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Abstract

Motion is a central element of the human experience. Artificial Intelligence (AI)

and robotics technologies continue to transform society, but work is needed to enable

solutions that engage with our motion-driven reality. Critical to an understanding

human motion is the ability to model and accurately simulate virtual humans. To

that end, my thesis provides data-driven analysis and insight for human motion. I

identify two key aspects of realistic human motion simulations: being both natural

in appearance while covering the rich variety of motions exhibited by humans. I

describe how motion data can be leveraged to both simulate realistic motion, as well

as validate simulation realism through a combination of data-driven analysis and user

study approaches.

Computational methods for human motion are largely studied in the context of

computer graphics and virtual character animation. Drawing from and expanding

on work in this field, my work applies data-driven methods for simulating humans in

several settings: that of facial motion, local crowd simulation, and global navigation.

The methods and analysis in this dissertation present contributions to the fields of AI,

robotics, and computer graphics in supporting my thesis that data-driven methods

can be used to create and validate realistic simulations of human motion.

In the first part of my thesis, I study the simulation of realistic human smiles by

conducting a large user study to connect observer reactions to computer animated

faces. The result is a rich dataset providing value beyond that of this thesis to

interdisciplinary research. I use the data to train a generative model with a new

machine learning heuristic (PVL) that I develop, which tunes the trade-offs in creating

a variety of happy smiles. I validate the realism of the PVL results with a follow up
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user study.

The second part of my thesis studies the simulation of realistic human navigation.

I perform a data-driven evaluation of the impact of collision avoidance on user expe-

riences in virtual reality (VR), validating its importance for enabling the feeling of

presence. I leverage motion data of shoppers to drive new insights for human naviga-

tion decisions, discovering an entropy law governing item retrieval patterns. Finally, I

present a deep-learning technique (SPNets) for simulating realistic human navigation

behaviors in indoor settings trained on optimal paths. The resulting agents exhibit

several human-like behaviors, such as intelligent backtracking, narrowing down goal

locations, and environment familiarity. I validate the realism of SPNet simulations

using paths from a user study on the same navigation tasks.
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Chapter 1

Introduction

Physical motion is a central part of human life. We are constantly perceiving, analyz-

ing, planning, and executing motion in various forms as we interact with the complex,

stochastic world around us. More than just a means for transporting ourselves and

other things, we employ motion to encode meaning and communicate to others. Along

with every motion task comes the added challenge of planning and performing subject

to the dynamics of our uncertain environment. In order to understand, and cooperate

with one another, humans are adept at perceiving and analyzing motion, particularly

that of other humans. This enables a wide range of interactions that support the

relationships and collaborations that form modern society.

Artificial Intelligence (AI) and robotics technologies have and continue to trans-

form industry and enable new and exciting applications. However, there is need for

new solutions to broaden the impact potential in the settings where the physical em-

bodiment of humans is the central focus. Currently many existing robotics solutions

are aimed at domains where humans are absent or not the primary focus, such as

automating manufacturing, remote security and surveillance, or autonomous trans-

portation. AI in industry has been most successfully applied to digital platforms:

suggesting what to buy, which content to consume, or predicting which ads we are

most likely to click. Future technologies that seek to successfully engage with our
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motion-centered reality must incorporate an understanding of how we move. This

involves a change in focus to accurately portraying, anticipating, and appropriately

responding to human motion. Building good models of human motion is vital to

achieving this goal.

This dissertation provides data-driven insights for advancing the understanding

of human motion. These insights take the form of simulation methods and evaluative

analysis informed by real world data to move toward a more social form of intelli-

gence for AI and robotics applications. The chapters herein explore human motion in

several different contexts, including facial animation, crowds in virtual reality (VR),

multi-task navigation decisions, and long-term navigation behaviors with uncertain

goals. The results provide benefits to many applications. For example, a better

understanding of how facial movements portray different emotions has value for vir-

tual character animation and facial reconstructive surgery. Experiential evaluation of

crowd simulation techniques can help make more believable characters for games and

VR, and can help inform the field of motion planning to generate more natural robot

movements in populated environments (Figure 1.1). Realistic simulations of human

navigation behaviors provides can help guide simulation-based analysis for urban and

retail planning.

Accurately capturing and modeling moving humans is a challenging and multi-

faceted problem. Faithfully simulating human motion requires insights both for the

representation for a generative model (what are the salient features that drive realistic

motion) as well as the simulation technique (how they evolve over time). Further-

more, realistic motion must capture the diverse range of movements seen both across

individuals and even within individuals on the same motion task. My thesis demon-

strates that a key step to overcoming these challenges is leveraging Motion Data to

both build and validate models of human motion.
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(a) (b)

Figure 1.1: left: Natural motion is critical for smooth integration of AI into everyday
settings (figure adapted from (Fan et al., 2018)). right: Natural motion is needed
for virtual characters to enhance realism in digital media such as video games and
movies (figure adapted from (Karamouzas et al., 2017)).

1.1 Motion Data

In recent years, substantial technological advances have been achieved in the fields

of AI and computer vision, specifically in our ability to capture and learn from large

amounts of data. The past two decades have seen substantial advancement of mo-

tion tracking techniques, including those specifically for capturing human motion at

different scales (Brunetti et al., 2018; Li et al., 2013; OptiTrack, 2019). With these

advancements come greater practicality for collecting Motion Data. Specifically, I

will define motion data for the scope of this dissertation to be time series samples

describing the spatial configuration (typically position and/or orientation) of a set of

physical features of interest. These kinds of data have been identified as holding great

promise for new and valuable insights about human behavior (Hui et al., 2009a), and

are becoming increasingly available (Karamouzas et al., 2019).

This movement has helped support advancements in the understanding and sim-

ulation of human motion in a variety of contexts. For example, motion data has led

to advancements in character animation that focus on local body movements and

interactions with other characters and virtual objects (Starke et al., 2019, 2020), in-
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cluding environments with realistic physical constraints (Peng et al., 2018). Others

have utilized motion data to enhance realism in virtual crowds (Karamouzas et al.,

2014; Sieben et al., 2017) and facial expressions (Helwig et al., 2017; Li et al., 2013).

My work stands alongside these efforts, serving as both an expansion of some as a

validation component, and an extension into new areas such as global navigation.

While there are many possible types of motion data, this thesis looks at two main

kinds. The first is face data, which involves following key feature points of the face

as they move to form various expressions. Face data is introduced in Chapter 2 and

utilized for a facial simulation technique in Chapter 3. The second is path data, which

tracks the pose of an entity as it navigates throughout a physical environment such as

a building. I use path data in several contexts, including to evaluate crowd avoidance

in Chapter 4, analyze and simulate navigation decisions in Chapter 5 and Chapter 6.

1.2 Leveraging Motion Data for Human Motion

Simulation and Analysis

The accurate simulation of physical processes has been the subject of research far

before the advent of modern computing. Discovering and understanding the laws of

physics in domains such as aerodynamics or thermodynamics has made physically

accurate systems of motion the subject of study in a variety of fields. With equations

derived from the related research, many processes can be well defined and accurately

simulated, leading to various kinds of technologies (such as those found in meteorol-

ogy, civil engineering, or aerospace). In contrast, human motion is not well captured

by existing physically-based simulation techniques, and presents its own set of unique

simulation challenges. The simulation techniques I develop seek to capture the less

frequently considered elements of human behavior, and utilize motion data as a source

for learning.
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This thesis will consider the use of agent-based models for simulation. In agent-

based simulations, the agent is an autonomous entity that chooses actions to take

in an environment based on available information to achieve some goal. An agent

typically keeps track of some important information about itself and the environ-

ment (such as its position, orientation, velocity and goal) known as a state. An

agent-based simulation is the step-by-step process in which an agent’s actions are

determined (using some observations about the environment and the agent’s behav-

ioral model) and enacted repeatedly until some termination condition is satisfied. The

resulting series of agent states together represent simulated motion data, also called

its path through the environment.

Developing any physical system that involves motion and motion planning by an

agent presents multi-faceted challenges. These challenges include answering detailed,

concrete questions such as where in the world the agent is, how sure the agent is where

it thinks it is, and how the agent’s actions will affect where it goes, as well as broader

questions of planning and optimization strategy (given we know where we are, and an

established set of dynamics, how to achieve the desired result). This dissertation will

focus on the latter, specifically agents that are able to exhibit human-like behaviors in

their motion. This requires producing natural motions that well match what is seen

in humans, while maintaining as much as possible the rich variety of the resulting

behavior to maximize realism. Following is an expansion of each of these ideas

of naturalness and variety in motion, and how they combine to produce realistic

simulations.

1.2.1 Creating Realistic Motion

Natural Simulations When a simulation appears natural, it suspends our disbelief

and can go virtually unnoticed when contextualized with the appropriate surround-

ings. For example, when you walk amidst a crowd of other humans, your attention
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need not be focused on the navigational behaviors of those around you. Likewise, if

you were to walk through a crowd of a mix of humans and robots using very naturally

simulated motion, you would not need to treat the robots differently in your planning.

It is this inconspicuous resemblance to real-world observed human behaviors that I

call naturalness. The methods I propose in this work seek to move toward simulation

approaches that produce natural behaviors.

For example, robotics applications that involve a robot moving through populated

areas (such as seen in Figure 1.1a) benefit greatly from being able to accurately model

human navigation behaviors. Accurately simulating potential ways in which the flow

of pedestrians might evolve over time can help inform motion planning systems to

minimize the likelihood of collisions and help maintain a smooth overall path. Ad-

ditionally, understanding the navigation decisions humans might make can help a

robot avoid actions that would be perceived as unexpected or abrupt, causing undue

congestion and inefficient use of space.

Variety in Simulation Equally important in human simulation is recovering the

stunning variety found not only from person to person, but even in the same individual

carrying out multiple instances of the same motion task. Each of us has unique facial

movements that form the various facial expressions we can perform(Figure 1.2), and

one’s walking path through an environment (whether densely or sparsely populated)

may take slightly different routes even given the same initial and goal conditions (Fig-

ure 1.3). Research has shown that variety in appearance of digital characters is an

important factor in creating experiences that exhibit realism and immersion (McDon-

nell et al., 2008; O’Sullivan, 2009), specifically the human face (Sinha et al., 2006),

which I consider in Chapter 3. To achieve this high level of realism, my work considers

data-driven approaches seeking to account for and recover the variety found in the

real-world behaviors they are simulating.
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Figure 1.2: Variety is an integral component to reproducing realistic human smiles.
(images sourced from various public domains).

●

●

Start Goal

Figure 1.3: The top-down view of human paths (grey lines) in an indoor environment
(black lines are walls). People took a variety of different routes in this environment
when asked to navigate from a start to a goal (the participants had never seen the
environment before).
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Figure 1.4: A depiction of the uncanny valley, showing the relationship between
increasing human-likeness of an entity and the elicited emotional responses (adopted
from (Mori et al., 2012))

.

Producing realistic simulations presents significant challenges. A popular ontology

by which naturalness is often studied when pertaining to human-likeness is that of

the Uncanny Valley. The main idea proposed in this theory is that as artificial

representations of humans (be it images, videos or robots) become more realistic,

they seem more natural or familiar, up until a certain point at which they (counter-

intuitively) suddenly appear unsettling before crossing the line into indistinguishable

from that of humans (see Figure 1.4). While some have questioned the merits of the

familiarity-human-likeness curve (Brenton et al., 2005; Hanson et al., 2005), there is

some consensus that the more lifelike something appears, the more we expect it to

be beholden to realistic constraints (Brenton et al., 2005; Geller, 2008).

It is clear that the more methods strive for realism in human depictions, the more

sensitive audiences are to subtle abnormalities. My goal to capture variety while si-

multaneously producing realistic simulation behaviors is impacted by this sensitivity,

presenting a unique and precarious task. However, given data that sufficiently cap-

tures all these elements, my dissertation seeks to demonstrate that it is possible to

learn and validate models via data-driven means that effectively recover and reflect
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these important aspects of human motion.

1.2.2 Validating Simulation Realism

When using motion data to learn simulation models of human motion, the models

themselves will be fit using an optimization process that uses a computational method

to minimize an objective function. However, minimizing an objective function does

not guarantee that the simulated motion will appear natural or capture a sufficient

variety. To establish confidence that the resulting models indeed produce realistic

simulations, a method for validating the realism of a simulation is needed.

In the context of this thesis, I refer to Data-Driven Validation as the process of

using data to measure the extent to which simulated paths exhibit the important

aspects of human motion such as naturalness and variety. I do this by conducting

User Studies, allowing humans to be the judges and standard by which realism is

measured. A User Study for validation consists of data collected from a number of

willing participants designed to test the results of a simulation method. This data

can take the form of subjective responses to the realism of a simulation, or can be

motion data generated by participants for objective comparisons to simulated paths

of the same motion tasks. Examples of both kinds of user data for validation are

proposed and employed on the simulation methods seen in this dissertation.

1.3 Thesis Statement

To address the goals discussed above, my work demonstrates evidence for the following

thesis:

Data-driven techniques can be used to capture, model, and faithfully simulate hu-
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man motion in a variety of contexts. The resulting set of methods are able to char-

acterize and exhibit realistic motion behaviors, appearing natural in form while

recovering the rich variety of motion seen in humans. In doing so, human motion

data can be employed to drive simulations as well as to validate the effectiveness

of simulations.

1.4 Main Results

I begin the dissertation by presenting my approach for identifying and addressing

the fundamental conflict between creating natural motion and a variety of motions,

applied to simulating realistic human smiles. The next two chapters demonstrate

leveraging human paths for the purposes of evaluating the realism supported by other

data-driven models, and to generate new insights on human motion for use in simu-

lations. The final chapter focuses on simulating a variety of compelling paths, and is

evaluated using human paths. Following is a synopsis of each.

1.4.1 Building a Dataset to Capture the Essence of a Smile

To support studies of human smiles, I begin by describing my effort to design and

conduct a large scale user study in Chapter 2. My collaborators and I collect thou-

sands of casual observer responses to a systematic sweep of facial expressions on a

3D computer animated model. The study took the form of a mobile app running on

a tablet, with the screen split between a video of a random expression from the pool

and a panel of response options. For each video, participants could simultaneously

view and consider the options, proceeding to respond to subsequent videos if they so

wished.

The results of the study provide over 10,000 responses each containing 4 measures

of the perceived emotional content of the expressions. For my purposes of simulating
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realistic smiles, I applied some post processing to aggregate responses into robust

measures of smile intensity for each facial expression, and categorized the smiles into

a set of smile intensity classes. However, the original dataset itself also exists as a

valuable resource interdisciplinary research in other fields. One example is in quan-

titative psychology for exploring the dynamic properties of successful smiles (Helwig

et al., 2017). Additionally, both the data and the notion of capturing casual observer

perceptions of facial expressions to broaden scientific understanding of facial expres-

sions has informed and inspired work in medical fields such as facial reconstructive

surgery (Lyford-Pike et al., 2018).

1.4.2 Data-Driven Simulation of Realistic Smiles

Happiness is among one of the most basic and important emotions conveyed by the

human face. As smiles vary widely both within and across individuals, creating

compelling virtual characters must also exhibit these kinds of diversity. In this work I

propose a method for creating natural, varied human smiles. I formalize the problem

within the context of a generative method for creating virtual character smiles in

an interactive setting such as a video game. This involves identifying quantitative

measures of quality (naturalness), diversity, and for the generative model I choose a

classifier. The classifier is trained on a dataset which is able to categorize points in

facial space as to their semantic class (low, medium or high smile intensity). Smiles

can then be generated by rejection sampling from the classifier until an appropriate

facial space point is found.

I then introduce the notion of the precision-variety trade-off. This is the funda-

mental conflict between a “safe” classifier that is more restrictive (high precision, but

the positive decision boundary covers a low area of facial space) and one that more

freely classifies candidates as belonging to a certain semantic category (higher chance

of false positives, but larger coverage of the space of possible expressions, leading to
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Figure 1.5: A variety of happy smiles generated by my method for two different 3D
models.

more variety). I propose a heuristic for ordering the data such that as more data is

included, it tunes this trade-off to allow for the maximum amount of variety given

a precision threshold. This heuristic and corresponding algorithm I call Precision-

Variety Learning (PVL). I explore the theoretical properties of datasets that are likely

to produce a precision-variety trade-off curve, and show that when certain assump-

tions hold, my heuristic is guaranteed to produce a monotonic curve useful for tuning

the trade-off.

I demonstrate the efficacy of the method by applying it to the problem of simu-

lating a variety of mouth shape animations corresponding to realistic human smiles

with targeted smile intensity (Figure 1.5). I validate the realism of the results with

a two-part follow-up user study, while also showing that the facial feature space can

be successfully applied to other facial models.

For a detailed description and analysis of this work, see Chapter 3. The orig-

inal publication can be found in the Association for the Advancement of Artificial

Intelligence 2018 conference proceedings (Sohre et al., 2018).

1.4.3 Validating Collision Avoidance as a Realism Technique

Dynamic, moving characters are increasingly a part of interactive virtual experiences

enabled by immersive display technologies such as head-mounted displays (HMDs).
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With Collision Avoidance

Without Collision Avoidance

Figure 1.6: Experimental setup and example participant paths for both collision
avoidance (top right) and non-collision avoidance (bottom right).

In this context, it is important to consider the impact their behavior has on user

experiences. To evaluate the impact of collision avoidance in virtual environments,

I design and conduct a user study to capture paths and experiences of participants

interacting with a virtual crowd in an immersive 3D environment.

In the study, the participants are tasked to walk through a crowd of virtual agents

with an opposing flow (Figure 1.6 left). Two possible collision avoidance conditions

are implemented for the virtual crowd: one in which the agents exhibited anticipatory

collision avoidance behaviors with both each other and the participant, and one in

which the agents exhibited collision avoidance with each other, but not the partici-

pant. Each participant performs the task twice, where in one trial, collision avoidance

was enabled, and disabled in the other (the condition order was randomized to combat

ordering effects). During the task, the participants’ 3D positions and orientations are

tracked using an external motion capture system. Additionally, participants fill out

a simulator sickness questionnaire both between the two trials and after completion

of the experiment.

I then perform and present an analysis of the collected data. The results from

the follow-up questionnaires show a strong impact of the collision avoidance on a

participant’s feeling of presence and realism of the crowd. As an objective measure, I
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perform a path analysis on the tracked paths by computing the total acceleration of

each. A comparison of the two conditions shows statistically higher total acceleration

felt by participants when there was no collision avoidance, consistent with the jarring

discomfort felt by the participants as they attempted to navigate through a crowd

where the agents ignored and seemingly passed through them (Figure 1.6 right).

This work was originally published in the 2017 IEEE Virtual Humans and Crowds

for Immersive Environments Workshop (Sohre et al., 2017). Chapter 4 contains a

presentation in greater depth.

1.4.4 Data-Driven Insights for Multi-Task Human Naviga-

tion Decisions

Understanding human flow through indoor buildings is important for various layout

design tasks such as evacuation planning, product placement, and security. Advance-

ments in technologies such as computer vision and motion-tracking have enabled the

collection of large amounts of high quality, long-term motion data. In this work I

take a data-driven approach to analyzing the navigation decisions of shoppers in a

grocery store.

The data includes point-of-sale transactions representing sets of items purchased

together (baskets), along with a 2D embedding of item locations within the store’s

floor layout, which includes obstacle walls. Each basket is a list of time-ordered items

corresponding to the order in which they were retrieved.

For the purpose of analysis, I model a shopping trip as a series of decisions where

a shopper must choose the next item to pick up. The data show that most of the

time, a shopper goes to the item having the shortest path walking distance from the

their current location. I define an inversion to be any case when a shopper makes a

“mistake” and travels to something farther than the closest item. My analysis of all
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Figure 1.7: The chance of choosing the farther of two items as a function of difficulty
(entropy) score for the shopper data (black with grey confidence region), simulated
data (blue dashed), and random choice.

the pair-wise item comparisons in the data for each navigation decision shows that

the entropy of the ordering task for an item pair (that is, the information required to

determine their order) governs the likelihood that they are inverted in the shopper’s

navigation decisions. I adopt this as a measure of difficulty, which monotonically

increases the likelihood of an item pair being inverted in the data (Figure 1.7).

Drawing on this insight, I propose a one-parameter simulation model to generate

plausible item orderings given a hypothetical basket. I provide a theoretical guarantee

that this model will have the same relationship between the entropy of pair-wise

ordering tasks and the likelihood of inversion in simulation. Simulating on the baskets

in the data, I show the resulting item orderings match the data with high accuracy

along several key trends. The stochastic nature of the model naturally supports the

ability to generate a variety of plausible shopping routes for the same basket.

Chapter 5 contains a presentation of this work in full. A pre-print publication of

this work is available on ArXiv at article reference arXiv:2102.00057 (Sohre et al.,

2021).
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1.4.5 Realistic Navigation Behavior with Uncertain Goals in

Building-like Environments

The interactive simulation of human motion is important in many scenarios, with

applications ranging from video games to building design and smart city planning all

benefiting from high-quality human movement and behavior. In Chapter 6, I present

a deep-learning method for producing realistic human-like routing behaviors through

indoor environments.

In this work, I take a deep neural network approach to global navigation. To

overcome the challenge of collecting the large amounts of human paths it would take

to train on motion data directly, I propose that in general, humans attempt to take

efficient paths, but make mistakes due to the local nature of the information available

to them. I then model this conflict in my formulation of the navigation problem by

limiting the information available to the network to the same constraints that humans

face in unfamiliar settings. Then, the network can be trained on generated, globally

optimal routes.

To do this, I formulate the global navigation task as a series of discrete navigation

decisions between waypoints in an environment. At each step, the network takes in

local isovist features as well as a partial path history and goal region, and outputs

multiple predictions of the next step in the optimal path. The neural network archi-

tecture I propose ( Figure 1.8) utilizes a custom loss function to integrate the inputs

in a way that produces intelligent predictions based on an internal map representation

built up over its path so far.

I show that the trained model reproduces several human-like routing behaviors,

such as narrowing down goal locations and intelligent back-tracking. Additionally, the

network is capable of identifying multiple promising directions in ambiguous scenarios,

which can be used to generate a variety of human-like routes. I provide an analysis
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User SPNet SPNet Optimal

Figure 1.8: Example paths generated with an SPNet agent are shown overlaid on user
paths and the optimal path (dashed) for two navigation tasks (start is indicated by
a circle, the goal is a star).

comparing the generated paths to human paths from a user study I conduct on the

same tasks via a 3D game-like interface. The various paths generated on many tasks

well matched the distribution of high level routes taken by users (Figure 1.8), as well

as on average being closer to user paths in length than the optimal route or by using

heuristics proposed in cognitive science literature.

This work was originally published in the 2020 ACM Conference on Motion, In-

teraction and Games (Sohre and Guy, 2020). For more details, see Chapter 6.

1.5 Impact & Contributions

My dissertation focuses on an important area of research, not only as it pertains to

the broad goal of social AI, but in its widespread impact in various existing domains.

For example, better understanding the dynamics of human smiles offers significant

benefit to the fields of facial reconstructive surgery and physical therapy, while simul-

taneously enhancing facial animation techniques for computer graphics applications.

Characterizing the impact of collision avoidance on user experience advances the state



1.5. Impact & Contributions 18

of the art for applications in VR and robotics. Learning to understand, anticipate, and

reproduce the decision patterns humans exhibit in long-term navigational planning,

particularly under local information constraints, enables more human-like agents in

interactive digital media such as video games, can improve the expected efficiency

of mission planning for robots in unknown buildings, and enhances building layout

design, safety and security.

To that end, this dissertation includes the following contributions to the state of

the art in computational methods for the data-driven analysis and insight of human

motion:

• A large dataset containing responses from hundreds of participants on their

assessments of computer animated smiles

• A framework for the data-driven procedural generation of natural, varied human

smiles

• A machine learning heuristic for governing the trade-off between precision and

variety (PVL)

• A validation of collision avoidance for producing realistic crowds in immersive

virtual reality settings

• A data-driven analysis of shopper paths that reveals an entropy law describing

local errors in navigation decisions

• A novel neural network architecture for incorporating goal uncertainty into

global navigation tasks under local information constraints

• A data-driven algorithm (SPNets) for simulating realistic global routes through

indoor environments using path-optimal training data, validated against human

paths
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1.6 Dissertation Organization

The overall structure of this dissertation is as follows. Chapter 3 describes my work

capturing a large dataset to support various analyses, including enabling a richer

variety of motion in simulated human smiles while preserving naturalness. Chapter 4

covers using real-world human paths to validate the importance of reactive collision

avoidance in supporting natural and comfortable user experiences in VR. Chapter 5

and Chapter 6 cover work that studies the underlying factors leading to natural and

varied global navigation behaviors and planning decisions.
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Chapter 2

Building a Dataset to Capture the
Essence of a Smile

Happiness is among one of the most basic and important emotions conveyed by the

human face. As technology has become more sophisticated and graphics capabilities

increase, the desire for more realistic characters in both appearance and motion also

grows. However, the interest in understanding the motion that characterizes different

emotions, especially happiness, extends beyond the domain of computer graphics.

Researchers in psychology as well as medicinal fields such as reconstructive plastic

surgery are also very interested in exploring the spatio-temporal dynamics of success-

ful smiles.

In an endeavor to support the multifaceted, interdisciplinary research to deepen

the state of the art in the understanding of human smiles, a group of colleagues from

different fields and I designed, implemented and conducted a large scale user study

that took place at the 2015 Minnesota State Fair. Following is a detailed description

of the study design, resulting data, a corresponding feature embedding, and examples

of its broad applicability in other fields.
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2.1 Facial Space

My collaborators and I propose a low dimensional configuration space to parameterize

expressions based on key facial feature points as a manifold for learning the connection

between motion and perception of smiles. Through consideration of related literature

in facial medicine and psychology, these feature points are chosen to focus on the

region of the mouth. The mouth has been shown to be a principal source of variation

in facial expressions (Köhn, 2006), as well as the primary source of information for

detecting happiness (Nusseck et al., 2008). One of my colleagues, a board-certified

facial reconstructive surgeon, further identifies semantically meaningful areas of the

mouth, which we combine to create the manifold. This includes a combination of

three facial features: lip corner angle, lip corner extension, and dental show. We use

these features to compose our mouth configuration space, referred to here as Facial

Space.

Formally, Facial Space is made up of three interactions between mouth feature

points: the intersections of the upper and lower lips and the sagittal plane, and

the left mouth corner (spatial symmetry across the sagittal plane helps support low

dimensionality). The values for each feature are computed as relationships between

these control points (see Figure 2.1). Each measure is normalized relative to the

inter-pupilary distance of the face to standardize across different face sizes, which

is known to be proportional to other features of the face, such as resting mouth

distance (Stephan, 2003).

The naturally low dimensional nature of this feature space provides several ben-

efits. One is that it is easy to use and understand. Another is that low dimensional

feature spaces are conducive to computational learning for data-driven models. Being

derived from key facial points, each dimension is semantically meaningful, which ex-

tends well to other fields of study. Additionally, facial space is a standardized space,
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Figure 2.1: Computation of facial space features. Control points are shown as dots,
and the vertical bisecting line (black) shows the position of the sagittal plane. Angle
is computed as the angle between the diagonal (green) and horizontal (red) arrows.
Extent is the length of the horizontal arrow, and dental show is the extent of the
vertical arrows (blue).

and generalizes to any setting for studying faces where these facial features can be

tracked.

2.2 User Study Design

To capture the relationship between movements in facial space and perceived emo-

tional intent, my collaborators and I take a crowd-sourced data-driven approach.

Collecting many reactions to different motions across many individuals enables many

types of analysis, such as statistical models that describe these relationships. To

do this, I designed and implemented a mobile app that allows users to easily and

smoothly participate by tapping response options on tablet devices. The study in-

volved participants responding to a sequence of video stimuli composed of digital

facial animations representing array of anatomically plausible faces rendered on a

high quality 3D model. For each stimulus, the user was able to view and replay the

video as long as they desired, and could submit as many or as few responses as they
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Figure 2.2: A screenshot of the application used to conduct the user study. Subjects
responded to stimuli by rating each in terms of smile effectiveness and emotional
intent.

liked (up to the total number of available stimuli). The order of stimuli presented

was randomized to ensure even coverage of responses on the different expressions.

For each stimulus, participants were asked to evaluate each in terms of emotional

intent, as well as assign a quality score for how well the face portrayed a smile. The

stimuli contained mostly smile-like faces, but also had some negatively angled facial

expressions, which served as controls. Figure 2.2 shows an exmaple screenshot of the

app, containing the 3D model, a sample expression, and the response UI.

2.2.1 Using A 3D Model to Study Smiles

Using computer animated faces for both communicating and studying human per-

ception of emotion has been utilized in previous works (Griesser et al., 2007). In

addition, the literature shows that user studies of human perception of virtual char-

acters is useful for studying their emotional expressiveness (Liu et al., 2016).
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Several methods have been proposed for the digital representation and manipula-

tion of the human face. Common to all methods in computer graphics is the use of a

3D spatial mesh to represent the face, that is then deformed according to some model

of facial movement. Such models include those based on physical interactions of skin,

subcutaneous tissue, muscle, and skeletal structure (Waters, 1987; Cong et al., 2015;

Lee et al., 1995; Sifakis et al., 2005, 2006). These approaches can achieve very realistic

behavior, at the cost of a high level of complexity in the model. Parametric descrip-

tors based on these models have also been developed to categorize muscle movements

as facial actions (Ekman and Friesen, 1977; Essa and Pentland, 1997).

Another model involves mixing amounts of predefined deformations of a base

mesh (that is, a set of alternate 3D meshes with a 1-1 mapping between correspond-

ing vertices in each). Known as animation blendshapes, these are widely used in both

industry and research. A large body of work involves producing customized blend-

shapes (or other representations of facial movement) based on the facial performance

of an actor. Tracking the movements of an actor’s face, called performance capture, is

then translated into deformations of a 3D facial mesh in a process called retargeting.

Many approaches to this task have been proposed (Zhang et al., 2016; Bouaziz et al.,

2013; Li et al., 2013; Xu et al., 2014). Researchers have proposed various method to

accomplish this in a way that accurately captures the original performance (Li et al.,

2013; Costigan et al., 2014; Zhang et al., 2016).

For our study, my collaborators and I chose to use a computer animated model to

create the videos used in the study over footage of real human facial expressions or

facial performance capture techniques as it provides several benefits for our research

goals. For example, Using an animated model allows a greater level of control over

the resulting expressions than would be achievable by human actors. An actor may

be unable to contort their mouth to a precisely defined set of coordinates for key

feature points, or completely hold one part of their face completely still while moving
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others. Additionally, a 3D model allows the expressions to move outside the range

of motion an actor may posses, allowing the data to include a broader coverage

of interactions between facial movement and perceptual affect. This provides more

support for machine learning applications that benefit from good coverage in both

positive and negative regions of facial space.

The facial model used in our study was hand-crafted by one of my co-authors (a

3D artist) in collaboration with medical professionals. The result is a highly detailed

3D facial model (seen in Figure 2.2), along with a set of blendshapes to support a

wide range of plausible facial motions. To create the expressions used in the study,

parameters corresponding to blendshape weights were systematically swept to produce

a rich sampling to draw from in analysis.

2.3 Study Results

Over 900 subjects participated in the survey, providing over 10,000 data samples.

A summary of participant demographics is depicted in Figure 2.3. A single sample

contains, for a given facial expression, the smile quality score the participant assigned,

any emotions the participant associated with the expression, and two Likert scale

measures on the axes of authenticity and pleasantness. My work focuses on utilizing

the smile quality scores. I aggregated the scores for each facial expression, producing

the average quality score for each face. The result is a dataset composed of 63 facial

expressions annotated with perceived smile quality. Although the user study stimuli

were rendered on a single facial model, the design and use of facial space is intended

(and subsequently verified in Section Chapter 3) to generalize the findings to other

facial models.

The results of this processing are summarized in Figure 2.4a. The range of quality

scores is well covered by the systematic sweep of facial space points, with the majority
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Figure 2.3: The distribution of responses along gender and age (adapted from (Helwig
et al., 2017)).

of the standard errors being reasonably small. Additionally, to support my work with

classifiers in Section Chapter 3, I created smile intensity bins. The quality thresholds

for membership are shown as the shaded regions in Figure 2.4a, and the counts of

faces in each is shown in Figure 2.4b.
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Figure 2.4: User Study Data. (a) Each face’s smile quality with its standard
error. The data is binned into effective happiness bins. (b) The distribution of faces
by happiness bins.

2.4 Interdisciplinary Collaborations

A prime example of the extension of this work’s value to other fields is that of (Helwig

et al., 2017), on which I was a co-author. In that article, my psychologist collaborators

explored the perceived emotional intent along the varying axes of facial space to build

an understanding of what motions make a successful smile. Among other results,

they found that well accepted smiles struck a harmonious balance between mouth

angle, smile extent, and dental show coupled with dynamic symmetry. Figure 2.5

demonstrates the interactions between these elements.

Additionally, the efficacy of the approach taken for capturing casual observer

perception of facial expressions I helped to prove out in this study inspired subsequent

works with my collaborators in facial reconstructive surgery. In (Lyford-Pike et al.,

2018), I helped conduct a similar user study where we collected responses from over

500 participants to help build a connection between clinical scores of facial function
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Figure 2.5: (Adopted from (Helwig et al., 2017)): A heat-map plotting the interac-
tion between the facial space parameters. The three vertical bars behind each face
denote the predicted score for the three response variables: effective, genuine, and
pleasant (respectively). Greener colors correspond to better smiles, and redder colors
correspond to worse smiles.

and casual observer perceptions of disfigurement. The results help reconstructive

surgeons and clinicians better assess intervention success, helping victims of facial

paralysis achieve a higher quality of life.
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Chapter 3

Data-Driven Simulation of
Realistic Smiles

In this chapter, I demonstrate how data can be used to create natural, varied motion

by leveraging the results of the user study presented in Chapter 2 to produce a model

of what makes human mouth movements convey happiness. I then use this data to

investigate the problem of procedurally generating a diverse variety of facial anima-

tions that express a given semantic quality (e.g. very happy). To accomplish this,

I introduce a new learning heuristic for generative models called Precision Variety

Learning (PVL) which actively identifies and exploits the fundamental trade-off be-

tween the precision of the model, and the variety of possible outputs. I both identify

conditions where important theoretical properties can be guaranteed, and show good

empirical performance in a variety of conditions. Lastly, I apply the PVL heuristic

to the motivating problem of generating smile animations. The results are validated

by a follow-up user study showing the generated smiles exhibit a high level of real-

ism (naturalness and variety) for different semantic targets (e.g. very happy, slightly

happy).

A version of this work appears in the Association for the Advancement of Artificial

Intelligence 2018 conference proceedings (Sohre et al., 2018).
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Figure 3.1: A variety of happy, smiling mouth shapes generated by our method,
rendered in a high-quality real-time engine.

3.1 Introduction

Virtual humans are increasingly a part of our games and other digital media. They

appear in movies as animated actors, video games as interactive non-player charac-

ters, personal avatars in games, virtual reality and social media, and are even used

to control human-like robots. A critical challenge in the field is to generate anima-

tions which accurately reflect the state of the animated characters, without looking

repetitive or unnatural. A key component of creating compelling interactions with

digital characters is the animation of the human face. Humans use and expect faces

to produce a variety of cues for nonverbal communication such as intonation and the

expression of emotions. Understanding the full variety of movements that control and

effect these cues is important both to fields that study real humans (e.g., medicine

and psychology) as well as those which seek to create realistic virtual characters (e.g.,

games and movies).

My goal in this work is to create algorithms that can automatically generate

a variety of realistic animations for virtual characters, a problem which is closely

related to a field of AI known as Procedural Content Generation (PCG). PCG is

especially relevant in the realm of games and interactive digital entertainment where

is it important to present the user with engaging, dynamic experiences that respond

to the user’s actions in real time.
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For procedurally animated virtual characters to meet their goal of emotionally

engaging the users, there are two important qualities the procedural animations must

maintain. First, it is important that their expressions are as high quality and natural

in appearance as possible. If the generated motion is halting, confusing, or otherwise

unrealistic in its execution, the users will be distracted from the intended emotional

content of the expression. Second, the procedural generation system must be able to

create a variety of motions that is reflective of the full diversity real people have in

showing the same basic expression. In fact, the importance of variety in character an-

imations has been established through multiple users studies (McDonnell et al., 2008;

O’Sullivan, 2009) and has been highlighted as an important challenge in PCG (Preuss

et al., 2014).

Unfortunately, these dual goals of generating high quality content and generating

a diverse variety of content are often in direct conflict. Algorithms that focus too

much on the quality of their content often do so by sacrificing the variety of their

output. In this paper, I examine this trade-off in the context of procedural systems for

creating mouth movements for virtual characters to form smiles of different intensity

(e.g., slight, full, none), and propose new methods to produce a broad diversity of

smiles that accurately display the target intensity level. My work presents three main

contributions:

• Formalization and analysis of quality-variety trade-off : I formally define the

notions of quality and variety for a certain class of content generation models

(constraint-based optimization formulations), and explore the theoretical basis

of the inherent trade-offs between the two.

• Precision Variety Learning heuristic (PVL): I introduce a framework for a

constraint-based optimization formulations of PCG which allows a user to tune

the level of precision needed for a specific application, and automatically maxi-
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mize its variety of procedurally generated content for a given level of precision.

• Variety-Enhanced, Data-driven Facial Animation System: I apply the PVL

generation approach to a non-parametric classifier trained on the dataset intro-

duced in Chapter 2 in order to create a system capable of producing a large

variety of smiles at a given level of smile intensity. I evaluate the quality and

diversity of the resulting smiles through user studies.

While the results presented here focus on PCG smiles (e.g., see Figure 3.1), the

approach is generic and can be directly applied both to other facial expressions (e.g.,

sad, angry) and to other forms of procedurally generated content.

3.2 Background

The animation of digital human-like faces has a rich history in the literature, from

performance capture to modeling, to human perception of facial actions, and creating

facial expressions for digital characters. Likewise, the study of PCG is a quickly

growing field, covering everything from game maps and mechanics to textures and

audio (Hendrikx et al., 2013). Below, I briefly highlight some closely related works.

3.2.1 Facial Animation

There is a rich literature surrounding the task of facial animation, an overview of

which can be found in Vinayagamoorthy et al. (2006). The most common technique

is the use of a 3D spatial mesh that is then manipulated according to some model of

facial movement. As with the models I employ here, many models of natural facial

deformations are based on interpolative blendshapes (Zhang et al., 2016; Bouaziz

et al., 2013; Li et al., 2013; Xu et al., 2014). Blendshape-based models involve linearly

interpolating the mesh between a set of exemplar configurations.
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In many cases, the approach to animating these models utilize the capture of a

facial performance by a human actor. Researchers have proposed various methods to

accomplish this, from adaptive dimensionality reduction (Li et al., 2013), to neural

networks (Costigan et al., 2014) to local patch alignment (Zhang et al., 2016), and

generating blendshape segmentation schemes (Joshi et al., 2005).

Generative methods for digital character facial expressions have also recently been

explored. Some generate facial expressions from dialogue audio and text transcripts

(Marsella et al., 2013). Physically-based models of the face can also be used to

synthesize facial animation, such as speech (Sifakis et al., 2006).

Researchers have employed user studies to evaluate the effectiveness of digital

character animation (Kokkinara and McDonnell, 2015; McDonnell, 2012; Liu et al.,

2016), as well as to study the impact of variety (McDonnell et al., 2008; O’Sullivan,

2009).

3.2.2 Machine Learning for Facial Analysis

Supervised learning is the most closely related area of machine learning to this work,

surveyed in Kotsiantis et al. (2007). Others have developed specialized algorithms to

recognize faces and facial actions (Pantic and Rothkrantz, 2000; Franco and Treves,

2001; Bartlett et al., 2005), as well as recognizing emotions (Michel and El Kaliouby,

2003).

3.2.3 PCG as Machine Learning

There are many PCG techniques, and some synopses of the field are given in Smith

(2014); Hendrikx et al. (2013). Recent works have considered how to create engag-

ing (Togelius et al., 2013), diverse (Liapis et al., 2015), and interactive (Yannakakis

and Togelius, 2011; Smith, 2014) content. Machine learning techniques can be ap-
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plied to PCG problems in different ways, as content evaluators or to generate content

directly (Summerville et al., 2017; Togelius et al., 2011).

3.2.4 Diverse, High-Quality Content

Quality-Diversity algorithms have recently been identified as an important type of

algorithm, with search-based approaches like evolutionary algorithms (Pugh et al.,

2015) and Human-in-the-loop methods that combine user input with search to effi-

ciently traverse search spaces (Mouret and Clune, 2015) showing promise in this area.

To the authors’ knowledge, this work is the first to propose a machine-learning-based

approach for this class of algorithms.

3.3 Problem Definition

As a motivating context for my problem formulation, consider the task of creating a

3D role-playing style game (RPG) where the player is immersed in an open world,

free to explore and interact with many non-player characters (NPCs). To keep the

NPCs engaging, their behaviors should be both appropriate to context (e.g., convey

the right emotion), and appear natural and lifelike (i.e., not mechanically repetitious

or robotic). To do this, a plausible method must be able to produce facial movements

that exhibit the desired semantic meaning, while capturing the diversity of motion

seen in real human faces, both within and across individuals. With these two goals

as the primary focus, I establish a formal definition of the problem.

I represent facial animations as parameterized into a feature space F , so that

x ∈ F represents a complete facial motion, and define S to be the set of semantic

labels. Let us also define a function D : X ⊆ F 7→ R that operates on a set of faces

to measure its diversity, and a function Qs : X ⊆ F 7→ R as the quality of a set.

Finally, let Cs : F 7→ {0, 1} be a binary function that identifies whether or not a
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given animation exhibits a target semantic label s.

Then, given some target s ∈ S, the task is to find the set of faces exhibiting the

desired semantic that maximizes the diversity and quality functions:

argmax
Cs

[
Qs(X), D(X) : ∀x ∈ X

(
Cs(x) = 1

)]
. (3.1)

This equation represents a multi-objective optimization problem. To develop a solu-

tion for the domain of facial animations, we need to develop quantitative definitions

of Q and D, identify an appropriate feature space for F , and learn C. The remainder

of this section describes my approach to each, followed by a proposed method for

actually generating animations.

3.3.1 Measuring Quality & Diversity

From here on I will assume X to be a finite set that is representative of C’s continuous

positive decision region in feature space. Then I define the Quality Q(X) as the

percentage of x ∈ X that are true members of the target class:

Qs(X) =
|{x ∈ X : [C∗s (x) = 1]}|

|{X}|
. (3.2)

Where C∗s is the true semantic label function. In the context of Equation 3.1, this is

equivalent to the precision of the classifier D, which is how we will measure Q.

To measure the diversity of a set X, I take its cardinality. This approach is

consistent with existing measures of diversity for finite sets of candidate samples

proposed in PCG (Preuss et al., 2014). Formally,

D(X) = |{X}|. (3.3)
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Figure 3.2: Training Data (a) A visual summary of the semantic classes. (b)
Sample counts by class.

An important property for D is that adding members to X can never decrease the

diversity measure overall (other reasonable diversity metrics, such as the variance of

the set, do not satisfy this property).

3.3.2 Feature Space (F )

In Chapter 2, I proposed a generalizable, low-dimensional feature space to be used

to represent smile animations. I refer to this feature space as facial space, and adopt

it for F . This feature space is composed of three key distances between feature

points surrounding the mouth as identified by medical professionals: angle, extent,

and dental show. Angle is computed as the angle between the bottom lip and mouth

corner, extent is the width of the smile, and dental show is the separation between

the upper and lower lips. The focus of this feature space on the mouth shape is

consistent with previous research and has established the effectiveness of mouth shape



3.3. Problem Definition 37

for identification of facial expressiveness (Gosselin and Schyns, 2001) and specifically

happiness (Nusseck et al., 2008).

3.3.3 Classifier (C)

By definition, the task for C is one of classification. To do this, I construct bi-

nary classifiers from annotated data via supervised learning that maps samples to

a membership prediction given a target class in S. This formulation allows for any

binary classifier, though different classifiers will have different theoretical properties

and performance. Here, I consider several well established classifiers:

• Nearest Neighbor models (KNNs): I employ a variant of KNN known as Re-

stricted Neighborhood Search. The prediction for a sample is positive if a

sufficient number of nearby neighbors (called witnesses) within some distance r

are positive. The prediction for a query sample q ∈ F is positive if and only if∑
x∈Wq

π(x)

|Wq|
≥ t ∧ |Wq| ≥ k, (3.4)

where Wq is the set of witnesses for q, t is the minimum proportion of wit-

nesses that must be positive, k is the minimum number of witnesses to make a

prediction, and π(x) takes the value 1 if x is a positive training sample and 0

otherwise. For my classifier, I choose k = 6 based off the density of my training

data, r = 0.4 based on the distribution of inter-point distances, and t = 0.3 via

tuning.

• Support Vector Machines (SVMs): these classifiers use quadratic programming

to find a linear separator between positive and negative samples that maximizes

the margin between them. A key property of SVMs is their use of kernels, which

transform training data into higher dimensional spaces (where linear separators
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are more likely to be found) before measuring distances via an inner product.

In this way, learning can take place in a high dimensional space while compu-

tation stays in a low dimensional space. In this paper I use the kernlab SVM

package (Karatzoglou et al., 2004) for the R programming language, using the

“vanilla” kernel.

• Random Forests (RFs): these classifiers take many random subsets of the train-

ing data and build decision trees on each. For prediction, a majority vote is

taken of the random decision trees on the query sample, combating the tendency

of decision trees to over-fit. To build Random Forests I employ the random-

Forest package for the R programming language (Liaw and Wiener, 2002) with

1000 trees.

Heuristic Filtering Classifier
Positive Predictions

Labeled Data

Random Sampling

Figure 3.3: A graphical overview of my approach.

3.3.4 Semantic Classes (S)

I choose S to be a set of discrete classes derived from training data that is then

used to learn C. Discrete classes are motivated in part by the scenario of RPG-

style video games; here, characters typically need to display one of a small set of

emotions depending on the players behavior. Additionally, classification is a natural

formulation for this problem (as opposed to regression) in that it allows a single

semantic class to contain a variety of feature space points.
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3.4 Approach & Implementation

An overview of how I utilize S, C, and F to generate facial animations can be seen

in Figure 3.3. Once training data has been labeled for a target class, I apply my learn-

ing heuristic as a pre-processing step, which I discuss in detail in the next section. A

binary classifier is then trained on the labeled data to predict target class member-

ship. I then use rejection sampling to generate new animations, uniformly sampling

F and passing them through C keeping only those that yield positive predictions.

To render these new samples as a human facial expression, they must be transferred

onto a digital facial model. For this I use a 3D mesh with interpolative blendshapes

as defined by an artist. I employ an iterative local optimization technique to solve for

blendshape weights given a facial space target. Some examples (transferred onto the

3D model by this method and rendered by professional software) are shown in Fig-

ure 3.1 The transfer method can be applied to any facial animation system that is

locally controllable in the feature space.

Dataset. In order to learn a model of happiness C and derive a set of semantic

classes for S, I turn to the dataset of annotated facial movements from Chapter 2.

This dataset consists of results from a large-scale user study at a state-wide fair.

Participants were shown expressions from a sweep of anatomically plausible mouth

movements on a tablet device, and asked to assign a quality score for how well the

face portrayed a smile. Over 900 subjects participated in the survey, providing over

10,000 responses in total. The stimuli contained mostly smile-like faces, but also had

some negatively angled mouths, which served as controls. I aggregated the responses

to produce a dataset composed of 63 facial expressions annotated with their mean

perceived smile quality.
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Smile Intensities. I derive S by defining ranges of quality scores from the dataset

as four discrete classes of smiles: None, Slight, Partial, and Full. A summary view of

the resulting classes are shown in Figure 3.2. An ANOVA test shows high statistical

significance with 4 classes, with [F (3, 60) = 863.5, p < 0.001]. A post-hoc analysis

also confirms statistical significance between all pairs of classes. Figure 3.2b shows

similar class sizes.

Experimental Methodology. I compute a (noisy) estimate of precision on the

real-world face data via a hold-one-out cross validation loop, computing the mean

precision over the folds using held out samples as test data. I also compute a va-

riety estimate within each fold, taking the mean over the folds. Variety estimates

are computed on a set of 1000 uniformly sampled points in facial space within the

bounding volume of the training data. These samples are passed to the classifier, and

the variety is reported as the proportion that are predicted positive. I then validate

the results with a follow-up user study.

3.5 Maximizing Variety, Maintaining Precision

Our approach makes use of a binary classifier to identify faces that match the tar-

geted semantic class. While traditional binary classifiers seek to maximize predictive

accuracy, maximizing this alone fails to highlight the important trade-off between the

precision of the classifier and the diversity of faces that will be generated. Because

my model only generates positively classified faces, false positives will be discarded,

unseen by any user. As a result, for many animation contexts maximizing preci-

sion is the most important goal; the quality of the faces generated by my method is

unaffected by false negatives.

However, I would like to support the generation of a large variety of positively
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classified faces (e.g., many faces that look happy in different ways). In every classifica-

tion task there is a fundamental trade-off between precision and variety; maximizing

one comes at the cost of the other. Consider the positive decision region of the fea-

ture space on which my definition of variety depends. As this region grows larger,

the classifier has an increased risk of producing false positives due to encroaching on

regions that contain true negatives. Below, I explore this trade-off within the context

of my facial generation system, and then present a learning heuristic method that

exposes this trade-off to allow us to maximize variety in positively classified faces

while retaining as much precision as possible.

3.5.1 Precision Variety Learning

The key insight which enables my approach is that high precision can be ensured

by carefully selecting which positive samples are allowed in to the training set. For

example, choosing to only include positive training samples that are far away from

negative samples can increase the precision of the model at the cost of false negatives,

which is a favorable trade given our goals. However, including too few positive training

samples results in very little variety, which is an equally important objective. Varying

the positive samples allowed into the training set exposes this trade-off for tuning

between precision and variety.

To that end, I introduce a parameter m that controls what samples are used in

the training set for a binary classifier (e.g., KNN). The training set is constructed by

a heuristic ordering of the positive training set by sample precision. To define sample

precision, I examine at the subregion of the positive decision region that is added by

a sample given an existing classifier. Sample precision is taken to be the proportion of

this new region that overlaps the true positive region of the feature space. Figure 3.4

illustrates the regions involved and how they are used. Importantly, sample precision

considers only the additional positive decision area supported by the new training
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Algorithm 3.1: PVL Prediction

Input : sample, trainData, pClass,m
Output: prediction
pos← getPositiveSamples(trainData, pClass);
neg ← getNegativeSamples(trainData, pClass);
pos← sortByDistanceToNearest(pos, neg);
pos← getfirstNSamples(positive,m);
trainData← union(positive, negative);
prediction← getPrediction(trainData, sample);
return(prediction);

Existing Positive
Decision Boundary

True Positive
Boundary

New Sample's 
Positive Decision 
Boundary

True Negative
Region

AB

C
D

E

F

Sample Precision 
    = |B|/|BUA|

Figure 3.4: Sample Precision. Conceptual regions when adding a positive sample
into the training set are depicted and labeled. I define sample precision as the ratio of
area B to area A. The precision of the existing classifier is the ratio |C∪E|/|C∪E∪
D∪F|, and the precision of the resulting classifier is |B∪C∪E|/|B∪C∪E∪A∪C∪F|

sample. When samples are arranged such that sample precision is decreasing, I define

this as the precision-optimal order. The first m positive training samples (i.e., with

the m highest sample precisions), together with all of negative training samples are

provided as input the the binary classifier. For all m, all negative training samples

are included as they do not increase the risk of generating a false positive. I present

the resulting approach as Precision-Variety Learning (PVL), which is detailed in

Algorithm 3.1.

Unfortunately, a positive training sample’s sample precision cannot be computed
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directly as it depends on the ordering of the points added to the classifier before it. We

therefore propose an order-independent estimation of sample precision as the distance

of a given positive training sample to its nearest negative neighbors. Intuitively, this

heuristic captures the fact that false positives (which reduce precision) are likely to lie

near negative training samples. This assumption is explored further in the following

section.

The key feature of m is the way in which it captures and exposes the trade-off

between precision and variety. This is my solution to the multi-objective optimization

problem posed in Equation 3.1. Like the pareto-fronts used in many solutions to

multi-objective problems, m exposes a precision-variety front that can be exploited

to gain as much variety as possible for a desired level of precision. While I do not claim

that m generates a pareto-optimal front, I can identify conditions that guarantee the

monotonicity of the front, which m is designed to produce. A critical property of

pareto fronts, monotonicity insures that any loss of one objective does not allow the

loss of the other (e.g., giving up precision will either maintain or increase variety).

This also enables a directed search for optimizing m given a desired precision or

variety.

In the case of a neighbor-based classifier such as KNN with a precision-optimal or-

dering of positive training samples, the resulting trade-off front is provably monotonic

in m under some supporting assumptions. By monotonicity, I mean for increasing

m, variety does not decrease and precision does not increase, and vice versa for de-

creasing m. To prove this, it is sufficient to show that as m increases, there must be

non-increasing precision and non-decreasing variety. The formal arguments for each

are as follows.
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3.5.2 Proof of Monotonicity

When used with a neighbor-based classifier (such as KNN), there are several key

theoretical properties which are maintained by using the PVL approach, which I

demonstrate below. The first is that, under certain conditions of the underlying data,

the precision of the classifier decreases monotonically as m increases. I also show,

regardless of the quality of data, both that specificity (the rate of true negatives)

decreases monotonically and variety increases monotonically. Taken together, this

means as m increases the predictions will have more inaccuracies (both in terms of

admitting false positives and rejecting true negatives), but will increase variety; this

serves as the theoretical bases for my claim that PVL is navigating a trade-off between

the quality of procedurally generated content and its variety.

Definition 1: Quality of Approximation. I define the quality of approximation

of my heuristic for a given dataset as the degree to which the distance-based ordering

maintains a precision-optimal ordering. The quality of approximation will be high

when two conditions hold: 1) the data has a clear positive decision boundary (i.e.,

samples are more homogeneous the further they are from the boundary), and 2) the

boundary has limited curvature. Because my heuristic ordering first adds points that

are far away from negative samples, the existence of a clear decision boundary ensures

initial points will contribute new positive classification area with higher precision than

later points which are closer to the boundary. Assuming limited curvature allows us

to safely approximate the distance to the decision boundary as the distance to the

single nearest negative sample.

Theorem 1: Decreasing Precision as m increases. Let Pm be the precision of

the classifier for arbitrary m and Pm+1 be the precision of the classifier after including

the (m+ 1)th positive training sample. Further let Ps be the sample precision of the
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(m+ 1)th sample. Given their respective false positive (FP ) and true positive (TP )

counts we can compute the precision of the new classifier with m+ 1 samples as:

Pm+1 =
TPm + TPs

TPm + TPs + FPm + FPs

. (3.5)

We therefore need to show that Pm ≥ Pm+1, that is:

TPm

TPm + FPm

≥ TPm + TPs

TPm + TPs + FPm + FPs

, (3.6)

which (by cross multiplication) is equivalent to the condition

TPm ∗ FPs ≥ TPs ∗ FPm. (3.7)

When the quality-of-approximation (Definition 1 ) hold perfectly, we have Pm ≥ Ps,

which implies

TPm

TPm + FPm

≥ TPs

TPs + FPs

⇐⇒ TPm ∗ FPs ≥ TPs ∗ FPm, (3.8)

satisfying the requirement of Equation 3.7.

Theorem 2: Decreasing Specificity as m increases. As with precision, max-

imizing specificity (true negative rate) is important for a classifier that is to be used

in the generation of procedural content. I note that specificity and precision can be

jointly optimized via the elimination of false positives. Formally, specificity is defined

as:

TN/(TN + FP ), (3.9)
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where TN represents the true negatives and FP the false positives of a classifier. To

show we have decreasing specificity over m, it suffices to observe that increasing m

only adds positive training samples to the classifier. As a result, the negative decision

region of a neighbor-based classifier cannot increase, and the positive decision region

cannot decrease. Thus, false positives are increasing and true negatives decreasing,

constraining specificity to decrease. Notably, this property is independent of the order

in which the positive samples are added.

Theorem 3: Increasing Variety as m increases. The supporting argument

for increasing variety over m is already established in Theorem 2 ; since adding positive

samples constrains the positive decision region to increase, by definition the variety

of the classifier will also increase. This property is also independent of the positive

samples’ order of inclusion.

3.6 Results & Analysis

3.6.1 Behavior of m.

To observe the impact of m on classification, I estimate precision and variety over

different values of m on a synthetic dataset with a circular ground truth decision

boundary. This allows precision to be computed with arbitrary accuracy by suf-

ficiently sampling the feature space and testing them on the classifier. Similarly,

variety can be estimated by sampling in the feature space and measuring the positive

classification rate. Figure 3.5 shows the results using the KNN classifier: for small

m, the precision of the model remains high, but the resulting classifier produces lit-

tle variety when sampled. Conversely, for large m, a larger variety of points can be

generated, at the cost of precision. As the data conditions identified in Section 3.5

hold well for this example dataset, m produces the expected monotonic curve. Thus,
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Figure 3.5: Precision-Variety Trade-off curve over m for synthetic circular boundary
data.

m allows us to tune the precision/variety trade-off in the learning process.

The curve produced by varying m resembles the ROC curves used to indicate the

performance of binary classifiers. Just as ROC curves report the interplay between

two conflicting goals of interest (true positive rate and false positive rate), the PVL

curves report the performance of a binary classifier in terms of two other conflicting

goals relevant to the task at hand.

3.6.2 Comparing Classifiers

As the PVL heuristic supports multiple classification techniques, I compare several

algorithms in terms of their precision and specificity over m. Specificity-variety curves

for the different classifiers on the real-world data with four classes are shown in Fig-

ure 3.6. As in Figure 3.5, each curve exhibits increasing m from left to right, with

the exception of the Partial and Slight classes for SVM. The KNN classifier curves

exhibit the monotonicity guaranteed for specificity over increasing m.
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We also compute curves for Precision, as depicted in Figure 3.7. The limited num-

ber of positive samples in the face data cause the uncertainty in estimating precision

to be prohibitively large for four classes. To accommodate for this, I construct two

classes from the data, and suppress values of m that produce less than 10 positive

predictions. In the case of KNN, my method shows a strong monotonic trend, demon-

strating its effectiveness on real-world data where my data condition assumptions (see

Definition 1 ) do not hold perfectly.

Notably, the SVM and RF algorithms differ from KNN in both the specificity

and precision variety curves; the general behavior is similar, but can be erratic for

some classes (such as Slight and Partial). While my theoretical guarantees concerning

monotonicity do not extend to RFs and SVMs, in practice the curves tend towards

monotonicity; SVMs preserve monotonicity when conditions are favorable (and suffer

more erratic behavior when conditions are poor), and RFs robustly exhibit a general

if not local monotonic trend. Theoretical similarities between RFs and neighbor-

based methods have been noted (Lin and Jeon, 2006), which likely contribute to this

phenomenon.

3.6.3 Analysis of Faces.

My method is capable of producing a variety of mouth shapes with a targeted smile

intensity. Taking advantage of its theoretical properties, I use the KNN based set of

classifiers to train C and render the resulting facial animations. Figure 3.1 demon-

strates some examples where the Full smile class was targeted, with m = 8. This m

value provides a large gain in variety without a large loss of precision, resulting in

faces that differ in appearance, but are all happy. Figure 3.8 shows some examples of

training the PVL model to produce faces from other semantic categories. The middle

and bottom rows show faces generated from classes Slight and None respectively.

I note that all of the semantic classes exhibited a large amount of variety, though
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Figure 3.6: Specificity Curve Comparison. Specificity curves over m for each
semantic class using different supervised learning methods.
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Figure 3.7: PVL Curve Comparison. PVL curves over m for a two-class split of
the face data using different supervised learning methods.
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Full

Partial

None

Figure 3.8: Example set of generated faces with Full (top row) Partial (middle row)
and None (bottom row) targeted happiness levels.
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it varies with the range of m (which is bound by the sample counts in Figure 3.2).

While there is generally more variety achievable for a given level of precision in the

None class (as a smile is just one of many kinds of facial expressions), there is still

significant variety present for Full smiles, including those that have no dental show

(as in the top center of Figure 3.8). This highlights the fact that no single feature

was responsible for the semantic meaning of the expression.

3.7 Validation Study.

To validate my method’s effectiveness, I conducted a two-part user study to examine

the capability of m to support variety, as well as the ability to target different semantic

classes.

3.7.1 Study Design

The first section of the study analyzed the ability of the PVL learning approach to

tune variety. Here, side-by-side videos showing expressions of a pair of faces were

shown to participants via a web browser interface (see Figure 3.10 for an example

screenshot). The videos could be individually replayed as desired. Below the videos,

participants were asked to respond using a web form the extent to which the expres-

sions looked similar, on a discrete scale of 1 (not at all similar) to 5 (very similar). For

each pair of expressions, both were independently, randomly drawn (without replace-

ment both within the pair and across pairs) from a pre-defined set of expressions

generated using the same m. Participants were asked to evaluate 10 such pairs of

faces, 5 pairs from a set with m = 3 and 5 pairs from a set using m = 8, but could

choose to terminate the study at any time. Both expression sets were generated

targeting the Full smile class.

The second section of the study aimed at validating the predictive accuracy of



3.7. Validation Study. 52

PVL. Similar to the first section of the study, participants were shown side-by-side

videos in a web browser of two facial expressions with a response form underneath

(Figure 3.11). To test the ability of Facial Space and PVL to extend to other 3D

models, my collaborators and I created and used in this section a second 3D facial

model. The response prompts were a two-alternative forced choice format where

participants were asked to indicate which of two smiles appeared happier. In each pair

of expressions, one came from a set of smiles generated from a classifier targeting the

Partial smile class and one targeting the Full class (both independently, randomly

drawn without replacement). Both sets of smiles were generated with m = 8, to

support a variety of different smiles. As in the first section, participants were asked

to evaluate 10 pairs, but could exit at any time.

3.7.2 Participant Information

The study saw a total of 17 participants (12 female, 5 male, aged 28.1 ± 5.5 years).

All study participants were proficient in written and verbal English as required to

complete the study. Participants were recruited by word-of-mouth, consisting pri-

marily of students from computer science labs. Most participants completed the full

study, yielding 170 responses for the first section of the study and 141 responses for

the second.

3.7.3 Study Results

The overall result from the first section of the study is shown in the left of Figure 3.9.

The hypothesis was that pairs from sets with lower m would be perceived as more sim-

ilar (have less variety) than those from the set generated with higher m. A Wilcoxon

signed rank test confirms (Z = −5.07, p < 0.0001) that comparisons between two

expressions from m = 3 were perceived as more similar (Mdn = 4, IQR = 2) than
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PartialFull

Study 1 Study 2

Figure 3.9: Validation Study Results. left : The results from the first part of the
study, which show that expressions generated using smaller m are perceived as more
similar than those generated with larger m. right : The results from the second part
of the study, which show that smiles generated targeting the Full smile class appear
happier than those generated targeting the Partial smile class.

those generated with m = 8 (Mdn = 3, IQR = 3). This affirms the hypothesis and

serves as evidence to validate the PVL learning approach in its ability to tune variety.

The hypothesis for the second section of the study was that expressions generated

targeting the Full smile class would be perceived as happier than those generated

targeting the Partial smile class. The results from this part of the study are shown in

the right of Figure 3.9. A two-sided binomial test confirms that smiles predicted as

Full were most likely to be seen as happier (p < 0.001, P (success)= 0.68, RR = 1.26),

validating PVL’s ability to generate faces with different smile intensities. This result is

particularly strong evidence as PVL’s task here (producing Full smiles distinguishable

from Partial smiles) is more difficult as the two classes being compared require more

subtle differences to be captured as opposed to comparing Full vs None.
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Figure 3.10: A screenshot of the first part of the validation user study.
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Figure 3.11: A screenshot of the second part of the validation user study, featuring a
different virtual character.
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3.8 Conclusion

In this work, I have proposed and implemented a system for the generation of a variety

of smiles for use in digital characters. I formulated the problem as a multi-objective

optimization task, seeking both high quality and diverse animations. My approach to

generate new animations utilized a dataset of annotated facial expressions as train-

ing samples for a binary classifier to predict whether or not a new facial expression

would be perceived as having a targeted semantic class. To solve the multi-objective

problem, I introduced Precision-Variety Learning, which allows a balance between

precision and variety of a classifier to be directed by manipulating the training data

set, providing theoretical guarantees under certain conditions. The classifier was then

used to generate a variety of faces with targeted smile intensities novel to the existing

data.

Technical Limitations. Some limitations of my method motivate further study.

The dataset I used is limited in terms of its coverage of plausible facial positions.

Data covering a larger range could enable the study of a more diverse set of emo-

tions. Another limitation is the fact that the blendshapes used for animation have

a limited extent, thereby necessitating constrained optimization. This could be re-

laxed by allowing blendshapes to be extrapolated past their original bounds. I also

note that increasing the coverage and density of the annotated faces could allow for

more granular categories or regression classifiers to be trained. This could support

more fine-tuned control over the target emotions or the generation of mixtures of

emotions. While empirically the PVL approach performs very well, the theoretical

properties are dependent on some data assumptions that may not hold in real-world

settings. Further analysis may identify guarantees that hold when these assumptions

are relaxed.
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Toward Equity & Diversity in AI. With the rapid growth an incorporation of

AI and the associated algorithms comes the increasing impact it has on everyday

life to an increasing number of people. To ensure a world where everyone is valued,

included and represented, it critical that AI researchers and implementers explicitly

seek out and address bias wherever it may arise. In particular, visual appearance and

ethnic, gender, and racial diversity is an important part of variety when discussing

humans. This important fact is what lead my colleagues and I to include multiple

races in our follow up study, shown in Figure 3.11 (the dataset we used in these

experiments was collected using the model in Figure 6.2). Our initial results in this

area show that the low-dimensional feature space used in our examples transferred

well between the two racially distinct examples. However, this issue requires much

deeper exploration, and a proper treatment would involve a larger initial study for

data collection on a wider variety of faces.

Future Work. Avenues for future work include extensions to my work both in the

areas of facial animation and the uses and properties of PVL. One such avenue is the

generation of other emotions and mixtures of emotions by incorporating additional

datasets and facial features. Building data-driven models that capture how perceived

emotional intent relates to facial movement has implications beyond making com-

pelling digital characters. Since computational techniques allow us to permute facial

positions in a way that human actors cannot, another exciting area of future work

is to investigate faces with large asymmetry or other issues which may arise from

facial trauma or nervous system damage. This can allow this work to inform ar-

eas of medicine such as facial reconstructive surgery, emotional recognition therapy,

and psychologists looking to quantitatively study how intervention can help patients

express emotional intent.

While this work utilized data-driven methods for the generation of realistic hu-
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man smiles, it does not use explicitly human path data, such as capturing mouth

movements from real smiling humans (though I did collaborate with colleagues on a

subsequent capture and analysis of just this kind of data detailed in Dong (2019)).

The next chapter of this thesis focuses on my work that leverages actual human path

data.
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Chapter 4

Validating Collision Avoidance as a
Realism Technique

Expanding on the previous chapter’s focus on generating realistic local human mo-

tion, in this chapter I consider the capture and use of real human paths in a validation

effort for the importance of collision avoidance for virtual crowds. Through the use

of both the captured paths and qualitative follow up surveys, I conduct a user study

to observe, for the first time, how the presence or lack of anticipatory collision avoid-

ance techniques impacts user experiences in an immersive virtual reality environment.

Following is a detailed report of the user study design as well as the data captured

and an analysis that shows how crucial these methods are in maintaining a sense of

realism and presence when interacting with crowds in VR. This work is featured in

a paper in the 2017 IEEE Workshop on Virtual Humans and Crowds for Immersive

Environments (VHCIE). ©IEEE 2017. Reprinted, with permission, from (Sohre

et al., 2017).

Dynamic, moving characters are increasingly a part of interactive virtual expe-

riences enabled by immersive display technologies such as head-mounted displays

(HMDs). In this new context, it is important to consider the impact their behavior

has on user experiences. Here, I explore the role collision avoidance between virtual

agents and the VR user plays on overall comfort and perceptual experience in an
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immersive virtual environment. Several users participated in an experiment where

they were asked to walk through a dense stream of virtual agents who may or may

not be using collision avoidance techniques to avoid them. When collision avoidance

was used, participants took more direct paths with less jittering or backtracking, and

found the resulting simulated motion to be less intimidating, more realistic, and more

comfortable.

4.1 Introduction

Advancements in virtual reality via technology (VR), particularly head-mounted dis-

plays (HMDs) have led to increased capability and availability of virtual experiences.

While the concept of virtual reality is far from new, the field has seen recent and

rapid growth in industry and research. Experiencing an immersive environment in

VR increases the importance of certain perceptual elements as compared with other

virtual experiences such as that provided by PCs. Here, I study the effect of collision

avoidance for virtual characters by observing how the presence or absence of this

behavior changes a user’s experience when interacting with a virtual crowd.

Collision avoidance is one of the primary ways virtual character behavior supports

the presence of the user experiencing a virtual environment. There are a variety of

approaches for achieving collision avoidance, enabling virtual characters to maintain

a minimum distance between both users and other virtual characters in the envi-

ronment. More recent methods for collision avoidance incorporate more complex

strategies that exhibit anticipatory behavior and more human-like trajectories, as

well as robust handling of dense scenarios (Karamouzas et al., 2014). In PC-based

experiences, collision avoidance is important to make virtual characters act realis-

tically, but in VR collision avoidance takes on a new importance. Characters that

don’t avoid collisions may cause the user to lose their sense of presence, feel various
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Figure 4.1: Experimental Setup. Participants are placed in the above virtual
environment and asked to walk along the U-shaped track as a stream of virtual
agents walk by. Two conditions are used: one where the agents avoid the users and
one were they do not.

forms of discomfort, and intimidate or otherwise negatively impact the experience of

the user.

In this paper, I investigate the connection between collision avoidance and the

quality of experience for the user such as overall comfort and sense of presence in the

virtual environment. To do this, I conduct user studies in which participants interact

with a crowd of virtual agents, both with and without collision avoidance behavior

(Figure 4.1). The effect of the presence or absence of collision avoidance can be seen

both through the subjective experience and the physical actions of the subjects in

the virtual environment.
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4.2 Background

4.2.1 Personal Space

The study of personal space dates back to at least the 1950s with Edward T. Hall’s

notion of proxemics (Hall et al., 1959), which identifies the region around each person

that they identify as uncomfortable for others to enter. More recently, researchers

have turned to VR as a tool to study how humans perceive their personal space. For

example, Bailenson et al. used immersive VR (HMDs) to study how much interper-

sonal distance was maintained between participants and virtual humans. They found

a positive correlation between magnitude of emotional reaction and magnitude of

avoidance behavior in participants interacting with avatars (Bailenson et al., 2003).

In later work, Bailenson and colleagues found that the graphical realism of the sim-

ulation had little impact on the minimum interpersonal distance users maintained in

VR, but they did find a greater hesitancy to closely approach agents that exhibited

more realistic head motion behavior (Bailenson et al., 2005).

Measurements. Measuring personal space presents its own challenges. Researchers

have analyzed both behavioral measures (how people act) and self-reported measures

(how people say they feel) to gauge peoples’ social presence and their response to

violations of their personal space in immersive virtual environments. This is impor-

tant because some variables that affect interpersonal avoidance behaviors may not

be captured by self-reported measures (Bailenson et al., 2004). Moreover, Pütten

et al. found that peoples’ subjective assessments of their interaction with a vir-

tual agent were significantly influenced by their own personality traits (Astrid et al.,

2010). Beyond influencing peoples’ motion trajectories, violations of personal space

can affect their physiological responses; for example Llobera et al. found higher skin

conductance readings associated with closer approach distances and greater numbers
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of approaching characters during interactions both with virtual humans and with

human-sized cylinders (Llobera et al., 2010).

4.2.2 Interaction with Virtual Crowds

Narang et al. developed a simulation method that robustly generates plausible be-

haviors for large numbers of virtual humans, including full-body motion and eye gaze

as well as motion trajectories. They found a significant impact of the higher fidelity

animations on users’ ratings of social presence (Narang et al., 2016). Pelechano et al.

used navigation tasks in virtual environments to evaluate the sensation of being part

of a crowd (Pelechano et al., 2008).

Recently, researchers have explored interactive crowd simulations in immersive

environments. Kyriakou et al. found that facilitating collision avoidance increased

perceived realism of virtual characters (Kyriakou et al., 2016). Sanz et al. showed that

humans use different locomotion behaviors when navigating around human vs non-

human virtual obstacles. Bruneau et al. explored user interactions when navigating

with groups of virtual humans (Bruneau et al., 2015). While this previous work has

considered CAVE-like and semi-immersive environments, my work focuses on users

in an HMD-based virtual environment.

Realistic Crowd Simulation. Much of the recent work in crowd simulation has

focused on improving the realism in the motion of virtual agents (Kapadia et al.,

2015). Other recent work has explored the role anticipation plays in person-to-person

interactions (Karamouzas et al., 2014), the role non-linearity has in simulating inter-

actions (Wolinski et al., 2016), vision-based collision avoidance (Ondřej et al., 2010),

and physically-based pushing behaviors (Kim et al., 2015). A recent survey providing

a wide coverage of the field was recently published by Pelechano et al. (2016)
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(a) With Collision Avoidance (b) No Collision Avoidance

Figure 4.2: Experimental Conditions. A comparison of the two experimental
conditions. Simulated agents either (a) avoided the participant or (b) did not react
to their presence. The inset shows first person views. The user is rendered as a white
cylinder inside the crowd flow.

4.3 Experiment Design

The goal of my experiment was to induce users to interact with virtual crowds with

and without collision avoidance. During the experiments, participants wore an HMD

which showed a virtual environment of the same basic shape as the physical lab they

were in, with the addition of moving simulated agents. Participant movements were

tracked and the virtual environment was updated accordingly.

The experiment consisted of two tasks in which the subject walked along a specified

path in the virtual environment (Figure 4.1). After positioning the subject on a

starting location in the real world, the HMD was fitted and the virtual environment

turned on. The subject would then appear in a virtual room similar to the real one in

which they stood. The path was indicated in the virtual environment as a U-shaped

line leading from their current position (indicated by a red circle both on the floor and

overhead) to the final position (indicated by a blue square). The first leg of the path

traveled in an open area, and the second took the subject head-on through a crowd of

virtual agents. In this way, traversing the path involved both walking in and outside

of a virtual crowd. Both tasks consisted of walking the same path, across which a trial
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condition was varied. In one condition (4.2a), the virtual agents performed collision

avoidance between themselves and the subject using the Power-Law model proposed

in Karamouzas et al. (2014). In the other condition (4.2b), the virtual agents would

perform collision avoidance amongst themselves, but not the subject, passing through

them as if they were not present. The order of the trial conditions was random for

each subject, and counter-balanced across the subjects.

During both tasks, each subject’s 3D position and orientation were captured at a

sample rate of 10 Hertz. For analysis, the trajectories were cropped to an observation

region containing the second leg of the path, where interaction with the virtual crowd

occurred. Before, between, and after the trials, participants completed the simulation

sickness questionnaire (SSQ) proposed in Kennedy et al. (1993). On completing the

study, subjects were asked to complete an additional follow-up survey assessing their

overall perception of various aspects of their experience. The survey included items

related to the experienced realism of virtual character movement, overall comfort

during the simulation, and other subjective measures related to their perception of

the virtual characters such as intimidation and reactiveness. Each item was rated on

a 1 to 7 discrete scale (See Figure 4.8 for follow-up survey question details).

Physical Set-up. All experiments were conducted in a 3.7 x 2.6m indoor lab area.

Position tracking was performed using a 6 camera OptiTrackTM tracking system. The

consumer release Oculus VRTM HMD was used for the immersive virtual display.

This setup is pictured in Figure 4.3. The Unity Game Engine is used to render the

environment. In order to reduce latency induced by fast head rotations, the internal

gyroscope on the Oculus was used for head orientation tracking.



4.4. Results 66

Figure 4.3: Lab Setup. A participant being tracked as she moves through the
physical lab environment reacts to virtual agents in a simulated crowd.

4.3.1 Participant Information

Participants were recruited from computer science labs and courses by word-of-mouth

and email invitations. A total of 9 subjects participated in the experiment (3 female,

6 male aged 23.3 ± 4.9 years). All but one participant had extensive experience with

PC or console based video games. All participants had normal or corrected-to-normal

vision, and the study personnel ensured each participant could see clearly in the HMD

environment. To complete the study, simulator sickness questionnaires, and follow-

up surveys, all participants were required to be able to communicate in verbal and

written English. For 5 subjects, the virtual crowd used collision avoidance in the first

trial, and did not use collision avoidance in the first trial condition for 4 subjects.
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(a) With Collision Avoidance (b) No Collision Avoidance

Figure 4.4: Example Trajectories. A comparison of the trajectories from two
trials of the same user. In the case with no collision avoidance, the user hesitates,
backtracks, and ultimately follows a less smooth path.
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Figure 4.5: Self-reported Experiences. Participants evaluated both experimen-
tal conditions across several perceptual metrics. Stars indicate level of statistical
significance: * for p < 0.1, ** for p < 0.05, *** for p < 0.01.
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Realistic Human-like Comfort Intimidated Reacting
Avoidance Mdn 5 4 6 2 6

IQR 2 1 2 2 1
No Avoidance Mdn 1 2 4 4 1

IQR 1 1 1 3 0
p-value 0.006 0.010 0.036 0.012 0.013
Z statistic -2.769 -2.573 -2.095 -2.507 -2.477

Table 4.1: Follow-Up Survey Results. Medians, inner-quartile ranges, and paired
Wilcoxon signed-rank test results for follow-up survey measures. In all tests except
Intimidated, the alternative hypothesis was that the Avoidance value would be greater
than No Avoidance. For the Intimidated measure, the alternative hypothesis was
flipped.

4.4 Results

Both objective and subjective measures showed that the absence or presence of col-

lision avoidance behavior had a significant impact on the subjects’ experiences. The

responses given in the follow-up survey show strong evidence that participants felt the

simulation was affected by the virtual characters’ avoidance (or lack thereof). The

survey results are depicted in Figure 4.5, with descriptive statistics and statistical

test results in Table 4.1. While overall comfort level was higher when avoidance was

used, stronger effects emerge when factors related to the motion of the virtual char-

acters are considered. Subjects reported significantly higher perceived reactiveness,

lower experienced intimidation, and increased human-likeness of the virtual characters

when they exhibited collision avoidance behaviors. Additionally, a very significant in-

crease in perceived realism of character movement was associated with the collision

avoidance as well.

Performing the tasks for the experiment had little observable effect on reported

physical discomfort levels. The Simluator Sickness Questionnaire asked participants

questions to measure the current extent of nausea, ocular-motor, and disorientation

discomfort symptoms. The results are shown in Figure 4.6. For the questionnaires
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Figure 4.6: Simulator Sickness Questionnaire Results. Mean SSQ scores are
shown for the questionnaires taken before, between, and after both trials. The vertical
bars indicate one standard error above and below the mean. In general, participants
experienced very low levels of simulator sickness across the trials.

taken before the virtual experience and after the first task, very little change in

either discomfort measure was seen. While a small increase in average score was

observed from the first to the final SSQ, a one-way ANOVA shows this change is

not statistically significant (F (2, 27) = 0.10, p = 0.89), suggesting participants did

not feel a significant change in their level of discomfort at any point in the study.

Possible reasons for lack of symptom levels regularly associated with VR experiences

include the short nature of my experiment (the average time spent in VR per trial

was 62 seconds), and the participants’ backgrounds in other forms of interactive

environments and virtual experiences.

The trajectory data captured from the participants motion allows us to perform an

objective analysis of behavior displayed in each condition. As participants interacted

with the virtual crowd over the different trial conditions, changes in their trajectories

could be seen. As a measure of how the discomfort impacted their experience, the path

lengths for each trial was computed as the sum of the spatial distances between each

sample. These distances were computed in 2D using the 3D coordinate projections

onto the ground plane (Figure 4.4). As shown in 4.7a, the trials with collision avoid-



4.4. Results 70

ance saw slightly more efficient (smaller) path lengths (Mdn = 1.62m, IQR = 0.05m)

than without avoidance (Mdn = 1.65m, IQR = 0.10m). A paired Wilcoxon signed

rank test supports the stability of the effect (Z = −2.88, p < 0.01).

While path length only considers the spatial component of the trajectory, there is

also important temporal information to consider, such as how often the participant

stops or even backtracks. To account for this, I measure the total acceleration taken

by each participant over the course of their interaction with the crowd (as measured

by the sum of the magnitude of the acceleration at each time step). The results

are shown in 4.7b. As expected, when the crowd did not use collision avoidance,

participants experienced more acceleration, indicative of less smooth motion with

more stopping, backtracking, and veering off-path. As with path lengths, a Wilcoxon

signed rank test yields a stable difference between the collision avoidance and non-

collision avoidance conditions for the total accelerations (Z = −2.76, p < 0.05). How-

ever, the effect size is more substantial, with collision avoidance trials showing a

13% smaller total acceleration (Mdn = 0.245m/s, IQR = 0.068m/s) than without

(Mdn = 0.282m/s, IQR = 0.063m/s). The larger effect size suggests that a significant

aspect of the adverse reactions lies in the temporal component of the motion (e.g.,

participants experience a jarring reaction due to discomfort with the lack of collision

avoidance).

Figure 4.4 shows a single participant whose path illustrates the statistical trends

described above. The path traveled in the trial with collision avoidance (Figure 4.4)

follows a smooth cadence and has little deviation from the path markers. Without

collision avoidance (Figure 4.4b), the path shows a more erratic and irregular shape,

straying from the path indicator. This could indicate the subject either trying to

avoid the virtual characters (who no longer avoid them), or perhaps having difficulty

focusing on the task due to the discomforting (lack of) interaction.
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Figure 4.7: Behavioral Analysis. Behavioral metrics were computed for the portion
of the path that intersected the stream of agents. When collision avoidance was
used (a) participants took shorter, more direct paths and (b) less acceleration was
experienced. Both metrics indicate less hesitation in walking.
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4.5 Conclusion

This experiment provides insight on the impact of collision avoidance behavior for vir-

tual characters on user experiences in an immersive virtual environment. My findings

suggest that the presence or absence of collision avoidance has a significant impact on

user perception of discomfort, perceived realism and intimidation from virtual charac-

ters, as well as the physical actions taken by participants during the study. With high

statistical significance, users experienced higher levels of perceived realism, presence,

and lower levels of discomfort and intimidation with collision avoidance than without.

Limitations. The limited space of the physical environment constrained the move-

ment based tasks, and resulted in short durations of the VR experiences. The statisti-

cal significance for some effects may have been limited by the number of participants

in the study, which could be followed up by studies with a larger group of users

with a wider range of previous VR and gaming experience. During the trials, many

participants appeared to look down while walking in order to better follow the path

markings. This has the potential to limit the extent to which the users visually ex-

perience the crowd interactions (or lack thereof), which may reduce the effect of the

different conditions.

Future Work. Opportunities for future work include experimenting with different

modes of user interaction besides navigation, such as giving people virtual hands to

interact with the crowd or allowing verbal communication. Additionally, it may be

valuable to directly compare the strength of the discomfort felt from lack of collision

avoidance in VR to that felt with first-person non-immersive displays (e.g., PC or

console games). Lastly, a natural extension of my work is to consider various types

of collision avoidance or collision response between the virtual agents and the user.

Indeed, realistic collision avoidance behavior is a crucial component of virtual re-
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ality experiences when interacting with humanoid agents. While this work considers

validation using captured trajectories of a single human interacting with a simulated

crowd, some of my other collaborations use the trajectories of real human crowds

themselves to validate the naturalness of various simulation techniques (Karamouzas

et al., 2019). The idea that collision avoidance methods are in need of careful con-

sideration for realistic motion is relevant beyond the context of virtual agents. In

other works, my colleagues and I consider collision avoidance in the motion plan-

ning of real-world robot dynamics (Davis et al., 2018) that can anticipate multiple

potential human-like trajectories resulting in more realistic paths, as well as explore

human-in-the-loop approaches to robot motion planning (Hutton et al., 2019).
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NO__________________ FOLLOW-UP QUESTIONNAIRE

On the scales below, please circle the number that corresponds best to your overall impression of: 

How  realistic  did you find the  motion of the characters in trial  1: 

very unrealistic somewhat realistic very realistic 
1 2 3 4 5 6 7 

How  realistic  did you find the  motion of the characters in trial  2: 

very unrealistic somewhat realistic very realistic
1 2 3 4 5 6 7

How human-like did you find the motion of the characters in trial 1:

not human-like somewhat human-like very human-like 
1 2 3 4 5 6 7 

How  human-like  did you find the motion of the characters in trial  2: 

not human-like somewhat human-like very human-like 
1 2 3 4 5 6 7 

How often did you feel the need to  close your eyes  during trial  1: 

not at all a few times the whole time 
1 2 3 4 5 6 7 

How often did you feel the need to  close your eyes  during trial  2: 

not at all a few times the whole time 
1 2 3 4 5 6 7 

How comfortable  did you feel during trial  1: 

very uncomfortable mild discomfort very comfortable
1 2 3 4 5 6 7

How comfortable did you feel during trial 2:

very uncomfortable mild discomfort very comfortable 
1 2 3 4 5 6 7 

How intimidated  by the characters did you feel during trial  1: 

not at all somewhat intimidated very intimidated 
1 2 3 4 5 6 7 

How intimidated  by the characters did you feel during trial  2: 

not at all somewhat intimidated very intimidated 
1 2 3 4 5 6 7 

The extent to which you felt as if you were moving  when standing still in trial  1: 

not at all slight sensation of movement strong sensation of movement 
1 2 3 4 5 6 7 

The extent to which you felt as if you were moving  when standing still in trial  2: 

not at all slight sensation of movement strong sensation of movement
1 2 3 4 5 6 7

The extent to which you felt the characters were  reacting to your presence  in trial  1: 

not at all some reaction very reactive
1 2 3 4 5 6 7

The extent to which you felt the characters were reacting to your presence in trial 2:

not at all some reaction very reactive 
1 2 3 4 5 6 7 

Figure 4.8: Follow-Up Survey
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Chapter 5

Data-Driven Insights for
Multi-Task Human Navigation
Decisions

Humans often face the longer-term planning task of navigating through environments

with static and dynamic obstacles. Whether it be terrain, walls in a building, or

other people, we regularly route through a wide variety of environments to reach

goals that may be far away or out of sight. A natural but challenging obstacle that

arises from these tasks is the presence of local minima combined with the absence of

global information; sometimes we need to make global plans in an environment for

which we do not have a mental or physical map. However, while a map can help

us plan optimal routes through large environments, humans are not helpless in such

cases – we are capable of forming reasonable conclusions about promising directions

of travel without one. Of course, adversarial maze-like environments can be designed

to fool us into choosing dead-ends and large local minima, but in the general, we

utilize our world knowledge to guide a global path using local decisions based on

local information.

In this chapter, I continue to analyze human motion data to provide insights on

human motion, this time in the context of how people make decisions in multi-task

navigation settings (such as retrieving items from a shopping list). The analysis re-
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veals an entropy law that governs the high level trends in the decision making process,

and can be reproduced with high accuracy in terms of the high level behavioral trends

by a single-parameter simulation model.

A pre-print publication of this work is available on ArXiv at article reference

arXiv:2102.00057 (Sohre et al., 2021).

5.1 Introduction

Understanding human flow through indoor buildings is important for various layout

design tasks such as evacuation planning, product placement, and security. Advance-

ments in technologies such as computer vision and motion-tracking have enabled the

large scale collection of long-term motion data, enabling new analyses aimed at incor-

porating these high level decisions into human flow models. Here, I take a data-driven

approach to analyzing the navigation decisions of shoppers in a grocery store.

Path data, or varying spatial configurations of individuals as a function of time,

provides valuable insight into human navigational behavior in a variety contexts (Hui

et al., 2009a). Various works have utilized path data both as a means to understand

and simulate human behavior, using different assumptions and conceptualizations to

achieve specific research goals. Some of these works involve learning to predict human

behavior from path data, from inferring high level flow models for retail floor opti-

mization (Ying et al., 2019), to frameworks based on random walks (Gutiérrez-Roig

et al., 2016), to crowd simulations (Karamouzas et al., 2014). Other works focus

on analysis of behaviors, such as comparing human route selection to the theoreti-

cal optimum (Hui et al., 2009b), or discovering behavioral patterns (Larson et al.,

2005; Karamouzas et al., 2018). Often these analyses are coupled with various mobil-

ity models for predicting human movement, designed to operate on different scales,

from global migratory patterns (Riascos and Mateos, 2012) and city level traffic (Ca-
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margo et al., 2019; Piovani et al., 2018) to more local path planning (Lima et al.,

2016; Bailenson et al., 2000) and collision avoidance (Karamouzas et al., 2014; Van

Den Berg et al., 2011; Helbing and Molnar, 1995). Less explored is the mid-level scale

of multi-task planning, such as how fair-goers might visit multiple attractions, or how

customers determine which item to pick up next from a shopping list.

In this work, I use path data to better understand the process by which human

shoppers make decisions about navigation when shopping. I focus on characterizing

the task of selecting a next item to retrieve, and perform multiple analyses that

provide insights into high level features governing shopper decisions. While numerous

external factors affect this process, such as building layout and other human factors

(specific in-store attractions, unplanned purchases (Massara et al., 2014), or tendency

to follow the perimeter (Farley and Ring, 1966)), I adopt a general formulation of a

shopping trip as a series of decisions given a predefined list of items, and utilize a

large dataset of shopper trajectories to gain insights about how the navigation process

may be described and modeled from the path data.

The rest of this chapter is structured as follows. In Section 5.2, I describe the

dataset as well as preprocessing steps and give some formal definitions that support

the analysis. In Section 5.3, I model shopping trips as a series of discrete navigation

decisions that produces an item sequence, identify several high level trends, and

propose a measure of decision difficulty that governs the sub-optimalities in the data

when decomposed into pair-wise decision tasks. In Section 5.4.2, I incorporate my

findings into a general decision model for each step of a shopping trip. In Section 5.4.3,

I propose a stochastic decision model that is theoretically guaranteed to produce the

same trends seen in the data, but in practice matches the trends with high accuracy.



5.2. Dataset 78

5.2 Dataset

Here I use an anonymized dataset consisting of item sequences from shoppers in a re-

tail store (paths), corresponding to individual transactions from point-of-sale records

of sets of items purchased together (baskets). Each sequence reflects the order in

which the items were retrieved. The items are embedded in a 2D representation of

the store layout corresponding to product shelf locations. Additionally I use the set

of 2D wall obstacles representing the sales floor layout to compute features such as

walking distance between items. Figure 5.1 shows a contextualized example of a single

shopping trip as it would appear in the data. The data contains over 13,000 such

basket sequences spanning a period of two weeks.

The item sequences (and corresponding decision points) for each shopping trip

represent paths over the fully connected item graph G = (V , E) where each vertex

v ∈ V represents the spatial embedding of an item shelf in the store (I assign the

shelf’s position to be its corner), and the edges eij ∈ E represent the straight line

connections between co-visible vertices vi and vj. I augment this graph with an

additional vertex vstart for the entrance to the store to serve as the shopper location

for the first decision point in a trip. I use this graph to compute the shortest path

walking distance between any two items for analysis.

Given a list of items left to collect i ∈ {1, 2, ...n} I decompose a decision point

into the set of available (shortest walking path) travel distances it represents:

p = {d1, d2...dn} (5.1)

where each distance di is the length of the shortest path over G from the item’s

shelf location to the shopper location (either vstart or the vertex of the most recently

chosen item’s location). I extract for analysis only those p having more than one

item, as having only a single item remaining does not present a choice to the shopper.
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Figure 5.1: An example item sequence from the dataset, embedded in the abstracted
store layout (black obstacles) and product shelf embedding ( x’s).

Figure 5.2 shows an example decision scenario consisting of a choice between three

remaining items to be collected. Comparing the observed shopper item sequences

to a locally optimal one enables the extraction of where the relative sub-optimalities

occur in human paths. These sub-optimalities enable a predictive model of shopper

navigation decisions from the distances in a decision point.
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Figure 5.2: An example decision p = (p1, p2, p3). Distances d(pi) (the shortest walking
path) to each remaining item (cylinders) are depicted by dashed lines.

5.3 Data Analysis

5.3.1 Decisions

The navigation decisions in the data show that shoppers are generally efficient. De-

spite not necessarily having full knowledge of all item locations or store layout, about

79% of the time, the next item a shopper picks up is the closest item to their current

location vj, having distance d∗ = mini(di ∈ p). While always picking the next closest

item is not a globally optimal strategy (which involves solving a traveling salesperson

problem, studied by (Hui et al., 2009b) in the context of shopping), I refer to it as

“locally optimal” in the sense that it is the best path a person could take without

knowing other future items they have not yet gathered. This suggests the conceptu-

alization of a shopping trip where each decision involves forming an estimate of which
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item left to collect is the closest, and navigating there. For the sake of analysis, I

denote the next selected item for retrieval as î, which is the index into a given p that

reflects which item was chosen. Then dî represents the distance to the chosen item.

Similarly I define i∗ such that di∗ = d∗ to be the index of the closest item for the

decision point.

Due to the local nature of available information (and potentially limited familiarity

shoppers may have with the store layout), cases where the closest item is not chosen

(̂i 6= i∗) naturally arise. The presence of these suboptimal local choices are consistent

with other studies of human route selection and cognitive tasks where suboptimalities

are found to be a natural part of these processes (Lima et al., 2016; Hui et al., 2009b).

A suboptimal choice occurs whenever the chosen item’s distance was larger than the

optimal distance for that decision point. I call these choices inversions, where the

preference order of the chosen item with respect to the optimal one has been flipped.

An analysis of the inversions in the set of decision points reveal a strong trend

between d∗ and the likelihood of making a locally optimal choice (i.e., d̂ = d∗).

Figure 5.3 (left) shows this trend, where the likelihood of choosing the optimal item

at a decision point decreases as a function of increasing d∗. As this distance (and

necessarily the distance of all other remaining items) increases, it becomes more

difficult to consistently choose the closest item, converging toward the same likelihood

as a random selection.

5.3.2 Sub-Tasks

In addition to the set of per-decision inversions, I perform a decomposition of the

shopping decisions to produce a larger set of inversions for analysis. To do this,

I extract all pair-wise comparisons (d̂, di) from the data, each of which represents

a possible inversion of the chosen item d̂i with some alternative di. This yields a

dataset of over 883, 000 such item pairs, which I refer to as sub-tasks, in which a
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Figure 5.3: left : The likelihood of choosing the locally optimal (closest) item decreases
as a function of distance to the closest item for shopper paths (grey region is the 98%
confidence interval), and eventually converges to that of a random choice. right : The
likelihood of not choosing the closer of two items in a sub-task as a function of the
difference in distances (to the shopper) between them. The random choice is shown
for reference (always 0.5 for two items).

shopper estimates the closer of the two. This yields a dataset of over 883, 000 such

item pairs, which I refer to as sub-tasks, in which a shopper estimates the closer of

the two.

The extracted pairs represent a subset of all the possible sub-tasks (and potential

pair-wise inversions) that exist in the full decisions. Sub-task samples having d̂ > di

constitute pair-wise inversions, whose inversion amount can be measured as how much

farther the shopper traveled then they would have by choosing item i. A sub-task can

be alternatively decomposed as the pair (F,C), where F = max(d̂, di) is the larger of

the two, and C = min(d̂, di) is the smaller. This enables an inversion analysis based

on both the closer item distance C as well as the relative item distance F −C (always

a positive value).

The right side of Figure 5.3 shows an analysis of the sub-tasks. Here, the chance

of a pair-wise inversion falls off as the items grow farther apart in their relative

distances to the shopper. This suggests that as the difference of relative distances
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grows, it becomes easier to distinguish which is closer.

5.4 An Entropy Law for Inversion Likelihood

5.4.1 Measuring Difficulty

As is evident from the non-uniformity of both trends examined in Figure 5.3, some

decisions and sub-tasks are more likely to see inversions than others. Given the

assumption that shoppers desire efficient paths, these trends serve as evidence that

some scenarios present more difficult estimation tasks. Here I adopt a description

of difficulty that follows from information theory, which is the entropy of the sub-

task. In the context of pair-wise decisions, the entropy is the minimum number of

bits required to represent the item distances such that they can be reliably ordered.

Formally, given the distance F of the farther of the two items in a sub-task and the

distance C of the closer item, the entropy H can be computed as

H = log2

(
F

(F − C)

)
. (5.2)

We adopt the entropy of a sub-task as a measure of difficulty, and define the

difficulty D of a sub-task as:

D = log2

(
F

(F − C) + ε

)
. (5.3)

where ε = 0.01 places an upper bound on difficulty at F = C. I call W = F − C the

tolerance of the task, as it is the maximum relative error in distance estimation that

preserves their rank order. This difficulty measure is consistent with (and inspired

by) those proposed in other psychophysical studies of human cognition (Moyer and
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Figure 5.4: The chance of choosing the farther of two items in a sub-task as a function
of difficulty (entropy) score for the shopper data (black w/ grey 98% confidence
interval) and random choice (red).

Landauer, 1967; Fitts and Peterson, 1964).

When inversion rate is graphed as a function of difficulty (Figure 5.4), there

emerges a clear monotonic relationship between difficulty and inversion chance; P (d̂ =

F ) (i.e., choosing a farther than necessary item to go to next) increases as difficulty

gets larger (with some noise affecting the trend at higher difficulties that occur less

frequently in the data). Additionally, the inversion rates naturally converge with ran-

dom selections at a maximum of 50%. The ability for shoppers to distinguish between

closer and farther items saturates at around D = 5, indicating that the information

carrying capacity of the item selection process of shoppers was around 5 bits.

This cognitive difficulty not only drives inversion rates, but also captures both

empirical trends in Figure 5.3. The closer together in distance from the shopper (F−

C is small), the larger D becomes, consistent with Figure 5.3 (right) where there is
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greater confusion between item pairs having small distance differences. Additionally,

the farther away the closer item is (large F ), the greater D becomes, matching the

left side decision level trend showing lower chance of choosing optimally.

5.4.2 Independent Perceptual Error Model

To extend the scope of the analysis in Section 5.4.1 to multi-item decisions, I note

that the empirical trends for misordering items are consistent with a selection process

that involves independent assessments of perceived item distances. I introduce d̃i as

a noisy, estimated distance to an item that incorporates uncertainty into a shopper’s

decision. The selection process can then be modeled as forming estimates for each

item, then choosing the item i = argmini{d̃i ∈ p} that is estimated to be closest.

In light of the analysis from Section 5.3, I note that the uncertainty of an item’s

estimated distance should grow with the true distance, and the ability to discriminate

between them should diminish with close relative distances to the shopper. To meet

these criteria, I design a generative model of noisy item distance estimation and model

the noisy estimated distance, d̃i, as follows:

d̃i = di + εi, εi ∼ N (0, αdi) (5.4)

where the standard deviation αdi is a linear function of the item’s true distance, and

each item’s noise wi is sampled independently. For a sub-task, the chance of inversion

can be computed directly from the Gaussian noise model:

P (d̂ > di) = P (d̂ = F | F,C)

=
1

2

[
1 + erf

(
F − C

α
√

2(C2 + F 2)

)]
(5.5)
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where F and C represent the farther and closer distances of the sub-task (d̂, di)

respectively.

Section 5.6 provides a derivation of Equation 5.5. This analytical expression for

the inversion chance both supports theoretical guarantees for the model and is efficient

to compute, making it practical to directly fit α to the inversion chances in the data

via numerical optimization techniques. Here I fit α to the trend shown in Figure 5.3

(right), as it has good data support over the entire domain (i.e., very tight confidence

bounds across the x axis). Using BFGS gradient descent optimization, with a mean-

squared error loss, yields α = 0.30 as a minimizing value. The optimization was

performed using the optim function of the stats package for statistical computing

language R (R Core Team, 2020).

This noisy distance estimation model has key theoretical properties that guarantee

inversion likelihoods are congruent with the trends seen in Figure 5.3 and Figure 5.4,

independent of the choice of α. First, the distribution for choosing between N items

converges to uniform as the relative distances become closer in magnitude (this can

be seem by taking the limit as F approaches C in from Equation 5.5). Second, the

chance of pair-wise inversions monotonically approaches the asymptote of 0.5 both as

relative item-agent distances decrease and as distance to the closest item increases.

Finally, my model provably recovers the monotonic relationship between difficulty

and chance of inversion (see Section 5.6 for a proof).

5.4.3 Simulation Method

The generative decision model from Section 5.4.2 is easily incorporated into a simu-

lation for predicting a shopping trip given a basket of items to be collected, a spatial

embedding of the items, and obstacles representing a store layout. I propose a stochas-

tic agent-based simulation that does this with an execution strategy as follows. The

agent begins at vstart and has available a list of all (di, vi) tuples corresponding to
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Figure 5.5: left : the difficulty plot from Figure 5.4 with overlaid simulation inversion
rate for the independent distance estimation model. right : observed inversion rates
from simulated paths overlaid on the trend from Figure 5.3 (right).

●

●

● ●

● ●
●

●
● ●

● ●
●
● ●

● ●

● ●
●
●

●

● ● ●

●

●

●

● ●

● ● ●

●

●

●

●

●
●

●
● ●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ● ●

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Distance to Closest Item

O
pt

im
al

 C
ho

ic
e 

C
ha

nc
e

0 10 20 30 40 50

1
10

0
10

00
0

Inversion Amount (m)

Lo
g 

F
re

qu
en

cy

Humans
Simulation
Random

0 5 10 15 20 25 30

0.
00

0.
10

Inv. Amt.

D
en

si
ty

Figure 5.6: left : observed optimal choice rates from simulated paths overlaid on the
same data from Figure 5.3 (left). right : The log frequency of observed inversion
sizes (i.e. the extraneous distance travelled to the chosen item over the closest) for
simulated, shopper, and random item decisions. Inset is the density for inversion sizes
cropped to show the knee of the curve.



5.4. An Entropy Law for Inversion Likelihood 88

where each item in the list can be picked up in the store. Noise is independently

sampled according to Equation 5.4 to produce a d̃i for each candidate (vi), and the

agent selects the one having the smallest estimated distance as the next navigation

target. The agent then navigates to the chosen item location using a shortest path

planner over a visibility graph of the item locations. This strategy is repeated until all

items have been collected (see Algorithm 5.1 for details). Since the distance estimates

are stochastic, the simulation method can be used to generate a variety of plausible

shopping routes for a single basket.

Algorithm 5.1: Shopping Trip Simulation

Input: itemsToRetrieve;
Output: itemOrder;
itemOrder = [];
alpha = 0.315;
while While itemsToRetrieve.length < 1 do

distances = [];
for i in 0 : itemsToRetrieve.length-1 do

trueDistance = getGeodesicDistance(itemsToRetrieve[i]);
noisyDistance = trueDistance + sampleNormal(0, alpha *
trueDistance);

distances.push(noisyDistance);

end
itemsByEstimatedDist = sort(itemsToRetrieve, by = distances);
itemOrder.push(itemsByEstimatedDist[0]);
itemsToRetrieve.remove(itemsByEstimatedDist[0]);

end
itemOrder.push(itemsToRetrieve[0]);
return itemOrder;

To evaluate the simulation model, I run simulations of the same baskets seen in the

data. Figure 5.5 shows the sub-task analyses applied to the simulated data overlaid

on the shopper data. On the left, the simulated item sequences closely match the

human data. Similarly, on the right, the fit α produces a very tight correspondence

between the simulation and data trends as a function of the item distance difference.
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To validate the simulation’s accuracy at the decision level, I compare both the

likelihood of inversions in the simulations to the shopper data, as well as the inversion

magnitudes. Figure 5.6 (left) shows the simulation results for the decision-level

data trend from Section 5.3, where the likelihood of choosing the optimal item

(the complement of inversion chance) matches well the shopper data compared to

a random choice. On the right is a comparison of the log frequencies of inversion

amounts for the decisions, defined as d̂ − d∗. An inversion amount describes how

much farther the chosen item was to the shopper than the closest item for a decision.

Here, the simulation method continues to show good alignment with the shopper

data, matching the actual inversion amounts with high accuracy.

The α parameter can be fit to data or used to tune behavior (for example, α→ 0

will approach purely locally optimal decisions, which could be used to emulate shopper

familiarity with the store layout). Additionally, the simulation technique is agnostic

of store layout, and may be directly extended (or re-fit given new data) on any new

store layout while retaining all the same properties that well describe the observed

human behaviors.

Figure 5.7 compares simulated paths to shopper paths for the several baskets.

Much of the time, the simulation makes the same decisions as the shoppers, matching

several inversions and many locally optimal ones.



5.4. An Entropy Law for Inversion Likelihood 90

●

●

range(vertices[, 1])

●

range(vertices[, 1])

ra
ng

e(
ve

rt
ic

es
[, 

2]
)

●

●

range(vertices[, 1])

●

●

range(vertices[, 1])

ra
ng

e(
ve

rt
ic

es
[, 

2]
)

●

ra
ng

e(
ve

rt
ic

es
[, 

2]
)

Walls
Shopper
Simulation
Item

Figure 5.7: Simulated paths are shown (dashed arrows) alongside the shopper paths
(solid arrows) through the store for several different baskets.
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5.5 Conclusion

In this work, I present a new insight about human shopping behavior from a novel

analysis of shopper path data. When viewed as a sequence of decisions among re-

maining items, the data shows that shoppers very typically choose the next closest

item to retrieve (validating a modeling method suggested but not explored in (Hui

et al., 2009a)). The chance of inversions in the data (that is, going to an item that

was not the closest) follows monotonically the entropy of pair-wise item sub-tasks

(that is, the difficulty of discriminating the closer of two items). I observe that an

independent error estimation model with a linear relationship between an item’s true

distance and uncertainty well captures these trends. Based on these findings I pro-

pose an agent-based method for simulating the order of item retrieval given a basket

and a store layout. The simulated data recovers the relationship between the chance

of mistakes and sub-task entropy, and in practice well matches the shopper data.

5.6 Proofs

Here, I provide proofs for the following Lemmas and Theorems that support the

analysis and results in this work:

Lemma: Simulated Inversion rate of two items Given two items having true

geodesic distances b and c from the agent, their estimated distances b̂ and ĉ under

the simulation model are

b̂ = b+ wb, εb ∼ N (0, αb)

ĉ = c+ wc, εc ∼ N (0, αc)
(5.6)
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Which produce Gaussian random variables of the estimated distances B ∼ N (b, αb)

and C ∼ N (c, αc). Suppose b < c (that is, item b is closer to the agent than item c).

Then, the probability of an inversion is the probability that the estimated distances

swap in magnitude: C < B → C−B < 0. Let Y = C−B be a new Gaussian random

variable, then

Y ∼ N (c− b,
√

(αc)2 + (αb)2)

= N (c− b, α
√
c2 + b2)

(5.7)

and the likelihood of inversion is P (Y < 0). For a given b, c, and α, this quantity can

be computed analytically from the CDF of Y evaluated at 0:

P (Y < 0) =
1

2

[
1 + erf

(
0− (c− b)
α
√

2(c2 + b2)

)]
(5.8)

Theorem: Simulated inversion chance increases with distance to the closer

item First, we can note that 1+erf(x) is a positive, increasing function of x. Then,

given Equation 5.8, it suffices to show that for any b (the distance to the closer item),

the input to erf is increasing:

∀b

[
δ

δb

b− c
α
√

2(c2 + b2)
≥ 0

]
, 0 < b ≤ c (5.9)

Proof: evaluating the partial derivative in Equation 5.9 with respect to b, we

have
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δ

δb

b− c
α
√

2(c2 + b2)

=
1

α
√

2

δ

δb

b− c√
c2 + b2

=
1

α
√

2

√
b2 + c2 − (b−c)b√

b2+c2

(b2 + c2)
(quotient rule)

=
1

α
√

2

c(c+ b)

(b2 + c2)
3
2

(simplify) (5.10)

Since Equation 5.10 is positive whenever b, c and α are positive, the derivative is

positive with respect to b and constrains Equation 5.8 to be increasing with increasing

b.

Theorem: Simulated inversion chance decreases with increasing distance

between items Another important property for maintaining the relationship be-

tween difficulty and inversion chance is that the inversion chance must decrease with

increasing W = c− b.

Proof: We wish to show that the derivative with respect to W is always negative:

∀W = c− b,

[
δ

δW

b− c
α
√

2(c2 + b2)
≤ 0

]
, 0 < b ≤ c (5.11)

Noting that (b2 + c2) = W 2 + 2cb = W 2 + 2b(b + W ), we can substitute into

Equation 5.11 and get

δ

δW

−W
α
√

2(W 2 + 2b(b+W ))
(5.12)

While we cannot write the derivative in terms of only W , we can treat b as a

positive constant and take the partial with respect to W . If the result is negative for
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any value of b, then the derivative with respect to W is negative regardless of b and

the property is satisfied:

δ

δW

[
− W

α
√

2(W 2 + 2b(b+W ))

]

=
1

α
√

2

δ

δW

[
− W√

W 2 + 2b(b+W )

]

=
1

α
√

2

−
√
W 2 + 2b(b+W )− W (W+b)√

W 2+2b(b+W )

W 2 + 2b(b+W )

 (quotient rule)

=
1

α
√

2

[
W (W + b)

(W 2 + 2b(b+W ))
3
2

− W 2 + 2b(b+W )

(W 2 + 2b(b+W ))
3
2

]
(simplify)

=
1

α
√

2

−b(2b+W )

(W 2 + 2b(b+W ))
3
2

(simplify)

(5.13)

Since W and b are both positive non-zero quantities, the resulting derivative is

always negative as desired.

Theorem: Simulation inversion chance increases monotonically with dif-

ficulty To show this property, it is sufficient to show that difficulty also increases

monotonically with decreasing W and increasing b, since both these two values fully

specify both the inversion rate (given an α) and the difficulty.

Proof: First, we note that W and b are sufficient to fully describe difficulty:

difficulty = log2

(
A

W

)
= log2

(
b+W

W

)
(5.14)
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Then we can construct the partial derivatives with respect to both W and b for

difficulty and see that they are always positive and negative respectively:

δ

δW

A

W
=

δ

δW

b+W

W
=
−b
W 2

(5.15)

δ

δb

A

W
=

δ

δb

b+W

W
=
b+W

W 2
(5.16)

Thus, both inversion rate and difficulty monotonically increase with increasing b and

decrease with increasing W . Since W and b are both sufficient to fully specify both

inversion rate and difficulty, we cannot make one smaller or larger (by adjusting W

or b) without having the same effect on the other. Therefore, both these quantities

will have a monotonic relationship with each other.
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Chapter 6

Realistic Navigation Behavior with
Uncertain Goals in Building-like
Environments

In the same vein as Chapter 5, in this chapter I study simulating human-like naviga-

tion behaviors under local information constraints, this time incorporating uncertain

goal locations. However, whereas in Chapter 5 I derived insight on human motion

from motion data directly, here I introduce a data-driven simulation technique to

produce human-like behavior, but do not use actual human paths to train. Instead, I

propose a global navigation task formulation in a way that matches semantically the

task humans face in the real world. Applying a deep learning approach that trains

on automatically generated optimal routes produces several human-like global navi-

gation behaviors. I then use human paths on the same navigation tasks (in a virtual

environment) as a validation technique.

A version of this work appears in the 2020 ACM Conference on Motion, Interaction

and Games (Sohre and Guy, 2020).
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6.1 Introduction

The interactive simulation of human motion is important in many scenarios, with

applications ranging from video games to building design and smart city planning all

benefiting from high-quality human movement and behavior. Recent years have seen

many exciting advances centered around developing more human-like approaches in

areas such as collision avoidance (Dutra et al., 2017) and character animation (Lee

et al., 2019). However, there has not been similar progress in developing human-like

approaches to the mid-level task of determining how an agent plans long-term paths

through an environment. Here, I look to close that gap by proposing a human-like

approach to global navigation planning.

When navigating in new or unfamiliar environments, humans must develop long-

term navigational plans to reach their goals, while only seeing local information (e.g.,

doors, walls, and hallways), and are often uncertain about the precise goal locations.

Cognitive Science has revealed several key components of human navigation behav-

iors, such as looking for long goal directed avenues (Bailenson et al., 2000; Lima et al.,

2016) and the use of fuzzy mental maps to aid in decision making (Epstein et al.,

2017; Kaplan et al., 2017). Here, I propose the Scene-Planning Network (SPNet)

framework. SPNet emulates the human-like approach to global navigation through a

custom neural network structure that first builds up an additive representation of the

places an agent has explored so far, and then leverages that representation, together

with uncertain goal locations, to develop a (stochastic) plan of what next action is

likely to make progress toward the goal. My approach captures several important

behaviors that are not possible with either full global planning or simple local heuris-

tics. SPNet agents will integrate the history of what they have seen to improve their

navigation, make different decisions in response to varying levels of certainty with

the task at hand, and will stochastically follow a variety paths in situations where
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multiple different paths to reach the goal are reasonable. Importantly, the training

approach used in SPNet reaches human-like performance on these tasks without re-

quiring any human training data, allowing the approach to be easily adopted in a

variety of applications.

6.2 Related Work

Our method draws from research in Computer Graphics, Deep Learning, and Cogni-

tive Science. Here I examine some closely related work from these fields.

6.2.1 Local & Global Navigation

Previous work in human-like navigation has considered both local and global contexts.

Related work in local navigation has focused on realistic behaviors (McDonnell et al.,

2008; Kapadia et al., 2015; Karamouzas et al., 2017), often with data-driven (Char-

alambous and Chrysanthou, 2014; Wang et al., 2016; Karamouzas et al., 2014) or

geometric (van den Berg et al., 2008) reactive approaches. Others have looked to

produce realistic local behaviors by modeling problems similarly to what humans

experience (Ondřej et al., 2010; Lee et al., 2019). Here, I take a similar approach,

broadening the scope to considering compelling human-like behavior in the context

of global navigation.

Graph search has been used for global navigation in interactive games, VR, and

animation to allow virtual characters to plan over a graph-like representation of their

environment, producing graph-optimal global routes to their goals, (Botea et al., 2013;

van Toll et al., 2016). Other works have focused on acceleration techniques (Lee and

Lawrence, 2013), or exploiting heuristics and optimized structures to accelerate the

search (Kallmann and Kapadia, 2014). Planners such as Rapidly-exploring Random

Trees and its variants (LaValle, 1998) use a sampling based approach to build plans
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in continuous environments under control constraints, while others apply computer

vision to directly predict next actions (Rabiee and Biswas, 2019), perform waypoint

navigation (Bansal et al., 2020), or vision-based navigation (Gupta et al., 2017).

Very related to my work is the area of agent-centered search. Works in this

field provide approaches for real-time heuristic search under local information and

time constraints. Approaches such as D* Lite (Koenig and Likhachev, 2002) and

LRTA* (Korf, 1990) incrementally learn heuristic information in an online fashion,

and extensions focus on improving convergence properties (Hernández and Meseguer,

2005), learning speed ( (Koenig and Sun, 2009; Sturtevant and Bulitko, 2011)), and

memory efficiency (Bulitko and Björnsson, 2009). LRTS provides a learning frame-

work with a tunable relationship between performance and optimality (Bulitko, 2004).

Here, my work will focus on creating human-like behavior (as opposed to guarantees

on heuristic admissibility) while allowing the goal to be fuzzy (the agents only have

a distribution describing where the goal may be).

6.2.2 Cognitive & Behavioral Studies of Human Navigation

In cognitive science, researchers have found that humans do not tend to take shortest

path routes (Duckham and Kulik, 2003), and have proposed heuristics to capture hu-

man exploration behavior, such as traveling as far as possible towards a goal (Bailen-

son et al., 2000), or maintaining a small relative angle in heading with respect to the

goal (Lima et al., 2016). Warren et al. (Warren et al., 2001) performed user studies to

learn a model as a linear function of goal distance and angle. Beyond local heuristics,

research has shown that humans integrate memory to form fuzzy mental maps that

influence navigation (Epstein et al., 2017; Kaplan et al., 2017).
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6.2.3 Deep Learning

Deep Learning (DL) techniques have been broadly applied to train large neural net-

works in many fields (Sze et al., 2017). Approaches for navigation can either be

supervised with known training data (as in (Pfeiffer et al., 2017)), or the network can

be trained to optimize path cost using reinforcement learning (as in (Tamar et al.,

2016) and (Long et al., 2018)). Deep reinforcement learning (DRL) has recently shown

promise for navigation as a fine-tuning final step, as was done in (Pfeiffer et al., 2018)

and (Luo et al., 2020). Very recent work has sought to improve the practicality of

DRL navigation by augmenting it with classical, analytical planners( (Chaplot et al.,

2020)). Neural networks have also proven useful in transforming raw input into rich

and meaningful representations (Cai et al., 2019; Doersch, 2016). Additionally, works

such as (Peters and O’Sullivan, 2002) have used learning techniques to model ways

people understand sensory information. Eslami et al. used an additive representation

network to encode virtual scene descriptors that can be used to query views from

novel perspectives (Eslami et al., 2018). A similar cognitive structure has recently be

used for efficient robot navigation on a grid (Gupta et al., 2017). I adapt a similar

architecture to build scene representations in a continuous environment.

6.3 Local-Global Planning

Like humans, SPNet agents are assumed to have only local, limited information about

their environment and imprecise knowledge of their long-term goals. The agent’s task,

then, is to integrate its local observations, together with a learned understanding of

typical building layouts, to plan efficient paths toward likely goal locations. I assume

the agent is updated in real-time following a sense-plan-act loop where it computes

its direction of travel frequently based on its history of recent observations.

This section details the underlying problem formulation and path execution strat-
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egy of the SPNet framework. In the next section I will introduce a novel network

structure which makes the actual predictions of the next optimal step for the agent.

6.3.1 Problem Formulation

Given a single agent tasked with navigating to given goal whose location is not pre-

cisely known, I represent each aspect of the problem as follows:

Agent Representation The agent is represented by a circle with a radius r large

enough to encompass the collision model associated with the agent’s animation.

Environment Representation The agent’s environment is defined by a series of

line-segments which represent impassible obstacles, and the agent is assumed to be

able to move otherwise freely and continuously in R2. An example map can be seen

in Figure 6.1.

Goal Representation An agent is not given the exact location of its goal, but

rather only a general fuzzy notion of its location. I represent this as 2D Gaussian

distribution centered at (µx,µy), with a standard deviation of σ in each dimension.

Sensing and memory An agent can only directly observe the portion of line seg-

ment obstacle walls which are visible from its current position. In practice, I represent

this as a series of i rays centered on the agent, whose length is the distance to the

wall. Together these rays form a visibility isovist from the point of view of the agent.

An example isovist can be seen in Figure 6.1. At any moment, the agent is assumed

to have access not only to its current visibility isovist, but also up to the last n isovists

it has previously seen. In this way, agents have memory of the past.

For all results, I use i = 60 rays to capture the local visibility isovist. The agent’s
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Figure 6.1: Feature Representation. An example training feature is rendered in
the context of an example environment. The goal distribution is shown as 1 and 2
standard deviation rings (σ= 2m).

memory, which I will refer to as the path history of length n, is capped at 3 in training,

but is allowed to grow to larger values in execution.

6.3.2 Execution Strategy

The optimal path between any two points in a 2D map can always be found by

connecting straight lines between corners or ends of walls (Lozano-Pérez and Wesley,

1979). I refer to any such (potentially optimal) point as a navigation node, and

statically compute all such navigation nodes for any map (purple x’s in Figure 6.1).

This discretizes the continuous navigation problem without sacrificing any potential

path quality by choosing between reachable navigation nodes. I move navigation

nodes to be r away from the closest wall to account for the agent’s radius.
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My fundamental execution strategy is as follows. Given a set of navigation nodes,

a start node, and a goal distribution, the agents utilize a neural-network to select the

next navigation node to travel to. At each step, given the current and recent local

visibility isovists, the network predicts the next optimal node position. The agent then

moves to whichever of the neighboring navigation nodes (e.g., currently visible nodes)

is closest to the network’s prediction. To guarantee the agent eventually reaches the

goal (and avoids infinite travel loops), I introduce a maxVisitCount parameter, which

specifies the maximum number of times the agent can visit the same node before the

node is removed from consideration.

Algorithms 6.1 and 6.2 detail the SPNet execution strategy. Because SPNet ex-

ecutes very quickly, it is possible to plan fully to the goal and smooth away minor

inefficiencies in the resulting path. Here, I generally avoid such smoothing techniques

as they can suppress desired exploration behaviors. One exception is that if a net-

work predicts visiting a node it has already visited (or a node for which the agent has

already seen all of the node’s neighbors), I allow the agent to move directly toward

the next predicted node as soon as it comes into view. In practice, the particular

character animation system used may provide some additional path smoothing as the

character animates between nodes.
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Algorithm 6.1: SPNet

Input: map (Walls and Nodes), start (Node), goal (Node), goalRegionMean
(Position), goalRegionSigma (float)

Output: path (Node List)
#global maxVisitCount = 3;
/* visit count for each node */

#global visits = [0] * map.numNodes;
/* path is full route (will include back-tracking sequences) */

path = [];
/* history is path with cycles removed */

history = [];
current = start;
while current != goal do

next = SPNetStep(map,current,goalRegionMean,
goalRegionSigma,history,path);

path.push(next);
current = next;

end
return path;
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Algorithm 6.2: SPNet Step

Input: map (Walls and Nodes), current (Node), goal(Node),
goalRegionMean (Position), goalRegionSigma (float), history (Node List),
path (Node List)

Output: next (Node) visits[current]++;
if isVisible(goal) then

next = goal;
else

/* gets all visible nodes from current node visited less than

maxVisitCount times */

candidates = map.getVisibleNodes(current, maxVisitCount);
if candidates.size == 0 then

/* retrace our steps */

next = history.pop();

else
position = getNetworkPrediction(current, goalRegionMean,
goalRegionSigma, candidates, path);

next = map.getClosestNode(position);
history.push(current);

end

end
return next;
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Figure 6.2: SPNet Network Structure: Isovist feature rays from the path his-
tory are transformed by the scene representation network and accumulated into a
scene representation. The planning network predicts two potential actions it thinks
are likely to lead to efficient paths given the representation, along with a relative
confidence between the two choices.

6.4 Learned Navigation

SPNet’s novel network-based formulation encapsulates both the process of the agent

building a mental map of the environment and planning the next best location towards

which to move. In this section I both describe the network architecture and discuss

the training approach.

6.4.1 Network Structure

The structure of the prediction network (shown in Figure 6.2) draws on the idea of

mental maps. Rather than taking in a visibility isovist (or series of isovists) and

directly predicting the next location, I divide the tasks into separate responsibilities:

a Scene Representation Network whose job is to build a representation of the map seen

so far, and a Planning Network, which takes this representation along with the (fuzzy)

goal location and predicts the next step to take. This separation of responsibilities

also leads to greater flexibility in how the network is used in execution.

I implement the Scene Representation Network using a three layer neural network

(500-300-100 nodes respectively), with a ReLU activation function between each layer.
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The input of this network is the normalized 60 isovist ray lengths, together with the x

and y offset of where the isovist was seen relative to the agent’s current position. The

output of this network is a 200 valued feature vector which represents the environment.

The Scene Representation Network is run once for each isovist in the agent’s path

history, defined as the most recent n isovists (and their offsets) that the agent has

seen. The resulting encoding from each isovist are then summed to produce the final

200-dimensional scene representation vector. Critically, this additive representation

does not require the agent to use a fixed path history size in execution or training.

Summing the Scene Representation Network output over more or fewer previously

observed isovists will change the agents behavior in a natural fashion. This behavior

tuning is discussed further in Section 6.5.2.

The Planning Network combines the 200-dimensional scene representation to-

gether with the goal region to determine the likely next actions. The goal input

is represented as three parameters defining a Gaussian which describes a distribu-

tion over possible goal locations. These values are concatenated with the encoding,

and the resulting 203 dimensional vector is then passed through another three layer

network (100-150-200 nodes respectively), with a ReLU activation function between

each layer. The output of this network encodes the next step for the agent to take.

6.4.2 Navigation Prediction

Rather than producing a single 2D coordinate for the next navigation step, the net-

work outputs a stochastic prediction split over two alternatives: p0 = (x0, y0) and

p1 = (x1, y1) represent the probable offsets (relative to the agent) of optimal next

navigation nodes, and c ranges continuously from 0 to 1 represent the network’s

choice between p0 and p1 (0 for choice 0, 1 for choice 1).
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I train this output using a three-part loss function:

L(p0, p1, c, y) = kmLmin + kaLavg + kpLpred (6.1)

with p0, p1, and c as defined above, y as the true optimal prediction for this scenario,

and km, ka, and kp as tuning parameters that relatively weight the three components

of the loss.

Each of the three components of the loss function serves a different purpose. The

first term:

Lmin(p0, p1, y) = min(s0‖p0 − y‖, s1‖p1 − y‖) (6.2)

measures how close the better of the two predictions is to the optimal next node. The

si terms, computed as si = 5 ∗ sigmoid(||pi − y|| − ||pa − y||) where pa is the agent

position, add penalties to discourage overly short predictions. The min() ensures this

component of the loss only provides a reward for improving the better of the two

predictions. This allows the network to split the prediction, as there is no penalty

for the wrong half of the split. Combined over training data representing ambiguous

scenarios, the two predictions are driven towards different, but equally promising next

steps.

Simply optimizing the better of two predictions during training is insufficient when

one of the two predictions is much further away from the correct node than the other.

The second loss term, Lavg, addresses this by providing a small penalty for the average

of the two predictions:

Lavg(p0, p1, y) = (‖p0 − y‖+ ‖p1 − y‖)/2 (6.3)

This term must have a small weight to ensure the primary loss comes from Lmin to
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maintain split predictions.

The network also must learn to indicate which of the two predictions is the correct

using an output value c. This is accomplished via the third loss term, Lpred:

Lpred(p0, p1, c, y) = |(c− sigmoid(‖p1 − y‖ − ‖p0 − y‖)|, (6.4)

where the sigmoid function, 1/(1 + e−x), maps the relative difference between the

errors of the two options to the continuous domain [0, 1]. This loss will be driven to

zero when c matches the (sigmoid of) the relative error. When c is very near 0 or 1, it

means the network has identified this scenario as unambiguous, having a clear choice

as to which node is the better prediction. (c = 0 implies the agent should move to

p0, and p1 when c=1.) When c is not very close to 0 or 1, the network has identified

this scenario as ambiguous, and neither choice is clearly better than the other. In

this case, the network can choose the prediction with which c is more aligned, or

randomly select an option, leading to a spread of reasonable paths (which I will refer

to as stochastic node selection). Unless otherwise stated, for all results I used a km

of 0.999, a ka of 0.001, and a kp of 10.

Figure 6.3 shows the effect of the network’s split prediction. At the top left of

the map, the network does not have enough information to know which side of the

courtyard is most optimal, and bifurcates the prediction between the two hallways.

When the agent is in a less ambiguous part of the building, the network is more

confident in the next step.

6.4.3 Data Generation & Network Training

To facilitate training and evaluation, I created a dataset of environments based on real

floor plans from a variety of buildings of different shapes and sizes (see Figure 6.19

and Figure 6.20). Maps used in training the network include three smaller buildings,
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Figure 6.3: Prediction under Ambiguity. The agent (circle with inset arrow)
navigates to its goal (circle inset in large uncertainty region) from 2 locations in
a courtyard-style map. Lines eminating from the agent terminate at predictions
(larger circle → more confident prediction). Unambiguous scenarios produce greater
confidence in the chosen direction.

two larger buildings, and a small test map made by hand. This dataset consists of a

wide range of different environments, with very different types of layouts, and very

different sizes (see Table 6.1). Additionally, I withheld a set of maps from training

to be used in analysis of how the method performs in untrained scenarios. All maps

are rendered in Figure 6.20 and Figure 6.19.

While I employ a supervised learning approach, it would be impractical to gather

enough human path data to demonstrate good behavior on a meaningful percentage

of the potential tasks. For example, the 6 maps I use in the training dataset contain

6.9 million training examples of different start goal pairs permuted with possible

previous observations. In order to create this data, I instead use a graph-optimal

search to determine the optimal path from start to goal, and use the resulting step-

wise decisions in training. Although SPNet is trained on optimal paths, my goal is

not to produce purely optimal behavior. Rather, attempting to be globally optimal

while restricting the network to only local, uncertain information results in paths
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Table 6.1: Datasets: the collection of maps analyzed in this work. The table indi-
cates the size of the maps, and the number of instances of training data that would be
generated from that map. The three largest maps and one smaller map were excluded
from training and used to test generalization.

Walls Nodes Size (m) Data (#) Use
Simple 29 28 12x8 16 K Train
Apartment 65 65 14x9 157 K Train
House 72 84 29x19 168 K Train
Courtyard 75 97 17x12 867 K Train
Medical 101 109 23x27 1.1 M Train
Office 84 95 28x17 781 K Test
University Labs 129 154 44x26 4.66 M Test
Business Park 161 197 33x27 4.60 M Test
Conference 276 332 61x33 15.44 M Test

with human-like sub-optimal behaviors, even on maps used in training.

In training, the network is never given the actual goal position, but a distribu-

tion with a mean sampled from a Gaussian centered at the true goal location with

uncertainty σ. In order to integrate this uncertain representation into a gradient-

based optimization architecture, I employ a custom network layer which samples the

fuzzy goal region to generate a specific training instance (the dark shaded box in Fig-

ure 6.2). Importantly, the σ used to perturb the goal location is also an input to the

navigational network, enabling the input σ to be used as a run-time tuning parameter

that controls how much the agent is willing to explore.

The Scene Representation Network and the Planning Network are trained together

as one system. The training data is generated by an exhaustive sampling of every

reachable start-goal pair of navigation nodes in training maps. Given a start-goal pair,

I permute possible path histories to generate training rows. The network weights are

trained using Keras (Chollet et al., 2015) using stochastic minibatch gradient decent

with an ADAM optimizer.

The network was trained on 10 cores of an 2.3 GHz Intel(R) Xeon(R) CPU.
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Figure 6.4: Training Loss: Total training loss (outset) and just the predictions loss
Lpred (inset) throughout training.

Training was run for 230 epochs that iterated through all the training data, with

each epoch taking about 3 minutes, and the entire run taking 12 hours. As can be

seen in Figure 6.4, most of the improvements in loss came at the start of training,

but the longer run ensured the network had sufficient time to converge.

Training was performed across 5 maps and included all possible paths with a

history of length three for a total of 2,315,665 training examples, each of which was

sampled with three levels of goal uncertainty (sampled from 0, 1, and 2m Gaussian

distributions respectively), leading to about 7 million samples trained each epoch.

Epochs were trained in batches of size 100,000 using the Keras framework with the

ADAM optimizer and a dynamic learning rate that started at 3e-4 and ended at 1e-5.

To improve numerical stability, isovist ray lengths are normalized to lie on the

interval [0, 3] by dividing by 10 = 1/3 of the maximum length of 30m. Unless oth-

erwise stated below, the network was trained with a goal uncertainty σ ∈ {0, 1, 2}
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meters, and a maximum path history of size 3. I note that while 2m may seem like

a small distance, in practice sampling from a 2D Gaussian with i.i.d dimensions at

σ = 2m often yields points significantly farther than 2m from the mean (in fact, the

1 std dev circle having diameter 4m will probabalistically contain less than half of

sampled points). As discussed in Section 6.5.2, the network was able to extrapolate

good behavioral performance beyond the uncertainties and history sizes on which it

was trained.

In order to help reduce the tendency of the network to overfit to the maps in the

training pool, noise was added during training. First, a small amount of zero-meaned

Gaussian noise (std. dev. of .01m) was added to each of the input isovist rays, and

then a larger amount of noise (std. dev. of 0.1) was added to the encoded, goal-

independent local representation. Previous work in the neural network literature has

shown improvements by adding this type of noise during training, both in terms of

the ability of networks to generalize to situations not seen in training, and to create

smoother, more meaningful internal representations (see for example (Noh et al.,

2017) or (Eslami et al., 2018)).

6.5 Results & Analysis

6.5.1 Network Analysis

As discussed above, allowing the network to split its prediction led to more human-

like behaviors. Additionally, these split predictions improve the training performance

of the network. Figure 6.5 shows a comparison of the SPNet network trained on a

single map with 6m of goal uncertainty with and without split predictions. With

split predictions enabled, there is over a 60% reduction in the final loss L (from 3.68

down to 2.26). Similarly, the additive representation enabling path history also led
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Figure 6.5: Training Profile Comparisons. A + or − in a condition label denotes
presence or absence of an SPNet network feature respectively. “S” and “H” represent
split predictions and path history respectively.

to improved loss in training. Figure 6.5 shows that incorporating path history led to

an additional 15% reduction in the training loss.

Runtime Breakdown

The runtime of SPNet planning is dominated by three major components. Figure 6.6

shows the runtime breakdown of each for maps of various sizes. All experiments were

run on a desktop PC with an Intel i7 4770K CPU and 16GB of memory. While com-

puting isovists takes longer on larger maps as more visibility checks are needed, the

planning network runtimes are fairly constant. Longer path histories add incremental

cost as the scene representation network is run once per recalled isovist. Even for very

large maps, SPNet runs in real-time, taking less than 2ms to output a next step. If

faster performance is required, isovists can be precomputed for each navigation node.
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Figure 6.6: SPNet Runtime: Average total runtime for each step of planning in
SPNet across history and map size. 50 random tasks were executed for a small (House)
and large (Business Park) map to generate timing samples. Runtime cost is primarily
split between executing the prediction network, scene network, and computing isovist
features.

6.5.2 Behavioral Analysis

Our problem formulation and custom network structure allows SPNet agents to dis-

play several human-like navigation behaviors that are not possible either with optimal

planning techniques or simple local heuristics. SPNet agents respond only to their lo-

cal conditions, explore in search of vague goals, integrate their observations over time,

and intelligently backtrack when they get stuck in local minima. The framework runs

in real-time, with a full planning step taking 1-2ms (see Appendix Section 6.5.1 for

runtime details).

As the SPNet predictions are a distribution over two likely possible actions,

stochastically selecting one can create a natural diversity of paths. Because the

choice of which node to go to next follows the distribution predicted by the net-

work, the agent paths tend to vary more in ambiguous situations. Figure 6.7 shows

some example path bifurcations, overlaid with user paths from a user study I detail

in Section 6.6.1.

Figure 6.8 shows a SPNet agent navigating past a fork juncture on an apartment-
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User SPNet SPNet Optimal

Figure 6.7: Human-Like Behavior: SPNet produces efficient, human-like paths
both for maps on which it was trained (left), and maps not seen in training (right).

style map. Here, when the goal uncertainty is small (left), the agent navigates straight

to the goal, taking a near-optimal path. While this path might be expected from a

person who is very familiar with both this building and the exact goal location, its

not very reflective of the ambiguity inherent in the navigation task. Increasing the

goal uncertainty (right) naturally leads to an exploration behavior.

SPNet agents have two main tunable parameters which can control the behaviors:

the size of the goal region σ (creating less certainty in the agents decisions), and the

maximum path history n (creating more intelligent backtracking behaviors). These

two parameters can also interact with each other. For example, for low σ, paths are

more efficient regardless of the size of the path history. When the goal region grows

larger, path history becomes more important, especially as the agent needs to reason

about which previously explored paths are unlikely to lead to the goal.

Figure 6.9 explores the interaction of goal uncertainty and path history by com-

paring SPNet paths to optimal averaged over 200 random tasks spread over the 5

training maps. A larger history size increases path optimality across goal uncertain-

ties, even for history sizes and uncertainties beyond those used in training. A 2-way

ANOVA reveals that goal uncertainty has a more significant effect on the agent’s path
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Figure 6.8: Effect of Goal Uncertainty: The right path has σ = 2.5m and the left
has no goal uncertainty. The high uncertainty case produces exploratory behavior as
the agent searches for the goal, while the agent on the right heads directly for the
certain goal location.
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Figure 6.9: Effect of Behavioral Parameters. Goal uncertainty and history size
can be tuned to affect agent behavior. Large uncertainty leads to exploratory behav-
ior, and increasing the history size leads to more optimal paths.
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Figure 6.10: Effect of Path History. Two simulated paths for the same task are
shown. The right path was generated by an agent with no path history (n=1), and
in the left path the agent incorporates the past three visited map nodes in planning.

than history (history F = 2.4, p < 0.1, uncertainty F = 7, p < 0.05). These results

confirm the ability of the scene representation and planning networks to generalize

outside the range of parameter values used in training.

Effect of History

Figure 6.10 shows an example of the key navigational behaviors SPNet agents exhibit.

On the left is an agent with a max path history of 3 isovists and a relatively large

goal distribution (σ = 2m of uncertainty, shown as the shaded circle at 1 std dev

radius). After initially exploring the room overlapping the bottom half of the goal

distribution, the agent rules out the area as a potential goal location and remembers

this as it travels up the left side of the environment. In contrast, an agent who is

using only its single, current isovist (no path history) is unable to remember where

it has been. Figure 6.10 right shows such an agent, who must return to places it had

been before, eventually finding a longer route to the goal.

The effective size of the history can be increased simply by summing additional

encodings together before sending them to the planning network. As shown in Fig-

ure 6.9 and 6.11a, this additive encoding scheme allows the SPNet to make meaningful
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Figure 6.11: Left: Effect of history size on path optimally averaged across all paths
with goal size σ=2. Right: The representation network allows for the integration of
past observations that influences future decisions, resulting in more human-like path
lengths on untrained maps.

use of additional history even outside the sizes it was trained on. 6.11b shows the ef-

fect of planning over longer histories on the optimality of the resulting paths. Plans

that account for more history lead to more optimal paths, even when using longer

histories than were seen in training.

Some over-fitting effects can be observed in trained maps where SPNet produces

path lengths closer to optimal than human paths, while matching human path lengths

better on untrained maps. This suggests that techniques to help combat over-fitting

such as larger training data sets and early-stopping may further improve SPNet’s

path quality on trained maps. Alternatively, this over-fitting can be exploited as a

feature when agents should exhibit familiarity with a particular environment.
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Study 1 Study 2
Participants 48 27
Task Set Size Training Maps 8 25

Testing Maps 2 15
Tasks Performed (per participant) 16.2 ± 9.5 13.4 ± 7.0
Task Frequency 36.9 ± 11.3 9.1 ± 2.4
Gaming Experience <1 hr/month 13 7

1 - 4 hrs/month 11 5
5 - 20 9 9
20 + 15 6

Table 6.2: User study and participant summary. The task set breakdown indi-
cates the number of available tasks in maps on which the network was trained or not
trained. Task frequency refers to the average number of times a given task was per-
formed by a user. The game experience reflects participant responses to the question
“About how often do you play First-Person or other Action-based 3D video games?”

6.6 Validation

6.6.1 User Study

In order to better understand the routes that would actually be taken by humans,

I conducted a user study in which participants performed navigation tasks in the

same environments considered in this work via a 3D game-like interface. During the

navigation tasks, the participant trajectories were captured, yielding a dataset of

human paths useful for validation comparisons with SPNet agent paths.

Experiment Design

To partake in the study, participants used first-person WSAD controls to navigate

from a start position to a goal position (which together compose a navigation task)

through a 3D rendering of the environment. The study software was developed using

the Unity Game Engine ©, and built to be run in a web browser. This allowed users

to participate using their own computers by simply following a hyperlink. Instructions



6.6. Validation 121

advised using a mouse and keyboard, along with recommended browser and computer

specifications.

To render the user’s perspective as they moved about the environment, the 2D line

segments of the map are transformed into an opaque wall with a random, neutral-

toned color. As the maps come from real-world layouts, the units (in meters) are

preserved in the rendering. A mini-map in the bottom right corner of the screen dis-

played a live update of a top-down view of the user’s position, orientation, and relative

goal location. Importantly, walls are not rendered in the mini-map in order to main-

tain local information constraints. This both supports a similar informational context

for users and what would be available to an SPNet agent, and more importantly helps

elicit the navigational behaviors that I am interested in capturing (namely, those that

humans exhibit when navigating under local information constraints). An example

screenshot from the study application is shown in Figure 6.12.

Each participant took one of the two versions of the study. In the first study

variant, all participants performed the same eleven navigation tasks in a random

order, followed by randomly generated tasks that were not used in analysis. In the

second version of the study, participants were given a randomly ordered set of 40

predefined tasks across all maps (5 from each of the 8 maps excluding the “Simple”

map, amounting to 5 trained and 3 untrained).

When the user reached the goal for a given navigation task, they were presented

with a success screen and could choose to continue to the next task, which would place

them at a new start position (of a potentially new environment) with a new goal.

Participants were given a target number of navigation tasks to complete (11 for the

first variant and 15 for the second), but were allow to do as many or few as they chose.

Each user was given a sample “warm-up” task to acclimate to the controls where the

goal was visible from the start position. As the user moved through each task, their

path was tracked at a frequency of 10 samples per (virtual) meter displacement.
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Participant Information

The first study variant had 48 participants, with 27 participants in the second variant.

Participants were recruited primarily by word-of-mouth by computer science lab stu-

dents. While separate recruitment was conducted for each study variant, participants

from the first study were not barred from partaking in the second. All participants

were asked to indicate their amount of experience with first-person action-based video

games on a discrete scale of < 1 hour per month to 20+ hours per month (see Ta-

ble 6.2). The participant pool represented a range of gaming experience, with good

coverage across all experience levels.

Study Results

Table 6.2 shows a breakdown of some participation statistics. In total, 879 paths

were collected for the first study variant, ensuring a robust sampling on each task

to support comparisons within a single task. The second study variant yielded 394

paths. As compared to the first study variant, each condition has less coverage from

different users, but the study overall includes a larger number of tasks. In the first

study, no participant saw more than 5 tasks in the same map, and in the second, the

most tasks for a single user on the same map was 3. This supports interpreting the

paths as being taken in an unfamiliar environment.

Before performing analyses, both user and simulated paths are put through a

low-pass running median filter as implemented in the runmed function of the statis-

tical programming language R (R Core Team, 2020) with k=11 to remove any small

jittering in the paths.

The thorough coverage of each task in the first variant of the study allows a qual-

itative comparison of the routes frequently taken by humans to be compared to those

generated by SPNet agents. Figure 6.7 shows the results from two tasks in the first
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Figure 6.12: User Study Interface: Snapshot from the user-study tasks. Partic-
ipants were asked to navigate to a goal whose relative position was indicated by a
green dot in the mini-map at the lower right.

Figure 6.13: User Study Participation: The study was implemented as a web-
hosted 3D game experience, allowing users to participate in the study on their own
computers via a web browser in full-screen mode.
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User OptimalSPNet SPNet SPNet

Figure 6.14: User Path Comparison: Paths generated by SPNet agents cover the
same general routes as those taken by users.

study, where we see both SPNet agents and participants take a variety efficient paths

(that frequently differ from the optimal path commonly used in crowd simulation).

While the map on the left side was a map used in training, and the map on the right

was not, in both cases the generated paths are well aligned with a frequented par-

ticipant route. The different routes are made possible by using the stochastic node

selection approach described in Section 6.4.2 where the agent randomly selects one

of the two predicted nodes weighted by the c value output by the navigation network.

Simiarly, Figure 6.14 further supports the ability of SPNet agents to support a variety

of natural routes, matching well the different general routes taken by participants.

The data from a larger number of tasks in the second variant of the study supports

a quantitative comparison between SPNet agent paths, user paths, and optimal paths.

As users in my study had never navigated through the maps before and only saw

each map a few times throughout the course of the study, it is more appropriate to

compare tasks on maps for which the SPNet was not trained. Figure 6.15 shows a
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Figure 6.15: Path Length Comparison: Path lengths are shown for the optimal
path, those generated by SPNet agents (σ = 6m, path history = 3, stochastic node
selection enabled), and those taken by participants in the second part of the user
study (for the same tasks) on untrained maps.
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comparison from the second study variant between the path lengths taken for tasks

on untrained maps by an optimal planning technique, the study participants, and a

SPNet agent with goal uncertainty σ = 2m, path history size = 3, and stochastic node

selection enabled. As compared to optimal routing, SPNet agents were on average

6.2m closer to the human path length for each task, and closer to the user path length

than the optimal path 75% of the time. For path lengths in general, SPNet path

lengths (M = 48.43m, SD = 25.22m) better matched the distribution of user paths

(M = 47.81m, SD = 17.43m) than the optimal paths (M = 28.73m, SD = 9.17m). An

ANOVA analysis confirms a statistically significant effect (F (2, 57) = 7.3, p < 0.01).

A Tukey post-hoc analysis confirms a stable difference between optimal and user

paths (p < 0.01) and between optimal and SPNet (p < 0.01), but not between user

paths lengths and those generated by SPNet (p > 0.9).

6.6.2 Comparison to Local Heuristics

SPNets bridge the gap between global planning techniques and local navigation

heuristics. Human route selection studies have revealed high-quality local route selec-

tion heuristics that strongly influence human paths. Two of these techniques from the

cognitive science domain that can be implemented in the broader navigation frame-

work of this paper (with a relaxation of the problem formulation) are as follows:

• Traveling as far as possible towards a goal (Bailenson et al., 2000), which I will

refer to as Closest-to-Goal (CTG)

• Maintaining a small relative angle in heading with respect to the goal (Lima

et al., 2016), which I will refer to as Angle-to-Goal (ATG)

Notably, both of these methods require the true goal location to properly compute

the heuristic. This requires a relaxation of the problem formulation, namely, that the

true goal location is known. While the mean of the goal region could be used as it



6.6. Validation 127

●

●

●

●

●

●

● ●

●

●●

●
●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

16.53
18.02

27.05
24.02

22.16

0

20

40

60

Optimal SPNet User ATG CTG
Navigation Method

P
at

h 
Le

ng
th

 (
m

et
er

s)

(a) Trained Maps

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25.67

45.61 46.81
44.78

41.38

0

20

40

60

Optimal SPNet User ATG CTG
Navigation Method

P
at

h 
Le

ng
th

 (
m

et
er

s)

(b) Untrained Maps

Figure 6.16: Human users take longer paths than the graph-optimal sequence. For
trained maps, SPNet path lengths are close to graph-optimal, but on new maps SPNet
paths are closer to the paths taken by humans.
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maximizes the likelihood of the true goal location, this would cause the methods to

behave very sub-optimally. In this case, the heuristics would continually bias towards

the same errant locations in cases where the true goal is sufficiently different than

the mean of the goal region, backtracking to the same locations repeatedly until node

visit counts are exhausted. Instead, to enable a comparison, I allow the heuristics to

“cheat” and use the true goal position.

Figure 6.16 shows the results of replacing the network predictions with CTG and

ATG-based heuristics for round 2 of the user study. The left side shows results for

tasks on trained maps, and the right shows tasks on untrained maps (same tasks as

shown in Figure 6.15). When compared to the tasks in the user study data, both

CTG and ATG had path lengths which were more similar to human paths than the

optimal route selection for tasks on both trained and untrained maps. This result

is consistent with the existing findings in psychology of the general importance and

applicability of these local navigation heuristics to humans. For trained maps, SPNet

agents are much more familiar with the environment, and naturally take more efficient

paths (the same σ and path history are used in all comparisons).

While the CTG and ATG heuristics perform quite well compared to user paths,

SPNets provides several benefits worth noting. SPNet paths match human path

lengths as well as (or better than) these heuristics on untrained maps, while enabling

more natural behaviors in their global routes; in practice, ATG tends to oscillate and

CTG can get stuck in obstacle local minima. SPNets supports a variety of natural

paths with stochastic node selection, while heuristics must yield the same result every

time. For maps on which it is trained, σ and path history size can tune agents in

real time to exhibit greater or lesser familiarity with the environment. Additionally,

SPNets supports uncertain goals and memory integration, while both ATG and CTG

must be given the true goal location to be computed.

As expected, users had much longer path lengths than SPNets on trained maps.
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Figure 6.17: Generalization under Goal Uncertainty. Simulated paths are shown
for a mid-size test map (Office). Dots and stars indicate the start and goal locations
respectively. SPNet agents are able to find efficient paths even underneath mid-sized
goal uncertainty (here σ=2m, n=3).

It is plausible that after a long time exploring the same map, humans would build up

a familiarity with that map and the paths would look closer to optimal. For maps on

which it was trained, low σ close to 0m will bring SPNet paths close to optimal as

well, allowing animators to set a dynamic level of familiarity displayed by the agent.

6.6.3 Generalization to Untrained Maps

Figure 6.17 and Figure 6.18 show SPNet agents navigating in a variety of paths on

untrained maps. Empirically, the agents regularly find efficient and natural paths

that reach their goal, despite having never seen the map in training. In practice, goal

uncertainty has a more natural effect on behavior for smaller to mid-sized untrained

maps. In large, complex maps such as those in Figure 6.18, even a small history size

compared to the total path length can produce efficient paths for tasks with relatively

shallow local obstacle minima (the paths depicted were produced with history size =

3). For very large and complex environments, larger history values (in both training

and execution) are important for producing higher efficiency paths.
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Figure 6.18: Generalization to Large Maps. Left: Selected SPNet paths on the
Conference map (n= 3, σ = 0m). Right: Selected SPNet paths on the Business
Park map (n= 3, σ = 0m). SPNet agents are generally able to find efficient paths,
especially when given the true goal location.
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6.7 Limitations & Future Work

While SPNet covers an important aspect of a human-like global navigation, it focuses

on single agent navigation. Planning in environments with multiple agents typically

require specialized search techniques (Atzmon et al., 2020) or hierarchical models

(Musse and Thalmann, 2001). Expanding the network input to include the relative

position and velocity of other agents could combine local and global planning into

an integrated network. While SPNet is already real-time for a single agent, faster

performance may be needed to support large crowd simulations with thousands of

agents in a shared scene. Here, it may be possible to accelerate isovist construction

using spatial data structures, and to speed up network computation by using GPUs.

6.7.1 Map Renderings

Below are renderings of maps used in training ( Figure 6.19) and testing ( Figure 6.20).

All environments were based on real floor plans, abstracting away irrelevant obstacle

detail.
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Figure 6.19: Training Maps.
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Chapter 7

Closing Remarks

As evidenced by the examples included in this thesis, a large part of moving towards

AI that enriches everyday life is understanding how humans move. Building realistic

models of human motion requires both capturing the aspects that make the motion

appear natural, as well as the rich variety of motion seen within and among individ-

uals. No matter where one looks, this duality presents itself in the real world time

and again. My approach to understanding humans by studying movement in this way

has value pervading many domains and scales of behavior, from smiles to collision

avoidance to long-term navigation decisions. The increasing practicality with which

human motion data can be captured opens doors to new insights and analysis, and

will continue to drive research in this area. Even so, the challenges of producing ever

increasing realism will continue to require innovation as AI solutions seek to enter a

widening set of application domains.

Throughout this dissertation, I have presented techniques as evidence to support

my thesis that data-driven methods are useful for creating realism in and evaluating

the realism of human motion simulations. Identifying naturalness and variety as two

major components of realism, I approached the endeavor by leveraging a combination

of datasets containing human paths along with user studies to assist with both the

simulation of motion and evaluating the realism in the results. In each presented
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work, I have given demonstrations of the efficacy of proposed methods by applying

them to concrete cases in real domains. Following is a summary of the key results of

each.

7.1 Summary of Contributions

At the opening of this dissertation I provided a concise list of contributions contained

in my work that support my thesis statement. Here I expand briefly on each contribu-

tion to connect it with the corresponding material presented throughout the previous

chapters.

A Dataset of Casual Observer Reactions to Digital Smiles

In Chapter 2, I designed, implemented and conducted a large user study of nearly

1,000 casual observers to collect over 10,000 reactions to a set of digital smile an-

imations. These animations represented a systematic sweep of a low dimensional

feature space I introduce, called Facial Space. The semantically meaningful basis

supported by Facial Space is useful for studying the interactions between movements

of the mouth and perceptions along several subjective axes of emotional intent, pleas-

antness, and authenticity. This data represents a rich sampling of the interaction

between movements of the mouth and the associated measures, and is useful for a

variety of interdisciplinary fields. The raw data is made publicly available in digital

form in (Helwig et al., 2017).

A Procedural Generation Framework for Human Smiles

In Chapter 3, I demonstrated how to leverage the dataset presented in Chapter 2 to

build a generative model of realistic human smiles for virtual characters. This frame-

work constitutes a novel method focused on enabling a variety of mouth movements
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while simultaneously achieving a targeted emotional intent. I validated this claim

with a follow-up user study that showed with strong statistical significance that my

method accomplished both its goals of variety and semantic targeting.

A Precision-Variety Learning Heuristic

In Chapter 3, I also addressed the fundamental trade-off between the precision of a

classifier and its variety by proposing a heuristic ordering of the data that exposes the

trade-off through a tuning parameter to allow the maximum variety to be achieved

given a precision threshold. I provided a theoretical motivation for underlying data

conditions that guarantee when this parameter will have the desired effect, and showed

both empirically in the smile dataset and a toy dataset that the assumptions hold

sufficiently well. This heuristic represents a novel contribution to machine learning

in the context of generative classifiers with targeted semantic classes, which directly

supports my thesis goal of simulating realistic motion.

A Validation of Collision Avoidance for Realism in VR

In Chapter 4, I performed an evaluation of the impact of data-driven collision avoid-

ance on user experiences in immersive 3D virtual environments (VR). This evalu-

ation was two-pronged, using both an objective measure of tracked user paths in

the environments and a subjective simulator sickness questionnaire to measure user

experiences. The analysis I provide gives clear indication that data-driven collision

avoidance methods are critical to supporting realism in immersive virtual settings.

These results represent both a contribution as a first user study to evaluate data-

driven collision avoidance in HMD-based VR and a demonstration of data-driven

validation as outlined in my thesis statement.
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A Data-Driven Analysis of Shopper Navigation Decisions

In Chapter 5, I propose an analysis framework for studying multi-task global navi-

gation decisions, and apply it to a large dataset of paths collected from shoppers in

a grocery store. The analysis reveals a strong relationship between the entropy (or

difficulty) of sub-tasks and the likelihood of making sub-optimal choices relative to

the locally greedy choice. These findings contribute to the state of the art in under-

standing human decision processes as they apply to global navigation. I proposed a

simulation model that follows from the entropy relationship for generating a variety

of plausible (natural) routes given a set of items to retrieve in a store, and show the

results match the human dataset with high accuracy, providing support in an ad-

ditional domain for my thesis claim that data-driven methods can produce realistic

motion.

A Deep Learning approach to Global Navigation with Uncertain Goals

In Chapter 6 I propose a unique approach to generating realistic global navigation

simulations for building-like environments with uncertain goals. There I demonstrated

that even without collecting large samples of human trajectories for learning, realistic

simulations could still be made possible by reformulating the learning task to solve

a human-like problem. I did this by training a custom neural network architecture

I designed (SPNets) on automatically generated optimal paths, but subjecting the

information available to similar constraints that humans face in the real world. Ad-

ditionally the neural network was designed to include human-like faculties such as

memory, the ability to represent informational ambiguity, and an internal separation

of scene representation and planning.
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A Simulation Algorithm for Realistic Global Paths

Placed in the broader context of a simulation framework, I showed the SPNet network

is capable of producing a variety of human-like routes in a number of buildings.

The paths exhibit several human-like navigation behaviors, which contributes to the

state of the art in human-like global path simulation. These include intelligent back-

tracking, narrowing down goal locations, and familiarity (increased optimality) for

maps on which the network was trained. Both the naturalness and the variety of

the results are validated with a small user study collecting human paths on the same

tasks via a virtual interface.

7.2 Impact of Contributions

While the works included here are intended to be directly useful in the applications

in which they were contextualized, the insights gained extend beyond the specific

domains to the broader field of AI. For example, Precision-Variety Learning is not

only a novel machine learning heuristic with it’s own merits, but the work also shows

that user studies conducted on systematic simulations enables the capture of intan-

gible elements of how humans perceive naturalness in simulated motion. This was

validated by using the data to train a generative model, and confirming the realism

of the resulting simulations with a follow-up user study. Similarly, the collision avoid-

ance evaluation work complements this idea by establishing that human paths can be

used to evaluate the naturalness of existing data-driven methods. The shopper path

analysis produces valuable insight for the study of human gathering behavior, and

is consistent with other studies of human cognition that relate informational com-

plexity of problems to performance on a given task. Finally, the indoor environment

navigation work shows that even when collecting large quantities of human paths

impractical, a data-driven method can still produce a variety of natural routes for
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a virtual agent (closer to human paths than optimal or using simple heuristics) by

formulating the problem using similar constraints to what humans face in real life.

7.3 Limitations

While I have discussed the limitations inherent to the techniques presented in the

corresponding chapters, I provide a summary here.

A limitation of the machine learning heuristic I presented for tuning the precision-

variety trade-off is its reliance on underlying data conditions. While these conditions

are desirable for any classification task, they may not always be strongly present, and

are less likely to be so with increasing dimensionality and sparsity of sampling within

the feature space. In generating facial expressions with this method, while our dataset

supported the challenging task of producing a variety of happy facial expressions at

different intensities, the feature space we used might need to be extended beyond

mouth shapes to support other emotions. Similarly, the feature space for the classifier

considered only spatial measures, whereas evidence points to temporal aspects having

importance for perceiving emotional intent. For example, in (Helwig et al., 2017) my

co-authors and I found that subtle temporal asymmetries had a significant impact

on the perceived pleasantness of smile motions. Additionally, classification methods

that focus on optimizing for computational speed and memory requirements would

be needed for practical implementations in real-time settings such as video games

that might require expressions to be generated on-the-fly. Finally, a dataset using

expressions animated on a more diverse set of facial models would better capture the

diversity of human expressions.

While the results in my work on evaluating collision avoidance in immersive virtual

environments showed compelling support for its importance, the size and scale of the

user study was limited to under 10 participants in a relatively small working area.
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An open question is how the presence or absence of collision avoidance may impact

other more typical crowd interaction scenarios, such as walking along with a crowd or

allowing them to merge in a more organic fashion (our track required participants to

enter the flow at a 90◦ angle). Additionally, it is not clear how instructional cues (such

as the positioning of the path markers in VR) may have affected the interactions.

The analysis performed on the shopper motion data was based on the simplifying

assumption that shoppers were making decisions based on full knowledge of the list

of items they would eventually purchase. Of course, this is not always the case, as

shoppers sometimes make unplanned purchases (Massara et al., 2014) or consider

but ultimately reject items they had planned to buy (though the dataset I used does

not have sufficient information to study such phenomena). While the local greedy

formulation I adopt for modeling a shopping trip (where the shopper attempts to

identify the next closest item and goes there) has intuitive merit, the extent to which

this is valid for human shoppers is an open question. Additionally, my analysis of task

entropy considered only pair-wise item decisions. While it seems to extend well to

the N-item case in practice, additional work would be needed to prove this in theory.

My work on human-like global navigation behaviors focuses on a single agent

in a building-like environment. The problem of planning for multiple agents in the

same space can present new challenges requiring specialized approaches (Atzmon

et al., 2020; Musse and Thalmann, 2001). An example of this is when agents have to

coordinate to share limited spatial resources such as narrow passageways (Hildreth

and Guy, 2019). Integration with other features or an extension of the SPNets network

would be needed to leverage the existing features in such settings. While SPNets are

already real-time for a single agent, faster performance may be needed for scenarios

with many agents or to extend the work to roadmaps with many nodes, such as

probabalistic roadmaps (Kavraki et al., 1996).
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7.4 Future Work

While this dissertation represents a substantial step towards the goals identified

in Chapter 1, there are many opportunities for future resesarch in this area. A more

human-centered, social form of AI will require many new insights, innovations, and

technical contributions to become a fully recognized priority. Here I highlight several

avenues related to my existing work and establish a vision for the future of the field

that inspires further exploration.

7.4.1 Next Steps

Despite facial animation being the focus of a large body of work in computer graphics

and other fields, more effort is needed to fully capture and connect the subtle mo-

tions of virtual faces to perceived emotion and realism. A combination of data-driven

methods and user studies like the one I performed in Chapter 2 can help move the

field towards a more explicit coupling of these elements in both modeling and ani-

mation. For example, extending the work in Chapter 3 to identify key facial features

corresponding to other emotions and similar data-driven analysis of emotional intent

with the motion of those features can lead to increasing support for automatically

generated realistic facial expressions over greater set of emotions. Additionally, the

complex interplay between the spatial and temporal dynamics of facial movements

is likely to have a substantial impact on realism. While my collaborators and I saw

evidence of this in (Helwig et al., 2017), that aspect deserves much deeper inspection.

Finally, another promising area for discovery includes using a data-driven approach

to characterize the variety of motion seen in real human facial expressions. With

the increasing availability of computer vision techniques for tracking facial features

without the need for extensive setup and calibration, such a dataset may be pratcical

to build and analyze.
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As immersive virtual environments become more commonplace and available to an

ever widening audience, it is important to understand how to support a user’s sense

of presence, embodiment, and agency in this setting. My work in Chapter 4 supports

the importance of collision avoidance in this respect and suggests avenues of future

work both for virtual crowds and other embodied agents in VR. Larger user studies

that consider additional aspects to support presence when interacting with virtual

agents (such as personal space, gaze, or others), as well as motion-related behaviors

at different scales (quick or subtle movements, or long-term motion planning), can

add to the state of the art in creating pleasant and realistic experiences through

virtual agent motion.

The works I present in Chapter 5 and Chapter 6 focus on high level routes that

consider picking a general next direction or waypoint to travel to, and do not explicitly

consider the motion when traveling between them. While many works consider the

local problem of reaching nearby or directional goals (Yang et al., 2020), additional

work is needed to couple these two motion scales in a way that explicitly maintains

the realism of both. Hierarchical methods that enable a form of multi-scale planning

is a promising direction for this purpose.

Specifically in the context of simulating human browsing behavior (as I studied

in the context of shopping in Chapter 5), our data contained many slow-spots that

were not aligned with item purchases. This suggests further analysis could help

discover different elements that drive this part of the observed behavior. Other types

of analysis, such as Fourier analysis or methods for studying self-similarity, may help

identify classes of behavior for providing structured variety in browsing simulations

when coupled with unsupervised learning methods.

In both settings, my work on global navigation considers indoor environments.

Additional research is needed to verify whether these methods extend well in other

settings such as outdoors or in non-human designed spaces. In the SPNets work,
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the information available to the agent is a sampling of ray lengths that terminate

at obstacles, but does not provide much in the way of semantic information. Other

recent deep learning methods have been used in the context of global navigation in

robotics and virtual settings, using visual information such as images from on-board

cameras or renderings of imaged environments (Pfeiffer et al., 2017; Wu et al., 2018;

Pfeiffer et al., 2018; Gupta et al., 2017). This allows for a richer set of inputs and

more semantic forms of planning (such as looking for a certain type of door or flooring

to identify promising directions given a semantic goal such as a kitchen or bathroom).

An investigation as to how the inclusion of such information can support increased

realism from a human motion simulation perspective is an interesting future direction.

7.4.2 Larger Challenges

While these avenues relate closely to the work presented in this dissertation, they exist

as steps toward addressing the larger scale challenges of bringing an understanding

of human motion to bear on AI and robotics solutions.

The ability to reason about the internal state of humans without the need to ex-

plicitly solicit such information is a critical element for solutions that must gauge and

appropriately respond to the impact they have on the human experience in real-time.

For example, it would be impractical for a robot navigating through a crowd to col-

lect questionnaires from people nearby to measure whether its motion is disruptive or

causing unease, and making adjustments when necessary as it moves along. Rather,

gleaning this information based on external measures such as trajectories enables a

more real-time contentiousness. The work in Chapter 4 serves as promising initial

evidence that this is possible, as it shows captured motion data can be used to draw

insight about someone’s internal state. Future work can both expand upon the par-

ticular technique I propose and broaden the tool set for drawing internal insights from

motion.
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I have demonstrated in this dissertation multiple examples of using motion data to

learn models of human motion. With any data-driven process comes the limitations

inherent in the data that is used, human motion data being no exception. One of

the main resulting challenges is that data-driven models in general do not distinguish

between inputs that are similar to those seen in training (and are likely to produce

high quality output) and those that are especially novel. The result is a tendency to

extrapolate from the training data, in some cases indefinitely beyond the reasonable

region the data supports, resulting in poor performance or biasing. This is particularly

true for parametric models such as neural networks when asked to predict or classify

on data very different from that seen in training. While one solution may be to simply

increase the breadth of the dataset (and potentially the complexity of the model),

practical constraints in application domains can be prohibitive of such an approach.

Future research that looks to address this challenge may include those that move

forward the state of the art in techniques such as outlier detection to identify when

a particular query is not likely to be supported by a model, or new kinds of models

that focus on supporting graceful degradation of quality.

One final challenge that I will identify here for the future of using motion data

to build realistic models of human motion is grappling with the myriad of different

types of motion on different scales in which humans engage. As is already apparent

from the types of motion considered in my work, from quick and subtle movements

of the mouth to larger scale navigation decisions, there are many levels at which

opportunities exist for furthering our understanding of how and why humans move.

For application domains such as creating realistic virtual characters, a multi-faceted

understanding of human motion on multiple levels is central to increasing the quality

of the resulting simulations. Future work that looks to move towards more holistic

modeling of human motion may include “bottom-up” approaches that produce these

multi-scale phenomenon emergently, or those that employ an ensemble of methods
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that specialize for each type of motion relevant for the domain.

7.5 Conclusion

The body of work contained in this dissertation serves as a cohesive exploration into

the effectiveness of data-driven approaches for both the simulation and validation of

natural, varied human behaviors, as well as the importance of incorporating these

aspects in several application domains. As a result, this dissertation represents con-

crete progress towards understanding and incorporating the human motion element

into the fields of AI for graphics, robotics, and others such as medicine and psychol-

ogy. It is my sincere hope that the frameworks, datasets, and simulation techniques

presented here will continue to contribute towards a basis for a more social form of

intelligence.
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Astrid, M., Krämer, N. C., and Gratch, J. (2010). How our personality shapes our

interactions with virtual characters-implications for research and development. In

International Conference on Intelligent Virtual Agents, pages 208–221. Springer.

Atzmon, D., Stern, R., Felner, A., Sturtevant, N. R., and Koenig, S. (2020). Prob-

abilistic robust multi-agent path finding. In Proceedings of the International

Conference on Automated Planning and Scheduling, volume 30, pages 29–37.

Bailenson, J. N., Aharoni, E., Beall, A. C., Guadagno, R. E., Dimov, A., and Blas-

covich, J. (2004). Comparing behavioral and self-report measures of embodied

agents’ social presence in immersive virtual environments. In Proceedings of the

7th Annual International Workshop on PRESENCE.

Bailenson, J. N., Blascovich, J., Beall, A. C., and Loomis, J. M. (2003). Interpersonal

distance in immersive virtual environments. Personality and Social Psychology

Bulletin, 29(7):819–833.

Bailenson, J. N., Shum, M. S., and Uttal, D. H. (2000). The initial segment strategy:

A heuristic for route selection. Memory & Cognition, 28(2):306–318.

Bailenson, J. N., Swinth, K., Hoyt, C., Persky, S., Dimov, A., and Blascovich, J.

(2005). The independent and interactive effects of embodied-agent appearance

and behavior on self-report, cognitive, and behavioral markers of copresence in

immersive virtual environments. Presence: Teleoperators and Virtual Environ-

ments, 14(4):379–393.

Bansal, S., Tolani, V., Gupta, S., Malik, J., and Tomlin, C. (2020). Combining

optimal control and learning for visual navigation in novel environments. In

Conference on Robot Learning, pages 420–429.



References 147

Bartlett, M. S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., and Movellan, J.

(2005). Recognizing facial expression: machine learning and application to spon-

taneous behavior. In Computer Vision and Pattern Recognition, 2005. CVPR

2005. IEEE Computer Society Conference on, volume 2, pages 568–573. IEEE.

Botea, A., Bouzy, B., Buro, M., Bauckhage, C., and Nau, D. (2013). Pathfinding in

games. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Bouaziz, S., Wang, Y., and Pauly, M. (2013). Online modeling for realtime facial

animation. ACM Transactions on Graphics (TOG), 32(4):40.

Brenton, H., Gillies, M., Ballin, D., and Chatting, D. (2005). The uncanny val-

ley: does it exist. In Proceedings of conference of human computer interaction,

workshop on human animated character interaction. Citeseer.

Bruneau, J., Olivier, A.-H., and Pettre, J. (2015). Going through, going around: A

study on individual avoidance of groups. IEEE transactions on visualization and

computer graphics, 21(4):520–528.

Brunetti, A., Buongiorno, D., Trotta, G. F., and Bevilacqua, V. (2018). Computer

vision and deep learning techniques for pedestrian detection and tracking: A

survey. Neurocomputing, 300:17–33.

Bulitko, V. (2004). Learning for adaptive real-time search. arXiv preprint cs/0407016.

Bulitko, V. and Björnsson, Y. (2009). knn lrta*: Simple subgoaling for real-time

search. In AIIDE.

Cai, L., Gao, H., and Ji, S. (2019). Multi-stage variational auto-encoders for coarse-to-

fine image generation. In Proceedings of the 2019 SIAM International Conference

on Data Mining, pages 630–638. SIAM.

Camargo, C. Q., Bright, J., and Hale, S. A. (2019). Diagnosing the performance of

human mobility models at small spatial scales using volunteered geographical

information. Royal Society open science, 6(11):191034.

Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., and Salakhutdinov, R. (2020).

Learning to explore using active neural slam. arXiv preprint arXiv:2004.05155.



References 148

Charalambous, P. and Chrysanthou, Y. (2014). The pag crowd: A graph based ap-

proach for efficient data-driven crowd simulation. In Computer Graphics Forum,

volume 33, pages 95–108. Wiley Online Library.

Chollet, F. et al. (2015). Keras.

Cong, M., Bao, M., Bhat, K. S., Fedkiw, R., et al. (2015). Fully automatic gen-

eration of anatomical face simulation models. In Proceedings of the 14th ACM

SIGGRAPH/Eurographics Symposium on Computer Animation, pages 175–183.

ACM.

Costigan, T., Prasad, M., and McDonnell, R. (2014). Facial retargeting using neural

networks. In Proceedings of the Seventh International Conference on Motion in

Games, MIG ’14, pages 31–38, New York, NY, USA. ACM.

Davis, B., Sohre, N., and Guy, S. J. (2018). Multiworld motion planning. IEEE

Robotics and Automation Letters, 3(4):3968–3974.

Doersch, C. (2016). Tutorial on variational autoencoders. arXiv preprint

arXiv:1606.05908.

Dong, Y. (2019). Assessing Dynamic Qualities of Emotional Expressions in Faces

Using a Neural Network. Master’s thesis, University of Minnesota, Minneapolis,

MN USA.

Duckham, M. and Kulik, L. (2003). “simplest” paths: automated route selection for

navigation. In International Conference on Spatial Information Theory, pages

169–185. Springer.

Dutra, T. B., Marques, R., Cavalcante-Neto, J. B., Vidal, C. A., and Pettré, J.

(2017). Gradient-based steering for vision-based crowd simulation algorithms.

In Computer graphics forum, volume 36, pages 337–348. Wiley Online Library.

Ekman, P. and Friesen, W. V. (1977). Facial action coding system.

Epstein, R. A., Patai, E. Z., Julian, J. B., and Spiers, H. J. (2017). The cognitive map

in humans: spatial navigation and beyond. Nature neuroscience, 20(11):1504.



References 149

Eslami, S. A., Rezende, D. J., Besse, F., Viola, F., Morcos, A. S., Garnelo, M.,

Ruderman, A., Rusu, A. A., Danihelka, I., Gregor, K., et al. (2018). Neural

scene representation and rendering. Science, 360(6394):1204–1210.

Essa, I. A. and Pentland, A. P. (1997). Coding, analysis, interpretation, and recogni-

tion of facial expressions. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 19(7):757–763.

Fan, T., Cheng, X., Pan, J., Manocha, D., and Yang, R. (2018). Crowd-

move: Autonomous mapless navigation in crowded scenarios. arXiv preprint

arXiv:1807.07870.

Farley, J. U. and Ring, L. W. (1966). A stochastic model of supermarket traffic flow.

Operations Research, 14(4):555–567.

Fitts, P. M. and Peterson, J. R. (1964). Information capacity of discrete motor

responses. Journal of experimental psychology, 67(2):103.

Franco, L. and Treves, A. (2001). A neural network facial expression recognition

system using unsupervised local processing. In Image and Signal Processing and

Analysis, 2001. ISPA 2001. Proceedings of the 2nd International Symposium on,

pages 628–632. IEEE.

Geller, T. (2008). Overcoming the uncanny valley. IEEE computer graphics and

applications, 28(4):11–17.

Gosselin, F. and Schyns, P. G. (2001). Bubbles: a technique to reveal the use of

information in recognition tasks. Vision research, 41(17):2261–2271.

Griesser, R. T., Cunningham, D. W., Wallraven, C., and Bülthoff, H. H. (2007). Psy-

chophysical investigation of facial expressions using computer animated faces. In

Proceedings of the 4th symposium on Applied perception in graphics and visual-

ization, pages 11–18. ACM.

Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Malik, J. (2017). Cogni-

tive mapping and planning for visual navigation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, pages 2616–2625.



References 150

Gutiérrez-Roig, M., Sagarra, O., Oltra, A., Palmer, J. R., Bartumeus, F., Diaz-
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