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Abstract 

Outbreaks of infectious diseases can have major consequences for public health, 

food security, and conservation, yet drivers of pathogen transmission are often poorly 

understood. In transmission models, transmission is generally considered to be a 

product of contact rates and the probability of transmission, given contact (i.e., 

transmissibility). Contact rates and patterns are generally easier to empirically observe, 

particularly with expansions in remote sensing technologies. However, these 

technologies are imperfect and sampling guidelines for their use in disease studies are 

generally lacking. Further, both contact rates and transmissibility can be modified by 

heterogeneities important for subsequent pathogen transmission. For example, 

transmissibility can be affected by heterogeneities in host defenses, body condition, etc., 

and many of these factors may even covary with heterogeneities in contact rates. This 

complexity can thereby muddy our understanding of the ultimate drivers of transmission 

processes. A holistic approach is therefore needed to move beyond these limitations and 

help explain why individuals interact and transmit. In this dissertation, I fill this gap by 

reviewing (Chapter 1) and testing (Chapters 2 and 3) innovative methods for determining 

drivers of transmission in natural systems, predominantly focusing on a naturally 

occurring model (representative) system: feline retroviruses in the Florida panther (Puma 

concolor coryi). I then implement this new knowledge in an applied context: optimizing 

pathogen control in endangered panthers (Chapter 4). The findings reported here can 

improve the ability to identify drivers of transmission across a range of host-pathogen 

systems, and represent important progress for improving outbreak prevention and 

management for the benefit of human, animal, and ecosystem health.  
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Introduction 

Outbreaks of infectious diseases pose major threats to public health, economics, 

food security, and conservation (e.g., Cleaveland, 2009; Dobson et al., 2020; Jones et 

al., 2008; Knight-Jones & Rushton, 2013; Wiethoelter et al., 2015). Preventing and 

interrupting these outbreaks is therefore critical for human, animal, and ecosystem 

wellbeing. A critical gap in disease control, however, is our generally poor understanding 

of the underlying drivers of pathogen transmission. Mathematical models provide a 

useful framework for considering the complexities affecting observed transmission 

dynamics and help reveal why identifying drivers of transmission is such a formidable 

challenge. These models consider transmission to be a product of contact rates and the 

probability of transmission, given contact (hereafter, transmissibility; Anderson & May, 

1991). While traditional disease models have assumed well-mixed populations (i.e., 

homogeneous mixing), these assumptions do not hold for many host-pathogen systems 

(Keeling & Eames, 2005; Lloyd-Smith et al., 2005). Rather, both contact rates and 

transmissibility can be affected by heterogeneities that have significant consequences 

on transmission dynamics (VanderWaal & Ezenwa, 2016). 

Contact rates and patterns are generally easier to empirically observe than 

individual transmissibility. Heterogeneities in host behavior, personality, space use, 

seasonality, etc. can all affect host contact rates and subsequent pathogen transmission 

(VanderWaal & Ezenwa, 2016). Network approaches, which are able to incorporate such 

contact heterogeneities, have therefore been a critical development in disease modeling 

(Craft, 2015; Craft & Caillaud, 2011; Keeling & Eames, 2005; White et al., 2017). In 

addition, ongoing advances in remote sensing technology (e.g., GPS telemetry devices) 

show great promise for effectively documenting heterogeneous contact behaviors in 
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otherwise difficult-to-observe hosts (Krause et al., 2013). However, gaps remain 

regarding best practices for the use of such technologies in disease transmission 

studies, particularly when using network approaches which may be sensitive to missing 

data.  

Heterogeneities in transmissibility are often more difficult to elucidate, but can 

result from variations in factors such as host defenses, body condition, parasite burden, 

pathogen virulence, etc. (VanderWaal & Ezenwa, 2016). Further complicating matters, 

covariation between heterogeneities in contact rates and transmissibility can also arise 

(White et al., 2018a). For example, space use can produce variation in contact rates 

(Robert et al., 2012), but also in access to resources that may promote improved host 

body condition and immune defenses (Becker et al., 2015). These complex dynamics 

highlight that a holistic approach is needed to move beyond describing individual 

heterogeneities in contact rates and transmissibility and instead explain why individuals 

interact and transmit pathogens.  

 An emerging potential solution to this gap is the exploration of apathogenic 

infectious agents (hereafter apathogenic agents; Archie & Tung, 2015). Several wildlife 

systems have demonstrated that apathogenic agents within the healthy host microbiome 

can serve as markers of close social contact (Blasse et al., 2013; Bull et al., 2012; 

Springer et al., 2016; VanderWaal et al., 2014a), though this has not been true in all 

cases (e.g., Chiyo et al., 2014). However, these agents have not yet been tested as 

proxies of direct transmission processes. To evaluate apathogenic agents in this role 

requires the use of a model (representative) system, for which the endangered Florida 

panther (Puma concolor coryi) is an excellent candidate. Panthers are affected by 

several directly transmitted feline retroviruses, including apathogenic feline 
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immunodeficiency virus (FIV) and pathogenic feline leukemia virus (FeLV). FIV, in 

particular, is expected to have a relatively high intrahost mutation rate, making this virus 

more amenable to transmission inference between hosts (Grenfell et al., 2004; Hall et 

al., 2016; Krakoff et al., 2019). In this system, FIV may be able to act as a marker of 

direct transmission events relevant to analogously transmitted FeLV, and could thereby 

prospectively predict FeLV transmission dynamics. Further, because panthers 

experienced an outbreak of FeLV in 2002-2004 (Cunningham et al., 2008), empirical 

data exists against which to compare FIV-based predictions of FeLV transmission. In 

this way, transmission dynamics of feline retroviruses in the Florida panther can provide 

important insight into the utility of apathogenic agents as a holistic tool for understanding 

drivers of pathogen transmission. Consequently, the overall objective of this dissertation 

is to test innovative methods for determining drivers of transmission in natural systems. 

Here, I have primarily focused on the naturally occurring model system of the Florida 

panther to explore approaches that can translate more generally to other wildlife, 

domestic animal, and human systems. 

In Chapter 1, I reviewed opportunities for integrating network and genomic 

approaches to better understand animal behavior and pathogen transmission dynamics. 

Network approaches spanning social network analysis, network statistics, and network 

modeling are all key tools to link with genomic data in order to elucidate principles of 

transmission. Recent advances in phylodynamics and transmission inference are 

particularly powerful genomic approaches and may be highly amenable to linking with 

network tools. In particular, I highlighted potential advances to be gained by linking high 

resolution pathogen genetic data with network approaches to (1) determine which 



4 
 

behaviors are most important for pathogen transmission, and (2) determine drivers of 

transmission-relevant contact. 

A key component for successful network modeling—and for disease modeling 

more generally—is understanding transmission-relevant contact in a population of 

interest. Such determinations, however, are particularly challenging in difficult-to-observe 

wildlife species. As discussed above, a suite of remote wildlife monitoring tools (e.g. 

telemetry) are increasingly used to derive contact rates and patterns from wildlife, but 

with ongoing uncertainty regarding how remote sampling effort affects subsequent 

analysis of contact patterns.  

In Chapter 2, I addressed this gap in knowledge by determining sampling 

guidelines for remote telemetry detection of contact and subsequent network generation 

in free-ranging wildlife. Here, I simulated movement of populations of individuals, 

sampled from these movement trajectories, and used this movement data to generate 

contact networks. I compared social network analysis metrics relevant to disease 

transmission between networks derived from sampled and unsampled movement data to 

determine consistency of network structures under different regimes of sampling and 

contact definitions. Results from this chapter demonstrate that (1) local network metrics 

are more robust to telemetry sampling than global network metrics; (2) populations with 

infrequent interactions may require the most intensive sampling; and (3) defining contact 

in terms of spatial overlap may sometimes be able to compensate for coarse telemetry 

sampling.  

Even when scientists can accurately capture contact patterns in wildlife—

remotely or otherwise—this may not resolve complexities in understanding why 

individuals transmit pathogens to each other, as this strategy focuses on only one 
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component of the transmission process. In Chapter 3, I delved deeper into this issue by 

using a holistic approach focused on identifying underlying drivers of transmission 

processes. Here, I linked genomic and network approaches to test an apathogenic viral 

agent as a proxy for direct contact transmission in my afore-described naturally 

occurring system, the Florida panther. I first determined drivers of transmission of the 

apathogenic agent, FIV, and then used these drivers to predict likely transmission 

pathways for analogously transmitted FeLV in panthers. I simulated FeLV transmission 

along these pathways and compared predicted transmission to the empirical FeLV 

outbreak in panthers. Results showed that (1) FIV transmission is driven primarily by 

geographic distances between panther home range centroids and age classes, and (2) 

that FIV-based FeLV modeling performed at least as well as simpler, typically 

retrospective modeling approaches. Apathogenic agents like FIV therefore show 

promise for prospectively determining drivers of transmission of important pathogens, 

which would allow for improved proactive disease control planning across a wide range 

of host-pathogen systems. 

Endangered Florida panthers continue to be at risk of FeLV transmission (Chiu et 

al., 2019), and wildlife managers are hampered by uncertainty regarding best practices 

for FeLV prevention and response. Using my new knowledge about drivers of retrovirus 

transmission in panthers, I addressed this gap in Chapter 4, in which I tested several 

FeLV prevention and response strategies in silico to provide practical, evidence-based 

guidance to panther managers. Here, I simulated FeLV transmission in the 

contemporary panther population in the absence of interventions, and with a range of 

proactive and reactive FeLV interventions. These interventions included proactive 

vaccination, reactive vaccination, reactive test-and-removal, and reactive closure of 
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wildlife highway underpasses. Importantly, I also considered the effect of partial 

immunity induced by single and boosted FeLV vaccination. Results found (1) 

counterintuitive increases in FeLV mortality with inadequate proactive vaccination, likely 

a result of partial vaccine immunity; (2) synergistic effects of combining proactive 

vaccination with reactive vaccination or test-and-removal; and (3) limited success of 

underpass closures for mitigating FeLV impacts under realistic conditions. These 

findings aid in the conservation and management of an endangered carnivore, and 

highlight the benefits of linking modeling and management considerations to identify key 

costs and benefits to different disease management strategies.  
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Chapter 1. Incorporating genomic methods into contact networks to reveal 

new insights into animal behavior and infectious disease dynamics 

 

Gilbertson, M. L., Fountain-Jones, N. M., & Craft, M. E. (2018). Incorporating genomic 

methods into contact networks to reveal new insights into animal behaviour and 

infectious disease dynamics. Behaviour, 155(7-9), 759-791. doi: 10.1163/1568539X-

00003471 

 

1.1 Synopsis 

Utilization of contact networks has provided opportunities for assessing the dynamic 

interplay between pathogen transmission and host behavior. Genomic techniques have, 

in their own right, provided new insight into complex questions in disease ecology, and 

the increasing accessibility of genomic approaches means more researchers may seek 

out these tools. The integration of network and genomic approaches provides 

opportunities to examine the interaction between behavior and pathogen transmission in 

new ways and with greater resolution. While a number of studies have begun to 

incorporate both contact network and genomic approaches, a great deal of work has yet 

to be done to better integrate these techniques. In this review, we give a broad overview 

of how network and genomic approaches have each been used to address questions 

regarding the interaction of social behavior and infectious disease, and then discuss 

current work and future horizons for the merging of these techniques.   
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1.2 Interplay between behavior and infectious disease 

The study and utilization of mathematical models has been revolutionary to the 

field of disease ecology. Mathematical models can be used to examine mechanisms of 

pathogen transmission and maintenance, and to make predictions about pathogen 

spread and management (Keeling & Rohani, 2011; Lloyd-Smith et al., 2009). Initially, 

models of infectious disease transmission assumed no contact heterogeneity among 

hosts (Anderson & May, 1991; Keeling & Rohani, 2011). This simplicity can be useful for 

creating transparent, generalizable models, but may not be appropriate for all systems, 

as host contact heterogeneity can have significant impacts on disease dynamics 

(Keeling & Eames, 2005; Meyers, 2007; White et al., 2017). For example, 

“superspreaders” can have important effects on epidemic outcomes, with their presence 

resulting in disease outbreaks that are less frequent but more severe than predicted by 

homogeneous mixing of populations (Lloyd-Smith et al., 2009; Lloyd-Smith et al., 2005).  

By incorporating contact heterogeneity into model assumptions, contact or “social” 

networks, applied to disease models, can be important for conveying a more informative 

picture of pathogen transmission dynamics (Craft, 2015; Craft & Caillaud, 2011; Godfrey, 

2013; White et al., 2017).  

Contact networks represent connections between individuals or groups of 

individuals based on a variety of definitions of “contact,” and these contacts are 

frequently influenced by social behavior.  Network models can therefore require more 

intensive data collection compared to other techniques to model disease spread, such 

as compartmental models, but can also provide unique insight into disease dynamics 

thanks to their incorporation of contact heterogeneity. While social network models have 

been much used in studies of infectious disease in human and livestock systems, they 
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have experienced delayed but growing utilization in wildlife systems (Godfrey, 2013; 

Martínez-López et al., 2009).   

Animal behavior influences contact heterogeneity, more specifically through 

heterogeneity in rates and patterns of social interaction (VanderWaal & Ezenwa, 2016). 

Some of the behavioral or social processes that impact contact heterogeneity include 

individual behavioral phenotypes (Dizney & Dearing, 2013; Natoli et al., 2005), the social 

structure of a population (Nunn et al., 2015; Sah et al., 2017), seasonal or temporal 

behavior changes (Chen et al., 2014), and behavioral responses to anthropogenic 

influences (Becker et al., 2015; Gottdenker et al., 2014). Behavior is therefore important 

for pathogen transmission, and particularly so for directly transmitted pathogens, where 

environmental contamination or vectors do not dilute the effect of animal interactions 

(Godfrey, 2013; VanderWaal & Ezenwa, 2016; White et al., 2017).  

 While network approaches have made much progress in shaping our 

understanding of the complicated, dynamic interplay between behavior and infectious 

disease, they also reveal new, more nuanced questions, demonstrating the need for 

additional data and methods to better illuminate the processes at work within disease 

ecology. Genomic methods, applied to host or pathogen, are becoming increasingly 

recognized for their power to provide new insights into disease ecology (Archie et al., 

2009). Genetic and genomic tools can allow us to study and infer pathogen transmission 

(Kao et al., 2014; Metzker et al., 2002), reconstruct epidemics (Biek et al., 2007; Bird et 

al., 2007; Sharp & Hahn, 2010), and reveal landscape and environmental factors 

important to transmission (Archie et al., 2009; Blanchong et al., 2007). Genomic 

methods are also becoming more available and affordable, putting them within the reach 

of more researchers. Within the scope of wildlife studies, genomic tools may also 
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provide important opportunities to maximize the use of non-invasive sampling 

techniques. Non-invasive techniques are expanding in their range and utility, and may 

be particularly important for studying populations of endangered or at-risk species, 

where capture and handling of individuals carries increased risk to overall population 

health (de Carvalho Ferreira et al., 2014; Hoffmann et al., 2016; Smiley Evans et al., 

2016). 

 To improve predictions and accuracy, network models should be informed by as 

much of the available data as possible (Welch et al., 2011). While genetic 

characterization of pathogens can suggest that cases of infection are closely related, 

many techniques (e.g. strain typing, microsatellite markers, etc.) provide only coarse 

resolution for inferring transmission (Kao et al., 2014). Whole genome sequencing 

(WGS), on the other hand, provides significantly more refined data for resolving 

transmission relationships (Kao et al., 2014). In the context of investigating the dynamics 

between pathogen transmission and host behavior, it may seem counterintuitive to study 

pathogens in order to investigate host social structure, but the idea is not necessarily a 

new one (Welch et al., 2011), and doing so could provide important insights into 

behavior and disease ecology when integrated with contact networks. Given the 

increasing availability of genomic sequencing, as well as the expanding utility of non-

invasive sampling in wildlife systems, there is an opportunity to incorporate pathogen 

genomic data into contact networks. 

In this review, we discuss how contact networks and genomic methods provide 

insights into animal behavior and infectious disease transmission, and horizons for the 

integration of these methods in the future. More specifically, we discuss historical uses 

of social network analysis and network modeling, and how they are able to highlight the 
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interplay between social behavior and infectious disease. We then describe how 

pathogen genetic and genomic techniques have been utilized to make inferences about 

host behavior and pathogen transmission. Finally, we explore the merging of contact 

network and genomic methods, and illustrate future directions of network modeling in 

light of the increasing availability of sequencing tools. Given that much can be gained by 

utilizing methods from other systems, this review will not limit examples to those from the 

animal or wildlife literature, but will draw from the human infectious disease literature as 

well.  

 

1.3 Contact networks elucidate dynamics of behavior and disease ecology 

The basics of contact networks 

Within network approaches, “nodes” can represent individual humans or animals, 

or can represent groups of individuals such as herds or even farms. Connections or 

contacts between nodes are called “edges,” and are defined depending on the research 

question; for example, in a network where nodes represent individual wild animals, and 

the pathogen in question is transmitted by sexual contacts, an edge might be drawn 

between two individuals known to have had sexual contact. Alternatively, in a network of 

farms, with a pathogen transmitted by direct or indirect contact, an edge might be drawn 

between two farms if they have shipped animals from one farm to the other. This 

highlights the importance of carefully defining a “contact” when using network 

approaches, depending on the system and research question (Perkins et al., 2009).  

While social network analysis approaches are often descriptive or observational, 

network modeling approaches typically involve simulating an outbreak of a pathogen in a 

population (but see following section for caveats about this dichotomy). Simulating an 
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outbreak of a pathogen on a contact network, in light of the transmission probability (e.g. 

properties of the infectious host, susceptible host, and infectivity of the pathogen), can 

result in the output of a transmission network which can graphically represent who 

infected whom (Figure 1.1). This transmission network is therefore different from the 

observed contact network, and could be viewed as a subset of the contact network. 

Network approaches are, however, dependent on extensive behavioral or observational 

data to create the initial contact network, and can be highly influenced by how contacts 

are defined and detected in the population (Eames et al., 2015; Perkins et al., 2009). In 

some cases, the entire population being studied is observed to build the “complete” 

contact network; in other cases, this is not feasible or practical, and only a portion of the 

population of interest will be observed. In these cases, the observed population can be 

used to create a set of “rules” for contact in the population, and then extrapolated to the 

full population (e.g. with ERGMs, as in Reynolds et al., 2015; Silk et al., 2017). Thus, 

even networks built on a sample of empirical observations may be generalized to a 

larger population.  

 

Social network analysis and network modeling 

 The use of contact networks could be thought of as being composed of two main 

“branches,” social network analysis (SNA) and network modeling, though these methods 

are by no means mutually exclusive. Broadly, both SNA and network modeling involve 

building a social network based on behavioral or observational data. SNA then generally 

assesses network and node-level metrics that describe connectivity and modularity 

(Croft et al., 2008; Perkins et al., 2009), while network modeling often describes or 

simulates an outbreak of an infectious disease on the network. Network modeling is 
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similar in concept to compartmental “Susceptible-Infectious-Recovered”-type (SIR) 

dynamic models, but instead of assuming homogeneous mixing, network modeling 

allows for the incorporation of heterogeneous contact patterns. Of course, our framework 

for describing contact network approaches is a somewhat artificial simplification, and 

many studies will not obviously fall into one category or the other. Network approaches 

could also be viewed as a spectrum ranging from describing networks for making 

observations and formulating hypotheses, to using statistical models to begin testing 

these hypotheses, through to simulation models of epidemics on networks to make 

predictions and test understanding. For the purposes of this review, we will discuss 

network approaches in the context of observational or descriptive approaches (SNA) and 

simulation-based approaches (network modeling), but with the acknowledgement that 

network approaches do not always fall neatly into such a dichotomy, and often involve a 

continuum of approaches.  

In the context of infectious disease research, SNA often compares a node’s 

(individual or group of individuals) position in the network and node-level characteristics 

to the disease status of the node (Drewe, 2010; Godfrey, 2013; MacIntosh et al., 2012; 

VanderWaal et al., 2014a). This approach can provide insight into how social behavior 

impacts pathogen transmission or prevalence, identify the importance of different 

behaviors for pathogen transmission, and elucidate the impact of disease prevention and 

management decisions. For example, in studying how social behavior impacts pathogen 

prevalence, MacIntosh et al. (2012) found that high social rank in Japanese macaques 

(Macaca fuscata yakui) was associated with greater nematode parasite species 

richness, as well as a higher probability and intensity of infection with a potentially 

pathogenic parasite. SNA can also be used to prioritize individuals to target for disease 
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management interventions, or identify interventions that are less likely to be effective for 

disease control, based on population social structure (Porphyre et al., 2008; Rushmore 

et al., 2013).    

Similarly, simulating epidemics of pathogens on social networks can accomplish 

a variety of objectives related to animal behavior and infectious disease. For example, it 

may not be feasible, or even ethical, to test pathogen spread and control hypotheses 

with real-world experiments, but modeling these experiments can provide important 

insights (Craft, 2015; Lloyd-Smith et al., 2009; White et al., 2017). Simulating epidemics 

on networks can thereby shed light on topics such as how disease is or is not 

maintained in populations (Craft et al., 2009), how population social structure impacts 

pathogen transmission (Craft et al., 2011), and what techniques or individuals to target 

for preventive or epidemic intervention measures (Pellis et al., 2015; Rushmore et al., 

2014). For example, network models of pathogen transmission in chimpanzees found 

that targeting well-connected individuals allows for significant reductions in vaccinations 

required to prevent disease outbreaks (Rushmore et al., 2014).  

 Applications of contact networks are not without limitations, however. 

Observational data used to develop a social network may be limited (e.g. only able to 

collect behavioral observations during daytime hours, or only able to place GPS collars 

on a subset of the population), which can significantly impact conclusions (Croft et al., 

2008). In addition, proxies of contact such as shared space use—as determined by 

telemetry data—may not always represent actual contacts; for example, avoidance 

behaviors could theoretically allow individuals in close proximity to avoid contacts 

relevant to pathogen transmission. While degree of home range overlap may correlate 

with increased contact rates between individuals, these assumptions are rarely tested 
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and may vary seasonally or on an individual basis (Robert et al., 2012). There is 

therefore a need to improve or refine our detection or definition of transmission-relevant 

contacts, particularly when considering host species and/or pathogens in which timing of 

transmission events is not readily observed. In such cases, the increased resolution 

provided by molecular approaches applied to pathogens may be able to improve our 

understanding of disease transmission at a fine scale (Kao et al., 2014), and provide 

clues about microbial transmission in the context of host social structure (Blasse et al., 

2013; Blyton et al., 2014; Bull et al., 2012).   

Another challenge within the use of contact networks is the fact that social 

networks are generally dynamic and can vary through time (Craft & Caillaud, 2011; 

Eames et al., 2015; Rushmore et al., 2013; White et al., 2017). This variability highlights 

the importance of investigating social networks and infectious disease within appropriate 

temporal scales, according to the research question (Perkins et al., 2009; White et al., 

2017). If the pathogen in question is infectious on the order of days to weeks, contact 

networks aggregated from year-long observations may not be appropriate and may 

overestimate pathogen spread. Over the course of a year, a social network is likely far 

more well-connected than it would be on the days to weeks-long scale on which the 

chosen pathogen may be operating. However, if the objective is to predict a “worst case 

scenario” of transmission, an aggregated network may be appropriate. Understanding 

the different temporal dynamics of host and pathogen within the context of a specific 

research question is necessary for appropriate study design and interpretation of model 

simulations. Because pathogen evolution may operate on different time scales from 

dynamic social networks, when pathogen phylogenies are assessed together with 

contact networks, they may shed light on the dynamics of transmission within 
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populations (Vasylyeva et al., 2016). Thus, pathogen phylogenetics may serve a 

complementary function in balancing the complicated temporal dynamics of many social 

networks. 

 In summary, contact network approaches have proven useful for illuminating 

aspects of the relationship between animal behavior and pathogen transmission by 

describing how social structure, individual behaviors, and intra- and interspecies 

interactions contribute to disease transmission and maintenance in populations. Network 

approaches have also assisted in improving understanding of pathogen dynamics and 

management in populations, highlighting the importance of contact networks as a tool 

with real-world applications. An ongoing challenge for the utilization of contact networks 

is the detection of transmission-relevant contacts, for which genomic tools may provide 

new avenues for resolving these interactions. 

 

1.4 Genomic tools to understand behavior and pathogen transmission 

 In this section, we will be reviewing how genetic and genomic-based methods 

have been used to provide insight into host social behavior and its impact on infectious 

disease dynamics. While genetics is, broadly, the study of individual genes, and 

genomics the study of whole genomes, for simplicity and consistency, we will refer to 

genetic and genomic-based techniques as “genomics” throughout the rest of this review, 

unless individual examples call for greater specification. We will use “phylogenetics,” the 

study of evolutionary relationships based on genetics, to encompass both phylogenetic 

and phylogenomic techniques. 

Population genomic tools are well-recognized for their ability to provide important 

information about host behavior and the consequences of animal behavior on pathogen 
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transmission. For example, Pope et al. (2007) used population genomic tools to show 

increased badger dispersal after culling, and inferred important consequences of this 

increased movement for the spread of bovine tuberculosis. Population genomics have 

also been used to assess landscape barriers to host dispersal, and the importance of 

these dispersal behaviors for disease transmission: for example, identifying rivers as 

semi-permeable barriers to host gene flow, and inferring the impact of rivers on 

subsequent animal movement behaviors and interactions in the context of pathogen 

transmission (Cullingham et al., 2009).  

 Pathogen phylogenetics can also provide insights into animal behavior and 

disease dynamics, and in some cases give greater clarity than host population genomics 

alone (Lee et al., 2012). With pathogen phylogenetics, researchers can better 

understand pathogen transmission dynamics and suggest patterns of host behavior and 

interactions (Biek et al., 2006; Fountain-Jones, Packer, et al., 2017; Lee et al., 2012; 

Lembo et al., 2008; Streicker et al., 2016; Wheeler et al., 2010). For example, Lembo et 

al. (2008) used pathogen phylogenetics to study cross-species transmission and 

reservoir dynamics of rabies in the Serengeti ecosystem. Their study found more within-

species and less between-species transmission than would be expected from random 

mixing; these findings could be due to the spatial distribution of hosts, or from increased 

or preferential intraspecific contacts (Lembo et al., 2008). [These hypotheses could be 

further tested via a network modeling approach, thereby linking the phylogenetic and 

contact network approaches in the context of non-random contact patterns within and 

between species.] Pathogen phylogenetics can therefore provide valuable information 

about transmission dynamics and host contact patterns, including insights into 
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understanding multi-host pathogen transmission, but these approaches could be 

enhanced even further by incorporating contact network techniques. 

Importantly, investigation of pathogen phylogenetics can provide more detailed 

information that would be lost or otherwise inapparent by assessing host population 

genomics alone, particularly for directly transmitted pathogens. For example, 

phylogenetics of feline immunodeficiency virus in mountain lions revealed recent host 

demographic history that was not detectable with host population genomics (Biek et al., 

2006). In addition, Bayesian phylogeographic approaches can yield important 

information about behavior and transmission dynamics by examining transmission over 

space and time (Biek et al., 2007; De Maio et al., 2015; Lemey et al., 2009, 2010), and 

between groups of hosts (Grad et al., 2014). Biek et al. (2007) used a phylogeographic 

approach to investigate spatial spread of rabies virus in raccoons in the Northeastern 

United States, finding, for example, that mountain ranges had a significant impact on 

rabies spread. These mountain ranges likely slowed spatial expansion due to the poor 

quality of raccoon habitat and reduced dispersal through these areas (Biek et al., 2007), 

demonstrating the impact of animal interactions with landscape features on the 

transmission of pathogens. 

When available, the assessment of both pathogen and host genomics provides 

perhaps the most comprehensive information. For example, coupling host population 

genomic and pathogen phylogenetic methods have provided information about how 

solitary carnivores move and respond to landscape features like roads; where host 

phylogenies may suggest little to no movement across roads, pathogen phylogenies 

suggest these movements happen, but may be temporary or otherwise fail to result in 

host reproduction (Fountain-Jones, Craft, et al., 2017; Lee et al., 2012; Wheeler et al., 
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2010). These findings show that movement may be restricted across major landscape 

features, but can still occur and be adequate for pathogen transmission. Host and 

pathogen evolution, especially in cases of rapidly evolving viruses, often operate on 

different time scales, so assessing both time scales together can provide information 

that would be lost by assessing either in isolation (Wheeler et al., 2010). Streicker et al. 

(2016) used the combined assessment of host population structure and pathogen 

phylogenies to determine that male vampire bats appear to disperse, while females 

show greater site fidelity, with important consequences for rabies transmission and 

expansion. This provides another important example of using host and pathogen 

phylogenetic analyses together to draw conclusions about host behavior, and then 

applying those findings to predict pathogen transmission dynamics.  

While many phylogenetic studies focus on pathogen relatedness and genetic 

distance to make inferences, a developing tool for investigating disease dynamics is that 

of “phylodynamics.” The term was first defined by Grenfell et al. (2004) as the “melding 

of immunodynamics, epidemiology, and evolutionary biology,” and more specifically, 

phylodynamics seeks to understand the molecular footprint of epidemiological processes 

that are difficult to observe (Baele et al., 2017). Phylodynamic approaches have been 

used to investigate complicated questions such as short-term epidemic dynamics of 

human immunodeficiency virus in men who have sex with men (Lewis et al., 2008), or 

the impacts of urbanization on pathogen transmission and evolution in a wildlife system 

(Fountain-Jones, Craft, et al., 2017). Bayesian methods have been particularly useful 

within phylodynamics due to their ability to efficiently incorporate complex evolutionary 

models and uncertainty in parameter estimates (Drummond & Rambaut, 2007). 
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A developing branch within the broad field of phylodynamics is in the 

reconstruction of epidemics through the inference of transmission trees. These 

transmission trees are different from traditional phylogenetic trees, for several important 

reasons (Figure 1.2) (Didelot et al., 2017). First, in the context of epidemics of infectious 

disease, phylogenies consider each pathogen sample to be a tip (also known as a leaf) 

on the phylogeny, removing any possibility of a sampled pathogen being the ancestor of 

another sample (Picard et al., 2017). This means that phylogenies are unable to 

describe who infected whom. Transmission trees, however, allow sampled pathogens to 

be ancestors of other samples, and thereby may be able to reconstruct an epidemic by 

inferring who infected whom (Picard et al., 2017). The second major difference between 

transmission trees and phylogenetic tree is in the timing of coalescence events. Where 

timing of coalescent events in phylogenetic trees reflects branching events, timing in 

transmission trees reflects actual transmission events, which may occur at different time 

points from evolutionary branching events (Sintchenko & Holmes, 2015). It is important 

to understand these differences between phylogenetic and transmission trees, as the 

lines between the two are sometimes blurred and terminology used inappropriately, 

leading to confusion about the information provided by these two different 

methodologies.   

Inferring transmission trees from epidemic data is a developing technique, with a 

variety of proposed methods (Cottam et al., 2008; De Maio et al., 2016; Didelot et al., 

2014; Hall et al., 2015; Jombart et al., 2011; Klinkenberg et al., 2017; Numminen et al., 

2014; Ypma et al., 2012; Ypma, van Ballegooijen, et al., 2013). While describing the 

methodological differences between these approaches is outside the scope of this 

review (but see Hall et al., 2016), the general process involves inferring transmission 
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trees from pathogen sequence data, while assuming one of the following: no within-host 

diversity or mutation, no within-host diversity but with mutation, or both within-host 

diversity and mutation (Hall et al., 2016). Pathogens with rapid mutation rates, such as 

RNA viruses, are generally more amenable to this type of epidemic reconstruction 

(Welch et al., 2011; Worby et al., 2014). Even with RNA viruses, however, it should not 

be assumed that an epidemic can be perfectly reconstructed (Hall et al., 2016), as all 

techniques will result in some uncertainty, particularly epidemics with incomplete 

sampling or slower pathogen evolution (Vasylyeva et al., 2016; Worby et al., 2014).  

As transmission tree techniques have been further developed, however, they are 

better able to accommodate previous limitations; new techniques have now been used 

to study endemic (rather than epidemic) pathogens, ongoing epidemics, epidemics with 

incomplete sampling, and multiple disease introductions (Didelot et al., 2017; Mollentze 

et al., 2014). Judicious use of transmission tree methods can thus provide important 

information about transmission dynamics (Numminen et al., 2014; Ypma, Jonges, et al., 

2013). For example, transmission trees have been used to assess the impact of wind 

direction on transmission of avian influenza in the Netherlands (Ypma, Jonges, et al., 

2013). Transmission tree techniques can also shed light on the impact of host behavior 

and movements on pathogen transmission: Mollentze et al. (2014) used transmission 

tree reconstruction to show that rabies spread in South Africa appears to include the 

anthropogenic movement of dogs (i.e. in cars). The use of transmission trees is 

therefore a technique with great potential for understanding disease transmission 

dynamics in populations.  

Epidemic reconstruction with only genetic sequence data, however, is limited in 

the resolution it can provide (Hall et al., 2016), and researchers should not expect fully 



22 
 

resolved transmission events for an entire epidemic. The incorporation of other 

epidemiological data may be able to clarify some of the uncertainty inherent in inference 

of transmission trees (Hall et al., 2016), for which contact network approaches, in 

identifying likely avenues of transmission, may provide a fruitful path forward.   

In summary, genomic analyses of hosts, pathogens, and both together have 

demonstrated their utility in investigating the dynamic relationship between social 

behavior and pathogen transmission. The emerging field of phylodynamics shows great 

promise for expanding upon and refining our understanding of transmission dynamics in 

populations. In particular, the developing techniques for transmission tree reconstruction 

provide opportunities to investigate pathogen transmission at greater resolution. These 

techniques, however, could be more powerful if integrated with other methodologies, 

such as epidemiologic and network approaches, for drawing conclusions about patterns 

of behavior and pathogen transmission.  

 

1.5 Integrating contact networks and genomics: current efforts and future 

directions 

 A growing number of studies have begun to integrate pathogen genetic data with 

contact networks. These studies have provided new insights on identifying risk factors 

for disease acquisition, studying the social structure of a population, and learning how 

social structure may predict infection. Previous work has often used molecular 

techniques that focus on pathogen strain-sharing or genetic distance between pathogen 

isolates across populations or individuals, and have largely utilized SNA in incorporating 

contact network techniques. We will discuss some examples in greater detail to highlight 
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the range of approaches used to integrate contact network and genomic tools for a 

variety of research questions.   

 

Current research questions 

Do node characteristics predict pathogen genetic similarity? 

 Perhaps the most straightforward integration of social networks and genomics 

tools is to use SNA to test if node and network-level characteristics predict pathogen 

strain sharing or genetic similarity of isolates. Villaseñor-Sierra et al. (2007), for example, 

use this technique to compare node-level characteristics between children with and 

without group A Streptococcus. “Strain sharing” of group A Streptococcus was inferred 

by comparing restriction fragment length polymorphism patterns across isolates, and this 

study found that spread of group A Streptococcus clones was mediated by high 

connectedness among children, as detected by SNA. This straightforward integration of 

contact networks and genetic tools highlights the utility of this technique for establishing 

the importance of social networks for disease spread. This approach may also be useful 

for initial assessment of pathogen transmission in populations; if social structure is 

established as an important mediator of pathogen transmission in a given study system, 

this could justify further, more in-depth analysis, and may subsequently aid in developing 

targeted control measures.  

 

Which social networks best predict pathogen networks? 

 A “next step” in advancing the integration of SNA and genomic tools has been to 

more explicitly compare a social network to pathogen relatedness across a population. 

This can be done by comparing a population’s social network to a “strain-sharing 
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network” based on microbial relatedness, and testing if the social network predicts the 

microbial network (Blyton et al., 2014; Bull et al., 2012; Fountain-Jones, Packer, et al., 

2017; Marquetoux et al., 2016; Springer et al., 2016; VanderWaal et al., 2014a). 

Assessing social networks in the context of a pathogen-sharing network can identify 

social network positions that are important for transmission (VanderWaal et al., 2014a), 

test if the type of contact used to determine the social network (e.g. movement between 

farms) can explain pathogen transmission (Marquetoux et al., 2016), or even examine 

the varying importance of different modes of transmission (Fountain-Jones, Packer, et 

al., 2017). These strain-sharing networks, however, should not be confused with 

transmission trees; the former does not explicitly infer who infected whom, while the 

latter does. In addition, within strain-sharing networks, the molecular representation of 

strains can vary in resolution, ultimately affecting their power for inferring transmission. 

Advancements in genomic tools for inferring who infected whom may allow for increased 

resolution in these types of studies, and thereby potentially shed light on the variable 

impacts of social or behavioral factors on pathogen transmission. 

 

What behaviors or locations are high risk for transmission? 

Integrating contact networks and genomic tools can also be used to identify high 

risk behaviors or locations for pathogen transmission. For example, Gardy et al. (2011) 

utilized pathogen WGS and epidemiological data, in conjunction with social network 

analysis, to determine that a behavioral risk factor (likely crack-cocaine use) was a 

probable contributing factor in an outbreak of Mycobacterium tuberculosis in people in 

Canada. In addition, Chamie et al. (2015) assessed genotype sharing of Mycobacterium 

tuberculosis in people in Uganda in the context of SNA; they investigated spatial overlap 
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among genotype-clustered cases to identify likely transmission sites of social 

importance. Romano et al. (2010), using both social networks and hepatitis C virus gene 

sequences, assessed factors such as age, risk behaviors, and sexual networks to better 

understand risk factors even within different subtypes of the same pathogen. All of these 

studies demonstrate the utility of assessing pathogen genomics in the context of social 

networks for identifying important behavioral risk factors for transmission, including in 

instances where genotyping and contact tracing alone are not adequate for establishing 

pathogen dynamics (Gardy et al., 2011). All of the above example are studies in 

humans; in wildlife, such work would likely be more difficult as some methods for 

acquiring specific behavioral data in humans may not translate well to free-ranging 

animals (e.g. questionnaires are useful for acquiring behavioral data in humans but not 

applicable for wildlife). 

 

Phylodynamics and future directions 

The examples of previous work integrating contact networks and genomic tools 

have largely focused on using SNA, with limited utilization of higher-resolution molecular 

data from pathogens (but see Fountain-Jones, Packer, et al., 2017). The insights 

provided by phylodynamic approaches, however, suggest that integrating contact 

networks with phylodynamics may be a fruitful path forward. Some phylodynamics 

studies have begun to incorporate contact networks, including investigating what 

phylogenies, through phylodynamic analysis, can reveal about underlying host social 

structure (Colijn & Gardy, 2014; Leventhal et al., 2012; McCloskey et al., 2016; 

Robinson et al., 2013; Vasylyeva et al., 2016). Several of these studies have concluded 

that phylogenetic tree structure can provide some information about network structure 
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and resulting transmission dynamics (Colijn & Gardy, 2014; Leventhal et al., 2012; 

McCloskey et al., 2016; Vasylyeva et al., 2016). For example, Leventhal et al. (2012) 

used this approach to conclude that random mixing among hosts was unlikely to result in 

an observed epidemic’s phylogenetic tree. Colijn and Gardy (2014) used this approach 

to conclude that phylogenetic tree structure can help differentiate between transmission 

patterns (e.g. super-spreader versus homogenous mixing). However, the conclusions 

that can be drawn from pathogen phylogenies can be limited, and may not yield 

particularly novel conclusions for researchers debating the value of sequencing 

pathogen samples. This may be especially true for hosts with dynamic interactions, as 

particular caution must be used when inferring a population’s underlying social structure 

for dynamic contact networks (Robinson et al., 2013; Vasylyeva et al., 2016). While 

these uses of phylogenies to describe underlying host contact structure may be helpful 

for parameterizing a theoretical network on which to simulate outbreaks of disease, other 

applications of phylodynamics methods may be better suited to integration with contact 

networks. 

Inference of transmission trees may hold promise to fill this gap for further 

integrating phylodynamic approaches with contact networks.  Like the phylodynamic 

studies which have attempted to infer host population structure from pathogen 

phylogenies, some studies have investigated what information about the underlying 

social network can be gleaned from transmission trees alone (Carnegie, 2017). For 

example, assessment of HIV transmission trees has been used to infer preferential 

attachment in the underlying host social network, and this information was used to draw 

conclusions on the most appropriate management interventions (Leigh Brown et al., 

2011). As with the phylogenetic tree approach, using transmission trees to make 
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inferences about underlying population structure has some limitations. For instance, 

transmission trees have not demonstrated an ability to detect clustering in the underlying 

contact network (Welch, 2011). However, the potential utility of pathogen transmission 

trees for improving understanding of the dynamic interaction between host behavior and 

pathogen transmission has yet to be fully explored and remains a major gap in the 

current literature. Future work to explore avenues for integrating genomic and network 

approaches may specifically benefit from examining how contact networks can inform 

priors in Bayesian transmission tree reconstruction to resolve some of the inherent 

uncertainty in this method. In addition, transmission trees, being a higher-resolution 

representation of the transmission network, should be particularly amenable to statistical 

approaches that can examine relationships between networks, such as generalized 

dissimilarity modeling (GDM; Ferrier et al., 2007). Alternatively, a phylogeographic 

generalized linear model approach could be used, as in Lemey et al. (2014). Ultimately, 

integrating genomic data—including transmission trees—with network data should 

provide useful information about the importance of different modes of transmission and 

provide better predictions about pathogen transmission (Eames et al., 2015), further 

justifying the effort involved in incorporating these additional layers of data.  

While the full scope of the applications of transmission trees to contact network 

studies has yet to be resolved and will vary depending on research question, some 

general guidelines can be identified. First, arguably the best-suited study systems for 

these approaches would be those with fast-evolving pathogens like RNA viruses (Didelot 

et al., 2017). The rapid evolution of these pathogens may allow for improved inference of 

transmission events, and could shed light on transmission dynamics at the shorter 

temporal scale on which many host social networks exist. In addition, if using strain-
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sharing or transmission networks to better understand population transmission 

dynamics, Blyton et al. (2014) point out that a study system should ideally have high 

strain alpha-diversity (local diversity) and high strain turnover in order to increase the 

resolution of transmission observations and to better represent contemporary 

transmission processes, respectively.  

While ascertaining the proportion of the population that must be sampled to 

utilize a transmission tree approach has not been well established to date, pathogens 

which can be sampled across a greater proportion of the population, perhaps through 

non-invasive sampling techniques, would be more well-suited to transmission tree 

approaches. As methods for reconstruction of transmission trees advance, they are 

becoming more capable of accommodating unsampled individuals (Didelot et al., 2017; 

Mollentze et al., 2014), so outlining a specific proportion of a population to sample in 

order to use these methods is currently impractical. Ultimately, such determinations will 

be dependent on the current state of rapid methodological advances, and will be 

affected by specific research questions. For example, while low pathogen diversity 

and/or sampling effort will affect uncertainty to the degree that determining specific 

transmission events likely happened (rule-in) may be unrealistic, if the objective is 

instead to rule out certain transmission events, these systems may be perfectly 

appropriate for transmission tree approaches (Didelot et al., 2017).  

In addition to contact networks, incorporation of host data such as relatedness, 

space use, or varying definitions of contact (e.g. grooming versus fighting) may also be 

useful for integrating with transmission tree approaches, depending upon the research 

question (for two examples, see Figure 1.3). Furthermore, linking established 

phylogeographic models (Lemey et al., 2009, 2010) to transmission tree inference will 
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enable more spatially explicit estimates of potential transmission events that can be 

compared directly to individual space use data. While specific examples of the 

integration of transmission trees to phylogeographic models and contact networks are, to 

the best of our knowledge, currently lacking in the primary literature, here we present 

some proposed pathways to integration, with the acknowledgement that, as 

phylodynamic approaches continue to advance, the opportunities to incorporate these 

tools into network studies will certainly evolve as well. In addition, we present 

advantages and disadvantages of current and proposed future methods for integrating 

network and genomic approaches in Table 1.1. 

  

Which behaviors are most important for pathogen transmission? 

The previously described examples of integrating contact networks and genomic 

techniques are limited in their directionality when describing pathogen transmission. In 

other words, they do not explicitly investigate who infected whom. In some cases, for 

example the movement of animals between farms, where movements or shipments are 

considered a “contact,” directionality is more obvious in the contact network (Marquetoux 

et al., 2016). In addition, detailed behavioral observations can suggest directionality of 

pathogen transmission between individual animals by investigating, for example, 

differences in infection incidence between grooming animals and the individuals being 

groomed (Drewe, 2010). But these are somewhat implied or correlational indicators of 

directionality, and would be strengthened by more refined inferences of transmission 

direction. In circumstances where direct observation is difficult and/or detailed 

epidemiological information is unavailable, phylodynamics-based methods, such as 

transmission tree inference, may be more capable of determining who infected whom. 



30 
 

By incorporating higher resolution transmission data gleaned from these types of 

approaches, contact network techniques can provide clearer information about the 

impact of behavioral risk factors on pathogen transmission. For example, comparing a 

transmission network to various behaviorally-derived networks could provide insight into 

the types of behaviors that are most important for pathogen transmission (Figure 1.3b). 

As discussed above, GDM may be an important tool for this type of analysis, as it can be 

useful for scrutinizing complex network structures. Additional questions to investigate by 

comparing socially-derived networks to high-resolution transmission networks could 

include (but are not limited to): the importance of turnover of social ties, the relative 

importance of host genetic versus social distance, and the impact of host social structure 

or movement.  

 

Can we better understand transmission-relevant contact? 

The examples given above have all focused on investigating social networks 

together with assessments of pathogen “networks.” But this is, of course, only applicable 

in instances in which behavioral or observational data is adequate for describing the 

social network. Pluciński et al. (2011) discuss the idea that pathogen relatedness could 

be used to infer information about the underlying contact network. In support of this idea, 

genetic relatedness between human commensal oral bacteria has been shown to 

correlate with social network distance, as determined by questionnaire surveys (Francis 

et al., 2016).  Importantly, these studies highlight the potential for commensal or 

apathogenic organisms to be used as proxies of contact between individuals or even 

groups of individuals. For example, can microbiome composition or infection with 

apathogenic organisms be used to establish risk factors or “rules” to describe a mode of 
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pathogen transmission in a population, and then can those rules predict subsequent 

transmission with other similar pathogens? Some commensal organisms will, of course, 

be unsuitable for this kind of transmission analysis. For example, some aspects of the 

host microbial community can be affected by diet, individual host factors, population of 

origin, or environmental transmission (Blyton et al., 2013; Chiyo et al., 2014; Degnan et 

al., 2012). In addition, organisms that transmit among and between multiple hosts would 

make discerning interactions within a single host species far more challenging; instead, 

single-host organisms with well-characterized modes of transmission may be most 

effective at elucidating transmission-relevant contact in a single host species. Rapidly 

evolving, apathogenic viruses may hold the most promise as proxies of contact, as their 

diversity and high mutation rates should allow for greater resolution in illuminating 

transmission events. In addition, identification of such viruses is becoming increasingly 

achievable due to advances in viromic technologies and non-invasive sampling (Minot et 

al., 2013; Rasmussen, 2015). The use of such apathogenic infections for detecting 

transmission-relevant contact may be particularly important for disease systems where 

the pathogen of interest cannot be easily sampled and sequenced due to, for example, 

very short shedding periods (e.g. about 1-2 weeks for canine distemper virus, Greene, 

2012). Instead, commensal or apathogenic infection information could be utilized to 

determine a virtual contact network on which to simulate disease outbreaks, potentially 

without the use of resource intensive observational data typically required to estimate 

contact rates across populations (Figure 1.3c). This type of approach could potentially 

reveal and predict, for example, how animal movement behaviors and natural or 

anthropogenic landscape features affect disease transmission across populations. 
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Establishing the utility of this type of approach is a clear gap in the literature, and would 

benefit from future research.  

 

Limitations 

As previously noted, transmission tree approaches cannot be expected to 

reconstruct epidemics with perfect certainty, particularly for slow-evolving pathogens. 

Incorporating additional bounds and levels of information can, however, improve 

inferences from phylodynamics and integrative approaches (Ray et al., 2016; Welch et 

al., 2011). This multimodal approach, which may include data such as host genomics, 

landscape factors, and epidemic parameters, may be important in studies of pathogens 

with slow rates of mutation or otherwise limited genetic diversity (Wylie et al., 2005). The 

current literature on how to utilize a multimodal research framework is limited at this time 

(Ray et al., 2016), but carries potential for future expansion and may help resolve some 

areas of uncertainty within phylodynamic approaches. Future work to explore the 

impacts of incorporating different layers of data—including pathogen genomics—into 

contact networks should shed light on how these various factors are able to predict and 

describe the interaction between animal behavior and transmission dynamics.  

Of course, within mathematical modeling, there is a perpetual trade-off between 

precision, generality, and realism (Levins, 1966). In this review, we have discussed the 

advantages gained by adding complexity to disease models through the use of contact 

networks and genomics tools, but it must be pointed out that these additions may come 

at the cost of computational efficiency and generality. While models that are very 

realistic or precise for a particular study system can provide useful information for 

managing a particular disease within a specific population, increased complexity within 
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models is not always the best approach (Buhnerkempe et al., 2015). Ultimately, a key 

challenge for disease modeling, broadly, is in understanding when simplicity or 

complexity is more appropriate (Buhnerkempe et al., 2015), and this dichotomy should 

not be forgotten amongst the advancements offered by more precise or realistic data 

and modeling. 

 

1.6 Conclusions 

 This review has focused on describing how contact networks and genomic tools 

each shed light on the dynamic interaction between animal social behavior and 

infectious disease dynamics, and how these tools can be integrated for improved and 

new insights. These techniques may be particularly useful for wildlife researchers 

looking to make the most of hard-won pathogen data, and to advance their 

understanding of pathogen dynamics and social behavior. As genomics approaches 

become more accessible to more researchers, and the statistical and computational 

tools used to analyze genomic outputs continue to advance, the opportunities to utilize 

multimodal approaches in disease modeling will expand. Staying up-to-date with this 

progress will ultimately allow researchers to use novel techniques to answer complicated 

questions about animal behavior and its impact on pathogen transmission, and 

consequently make predictions important to the surveillance, prevention, and 

management of infectious diseases in populations.  

 

1.7 Acknowledgements 

M.L.J.G. was supported by the Office of the Director, National Institutes of Health under 

award number NIH T32OD010993. The content is solely the responsibility of the authors 



34 
 

and does not necessarily represent the official views of the National Institutes of Health. 

N.M. F-J was funded by National Science Foundation (DEB-1413925) and M.E.C. was 

funded by National Science Foundation (DEB-1654609), the University of Minnesota’s 

Office of the Vice President for Research and Academic Health Center Seed Grant, and 

the Cooperative State Research Service, U.S. Department of Agriculture, under Project 

No. MIN-62-098. Special thanks to L. White, K. Worsley-Tonks, Y. Wang, and two 

anonymous reviewers for their invaluable input and suggestions. 

 

 
  



35 
 

1.8 Figures 

 

Figure 1.1. Conceptual flow from a contact network to a transmission network. Areas 

with a green background represent components informed by empirical data; areas with a 

white background represent components informed by simulations. Network (a.) shows a 

contact network that would be defined by, for example, observational data of direct 

contacts. A disease process, such as an SI (susceptible-infectious) model, (b.) could be 

applied to the contact network many times (pictured three times here, but realistically, a 

simulation would be run on the order of 1000 times). In this example, the index case was 

randomly seeded, and darkened nodes represent those nodes that were infected in the 

course of a simulation. The who-infected-whom, transmission networks (c.) could be a 

final output of network model simulations.  
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Figure 1.2. Conceptual flow from (a.) a transmission tree to (b.) a transmission network; 

(c.) depicts a transmission network in the context of the rest of the population, where 

gray nodes represent uninfected individuals. The green background highlights that this 

approach is based on empirical data, rather than simulations. Colored circles represent 

sequenced samples from infected individuals. In (a.), branching events in the 

transmission tree indicate transmission events, with color changes occurring at these 

events; lettered labels at internal nodes represent infecting individuals. The colored lines 

and labels at branching events in the transmission tree highlight a primary difference 

between phylogenetic trees and transmission trees: pathogens sampled at the “tips” of 

the transmission tree are allowed to be ancestors of other samples. This then allows for 

the inference of who infected whom, as demonstrated by the directed networks in (b.) 

and (c.), but with some uncertainty that cannot be fully resolved (represented here by 

uncertain transmission from individual “h” to individual “d”). 
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Figure 1.3. Two examples of proposed integrations of contact networks and genomic 

tools, in this case focusing on utilizing transmission networks derived from inference of 

transmission trees. Areas with a green background represent components informed by 

empirical data; areas with a white background represent components informed by 

simulations. Panel (a.) highlights some characteristics of pathogens and types of host 

data that may be well-suited to transmission tree approaches, but these are by no 

means all-inclusive. Panel (b.) demonstrates a SNA application, in which observed 

networks such as grooming or spatial overlap networks, are compared to high-resolution 

transmission networks to determine what social or behavioral factors have the greatest 

impact on pathogen transmission. Panel (c.) depicts a network modeling application, in 

which a transmission network derived from an apathogenic or commensal organism is 

used to determine environmental and ecological factors that best predict transmission in 
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a population. These “rules” are then used to create a “virtual contact network” on which 

epidemics with a related (pathogenic) organism could be modeled. This approach could 

help determine the best preventive or intervention measures to be applied prior to an 

outbreak of a pathogen of concern.  
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1.9 Tables 

Table 1.1. Advantages and disadvantages of currently used and proposed methods for integrating network and genomic 

approaches. Methods are listed in the order in which they appear in the text. A * indicates that the given method utilizes Bayesian 

approaches, which have the advantage of being able to incorporate uncertainty.

Method Advantages Disadvantages References 

SNA and pathogen 
strain-sharing 
network 

Requires less intense pathogen 
sequencing effort.  
Able to identify if social structure is 
important for pathogen transmission, 
and/or the relative importance of 
different behaviors or locations. 
In future, may incorporate whole 
genome sequencing of pathogens, 
especially in the context of transmission 
tree reconstruction for higher resolution 
transmission networks. 

Uses low resolution representation of 
pathogen relatedness with limited ability 
to represent direction of transmission.  
May have reduced ability to refine 
conclusions about impact of specific 
behaviors, locations, etc. on 
transmission. 

(Fountain-Jones, Packer, 
et al., 2017; Marquetoux 
et al., 2016; VanderWaal 
et al., 2014a; Villaseñor-
Sierra et al., 2007) 

Phylogenetic tree 
structure to describe 
network structure 

Able to identify non-random mixing and 
differentiate some transmission patterns 
in underlying social network. 
In future, may be able to be used to 
parameterize theoretical networks for 
simulations and hypothesis testing. 

Limited in conclusions that can be 
drawn. 
Identifying non-random mixing may not 
be novel in all systems.  
Poorly suited to dynamic networks. 

(Colijn & Gardy, 2014; 
Leventhal et al., 2012; 
McCloskey et al., 2016; 
Robinson et al., 2013; 
Vasylyeva et al., 2016) 
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Transmission tree 
structure* to describe 
network structure 

Able to identify non-random mixing in 
underlying social network, and 
potentially draw conclusions about 
management interventions. 
In future, may be able to be used to 
parameterize theoretical networks for 
simulations and hypothesis testing. 

Limited in conclusions that can be 
drawn. 
Unable to reliably detect clustering in 
underlying network.  
High pathogen sequencing effort 
required. 
Unlikely to be the most effective 
integration of genomic approaches and 
contact networks. 

(Carnegie, 2017; Leigh 
Brown et al., 2011; 
Welch, 2011) 

Transmission tree 
reconstruction* with 
contact networks 
and/or 
phylogeographic 
models informing 
priors 

Contact networks and/or 
phylogeographic models may help 
resolve some of the uncertainty involved 
in transmission tree reconstruction. 
Transmission trees then provide higher 
resolution data about transmission 
events. 

Higher effort for sequencing, 
computational effort for reconstructing 
transmission trees.  
Generally requires pathogen with high 
mutation rate and high-intensity 
sampling effort. 

Theoretical, but see (Hall 
et al., 2016) 

SNA and pathogen 
transmission trees* 

Transmission trees may better represent 
directionality of transmission than strain-
sharing networks.  
May be able to identify social structure, 
behaviors, locations, etc. important for 
transmission.  
Higher resolution representation of 
pathogen relatedness than strain-
sharing networks. 

Higher effort for sequencing, 
computational effort for reconstructing 
transmission trees.  
Generally requires pathogen with high 
mutation rate and high-intensity 
sampling effort. 

Theoretical 
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Transmission tree* of 
apathogenic 
infections to describe 
social network 

Apathogenic infections may reveal 
transmission relevant contact prior to an 
epidemic with a pathogenic infection. 
May be useful for describing relevant 
intervention measures in at-risk wildlife 
populations.  
May be able to capitalize on non-
invasive sampling. 

Higher effort for sequencing, 
computational effort for reconstructing 
transmission trees. 
Generally requires agent with high 
mutation rate and high-intensity 
sampling effort.  
Requires agent with well-characterized 
mode of transmission.  
Most appropriate for directly transmitted, 
single-host pathogens.  
This approach is currently untested; 
transmission of pathogenic and 
apathogenic organisms may be too 
different to be able to translate 
mechanisms/risk factors between 
agents. 

Theoretical, but see 
(Blasse et al., 2013; 
Blyton et al., 2014; Bull et 
al., 2012; Francis et al., 
2016; Pluciński et al., 
2011; Springer et al., 
2016) 
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Chapter 2. Trade-offs with telemetry-derived contact networks for 

infectious disease studies in wildlife 

 

Gilbertson, M. L., White, L. A., & Craft, M. E. (2020). Trade-offs with telemetry-derived 

contact networks for infectious disease studies in wildlife. Methods in Ecology and 

Evolution. doi: 10.1111/2041-210X.13355 

 

2.1 Synopsis 

Network analysis of infectious disease in wildlife can reveal traits or individuals 

critical to pathogen transmission and help inform disease management strategies. 

However, estimates of contact between animals are notoriously difficult to acquire. 

Researchers commonly use telemetry technologies to identify animal associations; but 

such data may have different sampling intervals and often captures a small subset of the 

population. The objectives of this study were to outline best practices for telemetry 

sampling in network studies of infectious disease by determining (1) the consequences 

of telemetry sampling on our ability to estimate network structure, (2) whether contact 

networks can be approximated using purely spatial contact definitions, and (3) how 

wildlife spatial configurations may influence telemetry sampling requirements.  

We simulated individual movement trajectories for wildlife populations using a 

home range-like movement model, creating full location datasets and corresponding 

“complete” networks. To mimic telemetry data, we created “sample” networks by 

subsampling the population (10-100% of individuals) with a range of sampling intervals 

(every minute to every three days). We varied the definition of contact for sample 

networks, using either spatiotemporal or spatial overlap, and varied the spatial 
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configuration of populations (random, lattice, or clustered). To compare complete and 

sample networks, we calculated seven network metrics important for disease 

transmission and assessed mean ranked correlation coefficients and percent error 

between complete and sample network metrics.  

Telemetry sampling severely reduced our ability to calculate global node-level 

network metrics, but had less impact on local and network-level metrics. Even so, in 

populations with infrequent associations, high intensity telemetry sampling may still be 

necessary. Defining contact in terms of spatial overlap generally resulted in overly 

connected networks, but in some instances, could compensate for otherwise coarse 

telemetry data.  

By synthesizing movement and disease ecology with computational approaches, 

we characterized trade-offs important for using wildlife telemetry data beyond ecological 

studies of individual movement, and found that careful use of telemetry data has the 

potential to inform network models. Thus, with informed application of telemetry data, we 

can make significant advances in leveraging its use for a better understanding and 

management of wildlife infectious disease. 

 

2.2 Introduction 

Outbreaks of infectious disease in wildlife can have significant impacts on 

population health and may also have detrimental effects on domestic animals and 

humans as a result of cross-species transmission (Jones et al., 2008; Plowright et al., 

2017). Disease modeling has proven an illuminating tool in understanding transmission 

dynamics within and between wildlife populations (Lloyd-Smith et al., 2009). However, 

disease models rely upon estimates of transmission, which require estimates of contact 
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between individuals, particularly for directly or sexually transmitted pathogens (Anderson 

& May, 1991; Begon et al., 2002). Further, contact heterogeneity within a population has 

significant impacts on epidemic outcomes (Keeling & Eames, 2005; Lloyd-Smith et al., 

2005), which may alter the approach needed to appropriately model a pathogen system. 

Network analysis (including social network analysis and network modeling) incorporates 

contact heterogeneity which can help address this challenge, but network tools are data 

hungry and further dependent on quality estimates of contact rates (Keeling & Eames, 

2005).  

The cost and effort required to monitor free-ranging populations, the size or 

secretive nature of a species, or inhospitable habitats can all make contacts in wildlife 

challenging to observe (Krause et al., 2013). Estimates of contact in wildlife populations, 

therefore, increasingly utilize remote or automated detection of animal associations via 

animal tracking devices (Cross et al., 2012; Krause et al., 2013). Among such 

approaches, arguably the most direct approximation of contact is to identify co-location 

in both space and time (spatiotemporal overlap) via proximity loggers (e.g., Hamede et 

al., 2009). However, proximity loggers are not a perfect solution; a short battery life can 

limit the duration of observation, and the larger size of these loggers is inappropriate for 

some species (Krause et al., 2013).  Alternatively, GPS or VHF telemetry technologies 

have also been used to detect spatiotemporal overlap as a proxy for contact (e.g., 

Godfrey et al., 2014; Perkins et al., 2009; Schauber et al., 2015), but the localization 

error associated with these tools may affect their contact detection accuracy (Hulbert & 

French, 2001).  

Another proxy mechanism for estimating contacts in wildlife is through the use of 

spatial overlap contact definitions, which assumes that the extent of spatial overlap 
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between any two individuals is representative of the probability of contact.  A number of 

studies have used this approach to estimate networks and contact rates from observed 

or telemetry-recorded locations (e.g., Godfrey et al., 2010; Lewis et al., 2017; Schauber 

et al., 2007). Further, home range and subsequent spatial overlap estimation can be 

accomplished with lower frequency of sampling than would be required for 

spatiotemporal definitions of contact. However, while some studies have supported the 

underlying assumption that increased dyadic spatial overlap is associated with increased 

dyadic contact rate (Robert et al., 2012; Vander Wal et al., 2014), this assumption has 

not been thoroughly tested across systems (Schauber et al., 2015) and may be more 

likely to reflect the likelihood of shared space use rather than actual interaction 

frequency (Wanelik & Farine, 2019). Further, studies examining animal social networks 

often correct for spatial overlap (Whitehead & James, 2015), indicating that spatial 

overlap is, as yet, an unproven proxy for animal associations. 

 Perhaps the most pervasive challenge for any of these contact estimation 

approaches or any telemetry study more broadly is the issue of appropriate sampling 

effort — both the proportion of the population sampled and the frequency with which 

locations are recorded for each monitored individual. While some work has attempted to 

establish the proportion of a population that must be sampled (i.e. node sampling) for 

appropriate estimates of contact networks (e.g., Silk et al., 2015; Smith & Moody, 2013; 

Wey et al., 2008), less effort has been focused on the frequency with which individuals 

should be monitored (i.e. edge sampling, but see Davis et al., 2018). Further, we lack 

realistic sampling recommendations for deriving contact networks for wildlife (Cross et 

al., 2012, but see Costenbader & Valente, 2003), and, to the best of the authors’ 
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knowledge, no research has yet explored the impact of the frequency of telemetry 

locations on subsequent network estimation.  

Despite these challenges, telemetry estimation of wildlife contacts holds great 

promise for informing network analysis and improving understanding of pathogen 

transmission in wildlife. Researchers therefore need best practices recommendations for 

using existing and future telemetry datasets for wildlife network estimation, particularly in 

light of the lack of information about necessary telemetry sampling effort.  

Because sampling or directly observing an entire wildlife population and all of its 

resulting contacts is currently unfeasible, we employed a simulation approach to 

investigate the impact of telemetry sampling on contact detection and network 

estimation. The first objective of this study was to simulate the movement trajectories of 

a theoretical wildlife population to produce complete networks of known contacts and 

then to simulate different sampling effort regimes by “collaring” or “tagging” different 

proportions of the population and also varying the frequency of telemetry sampling. We 

hypothesized that the impact of sampling would vary based on the metrics used to 

describe network structure, with metrics determined by local network topology being the 

most resilient to reduced sampling effort (Cross et al., 2012; Davis et al., 2018). 

In addition, because different approaches to detecting and defining contact, even 

in the same population, can result in different contact network structures (Perkins et al., 

2009), our second objective was to investigate how our methodological definition of a 

contact (spatiotemporal overlap versus spatial overlap) affected network structure and 

resulting network metrics. In particular, we investigated if more sensitive, but less 

specific definitions of contact could compensate for reduced sampling effort.  
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Lastly, social systems of wildlife are highly variable, spanning from solitary to 

highly gregarious, and from non-territorial to territorial (Sah et al., 2018). Our third 

objective was therefore to determine if the underlying social system of the population 

has consequences for the effect of sampling on network estimation. We tested variations 

in the spatial configuration of simulated populations to represent a range of realistic 

social systems, including highly territorial populations with infrequent associations 

between individuals (e.g. solitary carnivores) and highly aggregated populations with 

frequent associations between individuals (e.g. herd species or animals aggregating 

around limited resources). We hypothesized that territorial populations with infrequent 

associations would be more sensitive to sampling, as their rare associations with limited 

partners are more likely to be missed with telemetry sampling.  

 

2.3 Materials and Methods 

Simulations 

In order to examine the effects of telemetry sampling on subsequent network 

estimation, we simulated movements of individuals in wildlife populations and sampled 

from these movement trajectories to mimic data collection from telemetry devices 

(Figure 2.1 and Appendix A, Figure A.2). Hereafter, a single simulation refers to 

movement trajectories for a population of 100 animals. Movement trajectories were 

created using a simple biased correlated random walk (BCRW; Long et al., 2014), which 

produces home range-like movement when the bias is directed toward the starting point 

of the trajectory (Van Moorter et al., 2009). A home range movement model was 

necessary in order to estimate home ranges and thereby test the robustness of spatial 

overlap as an indicator of animal associations (see “Sample Networks” below). The 
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movement trajectories were generated on a per-minute basis, for a duration of 90 days. 

We considered 90 days an appropriate time frame for contact network estimation 

because animal social dynamics and pathogen transmission are known to vary 

seasonally (Reynolds et al., 2015).  

Movement trajectories were generated using six parameter sets. Three of these 

varied home range sizes by altering the step length distribution scaling parameter, while 

leaving all other parameters constant; this produced small, medium, and large home 

range parameter sets (Appendix A, Table A.1). Because the BCRW is a simple, tractable 

movement model, step length distributions based on empirical movement data do not 

necessarily produce appropriate home range sizes for a chosen species. Rather, the 

BCRW allowed us to test the sensitivity of our findings to changes in movement model 

parameters without the decreased transparency associated with more complex 

movement models. With these benefits in mind, we tested three additional parameter 

sets which kept home range size roughly constant with the small home range model 

while varying other BCRW parameters (Appendix A, Table A.1).  

To mimic different spatial configurations, with a given parameter set, we varied 

the starting locations (and thus the home range centers) of individuals, testing random, 

lattice, and clustered spatial configurations (Appendix A, Figure A.1). Random 

configurations were a “null” spatial layout. Lattice configurations maintained 

approximately the same degree of home range overlap, independent of home range 

size, and represented highly territorial, solitary species such as many large carnivores 

(e.g. jaguars, Ethiopian wolves; de Azevedo & Murray, 2007; Zubiri & Gottelli, 1995). 

Clustered configurations placed individuals in one, five, or ten equally sized clusters, 

thereby representing highly social species (e.g. social ungulates such as white-tailed 
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deer or American bison; Schauber et al., 2015) or animals aggregated around 

heterogeneous resources (e.g. urban racoons; Hirsch et al., 2013). Further details on 

simulation methods can be found in Apendix A. We performed all simulations in R, 

version 3.5.0 (R Core Team, 2018).  

 

Complete Networks 

We constructed complete contact networks by detecting contact events between 

all 100 individual movement trajectories in a given simulated population. For complete 

networks, contact was always determined by spatiotemporal overlap, with contacts 

defined as simultaneous locations within a given distance threshold. We varied the 

distance threshold used to construct complete networks; because movement simulations 

were scale-free, we refer to the thresholds as small, medium, or large thresholds 

(hereafter, small thresholds, etc.), with these resulting in three complete networks for 

any given simulation. The distance thresholds should be considered relative to the step 

length distributions used in the movement model. For example, even with the smallest 

step length distribution, an individual’s cumulative steps would surpass the largest 

contact threshold within about 8-10 steps (i.e. minutes), meaning that even our large 

contact threshold is fairly strict (see Appendix A for further details).  

 

Sample Networks 

To construct sample networks, we first mimicked sampling a subset of the 

population by randomly selecting a portion of the simulated individuals to “collar.” We 

varied the sampling effort from 10-100% of the population at 10% intervals (hereafter, 

proportion of the population sampled). In reality, the proportion of a wildlife population 
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sampled is often unknown, but is likely to be on the lower end of this range (i.e. <50%; 

Cross et al., 2012). With those monitored individuals, we then varied the frequency of 

location sampling by recording individual locations at an interval of every 1 minute, 15 

minutes, 60 minutes, 3 hours, 12 hours, 24 hours, or 72 hours (hereafter, frequency of 

sampling). This range spans functionally continuous sampling (every 1 minute), which is 

rare in wildlife studies, to much more common frequencies of GPS sampling (every 12-

72 hours). The composite of the proportion of the population sampled and frequency of 

sampling is hereafter referred to collectively as sampling effort. 

We then estimated spatiotemporal overlap using simultaneous locations within 

large, medium, or small distance thresholds for each sample dataset. For sample 

networks, we also detected contacts as determined by spatial overlap, which we 

calculated using the utilization distribution overlap index (UDOI) of the 95% bivariate 

normal kernel density estimate (KDE) home range (Fieberg et al., 2005). Spatial overlap 

contacts were defined as UDOI greater than zero (using both binary and weighted 

edges). Because KDE approaches assume independent locations (Worton, 1989), we 

only calculated spatial overlap contacts for telemetry frequencies of every 24 or 72 

hours. Spatial overlap was calculated using the adehabitatHR package in R (Calenge, 

2006).  

 

Network Comparisons 

Complete and sample networks were compared based on contact definitions 

(Appendix A, Figure A.2). The complete networks with a large contact threshold were 

therefore compared to sample networks with the same large threshold, and so on. In 

addition, we compared complete networks with a medium threshold to corresponding 
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sample networks with a large threshold to assess the effect of using a more sensitive but 

less specific spatiotemporal contact definition in the sample network. Lastly, we 

compared the three types of complete networks (large, medium, or small threshold) to 

sample networks derived from the spatial overlap contact definition. Hereafter, sample 

networks with the same contact definition as their corresponding complete network are 

referred to as strict contact definitions, while sample networks with more sensitive/less 

specific spatiotemporal or spatial overlap contact definitions are referred to as less 

precise contact definitions. 

For all complete and sample networks, we calculated seven structural network 

metrics which can be important for pathogen transmission. We followed Silk et al. (2015) 

and Davis et al. (2018) in selecting the node-level metrics of degree, strength, 

betweenness, and transitivity; we also calculated network-level metrics of density, 

proportion isolates, and modularity (see Appendix A for modularity details). As in Davis 

et al. (2018), we characterized our node-level metrics as local or global. Degree and 

strength are determined by local connectivity, and individuals with high degree or 

strength have more or stronger connections. Such well-connected individuals may 

therefore be candidates as “superspreaders” in studies of pathogen transmission (Lloyd-

Smith et al., 2005). Betweenness and transitivity are determined by global network 

topology; individuals with high betweenness may be important “firebreak” individuals for 

interrupting pathogen transmission (VanderWaal et al., 2014b), and transitivity is a 

measure of clustering in a network (Farine & Whitehead, 2015) which can have 

significant impacts on epidemic outcomes (Keeling & Eames, 2005). Network analysis 

was performed with the R package igraph (Csardi & Nepusz, 2006).   
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To compare node-level metrics between complete and sample networks, we 

followed Davis et al. (2018) in calculating the ranked correlation coefficient between 

metrics from individuals in the sample network to corresponding individuals from the 

complete network. We calculated mean and 95% confidence intervals for ranked 

correlation coefficients as averaged across variations in movement model 

parameterization and sampling effort. Sample networks often became very poorly 

connected with low sampling effort, meaning that fewer networks had measurable node-

level metrics, with subsequently greater variation in mean ranked correlation coefficients. 

We therefore conservatively used the lower limit of the 95% confidence interval, rather 

than the mean, to interpret results. Target correlations were between 0.80 and 1.00, 

following Smith and Moody (2013). When networks were completely unconnected at a 

given level of sampling effort, we classified them as “disconnected.” 

 To compare agreement between sample and complete networks for the network-

level metrics (density, proportion isolates, modularity), we calculated the percent error of 

mean metric values between complete and sample networks across given simulation 

variations. Here percent error is the difference between the network metric of the sample 

and complete networks, divided by the metric of the complete network, and multiplied by 

100%. For proportion isolates, we assessed the percent error of the complement of 

proportion isolates (i.e., proportion connected or effective number of nodes; Sah et al., 

2018) as connected individuals are of primary interest in pathogen transmission studies. 

Percent error of mean density and proportion isolates describes agreement in overall 

network connectivity; a positive percent error equates to more connections in the sample 

network than the complete network. For modularity, a positive percent error indicates 

higher modularity in the sample networks, suggesting stronger community structure. 
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2.4 Results 

 We completed a total of 11,994 simulations, each with three definitions of contact 

(large, medium, or small threshold) used to construct complete networks, for a total of 

35,982 complete networks. Simulation variations did not yield substantial changes in the 

patterns reported here, but more extensive results are reported in Appendix A (Figures 

A.1-A.12). Here we highlight key results for medium home range simulations which are 

illustrative of our overall findings. 

 

Local metrics outperform global metrics 

When using spatiotemporal definitions of contact, all metrics performed best 

(highest correlation coefficients and smallest percent error) for comparisons of complete 

and sample networks with large threshold contact definitions, and all metrics performed 

poorly with small thresholds. This finding was consistent across all simulation variations, 

and was likely driven by fewer associations with the small thresholds. In general, the 

local metrics (strength, degree) consistently outperformed the global metrics 

(betweenness, transitivity; Figure 2.2 and Appendix A, Figures A.1-A.8). Strength 

showed the highest resilience to sampling of all metrics with the best performance in 

clustered populations.  However, even among the local metrics, high sampling effort was 

still required to achieve high correlation scores in some instances (e.g. for lattice spatial 

configurations, as in Figure 2.2).  

 Density, proportion isolates, and modularity performed intermediately as 

compared to the other metrics. Density, especially, required higher frequency of 

sampling to achieve a smaller percent error. As with the node-level metrics, both density 
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and proportion isolates performed best (smallest percent errors) in clustered 

populations, with random and lattice spatial configurations more sensitive to sampling 

(Appendix A, Figures A.9-A.12). Modularity, on the other hand, showed strong positive 

percent error in clustered configurations, and greater variability in results overall 

(Appendix A, Figures A.13-A.14).   

 

Frequency of sampling has major consequences for network estimation 

 As expected, reducing the proportion of the population sampled resulted in 

reduced metric performance for most metrics, but with the notable exception of density 

(Appendix A, Figures A.9-A.10). Density was largely unaffected by the proportion of the 

population sampled, regardless of simulation variations, though this was likely a result of 

the random sampling procedure used. Surprisingly, frequency of telemetry sampling had 

at least as much impact on metric performance as the proportion of the population 

sampled (Figure 2.2). This was especially notable for global metrics, density, lattice 

spatial configurations, and more restrictive contact definitions (medium or small 

thresholds), where seemingly minor reductions in the frequency of sampling resulted in 

rapid decreases in correlation scores and more negative percent error.  

 

Less precise contact definitions produce overly connected networks 

We also examined metric performance when less precise contact definitions 

were used in the sample networks in order to determine if such approaches could 

compensate for reduced sampling effort. We found mixed results when using less 

precise contact definitions. As with the spatiotemporal contact definitions, global metrics 

performed poorly across all simulation variations. The local metrics, however, 
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occasionally recovered surprising levels of correlation performance with our less precise 

contact definitions (Figure 2.3 and Appendix A, Figures A.5-A.8), especially when 

compared to the equivalent sampling effort with a standard spatiotemporal contact 

definition (Figure 2.3). The correlation score improvements were the most pronounced 

for spatial overlap definitions of contact when the complete networks were defined by a 

large threshold. Even with the local metrics, improvements in correlation scores varied 

across types of spatial configurations: clustered configurations showed the most 

improvement with less precise contact definitions, but lattice layouts displayed no major 

increase in correlation scores. The network-level metrics, density and proportion isolates 

(evaluated as proportion connected), showed increased positive percent error, 

demonstrating that these less precise definitions of contact produced overly connected 

networks (Appendix A, Figures A.9-A.12).  

 

Spatial configuration has significant impacts on network estimation 

The performance for all social network metrics varied with spatial configuration 

(degree shown for illustrative purposes in Figure 2.4; see also Appendix A, Figures A.1-

A.12). Lattice layouts, in particular, consistently showed poor metric performance, while 

dense, frequently interacting populations (i.e. one cluster) had the best metric 

performance. In general, the lattice and random layout populations had fewer 

associations than clustered populations (Appendix A, Table A.2; from 1-20% of the 

mean number of contacts for single cluster configurations), supporting our hypothesis 

that infrequently interacting populations would be more sensitive to telemetry sampling. 

However, even in instances in which lattice populations had greater than or equivalent 

mean numbers of contacts per dyad (Appendix A, Table A.2), correlation scores in lattice 
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populations remained low compared to other spatial configurations, suggesting that 

sampling sensitivity is not entirely mediated by the strength of an association. The global 

metrics showed less variation in performance with spatial configuration, although these 

metrics generally performed poorly across all variations.  

Simulated home range size varied from 5 x 106 (small) to 4 x 107 (large) square 

units (equivalent to 5 to 40 square “kilo-units”; a mean area increase of 800%; Appendix 

A, Table A.1). Home range size also impacted metric performance, with a general trend 

toward reduced performance as home range size increased. For density, this trend 

resulted in large home range simulations having larger positive percent error when using 

a spatial overlap definition of contact in sample networks. This is notable for lattice 

simulations, which were designed to keep roughly equivalent amounts of spatial overlap 

between individuals across simulations (see Appendix A for details on simulations), 

meaning it is unlikely that large home range simulations had proportionally more overlap 

than small home range simulations. Rather, the higher positive percent error in the 

lattice scenarios suggests that large home range simulations generally had fewer 

associations between individuals, making these simulations more sensitive to sampling 

across metrics and simulation variations (Appendix A, Table A.2).  

 

2.5 Discussion 

Wildlife telemetry data can be a powerful tool for remotely detecting animal 

associations for use in network estimation, social network analysis, and pathogen 

transmission modeling (Robitaille et al., 2019). However, regardless of study objective, 

variations in telemetry sampling effort can have a significant impact on the structure of 

subsequent contact networks. Our results suggest that the impact of telemetry sampling 
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effort varies with contact definition, spatial configuration, and the chosen network 

metrics, and we provide best practices recommendations for telemetry sampling design 

for network studies of wildlife infectious disease below. 

 

Prioritize local network metrics and consider maximizing sampling frequency 

 Across all simulation variations, we found that local network metrics consistently 

outperformed global metrics. However, the local metrics still required intensive sampling 

under some conditions, especially lattice layout populations. Further, the frequency of 

telemetry sampling was often at least as important as the proportion of the population 

sampled in order to achieve high metric correlation values. In the context of networks, 

the proportion of the population monitored can be thought of as “node sampling,” while 

the frequency of telemetry sampling relates to the “edges” of the network. Given the 

profound impact of undersampling the edges of the network which we observed here, we 

suggest that researchers may choose to maximize frequency of telemetry locations over 

the proportion of the population sampled, especially for territorial species or those with 

infrequent interactions (e.g. solitary species such as puma; Elbroch & Quigley, 2016). 

This recommendation expands upon work by Franks et al. (2010), who argued for 

emphasizing edge sampling over node sampling when observing gambit of the group 

associations in resource-limited circumstances. In infectious disease studies, estimates 

of local metrics may be important for identifying highly connected individuals (i.e. 

“superspreaders”), but also for determining if phenotypic traits are associated with 

connectedness. For example, traits like sex, age, or social rank may be associated with 

high node degree, allowing for more efficient vaccination protocols, interventions, or 

management strategies (Rushmore et al., 2014). The population sample sizes 
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necessary to achieve the statistical power to identify such associations may therefore 

need to be balanced against the frequency of locations necessary to accurately estimate 

local network metrics, and our simulation results suggest this conflict will be most 

profound for territorial or infrequently interacting species. 

In more extreme situations, researchers may also consider using a smaller 

number of intensively monitored individuals to develop movement and association 

models in order to simulate contacts in populations. Such an approach may be 

particularly useful if global network metrics are critical to the research objective (e.g. 

using high betweenness to identify important “firebreak” individuals for vaccination or 

quarantine), as these metrics tended only to perform well with exceptionally high 

sampling effort which is generally not feasible for wildlife populations. Alternatively, many 

network metrics tend to be highly correlated with each other, including betweenness and 

degree (Farine & Whitehead, 2015; VanderWaal et al., 2014b), which could further 

depend on spatial configuration. Researchers may therefore consider if a local network 

metric is able to accomplish their research objectives, rather than attempting to manage 

the sampling challenges needed to achieve reliable global metrics.  

   

Spatial overlap is a viable contact definition in clustered spatial configurations 

 We also examined the effect of using less precise contact definitions on network 

estimation. First, we examined the effects of using a large spatiotemporal threshold in 

sample networks, as compared to a medium threshold in the complete network. While 

simulating location error was beyond the scope of the present study, a less precise 

spatiotemporal contact definition approximates some of the precision lost with telemetry 

location error. The less precise spatiotemporal contact definitions showed modest 
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improvement in local metric correlation scores suggesting location error may have 

limited effects on network estimation. However, further research more specifically into 

the effects of location errors are necessary to refine this conclusion.  

Importantly, in some instances, less precise spatial overlap contact definitions 

were able to compensate for coarse sampling by still identifying the relative 

connectedness of individual nodes in our simulations.  Thus, if the research objective is 

to identify the most connected individuals in a population (Craft, 2015; Farine & 

Whitehead, 2015; White et al., 2017), less precise contact definitions like spatial overlap 

may be a viable strategy. However, because these contact definitions simultaneously 

produced overly dense networks, caution should be applied if using these contact 

definitions for metrics at the network level or in the context of pathogen transmission 

simulations. It may be possible to correct for overly dense networks when using a less 

precise contact definition by “thresholding” at the network level — for example, only 

counting as contacts those pairs that reach a specified level of spatial or spatiotemporal 

overlap — however excluding edges below a given weight is generally not 

recommended in network studies (Farine & Whitehead, 2015), and determining the 

exact threshold to use may be ambiguous or lack biological motivation. 

 A major caveat of using less precise contact definitions to compensate for coarse 

sampling, however, is that the performance of these contact definitions varied across 

spatial configurations. For example, lattice layout populations surprisingly showed no 

major improvement in correlation scores with less precise contact definitions. Thus, we 

recommend using empirical data or system-specific movement simulations to justify 

using less precise contact definitions as proxies of direct contact (as in Brandell et al., 

2020), particularly in highly territorial populations.  
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 Our results are largely consistent with prior work which has found that spatial 

overlap may be used as a proxy for direct contact (Robert et al., 2012). However, such 

findings have not been consistent across all studies (e.g., Schauber et al., 2007) and 

spatial overlap is often corrected for in social network studies (Whitehead & James, 

2015), suggesting that the utility of spatial overlap as a proxy of direct contact may be 

system specific. Further, in our simulations, spatial overlap was more representative of 

less restrictive contact definitions (large threshold), and may therefore be more 

appropriate when studying host-pathogen systems in which the pathogen is transmitted 

over larger distances or longer time periods (e.g. long-distance aerosol, vector, or 

persistent environmental transmission; Burgin et al., 2013; Tissot-Dupont et al., 2004). 

Because less precise contact definitions may be able to make the most of otherwise low 

frequency sampling, this approach may allow researchers to sample edges with reduced 

effort. While any remote contact detection approaches may struggle to determine the 

exact nature of an association (e.g. aggressive vs. passive; Krause et al., 2013), the less 

precise contact definitions are even more limited. Spatial overlap, for example, cannot 

directly characterize the duration or frequency of associations, both of which may be 

important for pathogen transmission (Sah et al., 2018). Thus, less precise contact 

definitions may augment but should not replace stricter, more specific definitions. 

 

Spatial configurations influence telemetry sampling requirements 

 Our final objective was to determine if the effect of telemetry sampling varied with 

population spatial configuration. We found that random and lattice configured 

populations, which had lower density networks and less frequent associations, required 

high sampling effort to achieve high correlations between complete and sample network 



61 
 

metrics, especially compared to clustered populations. Lattice layouts, which are most 

representative of highly territorial populations with limited associations such as many 

large carnivore species (e.g. jaguars; de Azevedo & Murray, 2007) or between groups of 

some social species (e.g. Ethiopian wolves; Zubiri & Gottelli, 1995), were generally the 

most sensitive to the effects of telemetry sampling and may therefore require especially 

high sampling effort to accurately estimate network metrics. Further, relatively solitary 

species tend to have higher variation in their number of contacts (Sah et al., 2018), 

which may make these populations more sensitive to undersampling, particularly if the 

distribution of contacts is highly skewed (Perkins et al., 2009; Wilson et al., 2002).  

This increased effort may be especially important as the rare or infrequent 

associations between solitary animals may be pivotal for pathogen transmission, and 

would be easily missed with sampling effort deemed adequate for other species (social 

species or species aggregating over heterogeneous resources, e.g. deer or urban 

racoons). For instance, among our lattice simulations, even local metrics required a 

frequency of sampling of every 1 to 15 minutes to achieve moderate correlation scores; 

this level of sampling effort is quite high, even for GPS collars, and is likely to be beyond 

the level of effort used in many wildlife monitoring studies. VHF telemetry, in particular, 

tends to capture animal locations far less frequently, such that our locations every 72 

hours represent a high level of effort for VHF telemetry (Krause et al., 2013). When 

using spatiotemporal contact definitions, VHF telemetry is therefore unlikely to 

adequately capture network structure for territorial, solitary species. Further, GPS 

telemetry for these species is likely to require higher than average frequency of sampling 

when the study objective is to estimate contact networks for disease transmission. Our 

simulations are limited in their system specificity, however, so actual sampling effort 
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should be determined by empirical data or species-specific simulations. Importantly, 

spatial overlap definitions of contact performed poorly for these infrequently interacting 

species, meaning that spatial overlap is unlikely to be able to compensate for their 

higher sampling needs. Spatial overlap contact definitions may be more appropriate in 

heterogeneous landscapes or instances of resource provisioning where animals are 

expected to congregate (Becker & Hall, 2014) — a scenario approximated by our 

clustered simulations.  

 

Challenges and future opportunities 

 By examining aggregated populations of individuals, our clustered simulations 

capture some impact of landscape heterogeneity and social biology on telemetry 

sampling. However, more explicit inclusion of landscape heterogeneity (e.g. through 

simulations based on resource selection functions, RSF; Dougherty et al., 2018; White et 

al., 2018b) would be particularly useful in future work to further ascertain the effect of 

landscape heterogeneity on telemetry sampling and subsequent network estimation. We 

chose a relatively simple movement model, the BCRW, as this improved model 

transparency and better allowed us to determine the robustness of our results to 

variations in model parameterization. RSF models would be an appropriate future 

direction to add an additional layer of complexity and further biological realism to our 

findings.  

Further, we utilized the same movement model across all individuals in a given 

simulation. In reality, animal movement varies across time of day, and between different 

individuals. For example, in species where males maintain larger home ranges, these 

individuals may require higher sampling effort, given that larger home range simulations 
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in our study demonstrated higher sensitivity to telemetry sampling. For determining 

system-specific telemetry sampling needs with a simulation approach, increased 

biological realism should incorporate both landscape and these individual-level 

heterogeneities. 

Contact networks used for transmission modeling should be aggregated over 

time frames representative of the infectious period for the pathogen of interest (White et 

al., 2017). Our 90-day simulation durations, therefore, make our simulations more 

representative of pathogens with short to moderate infectious periods (Craft et al., 2011); 

for longer infectious periods or populations with more rapid changes to social 

organization, dynamic networks might be used (Bansal et al., 2010; Volz & Meyers, 

2007). Future work examining the effect of telemetry sampling over dynamic networks 

would help refine sampling needs for populations with fission-fusion social dynamics or 

seasonal changes in network structure, where such temporal changes may result in 

significantly different epidemic outcomes (VanderWaal et al., 2017).  

 Another key assumption of our simulations was that individuals behave 

independently of one another. Attraction behaviors would make animals more likely to 

interact or maintain associations for longer durations than is represented by our 

simulations. Such associations would be expected to make contact networks less 

sensitive to reduced telemetry sampling. In contrast, for avoidance behaviors, we would 

expect increased sensitivity to telemetry sampling. Our current simulation model 

therefore represents a “null” case for the impact of telemetry sampling on network 

estimation.  Our results are, therefore, broadly generalizable across systems, and set an 

expectation for populations or research questions that may require more intensive 
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sampling. More species-specific work in the future could clarify how association 

behaviors impact telemetry needs.  

 As with any simulation study, some events have been simplified, particularly in 

comparison to field conditions. Our sampling approach was truly random, but even when 

the goal is random sampling, this condition is often unmet in the field. For example, 

certain geographic study areas of populations may be more thoroughly sampled, rather 

than a random sample of the whole population (Craft et al., 2009; Reynolds et al., 2015). 

While our network density results appear to be insensitive to the proportion of the 

population sampled, this is likely due at least in part to our random sampling, especially 

given that network-level metrics are generally expected to be negatively impacted by low 

population sampling (Farine & Whitehead, 2015). Under field conditions, where random 

sampling is less likely, network density may be more sensitive to the proportion of the 

population sampled. Future research may examine the effect of non-random or 

geographically biased telemetry sampling on network metric estimation.  

In addition, while we varied the distance threshold for contacts, using time lags 

when estimating associations was beyond the scope of this study. Given the 

improvement in some network metrics when using less precise contact definitions, we 

expect that time lags also have the potential to further maximize the utility of telemetry 

data for estimating wildlife contact networks. Future studies characterizing the bounds of 

this approach would therefore be of great practical use. 

 

Conclusions 

 While some network metrics and spatial configurations are more sensitive to 

telemetry sampling effort, remote detection of animal contacts through telemetry 
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technology appears to be a viable approach for estimating some network metrics. In 

particular, local metrics were well-approximated, particularly in clustered populations 

which may represent social species or animals navigating highly heterogeneous 

landscapes. While our results should not be used as a system-specific guide for 

designing telemetry protocols, they do outline several important sampling guidelines for 

estimating network structure in infectious disease studies. In particular, we recommend 

(1) using local network metrics over global metrics, (2) prioritizing frequency of sampling 

for territorial or infrequently interacting species, and (3) considering a spatial overlap 

contact definition if sampling is coarse, but only for frequently interacting, highly 

aggregated species (e.g. herd species). Our findings are broadly generalizable across 

species, but also demonstrate that future system-specific sampling efforts can be 

designed following our simulation approach, incorporating additional heterogeneity to 

inform reliable telemetry approaches for network studies of infectious disease. 
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2.7 Data Availability 

Full R code for simulations is available on GitHub 

(https://github.com/mjones029/Telemetry_Network_Simulations) and archived at Zenodo 

(https://doi.org/10.5281/zenodo.3610569). 
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2.8 Figures 

 

Figure 2.1: Workflow for simulations, sampling, and network estimation. Green boxes 

indicate individual steps in the workflow, and purple boxes indicate treatments 

introduced to simulations, sampling, or contact detection protocols. “q1m” means “every 

1 minute,” and so on.  
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Figure 2.2: Heat maps demonstrating the lower limit of the 95% confidence interval for 

mean correlation coefficient results for betweenness and strength, the best performing 

global and local node-level network metrics, respectively. Yellow and light green cells 

indicate the highest correlation categories. Results here represent a comparison of 

complete networks and sample networks generated with large threshold contact 

definitions. Results shown are for medium home range movement simulations across 

four variations in spatial configurations (random, lattice, one cluster, and ten clusters). 

For telemetry sampling frequencies, “q1m” means “every 1 min,” and so on. 
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Figure 2.3: Heat maps of network strength (lower limit of the 95% confidence interval for 

mean correlation coefficient), which showed the strongest improvement with a spatial 

overlap contact definition, for medium home range simulations at the coarsest 

frequencies of sampling. The top panel represents the comparison between complete 

and sample networks each generated with large threshold spatiotemporal contact 

definitions (Spatiotemporal Overlap). The lower panel shows results for the comparison 

between complete networks with a large threshold spatiotemporal contact definition and 

sample networks with a spatial overlap contact definition (Spatial Overlap). 
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Figure 2.4: Heat maps of the lower limit of the 95% confidence interval of mean 

correlation coefficient for degree. Yellow and green represent the highest correlation 

values; results are shown across two movement model variations (small and large home 

ranges; Small HR and Large HR, respectively) and four spatial configurations (random, 

lattice, one cluster, and ten clusters), with large threshold contact definitions.  
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Chapter 3. Transmission of one predicts another: Apathogenic proxies for 

transmission dynamics of a fatal virus 
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Gagne, Justin S. Lee, Simona Kraberger, Sarah Kechejian, Raegan Petch, Elliott Chiu, 

Dave Onorato, Mark W. Cunningham, Kevin R. Crooks, W. Chris Funk, Scott Carver, 

Sue VandeWoude, Kimberly VanderWaal, Meggan E. Craft  

 

3.1 Synopsis 

Identifying drivers of transmission prior to an epidemic—especially of an emerging 

pathogen—is a formidable challenge for proactive disease management efforts. To 

overcome this gap, we tested a novel approach hypothesizing that an apathogenic virus 

could elucidate drivers of direct contact transmission processes, and thereby predict 

transmission dynamics of an analogously transmitted virulent pathogen. We tested our 

hypothesis in a model system, the Florida panther (Puma concolor coryi), which is 

affected by several feline retroviruses, including apathogenic feline immunodeficiency 

virus (FIV) and pathogenic feline leukemia virus (FeLV). We derived a transmission 

network using FIV whole genome sequences, and used exponential random graph 

models to determine drivers structuring this network. We used the identified factors to 

predict transmission pathways among panthers, simulated FeLV transmission using 

these pathways and three alternate modeling approaches, and compared predictions 

against empirical observations from a historical FeLV outbreak in panthers. FIV 

transmission was primarily driven by panther age class and pairwise geographic 

distances. Prospective FIV-based predictions of FeLV transmission performed at least 



72 
 

as well as simpler, often retrospective approaches, with evidence that FIV-based 

predictions could capture the spatial structuring of the observed FeLV outbreak. Our 

finding that an apathogenic agent can predict transmission of an analogously transmitted 

pathogen is an innovative approach that warrants testing in other host-pathogen 

systems to determine its generalizability. Use of such apathogenic agents holds promise 

for improving predictions of pathogen transmission in novel host populations, and can 

thereby revolutionize proactive pathogen management in human and animal systems.  

 

3.2 Introduction 

Infectious disease outbreaks can have profound impacts on conservation, food 

security, and global health and economics. Mathematical models have proven a vital tool 

for understanding transmission dynamics of pathogens (Anderson & May, 1991; 

Antonovics, 2017), but may struggle to predict the dynamics of novel or emerging agents 

(Metcalf & Lessler, 2017; Plowright et al., 2017). This is at least partially due to the 

challenges associated with characterizing contacts relevant to transmission processes. 

Common modeling assumptions that all hosts interact and transmit infections to the 

same degree may ignore key drivers of transmission such as specific transmission-

relevant behaviors (e.g., grooming or fighting in animals: Drewe, 2010; concurrent 

sexual partnerships in humans: Morris & Kretzschmar, 1995) or assortative mixing 

(Cauchemez et al., 2011), resulting in flawed epidemic predictions (Craft & Caillaud, 

2011; Keeling & Eames, 2005). Further, identifying drivers of transmission and 

consequent control strategies for any given pathogen is typically done reactively or 

retrospectively in an effort to stop or prevent further outbreaks or spatial spread (e.g. 

Keeling et al., 2003; Lloyd-Smith et al., 2009; Smith et al., 2002). These constraints limit 
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the ability to perform prospective disease management planning tailored to a given 

target population, increasing the risk of potentially catastrophic pathogen outbreaks, as 

observed in humans (Dobson et al., 2020; Keogh-Brown & Smith, 2008; Pike et al., 

2014), domestic animals (Blake et al., 2003; Knight-Jones & Rushton, 2013) and species 

of conservation concern including Ethiopian wolves (Sillero-Zubiri et al., 1996), African 

lions (Roelke-Parker et al., 1996), black-footed ferrets (Williams et al., 1988), and Florida 

panthers (Cunningham et al., 2008).  

Some efforts have been made to determine if common infectious agents present 

in the healthy animal microbiome or virome can capture contact patterns, which may 

translate to interactions relevant to transmission. Such an approach could circumvent 

some of the uncertainties associated with more traditional approaches to contact 

detection by using genetic evidence from the transmissible agent itself to define 

between-individual interactions for which contact was sufficient for transmission to occur. 

Prior studies, however, have found mixed results thus far (Blasse et al., 2013; Blyton et 

al., 2013; Bull et al., 2012; Chiyo et al., 2014; Springer et al., 2016; VanderWaal et al., 

2014a). For example, in humans, members of the same household have been found to 

share microbiota (Lax et al., 2014; Song et al., 2013), but disentangling social 

mechanisms of this sharing is complicated by shared diets, environments, behaviors, 

etc. (Archie & Tung, 2015). In animals, studies of Escherichia coli in Verreaux’s sifaka 

and giraffe have found strain sharing relationships to be tied to social interactions 

(Springer et al., 2016; VanderWaal et al., 2014a), but the same was not found in a 

similar study of elephants (Chiyo et al., 2014).  

These studies, however, reveal some characteristics of ideal non-disease-

inducing infectious agents (hereafter, apathogenic agents) for use as potential markers 
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of transmission-relevant interactions. Such apathogenic agents should have rapid 

mutation rates to facilitate discernment of transmission relationships between individuals 

over time (Gilbertson et al., 2018; Hall et al., 2016). Furthermore, these agents should 

be relatively common and well-sampled in a target population, have a well-characterized 

mode of transmission, and feature high strain alpha-diversity (local diversity) and high 

strain turnover (Blyton et al., 2014; Gilbertson et al., 2018). Many RNA viruses may best 

align with these characteristics (Archie et al., 2009; Grenfell et al., 2004). Some 

apathogenic RNA viruses could thereby act as “proxies” of specific modes of 

transmission (i.e., direct transmission) and determine which factors drive these 

transmission processes. Such factors may subsequently be able to predict transmission 

dynamics of pathogenic agents operating under the same mode of transmission 

(Gilbertson et al., 2018). To the best of the authors’ knowledge, however, RNA viruses 

have not been tested as models for direct transmission processes in this way. 

Here, we use a naturally occurring host-pathogen system to test if an 

apathogenic RNA virus can act as a model for direct transmission processes and 

subsequently predict transmission of a related pathogenic agent. Florida panthers 

(Puma concolor coryi) are an endangered subspecies of puma found only in southern 

Florida and have been extensively studied and monitored for almost four decades. 

Panthers are also infected by several feline retroviruses relevant to our study questions. 

Feline immunodeficiency virus (FIVpco; hereafter, FIV) is a relatively common lentivirus 

in panthers, and does not appear to cause significant clinical disease. FIV is transmitted 

by close contact (i.e., fighting and biting), generally has a rapid mutation rate (intra-

individual evolution rate of 0.00129 substitutions/site/year; Krakoff et al., 2019), and, as 

a chronic retrovirus infection, can be persistently detected after the time of infection. In 
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contrast, panthers are also affected by feline leukemia virus (FeLV), a related retrovirus, 

which spills over into their population owing to predation of infected domestic cats 

(Brown et al., 2008). Once spillover has occurred, FeLV is also transmitted by close 

contact, and causes significant clinical disease in panthers, with a major outbreak 

documented among panthers in 2002-2004 (Cunningham et al., 2008).  

We hypothesized that FIV can act as a proxy for direct transmission in panthers, 

revealing which measurable factors drive direct transmission events. We then tested the 

accuracy and utility of FIV in this role by predicting transmission dynamics of FeLV 

based on these factors. A key advantage of this naturally-occurring system is the well-

observed historical FeLV outbreak in panthers, which allowed us to compare our 

predictions against empirical observations. The objectives of this study were therefore: 

(1) to determine which factors shape FIV transmission in Florida panthers, and (2) test if 

these factors can predict transmission dynamics of analogously-transmitted FeLV in 

panthers. Success of this approach in our model system would pave the way for testing 

similar apathogenic agents in other host-pathogen systems, thereby improving our ability 

to predict transmission dynamics of novel agents in human and animal populations. 

 

3.3 Materials and Methods 

Dataset assembly 

We assembled an extensive dataset covering more than 30 years of Florida 

panther research. Ongoing panther management has documented age and sex of 

monitored panthers. In addition, a subset of the population is monitored using very high 

frequency (VHF) telemetry collars, with relocations determined via aircraft typically three 

times per week. Previous panther research has generated a microsatellite dataset for 
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monitored panthers (Van De Kerk et al., 2019), and a dataset of 60 full FIV genomes 

(proviral DNA sequenced within a tiled amplicon framework in Malmberg et al., 2019). In 

addition, the historical FeLV outbreak in panthers was well documented (Brown et al., 

2008; Cunningham et al., 2008), providing key observations regarding FeLV dynamics in 

free-ranging panthers. To augment these observations, we also used an FeLV database 

which documents FeLV status (positive and negative) for 31 panthers as determined by 

qPCR from 2002-04. 

 

FIV transmission inference 

 To determine predictors of FIV transmission, we first generated a “who 

transmitted to whom” transmission network using panther FIV genomes (see Figure 3.1 

for workflow across all analyses). We used the program Phyloscanner (Wymant et al., 

2018), which maximizes the information gleaned from next generation sequencing reads 

to infer transmission relationships. Phyloscanner operates in a two-step process, first 

inferring within and between host phylogenies in windows along the FIV genome, and 

then analysing those phylogenies to produce transmission trees or networks. For step 

one, we used 150bp windows, allowing 25bp overlap between windows. To test 

sensitivity to this choice, we separately ran a full Phyloscanner analysis with 150bp 

windows, but without overlap between windows (Appendix B).  For step two, we held k, 

which penalizes within-host diversity, equal to 0. We used a patristic distance threshold 

of 0.05 and allowed missing and more complex transmission relationships. Because we 

had uneven read depth across FIV genomes, we downsampled to a maximum of 200 

reads per host. The output of the full Phyloscanner analysis was a single transmission 

network (hereafter, main FIV network), but see Appendix B for details regarding analysis 
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of the sensitivity of our results to variations in and summary across multiple transmission 

networks.  

 

Statistical analysis of FIV transmission networks 

 We performed statistical analysis of unweighted, binary FIV transmission 

networks using exponential random graph models (ERGMs), which account for non-

independence in network structure (Silk & Fisher, 2017). The network structural terms 

we considered included an intercept-like edges term (Silk & Fisher, 2017), geometrically 

weighted edgewise shared partner distribution (gwesp; representation of network 

triangles), alternating k-stars (altkstar; representation of star structures), and 2-paths (2 

step paths from i to k via j; (Morris et al., 2008).  

 The dyad-independent variables included panther sex (both as a node factor and 

node mixing variable; see Appendix B for terminology and additional variable details). 

We assessed panther age as a categorical variable (both as a node factor and node 

mixing variable), with subadults being individuals between the ages of 6 months and two 

years, and adults being individuals over two years of age. We included pairwise genetic 

relatedness from panther microsatellite data as an edge covariate. Spatial variables 

included a node-matching variable for the location of panthers’ minimum convex polygon 

(MCP) home range centroid or capture location (hereafter centroid; see Appendix B) 

north versus south of the major I-75 freeway. In addition, we included a node covariate 

term for the distance from the centroid to the nearest urban area (in km; USA Urban 

Areas layer, ArcGIS; Esri, National Atlas of the United States, United States Geological 

Survey, Department of Commerce, Census Bureau-Geography Division). Pairwise 

geographic distances between panthers were calculated using distances between 
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centroids (in km), and log-transformed for use as an edge covariate. Lastly, we included 

a spatial overlap edge covariate based on the pairwise utilization distribution overlap 

indices of 95% home range kernels (Fieberg et al., 2005), using the adehabitat package 

in R (Calenge, 2006).  

 Because ERGMs are prone to degeneracy with increasing complexity (Silk & 

Fisher, 2017), we first performed forward selection for network structural variables, 

followed by forward selection of dyad-independent variables, while controlling for 

network structure. Model selection was based on AIC and goodness of fit, and MCMC 

diagnostics were assessed for the final model (Appendix B).  

 

Panther population simulations 

 To test if predictors of FIV transmission identified in the ERGM analysis can 

predict FeLV transmission, we next simulated FeLV transmission through a network 

which was based on these FIV predictors among populations representing panthers 

during the historical FeLV outbreak (2002-2004). Hereafter, a full-simulation includes 

both simulation of the panther population and network during the historical outbreak 

period and simulation of FeLV transmission within that population. Below, we describe 

the process for a single simulation, but these procedures were repeated for each full 

simulation.  

 To simulate the historic panther population, we first based the simulated 

population size on the range of empirical estimates from 2002-2004 (McClintock et al., 

2015). Additional characteristics of the simulated population included those identified as 

significant predictors in the ERGM analysis: age category and pairwise geographic 

distances between panther home range centroids. We randomly assigned age 
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categories to the simulated population based on proportion adult versus subadult. Age 

proportions were based on age distributions in the western United States (Logan & 

Sweanor, 2001) which qualitatively align with the historically elevated mean age of the 

panther population (Johnson et al., 2010), as these distributions are not well established 

in Florida panthers. Pairwise geographic distances for the simulated population were 

generated by randomly assigning simulated home range centroids based on the 

distribution of observed centroids on the landscape (Appendix B).  

 With the simulated panther population, we then used ERGM coefficients to 

generate network edges in the population representing potential transmission pathways 

between panthers. The original FIV transmission network spanned 15 years of 

observations and represents a subset of the actual contact network, as it includes only 

those interactions that resulted in successful transmission (Craft, 2015). We therefore 

had a high degree of uncertainty regarding the appropriate network density for our 

simulations. To manage this uncertainty, we constrained density in our network 

simulations across a range of parameter space (net_dens, Table 3.1).  

 

Simulation of FeLV transmission on FIV-based networks 

 The next step in each full simulation was to model FeLV transmission on the 

network generated from FIV predictors of transmission. FeLV transmission was based 

on a chain binomial process on the simulated networks, following a modified SIR 

compartmental model progression (Figure 3.2). Time steps were in weeks, and 

transmission simulations lasted until no infectious individuals remained or until 2.5 years, 

whichever came first. Simulations were initiated with one randomly selected infectious 

individual. 
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 Transmission (Figure 3.2) was dependent on the following: (1) existence of an 

edge between two individuals, (2) the dyad in question involving a susceptible and 

infectious individual, and (3) a random binomial draw based on the probability of 

transmission given contact (β, Table 3.1). In addition, puma generally have low expected 

weekly contact rates (Elbroch & Quigley, 2016); we therefore included an additional 

weekly contact probability, represented as a random binomial draw for contact in a given 

week (⍵, Table 3.1).  

Upon successful transmission, infectious individuals were randomly assigned to 

one of three outcomes of FeLV infection (Cunningham et al., 2008). Progressive 

infections (probability P, Table 3.1) are infectious, develop clinical disease and die due 

to infection at a mortality rate, µ. Regressive infections (probability P) recover at a rate 

based on a constant, K, multiplied by the mortality rate of progressives (Table 3.1). 

Anecdotal evidence suggests regressive individuals are not infectious (Cunningham et 

al., 2008), but given ongoing uncertainty, we allowed regressives to be infectious by 

multiplying the probability of transmission for progressives (β) by a constant, C (Table 

3.1). Abortive infections (probability 1-2P) are never infectious, clearing infection and 

joining the recovered class.  

A vaccination process was included in simulations as panthers were vaccinated 

against FeLV during the historical FeLV outbreak. As in the observed outbreak, 

simulated vaccination only occurred after an outbreak’s first year. Vaccination occurred 

at a rate, #, applied to the whole population, as wildlife managers are unlikely to know if 

a panther is susceptible at the time of capture or darting. However, only susceptible 

individuals transitioned to the vaccinated class (i.e. vaccination failed in non-

susceptibles). Because panthers were vaccinated in the empirical outbreak with a 
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domestic cat vaccine with unknown efficacy in panthers, we allowed vaccinated 

individuals to become infected in transmission simulations by including a binomial 

probability for vaccine failure (1-vaccine efficacy, ve, Table 3.1).  

 The panther population size remained roughly static through the course of the 

FeLV outbreak (McBride et al., 2008; McClintock et al., 2015). We therefore elected not 

to include background mortality, but did include infection-induced mortality. To maintain 

a consistent population size, we therefore included a birth/recruitment process. Because 

FIV-based simulated networks drew edges based on population characteristics, we 

treated births as a “respawning” process, in which territories vacated due to mortality 

were reoccupied by a new susceptible at rate, $. This approach allowed us to maintain 

the ERGM-based network structure and is biologically reasonable, as vacated panther 

territories are unlikely to remain unoccupied for long.  

 While FeLV is well-documented in domestic cats, infection is uncommon in puma 

as a species, resulting in a high degree of uncertainty regarding differences in within-

individual infection dynamics in panthers. Given these uncertainties, we performed all 

simulations across a range of parameter space. To more efficiently cover this parameter 

space, we generated parameter sets using a Latin hypercube design (LHS), using the 

lhs package in R (Carnell, 2012). We generated 150 parameter sets, conducting 50 full 

simulations per parameter set.  

 

Comparison of simulation predictions to observed FeLV outbreak 

 We compared FIV-based simulation predictions to the observed FeLV outbreak, 

but also compared predictions from three simpler types of models: random networks, 
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home range overlap-based networks, and a well-mixed model. All models used the 

parameterizations from our LHS parameter sets, as relevant.  

 For our random networks model, we generated Erdos-Renyi random networks, 

with the simulated network densities from our LHS parameter sets (Table 3.1). Overlap-

based networks were generated using the degree distributions of panther home range 

overlap networks from 2002-2004 and simulated annealing with the R package statnet 

(Handcock et al., 2008; Reynolds et al., 2015; Appendix B). These overlap-based 

networks were not spatially explicit, as they were based only on the degree distributions 

from real spatial overlap networks. For both random and overlap-based networks, FeLV 

transmission was simulated as in the FIV-based simulations. The well-mixed model was 

a Gillespie algorithm (stochastic, continuous time compartmental model), with rate 

functions aligning with the chain binomial FeLV transmission probabilities (Appendix B). 

 Target ranges for predicted outcomes were based on observed FeLV dynamics 

(Cunningham et al., 2008), with ranges to account for uncertainty in observations and 

population size in this cryptic species (Appendix B). The primary outcomes of interest 

were (1) duration of outbreak: 78-117 weeks, (2) total number of progressive infections: 

5-20, and (3) presence of spatial clustering (see below). While our primary focus was 

progressive infections, we also included an expectation that at least 5 individuals were 

abortive infections. Empirically, these individuals were the most numerous, but as they 

were not clinically ill, abortive infections were less likely to be detected in normal panther 

management; we therefore did not include an upper bound for this target.  

Using our database of qPCR results for FeLV in panthers (positive and negative 

tests), we performed a local spatial clustering analysis of FeLV cases and controls using 

SaTScan (50% maximum, circular window; Kulldorff, 1997), and a global cluster analysis 
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with Cuzick and Edward’s test in the R package smacpod (1, 3, 5, 7, 9, and 11 nearest 

neighbors; 999 iterations; Cuzick & Edwards, 1990; French, 2020). These analyses 

found evidence of local (weak) and global clustering (at 3, 5, and 7 neighborhood levels) 

among progressive and regressive cases (see results, Appendix B). In simulations, we 

therefore included spatial clustering of progressive and regressive cases as a target 

outcome.  

 For the duration of outbreaks and total number of progressives, we calculated 

median values of both outcomes for each parameter set (i.e., 50 simulations) within each 

model type. If a parameter set’s medians were within the target ranges for both of these 

outcomes, it was considered feasible. To quantify differences in model prediction 

performance, we fit a binomial generalized linear mixed model (GLMM), assuming a 

logistic regression with “feasible” as the outcome, model type as a predictor variable, 

and a random intercept for LHS parameter set.  

 To determine if simulated results demonstrated spatial clustering, we performed 

SaTScan spatial cluster analysis (50% maximum, circular window) and Cuzick and 

Edward’s tests (at 3, 5, and 7 nearest neighbors) on simulation results. Only FIV-based 

simulations were spatially explicit, and we performed spatial analyses only on those 

parameter sets that were classified as feasible. To determine if any detected clustering 

in FIV simulations was simply based on our respawning protocol, however, we also 

performed both spatial analyses with feasible overlap-based simulation results. For 

these, we assigned the same geographic locations to nodes in the overlap-based 

networks from the corresponding FIV-based networks (i.e., matching simulation number 

from matching parameter set). 
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3.4 Results 

FIV transmission network analysis 

 The main FIV network included 19 nodes (individuals) with 42 edges 

(representing potential transmission events; network density = 0.25) after removing 9 

edges that were between individuals known not to be alive at the same time (Appendix 

B, Figure B.1). ERGM results for the main FIV network identified geometrically weighted 

edgewise shared partner distribution (gwesp) and alternating k-stars (altkstar) as key 

structural variables, and age category (as a node-level factor) and log transformed 

pairwise geographic distance as key dyad-independent variables (Table 3.2). Though 

altkstar was not statistically significant, inclusion of this variable contributed to improved 

AIC and goodness of fit outcomes. Adults were more likely to be involved in transmission 

events (but see discussion of sample size limitations) and inferred transmission events 

were more likely between individuals which were geographically closer to each other. 

The fitted model showed reasonable goodness of fit (Appendix B, Figure B.2). ERGM 

results were largely consistent across replicate analyses with alternative transmission 

networks formed by summarizing across four single Phyloscanner outputs (see 

Appendix B for further details). 

 

FeLV simulations 

  SaTScan analysis of observed FeLV status found weak evidence of local spatial 

clustering (two clusters detected, but not statistically significant with p=0.165 and 0.997, 

respectively; Appendix B, Figure B.4). Cuzick and Edward’s tests found evidence of 

global clustering at 3, 5, and 7 nearest neighbor levels (test statistic Tk where k is 

number of nearest neighbors considered: T3 = 20, p = 0.049; T5 = 32, p = 0.028; T7 = 43, 
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p = 0.023). Both sets of spatial analysis results were then compared against FeLV 

predictions from FIV and overlap-based models.  

About 9% of parameter sets across all model types were classified as feasible 

(Figure 3.3; Appendix B, Figures B.5-B.6). The GLMM for model type performance (i.e., 

FIV-based, random, overlap-based, or well-mixed) did not find statistically significant 

differences between odds of generating feasible simulation outcomes, though the FIV-

based model had the highest odds of feasibility (exponentiated estimate = 1.55, though 

p  = 0.30; Appendix B, Table B.2). Feasible parameter sets from both the FIV-based and 

overlap-based models produced some evidence of local and global spatial clustering of 

simulated FeLV cases (Figure 3.4; Appendix B, Figure B.7). However, the FIV-based 

model was better able to capture the size and strength (observed/expected FeLV cases) 

of predicted local clusters (Figure 3.4) and was moderately better at capturing global 

spatial patterns (Appendix B, Figure B.7).  

In order to determine if certain transmission parameters were particularly 

important for feasible performance, we performed post hoc random forest analyses 

using the R package randomForest (Liaw & Wiener, 2002; White et al., 2020) for each of 

the four model types (see Appendix B). While random forests typically showed poor 

balanced accuracy and area under the curve (AUC) results, the parameter shaping 

transmission from regressively infected individuals (C), showed support for weak to 

moderate transmission from regressives (i.e., C = 0.1 or 0.5; Appendix B, Figure B.10).  

 

3.5 Discussion 

 In this study we develop a new approach whereby we leveraged knowledge of 

transmission dynamics of a common apathogenic agent to prospectively predict 
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dynamics of an uncommon and virulent pathogen. Our approach was distinctly different 

from simpler models we tested, as the apathogenic (FIV)--based approach could be 

used to prospectively identify predictors of transmission and develop disease control 

plans prior to an outbreak of a virulent pathogen (FeLV), while other approaches either 

make broad assumptions about transmission-relevant contacts (e.g., homogeneous 

mixing), or rely on retrospective or reactive modeling. We found that FIV transmission in 

panthers is primarily driven by distance between home range centroids and age class, 

and that our prospective FIV-based approach predicted FeLV transmission dynamics at 

least as well as simpler or more reactive approaches. While we do not propose that this 

apathogenic agent approach could accurately predict exactly when, where, and to whom 

transmission might occur, our results support the role of apathogenic agents as novel 

tools for prospectively identifying relevant drivers of transmission and consequently 

improving proactive disease management.   

 

Pairwise geographic distances and panther age class predict FIV transmission 

 Combining genomic and network approaches, we determined that pairwise 

geographic distances and age category structure FIV transmission in the Florida 

panther. Because FIV is a persistent infection, we would expect cumulative risk of 

transmission to increase over an individual’s lifetime and adults would consequently be 

involved in more transmission events. The low number of subadult individuals in our 

dataset, however, means that this finding must be interpreted with caution.  

 Panthers are wide-ranging animals but maintain home ranges, and this appears 

to translate to increased transmission between individuals that are close geographically. 

This finding is further supported by the tendency for FIV phylogenies to show distinct 
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geographic clustering (Franklin et al., 2007; Lee et al., 2014), but is in contrast to other 

infectious agents of puma. A related feline retrovirus, feline foamy virus (FFV), does not 

show distinct geographic clustering but is commonly transmitted between domestic cats 

and puma (Kraberger et al., 2020). A prior study of several pathogens in puma across 

the United States rarely identified spatial autocorrelation in pathogen exposures, but 

notably found that FIV infection status approached statistical significance specifically in 

Florida panthers (Gilbertson et al., 2016). The wide-ranging nature of puma appears to 

limit geographic clustering of many infectious agents, with FIV a notable exception to this 

pattern. Multi-host agents such as FFV are presumably more able to escape 

geographical limitations, and thereby lack spatial structuring. More generally, the 

importance of distance rather than panther relatedness in structuring transmission may 

support the resource dispersion or land tenure hypotheses as drivers of spatial and 

social structuring in panthers, rather than kinship. The high inbreeding among panthers 

(Johnson et al., 2010) may limit our power for identifying such a relationship between 

relatedness and FIV transmission, but support for resource dispersion or land tenure 

would be in agreement with findings in other puma systems (Elbroch et al., 2016) and 

even other territorial carnivores (Brandell et al., 2020). 

Surprisingly, sex was not a significant predictor of FIV transmission. FIV force of 

infection is generally higher in male panthers, likely due to their increased fighting 

behaviors (Reynolds et al., 2019). However, studies in other felid species have found 

mixed importance of sex for FIV transmission, ranging from little to no importance (puma 

in the western United States: Fountain-Jones et al., 2019; bobcat: Fountain-Jones, Craft, 

et al., 2017) to importance only among certain FIV subtypes (African lions: Fountain-

Jones, Packer, et al., 2017). Our results add to this body of research to suggest that the 
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relationship between host sex and FIV transmission is more complex than can be 

explained by sex-specific behaviors or susceptibility alone. 

 

An FIV-based model captures FeLV transmission dynamics 

 In our study, a network model based on principles of FIV transmission produced 

FeLV outbreak predictions consistent with the observed FeLV outbreak. The FIV-based 

approach performed at least as well as simpler models, with evidence that FIV better 

predicted the observed spatial dynamics for FeLV transmission. A key difference 

between the FIV-based approach and other spatially-explicit methods is that FIV allowed 

us to determine the importance of spatial dynamics prospectively and then translate to 

predictions of FeLV transmission, rather than relying on retrospective FeLV spatial 

analyses. Furthermore, while more complex potential drivers of transmission (e.g., host 

relatedness or assortative mixing by age or sex) were not found to be important for FIV 

transmission, these may yet be key factors structuring transmission in other systems. 

Simpler model types like random networks or metapopulation models may struggle to 

make transmission predictions that incorporate these factors as drivers of transmission-

relevant contact. The predictive power we observed here using an apathogenic virus 

could thus significantly shape proactive epidemic management strategies for pathogens 

such as FeLV. 

 FIV and FeLV have different epidemiologies (e.g., progressive versus regressive 

infections, duration of infectiousness); despite this, FIV-based predictors of transmission 

were able to capture dynamics of FeLV transmission. Here, FIV determined the key 

drivers of close, direct contact transmission in panthers, fundamentally acting as a proxy 

for this type of contact. FeLV simulations were then able to independently account for 
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differences in epidemiology to produce appropriate predictions for a different but 

analogously transmitted virus. Key components of this success are likely that (1) FIV is a 

largely species-specific virus with transmission pathways closely matching intra-species 

transmission of FeLV, and (2) both FIV and FeLV, perhaps unusually for infectious 

agents of puma, display spatial clustering of infection. If, for example, FIV also exhibited 

strong vertical or environmental transmission, we would no longer expect the predictive 

success for FeLV we observed here.  

Notably, FeLV is not species-specific, having originated in panthers through 

spillover from domestic cats (Brown et al., 2008). Recent research suggests that FeLV 

may continue to percolate within the panther population but is also subject to repeated 

spillover events from domestic cats (Chiu et al., 2019). Determining the predictors and 

frequency of these spillover events would be less feasible with FIV, which is largely 

species-specific (Lagana et al., 2013; VandeWoude et al., 2010; VandeWoude & 

Apetrei, 2006). Rather, targeted investigation of spillover dynamics between these 

species would be necessary, and could use other apathogenic viral candidates that are 

frequently transmitted from domestic cats to puma, such as FFV (Kraberger et al., 2020). 

Using such agents to identify drivers of spillover events could be key for better 

understanding the dynamics of “pathogen release from reservoir hosts” (Plowright et al., 

2017), which is of profound relevance across wildlife, domestic animal, and human 

systems.  

While few parameter sets were classified as feasible across all model types, this 

appears to be predominantly the result of the wide range of parameter space explored 

through our LHS sampling design. This limitation was fundamentally due to uncertainties 

in FeLV transmission parameters, and is representative of the uncertainties experienced 
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in predicting transmission of emerging or understudied pathogens. Key here were the 

interacting uncertainties regarding infectiousness of regressives, the number of 

introductions of FeLV to the panther population, and the duration of FeLV infection in 

panthers. All three of these dynamics can have significant impacts on the duration of a 

simulated epidemic, allowing an epidemic to continue to “stutter” along at low levels 

(Blumberg & Lloyd-Smith, 2013), much as was observed in the empirical FeLV outbreak. 

Our post hoc random forest analysis provided some evidence of weak transmission from 

regressive individuals, but this finding would need to be validated with additional 

research, as it is in stark contrast to FeLV dynamics in domestic cats. Reducing 

uncertainties in these three key dynamics would significantly narrow the range of our 

predictions, and even assist in ongoing management efforts for FeLV in endangered 

panthers.  

 Furthermore, the effect of transmission parameter uncertainties underscores the 

importance of linking laboratory and model-based research to generate more accurate 

transmission forecasts (Plowright et al., 2008). Experimental research could help to 

narrow the range of parameter space for FeLV—or other emerging pathogens—to 

produce more consistent and accurate model predictions. This necessity is all the more 

apparent during the current COVID-19 pandemic, in which mathematical models have 

benefited from rapid laboratory and epidemiological research to reduce uncertainty in 

model parameters.  

 

Limitations and future directions 

 This study found evidence for the utility of an apathogenic agent to predict 

transmission of a related pathogenic agent, but this approach must now be tested in 
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additional host-pathogen systems. The mixed results when using commensal agents to 

identify close social relationships in other systems (Blasse et al., 2013; Blyton et al., 

2013; Bull et al., 2012; Chiyo et al., 2014; Springer et al., 2016; VanderWaal et al., 

2014a) highlights that some host-apathogenic agent combinations will work better than 

others for determining drivers of transmission. More research is therefore necessary to 

determine which apathogenic agents may be most suitable as markers of transmission, 

and how divergent an apathogenic agent may be from a pathogen of interest while still 

predicting transmission dynamics.   

 The suite of tools for inferring transmission networks from infectious agent 

genomes is rapidly expanding (Firestone et al., 2019; Hall et al., 2016). In this study, we 

used the program Phyloscanner as it maximized the information from our next 

generation sequencing viral data. However, our FIV sequences were generated within a 

tiled amplicon framework (Malmberg et al., 2019; Quick et al., 2017), which biases 

intrahost diversity and likely limits viral haplotypes (Grubaugh et al., 2019). Phyloscanner 

was originally designed to analyze RNA from virions and not proviral DNA, as we have 

done here. We have attempted to mitigate the effects of these limitations by analyzing 

several different Phyloscanner outputs to confirm consistency in our results, and by 

using only binary networks to avoid putting undue emphasis on transmission network 

edge probabilities, as these are likely highly uncertain. Further, our primary conclusions 

from the transmission networks—that age and pairwise distance are important for 

transmission—are biologically plausible and supported by other literature, as discussed 

above. Nevertheless, future work should evaluate additional or alternative transmission 

network inference platforms. 
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In addition, ERGMs assume the presence of the “full network” and it is as yet 

unclear how missing data may affect transmission inferences (Silk & Fisher, 2017). 

ERGMs are also prone to degeneracy with increased complexity and do not easily 

capture uncertainty in transmission events, as most weighted network ERGM (or 

generalized ERGM) approaches have been tailored for count data (e.g., Krivitsky, 2012). 

ERGMs may therefore not be the ideal solution for identifying drivers of transmission 

networks in all systems. Alternatives may include advancing dyad-based modeling 

strategies (Wilber et al., 2019), which may more easily manage weighted networks and 

instances of missing data.  

 Our FIV-based approach required extensive field sampling, and many disciplines 

from viral genomics through simulation modeling. However, with increasing availability of 

virome data and even field-based sequencing technology, our approach may become 

more accessible with time. Further, the predictive benefits seen here, while needing 

further testing and validation, could become a key strategy for proactive pathogen 

management in species of conservation concern, populations of high economic value 

(e.g. production animals), or populations at high risk of spillover, all of which may most 

benefit from rapid, efficient epidemic responses.  

 

Conclusions 

 Here, we integrated genomic and network approaches to identify drivers of FIV 

transmission in the Florida panther. This apathogenic agent acted as a marker of close, 

direct contact transmission, and was subsequently successful in predicting the observed 

transmission dynamics of the related pathogen, FeLV. Further testing of apathogenic 

agents as markers of transmission and their ability to predict transmission of related 
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pathogenic agents is needed, but holds great promise for revolutionizing proactive 

epidemic management across host-pathogen systems.  
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3.7 Tables 

Table 3.1: Network and transmission simulation parameters 

Parameter Definition Range Citations 

Pop_size Population size 80-120 

(McClintock et 

al., 2015) 

Adult_prop Proportion adults versus subadults 0.82-0.99 

(Logan & 

Sweanor, 

2001) 

Net_dens Simulated network density 0.05-0.15 NA 

β 

Probability of transmission from 

progressives, given effective contact 0.17-0.29 

(Fromont et al., 

1997) 

C 

Constant multiplier for probability of 

transmission from regressives, given 

effective contact 0, 0.1, 0.5, 1 NA 

⍵ Weekly probability of contact 0.1-0.4 

(Elbroch & 

Quigley, 2016) 

% 

Weekly probability of death from 

progressive infection 1/18, 1/26* 

(Cunningham 

et al., 2008) 

K 

Constant multiplier for weekly 

probability of recovery from regressive 

infection 0.5, 1 NA 

$ 
Weekly probability of territory 

repopulation ("respawn rate") 1/12-1/4 NA 

# Weekly probability of vaccination 0.5-1 NA 

ve Probability of vaccine efficacy 0.4-1 

(Cunningham 

et al., 2008) 

P 

Proportion randomly assigned to 

progressive, regressive 0.25 

(Cunningham 

et al., 2008) 
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*We tested a lower death rate (prolonged duration of infection) due to the low number of 

observed panther cases and the generally longer infection duration in domestic cats 

(Hartmann, 2012).  

 

Table 3.2: Main FIV transmission network exponential random graph model results 

Variable Estimate SE p-value 

Edges (intercept) -2.56 1.33 0.055 

gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 

Log pairwise 

distance -0.45 0.21 0.03 

Note: “gwesp” is geometrically weighted edgewise shared partner distribution and 

“altkstar” is alternating k-stars. Age classes were subadult and adult; pairwise distances 

were between home range centroids. Only those variables from the final model are 

shown. Estimates shown are untransformed; SE represents standard error; p-values 

less than 0.05 were considered statistically significant.  
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3.8 Figures 

 

Figure 3.1: Conceptual workflow across all analysis steps. Processes are shown on the 

left in blue; specific outcomes are shown on the right in green; the final analysis outcome 

is in yellow at the bottom right. Solid lines show direct flows or outcomes. Dashed lines 

show processes acting on or in concert with prior outcomes: for example, exponential 

random graph modeling was performed using the FIV transmission network, and the 

combination of the two produced the ERGM coefficients outcome.   
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Figure 3.2: Diagram of flows between compartments in transmission model. Virus icons 

indicate infectious states, with the regressive infection icon darkened to represent 

reduced or uncertain infectiousness of this class. Note: a vaccination process was also 

included in the transmission model, but is not shown for simplicity. Susceptibles could be 

vaccinated, and vaccinated individuals subsequently infected analogously to 

susceptibles, but with an additional probability of (1-ve). See Table 3.1 for definitions of 

parameters. 
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Figure 3.3: FIV-based networks perform at least as well as other models in predicting 

number of progressive infections, as seen in violin plots of median total number of 

progressive infections from parameter sets classified as “feasible.” To be feasible, 

medians needed to fall between 5 and 20 progressive infections, while also having 

median epidemic duration between 78-117 weeks, and a median of at least 5 abortive 

infections. Gray points show median values from each feasible parameter set; black 

points are the median value within each violin plot. Model types are given on the x-axis.  
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Figure 3.4: SaTScan cluster analysis for feasible FIV-based and overlap-based network 

simulations show stronger agreement between empirical observations (red horizontal 

lines) and FIV-based predictions for (A) predicted FeLV cluster size and (B) 

Observed/Expected FeLV cases associated with the top detected cluster. Shown are 

feasible simulation results in which at least one cluster was detected with p-value less 

than or equal to 0.1; further, only the results from the top cluster are shown. 
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Chapter 4. Paradoxes and synergies: optimizing management of a deadly 

virus in an endangered carnivore 

 

Marie L.J. Gilbertson, Dave Onorato, Mark Cunningham, Sue VandeWoude, Meggan E. 

Craft 

 

4.1 Synopsis 

Outbreaks of infectious disease can have serious consequences for wildlife 

population health, especially species of conservation concern. The endangered Florida 

panther, for example, experienced an outbreak of feline leukemia virus (FeLV) in 2002-

2004, and continues to be affected by this deadly virus. Ongoing management efforts 

aim to mitigate the effects of FeLV on panthers, but with limited information about which 

strategies may be most effective and efficient. Examples such as this, however, can be 

excellent opportunities to link management with simulation models in order to optimize 

conservation efforts for populations of concern.  

We used a simulation-based approach to determine optimal FeLV management 

strategies. We simulated use of proactive FeLV management strategies (i.e., proactive 

vaccination) and several reactive strategies. Reactive strategies included reactive 

vaccination (with and without proactive vaccination; random or spatially targeted); test 

and removal protocols; and temporary spatial segregation of the panther population by 

blocking freeway wildlife underpasses. Vaccination strategies accounted for partial 

vaccine immunity, including with single or boosted inoculations. We compared the 

effectiveness of these different strategies in mitigating FeLV mortalities and the duration 

of outbreaks. 
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Results showed that inadequate proactive vaccination can paradoxically increase 

the number of disease-induced mortalities in FeLV outbreaks, most likely due to effects 

of partial vaccine immunity. Combinations of proactive vaccination with reactive test-and-

removal or vaccination had a synergistic effect in reducing impacts of FeLV outbreaks. 

Temporary spatial restrictions, however, were unlikely to be effective under realistic 

conditions. 

Synthesis and applications: Management-informed disease simulations 

demonstrated unexpected negative consequences and synergies with active 

management strategies for a deadly virus in Florida panthers. We recommend a 

combination of proactive and reactive management approaches, and suggest prioritizing 

boosted vaccination over broad distribution of unboosted inoculations. Our results 

highlight the importance of integrating management and modeling approaches to aid in 

conservation of at-risk species.  

 

4.2 Introduction 

 Outbreaks of infectious disease can have significant impacts on the population 

health of free-ranging wildlife, and are all the more serious in species of conservation 

concern (Breed et al., 2009). The feline retrovirus, feline leukemia virus (FeLV), for 

example, has been the source of significant outbreaks in two endangered felids: Iberian 

lynx (Lynx pardinus) and Florida panthers (Puma concolor coryi). In the case of 

panthers, FeLV caused an outbreak in 2002-2004 (Cunningham et al., 2008), spilling 

over from domestic cats, with subsequent direct transmission among panthers (Brown et 

al., 2008). In addition, there is recent evidence of ongoing FeLV spillover to and 

transmission among panthers (Chiu et al., 2019), necessitating continued management 
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of this deadly pathogen. FeLV inoculation with a domestic cat vaccine has been used 

previously, but with unknown efficacy in panthers (Cunningham et al., 2008). Further, the 

proportion of the population that must be vaccinated to most efficiently prevent future 

FeLV outbreaks is unknown, as is how proactive vaccination might interact with other 

reactive interventions to interrupt an FeLV outbreak. Such uncertainties are common 

among free-ranging wildlife systems threatened by infectious disease and hamper efforts 

to effectively control pathogen transmission.  

 Mathematical models of infectious disease transmission, however, are a powerful 

tool for filling such disease management knowledge gaps (McCallum, 2016). Models 

allow the ethical testing of a wide range of different management approaches and can 

reveal unexpected consequences of disease control interventions (Lloyd-Smith et al., 

2009). Models have been used to optimize disease management protocols in a variety of 

free-ranging wildlife species of conservation concern, including Ethiopian wolves 

(Haydon et al., 2006), chimpanzees (Rushmore et al., 2014), and Amur tigers (Gilbert et 

al., 2020). Further, models can serve the important function of balancing reality and ideal 

disease control protocols to provide practical, effective guidance for wildlife managers 

(e.g., Baker et al., 2019; Robinson Stacie J. et al., 2018). Here, we use mathematical 

models of FeLV transmission in Florida panthers to determine optimal disease 

prevention and control strategies in this iconic carnivore. 

 Pathogen management strategies can be preventive (hereafter, proactive) or 

reactive. Among proactive strategies, vaccination is a cornerstone in veterinary medicine 

(Cleaveland, 2009), and is available for control of FeLV in panthers, but with 

uncertainties regarding optimal distribution, individual efficacy, and level of population 

protection needed (Barnett & Civitello, 2020). Reactive strategies include vaccination 
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after an outbreak has been detected, as in the historical FeLV outbreak in panthers. In 

addition, FeLV management in domestic cats has relied upon test-and-removal or 

isolation of infected individuals (Little et al., 2020). This strategy was used to control 

FeLV in Iberian lynx (López et al., 2009) and is part of future FeLV mitigation plans in 

panthers. However, the predicted effectiveness of these reactive strategies is unknown, 

or how they might interact with proactive vaccination efforts to more effectively reduce 

FeLV impacts.  

Larger-scale isolation or quarantine measures may also be used for disease 

management in free-ranging wildlife, in the form of physical or behavioral barriers 

between affected and unaffected subsets of a population. For example, fencing has 

been used to prevent transmission of foot-and-mouth disease between wildlife and cattle 

in South Africa (Mysterud & Rolandsen, 2019). For panthers, while physical barriers to 

prevent spillover from domestic cats are impractical, it may be possible to use temporary 

spatial barriers to reduce the spatial spread of FeLV among panthers after a spillover 

event. Specifically, the major I-75 freeway is fenced throughout Florida panther habitat to 

reduce vehicle strikes, with regular wildlife underpasses the main means for wildlife to 

traverse this barrier. While never before attempted, it may be possible to physically block 

these underpasses under emergency conditions to prevent the spread of FeLV from the 

northern to southern subsets of the panther population, or vice versa.  

Given the ongoing risks of FeLV to panther population health and conservation 

and the uncertainties regarding best application of both proactive and reactive FeLV 

management strategies, the objectives of this study were to test the effectiveness of: (1) 

proactive vaccination, (2) reactive vaccination, (3) reactive test-and-removal, and (4) 

reactive temporary spatial restrictions singly, and in combination, for reducing the 
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population level impacts of FeLV in Florida panthers. We used a mathematical modeling 

approach to address these objectives in order to efficiently and ethically test a wide 

range of intervention protocols for the protection of this endangered carnivore. 

 

4.3 Materials and Methods 

Simulation pipeline 

To examine the effect of different disease management regimes on FeLV control, 

we used a spatially-explicit, network simulation approach adapted from our models 

determining drivers of retrovirus transmission in panthers (Chapter 3). This pipeline 

involves two steps: (1) simulation of a contact network among panthers, and (2) 

simulation of FeLV transmission on this network. In brief, we simulated panther 

populations of 150 individuals (McClintock et al., 2015) and used our previously 

described exponential random graph model for retrovirus transmission in panthers 

(Chapter 3) to simulate contact networks constrained by density among these 

populations (see Appendix C methods and Table C.1 for further details).  

For modeling FeLV transmission on simulated contact networks, we used the 

transmission model from Chapter 3. Briefly, this model used a susceptible-infectious-

recovered compartmental framework, where individuals could be progressively, 

regressively, or abortively infected (Cunningham et al., 2008). Progressive infections 

always resulted in death, while regressive infections eventually recovered with immunity, 

and abortive infections were always considered immune. Importantly, based on our 

previous work, we allowed both progressives and regressives to be infectious, though 

regressives were less likely to transmit (Appendix C, Table C.1). As in Chapter 3, we 

included only disease-induced mortality, and, in order to preserve key network structure, 
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allowed territories vacated by deaths to be reoccupied by new susceptible individuals 

(hereafter, respawning). Outbreaks were initiated by a single, randomly selected non-

isolate individual in the population (see Appendix C discussion), and proceeded in 

weekly time steps for up to five years. 

Our primary objective was to examine the effect of different FeLV management 

regimes on epidemic outcomes, so in our primary simulations, we held network 

generation and transmission parameters constant at previously supported values (see 

Appendix C methods and Table C.1 for further details). We evaluated the consistency of 

our results to the choice of parameter values, however, with a sensitivity analysis (see 

below). Hereafter, a parameter set represents the unique set of network, transmission, 

and management parameters for any given set of simulations. A full simulation includes 

simulation of a single contact network and FeLV transmission on that network (with or 

without management interventions). For each parameter set, we performed 100 full 

simulations. 

For a baseline scenario, we recorded key epidemic outcomes in the absence of 

interventions; management scenarios recorded key outcomes in the presence of 

interventions (Figure 4.1). These key outcomes were (1) the number of mortalities, (2) 

the duration of an epidemic, and (3) the proportion of epidemics that failed per 100 

successful epidemics. A failed epidemic was one in which fewer than 5 individuals 

acquired progressive or regressive infections. The outcomes of mortalities and epidemic 

durations were summarized as median values per parameter set, as results were often 

skewed; all outcomes were compared between baseline and management scenarios. All 

simulations were performed in R version 3.6.3 (R Core Team, 2018). 
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Proactive vaccination 

 In the first management scenario, we examined the effect of different levels of 

population proactive vaccination (proportion of the population vaccinated prior to an 

outbreak), and different ratios of single versus boosted vaccination. We simulated from 

10-80% (in 10% increments) of the population having some degree of vaccine-induced 

immunity to FeLV at the onset of an outbreak. These vaccinations were distributed 

randomly in the population. Among the vaccinated individuals, 0, 50, or 100% received a 

second, boosting inoculation. Actual vaccine efficacies are unknown for panthers, but 

based on efficacy studies in domestic cats (Sparkes, 1997; Torres et al., 2005), we 

conservatively assumed that boosted vaccination would prevent 80% of infections and 

single vaccination would prevent 40% of infections. We modeled this efficacy as a 

binomial probability, given an effective contact between an infectious individual and a 

vaccinated individual (i.e. vaccination induces partial immunity; Barnett & Civitello, 

2020). We conducted proactive vaccination scenarios in a full factorial design, for a total 

of 24 proactive vaccination parameter sets, and 2,400 full simulations (100 full 

simulations per parameter set).  

 

Reactive vaccination 

 During simulated periods of reactive vaccination administration, panthers were 

selected at a rate of one panther per week for vaccination. We assumed that managers 

would not know the disease status of an individual selected for vaccination and that 

vaccination would be ineffective in infectious or recovered individuals. In the case of 

previously vaccinated individuals, a re-vaccination changed the vaccine efficacy of singly 

vaccinated individuals (efficacy of 40%) to the efficacy for boosted individuals (efficacy of 
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80%). We further assumed that managers would know which individuals had received 

two vaccinations, so boosted individuals were not selected for additional vaccination 

attempts.  

 We varied the timing of the onset of reactive vaccination after the initiation of an 

FeLV outbreak to reflect the difficulty of epidemic detection in this elusive carnivore. We 

therefore began reactive vaccination at an optimistic, but difficult-to-attain time point of 

26 weeks, and a more realistic time point of 52 weeks. In addition, we varied the 

distribution of reactive vaccination. While proactive vaccines were always distributed 

randomly, reactive vaccination was either randomly distributed or spatially distributed in 

an attempted vaccine barrier along the I-75 freeway (see Appendix C for further details).  

Because vaccination is resource and time intensive, we evaluated the effect of 

reactive vaccination for 6 months per year versus year-round. Among reactive 

vaccination scenarios, we also included a scenario with proactive vaccination, 

specifically where 0-60% of the population was proactively vaccinated (in 20% 

increments) at the initiation of an outbreak. Because it is highly unlikely that 100% of the 

proactively vaccinated population would have received boosted vaccination, we used a 

more conservative—yet still challenging to attain—ratio of 50% of the proactively 

vaccinated population being boosted (i.e. efficacy of 80%). We held this ratio of efficacy 

constant for proactive vaccination in all reactive scenarios. We again used a factorial 

design across all variations, resulting in 32 parameter sets and a total of 3,200 full 

simulations under reactive vaccination scenarios.  

 

Reactive test-and-removal 
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 Test-and-removal scenarios were built around a protocol in which panthers 

infectious at capture are removed from the population through humane euthanasia or 

temporary removal until recovery. For simplicity, we assumed that all progressively 

infected individuals would show clinical signs and be humanely euthanized at capture, 

while infectious regressive individuals were temporarily removed from the population 

until their recovery and re-release into any open territory. A maximum of five individuals 

were allowed to be temporarily removed in this way at one time.  

We expected that managers would be able to capture and test one panther per 

week at most, and that captures occurred during a 17 week (about 4 month) capture 

season, in accordance with current panther capture protocols. We assumed that 

managers would not know the disease status of a target individual until the capture 

occurred, so captures were not targeted by infection state. We varied the onset of test-

and-removal, such that the intervention began 26 or 52 weeks after the initiation of an 

epidemic. Captures were also random or spatially targeted. If spatially targeted, captures 

(and consequent removals) only occurred on the same side of the I-75 freeway as the 

initial FeLV infection.  

As in the reactive vaccination scenarios, we again also included varying degrees 

of proactive vaccination (0-60% in 20% increments). Reactive test-and-removal 

scenarios were simulated in a full factorial design across variations, for a total of 16 

parameter sets and 1,600 full simulations. 

 

Reactive underpass closures 

 To determine the potential utility of closing I-75 wildlife underpasses in a FeLV 

outbreak, we considered a “best case” scenario in which underpasses were closed (and 
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later reopened) instantaneously, and where closures were completely effective at 

preventing transmission across the freeway. Underpasses were closed either 26 or 52 

weeks after the initiation of an FeLV outbreak, and remained closed for 4, 13, 26, or 52 

weeks. We again included variations in proactive vaccination (0-60% in 20% 

increments), as in other reactive management scenarios. The factorial design here 

resulted in 32 parameter sets for underpass closure scenarios, for a total of 3,200 full 

simulations.  

 

Sensitivity analysis 

 We used a latin hypercube sampling (LHS) approach to generate 50 sensitivity 

analysis parameter sets across our 8 network and transmission parameters using the lhs 

package in R (Carnell, 2012). We repeated our baseline scenario simulations across 

these 50 parameter sets; to manage computational effort, we completed 50 simulations 

per parameter set for all sensitivity analyses. 

 Due to the high computational effort required to perform sensitivity simulations 

across all management scenarios, we focused only on the proactive vaccination 

scenarios. Specifically, we evaluated a subset of 12 LHS parameter sets across a 

subset of the proactive vaccination conditions in a factorial design (see Appendix C 

methods for further details), resulting in 108 parameter sets with 50 full simulations per 

parameter set (5,400 full simulations). This approach allowed us to examine sensitivity of 

our proactive vaccination results across different outbreak sizes and network and 

transmission parameters, while mitigating computational effort associated with exploring 

such a wide range of parameters and scenario variations. Sensitivity analysis simulation 

results were evaluated using scatterplots and Partial Rank Correlation Coefficients 
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(PRCC; Marino et al., 2008; Wu et al., 2013); proactive vaccination scenarios were 

evaluated for alignment with our qualitative result that low proactive vaccination can 

increase disease-induced mortalities. 

 

4.4 Results 

 Progressive infections are expected to result in death in panthers and are 

therefore of key concern for management efforts.  For simplicity, hereafter, we refer to 

the number of progressive infections in simulations as the number of mortalities. In the 

baseline, no-intervention scenario, there was a median of 34 mortalities (range: 1-54); 

median duration of epidemics was 119.5 weeks, and 34 epidemics failed (fewer than 5 

progressive or regressive infections) per 100 successful epidemics. 

 

Proactive vaccination alone 

 Proactive vaccination paradoxically increased the number of mortalities across a 

range of conditions, especially without vaccine boosting (Figure 4.2; Appendix C, Figure 

C.2). Even with 50% of vaccinates receiving a booster, proactive vaccination only 

reduced mortalities from the baseline scenario at high levels of population vaccination 

(i.e., 60-80%). With 100% boosting, proactive vaccination increased mortalities at low 

levels of population vaccination (10-20%), had marginal effects at 30-40% population 

vaccination, and was strongly effective at about 50% population vaccination levels and 

higher (at 80% population vaccination, median 17.5 mortalities versus 34 with no 

interventions). Proactive vaccination consistently lengthened the duration of epidemics, 

relative to the baseline scenario (up to a median duration of 143.5 weeks; Appendix C, 

Figures C.3-4). When all vaccinated individuals received a booster, vaccination reduced 
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the probability of a successful outbreak even at 40% population vaccination (52 failures 

versus 34 failures per 100 successful epidemics; Appendix C, Figure C.13). In contrast, 

when no vaccinated individuals received a booster, proactive vaccination was largely 

only effective at reducing the probability of epidemics at very high levels of population 

vaccination.  

 

Proactive and reactive vaccination 

 Reactive vaccination alone did not reduce mortalities (Figure 4.3). However, 

reactive vaccination appeared to work synergistically with proactive vaccination, 

particularly at moderate to high levels of proactive vaccination (i.e., at least 40-60% of 

the population proactively vaccinated). This largely held true regardless of the timing of 

intervention onset and the strategy for reactive vaccination distribution (i.e., random 

versus spatial; Appendix C, Figures C.5-6). The mortality-reducing effects of reactive 

vaccination were, however, slightly reduced if reactive vaccination occurred for only 6 

months out of the year (Figure 4.3). A ratio of greater than 1.5 inoculations per 

vaccinated individual appeared to promote the largest reductions in mortalities (e.g., as 

few as a median of 25 mortalties with year-round reactive vaccination and 60% proactive 

vaccination versus 34 mortalities with no interventions; Figure 4.3). Adding reactive 

vaccination largely did not affect the durations of simulated epidemics (Appendix C, 

Figures C.7-8), and had little impact on the probability of epidemics failing, particularly in 

comparison to proactive vaccination alone (Appendix C, Figure C.13).  

 

Proactive vaccination with test-and-removal 
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 Test-and-removal alone did not reduce mortalities (Figure 4.4). Like reactive 

vaccination, however, test-and-removal appeared to work synergistically with proactive 

vaccination, especially at moderate to high levels of proactive vaccination (i.e., at least 

40-60% of the population proactively vaccinated; as few as a median of 26 mortalities). 

Again, this largely held true regardless of the timing of the onset of the intervention or 

the targeting of captures (i.e., random versus spatial). Notably, simulated captures were 

only conducted for about 4 months per simulation year, in contrast to at least 6 months 

of reactive vaccination per year. Captures were marginally more likely to successfully 

identify actively infectious individuals when initiated earlier in an outbreak (Appendix C, 

Figure C.9). The addition of test-and-removal largely did not affect the durations of 

epidemics (Appendix C, Figure C.10). When coupled with proactive vaccination, test-

and-removal had a modest effect in reducing the probability of a successful epidemic 

(e.g., maximum of 50 failed epidemics per 100 successful versus 34 failed epidemics per 

100 successes with no interventions; Appendix C, Figure C.13).  

 

Reactive underpass closures 

 Reactive underpass closures were ineffective in the absence of proactive 

vaccination (Appendix C, Figure C.11). The most notable impact of underpass closures 

on reducing FeLV mortalities occurred when onset of closure was early (26 weeks after 

epidemic initiation), lasted for at least 13 weeks, and occurred in conjunction with at 

least 40-60% of the population being proactively vaccinated (though the clearest effects 

occurred when at least 60% were proactively vaccinated). Under these conditions, 

underpass closures synergistically reduced mortalities from baseline scenarios (as few 

as a median of 22 mortalities with underpass closures) and increased the probability that 
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an epidemic would fail (maximum of 75 failed epidemics per 100 successes with 

underpass closures; Appendix C, Figure C.13). In some cases, simulations showed a 

marked decrease in transmission during the period of underpass closures, but reopening 

often resulted in a subsequent resurgence of infections (Figure 4.5). Underpass closures 

had no clear impact on the duration of outbreaks (Appendix C, Figure C.12).  

 

Sensitivity analyses 

 Simulated epidemic sizes were variable across the full 50 sensitivity analysis 

parameter sets in the absence of FeLV interventions (range: median 7.5 mortalities-

median 47.5 mortalities; Appendix C, Figure C.14). Based on PRCC, the parameters for 

network density, transmission potential from regressives, weekly contact rates, and 

baseline transmission potential were positively associated with median mortalities in the 

absence of interventions; the parameter for the infection-induced mortality rate was 

negatively associated with median mortalities (see Appendix C results, Figure C.15).  

When focusing on a subset of parameter sets for proactive vaccination sensitivity 

analysis, low levels of proactive vaccination (e.g., 20% population proactive vaccination) 

were sometimes effective in reducing the number of mortalities, in contrast to our 

primary results. PRCC results from proactive scenario sensitivity analysis suggested that 

the parameters for network density, transmission potential from regressives, and weekly 

contact rates were positively correlated with increased mortalities at low levels of 

vaccination (Appendix C, Figure C.16). However, network density did not have a clearly 

monotonic relationship with the difference between mortalities with and without proactive 

vaccination (Appendix C, Figure C.17). We therefore performed additional post-hoc 

sensitivity analyses to further interrogate the relationship between network density and 
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our qualitative outcome of increased mortalities at low levels of proactive vaccination 

(see Appendix C results for detailed discussion of post-hoc analysis). These additional 

analyses found some evidence that low levels of proactive vaccination were least 

effective at reducing mortalities at intermediate values of parameters governing network 

connectivity (network density and proportion adults), especially when coupled with 

increased transmission potential (e.g. higher infectiousness of regressive individuals 

and/or increased weekly contact rates; Appendix C, Figures C.19-20).   

 

4.5 Discussion 

In this study we found unexpected consequences and impacts of several 

epidemic management strategies for disease control in small populations of 

conservation concern. Although our simulation results provide guidelines for FeLV 

management in Florida panthers, they also demonstrate the power of partnering 

modeling approaches and population management questions to test and optimize 

disease control strategies in free-ranging wildlife (Joseph et al., 2013). Furthermore, the 

principles of transmission and available methods of disease control underlying our 

findings provide insights for pathogen control in other host-pathogen systems. 

 

Proactive vaccination alone may worsen epidemic outcomes under some conditions 

 Our simulation results showed a paradoxical increase in FeLV mortalities with 

low levels of proactive vaccination. This counterintuitive finding is likely due, at least in 

part, to partial vaccine immunity, a type of vaccine imperfection often overlooked in 

studies of wildlife disease (Barnett & Civitello, 2020). Under partial vaccine immunity, 

vaccinates can act as a semi-protected susceptible pool, contracting infection later in the 
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course of an epidemic, ultimately prolonging epidemics and increasing the total number 

of mortalities. Only with adequate herd immunity can these effects be avoided. This 

counterintuitive result is consistent with findings by Rees et al. (2013), who found 

reduced vaccine effectiveness with heterogeneity in the spatial distribution of hosts. 

Importantly, our results suggest that studies assuming full protection from vaccination 

may significantly underestimate the level of vaccination needed for population 

protection—underestimates which may even make epidemics worse if only partial 

vaccine immunity can be achieved.  

Our sensitivity analysis suggests that populations with intermediate levels of 

network connectivity and/or high transmission potential may be most vulnerable to these 

paradoxical effects. As in spatially structured populations (McCallum, 2008), high or low 

connectivity causes infection to fade out quickly; with intermediate connectivity, vaccine 

failures provide a steady supply of new susceptibles. Alternatively, in cases of high 

transmission potential, vaccination may shift a rapid fade-out epidemic to a sustained 

epidemic scenario, as in Rees et al. (2013). While our sensitivity analysis was limited by 

computational complexity and use of some discrete parameters (which may affect PRCC 

inference; Marino et al., 2008), our findings are consistent with this broader body of 

literature.  

FeLV vaccine efficacy may operate differently in reality from our simulation 

structure: for example, some vaccinates may have zero vaccine-induced immunity, while 

others have 100% protection (binary immunity). Alternatively, vaccination may not 

protect from infection but could reduce viral shedding or increase survival of infected 

individuals (Barnett & Civitello, 2020). In the case of binary immunity, vaccine efficacy 

would be unlikely to prolong and worsen epidemics as we saw here. In contrast, 
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increased survival of infected individuals without changes to shedding potential could 

extend or worsen outbreaks, and even favor the evolution of virulence (Barnett & 

Civitello, 2020).  

 Based on our results, we argue that wildlife managers should continue 

vaccinating available panthers and prioritize boosting vaccinated individuals to develop a 

core population of high-immunity individuals, rather than a broadly distributed low-

immunity population. This recommendation should be most effective at increasing the 

probability of epidemic failure, and aligns with other wildlife studies which have 

emphasized vaccination of core populations (Vial et al., 2006) or risk-based sub-

populations (Beyer et al., 2012). 

 

Temporary spatial restrictions are unlikely to be effective under realistic scenarios 

 Here, we examined the effect of wildlife underpass closures as a novel method to 

restrict connectivity of the panther population under emergency disease control 

conditions. Such temporary spatial restrictions could increase other types of panther 

mortality (e.g. vehicle strikes or intraspecific conflict), so such an intervention would 

need to reduce FeLV mortalities at a rate greater than these other types of panther 

mortality in order to be a viable disease control strategy. Unfortunately, our simulations 

found that temporary underpass closures were generally no more effective at reducing 

FeLV mortalities than less risky reactive interventions. Further, underpass closures were 

less effective when occurring after the peak of simulated epidemics, such that spatial 

restrictions would need to occur early in an epidemic to be effective. However, it should 

be noted that spatial restrictions may be more effective if used in combination with other 

reactive FeLV management strategies (e.g., reactive vaccination in concert with 
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temporary spatial restrictions to prevent transmission resurgence after restrictions are 

removed).  

 Extensive research has considered how landscape barriers and fragmentation 

may affect pathogen transmission and control in wildlife (e.g., Rees et al., 2013; Smith et 

al., 2002; Tracey et al., 2014; White et al., 2018b). By closing underpasses, we artificially 

fragmented panther habitat, assuming complete efficacy of closures in preventing 

transmission across the I-75 freeway. In reality, some individuals would likely 

successfully traverse this barrier. Because habitat fragmentation can promote pathogen 

outbreaks and persistence (White et al., 2018b), a “semipermeable” freeway barrier 

may, in fact, ultimately worsen epidemic dynamics. Alternatively, landscape restrictions 

to animal movement can facilitate more efficient disease control, as in Haydon et al 

(2006), where vaccinating to control pathogen spread along habitat corridors reduced 

the level of vaccine coverage needed in endangered Ethiopian wolves. While panthers 

are generally well-connected spatially, expansion of the population north of its current 

range may favor similar metapopulation-oriented disease control strategies. However, 

given uncertainties in the effect of underpass closures on other sources of mortalities 

and their limited effectiveness in our simulations, we suggest temporary underpass 

closures should currently be considered a low priority for FeLV management in panthers.  

 

Reactive and proactive strategies can work synergistically to reduce epidemic impacts 

 Our simulations showed that both reactive vaccination and test-and-removal 

strategies reduced FeLV mortalities in panthers when used in combination with 

moderate levels of proactive vaccination. Test-and-removal had more consistent effects 

with arguably less effort than reactive vaccination (4 months of captures compared to 



118 
 

year-round reactive vaccination). We therefore suggest that test-and-removal be 

prioritized over reactive vaccination, especially if identification of actively infectious 

individuals can be improved.  

In our simulations, captures that were most aligned with the initial wave of 

infectious individuals (i.e., with earlier onset) were more likely to successfully identify 

actively infectious individuals for removal. This finding highlights the importance of 

targeting captures to individuals likely to be actively infectious. Determining infection 

status in cryptic wildlife is difficult, however, and consequently supports the increased 

use of remote tracking technologies that may be able to (1) identify behavior changes 

associated with sickness, and (2) detect the onset of an epidemic more quickly. This 

conclusion is consistent with similar findings in Channel Island foxes, where increasing 

the number and frequency of tracking of sentinel individuals was important for early 

identification of epidemics (Sanchez & Hudgens, 2020).   

A key component of the success of test-and-removal here is the selective 

removal we simulated, which avoids removing immune individuals that contribute to 

overall herd immunity (Miguel et al., 2020; Potapov et al., 2012). However, we have 

simplified the field testing process in our simulations. The common field-available FeLV 

diagnostic test identifies antigenemia, which is key for identifying actively infectious 

individuals. However, the duration of antigenemia—and even degree of infectiousness—

in regressively infected individuals is unclear in panthers. We may therefore 

overestimate the effect of removing regressive individuals, but given their reduced 

infectiousness in our simulations, we still expect test-and-removal to be a key strategy 

for mitigating FeLV impacts in panthers.  
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Notably, reactive vaccination, in concert with proactive vaccination, is also a 

viable alternative strategy to test-and-removal. Our simulations showed reactive 

vaccination to have the strongest effects for reducing FeLV mortalities when at least 

50% of the population was vaccinated, and with a ratio of about 1.5 vaccines per 

vaccinated individual (i.e., 50% of vaccinated individuals received a booster). We 

therefore suggest that managers should prioritize boosting at least half of vaccinated 

individuals in a reactive vaccination response scenario. We did not see a strong effect of 

attempting a vaccine barrier, in contrast to Sanchez et al (2020), where a simulated 

vaccine barrier could effectively halt spread of a pathogen in Channel Island foxes. This 

difference is likely due to the differences in home range size and movement capacity 

between the two species, with foxes ranging far less widely than panthers. In reality, if 

an empirical outbreak of FeLV in panthers exhibited a stronger spatial signal than was 

featured in our simulations, spatially targeted reactive vaccination may yet be a 

worthwhile intervention strategy.  

 Importantly—particularly if levels of population protection from proactive 

vaccination are unknown—both reactive vaccination and test-and-removal strategies 

mitigated the negative effects of low levels of population protection seen with inadequate 

proactive vaccination. It is therefore vital for managers to incorporate these reactive 

strategies in the event of future FeLV outbreaks. 

 

Limitations and future directions 

 In this study, we considered the effects of partial vaccine immunity, but we made 

the simplifying assumption of no waning vaccine or infection-induced immunity over 

time. However, our findings with regard to imperfect efficacy are at least partially 
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representative of the likely consequences of waning immunity, in that the loss of 

immunity supplies new susceptibles to the population. Should immunity not outlast the 

course of an FeLV outbreak, this process could prolong outbreaks and result in 

increased mortalities. Future research should therefore examine the effects of waning 

vaccine immunity, particularly considering the value of revaccinating individuals which 

may be experiencing loss of vaccine protection. 

 Our simulation results found that relatively high levels of vaccination were 

required to reduce impacts of FeLV in panthers, in contrast to studies in other 

endangered species (Gilbert et al., 2020; Haydon et al., 2006). However, here we are 

investigating a pathogen with a long duration of infectiousness and lack the advantages 

of distinct corridors between panther sub-populations for reducing required levels of 

vaccination. It is therefore unsurprising that panthers would require higher levels of FeLV 

population vaccination than was found, for example, for rabies vaccination in Ethiopian 

wolves (Haydon et al., 2006) or canine distemper virus vaccination in Amur tigers 

(Gilbert et al., 2020). However, we also did not assume the presence of preexisting 

population immunity prior to proactive vaccination, and some degree of population 

immunity likely already exists in panthers, given ongoing exposures (Chiu et al., 2019). 

This would reduce necessary vaccination levels in panthers, as would higher vaccine 

efficacy than we conservatively assumed here (Vial et al., 2006). Future research could 

prioritize better understanding the realized individual immunity after single and boosted 

FeLV vaccination in panthers to determine if inoculations are more protective than we 

conservatively assumed here.  

 

Conclusions 
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Our simulation results highlight the risks of inadequate proactive vaccination, 

particularly with partial vaccine immunity. We recommend prioritizing boosted 

vaccination in panthers, and joint use of proactive vaccination and reactive strategies to 

mitigate the risks of imperfect vaccination and most effectively reduce the impacts of 

FeLV in this iconic carnivore. This research highlights the value of linking modeling and 

management priorities to identify unexpected consequences of interventions and 

determine optimal pathogen management strategies in free-ranging wildlife. 

 

4.6 Acknowledgements 

This research was supported by the National Science Foundation (DEB-1413925, 

1654609, and 2030509). MLJG was supported by the Office of the Director, National 

Institutes of Health (NIH T32OD010993), the University of Minnesota Informatics 

Institute MnDRIVE program, and the Van Sloun Foundation. The content is solely the 

responsibility of the authors and does not necessarily represent the official views of the 

National Institutes of Health. Florida panther data collected by the Florida Fish and 

Wildlife Conservation Commission is fully supported by donations to the Florida Panther 

Research and Management Trust Fund via the registration of “Protect the Panther” 

license plates.  We acknowledge the efforts of National Park Service staff in the 

collection of Florida panther data utilized in this study. 

 

  



122 
 

4.7 Figures  

 

Figure 4.1: Steps of the simulation process across baseline and management 

scenarios. The basic network and FeLV transmission simulation steps are shown in 

yellow, the baseline (no intervention) scenario in green, and the four different 

overarching management scenarios in blue. Within each management scenario, we 

investigated several variations for the given approach (shown in light blue) in a factorial 

design.  
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Figure 4.2: Histograms of FeLV mortalities in simulated epidemics with proactive 

vaccination alone. Red vertical lines indicate the median number of mortalities from the 

baseline scenario without interventions; blue lines, scenarios with proactive vaccination. 

Panel rows represent the proportion of the population proactively vaccinated; columns 

represent ratios of vaccine efficacy among vaccinates. Each histogram plot represents 

the results of 100 simulations. An expanded version of this figure is available in 

Appendix C (Figure C.2). 
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Figure 4.3: Histograms of FeLV mortalities in simulated epidemics with both reactive 

and proactive vaccination. Results shown are for randomly distributed reactive 

vaccination starting 52 weeks after epidemic onset. Panel rows represent the proportion 

of the population proactively vaccinated (with 50% boosted vaccination); columns 

represent duration of reactive vaccination per year. Red vertical lines indicate the 

median number of mortalities from simulations without interventions; blue lines for 

proactive vaccination alone; green lines for the given combination of reactive and 

proactive vaccination. Numbers in the upper right of each histogram represent (above) 

median total number of vaccinated individuals (both proactive and reactive), and (below) 

median value for the total vaccinations used per total vaccinated individuals.  
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Figure 4.4: Histograms of FeLV mortalities in simulated epidemics with both reactive 

test-and-removal and proactive vaccination. Panel rows represent the proportion of the 

population proactively vaccinated (with 50% boosted vaccination); columns represent 

the capture and testing targeting strategy (random versus spatially targeted). Vertical red 

lines indicate the median number of mortalities from simulations without interventions; 

blue lines for proactive vaccination alone; purple lines for the given combination of test 

and removal and proactive vaccination. Numbers in the upper right of each histogram 

represent the median value for the proportion of capture events that resulted in a 

removal or humane euthanasia.  
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Figure 4.5: Epidemic curves showing the proportion of the population progressively 

infected over time when 60% of the population was proactively vaccinated. Lighter lines 

show individual simulation results; dark lines show mean values across all simulations. 

Vertical black dashed lines show when underpasses were closed (left) and reopened 

(right). Panel A shows underpasses closed for 26 weeks starting 26 weeks after an 

epidemic started; panel B shows underpasses closed for 26 weeks starting at 52 weeks. 
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Conclusion 

In this dissertation, I have tested novel and developing approaches for 

understanding the drivers of pathogen transmission, predominantly focused on the 

naturally occurring model system of feline retroviruses in the Florida panther. In Chapter 

1, I reviewed key opportunities for integrating network and genomic approaches for 

improved understanding of animal behavior and the underlying dynamics of pathogen 

transmission. In Chapter 2, I identified best practices for using telemetry data in network 

studies of wildlife infectious disease, which can provide new opportunities and insights 

for remote study of transmission processes in difficult-to-observe species. Chapter 3 first 

determined drivers of transmission of an apathogenic virus in the Florida panther, then 

determined that those drivers could predict transmission of an analogously transmitted 

pathogen. These results have major implications for the proactive development of 

infectious disease prevention and control plans, and may be translatable across wildlife, 

domestic animal, and human systems. Finally, in Chapter 4, I determined optimal 

pathogen management strategies in the endangered Florida panther, including 

identifying surprising paradoxes and synergies across different management 

interventions. The findings of this chapter will have significant consequences for ongoing 

conservation efforts of the Florida panther, but also highlight key gaps and opportunities 

in model-based testing of pathogen control interventions.  

 Together, these individual chapters have resulted in new knowledge about and 

methods for identifying underlying drivers of pathogen transmission, a key step for 

improving transmission forecasting and management. Further, my work has 

demonstrated strategies for linking diverse data streams and disciplines to expand 
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understanding of disease ecology across systems. This research therefore represents a 

valuable contribution to the literature that can reduce impacts of infectious disease in 

humans and animals, for the benefit of public, animal, and ecosystem health. 
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Appendix A. Supporting information for Chapter 2 

 

A.1 Materials and Methods 

Simulation details 

Movement simulations were based on a biased, correlated random walk (BCRW; 

Long et al., 2014). The BCRW is a relatively simple movement model, described by a 

scaled step length distribution (h), correlation of turning angle (⍴), bias strength (b), and 

bias shape (c) (Barton et al., 2009; Van Moorter et al., 2009). To isolate the effect of 

subsampling, all trajectories within a simulation were generated with the same BCRW 

parameterization, but six different parameter sets were used across simulations to 

evaluate the robustness of our findings to parameter variations that altered home range 

size and movement (Table A.1). BCRW parameter sets were based on previously 

published BCRW models (Barton et al., 2009; Fronhofer et al., 2013; Long et al., 2014), 

but with reduced bias strength, which produced home range movement with occasional 

excursions. Excursion behavior can be important for pathogen transmission (O’Brien et 

al., 2014), but may also be more likely to be missed in instances of subsampling 

telemetry data. 

Three parameter sets varied home range size by altering the step length 

distribution scaling parameter (h), while leaving all other parameters constant; this 

produced small, medium, and large home range parameter sets (Table A.1). We tested 

three additional parameter sets which kept home range size roughly constant with the 

small home range model while varying other BCRW parameters such as ⍴ and b (Table 

A.1).   
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To mimic different spatial configurations, with a given parameter set, we varied 

the starting locations (and thus the home range centers) of individuals on a 30,000 by 

30,000m “study area”; we tested random, lattice, and clustered spatial configurations 

(Figure A.1). In randomly distributed populations, starting locations were assigned by 

drawing from a uniform distribution. In lattice-distributed populations, starting locations 

were assigned by keeping the same distance in the x and y direction between all starting 

locations. Within a simulation, this distance was the same for all individuals, but it varied 

between simulations, and was set from one to two times the radius of an average home 

range for the given parameter set. Clustered simulations had a further level of variation; 

we assigned all 100 individuals in a clustered simulation to one, five, or ten equally sized 

clusters. For each clustered population, the first individual per cluster was assigned a 

random starting location within the simulated study area, and the rest of the individuals 

in that same cluster were assigned starting locations relative to this individual. Distances 

from the initial individual for each subsequent individual in a cluster were drawn from a 

negative binomial distribution, with the mean set to one- to two-times the radius of an 

average home range for the given parameter set, and the size parameter ranging from 

one to five (Wilson et al., 2002). Direction from the initial individual was drawn from a 

wrapped normal distribution with a mean of zero and a concentration parameter of zero 

(functionally yielding a wrapped uniform distribution). For random and lattice populations, 

we ran 500 simulations per parameter set per spatial configuration, and we ran 999 

simulations per parameter set for clustered populations (i.e. 333 simulations per cluster 

size described above; Figure A.2). We performed all simulations in R, version 3.5.0 (R 

Core Team, 2018). BCRW R code was adapted from Long et al. (2014). 
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Spatiotemporal Contact Definitions 

When detecting contacts in complete and sample networks, spatiotemporal 

contacts were defined as simultaneous associations within small, medium, or large 

distance thresholds, corresponding to 1, 10, or 100 distance units, respectively. These 

contact definitions should be considered relative to the step length distributions used in 

movement simulations (Table A.1), as simulations were scale free. For example, the 

smallest step length scaling parameter was h = 15, which was used with a chi 

distribution in the adehabitatLT R package (Calenge, 2006), based on code from Long et 

al (2014). With a sample of 129,600 steps (i.e. 90 days of simulated movement) drawn 

from this combination of scaling parameter and distribution, the cumulative straight-line 

distance of 8 steps exceeded 100 distance units (large contact threshold) in 97.0% of 

cases; 10 steps exceeded 100 units in 99.9% of cases. While simulated movements 

were not in a straight line, because even movements from our smallest step length 

scaling parameter could achieve the distance of our largest contact threshold within 

about 8-10 steps (i.e. 8-10 minutes)—and while considering only the movement of one 

individual—we consider our large contact threshold fairly strict and therefore 

representative of direct contact. Further, broad definitions of contact are used in the 

literature (e.g. Schauber et al., 2015; VanderWaal et al., 2017), often without reference 

to biological realism.  

 

Modularity Analysis 

Modularity is a network-level metric that describes the strength of within versus 

between community interactions in a network. We estimated modularity using three 

different community-finding algorithms: walktrap (with four steps), edge-betweenness, 
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and fast-greedy. For each algorithm, we calculated modularity using weighted and 

unweighted networks. Modularity was then calculated based on the results of the 

community-finding algorithm results. All community and modularity analyses were 

performed in R, version 3.5.0 (R Core Team, 2018), using the package igraph (Csardi & 

Nepusz, 2006). As with density and proportion isolates, performance of modularity under 

telemetry sampling was evaluated using percent error of mean modularity scores across 

simulation variations. 

 

A.2 Results 

The six parameter sets did not yield substantial changes in the patterns reported 

in the main text but more extensive results are reported here by network metric type. In 

addition, we calculated metrics and correlations for weighted betweenness and 

transitivity to examine if weighted values altered results; the weighted results were 

consistent with those for unweighted values. 

For clarity, in all supplementary figures for betweenness, transitivity, degree, and 

strength, heat maps show the lower limit of the 95% confidence interval of mean 

correlation coefficient for any given network metric. Yellow and green represent the 

highest correlation values. Results are shown across movement model parameter sets, 

all five spatial configurations (random start, lattice start, one cluster, five clusters, and 

ten clusters), and five types of network comparisons (given on the right y-axis). For 

network comparisons, the first label gives the contact definition for the complete 

networks, and the second label the contact definition for the sample networks. For 

example, “10m:SO” indicates comparison of 10m complete networks to spatial overlap 



166 
 

sample networks. For frequency of telemetry sampling, “q1m” means “every 1 minute” 

and so on.  

 

Global network metrics 

Global network metrics, betweenness and transitivity, generally performed poorly 

across all simulation variations (Figures A.3-A.6). Even when using less precise contact 

definitions in sample networks, improvements in metric performance were minimal 

(Figures A.3 and A.5). Results were robust to changes in the movement model when 

home range size was held constant (Figures A.4 and A.6). 

 

Local network metrics 

Local network metrics, degree and strength, outperformed global network 

metrics, especially in clustered populations (Figures A.7-A.10). Strength, in particular, 

performed the best out of all network metrics with the most consistently high correlation 

scores across simulation variations. However, under some conditions, even local 

network metrics performed poorly. For example, lattice layouts showed poorer local 

metric performance, as did more restrictive contact definitions (e.g. 1m or 10m). As 

discussed in the main text, less precise contact definitions were often associated with 

surprising increases in local metric performance, particularly in clustered populations 

(Figures A.7 and A.9). The results were robust to changes in the movement model when 

home range size was held constant (Figures A.8 and A.10).  

 

Network-level metrics 
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The network-level metrics, density, proportion isolates (evaluated as its 

complement, proportion connected), and modularity performed intermediately, compared 

to the node-level metrics (Figures A.11-A.16). Density was apparently robust to the 

proportion of the population sampled, but this was likely driven by the random sampling 

protocol we used (Figures A.11-A.12). When using less precise contact definitions, both 

density and proportion isolates generally demonstrated increased positive percent error, 

demonstrating that these contact definitions result in overly connected networks 

compared to the complete network (Figures A.11 and A.13). Results were largely robust 

to BCRW parameterization when home range was held constant. However, there was 

some variation in results from small home range parameterizations when comparing 

100m complete networks to spatial overlap sample networks, with instances of negative 

percent error for both density and proportion isolates (Figures A.12 and A.14). This is 

likely because the 100m contact definition was fairly large relative to the step length 

distribution for these parameter sets. The variation in results then likely reflects the effect 

of “thresholding,” where at a certain degree of sampling or less precise contact 

definition, networks are no longer over-connected relative to the complete network. 

Modularity results were much more variable than those for other metrics, though 

these results were generally robust to the choice of community-finding algorithm or the 

use of weighted versus unweighted network (illustrative results from unweighted and 

weighted walktrap algorithms are shown in Figures A.15-A.16). For modularity, a positive 

percent error indicates higher modularity in the sample networks, suggesting stronger 

community structure in the sample networks than in the complete networks. When 

estimated with a weighted walktrap algorithm, modularity estimates tended to have 



168 
 

higher positive percent error than the other modularity estimates, but these differences 

were negligible (Figure A.16).  

Of note, single cluster spatial configurations consistently showed high positive 

percent error regardless of the community finding algorithm, suggesting these 

configurations are highly sensitive to overestimates of modularity. For all spatial 

configurations, exceptionally low sampling effort consistently resulted in strongly 

negative percent error, demonstrating that the sample networks showed lower 

modularity and weaker community structure than complete networks. Spatial 

configuration interacted with home range size in determining the effect of telemetry 

sampling effort on modularity; for example, large home range simulations showed 

highest positive percent error for random configurations, but small home range 

simulations showed highest positive percent error for lattice configurations (Figures 

A.15-A.16). In addition, there was often a sharp threshold in the transition from positive 

to negative percent error which was generally dependent on the combination of both 

proportion of the population sampled and the frequency of sampling, but the sampling 

effort combination describing this threshold varied across spatial configurations.  

When comparing complete networks to spatial overlap sample networks, 

modularity was generally underestimated except for some cases of lattice configuration 

(Figures A.15-A.16). These results suggest that the precise effects of telemetry sampling 

on modularity estimation are highly variable across both spatial configuration and 

sampling effort. The sensitivity of modularity to sampling effort merits further 

investigation, perhaps with networks derived from empirical systems (e.g. Sah et al., 

2019), in addition to simulated data.   
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For density, proportion isolates (evaluated as proportion connected), and 

modularity, all heat maps indicate percent error of mean metrics between complete and 

sample networks, with blue indicating negative percent error (low connectedness or 

modularity of sample network relative to the complete network) and red indicating 

positive percent error (high connectedness or modularity of sample network relative to 

the complete network). All other abbreviations in the plots below are consistent with 

previous node-level metric plots. 

 

Emergent contact rates 

Contact rates were an emergent property of simulations and spatial 

configurations. Lattice layout populations, which best represented territorial, infrequently 

interacting populations had the fewest contacts, and single cluster populations had the 

most (Table A.2). The mean duration of contacts between any given pair was consistent 

across spatial configuration, but shorter contact durations were observed for large home 

range simulations. This was likely a result of the larger step length distribution scaling 

parameter used in the large home range parameter set. 
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A.3 Figures 

 

Figure A.1: Examples of different spatial configurations used for simulations. Each 

panel represents densities of movements for 100 individuals in a single simulation. Panel 

(a) shows a random spatial configuration; panel (b) shows a lattice configuration; panels 

(c-d) show single, five, and ten cluster spatial configurations, respectively. Individual 

groups of home ranges in clustered configurations often overlap, so each individual 

group or cluster may not be readily identifiable. 
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Figure A.2: Expanded flow chart of simulation methods and network comparisons (also 

see Figure 2.1 in main text). The main flow chart shows variations in sampling and 

contact definitions, and all network metrics calculated. For sampling locations from 

trajectories, “q1m” means “every 1 minute” and so on. For network metrics, Deg = 

Degree, Str = Strength, Btw = Betweenness, Trv = Transitivity, Den = Density, Iso = 

Proportion Isolates, and Mod = Modularity. Green boxes represent major steps in the 

methods, purple boxes represent treatments or steps for sample networks, and blue 

boxes the treatments or steps for complete networks. The inset box expands to show 

what comparisons were made between sample and complete network metrics. In the 

inset, solid lines represent strict comparisons, in which the contact definition in the 

complete and sample networks is the same. Dashed lines represent less precise 

comparisons, in which the sample network has a less strict contact definition than the 

complete network. 
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Figure A.3: Betweenness: Results are shown across three movement model parameter sets (small, medium, and large home 
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ranges; Small HR, Med HR, and Large HR, respectively). The top panel represents network comparisons where both complete and 

sample networks were generated with space-time contact definitions; the bottom panel represents results from network comparisons 

where the sample network was generated with a spatial overlap contact definition.  
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Figure A.4: Betweenness: Results are shown across three movement model parameter sets (small home ranges II-IV; SHR II-SHR 

IV, respectively). The top panel represents network comparisons where both complete and sample networks were generated with 

space-time contact definitions; the bottom panel represents results from network comparisons where the sample network was 

generated with a spatial overlap contact definition.  
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Figure A.5: Transitivity: Results are shown across three movement model parameter sets (small, medium, and large home ranges; 

Small HR, Med HR, and Large HR, respectively). The top panel represents network comparisons where both complete and sample 
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networks were generated with space-time contact definitions; the bottom panel represents results from network comparisons where 

the sample network was generated with a spatial overlap contact definition. 
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Figure A.6: Transitivity: Results are shown across three movement model parameter sets (small home ranges II-IV; SHR II-SHR IV, 

respectively).  

The top panel represents network comparisons where both complete and sample networks were generated with space-time contact 

definitions; the bottom panel represents results from network comparisons where the sample network was generated with a spatial 

overlap contact definition.  
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Figure A.7: Degree: Results are shown across three movement model parameter sets (small, medium, and large home ranges; 

Small HR, Med HR, and Large HR, respectively). The top panel represents network comparisons where both complete and sample 
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networks were generated with space-time contact definitions; the bottom panel represents results from network comparisons where 

the sample network was generated with a spatial overlap contact definition. 
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Figure A.8: Degree: Results are shown across three movement model parameter sets (small home ranges II-IV; SHR II-SHR IV, 

respectively). The top panel represents network comparisons where both complete and sample networks were generated with space-
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time contact definitions; the bottom panel represents results from network comparisons where the sample network was generated 

with a spatial overlap contact definition.  
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Figure A.9: Strength: Results are shown across three movement model parameter sets (small, medium, and large home ranges; 

Small HR, Med HR, and Large HR, respectively). The top panel represents network comparisons where both complete and sample 
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networks were generated with space-time contact definitions; the bottom panel represents results from network comparisons where 

the sample network was generated with a spatial overlap contact definition. 
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Figure A.10: Strength: Results are shown across three movement model parameter sets (small home ranges II-IV; SHR II-SHR IV, 

respectively). The top panel represents network comparisons where both complete and sample networks were generated with space-



187 
 

time contact definitions; the bottom panel represents results from network comparisons where the sample network was generated 

with a spatial overlap contact definition.  
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Figure A.11: Density: Results are shown across three movement model parameter sets (small, medium, and large home ranges; 

Small HR, Med HR, and Large HR, respectively). The top panel represents network comparisons where both complete and sample 
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networks were generated with space-time contact definitions; the bottom panel represents results from network comparisons where 

the sample network was generated with a spatial overlap contact definition. 
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Figure A.12: Density: Results are shown across three movement model parameter sets (small home ranges II-IV; SHR II-SHR IV, 

respectively). The top panel represents network comparisons where both complete and sample networks were generated with space-
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time contact definitions; the bottom panel represents results from network comparisons where the sample network was generated 

with a spatial overlap contact definition. 
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Figure A.13: Proportion isolates (evaluated as proportion connected): Results are shown across three movement model parameter 

sets (small, medium, and large home ranges; Small HR, Med HR, and Large HR, respectively). The top panel represents network 
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comparisons where both complete and sample networks were generated with space-time contact definitions; the bottom panel 

represents results from network comparisons where the sample network was generated with a spatial overlap contact definition. 
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Figure A.14: Proportion isolates (evaluated as proportion connected): Results are shown across three movement model parameter 

sets (small home ranges II-IV; SHR II-SHR IV, respectively). The top panel represents network comparisons where both complete 
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and sample networks were generated with space-time contact definitions; the bottom panel represents results from network 

comparisons where the sample network was generated with a spatial overlap contact definition. 
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Figure A.15: Modularity from unweighted walktrap community-finding algorithm: Results are shown across three movement model 

parameter sets (small, medium, and large home ranges; Small HR, Med HR, and Large HR, respectively). The top panel represents 

network comparisons where both complete and sample networks were generated with space-time contact definitions; the bottom 
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panel represents results from network comparisons where the sample network was generated with a spatial overlap contact 

definition. 
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Figure A.16: Modularity from weighted walktrap community-finding algorithm: As with figure A.13, results are shown across three 

movement model parameter sets (small, medium, and large home ranges; Small HR, Med HR, and Large HR, respectively). The top 
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panel represents network comparisons where both complete and sample networks were generated with space-time contact 

definitions; the bottom panel represents results from network comparisons where the sample network was generated with a spatial 

overlap contact definition. 
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A.4. Tables 

Table A.1. Parameter values used for the BCRW movement model and corresponding 

average home range sizes. The parameter h gives the scaling of the step length 

distribution (in scale-free units); ⍴ is the strength of the turning angle correlation; b is the 

bias strength; c is the bias direction. Average home range (HR) areas are based on a 

sample of 50,000 simulated movement trajectories for each parameter set. Average HR 

areas were determined using the 95% bivariate normal kernel density estimates with a 

subset of simulated locations per trajectory (one location every 24 hours), and are given 

in 1000 units2 (akin to kilometers). Standard deviations for home range areas are given 

in parentheses. The four “small home range” parameter sets maintain roughly constant 

average home range areas while varying simulation parameters. Because home range 

size was an emergent property of the movement simulations, home ranges could not be 

exactly the same between small home range parameter sets, but they are comparable. 

Parameter Set h ⍴ b c Avg HR Area (sd) 
(1000 units2) 

Large Home Ranges 60 0.8 0.01 0.3  40.0 (5.7) 

Medium Home Ranges 34 0.8 0.01 0.3 17.0 (2.4) 

Small Home Ranges I 15 0.8 0.01 0.3 5.0 (0.7) 

Small Home Ranges II 20 0.6 0.0153 0.3 5.2 (0.7) 

Small Home Ranges III 34 0.8 0.02 0.3 5.2 (0.7) 

Small Home Ranges IV 60 0.8 0.0314 0.3 5.2 (0.7) 

 

 

Table A.2. Contact rates in complete networks by spatial configuration and home range 

size when using a space-time contact definition with 100m distance threshold. Mean 
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contacts records the average number of raw contacts, where sequential contacts are 

considered separate contact events. SD contacts is the standard deviation for the mean 

number of contacts. Mean contacts/dyad records the mean number of contacts for all 

pairs with contacts. Mean duration/dyad records the mean duration (in minutes) of 

contacts for all pairs with contacts. Duration was determined by the number of 

continuous time steps over which a contact occurred between a given pair.  

Spatial 
Configuration HR Size 

Mean 
Contacts SD Contacts 

Mean 
Contacts/Dyad 

Mean 
Duration/Dyad 

Random 

Small 21807.2 4382.3 245.9 6.0 

Medium 20943.2 2312.7 77.0 2.7 

Large 20287.7 1608.3 36.1 1.6 

Lattice 

Small 11970.3 12431.5 43.4 6.0 

Medium 3458.2 3581.2 13.4 2.7 

Large 1472.8 1530.0 6.2 1.6 

1 Cluster 

Small 879776.2 350159.3 349.8 5.9 

Medium 248177.5 101418.2 104.0 2.7 

Large 107537.5 47064.4 46.6 1.7 

5 Clusters 

Small 193512.5 78318.7 347.2 6.0 

Medium 65233.2 24954.9 98.4 2.7 

Large 33855.2 12061.4 41.8 1.6 

10 Clusters 

Small 106230.9 40553.5 339.0 5.9 

Medium 43629.9 15311.2 95.0 2.7 

Large 26098.3 7380.8 39.9 1.6 
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Appendix B. Supporting information for Chapter 3 

 

B.1 Materials and Methods 

Phyloscanner 

For feline immunodeficiency virus (FIV) transmission inference, we used 

Phyloscanner to generate a main transmission network (see Chapter 3 main text). To 

test sensitivity of our results to variations in Phyloscanner results, we also generated two 

summary FIV networks, varying the degree of window overlap in the first step of 

Phyloscanner analysis. With Phyloscanner step one set to 25bp overlap, we generated 

four additional FIV transmission networks, but kept only those edges that were found in 

at least two of these four networks. We repeated this process with Phyloscanner step 

one set to 0bp overlap, again keeping only those edges found in at least two of four 

resulting transmission networks. We then removed any edges between individuals that 

were known not to be alive at the same time, based on panther monitoring data.This 

process resulted in our main FIV network, and the two additional summary FIV networks.  

 

Statistical analysis of FIV transmission networks 

 To determine factors structuring FIV transmission networks, we considered a 

suite of network structural variables (also considered dyad-dependent variables; see 

Chapter 3 main text) and our key population predictors of interest (dyad-independent 

variables). Among dyad-independent variables, an ERGM approach can include both 

node-level variables (e.g., node age or sex) and edge-level variables (e.g., genetic 

distance). Node-level variables can be evaluated as continuous or categorical variables 

(e.g., are males involved in more transmission events?), but also for difference or 
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matching relationships (e.g. do more transmission events occur between male/female 

dyads or same-sex dyads?). In keeping with ERGM analysis terminology, categorical 

node variables are referred to as node factor, continuous as node covariate, matching 

relationships as node mixing, and continuous edge variables as edge covariate (Morris 

et al., 2008; Silk & Fisher, 2017). 

 Among the dyad-independent variables we examined in our ERGM analysis (see 

Chapter 3 main text), we included several spatial variables. Home range centroids were 

used in the generation of several of these variables and were generated by first 

estimating 95% minimum convex polygon (MCP) home ranges for telemetry-monitored 

panthers. To estimate these MCP home ranges, we used only those telemetry data 

collected in the 12 months after an individual’s initial capture, and only for those 

individuals with at least 30 relocations in that time period. MCPs were generated with the 

adehabitat package in R (Calenge, 2006), and centroids were calculated using the rgeos 

package (Bivand & Rundel, 2018). Our priority was to capture the range of panther-

occupied landscape, so we also incorporated point locations for individuals without at 

least 30 telemetry relocations. For these point locations, we prioritized using the location 

of an individual at capture; if this information was not available, we instead used the 

telemetry relocation captured closest to the date of capture. For the main FIV network, 

this approach resulted in 11 point locations from MCP centroids, 7 were capture 

locations, and 1 was a relocation closest to capture date. Hereafter, these locations are 

referred to as centroids.  

Major roadways have been shown to alter puma movement in North America 

(Wheeler et al., 2010), so our ERGM analysis included a node-matching variable for 

location of panthers’ centroids north versus south of the major I-75 freeway, defined as 
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latitude 26.15. We further hypothesized that panthers closer to urban areas would face 

greater competition for resources and therefore be involved in more transmission events 

due to increased fighting behaviors. We therefore also examined a node covariate term 

for distance to nearest urban area (in km). We used the “near table” function in ArcGIS 

to determine the distance of each centroid to the closest urban area edge, defining 

urban areas using the USA Urban Areas layer publicly available in ArcGIS (Census 2010 

Urbanized Areas and Clusters; Esri, National Atlas of the United States, United States 

Geological Survey, Department of Commerce, Census Bureau-Geography Division). We 

included pairwise geographic distances between panthers using distances between 

centroids (in km), and log-transformed this edge covariate for ERGM analysis. Lastly, we 

hypothesized that panthers with overlapping home ranges would be more likely to 

transmit to each other, so we included a spatial overlap edge covariate based on the 

pairwise utilization distribution overlap indices of 95% home range kernels (Fieberg et 

al., 2005), using the adehabitat package in R (Calenge, 2006).  

For our pairwise relatedness variable (see Chapter 3 main text), we used 

previously collected microsatellite data (Van De Kerk et al., 2019). One individual in the 

FIV transmission networks lacked microsatellite data but had known pedigree sibling 

relationships with other individuals in the transmission networks (Johnson et al., 2010). 

In order to preserve available data (ERGMs cannot operate with missing data), we 

interpolated sibling relatedness values for this individual using mean relatedness values 

from other known sibling pairs. Non-sibling relationships for this individual were 

conservatively interpolated at population mean relatedness, functionally assuming no 

relatedness.  
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Goodness of fit for ERGMs was performed using the ergm package in R (Hunter 

et al., 2008). We evaluated fit for degree distribution, geodesic distance, and triad 

census (“degree”, “distance,” and “triadcensus” terms, respectively). Model selection 

included evaluation of AIC and improvement to goodness of fit, using these terms.  

 

Panther centroid simulation 

Because pairwise geographic distances were found to be significant in ERGM 

analysis of FIV transmission networks (see Chapter 3 main text), in order to simulate 

potential transmission pathways among panthers, we also had to simulate these 

geographic pairwise distances. We did so by simulating home range centroids based on 

the empirical panther population. Simulated centroids were generated by plotting the 

observed MCP centroids from 2002-2004; the polygon encompassing these centroids 

was then split into 70 quadrats, and simulated centroids were randomly drawn from 

these quadrats, according the proportion of the observed population that was found 

within each quadrat. This functionally kept much of the heterogeneity in distribution of 

home range centroids across panther habitat. Pairwise distances were then calculated 

between simulated centroids and log transformed, as was done to calculate pairwise 

distances for the original ERGM analysis (see Chapter 3 main text).  

 

Overlap-based networks 

To compare FeLV transmission predictions from FIV-based networks against 

simpler model types, we generated spatial overlap-based networks, on which we also 

simulated FeLV transmission (see Chapter 3 main text). To do so, we first generated 

networks of utilization distribution overlap index (UDOI) spatial overlap (with 95% kernel) 
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among collared panthers in each year from 2002-2004 (three total networks; Calenge, 

2006), considering an edge to exist if UDOI was greater than 1. We calculated the 

degree distribution from each of these networks, and fit a negative binomial distribution 

to the degree distribution for each year using the fitdistrplus package in R (Delignette-

Muller et al., 2015). We took the means of the parameter values for the resulting three 

negative binomial distributions to create a single “summary” negative binomial 

distribution. We simulated new overlap-based networks using this summary negative 

binomial to draw degree distributions, and then used simulated annealing (Handcock et 

al., 2008; Reynolds et al., 2015) to generate random networks based on the drawn 

distributions. Because simulated overlap-based networks were informed by degree 

distributions, they were not spatially explicit, but represent data typically available in 

long-term wildlife monitoring studies.  

 

Gillespie algorithm 

 We also compared FeLV transmission predictions from FIV-based networks to 

predictions from a homogeneous mixing model: in this case, a Gillespie algorithm 

(stochastic, time-to-event model). This model was specified in order to align with the 

chain binomial network model specifications, resulting in the following rate functions: 

 

Susceptibles infection rate = ⍵*β*Net_dens*S(Ip + C*Ir) 

Vaccinates infection rate = ⍵*β*(1-ve)*Net_dens*V(Ip + C*Ir) 

Progressives mortality rate = #Ip 

Recovery rate = #*K*Ir 

Respawn rate = $D 
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Vaccination rate (after one simulation year) = %*S/N 

 

In the above rate functions, N is the total population, S is susceptibles, Ip is 

progressively infected individuals, Ir is regressively infected individuals, V is vaccinated 

individuals, and D marks unoccupied territories after death of the prior occupant and 

prior to “respawning” (as in network models). All other parameters are as in Table 3.1 of 

the main text for Chapter 3. Of special note, Net_dens represents the density of 

networks from network transmission models, and here functions as a population size-

scaled contact rate. This contact rate is further modified by the weekly probability of 

contact, ⍵, as was done in network models (see Chapter 3 main text). The vaccination 

rate is scaled by population size as vaccination was applied to the whole population in 

both network and Gillespie models, but only susceptibles could transition from 

susceptible to vaccinated. 

 

FeLV spatial analyses 

 To test for spatial clustering of FeLV in the historical panther outbreak, we used a 

dataset of FeLV qPCR results (n = 31), in which 12 individuals tested positive. We used 

a circular window with a maximum spatial cluster of 50% of the population at risk. In 

addition, we used the same data to test for global clustering using Cuzick and Edward’s 

test with the smacpod package in R (Cuzick & Edwards, 1990; French, 2020). Here, we 

evaluated nearest neighbor levels (k) of 1, 3, 5, 7, 9 and 11, and used 999 iterations for 

inference. We used these same parameterizations for SaTScan and Cuzick and 

Edward’s analyses of FeLV simulations, with the exception that we only evaluated k = 3, 

5, and 7 for simulated data (see Chapter 3 main text).  
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FeLV prediction target ranges 

When comparing FeLV simulation predictions against observations from the 

historical outbreak, we used several “target” ranges for outbreak duration and the 

number of progressive infections. More specifically, the empirical outbreak is considered 

to have occurred from July 1, 2002 - June 30, 2004 (104 weeks), but due to uncertainty 

in the precise duration of the historical outbreak, we considered a simulated duration of 

78-117 weeks to be “on target.” During the observed outbreak, 5 individuals were 

documented with progressive (or transient) infection. Panthers are cryptic, difficult-to-

observe animals, resulting in uncertainty in detection of all progressive infections and full 

population size at the time. We therefore considered 5-20 progressive infections in 

simulations to be on target. 

 

B.2 Results 

FIV transmission network inference 

Phyloscanner FIV network results indicated some dissimilarities between single 

runs. As reported in the main text for Chapter 3, the main FIV network included 19 nodes 

with 42 edges (network density = 0.25) after removing 9 edges that were between 

individuals known not to be alive at the same time (Figure B.1). The summary 

transmission network allowing scanning window overlap included 20 nodes with 43 

edges (network density = 0.23), and the summary network without window overlap 

included 20 nodes with 35 edges (network density = 0.18; after 8 and 6 edges removed, 

respectively, due to dates known alive).  
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Supplementary ERGM results 

 Results from the best ERGM for each FIV network are given in Table B.1. Of 

note, the best ERGM for the main FIV network showed reasonable goodness of fit 

(Figure B.2). ERGM results for the two summary networks were comparable to the main 

FIV network (Table B.1). The key difference was that the summary network with no 

window overlap did not find log transformed pairwise geographic distances to be a 

significant variable, though this fitted model showed evidence of degeneracy. To further 

confirm consistency of our ERGM findings, we performed a post hoc analysis with 

simulated random networks (see below; Figure B.3). 

 

Post hoc random network ERGM analysis 

Because there were some differences between ERGM results from the three FIV 

transmission networks (Chapter 3 main text; Table B.1), we performed a post hoc 

random network analysis to determine the consistency of our results against “null” 

random networks. Using the same panthers and descriptive data from the main FIV 

transmission tree, we rewired this transmission network as an Erdos-Renyi random 

network of the same density and fit an ERGM with the same variables from our main 

ERGM. We repeated this procedure 50 times, recording variable coefficients with each 

iteration. We then compared the distribution coefficients from simulated random 

networks to those from our three ERGMs, finding strong consistency among our ERGM 

coefficients relative to those from random networks (Figure B.3). 

 

FeLV spatial analyses 
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 As reported in the main text for Chapter 3, SaTScan analysis of observed FeLV 

status found weak evidence of spatial clustering (two clusters detected, but not 

statistically significant with p=0.165 and 0.997, respectively; Figure B.4). 

 

FeLV simulations 

 Main results of the generalized linear mixed model (GLMM) for FeLV predictive 

model performance (see Chapter 3 main text) are given in Table B.2 (homogeneous 

mixing model was reference group; for parameter set random intercepts: variance = 

0.90; standard deviation = 0.95). While the FIV-based approach did not show statistically 

significant improvements in performance, it did trend toward best performance, having 

the highest number of “feasible” parameter sets (Figures B.5, B.6). 

 SaTScan results for simulated FeLV cases and controls are given in the main 

text for Chapter 3. Cuzick and Edward’s tests found evidence of global clustering of 

simulated FeLV cases with both the FIV and overlap-based models. However, for 

simulations with p-values less than or equal to 0.1, the FIV-based model was moderately 

more likely to capture the strength of global clustering (observed/expected test statistic, 

Tk, ratio) from the empirical FeLV data (Figure B.7).  

In addition, to better understand the importance of FeLV transmission 

parameters in generating “feasible” results, we performed a post hoc random forest 

analysis for each model type, with “feasible” as a binary outcome for each parameter set 

(as in White et al., 2020). Predictors were the FeLV transmission transmission 

parameters, and data were split into 80% training/20% testing data sets. Because few 

parameter sets were categorized as feasible, we tested different resampling strategies 

for balancing the data. These included no resampling, down sampling, up sampling, 
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up/down sampling, and SMOTE sampling. The sampling protocol that produced the 

highest balanced accuracy was carried forward for analysis. In addition, we optimized 

hyper-parameters for the final random forest model. All random forests were performed 

using the randomForest package in R (Liaw et al., 2002). Across all model types, final 

random forest results tended to show poor balanced accuracy, low area under the curve 

(AUC; observed as low as AUC of 0.5) results, and were often inconsistent between 

repetitions (i.e. changes to training/testing data sets). Example random forest output for 

the FIV-based model is shown in Figures B.8 and B.9 for transparency, but should be 

interpreted with caution. Of particular note, however, was that C, the modifier shaping 

potential transmission from regressively infected individuals, had a strong tendency 

across model types to show best performance at C = 0.1 or 0.5 (Figure B.10); this would 

support the possibility of low transmissibility of regressively infected individuals. See 

main text for Chapter 3 for further discussion of this finding.  
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B.3 Tables 

Table B.1: Best ERGM results for each FIV transmission network 

Transmission 
network Variable Estimate SE p-value 

Main FIV network 

Edges (intercept) -2.56 1.33 0.055 

gwesp 0.98 0.26 <0.001 

altkstar -0.70 0.96 0.47 

Age (Adult) 0.93 0.44 0.03 

Log pairwise 

distance -0.45 0.21 0.03 

Summary network 

with window overlap 

Edges (intercept) -0.15 1.48 0.92 

gwesp 1.03 0.31 <0.001 

altkstar -3.51 1.22 0.004 

Age (Adult) 1.36 0.61 0.02 

Log pairwise 

distance -0.63 0.22 0.004 

Summary network 

without window 

overlap 

Edges (intercept) -2.76 1.33 0.038 

gwesp 1.03 0.32 0.001 

altkstar -2.17 0.99 0.029 

Age (Adult) 1.03 0.57 0.073 
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Table B.2: Fixed effects results from model-type performance GLMM  

Variable Estimate* SE p-value 

Intercept 0.055 0.40 <0.001 

FIV-based network model 1.55 0.42 0.30 

Random network model 1.32 0.43 0.52 

Overlap-based network 

model 1.21 0.44 0.66 

*Note: estimates provided are exponentiated 
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B.4 Figures 

 

Figure B.1: Phyloscanner-derived main FIV transmission network. Node shape 

indicates panther age category (square = subadult; circle = adult). Node color indicates 

panther sex (blue =  male; red = female). Edge weight represents Phyloscanner tree 

support for each edge (thicker edge = increased support); for visualization purposes, 

edges are displayed as the inverse of the absolute value of the log of these support 

values. While pictured as a directed and weighted network, statistical analyses used 

binary, undirected networks. 
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Figure B.2: Best ERGM for main FIV network showed reasonable goodness of fit across standard goodness of fit metrics. 

Clockwise, from top left: degree, minimum geodesic distance, model statistics, and triad census. Boxplots show model predictions; 

solid black lines observations. 
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Figure B.3: Fitting the predictors from the best ERGMs to random networks (based on 

the main FIV network) shows that all three best models give largely consistent coefficient 

estimates. Boxplots show coefficient estimates from 50 random networks. Red diamonds 

are estimates from the main FIV network ERGM; blue triangles are estimates from the 

summary network with window overlap; purple squares are estimates from the summary 

network without window overlap. Note that the primary inconsistency between models is 

that the summary network without overlap did not identify log pairwise distances as a 

significant predictor.  
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Figure B.4: Map of observed panther centroid locations and FeLV status (red = qPCR 

positive, blue = qPCR negative). The red dashed circle shows the location and size of 
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the top SaTScan cluster candidate, though this cluster was not considered statistically 

significant (p = 0.165).  

 

 

Figure B.5: Boxplots of total number of progressive infections from parameter sets 

classified as “feasible.” Results are shown for model types (A) FIV-based network, (B) 

well-mixed compartmental model, (C) random network, and (D) overlap-based network. 

Parameter set on the x-axis represents the unique parameter set drawn from our LHS 

sampling design; for example, set 1 for the FIV-based model type is identical to set 1 for 

random network model type, but feasible sets are not necessarily the same across 

model types. 
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Figure B.6: Boxplots of duration of simulated epidemics from parameter sets classified 

as “feasible.” Results are shown for model types (A) FIV-based network, (B) well-mixed 

compartmental model, (C) random network, and (D) overlap-based network. Parameter 

set on the x-axis represents the unique parameter set drawn from our LHS sampling 

design; for example, set 1 for the random network model type is identical to set 1 for the 

overlap-based network model type, but feasible sets are not necessarily the same 

across model types. 
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Figure B.7: Observed/Expected test statistics (Tk) for Cuzick-Edwards tests performed 

with FIV and overlap-based predictions of FeLV transmission. Shown are results from 

feasible parameter set simulations in which Cuzick-Edwards test results had p-value less 

than or equal to 0.1. Plots represent the neighbor levels that demonstrated statistically 

significant clustering for the empirical FeLV data: (A) k = 3; (B) k = 5; (C) k = 7. The red 

horizontal line in all cases is the Observed/Expected Tk ratio for the empirical FeLV data.  
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Figure B.8: Variable importance plots for the FIV-based model. While AUC was 0.889 

for this random forest analysis, results were inconsistent between random forests and 

should be interpreted with caution. Variable names are given on the x-axis (see Table 

3.1 in Chapter 3 main text). Mean decrease in accuracy scores is given on the x-axis in 

the left panel; mean decrease in Gini index on the x-axis in the right panel.  
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Figure B.9: Partial dependence plots for the FIV-based model, ordered based on variable importance observable in Figure B.8 

(according to mean decrease in accuracy scores; highest importance in top left). While AUC was 0.889 for this random forest 

analysis, results were inconsistent between random forests and should be interpreted with caution. For example, note that partial 

dependence results differ quantitatively for the C parameter between this figure and Figure B.10, though they are qualitatively 

consistent. Variable names are given in plot titles and x-axes (see Table 3.1 in the Chapter 3 main text).  
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Figure B.10: Partial dependence plots for the C parameter, which was a constant 

multiplier for probability of transmission from regressives, given effective contact. 

Because random forest analyses were sensitive to sampling, the plotted results are from 

random forest models in which the area under the curve was greater than or equal to 

0.8. All models but homogeneous mixing showed at least some support for values of C 

greater than 0 but less than 1.  
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Appendix C. Supplementary information for Chapter 4 

 

C.1 Materials and Methods 

Network and transmission simulations 

The following is summarized from Chapter 3 (and Appendix B) and additional 

details about network and transmission simulations can be found there.  

We used a spatially-explicit network simulation approach for our simulations, as 

this allowed us to incorporate both our previously identified drivers of retrovirus 

transmission and contact heterogeneity important for shaping epidemic outcomes 

(Keeling & Eames, 2005; Lloyd-Smith et al., 2005). More specifically, we used our 

previously defined exponential random graph model (ERGM) for retrovirus transmission 

pathways in panthers to simulate contact networks. Networks were therefore simulated 

based on pairwise geographic distances between panther home range centroids, 

proportion of the population that is adult (versus subadult), and two network structural 

terms, alternating k-stars and geometrically weighted edgewise shared partner 

distribution. To generate these networks, we first simulated panther populations with 

these key characteristics (i.e. age classes and distances), and then used ERGM 

coefficients from Chapter 3 to generate contact networks representing likely FeLV 

transmission pathways.  

We used empirical telemetry data to simulate pairwise geographic distances 

among each simulated panther population. Panthers have been monitored using 

predominantly VHF telemetry for decades, with aerial relocations recorded typically 

every 3 days. The number of collared individuals has decreased in recent years, but as 

we were focused on FeLV management in the contemporary population, we focused our 
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telemetry use on the most recent years with consistently high relative telemetry 

coverage (2010-2012; 56 total panthers monitored, with an average of 34 monitored per 

year). This telemetry data was then used to simulate home range centroids and 

subsequent pairwise distances.  

To simulate age distributions, we randomly assigned age categories (adult 

versus subadult) based on a “proportion adult” parameter (Table C.1), taken from 

random forest analysis from Chapter 3 (and Appendix B). In simulating networks, we 

also constrained network density based on target values again identified in random 

forest analysis (Table C.1). Similarly, for simulating FeLV transmission along networks, 

we used a susceptible-infectious-recovered framework and parameterization adapted 

random forest results (Table C.1, Figure C.1). 

We held all network and transmission parameters constant for our primary 

baseline (no-intervention) and management scenarios to evaluate only the effect of 

interventions (Table C.1). For sensitivity analysis, we considered the same reasonable 

parameter ranges used Chapter 3 (Table C.1).  

 

Spatial distribution of reactive vaccination 

 To simulate spatially-targeted vaccination in a cordon sanitaire along the I-75 

freeway, we selected individuals for attempted vaccination based on their proximity to 

the freeway. Proximity was determined by the distance between each individual’s 

simulated home range centroid and latitude 26.16 (representing I-75). Proximities were 

ranked into three categories (i.e., closest, middle, and furthest thirds of the population), 

and weighted for sampling. The closest third received a weight of 0.7; the middle third, 

0.2; and the furthest third, 0.1. Weighting allowed us to preferentially select individuals 
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with home range centroids close to I-75, but also represented the real-world possibility 

that panthers range widely and may be identified further from these centroids. Weighting 

also accounted for the fact that, as individuals close to the freeway were “saturated” with 

vaccination, other, more distant individuals might become more available candidates for 

vaccination. 

 

Sensitivity analyses supplementary methods 

To mitigate computational complexity for evaluating sensitivity of our proactive 

vaccination results, we focused on the subset of proactive vaccination conditions in 

which 20, 40, or 60% of the population was proactively vaccinated, with 0, 50, or 100% 

of vaccinates receiving a booster. Furthermore, we selected a subset of LHS parameter 

sets for these proactive vaccination sensitivity tests, choosing these based on the results 

of the full sensitivity analysis under the baseline scenario (see main text). There, we 

recorded the median number of progressive infections for each of the 50 parameter sets, 

then randomly selected sets based on quantiles (3 parameter sets from the lower 

quantile, 6 from the interquartile range, and 3 from the upper quantile). As reported in 

the main text, this approach allowed us to examine sensitivity of our proactive 

vaccination results across different outbreak sizes and network and transmission 

parameters, while mitigating computational effort associated with exploring such a wide 

range of parameters and scenario variations. The resulting 12 LHS parameter sets, used 

in a factorial design across proactive vaccination conditions, resulted in 108 parameter 

sets with 50 full simulations per set (5,400 full simulations).  

To evaluate sensitivity analysis simulation results, we used a combination of 

scatterplots and Partial Rank Correlation Coefficients (PRCC; Marino et al., 2008; Wu et 
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al., 2013). For baseline, no intervention scenarios, we tested for parameters of 

significance for the outcome of median mortalities per parameter set. We used averaged 

mortalities to both minimize the effect of aleatory uncertainty and increase statistical 

power of PRCC (Marino et al., 2008).  

For proactive vaccination sensitivity analyses, we first determined if simulation 

results were consistent with our qualitative outcome that low vaccination levels can 

increase mortalities using histograms and median mortalities as in the main text. Finding 

that this result was not consistent across all parameter sets, we performed additional 

post-hoc analyses and simulations to determine parameters important for increased 

mortalities at low vaccination levels (see supplementary results below). 

 

C.2 Results 

Management scenarios supplementary results 

For transparency, we present the results for all management scenarios here. Full 

results for proactive vaccination alone are shown in Figures C.2 (mortalities) and C.3 

(epidemic durations). In addition, we show the relationship between outbreak duration 

and number of mortalities in Figure C.4, demonstrating that longer outbreaks are 

typically associated with higher numbers of mortalities. Full results for reactive 

vaccination mortalities are shown in Figures C.5-6 and durations in Figure C.7-8. Full 

results for reactive test-and-removal are shown in Figures C.9 (mortalities) and C.10 

(epidemic durations). Full results for reactive underpass closures are shown in Figures 

C.11 (mortalities) and C.12 (epidemic durations). The proportion of failed epidemics 

(fewer than 5 progressive or regressive infections) per 100 successful epidemics for all 

management scenarios are shown in Figure C.13.  
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Sensitivity analysis of no-intervention scenarios 

 As reported in the main text, simulated FeLV outbreak sizes were variable across 

the 50 sensitivity analysis parameter sets examined under a no-intervention scenario 

(Figure C.14). PRCC results identified network density (Net_dens), infectiousness of 

regressives (C), weekly contact rates (⍵), and the baseline probability of transmission 

(β) as statistically significant parameters with positive correlations to median mortalities; 

the weekly probability of mortality (") showed a significant negative correlation with 

median mortalities (Figure C.15). Note, however, that PRCC inference may be affected 

by discrete parameters (Marino et al., 2008), so these results should be interpreted with 

some caution.  

 

Post-hoc sensitivity analysis 

 In our initial sensitivity analysis of proactive vaccination scenarios, we found that 

our results varied qualitatively from our main simulations, with low levels of proactive 

vaccination sometimes effective at reducing FeLV outbreak sizes. Focusing on the 

subset of sensitivity scenarios in which 20% of the population was proactively vaccinated 

with 100% boosting, we examined scatterplots and PRCC for parameter importance in 

relation to the outcome of the difference between median mortalities with and without 

proactive vaccination (hereafter, mortality difference; i.e., a difference value greater than 

0 means that 20% vaccination with 100% boosting increased mortalities). PRCC 

analysis identified parameters of network density, infectiousness for regressives, and 

weekly contact rates (Net_dens, C, and ⍵, respectively) as statistically significant 
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parameters positively correlated with mortality difference at 20% proactive vaccination 

with 100% boosting (Figure C.16). However, PRCC inference may be affected by 

discrete parameters and may be confounded by non-monotonic data (Marino et al., 

2008). We therefore also evaluated scatterplots of our outcome across parameter 

values, finding that the relationship between mortality difference and network density, in 

particular, was not obviously monotonic, though data was limited (Figure C.17). Given 

these limitations, we completed additional simulations to further evaluate the effect of 

network density on the mortality difference outcome.  

To determine parameter space to target for additional simulations—and potential 

additional non-monotonicities—we first classified the results for each proactive 

vaccination sensitivity analysis parameter set (n=12) according to if low levels of 

proactive vaccination qualitatively reduced mortalities, made little to no change, or 

increased mortalities. We then examined these classifications across the parameter 

space represented by each pair of these 12 parameter sets (Figure C.18) to determine if 

any parameters or pairs of parameters showed clustering of classifications in parameter 

space. We were limited to this qualitative analysis by computational complexity (these 12 

parameter sets alone required 5,400 simulations), but found some indications that, in 

addition to the previously identified target parameter of network density, the parameter 

for proportion adults also appeared to be associated with classification of simulation 

results as either “little to no change in mortalities” or “increased mortalities” at low levels 

of vaccination (Figure C.18).  

 To further examine this potential relationship, we generated an additional two 

parameter sets for a post-hoc sensitivity analysis of proactive vaccination scenarios 

(Table C.2). In the first set, we used the same target parameters from our main analyses 
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(Table C.1) for all parameters except network density and proportion adults. The latter 

two parameters were assigned based on apparent intermediate parameter space, which 

we hypothesized should preferentially result in low levels of proactive vaccination being 

associated with increased mortalities. This resulted in an additional 4 parameter sets 

across a no-intervention baseline and 9 variations in proactive vaccination (20/40/60% of 

the population vaccinated with 0/50/100% of individuals receiving boosted inoculations); 

with 50 simulations for each variation, this totaled an additional 2,000 simulations.  

 The second additional sensitivity parameter set held network density and 

proportion adults parameters constant from our main analyses (Table C.1), but drew all 

other simulation parameters from the seven proactive vaccination sensitivity analysis 

parameter sets that qualitatively produced results most divergent from our main 

analyses (Table C.2). Here, we hypothesized that if network density and proportion 

adults really are important drivers behind our results, these simulations should now 

produce results more qualitatively aligned with our main analyses. This resulted in an 

additional 7 parameter sets across a no-intervention baseline and 6 variations in 

proactive vaccination (20/40/60% of the population vaccinated with 50/100% of 

individuals receiving boosted inoculations; we did not include 0% boosted in order to 

reduce computational intensity). With 50 simulations for each variation, this totaled an 

additional 2,450 simulations.  

For both post-hoc sensitivity analysis parameter sets, we examined qualitative 

alignment with our main results to determine if particular parameter space was 

associated with our main finding that low levels of proactive vaccination could 

paradoxically increase FeLV outbreak mortalities. These additional analyses found some 

evidence that intermediate values for network structural parameters (network density 
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and proportion adults) may be associated with the qualitative result that low proactive 

vaccination can increase FeLV mortalities; this may be especially true under conditions 

of high transmission potential (e.g. higher infectiousness of regressive individuals and/or 

increased weekly contact rates; Figure C.19). While our post-hoc sensitivity analysis did 

not specifically examine individual transmission parameters, we do note that high weekly 

probabilities of contact are also tentatively associated with our qualitative results (Figure 

C.20), which is consistent with our initial PRCC analysis with proactive vaccination 

sensitivity scenarios.  

 

C.3 Discussion 

FeLV transmission  

While our sensitivity analysis highlighted the impacts of network structure on 

pathogen management requirements, additional uncertainty in FeLV transmission 

parameters should be considered. In particular, our main simulations allowed limited 

transmission from regressively infected individuals, which contrasts with expectations 

from domestic cats, but was supported by model-based evidence in Chapter 3. In 

addition, we assumed only a single spillover event from domestic cats, but these events 

occur with uncertain frequency (Chiu et al., 2019). The virulence of any circulating FeLV 

strain may also affect model predictions. There was some evidence that the FeLV strain 

in the 2002-2004 outbreak among panthers was particularly virulent (Brown et al., 2008). 

However, the same does not appear to have been true for Iberian lynx (Geret et al., 

2011). Severity of FeLV-induced disease may therefore reflect the effects of inherent 

genetic susceptibility, particularly in these highly inbred populations (Geret et al., 2011; 

Johnson et al., 2010; Roelke et al., 1993). Lower virulence FeLV strains than we have 
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modeled here and/or increased population genetic diversity may therefore reduce 

severity of disease and even transmission potential in panthers.  

 

 

  



 235 

C.4 Tables 

Table C.1: Network and transmission simulation parameters 

Parameter Definition Target Value Range 

Adult_prop Proportion adults versus subadults 0.89 0.82-0.99 

Net_dens Simulated network density 0.08 0.05-0.15 

β 

Probability of transmission from 

progressives, given effective contact 0.27 0.17-0.29 

C 

Constant multiplier for probability of 

transmission from regressives, given 

effective contact 0.1 0, 0.1, 0.5 

⍵ Weekly probability of contact 0.3 0.1-0.4 

" 

Weekly probability of death from 

progressive infection 1/18 1/18, 1/26 

K 

Constant multiplier for weekly probability 

of recovery from regressive infection 1 0.5, 1 

# 
Weekly probability of territory repopulation 

("respawn rate") 0.11 0.083-0.25 

P 

Proportion randomly assigned to 

progressive, regressive 0.25 0.25 

Note: Values and ranges adapted from Chapter 3. Target values are those used in no-

intervention and management scenarios. The ranges column gives the range of possible 

values used in the Latin hypercube sampling sensitivity analysis (see below). See Figure 

C.1 for transmission parameters in the context of the compartmental model.  
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Table C.2: Post-Hoc Sensitivity Analysis Parameter Sets 

 Set Name Post-Hoc Set 1 Post-Hoc Set 2 

 Set Number 1 2 3 4 1 2 3 4 5 6 7 

Parameter 
Name 

Adult_prop 0.8875 0.8875 0.9125 0.9125 0.89 0.89 0.89 0.89 0.89 0.89 0.89 

Net_dens 0.0875 0.1125 0.0875 0.1125 0.08 0.08 0.08 0.08 0.08 0.08 0.08 

β 0.27 0.27 0.27 0.27 0.259 0.243 0.249 0.196 0.251 0.191 0.279 

C 0.1 0.1 0.1 0.1 0 0 0.5 0.5 0 0 0.1 

⍵ 0.3 0.3 0.3 0.3 0.197 0.102 0.284 0.373 0.190 0.219 0.242 

" 1/18 1/18 1/18 1/18 1/26 1/18 1/18 1/18 1/26 1/26 1/18 

K 1 1 1 1 1 0.5 0.5 0.5 0.5 0.5 1 

# 0.11 0.11 0.11 0.11 0.176 0.181 0.167 0.186 0.120 0.197 0.113 

P 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 

 
Note: Parameter definitions can be found in Table C.1.  
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C.5 Figures 

 

Figure C.1: Compartmental model diagram of FeLV transmission model (see Table C.1 

for parameter definitions). Figure adapted from Chapter 3. Note that, for simplicity, the 

vaccinated class of individuals is not shown.  
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Figure C.2: Histograms of FeLV mortalities in simulated epidemics with proactive vaccination alone. Red vertical lines indicate the 

median number of mortalities from the baseline scenario without interventions; blue lines indicate median number of mortalities with 

proactive vaccination. Panel rows represent the proportion of the population proactively vaccinated; columns represent ratios of 

vaccine efficacy among vaccinates. Vaccination without a booster was assumed to have 40% efficacy, versus 80% efficacy with a 

boosting inoculation. Each histogram plot represents the results of 100 simulations.  
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Figure C.3: Histograms of the duration of simulated FeLV epidemics (in weeks) with proactive vaccination alone. Red vertical lines 

indicate the median duration from the baseline scenario without interventions; blue lines indicate median duration with proactive 

vaccination. Panel rows represent the proportion of the population proactively vaccinated; columns represent ratios of vaccine 

efficacy among vaccinates. Vaccination without a booster was assumed to have 40% efficacy, versus 80% efficacy with a boosting 

inoculation. Each histogram plot represents the results of 100 simulations.  
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Figure C.4: Scatterplots of simulated FeLV epidemic durations against mortalities with 

proactive vaccination alone. Red lines are the fitted linear models for mortalities as a 

function of epidemic duration. Panel rows represent the proportion of the population 
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proactively vaccinated; columns represent ratios of vaccine efficacy among vaccinates. 

Vaccination without a booster was assumed to have 40% efficacy, versus 80% efficacy 

with a boosting inoculation. Each histogram plot represents the results of 100 

simulations.  
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Figure C.5: Histograms of FeLV mortalities in simulated epidemics with proactive vaccination and year-round reactive vaccination. 

Panel rows represent the proportion of the population proactively vaccinated (with 50% of those vaccinates receiving boosted 

vaccination); columns represent both distribution strategy (random versus spatial) and timing of onset of reactive vaccination after 

epidemic initiation (26 or 52 weeks). Red vertical lines indicate the median number of mortalities from simulations without 

interventions; blue lines for proactive vaccination alone; green lines for the given combination of reactive and proactive vaccination. 

Each histogram plot represents the results of 100 simulations. 

 



 246 

 



 247 

Figures C.6: Histograms of FeLV mortalities in simulated epidemics with proactive vaccination and 6-months per year reactive 

vaccination. Panel rows represent the proportion of the population proactively vaccinated (with 50% of those vaccinates receiving 

boosted vaccination); columns represent both distribution strategy (random versus spatial) and timing of onset of reactive vaccination 

after epidemic initiation (26 or 52 weeks). Red vertical lines indicate the median number of mortalities from simulations without 

interventions; blue lines for proactive vaccination alone; green lines for the given combination of reactive and proactive vaccination. 

Each histogram plot represents the results of 100 simulations. 
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Figure C.7: Histograms of the duration of simulated FeLV epidemics with proactive vaccination and year-round reactive vaccination. 

Panel rows represent the proportion of the population proactively vaccinated (with 50% of those vaccinates receiving boosted 

vaccination); columns represent both distribution strategy (random versus spatial) and timing of onset of reactive vaccination after 

epidemic initiation (26 or 52 weeks). Red vertical lines indicate the median duration without interventions; blue lines for proactive 

vaccination alone; green lines for the given combination of reactive and proactive vaccination. Each histogram plot represents the 

results of 100 simulations. 
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Figure C.8: Histograms of the duration of simulated FeLV epidemics with proactive vaccination and 6-months per year reactive 

vaccination. Panel rows represent the proportion of the population proactively vaccinated (with 50% of those vaccinates receiving 

boosted vaccination); columns represent both distribution strategy (random versus spatial) and timing of onset of reactive vaccination 

after epidemic initiation (26 or 52 weeks). Red vertical lines indicate the median duration without interventions; blue lines for 

proactive vaccination alone; green lines for the given combination of reactive and proactive vaccination. Each histogram plot 

represents the results of 100 simulations. 
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Figure C.9: Histograms of FeLV mortalities in simulated epidemics with both reactive test-and-removal and proactive vaccination. 

Panel rows represent the proportion of the population proactively vaccinated; columns represent both capture/testing strategy 

(random versus spatial) and timing of onset of reactive test-and-removal after epidemic initiation (26 or 52 weeks). Red vertical lines 

indicate the median number of mortalities from simulations without interventions; blue lines for proactive vaccination alone; purple 

lines for the given combination of reactive test-and-removal and proactive vaccination. Numbers in the upper right of each histogram 

represent the median value for the proportion of capture events that resulted in a removal or humane euthanasia. Each histogram 

plot represents the results of 100 simulations. 
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Figure C.10: Histograms of the duration of simulated FeLV epidemics with both reactive test-and-removal and proactive vaccination. 

Panel rows represent the proportion of the population proactively vaccinated; columns represent both capture/testing strategy 

(random versus spatial) and timing of onset of reactive test-and-removal after epidemic initiation (26 or 52 weeks). Red vertical lines 

indicate the median duration without interventions; blue lines for proactive vaccination alone; purple lines for the given combination of 

reactive test-and-removal and proactive vaccination. Each histogram plot represents the results of 100 simulations. 
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Figure C.11: Histograms of FeLV mortalities in simulated epidemics with both reactive 

underpass closures and proactive vaccination. Plot subsections represent (A) onset of 

underpass closures 26 weeks after epidemic initiation, and (B) onset 52 weeks after 

initiation. Panel rows represent the proportion of the population proactively vaccinated; 

columns show the duration of underpass closures. Red vertical lines indicate the median 

number of mortalities from simulations without interventions; blue lines for proactive 

vaccination alone; orange lines for the given combination of reactive underpass closure 

and proactive vaccination. Each histogram plot represents the results of 100 simulations. 
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Figure C.12: Histograms of the duration of simulated FeLV epidemics with both reactive 

underpass closures and proactive vaccination. Plot subsections represent (A) onset of 

underpass closures 26 weeks after epidemic initiation, and (B) onset 52 weeks after 

initiation. Panel rows represent the proportion of the population proactively vaccinated; 

columns show the duration of underpass closures. Red vertical lines indicate the median 

duration without interventions; blue lines for proactive vaccination alone; orange lines for 

the given combination of reactive underpass closure and proactive vaccination. Each 

histogram plot represents the results of 100 simulations. 
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Figure C.13: Heat maps of the proportion of simulated FeLV epidemics that failed (fewer than 5 progressive or regressive infections) 

per 100 successful epidemics. Results are shown for (A) proactive vaccination alone; (B) reactive and proactive vaccination; (C) 

reactive test-and-removal with proactive vaccination; and (D) reactive underpass closures with proactive vaccination. In all plots, the 

y-axis gives the proportion of the population proactively vaccinated. For (A), the x-axis gives the proportion of individuals receiving 

boosted vaccination; in all other plots, 50% of all vaccinated individuals received boosted vaccinations. For plots B-D, the x-axis 

gives the onset of reactive interventions after epidemic initiation (26 or 52 weeks). In B and C, panel columns represent strategy for 

reactive vaccination and captures/testing, respectively. In addition, panel rows in B show the duration of reactive vaccination per 

year. Lastly, each panel in D represents the duration of underpass closures. Each colored square represents the results of 100 

simulations. 
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Figure C.14: Histogram of median simulated FeLV mortalities for each of 50 sensitivity 

analysis parameter sets evaluated under a no-intervention scenario. The vertical red line 

represents the median mortalities with no interventions from our main analysis 

simulations. 
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Figure C.15: Partial Rank Correlation Coefficient (PRCC) estimates for simulation 

parameters in no-intervention scenario sensitivity analysis. The outcome considered was 

the median mortalities per parameter set. Parameter names and descriptions can be 

found in Table C.1. Asterisks indicate statistical significance: * = p ≤ 0.05; ** = p ≤ 0.01.  
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Figure C.16: Partial Rank Correlation Coefficient (PRCC) estimates for simulation 

parameters in proactive vaccination scenario sensitivity analysis. The outcome 

considered was the difference in median mortalities with and without proactive 

vaccination (per parameter set). Shown are results for parameter sets in which 20% of 

the population was proactively vaccinated with 100% boosting. Parameter names and 

descriptions can be found in Table C.1. Asterisks indicate statistical significance: * = p ≤ 

0.05; ** = p ≤ 0.01.  
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Figure C.17: Scatterplot of difference in median mortalities with and without proactive 

vaccination (“mortalities difference” per parameter set) against network density 

parameterization. Shown are results for sensitivity analysis parameter sets in which 20% 

of the population was proactively vaccinated with 100% boosting.  
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Figure C.18: Plot of proactive vaccination sensitivity analysis parameter set classifications across all pairs of parameters. Points 

represent individual parameter sets for the main sensitivity analysis of proactive vaccination (n = 12), and colors represent qualitative 

classifications of results. The blue point per plot shows the parameter space represented by our main simulations. For all other 

points, red = increased mortalities with low levels of proactive vaccination; orange = little to no change in mortalities with low levels of 

proactive vaccination; gray = reduced mortalities with low levels of proactive vaccination.  
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Figure C.19: Scatterplot of post-hoc sensitivity analysis evaluation of influence of 

proportion adults (Adult_prop) and network density (Net_dens) parameters. Points 

represent individual parameter sets for both the main sensitivity analysis of proactive 

vaccination (n=12) and both post-hoc parameter sets (n = 4 and 7). Point colors represent 

qualitative classifications of results. Blue shows the parameter space represented by our 

main simulations. For all other points, red = increased mortalities with low levels of 

proactive vaccination; orange = little to no change in mortalities with low levels of 

proactive vaccination; gray = reduced mortalities with low levels of proactive vaccination. 

Point shapes give the value for the constant modifying infectiousness of regressives 

(parameter C): circle = 0, triangle = 0.1, diamond = 0.5. Note: points are jittered for 

visibility.  
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Figure C.20: Scatterplot of post-hoc sensitivity analysis results, here showing the 

proportion adults (Adult_prop) against the weekly probability of contact (Omega/⍵) 

parameters, though ⍵ was not specifically evaluated in post-hoc analysis. Points 

represent individual parameter sets for both the main sensitivity analysis of proactive 

vaccination (n=12) and both post-hoc parameter sets (n = 4 and 7). Point colors represent 

qualitative classifications of results. Blue shows the parameter space represented by our 

main simulations. For all other points, red = increased mortalities with low levels of 

proactive vaccination; orange = little to no change in mortalities with low levels of 

proactive vaccination; gray = reduced mortalities with low levels of proactive vaccination. 

Point shapes give the value for the constant modifying infectiousness of regressives 
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(parameter C): circle = 0, triangle = 0.1, diamond = 0.5. Note: points are jittered for 

visibility. 

 

 

 


