
 
 

Topiramate Induced Alteration in Frontal 

Lobe eLORETA-ICA Resting State 

Network Activity is Associated with 

Baseline Semantic Fluency Performance 

 

 

A Thesis  

SUBMITTED TO THE FACULTY OF THE  

UNIVERSITY OF MINNESOTA  

BY 

Scott Luisi 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR THE DEGREE OF  

MASTER OF SCIENCE  

 

 

Dr. Susan Marino 

 

 

December 2020 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scott Luisi 2020 ©



 

i 
 

Acknowledgements 

Dr. Chris Barkley, for additional guidance, mentorship, and extensive work on editing and 

revising my manuscripts.  

Dr. Pascal Faber and Dr. Nathanial Helwig for valuable correspondence regarding 

methodological questions. 

This work was funded by NIH NINDS R01 NS076665; P.I. S.E Marino.  



 

ii 
 

Abstract 

Topiramate (TPM) is associated with a high rate of intolerable cognitive side effects that 

remain poorly understood and difficult to predict clinically. To investigate the underlying 

brain functions affected by TPM we applied eLORETA-ICA to resting state EEG data 

from 27 healthy subjects from both no-drug baseline and TPM study visits. Resting state 

independent component networks (ICs) were visualized and TPM related changes in 

network activity were identified with nonparametric paired permutation tests. Regression 

was then performed to associate baseline IC activity to changes in performance on 

neuropsychological test measures. We identified a subgroup of subjects defined by high 

baseline semantic fluency (SF) in whom: 1.TPM induced significant changes in 

prefrontal cortex activity in the high beta and gamma frequency ranges, and 2.baseline IC 

activity was associated with subsequent worsening in SF performance. This research 

shows eLORETA-ICA is a viable method of identifying drug-related changes in resting 

state network activity.  
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Introduction 

Topiramate (TPM) is a second-generation broad-spectrum anti-seizure drug (ASD) that, 

despite being efficacious1–4 and commonly prescribed for focal and generalized seizures, also 

causes well-documented cognitive impairments in measures of attention, memory, and language 

in some patients.5,6 Compared to other new ASDs, TPM has been shown to cause more frequent 

intolerable cognitive side effects, contributing to a higher rate of therapy discontinuation of an 

otherwise effective treatment.7–9 Despite the widespread recognition of the prevalence of TPM-

related cognitive impairment, a complete account of why some individuals experience these side-

effects while others do not8 remains elusive. Factors such as drug exposure, 5,10,11 baseline 

working memory capacity,10,12 and spectral power in the Theta, Beta, and Gamma frequency 

bands of the resting state EEG13 have been associated with the severity of cognitive deficits, but it 

is currently exceedingly difficult to reliably predict which patients will experience severe 

impairment.10,12,14 

Part of the reason for this is that there is much we still do not understand about the 

neurophysiological mechanisms underlying TPM associated cognitive deficits. Ultimately, a 

greater understanding of the basic chemical and anatomical pathways that are impacted by TPM 

to cause adverse cognitive side-effects is necessary, but the type of basic science research 

required to obtain this information can be costly. A promising alternative way of investigating 

drug-related cognitive impairment in humans is by studying the effect of drugs on 

intrinsic/resting state brain networks (RSNs). The brain engages in spontaneous activity even 

when an individual is at rest with no external task/stimulus, (e.g. wakeful mind-wandering), and 

RSNs are sets of brain regions that exhibit correlations in this spontaneous activity.15,16 Since the 

first RSN, the default mode network (DMN), was recognized in positron emission tomography 

(PET) and functional magnetic resonance imaging (fMRI) data, a number of different RSNs have 

been defined, such as the fronto-parietal network (FPN) and salience network (SN), and the 

relationship between activity in these networks both during task performance and at rest has been 

increasingly recognized as having important implications for cognition in healthy individuals and 

in disease states.17–19 The DMN, for example, is a set of brain regions that show an increase in 

activity when an individual is at rest and a decrease in activity during externally focused tasks19–21 

and disruption of this expected pattern of DMN activity has been repeatedly associated with 

cognitive impairment and diseases where cognitive impairment is a hallmark symptom, including 

ADHD, schizophrenia, and Alzheimer’s disease.22–24 Furthermore, multiple investigations into the 
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effect of TPM on fMRI activation patterns have found evidence that TPM disrupts the expected 

patterns of task-related deactivation (TRD) of DMN brain regions during verbal fluency and 

working memory tasks, disruptions that have been theorized to contribute to impaired 

performance.25–27  

In this study we used electroencephalography (EEG) data to investigate the effect of 

TPM on RSN activity; however, our understanding of the electrophysiology of RSNs remains 

relatively poor as attempts to establish a link between traditional EEG outcome measures such as 

spectral power and PET/fMRI-based RSN anatomical findings have historically produced 

inconsistent results.28–32 Evidence from intracranial studies of resting state activity suggests one 

reason it has been challenging to study RSNs with scalp-level EEG may be that 

electrophysiological features of RSNs are too transient and/or spatially localized for traditional 

scalp-level EEG measures to reliably capture them.33,34 As most studies of EEG-RSNs have relied 

upon relatively simple traditional EEG outcome measures, it may therefore be possible to identify 

reliable features of RSNs from surface EEG using analytical techniques that enhance the spatial 

resolution of the technique and/or identify patterns of coherent brain activity over time. In this 

study, to achieve these goals we relied on a combination of exact low-resolution electromagnetic 

tomography (eLORETA) and independent component analysis (ICA).  

First, identifying the current source(s) inside the brain that create the scalp level signals 

seen in EEG recordings, termed the ‘inverse problem’, has long challenged 

mathematicians/neuroscientists.35 Each electrode records a mixture of signals from a large 

number of local and distant current sources, so there are always multiple current source 

distributions that are mathematically consistent with the signals observed at the scalp.35,36 

eLORETA is an exact solution to the inverse problem with zero-error, at the expense of relatively 

low spatial resolution, producing an image of the standardized current density across the cortex 

based on electrical potentials measured from the scalp.35,36 LORETA is one of many different 

approaches to calculating the inverse solution, and though other algorithms can achieve higher 

spatial resolution through more time consuming computation or by incorporating 

biophysiological constraints, when compared against these more computationally demanding 

solutions LORETA has been found to achieve results with spatial and temporal accuracy of <5 

mm/5 ms respectively under most conditions.35,36  
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The second main technique in our analysis, which has played a large role in fMRI 

research into RSNs historically, is ICA.37 Broadly, ICA is a hypothesis free mathematical 

decomposition method that reconstructs source activity by maximizing statistical independence.38 

This tool is a valuable way to identify patterns in complex datasets like those generated by fMRI 

or EEG. 39–41 For our purposes, a key quality of ICA is that when applied to subject groups and/or 

across experimental conditions as we have in this study it is able to extract patterns of activity 

that are represented across all groups/conditions.39–41 Critically, this ensures that we are 

comparing the same patterns of brain activity before and after TPM administration in our 

statistical analysis.  

A combination eLORETA-ICA approach has recently been used successfully by several 

groups to visualize and compare independent EEG-based RSNs.42–44 Notably, Gerrits and 

colleagues were able to use this approach to reproduce the altered TRD of the DMN in patients 

with ADHD relative to healthy controls seen in prior fMRI studies and identify a component that 

was significantly correlated with  inattention, a hallmark symptom of ADHD.43 The eLORETA-

ICA approach to investigating RSNs also allows us to extract information from the spectral 

domain, which has no equivalent in PET/fMRI data, to identify correlations in brain activity 

across any number of constituent frequency bands. Compared to the unidimensional nature of 

fMRI/PET data, EEG produces multidimensional data that is the summation of electrical 

oscillations across a number of constituent frequency bands that each have 

functionally/behaviorally relevant associations in the literature that we can draw upon when 

interpreting our results.45–47  

In this study our primary objectives were to use the eLORETA-ICA approach to visualize 

and describe for the first time EEG based independent components (ICs) from combined pre-

treatment baseline and TPM session resting state data, and to identify which ICs were sensitive to 

TPM by testing whether the relative amount of activity in each IC significantly changed after 

TPM administration. Finally, we aimed to identify whether activity in any TPM-sensitive ICs was 

associated with cognitive impairment on any sub-tests in our neuropsychological test battery.  

Methods 

Participants 

Forty-six healthy right-handed volunteers gave written informed consent and completed 

all study visits. Exclusion criteria were: cardiovascular, endocrine, hematopoietic, hepatic, 
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neurologic, psychiatric, or renal disease; a history of drug or alcohol abuse within the past five 

years; the use of concomitant medications known to affect cognitive function (including 

antidepressants, anxiolytics, psycho-stimulants, analgesics, and antipsychotics); prior history of 

hypersensitivity to TPM, LZP, or related compounds; a positive pregnancy test (administered to 

all females before the start of each study visit); use of any investigational drug within the 

previous thirty days; a native language other than English; diagnosis of a speech and/or language 

impairment; uncorrected poor vision or hearing; and a dominant left hand (to control for brain 

lateralization of language). Nineteen subjects were excluded due to missing data resulting from 

technical issues with data acquisition or storage, leaving 27 for our analysis. 

Study Protocol 

The experimental protocol was approved by the Institutional Review Board of the 

University of Minnesota prior to the commencement of the study. We employed a double-blind, 

randomized, placebo-controlled crossover study design. Subjects signed informed consent, then 

completed a no-treatment baseline visit, during which they were familiarized with all study 

procedures and performed a modified Sternberg verbal working memory task48. Subjects were 

then assigned to one of six possible treatment sequences consisting of TPM, Lorazepam (LZP), 

and placebo (PBO) administered once each. At the next three visits, separated by two-week 

intervals, subjects’ vital signs were checked before they randomly received either a single oral 

dose of TPM (subjects were randomized to receive either 100, 150, or 200 mg of TPM to induce a 

wide range of TPM concentrations across individuals), LZP (2 mg) or an inactive PBO, with 

drugs dispensed by the University of Minnesota Investigational Drug Services pharmacy.  

Subjects completed a neuropsychological test battery at 0.5, 2.5, and 6 and between 24-

96 hours after drug administration; we used data from the 2.5 hours post-dose time point in this 

study because it was closest to maximum TPM plasma concentration and directly preceding 

resting state EEG recording. Directly after the second neuropsychological test battery at 4 hours 

post dose resting state EEG was recorded prior to the working memory (WM) task paradigm. 

Blood draws were performed before dosing and at .5, 1.5, 2.5, 4, 6 and between 24-96 hours after 

dosing for quantification of TPM plasma concentration. Samples were immediately centrifuged, 

and the plasma frozen for future analysis. Drug plasma levels were quantified by liquid 

chromatograph-mass spectrometry (LCMS) assays.49 The results of the primary study outcomes, 

including performance on the working memory test, comparison of the cognitive effects of 
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lorazepam and topiramate and pharmacometric analysis of the effects of TPM plasma 

concentration after controlling for other factors has been reported previously.10,12 

The neuropsychological test battery included: the Controlled Oral Word Association 

(COWA) test50 a test of phonemic verbal fluency that asks subjects to generate as many words as 

possible that begin with a specific letter over three 60-second trials; the descriptively named 

Semantic fluency (SF)50 assessment is a test of categorical verbal fluency, which asks subjects to 

name as many items within a given concept/category (e.g. animals) as possible over a 60-second 

trial; the Trail making test (A & B)51 tests cognitive control, task-set maintenance and alteration 

by having subjects trace a line between a series of numbered and/or lettered dots in ascending 

sequential order starting with 1/A; the Digit Span52 (forward and backward) tests subjects’ 

working memory maintenance and manipulation by asking them to memorize and repeat back 

(forward: original order, backward: reverse order) strings of digits that are read to them; and the 

Symbol digit modalities test (SDMT), which tests a subject’s cognitive control and ability to 

sustain attention by requiring them to substitute or “decode” a series of randomized geometric 

shapes for their corresponding number based on a cypher, as quickly as possible. In the modified 

Sternberg WM task subjects were briefly presented a pronounceable nonsense syllable, followed 

by a 5s retention period, after which they were shown a probe syllable; subjects answered 

whether the probe syllable was the same as the cue syllable with a yes/no button press. A more 

detailed description and results from the WM paradigm have been reported in prior 

publications.10,12 

EEG acquisition and preprocessing  

We chose to limit our analysis to the final 3 minutes of the 4-minute eyes open (EO) 

passive fixation period prior to working memory task performance, excluding the first minute 

because it was found to be consistently noisy as subjects were still becoming settled and 

acclimating to the recording setup. The continuous data were first down sampled to 250 Hz and 

high pass filtered at 1 Hz. The data were cleaned in the following steps: bad channels were 

removed and subsequently re-interpolated, the data were re-referenced to the common average 

reference, 60 Hz line noise and its’ harmonics were removed using the CleanLine plugin for 

EEGLAB53, and the resulting data were entered into ICA. ICA was completed twice during 

preprocessing; artefactual components were rejected manually after both the first and second 

iterations of ICA.  
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Following preprocessing resting state EEG data were exported from EEGLAB for 

additional processing and LORETA analysis in the LoretaKEY software package (KEY Institute, 

University of Zurich, Switzerland). In an effort to balance computational limitations of our 

hardware with the data reduction effect of using epochs of greater duration the continuous resting 

state data were split into 30 second epochs, but due to subject movement/fatigue or technical 

issues with data acquisition in several cases less than 180 seconds could be obtained, so only 5 

complete 30 second epochs were available from each subject and included in the ICA to maintain 

balance. Based on visual inspection of the electrode fit of our EGI Geodesic 129 electrode EEG 

cap (Electrical Geodesics, Inc. USA) to the default MNI152 head model54, 21 non-cephalic 

electrodes (e.g. facial and electrodes proximal to the neck) were manually omitted, leaving data 

from 108 electrodes for our LORETA model.  

eLORETA-ICA Analysis 

After preprocessing, the cross-spectrum of each our 30s-epochs was calculated by 

applying a Fourier transform to the cross-covariance of the electrode level EEG signal. 

Significantly, it is in this step that each EEG epoch is transformed from the time domain to the 

frequency domain, becoming a measure of activity within each of 6 prespecified EEG frequency 

bands, which for this study were defined as: 1-3.5Hz delta; 4-7.5 Hz Theta; 8-13 Hz alpha; 14.5-

20 Hz beta 1; 21-30 Hz beta 2; 31-47 Hz gamma.  

The eLORETA algorithm was then run on the cross-spectra of each EEG epoch. The 

theory and derivation of the eLORETA algorithm used in this study have been described in great 

detail in prior publications.36,55 Briefly, it is a linear weighted minimum inverse norm solution 

that models the cortex with 6239 voxels with 5 mm spatial resolution, and has been shown to 

have zero localization error under ideal no-noise conditions.36,41,56  

Finally, we performed ICA on the cross-spectral images that were spatially localized 

using eLORETA, using voxel/frequency-wise scaling. We set the number of ICs to 12, based on 

the results of a sphericity test .57 We included all subjects and both baseline and TPM study visits 

in our ICA to identify independent RSNs that exist (1) across all subjects and (2) in both study 

visits, but which may be more active in one condition than the other. To measure whether the 

level of activity in any of our identified ICs was significantly different between the baseline and 

TPM sessions the primary outcome variables were the epoch specific loading values for each IC 

output by the ICA algorithm. These values describe the degree to which brain activity 
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representative of that IC is present in a given epoch for a given study session. Z-transformed 

component images were visualized in the LORETA-KEY software with a Z-score threshold of 

>3.42  

Statistics 

All statistical tests were performed in R (version 4.0.2; R Foundation, Vienna, Austria). 

Nonparametric tests were performed using the nptest package58, with additional custom coding 

implemented to perform block randomization as described by Winkler et al (2014, 2015).59–61 The 

permutation method for location tests were sign flips, and both sign-flips and permutations for 

regression tests. The number of randomizations for both the location and regression tests were 

estimated using Monte Carlo standard errors when exact tests were not possible.  

The group difference in IC activation between baseline and TPM sessions was tested 

using a nonparametric paired permutation test for the mean change in loading score (baseline 

loading – topiramate loading) from a null hypothesis of no change. A two-sided Johnson t-

statistic was used to protect against the possibility of asymmetric error distribution. ICs with 

significant differences in mean activity between conditions (i.e. ‘TPM sensitive’)  were carried 

forward in our analysis.   

We first tested the association between activity in ‘TPM-sensitive’ ICs and cognitive 

impairment using multivariate nonparametric regression between loading scores and 

neuropsychological test scores. Heteroscedastic errors were conservatively assumed for all 

regression tests, so regression coefficients were tested for significance with the Wald test statistic. 

To reduce the number of neuropsychological tests included in the multivariate model the change 

in test scores between the placebo (PBO) and TPM were first tested with their own univariate 

paired permutation tests with Bonferroni correction for multiple comparisons; tests on which 

performance was significantly worse after TPM administration were considered for inclusion in 

the multivariate regression model. Note that for regression analyses the difference between TPM 

and PBO was used instead of the difference between TPM and baseline to control for session 

order and behavioral practice effects. Where there were multiple tests of the same 

neuropsychological domain (e.g. forward or backward digit span) only the most difficult variant 

was included in the regression (backwards digit span, Trails B).  
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We also performed post-hoc subgroups analyses; subjects were divided into high and low 

subgroups based on their baseline performance on the semantic fluency task. Creating subgroups 

based on semantic fluency task performance was decided upon because TPM is well-known to 

impair performance on this task, and prior literature suggesting TPM alters activity in cognitive 

brain networks during verbal fluency tasks.25–27A high baseline semantic fluency subgroup was 

defined as those subjects with greater than median semantic fluency scores at the baseline visit. 

We performed Bonferroni correction for the number of subgroup comparisons. Differences in 

subject demographics, TPM exposure, and session order between subgroups were tested with chi-

square tests for categorical variables and one-factor ANOVAs for continuous variables. 

Results 

Identification of TPM-sensitive Independent Components 

Tests to identify TPM-sensitive independent components were performed with 150,000 

permutations, which corresponds to a Monte Carlo standard error 59 of .0001, with an accuracy of 

approximately 0.032 at a 95% confidence/.05 significance level. Paired tests of the difference of 

mean IC loading scores with the null hypothesis that µbas,k-tpm,k = 0 for each of the K = 12 ICs 

generated by our eLORETA-ICA analysis revealed no results that were significant at the α = 0.05 

level.  

Out of the 12 ICs generated by our eLORETA-ICA independent component #2 (IC2) and IC3 

showed the largest mean differences between conditions, but compared to their respective 

permutation distributions, IC4 -923.3 (t = -2.92, p = 0.0917) and IC7 1083.8 (t = 3.38, p = 

0.0977) were the only ICs found to be significant, albeit at the α = 0.1 level, while IC2 -1620.4 (t 

= -3.06, p = 0.1118) was noted and retained for future analysis for possible trend-wise 

significance.  

Determining the relationship between activity in TPM-sensitive IC(s) and TPM induced 

cognitive impairment 

In addition to identifying ICs that were sensitive to TPM administration, we wished to 

investigate the relationship between IC activity and behavioral performance, beginning in the full 

cohort. Out of a number of neuropsychological tests we identified as potential candidates a priori, 

five tests whose scores significantly changed between the PBO and TPM conditions were chosen 

for inclusion in the initial regression model: change in PBO-TPM in overall working memory 
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accuracy, SDMT, backward DS, COWA, and SF. In the full cohort, using the Wald test statistic 

for the global null hypothesis that the change in ICA loading predicts the PBO-TPM change in all 

NP test score across all tests was profoundly insignificant for IC2 (W = 0.21, p = 0.99), IC4 (W = 

2.2, p = 0.5), and IC7 (W = 1.18, p = 0.81). Based on prior literature25–27 we performed regression 

including only individual measures of verbal fluency, but again no significant associations were 

observed for IC2, IC4 or IC7: SF (IC2 - W = 0.21, p = 0.67; IC4 – W = 2.25, p = 0.136; IC7 – W 

= 0.04, p = 0.86) or COWA (IC2 - W = 0.04, p = 0.86; IC4 – W = 1.6, p = 0.22; IC7 – W = 0.24, 

p = 0.65).  

Identifying TPM-sensitive independent components in subjects with high baseline semantic 

fluency 

We further investigated whether there may be subgroups of subjects for whom there was 

a significant change in IC activity due to TPM administration, focusing on IC2, IC4, and IC7. The 

high baseline SF group consisted of 13 subjects. Demographic characteristics of high and low SF 

subgroups can be seen in table 3. There were no significant differences in subgroup composition 

based on baseline demographics, TPM exposure, or session order (table 3).  

The two subgroups showed markedly divergent effects across the retained ICs. In the 

high baseline SF subgroup the mean of the differences in loading scores between BAS and TPM 

sessions for IC2 was nearly 2x in magnitude (-3472.553, compared to -1620.352) than in the full 

cohort, corresponding to a p-value of 0.0095 in the same statistical test. Conversely, the high 

baseline SF subgrouping had the opposite effect for IC4 and IC7, for which the mean difference 

in loading scores between conditions was far less than the group as a whole. As expected, given 

the stark pattern displayed in the high baseline SF subgroup, the results in the low baseline SF 

subgroup were the opposite. IC2 had a much smaller mean difference of 99.55 (p = 0.95), while 

IC4 – -1575.08 (p = 0.092) and IC7 – 1734.35 (p = 0.12) showed larger differences.  

To verify that this pattern in the SF subgroup was not a statistical anomaly, we attempted 

to demonstrate the specificity of IC2 to verbal fluency measures with two final tests in subgroups 

defined by high baseline values in a another verbal fluency measure, the COWA, as well as a 

neuropsychological test that is not considered related to fluency at all, the backwards DS. In the 

13 subjects that made up the high baseline COWA subset the mean of the differences in loading 

was found to be -1798.17 (p = 0.078), which was not significant after correction for multiple 

comparisons (0.05 / 3 subgroups [SF, COWA, and backwards DS] = 0.01667). Finally, for 
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backwards DS, there were 15 subjects in the high baseline group (4 subjects shared the median 

score, so it was chosen to include them) and as expected the mean of the differences in loading 

for IC2 was not found to be significant: -634.72 (p = 0.55).  

Determining the relationship between activity in TPM-sensitive IC(s) and TPM induced 

cognitive impairment in subjects with high baseline semantic fluency 

We then performed our regression analysis again in the high baseline SF group. This 

regression model consisted of the baseline IC loading for IC2 as the predictor variable, and the 

PBO-TPM change in SF score as the response. Though the regression coefficient was small (β = 

3.299517e-05) due to the difference of scale between IC loading and neuropsychological test 

score values, the association was found to be significant (W = 5.7095,  p = 0.0051). When we 

attempted to add additional covariates to the model, starting with COWA scores (based on the 

expectation that COWA would be the neuropsychological measure most similar to SF), we found 

that while the overall p-value remained significant (W = 5.71, p = 0.009), the adjusted p-values 

for the individual regression coefficients showed that the addition of COWA to the model did not 

explain any additional variation (βCOWA = 4.424311e-06, p=0.97).  

Discussion 

In this double-blind cross-over study, we applied a combination eLORETA-ICA 

approach to resting state EEG data collected from subjects during both a no-drug baseline session 

and after administration of the ASD topiramate (TPM). Our research aimed to determine whether 

TPM significantly altered resting state network (RSN) activity in our cohort, and whether any 

observed changes were associated with impaired performance on any of our neuropsychological 

outcome measures. Our analysis showed that individuals with high semantic fluency (SF) at 

baseline experience a more dramatic change in the activity of the RSN(s) represented by our 

second independent component IC2, and that this change appears to be associated with how much 

their SF performance worsened when on TPM.  

We identified 12 independent components (ICs) representing patterns of spectral-spatial 

activity that were consistent across both study visits for all subjects, theoretically constituting 

electrophysiological cross-frequency versions of the classical hemodynamic RSNs described in 

fMRI/PET literature.15,16,41 Though these ICs represent activity from both no-drug baseline and 

TPM resting states, all ICs were not equally active in all subjects or study visits, and we were able 

to assess which networks displayed significant changes in activity in response to TPM 
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administration by contrasting group mean loading values between the no-drug baseline session 

and the TPM session.  

In our primary analysis we identified three ICs with trendwise (p=0.1) or borderline 

trendwise significant change in loading values between study visits as being the most TPM-

sensitive in our ICA: IC2, IC4, and IC7. It was when we tested the change in activity of our TPM-

sensitive ICs again in in the high baseline SF subgroup that we observed a significant change in 

activity in IC2 between baseline and TPM sessions that was clearly absent in the corresponding 

low baseline SF subgroup. We further confirmed that in the high baseline SF subgroup there is a 

significant linear relationship between the TPM-related decrease in SF performance (the 

difference in SF score between PBO & TPM sessions) and baseline IC2 activity, whereas the low 

baseline SF subgroup shows no such relationship. We found no significant differences between 

the high and low baseline SF subgroups on any demographic or experimental factors we tested, 

supporting the generalizability of our findings and suggesting that TPM may have a differential 

effect on frontal brain networks (see figure 1) in individuals with a high level of SF than in those 

that perform lower on this measure.  

Qualitative observations 

Comparison to eLORETA-ICA literature 

The eLORETA-ICA approach adopted here has recently been used to visualize and 

investigate the spatial and frequency distributions of brain activity in healthy subjects and ADHD 

patients,42,43,62 and in our study it allowed us to visualize the effect of TPM administration on 

spatial-spectral RSNs in a manner previously only possible with fMRI.37,39,63 However, the study 

of resting state networks across frequency bands with eLORETA-ICA is a relatively novel 

method, so there are few direct points of comparison for our results at the time of writing. 

Moreover, there are several potentially important differences in experimental design to take note 

of when comparing our work to the existing literature. Our study has been the first to attempt an 

eLORETA-ICA across no-drug baseline and drug conditions, and the impact of TPM on our 

ability to identify classical RSNs using eLORETA-ICA has not been established. Secondly, 

unlike our ICA, most other studies included active task conditions, such as the object-spatial-

verbal cognitive style assessment in Milz et al62, or the continuous performance attention task by 

Gerrits.43 
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Independent component 2 

Among the ICs that showed trendwise significance in the full cohort (IC2, IC4, and IC7), 

IC2 (figure 1) is the only one in which we found a significant change in activity related to TPM in 

our high SF subset, but it also bears the least direct anatomical resemblance to any single RSN 

identified in the eLORETA-ICA literature.42 Peak activity in IC2 in the middle frontal gyrus did 

not overlap with the frontal mPFC activation in the IC Aoki and colleagues attributed to the DMN 

in the same beta frequency band. Our IC2 extends much further across the superior frontal gyrus 

and is anticorrelated with a region centered on a portion of the medial frontal gyrus and extending 

across the ventromedial prefrontal cortex (vmPFC) and parts of the orbital gyrus and ventral 

ACC, which are also adjacent or overlapping with but do not appear to represent DMN nodes. 

The area of deactivation in the gamma frequency band of the IC Gerrits and colleagues found to 

be associated with attention task performance does show considerable overlap with the superior 

portion of IC2 in our data, but they also reported significant activation/deactivations in the delta, 

theta, and alpha bands.43 Thus, there does not seem to be any direct analogue in the eLORETA-

ICA literature to IC2, suggesting it may represent a combination of multiple networks or a novel 

eLORETA-ICA network not previously described in the literature.  

Independent Component 4 

Interpretation of IC4 (figure 2) also remains somewhat unclear, but this IC may 

correspond to a portion of the dorsal visual pathway (DVP), given the general pattern of occipital 

activity. The foci of deactivation however is centered around the postcentral gyrus, an area 

associated with auditory sensation/processing, as well as the primary motor cortex and the insula, 

and overlaps the lateral sulcus into transverse temporal areas that are part of the primary auditory 

cortex as well, making it unclear where this IC should be localized.64 Based on this we can 

generally conclude that IC4 represents visual/auditory processing pathways that are either 

active/or suppressed in the resting state recording.  

Independent Component 7 

Meanwhile, our IC7 (figure 3) was composed of commonly seen occipitoparietal alpha 

frequencies47 and almost directly aligns both in frequency and in spatial distribution to ICs 

described by Aoki42 and Milz62, and appears to be reflect activity in components of the ventral 

visual pathway (VVP) and/or the dorsal stream of language processing65 with additional areas of 
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deactivation in the precuneus and spreading into somatosensory/motor and premotor areas at the 

top of the cortex. Interestingly, Milz and colleagues’ analogue was similar but with a reversed 

pattern of activation/deactivation. This may be explained by the task-condition in their study, 

which they used to demonstrate that IC loadings in their analogue to IC7 were higher during 

object-visualization and verbalization compared to spatial visualization or resting.62  

Spectral distribution of IC2 & IC4 

IC2 and IC4 were composed predominantly of high frequency EEG oscillations in the 

high beta (21-30 Hz) and gamma (31-47 Hz) bands, which is consistent with observations of prior 

analyses of this cohort13, and with previous work that attempted to identify a dominant EEG 

frequency band in different cortical areas during the resting state that reported beta in the middle 

frontal and inferior frontal gyri (IFG) (IC2), and the pericentral region (IC4).47 However, in both 

IC2 and IC4 peak activity was actually found in the gamma frequency band, and we found no 

precedent in the eLORETA-ICA literature that adequately explains the prevalence of gamma in 

our ICs. However, gamma spiking has previously been observed in the primary visual cortex, and 

more generally transient oscillatory synchronization between gamma and other frequency bands 

is often thought of as playing a pivotal role in integration of sensory information, attention, and 

communication across brain networks.33,45,46 Therefore, the high beta and gamma frequencies in 

IC2 and IC4 are not unexpected, and could indicate a role in cross-network  

synchronization/communication, but additional research into the cross-frequency coupling of 

RSNs is required to make any firm conclusions.  

Comparison to fMRI resting state networks 

  In the larger body of fMRI RSN literature we find some precedent for the network we 

observed in IC2 in work by Smith and colleagues, who used an ICA model on a large database of 

resting fMRI data to generate resting state networks that they then compared to various associated 

cognitive domains identified in the source database.63 Component (#8/20), which they described 

as an “executive control” network, includes both the superior and ventral components of our IC2, 

including the ACC, and was distinct from another IC they identified as the DMN.63 In their 

analysis component #8 was associated with action inhibition, cognition/working memory, and 

emotion paradigms, as well as the perception of pain. Previous work in mice has also shown the 

dmPFC region to be involved in top-down inhibition of motor cortex during the delay period, but 

not the motor response, which aligns with the goals of our subjects in our resting state 
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recording.66 Others have reported functional connectivity between the orbital gyrus and vmPFC 

and posterior brain regions involved in language, including the angular gyrus, parahippocampal 

gyrus and hippocampus proper, or the precuneus and posterior cingulate cortex (PCC), which 

form the central posterior hub of the DMN, offering a potential indirect route through which 

activity in IC2 could be associated with language performance downstream.67,68  

Interpretation 

We can conclude that the spectral distributions of IC2 and IC4 are broadly consistent 

with commonly observed frequency distributions or at least not without precedent in the 

literature, and that additional research to establish a base of knowledge regarding the spectral-

spatial characteristics of RSNs is required. We hypothesize that IC4 and IC7 represent 

components of the occipitoparietal DVP and VVP/dorsal stream of language processing 

respectively, however localization of the anterior portion of IC4 remains unclear. Furthermore, 

we have no explanation as to why IC7 was not found to have a significant association to TPM in 

the high baseline SF subset over IC2 given the apparent association to brain areas known to be 

involved in language processing. While we observed no significant effects of TPM on activity in 

IC7 in the whole group or in subgroup analyses, the observation of corresponding networks in 

both Aoki and Milz does imbue confidence in the validity of our eLORETA-ICA approach 

overall. Based on the sum of outside literature, particularly fMRI classification of an executive 

control network that closely aligns with our IC2 we speculate that the effect we observed is 

associated with an alteration in networks involved in top-down executive control and response 

inhibition, that persisted outside of the resting period and negatively impacted subject’s task 

performance.   

Limitations 

One of the primary limitations in our study was the sample size, which was at least 3x 

smaller than in the preceding eLORETA-ICA studies that our analysis was based on.42–44,62 Our 

study suggests that it is possible to obtain valid and informative results with a much smaller 

sample size, but ultimately the ability of ICA to identify consistent patterns of activity across a 

group is proportional to the amount of data available to the algorithm. In addition, recording EEG 

in participants that were heavily sedated by the drug led to an increased number of artifacts in our 

data, necessitating rigorous cleaning during preprocessing. Both of these factors reduced the 

likelihood of the ICA identifying consistent RSNs across subjects and conditions.  
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In addition, EEG was only captured before the Sternberg working memory task, which 

occurred ~1.5 hours subsequent to the start of the neuropsychological test battery. We expect our 

group level analysis should have compensated for intraindividual variability (e.g. in difference in 

TPM levels, random variation in RSN activity in the interim)to some degree, however ideally the 

resting state recordings should have been more proximal to the neuropsychological tests that we 

used in this study. 

 Another limitation of our study design was our lack of MRI or other imaging of subjects’ 

actual cranial anatomy. We relied upon the default MNI152 head model, which is a template and 

not representative of the individual subjects in our study. Ideally, individual patient anatomy 

would be taken into account to allow more precise estimation of current flow and localization of 

activity to the correct brain structures. Given natural interindividual neuroanatomical variability, 

the precise locations of our generated ICs must be interpreted with some caution.  

We must also acknowledge the potential selection/retention bias present in our sample; 

we retained only those subjects with resting EEG available from both sessions, and noisy or 

messy data in subjects who experienced the most severe impairment during the TPM session in 

particular led to missing data in some subjects.  

Future Directions 

Additional studies that are prospectively designed to measure the effect of TPM on 

RSN’s in a larger cohort must be performed to validate the significant subgroup effects we 

observed in this study, and to reexamine the borderline significant effects we observed on 

occipitoparietal networks represented in IC4 and IC7.  Particularly, it will be important to confirm 

whether baseline SF performance is a reliable identifier of subjects in whom TPM will 

significantly alter  activity in what we hypothesized was a frontal executive network (IC2). Future 

work should also aim to validate whether baseline activity in this network are consistently 

predictive of subsequent worsening in SF performance while on TPM.  

 One of the primary long-term goals of work such as ours is determining the potential 

utility of EEG based biomarkers for predicting drug efficacy and adverse response.69,70 In clinical 

practice it remains challenging to predict which individuals are more likely to experience 

cognitive side effects after TPM administration, and in general there is a shortage of guidance on 

the matter for clinicians to make this decision. As a diagnostic method resting state EEG has 
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qualities of an ideal clinical biomarker, including being non-invasive, relatively cheap, and easy 

to perform in comparison to fMRI or PET, and resting EEG has been a well-established 

diagnostic tool used in epileptology for nearly a century.71 The type of resting state EEG analyses 

we performed in this study are the first step towards establishing EEG-behavior relationships that 

could be translated into clinical decision making in the future. 

Conclusion 

After an initial failure to identify significant drug effects, our first post-hoc subgroup 

analysis identified a subgroup of subjects defined by high baseline SF in whom TPM induced 

significant changes in PFC activity in the high beta and gamma frequency ranges. We further 

found preliminary evidence suggesting baseline activity in these regions of the PFC may be 

associated with subsequent worsening of SF while on TPM. Based on our review of the literature 

the IC capturing this PFC activity may represent an “executive control” network involved in 

response inhibition as well as working memory; our results provide a convincing rationale for 

future studies into this RSN and its ability to identify individuals who are at risk of experiencing 

TPM induced cognitive impairment. From a methodological standpoint, our study provides a 

proof of concept, demonstrating that even in our relatively small sample size with severely noisy 

data the eLORETA-ICA approach produced ICs that were broadly in line with known patterns of 

brain activity/RSNs and allowed us to successfully identify drug-related changes in RSN activity.  
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Table1: Results from the nonparametric paired  
tests of the difference of mean IC loading scores 

IC # 
Mean of the Differences in IC 

loading 
P-value (t-statistic) 

4 -923.3185 0.0917 (-2.9186) 

7 1083.789 0.0977 (3.3814) 

2 -1620.352 0.1118 (-3.0603) 

3 1531.133 0.1789 (2.8375) 

8 996.3036 0.2499 (2.4061) 

6 570.4837 0.278 (1.8329) 

1 -583.2511 0.5173 (-1.8498) 

9 453.3333 0.5527 (1.2487) 

10 -452.1615 0.6358 (-0.8649) 

5 -416.7929 0.6876 (-0.8116) 

11 -115.0563 0.8362 (-0.3707) 

12 -142.2519 0.8869 (-0.2441) 
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Table 2: Difference of Mean IC 2 Loading Scores in SF Subgroups 

Full cohort (n=27) 

IC mean of the differences p-value t-stat 

2 -1620.352 0.1118 -3.06 

4 -923.3185 0.0917 -2.9186 

7 1083.789 0.0977 -3.3814 

High Baseline SF subgroup (n=13) 

IC mean of the differences p-value t-stat 

2 -3472.553 0.0095  -5.9237 

4 -221.4252 0.7512 -0.5186 

7 383.187 0.6113 0.9926 

Low Baseline SF subgroup (n=14) 

IC mean of the differences p-value t-stat 

2 99.55 0.95 0.1199 

4 -1575.077 0.0921 -3.5114 

7 1734.349 0.1148 3.4494 

 

Table 2: Comparison of full cohort versus high and low baseline SF score subgroups in 

nonparametric paired tests of the difference of mean IC 2 loading score. 
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Table 3: Baseline Characteristics of High and Low SF Subgroups 

Baseline SF subgroup low subgroup high subgroup p-value 

Gender    1 

 Male 7 7  

 Female 7 6  

Dose    0.354 

 100mg 3 6  

 150mg 5 4  

 200mg 6 3  

Race    0.4753 

 Asian 1 1  

 Black 2 1  

 Multiracial 2 0  

 White 9 11  

Education    0.2101 

 

High school 
graduate 1 0  

 

Completed 
vocational training 11 7  

 Some college 2 4  

 

Any post-graduate 
education 0 2  

treatment order    0.1469 

 1 2 3  

 2 3 1  

 3 0 4  

 4 4 1  

 5 2 3  

 6 3 1  
TPM Plasma 
concentration @ the 
2.5-hour draw, Mean 
(SD)  2.89 (0.91) 2.15 (1.08) 0.0645 

Weight, Mean (SD)  78.29 (14.70) 79.95 (14.38) 0.77 

Age, Mean (SD)  25.98 (9.75) 25.63 (7.09) 0.915 

 

Table 3: Baseline subgroup comparison of demographic and experimental factors – categorical 

variables are tested via Pearson Chi-Square test, continuous variables were tested via univariate 

ANOVA. 
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Figure 1: Independent Component #2 

 

Figure 1: Z-transformed image of IC2 in the gamma frequency band with Z-score threshold of 

>3. White corresponds to positive current density vector field power and black corresponds to 

negative current density vector field power. IC2 consists of activity in bilateral and dorsolateral 

and dorsomedial prefrontal cortices (Brodmann areas 8-10) in beta2 and gamma frequency bands, 

which was anticorrelated with activity that peaked in the ventral medial prefrontal (vmPFC) 

(Brodmann 11, 25) and spanned the orbital gyrus, the medial frontal gyrus and anterior cingulate 

cortex. 
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Figure 2: Independent Component #4 

 

Figure 2: Z-transformed image of IC4 in the gamma frequency band with Z-score threshold of 

>3. White corresponds to positive current density vector field power and black corresponds to 

negative current density vector field power. IC4 appears as activity in primary visual and visual 

association areas of the occipital cortex (Brodmann areas 17 & 18) in beta2 and gamma which is 

anticorrelated with activity in the right precentral gyrus, superior/transverse temporal gyrus, and 

insula (Brodmann areas 4, 6, 13, 22, 41-44). 
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Figure 3: Independent Component #7 

 

 

Figure 3: Z-transformed images of IC7 in the alpha frequency band with Z-score threshold of >3 

at the maximum (A) and minimum (B) points. White corresponds to positive current density 

vector field power and black corresponds to negative current density vector field power. 

Significant activity in IC7 is found exclusively in the alpha frequency band, with the absolute 

extreme in the precuneus (Brodmann area 7), but this deactivation extends into the precentral 

(Brodmann area 4) paracentral (Brodmann areas 6, 31) and postcentral gyri (Brodmann area 3). 

This is anticorrelated with activations in the left inferior temporal/fusiform gyrus region 

(Brodmann area 20, 36, 37), the left parahippocampal gyrus (Brodmann area 19), and superior 

temporal gyrus (Brodmann area 22).  

  

A 
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