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Abstract

The present times is seeing a surge in computing due to several applications like

smart grid, autonomous vehicles, social networks and many more directly touching our

lives. A key enabler is the technological advancements in information storage and in-

formation processing technologies, for example, data centers, wireless communication,

cloud computing, artificial intelligence to name a few. A present day iPhone is more

powerful than the computer used by NASA in the Apollo mission as well as the 1997

IBM super computer which defeated Grand-master Gary Kasparov. The consequence is

that data centers are now projected to consume about 20% of Earth’s power by 2030. In

the first part of this dissertation, fundamental computation mechanisms and their energy

consumption are explored. Erasure or reset of information stored in a single bit memory

is studied in detail. In particular, we experimentally demonstrate erasure using almost

the minimum possible amount of energy required for the erasure of a bit of information,

as dictated by the Landauer’s principle. Optical traps are used to achieve this and a

detailed modeling of the dynamics in optical traps is discussed first, which is used to

develop a Monte Carlo simulation to study physics of information erasure. Finally, we

analyze erasure of information using a Gaussian mixture approach and conclude with

the trade-off between reliability of information erasure, minimum energy consumption

in information erasure and size of the memory bit.

The second part of this dissertation is focused on information processing from diverse

sources with the goal of enabling decision making for energy efficiency, safe operation,

human comfort and minimize costs in complex physical systems. For example: the

concept of smart home uses information about weather, energy state of the grid, usage

pattern of the home owner etc to decide on control set points of thermostats or air

conditioners or heaters. In such complex systems, it is often not clear which entities

influence which other entities and is nearly impossible to develop a first principles model.

Here, the focus is on developing algorithms with guarantees for inference of presence or

absence of relationships among observed entities in a complex system. The framework of

network representation of complex systems of linear dynamical systems with wide sense

stationary forcing is used and algorithms which infer the relationships amongst the
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observed entities using only time series observations without any knowledge of system

parameters is developed. The performance of the algorithms is shown on simulation

examples from power grid, building thermal dynamics and experimental realization of a

wireless network of agents. Finally, extensions of the algorithms in the case of unobserved

states and non stationary processes is discussed.
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Chapter 1

Introduction

Present day innovations like a smart power grid [5], autonomous vehicles [6], smart

buildings [7] and many others involve decision making based on collection and process-

ing of information from several sources. These applications are made possible due to

several technological breakthroughs viz., sensing [8], computation and communication

[9] , high density storage in data centers [10], cloud/ edge computing [11, 12] to name

a few. Seemingly independent activities in our lives are now getting connected together

in this era of Internet of Things [13]. The ability to sense and store these type of di-

verse set of entities of interest at a sharp time resolution (in data centers) and ability

to perform computations on the collected information in real time (using the internet

and cloud/ edge computing frameworks) are a key enabler in the use of massive vol-

ume of information for designing sophisticated schemes for improving energy efficiency,

increasing operational safety, lowering operation costs and enhancing human comfort.

For example: our office buildings are now transitioning into smart buildings where zonal

set points of temperature, humidity and other important variables are decided based

on measurements of occupancy, weather, power demand in the grid, energy generation

from roof top solar panels, stored energy in batteries to name a few [14]. Recently,

Google used AI techniques to design control schemes which reduced the cooling bills of

data centers by 40% [15]. Motivated from the technological advancements as discussed

above, in this dissertation we explore two fundamental research themes:

1
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• Physics of Computation: It is estimated that computing devices, including per-

sonal devices to data centers will consume about 20% of energy globally by 2030

[16]. We explore fundamental mechanisms of energy consumption in computations

to understand energy budget of complex algorithms. Ability to store high density

of information in a small volume and processing at high speeds for performing

desired computations involves significant energy consumption and heat dissipa-

tion. Our laptops or phones often heat up and the battery drains faster while

executing an intensive task. We explore fundamental computational mechanisms

at a single bit level (physical length scale of few nm) which are responsible for

heat generation and energy consumption in performing computations as well as

approaches to minimize them. The problem that we address involves identifying a

non trivial fundamental limit on the minimum heat dissipation associated with bit

level operations, experimental demonstration of performing computations at the

fundamental limit and possible ways of reducing the minimum heat dissipation

associated with bit level operations.

• Structure Learning in Networks: Networks are a framework used for representation

of complex systems like the power grid [17], buildings [18], brain [19], climate [20]

and many others [21]. It helps to identify underlying dependencies, influence path-

ways or cause-effect mechanisms to explain observed phenomenon. The advent of

smart sensors has resulted in high time resolution monitoring of essential variables

in several complex systems, which has enabled decision making or inference of im-

portant events resulting in improved safety, better operation and comfort. As the

underlying physics is sophisticated, in several applications it is difficult to develop

network representation of complex systems from first principles. The fundamental

problem we address in this regard is: How do we develop a network representa-

tion of a complex system using time series data collected by the various sensors

monitoring the system?

1.1 Physics of Computation

The impact of the phenomenal increase in computational power acquired by human kind

is evident from the rapid pace at which it has become indispensable in many aspects of
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Figure 1.1: The plot descirbes the number of computations that can be performed per
KwH over 6 decades; efficiency on an average had doubled every 1.57 years [1].

life. A key to the enormous success and the rapid rates of improvement, which is still

continuing, is technology that has enabled doubling the complexity of integrated chips

where the number of transistors on a chip has doubled every 1.8 years for the last two

decades (known as the Moore’s law [22, 23]). The accompanying and more impressive

trend is the doubling of energy efficiency of computation (see Figure 1.1) every 1.5 years

for the past few decades. The increased efficiency is at the heart of the now ubiquitous

use of mobile computational platforms. There is plenty of room before practical devices

reach fundamental limits that can stall the growth; in 1985, [24] estimated that a 1011

orders improvement is possible over then existing computers, only a factor of 40, 000 is

harnessed since 1985, which motivates a study of the fundamental limits on the energetics

of computation.

The AND and the NOT operations are sufficient to realize logical computations in

computers. Apart from these fundamental operations, the erasure or reset operation is

important as it is vital for memory management. The erasure operation sets the bit to
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zero irrespective of its original state. The NOT operation is logically reversible, as it is

one-to-one, whereas, the erasure and AND operation is many to one, and is considered

logically irreversible. Whether an operation is logically reversible or not has a significant

bearing on its energetics. Here, many-to-one operations lead to the ‘loss’ of information,

where, such a loss is accompanied by at least kbT ln 2 of energy dissipation per bit of

information lost, irrespective of the nature of the computation. Groundbreaking work

by [25], [26] and [27] established a connection between the seemingly disparate fields of

Thermodynamics and Information Theory. Landauer’s Principle states that erasing (or

reset of) a single bit of information is accompanied by dissipation of at least kbT ln 2

amount of energy. Landauer argued that erasure of information lowers the entropy of

the overall system and thus, is accompanied by an average heat dissipation of at least

kbT ln 2 amount of energy per erased bit. In this dissertation, we will the study the

thermodynamics of erasure of a single bit of information from an experimental as well

as analytical perspective. It also needs to be remarked that the current computers use

approximately 10−15J per computation whereas, kbT ≈ 10−21J. Thus, even though there

is considerable ground to cover for commercial devices; proof of concept experiments

have demonstrated only recently that computations with kbT energetics, approaching

the thermodynamic limits on information erasure can be achieved.

The operations of erasure, NOT, AND, can be performed with or without feedback.

Here too, measurements if available can render the realization of the operations easier;

however, a comparison of the energetics with or without feedback is essential for un-

derstanding fundamental limitations. The connections of feedback, computations and

measurement with the thermodynamic quantities of work, heat and entropy, have to be

understood to analyze the energetics of computations involving feedback actions. This

work will form the basis to enable fundamental studies on the thermodynamic aspects

of fundamental computation mechanisms as well as bit level measurement and feedback

action. The specific research contributions of this dissertation on the theme of physics

of computations are summarized below:

• Creation and characterization of single bit memories with energetics at the kBT

scale: Experimental methods for synthesizing single bit memories and ability to

perform computations on the realized memory bit is developed. The synthesis aim

is coupled with the development of a methodology for measuring energetics in the
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kBT regime with errors quantified.

• Understanding and realizing erasure or reset of information at the fundamental

energy limit: Energetics of information erasure will be studied. Erasure of infor-

mation very close to the fundamental limit of kBT ln 2 as described by Landauer,

is demonstrated experimentally as well as in Monte Carlo simulations.

• Interplay of speed, reliability in energetics of bit erasure: An analytical framework

to analyze the interplay between (i) the time to complete erasure of a bit of in-

formation, (ii) the reliability of erasure operation and (iii) the energetics of bit

erasure is developed.

In Chapter 2, we present an introduction to Optical tweezers and a characterization

of a Brownian particle in a double well potential, which forms our basis for performing

computations on information stored in a single bit memory. In Chapter 3, we present

a description of single bit memory and its connections with a Brownian particle in a

double well potential and demonstrate a mechanism for erasing the information stored

in the memory bit using an Optical Tweezer. Moreover, the thermodynamic analysis of

the erasure process is also discussed. In Chapter 4 we present analytical characterization

of erasure of single bit of information.

1.1.1 Collaborators

The experimental aspect of the work was done jointly with Shreyas Bhaban, Becton

Dickinson (ex University of Minnesota ECE PhD student) who primarily aided me in

the experimental stage of research. James Melbourne, Post Doc, University of Minnesota

was helpful in developing the analytical framework as well as broadening my viewpoint

of the analytical results, particularly, its application in Information Theory.

1.2 Structure Learning in Networks

Networks are widely used to represent the functioning of complex physical systems like

the power grid [28], brain [19] as well nonphysical systems like social relationships [29],

financial systems [30] and many others. In some applications, there is a clear and ev-

ident physical network of agents. For example, consider a collection of agents which
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comprise of a wireless hub that receive and transmit signals according to a communi-

cation network topology [31]. In other applications, a physical network is not evident,

for example, sensors measuring temperature at various zones in a building, do not ad-

mit easy identification of physical links that connect measurements. In either scenario,

network models play important role for determining influences and identification of im-

portant clusters. The resulting influence pathways can suggest methods to steer the

system toward a desired behavior. We note that for applications where an actual phys-

ical network of interactions is evident, the network of mutual influences can differ from

its physical network, and often provides complimentary information. In many applica-

tions it is possible to manipulate the system to help identifying the network. An active

approach for identifying the presence of influences between agents may entail removing

agents from the network to evaluate their impact on other agents and then infer influ-

ence pathways [32]. Such approaches are invasive. In many applications it may not be

possible to excite/perturb the system to decipher the influence of one variable on the

rest. For instance, in the stock market, it is not possible to set the price of a particular

stock to evaluate the impact on the other stocks. Thus, there is a clear need of non

invasive approaches to infer the network representation of complex systems [33].

Non-invasive methods of learning the network structure is an active area of research

in multiple disciplines including control theory, computer science and statistics to name

a few. Here an initial focus utilized modeling activity of agents via random variables; the

graphical models approach (see [34],[35], [36], [37]) employed the random variable based

abstraction extensively. More recently, structure learning methods have utilized time

series measurements of agents’ activity modeled as stochastic processes [38], [39]. The

approach of using stochastic processes to model time-series is well-suited for scenarios

where agents interact dynamically; where the past or present state of an agent can

affect the present state of another agent. Such interdependence is particularly apt for

modeling high resolution time-series measurements, which is becoming more widespread

due the increasing availability of smart sensors with high bandwidth (for example, Phase

Measurement Units employed by the power grid [40]) in many domains including Internet

of Things.

The focus of this dissertation is on the inference of the presence or absence of in-

fluence pathways or interconnections in linear dynamical systems with applications in
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power grid networks, thermal dynamics of buildings and multi-agent systems. We only

utilize time series measurements of the output variables (assumed to be weakly station-

ary processes) from the complex physical system and do not use any information about

system parameters or inputs. Algorithms with provable guarantees under a set of struc-

tural or system dynamic constraints are presented for inference of network structure

from observations. The specific research contributions of this dissertation on the theme

of structure learning in networks are listed below:

• Algorithm for exact network structure learning in a radial network of bi-directed

linear dynamical systems using a mixture of ideas in signal processing and proba-

bilistic graphical models is presented.

• Algorithm for exact network structure learning for linear dynamical systems in the

presence of loops is discussed. Moreover, regularization methods are developed for

improving performance of above algorithms in low number of observations regime.

• Network structure learning with partial network observability for radial bi-directed

linear dynamical systems is presented.

• Generalization of the structure learning framework to periodic stochastic processes;

a class of non stationary processes with linear dynamics is discussed.

In Chapter 5, we introduce the network topology learning problem in the context

of linear bi-directed systems with radial network structure and present an effective al-

gorithm for network inference with applications in power networks. It is then followed

by an algorithm for network structure inference of linear dynamical systems with loops

along with application in power networks, multi-agent systems undergoing consensus

algorithms and building thermal dynamics in Chapter 6. Furthermore, a modification of

the algorithms for improving robustness in low number of samples regime using regular-

izers is also discussed. In Chapter 7, we present a framework for sensor placement and

an algorithm for exact network structure inference in radial bi-directed linear dynamical

systems with certain nodes being unobserved. Chapters 5, 6 and 7 focus on wide sense

stationary time series observations. In Chapter 8, we extend the framework to a class

of non stationary time series observations, viz. cyclostationary or periodic stochastic

processes. Chapter 9 concludes this dissertation and provides directions for future work.
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1.2.1 Collaborators

Dr. Deepjyoti Deka from Los Alamos National Laboratory was instrumental in the

structure learning aspect of this dissertation. I benefited a lot from my interactions with

him and the discussions helped me frame the right problem, particularly in the context

of power system applications. Harish Doddi, PhD student in Mechanical Engineering,

University of Minnesota, Sandeep Attree, alumni ECE, University of Minnesota and

Blake Lundstrom, National Renewable Energy Laboratory helped me in applying the

algorithms developed in the context of buildings, wireless networks and power systems

respectively. The work on regularization and latent nodes was developed during my stint

as a summer student at the Los Alamos National Laboratory in Dr. Michael Chertkov’s

group.



Chapter 2

Physics of Computation: Dynamics

of a Brownian Particle in an Optical

Trap

2.1 INTRODUCTION

New abilities of measuring and manipulating matter at the nanoscale hold the promise of

designing and fabricating material, by rational control of matter at the nano/micro scale,

with unparalleled specificity. Unlike in macro scale processes, thermal fluctuations play

a significant role in guiding and determining the results of processes (such as transport)

and shapes the matter at the nano and smaller scales. With advances in nanotechnology,

the effects of thermal noise can be measured and thus nano/microscale systems provide

a means to unravel the fundamental mechanism at play at smaller scales ([41, 42]).

In this chapter, the focus is on modeling the dynamics of micron sized Brownian

particles under the influence of optical traps. While in this thesis we will utilize op-

tical traps for analyzing the physics of performing computations, they are also used

extensively used for experimental investigation of intracellular transport [43], polymer

characterization [44] and many others. A key step for these diverse set of applications is

to obtain models that are realistic, which can be employed with quantitative precision

to design desired manipulation strategies.

9



10

Objective

Trapping 
Laser Beam

P

Q
FP

Fgradient
Fscatter

FQ

Bead

Figure 2.1: Bead in an optical trap

Arthur Ashkin [45] demonstrated that when a laser beam is passed through an ob-

jective with appropriately high numerical aperture, the momentum transfer from the

reflected and refracted rays onto microscopic particles in the vicinity of the focus gener-

ates two kinds of forces on the particle. As is seen in Fig. 2.1, the gradient forces, that

result from the Gaussian intensity profile of the laser, balance the destabilizing scatter-

ing force of the laser that push the particle away from the focus, creating an equilibruim

point. Furthermore, if the particle is dislodged from the equilibruim point, it experiences

a restoring force that pulls it back towards the focal point, indicating that it is a stable

equilibruim point. This phenomenon of ‘trapping’ of optical beads is referred to optical

trapping, for which Arthur Ashkin was awarded the 2018 Noble Prize in Physics.

A particle in such a stable trap experiences restoring forces that vary linearly with

small displacements away from the focus, indicating a harmonic potential in the optical

trap. However, the force felt by the particle has a complex relationship with the shape of

the particle, the relative refractive index of the particle with respect to its surroundings

and on the relative position of the focal spot of the laser beam with respect to the particle

center of mass. The force field generated by the optical potentials has to be quantitatively

understood over large excursions of the bead positions and thus linear approximation

do not suffice. Although the qualitative understanding and underlying principles for

such particle behavior are well understood, it is difficult to arrive at a realistic model of

this system using first principles, emphasizing a need for experiments to inform models

describing such systems. In Section II below, we present a brief description of the optical

trapping setup, which is referred to as the optical tweezer.
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Figure 2.2: Schematic for our Optical Tweezer setup

2.2 Experimental Setup

For experiments we use a custom built optical tweezer setup (Fig.2.2) where a Nd:YAG

trapping laser (CrystaLaser Inc., λ = 1064nm, 500mW ) [46, 47] is expanded using appro-

priate optics to fill the back aperture of high numerical aperture objective (Nikon 100x,

1.4 NA, oil immersion). The optical trap is formed at the focal point where spherical

polystyrene beads are trapped. The trapping laser passes through 2-axis acousto-optic-

detector (AOD, IntraAction Corp., DTD − 274HA6) that precisely steers the beam in

x-y plane in response to appropriate commands. To detect the bead position, a sec-

ond detection laser (Point Source Inc., iFLEX 2000, 50 mW , λ = 830nm) is used to

map the image of the bead onto a quadrant photodiode (QPD, Pacific Silicon Sensors,

QP50− 6SD2). The photodiode provides three signals Vx, Vy and Vz where Vx and Vy
represent the light distribution on the photodiode along x axis and y axis respectively

while Vz corresponds to total light intensity. These signals are captured using FPGA

based data acquisition system (National Instruments, PCI7833R) that generates appro-

priate commands for the AOD. Next, we characterize the dynamics of a bead in a laser

trap.
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2.3 Bead in a Single Well

2.3.1 Modeling

In this section we develop a realistic model of a bead in a viscous medium in an optical

trap. The key objective is to obtain a model which is capable of providing a quantitative

match with experimental data. The dynamics of a dielectric bead in a viscous fluid can be

modeled as free Brownian motion [48], where the bead represents the system of interest

and the viscous fluid around the bead acts like a heat bath. The effect of collision of

fluid molecules with the dielectric bead, fd(t) is modeled as a linear superposition of a

viscous drag force −γv(t), and a stochastic force, ξ(t), as shown in (2.1),

fd(t) = −γv(t) + ξ(t), (2.1)

where, v is the velocity of the bead and γ is the viscous friction coefficient. We assume

that the bead is spherical, using Stoke’s drag force model [49], γ = 6πηr where, η is the

dynamic viscosity of the surrounding fluid and r is the radius of the bead. The stochastic

force in (2.1) is modeled as a white Gaussian process with ensemble averages 〈ξ(t)〉 = 0

and 〈ξ(t), ξ(t′)〉 = 2bδ(t− t′), where it follows from the Fluctuation-Dissipation theorem

[49] that,

b = γkBT (2.2)

where, kB is the Boltzmann constant and T is temperature of the heat bath with which

the bead is interacting. The diffusion of the bead due to interaction with the heat bath

is then described by

m
dv

dt
= −γv + ξ(t) (2.3)

where, m is the mass of the bead. Note: We will be using the SDE representation given

in [49], dv
dt does not mean that v(t) is smooth and is just a notation. The dynamics

of a dielectric bead in a viscous fluid under the influence of a potential U(x, a) can be
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modeled by the Langevin equation as shown below.

m
dv

dt
= −∂U(x, a)

∂x
− γv + ξ(t) (2.4)

We propose a model for the potential due on an optical trap U(x, a) which comprises of

a reference energy Ur, harmonic potential region uptil a width w and no force beyond

this width:

U(x, a) =


1
2k(a)x2 + Ur if |x| ≤ w

U(w, a) + Ur if |x| > w.
(2.5)

Here, k(a) denotes the trap stiffness which can be modulated by changing physical

parameters a. For example: the parameter a could be the intensity of the laser. Using

(2.5) in (2.4), the Langevin equation reduces to

m
dv

dt
= −k(a)x− γv + ξ(t), |x| ≤ w. (2.6)

The mass of the bead being very small (∼ 10−16 kg) results in the inertia terms in (2.3)

and (2.6) being insignificant. Neglecting the inertia term in (2.3) and (2.6) leads to

(2.7) and (2.8) respectively. This is called the overdamped dynamics approximation of

Brownian motion and Langevin equation respectively.

dx

dt
=

1

γ
ξ(t), if |x| > w (2.7)

dx

dt
= −k(a)

γ
x+

1

γ
ξ(t), if |x| ≤ w (2.8)

As long as the bead is under the influence of U(x, a), its dynamics is modeled by (2.8).

Outside the influence of the potential (that is, outside the width w) the bead undergoes

free Brownian motion and its dynamics is modeled by (2.7). We will use (2.7) and (2.8)

to simulate the dynamics of a bead in an optical trap using Monte Carlo methods and

validate with experiments.
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Figure 2.3: Probability distribution and potential for single well obtained from experi-
ments

2.3.2 Experiments

Experimental data is obtained using a custom built optical tweezer that is used to trap

a spherical polystyrene bead (1 µm diameter). The bead position data is obtained using

the quadrant photodiode (QPD). The nature of the potential U(x, a) as seen by the

bead is a function of laser intensity a and can be determined from the position data of

the bead in equilibrium by using the canonical distribution [50]. The spatial probability

density of the bead in equilibruim is given by,

P (x, a) = Cexp(−U(x, a)

kBT
)

where C is a normalization constant. It follows that,

U(x, a) = −ln(
P (x, a)

C
) (2.9)

Here, time scales of the experiment have to be long enough to allow the bead to attain

thermal equilibrium. Note that the above equation computes potential energy in units

of kBT . The probability distribution and potential for a bead in a single potential

well (Fig. 2.3) is obtained after tracking the bead position (in a single optical trap) for

sufficiently long time (thus allowing it to equilibriate). It shows a parabolic nature uptil a

finite distance w ≈ 150 nm from the minima. To estimate nature of the potential beyond
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w, the bead is released from an initial location of±500 nm and its position is tracked from

the moment of release till the bead attains equilibruim. The bead effectively sees a flat

potential beyond w (see Fig. 2.4), indicating that beyond a distance w from the minima

of U(x, a), the bead dynamics are primarily dictated by thermal noise with no influence

from the conservative forces due to the harmonic potential region of the optical trap. The

bead is seen to spend little time in the non-harmonic region of the potential, justifying

the flat potential approximation beyond the harmonic range. Thus the experimental

data supports the model described by (2.5). The trap stiffness k(a) = 0.0044 pN/nm is

obtained from the bead position data using Equipartition Theorem [50],

1

2
k(a)〈x2〉 =

1

2
kBT (2.10)

and the dynamic viscosity of water at 300K is taken as η = 8.9×10−4Pa.s [51] to obtain

γ = 8.3× 10−9Ns/m.

2.3.3 Monte Carlo Simulation

In this subsection we present a Monte-Carlo based simulation for a bead in an optical

trap. The discretization of (2.7) and (2.8) using stochastic calculus [48] leads to (2.11)
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and (2.12) respectively [52].

x(t+ δt) = x(t) +

√
2kBT

γ
dt ν(t) (2.11)

x(t+ δt) = x(t)− k(a)

γ
x(t)δt+

√
2kBT

γ
δt ν(t) (2.12)

where, ν(t) ∈ N (0, 1). Here, N (0, 1) denotes the standard normal distribution. We

choose the integration time step δt = 10−5s such that δt << γ
k(a) ∼ 10−3s. Note

that γ
k(a) represents the time constant of (2.8). The system parameters k(a), γ and w

for simulations is obtained from experiments with temperature T = 300 K. The bead

position obtained by iterating (2.11) and (2.12) is used to obtain P (x, a), which is then

used to obtain the effective potential experienced by the bead by using (2.9).

The simulation results of reconstructed potentials U(x, a) as shown in Fig. 2.5 are

obtained by simulating the trajectories of 100 particles whose initial conditions are chosen

by sampling a number u from the Uniform distribution in [0, 1] as shown below.

1: if u > 0.5 then

2: x(0) = 10 nm ∗ N (0, 1)

3: else

4: x(0) = −10 nm ∗ N (0, 1)

5: end if

The simulaton duration is 20 seconds for each particle and is long enough for each

particle to attain equilibrium. The position trajectory of each particle is used to obtain

the overall effective potential experienced by the bead using (2.9) and is shown in Fig.

2.5. Comparing Fig. 2.5 and Fig. 2.3 it is seen that the potential reconstructed from the

Monte Carlo simulations is in close agreement with the one obtained from experiments.

The height of the well in both places is about 10 kBT . In Fig. 2.4 we present a potential

reconstructed from the trajectories of 100 particles collectively with x(0) = 500 nm if

u > 0.5 otherwise x(0) = −500 nm. It is evident from Fig. 2.4 that beyond the harmonic

regime, both experiments and simulation exhibit a predominantly force zone. Note that

the transition region for both experiments and Monte Carlo simulations is difficult to
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Figure 2.5: Potential wells obtained from Monte Carlo Simulations.

reconstruct from position data, as the bead spends very less time in that zone [53].

2.4 Summary

A first order model for a Brownian particle in an optical trap with experimentally derived

parameters is able to explain the experimentally observed behavior accurately. The

energy levels of the system of interest is in the kBT regime, making the system amenable

for studies at very low energy levels. In the next chapter, we will use the Brownian

particle in an optical trap system to physically create memory bits and study physics of

computations, in particular, the Landauer’s principle.



Chapter 3

Physics of Computation:

Experimental demonstration of

Information

3.1 Prologue

We wish to develop a model system which can be used to perform basic computational

operations like OR, NOT, erasure (or rest) at the physical limits. Here, we will utilize

the the Brownian particle in an optical trap setup described in the previous chapter

to mimic a single bit memory. We will demonstrate erasing of information stored in

the memory bit with energy expenditure very close to thermodynamic lower limit as

given by the Landauer’s principle. Although, the focus of this chapter is on the erasure

operation; the framework can be extended to study other computational operations.

3.2 Introduction

Landauer’s principle, pioneered by Rolf Landauer in 1961, provides a critical link between

information theory and thermodynamics of physical systems [27]. It states that there

is no process where the work done to erase one bit of information is less than kbT ln 2

(Landauer’s bound), when the prior probability of the bit being in any of the two states

is equal [54]. Here, kb is the Boltzmann constant and T is the temperature of the heat

18
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bath.

Numerous analyses have corroborated Landauer’s bound through different approaches

[55, 56, 57, 58, 59]. The experimental study of Landauer’s bound has only recently be-

come viable, enabled by tools that provide access to processes with energetics in the

scale of kbT . A first such study in [60] examined Landauer’s bound, by employing opti-

cal traps to realize a single bit memory. Bechhoefer et.al. [61, 62] used an anti-Brownian

electrokinetic feedback trap and Hong et.al. [63] used nano magnetic memory bits to

study Landauer’s bound.

In this chapter, we study the energetics of transport realized by time multiplexing a

harmonic potential of finite width, to realize a bi-stable potential. Here a single laser in

an optical tweezer setup, is multiplexed between two locations with varying dwell times to

create potentials (symmetric as well as asymmetric bi-stable potentials), that effectuate

the erasure process. Furthermore, experimental variables to realize reversible erasure

are identified and utilized for approaching the Landauer’s bound. Langevin dynamics

based simulations of a Brownian particle under the influence of a time multiplexed laser

is developed and is shown to obey quantitative trends observed in experiments. We

use our method of shaping the potential, by changing the dwell time of multiplexing of

the laser, to erase one bit of information. The ease of implementation and the high-

resolution accounting of energetics are advantages of the method reported. We resort to

Sekimoto’s stochastic energetics [64, 65, 66, 49] framework to quantify the work done on

the system for the erasure process. The underlying principles developed are applicable

toward the study of transport achieved by time multiplexing of a single potential, where

realizations based on optical traps can be considered a particular instantiation of the

general underpinnings of the framework presented.

3.3 Model for a One-Bit Memory

We use the abstraction of a Brownian particle in a symmetric double well potential (two

valleys separated by a hill) to model a one-bit memory. The memory is designated the

state ‘zero’ if the particle is in the left well, and the state ‘one’ if it is in the right well.

This model has the properties as desired from a single bit memory. The Brownian particle

has a large exit time across the barrier for a sufficiently high barrier, thus capable of
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retaining the stored information for a very long time. Being symmetric, both the states

are of same energy level, hence there is no bias storing one state with lesser energy over

another.

Experimentally, we realize a Brownian particle in a harmonic potential, albeit of

finite width, by using a custom built optical tweezer setup to trap (near the focus of

the objective lens) a polystyrene bead (1µm in diameter) while suspended in deionized

water. The bead represents the thermodynamic system of interest with the surrounding

medium acting as a heat bath.

Model of a Bead in a Laser Trap A laser passing through a high numerical aperture

objective lens and incident on a bead in a solution traps the bead. Here, the bead

experiences a harmonic potential with the equilibrium point (trap center) located near

the focus of the lens. For small displacements away from the centre of the trap, the bead

experiences a restoring force directed towards the trap center [45, 43]; the trap behaves

like a Hookean spring with the restoring force being k∆x, where k is the stiffness of the

trap and ∆x the distance between the bead center and the trap center. The position of

the bead (denoted by x) is measured using a photo diode for a duration much larger than

the time constant of the dynamics of the bead in the laser trap (∼ 1ms). The equilibrium

probability distribution, P (x), of the position of the bead, is then obtained by binning the

measured position data. The potential energy landscape, U(x), of the bead in thermal

equilibrium with the trap is obtained using the relation, U(x) = − ln(P (x)
C ), where C is

the normalization constant. In Fig. 3.1, the potential energy landscape experienced by

an optical bead in a laser trap is shown (red and black curves), which is constant outside

a distance w from the minimum of the potential and harmonic within the distance w

from the equilibrium point.

The potential energy U(x) is modeled by,

U(x) =


1
2kx

2 + Ur, if |x| ≤ w
1
2kw

2 + Ur, if |x| > w,
(3.1)

which is harmonic up till a distance w (determined empirically from Fig. 3.1) from the

stable equilibrium point. The stiffness k of the optical trap is determined experimentally

by applying the Equipartition Theorem, that yields k = kbT/〈x2〉 [67]. The dynamics
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Figure 3.1: Potential energy landscape of a bead in a laser trap. The experiments are
performed with the bead initially at 500 nm (red curve) and −500 nm (black curve). The
position of the bead is measured for 50 seconds. The potential U(x) is mostly flat after
a certain distance w from the stable equilibrium point. In the Monte Carlo simulations,
the bead is initialized randomly between 500 nm and −500 nm. The position trajectory
of the bead obtained from 100 Monte Carlo simulations is collected to determine U(x)
from simulations (blue curve).

of the bead in a trap is modeled by the over-damped Langevin equation [49],

−γ dx
dt

+ ξ(t)− ∂U(x)

∂x
= 0, (3.2)

where, γ is the coefficient of viscosity (determined experimentally by step response

method [43]), U(x) is the potential realized by the trap and ξ(t) is a zero mean un-

correlated Gaussian noise force. Here, 〈ξ(t)〉 = 0, 〈ξ(t), ξ(t′)〉 = 2Dδ(t − t′) with the

diffusion coefficient D = γkbT . The potential U(x) described by (3.1) is used in conjunc-

tion with (3.2) to obtain 100 realizations (of 20 seconds each) of the bead trajectories.

These realizations are, in turn, used to reconstruct the potential felt by the bead by

binning the position trajectories. A close match with experimental results is seen, as

shown in Fig. 3.1.

Double Well Potential Model of Memory: A double well potential with two locally

stable equilibrium points located at L and −L is created by alternately focusing the

trapping laser between the two locations by time-multiplexing using an Acousto Optical

Deflector. The laser is multiplexed at least 100 times faster than the time constant

of the dynamics of the bead. The trapping laser multiplexed at the two locations is

the external agent coupled to the thermodynamic system of interest formed by the
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Figure 3.2: Double well potential for L = 550 nm obtained using Monte-Carlo simula-
tions and experiments.

bead. We define duty-ratio d as the fraction of the total time-period the laser spends

at the location −L. The nature of the effective potential experienced by the Brownian

particle can be manipulated by adjusting the duty-ratio. The potential energy landscape,

U(x, d), experienced by the bead for a duty-ratio d, is determined by the relationship

Pd(x) = Ce−U(x,d)/kbT , where Pd(x) is determined by binning the measured position of

the bead. Maintaining a duty-ratio of 0.5 results in near identical parabolic potential

wells at L and −L as shown in Fig. 3.2, while a duty-ratio greater than 0.5 leads to

asymmetric double well potentials as shown in Fig. 3.3.

The bead dynamics under the influence of time multiplexed potential is modeled by

the following Langevin equation,

−γ dx
dt

+ ξ(t)− ∂U(x, d)

∂x
= 0, (3.3)

where, the model for the potential U(x, d) used in (3.3) incorporates the experimental

observation that, for the duration when the laser remains focused at the location L or

−L, the bead experiences a harmonic potential up till a distance w from the trap focus.

However, beyond the distance w from the locally stable equilibrium points L or −L, the
bead undergoes a random walk [68]. Based on these observations, the potential U(x, d)

is modeled by,
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U(x, d) =


1
2k(x− L)2 + Ur, if |x− L| ≤ w, r(t) = 1,

1
2k(x+ L)2 + Ur, if |x+ L| ≤ w, r(t) = 0,

1
2kw

2 + Ur, otherwise,

(3.4)

where, r(t) denotes the binary variable representing the presence/absence status of the

laser at L. If the laser is focused at L, then r(t) = 1, otherwise r(t) = 0. The stiff-

ness of the laser trap, k, and the width of the corresponding parabolic potential, w, are

determined by characterization of the finite width harmonic potential obtained due to

a single trap, as described earlier in (3.1). The laser is multiplexed between the two

locations at a significantly faster rate (∼ 10µs) than the time constant of the bead dy-

namics (∼ 1ms), which supports the model in (3.4). Monte Carlo simulations performed

using (3.3) and the subsequent potential U(x, d) reconstructed from bead position data,

(using the canonical distribution) yield potentials that match closely with experimental

observations as seen in Fig. 3.2. We remark that in the Monte Carlo simulations as

well as in experiments, the stiffness of each of the wells formed at L and −L when the

duty-ratio is 0.5 is close to k
2 , which is half the stiffness of the single trap. In summary,

the model parameters (k and w) determined for a single trap is used in the Monte Carlo

simulations of the bead in a double well potential realized by time multiplexing of the

trapping laser. A close match between simulation and experimental results is observed

as shown in Fig. 3.2. Using the Brownian particle in a double well potential model

of a single bit memory, we next present an erasure protocol based on multiplexing of

potentials.

3.4 Erasure Process

Erasure is a logically irreversible operation [26], where irrespective of the initial state of

the memory, the final state is zero (also known as ‘reset-to-zero’ operation). A bead in

a double well potential is used to model a single bit memory. No prior information on

the state of the memory is assumed initially; thus, it is equally likely that the memory

assumes the state zero or one. However, at the end of erasure process the memory state
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Figure 3.3: Effect of duty-ratio on the nature of double well potential. Increasing the
duty-ratio at −L from 0.75 to 0.8 increases the asymmetry of the potential.
is zero (the bead must be in the left well). Thus, there is no change in average energy of

the bead in an erasure process (as the depth of both wells is the same) while the decrease

in entropy associated with erasure is kb ln 2; thereby requiring at least kbT ln 2 amount

of work to be done on the system [54]. We note that the Landauer’s bound is applicable

to the average work done on the system over many realizations of the bead trajectory,

but, it is possible to obtain individual erasure realizations with the work done on the

system less than kbT ln 2. Indeed we demonstrate later that for a fraction of trajectories,

the work done on the bead is lower than kbT ln 2 (see Fig. 6).

The Landauer’s bound of kbT ln 2 holds if the erasure process is always successful.

It can be shown that for imperfect erasure schemes with the probability of successful

erasure being p, at least kbT (ln 2 + p ln p+ (1− p) ln(1− p)) amount of work is required

to be done on the system [54]. It is important to note that the bound decays rapidly as

p decreases from 1; with the bound being kbT ln 2 for p = 1 and zero for p = 0.5. In our

study, we ensure that p > 0.95 and assume that the erasure process is always successful.

The erasure protocol is described next where duty-ratio is the fraction of the time

spent by the laser at the location, −L (see Fig. 3.4(c)), as compared to L; higher

the duty-ratio more is the time spent by the laser at −L. In the first phase of the

protocol, the memory model of a Brownian particle in a symmetric double well potential

is obtained by maintaining a duty ratio of 0.5 for a duration of 10 seconds. Next, in

the second phase of the protocol, an asymmetric well is realized, with the well at −L
deeper than the well at L, which is obtained by maintaining the duty-ratio to be greater

than 0.5 for a duration (dependent on the choice of d) of τ seconds. Finally, we revert
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Figure 3.4: (a) Schematic showing erasure process, with bead initially in the right well.
The initial bead position is 1 (right well), with potential energy V2. The duty-ratio d at
left well is then increased, which lifts the bead and takes it to position 2 with energy V1.
Thermal fluctuations enables the bead to cross the barrier and reach position 3, with
energy V3. Decreasing the duty-ratio back to 0.5 lifts the bead to position 4, which has
energy V2. The process 1 → 2 → 3 → 4 is the erasure process. (b) Schematic showing
erasure process, with bead initially in the left well. Here, the process 1→ 2→ 3 is the
erasure process. (c) The signals r(t) and l(t) denote the presence/ absence status of the
laser at L and −L respectively. A value of 1 means present and 0 means absent. To
ensure a duty-ratio greater than 0.5, we maintain d = Ton/Tcycle > 0.5.
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the duty-ratio to a value of 0.5 to complete the ‘reset to zero’ process (for a duration

of 10 seconds). The success of erasing the memory depends, on the magnitude of the

deviation of the duty ratio from 0.5 and the time duration τ during the second phase.

In the second phase, over the time duration τ , the laser spends more time focused

at −L than at L, enabling an asymmetric potential landscape as is observed in Fig. 3.3.

Increasing the duty-ratio results in a lower barrier height for the right to left transition

than for the left to right transition. It thus favors the transport of the bead from the

right to the left well, if the bead is initially in the right well as shown in Fig. 3.4(a) and

retains the bead in the left well if it was initially in the left well as shown in Fig. 3.4(b).

The duration τ is chosen to be a few multiples of the average exit time of the bead from

the right well but less than the average exit time of the bead from the left well, which

ensures a high likelihood of the bead’s final location to be in the left well. For example,

we choose τ as 30 seconds for the duty ratio of 0.7, which is approximately three times

the observed exit time of the bead from the right well.

The above mentioned erasure mechanism ensures high success proportion as reported

in Fig. 3.5. It is seen that the duty-ratio of 0.65 yields success proportion significantly

less than 0.95, while a duty-ratio > 0.7 shows a success proportion greater than 0.95.

Similar trends are reflected from Monte Carlo simulations as well as experiments as seen

in Fig. 3.5. Thus, to ensure a high success proportion in order to demonstrate erasures

with energy expenditure close to the Landauer’s bound, we operate our erasure protocol

at a duty ratio of at least 0.7. In the next section, we quantify the work done on the

bead in an erasure process for a given duty-ratio.

3.5 Erasure Thermodynamics

We now utilize the stochastic-energetics framework for Langevin systems [66, 49] and

quantify the work done on the system, associated with erasure process realized by ma-

nipulation of duty-ratios. The external system does work on the bead by changing the

duty-ratio, which results in modifying the potential felt by the bead. For an erasure

process, the work done on the bead, dW , is given by,

dW =
∑
j

[U(x(tj), d(t+j ))− U(x(tj), d(t−j )], (3.5)
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Figure 3.5: Effect of duty-ratio on success proportion p. Duty-ratio of 0.65 has a success
proportion of 0.82, whereas, duty-ratio greater than 0.7 yields success proportion higher
than 0.95.

where d denotes the discontinuous parameter (here, the duty-ratio) changed by the

external system, and tj denotes the time instances when the parameter was changed (t−j
and t+j denote the instants just before and after changing the parameter respectively).

Landauer’s bound can be reached when the erasure process is performed in a quasi

static manner. For an erasure performed over a large but finite duration τ , the average

work done on the system is [65],

〈dW 〉 = dWLandauer +
B

τ
(3.6)

where, dWLandauer = kbT ln 2 = 0.693kbT . The duration for which an asymmetric double

well potential is realized, τ , is chosen to be a multiple of the exit time, τe, of the bead

from the right well. It is known that τe ∝ exp(δUr)√
kr

, [48] where δUr is the barrier height of

the right well, kr is the stiffness of the right well and exp(.) is the exponential function.

Note that d − 0.5 is indicative of the asymmetric nature of the double well potential;

higher the value, more the asymmetry. We determine the dependency of δUr and kr on
1

d−0.5 empirically. The dependency of normalized δUr and kr on 1
d−0.5 is shown in Fig.

3.6 and 3.7 respectively. It follows that τ ∝ τe ∝
exp( 0.99

d−0.5
)√

1
d−0.5

. Substituting it in (3.6) for

τ leads to,

〈dW 〉 = dWLandauer +B
exp(− 0.99

d−0.5)
√
d− 0.5

. (3.7)
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Figure 3.6: The blue and red points represent normalized barrier height of right well as
a function of 1

d−0.5 obtained using simulations and experiments respectively. The green
line is the least squares fit to the simulation data points.
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Figure 3.8: The blue circles represent the average work done on the bead obtained using
300 Monte Carlo realizations (150, 0 → 0 and 150, 1 → 0 transfers) for duty ratio of
0.7, 0.75, 0.8, 0.85. The vertical lines represent the standard error in mean for each duty
ratio. The black dotted line denotes the the Landauer bound of kbT ln 2. The red dotted
line is the fit with the free parameters A and B.

Reducing d, the time duration τ required for successful erasures increases, whereby

the erasure process approaches a quasi-static process. Thus, the duty-ratio provides a

handle to realize quasi-static erasure processes using time multiplexed potentials.

The average work done on the bead 〈dW 〉, for duty-ratio d > 0.7 obtained using

simulations and experiments is shown in Fig. 3.8 and Fig. 3.9 respectively. For a duty-

ratio of 0.7, average work done on the system obtained from Monte Carlo simulations

is 0.73 ± 0.037kbT , while experimentally for duty-ratio of 0.7, the average work done

on the bead is obtained to be 0.9 ± 0.106kbT . The average work of 0.9 ± 0.106kbT to

erase a bit of information is the closest to the Landauer’s bound of kbT ln 2 reported.

As the duty-ratio is reduced (1/(d− 0.5) increased), the average work done on the bead

decreases, as observed in simulations as well as experiments.

We fit the model derived in (3.7), 〈dW 〉fit = A + B
exp(− 0.99

d−0.5
)

√
d−0.5

to the average work

done on the bead obtained by simulations and experiments for various duty-ratio values,

with A and B being free parameters (see Fig. 3.9). Using simulation data we obtain

A = 0.65kbT,B = 8.49kbT , whereas for experimental data we have A = 0.70kbT,B =

35.04kbT . It is seen that A (which represents the average work done on the system in

the quasi-static case) has a value close to the Landauer bound of kbT ln 2 (= 0.693kbT ),

in both simulations as well as experiments.

The distribution of work done while erasing a bit at a duty-ratio of 0.7, obtained
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from simulations and experiments is shown in Fig. 3.10. It is evident that for a fraction

of trajectories, the work done on the bead is less than the Landauer’s bound; indeed,

for some trajectories it is negative. However, the mean of the distribution is close to

the Landauer’s bound. Moreover, a bimodal nature of the distribution is evident. The

mode on the right in Fig. 3.10 corresponds to work done on the particle for transition

from right to left well (or 1 → 0) and mode on the left corresponds to transition from

left to left well (or 0→ 0). The characteristics of the simulation data are confirmed by

experiments as shown in Fig. 3.10. On increasing the duty-ratio, the mode on the right

shifts further to the right as work done on the bead is higher for higher duty-ratios. This

results in an increase in the standard error in mean on increasing duty ratio as shown

by the length of the blue bars in Fig. 3.8 and Fig. 3.9.

Thus we have demonstrated that a single bit memory and its associated erasure

protocol can be realized by multiplexing a laser between two locations. The resulting

energetics can be effectively accounted for in the framework developed by Sekimoto and

the magnitude of the deviation of the the duty-ratio of multiplexing from 0.5 provides

an effective means for driving the erasure process toward a quasistatic process.

Error Quantification: The primary sources of error in the average work done on the

system computed from position measurements are introduced by the photodiode based

measurements. The error statistics of the photo diode used in the experiments are

quantified in [69] and is shown to have zero mean and a standard deviation of the order

of a nanometer. Assuming that error in position measurement ex is independent of the

actual bead position x, the average error in potential energy of the bead eU is given by,

〈eU 〉 = 〈1
2
k(x+ ex − L)2 − 1

2
k(x− L)2〉

=
1

2
k〈e2

x〉 ∼ 10−3kbT.

Thus, error in obtaining the work done on the bead in a realization of erasure is of the

order of 10−3kbT .

3.6 Summary

We presented the thermodynamics of a Brownian particle influenced by the time mul-

tiplexing of a single harmonic potential of finite width. A Monte Carlo simulation
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framework for a Brownian particle under the influence of a time multiplexed laser is also

developed and shown to obey qualitative trends observed in experiments. We demon-

strate that the duty-ratio provides a handle on the speed of the erasure process and its

approach to reversibility. It is established through experiments and simulations that re-

ducing duty ratio results in erasure process with average work done approaching kbT ln 2;

which is the minimum average work required to erase one bit of information. Further-

more, the method is easy to implement on a standard optical tweezer setup. The insights

obtained from this article can be potentially leveraged to realize practical devices that

yield erasure mechanisms with energetics in the order of kbT ln 2.

Next, we will study the thermodynamic and kinetic aspects of erasure of a bit of

information analytically.



Chapter 4

Physics of Computation: Analysis

of Information Erasure

4.1 Prologue

In the previous chapter, we demonstrated erasure of information very close to the phys-

ical limits as dictated by the Landauer’s principle using experiments as well as Monte

Carlo simulations. In this chapter, we present a framework for analysis of information

erasure using ideas from Information theory and Gaussian mixture distributions. In

particular we analyze the effect of closeness of the two valleys in a single bit memory

on the Landauer’s limit as well as reliability of the erasure protocol. We show that

a compromise on the accuracy of erasure lowers the minimum energy expenditure re-

quired for information erasure below the Landauer’s limit. The analysis framework is

also applicable to other computational processes like OR, NOT and others.

4.2 Introduction

A prevalent model of a single bit memory is a Brownian particle in a symmetric double

well potential in a heat bath at constant temperature T , with the two identical wells

separated by a barrier as shown in Fig. 4.1. The presence of the particle in either well

denotes one of the possible two states of a single bit memory. Here, we designate the

particle’s presence in the left well and right well as state zero and one of the memory,

33
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Figure 4.1: A symmetric double well potential, U(x), where the location of the particle
in the left and right well designate the state zero and one respectively of a single bit
memory. Here, E denotes the barrier height.
respectively. The presence of an energy barrier of sufficient height (� kBT , kB is the

Boltzmann constant), ensures that information is retained for a long duration, as is

desired from a memory bit. A shorter barrier height(≈ kBT ) will result in a higher

probability of the particle moving from one well to another due to thermal fluctuations,

which is undesirable as it renders the information contained in the memory bit unreliable.

Erasure of a bit of information is a reset to zero operation, where we consider the erasure

process successful if the particle is in the left well at the termination of the erasure

process, irrespective of the initial state of the memory.

Landauer’s principle [27], asserts that, erasure of a bit of information, provided

both states of a single bit memory are identical, is accompanied by an average heat

dissipation of at least kBT ln 2. Landauer argued that erasure of information lowers

the entropy of the overall system and thus, is accompanied by heat dissipation to the

surrounding. Bennett further utilized Landauer’s argument to explain Maxwell’s demon

to avoid a paradox violating the second law of thermodynamics [26, 70]. Following

the original work of Landauer, there are numerous analytical [55, 56] and experimental

studies [60, 61, 63, 62, 71, 72, 73] focused on the minimal energy consumption related

to information processing.
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A recent research interest is on analyzing erasure mechanisms which result in heat

dissipation lower than kBT ln 2 (which is the Landauer’s bound). In this regard, re-

searchers have studied the effect of uncertainty in the erasure process and have shown

that partially successful erasures result in heat dissipation lower than the Landauer’s

bound [74, 75]. It is shown in [74, 75] that the lower bound on the heat dissipation is

given by kBT (ln 2 + p ln p+ (1− p) ln(1− p)), termed the Generalized Landauer Bound

(GLB), where p is the probability of reliability of the erasure process. An interesting

observation reached by analyzing GLB is that, a slight compromise on accuracy (by

about 10%) of the erasure process holds the potential for lowering the associated min-

imum heat dissipation significantly (by about 50%). An important assumption made

in arriving at the GLB in [55, 72, 73] is that, there is ‘insignificant’ overlap between

the two physical states that realize the single bit memory, that is, the two states of

a memory bit have sufficient ‘physical separation’. Such an assumption is implicit in

the experimental studies as well [60, 61, 63, 62, 71]. The effect of reduction in physical

dimension on energetic and reliability aspects is not well established. Here, we analyze

the effect of overlap of the two wells in a single bit memory with regards to heat dissi-

pation in erasure of information as well as reliability of stored information. We study

the relationship between the Generalized Landauer Bound (GLB) and the average time

from either well to cross the barrier at the origin with regards to the physical separation

between the two states of a one bit memory (that is, ‘size’ of the memory bit).

Our approach introduces an ‘overlap parameter’ and uses properties of mixture of

Gaussian distributions to derive bounds on change in entropy associated with informa-

tion erasure as well as average time of loss of stored information. The derived bounds on

the entropy change converge to the GLB when the overlap between the two states become

‘insignificant’ and hence is consistent with existing results in the literature [74, 75, 55].

We quantify the relationship between the overlap and the reduction in entropy change

and utilize it to arrive at GLB. Here, we derive sub-Gaussian upper bounds analytically

as opposed to the numerical study of entropy approximations for bit erasure in [76].

Furthermore, we obtain complimentary lower bounds on the decrease in thermodynamic

entropy, demonstrating that these bounds are reasonably sharp; and for bi-stable wells,

physically separated by lengths close to their standard deviation, the error in entropy

approximation incurred by the ‘insignificant overlap’ approximation is significant. These
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quantitative results are of immediate application as they allow a tight approximation of

the change in entropy in erasure process, relevant to the precise estimation of the associ-

ated minimal heat dissipation. A quantitative analysis is also provided for the case when

the two states of memory are non identical and the erasure process moves the state into

the well with higher/ lower volume. Furthermore, we use mean first passage time [48]

results to quantify the relationship between reliability of stored information in a memory

bit and the overlap parameter. We quantify that a trade-off exists between lowering the

minimum heat dissipation in information erasure and improving reliability of informa-

tion stored in a single bit memory. Moreover, we determine a threshold on the overlap

parameter, where a value higher than the threshold has minor benefits from the ener-

getics as well as reliability standpoint. The threshold value can be used to determine

memory densities that strike a good trade-off between reliability and thermodynamic

cost of computations.

We provide analytical results that are very pertinent and timely to the current re-

search focus of studying fundamentals of energetics of computations. The aim is to

understand the effects of reducing size of fundamental building blocks of information

storage devices on the thermodynamic and reliability aspects of computations. In our

analysis, a smaller value of the overlap parameter implies a smaller size of the memory

bit. The change in entropy bounds derived would also be applicable to enable analysis

of other processes in the field of thermodynamics of information involving a mixture

of Gaussian distributions; for example; in feedback processes where mutual information

between system state and measurement is a key quantity of interest [77]. Moreover, the

derived bounds on change in entropy have shown to be applicable in information theory

[78], for analyzing capacity bounds of a channel transmitting discrete values corrupted

by independent Gaussian noise. The analysis is also motivated by new paradigms of

computation; for example, in stochastic computation [79] and neuromorphic memory

architectures [80], where, uncertainty of the success of computation is allowed and mod-

eled a-priori.
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4.3 Single Bit Memory and Erasure with Uncertainty

4.3.1 Single Bit Memory

Following the original work of [27], we consider a Brownian particle in a double well

potential as a model for a single bit memory. The location of the particle, x, in either

well designates the state of the memory as 0 or 1. In this article, if the particle is

located in the left well (x < 0), we denote the state of memory as 0 and if the particle

is located in the right well (x ≥ 0), we denote the state as 1. The particle in either well

is in thermal equilibrium with the surrounding whose temperature is assumed to be a

constant T . For most part of this article, we assume that both the wells are identical

unless specified.

In recent experimental validations of Landauer’s principle [60, 81, 61, 71], it is seen

that the double well potential in the neighborhood of the two stable states can be

approximated as a convex quadratic function; locally. It then follows from the canonical

distribution expression that the equilibrium probability distribution is approximately a

Gaussian distribution around the minimum of each of the well. Henceforth, we assume

that the equilibrium probability distributions of the particle in the left and right well

are N (−µ, σ2) and N (µ, σ2) respectively, where N (µ, σ2) denotes a Normal distribution

with mean µ and variance σ2. Thus, if the memory is in the state 0 the equilibrium

probability distribution of the particle is f0(x) = Ce−(x+µ)2/2σ2 and if the memory state

is 1 the equilibrium probability distribution of the particle state is f1(x) = Ce−(x−µ)2/2σ2 ,

where x denotes the position of the particle and C is the normalization constant. This

assumption is consistent with the notion of memory as described in [54], where a single

bit memory is defined as a system with two stable states, such that, the system is locally

in equilibrium in either state and stays in one of the stable states (information retention)

for the duration the memory bit is valid (related to the exit time across a barrier).

Here, we study the effect of overlap between the two wells of the double well potential

(that is, the effect of overlap between the two equilibrium probability distributions of

the two states of a single bit memory) on the Landauer’s bound. The two distributions

intersect at x = 0, where, f0(0) = f1(0) = Ce−α
2/2 with α := µ/σ. Thus, the overlap

between the two distributions is characterized by the parameter α, which is referred to

as the overlap parameter. Higher(lower) the value of α, lower(greater) is the overlap
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between the two equilibrium distributions. Moreover, α is also indicative of the aspect

ratio of the memory bit as well as physical extent of the memory bit for a known standard

deviation of the equilibrium probability distributions.

Prior to erasure, it is equally likely for the state of the memory,M , to be zero or one,

that is, P (M = 0) = P (M = 1) = 1
2 . The probability of finding the Brownian particle

between x and x+ dx is given by,

P (X ∈ (x, x+ dx)) = P (M = 0)P (X ∈ (x, x+ dx)|M = 0)

+ P (M = 1)P (X ∈ (x, x+ dx)|M = 1)

=
1

2
f0(x)dx+

1

2
f1(x)dx. (4.1)

Thus, the probability distribution function, f(x), of the particle prior to undergoing an

erasure process, is an equally weighted mixture of f0(x) and f1(x). In order to represent

a valid single bit memory, this distribution must be a bi-modal distribution (due to a

symmetric double well stable potential). In this regard, an interesting result is that: an

equally weighted mixture of symmetric Gaussian distributions is uni-modal if and only

if α ≤ 1; otherwise it is bi-modal [82]. Thus, in order to represent a symmetric single

bit memory with two well defined states, f(x) needs to be a bi-modal distribution with

the two modes being alike. Hence, a single bit memory must have α > 1 in order to

be a valid memory bit. Fig. 4.2 and Fig. 4.3 show the probability distribution f(x)

and potential U(x) respectively for α = 3 and α = 0.5. It is seen that the distribution

is uni-modal (the corresponding potential is a single well potential) for α = 0.5, and

cannot be used to realize the two states of a single bit memory. However, α = 3, results

in a symmetric bi-modal distribution and a symmetric double well potential as seen in

Fig. 4.3, which results in a well defined memory bit. It is important to note that the

overlap parameter α depends on the physical design of the memory bit (the double well

potential precisely). Recent studies on Landauer’s bound [60, 81, 61, 71] used α ≈ 20.

Based on the above model of a single bit memory, there is a non zero probability to

commit an error in judging the state of the memory, M , from the measured position of

the Brownian particle x. This is because P (M = 0|X ∈ (x, x + dx)) > 0 for all x ∈ R,
which implies, there is a non zero probability for the memory M to be in state 0 or 1,

irrespective of any value of the position of the Brownian particle. Consider a threshold
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Figure 4.2: Probability distribution for α = 0.5 and α = 3.
T such that if x < T , then we infer M = 0 otherwise M = 1. The mis-classification

error probability, P (E), is given as,

P (E) =
1

2

∫
x<T

e−(x−µ)2/2σ2
dx+

1

2

∫
x>T

e−(x+µ)2/2σ2
dx. (4.2)

It is shown in [83] that P (E) is minimum if T = 0. In the rest of the manuscript we

choose T = 0, which is an optimal choice and is also used in recent experimental studies

on the Laundauer’s principle [60, 61, 71]. P (E) is a quantifier of the loss of information

which approaches zero if the overlap parameter α := µ/σ approaches ∞. This means

that, as the overlap between the two wells becomes insignificant, the loss of information

vanishes and the state of the memory bit can be identified accurately from position of

the Brownian particle.We now analyze the effect of the overlap parameter on energetics

of erasure of one bit of information.

4.3.2 Erasure with Uncertainty

Erasure is a process where irrespective of the initial state of the memory bit, the final

state is zero (also known as reset to zero). In a double well potential representation

of a single bit memory erasure entails that the particle needs to be transferred to the

left well; irrespective of the initial position of the particle. Erasure is achieved using

a particle transfer protocol(also referred as erasure protocol), which reliably moves the

Brownian particle to the left of the origin. We associate reliability parameter, p, with
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is computed using the Canonical distribution relation, p(x) = e−U(x)/kBT

Z , where, Z
denotes the normalization constant.
the erasure protocol, where, p := P (M = 0) after application of the erasure protocol.

The Generalized Landauer Bound (GLB) from [74, 75, 60] states that, if the reliability

parameter of the erasure process is p, then the associated average heat dissipation is at

least kBT (ln 2 +p ln p+ (1−p) ln(1−p)). The GLB evaluates to kBT ln 2 for p = 1; to 0

for p = 0.5 and is shown in Fig. 4.4 as a function of the reliability parameter p. Note that

p < 0.5 is not considered here as it would imply a reset to one operation. It is important

to point out that the reliability parameter, p, depends on the specific protocol used for

accomplishing the erasure and will be referred to as the protocol reliability parameter.

We would like to bring the attention of the reader to [60, 84, 71], where, the authors

discuss the dependence of protocol reliability parameter on speed of the erasure process.

Under the assumption of α > 1, we analyze the effect of overlap parameter α on

the Generalized Landauer Bound. The probability distribution function of the particle

before undergoing erasure, f(x), is given by, f(x) = 1
2f0(x) + 1

2f1(x) (see eq. (4.1)).

After applying an erasure protocol to the memory bit with reliability parameter p, the

probability of finding a particle between x and x+ dx is given by,

P (X ∈ (x, x+ dx)) = pf0(x)dx+ (1− p)f1(x)dx. (4.3)

Let, g(x) := pf0(x) + (1 − p)f1(x). The thermodynamic entropy of the system before

erasure is, Sf = −kB
∫∞
−∞ f(x) ln(f(x))dx, and after undergoing erasure process using a
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Figure 4.4: GLB as a function of protocol reliability parameter p.

protocol with reliability parameter p is, Sg = −kB
∫∞
−∞ g(x) ln(g(x))dx. It follows from

the 2nd Law of Thermodynamics that the average heat dissipation,

〈Qd〉 ≥ T (Sf − Sg) = kBT (I1 − I2),

where, I1 = α2− 1√
2πα

e−
α2

2

∫∞
−∞ e

− x2

2α2 cosh(x) ln(cosh(x))dx and I2 = α2− 1√
2πα

e−
α2

2

∫∞
−∞ e

− x2

2α2 (pe−x+

(1−p)ex) ln(pe−x+(1−p)ex)dx. The dependence of I1−I2 on the overlap parameter α,

is shown in Fig. 4.5. It is seen that kBT (I1− I2) approaches the GLB for large values of

the overlap parameter α. Note that for α ≤ 2.1, the decrease in thermodynamic entropy,

kB(I1 − I2) is less than kB(p ln p+ (1− p) ln(1− p) + ln 2) and is well approximated by

kB(p ln p + (1 − p) ln(1 − p) + ln 2), when α > 5. As seen from Fig. 4.5, for a given

protocol reliability parameter p and 1 < α < 5, the associated minimum average heat

dissipation due to erasure is lower than the GLB. Hence, allowing overlap (by reducing

the physical separation) between the two states of the memory bit can enable energy

dissipation lower than the GLB in an erasure process.

We remark that the protocol reliability parameter p is dependent on the protocol

used for performing erasure and the overlap parameter α of the memory bit. There is

a subtle difference between the protocol reliability parameter p and the probability of

success of an erasure, ps, and is discussed below.

Without loss of generality, it can be assumed that if the position of the particle is
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Figure 4.5: I1 − I2 as a function of p for various values of α. I1 − I2 approaches
p ln p+ (1− p) ln(1− p) + ln 2 (pink curve) as α increases.

to the left of the origin, the state of the memory is deemed as 0; the erasure process

is considered successful if after application of the erasure protocol the position of the

particle, x, is observed to be less than zero. Thus the probability of success, ps, of the

erasure process is given by,

ps = P (X < 0) = p

∫ 0

−∞

1√
2πσ2

e−
(x+µ)2

2σ2 dx+ (1− p)
∫ 0

−∞

1√
2πσ2

e−
(x−µ)2

2σ2 dx

= p

∫ α

−∞

1√
2π
e−

u2

2 du+ (1− p)
∫ −α
−∞

1√
2π
e−

v2

2 dv, u :=
x

σ
+ α, v :=

x

σ
− α,

=
1

2
erfc(α/

√
2) + p× erf(α/

√
2), (4.4)

where, erf and erfc denote the Gaussian error and complementary error function. Thus,

in the limit α→∞, ps → p. In Figure 4.6, we plot ps by varying α and p. It is seen that

for α ≥ 3, ps is very close to p. Thus, ps can be considered as a good approximation of

p for α ≥ 3. Empirically, ps is determined by applying the specified protocol to several

realizations of the memory bit and then observing what fraction of those resulted in

the particle being located to the left of the origin after the completion of the protocol

[60, 61, 71]. Once an estimate of ps is known, with the knowledge of α, the protocol

reliability parameter can be estimated.

In the next section, we derive upper and lower bounds to the change in entropy as a
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Figure 4.6: Variation of probability of success of erasure as a function of the overlap
parameter and protocol reliability parameter p.

function of the protocol reliability parameter p and overlap parameter α.

4.4 Effect of Overlap parameter on Thermodynamic Cost

of Erasure

4.4.1 Upper and lower bounds on the change in entropy during erasure

We will establish in this section that the following upper and and lower bounds on the

decrease in entropy, Sf − Sg,

Sf − Sg ≤ kB(ln 2−H(p)− ln (1 + e−2α2
) + C(2−H(p) + 4α2)e−α

2/2), and, (4.5)

Sf − Sg ≥ kB(ln 2−H(p)− C(2 + 4α2 + ln 2)e−α
2/2 + p ln(1 +

1− p
p

e−2α2
)+

(1− p) ln(1 +
p

1− pe
−2α2

)). (4.6)

Here, H(p) := −p ln p − (1 − p) ln (1− p).Consider, a probability distribution func-

tion(pdf), g(.) := pN (−µ, σ2) + (1− p)N (µ, σ2), and another pdf, g(.) := pN (−α, 1) +

(1− p)N (α, 1), where α is the overlap parameter µ
σ . Then, Sg = Sg + kB lnσ [85]. Simi-

larly, for p = 1
2 , with f(.) = 1

2N (−µ, σ2)+ 1
2N (µ, σ2) and f(.) := 1

2N (−α, 1)+ 1
2N (α, 1),

we have Sf = Sf + kB lnσ. Thus, Sf − Sg = Sf − Sg. In the derivations below we are
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interested in the change in entropy between an initial pdf described by f and a final

distribution described by g. It is evident from the relation above that we can limit our

discussion to g = pN(−α, 1) + (1− p)N(α, 1) and f = 1
2N (−α, 1) + 1

2N (α, 1). We also

use f0(x) = Ce−
(x+α2)

2 and f1(x) = Ce−
(x−α2)

2 , where C = 1√
2π
.

For the derivation below it is assumed that p ∈ [0.5, 1) and α > 1.

It follows (see Appendix) that,∫ ∞
−∞

pf0(x) ln(pf0(x) + (1− p)f1(x))dx−∫ ∞
−∞

pf0(x) ln (pf0(x))dx

< C(2(1− p) + p ln (
e4α2

p
))e−α

2/2. (4.7)

Similarly, one can show that,∫ ∞
−∞

(1− p)f1(x) ln(pf0(x) + (1− p)f1(x))dx

−
∫ ∞
−∞

(1− p)f1(x) ln ((1− p)f1(x))dx

< C(2p+ (1− p) ln (
e4α2

1− p))e−α
2/2. (4.8)

Let K :=
∫∞
−∞ f0(x) ln(f0(x))dx =

∫∞
−∞ f1(x) ln(f1(x))dx. Using eq. (4.7) and eq. (4.8)

with p = 1
2 leads to the following lower bound on Sf ,

Sf ≥ kB(−K + ln 2− C(2 + 4α2 + ln 2)e−α
2/2). (4.9)

From eq. (4.7) and (4.8), it also follows that,

−Sg ≤ kB(p ln p+ (1− p) ln(1− p) +K

+ C(2 + p ln p+ (1− p) ln(1− p) + 4α2)e−α
2/2). (4.10)
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In the Appendix, we also derive the following lower bounds,∫ ∞
−∞

pf0(x) ln(pf0(x) + (1− p)f1(x))dx−
∫ ∞
−∞

pf0(x) ln (pf0(x))dx ≥ p ln(1 +
1− p
p

e−2α2
), and,

(4.11)∫ ∞
−∞

(1− p)f1(x) ln(pf0(x) + (1− p)f1(x))dx−
∫ ∞
−∞

(1− p)f1(x) ln ((1− p)f1(x))dx

≥ (1− p) ln(1 +
p

1− pe
−2α2

). (4.12)

Using eq. (4.11) and (4.12) with p = 1/2, we obtain the following upper bound on Sf ,

Sf ≤ kB(−K + ln 2− ln (1 + e−2α2
)). (4.13)

Furthermore, from eq. (4.11) and (4.12), we obtain the following lower bound on −Sg,

−Sg ≥ kB(K + p ln p+ (1− p) ln (1− p) + p ln(1 +
1− p
p

e−2α2
) + (1− p) ln(1 +

p

1− pe
−2α2

)).

(4.14)

It follows from eq. (4.9) and (4.13) that,

kB(−K + ln 2− C(2 + 4α2 + ln 2)e−α
2/2)

≤ Sf ≤ kB(−K + ln 2− ln (1 + e−2α2
)). (4.15)

Similarly, it follows from eq. (4.10) and (4.14) that,

kB(K −H(p) + p ln(1 +
1− p
p

e−2α2
) + (1− p) ln(1 +

p

1− pe
−2α2

))

≤ −Sg ≤ kB(K −H(p) + C(2−H(p) + 4α2)e−α
2/2), (4.16)

where, H(p) = −p ln p − (1 − p) ln (1− p). Using eq. (4.15) and (4.16), it is concluded

that the difference between the initial and final entropy, Sf −Sg, satisfies the bounds in

eq. (4.5) and (4.6).

The case of p = 1 has to be considered separately. If p = 1, g(x) = f0(x) and
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−Sg = kBK. It then follows from eq. (4.9) and (4.13) that,

Sf − Sg ≥ kB(ln 2− C(2 + 4α2 + ln 2)e−α
2/2),

Sf − Sg ≤ kB(ln 2− ln (1 + e−2α2
)).

In the case p = 1 as well, it follows that limα→∞ Sf − Sg = kB ln(2), which is the

Landauer’s bound.

4.4.2 Relationship to the Generalized Landauer Bound

Note from eq. (4.5) and (4.6), limα→∞ Sf − Sg = kB[ln(2) + p ln(p) + (1 − p) ln(1 −
p)](GLB); where the upper and lower bounds on the change in entropy, both converge

to the GLB. The convergence to the limit is with respect to the overlap parameter α

is exponentially fast for both the upper and lower bound. Thus, in the limiting case

of α → ∞, it follows from the 2nd Law of Thermodynamics that, 〈Qd〉T ≥ kB[ln(2) +

p ln(p) + (1 − p) ln(1 − p)], implying that for a quasi static erasure using a protocol

with reliability parameter p, 〈Qd〉 = kBT [ln(2) + p ln(p) + (1 − p) ln(1 − p)]. In Figure

4.7, we present the derived lower and upper bounds on (Sf − Sg)/kB as a function of

the overlap parameter for p = 0.8. The exponential convergence to the GLB value for

p = 0.8 is evident. Table 4.1 lists the difference between the upper (eq. (4.5)) and

lower (eq. (4.6)) bounds of (Sf − Sg)/kB for various values of the overlap parameter,

α, and protocol reliability parameter, p. It is seen that, the difference is significant for

α < 5 and is almost zero for α = 5(insignificant overlap). Here, it is seen that with a

threshold of 5 for the overlap parameter α, increasing α beyond the threshold accrues

only marginal gains energetically. The recent experimental studies on verification of the

Landauer’s bound [60, 71, 61] employed α ≈ 20, indicating that there is considerable

scope to increase the density of the resulting memory.

4.4.3 Extensions to Asymmetric 1 bit Memory

An asymmetric one bit memory and the associated minimum heat dissipation for its

erasure is discussed in [54, 62]. In particular, [62] presents an experimental study of the

minimum heat dissipation for perfect erasures of a bit of asymmetric memory, with one

well being wider than the other, and considers the two cases of resetting the bit into the
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Table 4.1: Difference between the upper(eq. (4.5)) and lower(eq. (4.6)) bounds of
(Sf − Sg)/kB as a function of α and p.

α
p

0.6 0.7 0.8

1.5 2.829 2.838 2.852
2.0 1.944 1.947 1.953
2.5 0.946 0.948 0.949
3.0 0.336 0.337 0.338
5.0 3.033e−4 3.034e−4 3.035e−4
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wider and narrower well. Motivated from the discussion in [62], we extend the GLB to

the case of non-identical wells, where, one well is wider than the other.

We assume that initially, the particle has equal probability to be in either well and

the initial probability distribution of the particle is given by f(x) as described earlier

(see eq. (4.1)). Similarly, for erasures using a protocol with reliability parameter p, the

final probability distribution of the particle is given as g(x) (see eq. (4.3)).

Erasing into low entropy well

Consider f0(x) = Ce−
(x+µ)2

2σ2 and f1(x) = C
β e
− (x−µ)2

2(βσ)2 with β > 1. The particle has higher

entropy in the state 1 as compared to state 0. In this case, for ‘reset to zero’ with

protocol reliability parameter p, one can show that,

kB(−C
2

(2 +
9α2

2
+ ln 2)e−α

2/2 − C

2
(2 + ln 2 + lnβ + 4α2)e−α

2/2β2
)

≤ Sf − Sg − kB(ln 2 + p ln p+ (1− p) ln(1− p) + (
1

2
− (1− p)) lnβ) ≤

kB(C(2p+ p ln
(e9α2/2

p

)
)e−α

2/2 + C(2(1− p) + (1− p) ln
(βe4α2

1− p
)

)) (4.17)

Thus, limα→∞ Sf −Sg = kB[p ln p+ (1− p) ln(1− p) + (1
2 − (1− p)) lnβ+ ln 2]. The rate

of convergence is exponential with respect to the parameter α and depends inversely

on the parameter β. Thus, in the limiting case of the two wells being sufficiently far

apart and a quasi-static erasure process with protocol reliability parameter p, 〈Qd〉 =

kBT [p ln p + (1 − p) ln(1 − p) + (1
2 − (1 − p)) lnβ + ln 2]. Here, the bit was erased into

the well with lower entropy, hence, the limiting value of the change in entropy is higher

than the identical wells case. In Figure 4.8 the heat dissipation associated with erasing

into the low entropy well is shown for various values of the asymmetry parameter β and

is compared with the Generalized Landauer Bound. It is seen that, as the asymmetry

parameter is increased, the associated heat dissipation also increases for various protocol

reliability parameters. The case of erasing into the high entropy well is more relevant

and is presented next.
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Figure 4.8: Minimum heat dissipation associated with erasing into low entropy well in
a quasi static manner.

Erasing into high entropy well

Consider erasing into the higher entropy well, that is, f1(x) = Ce−
(x−µ)2

2σ2 and f0(x) =

C
β e
− (x+µ)2

2(βσ)2 with β > 1. Here, the particle has higher entropy in the state 0 as compared

to state 1. In this case, for ‘reset to zero’ with protocol reliability parameter p, one can

arrive at inequalities like the previous case by replacing β with 1/β in eq. (4.17). It then

follows that, limα→∞ Sf −Sg = kB[p ln p+ (1−p) ln(1−p) + ((1−p)− 1
2) lnβ+ ln 2]. In

the limiting case of the two wells being sufficiently far apart, for a quasi-static process,

〈Qd〉 = kBT [p ln p+(1−p) ln(1−p)−(1
2−(1−p)) lnβ+ln 2]. Here, the bit was erased into

the well with higher entropy, hence, the limiting value of the change in entropy is lower

than the identical wells case. In Figure 4.9, the heat dissipation associated with erasing

into the high entropy well is shown for various values of the asymmetry parameter β and

is compared with the Generalized Landauer Bound. It is seen that, as the asymmetry

parameter is increased, the associated heat dissipation decreases for various protocol

reliability parameters. In this case, it is seen that erasure can be achieved without any

associated heat dissipation. Hence, asymmetry can be utilized toward realizing logically

irreversible computations with zero dissipation.
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Figure 4.9: Minimum heat dissipation associated with erasing into high entropy well in
a quasi static manner.

4.5 Effect of Overlap Parameter on the Reliability of a

memory bit

In the previous sections, it is seen that a smaller value of the overlap parameter α results

in lower minimum average heat dissipation for quasi static bit erasures. A smaller value

of α implies a lower barrier height (U(0) − U(µ)), thereby resulting in transitions of

the Brownian particle between the two wells. If such a transition occurs frequently

then the memory bit is considered unreliable. In this section, we quantify the degree of

unreliability of a memory bit as a function of the overlap parameter α. Although the

discussions in the previous sections are for quasi static erasures, the exit time results of

this section are more relevant for erasures achieved in finite time.

We will use the mean exit time from the mean of a well (right or left) to the barrier (at

the origin) as a metric to quantify the reliability of the bit. A desirable mean exit time

from either well to the barrier is several years to ensure reliability of stored information

in the memory bit. The mean exit time across the barrier (at x = 0) from the mean of

the right well (at x = µ), denoted by T (µ → 0), (under the assumption of stochastic

dynamics of the Brownian particle being governed by the overdamped Langevin equation
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Figure 4.10: Barrier height in kBT as a function of the overlap parameter.

[49]) is given as [86],

T (µ→ 0) = π

√
|U ′′(0)|
U ′′(µ)

e(U(0)−U(µ))/kBT , (4.18)

where, it follows from the canonical distribution that, U(x)/kBT = − ln p(x)/Z. Here,

f(x) denotes the equilibrium probability density, which is given as, f(x) = 1
2N (µ, σ) +

1
2N (−µ, σ) and Z is the normalization constant. The barrier height, U(0) − U(α) is

given as,

U(0)− U(µ)

kBT
= ln

f(µ)

f(0)
= ln

eα
2/2(1 + e−2α2

)

2
=
α2

2
+ ln (1 + e−2α2

)− ln 2. (4.19)

Thus, the barrier height, to a good approximation, is a quadratic function of the overlap

parameter. In Fig. 4.10 the increase in barrier height on increasing the overlap parameter

is shown. It is evident that as the overlap between the two wells decreases, the barrier

height at the origin increases relative to the minima of the two wells and it is less likely to

find the particle closer to the barrier. Using eq. (4.19) and substituting the expressions

for U ′′(µ), U
′′
(0) in eq. (4.18) leads to,

T (µ→ 0) =
π

2

√
α2 − 1

1− α2 sech2(α2/σ)
eα

2/2(1 + e−2α2
). (4.20)
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Figure 4.11: Mean exit time as a function of the overlap parameter for σ = 1.

In Figure 4.11, we show the the variation of mean exit time with respect to the overlap

parameter α. It is seen that the mean exit time from the mean of the right well (or the

left well) increases exponentially as α increases. It is seen that α ≈ 7 has a mean exit of

several hundred years. Based on our analysis, we conclude that reliability of the memory

bit has exponential quadratic improvement while the minimum average heat dissipation

has quadratic exponential decay to the GLB on increasing the overlap parameter α.

Thus, the trade-off between energy dissipation in erasing information and reliability of

the memory can be decided by a judicious choice of the overlap parameter.

4.6 Summary

We quantified the dependence of the decrease in entropy associated with erasure of a

bit of information on the amount of overlap between the equilibrium distributions of

the two states of a one bit memory. It is seen that overlap can lead to considerably

lower heat dissipation as compared to the GLB in a quasi static erasure process. This

is primarily due to loss of information, primarily in the region between the two wells.

We quantified the effect of loss of information on the change in entropy associated with

partial information erasure by deriving tight upper and lower bounds, which exponen-

tially converge to the GLB when the physical separation between the two states is large
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(loss of information is 0). A conclusion is reached that α ≈ 5 represents a threshold

for energetics of computation associated with a single bit memory, where memory bit

designs with α > 5 have insignificant gains compared to α ≈ 5 case from an energetics

perspective. Furthermore, the effect of asymmetry between the two wells of a single bit

memory on the associated minimum heat dissipation for erasure processes is analyzed.

Finally, we used mean exit time across a barrier relationships to demonstrate the effect

of the overlap parameter on the reliability of the bit. It is seen that a higher value of

the overlap parameter results in a higher mean exit time and hence, a more reliable

memory. A slight change in the overlap parameter resulted in exponential improvement

of the bit reliability. Thus, we arrive at a trade-off between minimizing heat dissipation

and improving bit reliability by introducing overlap between the two wells of a memory

bit. We showed that α ≈ 7 resulted in bit reliability of several hundred years; beyond

7 the gains in reliability could be inconsequential. Thus, α ≈ 7 can serve as a guide for

designing memory with improved memory density, while retaining reliability as well as

minimizing loss of information.

4.7 Detailed Steps

4.7.1 Upper Bounds

First, we derive an upper bound for the difference,∫ ∞
−∞

pf0(x) ln(pf0(x) + (1− p)f1(x))dx−
∫ ∞
−∞

pf0(x) ln (pf0(x))dx,

which is simplified as,

p

∫ ∞
−∞

f0(x) ln(1 +
(1− p)f1(x)

pf0(x)
)dx

= Cp

∫ ∞
−∞

e−t
2/2 ln(1 +

(1− p)
p

e2(t−α)α)dt, (t := x+ α),

= Cp

∫
(−∞,α)∪[3α,∞)

e−t
2/2 ln(1 +

(1− p)
p

e2(t−α)α)dt

+ Cp

∫ 3α

α
e−t

2/2 ln(1 +
(1− p)
p

e2(t−α)α)dt. (4.21)
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Using the logarithmic inequality ln (1 + x) < x for x > 0, the first integral in eq.

(4.21) satisfies,

Cp

∫
(−∞,α)∪[3α,∞)

e−t
2/2 ln(1 +

(1− p)
p

e2(t−α)α)dt

< C(1− p)
∫

(−∞,α)∪[3α,∞)
e−(t−2α)2/2dt,

= 2C(1− p)
∫ ∞
α

e−u
2/2du, (u := t− 2α),

< 2C(1− p)
∫ ∞
α

ue−u
2/2du, (∵ u ≥ α > 1),

= 2C(1− p)e−α2/2. (4.22)

Moreover, 0 ≤ 2(t−α)α ≤ 4α2 for t ∈ [α, 3α) and e4α2
> 1, using which the last integral

in eq. (4.21) satisfies,

Cp

∫ 3α

α
e−t

2/2 ln(1 +
(1− p)
p

e2(t−α)α)dt,

≤ Cp
∫ 3α

α
e−t

2/2 ln (
e4α2

p
)dt,

≤ Cp ln (
e4α2

p
)

∫ ∞
α

e−t
2/2dt,

≤ Cp ln (
e4α2

p
)e−α

2/2. (4.23)

The inequality in eq. (4.7) then follows by combining eq. (4.22) and (4.23) with (4.21).

4.7.2 Lower Bounds

We now derive a lower bound for the difference,∫ ∞
−∞

pf0(x) ln(pf0(x) + (1− p)f1(x))dx−
∫ ∞
−∞

pf0(x) ln (pf0(x))dx

=

∫ ∞
−∞

p
e−x

2/2

√
2π

ln(1 +
(1− p)
p

e2(x−α)α)dx.
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Notice that by direct computation of second derivatives, it follows that the function

ϕ(t) = p ln(1 + 1−p
p e2(t−α)α) is a convex function. Thus, we can express,

∫ ∞
−∞

e−x
2/2

√
2π

p ln(1 +
(1− p)
p

e2(x−α)α)dx = E(ϕ(Z)),

where, Z is a standard Gaussian random variable. Applying Jensen’s inequality [85], we

have,

E(ϕ(Z)) ≥ ϕ(E(Z)),

= p ln(1 +
1− p
p

e−2α2
). (4.24)

Similarly, one can show that,∫ ∞
−∞

(1− p)f1(x) ln(pf0(x) + (1− p)f1(x))dx−
∫ ∞
−∞

(1− p)f1(x) ln ((1− p)f1(x))dx

=

∫ ∞
−∞

e−x
2/2

√
2π

(1− p) ln(1 +
p

1− pe
−2(x+α)α)dx

= E(Ψ(Z)),

where, Ψ(t) = (1−p) ln(1+ p
1−pe

−2(t+α)α) is a convex function. Using Jensen’s inequality,

E(Ψ(Z)) ≥ Ψ(E(Z))

= (1− p) ln(1 +
p

1− pe
−2α2

). (4.25)



Chapter 5

Structure Learning: Linear Systems

with Tree Topology

5.1 Prologue

In the previous chapters we looked at physical aspects of information processing at a

fundamental level. In the next few chapters, we will study the processing of information

from diverse sources to unravel interdependencies. We will adopt a networks frame-

work for inference of relationships between observed entities. A highlighting feature is

development of algorithms with provable guarantees in the context of linear dynamical

systems. Applications will be from power networks and multi agent systems.

In this chapter, we present a method to infer the presence or absence of influences

in a collection of dynamically related stochastic processes, where the relationships are

bi-directional and the underlying topology is a tree. Our approach combines classical

ideas in signal processing and graphical models.

5.2 Introduction

Networks underpin a powerful framework for modeling and analysis of large scale dy-

namical systems. Applications include neuroscience [19], financial markets [87], protein

dynamics [88], climate sciences [20] and the power grid [89]. Moreover, networks play

an indispensable role in building foundational aspects of control theory [90], statistical

56
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inference [91] and optimization theory[92]. The compactness of representation and the

capability of unveiling influences, cause-effect relationships and dependencies amongst

many variables are some of the key attributes enabled by network based approaches

[93, 35]. An essential aspect of many studies is to determine a graphical representation

of how multiple sub-systems/agents interact from measured time series data. It is often

the case that active manipulation of the system is prohibited or not possible; for exam-

ple, in financial markets the prices of stocks are available as data but it is not possible

(or not allowed) to manipulate the prices. In many cases, the influences between sub-

systems/ agents is mutual, thus separating source and destination or cause and effect in

such cases is not meaningful.

In this chapter, we are concerned with the task of unveiling the network topology that

relates multiple linear dynamical systems from temporal data, where it is not possible to

excite the system externally. Here, we assume that the underlying network is bi-directed,

that is, the influences between agents is mutual and describing cause-effect relationships

is not obvious. We further restrict the study to systems where the interaction flow is

well characterized by a tree structure.

Learning the structure of a network of static random variables is an active research

area in many fields since almost half a century [35, 93, 94, 95, 96]. Recently, there has

been growing interest on determining the structure of a network of dynamically related

systems. Network reconstruction for a collection of wide sense stationary processes

related by linear dynamical systems is approached using inverse of the power spectral

density matrix in [38], Wiener filtering in [3, 97] and mutual information in [98]. Our

work builds on [3], where it is shown that multivariate Wiener filtering recovers the

Markov blanket of each node in the network which includes spurious edges in addition

to the true edges in the underlying network. The main contribution of this chapter

is a method that eliminates the spurious links to obtain an exact reconstruction of the

underlying topology for dynamical systems that have bi-directional interactions with the

interaction topology described by a tree. We instantiate the motivation and the results

to a power grid. The theory and results are inspired by [2] where aspects of the power

grid are modeled in a static framework.

The power grid is a large engineered infrastructural network that has facilitated unin-

terrupted availability of energy fueling huge technological advances. Power distribution
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Figure 5.1: Distribution network with roots represented by large red nodes. The opera-
tional edges are formed by solid lines (black). Dotted grey lines represent open switches.
Non-root nodes within each tree are marked with the same color [2].

systems, which consist of the medium and low-voltage lines that connect the distribu-

tion substations to the end-users are structurally characterized by interconnections that

can be modeled via a radial topology [99]. The radial topology may be altered over

time by changing the operational lines selected from a set of permissible lines, while

maintaining the tree structure [100] (see Fig. 5.1). In recent years, the proliferation

of smart controllable devices and household generators has led to greater focus on the

estimation and control of the distribution system. A critical need, here, is the accurate

estimation of the current radial topology that may change over time due to unreported

maintenance or faults. The estimation problem is further exacerbated by the historical

low-penetration of real-time line meters in the distribution grid. The challenge is being

partly met by the use of advanced meters like PMUs (Phase Measurement Units) [101]

and distribution micro-PMUs [102] that provide high fidelity measurements of the state

of the buses. Prior research directions in this area include learning using inverse covari-

ance matrices [103], trends in voltage variance [100, 104, 105], graphical model learning

[2] and maximum likelihood schemes [106]. However, the above indicated studies as-

sume the measured data to be independent samples from a static distribution. Such an

assumption may not be accurate as fast sampled (sub-sec sampling) data in the grid

arise from the evolution of states that are not static but dynamic. Here, we avoid the

static assumption and consider the nodal measurements to arise from the swing dynam-

ics in the power grid [89]. Under the dynamical framework, we apply our analytical
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development pertinent to bi-directed dynamically related processes, to provably learn

the correct radial topology of the grid. We demonstrate the performance of our learning

framework on IEEE test dynamic networks.

In the next section we introduce notions from graph theory, which are utilized later,

following which we introduce the framework of Linear Dynamic Graphs in Section 5.4.

In Section 5.5 the Wiener filtering based network topology reconstruction algorithm is

discussed. Then we present results and algorithms to obtain an exact reconstruction

for a tree topology in Section 5.6, after which we introduce the swing dynamics of a

network of generators and loads in Section 5.7 to illustrate the algorithms presented

with examples in Section 5.8. We end with a summary in Section 5.9.

5.3 Preliminaries

In this section, basic notions of graph theory that are useful for the subsequent devel-

opment are recalled [107].

Definition 1 (Directed and Undirected Graphs). An undirected graph G is a pair (V,A)

where V is a set of vertices or nodes and A is a set of edges or arcs, which are unordered

subsets (i, j), i, j ∈ V . We refer to j as the neighbor of i and vice versa. If arcs in A are

ordered, it is called a directed (or oriented) graph.

Definition 2 (Topology of a graph). Given an oriented graph G = (V,A), its topology

top(G) is defined as the undirected graph G′ = (V,A′) that is obtained by removing

the orientation on all its edges, and avoiding repetition. For an undirected graph G,

top(G) = G. An example of a directed graph is represented in Figure 5.2(a) with its

topology in Figure 5.2(b).

Definition 3 (Two Hop Neighbor). In the undirected graph top(G) = (V,A
′
), k ∈ V is

a two hop neighbor of i ∈ V , if there is a j ∈ V such that (i, j) ∈ A′ and (j, k) ∈ A′.

Definition 4 (Children, Parents and Kins). In a directed graph G = (V,A), for a node

j ∈ V , the children of j are defined as CG(j) := {i|(i, j) ∈ A} and the parents of j

as PG(j) := {i|(j, i) ∈ A}. Kins of j ∈ V are defined as, KG(j) := {i|i 6= j and i ∈
CG(j) ∪ ∪ PG(j) ∪ PG(CG(j))}.
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Figure 5.2: (a) A directed graph, (b) its topology (nodes 2 and 3 are neighbors, 2 and
5 are two hop neighbors) and (c) its kin graph.

Note that the kin relation is a symmetric relationship; i ∈ KG(j) if and only if

j ∈ KG(i).

Definition 5 (Kin-graph). Given an oriented graph G = (V,A), its kin-graph is the

undirected graph G̃ = (V, Ã), where

Ã := {(i, j)|i ∈ KG(j), j ∈ V },

and is denoted as kin(G) := G̃.

Definition 6. (Path) A path is a non empty undirected graph P = (V,E) with V =

{x0, x1, · · · , xk} and E = {(x0, x1), (x1, x2), · · · , (xk−1, xk)}. We will denote a path by

x0 − x1 − x2 − · · · − xk−1 − xk.

Definition 7. (Cycle) A path P of length at least 2 with the edge set {(x0, x1), (x1, x2), · · · , (xk−1, xk), (xk, x0)}
is a cycle.

Definition 8. (Connectedness) A non-empty undirected graph G := (V,A) is connected

if for any a, c ∈ V there exists a path of the form a− b1 − b2 − · · · − bm − c in G.

Definition 9. (Tree) A connected undirected graph without cycles is called a tree. There

is a unique path between any two nodes in a tree.

Definition 10. (Leaf Node/ Non leaf Node of a Tree) In a tree T , a node with degree 1

is called a leaf node. Nodes with degree greater than 1 are called non leaf nodes.
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5.4 Linear Dynamic Graphs

In this section we introduce a class of models for the description of a network of JWSS

(Jointly Wide Sense Stationary) processes. The node dynamics of the j − th node is

given by:

xj = ej +

m∑
i=1,i 6=j

Hji(z)xi, j = 1, 2, · · · ,m.

If an agent i ‘influences’another agent j, that is, Hji(z) 6= 0, a directed edge is drawn

from i to j and a directed graph is obtained. The noise component at each node ej is

assumed to be zero mean WSS and uncorrelated with {ek}mk=1,k 6=j .

Definition 11 (Linear Dynamic Graph [3]). A Linear Dynamic Graph G is defined as

a pair (H(z), E) where

• E = (e1 ... em)′ is a vector of m uncorrelated WSS processes {ej}mj=1. Thus, the

power spectral density matrix of E, ΦE(z) is a diagonal matrix of size m×m.

• H(z) is a m×m matrix of stable transfer functions in F such that diagonal entries

H(j, j)(z) = 0, for j = 1, ...,m and H(j, i)(z) = Hji(z), i 6= j is the (j, i) entry of

H(z).

A compact expression for the output processes {xj}mj=1 of the LDG is,

X(k) = H(z)X(k) + E(k), (5.1)

where X = [x1, · · · , xm]′. Let V := {x1, ..., xm} and let A := {(xj , xi)|Hji(z) 6= 0}. The
pair G = (V,A) is the associated directed graph of the LDG. Nodes and edges of a LDG

refer to the nodes and edges of the graph G.

A LDG (H(z), E) is well-posed if each entry of (I−H(z))−1 is stable and topologically

detectable if Φej (e
ιω) > 0 for any ω ∈ [−π, π] and j = 1, ...,m. Here, we focus on a

restricted class of LDGs; bi-directed LDGs, which is defined below.

Definition 12 (bi-directed LDG). A LDG (H(z), E) whose associated graph is bidirec-

tional is called a bi-directed LDG. Note that in an bi-directed LDG Hji(z) 6= 0 almost
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Figure 5.3: (a) A bi-directed LDG and (b) its associated undirected graph.

surely implies that Hij(z) 6= 0 almost surely. The associated graph of a bi-directed LDG

could be interpreted as an undirected graph (see Figure 5.3 (b)).

5.5 Learning Kin Graph from data using Wiener Filtering

In this section we present Algorithm 1, which recovers the kin-graph of the underlying

LDG from the observed data using multivariate Wiener filtering [3]. The multivariate

Wiener filter of estimating xj from xj := {x1, ..., xj−1, xj+1, ..., xm} is given by, Wj(z) =

[Wj1(z) ... Wjj−1(z) Wjj+1(z) · · ·Wjm(z)] = Φxjxj
(z)Φ−1

xjxj
(z).
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Algorithm 1 Topology Learning using Wiener Filtering
Input: Time series xi for nodes i ∈ {1, 2, ...,m}
Output: The kin graph of T , T ′ = (V, ET ′).

1: Edge set ET ′ ← {}
2: for all j ∈ {1, 2, ...,m} do
3: Compute Wj(z)

4: for all i ∈ {1, 2, ...,m}, i 6= j do

5: if Wji(z) 6= 0 then

6: ET ′ ← ET ′ ∪ {(i, j)}
7: end if

8: end for

9: end for

Remark 1. It is proven in [3] that if Wji(z) 6= 0 then i and j are kins. The converse

is also true except for pathological cases (see [3]). Thus, we assume our LDG transfer

functions are not from the pathological set, thereby enabling Algorithm 1 to recover the

kin graph of the LDG. The kin graph obtained after application of Algorithm 1 is an

undirected graph, hence, direction of the link cannot be inferred from the output of Algo-

rithm 1. Note that Algorithm 1 is driven by the power spectral density matrices, which

can be computed solely from the measured data.

Consider a bi-directed LDG (H(z), E) with the associated undirected graph G =

(V,A). Let the output of the LDG be given by X = (x1, ..., xm)′. The Wiener filtering

based topology reconstruction leads to an undirected graph G
′

= (V,A′) such that

A′ = A ∪ {edges between two hop neighbors in G}.

5.6 Network Reconstruction for bi-directed LDGs with Tree

topology

In this section we restrict our to attention to bi-directed LDGs whose underlying topology

is a tree T . Applying Algorithm 1 described in the previous section to a bi-directed

LDG with a tree topology T := (V, ET ) results in the topology T ′ with edge set ET ′
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= ET ∪ {(xi, xj)|xi, xj ∈ V are two hop neighbors in T }. Note that ET ⊂ ET ′ . We

assume that there exist a path of length at least four in T and present analytical results

leading to algorithms that eliminate the spurious two hop neighbor links in T ′. Thus,

the generative tree topology T is exactly determined. For the subsequent developments

we will need the notion of d-separation, which is defined below.

Definition 13 (d-separation [35]). In a directed graph (V,A), I, J, Z be three disjoint

subsets of V . Then dsep(I, Z, J) (to be read as Z, d-separates I and J) if and only if

every path p from a node i in I to a node j in J satisfies the following conditions

• p contains a chain of the form π1 → z → π2 or a fork of the form π1 ← z → π2

such that z belongs to the set Z,

• p contains a collider of the form π1 → xc ← π2 such that xc or its descendants do

not belong to the set Z,

where, π1 and π2 are nodes in V .

Theorem 5.6.1. Consider a directed graph (V,A) such that I, J, Z are disjoint and form

a partition of V . Then dsep(I, Z, J) if and only if there is no edge of the form

1. i→ j,

2. j → i,

3. i→ z and z ← j,

where, i, j and z are nodes in I, J and Z respectively.

Proof. See [108] for the proof.

Theorem 5.6.2. In the bi-directed LDG (H(z), E) with a tree topology T and non leaf

nodes a, b, a− b is an edge in T if and only if there exist nodes c and d distinct from a

and b such that dsep(c, {a, b}, d) holds.

Proof. (⇒) It is given that a 
 b is a link between non leaf nodes a and b in the bi-

directed LDG associated with the tree T . As a and b are non leaf nodes, there exist
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nodes c and d on opposite sides of the edge a
 b such that c
 a
 b
 d , is a part

of the LDG as shown in Figure 5.4 (a), where,

A := {v ∈ V | there exists a path between v and a

that does not contain any element in {b, c, d}},
B := {v ∈ V | there exists a path between v and b

that does not contain any element in {a, c, d}},
C := {v ∈ V | there exists a path between v and c

that does not contain any element in {a, b, d}}, and
D := {v ∈ V | there exists a path between v and a

that does not contain any element in {a, b, c}}.

We first establish that A∪B ∪C ∪D ∪ {a, b, c, d} = V . Let v ∈ V be a vertex such that

v /∈ A ∪B ∪ C ∪D ∪ {a, b, c, d}. As the underlying topology is a tree, there is a unique

path from v to each vertex in {a, b, c, d}. Further, as v is outside sets A, B, C, D, it

follows from their definition that the path between v to any vertex in {a, b, c, d} contains
at least one more vertex from {a, b, c, d}.

Consider the path between v and a. Suppose it contains additional vertex c in

{a, b, c, d}. Let the path be v − · · · − c − · · · − a. Then v − · · · − c − · · · a − b − d is a

part of T . Clearly, v− · · · − c (path that connects v and c in T ) does not contain a, b or
d, otherwise T will have a cycle. Thus, v ∈ C which is a contradiction. We can arrive

at similar contradictions if we assume that the path between v and a contains b or d.

Hence, our assumption is false and V = A ∪B ∪ C ∪D ∪ {a, b, c, d}.

Now we show that there is no paths between any two sets amongst A, B, C and D

in T that does not involve either nodes a or b. Consider node a′ in A and b′ in B. Let

the paths from a′ to a and b to b′ be denoted by a′− · · ·− a and b− · · ·− b′ respectively.
Consider the path a′ − · · · − a− b− · · · − b′ that includes a and b. As T is a tree, this

is the unique path from a′ to b′. Arguing similarly for any node a′ ∈ A and b′ ∈ B,

we conclude that no path exists between A and B that does not include nodes a and

b. Similarly, it can be established that there are no paths between any two sets A,B,C
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Figure 5.4: (a) The bi-directed LDG associated with T with the true link a 
 b and
nodes c, d, and, (b) its topology T with a hypothetical link between sets A and B, as
described in the proof below.

and D that does not involve any element from {a, b}.
Consider I := A ∪ C ∪ c, J := B ∪D ∪ d and Z := {a, b}. Note that I, J, Z form a

partition of V . In the governing LDG associated with T , it can be shown that there are

no links of the form i → j or i ← j for any i, j in I and J respectively. The proof is

similar to the proof mentioned in previous paragraph. Moreover, suppose that there is

a link of the form i→ a← j, for some i, j in I, J respectively. Then in the underlying

topology T of the LDG, there is a cycle of the form j − a− b− π1 − π2 − · · · − πm − j
in T , where a, b are in Z, b− π1 − π2 − · · · − πm − j is the path between nodes b and j

in T . This is not possible as T is a tree which proves that there is no link of the form

i → a ← j with i ∈ I and j ∈ J . Similarly, one can show that there is no link of the

form i→ b← j, for any i, j in I, J respectively.

Thus, applying Theorem 5.6.1 with the partition I, J, Z of V as defined above, we

conclude that dsep(I, Z, J), which implies, dsep(c, {a, b}, d). This completes the proof

in the forward direction.

(⇐) Suppose a− b is not an edge in T . Let p := c− π1 − π2 − s · · · d be the unique

path between any two elements c and d in T that are not from {a, b}. This path in the

associated LDG is of the form c 
 π1 
 π2 
 · · ·πm 
 d and is d-separated by non

leaf nodes a and b.

If a and b do not belong to {π1, · · · , πm}. Then c→ π1 → π2 → · · · → πm → d is a

chain in the LDG associated with T with no intermediate node between c and d being

a or b. Thus, dsep(c, {a, b}, d) does not hold.
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If a belongs to {π1, · · · , πm} but not b. Then c → π1 → π2 → · · · → πj → a ←
πk → πl · · · → πm → d is a path in the LDG associated with T where a is a collider. It

follows from the definition of d-separation that dsep(c, {a, b}, d) does not hold. Similarly,

b belongs to {π1, · · · , πm} but not a.
If both a and b belong to {π1, · · · , πm} then note that as a− b is not in T , the path

p corresponds to c→ π1 → π2 → πi1 → a← πi2 → πj → · · · → πk1 → b← πk2 → · · · →
πm → d is in the LDG associated with T where a and b are colliders. It follows from

the definition of d-separation that dsep(c, {a, b}, d) does not hold.

As all cases have been exhausted we conclude that dsep(c, {a, b}, d) is not possible

for any nodes c and d. This proves the theorem.

Theorem 5.6.3. If a − b is a edge in T such that a is a leaf node, then there exist no

nodes c, d distinct from a and b such that dsep(c, {a, b}, d) holds.

Proof. Suppose there exist nodes c and d distinct from a and b such that dsep(c, {a, b}, d).

Let a−b−πb1−πb2−· · ·−πbm−c and c−πc1−πc2−· · ·−πcn−d be the unique paths from a

to c and c to d in T respectively. Then, a−b−πb1−πb2−· · ·−πbm−c−πc1−πc2−· · ·−πcn−d
is a path between a and d, which is unique because T is a tree.

In the LDG associated with T , there is a chain of the form c→ πc1 → · · · → πcn → d

and dsep(c, {a, b}, d) implies that either a or b belongs to the set C := {πc1 , πc2 , · · · , πcn}.
This is not possible because:

• If a is in C as then a is not a leaf node.

• If b is in C, then a − b − πci − · · · − πcn − d is another path between a and d;

distinct from a− b− πb1 − · · · − πbm − c− πc1 − · · · − πcn − d(note c /∈ C), which

is a contradiction.

This proves the theorem.

Definition 14 (Moralized Graph). The graph obtained by connecting all parents having

a common child in a directed graph with an undirected edge and then replacing all directed

edges with undirected edges is its moralized graph.
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Remark 2. The kin graph obtained using Wiener reconstruction(see Algorithm 1 and

Remark 1) is the moralized graph of the directed graph associated with the LDG.

Definition 15 (Ancestors). In a directed graph G = (V,A), node j ∈ V is an ancestor

of node k ∈ V if there is a directed sub-graph of G of the form j → π1 → · · · → πl → k

from j to k, where, {π1, · · · , πl} ∈ V .

Definition 16 (Ancestral Set). In a directed graph (V,A), the ancestral set of a node

j is the collection of ancestors of j including j itself and is denoted by an(j). Given a

collection of nodes B subset of V , the ancestral set of B, an(B) :=
⋃
j∈B

an(j).

Definition 17 (Ancestral Graph). Given a directed graph G = (V,A),the ancestral graph

of a set of nodes B subset of V is the graph Gan(B) = (an(B), E(an(B))) obtained from

G by removing all nodes not in an(B).

Theorem 5.6.4. Let I, J, Z be three disjoint sets of nodes in a directed graph G = (V,A)

that can have directed cycles. Then I, J are d-separated by Z in G if and only if they

are separated by Z in the moral ancestral graph of I, J, Z, that is, dsep(I, Z, J) in G if

and only if sep(I, Z, J) in the moralized graph of Gan(I∪Z∪J), where, sep(I, Z, J) means

after removing the nodes Z there is no path between any node in I and any node in J .

Proof. See [109, 110] for the proof.

Corollary 5.6.1. Consider a bi-directed LDG (H(z), E) with a topology of a tree T
whose vetrex set be V . If I, J, Z are disjoint and form a partition of V , then sep(I, Z, J)

in the kin graph T ′ implies dsep(I, Z, J) in the bi-directed LDG associated with T .

Proof. Since, I, J, Z form a partition, the ancestral graph is same as the generative graph

associated with the LDG, then the moralized ancestral graph is the kin graph T ′. Using
theorem 5.6.4, sep(I, Z, J) in T ′ implies dsep(I, Z, J) in the bi-directed LDG.

Based on Theorem 5.6.2 and Theorem 5.6.3, we present Algorithm 2 which identifies

the set of non leaf nodes Vnl, the set of leaf nodes Vl and eliminates the spurious edges

between non leaf node pairs and leaf node pairs to obtain the graph T := (V, ET ). Set ET
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Algorithm 2 Elimination of spurious edges involving non leaf nodes in kin graph T ′
Input: T ′ = (V, ET ′)
Output: T = (V, ET )

1: Edge set ET ← {}
2: for all edge a− b in ET ′ do
3: if Z := {a, b} there exist I 6= {φ} and J 6= {φ} such that sep(I, Z, J) holds in
T ′ then

4: Vnl ← Vnl ∪ {a, b}, ET ← ET ∪ {(a, b)}
5: end if
6: end for
7: Vl ← V − Vnl
8: for all a ∈ Vl, b ∈ V nl with (a, b) ∈ ET ′ do
9: ET ← ET ∪ {(a, b)}

10: end for

is the edge set obtained after removing each spurious edge between two non-leaf nodes

or two leaf nodes from ET ′ .
Since the underlying topology is a tree, so each leaf node is connected to only one

non leaf node (and no other leaf node) in T . Note that the only spurious edges that

exist in T connect a leaf node (set Vl) with a non-leaf nodes (in set Vnl). Next we focus

our attention on elimination of such spurious edges between a leaf node and a non-leaf

node. Consider leaf node xi ∈ Vl.Note that the neighbors of xi in T comprise of non-leaf

nodes of its kin-set in T . Wlog assume that the kin set of node i in T excluding the

other leaf nodes is denoted by, KT (xi) = {xjk}mk=1,jk 6=i, where each xjk ∈ Vnl.

Theorem 5.6.5. Suppose xi is a leaf node in T such that card(KT (xi)) = 2, that is,

KT (xi) = {xj1 , xj2}. If xi − xj1 is the edge in T then xj2 is the only non leaf two hop

neighbor of xi in the graph T with the xi − xj2 edge removed.

Proof. Suppose xj2 is not the only non leaf two hop neighbor of xi after removing the

xi − xj2 edge in T , that is, there exist non leaf node xl which is a two hop neighbor of

xi, implying {xj1 , xj2 , xl} is the kin set of xi, which is a contradiction because xi has a

kin set of cardinality 2. Hence, xj2 is the only non leaf two hop neighbor of xi in T .

Theorem 5.6.6. Suppose card(KT (xi)) ≥ 3, then xjk is the only common non leaf

neighbor of each node in KT (xi) ∪ {xi}\{xjk} in T , if and only if, xi − xjk is the edge
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in T and all other edges connecting xi to nodes in KT (xi)\xjk are spurious(that is they

are not in T ).

Proof. (⇒) Suppose xi − xjk is not the true edge in T , there exist non leaf node xjl ∈
KT (xi)\xjk such that xi− xjl is the true edge in T and all other edges involving xi and

a node from KT (xi)\xjl are spurious links. Then, xjk is a two hop neighbor of xi in T
and there exist xjh in KT (xi) distinct from xjk , xjl such that xjh is a neighbor of xjk
but not of xjl , otherwise xjl would satisfy the common neighbor property of xjk . Then,

xi − xjl − xjk − xjh is a path in T , which indicates that xjh is not a two hop neighbor

of xi in T , implying xjh is not a kin, which is a contradiction.

(⇐) Given xi is a leaf node with xi − xjk being an edge with non leaf node xjk in

T . Let the set KT (xi) = {xjk , b1, b2, · · · , bm}, m ≥ 2. Suppose that xjk is not the

common non leaf neighbor of all nodes in the set {b1, b2, · · · , bm} in T , that is, there

exist a bk such that it is not a neighbor of xjk in T . The path from xi to bk is of the

form xi − xj − C − bk, where C is non empty path because xjk is not a neighbor of bk.

This implies that bk is not a two hop neighbor of xi implying bk does not belong to the

kin set of xi, which is a contradiction.

Thus, by analyzing the adjacency matrix of the reconstructed topology T , spurious
links associated with leaf nodes can be eliminated from the set T to recover the edge set

associated T ∗. In the case of persistently exciting time series data and infinite samples,

T ∗ = T . The steps to obtain the estimate T ∗ of the true topology T is described in

Algorithm 3.

In this section we presented two algorithms, to be applied in the order Algorithm

2 followed by Algorithm 3 which build on the kin graph obtained from Algorithm 1 to

recover the exact topology of a bi-directed LDG whose associated graph is a tree. In the

next section we present a brief description of the dynamics of a network of generators

to motivate examples from the grid for application of the three stage reconstruction

procedure.

5.7 Applications in Power Systems

In this section we present a model for a radial network of generators in a power system

and demonstrate that this model fits the bi-directed LDG framework. The topology of
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Algorithm 3 Elimination of spurious edges involving leaf nodes from T to obtain the
estimate T ∗
Input: T = (V, ET ), Vl, Vnl
Output: T ∗ = (V, ET ∗)

1: Edge set ET ← {}
2: for all a ∈ Vl do
3: if card(KT (a)) ≥ 3 then
4: determine bj ∈ Vnl in KT (a) which is a neighbor of all nodes in KT (a)∪ {a},

and,
5: ET ← ET − {(a, bi)}i 6=j,bi∈KT (a)

6: end if
7: if card(KT (a)) = 2 then
8: Use Theorem 5.6.5 to determine xj2 and update ET ← ET − (a, xj2)
9: end if

10: end for
11: ET ∗ ← ET
the power network is modeled by a graph G = (V,A) where nodes in V represent buses

and edges in A represent transmission lines. Each bus i is associated with a voltage

phase angle θi that determines its state. The state dynamics in each node in the system

is governed by the following second order equation:

miθ̈i + diθ̇i = −pe,i + pin,i, i = 1, 2, · · · ,m, (5.2)

Here pin,i and pe,i are power input and electrical power output respectively at node

i. Equation (5.2) describes the swing dynamics for θi with mi > 0 and di > 0 being

the rotational inertia and damping of the generator or rotating load device at node i

respectively. The electrical power output is complex valued (AC current). However, for

small dynamics, we assume constant voltage magnitudes, purely inductive lines and a

small signal approximation [111]. The electrical power output from node i is then given

by [89]:

pe,i =

m∑
k=1

bik(θi − θk), i ∈ {1, · · · ,m}, (5.3)
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where bi,k ≥ 0 is the susceptence on the line between nodes i, k ∈ A. Indeed, bik(θi− θk)
represents the power flow from node i to node k in the network. Using fi = θ̇i, we can

write the following linear state space representation of the power system dynamics[
θ̇

ḟ

]
=

[
0 I

−M−1L −M−1D

][
θ

f

]
+

[
0

M−1

]
pin, (5.4)

where, M = diag{mi}, D = diag{di} are diagonal mass and damping matrices of

the network, I ∈ Rm×m is the identity matrix , 0 ∈ Rm×m is the zero matrix. L =

LT ∈ Rm×m is the network susceptance weighted Laplacian with off-diagonal elements

L(i, k) = −bik and diagonal elements L(i, i) =
∑m

k=1,k 6=i bik. The state vector [θT fT ]T ∈
R2m is comprised of a stacked vector of all angles θ ∈ Rm and frequencies f ∈ Rm. The
vector pin ∈ Rm is a collection of power inputs to all nodes in the system. The output

equation of the network in discrete time is given by,

X(k) =
[
I 0

] [ θ(k)

ω(k)

]
, (5.5)

where the states θ is measured using nodal PMUs [101]. All state and input variables in

(5.4) can be interpreted as deviations from the steady state, pin thus represents ambient

deviations from input and modelled as a vector of zero mean uncorrelated WSS processes.

The discretized version of the continuous time network dynamics characterized by

(5.4) and (5.5) takes the form X(k) = H(z)X(k) + E, which justifies the modeling of a

network of generators as a LDG (H(z), E). The bi-directedness arises due to the sym-

metric nature of L. In the next section we apply the three stage topology identification

process to LDGs of generators governed by the swing equations with the underlying

topology being a tree.

5.8 Results

We apply the algorithms described in the previous sections to a network of generators

whose underlying topology is a tree T . Consider the five node chain of generators as

shown in Figure 5.5(I)(a). The dynamics of the chain is simulated using (5.2) and

the input pin is considered to be zero mean correlated WSS process. Applying the
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Figure 5.5: (I) (a) Chain of 5 generators governed by Swing equations (5.2), (b) the
kin graph T ′ of the chain obtained using Algorithm 1(Wiener filtering), (c) inference
of nodes 2, 3, 4 as non leaf nodes(red), nodes 1, 5 as leaf nodes(green) and the edges
(2, 3), (3, 4) as edges between non leaf nodes(blue) to obtain T by using Algorithm 2 on
T ′, (d) elimination of spurious edges associated with leaf nodes 1 and 5(black edges in
(c)) to obtain T by using Algorithm 3 on T , (II) IEEE 39 bus network topology with
the loops removed.

Wiener filtering based network reconstruction procedure (Algorithm 1) on the output

data from the chain, results in the kin graph of the chain T ′ as shown in Figure 5.5(I)(b).

Next we apply Algorithm 2 on the kin graph T ′ and obtain Vnl = {2, 3, 4}, ET =

{(2, 3), (3, 4)} and Vl = {1, 5}. The reduced graph T is shown in Figure 5.5(I)(c).

Applying Algorithm 3 on T eliminates the spurious links involving leaf nodes and leads

to ET ∗ = {(1, 2), (2, 3), (3, 4), (4, 5)} = ET as shown in Figure 5.5(I)(d).

Next, we apply our three stage topology identification procedure to the tree shown

in Figure 5.5(II) which is derived from the IEEE 39 bus [4, 112] by removing the cycles

(four lines removed). There are 11 generator nodes (shown in yellow) and the rest are

load nodes. The simulation parameters are available in [112]. We apply the three stage

reconstruction procedure on the simulated phase angle information (107 samples per
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node) to recover the topology shown in Figure 5.5. The reconstruction is exact and is

not shown separately.

5.9 Summary

We discussed a Wiener filter and graphical separation based three-stage algorithm to

reconstruct the exact topology of a bidirectional radial network of dynamically related

WSS processes. The advantage of our approach is that it does not use any prior in-

formation about the network except the fact that the underlying topology is a tree. In

particular, it is extremely useful in estimating the operating topology of radial power

grid using phase angle measurements. We illustrate the proposed algorithm with an

example of a 5 node chain and also on a modified tree-version of the IEEE 39 bus test

system .



Chapter 6

Structure Learning: Linear Systems

with Loopy Topology

6.1 Prologue

In the previous chapter, we presented an algorithm for exact topology inference for

radial bi-directed linear dynamical systems. In particular, the radial topology property

was exploited heavily to develop the pruning step to recover the exact topology. In

this chapter, we will present a exact topology learning algorithm for linear dynamical

systems with a loopy topology, which will exploit the system physics to come up with

a pruning step. We demonstrate the efficacy of the method on simulation examples

from the power grid and building thermal dynamics as well as experimental data from

a network of agents performing distributed computations. Furthermore, we introduce

regularizers to improve the performance of the structure learning algorithms in the low

sample regime.

6.2 Introduction

In [3] the authors present a multivariate Wiener filtering for inferring the network struc-

ture of agents that interact via linear dynamical relations. If interactions between the

present state of an agent with the present state of another agent exists in the network,

then inferred topology is shown to indicate only dependencies and does not provide causal

75
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characterization of the inferred edges. However, in the case where the present state of

an agent depends only on the strict past of other agents of the network, it is shown that

the network structure can be inferred exactly along with causal characterization of the

inferred edges. For nonlinear systems with a known bound on the in degree of a node,

the authors in [113] use a directed information approach to infer directed graphs. The

assumption of strictly causal dynamics is indeed a significant enabling factor to guaran-

tee exact topology inference with edge directions in [3] and [113] . In [114] the authors

use a power spectral analysis approach to infer the network topology. For consensus

dynamics, a decentralized and distributed topology learning scheme is presented in [115]

and [116] respectively. The works summarized above, primarily use a mix of signal pro-

cessing or optimization schemes or structural restrictions like radial topology [117] to

infer the topology. A crucial characteristic is that, none of the above works, utilize any

knowledge about the underlying physics of the system toward topology learning.

In this chapter, we focus on topology learning in dynamical physical systems like

power networks [118] and thermal dynamic networks [119], where influences between

agents, when present, are bi-directional representing a form of coupling and not neces-

sarily a cause effect relationship. In these type of situations, the assumption of strict

causality is not valid. We present a new algorithm for exact topology inference, which

utilizes both the magnitude and phase response of multivariate Wiener filters for deter-

mining the presence/absence of links between two nodes. The main result establishes

that the confounding effects of indirect effects of an agent on another can be detected us-

ing the phase information in the multivariate Wiener filters that estimate a time-series

from the rest. We provide provable guarantees for consistency of the inferred topol-

ogy with the underlying topology, without resorting to structural restrictions like the

topology being radial [120] or bounded in-degree or strictly causal dynamics and without

relying on information of system parameters or exogenous inputs. The consistency result

holds even in the presence of feedback loops unlike [121], [120]. More importantly, the

algorithm is applicable even when the nodal exogenous inputs/noise are colored unlike

prior work where assumptions of noise being white are necessary [122]. Of particular

focus in our work are physical flow networks like power networks, thermal dynamic net-

works where we present interesting connections of the phase response in our algorithm

with physical conservation laws.
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An important application of topology learning is in real time monitoring of a network,

which places a requirement of algorithms that can can infer the topology with finite/

limited samples of measurements from each node. The algorithm proposed in this chap-

ter when used with conventional Wiener filtering, is guaranteed to recover the exact

topology when sufficient data samples per node are available; here, particularly in the

low sample regime the errors in topology inference are high. We introduce group Lasso

[123] based regularizers in the Wiener filtering optimization problem and demonstrate

that our algorithm when used with regularized version of Wiener filtering provides accu-

rate topology estimation even in the low sample regime. We demonstrate the benefit of

using regularizers in topology learning for real time applications. The effectiveness of the

algorithms and theory presented is illustrated through simulations on power distribution

networks, thermal dynamics of buildings and directed consensus networks. Preliminary

work subsumed by this chapter instantiated to various application domains have ap-

peared in [120] for power grid networks, [124] for thermal dynamics of buildings and

[125] for consensus networks.

In the next section we present the framework, define the problem of topology learning

and provide some motivating examples. Wiener filtering approach for topology inference

is summarized in Section 6.4 followed by the derivation of the exact topology learning

algorithm and its connections with physical conservation laws in 6.5 In Section 6.6, we

illustrate the performance of the learning algorithm on power grid simulations, Energy

plus based building simulation and Raspberry Pi based experimental data from consensus

dynamics. The chapter is summarized in Section 6.7.

6.3 Preliminaries

Suppose xi, i = 1, . . . , n represent n measured time-series. Further assume that the

dynamics generating the time-series xi satisfy,

l∑
m=1

am,i
dmxi
dtm

=

n∑
j=1,j 6=i

bij(xj(t)− xi(t)) + pi(t), (6.1)



78

i ∈ {1, 2, .., n}, where, the exogenous forcing pi(t) is a zero mean wide sense stationary

(WSS) process uncorrelated with pj(t) for j 6= i. Note that a linear transformation of

{pj(k)}nj=1 results in {xj(k)}nj=1. We assume that the above dynamics is stable. Thus,

{xj(k)}nj=1 are a collection of WSS processes and the collection ({xj(k)}nj=1, {pj(k)}nj=1)

are jointly wide sense stationary processes (JWSS) [126]. Here, xi(t) ∈ R is a state of the

system, which is assumed to be measured, and, am,i ∈ R, bij ∈ R≥0. The z transform of

the discretization of continuous time dynamics (6.1) is given by,

Si(z)Xi(z) =
n∑

j=1,j 6=i
bijXj(z) + Pi(z), (6.2)

where, Si(z) =
∑l

m=1 am,i((
2(1−z−1)

∆t(1+z−1)
)m +

∑
j=1,j 6=i bij , is the z domain operator deter-

mined by xi and its derivatives along with their coefficients in (6.1) and the sampling

time ∆t (using Bilinear transform). Here, Xi(z) is the z transform of xi(k). Rewriting

(6.2) we have,

Xi(z) =
n∑

j=1,j 6=i
Hij(z)Xj(z) + Ei(z) (6.3)

where, Hij(z) =
bij
Si(z)

, Ei(z) = 1
Si(z)

Pi(z). It can be shown that ei(k) are uncorrelated

with ej(k) for j 6= i, where, ei(k), is the inverse z transform of Ei(z), and is a zero mean

wide sense stationary sequence for all i = 1, ..., n. Summarizing, the network dynamics

is represented as,

X(z) = H(z)X(z) + E(z), where , (6.4)

X(z) = [X1(z) X2(z) ... Xn(z)]T ,

E(z) = [E1(z) E2(z) ... En(z)]T , H(z)(i, j) = Hij(z).

Note that the diagonal entries of the matrix H(z) are 0. For well posedness we as-

sume that I − H(z) is invertible almost everywhere. Next, we associate a graphical

representation derived from the transfer function matrix H(z).

Graphical Representation: Consider a directed graph G = (V, E) with V =

{1, ..., n} being the nodes and E = {(i, j)|Hij(z) 6= 0} as the edge set. Each node
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Figure 6.1: A generative graph G is shown in (a), its topology GT in (b), and its moral
graph, GM in (c) [3].

i ∈ V is a representation of the measured time series xi(k). We refer to the directed

graph G to be the generative graph of the measured time series. In the graph G, (i, j)

denotes a directed edge from j to i if Hij(z) 6= 0, where j is referred as the parent of

i and i is referred as the child of j. We will refer to nodes having common children as

spouses of each other, for example i ∈ V and j ∈ V are spouses if there exist a node

k ∈ V such that Hki(z) 6= 0 and Hkj(z) 6= 0 almost surely. Let Cj , Pj ,Kj denote the set

of nodes consisting of children, parents and spouses of node j in the generative graph

G. For illustration, in Fig. 6.1 we show a generative graph, where, nodes 1 and 9 are

parents of node 2, while, node 2 is the child of nodes 1 and 9. Here, nodes 1 and 9

are spouses of each other. Given a generative graph G, its topology is defined as the

undirected graph GT = (V, ET ) obtained by removing the orientation on all its edges,

while avoiding repetition. An example of topology of the generative graph in Fig. 6.1(a)

is shown in Fig. 6.1(b). The moral graph, GM = (V, EM ) of the generative graph G, is
defined as the undirected graph obtained by removing the orientation on all its edges,

avoiding repetition and adding an undirected edge between spouses. The moral graph of

the generative graph in Fig. 6.1(a) is shown in Fig. 6.1(c). Next, we present terminology

which will be useful in the subsequent discussion.

Definition 18. Path: A path between two nodes x0, xk in an undirected graph GT =

(V, ET ) is a set of unique nodes {x0, x1, · · · , xk} ⊆ V where {(x0, x1), · · · , (xk−1, xk)} ⊆
ET . We will denote a path by x0−x1−x2− · · · −xk−1−xk. The length of a path is one

less than the number of nodes in the path. For example: 1− 2− 3− 5 is a path of length

three between node 1 and 5 in the undirected graph of Figure 6.1(b).
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Definition 19. m Hop Neighbor: In an undirected graph GT = (V, ET ), j ∈ V is a m

hop neighbor of i ∈ V, if there is a path of length m between i and j in GT . For example:

nodes 1 and 5 are three hop neighbors in the undirected graph in Figure 6.1(b). If there

is a path of length one between i and j then they are neighbors in GT . The set of m hop

neighbors of a node i ∈ V is denoted by Ni,m.

There are many systems which satisfy the dynamics represented by (6.1) some of

which are discussed below.

1. Consensus dynamics: Distributed decision making methods in multi-agent systems

often use the first order consensus protocol, where each agent updates its states

based on the difference between other agents’ present value and itself, descibed by

dxi
dt

=

n∑
j=1

cij(xj − xi) + pj , (6.5)

where, pj denotes the receiver noise for agent j [127]. Inferring, the communication

topology of a network of agents in a multi agent system is a relevant objective of

a cyber attacker, and appropriate hardware/ software tools need to be designed to

avert such attacks. Here, based on the non zero values of bij , the generative graph

G can be obtained.

2. RC networks: Tractable grey box modeling with lumped parameters prove effective

for real-time control of buildings. Here RC models that assume discretized phys-

ical space are employed where every identified zone is represented by a common

temperature. Such a lumped parameter model is described by

Ci
dTi
dt

=
n∑
j=1

Tj − Ti
Rij

+ pj(t), (6.6)

where, Cj > 0 is the capacitance of zone j, Rij ≥ 0 denotes the thermal resistance

between node i and j, pj is the total internal heat generated in zone j. In the

dynamics above, Rji = Rij and thus in the description corresponding to (6.3) with

measured variable xi identified with temperature Ti, the underlying generative

dynamics is bi-directional. We consider the problem of inferring the influence

topology using temperature sensors ubiquitously at possible zonal locations.
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3. Power Grid Network Dynamics: For small disturbances in the power grid, the

dynamics of the deviation of voltage phase angle at bus j from the nominal value,

denoted by θj , is modeled by the following linearized Swing Equation [89],

Miθ̈i +Diθ̇i =

n∑
j=1,6=i

cij(θj − θi) + pi(t), (6.7)

where, Mj denotes the inertia of the rotating mass, Dj denotes the damping and

pj(t) is the power imbalance injections at the node j. Here, bij(θj−θi) gives the line
flow from node j to i, where cij is the susceptance of the line. Under equilibrium

conditions power balance is satisfied at each node. Here, cij = cji, implying, if

Hij(z) 6= 0 then Hji(z) 6= 0 almost surely. Thus, similar to RC networks, the

generative graph G has bi-directional edges. Inferring the topology of a power

networks is often the first step to optimize flows and network monitoring for fault

detection.

Thermal dynamics and power grid dynamics are such that the physics of the system

naturally lead to a bi-directed generative graph, where there is no clear notion of cause

and effect among the nodes. Many other physical flow dynamics posses similar charac-

teristics. Here, if i, j are neighbors in the topology GT , then, i is a parent as well as

a child of j in the generative graph. Furthermore, if i, j are two hop neighbors in GT ,
then, i and j are spouses in the generative graph. The exact inference of the topology in

these physical flow networks is equivalent to exact network inference of the bi-directed

generative graph.

6.4 Topology Learning

In this chapter, the topology learning problem that we are interested in, involves inferring

the underlying topology GT of a linear dynamical system described by (6.1) with the

generative graph G, based solely on time series measurements {x1(k), ..., xn(k)} without
the knowledge of the system parameters {am,i, bij} where exogenous inputs {pi} are not
measured.

Earlier approaches considered the measurements as iid (independent and identi-

cally distributed) samples of random variables with a joint distribution; here, states
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{xj(k)}nj=1 are modeled as a collection of iid samples of a multivariate Gaussian distri-

bution. The framework is relevant when the sampling time k is sufficiently far apart such

that {xj(k)}nj=1 satisfy the iid sample requirement. Inference of the topology from iid

samples {xj(k)}nj=1 (also known as Gaussian graphical model inference) is a well stud-

ied problem with Graph Lasso (maximum likelihood estimator of the topology from iid

samples) [37] being a well known approach. However, this framework becomes ineffec-

tive for high resolution data where dynamic effects between the measured variables are

prominent. The inadequacies of the static framework of random variables is illustrated

in [128], where, the authors show that these static approaches are unable to infer the

true topology even with large data sets. Moreover, [128] shows that the static approach

fails to correctly infer three node cycles present in power networks.

Existing approaches in a dynamical setting with temporally correlated samples,

model the exogenous inputs pi to be Gaussian white noise and independent from pj

for i 6= j [122]. In this work we show that, one can infer the exact topology GT of the

linear dynamical system described by (6.1), even where exogenous inputs are colored,

that is, correlated across time and can detect three node cycles accurately. We begin by

recalling the idea of power spectral density.

Definition 20. Power Spectral Density(PSD) Matrix: For a n dimensional collection of

WSS time series x(k) = {x1(k), ..., xn(k)}T , the power spectral density matrix is defined

as ΦX(ω) :=
∑∞

k=−∞ E(x(k)x(0)T )e−ĵωk, where, E(·) denotes the expectation operator.

6.4.1 Multivariate Wiener Filtering

Let v and x1, ..., xm be a collection of jointly wide sense stationary (JWSS) stochas-

tic processes. Let x(k) := [x1(k), ...., xm(k)]T and X := span{x1(k), ..., xm(k)}∞k=−∞.

Consider the following least square optimization problem:

v̂(k) := arg inf
q∈X

E(v(k)− q)2. (6.8)
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If ΦX(ω) � 0 (that is ΦX(ω) is positive definite) almost surely, then the optimal solution

v̂(k) ∈ X exists, is unique and is given by

V̂ (z) = W(z)X(z),W(z) = ΦvX(z)ΦX(z)−1

= [Wv1(z) ... Wvm(z)]X(z)

=
m∑
j=1

Wvj(z)Xj(z),

where W(z) = ΦvX(z)ΦX(z)−1 is the Wiener filter. Here, V̂ (z) is the z transform of

v̂(k). Refer [3] for further details. The next result details the properties of Wiener filter

for topology inference of linear dynamical systems described by (6.1).

6.4.2 Learning the Moral Graph using Multivariate Wiener Filtering

Theorem 6.4.1. Consider the linear dynamical system in (6.1) with topology GT and

(H(z), E(z)) specifying the network dynamics in (6.4). The nodal state measurements

are given by x(k) = [x1(k), ..., xn(k)]T . Define the space Xj̄ = span{xi(k)}k=∞
i 6=j,k=−∞.

The non-causal Multivariate Wiener filter estimate x̂j(k) ∈ Xj̄ of the signal xj(k) is

given by,

X̂j(z) =
n∑

i 6=j,i=1

Wji(z)Xi(z), (6.9)

where, Wji(z) 6= 0 implies i ∈ Nj ∪Kj in GT .

Proof. The proof follows from the main result of [3], which states that, Wji(z) 6= 0

implies that j and i share a children-parent or spouse relationship in the generative

graph G. It follows that, in terms of the topology GT , if Wji(z) 6= 0 then i and j are

neighbors or spouses.

Remark 3. The above result does not guarantee that if i ∈ Nj ∪Kj, then Wji(z) 6= 0.

However, such cases are pathological (see [3]).

Thus the set of children, parents and spouses of each node in the network can be

identified using non-zero entries in the corresponding multivariate Wiener filter. The
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Figure 6.2: (a) Number of spurious links (red edges) in the Wiener reconstructed graph are
comparable with the number of true links (black edges) in the underlying power grid topology (b)
Example of two power grid topology which result in the same reconstructed graph of non-trivial
Wiener filters

moral graph, GM , can be obtained by adding a link between nodes with non zero entries

in the corresponding multivariate Wiener filter. We summarize the procedure to obtain

GM from nodal time series measurement in Algorithm 1 below.

Algorithm 4 Learning Moral Graph using Wiener Filtering
Input: samples xi(k) for nodes i ∈ {1, 2, ..., n} from generative graph G, thresholds
ρ, τ , frequency points Ω = {ω1, ..., ωm} where ωi ∈ [−π, π]
Output: Estimate of edges of GM , ĒM (for large number of samples per node, ĒM
coincides with EM )

1: Edge set ĒM ← {}
2: for all j ∈ {1, 2, ..., n} do
3: ComputeWiener filterWj(e

ĵω) = [Wj1(eĵω) · · ·Wj,j−1(eĵω),Wj,j+1(eĵω) · · ·Wjn(eĵω)]
4: end for
5: for all i, j ∈ {1, 2, ..., n}, i 6= j do
6: if supωi∈Ω ‖Wji(e

ĵωi)‖ > ρ then
7: ĒM ← ĒM ∪ {(i, j)}
8: end if
9: end for

Algorithm 1 results in the moral graph, which has spurious spouse edges apart from

the edges present in the topology. For bi-directed generative graphs considered here, the

number of spurious links in the moral graph is of the same order as that of true links;

here, for every pair of two hop neighbor we get one edge in the moral graph which is not

present in the generative graph. Indeed, consider the power grid topology in Fig. 6.2(a)

and its moral graph; it is evident that the number of spurious links (links not present
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in the topology) is substantial. Furthermore, consider the example in Fig. 6.2 (b),

where both the topology A and B obtained from the generative graphs of two power

grids, following the swing equation dynamics, result in the same reconstructed moral

graph using multivariate Wiener filtering. The Wiener filtering based reconstructed

edge between i and k in Fig. 6.2 can thus represent a true edge or a spurious edge

between spouses. Thus, elimination of spurious edges to recover the actual topology is

a non trivial and important task owing to the significant presence of spurious links and

presence of many candidate topologies for a given moral graph.

For radial topologies (undirected connected graph with no cycles) associated with

bi-directed generative graphs, it is possible to distinguish between true edges between

neighbors and spurious two hop neighbor edges in GM by using a local graph separation

rule as presented in [117]. However for bi-directed generative graphs with topologies

having cycles or loops, such graph separation results do not hold in general [128]. In the

next section, we present methods that eliminate spurious links obtained from Algorithm

1, for a perfect reconstruction of the generative graph. Here the physics of the dynamics

given by (6.1) will prove crucial.

6.5 Exact Reconstruction of the generative graph

The following theorem presents an explicit characterization of the contribution of neigh-

bors Nj and two-hop neighbors Nj,2 of node j to the multivariate non causal Wiener

filter {Wji(z)}ni=1,i 6=j .

Theorem 6.5.1. Consider the generative graph G = (V, E) described by (6.1), with

x(k) = (x1(k) · · · xn(k))T as the output at time instant k. Let the z transform of the

multivariate non causal Wiener filtering estimate x̂j(k) of xj(k) be, X̂j(z) =
∑

i,i 6=j
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Wji(z)Xi(z). Then, Wji(z) = Ĉji(z) + P̂ji(z) + K̂ji(z), where,

Ĉji(z) =
bijSi(z)Φ

−1
pi (z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

, (6.10)

P̂ji(z) =
bjiS

∗
j (z)Φ−1

pj (z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Nj b

2
ljΦ
−1
pl (z)

, and, (6.11)

K̂ji(z) = −
∑

k∈Ni∩Nj bkjbkiΦ
−1
pk

(z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

. (6.12)

Proof. It is shown in [3] that, Wji(z) = Ĉji(z) + P̂ji(z) + K̂ji(z), where,

Ĉj∗(z) =
Φej (z)H

∗
∗j(z)Φ

−1
e (z)

1 + |H∗∗j(z)Φ−1
e H∗j(z)|Φej (z)

,

P̂j∗(z) = (1− Ĉj∗(z)H∗j(z))Hj∗(z),

K̂ji(z) = −Ĉj∗(z)H∗i(z),

with H∗j(z) and Hj∗(z) representing the j−th column and j−th row of the H(z) matrix

respectively and H∗∗j(z) represents complex conjugate transpose of the vector H∗j(z).

Here Ĉji, P̂ji and K̂ji are contributions of the ith time-series in the estimation of the jth

time-series for being the child, parent and spouse of j respectively. Note that Ĉjj(z) = 0

and P̂jj(z) = 0. In the context of a the generative graph G with dynamics described by

(6.1), Ĉj∗(z) is a 1× n row of transfer functions described by,

Ĉj∗(z) =
Φej (z)H

∗
∗j(z)Φ

−1
e (z)

1 + |H∗∗j(z)Φ−1
e H∗j(z)|Φej (z)

=
[H∗1j(z)Φ

−1
e1 (z) H∗2j(z)Φ

−1
e2 (z) · · · H∗nj(z)Φ−1

en (z)]

Φ−1
ej (z) +

∑
l∈Pj |Hlj(z)|2Φ−1

el (z)

=
[
b1j
S∗1 (z) |S1(z)|2Φ−1

p1
(z) · · · bnj

S∗n(z) |Sn(z)|2Φ−1
pn (z)]

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj

b2lj
|Sl(z)|2

|Sl(z)|2Φ−1
pl (z)

=
[b1jS1(z)Φ−1

p1
(z) · · · bnjSn(z)Φ−1

pn (z)]

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

.



87

Thus, contribution toWji(z) due to i being a child of j is given by, Ĉji(z) =
bijSi(z)Φ

−1
pi

(z)

|Sj(z)|2Φ−1
pj

(z)+
∑
l∈Pj

b2ljΦ
−1
pl

(z)
.

Similarly, contribution from all parents of node j in the generative graph G, P̂j∗(z) is a

1× n row of transfer functions described by,

P̂j∗(z) = (1− Ĉj∗(z)H∗j(z))Hj∗(z)

= (1−
∑

l∈Nj b
2
ljΦ
−1
pl

(z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

)

[Hj1(z) · · · Hjn(z)]

=
|Sj(z)|2Φ−1

pj (z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

1

Sj(z)

[bj1(z) · · · bjn(z)]

=
S∗j (z)Φ−1

pj (z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

[bj1(z) · · · bjn(z)].

Thus, the contribution toWji(z) due to i being a parent of j is P̂ji(z) =
bjiS

∗
j (z)Φ−1

pj
(z)

|Sj(z)|2Φ−1
pj

(z)+
∑
l∈Pj

b2ljΦ
−1
pl

(z)
.

The net contribution to Wji(z) due to i ∈ Nj , is given by, N̂ji(z) = Ĉji(z) + P̂ji(z). The

contribution, K̂ji, to Wji for i for being a spouse of j in the generative graph G with

dynamics described by (6.1) is,

K̂ji(z) = −Ĉj∗(z)H∗i

= −
∑

k∈Cj∩Ci bkjSk(z)
bki
Sk(z)Φ−1

pk
(z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

= −
∑

k∈Cj∩Ci bkjbkiΦ
−1
pk

(z)

|Sj(z)|2Φ−1
pj (z) +

∑
l∈Pj b

2
ljΦ
−1
pl (z)

.

This proves the theorem.

Next, we use the expressions derived in Theorem 6.5.1 to distinguish between true and

spurious edges in the moral graph GM formed by non-zero entries of multivariate Wiener

filter. The next theorem presents a result using the phase response of the non causal

Wiener filter for spurious edges corresponding to strict spouse relationships, enabling

them to be distinguished from true edges.



88

Theorem 6.5.2. Consider the generative graph G = (V, E) described by (6.1), with

x(k) = (x1(k) · · · xn(k))T as the output at time instant k. If i and j are strict spouses

in G, that is, Ci ∩Cj 6= φ and i /∈ Nj, j /∈ Ni, then ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π].

Proof. As i /∈ Nj and j /∈ Ni, bij = 0, bji = 0. It follows from Theorem 6.5.1 that,

N̂ji(z) = 0. Since, i and j are spouses, there exist k ∈ Ci ∩ Cj such that bkj > 0 and

bki > 0, implying K̂ji(z) 6= 0. Since, K̂ji(z) is dependent on {Φpj (z)}j=1,2,··· ,n, which

are positive real numbers for WSS processes, it follows that, K̂ji(z) < 0 for all z ∈ C.
Thus,

∠(Wji(e
ĵω)) = ∠(K̂ji(e

ĵω)) = π, for all ω ∈ [−π, π].

We will use the above theorem to identify spurious edges in the moral graph GM to

recover the true topology GT . We now show that the above result does not hold for nodes

that are neighbors. The next theorem lists a condition under which ∠(Wji(e
ĵω)) = π

for all ω ∈ [−π, π] for nodes i and j that are neighbors as well as spouses.

Theorem 6.5.3. Consider the generative graph G = (V, E) described by (6.1), with

x(k) = (x1(k) · · · xn(k))T as the output at time instant k. Suppose i and j are such

that i ∈ Nj, i ∈ Kj. Then ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π], if and only if,

Im(bijSi(e
ĵω)Φ−1

pi (eĵω) + bjiS
∗
j (eĵω)Φ−1

pj (eĵω)) = 0,

Re(bijSi(e
ĵω)Φ−1

pi (eĵω) + bjiS
∗
j (eĵω)Φ−1

pj (eĵω))−∑
k∈Ni∩Nj

bkjbkiΦ
−1
pk

(eĵω) < 0.

for all ω ∈ [−π, π], where Im(z) and Re(z) represent imaginary and real parts of the

complex number z.
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Proof. Using (6.10), (6.11) and (6.12),

Wji(e
ĵω) =

bijSi(e
ĵω)Φ−1

pi (eĵω) + bjiS
∗
j (eĵω)Φ−1

pj (eĵω)

|Sj(eĵω)|2Φ−1
pj (eĵω) +

∑
l∈Pj b

2
ljΦ
−1
pl (eĵω)

−
∑

k∈Ni∩Nj bkjbkiΦ
−1
pk

(eĵω)

|Sj(eĵω)|2Φ−1
pj (eĵω) +

∑
l∈Pj b

2
ljΦ
−1
pl (eĵω)

(6.13)

The second term in the above expression has no imaginary component and the denomi-

nator of both the terms are real.

(⇒) Since, ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π] it follows that the conditions hypoth-

esized in the theorem statement hold.

(⇐) If the system parameters satisfy the conditions described in the only if part of the

theorem statement, it follows from (6.13) that, ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π].

Remark 4. The conditions presented in the previous theorem are such that for neighbor

nodes i and j which are also spouses, ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π], is pathological

because the system parameters have to take a specific set of values for the above mentioned

conditions to be true at all frequencies and hence is pathological.

Finally, the next theorem shows that ∠(Wji(e
ĵω)) = 0 for ω = 0 when i and j are

neighbors and not spouses.

Theorem 6.5.4. Consider the generative graph G = (V, E) described by (6.1), with

X(k) = (x1(k) · · · xn(k))T as the output at time instant k. Nodes i and j are such that

i ∈ Nj and i 6∈ Kj. Then, ∠(Wji(e
ĵω))|ω=0 = 0.

Proof. Since i 6∈ Kj , K̂ji(z) = 0. It follows that,

Wji(e
ĵω) = N̂ji(z)

=
bijSi(e

ĵω)Φ−1
pi (eĵω) + bjiS

∗
j (eĵω)Φ−1

pj (eĵω)

|Sj(eĵω)|2Φ−1
pj (eĵω) +

∑
l∈Nj b

2
ljΦ
−1
pl (eĵω)

. (6.14)

The denominator of the expression on the right hand side of (6.14) is real and posi-

tive for all ω ∈ [−π, π]. The numerator of the expression on the right hand side of

(6.14), [bijSi(e
ĵω)Φ−1

pi (eĵω) + bijS
∗
j (eĵω)Φ−1

pj (eĵω)]ω=0 is also real and positive. Thus,

Wji(e
ĵω)|ω=0 is real and positive, implying, ∠(Wji(e

ĵω))|ω=0 = 0.



90

Remark 5. Theorems 6.5.2, 6.5.3 and 6.5.4 demonstrate that aside from pathological

cases, the phase of the Wiener filter ∠(Wji(e
ĵω)) = π for all ω ∈ [−π, π] only when i and

j are not neighbors but are spouses in the generative graph G. In other words, aside for

the pathological cases, the converse of Theorem 6.5.2 holds and can be used as a criteria

to differentiate between true edges and spurious edges in the moral graph GM .

We now present Algorithm 2 that estimates the topology of the generative graph

G based on time-series of nodal measurements pertaining to dynamics expressed by

(6.1). The algorithm consists of two parts. The first part (Steps 2 - 9) determines the

multivariate Wiener filter Wji(z) to estimate the moral graph and is same as Algorithm

1. In the next part (Steps 10 - 15), we consider a representative set of frequency points Ω

in the interval [−π, π) and evaluate the phase angle of the Wiener filters for edges in Ew.
If the phase angle is within a pre-defined threshold τ of −π, the algorithm designates

them as spurious edges (see Theorem 6.5.2) and prunes them from Ew to produce edge

set Ē of the estimated true topology.

Algorithm 5 Topology Learning using Wiener Filtering with Pruning Step
Input: nodal time samples xi(k) for nodes i ∈ {1, 2, ..., n} in the generative graph G,
thresholds ρ, τ , frequency points Ω = {ω1, ..., ωm} where ωi ∈ [−π, π]
Output: Estimate of Edges ĒT in the topology of G. For large samples, ĒT coincides
with ET

1: Edge set Ew ← {}
2: for all j ∈ {1, 2, ..., n} do
3: Compute Wiener filter Wj(e

ĵω) = [Wj1(eĵω) · · ·Wjn(eĵω)]
4: end for
5: for all i, j ∈ {1, 2, ..., n}, i 6= j do
6: if supωi∈Ω ‖Wji(e

ĵωi)‖ > ρ then
7: Ew ← Ew ∪ {(i, j)}
8: end if
9: end for

10: Edge set ĒT ← Ew
11: for all i, j ∈ {1, 2, ..., n}, i 6= j do
12: if π − τ ≤ |∠(Wji(e

ĵωi))| ≤ π + τ,∀ωi ∈ Ω then
13: ĒT ← ĒT − {(i, j)}
14: end if
15: end for
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Figure 6.3: A three node system, with the flow on the edge indicated in blue.

Interpretation of Pruning Step for Physical Flow Networks Consider nodes

i, j, k in a physical flow system like a thermal RC network or a power network, where k

is a common neighbor of both i, j but i, j are not neighbors. Let qi, qj denote the flow

out of node i, j respectively while qk is the total flow received at node k as shown in

Figure 6.3. Here, qi, qj , qk could represent flow of heat, electrical power or even a fluid

driven by the difference in temperature, voltage or pressure respectively. These flow

variables qi, qj , qk are directly proportional to the nodal state xi, xj , xk respectively. It

follows from flow conservation,

qk = qi + qj ,

qi = qk − qj ,

where, a negative correlation is observed between qi and qj owing to flow conservation

constraint. This translates into an inverse relationship between nodal state variables xi
and xj leading to phase π relationship of the corresponding Wiener filter. Thus, the

flow conservation in physical flow networks translates into phase angle being π for the

associated Wiener filters providing a physics based pruning step in our topology learning

algorithm.

6.6 Simulation and Experimental Validation

In this section we present simulation and experimental validation of the topology infer-

ence algorithm presented in the previous section. First, we present the method employed

to compute the Wiener filter using nodal time series measurements and is used in Algo-

rithm 2.

Wiener filter computation Let xj(k) be the nodal time series to be estimated

from {xi(k)}mi=1,i 6=j , k ∈ Z. Consider the following least square optimization problem on
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the Hilbert space of L2 random variables,

{hji,o} = arg inf
{hji}i=1,...,m,i 6=j

E(xj(k)−
m∑

i=1,i 6=j

F∑
L=−F

hLjixi(k − L))2, (6.15)

where, hji = [h−Fji , ..., h
0
ji, ..., h

F
ji]. From the implementation viewpoint, we consider

lags up to a finite order F in (6.8). The solution to the above optimization problem

is referred as the finite impulse response multivariate non-causal Wiener filter) [129],

Wj(z) = [Wj,1(z), ...,Wj,j−1(z),Wj,j+1(z), ...,Wj,m(z)], where,

Wji(z) =

F∑
L=−F

hLji,oz
−L. (6.16)

It is important to note that the multivariate Wiener filter, which is obtained from solving

the above optimization problem is determined entirely from the measured time series

without any knowledge of system parameters or the statistics of the exogenous inputs.

Next, we demonstrate the effectiveness of Algorithm 2 for inference of network structure

of agents undergoing linear consensus dynamics.

6.6.1 Validation on Consensus Dynamics

Here, the performance of Algorithm 2 in estimating the topology of a network of agents

undergoing consensus iterations is demonstrated on a 5 node network depicted in Fig.

6.4(a). We present two set of results, first based on MATLAB simulations, and second

based on experimental results on a network of Raspberry Pis. For our simulations,

the receiver noise at each node is considered to be white. The trends from the nodal

measurement time series are removed using the ‘detrend’ function in MATLAB. The

reconstructed topology using Algorithm 1 with 107 samples from each node is shown in

Fig. 6.4(c), where, the dashed edges denote the spurious links recovered. Fig. 6.5(a) and

Fig. 6.5(b) show the frequency response of Wiener filters between node 2 and all other

nodes in Fig. 6.4(a) that are derived using Algorithm 2 with 107 samples for each node. It

is clear from Fig. 6.5(a) that the magnitude of the filterW25 is small across the frequency
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Figure 6.4: (a) Generative graph of 5 node network undergoing consensus dynamics, (b)
associated network topology, (c) reconstructed topology of the 5 node network of Fig.
6.4(a) obtained using multivariate Wiener filtering with 107 samples from each node.
The dashed links are the spurious links due to spouse relationship.

range and thus it can be concluded that there exist no edge between nodes 2 and 5. Using

the pruning step, the absolute values of the phase response of W21(z),W23(z),W24(z)

are analyzed as shown in Fig. 6.5(b). Here, the phase of the filter W24 remains close to

π throughout the frequency range. It follows from Theorem 6.5.2 that the edge between

2 and 4 is spurious (phase response being close to π).

Fig. 6.6(a) shows the experimental setup, which consists of five Raspberry Pi [130]

units that interact according to consensus dynamics with the interaction topology de-

scribed by Fig. 6.4(a). The details of the experimental platform can be found in [131].

The relative error (false negatives and false positives over the number of true edges)

percentage of Algorithm 2 with respect to number of samples for simulations as well as

experiments is shown in Fig. 6.6(b). It is seen that as the number of samples per node

increases, the error decreases.

6.6.2 Validation on Power Distribution Network

In this section, we demonstrate the effectiveness of Algorithm 2 on the IEEE 39 bus

power distribution network [4] shown in Fig. 6.7(a) with network dynamics as described

by (6.7). Here pi are modeled as filtered white Gaussian noise (colored noise unlike iid

Gaussian in [2]) to generate time series data for evaluation of the proposed algorithm.

The output at each node is sampled at 0.01s. Consider the neighbors (green) and two-hop

neighbors (red) of node 25 in the IEEE 39 bus system as shown in Fig 6.7. Application

of steps 1 to 9 of Algorithm 1 with a threshold ρ of 10−5 in step 3 and 6.5× 106 phase

samples per node leads to edges between node 25 and all nodes in Fig. 6.7(b). The

absolute values of the phase response of the multivariate Wiener filters for node 25 and
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Figure 6.5: (a) Bode magnitude plot of W21(z),W23(z),W24(z),W25(z), (b) absolute
values of phase response ofW21(z),W23(z),W24(z), W25(z). W24(z) has a phase response
in the vicinity of π for all frequencies, hence, is eliminated by the pruning step.

(a)

10
3

10
4

10
5

10
6

10
7

Samples of each node

0

20

40

60

%
 R

e
la

ti
v
e
 E

rr
o
r

Sample Complexity of Topology Learning 

for Consensus Network

Simulation

Experiments

(b)

Figure 6.6: (a) Experimental setup of 5 Raspberry Pi units interacting through wifi
according to consensus dynamics with the interaction topology being the undirected
graph in Fig. 6.4, (b) error percentage variation with number of samples per node in
simulation as well as experiments.
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Figure 6.7: (a) IEEE 39 bus system with generators at 10 buses [4] (b) The neighbors
(green nodes) and strict two-hop neighbors (red nodes) of node 25 in the IEEE 39 bus
system.

the nodes in its two-hop neighborhood are shown in Fig. 6.8(a). It is seen that the

phase response of the Wiener filters corresponding to the nodes two hops away are close

to π rad, while that of the neighbor nodes start from 0 rad. Thus using the pruning

step, all the two-hop neighbors can be removed, recovering the true physical topology.

The relative error percentage in topology estimation for the IEEE 39 bus system as a

function of sample size is shown in Fig. 6.8(b). The threshold ρ was chosen as 10−3

while τ = 0.2π. In many cases, pruning step eliminated 58% of the total false positive

edges obtained after step 9 of Algorithm 2.

6.6.3 Comparative study and validation on Thermal Dynamics of Build-
ing

In this section, we will estimate the interaction topology amongst zonal temperatures

in a building using Algorithm 2 and also highlight the limitations in inference of three

node cycles using static approaches. Here, we illustrate that by applying Algorithm 2

to the temperature data of a five zone office building, the true topology is recovered

exactly. The building envelope is created in Google SketchUp Make 2017 [132] (see Fig.

6.9) and its RC network model in Fig. 6.9(b). The temperature data is generated using
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Figure 6.8: (a) Absolute values of the phase response of the Wiener filters between node 25
and its two-hop neighborhood in the IEEE 39 bus system. The phase response begins from 0
rad for all three neighbors and from π for all spouses of node 25. (b) Relative error percentage
of Algorithm 2 with samples per node for IEEE 39 bus systems.

EnergyPlus [133]. EnergyPlus solves the nonlinear energy balance equation where the

heat transfer coefficients are functions of temperature (See equation 6.19 in Appendix

A). For more details on EnergyPlus see Section A in Appendix. The building is located

in Minneapolis, Minnesota, USA and the weather file used in EnergyPlus is obtained

from https://energyplus.net/weather. The exogenous inputs to the building are heat

gains from lights, electrical equipments and people. For our simulations, we consider the

electrical and lighting loads as time-correlated wide sense stationary processes. The

correlated inputs are generated by filtering white Gaussian noise through 1D digital

filter in MATLAB.
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Figure 6.9: (a) Topview of EnergyPlus building model consisting of 5 zones, where,
the height of the building is 3.05 m, (b) Thermal resistor network of the building with
thermal capacitance at each node. Node 1 corresponds to core zone and rest of the nodes
are referred to as perimeter zones

https://energyplus.net/weather
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This temperature data is obtained with one minute granularity and used for topol-

ogy inference. Here, we perform a comparative study of four algorithms: graphical lasso

[37] (random variable framework for Gaussian graphical models, see Appendix B for de-

tails), graphical lasso with sign based pruning [103], [128](see Appendix C for details),

Algorithm 2 with Wiener filtering computation according to (6.8) and Algorithm 2 with

Wiener filtering computation with regularizer (group lasso [134]) as described in (6.17)

below. The motivation behind introducing regularization in the Wiener filter optimiza-

tion problem is to improve the performance of Algorithm 2 in low sample regime. It is

seen in Fig. 6.10 that the error in the low sample regime is about 20% for Algorithm

2 with Wiener filters computed using the approach described in (6.15). Regularizers

are commonly used to improve the performance of inference algorithms primarily in the

high dimensional setting, where, number of nodes are large and samples are limited

[36, 37]. Here, we introduce the group lasso regularizer [134] to enforce sparsity and

reduce over-fitting in the case of availability of limited number of samples per node.

Wiener filter with regularization: Here, we present a method that provides

estimates of the optimal Wiener filter which is well suited for scenarios when data-

records are short. In order to account for limited samples of measurements at each node,

a regularized version of multivariate Wiener filtering in (6.8) is obtained by minimizing

the following objective function:

{hji,γ} = arg inf
{hji}i=1,...,m,i 6=j

E(xj(k)−
m∑

i=1,i 6=j

F∑
L=−F

hLjixi(k − L))2 + γ

m∑
i=1,i 6=j

‖hji‖2. (6.17)

Here γ ≥ 0 is the regularization parameter and hji := [h−Fji , ..., h
0
ji, ..., h

F
ji]. The regular-

ized Wiener filter is given as,

W γ
ji(z) =

F∑
L=−F

hLji,γz
−L. (6.18)

Using regularized Wiener filters in Algorithm 2, the relative errors for the topology

inference of the thermal dynamics of the building described above is shown in Figure
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Figure 6.10: Error percentage variation with number of samples per node for Algorithm
2 (with and without regularizers) when inputs are WSS .

6.10. It is seen that in the low sample regime, the error in inference reduces by about half

due to use of regularization in Wiener filter computations. The relative error percentage

with number of samples for the graphical lasso based algorithms is shown in Fig.6.10. It

is seen that, the graphical lasso and graphical lasso with pruning step is unable to recover

the exact topology of the underlying RC network, even in the large sample limit. This is

a limitation of the random variable framework for networks with three node undirected

cycles, which was also highlighted in the introduction of this chapter. However, the time

series based approach of Algorithm 2 with and without regularizer have zero error in

topology inference in the large sample limit. This is attributed to the ability to analyze

the Wiener filters at multiple frequencies in the time series framework as compared to

only ω = 0 in the random variable setting, which renders three node undirected cycles

unidentifiable.

6.7 Summary

In this chapter, we presented an algorithm for exact topology inference of linear dynam-

ical systems with a particular focus on physical flow networks. The flow conservation

constraint provides a basis for pruning out spurious spouse links, which crop up in

topology learning from time series measurements. We utilized the phase response of

multivariate Wiener filters to distinguish between true and spurious edges. The algo-

rithm proposed in this chapter can handle colored noise exogenous inputs, unlike the

white noise assumption in some of the recent work on topology inference from time series

measurements. Moreover, the proposed algorithm guarantees exact topology inference
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even in the presence of loops in the network. It is worth noting that, the proposed

algorithm does not require any knowledge on statistics of the exogenous inputs or sys-

tem parameters for topology inference. We believe that using phase response of filters

to eliminate spurious links in topology learning can also be extended to other network

topology learning approaches like directed information and spectral analysis, as connec-

tions of these approaches with the Wiener filtering approach is well understood [98], [3].

The chapter, also highlighted the short comings of state of the art random variables

approaches in dealing with networked dynamical systems, particularly in inferring three

node cycles and the superiority of the algorithm proposed in such scenarios. We also

illustrated the benefit of using regularizers in Wiener filter computations, for obtaining

better topology inference performance in the low sample regime. This is particularly

important for deploying the proposed algorithm for topology inference from finite size

data windows of measurements across the network.

6.8 Implementation Details

Overview of EnergyPlus

EnergyPlus is a building energy simulation engine developed by U.S. Department of

Energy. It is an open-source software that can be downloaded at https://energyplus.

net/downloads. The inputs to the EnergyPlus is a text file with detailed information

of the building structure, construction, equipment, location, orientation, weather details

along with the occupancy, electrical, lighting schedules. It is a sophisticated simulation

tol for thermal analysis of building.

EnergyPlus assumes each thermal zone as a single node and solves the heat balance

equations to arrive at the thermal zone temperatures developed in the building and its

power consumption. The heat balance equation for a zone [135] is given by:

Cz
dTz
dt

=

Nsl∑
i=1

Q̇i +

Nsurf∑
i=1

hiAi(Tsi − Tz) +

Nzones∑
i=1

ṁiCp(Tzi − Tz) + ṁinfCp(T∞ − Tz) + Q̇sys

(6.19)

https://energyplus.net/downloads
https://energyplus.net/downloads
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where, Cz dTzdt is the energy stored in zone air,
Nsl∑
i=1

Q̇i is internal convective load,
Nsurf∑
i=1

hiAi(Tsi−

Tz) is surface convective heat transfer,
Nzones∑
i=1

ṁiCp(Tzi − Tz) is interzone heat transfer,

ṁinfCp(T∞ − Tz) is heat transfer by air infiltration, Q̇sys is air systems output. Note

that hi is a non-linear function of temperatures.

Graphical Lasso

In the random variable framework [37], consider N independent and identically dis-

tributed random variables of a dimension p, with mean µ and covariance Σ. Let Θ = Σ−1,

ρ is the regularization parameter and S be the empirical covariance matrix. Then the

maximum likelihood estimator of Θ based on sparsity constraints is given by,

Θ∗ = argmax
Θ

logdetΘ− tr(SΘ)− ρ‖Θ‖1 (6.20)

Please see the Algorithm 6 for step by step procedure for topology reconstruction.

Algorithm 6 Topology Learning using Graphical Lasso
Input: nodal time samples xi(k) for nodes i ∈ {1, 2, ..., n} in the generative graph G,
thresholds ε
Output: Estimate of Edges ĒT in the topology of G

1: for all j ∈ {1, 2, ..., n} do
2: Compute inverse covariance matrix Θ∗ from 6.20
3: end for
4: Edge set Ew ← {}
5: for all i, j ∈ {1, 2, ..., n}, i 6= j do
6: if |Θ∗ij | > ε then
7: Ew ← Ew ∪ {(i, j)}
8: end if
9: end for



101

Graphical Lasso with sign based pruning

After estimating the inverse covariance matrix Θ∗ as described above, the steps for

identifying the neighbors and pruning out the spurious links are described here based

on the. description in [103], [128].

Algorithm 7 Topology Learning using Graphical Lasso with sign based pruning
Input: nodal time samples xi(k) for nodes i ∈ {1, 2, ..., n} in the generative graph G,
thresholds ε
Output: Estimate of Edges ĒT in the topology of G

1: for all j ∈ {1, 2, ..., n} do
2: Compute Θ∗ from 6.20
3: end for
4: Edge set Ew ← {}
5: for all i, j ∈ {1, 2, ..., n}, i 6= j do
6: if |Θ∗ij | > ε then
7: Ew ← Ew ∪ {(i, j)}
8: end if
9: end for

10: Edge set ĒT ← Ew
11: for all i, j ∈ {1, 2, ..., n}, i 6= j do
12: if Θ∗ij > ε, then
13: ĒT ← Ē − {(i, j)}
14: end if
15: end for



Chapter 7

Structure Learning: Radial

Topology with Unobserved Nodes

7.1 Prologue

In Chapter 5 and Chapter 6, the topology learning algorithms presented assumed that

all the nodes in the network are observed. Here, we present sufficient conditions for

sensor placement in bi-directed linear dynamical systems with radial topology as well as

an algorithm for exact inference of the topology. The approach presented use a mixture

of the algorithms presented in the previous two chapters and is guaranteed to infer the

exact topology.

7.2 Introduction

Recently, there has been considerable interest in the topology learning for linear dynam-

ical systems from time series measurements. It this regard some of the notable works

are [3, 98, 38, 114, 39, 136]. However, these works assume that all nodes in the network

are observed or full network observability. Topology reconstruction from passive mea-

surements for a network of linear dynamical systems with unobserved nodes is discussed

in [137, 138]. The problem formulation in [137] is focused on directed poly-tree network

of linear dynamical systems with unobserved nodes. The framework presented in [138]

102
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is restricted to Gaussian stationary time series and does not include consistency of iden-

tification results. In this , we present an algorithm which leads to recovering the exact

topology of the network under partial observation of the nodes. In particular, we are

interested in radial linear dynamical systems, which are characterized by a tree topology

with undirected (that is bi-directed) edges between neighbors rather than uni-directed

edges. Indeed the directed loops are a part of the framework presented here unlike [137].

Radial linear dynamical systems (RLDS) [117] represent an important class of net-

works in engineering systems. Among others, RLDS can model dynamics in power

distribution systems. An algorithm for exact topology learning for RLDS with all nodes

being observed is presented in [117]. We show that for RLDS, under the assumption

that unobserved nodes are ‘deep into the network’such that their effects are felt through

observed nodes, it is possible to recover the underlying interaction topology exactly.

In this regard, we build upon topological separation ideas of [117] and phase response

properties of [120], to devise an algorithm which provably recovers the exact topology of

the RLDS. Our algorithm uses only the time series measurements from the nodes and

does not use any knowledge of system parameters as well as the exogenous injections.

The efficacy of the algorithm is demonstrated on a 39 bus radial power network with

linearized swing dynamics [89].

In the next section, we introduce definitions and notations useful for the subse-

quent discussion, following which in Section 7.4 we present an algorithm for inference

of topology with unobserved nodes using inverse power spectral density. In Section 7.5,

we present algorithms for exact topology learning of RLDS with partial observability,

followed by results in Section 7.6 and summary in Section 7.7.

7.3 Preliminaries

Consider the continuous time linear dynamical system,

l∑
m=1

am,i
dmxi
dtm

=
n∑

j=1,j 6=i
bij(xj(t)− xi(t)) + pi(t), (7.1)

,i ∈ {1, 2, .., n}, where, the exogenous forcing pi(t) is a zero mean wide sense stationary

process uncorrelated with pj(t) for j 6= i. Here, xi(t) ∈ R is a state of the system,

am,i ∈ R and bij ∈ R≥0. Assuming that discrete time samples of the state xi are available
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as an output, we discretize the above continuous time dynamics using z transform to

obtain,

Si(z)Xi(z) =
n∑

j=1,j 6=i
bijXj(z) + Pi(z),

where, Si(z) is the frequency domain operator determined by the time derivatives of xi.

We rewrite the above equation as,

Xi(z) =

m∑
j=1,j 6=i

Hij(z)Xj(z) + Ei(z) (7.2)

where, Hij(z) =
bij
Si(z)

, Ei(z) = 1
Si(z)

Pi(z). Note that, for j 6= i, ei(k) are uncorrelated

with ej(k) (ei is the inverse z transform of Ei(z) for all i = 1, ..., n) and is a zero mean

wide sense stationary sequence. Then, the dynamics of the entire network can be written

as,

X(z) = H(z)X(z) + E(z), where ,

X(z) = [X1(z) X2(z) ... Xn(z)]T

E(z) = [E1(z) E2(z) ... En(z)]T , H(z)(i, j) = Hij(z).

We assume that I − H(z) is invertible almost everywhere. Since we are interested in

bi-directed linear dynamical system, we make the following assumption in the rest of the

chapter.

Assumption 1: Hij(z) 6= 0 almost surely implies Hji(z) 6= 0 almost surely.

Assumption 1 is valid in linearized models of diverse engineering systems around an

operating/ equilibrium point. For example - swing dynamics for power systems, lumped

parameter RC network models for heat transfer dynamics and consensus networks. Note

that the transfer functions Hij(z) and Hji(z) need not be same. We now associate a

graphical model to the transfer function matrix H(z).

Graphical Representation: Consider a directed graph G = (V, E) with V =

{1, ..., n} and E = {(i, j)|Hij(z) 6= 0}. Each node i ∈ V is representative of the measured

time series xi(k). In the graph G, there is a directed edge from j to i if Hij(z) 6= 0. It
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Figure 7.1: (a) Graphical representation of a linear dynamical system where Assumption
1 holds, and (b) its associated topology.

follows from Assumption 1 that, there is a directed edge from i to j as well. Thus G is

a bi-directed graph. We call G to be the generative graph of the measured time series.

Given generative graph G, its topology is defined as the undirected graph GT = (V, ET )

obtained by removing the orientation on all its edges, and avoiding repetition. An

example of bi-directed generative graph and its topology are shown in Figure 7.1(a) and

Figure 7.1(b) respectively. Next, we present terminology for undirected graphs which

will be useful in the subsequent discussion.

Definition 21. (Path) A path between two nodes x0, xk in an undirected graph GT =

(V, ET ) is a set of unique nodes {x0, x1, · · · , xk} ⊆ V where {(x0, x1), (x1, x2), · · · , (xk−1, xk)} ⊆
ET . We will denote a path by x0−x1−x2− · · · −xk−1−xk. The length of a path is one

less than the number of nodes in the path. For example: 1− 2− 4− 6 is a path of length

three between node 1 and 6 in the undirected graph of Figure 7.1(b).

Definition 22. (n Hop Neighbor) In an undirected graph GT = (V, ET ), j ∈ V is a n

hop neighbor of i ∈ V, if there is a path of length n between i and j in GT . For example:

1 and 6 are three hop neighbors in the undirected graph in Figure 7.1(b). If n = 1, i and

j are termed neighbors in GT .

Definition 23. (Tree) A connected undirected graph without cycles is called a tree. There

is a unique path between any two nodes in a tree.

Definition 24. (Leaf Node/ non-leaf Node of a Tree) In a tree T , a node with degree 1

is called a leaf node. Nodes with degree greater than 1 are called non-leaf nodes.
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Next we present the formal definition of a radial linear dynamical system (RLDS).

Definition 25. (Radial Linear Dynamical System) Consider a generative graph G with

the associated topology being a tree, which is denoted by T . A linear dynamical system

with the above properties is referred to as a Radial Linear Dynamical System(RLDS).

Figure 7.1(a) shows a RLDS with the corresponding topology T shown in Figure 7.1(b).

Definition 26. (Power Spectral Density(PSD) Matrix) For a n dimensional collection of

WSS time series x(k) = {x1(k), ..., xn(k)}T , the power spectral density matrix is defined

as ΦX(ω) =
∑∞

k=−∞E(x(k)x(0)T )e−ιωk.

In this chapter, we will focus on learning the topology of radial linear dynamical

systems following Assumption 1. The only information available for topology estimation

are time series measurements obtained from a subset of nodes in the system, while certain

nodes are unobserved. Our analysis uses properties of inverse power spectral density of

linear dynamical systems, which is presented next.

7.4 Topology Learning using Inverse PSD

Let X(z) ∈ Cn denote the vector of z transform of n nodal states, with X(z) =

[Xo(z)
T , XT

h (z)]T , where, Xo(z) ∈ Cm and Xh(z) ∈ Cn−m are the z transform of the

nodal states corresponding to m observed and n−m unobserved nodes respectively. The

network dynamics is represented in a compact form as,[
Xo(z)

Xh(z)

]
=

[
Hoo(z) Hoh(z)

Hho(z) Hhh(z)

][
Xo(z)

Xh(z)

]
+

[
Eo(z)

Eh(z)

]

where, Eo(z) and Eh(z) denote the exogenous inputs at the observed and hidden nodes

respectively. We assume that the unobserved nodes are not neighbors in GT , that is,

Hhh(z) = 0. Let Vo denote the set of observed nodes and Vh denote the set of unobserved
nodes and V = Vo ∪ Vh.

For notational simplicity we drop the argument z in the discussion below. Let ΦX

denote the power spectral density matrix of the nodal states, that is,

ΦX = (I −H)−1ΦE(I −H)−∗, (7.3)
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where, ΦE is the diagonal matrix of power spectral densities of exogenous inputs and

∗ denotes the Hermittian operator. The objective of the following analysis is to show

that inverse of the power spectral density of the states at the observed nodes (denoted

by Φoo) leads to a graph with spurious edges connecting up to four hop neighbors in GT .
Let J denote the inverse power spectral density matrix, that is,

J =

[
Joo(z) Joh(z)

Jho(z) Jhh(z)

]
= Φ−1

X =

[
Φoo(z) Φoh(z)

Φho(z) Φhh(z)

]−1

,

= (I −H(z))∗Φ−1
E (I −H(z)).

Using the matrix inversion lemma [139] it follows that,

Φ−1
oo = Joo − JohJ−1

hh Jho

=: Γ + ∆ + Σ
(7.4)

where,
Γ = (I −H∗oo)Φ−1

Eo
(I −Hoo),

∆ = H∗hoΦ
−1
Eh
Hho, and,

Σ = −Ψ∗Λ−1Ψ, where

Λ = H∗ohΦ−1
Eo
Hoh + Φ−1

Eh
,

Ψ = H∗ohΦ−1
Eo

(I −Hoo) + Φ−1
Eh
Hho,

(7.5)

Lemma 7.4.1. The following assertions hold

1. Suppose i and j are observed nodes and suppose in GT (i) there is no path of the

form i− k − j with k also observed and (ii) i− j is not present, then Γ(i, j) = 0.

2. If in GT there is no path between two observed nodes i and j, connected via a single

unobserved node, ku, of the form i− ku − j, then ∆(i, j) = 0.

3. Suppose in GT there is no path between two unobserved nodes with a single inter-

mediate observed node; of the form ku − i − k′u where ku and k′u are not observed

and i is observed, then Λ is real and diagonal.

4. If in GT for j in the observed set of nodes and ku in the unobserved set of nodes;

(i) j − ku is not present and (ii) there is no path of the form j − p − ku with p

being a observed node, then Ψ(k, j) = 0.
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5. Suppose Λ is diagonal, and if in GT , for observed nodes i and j and unobserved

node ku, there are no paths of the form i − p − ku or i − ku and j − p′ − ku or

j − ku for any p and p′ being observed, then Σ(i, j) = 0.

Proof. 1) From (7.5),

Γ = Φ−1
Eo
− Φ−1

Eo
Hoo −H∗ooΦ−1

Eo
+H∗ooΦ

−1
Eo
Hoo.

Note that ΦEo is diagonal for i 6= j; from which it follows that,

Γ(i, j) = −Φ−1
Eo

(i, i)Hoo(i, j)−Hoo(j, i)Φ
−1
Eo

(j, j)

+
∑m

k=1Hoo(k, i)Hoo(k, j)Φ
−1
Eo

(k, k).

The first two terms are zero if i− j is not present in GT and the third term is zero if a

path of the form i− k − j with k being a observed node is not present in GT .
2) Note that ∆ = H∗hoΦ

−1
Eh
Hho and thus for i and j in the observed set

∆(i, j) =
∑
ku∈Vh

Hho(ku, i)Φ
−1
Eh

(ku, ku)Hho(ku, j).

Thus if there is no path of the form i− ku− j where ku is unobserved, then ∆(i, j) = 0.

3) Suppose ku 6= k
′
u with ku and k′u being unobserved nodes. Note that Λ(ku, k

′
u) =

[H∗ohΦ−1
Eo
Hoh + Φ−1

Eh
](ku, k

′
u). Thus Λ(ku, k

′
u) =

∑
i∈Vo H

∗
oh(ku, i)Φ

−1
Eo

(i, i)Hoh(i, k
′
u) =∑

i∈Vo Hoh(i, ku)Φ−1
Eo

(i, i)Hoh(i, k
′
u), which is zero if there is no path of the from ku−i−k′u

with i being an observed node. Moreover, Λ(ku, ku) =
∑

i∈Vo Hoh(i, ku)Φ−1
Eo

(i, i)Hoh(i, ku)+

Φ−1
Eh

(ku, ku) =
∑

i∈Vo Φ−1
Eo

(i, i)|Hoh(i, ku)|2 + Φ−1
Eh

(ku, ku) ∈ R.
4) Note that

Ψ(ku, j)

= [H∗ohΦ−1
Eo

](ku, j)− [H∗ohΦ−1
Eo
Hoo](ku, j) + [Φ−1

Eh
Hho](ku, j)

= Hoh(j, ku)Φ−1
Eo

(j, j)−
m∑
p=1

Hoh(p, ku)Φ−1
Eo

(p, p)Hoo(p, j)

+ Φ−1
Eh

(ku, ku)Hho(ku, j). (7.6)

The first and the last term are zero if j− ku is not present in GT and the second term is
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zero if there exist no path of the form j − p− ku in GT , with p being an observed node.

5) Note that if Λ is diagonal, then,

Σ(i, j) = −
∑
ku∈Vh

Ψ(ku, i)Λ
−1(ku, ku)Ψ(ku, j),

Thus if there is no unobserved node ku with paths of the form i− p− ku or i− ku and

j−p′−ku or j−ku for any p and p′ being observed in GT , then from 4) of Lemma 7.4.1,

Ψ(ku, i)Ψ(ku, j) = 0 for every unobserved node ku, which will imply Σ(i, j) = 0. This

completes the proof.

We use the above lemma to present a result on topology inference using the inverse

of the power spectral density of the observed time series. In this regard we make the

following assumption in the rest of the chapter.

Assumption 2: The unobserved nodes in topology GT are at least four or more hops

away from each other.

Remark 6. All the results presented in this chapter assume that the latent nodes are at

least three or more hops away from each other except in Theorem 7.5.3, which requires

that unobserved nodes are four or more hops away from each other.

Theorem 7.4.1. Consider a linear dynamical system with topology GT such that As-

sumption 2 holds. Then Φ−1
oo (i, j)(ω) 6= 0 almost surely for ω ∈ [0, 2π), implies that, i

and j are within four hops of each other in the graph GT .

Proof. It follows from (7.4) that, Φ−1
oo (i, j)(ω) = Γ(i, j)+∆(i, j)+Σ(i, j). Suppose i and

j are more than four hops away. We will conclude that Φ−1
oo (i, j)(ω) = 0 almost surely.

As two and one hop paths are not present, it follows from 1) and 2) of Lemma 7.4.1 that

Γ(i, j) = 0 and ∆(i, j) = 0 respectively.

From the assumption that unobserved nodes are at least four or more hops away, it

follows from 3) of Lemma 7.4.1 that Λ is real and diagonal.

Suppose there are paths of the form i − p − k and j − p′ − k then i − p − k − p′ − j
is a four hop path that connects i and j, which contradicts that i and j are more than

four hops away. Thus, paths of the form i − p − k and j − p′ − k cannot be present

simultaneously. Similarly, one can show that paths of the form i − k and j − p′ − k or
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i−p−k and j−k cannot be present as it would imply i, j are three hop neighbors. Thus,

from 5) of Lemma 7.4.1, we conclude that Σ(i, j) = 0. This implies that Φ−1
oo (i, j) = 0

and completes the proof.

Remark 7. Note that the non-zero values in Σ(i, j) (and subsequently in Φ−1
oo (i, j)) for

three and four hop observed nodes i, j result from paths of the form i−q−ku−j, i−ku−p−j
and i− q−ku−p− j in GT , with q and p being observed neighbors of i and j respectively

and ku being an unobserved node.

Remark 8. Note that the system transfer functions have to take very specific forms in

order for Γ(i, j) + ∆(i, j) + Σ(i, j) to be zero even though i, j are either neighbors or two

hop neighbors. Thus, except for these pathological cases, if i and j are neighbors, two hop

neighbors (with the common neighbor being observed or unobserved) Φ−1
oo (i, j) 6= 0 almost

surely. Furthermore, for i, j being three or four hop neighbors, Γ(i, j) = 0 and ∆(i, j) =

0. The second term of Ψ(i, j) is a contributor to three/ four hop contributions and is non

zero in a large number of applications. For example: suppose that bij ≥ 0, am,i ≥ 0 for

all i, j in (7.1) (which is true for engineering networks like power distribution systems,

RC networks etc.); then it is not possible that Φ−1
oo (i, j) = 0 if i and j are three or four

hop neighbors in GT . We assume that the systems of interest do not belong to the small

set of pathological cases.

If we form a graph Gm using the non-zero values in Φ−1
oo (i, j)(ω) as the adjacency

matrix, we obtain all links up to four hop neighbors in GT . This is summarized as

Algorithm 1 and is the first step in our topology learning scheme. The next objective is

to identify the true links as well as eliminate the spurious links and identify the location

of the unobserved nodes in Gm obtained from Algorithm 1. Note that Theorem 7.4.1

does not depend on the linear dynamical system being radial. However in the subsequent

analysis, we will explicitly use the fact that GT = T is a RLDS.

7.5 Exact Topology Recovery in Radial Linear Dynamical

Systems

To recover the exact topology of the radial linear dynamical system (RLDS) there the

two tasks: one is to determine the set of true edges in the graph obtained from Algorithm
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Algorithm 8 Topology Learning using Power Spectrum
Input: Time series xi(k) from observed nodes
Output: Gm = (Vo, EGm).
1: Edge set EGm ← {}
2: Compute Φ−1oo (ω)
3: for all i ∈ {1, 2, ...,m}, i 6= j do
4: if Φ−1oo (j, i)(ω) 6= 0 then
5: EGm ← EGm ∪ {(i, j)}
6: end if
7: end for

1 and the next is to determine the location of the unobserved nodes. We accomplish

these tasks in the following two subsections.

7.5.1 True Edge Discovery between Observed Nodes

Consider a RLDS with a tree topology T . Let the unobserved nodes be at least four or

more hops away from each other as per Assumption 2. The graph Tm obtained using

Algorithm 1 has edges between observed nodes that are up to four hops away in T . The
objective of this section is to design an algorithm to identify the true links as well as

eliminate the spurious links and detect the location of the missing nodes in Tm to recover

T from Tm. In this regard, we introduce the following assumption and the notion of

separation in graphs.

Assumption 3: Each unobserved node is at least three hops away from all leaf nodes

in T .
Based on the above assumption, it is clear that all leaf nodes in T are observed

nodes. Put differently, each unobserved node is buried deep into the network so that

their effect is ‘felt’ at multiple observed nodes.

Definition 27. (Separation in Graph) In an undirected graph U , the set of nodes Z is

said to separate the path between nodes i and j, if there exist no path between i and j

in U after removing the set of nodes Z. We will use the notation sep(i, Z, j), which is

to be read as Z separates the path between i and j in U . For example, in Figure 7.1(b)

sep(1, {2, 4}, 6) holds.

Next, we present a result, which enables us to categorize true and spurious edges

between observed non-leaf nodes in Tm. The proofs of the results presented below are

omitted due to space restrictions.
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Theorem 7.5.1. Consider a RLDS with a tree topology T such that Assumption 2 and 3

hold. Let Tm be such that there are links between any two observed nodes that are within

four hops in the underlying topology T (that is no link up to four hops is undetected as

discussed in Remark 8). There exist observed nodes c, d distinct from observed nodes a, b

such that sep(c, {a, b}, d) holds in Tm if and only if a − b is an edge (and thus a true

edge) in T and a, b are non-leaf nodes.

Remark 9. The above theorem provides a topological test on Tm (which can be performed

in polynomial time) to identify the observed non-leaf nodes, Vnl,o and the true edges

between them. All other observed nodes in the graph Vl := Vo\Vnl,o then are leaf nodes.

Note that of all edges connected to a leaf node in Tm, only one edge is connected to

its true non-leaf neighbor in T (rest are spurious edges). From Assumption 3, each leaf

node is at least three hops away from any unobserved node in T . By Lemma 7.4.1 and

Remark 7, it clear that spurious edges connected with a leaf node in Tm include those

to its two-hop neighbors. The next result utilizes the phase response of the entries of

Φ−1
oo to determine the true and spurious edges associated with leaf nodes.

Theorem 7.5.2. Consider a RLDS such that Assumption 2 and 3 hold. Let a be a leaf

node in T and let v be a non-leaf neighbor of a in Tm. Then, ∠Φ−1
a,v(ω) = 0 for all

ω ∈ [0, 2π) if and only if a, v are two hop neighbors in T .

The proof uses algebraic expansions of the expressions for Φ−1
a,v(ω) for leaf v and

non-leaf a. We use the theorems mentioned above to devise Algorithm 2 that identifies

all true edges between observed nodes in the system.

The last task that remains is to locate the unobserved nodes, which is discussed in

the next subsection.

7.5.2 Location of Unobserved Nodes

After application of Algorithm 1 followed by Algorithm 2, we end up with a graph T
of observed nodes and edges between them. However the discovered network will have

multiple disconnected radial components, with the disconnections being at the locations

of unobserved nodes. We will refer to T j as a discovered disconnected component.

For example, consider a tree T with just one unobserved node l as shown in Fig. 7.2.
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Algorithm 9 True Edge Set Discovery Algorithm
Input: Tm = (V, ETm) generated by Algorithm 1
Output: T = (V, ET )

1: Edge set ET ← {}
2: for all edge a− b in ETm do
3: if Z := {a, b} there exist I 6= {φ} and J 6= {φ} such that sep(I, Z, J) holds in
Tm then

4: Vnl ← Vnl ∪ {a, b}, ET ← ET ∪ {(a, b)}
5: end if
6: end for
7: Vl ← V − Vnl
8: for all a ∈ Vl, b ∈ Vnl with (a, b) ∈ ETm do
9: if ∠Φ−1

oo (a, b) 6= 0 for all ω ∈ [0, 2π) then
10: ET ← ET ∪ {(a, b)}
11: end if
12: end for

Let l be between observed nodes c, e. Then there exist the path C − c− l− e−E in T ,
with

C := {v ∈ V|path between v, l involves node c},
E := {v ∈ V|path between v, l involves node e}.
Using Algorithm 2 leads to discovery of the individual components C−c and e−E in T .
Based on our assumptions, it can be shown that each such component has at least three

observed nodes. Since, T is a connected graph, the discovered disconnected components

need to be connected by locating the unobserved node in T . Next, we present the result
which enables us to do so.

Theorem 7.5.3. Let Tm be such that there are links between any two observed nodes that

are within four hops in the topology T . Consider two discovered disconnected components

T 1, T 2 in T with observed nodes c ∈ T 1 and e ∈ T 2. If ∀ b ∈ T 1, ∀f ∈ T 2 such that

b − c and e − f are edges in T and b, c, e, f form a clique in Tm, then, there exists an

unobserved node l such that c− l − e is a path in T .

Based on Theorem 7.5.3, we present Algorithm 3 that inserts hidden nodes by con-

sidering spurious edges between pairs of disconnected components in the discovered net-

work. As each observed node can have a maximum of only one hidden node as neighbor,

we merge hidden nodes that may have been duplicated in Algorithm 3 while checking

for Theorem 7.5.3 between multiple disconnected components connected to the same
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hidden node.

Algorithm 10 Unobserved Node Placement Algorithm
Input: T = (VT , ET ) = ∪hj=1T j

Output: T̃ = (VT̃ , ET̃ ).
1: Node set VT̃ ← VT
2: Edge set ET̃ ← ET
3: for all j ∈ {1, 2, ..., h} do
4: for all i ∈ {j + 1, ..., h} do
5: if there exist a pair of nodes a, b such that a ∈ T j and b ∈ T i such that all their

neighbors in T are connected in Tm then
6: VT̃ ← VT̃ ∪ lj
7: ET̃ ← ET̃ ∪ {(a, lj), (lj , b)}
8: end if
9: end for

10: end for
11: Merge hidden nodes that are neighbors of the same observed node.

7.6 Results

Topology inference for power distribution networks can be applied towards fault isola-

tion, control and flow optimization. Penetration of devices like Phasor Measurement

Units(PMUs) enable real time measurement of phases of various nodes and facilitate

inverse problems like topology inference and state estimation [2]. However, these meters

cannot be deployed at all nodes and partial network observability is indeed the situation.

We demonstrate the efficacy of the algorithm presented by testing it on data obtained

from simulations of the linearized swing equations (see (7.7) below) on a 39 bus radial

topology. This radial system is obtained by deleting a few edges from the IEEE 39 bus

system and is shown in Figure 7.3(a). The state xi(t) denotes the fluctuations of the

phase angles of node i from equilibrium values while pi(t) denote the nodal injections

due to generation and losses. The nodal injections pj are colored noise and are generated

by filtered version of a white noise sequence. Four nodes are unobserved in this study.

For i = 1, 2, ..., 39,

miẍi + diẋi =
39∑

j=1,j 6=i
bij(xj(t)− xi(t)) + pi(t), (7.7)

Here, mi, di, bij ∈ R≥0 for all i, j ∈ {1, 2, ..., 39}.
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Figure 7.2: Illustration of the application of Algorithm 1, Algorithm 2 and Algorithm
3 in succession. The red node is the latent node and green edges denote the spurious
edges up to four hop neighbors.

The error proportion is defined as the ratio of the sum of number of true links

undetected and number of false links detected to the total number of true links. The

error proportion for the RLDS in Figure 7.3(a) using the algorithms presented previously

is shown in Figure 7.3(b). As the samples per observed node is increased it is seen that

the error proportion decreases rapidly. We reemphasize that our algorithms do not

use any knowledge of the system parameters and noise injections. Moreover, the noise

injections used in the simulation is colored noise unlike white noise models used in

previous studies.
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Figure 7.3: (a) A RLDS obtained from the IEEE 39 bus system, (b) error proportion
against the number of samples in topology inference of the system shown in Figure 2(a).

7.7 Summary

We presented algorithms, which when applied in succession, leads to the exact topology

recovery of a RLDS in the ‘sufficient statistics’(large number of data samples) regime un-

der partial observation of the network. The proofs involve a synergy of tools from signal

processing and probabilistic graphical models. Algorithm 2 and Algorithm 3 being graph

based checks, can be executed in polynomial time. Among all the algorithms presented,

Algorithm 1 is computationally most intensive due to computation of the inverse. We

demonstrated the performance of the algorithm on a 39 node radial power distribution

network. This work also provides insights on placement of sensors for observing the

network for monitoring and fault detection applications.



Chapter 8

Structure Learning: Cyclostationary

Time Series

8.1 Prologue

In Chapters 5, 6, 7, the observed time series were assumed to be wide sense stationary.

In this chapter, we expand the scope of the algorithms presented previously to a class

of non-stationary processes, namely cyclostationary processes.

8.2 Introduction

Cyclostationary processes arise naturally from periodic phenomenon [140]. In telecom-

munications, telemetry, radar and sonar applications; modulation, sampling, multiplex-

ing, and coding operations give rise to periodicity. Periodicity in mechanical systems

is due to rotation and reciprocation of gears, belts, chains, shafts, propellers, pistons,

and so on [141]. In power generation the rotational motion of turbines and generators

is responsible for periodic AC signals. In inverters PWM switching is responsible for

the generation of periodic AC signals. In astronomy, periodicity arises due to rotation

and revolution of celestial bodies. In econometric and climate systems, seasonality of

markets gives rise to periodic behavior [142, 143].

A common feature of the time series data obtained in these examples is that they ex-

hibit periodic statistics. Often multiple frequencies are observed in the time series data.

117
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These processes are not necessarily periodic functions of time but are characterized by

periodic statistics. It of interest to understand the relationship between various compo-

nents of large scale interconnected dynamical systems like power distribution networks

or climate systems. The complexity of such systems call for use of data driven methods

to understand system behavior. In this chapter, an algorithm is developed to recon-

struct networks of cyclostationary processes which are dynamically related by transfer

functions. It is shown that non causal Wiener filtering is capable of reconstructing the

kin topology of the network which recovers the set of parents, children and spouses of

every agent in the network. Furthermore the reconstruction algorithm is extended to ac-

commodate poly-periodic processes. We show that the algorithm presented is applicable

for inferring the interconnection topology of a network of dynamically related processes

which can be modeled as Wide Sense Stationary (WSS) processes and demonstrate its

robustness for applications where observations are available for finite time.

The chapter is organized as follows. In Section 8.3 we present definitions and key

results of cyclostationary processes. Section 8.4 describes a class of models that will suit

our purpose of describing an interconnected structure of dynamical systems. Section

8.5 presents basic concepts of non causal Wiener filtering. In Section 8.6 we show that

non causal Wiener filtering is able to recover the parents, children and spouses (i.e.,

Markov blanket) of each node. Section 8.7 deals with simulation results to illustrate the

developed algorithm. Section 8.8 summarizes the chapter.

Notation:

The symbol := denotes a definition

‖x‖: 2 norm of a vector x

Aj∗: j − th row of matrix A

A∗i: i− th column of matrix A

0:zero matrix of appropriate dimension

A∗: the conjugate transpose of matrix A

A′: transpose of a matrix A

A � 0: A is a positive definite matrix
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8.3 Cyclostationary Processes and Vector Stationary Pro-

cesses

In this section we present a brief introduction to cyclostationary processes and its con-

nections with vector stationary processes. For more details the reader is referred to [144].

We first recollect the notion of a wide sense stationary(WSS) stochastic process.

A random process x(t), t ∈ Z is wide sense stationary (WSS) if its mean function,

m(t) := E[x(t)] is constant and correlation function, Rx(s, t) := E[x(s)x(t)] is a function

of s − t, where E[.] denotes the expectation operator. The Fourier transform of the

correlation function is the power spectral density which is denoted as Φx(eιω). The

random processes x(t) and y(t) are said to be jointly WSS if x(t) and y(t) are WSS and

the cross correlation function,Rxy(s, t) := E[x(s)y(t)] is a function of s− t. The Fourier

transform of the cross correlation function is the cross spectral density which is denoted

as Φxy(e
ιω). Next, we define a cyclostationary processes.

Definition 28 (Cyclostationary Process). A random process x(t), t ∈ Z is said be cy-

clostationary or periodically correlated process with period T ∈ Z+ if for every s, t ∈ Z,

m(t) = m(t+ T ) (8.1)

Rx(s, t) = Rx(s+ T, t+ T ). (8.2)

Here, by period we mean the smallest positive integer T for which the above hold.

Examples of cyclostationary process: (i) A WSS process is a cyclostationary processes

with period 1, (ii) any signal which can be described as a sum of a periodic signal and

a wide sense stationary(WSS) noise results in a cyclostationary process.

Two random processes x(t) and e(t) are said to be jointly cyclostationary with period

T if x(t) and e(t) are cyclostationary with period T and the cross correlation function

Rx,e(s, t) := E(x(s)e(t)) is periodic with period T . Next, we define a vector WSS

process.

Definition 29 (Vector WSS Process). Consider a q-variate random sequence X(t) =

[x1(t), · · · , xq(t)]′, t ∈ Z. Here Xj(t) is used to denote the jth element of X(t). X(t) is
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said to be a vector WSS process if

mj := E[xj(t)],

is a constant for all j ∈ {1, 2, ..., q}, and,

RjkX (s, t) := E[xj(s)xk(t)]

is a function of s−t for all s, t ∈ Z, and j, k ∈ {1, 2, · · · , q}. Herem := [m1,m2, · · · ,mq]
′ is the mean vector and RX(τ) :=

[RjkX (τ)]qj,k=1as the correlation matrix of X(t).

X(t) ∈ R1×q and Y (t) ∈ R1×r are jointly vector WSS process if they are vector

WSS processes and RjkXY (s, t) := E[Xj(s)Y k(t)] is a function of s− t for all s, t ∈ Z and

j ∈ {1, 2, ..., q}, k ∈ {1, 2, ..., r}.
Lifting is a way of representing scalar time series as a realization of a vector time

series. Vector sequences of size T obtained from lifting of scalar sequences x(t) will be

indexed by n and denoted as X(n). The scalar sequence x(t) is related to the T variate

lifted sequence X(n) by Xj(n) = x(j + nT ), n ∈ Z, j = 0, 1, · · · , T − 1. The next result

relates cyclostationary processes with vector WSS processes.

Theorem 8.3.1. [144] A scalar random sequence x(t) : t ∈ Z is cyclostationary with

period T if and only if the T -variate lifted sequence X(n) of x() is a vector WSS process.

Proof. (⇒)Suppose x(t) is cyclostationary with period T . Let S := {0, 1, · · · , T − 1}.
So,

E[Xj(n)] = E[x(j + nT )] = E[x(j)] := mj , j ∈ S and

RjkX (n,m) = E[Xj(n)Xk(m)] = E[x(j + nT )x(k +mT )]

= Rx(j + nT, k +mT ) = Rx(j + (n−m)T, k)

= E[x(j + (n−m)T )x(k)] = E[Xj(n−m)Xk(0)]

= RjkX (n−m), for all n,m ∈ Z and j, k ∈ S

Therefore X(n) is a T -variate vector WSS process.

(⇐) Suppose X(n) is a T variate vector WSS process obtained by lifting x(t). Then it
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follows from the definition of vector WSS process that,

E[Xj(n)] = E[Xj(0)], for allj ∈ S, n ∈ Zwhich implies,

E[x(j + nT )] = E[x(j)], for all j ∈ S.

Let j + nT = t, implying, j = t− nT . So,

E[x(t)] = E[x(t− nT )], for all t, n ∈ Z

Let n = 1. Thus, E[x(t)] = E[x(t− T )], for all t ∈ Z and substituting t− T with p,

E[x(p+ T )] = E[x(p)], for all p ∈ Z. (8.3)

Since, X(n) is vector WSS process,

RjkX (n,m) = RjkX (n−m), for all m,n ∈ Z, j, k ∈ S, that is,
E[Xj(n)Xk(m)] = E[Xj(n−m)Xk(0)], which implies that,

E[x(j + nT )x(k +mT )] = E[x(j + (n−m)T )x(k)].

Let s := j + nT and t := k +mT . Then,

E[x(s)x(t)] = E[x(s−mT )x(t−mT )], for all s, t,m ∈ Z.

Let m = 1, it follows that,

E[x(s)x(t)] = E[x(s− T )x(t− T )], for all s, t ∈ Z.

Substituting s− T, t− T with q, r respectively, we have

E[x(q + T )x(r + T )] = E[x(q)x(r)], for all q, r ∈ Z

Rx(q + T, r + T ) = Rx(q, r), for all q, r ∈ Z

Therefore xt is cyclostationary with period T . This completes the proof.

Theorem 8.3.2. If x(n) and e(n) are jointly cyclostationary sequence with period T ,
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Then y(n) := h(n) ∗ x(n) + e(n) is cyclostationary with period T . Here, * denotes the

convolution operator.

Proof. It can be easily verified that E[y(s)] = E[h(s)∗x(s)+e(s)] =
∑k=∞

k=−∞h(k)E[x(s− k)]+

E[e(s)]. Similarly, one can show that E[y(s+ T )] =
k=∞∑
k=−∞

h(k)E[x(s+ T − k)]+E[e(s+ T )].

Since, x(n) and e(n) are cyclostationary with period T , E[x(s− k + T )] = E[x(s− k)]

and E[e(s+ T )] = E[e(s)]. Therefore, E[y(s+ T )] = E[y(s)], for all s ∈ Z. Let us now

look at the correlation function of y(n).

Ry(s, t) =

E[(

k=∞∑
k=−∞

h(k)x(s− k) + e(s))(

j=∞∑
j=−∞

h(j)x(t− j) + e(t))]

=
k=∞∑
k=−∞

h(k)

j=∞∑
j=−∞

h(j)Rx(s− k, t− j)+

j=∞∑
j=−∞

h(j)R(ex)(s, t− j) +
k=∞∑
k=−∞

h(k)Rxe(s− k, t) +Re(s, t).

Similarly,

Ry(s+ T, t+ T ) =

k=∞∑
k=−∞

h(k)

j=∞∑
j=−∞

h(j)Rx(s+ T − k, t+ T − j)

+

j=∞∑
j=−∞

h(j)Rex(s+ T, t+ T − j)

+

k=∞∑
k=−∞

h(k)Rxe(s+ T − k, t+ T ) +Re(s+ T, t+ T ).

Since, x(n) and e(n) are jointly cyclostationary with period T , Rx(s−k+T, t−j+T ) =

Rx(s − k, t − j), Rex(s + T, t + T − j) = Rx(s, t − j), Rxe(s + T − k, t + T ) = Rxe(s −
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k, t) and Re(s+ T, t+ T ) = Re(s, t). Therefore,

Ry(s+ T, t+ T ) = Ry(s, t), for all s, t ∈ Z.

Thus, yn is cyclostationary with period T .

The above theorem states that the processing of a cyclostationary signal by a linear time

invariant filter is a cyclostationary process with the same period.

8.4 Topology Learning: Problem Formulation

Consider a collection of m cyclostationary time series {xj(t)}j∈{1,2,...,m},t∈Z such that,

xj(k) =
m∑

i=1,i 6=j
hji(k) ∗ xi(k) + ej(k), (8.4)

where, ej(k) is an exogenous input influencing the evolution of time series xj(k). Con-

sider, {xj(k)}mj=1 and {ej(k)}mj=1 to be jointly cyclostationary processes with period T ,

with, ei(k) uncorrelated with ej(k), for i 6= j, k ∈ Z. Using z transform,

xj(z) = ej(z) +
n∑

i=1,i 6=j
Hji(z)xi(z),

where, xi(z), ej(z) is the z transform of xi(k), ej(k) respectively. Here, Hji(z) is the

transfer function. Consider a directed graph G := (V,A), where, V = {1, ...,m} denotes
the nodes or vertices and A := {(j, i)|i, j ∈ V, Hji(z) 6= 0 a.s.} denotes the edge set

(ordered pairs). The edge (j, i) is represented as an arrow starting at i and ending in j

(i→ j). In this chapter, G := (V,A) is said to be the generative graph of the processes

{xj(k)}j∈{1,...,m},k∈Z. We refer to j as the child of i and i as parent of j if Hji(z) 6= 0

almost surely. Moreover, we refer to i ∈ V and j ∈ V as spouses if there exist k ∈ V
such that Hki(z) 6= 0 and Hkj(z) 6= 0 almost surely. Let Cj , Pj ,Kj denote the set of all

children, parents and spouses of node j. Next, we define the topology, GT and moral

graph GM associated with a generative graph G.

Definition 30 (Topology of a graph). Given a generative graph G = (V,A), its topology
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Figure 8.1: (a) A directed graph, (b) its topology (nodes 2 and 3 are neighbors, 2 and
5 are two hop neighbors) and (c) its moral graph.

GT is the undirected graph that is obtained by removing the orientation on all edges of G
and avoiding repetition. An example of a generative graph is represented in Figure 8.1(a)

with its topology in Figure 8.1(b).

Definition 31 (Moral Graph). Given a generative graph G, its moral GM is the undi-

rected graph that is obtained by removing the orientation on all edges of G avoiding repe-

tition and adding an undirected edge between spouses in G. As an example, Figure 8.1(c)

is the moral graph of the generative graph represented in Figure 8.1(a).

Topology learning addressed in this chapter refers to reconstruction of GT from only

the cyclostationary time series measurements from the nodes, {xj(k)}mj=1,k∈Z, based on

the dynamics described by (8.4). We will now discuss the application of lifting tech-

nique to transform the objective of topology inference for a collection of cyclostationary

processes into topology inference of a collection of vector stationary processes. Using

Theorem 8.3.1, xj(k) can be mapped into a T -variate vector stationary process Xj(n).

Similarly, the exogenous input ej(k) can be mapped into a T variate vector stationary

process Ej(n) which is uncorrelated with and {Ei(n)}i 6=j . We assume that the vector

WSS processes {Xj(n)}j={1,...,m} zero mean vector stationary processes. The network
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dynamics of the equivalent vector WSS processes in z domain is given by,

Xj(z) =
m∑
i=1

Hji(z)Xi(z) + Ej(z), where, (8.5)

Xj(z) = [1 z · · · zT−1]′xj(z),

Ej(z) = [1 z · · · zT−1]′ej(z),

Hji(z) = diag{1, z, ..., zT−1}Hji(z),

where, Hji(z) is T × T transfer matrix and IT×T is the identity matrix of size T × T . If
there is no dynamical link from xi(k) to xj(k) thenHji(z) = 0, which implies, Hji(z) = 0

(0 denotes a matrix of zeros of appropriate dimension), which means that there is no

dynamical link from the vector stationary process Xi(k) to Xj(k). Similarly, if there

is no dynamical link from Xi(k) to Xj(k) then Hji(z) = 0, which implies Hji = 0,

that is, there is no dynamical link from the scalar cyclostationary process xi(k) to

xj(k). The notion of a generative graph for a collection of cyclostationary processes

can be analogously carried forward to the equivalent representation of vector stationary

processes. Note that the generative graph, topology and moral graph are identical for

both the representations. Thus, we have the following Lemma.

Lemma 8.4.1. Two cyclostationary processes have a dynamical link (through a transfer

function) if and only if there is a dynamical link between their vector stationary process

representations (through a transfer matrix). Moreover, the structure of the generative

graph, topology and moral graph is preserved under lifting of a collection of cyclostation-

ary processes into vector stationary processes.

Proof. The proof follows from the discussion above.

Theorem 8.3.1 and Lemma 8.4.1 enable us to interpret a dynamical network of scalar

cyclostationary processes as a dynamical network of vector stationary processes. This

enables us to design topology inference algorithms for the vector stationary represen-

tation and presence/absence of links in the vector stationary representation is directly

mapped to the presence or absence of links in the scalar cyclostationary case. The dis-

cussion henceforth would focus on the inference of topology of a network of T × 1 vector

stationary processes.
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8.5 Wiener Separation

We assume that the operator (I−H(z)) is invertible and the power spectral density matrix

of the exogenous inputs E(k), ΦE(eιω) is positive definite almost surely. Consider the

following least squares problem,

inf
{Wij(k)}mi=1,i 6=j,k∈Z

E(Xi(k)−
m∑

i=1,j 6=i
W ij(k) ∗Xj(k))2, (8.6)

for all k ∈ Z. Here, ∗ denotes a convolution operator and W ij(k) is a T ×T impulse re-

sponse matrix of filtering the vector valued process Xj(k). The least squares solution for

estimation ofXi(k) from the rest of the time seriesXī(k) := [X1(k)
′
, ..., Xj(k)

′
, ..., Xm(k)

′
]
′
j 6=i

as shown above is known as the multivariate Wiener filter, which is given by, Wi(z) =

ΦXiXīΦ
−1
Xī

. Then, X̂i(z) = Wi(z)Xī(z) is the closest approximation of Xi(z) based on

the rest of the time series (using Parseval theorem, X̂i(k) is the closest approximation

of Xi(k) based on Xī(k)). Here, Wi(z) is a T × (m − 1)T matrix and is of the form

Wi(z) = [Wi,1(z)...Wi,i−1(z) Wi,i+1(z) ... Wi,m(z)], where {Wi,j(z)}mj=1,j 6=i is a T × T
transfer matrix. Please refer to the Section 8.9 for a detailed derivation of multivari-

ate Wiener filtering. Next we introduce the definition of conditional non causal Wiener

uncorrelation or Wiener separation.

Definition 32 (Wiener Uncorrelated or Wiener Separated). Let V (k), X1(k), ..., Xm(k)

be vector stationary processes obtained from lifting of the jointly cyclostationary processes

v(k), x1(k), ..., xm(k) respectively. The process V (k) is said to be Wiener-uncorrelated

with Xi(k), for any i ∈ {1, ...,m}, given the processes {Xj(k)}j 6=i if the i-th block of

the Wiener filter to estimate V (k) from X(k) := [X1(k)′ ... Xm(k)′]
′ is zero, that is,

ΦV XΦ−1
X Bi = 0, where, Bi = [0 0 · · · 0 IT×T 0 · · · 0]′ is a matrix ∈ RmT×T that has

IT×T (identity matrix) as the i− th block and 0 as all other blocks.

Lemma 8.5.1. Let X1(k), ..., Xm(k) be T × 1 vector stationary processes and define

X(k) = [X1(k)′ ... Xm(k)′(k)]′. Assume that ΦX has full normal rank. The process

Xi(k) is Wiener-uncorrelated with Xj(k) given the processes {Xl(k)}l 6=i,j, if and only if,

the (i, j) block matrix, or equivalently the (j, i) block matrix, of Φ−1
X (eιω) is 0, that is,
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for i 6= j,

B′jΦ
−1
X Bi = B′iΦ

−1
X Bj = 0. (8.7)

Proof. Without any loss of generality, let j = m and defineXm(k) = [X1(k)′ ... Xm−1(k)′]′.

Let Wmm(z) be the non-causal Wiener filter for estimating Xm(k) from {Xm(k)}k∈Z.
Then

Xm(z) = Em(z) + Wmm(z)Xm(z) (8.8)

where, from (8.14), the error Em(z) has the property that ΦEmXm(z) = 0. Define R(z) :=

[X′m(z), Em(z)′]′ and observe that,

R(z) =

(
I(m−1)T 0

−Wmm(z) IT

)
X(z);

X(z) =

(
I(m−1)T 0

Wmm(z) IT

)
R(z).

It follows that,

ΦR(z) =

(
ΦXm(z) 0

0 ΦEm(z)

)
;

ΦX =

(
I(m−1)T 0

Wmm(z) IT

)
ΦR(z)

(
I(m−1)T 0

Wmm(z) IT

)∗
,

which implies that,

Φ−1
X (z)

=

(
I(m−1)T −W∗mm(z)

0 IT

)
ΦR
−1(z)

(
I(m−1)T 0

−Wmm(z) IT

)

=

(
ΦXm + W∗mmΦ−1

EmWmm −W∗mmΦ−1
Em

−Φ−1
EmWmm Φ−1

Em

)
(z)

Pre-multiplying Φ−1
X by B′m and post-multiplying by Bi with i 6= m provides the (m, i)
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block matrix of Φ−1
X . Thus,

B′mΦ−1
X (z)Bi = −Φ−1

Em(z)Wmm(z)Bi

In the above step there is a slight abuse of notation for Bi on the right hand side of the

equation. The Bi on the right hand side is of dimension (m− 1)× T while on the right

hand side is mT × T .
(⇒) Suppose Xm(k) is Wiener uncorrelated with Xi(k). Then Wmm(z)Bi = 0 which

implies B′mΦ−1
X Bi = 0.Thus, (m, i) as well as (i,m) block matrix of Φ−1

X is 0.

(⇐) Suppose that the (m, i) block of Φ−1
X is 0. Then −Φ−1

EmWmm(z)Bi = 0,which

implies Wmm(z)Bi = 0. Thus, Xm(k) and Xi(k) are Wiener uncorrelated.

8.6 Structure Learning using Wiener Filtering

In this section we present results which are sufficient conditions to determine if two nodes

are kins. Consider the generative graph G associated with the T variate vector stationary

time series {Xi(k)}i=1,...,m,k∈Z with dynamics described by (8.5). The dynamics of all

the nodes can be collectively written as,

X(z) = H(z)X(z) + E(z), (8.9)

where, X(z) is the z transform of X(k) = [X1(k)
′
... Xm(k)

′
]
′ , E(z) is the z transform of

E(k) = [E1(k)
′
... Em(k)

′
]
′ and H(z)(i, j) = Hij(z). We assume that (I−H(z))−1 exists

almost surely (referred as well posedness condition) and ΦE(eιω) is positive definite for

all ω ∈ [0, 2π) almost surely (referred as topological detectability condition). With these

two assumptions, we will show that if two nodes i and j are not parents, children or

spouses in the generative graph G then the Wiener filter transfer matrix for estimating

Xi(k) from Xj(k) given the rest of the time series (and vice versa) is a zero matrix.

Theorem 8.6.1. Consider a generative graph G associated with the T variate vector

stationary processes {Xi(k)}i={1,...,m},k∈Z described by (8.5) and is well-posed and topo-

logically detectable . Let X(z) be the z transform of X(k) := [X1(k)′, ..., Xm(k)′]′. Define

the space Xj = tf-span{Xi}i 6=j. The approximation of the signal Xj(k) using rest of the
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time series based on multivariate Wiener filtering is given by,

X̂j(z) =
∑
i 6=j

Wji(z)Xi(z). (8.10)

Then Wji(z) 6= 0 implies i ∈ Cj ∪ Pj ∪Kj.

Proof. The collective dynamics of entire collection of time series, X(z) is given by X(z) =

(I−H(z))−1E(z) which implies that

Φ−1
X (z) = (I−H(z))∗Φ−1

E (z)(I−H(z)). (8.11)

Consider the (i, j) block matrix of Φ−1
X (z), with i 6= j. Using the block diagonal structure

of ΦE we have,

B′jΦ
−1
X Bi = (Bj

′ − (H∗,j)∗)Φ−1
E (Bi −HBi)

= −Φ−1
Ej

B′jH∗,i − (H∗,j)∗BiΦ
−1
Ei

+
m∑
k=1

(Hk,j)
∗Φ−1

Ek
(Hk,i)

= −Φ−1
Ej

Hj,i −Hi,j
∗Φ−1

Ei
+

m∑
k=1

(Hk,j)
∗Φ−1

Ek
(Hk,i)

= −Φ−1
Ej
Hji −Hij∗Φ−1

Ei
+

m∑
k=1

(Hkj)∗Φ−1
Ek

(Hki). (8.12)

The theorem is proved if it is shown that given i is not a child, parent or spouse of j then

Wji(z) = 0. If i is not parent of j thenHij(z) = 0, if i is not a child of j thenHij(z) = 0,

and if i and j are not spouses then there does not exist any k ∈ {{1, ...,m}|Hkj(z) 6=
0 and Hki(z) 6= 0}. Thus, the entry (j, i) block of Φ−1

X (z) is null. Using Lemma (8.5.1),

Wji(z) = 0 and the assertion is proved.

Remark 10. The above result does not guarantee that if i is a child, parent or spouse

of j then, Wji(z) 6= 0 almost surely. However, in such a case, to obtain Wji(z) = 0

almost surely, the terms on the right hand side of (8.12) should add up to zero, that is,

the system transfer functions and exogenous input must satisfy a particular constraint

for Wji(z) = 0 almost surely, despite i being a child, parent or spouse of j in G. System
parameters have to take specific values for the constraint to be satisfied and hence, such
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cases are deemed pathological. For most applications, the above result can be used as an

‘if and only if ’ result.

Using the above Theorem and Remark, we arrive at the following algorithm, which

enables us to infer the moral graph GM of G from the measured time series {x1(k), ..., xm(k)}k∈Z.

Algorithm 11 Learning Algorithm for learning the moral graph of LDG with cyclosta-
tionary inputs
Input: Time series Xi(k) for each node i ∈ {1, 2, ...m} which is WSCS. Thresholds ρ.
Frequency points Ω.
Output: Reconstruct the kin topology with an edge set EK

1: Perform a periodogram analysis of the time series data to determine the period T .
Arrange each cyclostationary time series as vectors of size T

2: for all l ∈ {1, 2, ..., n} do
3: Compute the Wiener filter W lp(z) using the voltage time series ∀p ∈
{1, 2, ...,m} \ l

4: end for
5: Edge set ĒK ← {}
6: for all l, p ∈ {1, 2, ..., n}, l 6= p do
7: if ‖[W pl(z)]‖∞ > ρ then
8: ĒK ← ĒK ∪ {(l, p)}
9: end if

10: end for
11: Edge set EK ← ĒK
12: Error = Number of false edges

Number of true edges

Remark 11. Suppose that the mean and correlation function of {xj(k)}j=mj=1 are pe-

riodic with period T1, T2, · · · , Tn, that is, the second order statistics of the time series

are poly periodic. The moral graph inference procedure described above for cyclosta-

tionary process with period T is applicable to poly-periodic processes with T = Teff =

LCM{T1, T2, · · · , Tn} where poly-periodic processes can be treated as cyclostationary pro-

cesses with period Teff . Here, LCM stands for the Least Common Multiple.

It is important to note that non causal Wiener filtering provides information on the

presence or absence of the link and no conclusion on the direction of the arrows can be

drawn from it. This approach returns the moral graph of the generative graph and not

the exact topology of the generative graph. The moral graph contains spurious edges



131

between spouses which is not present in the true topology of the generative graph. In the

next section, we show that for tree topology with the generative graph being bi-directed,

the spurious edges obtained in the moral graph can be pruned out to obtain the true

topology.

8.7 Simulation Results

8.7.1 Validation on cyclostationary and poly periodic processes

A simulation is performed in Matlab to illustrate the reconstruction procedure using non

causal Wiener filtering for networks of cyclostationary processes. A five node network as

shown in Figure 8.2 is used for the illustration of the key results derived earlier. In this

network, node 2 and node 3 are spouses. Each link in Figure 8.2(a) is a 4th order finite

impulse response transfer function 1 + 0.9z−1 + 0.5z−2 + 0.3z−3. The sequence ei used

is simulated as zero mean white Gaussian noise. Node 1 has a sinusoid of frequency π/3

rad/sample which is an exogenous input and is responsible for the time series of all nodes

being cyclostationary with period T = 6 samples. The network is simulated and about

initial 600 samples are removed to ensure that the observed data is cyclostationary and

transient effects are removed. The time period T is estimated from the periodogram of

the observed data by rounding it off to the nearest integer. The presence or absence

of a link is decided by comparing the 2 norm of the Wiener filter matrix W ij(z) to

a threshold of 0.1. If the 2 norm of W ij(z) < 0.1 then it is decided that W ij(z) is

negligible and there is no edge between node i and node j. It is seen in Figure 8.2(b)

that the Wiener reconstruction provides the kin topology of the original graph associated

with the true linear dynamic graph. The Wiener reconstruction introduces a spurious

link between nodes 2 and 3 because these nodes share a common child and hence are

kins.

Next we show the extension of the algorithm to poly-periodic processes. The setup

is the same as in Figure 8.2(a) with the difference being that the exogenous inputs

to Node 1 are now multiple sinusoids with frequency 2π/9, π/3 and 2π/3 rad/ sam-

ple. These multiple frequencies are responsible for the poly-periodicity of the 2nd order

statistics with periods T = 9, 6 and 3 samples. These periods are being estimated from

the data using periodogram analysis which now shows three peaks corresponding to the
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Figure 8.2: The associated graph of a Linear Dynamic Graph of cyclostationary pro-
cesses (a) and the reconstructed graph obtained using the Wiener projection technique
suggested by Theorem 8.6.1 (b). Spurious links are introduced between the spouses 2-3.

respective frequencies. The reconstruction procedure developed for cyclostationary pro-

cesses is applied to the poly-periodic data with Teff = LCM{9, 6, 3} = 18 samples. The

reconstructed topology is the same as shown in Figure 8.2(b). This example illustrates

that non causal Wiener filtering is capable of inferring the kin topology of LDGs of

poly-periodic processes.

8.7.2 Evidence of Robustness to Finite Data Effects

WSS processes are cyclostationary processes with period 1. Thus, the 2nd order statistics

of WSS processes are periodic with a period T , where T is any natural number. Using

Theorem 8.3.1, it is concluded that WSS processes have equivalent T dimensional vector

stationary process representations. So there are two ways to reconstruct the underlying

structure of a LDG of WSS processes -

1. Wiener filtering of WSS processes to detect kin relationships [145]. Here, the

reconstruction procedure adds a link between nodes i and j if the Wiener filter

transfer function between i and j is non zero.

2. Wiener filtering of the equivalent T dimensional vector stationary processes using

Theorem 8.6.1 to infer the kin topology. In this approach the reconstruction algo-

rithm identifies a link between node i and j if the Wiener filter transfer matrix (of

size T × T ) between nodes i and j is non zero.
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It is essential to note that decision on absence of link is taken based on T 2 transfer

functions being zero in the 2nd method described above while in the 1st method the

decision on absense of link is based on just a single transfer function. Thus it can be said

that the 2nd procedure is robust to detection of links because of larger number of decision

variables. This could be useful to address link detection issues when the observations are

not of sufficient length. Consider the 5 node LDG of Figure 8.2 (without the exogenous

sinusoidal inputs at Node 1) with the outputs of the 5 nodes being WSS time series data.

We consider data length of 100 samples for each node and apply both the reconstruction

approaches described above. The 1st procedure detects a false link between 1− 4, 1− 5

and does not detect the 1 − 3 link. The 2nd procedure with T = 3 does not provide

any false link and is able to reconstruct the exact kin topology of the network. The 1st

procedure is able to reconstruct the exact kin topology when 400 observations are used.

Thus, treating scalar WSS processes as vector stationary processes results in robust

reconstruction of network topology when limited data is available.

8.8 Summary

In this chapter we demonstrate that non causal Wiener filtering is capable of recovering

the kin topology of a LDG of cyclostationary processes. This is based on the fact that a

cyclostationary process with period T has an equivalent T dimesnsional vector stationary

process representation. This approach is restricted to integer periodicity of the second

order statistics of the cyclostationary processes. This approach can also be applied to

poly-periodic processes with the effective period being the LCM of all the periods present

in the time series. It has been shown that Wiener filtering suggests "d-separation" of

the sources and the loads by the inverters and this observation has also been justified

from a power system dynamics viewpoint. It is important to note that Wiener filtering

based reconstruction of WSS processes is not applicable to cyclostationary processes.

However, the approach presented here can be applied to WSS processes because WSS

processes are cyclostationary processes with period 1 and hence with any period T with

T being any natural number. It is shown by a simulation that treating WSS processes as

cyclostationary processes with period T and then applying the reconstruction procedure

presented in this chapter results in robust reconstruction as compared to reconstruction
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based on direct Wiener filtering of WSS processes when limited data is available for

reconstruction.

8.9 Wiener Filtering Derivation

Let E be a set containing discrete time jointly vector stationary processes such that for

any Ei, Ej ∈ E , the power spectral density matrix ΦEiEj (z) exists (z transform of the

cross correlation matrix) with each element of ΦEiEj (z) being real rational with no poles

on the unit circle and given by

[ΦEiEj (z)](m,n) =
A(z)

B(z)
,

where [ΦEiEj (z)](m,n) is the (m,n)th element of ΦEiEj (z), A(z) and B(z) are polyno-

mials with real coefficients such that B(z) 6= 0 on the unit circle. Then, E is a set of

rationally related random processes.

The set F is defined as the set of transfer matrices H comprised of real-rational

single-input single-output (SISO) transfer functions that are analytic on the unit circle

{z ∈ C| |z| = 1}. The set FE is defined as

FE :=

{
x =

m∑
k=1

Hk(z)Ek(z) | Ek ∈ E ,Hk(z) ∈ F
}
.

For a finite number of elements X1(z), ...,Xm(z) ∈ FE , tf-span is defined as

tf-span{X1(z), ...,Xm(z)} :=

{
x =

m∑
i=1

Ai(z)Xi(z) | Ai(z) ∈ F
}
.

Lemma 8.9.1. The tf − span operator defines a subspace of FE.

Proof. The proof is left to the reader.

Definition 33 (Inner Product). Given two vector stationary processes, X1(k) and

X2(k), we define the inner product as 〈X1, X2〉 := E[X ′1X2] = E[tr[X1X
′
2]] = tr[E[X1X

′
2]] =

tr[RX1X2(0)] = tr[
∫ π
−π ΦX1X2(eιω)], where tr is the trace operator.
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Now we present a lemma which lists down the conditions for unique representation

of any element in tf-span{Xi(z)}i=1,...,m.

Lemma 8.9.2. Let q(k) and X1(k), ..., Xm(k) be vector stationary processes such that

q(z),X1(z), ...,Xm(z) are in the space FE. Define X(k) = [X ′1(k) ... X ′m(k)]′. Suppose

that q(z) ∈ tf-span{Xi(z)}i=1,...,m and that ΦX(eιω) � 0 almost for any ω ∈ [−π, π].

Then there exists a unique transfer matrix Λ(z) ∈ FT×mT such that q = Λ(z)X.

Proof. Suppose q(z) = Λ1(z)X(z) = Λ2(z)X(z), with Λ1(z) 6= Λ2(z). Then, r =

[Λ2(eιω)− Λ1(eιω)]X(eιω) = 0. Thus, Φr = 0, implying,

[Λ2(eιω)− Λ1(eιω)]ΦX(eιω)[Λ2(eιω)− Λ1(eιω)]∗ = 0.

Since ΦX(eιω) � 0 for any ω ∈ [−π, π], it follows that Λ2(eιω) − Λ1(eιω) = 0 almost

everywhere. Thus, Λ2(z)− Λ1(z) equals the zero matrix, implying that Λ1(z) = Λ2(z).

Now we present the non causal Wiener Filter for vector stationary processes.

Theorem 8.9.1 (Wiener Filter). Let V(z) and X1(z), ...,Xm(z) be the z transform of

the T × 1 vector stationary processes V (k) and X1(k), ..., Xm(k) respectively. Define

X := tf−span[X1(z), ....,Xm(z)], X(k) := [X ′1(k) ... X ′m(k)]′ and X(z) be the z transform

of X(k). Consider the problem of determining the closest approximation V̂(z) of V(z)

with elements from the space X , that is,

inf
q(z)∈X

‖V(z)− q(z)‖22. (8.13)

If ΦX(z) � 0, for ω ∈ [−π, π], then the solution V̂ ∈ X exists, is unique and is given by

V̂(z) = W (z)X(z),W (z) = ΦV X(z)ΦX(z)−1.

Moreover, V̂(z) is the only element in X such that, for any q(z) ∈ X ,

〈V(z)− V̂(z), q(z)〉 = 0. (8.14)
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Proof. Since q(z) ∈ X , q(z) can be written as W (z)X(z) and the cost function is written

as

‖V(eιω)−W (eιω)X(eιω)‖2

= tr[

∫ π

−π
ΦV (eιω)− ΦV X(eιω)W ∗(eιω)

−W (eιω)ΦXV (eιω) + W (eιω)ΦX(eιω)W ∗(eιω)dω]

=

∫ π

−π
tr[ΦV (eιω)− ΦV X(eιω)W ∗(eιω)

−W (eιω)ΦXV (eιω) + W (eιω)ΦX(eιω)W ∗(eιω)dω]

Minimizing the integrand for all ω ∈ [−π, π] with respect toW (eιω) by differentiating

the integrand with respect to W (eιω) and setting it equal to 0 leads to,

2W (eιω)ΦX(eιω)− ΦV X(eιω)− Φ∗XV (eιω) = 0.

Since, ΦX(eιω) � 0 and ΦV X(eιω) = Φ∗XV (eιω), it follows that

W (eιω) = ΦV X(eιω)ΦX(eιω)−1. (8.15)

The filter W (z) := ΦV X(z)ΦX(z)−1 is the non causal Wiener filter for estimation of V

fromX that has the specified frequency response given by (8.15). Thus V̂ = W (z)X ∈ X
minimizes the cost (8.13). If ΦX(z) � 0, the uniqueness of W (z) follows from Lemma

8.9.2. The Hilbert Space projection theorem (for pre-Hilbert spaces) then guarantees

the orthogonality of the error V − V̂ with the space X .



Chapter 9

Conclusion

In the first part of this dissertation, fundamental limits on energetics of erasing a bit

of information is discussed. We used time multiplexing of a laser in an optical tweezer

setup to demonstrate bit erasure close to the Landauer’s limit. Experimental character-

ization of optical traps is used to develop a Monte Carlo simulation framework, which is

in agreement with the experimental observations and is a computational engine to study

thermodynamic aspects of bit level computations. Next, a mixture of Gaussian distri-

bution approach was adopted to analyze information erasures rigorously. We concluded

that success proportion, size of the memory bit and asymmetry could lower the mini-

mum energy consumption for bit erasures below the Landauer’s bound. Furthermore, a

trade-off between reliability of bit erasures and energy consumption is indicated due to

reducing the size of the memory bit.

In the second part, the focus was on inference of structure of a network representation

of a complex system from time series measurements of the system. An algorithm using

a synergy of Wiener filtering and graphical separation for linear bi-directed dynamical

systems with radial topology is discussed, with applications to power distribution net-

works. Next, we looked at linear dynamical systems with loops in the network structure.

An algorithm based on magnitude and phase response of multivariate Wiener filter is

presented, which is guaranteed to infer the exact network structure. The efficacy of the

method is demonstrated on power networks, building thermal dynamics and wireless

network of clients. A highlighting feature of the algorithms is that only time series mea-

surements from the system are needed and no knowledge of any system parameter or
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exogenous inputs is required. Moreover, these algorithms function even in the presence

of colored exogenous inputs unlike white noise inputs in prior work. The discussion so

far assumes all nodes in the network to be observable. For radial bi-directed linear dy-

namical systems if unobserved nodes are four or more hops away, the network structure

can be inferred exactly along with the location of the unobserved nodes using the algo-

rithm presented. Furthermore, the notion of Wiener filtering to infer the moral graph

of the underlying network of wide sense stationary time series is extended to a class of

non stationary processes, namely cyclostationary processes. This extension enables all

the algorithms presented in Chapters 5, 6 and 7 to be applicable even in the case of

cyclostationary processes.



Chapter 10

Future Work
The simulation and experimental framework could be further expanded to study other

basic computations like OR and NOT. Moreover, the framework could also be used to

design mechanisms to achieve computations using measurement and feedback. Such

developments could shed light on thermodynamic consequences of measurement and

feedback control. One of the recent developments is in designing optimal erasure mech-

anisms and establishing connections with the theory of optimal mass transport [146].

The analytical framework for analysis of information erasure using a Gaussian mixture

approach is based entirely on exponentially decaying tails of Gaussian distributions. The

framework could be generalized to a much more general class of probability measures

like a mixture of log concave distributions. Moreover, the entropy inequalities have

connections with channel capacity in information theory as discussed in [147].

The network structure learning algorithms discussed need to be expanded to account

for system nonlinearities. Kernel based techniques could possibly be used to improve the

performance of these methods in the nonlinear regime. Analysis of the regularization

aspect needs to be performed and appropriate guidelines for the choice of regularization

parameter needs to be established. Application of the structure learning algorithms for

network monitoring, fault detection and others could be explored as well. A promis-

ing extension is also in learning network parameters, for example, resistances in a RC

network or line impedance in a power network once the network structure is inferred.

Structure learning with parameter estimation will significantly broaden the scope of the

directions pursued in this dissertation and expand the scope of network system identifi-

cation.
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