian ADC can be used

to tune stimulation parameters for any disease by selecting the appropriate feedback

signal (or signals) and defining an objective function over those feedback signals. In

our case, we chose to minimize the power of the beta oscillation measured from the

BGTCS. However, there is concrete evidence that not all exaggerated beta oscillations

are pathological, and that it may serve as a non-exact biomarker for PD severity

(Boraud, Peter Brown, and J. Goldberg 2005; Courtemanche, Fujii, and Graybiel

2003; Andrea A. Kühn et al. 2004; Leventhal et al. 2012; Magill et al. 2004). Other

neurophysiological biomarkers have been proposed for PD, including phase-amplitude

coupling (PAC) (A. T. Connolly et al. 2015; Hemptinne, E. S. Ryapolova-Webb, et

al. 2013; Hemptinne, Nicole C Swann, et al. 2015) and evoked compound action

potentials (ECAPs) (Gmel, Hamilton, et al. 2015), to name a few. Additionally,

kinematic feedback signals could be incorporated, such as quantitative measures of

tremor, rigidity, bradykinesia, or other symptoms. The feedback signal need not be

physiological, it could be a qualitative behavioral or quality of life metric, measured

by the patient, clinician, or family member.

Finally, side effects could be taken into account by allowing the patient to self-

report the severity and frequency of side effects. Our objective function would then

become a weighted combination of the feedback signal as well as side effect. By

incurring a penalty whenever side effect occurs, the Bayesian ADC can learn to avoid

those parameters (even if they positively affected other feedback signals). However,

as with any multi-objective optimization problem, we are then left with the task of

assigning relative weights to the individual components.
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Diseases. The Bayesian ADC is not limited to PD, but is generalizable to any

disease with a parameterized stimulator. For example, the Bayesian ADC could be

easily adapted to optimize DBS parameters to treat essential tremor. In this case, the

feedback signal could be the tremor power measured from a wrist-mounted accelerom-

eter. The inner loop could be a simple continuous stimulator, a phase/power feedback

stimulator, or any parameterized stimulator. Indeed, recent work has indicated that

using kinematic biomarkers (specifically triggering stimulation off the power of the

patient’s tremor) could improve the efficacy of closed-loop DBS (Malekmohammadi

et al. 2016).

Discrete and categorical parameters. The Bayesian ADC is not limited

to optimizing continuous parameters, but can also handle discrete and parameters.

Discrete parameters are those that possess an inherent ordering or structure, such that

the effects of two “nearby” parameters can be expected to be more similar than two

“distant” parameters. For example, in the case of electrode configuration, stimulating

through contact 1 on a traditional four contact DBS lead can be considered to be

more similar to stimulating through contact 2 than through 3, as it is more likely to

activate similar or overlapping neuronal populations. Thus, we need only come up

with a numerical encoding of the discrete parameters, which could then be used to

compute the kernel between any two parameter sets. In the above example, we might

encode contact 1 = 1, contact 2 = 2, etc. We would then be able to run these discrete

parameters through the kernel function, and we would see that k(1, 2) > k(1, 3).

We would then be left with the problem of learning a suitable length constant in the

electrode contact dimension which encapsulates the spatial relation between contacts.

In the case of categorical parameters with no underlying structure, a multi-armed

bandit solution should be implemented instead (Sutton and Barto 2012).
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3.5 Conclusion

In this paper, we present a Bayesian adaptive dual controller for the suppression

of pathological oscillations. The Bayesian ADC was shown to perform well in a

computational model of Parkinson’s disease for selecting the optimal parameters to

reduce the oscillation power. The Bayesian ADC was composed of two parts, an inner

feedback stimulator, and an outer BayesOpt parameter tuning loop. As compared

to other algorithms, BayesOpt was able to efficiently tune stimulation parameters,

explicitly balancing exploration and exploitation to find the optimal settings in as

few function evaluations as possible. Finally, the Bayesian ADC is generalizable,

both across diseases and stimulator designs.
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Chapter 4

Bayesian Adaptive Dual Control of

Deep Brain Stimulation for

Parkinsonian Motor Signs

In the following chapter, we test the Bayesian adaptive dual controller (ADC) in a

non-human primate model of Parkinson’s disease (PD). First, we test the ability of the

Bayesian ADC to tune parameters in a biological system, and second, we evaluate the

efficacy of the optimized parameters for controlling Parkinsonian motor signs. The

following chapter is currently being prepared for submission.

4.1 Introduction

Deep brain stimulation (DBS) has emerged as an effective and reversible treatment of

motor symptoms of Parkinson’s disease (PD) (Kleiner-Fisman et al. 2006; Okun and

Foote 2010; Schuepbach et al. 2013), as well as other neurological motor disorders

such as tremor and dystonia (Blomstedt et al. 2007; Kupsch et al. 2006; Vidailhet
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et al. 2005). Additionally, the indications for DBS are continuing to expand into

psychiatric disorders such as depression, post-traumatic stress disorder, addiction,

and more (Bergfeld et al. 2016; Bewernick et al. 2012; Bina and Langevin 2018;

Dougherty et al. 2015; Mayberg, Riva-Posse, and Crowell 2016; Schlaepfer et al.

2008; Sharma, Naik, and Deogaonkar 2016) However, the clinical success of DBS for

PD, as well as other indications, is dependent on identifying stimulation parameters

which simultaneously relieve symptoms while avoiding stimulation-induced side effects

(Castrioto et al. 2014; C. C. Chen et al. 2006; Tripoliti et al. 2011).

Currently, programming DBS pulse generators is conducted by a trained clinician

through a laborious trial-and-error process through which several free parameters,

such as electrode configuration and stimulation frequency, amplitude, and pulsewidth,

must be selected (Kumar 2002; Volkmann et al. 2002). However, because the pro-

gramming process is time-intensive and exhausting for the patient, only a small subset

of these parameters can be explored. Clinicians often focus on tuning monopolar elec-

trode configurations and stimulation amplitude. Even with this limited parameter set,

the optimization of DBS parameters usually takes four to five programming sessions

over three to six months (Bronstein et al. 2011).

Additionally, advances in DBS technologies will exacerbate these programming

challenges. Emerging adaptive DBS (aDBS) algorithms will add additional free pa-

rameters, thus increasing the complexity of the programming process. The goal of

aDBS is to intelligently deliver stimulation in response to a changing feedback signal,

neural, kinematic, or other, thereby improving therapy. For example, amplitude-

responsive aDBS for PD delivers stimulation only when beta power is above a pre-

defined threshold (Little, Beudel, et al. 2015; Little, Alex Pogosyan, et al. 2013).

Phase-responsive closed-loop DBS (CL-DBS) for tremor delivers stimulation during

specific phases of an oscillation (Cagnan, Brittain, et al. 2013; Cagnan, Pedrosa,

et al. 2016; Malekmohammadi et al. 2016). Additionally, on-demand systems such
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as the NeuroPace system for epilepsy can deliver stimulation upon detection of a

seizure onset (B. Lee et al. 2015). Furthermore, advances in DBS lead designs, such

as eight or even thirty-two contact directional leads, will exponentially increase the

number of electrode configurations which must be considered (Contarino et al. 2014;

Mahlknecht, Limousin, and Foltynie 2015; Martens et al. 2011; Pollo et al. 2014).

In order to continue delivering high-quality therapy, new programming strategies

must be developed. New implantable pulse generators (IPGs) are capable of both

stimulating and recording neural responses (Stanslaski et al. 2018), providing a plat-

form for CL-DBS algorithms which can learn optimal stimulation parameters on an

individualized basis. Central to the development of CL-DBS algorithms is identifying

a biomarker which can be used as feedback for the controller. For PD, synchronous

activity in the beta range, generally between 10–30 Hz, has been shown to negatively

correlate with motor symptoms of PD (P. Brown 2007; A. T. Connolly et al. 2015;

J. A. Goldberg et al. 2004; A. A. Kühn, Kempf, et al. 2008; A. A. Kühn, Kupsch, et

al. 2006; A. A. Kühn, Trottenberg, et al. 2005; A. A. Kühn, Tsui, et al. 2009; Leblois

et al. 2007; Ray et al. 2008; Solages et al. 2011; Zaidel et al. 2010). Other possible

candidate biomarkers include phase-amplitude coupling (PAC) (A. T. Connolly et al.

2015; Hemptinne, E. S. Ryapolova-Webb, et al. 2013; Hemptinne, Nicole C Swann,

et al. 2015) and evoked compound action potentials (ECAPs) (Gmel, Hamilton, et al.

2015). The exact causal relationship between the biomarker and disease need not be

established; so long as the biomarker correlates well with outcomes, it can be used as

feedback for a CL-DBS algorithm.

Previously, we developed a Bayesian adaptive dual controller (ADC) for tuning

aDBS in a computational model of PD using beta power as the feedback signal (Grado,

Matthew D. Johnson, and Theoden I. Netoff 2018). The Bayesian ADC is a general

purpose framework for quickly learning stimulation parameters which optimally con-

trol a selected biomarker, and is not limited to tuning aDBS, nor using beta power.
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In this study, we tested the Bayesian ADC’s ability to tune conventional DBS to

reduce beta power in a non-human primate model of PD. We then evaluated the

performance of the optimized stimulation settings selected by the Bayesian ADC to

improve parkinsonian motor signs, as compared to sham and control stimulation.

4.2 Materials and Methods

4.2.1 Animal Preparation

Two rhesus monkeys (macaca mulatta, female) were used in this study (Subject A:

18 years old, 8.0 kg; Subject B: 25 years old, 7.6 kg). All procedures were approved

by the Institutional Animal Care and Use Committee of the University of Minnesota,

and also complied with the United States Public Health Service policy on the humane

care and use of laboratory animals. All efforts were made to provide good care and

alleviate any discomfort of the animals during the study. The animals were provided

a range of food options including fresh fruit and vegetables, water ad libitum, and

environmental enrichment. Both animals remain part of larger ongoing studies on

the physiological mechanisms of subthalamic nucleus (STN) DBS.

Surgical Procedures

Both animals underwent pre-operative 7-Tesla magnetic resonance imaging (MRI) at

the Center for Magnetic Resonance Research at the University of Minnesota using the

methodology described previously (Y. Z. Xiao et al. 2016; Y. Xiao et al. 2018). The

pre-operative MRIs were used to guide the orientation and position of cranial cham-

bers using the preclinical neurosurgical navigation software, Cicerone (D. Johnson

2016; S. Miocinovic et al. 2007)). In an aseptic procedure under isoflurane anes-

thesia, animals were instrumented with cranial chambers oriented to allow targeting
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of the STN while also avoiding trajectories through large cortical sulci or ventricles

(Allison T. Connolly et al. 2016). The chambers were affixed to the cranial surface

using bone screws and dental acrylic. A post-op CT scan was used to verify cor-

rect chamber placement, and incorporated into Cicerone to assist in targeting for the

microelectrode mapping and DBS lead implantation.

Microelectrode Mapping

Microelectrode mapping was performed to localize the sensorimotor region and bor-

ders of the STN (Agnesi, Muralidharan, et al. 2015; Hashimoto et al. 2003), using a

procedure similar to human functional neurosurgery (Hutchison et al. 1998). A Nar-

ishige microdrive was attached to the chamber and used to advance a microelectrode

(250 µm diameter, 0.8–1.2 MΩ, FHC) through a dura-penetrating cannula and into

the brain. Several microelectrode tracks were then performed to locate and map the

STN. The borders of the target were determined from the firing rate and pattern of

isolated neurons in and around the target. The sensorimotor motor territory of the

target was identified by isolating neurons whose firing rate was modulated by passive

joint articulation or volitional movement. The proximity of the recording tracks rela-

tive to the internal capsule was determined via microstimulation (50–200 µA, 300 Hz,

0.5 s).

DBS Lead Implantation

Upon confirming the location and boundaries of the STN via microelectrode mapping,

a DBS lead was then implanted using the same Narishige microdrive and setup as

described above. Subject A was implanted with a 6-contact radially segmented DBS

lead (Abbott) arranged in two rows and three columns around a 510 µm diameter

shaft, with electrode diameters of 760 µm× 450 µm (height and width). The electrode

spacing gap along the axis of the lead was 510 µm with a 80 µm spacing gap between
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electrodes on the same row. Additionally, the two rows of electrodes were offset by 60

degrees from one another. Subject B was implanted with an 8-contact non-segmented

lead (NuMed Inc), arranged in a vertical stack of eight cylindrical electrodes around

a 630 µm diameter shaft. The electrode height was 500 µm, with a 500 µm spacing

gap between adjacent electrode contacts along the axis of the lead. Approximately

one week later, post-implant CT scans were performed to localize the lead trajectory

by registering the CT scans with the pre-operative MRI scans. Figure 4.1 shows the

dimensions and placement of each lead.

MPTP Injections

Both subjects were rendered parkinsonian via systemic 1-methyl-4-phenyl-1,2,3,6-

-tetrahydropyridine (MPTP) injections. Subject A received six intramuscular injec-

tions (0.3 mg/kg); Subject B received eight intramuscular injections (0.3–0.4 mg/kg).

MPTP is a neurotoxin which causes the degeneration of dopamine neurons in the

substantia nigra pars compacta (SNc) (William Langston et al. 1984), along with

neurons of the pedunculopontine nucleus (PPN) (Karachi et al. 2010) and centrome-

dian nucleus (CM) (Villalba, Wichmann, and Smith 2014), which is consistent with

known structures to degenerate in human PD.

Behavioral Assessments

Subjects were acclimated to sitting in a primate chair and having their extremi-

ties passively manipulated. Motor behavior was evaluated by two trained evaluators

using modified Unified Parkinson’s Disease Rating Scale (mUPDRS) (Vitek et al.

2012) scores, which rate parkinsonian motor signs including rigidity, bradykinesia,

and akinesia, among others. Motor signs were rated on a scale of 0–4 , and evaluated

contralateral to the implanted DBS lead. The evaluators were unblinded during base-

line scores, and blinded during test conditions. Additionally, the evaluators were not
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in the room while the other was performing an evaluation to avoid influencing each

others scores. Subject A was in a mildly parkinsonian state during the experiments

(average baseline mUPDRS 1.0), while Subject B was in a low moderate parkinsonian

(average baseline mUPDRS 1.6). Mild: 0–1.5 , moderate: 1.6–2.9 , severe: >3.
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Figure 4.1: DBS lead implant locations in Subjects A and B. (a) and (c) diagrams of

the DBS leads for Subjects A and B. Stimulation contacts are shown in red, and bipolar

recording pairs in green (unused contacts are blue). Cross sections of the leads are also

shown. (b) and (d) lead locations for Subjects A and B registered to pre-operative MRIs.

Subject A was implanted in the left hemisphere. Subject B was implanted in the right

hemisphere. (e) and (g) example LFP recordings from the selected biopolar pairs for each

subject. (f) and (h) power spectral densities computed from the example LFP recordings

for each subject. The dotted lines indicate the bounds of the selected beta band activity.
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4.2.2 Optimization of Stimulation Parameters

The first step was to learn the stimulation parameters which optimally suppressed

beta power in each subject. We selected stimulation and recording contacts for each

animal as described below, and determined suitable parameter ranges to optimize.

We then used an implementation of the Bayesian ADC (Grado, Matthew D. Johnson,

and Theoden I. Netoff 2018) to efficiently learn optimal parameters.

Selection of Stimulation and Recording Electrodes

For each animal, the stimulation electrode was selected by monopolar review. First,

the threshold at which activation of the motor capsule was achieved was determined.

Electrical stimulation was delivered (130 Hz, 80 µs pulsewidth, cathodic-first biphasic

waveform, 5 s duration) at increasing amplitudes until a sustained contraction of the

extremities occurred. The capsule threshold for each contact was used to set an upper

limit on stimulation delivered through each electrode. After determining the capsule

threshold for each contact, stimulation was delivered through each contact in turn to

determine the most therapeutic contact. Stimulation was delivered at 75 % of capsule

threshold for 5 min prior to behavioral evaluation. Trained and blinded evaluators

then measured mUPDRS scores. The contact which provided the maximum reduc-

tion in parkinsonian motor signs, as measured by reduction in mUPDRS score from

baseline, was deemed the most therapeutic, and used for the remainder of the study

(Subject A: contact 4; Subject B: contact 2).

For recording local field potentials (LFPs), a pair of electrodes flanking the stim-

ulation electrode was selected. For Subject A, with a directional segmented lead, the

bipolar pair with the highest beta band activity during resting state (relative to back-

ground) was selected (contacts 1 and 2). For Subject B, with a columnar lead, the

bipolar pair was selected as the contacts above and below the stimulating electrode
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(contacts 1 and 3). These electrode pairs were then used for recording LFPs for the

remainder of this study. Figure 4.1 shows example LFP recordings taken from these

electrode pairs, as well as power spectral density (PSD) plots for each animal.

Stimulation Parameters

There are three main stimulus pulse train parameters of DBS which can be optimized:

pulse train frequency, stimulus amplitude, and pulsewidth. For simplicity, the pulse

width was fixed at 80 µs.

We then chose suitable bounds for the other two parameters. For frequency, we

chose bounds of 25–200 Hz. The lower bound of 25 Hz ensured that we never delivered

stimulation at or near the beta frequency, which would confound our estimation of

beta power. The upper bound of 200 Hz placed an upper limit on the stimulation

energy delivered to ensure we did not activate capsule when stimulating at maximum

amplitudes. For amplitude, we chose bounds of ± 80 % of the measured capsule

threshold for each animal (Subject A: 140 µA; Subject B: 340 µA). By allowing the

algorithm to select both positive and negative amplitudes, we were able to evaluate

both anodic-leading and cathodic-leading biphasic pulse waveforms.

Estimating Beta Power

For each animal, the beta frequency range was identified by inspecting PSDs of resting

state LFP recordings without stimulation. The most prominent peak in the beta range

was identified (Figure 4.1) (Subject A: 7–16 Hz, Subject B: 12–21 Hz). These ranges

were then used for the duration of the study. To estimate the beta power in any

neural recording segment, the PSD was computed (via Welch’s method using SciPy

(Virtanen et al. 2019), a scientific computation package for Python3), and the average

of the bins within the frequency range of interest was computed.
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Stimulation Artifact Removal

In order to accurately estimate beta power during stimulation, we used a least mean

squares (LMS) adaptive finite impulse response (FIR) filter. LMS FIR filters learn

to approximate the desired response over time (Widrow et al. 1976), and have been

shown to be effective at removing stimulation artifacts from neural recordings (Gnadt

et al. 2003; Mendrela et al. 2016). The filter length was set to 128 taps (5.2 ms) in

order to encompass the length of the stimulation artifact. An adaptive learning rate

was used, starting at 1× 10−1 and rapidly decaying down to 1× 10−3. Each time

new stimulation parameters were applied, the learned filter coefficients were reset to

0’s and the learning rate was reset to 1× 10−1 Figure 4.2 shows the LMS FIR filter

removing stimulus artifact data recorded from Subject A.
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Figure 4.2: Least mean squares FIR filter removing stimulus artifacts from a local field

potential recording. Top plot shows the raw signal corrupted with large stimulation artifacts.

Bottom: Stimulation artifacts removed with the LMS FIR filter.

Bayesian Adaptive Dual Control

We used the Bayesian ADC previously described (Grado, Matthew D. Johnson, and

Theoden I. Netoff 2018) to learn the stimulation parameters which optimally sup-
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pressed beta power. The Bayesian ADC is an optimization and control strategy

designed to test and learn stimulation parameters to control a given biomarker with

as few iterations as possible. The term “dual” arises due to the Bayesian ADC’s

two conflicting goals. It seeks to control the selected biomarker by using the best

know stimulation parameters (exploitation) while simultaneously exploring the pa-

rameter space to identify new parameters which may perform better in the future

(exploration). The Bayesian ADC was composed of two loops: an inner parame-

terized stimulator, and an outer parameter optimization loop. Here, the inner loop

was composed of a constant frequency stimulator with two parameters (frequency

and amplitude), and the animal. The outer loop measured a feedback signal (beta

power) from the animal, and adjusted the stimulator parameters to minimize the sig-

nal using Bayesian optimization. A control diagram of the Bayesian ADC is shown

in Figure 4.5a.

The outer loop used Bayesian optimization to achieve this balance between ex-

ploitation and exploration. Bayesian optimization is amongst the most efficient opti-

mization techniques in terms of number of iterations, and provides an explicit frame-

work for balancing exploration and exploitation in order to efficiently find the global

optimum (Donald R. Jones 2001; Donald R Jones, Schonlau, and Welch 1998; Kush-

ner 1964; Locatelli 1997; Mockus 1994; Mockus, Tiesis, and Zilinskas 1978; Sasena

2002; Streltsov and Vakili 1999). Each iteration of Bayesian optimization consisted

of three steps: First, a model of the objective function was constructed from obser-

vations. Next, an acquisition function was computed from the model. Finally, the

acquisition function was minimized to determine where to sample next. Here, we used

a Gaussian process (GP) to model the objective function, which predicted the mean

and variance at each point across the parameter space. We then used the Gaussian

process confidence bounds (GP-CB) acquisition function to guide selection of the next

point to test. The GP-CB was computed as the mean minus the variance multiplied
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by a constant, thus guiding selection of points to test to parameters where the mean

was low, the variance was high, or both. Figure 4.3 illustrates three iterations of

Bayesian optimization operating on a noise-free toy problem.

observation

acquisition function u(x)

objective function f(x)
n = 3

f(x
)

acquisition min

posterior mean (x)
n = 4

x

new observation
posterior uncertainty (x)

n = 5

Figure 4.3: Three iterations of Bayesian optimization operating on an example 1D func-

tion. The goal is to find the minimum of the objective function, f(x), (dotted line) while

limiting the numbers of samples. After 3 initial samples, a Gaussian process (GP) (solid

black line and blue shaded region) is fit to several observations and the acquisition function

(green) is calculated from the GP. Bayesian optimization then iteratively follows these three

steps: (1) construct a model of the objective function from the observations, (2) compute

the acquisition function, and (3) select the the minimum of the acquisition function to

determine where next to sample.

The overall iterative process of the Bayesian ADC can be seen in Figure 4.5b. For

each iteration of the Bayesian ADC, stimulation was applied for 60 s; the first 30 s

was used to allow stimulation effects to wash in. The beta power was then estimated

from the last 30 s of the iteration. The GP model was then updated with the new
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observation, and the acquisition function was computed and minimized to determine

the new stimulation parameters. The new stimulation parameters were then applied

and the process was repeated.

For a full discussion of the Bayesian ADC, Bayesian optimization, and Gaussian

processes, see Grado et al., 2018 (Grado, Matthew D. Johnson, and Theoden I. Netoff

2018), Brochu et al., 2010 (Brochu, Cora, and Freitas 2010), and Rasmussen and

Williams 2004 (Rasmussen and Williams 2006).

Signal-to-noise ratio (SNR) and Confidence Intervals of the Minimum

One significant property of GP’s is the ability to model and fit noisy data. We

assumed that our observations were corrupted with normally distributed noise such

that yi = f(xi) + ε, where ε ∼ N (0, σ2). When we fit a GP to noisy data, we then

also fit an additional parameter σ, our estimate of the additive noise.

The value of σ for a GP can reveal a lot of information about the model’s con-

fidence and the noise level of the system. We computed the SNR as the ratio of

the peak-to-peak (PP) of the model mean, divided by σ, often expressed in dB:

SNRdB = 10 log10(PP/σ). We also computed confidence intervals around the min-

imum to define the region in which we expected to find the minimum for a given

confidence level. The 68 % confidence interval was defined as the region of the GP in

which the mean was less than or equal to the minimum plus σ.

For a given GP, as σ increased, the SNR decreased, and the corresponding 68 %

confidence interval of the minimum grew larger. As the confidence range increased,

the range of parameters that were within the 68 % confidence interval of the best

estimate of the optimal solution also increased. Figure 4.4 shows example GPs fit

to the same objective function, but with increasing additive noise, σ. As the SNR

passed 0, σ became greater than the peak-to-peak range of the model mean, and the

68 % confidence interval expanded to cover the entire range.
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Figure 4.4: The signal-to-noise ratio (SNR) of a Gaussian process (GP) can be estimated

as the ratio of the signal range to the additive noise, σ. Additionally, the 68 % confidence

interval of the minimum is the region in which the mean of the process is less than or

equal to the minimum plus σ. As σ increases and SNR decreases from 4 dB (top) to 0 dB

(bottom), we see the confidence interval of the minimum expand from a relatively narrow

region to cover the entire space.

Hardware Setup

The experiments were conducted using a Tucker Davis Technologies (TDT) system

composed of an RZ2 processor, PZ5 preamplifier, and IZ2-MH neural stimulator.

TDT’s Synapse software suite was used to perform basic signal processing on the

RZ2. The Synapse software was in turn controlled via custom Python programs

running on a connected computer.
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Neural data was recorded at 25 kHz using the PZ5, which was streamed to the RZ2

processor. The RZ2 processor performed bipolar signal referencing and stimulation

artifact subtraction before streaming single-channel data to Python. The RZ2 also

controlled the electrical stimulation, which was delivered back to the subject through

the IZ2-MH stimulator.

The custom Python programs had two main functions: to run the outer loop of the

Bayesian ADC, and update the TDT’s FIR filter coefficients. The Python programs

received a stream of the single-channel bipolar neural data (post filter), as well as

residual stimulation artifacts. The Python programs collected stimulation artifact

residuals and computed new FIR filter coefficients, which then updated the FIR filter

coefficients on the TDT system.

Additionally, the Bayesian optimization loop of the Bayesian ADC was imple-

mented in Python. The Python program controlled the stimulation frequency and

amplitude by setting these parameters in the TDT system. The program collected

the streamed neural signal over the duration of each iteration. At the end of an iter-

ation, the program estimated the beta power, updated the Gaussian process model,

and selected the new stimulation parameter set. Figure 4.5c shows a diagram of the

experimental setup.

Experimental Procedure

The optimization procedure was repeated four times in each animal over the course of

four days. Each day, the optimization was allowed to run for up to 100 iterations. The

experiment was terminated early if the algorithm converged (as defined by sampling

the same region 10 or more times in a row).

After completion, all four optimization runs were combined to determine a single

optimal setting to use for behavioral testing. The computed Gaussian process models

from each day were averaged together point-wise, weighted by the precision at each
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Figure 4.5: (a) Bayesian adaptive dual control (ADC) diagram. (b) Iterative process by

which the Bayesian ADC learns optimal stimulation parameters. (c) Experimental setup.

point, to compute a combined surface. The combined additive noise for the combined

surface was computed as σ =
√

1
N

∑N
i=1 σ

2
i , where σi is the additive noise term on

day i. The minimum of the combined surface was deemed the “optimal” setting for

that animal, and then used for the stimulation evaluation experiments.

4.2.3 Evaluation of Stimulation Parameters

After identifying optimal stimulation parameters for each animal, we evaluated the

therapeutic efficacy of the optimized parameters, as compared to control and sham

settings, in reducing mUPDRS scores. To account for variation across days, unblinded

baseline scores were taken at the beginning of each day.
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Stimulation Conditions

Three stimulation conditions were tested in each animal: optimized, control, and

sham. Sham stimulation was conducted identically to control and optimized, but

with no stimulation being delivered. Control stimulation was defined as 130 Hz at

75 % capsule threshold (Matthew D Johnson, J. Zhang, et al. 2012).

Hardware Setup

For the evaluation phase, the TDT hardware was set up in an identical manner to

the optimization phase, except without the computer controlling the Synapse system.

The stimulation parameters were set in the Synapse software by the experimenter for

each condition.

Experimental Procedure

All three experimental conditions (sham, control and optimized) were tested four

times over four days. Each day, two independent evaluators performed (1) an un-

blinded pre-stimulation baseline mUPDRS assessment with no stimulation, (2-4)

blinded behavioral assessments of the three experimental conditions, and finally (5)

an unblinded post-stimulation baseline behavioral assessment. Stimulation was again

delivered in a monopolar configuration using the TDT system. Neural data was

recorded for the duration of the wash-in, evaluation, and wash-out periods. For each

condition to be evaluated, stimulation (or sham) was delivered for a wash-in period

of 10 min prior to evaluation. Ratings then took approximately 4–5 min to complete.

After completing evaluations, the stimulation was turned off for a wash-out period

equal to the wash-in period plus evaluation time (14–15 min).

The order of the experimental stimulation conditions was chosen in a pseudo-

random manner. Of the six possible permutations for the three conditions ((S)ham,
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(C)ontrol, (O)ptimized), four were chosen: [S,C,O], [S,O,C], [C,S,O], [O,S,C] to ensure

balance between the presentation order of the two stimulation conditions. The order

of these four permutations was randomized for each animal across the four days. At

the end of the evaluation, each condition was evaluated four times by two independent

evaluators, for a total of eight scores per condition.

Computing Beta Bursts

In addition to computing the beta power, we also examined the relationship between

beta bursts, stimulation conditions, and outcome measures. We used the method de-

scribed by Tinkhauser and colleagues (Tinkhauser, Alek Pogosyan, Little, et al. 2017;

Tinkhauser, Alek Pogosyan, Tan, et al. 2017) to compute the number and duration of

beta burst episodes from LFP recordings as follows. First, recordings were downsam-

pled to 200 Hz, and filtered in the subject’s beta band (4th order Butterworth). The

filtered signals were then rectified, and smoothed with a Hanning window of length

equal to 2 oscillation periods. The threshold for a burst was set according to the 75th

percentile of the resultant signal. Burst onsets were identified as upward crossing of

the smoothed rectified signal of this threshold. All bursts greater than 100 ms were

considered. We then computed the percent of bursts longer than 500 ms.

Statistical Analysis

Analyses were conducted identically for each subject. All statistical analyses were

performed using Python and SciPy (Virtanen et al. 2019). To control for day-to-day

variability, the percent change of each metric, as compared to the baseline measure-

ment, was used (as opposed to the absolute value of the metric). When comparing

across conditions, data for each condition was aggregated across days and across

evaluators (for mUPDRS scores). Welch’s t-tests and Pearson’s tests were used for
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statistical comparison of two-group means and proportions, respectively. The crite-

rion for statistical significance was set at p < 0.05.

4.3 Results

4.3.1 Bayesian ADC Optimization of Stimulation Parame-

ters

Individual Runs

For each subject, the Bayesian ADC was run until convergence or until it reached 100

iterations. This was repeated over 4 days. Figure 4.6 shows the mean of the Gaussian

process fit to the observations for each day and subject. The mean of each day was

subtracted from the data to improve visual comparison. Additionally, the additive

noise component of the Gaussian process fit (σ) and the SNR level for each day is

annotated. Finally, the 68 % confidence interval of the minimum is identified by the

hatched region.

For Subject A, the Bayesian ADC converged reliably in the same quadrant of the

search space across days: high frequency (>100 Hz) anodic-first stimulation. This

indicates the presence of a local minimum that is within the boundary of the search

space. Subject A shows relatively low SNRs (−1.5–2.2 dB), and correspondingly large

confidence intervals of the minimum. For Subject B, the Bayesian ADC converged re-

liably at 200 Hz and −340 µA, at the boundary of the search space. This indicates that

the minimum, if it exists, is likely located outside of the search space. As compared

to Subject A, Subject B had much higher SNR (1.4–7.8 dB), and correspondingly

smaller confidence intervals of the minimum.

Table 4.1 contains a summary of individual optimization runs for each subject,

including number of iterations, SNR and the minimum from each day.
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Table 4.1: Summary of optimization runs from both subjects, with the number of it-

erations, signal-to-noise ratios, and the stimulation parameters which minimized the beta

power on that day.

subject day iterations SNR frequency amplitude
dB (Hz) (mA)

a

1 100 1.51 118 98.6
2 66 2.16 105 140
3 40 1.65 200 140
4 58 −1.51 115 84.6

b

1 91 2.82 200 −340
2 95 1.40 200 −340
3 61 7.84 200 −340
4 61 4.23 200 −340

Combined Surfaces

After running the optimization for each animal, the four runs were combined to

determine a single optimal setting (Figure 4.6). Each day’s fit surface was averaged

together point-wise, weighted by the precision (reciprocal of the standard deviation).

The combined surfaces were used to determine optimal stimulation parameters for

each subject which took into account all observations across all days. The location

of the minimum is annotated on each combined surface (white dot), as well as the

control settings (black dot). The 68 % confidence interval of the minimum is also

plotted as the cross-hatched region. The combined surfaces predicted that the optimal

stimulation parameters for Subjects A and B to be (116 Hz, 106 µA), and (200 Hz,

−340 µA).

The combined surfaces differed between Subjects A and B. First, for Subject A,

the signal range (the difference between the predicted best and worst settings) was

only 0.5 dB, while for Subject B, the range was 2.0 dB. Additionally, Subject B’s
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SNR (3.5 dB) was far higher than Subject A’s (−0.4 dB). Accordingly, Subject A’s

confidence interval of the minimum spanned the entire search space, while Subject B’s

confidence interval was much smaller.

4.3.2 Behavioral Evaluation

Effect of Stimulation by Condition

There was no significant effect of stimulation on Subject A’s mUPDRS scores, as com-

pared to sham, for either the control or optimized stimulation settings (Figure 4.7a).

For Subject B, both the control and optimized parameters significantly improved

mUPDRS scores (56 % baseline, p < 0.001 and 63 % baseline, p = 0.009), as com-

pared to sham (79 % baseline) (Figure 4.7b). The control and optimized parameters

were not significantly different for either subject.

We saw the same pattern play out for the effect of stimulation condition on change

in LFP beta power. Again, we found no significant effect of stimulation on Subject

A’s beta power as compared to sham, either for the control or optimized parameters

(Figure 4.7c). For Subject B, both the control and optimized parameters significantly

reduced beta power (58 % baseline, p = 0.022 and 59 % baseline, and p < 0.001) as

compared to sham (94 % baseline) (Figure 4.7d). Again, there was no significant

difference between the beta power of the control and optimized parameters for either

subject. Additionally, there was no significant effect of stimulation condition on the

change of the percent of beta bursts greater than 500 ms for either Subject A or B

(Figure 4.7e, f).

Correlations Between Biomarkers and mUPDRS Scores

We also examined the correlations between selected biomarkers and mUPDRS scores,

irrespective of stimulation condition. For Subject A, we saw no significant correlation
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Figure 4.6: Optimization results for each subject (left: A; right: B). (top) The mean

of each Gaussian process (GP) fit to the observations made each day, and (bottom) the

combined mean surface for each subject. The minimum of each process is show as a white

dot. The 68 % confidence interval of the minimum is annotated as the hatched region. The

additive noise (σ) and the signal-to-noise ratio are annotated above each day. The control

settings (black dot) are annotated on the combined surfaces.

between change in beta power and change in mUPDRS scores (Figure 4.8a). However,

for Subject B, we found a moderate, but significant, correlation (Pearson’s r = 0.61,
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Figure 4.7: Effects of stimulation condition on change in mUPDRS scores (top), beta

power (middle), and beta bursts (bottom) for Subject A (left) and Subject B (right). All

metrics were compared to baseline measurements made prior to testing. We see no signif-

icant effect of stimulation condition on any of these metrics for Subject A. For Subject B,

we observed a significant effect of stimulation on mUPDRS scores and beta power as com-

pared to sham stimulation, but no difference between the control and optimized parameters.

There was no effect of stimulation condition on beta bursts.
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p = 0.002) between change in beta power and change in mUPDRS scores, with lower

beta power correlating with improved mUPDRS scores (Figure 4.8b). Again, we saw

no significant correlation between the change in the percent of long beta bursts and

mUPDRS scores in either Subject A or B (Figure 4.8c, d).
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Figure 4.8: Correlations between change in beta power (top) and change in beta bursts

(bottom) with change in mUPDRS sores for Subject A (left) and Subject B (right). We

observed no correlation between beta power and mUPDRS scores for Subject A, but saw a

significant correlation for Subject B. We observed no correlations between beta bursts and

mUPDRS scores for either subject.
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4.4 Discussion

In this paper, we tested the Bayesian adaptive dual control algorithm for optimiz-

ing DBS parameters to suppress beta oscillations in a non-human primate model of

parkinsonism. We then evaluated the therapeutic efficacy of the optimized stimula-

tion parameters in reducing parkinsonian motor signs. The goals of this study were

threefold (1) to test the performance of the Bayesian ADC, (2) to determine if we

could control the selected biomarker, and (3) evaluate the effect of controlling the

selected biomarker on Parkinsonian motor signs.

4.4.1 Performance of the Bayesian Adaptive Dual Controller

First, we tested the performance and efficacy of the Bayesian ADC in an animal

model. Our primary goal here was not to find stimulation parameters which optimally

reduced parkinsonian symptoms, but rather to validate the Bayesian ADC framework

itself as an effective method of optimizing stimulation parameters, regardless of the

chosen biomarker or disease state. We previously tested the Bayesian ADC in a

computational model (Grado, Matthew D. Johnson, and Theoden I. Netoff 2018), but

there were several factors which could have prevented the algorithm from working in

a biological system, specifically (1) changes in the underlying response surface during

optimization, (2) temporal correlations between measurements.

The Bayesian ADC assumes a static underlying response surface—that is, it as-

sumes that the biomarker responds the same way to the same stimulation parameters

(with additive noise), regardless of when those parameters are applied. However,

we know this not to be true; short and long timescale changes can have significant

effects on measured biomarkers. For example, beta power is known to be modulated

by movement and attention (Courtemanche, Fujii, and Graybiel 2003; L. A. Johnson

et al. 2016; Leventhal et al. 2012; Little and Peter Brown 2014) on short timescales.
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Additionally, neural plasticity can also affect measured biomarkers and outcomes on

longer timescales; DBS is known to induce significant localized structural changes

over the course of months (Van Hartevelt et al. 2014), and the DBS programming

process typically requires months of repeat visits to tune stimulation parameters as

the patient’s response to stimulation parameters stabilizes (Bronstein et al. 2011; Ku-

mar 2002). In order for the Bayesian ADC to be a viable method for tuning DBS,

these changes must be relatively small over the duration of optimization.

The Bayesian ADC also assumes no temporal correlations between stimulation

parameters, i.e. the effect of the current parameter set should be independent of

the previous parameters. However, we know there are significant washout effects of

DBS on motor signs such as bradykinesia, rigidity, tremor, all of which return at

different rates after cessation of DBS, and on timescales of seconds to minutes (Scott

Evan Cooper et al. 2011; Scott E Cooper et al. 2013). Additionally, suppression of

beta power has been observed to persist for 20–50 s after stimulation ceases (Bronte-

Stewart et al. 2009; A. A. Kühn, Kempf, et al. 2008), while others have observed no

such persistence (Foffani et al. 2006). The presence of significant temporal correlations

would introduce the credit assignment problem—a problem well know in the arena

of Reinforcement Learning (Sutton and Barto 2012), whereby credit for success or

failure must be distributed over many preceding actions. Without credit assignment,

it would be very difficult for the Bayesian ADC to operate in a temporally correlated

environment.

In this study, we ran the optimization experiments over the course of hours, al-

lowing us to neglect longer timescale changes. Additionally, during the optimization,

the subjects were kept in the resting state to help control for state changes. If there

were significant changes to the underlying surface over the course of the experiment,

we would have expected to see the Bayesian ADC converge to different locations in

the search space. However, for both subjects, we saw convergence in the same re-
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gion of the search space (within the same subject) across days, indicating that each

subject’s response surface did not change appreciably over the experiment. Addi-

tionally, if there was significant temporal correlation, we would expect to see a path

dependence of the optimal parameters, causing the algorithm to get stuck outside

of the minimum. However, despite different sampling trajectories on each day, the

Bayesian ADC converged in the same region of the search space across days. These

results indicate that the Bayesian ADC should be clinically translatable

for tuning DBS parameters in future studies.

4.4.2 Confidence and Noise in the Bayesian ADC

We saw that the Bayesian ADC successfully optimized parameters to reduce beta

power in an animal model of Parkinson’s disease. Additionally, in both animals, we

saw consistent convergence across days. However, the parameters selected, noise level

of beta power, and corresponding confidence of the Bayesian ADC all differed between

the subjects.

For Subject B, the Bayesian ADC’s selected parameters were similar to con-

trol: (200 Hz, −340 µA) vs (130 Hz, −318 µA) both cathodic first. Additionally, the

Bayesian ADC was relatively confident in the location of the minimum, as reflected

by the 68 % confidence interval. However, the control parameters actually lay within

the bounds of the 68 % confidence interval of the minimum. This indicates that the

Bayesian ADC predicts little to no difference between the clinically standard control

and the optimized parameters on beta power.

For Subject A, the parameters selected by the Bayesian ADC differed in stimulus

polarity from control parameters: (116 Hz, 106 µA) vs (130 Hz, −131 µA), which effec-

tively was a difference between anodic vs cathodic pulse leading stimulation. Here the

Bayesian ADC had low confidence in the location of the minimum. Indeed, despite

the fact that the control and optimal parameters were on opposite sides of the search
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space, the control parameters again lay within the bounds of the 68 % confidence in-

terval of the minimum. Additionally, sham stimulation (0 amplitude) also lay within

the confidence interval. This indicates that the Bayesian ADC predicted little to no

effect of stimulation on beta power, regardless of stimulation parameters (or indeed,

stimulation off). This was not attributable to a lack of signal in the beta band as

shown in Figure 4.1, although the relative SNR levels were substantially weaker in

Subject A than Subject B. Additionally, it is important to note that the parkinsonian

motor signs in Subject B were more severe than in Subject A.

4.4.3 Optimized Parameters Performed on Par with Control

Parameters

We saw that stimulation parameters optimized by the Bayesian ADC to reduce beta

power performed as well as control settings in both subjects, both for reducing beta

power and reducing parkinsonian motor signs. For Subject A, we saw no effect of

stimulation (either optimized or control) on mUPDRS scores or beta power, while for

Subject B, we saw that both optimized and control significantly reduced mUPDRS

scores and beta power. There was no significant difference between the optimized

and control stimulation conditions in either subject.

These results are consistent with the predictions of the Bayesian ADC. First,

in both subjects, the control parameters were contained within the 68 % confidence

interval of the minimum, predicting that there should be no appreciable difference

between control and optimized on beta power. Additionally, if beta power is indeed

a good biomarker for parkinsonian motor signs, this would additionally predict no

appreciable difference between control and optimized on parkinsonian motor signs.

Second, the Bayesian ADC predicted no appreciable effect of stimulation for Subject

A, while predicting a significant effect for Subject B between sham and stimulation.

Both of these predictions were borne out in the data, indicating that the surface fit
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by the Bayesian ADC and corresponding confidence intervals can tell us a lot about

the effectiveness (or lack there of) of stimulation.

4.4.4 Differences between Subjects

The question then arises: why wasn’t Subject A’s beta power strongly affected, while

Subject B’s was? Additionally, why was stimulation effective in reducing mUPDRS

scores in Subject B, but not A?

Differences in Parkinsonian Severity. Subject A may not have been parkinso-

nian enough to observe a neurophysiological and behavioral effect. mUPDRS scores

are subjective and difficult to discern with numerical precision since rating scales,

both in non-human primates and humans range, from 0–4 . Subject A was mildly

parkinsonian, with a baseline mUPDRS score of 1.0. Conversely, Subject B was mod-

erately parkinsonian with a baseline score of 1.6. The effect of stimulation on Subject

A, if present, may have been too small for the clinical rating scale to detect.

Differences in Oscillatory Activity. We also saw a marked difference in the low

frequency (<30 Hz) oscillatory activity between subjects. Subject A exhibited a sin-

gle prominent low frequency oscillation (7–16 Hz), while Subject B exhibited three

prominent oscillations (4–10 Hz, 12–21 Hz, 23–33 Hz) (Figure 4.1f, h).

LFP studies in the basal ganglia reveal the presence of various distinct low fre-

quency (<30 Hz) rhythms at rest, including alpha (7–13 Hz), and beta (13–30 Hz),

which is often subdivided into low and high beta (13–20 Hz, 20–30 Hz) (Peter Brown

et al. 2001; Andrea A. Kühn et al. 2004; Priori, Foffani, Pesenti, Bianchi, et al. 2002;

Priori, Foffani, Pesenti, Tamma, et al. 2004; Silberstein et al. 2003). The oscillatory

activity across this range does not respond identically to medication or stimulation.

Power in the low beta band is preferentially suppressed by the anti-parkinsonian
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drugs levodopa and apomorphine, while high beta and alpha rhythms are unaffected

(S. Marceglia et al. 2006; Priori, Foffani, Pesenti, Tamma, et al. 2004). Additionally,

STN DBS has been shown to suppress beta oscillations, particularly in the low beta

(here 11–20 Hz) range with a less significant effect for high beta (A. Eusebio et al.

2011). Furthermore, there is evidence that low and high beta activity in the STN is

preferentially coupled with sensorimotor cortex and mesial cortical areas, respectively

(Fogelson et al. 2006). These results indicate that different basal ganglia-cortical loops

may be tuned to activities in different frequency bands (Alexandre Eusebio, Cagnan,

and Peter Brown 2012).

Subject A’s single oscillatory band (7–16 Hz) targeted in this study may have

been an alpha rhythm, whereas Subject B’s low beta band was targeted, while also

displaying alpha and high beta rhythms.

Differences in Stimulation Amplitudes. Additionally, the subjects had different

maximum stimulation amplitudes (Subject A: 140 µA, Subject B: 340 µA), as limited

by thresholds for capsule activation. Had we been able to drive more current through

the electrode in Subject A, an different effect may have materialized.

Differences in Lead Geometries. Furthermore, Subject A and B had significantly

different DBS lead geometries. Subject A was implanted with a two row radially

segmented lead, while Subject B had a traditional eight-contact columnar lead. As a

result, Subject B’s contact surface area (1.0 mm2) was roughly three times larger than

Subject A’s (0.34 mm2). Additionally, the distance between the bipolar recording pair

for Subject B (0.5 mm) was much larger than in Subject A (0.08 mm). Furthermore,

the recording pair in Subject B spanned the stimulation contact (recording from the

row above and below stimulation), while in subject A, both recording electrodes were

on the row below the stimulation contact (though facing the same direction). This

means that not only was stimulation more focused in Subject A, but the electric fields
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recorded in Subject A were also much more local.

4.4.5 Correlations Between Beta Power and Parkinsonian

Motor Signs

We also examined the correlation between beta power and improvement in mUPDRS

scores. If beta power is a good biomarker, then we would expect to see a positive

correlation between change in beta power and change in mUPDRS scores, irrespective

of stimulation condition. Indeed, we saw a significant positive correlation between

change in beta power and change in mUPDRS scores for Subject B, but no such

correlation for Subject A.

The differences observed here may be linked to the subject differences discussed

above. First, Subject A was in a relatively less severe parkinsonian condition and

thus may not have had as strong beta band activity. Previous studies have indicated,

however, that changes in beta band activity can occur in even mild parkinsonian

conditions (A. T. Connolly et al. 2015). Additionally, as shown in Figure 4.8, many

of the parameter settings tested resulted in strong relative improvement in the mild

parkinsonian motor signs in Subject A, even though the absolute improvement in

mUPDRS scores was relatively small.

Subject A also had a directionally segmented lead in which the differential contacts

used were much closer in proximity to one another than for the lead in Subject B. As

such, the beta rhythm dipoles may have been inadvertently shunted by the bipolar

configurations. However, previous studies have also noted that beta band rhythms

can actually become more pronounced using bipolar settings with higher density DBS

arrays (S. Zhang et al. 2018).

Finally, the oscillatory bands targeted in Subjects A and B may not have been

functionally equivalent. As previously noted, Subject A had a single low frequency

oscillation, which may have been more closely related to alpha rhythms, which are
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not as correlated with Parkinsonian symptoms as beta, low or high (S. Marceglia et

al. 2006; Priori, Foffani, Pesenti, Tamma, et al. 2004). Furthermore, Subject B had

multiple oscillations (alpha, low, and high beta), of which the low beta was targeted,

which is more closely correlated with Parkinsonian symptoms (A. Eusebio et al. 2011).

4.4.6 Beta bursts Were Not Affected by Stimulation Condi-

tion

Beta bursts (i.e. the number and duration of beta episodes above some threshold) have

been described as a putative biomarker for parkinsonian symptoms, rather than the

more simple measure of beta power itself. Negative and positive correlations of short

and long bursts have been observed with motor impairment in human patients, both

with adaptive DBS (Tinkhauser, Alek Pogosyan, Little, et al. 2017) and medication

(Tinkhauser, Alek Pogosyan, Tan, et al. 2017). Interestingly, conventional DBS was

not observed to change the distribution of bursts (Schmidt et al. 2019; Tinkhauser,

Alek Pogosyan, Little, et al. 2017). Beta bursts have also been found to be predictive

of motor performance (Torrecillos et al. 2018), and the duration of beta burst episodes

were found to be prolonged in the parkinsonian state as compared to naive in a

primate model (Deffains and Bergman 2019; Deffains, Iskhakova, et al. 2018)

We observed no effect of stimulation on the percent of long beta bursts (Fig-

ure 4.7e, f), nor did we observe a correlation between change in the percent of long

beta bursts and change in mUPDRS scores (Figure 4.8c, d). This is consistent with

Tinkhauser et, al, 2017 (Tinkhauser, Alek Pogosyan, Little, et al. 2017), who reported

changes in burst distributions with adaptive stimulation, but not with continuous

stimulation. These results indicate that while the duration of beta bursts may be

related to whether the beta burst is pathological, burst duration may serve as a poor

biomarker for conventional isochronal DBS.

We also note that there are several additional parameters which must be selected
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for the computation of beta bursts, as opposed to beta power. Only two parameters

must be selected for beta power: start and stop frequencies, both of which can be

determined empirically from data. To compute beta bursts, however, we must add

several additional parameters, most importantly the burst threshold, and the cutoff

duration between pathological vs normal bursts. We observed no correlation for one

parameter set: namely, a threshold of the 75th percentile and cutoff duration of 0.5 s

(used in (Tinkhauser, Alek Pogosyan, Little, et al. 2017; Tinkhauser, Alek Pogosyan,

Tan, et al. 2017)). There are many combinations of just these two parameters, which

may yield different results.

Additionally, given the set of bursts detected using a given threshold and cutoff

duration, there are numerous other statistics which one could compute that may cor-

relate with outcomes: ratios of the number of bursts, power (duration x amplitude)

of long bursts, ratios of power of long to short bursts, etc. Put simply, using beta

bursts as a feedback mechanism for DBS raises many additional questions and de-

sign considerations that would need to be critically considered in the context of the

Bayesian ADC or aDBS algorithms.

4.4.7 Clinical Applications of the Bayesian Adaptive Dual

Controller

The Bayesian ADC, initially presented by Grado et. al, (Grado, Matthew D. Johnson,

and Theoden I. Netoff 2018) and empirically tested here, has clear applications for

tuning DBS parameters in human patients.

Clinical implementation. A clinical Bayesian ADC could consist of a dedicated

smartphone and an IPG; new IPGs, such as the Medtronic PC+S, are capable of

both stimulating and recording from DBS leads, as well as wireless communication

and remote programming (Stanslaski et al. 2018). In order to reduce wireless com-
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munication (and thus preserve battery), the IPG would be responsible for computing

beta power. The IPG could compute a running average of beta power over many min-

utes or hours, and then a single summary statistic of beta power could be transmitted

wirelessly to the smartphone. The smartphone would then use Bayesian optimization

on board to determine the next settings for the patient. Those settings would then

be pushed back to the IPG, which would adjust stimulation accordingly.

An important aspect of DBS programming not addressed by this implementation

of the Bayesian ADC are stimulation-induced side effects. Stimulation parameters

must be selected to provide a balance between relieving symptoms and avoiding side

effects, with the precise balance between the two depending on the patient. If the

Bayesian ADC’s only goal is to reduce beta power, it may find parameters which

optimally reduce beta power, while also inducing side effects. To counteract this

effect, a clinical implementation could introduce patient feedback. The patient could

use the smartphone to indicate when side effects become uncomfortable, and the

algorithm can then be programmed to avoid these parts of the search space.

Simplicity of beta power as a biomarker. One of the major advantages of using

beta power as a biomarker is simplicity. The only parameters required are the start

and stop frequencies, which can be determined empirically from the data—either by

a clinician or an algorithm. Additionally, computing beta power is computationally

inexpensive, requiring only a Fourier transform followed by summation. Recursive

estimators (such as the sliding discrete Fourier transform (SDFT) (E. Jacobsen and

R. Lyons 2004; Eric Jacobsen and Richard Lyons 2003) or sliding windowed infinite

Fourier transform (SWIFT) (Grado, Matthew D. Johnson, and Theoden I. Netoff

2017)) could be used to further reduce computational load and memory requirements

for the IPG.
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Generalizability of the Bayesian ADC. The Bayesian ADC is not constrained

to optimizing DBS for Parkinson’s disease using beta power as a biomarker; the

framework can be readily adapted to tune any parameterized device for any disease

and biomarker. For example, it could tune the parameters of adaptive DBS for

epilepsy or spinal cord stimulation for pain.

Furthermore, while the Bayesian ADC presented here only tuned two parameters

(amplitude and frequency), the framework can be readily extended to handle any

and all parameters, including pulse width and electrode configuration, among others.

The ability to tune all of these parameters simultaneously could provide opportuni-

ties to investigate previously untested parameter combinations, and thus potentially

find better solutions than those found through manual search space programming

methods, which often vary only one parameter at a time.

Improved programming process. Current stimulator programming occurs en-

tirely in the clinic. Patients often undergo four to five programming sessions (Bron-

stein et al. 2011), during which trained clinicians modify parameters and observe the

effects through a trial-and-error process. Programming is most often done off medi-

cation, requiring patients to forego symptom relief for hours. Furthermore, the time

course of the response of different symptoms can differ substantially, ranging from

seconds to hours (Scott Evan Cooper et al. 2011; Scott E Cooper et al. 2013). This

makes it very difficult to tune stimulation to relieve symptoms in clinical settings,

where a programmer may only have seconds or minutes to observe the effects of a

given parameter set.

The Bayesian ADC has the potential to flip the programming process in which

patients’ devices could be programmed in their own homes and as part of their day-

to-day lives. This could improve accessibility to state-of-the-art stimulation therapies

by reducing the need for one-on-one time with expert programmers and reducing the
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travel burdens placed on patients.

Tuning stimulation for long timescale effects. Additionally, longer timescale

effects could be optimized for using the Bayesian ADC framework. For example, DBS

for treatment resistant depression is an active field of investigation (Bewernick et al.

2012; Dougherty et al. 2015; Schlaepfer et al. 2008). However, effects of stimulation

have been found to take a week or more to stabilize (Bergfeld et al. 2016), making it

difficult to tune stimulation in clinical settings. The Bayesian ADC can easily operate

on these longer timescales, using feedback measures such as self-administered surveys

or care-giver ratings.

4.4.8 Comparison with Adaptive DBS Strategies

We previously discussed several aDBS strategies, which seek to deliver stimulation in

response to a changing feedback signal. The Bayesian ADC is fundamentally

different from these aDBS strategies. It is a general purpose optimization tool

which can be used to optimize stimulation parameters for any stimulator, disease, or

biomarker that can readily include personal feedback from patients.

4.5 Conclusion

In this study, we tested the Bayesian ADC’s ability to tune conventional DBS in a

non-human primate model of PD, and then evaluated the performance of the op-

timized stimulation settings in reducing parkinsonian motor signs. We found that

the Bayesian ADC was able to optimize parameters. Furthermore, we found that

the optimized parameters performed as well as control parameters in both subjects,

both for reducing beta power and reducing parkinsonian motor signs. The results
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of this study provide further evidence that the Bayesian ADC should be clinically

translatable.
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Conclusion

This doctoral dissertation has advanced the field of deep brain stimulation (DBS)

for the treatment of Parkinson’s disease (PD) and other neurological diseases by 1)

deriving a new, computationally efficient, real-time method for computing the Fourier

transform, which can be used to extract oscillatory neural features, 2) developing

the Bayesian adaptive dual controller (ADC) for tuning DBS, and 3) evaluating the

Bayesian ADC in the MPTP-treated non-human primate model of PD.

5.1 Summary of Findings

In Chapter 2, we derived the sliding windowed infinite Fourier transform (SWIFT) for

recursively computing the Fourier transform of a signal. The SWIFT was shown to

be more computationally efficient than the sliding discrete Fourier transform (SDFT)

(7 floating point operations vs 8), and memory efficient (3 floats vs N+4, where N is

the length of the window). Furthermore, the SWIFT is guaranteed stable, whereas

the SDFT is not. Additionally, we developed the αSWIFT, which has reduced spec-

tral leakage compared to the SWIFT, but at the cost of twice as much computation.
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These new algorithms, with low computational and memory requirements, can readily

be implemented in next generation implantable pulse generators (IPGs) or other im-

plantable hardware, enabling future adaptive DBS (aDBS) algorithms which require

real-time information on the phase or amplitude of a signal.

In Chapter 3, we developed and tested the Bayesian ADC for autonomously learn-

ing DBS parameters to optimally control a chosen biomarker. The Bayesian ADC

was tasked with learning the parameters of a phase- and amplitude-responsive aDBS

system, and was developed in a computational model of PD, with the goal of finding

the set of stimulation parameters which reduced beta power the most. The SWIFT

algorithm was used to compute the phase and amplitude of the beta oscillation from

the model. The Bayesian ADC explicitly balances the exploration of new parameters

with the exploitation of current parameters to quickly learn the optimal parameters

without getting stuck in local minima. We showed that the Bayesian ADC was su-

perior to other optimization algorithms in terms of reliably and efficiently converging

upon the minimum. Additionally, the Bayesian ADC was shown to perform better

under a variety of noisy conditions.

In Chapter 4, we evaluated the Bayesian ADC in the MPTP-treated non-human

primate, which is a well-established animal model of PD. Two subjects were implanted

with a DBS lead in the subthalamic nucleus (STN) and rendered systemically parkin-

sonian. The Bayesian ADC was tasked with learning the parameters of conventional

DBS which optimally reduced beta power measured from the subject. We saw that

the Bayesian ADC was able to reliably converge towards the same parameter settings

in each subject, repeated over several days, despite high biologial noise levels. Addi-

tionally, we saw that the optimized parameters performed as well as control paramters

for reducing parkinsonian symptoms and reducing oscillatory power in both subjects,

with both being significantly reduced from baseline in Subject B, but neither in Sub-

ject A. We also observed that beta power correlated with motor signs in Subject B
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but not A. The Bayesian ADC’s confidence bounds partially predicted these results;

in both subjects, the control parameters fell within the confidence bounds of the min-

imum, indicating that the Bayesian ADC believed there was little difference between

the two settings. Furthermore, the Bayesian ADC predicted that the oscillation was

much more controllable in Subject B than A. These results indicate that the Bayesian

ADC should be clinically translatable in future studies and provide some indication

whether or not modifying stimulation settings will yield actual clinical improvement.

5.2 Barriers to Clinical Translation

This dissertation resulted in the creation of the Bayesian ADC, which was developed

in a computational model and evaluated in an animal model of PD. The next step is

to translate the Bayesian ADC into the clinic. However, several hurdles must first be

overcome.

For the Bayesian ADC to function in a clinical setting, side-effects must be taken

into account. In its current form, the Bayesian ADC seeks only to minimize the given

biomarker. However, this would likely lead to stimulation-induced side-effects as stim-

ulation parameters ramp up (be it pulse width, frequency, or amplitude). Without

additional feedback, the algorithm has no way of avoiding entering the parameter

space that can induce these side-effects. Biomarkers which correlate with side-effects

could be used, such as gamma power (Nicole C. Swann et al. 2016), to help combat

this. However, side-effects are diverse, and so it is unlikely that we could select a sin-

gle biomarker (or even multiple) which represent all possible side-effects. In practice,

the only way to avoid inducing side-effects would be to ask the patients themselves.

A clinical Bayesian ADC would most probably allow the patient to report side-effects

and abort stimulation settings which are uncomfortable. The algorithm could incor-

porate this information by incurring a high penalty in side-effect regions, and thus
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quickly learn to avoid them.

Great care must be taken when selecting a biomarker (or biomarkers) to be op-

timized; turning an algorithm loose on a partially understood biomarker could have

unforeseen consequences. In this dissertation, we focused on minimizing beta power

for PD, which has been shown to correlate with parkinsonian symptoms. However, it

is also implicated in healthy brain function, and thus minimizing beta could produce

unexpected results. While there are several other biomarkers identified for PD, their

precise role and relationship to therapy are even less well understood.

There are also significant practical barriers to implementing the Bayesian ADC.

The algorithm would most likely need to be implemented on a smartphone (or in the

cloud), and would therefore require wireless communication with the patient’s IPG.

The smartphone must also receive the biomarker to be optimized, either directly from

the IPG, external sensors, or other modalities. Wireless enabled IPGs currently exist,

such as the Medtronic PC+S, but this also raises both safety and security concerns.

Physical safety of the neural tissue can be ensured by hard-coding safety limits on

the amount of charge that can be delivered. However, extensive security measures

must be taken to ensure a third party cannot take over control of the IPG and either

intercept data or inject malicious commands. Developments in the cardiovascular

pacemaker field have made great strides in both concerns, and the field of DBS will

no doubt benefit from following its lead.

5.3 Practical Applications for Active Learning DBS

The first target of an active learning DBS system should have an unam-

biguous and easily measured biomarker. While PD is the most common move-

ment disorder, it is a complicated and heterogeneous disease with multiple symptoms

and with no robust and consistent biomarker discovered to date, and thus should not
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be the first target of a clinical active learning DBS (AL-DBS) system.

DBS for essential tremor could be the first target for such a system. Essential

tremor has a clear and unambiguous biomarker: the tremor itself. An AL-DBS system

for tremor could be readily constructed to learn to minimize tremor amplitude, which

could be measured unobtrusively with accelerometers placed in a smart watch or ring.

Such a system could begin by tuning conventional DBS (cDBS), but could quickly

advance to utilizing phase- and/or amplitude-responsive aDBS.

Beyond the more common indications for DBS, AL-DBS systems could open the

door to effective treatment of a variety of disorders which respond slowly to DBS, such

as chronic pain, depression, post-traumatic stress disorder, tonic symptoms of dysto-

nia, and more. In these applications, the effects of DBS can take days or even weeks

to materialize, making it difficult or impossible to tune using the current paradigm.

For example, an AL-DBS system for depression (which can take a week to respond to

DBS), could be designed to tune DBS one week at a time. It might use a self-reported

patient questionnaire, which could account both for symptoms and side-effects. Ad-

ditionally, the AL-DBS system could integrate new algorithms to diagnose depressive

symptoms from a patient’s typing patterns, social media posts, facial expressions,

and more. Together, this thesis advances a new learning-based approach to tuning

DBS systems that could have broad applicability across multiple clinical indications

and neuromodulation modalities.
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Kühn, A. A., Andreas Kupsch, et al. (2006). “Reduction in subthalamic 8-35 Hz
oscillatory activity correlates with clinical improvement in Parkinson’s disease”.
In: European Journal of Neuroscience 23.7, pp. 1956–1960.
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