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Abstract 

Landslides and other mass-movement events are common geomorphic 

phenomena in Minnesota that threaten water quality, infrastructure, and public safety. 

Most published studies on the subject are geographically biased to mountainous regions, 

and little research has focused on low-relief landscapes like the central lowlands of the 

United States. This study focuses on slope instability across northeastern Minnesota as 

part of a collaborative, nearly statewide, landslide inventory and susceptibility mapping 

project. I developed a database of 2,005 remotely-mapped slope failures from historical 

records, lidar data, and aerial imagery using GIS software. Field verification of 702 slides 

determined that remote mapping was approximately 97% accurate. To develop a 

landslide susceptibility map, I applied a logistic regression (LR) analysis using a set of 

nine predictive independent variables that may impact slope stability (slope, aspect, 

elevation, relief, depth to bedrock, soil erodibility, substrate, land cover, and distance to 

streams). The multivariate LR analyses utilized landslide inventories from two separate 

study areas that represented different scales and paleogeomorphic settings for 

comparison: Jay Cooke State Park (JCSP)(32.8 km2) and the Lake Superior South 

watershed (LSSW)(1,628 km2). The JCSP area along the St. Louis River contains 

glaciolacustrine sediments and shoreline deposits from pro-glacial lake Duluth, and the 

LSSW hosts subglacial and ice-marginal moraine deposits from the Superior Lobe. Data 

sampled from the landslide inventories were subdivided into 80% training and 20% test 

data in each area. Confusion matrices, comparing model predictions to actual inventory 

data, were used to assess model accuracy. I found that slope, depth to bedrock, distance 

to streams, and substrate were statistically significant variables to predict landslides in a 

multivariate LR analysis in both test areas, though slope alone was a strong enough 

variable to predict the majority of landslides. Models were more accurate at a scale 

similar to the resolution of the state datasets used in the analysis (83% in JCSP; 95% in 

LSSW). The models' transferability was then tested in a third study area, the Mission 

Creek watershed (28.5 km2) an area adjacent to JCSP with similar surficial material and 

different bedrock. The JCSP model performed with higher accuracy (92%) than the 

LSSW model (56%) at predicting landslides in the Mission Creek Watershed. Model 
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comparisons revealed the importance of considering paleogeomorphic settings such as 

ice-margins, glacial lake-basins, or shoreline environments on landslide susceptibility and 

occurrence. Outcomes from this research lay the groundwork for future studies across the 

state and allow stakeholders to reduce risks from future landslides in the face of a 

changing climate. 
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Introduction 

Slope failure is a major geomorphic process that occurs on all continents, 

naturally reshaping landscapes through episodic erosion. The more commonly used term 

"landslide" is synonymous with "slope failure" or "mass-wasting", all of which describe 

the mass movement of rock, debris, or earth downslope (Highland and Browbowsky, 

2008). Mass-wasting events become geologic hazards when they are associated with 

public safety, infrastructure, and environmental degradation. Across the United States, 

landslides are responsible for 25–50 deaths annually and damages exceeding $2 billion 

per year (Schuster and Fleming, 1986; Spiker and Gori, 2000). To resolve the resource 

management challenges associated with landslides and related phenomena, we must 

enhance our understanding of where they occur and the geoenvironmental factors that 

drive them. 

Comprehensive landslide detection and mapping are the basis for any landslide 

susceptibility assessment (Carrara and Merenda, 1976; Guzzetti et al., 2000; Brardinoni 

et al., 2003; Martha et al., 2010). Landslide susceptibility is the probability of slope 

failure based on local geoenvironmental conditions, assuming that future slopes will fail 

under the same conditions that destabilized them in the past (Guzzetti et al., 2006). 

Landslide inventory and susceptibility mapping has grown and evolved over the past two 

decades as high-resolution airborne lidar data become more widespread and 

geoprocessing technologies advance. Despite the abundance of research on landslide 

susceptibility mapping, studies are geographically biased with a greater emphasis on 

tectonically-active mountainous regions (Reichenbach et al., 2018). Little research has 

been published on landslide susceptibility in lower-gradient landscapes like the central 

lowlands of the United States. 

In Minnesota, where the majority of mass-wasting events occur along river 

valleys, bluff erosion is a primary contributor to sediment loading in streams and rivers 

(Sekely et al., 2002; Belmont, 2011; Day et al., 2013; Lahti et al., 2013; Wick, 2013; 

Neitzel, 2014; Hall, 2016; Sandberg et al., 2017; Jasperson et al., 2018). Excess sediment 

in streams has the potential to raise water temperatures, decrease the biodiversity of 

macroinvertebrates, and negatively affect fish life-cycles (Castro and Reckendorf, 1995). 
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Despite the propensity for bluff erosion along Minnesota streams and the implications for 

water quality, the state lacks a comprehensive landslide hazards map and mitigation 

protocol. Recently deglaciated landscapes contain evidence of their historic depositional 

environments that translate to differences in substrate, surficial sediment thickness, 

proximity to streams/lakeshore, and topography which could be uniquely important 

factors influencing slope failures. These geomorphic boundaries, such as sub-glacial 

environments, ice-marginal settings, outwash plains, paleo-shoreline deposits, and glacial 

lake beds, could affect the scale and transferability of susceptibility models. 

This research is part of a larger project funded by the Legislative-Citizen 

Commission of Minnesota Resources (LCCMR) to assess landslide hazards and impacts 

across the state of Minnesota (Gran, 2017). My research focused specifically on 

documenting slope failures throughout the Lake Superior watershed to generate an 

inventory of landslides that served as the basis for landslide susceptibility assessments 

using a logistic regression (LR) statistical analysis. I investigated this by selecting two 

study areas of different sizes within different glacial depositional environments: Jay 

Cooke State Park (32.8 km2) and the Lake Superior South watershed (1628 km2). A third 

study area (the Mission Creek watershed (28.5 km2)) was used to compare how these two 

predictive models performed in a different setting where no susceptibility analysis was 

conducted.  

Landslides are essential mechanisms of landscape evolution, though they are 

often perceived as rare catastrophic events. While these catastrophic failures are visibly 

destructive and receive more media coverage, the compounding effects from hundreds of 

smaller failures should not be overlooked. The findings from this project will help 

stakeholders make informed management decisions to protect individuals and property 

from mass movements while preserving local ecosystems, fisheries, and recreation 

associated with Minnesota's treasured waters.  
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Background 

Slope Stability Mechanics  

 

The potential of material on a slope to withstand movement is quantified in terms 

of slope stability, or the balance between driving forces that promote movement and 

resisting forces that deter movement. In northeastern Minnesota, we are concerned with 

the slope stability of unconsolidated material on shallow planar surfaces. The primary 

driving force is the downslope component of gravity, known as the shear stress () 

[Figure 1].  The main resisting force is the shear strength, which depends on the normal 

stress (𝜎), angle of internal friction (∅), and cohesion of the material (c) (Ritter et al., 

2002). Normal stress considers both the effective normal stress (𝜎′) and pore pressure (µ). 

The effective normal stress is the stress exerted at the solid-to-solid contacts along a shear 

surface and pore pressure is the pressure within void spaces of the material. The angle of 

internal friction is the angle at which material will begin to slide and is an intrinsic 

property of the material. Cohesion (the strength of the force that holds particles together) 

changes based on material composition and the presence or absence of moisture. 

Figure 1. Slope stability schematic diagram for a particle on a shallow planar surface. 
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A slope is considered stable when the sum of the applied shear stresses does not exceed 

the material's shear strength. This ratio of shear strength over shear stress is referred to as 

the factor of safety (Fs) and one example of this is the infinite slope model.  

 

𝐹𝑠 =  
∑ 𝑅𝑒𝑠𝑖𝑠𝑡𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒𝑠 (𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ)

∑ 𝐷𝑟𝑖𝑣𝑖𝑛𝑔 𝐹𝑜𝑟𝑐𝑒𝑠 (𝑠ℎ𝑒𝑎𝑟 𝑠𝑡𝑟𝑒𝑠𝑠)
 =  

𝑐 + 𝜎′𝑡𝑎𝑛∅

𝜏
  (1) 

 

As the factor of safety gets closer to 1, the slope becomes more unstable, and 

ultimately fails once the factor of safety drops below 1. There are many different 

geoenvironmental factors (i.e. slope angle, material composition, precipitation, etc.) that 

influence the balance between shear strength and shear stress and therefore ultimately 

determine the likelihood of slope failure. 

Precipitation plays an important role in slope instability because it contributes to 

factors that can either increase shear stress and/or decrease shear strength. When it rains, 

water that falls on the Earth’s surface will either infiltrate into the subsurface, be taken up 

and removed by evapotranspiration, or runoff into streams and rivers. Surface run-off 

leads to higher stream discharge which can physically destabilize a slope by eroding its 

underlying or lateral supports. Infiltration can raise the subsurface water level which 

increases the hydrostatic pressure between sediment particles. While some moisture can 

increase the ionic bonds between particles, once all of the pore spaces between particles 

are completely filled, additional moisture destroys those internal bonds and produces a 

fluid (Ritter et al., 2002). 

 

Mass-Movement Classification 

Mass movement types are classified into five distinct categories: slides, falls, 

flows, topples, and spreads (Cruden and Varnes, 1996; Hungr et al., 2014) [Figure 2]. 

Slides are further distinguished by the nature of the failure plane. Rotational slides have a 

concave rupture surface in which the head of the displaced material moves vertically 

downward, and the upper surface tilts back toward the scarp. Translational slides are 

generally shallower than rotational failures and occur on planar surfaces such as faults, 

joints, bedding surfaces, or contacts between soil and underlying parent material. Flows 
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are rapid forms of mass movement that mobilize saturated loose soil or rock on steep 

slopes and behave as viscous fluids. Falls are abrupt downward movements of rock or 

earth that detach with little or no shear displacement and descend from steep slopes or 

cliffs. Topples result from a similar detachment process as falls, though the material also 

experiences a forward rotation around an axis below its center of gravity. Spreads are 

commonly associated with seismic activity and usually occur on very gradual, nearly flat, 

slopes from the extension of one layer over another layer of differing rigidity. When two 

or more of these processes occur congruently, the movement type is classified as 

"complex" (Highland and Brobowsky, 2008). Material type is also considered during 

classification to distinguish between mass-movements of rock, debris, or earth [Figure 2]. 
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Figure 2. Landslide classification system by the British Geological Survey based on 
Varnes (1978) and Cruden & Varnes (1996). 
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Landslide Inventory Mapping 

The first step in assessing landslide hazards is identifying active or historically-

active slide areas to create an inventory of where slope failures occur. A typical landslide 

inventory contains information about the movement type, magnitude, date, and place of 

occurrence (Martha et al., 2010). Geomorphological landslide inventories are mapped 

using physical features of the landscape to identify landslides through visual 

interpretation of aerial photographs, satellite imagery, high-resolution Digital Elevation 

Models (DEMs), field mapping, or a combination of multiple mapping techniques. 

Regardless of the mapping method, all approaches operate under a few essential 

assumptions. First, landslides leave discernible signatures or scars in the landscape that 

can be recognized, classified, and mapped. Trained geomorphologists can distinguish 

these features in the field or through careful interpretation of high-resolution aerial 

imagery or digital representations of surface topography (Guzzetti et al., 1999). Second, 

landslides are not random occurrences but are instead the result of the interaction of 

physical processes governed by physical laws that produce different discernable 

morphologies (Guzzetti et al., 2012). Third, landslide morphology is dependent on the 

type of movement and rate at which the slope failure occurs. Essentially, similar types of 

mass movements produce similar morphological signatures (Guzzetti et al., 2012). 

Despite these assumptions, the quality of an analysis is often dependent on the 

quality of the landslide inventory and the resolution of the spatial data used to build it. 

Fortunately, the increasing availability of high-resolution spatial topographic data and 

GIS capabilities allows geologists to successfully map and assess landslide hazards 

remotely (Crawford, 2012; Jaboyedoff et al., 2012). Landslide mapping is an evolving 

field, and geomorphologists are constantly exploring new methodologies and 

technologies to map landslides over large areas. Disparities in mapping methods can lead 

to variation in quality and inconsistent results, so standardized protocols for landslide 

mapping using lidar in GIS have been established by Oregon and Washington State 

(Burns and Madin, 2009; Slaughter et al., 2017). These standards produce landslide 

inventories that can be compared and effectively utilized in statistical landslide 

susceptibility models. As long as an inventory meets the standard protocols, does not 

underestimate specific landslide types, and has no significant geographical biases with 
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some areas covered more accurately or completely than other areas, it can be an effective 

tool for susceptibility analysis (Reichenbach et al., 2018). 

 

Susceptibility Analysis 

 Future slope failures are more likely to occur under the same conditions that led 

to past instability. Therefore, information obtained on existing or historical landslides in 

an area can be generalized and used to detect landslides in other similar areas in the form 

of a susceptibility map (Guzzetti et al., 2012). Statistically-based landslide susceptibility 

models quantitatively analyze the relationships between instability factors and the 

distribution of landslides.  

Published susceptibility assessments use various statistical models and their 

methodologies are constantly changing as statistical software evolves. A critical review 

of statistically based approaches to landslide susceptibility modeling identified 163 

unique model type names out of 565 peer-reviewed articles published from 1983 to 2016 

(Reichenbach et al., 2018). There is concern that experimentation with new or different 

statistical methods has overshadowed the relevant task of obtaining reliable susceptibility 

assessments, further complicating the comparison of susceptibility models (Reichenbach 

et al., 2018). 

The four most common statistical methods are logistic regression, data overlay, 

neural networks, and index-based models (Budimir et al., 2015; Reichenbach et al., 

2018). Multivariate logistic regression models are the most popular statistical methods 

and are shown to be the most reliable in several comparative studies (Aleotti and 

Chowdhury, 1999; Guzzetti et al., 1999; Lee and Sambath, 2006; Guzzetti et al., 2006; 

Yilmaz, 2010; Mancini et al., 2010; Ozdemir and Altural, 2013). 

The multiple logistic regression analysis predicts the probability of a binary 

dependent variable (landslide occurrence) using a set of independent predictor variables 

(geoenvironmental factors). The regression accommodates the binary outcome by fitting 

a sigmoid curve using the logit function [Figure 3].  
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The logit is the natural log of the odds: 

 

log(odds) = ln (
𝑃

1−𝑃
) =  𝛽0 + 𝛽1𝑥1     (2) 

 

Where the log of the odds is a function of the probability (P), βo is the intercept, β1 is the 

coefficient, and x1 is the variable.   

 

𝑃

1−𝑃 
=  𝑒𝛽0+ 𝛽1𝑥1     (3) 

 

P = 
𝑒𝛽0+ 𝛽1𝑥1

1+ 𝑒𝛽0+ 𝛽1𝑥1
 =  

1

1+ 𝑒−(𝛽0+ 𝛽1𝑥1)   (4) 

 

Terrain slope has proven to be the single most effective variable used for 

susceptibility modeling while aspect, elevation, and curvature are less justified and may 

be controlled by local conditions (Fabbri et al. 2003; Budimir et al. 2015).  For example, 

Fabbri et al. (2003) demonstrated that the performance of a susceptibility model using 

elevation, aspect, and slope performed significantly better than a model using bedrock 

geology, surficial deposits, and land use in Belgium and Portugal case studies. The 

Figure 3. Comparison of the linear regression model with the sigmoid curve of the 
Figure 3: Comparing linear regression to Logistic regression. 
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success of a logistic regression susceptibility analysis depends on the quality and 

relevance of the information used to construct it.  

 

Study Area 

Northeastern Minnesota is a dynamic landscape with a unique geologic history of 

tectonics and continental glaciation that continues to influence modern geomorphology. 

Because slope stability is affected by the topography, geology, and climate of the region, 

we must establish a solid understanding of the local climate trends, bedrock geology, 

glacial history, and postglacial isostatic adjustment. 

 

Bedrock Geology 

The bedrock geology of this region primarily consists of stacked basalt flows and 

gabbroic igneous intrusions that formed approximately 1.1 Ga (billion years ago) during 

a failed mid-continental rift system (Sims and Morey, 1972). The Duluth Complex 

gabbro, as well as other felsic and mafic extrusive rocks that comprise the North Shore 

Volcanic Group, are exposed in outcrops of steep rocky bluffs along the shoreline of 

Lake Superior. The Fond du Lac Formation (~1.0 Ga), which can be found southwest of 

Duluth, contains sedimentary bedrock composed of weak sandstone, siltstone, and inter-

bedded shale (Morey, 1967; Finley‐Blasi, 2006). Even further south, tilted greywacke 

sandstone and siltstone beds of the Thompson Formation (~1.8 Ga) outcrop where the St. 

Louis River cuts through Jay Cooke State Park in Carlton County (Ojakangas and 

Matsch, 1982). 

 

Surficial Geology 

The surficial geology of the North Shore of Lake Superior reflects the incredible 

geomorphic power of glaciation. During the Wisconsin glaciation, massive ice lobes on 

the margins of the Laurentide ice sheet advanced and retreated several times shaping the 

surficial geology and topography. Four main phases of glacial advance occurred during 

the late-Wisconsin, in which three main ice lobes (Superior, Rainy, and sub lobes of the 

Des Moines) were responsible for eroding and redistributing sediments throughout the 
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area [Figure 4]. Each successive advance covered a smaller area, depositing finer-grained 

till from pro-glacial lake sediments that were re-incorporated into the ice (Hobbs et al., 

2011). Pro-glacial lakes formed from meltwater that accumulated behind moraines, which 

acted as dams while the Superior lobe retreated to the northeast. These pro-glacial lakes 

coalesced to form glacial Lake Duluth roughly 11,000 calibrated calendar years before 

present (Breckenridge, 2013). Paleo-lake levels can be recognized by a combination of 

geomorphic features such as terraces, beach ridges, spits, tombolos, wave-cut cliffs and 

deltas. Shoreline features from glacial Lake Duluth are present in a thin band inland of 

the southwest margin of Lake Superior (Leverett, 1929; Hobbs, 2004; Breckenridge, 

2013).  

  

Figure 4. Simplified map depicting flow direction and extent of ice lobes that covered 
Minnesota during the Wisconsin glaciation (Lusardi and Dengler, 2017). 
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Two distinct glacial till formations deposited along the North Shore by the 

Superior Lobe during the late-Wisconsin glaciation can be distinguished based on their 

color, texture, and composition. The Cromwell formation is described as a reddish-brown 

loam matrix that contains a range of 1- 45% coarse-grained fragments of primarily 

igneous rocks including basalt, rhyolite, diabase, and gabbro from the northeast (Hobbs, 

2003; Hobbs, 2004). The Barnum formation is a clayey till that overlies the Cromwell 

formation and is further distinguished by three member units (Hobbs et al., 2011). The 

Lakewood member sits above the Cromwell Formation and is a reddish-brown silty loam 

with about 6-12% coarse-grained fragments (Hobbs, 2003; Hobbs, 2004). The second 

unit is the Moose Lake member, a reddish-brown silty clay loam with approximately 3-

6% coarse-grained fragments (Hobbs, 2004). There is also a lacustrine silt and clay 

member, which sits on top of the Moose Lake member, known as the Wrenshall 

Formation that is laminated with red and grey varve sequences (Hobbs et al., 2011). The 

top unit is the Knife River member, a reddish-brown clay that contains 1-3% coarse-

grained fragments (Hobbs, 2004). These tills and lacustrine deposits are composed of 40-

100% silt and clay and demonstrate a general fining-upward trend.  

By approximately 11,000 years ago, Minnesota was mostly ice-free except for the 

Rainy lobe, which still covered some area in the farthest northeastern portion of the state 

[Figure 4]. The Rainy lobe deposited a brown, sandy till containing basalt, gabbro, and 

other igneous and metamorphic rock fragments sourced from the Canadian Shield 

(Lusardi and Dengler, 2017). 

 

Isostatic Adjustment & Landscape Morphology   

Isostatic rebound and knickpoint migration in response to base level changes are 

significant impacts of glaciation that continue to affect regional geomorphology. 

Historical changes in glacial lake levels initiated knickpoint migration and channel 

incision within all tributaries to Lake Superior. Anthropogenic land use and forest 

clearing, in addition to natural base level changes, have exacerbated the level of erosion 

in these incised systems for most sub-basins of the Lake Superior watershed. Crustal 

uplift from isostatic rebound in this region is faster to the northeast where ice sheets were 

thickest; therefore, the land surface is tipping with greater uplift in the north forcing 
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water towards the southwest shore of Lake Superior (Lee and Southam, 1994). This 

isostatic adjustment causes a gradual drop in base level to the northeast and a rise in base 

level to the southwest. Rising base level increases coastal erosion while base level drop 

leads to knickpoint migration and channel incision. Channel incision through glacial till 

produces significant stream bank scour and slumping, contributing abundant fine 

sediments into local streams (Wick, 2013; Neitzel, 2014; Hall, 2016; Jasperson et al., 

2018). 

 

Climate Trends & Implications 

Climate and precipitation are known to influence slope stability and trigger mass 

movement events (Cruden and Varnes, 1996; Crozier, 2010). Changes to these factors 

can potentially impact the frequency and severity of landslide activity in a region. As 

global climate change continues, regional impacts reveal themselves. Climate trends over 

the past several decades in Minnesota show an increase in annual precipitation with more 

frequent heavy rainfall events (Blumenfeld, 2016). These trends are projected to continue 

according to several climate change scenarios (Handler et al., 2014).  Modeling studies 

conducted with differing sensitivity to emissions scenarios present two model projection 

results; Geophysical Fluid Dynamics Laboratory (GFDL A1FI) by the National Oceanic 

and Atmospheric Administration (NOAA) and Parallel Climate Model (PCM B1) by the 

National Center for Atmospheric Research (IPCC, 2007). Although both projections are 

possible, the GFDL A1FI scenario represents a more realistic projection of future 

greenhouse gas emissions and temperature increases (Raupach et al., 2007). Increasing 

precipitation could have implications for slope stability and erosion in the Lake Superior 

watershed, further emphasizing the need for this type of research. 

Northern Minnesota has already experienced a climate that is relatively "warmer" 

and "wetter" than previous decades (Blumenfeld, 2016). Mean annual temperature 

increased 1.2 °C (2.2 °F) from 1901 to 2011 and the North Shore of Lake Superior has 

warmed faster than surrounding areas during winter months (Handler et al., 2014). 

Warmer winter air temperatures have led to more snowmelt in intervening periods 

between snowfall events. During the entire 20th century, there appears to have been a 12 

to 22-day decline in the annual number of soil frost days (Sinha et al., 2010). Mean 
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annual precipitation increased by 5.8 cm (2.3 in) across the entire assessment area 

(Handler et al., 2014). In addition to an increase in annual precipitation, the frequency of 

intense precipitation events has also increased across Minnesota. A 102% increase was 

observed in rainstorms of 7.6 cm (3 in) or more between 1920 and 2011 (Saunders et al., 

2012).  

Northern Minnesota is projected to experience profound changes in regional 

climate by the end of the 21st century; including shifts in mean temperature and 

precipitation with altered timing and intensity (Handler et al., 2014). Compared to the 

baseline period (1971-2000), the average annual temperature is projected to increase 1.7 

°C (3.0 °F) under the PCM B1 scenario and 4.9 °C (8.8 °F) under the GFDL A1FI 

scenario. The PCM B1 scenario projects that Northern Minnesota will receive on average 

7.6 cm (3 in) more annual rainfall at the end of the next century compared to the baseline 

period. However, the GFDL A1F1 scenario projects that Northern Minnesota may 

experience a slight decrease in annual rainfall during this same period (-0.1 cm; -0.4 

inches), with a larger decrease occurring during summer months (Handler et al. 2014). 

Rainfall from high-intensity events represents a larger proportion of the total annual and 

seasonal rainfall, which suggests the precipitation regime is becoming more episodic. An 

assessment covering the entire Great Lakes region projected that the frequency of single-

day and multi-day heavy rainfall events could double by 2100 (Kling et al., 2003). Both 

climate models project changes that affect several hydrologic drivers for slope failures 

(i.e., precipitation, flooding, stream power, wave action, etc.), which could have 

implications for future frequency or severity of mass movement events. 

On June 19th-20th of 2012, a record storm event released 20-25 centimeters of 

rainfall over 48 hours in Duluth, MN and surrounding areas, following one of the wettest 

Mays in Duluth's recorded history (Czuba et al., 2012) [Figure 5]. Extensive flooding 

triggered hundreds of mass-wasting events that damaged local infrastructure and 

contributed large volumes of sediment into tributaries of Lake Superior (Fitzpatrick et al., 

2016). Since the 2012 storm event was well-documented and the landscape response was 

captured in repeat high-resolution lidar, these impacted areas serve as an ideal case study 

for how large storms trigger slope failures in similar postglacial landscapes.  
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Figure 5. USGS report figure showing the distribution of rainfall across northeastern 
Minnesota from June 19 - June 21, 2012, using rainfall data from select National 
Weather Service (NWS) precipitation stations (Czuba et al., 2012). 
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Focus Areas 

Landslide inventory mapping was completed for the entire Lake Superior 

Watershed in Minnesota with the exception of active mining areas [Figure 8]. Three 

subsections of the watershed serve as optimal case studies for landslide susceptibility 

because they represent different glacial settings: Jay Cooke State Park (JCSP), Lake 

Superior South watershed (LSSW), and the Mission Creek watershed (MCW) [Figure 6]. 

These three study areas were also similarly impacted by a major rainfall event in 2012 

that triggered hundreds of landslides.  

One area that was hit particularly hard in terms of erosion during the 2012 storm 

was Jay Cooke State Park. The park is 32.8 square kilometers of mixed forests, shrubs, 

and wetlands growing in clay-rich soils on top of glaciolacustrine sediments that have 

been carved down to bedrock by the St. Louis River and its tributaries. The underlying 

bedrock is primarily slate and greywacke of the Thompson Formation overlain with red 

Figure 6. Map of the Lake Superior watershed in Minnesota, depicting study areas for 
susceptibility analysis. 
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clay and silt that settled out in the glacial Lake Duluth basin over 10,000 years ago. The 

2012 flood washed out roads and caused larger landslides along highway 210 in Jay 

Cooke State Park which took five years and $21.3 million to repair (Kraker, 2017).  

The nearby Mission Creek watershed is 28.5 square kilometers of mostly forest 

and grassland with a small percentage of rural development. Mission Creek is a tributary 

to the St. Louis River and its outlet is located near the neighborhood of Fond du Lac in 

southwest Duluth, just northeast of Jay Cooke State Park. Unlike most of the North 

Shore, the bedrock in this area consists of stacked sandstones and shales. This area has 

complex surficial geology because of its location on the paleo-shoreline of glacial Lake 

Duluth. The area thus contains a combination of glacial outwash deposits and 

glaciolacustrine sediments containing high concentrations of fine sand, silt, and clay. 

Mission Creek experienced similar destabilization in 2012 from intense rainfall and 

flooding.  

The Lake Superior South watershed is 1,628 square kilometers within the Lake 

Superior watershed. This watershed covers a variety of urban, suburban, and rural 

residential areas in addition to mixed forested and wetland areas. This watershed 

represents an ice-marginal glacial setting in which most of the unconsolidated glacial 

material belongs to the Cromwell or Barnum formations deposited in the Highland and 

Nickerson ground moraines. 

Variation in the underlying geology across northeastern Minnesota could explain 

trends in the frequency and distribution of slope failures as well as the different types of 

failures that occur. The diverse geology across the region also presents a challenge for 

modeling landslide susceptibility. 

 

Methods 

Historic Inventory 

Previously documented locations where mass movements have occurred are 

considered historic landslides and were compiled into a historic inventory (Jennings et 

al., 2016). Online newspaper archives and articles allowed us to locate several mass 



 

18 

movement events documented by the media (e.g., Star Tribune, 2011; Pine journal, 2011; 

Duluth News Tribune, 2012; Twin Cities Pioneer Press, 2015). A database of GPS-

referenced photos taken by volunteers after the 2012 flood event, identifying areas of 

erosion and flood damage, were valuable event-based landslides incorporated in the 

historic inventory (B. Frederickson, MPCA, personal communication). Local and state 

agencies like the South St. Louis and Lake County Soil and Water Conservation District 

(SWCD) shared sites of erosion on private property reported by landowners (D. Passe, 

Lake Co., personal communication, 2018). Datasets received from completed master's 

thesis research on bluff erosion (Wick, 2013; Neitzel, 2014; Manopkawee, 2015; Hall, 

2016), sediment stressor reports (Jasperson et al., 2018; Lahti et al., 2013; Sandberg et 

al., 2017), and river basin studies (Natural Resource Conservation Service, 1998; St. 

Louis SWCD, 2010; Nieber et al., 2008) were also included in the historic inventory 

database [Appendix 1: Figure 15].  

Historical imagery (1991-2019) and three-dimensional perspectives on Google 

Earth were used to identify potential historic landslide locations remotely. Landslide 

scars and deposit signatures (i.e., bare earth, breaks in the tree canopy, clusters of fallen 

trees, etc.) were identified remotely using Google Earth imagery. We remotely surveyed 

along main-stem river corridors, major roads, highways, and the shoreline of Lake 

Superior. Location confidence was rated using a 3-point scale based on the type of data 

collection methods used. Site locations provided by external sources are considered 

"potential erosion locations" and rated with low confidence "1". Any potential locations 

that were verified using Google Earth imagery were rated with moderate confidence "2". 

Field-verified locations were given the highest confidence rating "3". Each site in the 

historic inventory was assigned a confidence rating and any available information was 

included in a table of attributes [Appendix 2: Table 13].  

 

Remote Mapping 

Following guidelines provided by Oregon and Washington State protocols for 

mapping landslides from airborne lidar data (Burns and Madin, 2009; Slaughter et al., 

2017), all historic landslide locations were digitized into polygon feature classes that 

distinguish between the failure's "headscarp", "deposit", and additional "scarp line" 
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features. All feature classes were incorporated into a landslide geodatabase adapted from 

Oregon and Washington's published geodatabase schema (Burns and Madin, 2009; 

Slaughter et al., 2017) and customized for Minnesota (Engle et al., 2020). One-meter 

digital elevation models (DEMs) produced from airborne lidar flights were used to 

generate detailed visualizations of the topography (i.e., hillshade, slopeshade, and Red 

Relief) which help illuminate landslide features in ArcGIS (ArcMap & ArcGIS Pro) 

[Figure 7]. Slopeshade refers to a slope map displayed with a red-to-white color ramp 

using a stretched symbology with 5 standard deviations. Red Relief [Figure 7b] is a 

topographic visualization built by layering a 40% transparent slopeshade over a raster 

known as “topographic openness” (Yokoyama et al., 2002; Chiba et al., 2008).  

Airborne lidar flight missions were conducted in 2011 (pre-flood) and 2012 (post-

flood) in Carlton and St. Louis Counties. Repeat aerial lidar typically allows for vertical 

change detection that reveals areas of erosion and deposition. Unfortunately, errors in the 

Duluth-area lidar alignment inhibited an accurate assessment of net volumetric changes. 

Horizontal and vertical offsets found in the lidar data were caused by different flight line 

directions and misalignments. USGS is currently working to remediate these 

misalignments and explore new ways to utilize the data with Object-Based Image 

Analysis (OBIA) for landslide detection (DeLong et al., 2020). High-resolution aerial 

imagery from 2013 was sourced from the National Agriculture Imagery Program (NAIP) 

and accessed through the Minnesota IT Services Geospatial Information Office to guide 

mapping in ArcGIS. Google Earth imagery from 2015 and 2017 was also referenced 

often throughout the mapping process.  
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Mapping was conducted at a map scale ranging from 1:1000 - 1:3000. The editor 

tool was used to outline headscarps and deposits separately using three primary data 

visualizations as base maps: aerial imagery, Red Relief, and 1-meter lidar hillshade 

[Figure 6]. Each headscarp polygon includes a headscarp feature and/or exposed failure 

surface. Headscarp and associated deposit polygons were given matching slide unique id 

numbers. In the case where a headscarp contributes to multiple deposits, the first mapped 

deposit was given a matching slide unique id and remaining deposits were numbered 

Figure 7. Aerial imagery (a), Red Relief (b), and lidar hillshade (c) were used to delineate 
landslide polygons (d). 
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consecutively. In many cases, deposited material was removed by streams, rivers, or 

waves, and therefore showed no evidence of a mappable deposit. Information about the 

mapped slides (e.g. location method, confidence, slope, aspect, material, etc.) was 

included in a slide properties table as part of the geodatabase [Appendix 2: Table 14].  

 

Field Verification 

Field verification was used to validate and assess remote mapping methods as 

well as provide additional field data and observations. We selected areas to field-check 

that were easily accessible and had high landslide density. We utilized public hiking trails 

and walkable streams to access many of our sites [Figure 8]. Areas along larger water 

bodies were accessed via canoe or small fishing boat. We tracked our field exploration 

Figure 8. Remotely mapped extent, field-verified areas and excluded mining areas. 
Inset map shows landslide polygons and the purple lines depict paths taken by 
researchers during field-verification of the Jay Cooke State Park area. 
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using a Garmin InReach hand-held GPS unit. Trimble GNSS units with laser 

rangefinders were used to collect multiple offset GPS points per site. At each slide, we 

collected GPS points for the headscarp feature, flanks, deposit (if present), and photo 

locations. Base maps containing our mapped polygons were uploaded to the Trimble for 

efficient on-site location and to report any missing or inaccurate polygons. Photos were 

taken at each site and included in the landslide geodatabase. Field notes for each site 

included a description of slide material, slide classification, estimated headscarp height, 

photo time stamp, and any additional observations on slope failure processes. Sediment 

samples were collected at select sites using a hand shovel and labeled quart size bag to 

confirm material descriptions back in the lab. 

 

Susceptibility Analysis 

I conducted a susceptibility analysis using a logistic regression (LR) approach to 

predict the landslide occurrence using nine causal factors: (slope, aspect, elevation, relief, 

depth to bedrock, soil erodibility, substrate, land cover, and distance to streams). This LR 

analysis was tested in Jay Cooke State Park (JCSP) and the Lake Superior South 

watershed (LSSW) to compare changes in model performance at different spatial scales 

and geomorphic settings. The two predictive models were then applied to the Mission 

Creek watershed to assess the impact of scale and setting on transferability.  

Pre-flood (2011) 1-meter digital elevation models (DEMs) were used for all raster 

derivations in the susceptibility analysis. Slope and aspect were generated using their 

respective tools in ArcGIS. Aspect was reclassified into a factor with each cardinal 

direction as a separate class. Local relief was created using the focal statistics tool to 

calculate the range (maximum-minimum) of nearby pixel values using a 100m x100m 

moving window. The distance to stream raster was created using the Euclidean distance 

tool to calculate distance from the statewide Department of Natural Resources (DNR) 

streams and rivers shapefile. The depth to bedrock raster dataset was sourced from the 

Minnesota Geological Survey (MGS) County Atlas.  
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Figure 9. Predictive variables included in the analysis: Slope (a), Relief (b), Depth to 
Bedrock (c), Distance to Streams (d), Aspect (e), K-factor (f), Landcover (g), and 
Substrate (h). 
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Land cover data from 2011 came from the National Land Cover Dataset (NLCD) 

and was reclassified into 8 categories. Surficial geology data sourced from the MGS was 

converted from a shapefile to a raster layer using the "lithology" attribute to assign 

individual pixel values. Bedrock geology was converted from a shapefile to a raster with 

the "Major lithology" attribute assigned to individual pixels. Soil erodibility from the Soil 

Survey Geographic database (SSURGO) was converted from a shapefile to a raster 

dataset using the "k-factor" attributes assigned to pixels. Land cover, depth to bedrock, 

and distance to stream were resampled to match DEM derivative rasters (1m x 1m cell 

size) to maintain the highest possible resolution. [Appendix 3] 

For the logistic regression analysis, geoenvironmental information is required for 

landslide areas and non-landslide areas. To collect a balanced sampling of points for 

"stable" non-landslide areas, we created a fishnet of points across the area of interest and 

Figure 10. Map depicting data sampling in stable and unstable areas of Jay Cooke 
State Park. 
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used "extract multi values to points" to sample pixel values from the raster. A similar 

technique was used to sample "unstable" landslide areas using a denser fishnet of points 

across landslide polygons [Figure 10]. Any non-slide points overlapping with slide 

polygons were erased from the sampling. These data tables were exported to excel and 

arranged in a comma-separated values (.csv) format for use in R open-source statistical 

software (R Core Team, 2019). We randomly subdivided the dataset into 80% training 

data and 20% test data for cross-validation.  

The Generalized Linear Model (glm) function was used to run a multivariate 

Logistic Regression (LR) in R statistical programming software (R Core Team, 2019). 

Independent variables included non-linear, non-normally distributed, categorical data 

(substrate, land cover, and aspect), and continuous data (slope angle, relief, elevation, soil 

k-factor, depth to bedrock, and distance to streams). A correlation matrix was generated 

to identify any correlation between variables that would bias the LR model. Relief was 

eliminated because of its high correlation with slope. The glm was specified as a 

binomial because our dependent variable is binary (presence/absence of landslide). LR 

analysis of the training data evaluated the relative contribution of each variable, 

emphasizing variables with a statistically-significant influence on slope stability. We 

used the MASS package in R to apply a stepwise method in both directions that tests 

different combinations of variables (Venables and Ripley, 2002). The Akaike Information 

Criterion (AIC) is a common indicator for goodness-of-fit and is calculated using the log-

likelihood and equivalent degrees of freedom (edf). In a glm, the log-likelihood 

represents the model deviance and the edf is determined by the number of parameters 

included in the model. AIC was used to compare models and identify which combination 

of predictive variables produced the best fitting model. Test data were utilized to 

determine how effectively the final model predicted landslide occurrence using a 

confusion matrix [Table 1]. A confusion matrix, or table comparing predicted values with 

actual test data values, was generated to assess model accuracy. Confusion matrices were 

also generated using spatial analysis in ArcGIS to show how accurately the external 

models predicted landslides in the Mission Creek watershed compared to the actual 

watershed inventory data. 
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Table 1. Confusion Matrix: 

 

Actual Predicted  
Non-Slide Slide 

Non-Slide 
True 

Negative 
False 

Positive 

Slide 
False 

Negative 
True 

Positive 

   

Accuracy ((TN + TP) / (Total)) * 100 

 

Multiple iterations allowed us to manage variation that arose from randomly 

sampling training/test data and eliminate unnecessary predictive variables. Each iteration 

ran a simple LR using slope as the only predictive variable to compare with the 

multivariate LR analysis. We ran 1000 iterations and assessed how frequently each 

variable was considered significant by the model. Any variables that were included in 

less than 50% of the thousand iterations were excluded from the final analysis. 

Once all variables were properly vetted, an additional 1000 iterations of the LR 

analysis were run to select our final susceptibility model. The variables included in the 

final analysis were slope, distance to streams, depth to bedrock, substrate, and k-factor. 

We selected the model with the lowest AIC or "best-fit" and used the model summary 

results to build a susceptibility map in ArcGIS. Each predictive variable raster was 

weighted based on its coefficient estimate using the raster calculator. The resulting 

landslide susceptibility raster was classified into three categories for low, moderate, and 

high susceptibility using ArcGIS Natural Breaks (Jenks). See appendix 3 for detailed 

instructions to replicate this analysis [Appendix 3]. 

 

Results 

Landslide Inventory 

The landslide inventory for the Lake Superior watershed in Minnesota contains 

2,005 remotely mapped slope failures. During the 2019 field season, 685 out of 702 field-

checked polygons were positively identified. The spatial distribution of these mapped 
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failures shows us that certain areas have a higher density of mass-wasting events. More 

than half of the inventory (52%) is located within Carlton County, St. Louis County 

contains almost a third of the inventory (31%), while the remainder is split between Lake 

(7%) and Cook (9%) counties.  

The distribution of landslides is largely dictated by the surficial geology of the 

region. Over 70% of the mass movements occur in glacial sediments, with the majority in 

areas mapped as glaciolacustrine deposits of the Barnum formation and less than 3% of 

the mapped slides occur in areas mapped as diamicton from the Cromwell formation. 

18% are found in areas mapped as Holocene alluvium. The remaining 10% of slope 

failures occur in bedrock members of the Duluth Complex and the North Shore Volcanic 

Group. 

 

 

 

Figure 11. Landslide inventory for the Lake Superior watershed. 
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Table 2. Landslide inventory summaries for each focus area. 

 

 # of 

Slides 

Area* 

(km2) 

Landslide 

Area (km2) 

Average† 

(m2) 

Minimum† 

(m2) 

Maximum† 

(m2) 

LSW 2,005 15,699 2.6 1,306 11 40,304 

LSSW 407 1,616 0.24 587 15 6,823 

Jay Cooke 421 35 0.62 1,486 37 23,947 

Mission Creek 266 28 0.31 1,177 24 13,777 

*Area of each watershed 
† Average, minimum, and maximum polygon size in each watershed 

 

The most common types of mass movements we observe in northeastern 

Minnesota include shallow translational and rotational earth slides as well as complex 

slope failures. We identified shallow translational slides along sloped surfaces of stacked 

lithologies, at the interface of organic soils with underlying sediment (rooting depth), or 

where slopes have been modified to accommodate roads and other infrastructure. These 

translational failures often occur during freeze/thaw cycles or following periods of 

intense rainfall. Slumping, a form of rotational slope failure, is characteristic of most 

sediment bluffs along stream corridors of Lake Superior tributaries. These rotational 

failures result from increased soil moisture and undercutting of the bank's toe from direct 

hydraulic action (Hooke, 1979). Slumps can also result from the process of groundwater 

seepage or piping through the bank in a process known as "sapping" (Hagerty, 1991). 

Complex slope failures demonstrate morphologies for multiple movement types and 

commonly involve re-activation of a landslide deposit. 

Less common mass-movement events include debris flows, earth flows, and rock 

falls/topples. Debris and earth flows occur in areas with high relief and thicker 

glaciolacustrine sediments or paleo-shoreline depositional environments. These are 

caused by intense surface water run-off from heavy precipitation or rapid snowmelt that 

saturate, liquefy, and mobilize unconsolidated fine-grained sediments (Highland and 

Bobrowsky, 2008). Rock falls and topples are typically found where streams and roads 

have cut down through bedrock and in the steep bedrock cliffs along the North Shore of 

Lake Superior. Rock falls are common in jointed bedrock and are triggered by 
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freeze/thaw, general physical and chemical weathering, or from direct undercutting from 

streams or wave action.  

 

Susceptibility Analysis 

 The influence of slope on landslide occurrence is positively correlated with the 

slope angle. Logistic Regression (LR) analysis of slope stability in Jay Cooke State Park 

(JCSP) using slope angle as the only predictive variable with six slope categories 

predicted landslides with 81.4% accuracy. Landslide frequency gradually increases with 

an increase in slope angle and slopes of 32-45 degrees have the highest likelihood of 

failing in this area.   

 

Table 3. Simple LR model summary results for Jay Cooke State Park: 

 Estimate Std. Error P-value 

(Intercept) -5.02 0.71 <0.001 

Slope (4-12) 1.71 0.78 0.03 

Slope (12-23) 4.64 0.72 <0.001 

Slope (23-27) 6.25 0.72 <0.001 

Slope (27-32) 7.26 0.74 <0.001 

Slope (32-45) 7.81 0.76 <0.001 

 

Table 4. Confusion matrix for simple LR model in Jay Cooke State Park: 

 

 

 

 

 

 

 

 

Actual Predicted 

 Non-Slide Slide 

Non-Slide 203 35 

Slide 52 180 

   

Accuracy 81.4% 
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The multivariate LR analysis of slope stability in JCSP indicated that slope, land-

cover, substrate, depth to bedrock, and distance to streams are statistically significant (P < 

0) variables for predicting the presence or absence of slope failures in JCSP. Slope was 

weighted more heavily in the model than land-cover, substrate, depth to bedrock, and 

distance to stream. The multivariate model predicted landslides with 82.3% accuracy. 

Table 5. Multivariate LR model summary results for Jay Cooke State Park: 

 Estimate Std. Error P-value 

(Intercept) -7.17 1.13 <0.001 

Substrate (Clay) -0.16 0.73 0.83 

Substrate (Diamicton) 1.81 0.73 0.01 

Substrate (Sand) -1.08 0.81 0.19 

Land cover (Developed) 0.76 0.73 0.30 

Land cover (Forest) 0.85 0.56 0.13 

Land cover (Open Water) 4.03 0.80 <0.001 

Land cover (Shrub) 1.09 0.70 0.12 

Land cover (Wetlands) 1.67 0.68 0.01 

Depth to Bedrock (30-61) 0.80 0.37 0.03 

Depth to Bedrock (61-96) 0.87 0.37 0.02 

Depth to Bedrock (96-136) 0.80 0.36 0.03 

Depth to Bedrock (136-187) 1.34 0.36 <0.001 

Depth to Bedrock (187-413) 1.33 0.36 <0.001 

DTS (52-82) 0.20 0.28 0.49 

DTS (82-129) 0.00 0.27 1.00 

DTS (129-201) -0.07 0.27 0.80 

DTS (201-312) -0.62 0.29 0.04 

DTS (312-1,370) -0.62 0.29 0.03 

Slope (2.6-4.3) 1.66 0.88 0.06 

Slope (4.3-13.1) 4.52 0.81 <0.001 

Slope (13.1-23.5) 6.15 0.82 <0.001 

Slope (23.5-31.3) 7.19 0.83 <0.001 
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Slope (31.3-66.3) 7.74 0.86 <0.001 

 

Table 6. Confusion matrix for multivariate LR model in Jay Cooke State Park: 

 

 

 

 

 

 

 

LR analysis of slope stability in the Lake Superior South watershed (LSSW) using 

slope angle as the only predictive variable with six geometrically binned slope categories 

predicted landslides with 95.2% accuracy. Relatively flat slopes (2.6-4.3 degrees) have a 

strong influence on slope stability while moderately steep slopes (31.5-66.3 degrees) 

have the largest likelihood of slope failure. High standard error and p-values associated 

 Actual Predicted 

 Non-Slide Slide 

Non-Slide 195 23 

Slide 60 192 

   

Accuracy 82.3% 

Figure 12. Landslide susceptibility map for Jay Cooke State Park. 
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with flatter slopes (2.4-4.3 degrees) are likely the result of quasi-complete data separation 

because none of the slope failures in this dataset occurred on slope angles of 2.4-4.3 

degrees. 

Table 7. Simple LR model summary results for Lake Superior South watershed: 

 Estimate Std. Error P-value 

(Intercept) -5.74 0.71 <0.001 

Slope (2.6-4.3) -13.82 429.82 0.97 

Slope (4.3-13.1) 3.17 0.73 <0.001 

Slope (13.1-23.5) 8.09 0.72 <0.001 

Slope (23.5-31.3) 9.95 0.78 <0.001 

Slope (31.3-66.3) 10.25 0.80 <0.001 

 

Table 8. Confusion matrix for simple LR model in the Lake Superior South watershed: 

 

 

 

 

 

 

 

 

The multivariate LR analysis of slope stability in LSSW determined that slope, 

substrate, k-factor, depth to bedrock, and distance to stream were all relevant variables 

for predicting landslides. Slope was weighted more heavily than substrate, k-factor, depth 

to bedrock, and distance to streams. Clay has a strong relationship with slope stability but 

it should be noted that it also has a high standard error (1336.37) and p-value (0.99). This 

is likely also the result of quasi-complete data separation because none of the slope 

failures in this dataset occurred in clay substrates. Similar data separation is causing a 

high standard error (927.48) and p-value (0.99) for relatively flat slopes (2.6-4.3 degrees). 

The overall multivariate model predicted landslide occurrence with 95.3% accuracy. 

Actual Predicted 

 Non-Slide Slide 

Non-Slide 463 25 

Slide 21 453 

   

Accuracy 95.2% 
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Table 9. Multivariate LR model summary results in Lake Superior South watershed: 

 Estimate Std. Error P-value 

(Intercept) -5.00 0.92 <0.001 

Substrate (Clay) -20.04 1336.37 0.99 

Substrate (Diamicton) -2.23 0.54 <0.001 

Substrate (Gravel) -1.74 1.21 0.15 

Substrate (Sand) 0.79 0.50 0.11 

Substrate (Silt) -2.69 0.92 <0.001 

Depth to Bedrock (6-15) 1.10 0.44 0.01 

Depth to Bedrock (15-25) 1.65 0.46 <0.001 

Depth to Bedrock (25-45) 1.99 0.55 <0.001 

Depth to Bedrock (45-66) 1.56 0.52 <0.001 

Depth to Bedrock (66-568) 0.82 0.55 0.13 

DTS (20-40) -0.51 0.47 0.28 

DTS (40-113) -0.98 0.50 0.05 

DTS (113-260) -2.82 0.59 <0.001 

DTS (260-497) -2.86 0.56 <0.001 

DTS (497-3860) -1.86 0.60 <0.001 

K-factor (0.2-0.23) -2.11 0.57 <0.001 

K-factor (0.23-0.26) -1.20 0.50 0.02 

K-factor (0.26-0.36) -0.57 0.45 0.21 

K-factor (0.36-0.43) -2.11 0.57 <0.001 

K-factor (0.43-0.47) -3.28 0.73 <0.001 

Slope (2.6-4.3) -14.72 927.48 0.99 

Slope (4.3-13.1) 4.20 0.78 <0.001 

Slope (13.1-23.5) 9.40 0.84 <0.001 

Slope (23.5-31.3) 11.31 0.92 <0.001 

Slope (31.3-66.3) 13.02 1.02 <0.001 
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Table 10. Confusion matrix for multivariate LR model in Lake Superior South watershed: 

 

 Actual Predicted 

 Non-Slide Slide 

Non-Slide 464 25 

Slide 20 453 

   

Accuracy 95.3% 

 

 

Figure 13. Landslide Susceptibility Map for the Lake Superior South watershed (LSSW). 
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When comparing each model's applicability to the Mission Creek watershed, the 

Jay Cooke State Park (JCSP) model was more accurate than the Lake Superior South 

watershed (LSSW) model. The JCSP model predicted landslides with 92% accuracy, 

while the LSSW model was only 56% accurate at predicting landslide occurrence in this 

smaller watershed. 

 

Table 11. Confusion matrices for multivariate LR models applied to the Mission Creek 
watershed. Table on the left shows JCSP model accuracy. Table on the right shows LSSW 
model accuracy. 

 

 

 

 

 

 

 

 

 

 Actual Predicted  
Non-Slide Slide 

Non-Slide 436 13 

Slide 399 90 

   

Accuracy 56% 

 Actual Predicted  
Non-Slide Slide 

Non-Slide 408 41 

Slide 26 463 

   

Accuracy 92% 

Figure 14. Comparison of the Jay Cooke State Park model (left) and the Lake Superior 
South watershed model (right) applied to the Mission Creek watershed. 
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Discussion 

Distribution of Landslides 

Landslide distribution across northeastern Minnesota is largely dictated by 

geomorphic setting. The Red River and Nemadji River basins, located in Carlton county, 

have a higher density of shallow translational or rotational slope failures than other sub-

basins within our study area. These shallow failures occur in glacial lake clays at the 

interface of sediments and organic soils, often at the average rooting depth (~0.5 meters 

below the surface). The Jay Cooke State Park and Mission Creek areas cover a mix of 

ice-marginal, shoreline, and deltaic depositional environments (Breckenridge, 2013). This 

mixed geomorphic setting produces a combination of failure types with broad ranges in 

size and age. We observed older deep-seated rotational failures that contain shallower 

slides and flows along their headscarps or deposits. These sediments are either 

remobilized through liquefaction as flows or removed by sheet-wash or rilling processes 

during moderate precipitation events.  

The surficial material of the Lake Superior South watershed was deposited in both 

ice-marginal glacial and paleo-shoreline environments. The majority of slides in these 

areas are rotational earth slides along outside bends of Lake Superior tributaries or in 

bluffs along the Lake Superior shoreline. These failures were more concentrated in areas 

closer to the lake where relief is highest. North St. Louis County was primarily a 

subglacial setting with drumlin fields and Rogen moraines dispersed across a low 

gradient area (Kryzer, 2014). These areas appear to only experience slope failure along 

artificial slopes from road construction or mining activity, suggesting that sub-glacial 

depositional sediments with low relief are less prone to natural slope failure. 

 

Slope Instability Factors 

We found that a multivariate logistic regression (LR) analysis is effective in 

creating a landslide susceptibility map using slope, distance to streams, depth to bedrock, 

and substrate. Slope carries most of the predictive power for landslide occurrence, while 

additional variables only help improve the model accuracy by two to three percent. 
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Slope angle is the most effective variable for predicting the propensity for 

landslides regardless of scale, substrate, or geomorphic setting. Studies in mountainous 

areas also show that slope angle is a significant variable when conducting similar 

multivariate LR analyses (Chen and Wang, 2007; Mancini et al., 2010; Bai et al., 2010; 

Yilmaz, 2010; Kavzoglu et al., 2014). In northeastern Minnesota, we also observe that 

Logistic Regression-based susceptibility models built using only slope work considerably 

well without including additional variables. 

The effectiveness of slope as a dominant predictive variable could be the result of 

unique circumstances. Using high-resolution lidar data collected in 2011, before the 2012 

precipitation event that triggered most of the analyzed slides, created ideal conditions for 

capturing pre-failure slopes. Most localities do not have access to pre-failure slope data 

and therefore must measure adjacent slopes or use post-failure data. Because of this, we 

could be measuring relatively higher slopes. Other studies also found slope to be the most 

important factor, but it did not have the same independent predictive power as it does in 

our analysis. 

Distance to streams is commonly included in similar LR analyses though it 

appears to have varied effects reported in the literature. Our results show that distance to 

streams is a significant variable to consider because down-cutting from channel incision 

creates areas with steeper gradients and higher relief along main stem river valleys. In a 

young landscape, like many postglacial landscapes, incision is still actively propagating 

upstream but has not yet integrated much of the flat upland areas. In our analysis of 

postglacial landscapes, slope stability increases as the distance to stream increases. This 

directly opposes what is observed in mountainous areas where high relief and steeper 

slopes are generally found at the headwaters farther from main stem river channels. A 

study in the Daunia Mountains of Italy found that increased distances from drainage 

networks corresponded to more positive regression coefficients that means there is a 

higher propensity for landslides farther from drainages (Mancini et al., 2010).  

Substrate is a consistently relevant geoenvironmental variable for predicting 

landslide occurrence in many studies. We found that areas mapped as "clay" in the MGS 

surficial geology map appears to be primarily associated with greater slope stability, 

which is contrary to the common finding that clays and silty clays correspond to 
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landslide-prone areas (Mancini et al., 2010; Nandi and Shakoor, 2010). This could be 

attributed to the broader scale at which the surficial geology was mapped, generalizing 

"clay" to cover areas with clay-rich tills as well as lacustrine deposits. Alternatively, our 

results show that landslides are more dominant in areas mapped as diamicton, a substrate 

that is not included in most studies. We observed that diamicton and lake sediments 

comprise the majority of slope failures in the Lake Superior watershed. Unfortunately, we 

cannot discern whether this material's propensity for slope failure is the result of intrinsic 

characteristics or placement on the landscape. Most of the glacial lake sediments are 

closer to Lake Superior where sediment packages are thicker and relief is higher. Our 

analysis revealed that depth to bedrock is a relevant causal factor in our landscape that is 

not commonly included in other studies. The relationship between material composition 

and thickness makes their influence difficult to differentiate at such coarse data 

resolution. However, depth to bedrock had consistently lower p-values than substrate, 

suggesting greater statistical significance. 

 

Model Performance 

Study area and landslide database size can alter the accuracy of multivariate 

logistic regression analysis, though little experimentation with these factors has occurred 

in previous research. Since inventory mapping is often a time-consuming and expensive 

endeavor, state agencies may find themselves wondering how large of an inventory needs 

to be mapped to perform a useful susceptibility analysis. Can susceptibility modeling in 

one area be applied to another area where little inventory mapping has been completed? I 

found that the number of slides, geomorphic setting of the study area, and scale required 

special consideration for this kind of analysis. 

The LR analysis would not function properly with an inventory containing less 

than 100 landslide polygons and was most effective with several hundred data points for 

both training and test datasets. Therefore, the size of the study area is only limited by the 

number of slides concentrated within it. Smaller areas can be used if the landslide density 

is higher, while larger areas may be required to satisfy the minimum sample size if 

landslides are sparse.     
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Most studies have applied logistic regression susceptibility analyses at the 

thousand to ten thousand square kilometer range (Mancini et al., 2010; Nandi and 

Shakoor, 2010; Kavzoglu, et al., 2014) with some falling an order of magnitude above 

(Chen and Wang, 2007) or below (Ayalew et al., 2005). Our analyses in Jay Cooke State 

Park (35 km2), Mission Creek watershed (28 km2), and the Lake Superior South 

watershed (1616 km2) examine smaller areas relative to existing studies. Results show 

that a model run at the thousand km2 sub-watershed scale or Hydrologic Unit Code 8 

(HUC-8) performed with higher accuracy than one at the ten km2 watershed scale (HUC- 

12). This could be the result of the resolution of data included in the model. Certain 

datasets were developed at the county scale and thus did not transfer seamlessly to 

smaller areas. For example, the depth to bedrock layer was created at the county-scale 

and therefore reflected a lower resolution at the scale of JCSP. Depth to bedrock became 

more effective in the LSSW, which is closer to the scale at which the data were created. 

Many of the datasets used in this analysis were created at the county-wide or statewide 

scale, which could explain why the LSSW was more accurate than the JCSP model. 

Because data resolution is a limiting factor, I recommend that this analysis be applied at 

scales larger than HUC-12 but not much larger than the HUC-8 scale if relying on 

environmental factors mapped at statewide scales. 

Most landslide susceptibility studies have focused on testing several types of 

susceptibility models over the same area. The research presented here helps address the 

inverse question: under what conditions can a single susceptibility model developed in 

one study area be applied to another area? We found that the geomorphic setting has an 

impact on transferability. The LSSW model did not function effectively when transferred 

to the Mission creek watershed, which represents a different geomorphic setting. The 

JCSP model, however, performed well in the adjacent Mission Creek watershed because 

they share similar geomorphic characteristics. Our study suggests that transferability is 

better when conducted across similar scales and geomorphic settings. 

Climate & Hydrology 

Climate change in northeastern Minnesota forecasts an increased risk for high-

intensity storms (Blumenfeld, 2016). Erosion from higher stream discharges and stronger 
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wave velocities will be worsened by increased storminess and will likely trigger more 

mass-wasting events in the future. Lake Superior water levels also experience natural 

near-decadal oscillations and 2020 water levels are some of the highest levels on record 

(Watras et al., 2013; NOAA data viewer). Water levels are also slowly rising near the St. 

Louis River estuary in response to natural isostatic rebound, compounding the effects 

from climate change and cyclical lake level adjustments on coastal erosion. There should 

be an increase in slope failure events while water levels remain elevated. Our landslide 

inventory reflects which areas are most sensitive to the effects of climate change on 

fluvial and coastal erosion, allowing us to anticipate how these events may alter the 

landscape in the future.  

Current projections reveal a warmer and wetter climate for the region with an 

increased possibility for short duration heavy precipitation events (Blumenfeld, 2016). 

The 500-year flood event that happened in 2012 is a good example of what we are likely 

to see when these types of events happen more frequently. Repeat lidar data from before 

and after the 2012 flood reveals that 60% of mapped slope failures were either triggered 

or re-activated as a result of the June 2012 precipitation event. The flooding had a 

magnified effect on slope stability because of saturated soil conditions from an already 

rainy spring, with May 2012 as one of the wettest recorded Mays in Duluth's history 

(Czuba et al., 2012). This highlights the significance of precipitation and flooding on 

slope stability in the region. High soil moisture conditions tend to increase run-off 

discharge to streams and rivers, increasing the stream power that drives toe-cutting 

erosion along outside bends. Groundwater seepage is also increased by elevated soil 

moisture conditions, under which water can emerge from bluff faces with enough force to 

cause mass-wasting from seepage erosion (Dunne, 1990).  

Streambank erosion has evolved to the point of mass bluff failure in most Lake 

Superior tributaries because of ongoing channel incision from knickpoints initiated by 

paleo-lake level changes. 55% of the inventory is within 30 meters of a stream or river 

channel which demonstrates the relevance of river incision on slope failure in this region. 

Relief is highest near streams because of the high level of incision that most streams in 

the region have experienced since glaciers receded from the landscape. Toe-cutting 

erosion causes mass wasting only in places where there is enough relief to trigger mass 
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bluff failure. This process is apparent in the LR analysis of "distance to stream" from the 

LSSW model which shows increasing stability as you move farther away from channels. 

There should be an escalation in mass bluff failure along stream corridors as more 

frequent storms contribute to higher stream discharges. 

Coastal erosion along the shoreline of Lake Superior is increasing because of 

rising water levels and increased frequency of storms. Great Lakes water levels rise and 

fall in near-decadal oscillations that are largely driven by evaporation (Watras et al., 

2013). Monthly-averaged water level data from NOAA monitoring stations reveal that we 

are on the rising limb of one of these oscillations and have reached new record highs in 

2019 (NOAA data viewer). Slope failures along the shoreline comprise 8% of our 

inventory and include both rotational slumps in till or rockfall zones in bedrock cliffs 

along the shoreline. Increased storminess also increases wave action which leads to 

greater toe-cutting and thus exacerbates coastal bluff erosion (Johnson and Johnston, 

1995; Mickelson et al., 2020). Another factor in lake level changes is the influence of 

isostatic rebound. Relative to the outlet of Lake Superior at Point Iroquois, MI, the 

shoreline at Duluth, MN, is falling at a rate of roughly 2.5 mm per year, while the 

shoreline at Rossport, Ontario, is rising at a rate of roughly 3.0 mm per year (Mainville 

and Craymer, 2005). This differential uplift leads to higher water levels towards the 

western arm of Lake Superior and intensifies the impact of wave action on coastal 

erosion. Based on what we see in our landslide inventory from past storm events, climate 

change should increase the frequency of coastal landslides in northeastern Minnesota 

from increased storminess during times of higher lake levels. 

 

Study Limitations & Future Work 

This study establishes a framework for understanding slope failure processes in 

low gradient landscapes shaped by glaciation. The products from this research will also 

be useful to Minnesota landowners and emergency managers with goals of minimizing 

risks to property, infrastructure, and public safety. This research has created a resource 

that can be used for continued exploration of the physical processes driving slope 

instability in postglacial landscapes.  
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It is important to remember that this database represents a snapshot in time. We 

are creating a landslide inventory circa 2019 that will require ongoing attention as 

hillslopes continue to evolve. This was a three-year study aimed at compiling past and 

present slope failures. However, slopes will continue to fail and for this resource to 

remain relevant and useful to the public and land managers, the mapping and updating 

effort should be taken over by a state agency or other organization. 

 There is also a lot more that can be done with this dataset than the work 

completed by this study. Further analysis should include an assessment of precipitation, a 

primary driver for slope failure, which was not explored in this analysis. Rainfall is one 

of the most influential variables in slope stability because of its ability to both increase 

the shear stress and decrease the shear strength of unconsolidated materials on a slope. 

Unfortunately, time and resource constraints did not allow us to investigate the 

magnitude and duration of precipitation necessary to trigger mass-movements in 

northeastern Minnesota. Using this inventory and climatic data from the 2012 flood and 

other events, one could generate an event-based model that explores the influence of 

precipitation and flooding on mass-wasting.  

These susceptibility maps were developed using broad spatial data and therefore 

the areas labeled as high susceptibility would require site-specific monitoring and data. 

Future work should include detailed monitoring and collection of site-specific 

information to investigate the rheology of different glacial sediments. Data on soil 

moisture, hydraulic conductivity, and material shear strength would improve our 

understanding of local conditions. This research does not replace the need for 

Geotechnical assessments and any areas mapped as high susceptibility zones by this 

research require further investigation.  
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Conclusions 

 I compiled an inventory of landslides and other mass-movements throughout the 

Lake Superior Watershed in northeastern Minnesota. I then used this inventory and a 

combination of publicly available geo-spatial datasets to generate landslide susceptibility 

assessments. The following conclusions about slope stability in the Lake Superior 

Watershed in northeastern Minnesota can be drawn based on my analyses: 

 Slope, depth to bedrock, distance to streams, and substrate are statistically 

significant variables for predicting landslides using a multivariate logistic 

regression analysis. 

 Slope, as a singular independent variable, predicts the majority of landslides in 

these areas.  

 Susceptibility models have greater accuracy when implemented at a scale similar 

to the resolution of the geoenvironmental factors used for the analysis (83% in 

JCSP; 95% in LSSW).  

 Thick, unconsolidated glacial material is more vulnerable to sliding near streams 

during floods and heavy-precipitation events. This trend is magnified by the fact 

that most of the relief in these young, incising basins is isolated along stream 

corridors and most of the uplands are not integrated by developed drainage 

networks. 

 Paleo-geomorphic settings such as continental ice-margins, glacial lake-basins, or 

paleo-shoreline environments determine the material and structural properties of 

the substrate in which landslides occur, making them important to consider when 

assessing landslide susceptibility. 

These findings and the methodology used provide a framework for the mapping and 

assessment of landslide susceptibility in the upper Midwest and other similar postglacial 

landscapes. The primary limitation to these findings is that they overwhelmingly capture 

this landscape's response to a particular precipitation event in 2012. Methods developed 

in this study should be modified to accommodate available data in regions of interest, 
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therefore I list the following recommendations for future assessment in other parts of 

Minnesota: 

 Landslide detection and inventory mapping are the basis for landslide 

susceptibility and geo-hazard assessments.  The scale of the susceptibility analysis 

is dictated in part by the density of landslides as the number of landslides is a 

limiting factor for the size of the study area used in a susceptibility analysis. 

 Multivariate logistic regression analysis can provide reliable susceptibility 

models. To improve predictability, study areas should be chosen that align with 

geomorphic boundaries and at scales that closely match the resolution of regional 

datasets. 

 Slope, depth to bedrock, distance to streams, and substrate are critical variables to 

consider when studying landslides in young, previously glaciated areas. 

Understanding how these types of areas are geologically and geomorphically unique 

allows us to better predict how they will adjust to climatic changes. Landslides and other 

mass-wasting events are abundant in northeastern Minnesota and will likely become 

more common as the regional climate trends toward warmer and wetter conditions.  
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Appendices 

Appendix 1: Historical Landslide Inventory 

 Figure 15: Locations of historically documented landslides within project study area. 

 Table 12: Attributes for historic inventory points feature class in landslide geodatabase. 

 

Field Name Description 

SLIDE_UNIQUE_ID A unique landslide identification number assigned to all feature 
classes and tables related to a landslide. ID’s are composed using 
the quadrangle grid ID (from the ‘NG10K4’ field of  
USNG_GRID_10K_MN) followed by an underscore and a 4-digit 
number beginning with “_0001” that increases consecutively. 

DATA_SOURCE Original source that documented the slide feature (i.e. individual, 
agency, or institution)  

LOCATION_METHOD Additional information from source dataset which includes exact 
location method if known (i.e. field data, personal communication, 
watershed study, etc.) 

NAME_SLIDE Name or number assigned to feature by the original data source. 

DATE_SLIDE Year of slide event (if recorded) or year of source data collection. 

CONFIDENCE 1 (potential), 2 (Google Earth verified), 3 (Field verified) 

COMMENT Notes or information from source dataset 
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Appendix 2: Landslide Inventory and Geodatabase 

 The geodatabase for the landslide inventory will be available as part of a USGS 
data release tentatively set for 2021. The data can be found through the USGS data 
portal once reviewed and made available to the public.  

 

Table 13: Slide Properties table for polygons in landslide geodatabase. 

Field Name Description 

SLIDE_UNIQUE_ID Quadrangle ID followed by a number (ex. MN58_0001, 
MN58_0002, MN58_000…). Head scarps, deposits, and 
photo-points for an individual slide will correspond with the 
same UNIQUE_ID in the “Slide Properties” table. 

LOCATION_METHOD How landslide was located. (i.e. lidar dems, satellite imagery, 
field work, historical inventory, etc.) 

NAME_SLIDE Nearby stream/road name & ID number (ex. Amity ID_0001) 

AGE_EST (Historic <150yrs) or (Pre-historic >150yrs), estimated based 
tree growth and vegetation on deposit. 

CLASS_SLIDE Slide type if discernable 

GEOLOGIC_MATERIAL Minnesota Geological Survey D-1 Surficial Geology Map 

Figure 16: Field photos of four common slide types observed in northeastern Minnesota. 
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GEOLOGIC_UNIT Minnesota Geological Survey D-1 Surficial Geology Map 

DEEP_SHALLOW_SEATED Based on headscarp: < 4ft = Shallow, > 4ft = Deep  

LENGTH NA 

WIDTH NA 

DEPTH NA 

SLOPE Zonal statistics as a table to average slope raster values over 
entire headscarp polygon 

AREA Shape area 

VOLUME NA 

ASPECT Zonal statistics as a table to average apect raster over the 
entire headscarp polygon 

MVMT_DIRECTION Azimuth direction of deposit movement from headscarp 

CONFIDENCE_CLASS_SLIDE Sum of points determined by the following: 
Head scarp = 10 points 
Flanks = 10 points 
Deposit = 10 points 

CONFIDENCE_LOCATION 
 

GPS photo points = High 
LiDAR interpretation = Moderate 
Inferred location = Low 

COMMENTS Any additional notes about slide or how polygon was 
mapped. 
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Appendix 3: Detailed Methods for Landslide Susceptibility Mapping 

Here are detailed methods for creating a landslide susceptibility map using a 

multivariate logistic regression approach with ArcGIS Pro, Microsoft Excel, and R 

statistical programming software.  

Study Area Selection and Data Used 

This analysis requires an inventory of at least 100 landslide polygons to perform. 

Many operations require a “mask” within which we generate various raster derivatives, 

so it is crucial to select a reasonably sized (10 - 1,000 square kilometers) watershed or 

county boundary based on your computer processing power and inventory size. I will be 

using Jay Cooke State Park (35 km^2, 419 polygons) as an example.  

Table 14: Data used for multivariate logistic regression analysis. 

 

Data Source Link 

DEM - Slope and 
Aspect 

MnTOPO http://arcgis.dnr.state.mn.us/maps/m
ntopo/ 

Depth to Bedrock 
(Carlton County) 

MGS - found under 
subfolder ‘grids’ - ‘dtgd’ 
raster layer - raster 
calculate from feet to 
meters 

https://conservancy.umn.edu/handle/
11299/58760 

Land Cover (2011) NLCD https://gisdata.mn.gov/dataset/biota-
landcover-nlcd-mn-2011 

Streams and Rivers MN DNR - download the 
geodatabase for the 
polyline 

https://gisdata.mn.gov/dataset/water-
strahler-stream-order 

Substrate / Lithology MGS - download options - 
choose shapefile 

https://mngs-
umn.opendata.arcgis.com/datasets/su
rficial-geology-1 
 

Soil K-factor NRCS SSURGO - download 
necessary map packages 
then copy layers to your Arc 
Project 

https://www.arcgis.com/apps/View/in
dex.html?appid=cdc49bd63ea54dd297
7f3f2853e07fff 

Landslide Polygons Landslide inventory was 
created as part of this 
thesis research.  

Shapefiles are pending USGS data 
release set for 2021. 

http://arcgis.dnr.state.mn.us/maps/mntopo/
http://arcgis.dnr.state.mn.us/maps/mntopo/
https://conservancy.umn.edu/handle/11299/58760
https://conservancy.umn.edu/handle/11299/58760
https://gisdata.mn.gov/dataset/biota-landcover-nlcd-mn-2011
https://gisdata.mn.gov/dataset/biota-landcover-nlcd-mn-2011
https://gisdata.mn.gov/dataset/water-strahler-stream-order
https://gisdata.mn.gov/dataset/water-strahler-stream-order
https://mngs-umn.opendata.arcgis.com/datasets/surficial-geology-1
https://mngs-umn.opendata.arcgis.com/datasets/surficial-geology-1
https://mngs-umn.opendata.arcgis.com/datasets/surficial-geology-1
https://www.arcgis.com/apps/View/index.html?appid=cdc49bd63ea54dd2977f3f2853e07fff
https://www.arcgis.com/apps/View/index.html?appid=cdc49bd63ea54dd2977f3f2853e07fff
https://www.arcgis.com/apps/View/index.html?appid=cdc49bd63ea54dd2977f3f2853e07fff
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Phase 1 - Data Compilation and Preparation 

Compile basemap rasters: 

1. Substrate - Polygon to raster with “Lithology” attribute from the MGS surficial 

geology map. Adjust cell size for WGS coordinates to 0.0001. 

2. Landcover - sourced from NLCD, extract by mask and resample cell size. Simplify 

the classes from 15 to 8 different classes by grouping together the following: 

a. The 4 ‘developed’ classifications into a single Developed classification. 

b. The 3 ‘forest’ types into a single Forest classification. 

c. The ‘pasture / hay’ and ‘cultivated crops’ into a Cultivated classification 

d. The 2 ‘wetlands’ to a Wetland classification 

3. Aspect - run the aspect tool using the DEM. 

4. Slope - generate slope raster from the DEM (*Optional: smooth the slope raster 

using focal statistics, averaging slopes over a moving circular window with a 

radius of 3) 

5. Relief - Focal statistics with the range over a 100x100 moving window. 

(*Optional: can skip/omit this layer since it is very similar to slope) 

6. Depth to bedrock - Mosaic to new raster to merge multiple dtb rasters if 

necessary since these layers are downloaded on a county basis. Be sure to use a 

raster calculator to convert units in feet (as is on MGS layers) to meters. It can be 

used as-is from the county atlas, but the resolution leads to a pixelated 

appearance in the final map product. Since the depth to bedrock layer from the 

MGS was interpolated from well-log data originally, further interpolation should 

not significantly impact the data accuracy. Generate a fishnet for the study area 

with a width of 50 and a length of 50. This should generate a matrix of points 

that roughly land in each pixel of the depth to bedrock layer. Clip the point file to 

the study area and use extract multi-point to values to grab a raster value at 

each point. Use the Natural Neighbor interpolation method to generate the new 

depth to bedrock raster with a 1x1 cell size. 

7. Distance to streams - run euclidean distance tool from streams shapefile with 

1x1 cell size for output to make a distance to closest stream raster. Set 

coordinates and extent of study area to process in the environments tab. 

8. Soil erodibility - Use polygon to raster with the attribute “K-Factor Rock Free” 

(might also be called “kffact”) to rasterize k factor data. Since this data is 

downloaded by watershed, an additional step may be required to merge 

multiple rasters depending on the chosen study area.  
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Prepare dependent variable data table from point fishnets:  

1. Import landslide inventory polygons into the ArcGIS workspace (make a copy / 

new headscarp polygon class/shapefile to work with). We only use the 

headscarp polygon feature class for this analysis because we want to understand 

the conditions associated with the failure surface. If you decide, based on your 

inventory mapping, that the deposit feature class best captures the failure 

surface conditions, then you may want to include them in your analysis. 

 

2. Create a study area extent polygon that encompasses the headscarp unstable 

points. The extent may need to be modified depending on how the point 

generation goes during the following steps. There are multiple ways to go about 

this: (1) Manually make a shapefile and draw the study area (usually easier if 

familiar with the study area and unstable polygons distribution). (2) Generate an 

extent polygon across your headscarp data with minimum bounding geometry ( 

rectangle by area or convex hull, group option “All”), and the ‘Clip’ tool can be 

used to shrink that extent to your limiting basemap area. (3) Use the Raster 

domain tool to create a polygon extent of your limiting raster (in this case, clip 

the polygon down to the extent of the Carlton County Depth to Bedrock layer). 

Figure 17: Parameters for creating a dense fishnet of landslide points in ArcGIS Pro. 
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3. Create fishnets for the study area extent, aiming to get a balanced number of 

“unstable” (landslide) points and “stable” (non-landslide) points. Start with the 

unstable points by creating a dense fishnet, setting the study area boundary as 

the template extent [Figure 17]. 

 

4. Retain the dense fishnet points that intersect with a headscarp polygon - Select 

by location - points intersecting with headscarp polygons. Then export selected 

data to a new shapefile - right-click fishnet points - data - export features. 

5. Create a fishnet of stable points using a much larger cell size for sparse coverage 

over the full study area. The next step will eliminate some of the points, so it is 

best to have more stable points as they are easier than the unstable points to 

remove. 

 

6. Select by location and delete any stable points that intersect with an unstable 

landslide headscarp polygon. *Optional: run select by location with stream 

polyline data to delete stable fishnet points within 1-10m of a stream or river. 

 

7. Use the “extract multi values to points” tool for the sparse net points and the 

dense net points to grab raster pixel values of your geoenvironmental layers at 

each of the points to build the attribute table. Be mindful to keep the names and 

order of the variables consistent for both stable and unstable point files. 

Figure 18: Screen capture showing how to select "unstable" points from fishnet. 
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8. Sort your dense and sparse net attribute tables and eliminate any null or 

incorrect values in either. Use select by attributes to find the -9999 or null values 

and delete them or manually sort for -9999 or null values in your table and use 

shift select to delete those points. Can delete points that have a 0 value for 

distance to stream (dts_m). 

 

9. If the number of stable points and unstable points is highly imbalanced because 

of the chosen fishnet sizes and scale, the previous four steps may need to be 

redone until a rough balance is achieved. It is easier to get the dense number set 

and finalized then start over with making a new sparse net (lower spacing if not 

enough sparse points compared to dense points, higher spacing if too many 

sparse points compared to dense points). 

a. In the Jay Cooke Study Area, we ended up with 1073 unstable (dense -  

25m x 25m fishnet) points and 1133 stable (sparse - 175m x 175m) points. 

 

10.  Lastly, run “Add XY coordinates” to calculate the XY coordinates for the sparse 

and the dense points. 

 

Figure 19: Screen capture showing step 7 of the methodology. 
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11. Export the attribute tables for your stable and unstable points from Arc to Excel 

for data clean up using “Copy Rows”. 

 

Format CSV: 

1. Open both excel worksheets. Check that the data is correct, each variable has a 

column, and the columns for both tables are in the same order.  

2. Delete the GIS generated columns “FID” and “ID”. Insert a blank column before 

your first column. Label it “id” and fill it with all “stable” if you’re in the stable 

worksheet or “unstable” in the unstable worksheet. This column is to identify 

whether the data represents a landslide or non-landslide point. 

3. Copy and paste the unstable data directly below the stable data in excel, making 

sure the data are pasted into the correct attributes (shift+end+arrow key 

function useful here). 

4. Save the csv as a new csv titled by study area “JayCooke_data.csv”. 

5. Clean up numbers in excel based on personal preference, adjusting for less 

significant figures. It visually complicates things in R when there are more than 

two decimal places. Select all number data (shift+end+arrow) and decrease 

decimal. 

 

6. Pay attention to column headers since the R code shared with this document 

through the UMN Digital Conservancy will reference these specific column 

names. 

7. Save the files in a new folder to be used as the “active directory” when working 

in R and closeout of excel. 

 

Phase 2 - Multivariate Logistic Regression Analysis in R 

Download .rmd file from UMN Digital Conservancy to the folder containing the 

excel csv files. Set the folder as the “active directory” in R. Follow instructions to run the 

R-code for data prep and analysis. Most of the data, at this stage, will be in a continuous 

Figure 20: Screen capture showing properly formatted data columns in excel. 
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numerical format from the raster extractions. All of the geoenvironmental factors must 

be converted into a categorical format. This may require looking back at the original Arc 

layers to recall what categories are represented by which numbers (i.e. the value of 41 

on the NLCD landcover raster is equal to “Deciduous forest”). 

 

Tips while working in R: 

● It is important to save the R model output markdown to a pdf or html because, 

since the code includes a random sampling function, results will differ slightly for 

each run and overwrite any previous iterations. 

● The only “knobs” to turn within the model code script outside of data prep:  

○ Line 130: variables included in the Multivariate Logistic Regression 

(MVLR) - these can be changed after an initial run-through to show the 

frequency of variables chosen histogram in the analysis results after 

running the looped model (line 244). 

○ Line 184: number of model iterations - 1000 iterations takes 

approximately 1 hour with ~30,000 data points (~2.2gb of information). 

100 iterations takes about 3min to run with ~30,000 data input points (~ 

200mb of information). 

● Line 219 shows which model in the model list has the lowest AIC. To view this 

model’s output, click on the model list in global environments and navigate to 

Figure 21: Model list in R, with a red arrow pointing out the scroll to access MVLR 
results. 
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the model # shown in line 219, hit the drop-down arrow for this model, and view 

the entire “tibble” (the scroll icon that appears to the right of the 

‘MVLR_results’) OR type into the console: View(modelList[["Model  

##"]][["MVLR_results"]]). 

 

Phase 3 - Using model output to generate a susceptibility map in ArcGIS 

Clean up table in excel: 

Copy and paste the selected MVLR model summary results table into an excel 

spreadsheet (highlight the R tibble, ctrl+a copy, and paste) and save as a results table.  

 

Create weighted rasters using the coefficient estimates from the selected model: 

1. Methods vary slightly for categorical vs continuous variables. 

a. Categorical variables: 

Figure 22: Screen captures of the model results tibble in R (left) and the reformated 
table in excel (right). 
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i. Use the reclassify tool to assign each factor class their new pixel 

value. Since the reclassify tool will only output integers, a small 

work-around is to multiply all values by 100 and divide later 

during the raster calculation. (for example - In the case of 

lithology looking at the table above: All pixels in the lithology 

raster associated with clay should equal -207) 

ii. During this stage you may notice that one category is seemingly 

missing from each variable. That is ok because that class or 

category has to be omitted to allow the regression to function (for 

more information, research “the dummy variable trap”). 

Therefore the omitted class will be given a coefficient of 0. You 

might also encounter classes in your raster that were not present 

in the analysis. These can also receive a 0 for their pixel value.  

iii. As with most steps, helpful to use the Environments Tab to specify 

run on the Study area 

extent.  

Figure 23: Screen captures showing how to created weighted rasters using the reclassify 
tool for lithology (left) and landcover (right). 
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b. Continuous variables: 

i. Adjust the symbology of the raster to match your model. In this 

case I use classify, geometric, with 6 bins. 

ii. Manually adjust the “start” and “end” values to match your LR 

model summary bins, keeping in mind that the maximum raster 

value could exceed your highest bin value. 

iii. Assign each group their associated coefficient with 0 for the 

omitted dummy variable. 

 

 

 

Figure 24: Screen capture showing how to 
reclassify a continuous variable into a weighted 
raster using aspect as an example. 
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Create a landslide susceptibility map using a raster calculation: 

1. Run a raster calculation that will adjust the order of magnitude for all of the 

weighted rasters, sum them and incorporate our intercept value. This will 

generate the “Z raster”.  

a. Z_raster =  -8.66 + ( "substrate_weighted" / 100) + ( 

"landcover_weighted" /100) + ("dtb_weighted" /100) + ( "dts_weighted" 

/100) +( "slope_weighted" /100) + ( "kfactor_weighted" /100) 

b. May also need to adjust the Environment for raster calculator to make 

sure you are getting an image that isn’t too coarse - Change Cell Size from 

Maximum of Inputs to Minimum of Inputs. 

2. To convert this into a probability raster (“P raster”) from zero to one for 

landslide susceptibility, perform the following raster calculation:  

a. P_raster = (Exp("Z_raster")) / (1 + Exp("Z_raster")) 

3. The final raster should have pixel values that range from very close to zero up to 

values very  close to 1. Adjust the symbology to best represent landslide 

susceptibility. In this project, I used the natural breaks (jenks) classification 

method in ArcGIS to create 3 susceptibility classes (low, moderate, and high). 

 

 

 

 


