

DATA-DRIVEN FRAMEWORK FOR ENERGY
MANAGEMENT IN EXTENDED RANGE ELECTRIC

VEHICLES USED IN PACKAGE DELIVERY APPLICATIONS

A DISSERTATION
SUBMITTED TO THE FACULTY OF THE

UNIVERSITY OF MINNESOTA
BY

Pengyue Wang

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

ADVISOR: WILLIAM NORTHROP

AUGUST 2020

 © Pengyue Wang 2020

 i

Acknowledgement

I would like to thank my advisor Dr. William Northrop for his support during my

graduate study. I am sincerely grateful to have such an intelligent and caring advisor for

my Ph. D. study. Without his guidance, it would be impossible for me to finish all the

research work, and this thesis would not be possible. I am especially grateful to him for

encouraging me to learn new things and come up with new ideas for our research projects.

His feedback was the most essential part of all the work presented in this thesis. I also

appreciate the research assistant positions he provided in the last four years and his

generous sponsorship of the international conferences I attended.

For my research project, I am thankful to Dr. Shashi Shekhar for his advising

throughout my graduate study and Yan Li for his partnership. I would like to acknowledge

Shawn Haag for his help in the research project. I would also like to thank Dr. Zongxuan

Sun and Dr. Rajesh Rajamani for their support on my doctoral committee.

I would like to thank Zonghu Han, Rui Luo and Heng Wang for being great roommates

as well as great friends in the last four years. I enjoy the time spending with them together

and I appreciate the help they provide to help me go through some difficult times. I would

also like to thank Ying Lin for his help for many things. Although I cannot list all my

friends in the University of Minnesota, I am deeply grateful to all of you.

Finally, I would like to thank my parents Tianju Chen and Yanjun Wang, and my

girlfriend Ran Li. My parent’s support is the foundation of my graduate study and I am

grateful to them for always trusting me. Ran is always supportive of my study and her

encouragement is invaluable to me. I cannot imagine my life without her.

 ii

Abstract

Plug-in Hybrid Electric Vehicles (PHEVs) have potential to achieve high fuel

efficiency and reduce on-road emissions compared to engine-powered vehicles when

using well-designed Energy Management Strategies (EMSs). The EMS of PHEVs has

been a research focus for many years and optimal or near optimal performance has been

achieved using control-oriented approaches like Dynamic Programming (DP) and Model

Predictive Control (MPC). These approaches either require accurate predictive models for

the trip information during driving cycles or detailed velocity profiles in advance.

However, such detailed information is not feasible to obtain in some real-world

applications like the delivery vehicle application studied in this work. Here, data-driven

approaches were developed and tested over real-world trips with the help of two-way

Vehicle-to-Cloud (V2C) connectivity.

 First, the EMS problem was formulated as a probability density estimation problem

and solved by Bayesian inference. The Bayesian algorithm deals with the condition where

only small amounts of data are available and sequential parameter estimation problem

elegantly, which matches the characteristics of the data generated by delivery vehicles.

The predicted value of the parameter for the next trip is determined by the carefully

designed prior information and all the available data of the vehicle so far. The parameter

is updated before the delivery tasks using the latest trip information and stays static during

the trip. This method was demonstrated on 13 vehicles with 155 real-world delivery trips

in total and achieved an average of 8.9% energy efficiency improvement with respect to

MPGe (miles per gallon equivalent).

 iii

For vehicles with sufficient data that can represent the characteristics of future delivery

trips, the EMS problem was formulated as a sequential decision-making problem under

uncertainty and solved by deep reinforcement learning (DRL) algorithms. An intelligent

agent was trained by interacting with the simulated environment built based on the vehicle

model and historical trips. After training and validation, optimized parameter in the EMS

was updated by the trained intelligent agent during the trip. This method was demonstrated

on 3 vehicles with 36 real-world delivery trips in total and achieved an average of 20.8%

energy efficiency improvement in MPGe.

Finally, I investigated three problems that could be encountered when the developed

DRL algorithms are deployed in real-world applications: model uncertainty, environment

uncertainty and adversarial attacks. For model uncertainty, an uncertainty-aware DRL

agent was developed, enabled by the technique of Bayesian ensemble. Given a state, the

agent quantifies the uncertainty about the output action, which means although actions

will be calculated for all input states, the high uncertainty associated with unfamiliar or

novel states is captured. For environment uncertainty, a risk-aware DRL agent was built

based on distributional RL algorithms. Instead of making decisions based on expected

returns as standard RL algorithms, actions were chosen with respect to conditional value

at risk, which gives more flexibility to the user and can be adapted according to different

application scenarios. Lastly, the influence of adversarial attacks on the developed neural

network based DRL agents was quantified. My work shows that to apply DRL agents on

real-world transportation systems, adversarial examples in the form of cyber-attack should

be considered carefully.

 iv

TABLE OF CONTENTS

List of Tables ... v
List of Figures .. vi
1. Introduction ... 1

 Background and Motivation ... 1
 Literature Review .. 4
 Outline and Contribution ... 14

2. Problem Statement For Extended Range Electric Vehicle Energy Management
Strategy .. 16

 Vehicle Configuration ... 16
 Data Description and Preprocessing .. 17
 Energy Management Strategy Introduction ... 21
 Problem to Solve .. 25

3. Bayesian Inference Based Energy Management ... 29
 Probability Density Estimation Problem Formulation .. 29
 Maximum Likelihood and Bayesian Inference ... 30
 Vehicle Model ... 37
 Designing of the prior .. 41
 Results and Discussion .. 46

4. Deep Reinforcement Learning Based Energy Management 52
 Reinforcement Learning ... 52
 Feedforward Neural Networks ... 55
 Reinforcement Learning Problem Formulation ... 59
 Value-based Method .. 61
 Actor-Critic-based Method ... 67
 Results and Discussion .. 70

5. Safe and Robust Algorithms ... 87
 Uncertainties in Reinforcement Learning ... 89
 Risk-aware Energy Management ... 93
 Uncertainty-aware Energy Management .. 115
 Adversarial Attacks on Deep RL-based Energy Management 128

6. Conclusion ... 141
Bibliography .. 146

 v

LIST OF TABLES

Table 2.1: Vehicle Specifications .. 17

Table 3.1: Vehicle model parameters .. 37

Table 3.2: Bayesian model parameters .. 43

Table 3.3: Fuel efficiency improvement .. 51

Table 4.1: Neural network structures and hyperparameters for DQN 71

Table 4.2: Neural network structures and hyperparameters for DDPG 74

Table 4.3: Statistics of the three selected routes .. 80

Table 4.4: Summary of testing results ... 86

Table 5.1: Neural network structures and hyperparameters for D3PG 97

Table 5.2: Comparison of QR loss and MSE under two problem settings 106

Table 5.3: Tradeoff between fuel use and risk of running out of battery 114

 vi

LIST OF FIGURES

Figure 1.1: Energy flow in the U.S., 2018 (Quadrillion Btu) [1]. 2

Figure 1.2: Illustration of how real-world velocity profiles are generated. 8

Figure 1.3: Illustration comparing rule-based (RB) EMS strategies to optimization-based

(OB) strategies for human driven vehicle systems. ... 13

Figure 2.1: Powertrain configuration of the studied EREV. .. 16

Figure 2.2: Comparison of raw data and preprocessed vehicle speed and distance data. 21

Figure 2.3: Comparison of 𝑆𝑂𝐶𝑟𝑒𝑓 and real-time SOC (upper) and fuel use (lower) with

different 𝐿𝑠𝑒𝑡 settings for one measured delivery trip. .. 24

Figure 2.4 Distribution of distance and energy intensity for an example EREV. 26

Figure 2.5: Four historical GPS trajectories of an example delivery vehicle. 27

Figure 2.6: A typical delivery trip data with high 𝐿𝑠𝑒𝑡 setting. 28

Figure 3.1: Illustration of how to determine the 𝐿𝑠𝑒𝑡 from a known Gaussian distribution

of one vehicle. .. 30

Figure 3.2: Validation of the vehicle model by comparing the raw SOC data and

simulated SOC data. ... 41

Figure 3.3: Distribution of the mean (left) and standard deviation (right) of trip distance

for all delivery vehicles used to design the prior from the collected dataset. 42

Figure 3.4: Bayesian 𝐿𝑠𝑒𝑡 and the best 𝐿𝑠𝑒𝑡 curves for four vehicles. 44

Figure 3.5: Initial and final t-distribution and the normalized actual data. 45

Figure 3.6: T-distributions with different number of data. .. 45

Figure 3.7: Components of the developed Bayesian inference framework. 46

Figure 3.8: Bayesian 𝐿𝑠𝑒𝑡, best 𝐿𝑠𝑒𝑡 and baseline 𝐿𝑠𝑒𝑡 curves for vehicle T11 (upper)

and T12 (lower). ... 47

Figure 3.9: Illustration of how fuel is saved in a real delivery trip. 48

Figure 3.10: Engine operation frequency for Bayesian EMS and baseline case. 48

Figure 3.11: Fuel use and minimal SOC under different 𝐿𝑠𝑒𝑡 for a trip of vehicle D. ... 49

 vii

Figure 3.12: Fuel use and MPGe comparison for test trips of vehicle T11. 50

Figure 3.13: Fuel use and MPGe comparison for test trips of vehicle T12. 50

Figure 4.1: An example of a feedforward neural network with one hidden layer. The bias

parameters have a fixed value of 1. .. 56

Figure 4.2: Illustration of one update step in Algorithm 1. .. 66

Figure 4.3: Illustration of one update step in Algorithm 2. .. 69

Figure 4.4: Learning curves of 3 learning rates (upper) and batch sizes (lower). 70

Figure 4.5: Performance of DQN on a test trip with 40 miles. .. 71

Figure 4.6: Performance of DQN on a test trip with 50 miles. .. 72

Figure 4.7: Action-values for state 𝐴 (left) and state 𝐵 (right). 72

Figure 4.8: Performance of DQN on low initial 𝐿𝑠𝑒𝑡 values. ... 73

Figure 4.9: Comparison of MPGe by using DQN and baseline settings on test trips. 74

Figure 4.10: Velocity profiles of two example test trips with a distance of 35 miles

(upper) and 50 miles (lower). ... 75

Figure 4.11: Performance of DDPG on a test trip with 50 miles. 75

Figure 4.12: Performance of DDPG on a test trip with 35 miles. 75

Figure 4.13: Action-values of state 𝐴 (left) and state 𝐵 (right) calculated by the critic for

13 example actions in the predefined range of [-20, +20]. The red bar indicates the

action that is calculated by the actor. ... 76

Figure 4.14: Performance of DDPG on low initial 𝐿𝑠𝑒𝑡 values. 77

Figure 4.15: Performance of DDPG on low initial SOC values. 77

Figure 4.16: Comparison of MPGe by using DDPG and baseline settings on test trips. 78

Figure 4.17: Characteristics of the delivery trips of three testing vehicles. 79

Figure 4.18: Example GPS trajectories of testing vehicle R1, R2 and R3. 82

Figure 4.19: Diagram illustrating the testing framework of DDPG. 82

Figure 4.20: Velocity profile of the example test trip. ... 83

Figure 4.21: SOC, 𝑆𝑂𝐶𝑟𝑒𝑓 and 𝐿𝑠𝑒𝑡 profile for the example test trip. 83

 viii

Figure 4.22: SOC, fuel use and engine state comparison between RL method and

baseline method. In the last figure, two “on” positions are labeled on the y-axis to

differentiate the two conditions. ... 84

Figure 4.23: MPGe and fuel use comparison of all test trips of R1, R2 and R3. 85

Figure 4.24: Mean and one standard deviation of MPGe improvement of R1, R2 and R3.

 .. 86

Figure 5.1: Ten NNs are trained. The prediction of each individual NN is shown on the

left figure. The mean prediction is shown on the right figure with one and two standard

deviation represented by the shaded region. .. 90

Figure 5.2: A one-step decision-making problem showing the importance of estimating

the uncertainty associated with different actions. The 𝑇 represents terminal states. 92

Figure 5.3: Multi-modality (left) and high variance (right) return distributions. 92

Figure 5.4: An example return distribution for a state-action pair with 𝑁 = 8. 94

Figure 5.5: One step in the for loop in Algorithm 3. The blue arrow and red arrow

indicate the distribution of the probability is according to its distances with the nearest

two atoms. .. 95

Figure 5.6: Performance of the D3PG on three test trips with distances of 35

miles(upper), 51 miles (middle) and 50 miles (lower). The states associated with 𝐴, 𝐵

and 𝐶 are all at time step 26000s. The dashed lines help to see how close is the real-time

SOC with the value of 10%. ... 98

Figure 5.7: The Q-values of three actions under states 𝐴 (left), 𝐵 (middle) and 𝐶 (right).

The actor action is 0 for states 𝐴 and 𝐵 (do not change the 𝐿𝑠𝑒𝑡) and +6.5 for state 𝐶. . 99

Figure 5.8: Return distributions of an actor action and two example actions for state 𝐴

(left), state 𝐵 (middle) and state 𝐶 (right). ... 100

Figure 5.9: Return distribution of actor action (left), +15 (middle) and -15 (right) for

state 𝐶. .. 100

Figure 5.10: The variance of return distributions of three actions under state 𝐴(left), state

𝐵(middle) and state 𝐶(right). ... 102

 ix

Figure 5.11: Illustration of the differences between DQN and IQN. The DQN outputs the

expected value for a given state-action pair while IQN outputs samples from the

implicitly modeled return distribution whose mean is the output of DQN. 103

Figure 5.12: A simple example illustrating how to sample returns 𝑍𝜏(𝑠, 𝑎) from the

implicitly modeled return distribution. Assume five 𝜏 values: 0.1, 0.3…0.9 are sampled

from the uniform distribution 𝑈([0,1]), five values of 𝑍𝜏(𝑠, 𝑎) are calculated by feeding

the five 𝜏 values into the estimated 𝑄𝐹𝑍𝑠, 𝑎𝜏. With enough number of samples, the mean

and other statistics of the underlying return distribution can be estimated accurately. . 104

Figure 5.13: Comparison of fitting an artificial dataset with linear regression and

quantile regression with 0.9, 0.5 and 0.1 quantiles. For each 𝑥, twenty 𝑦 values are

sampled from a gamma distribution. For linear regression (LR), the MSE is minimized,

which tries to estimate the conditional mean of the underlying assumed Gaussian

distribution for each input 𝑥. For quantile regression, there is no assumption about the

underlying distribution and the conditional quantile values are estimated. 105

Figure 5.14: Illustration of CVaR with 𝜂 = 1.0 (left) and 𝜂 = 0.5 (right). It can be

observed that although the expected value of return distribution 𝑍(𝑠, 𝑎1) is higher than

that of 𝑍(𝑠, 𝑎2) (the position of the vertical dashed line), it does not hold true for 𝜂 =

0.5 due to its high variance (annotated by arrows). ... 107

Figure 5.15: Illustration of the proposed risk-aware framework. 108

Figure 5.16: Performance of the trained algorithm on a test trip with a distance of 35

miles with 𝜂 = 1.0, 𝜂 = 0.5 and 𝜂 = 0.1. To make the figure clear, the 𝐿𝑠𝑒𝑡

corresponding to 𝜂 = 0.1 is not shown. ... 109

Figure 5.17: Return distributions with mean and variance for all possible actions in state

𝐴. The smooth line is fitted with a kernel density estimator for better visualization, and

the mean and variance were still calculated with the original data. The y-axis represents

the probability density so that the value could be higher than 1. The red dot represents

the mean value of each distribution. .. 109

Figure 5.18: Performance of the trained algorithm on a test trip with a distance of 48

miles with 𝜂 = 1.0 (upper), 𝜂 = 0.5 (middle) and 𝜂 = 0.1 (lower). 111

 x

Figure 5.19: Return distributions with mean and variance for all possible actions in state

𝐵. The red dots indicate expected values of the estimated return distributions. 112

Figure 5.20: Highest CVaR among possible actions along the two test trips. 113

Figure 5.21: Distance and energy intensity distribution of training trips and training-

testing trips combined. ... 116

Figure 5.22: Comparison of two GPS trajectories with 43.1 and 44.3 miles. 116

Figure 5.23: Illustration of the concepts of frequently visited states, infrequently visited

states and unvisited states in a two-dimensional state space. .. 118

Figure 5.24: Performance of the trained algorithm on a training trip with a distance of

43.1 miles (upper) and the estimated uncertainties along the trip (lower). 124

Figure 5.25: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐴. ... 124

Figure 5.26: Performance of the trained algorithm on a training trip with a distance of

52.9 miles (upper) and the estimated uncertainties along the trip (lower). 125

Figure 5.27: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐵. .. 125

Figure 5.28: Performance of the trained algorithm on a test trip with a distance of 57.4

miles (upper) and the estimated uncertainties along the trip (lower). 126

Figure 5.29: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐶. ... 127

Figure 5.30: Illustration of the proposed uncertainty-aware framework. 128

Figure 5.31: Illustration of the adversarial attacks. The low-dimensional state

representation 𝑠𝑡 provided by the EREV is processed by the adversary before sending to

the DRL agent on the cloud. .. 130

Figure 5.32: Performance of the DQN under two kinds of random noise with different

values of 𝜀. The error bars indicate one standard deviation. .. 133

Figure 5.33: Performance of the DQN under FGSM and its two variations. 134

Figure 5.34: Performance of the DQN under the FGSM and FD methods. 135

Figure 5.35: Performance of the DQN under the strategy of transfer across policies. .. 136

 xi

Figure 5.36: Performance of the DQN under the strategy of transfer across algorithms.

 .. 136

Figure 5.37: Performance of DQN on the recorded trip shown in Figure 3.5 under

adversarial examples generated by 𝐿2 method with 𝜀 = 0.05. 137

Figure 5.38: Performance of DQN on the recorded trip shown in Figure 3.6 under

adversarial examples generated by FGSM method with 𝜀 = 0.02. 137

Figure 5.39: Action-values comparison for state 𝐴. The left is for the original state and

the right is for the perturbed state. ... 138

Figure 5.40: Action-values comparison for state 𝐵. The left is for the original state and

the right is for the perturbed state. ... 138

 1

1. INTRODUCTION

 Background and Motivation

Optimization of the global transportation system has been a popular research topic for

many years. The transportation sector consumes a significant amount of energy and is one

of the largest sources of pollution globally. For example, vehicles in the U.S. accounted

for about 28% of the total energy used in 2018 as shown in Figure 1.1 [1] and emitted a

similar portion of anthropogenic carbon dioxide into the environment. Further, air quality

is a significant concern for residents of cities all over the world. Emissions from

transportation sector is the biggest contributing factor to air pollution. Nearly 33% of

carbon dioxide emissions, 24% of methane emissions and 65% of nitrous oxide emissions

resulted from fossil fuel combustion for transportation activities [2]. Vehicles consume

about 83% of energy in the transportation sector in 2009 in the U.S. [3], motivating the

fact that reducing fuel use in on-road vehicles has become an important topic for study.

To alleviate inefficient energy use and emissions caused by combustion of fuels in

transportation, hybrid electric vehicles (HEVs) have been introduced and have become

more and more widely used. HEVs use regenerative braking, allow the engine to operate

within a more efficient range, and can use electrical energy from the grid to improve

vehicle emissions and reduce overall energy use. HEVs are powered by at least two energy

sources. For most HEVs, these consist of batteries and internal combustion engines (ICEs).

Plug-in HEVs (PHEVs) are equipped with powerful electric motors and high-capacity

 2

batteries which can be recharged directly from the grid which allows them to achieve

higher fuel efficiency on a gasoline equivalent basis [4]. However, although PHEVs have

the potential to achieve high fuel efficiencies and low on-road emissions, an effective

energy management strategy (EMS) is necessary to yield the highest improvement over

conventionally powered vehicles [5]. The EMS manages how to use the energy properly

from the two sources. Usually, the objective of an EMS is to minimize the fuel use [6].

Co-optimization of energy management with other metrics like emissions [7] and battery

life [8][9] is also a popular research topic published in current literature.

Figure 1.1: Energy flow in the U.S., 2018 (Quadrillion Btu) [1].

The central goal of this project is to improve the fuel efficiency of in-use extended

range electric vehicles (EREVs) used for package delivery through real-time EMS

optimization using two-way vehicle-to-cloud (V2C) connectivity. Such connectivity is a

key component of the field of Intelligent Transportation Systems (ITS). The big data

generated from V2C, Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure (V2I)

 3

connectivity have profound impacts on the design and application of ITS, which can make

it more efficient, safer and profitable [10]. Also, data-driven methods have been widely

used in various applications in the area of ITS with different degree of success [11].

The EREV is a sub-category of PHEV as it can be charged directly from the electrical

grid. It has a high capacity battery which serves as the main energy source. The small

range-extending (REx) ICE is not connected to the wheels but instead is used to charge

the battery when the EMS considers it is necessary. The addition of a small range extender

eliminates the “range anxiety” experienced by the vehicle owner [12] and the total energy

efficiency can be improved through judicious application of the REx [13][14].

Most large delivery fleets are equipped with telemetry systems and record trip data

like velocity, distance and GPS position. Most vehicle manufacturers also have the ability

to update vehicle software and change control parameters on the vehicle directly with their

telemetry system. The delivery EREV fleet used in this work records data every five

seconds for each vehicle, but higher time resolution is possible using with current

telemetry technology, but is limited by data transmission costs. Although comprehensive

data are generally collected by telemetry systems, this system is generally not connected

to the vehicle EMS to use historical data or real-time trip information to improve fuel

efficiency. The main goal of this body of work is to bridge this gap by developing a

predictive, intelligent EMS that combines data-driven approaches and physics-based drive

cycle simulations to significantly improve the fuel efficiency of EREV vehicles used in

delivery applications.

 4

 Literature Review

Energy management strategies can be mainly divided into rule-based (RB) methods

and optimization-based (OB) methods [5][18][19]. RB methods are widely used

industrially as they are robust, easy to implement, can use simple hardware, and have low

computational requirements compared with OB methods. OB methods are well-known for

the potential to achieve optimal or near optimal performances with respect to fuel

efficiencies or other predefined optimization targets. Therefore, a preponderance of

existing literature focuses on OB methods.

The feasibility of an EMS mainly dependents on two factors: the computational cost

and the assumptions and information needed for execution. The high fuel efficiency

achieved by OB methods depends heavily on these two factors. Firstly, OB methods

require considerable computational resources [5]. For example, in [20], X. Zeng et al.

developed a stochastic model predictive control-based EMS which achieved high fuel

efficiency. However, the computation time for each stochastic dynamic programming (DP)

execution ranged from 10 to 100 seconds, an unfeasible duration for real-world

applications during vehicle operation. Second, OB methods require either detailed trip

information or broad assumptions to predict future trip information like the vehicle’s

second-by-second velocity profile [5]. Accurate predictions about the future are very

difficult to make, especially if vehicles are controlled by human drivers in actual traffic

conditions. This difficulty has motivated considerable previous research regarding driving

style recognition as has been summarized in [21].

 5

Two approaches have been proposed to estimate future trip information for OB

methods. The first is to make assumptions about the future trip and build predictive models

based on those assumptions. The second is to use information from advanced

transportation infrastructure like Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure

(V2I) and Vehicle-to-Cloud (V2C) connectivity to provide short-term “look-ahead” data.

A wide variety of assumptions have been applied to incorporate predictive models for

enabling OB EMS methods in real-time with varying degrees of success. In [22], future

driver power demands were modeled as Markov Chains which made the real-time

optimization of stochastic model predictive control (SMPC) feasible. In [23], results from

DP served as training data for neural networks (NNs) which were used as online

controllers. First, DP was used to get the optimal control strategy on six standard driving

cycles. Then, two neural networks were used to imitate the optimal behavior, given some

designed inputs under two conditions of the known and unknown remaining distance.

After training, the performance of the trained NN controllers was shown on six driving

cycles which represented different driving conditions. In [24], a real-time EMS based on

Pontryagin’s minimum principle (PMP) was developed and tested on three standard

driving cycles and one real driving cycle. X. Zeng et al. [20] modeled road grade, speed

limit and stops using three transition matrices. The computational complexity of the

proposed stochastic DP (SDP) algorithm was highly dependent on the sizes of the

transition matrices. In [25], the real-time operation of equivalent consumption

minimization strategy (ECMS) was realized through the radial basis function NN used to

predict energy demand in trip segments. Driving conditions and styles were assumed to

 6

be the same in this work. In [26], an adaptive ECMS for real-time use was developed on

standard driving cycles. X. Zeng et al. [27] derived a lookup table for online using by

analyzing the results from offline SDP algorithm which benefited from recognizing

existing frequent routes. S. Zhang et al. [28] used a Bayes NN to predict the movement of

preceding vehicles with the help of information from vehicle-to-vehicle (V2V)

communication. S. Xie et al. [29] placed attention on algorithmic time efficiency in an

effort to develop a low-cost controller. They compared NN and Markov chain to predict

velocity and chose the latter to predict future bus trajectories which facilitated the real-

time application of SMPC. In [30], a NN was trained to learn from a near-optimal control

strategy on seven standard driving cycles calculated from an OB method and tested on an

unseen standard driving cycle. Trip preview data with different horizons were assumed to

be available for the application of model predictive control (MPC) on several standard

driving cycles in [31].

Incorporating more real-time traffic information from external sources has also been

investigated by a number of researchers, an example of the second kind of method to

estimate future trip information mentioned previously. The benefits of including road

grade information for ECMS and DP were shown in [32] assuming vehicle velocity was

constant. S. Kermani et al. [33] assumed the route information was available in advance

and showed global optimization methods can be used in real-time for a given bus route.

The benefits of information provided by intelligent transportation system (ITS) were

investigated in [34]. C. Sun et al. [35] used dynamic traffic feedback data and assumed

that all vehicles can provide the required information. The velocity profile of the vehicle

 7

was assumed to be the same as the traffic flow, which was calculated by the average of all

vehicles that on that road segment. SOC trajectories were planned by DP every 300

seconds. In [36], a real-time ECMS was enabled by a NN used for velocity prediction,

using the information from V2V and V2I connectivity. X. Qi et al. [37] assumed that a

short-term velocity prediction model would be available in the future and developed an

online EMS based on an evolutionary algorithm. D. Chen et al. [38] performed SOC

planning for short horizon optimal control using sparse traffic information over a given

route and demonstrated the near optimal fuel efficiency on standard driving cycles.

Compared with DP, they reduced the computation time from hours to less than a minute.

In [39], it was assumed that an intelligent transportation system could provide the speed

and road elevation profile so that optimization by DP would be possible.

Based on this review, it is clear that researchers have successfully demonstrated the

potential of OB EMS in real-time applications using predictive methods and information

from advanced transportation infrastructures. However, significant deficiencies remain to

effectively use them in a human controlled transportation system, thus reducing their

feasibility.

The main drawback for using OB methods in real-world applications is that it is nearly

impossible to know the velocity profile in advance as it is determined by many complex

and stochastic factors. Figure 1.2 shows a simplified version of how velocity profiles are

generated in real-world scenarios. There are mainly two groups of factors that influence

vehicle velocity profile: the environment and the driver. The environment consists of

factors like weather, road condition, other drivers on the road as well as events like

 8

holidays, sports events or concerts. For the driver, driving style and the driver’s behavioral

condition, or mood, play important roles.

Figure 1.2: Illustration of how real-world velocity profiles are generated.

Velocity profile and driver behavior prediction is itself, a research area. McNew [40]

simplified velocity profiles into launch, cruise, and deceleration and used kernel

regression to predict the driver’s intended cruising speed on a closed course. This was

driver-specific and was applicable to rushed or relaxed driving. F. Bender et al. [41] made

predictions for garbage trucks whose routes were repeated. They found that the stop

positions were very close, and the velocity profiles associated with these positions were

very similar. M. Platho et al. [42] focused on road interactions. They first decomposed the

situation into small sets of related road users and made predictions for the different sets

by different models. S. Cairano et al. [43] used a Markov Chain to model the driver’s

behavior. S. Lefevre et al. [44] compared parametric and non-parametric approaches for

velocity profile prediction during highway driving with lane keeping situations. J. Park et

al. [45] used neural networks to predict short-term traffic speed at the sensor location

considering factors like day of week and traffic congestion levels. The velocity profile

was constructed by the predicted speed at all sensors along the selected route. J. Ziegmann

 9

et al. [46] used kernel regression and recurrent neural networks to predict velocity profiles

on experimental routes. B. Jiang et al. [47] assumed the real-time traffic information was

accessible and the vehicles that required speed prediction were connected through on-

board smartphone communications on a vehicular network. Further, their model was built

only for morning rush hour on one particular route.

Route significantly influences the velocity profiles due to variable traffic conditions

and the reality that features of different roads can be very diverse. For some real-world

problems, the route is not fixed before the trip like in the delivery vehicle trips studied in

this work. For a fixed starting point to a fixed destination, the driver can choose different

routes according to personal preferences under different traffic conditions. For a package

delivery trip, the problem would be more complex if the order of deliveries can be changed

freely or partially changed. Therefore, to predict future trip information for this kind of

problem, route should be first predicted. Route prediction itself is a difficult topic, as it is

highly dependent on assumptions.

R. Simmons et al. [48] assumed driving was largely routine and used a hidden Markov

model to model the transition of roads. Although they achieved about 98% accuracy, 95%

of the predictions were forced transitions which means there was only one possible way.

For the rest of 5% predictions, the performance was about 70%. J. Froehlich et al. [49]

also assumed the trips were repeated. During the trip, the algorithm used the GPS trace to

find the best match in the database. However, they found that even after a month of

observation, 40% of the driver’s trip still had new routes, which influenced the model’s

accuracy largely. Similarly, V. Larsson et al. [50] also tried to identify commuter routes

 10

from historical driving data. Both of the last two papers constructed similarity matrices

and used the hierarchical clustering method.

Based on the aforementioned literature, it is evident that to predict high fidelity future

trip information like velocity profile, the most critical factors are how much information

is available and what simplifications can be made. For example, traffic conditions are

highly complex to model as they are determined by all the drivers on the road. To remove

the influence of such factors, one can investigate the prediction model on a closed course

[40] or experimental route [46]. Also, by assuming that advanced communication

infrastructures such as V2V and V2I are available, the information on traffic conditions

can be used directly [36].

In recent years, continuous progress has been made in applying model-free, data-

driven reinforcement learning (RL) algorithms in the area of EMS. First, the near optimal

performance under known trip information is demonstrated on comprehensive standard

driving cycles and realistic driving cycles. In [51]-[54], action-values were stored as tables

and the entries were updated according to value-based RL algorithms such as Q-learning.

The transition pairs used in the update equations were generated by running the vehicle

models on standard driving cycles. A parametric study to find hyperparameters for

tabular-based Q-learning algorithm was performed in [55] based on one standard driving

cycle, showing the importance of training process design and parameter tuning. In [56],

deep Q-learning (DQN) was used. The main difference was, instead of storing the action-

values in a table, a NN was used as the function approximator for the action-values. The

ability to converge to near optimal performance was shown on several standard driving

 11

cycles. Velocity predictors were used with Q-learning algorithms in [57], showing

potential benefits on two recorded realistic driving cycles. In [58], the performance of Q-

learning with tables and NNs were compared on standard driving cycles. Also, the

adaptability of the DQN was tested on a test trip, which was a combination of four standard

driving cycles. A technique called double Q-learning was utilized in [59]. It demonstrated

that this technique was able to help with both optimization performance and convergence

rate. All the above introduced literature tested the performance of the RL-based controller

on trips that the algorithms were trained on. In [60], an actor-critic based DRL method

called deep deterministic policy gradient (DDPG) was used. This work showed the trained

DRL agent could perform well on unseen test trip by training the algorithm on one training

cycle and testing it on one test cycle which was a combination of six standard driving

cycles. Researchers in [61] wanted to design a RL-based online learning architecture that

was able to adapt the controller with different driving conditions. However, the reported

performance was still on the trip that the algorithm was trained on.

Another interesting idea to adapt the RL algorithm to different driving cycles were

shown in [62] and [63]. The main idea was, first, obtain a RL-based control strategy offline

based on a transition probability matrix (TPM) extracted from standard driving cycles or

recorded previous driving cycles. When the control strategy was used online, the TPM

was kept updated according to the ongoing trip information. The difference between the

updated TPM and the offline TPM was monitored, and if the difference was greater than

a predefined threshold, a new control strategy would be calculated according to the new

TPM. The main underlying assumption was, the updated TPM which was constructed by

 12

the information from both offline recorded driving cycles and online driving cycles up to

that time step, could represent the future driving condition well. This assumption should

be further investigated. Also, the quality and robustness of the online calculated RL-based

strategy should be considered as there was no time testing it. There are specific

applications where the RL-based controllers are tested on unseen trips that are not used to

train the controller. In [64], the tabular Q-learning controller was trained on six trip data

on a commuter route and tested on the seventh trip. In [65], a fixed bus route was used to

perform the study and showed generalization abilities on new trips. For more literature

and possible research directions with RL, please refer to the survey paper [66].

Although RB EMS’s cannot achieve the highest fuel efficiency in theory, their full

potential for in-use HEVs and EREVs has not been realized. Parameters in the predefined

rules are usually tuned on standard driving cycles or combinations of standard driving

cycles [67]. New efficient RB methods were developed on standard driving cycles

[68][69]. Also, RB control strategies can be learned from results of OB methods on given

driving cycles. For example, global optimal solutions on standard driving cycles were first

calculated by DP, then rules were extracted from the optimal solution [70]-[72]. Results

from standard driving cycles can provide valuable information about the performance and

characteristics of an RB EMS. However, standard cycles cannot accurately represent the

very large range of real driving vocations. In [73], a predictive RB blended model was

developed. Fuel economy improvement was demonstrated compared to a conventional

RB method in a simulation environment that included uncertainty in energy demand.

 13

However, this method required distance and road type of the route in advance, which is

not applicable in many real-world applications.

RB methods are compared to OB methods in the schematic given in Figure 1.3,

illustrating the tradeoff between feasibility for human driven vehicles and fuel efficiency

improvement. A perfect model has both high feasibility and results in high fuel efficiency

improvement. RB EMS methods tend to result in lower fuel efficiency improvements but

are feasible to implement, whereas OB methods can attain high fuel efficiency

improvement but have low feasibility due to the reasons previously discussed. For

example, DP is a typical strategy employed in OB methods and can achieve a theoretical

highest fuel efficiency with known detailed future trip information and at high

computational expense.

Figure 1.3: Illustration comparing rule-based (RB) EMS strategies to optimization-

based (OB) strategies for human driven vehicle systems.

 14

 Outline and Contribution

The remainder of this dissertation is structured as follows:

In Chapter 2, the vehicle configuration, collected data and the in-use energy

management strategy of the delivery fleet is introduced. The main difficulties in solving

this problem are then discussed.

Chapter 3 begins by formalizing the EMS problem as a probability density estimation

problem. Then, maximum likelihood and Bayesian Inference are introduced, which can

be used to solve the density estimation problem. The advantage of Bayesian inference

over maximum likelihood in this problem setting is discussed. Also, the derivation of the

simplified vehicle model used in this work is presented. For the results part, the designing

of the prior which is used in the Bayesian Inference is first introduced, then the real-world

testing results are shown in detail.

Chapter 4 begins by introducing the main idea and key components of reinforcement

learning as well as feedforward neural networks, which are the foundations of deep

reinforcement learning (DRL) algorithms. Then, our energy management problem is

formulated as a RL problem by describing the problem as a Markov decision process

(MDP). To solve the MDP, two DRL algorithms with different characteristics are used.

Simulation results and real-world testing results are summarized at last part of this chapter.

Chapter 5 consists of three parts. The first two parts are about two types of uncertainty

that play important roles in real-world problem settings. First, risk-aware algorithms that

are used to deal with the environmental uncertainty is shown. Second, an uncertainty-

aware algorithm that is designed to capture the model uncertainty is discussed. The third

 15

part of this chapter investigates the impacts of adversarial attacks on DRL-based energy

management systems.

Finally, Chapter 6 summarizes the data-driven methods used in this dissertation and

potential future research directions.

 16

2. PROBLEM STATEMENT FOR EXTENDED RANGE ELECTRIC VEHICLE

ENERGY MANAGEMENT STRATEGY

 Vehicle Configuration

The configuration of the EREV powertrain studied in this work is given in Figure 2.1.

The motive power of the vehicle is provided by an electric motor which uses stored energy

from a high-capacity battery. The internal combustion engine (ICE) serves as a range

extender (REx). It is used to charge the main battery using a generator. There is no

mechanical connection between the REx output shaft and the vehicle drive shaft so that

the ICE is completely decoupled from vehicle operation. Vehicle specifications are given

in Table 2.1.

Figure 2.1: Powertrain configuration of the studied EREV.

 17

 Data Description and Preprocessing

Data recording system and database introduction

On-board diagnostics measurement data were collected from in-use EREV delivery

vehicles. Measured parameters included the vehicle’s movement (e.g. velocity, distance),

operating condition of powertrain components (e.g. voltage, current and state of charge of

battery pack, speed and torque of the traction motor and on and off status of engine) and

others (e.g. ambient temperature, humidity, altitude, heater condition and signal strength).

While the vehicle was operating, 260 parameters per vehicle in total were recorded

including the timestamp and the vehicle’s location every five seconds.

 Parameters Value Unit

Vehicle Curb weight 5080 kg

 Typical weight 6800 kg

Motor Maximum power 235 kW

 Maximum torque 2030 Nm

 Continuous power 130 kW

 Continuous torque 680 Nm

 Normal operating range 0-3500 rpm

Li-ion
Battery

Usable capacity 56 kWh

 Voltage range 300-400 V

 Nominal voltage 385 V

Engine Displacement 0.647 L

 Compression ratio 10.6 /

 Working power 11 kW

 Table 2.1: Vehicle Specifications

 18

Data from the vehicles were stored in a secure Oracle spatial database instance with

support for geometry objects and spatial indexes. The database schema consisted of three

main tables: Vehicle, Trip Summary and Drive Trip. The Vehicle table recorded properties

of each vehicle, such as the make, model and year. Every record (row) in the Trip

Summary table is a summary of a single delivery trip, which contains attributes such as

the date, time, duration, distance and fuel use. Each record in this table is associated with

a Drive Trip table. The Drive Trip table records all data of the vehicle during one delivery

trip. Each row in the table describes the 260 parameters of a vehicle at one spatial location

with a timestamp.

Data Preprocessing

Data quality is crucial to the accuracy of the vehicle simulation and developed

algorithms. However, the raw data used in this work have three challenges; first, the

resolution is low as the data are recorded every 5 seconds and significant changes in

driving activity can occur in this time period. Second, there is occasional latency in the

distance and velocity data due to variable signal strength. Third, there are missing values

in the recoded data. The low-resolution problem makes the data piecewise constant which

is not realistic as the velocity profile should be smooth in reality. The latency problem

causes a stepped profile shape for both the velocity profile and distance profile. In addition,

the recorded velocity value occasionally remains at zero while the distance data is

increasing. In this condition, the zero-velocity value should be corrected by the distance

data since the distance records are more reliable. To solve these problems, linear

interpolation and a Gaussian filter were used to increase the resolution and smooth the

 19

data [15]. The information in the distance profile is used to correct the zero-velocity

problem iteratively.

The trip-level data preprocessing procedure used in the work is as follows:

Step 1

To fill in missing values, do zero-filling for the velocity profile and forward-filling for

the distance profile;

Step 2

For both profiles, interpolate the five second data into one second data linearly;

Step 3

Use Gaussian filters to process the distance and velocity profile to get smoothed

distance profile and velocity profile, the degree of smoothness is determined by 𝜎! and 𝜎"

in the Gaussian filters; 𝜎! and 𝜎" are both set to be 3 to provide the degree of smoothness

such that the acceleration calculated from the smoothed velocity profile and the velocity

calculated from the smoothed distance profile are in normal vehicle running range.

Step 4

Calculate a new velocity profile from smoothed distance profile by second order finite

difference method (for the first and last data point, velocity is zero):

𝑣#$%(𝑡) =
𝑑(𝑡 + ∆𝑡) − 𝑑(𝑡 − ∆𝑡)

2∆𝑡
. (2.1)

Step 5

Compare every point of the smoothed velocity profile and the corresponding point in

the new velocity profile calculated from the smoothed distance profile, and update all

 20

points that the value is 0 in the smoothed velocity profile and the value is not 0 at new

velocity profile into the non-zero value multiplies by a factor ε, which initializes as 1;

Step 6

Calculate new distance profile by the smoothed and corrected velocity profile. If the

final distance calculated has an error smaller than 500 meters, the preprocessing is finished.

Otherwise, go back to step 5 and update ε according to the value of error until the stopping

criteria is satisfied.

Since the actual velocity profile should be continuous and the velocity and acceleration

cannot be too large, a Gaussian filter is used to infer the distance and velocity information

within the five second data resolution. Also, the smoothing process significantly improves

the data quality of the distance profile such that a new velocity profile can be found in

Step 4. Without the Gaussian filter, the velocity calculated from distance profile would

yield unrealistically high velocities at the points where distance changes. Also, at some

data points, the acceleration calculated from the unsmoothed velocity profile would be too

high. Step 5 corrects for wrong velocity values. However, the velocity value calculated

from the smoothed distance profile is not accurate, requiring a factor to appropriately scale

the velocity trajectory. This procedure refines the data on a trip level iteratively.

Figure 2.2 compares part of the raw velocity data and preprocessed data of one trip

and shows the distance calculated by the raw data with zero-filling and by the

preprocessed data. It can be seen that the distance calculated by the preprocessed data

agrees with the raw distance data very well with a cumulated error less than 500 meters.

Although the smoothing process in step 3 is similar to a standard filter process, a physical

 21

check according to distance data is performed in the procedure, which differentiates the

method from previous work [35].

Figure 2.2: Comparison of raw data and preprocessed vehicle speed and distance data.

 Energy Management Strategy Introduction

The developed rule-based EMS is thermostatic [16], meaning that the powertrain

switches between two modes to optimize fuel consumption: REx-on or REx-off. The REx

engine operates at one predetermined high efficiency speed and load condition to provide

reliable, safe, and low noise operation; thus, the vehicle does not use a power-split strategy

like in parallel HEV architectures. For trips that exceeds the all-electric-range (AER) of

the EREV, the goal of the EMS is to optimize when, and how frequently to operate the

REx engine to minimize the fuel use and achieve a target end battery state of charge (SOC)

at the end of a trip, 𝑆𝑂𝐶&$' . For short trips, no fuel should be used, which means the

vehicle operates as a pure electric vehicle (EV). Engine on-off control logic is based on

 22

the measured real-time SOC, which is similar to the series powertrain configuration in [17]

and [60]: the engine will be turned on if the actual SOC is lower than the SOC reference

value (𝑆𝑂𝐶($)). An intuitive derivation of the calculation of 𝑆𝑂𝐶($) is as follows.

The energy reference value can be expressed as:

𝐸($) = 𝐸&*&+, − 𝐸-*#./01&2*#, (2.2)

where 𝐸&*&+, represents the total energy, the vehicle needs to have to finish the goal, which

comes from the battery and the engine. 𝐸-*#./01&2*# is the energy consumption on the

given trip thus far. Consequently, 𝐸($) represents how much energy need to be left to

finish the goal.

To express the terms in the SOC expression, both sides are divided by the 𝐸&*&+,:

𝐸($)
𝐸&*&+,

= 100%−
𝐸-*#./01&2*#

𝐸&*&+,
. (2.3)

𝐸&*&+, consists of two parts: usable energy and unusable energy. The latter corresponds

to the energy behind the target end battery state of charge 𝑆𝑂𝐶&$':

𝐸&*&+, = 𝐸/.+3,$ + 𝐸/#/.+3,$ = 𝐸/.+3,$ + 𝑆𝑂𝐶&$' × 𝐸&*&+, . (2.4)

The usable energy is assumed to be able to run the vehicle for an expected total trip

distance of 𝑑$ with expected energy intensity 𝑒$, which is the energy use per unit distance

(kW-hr/mile):

𝐸/.+3,$ = 𝑒$ × 𝑑$. (2.5)

 23

The energy consumption term is expressed as the product of current distance and the

energy intensity so far for the actual trip:

𝐸-*#./01&2*# = 𝑒& × 𝑑& . (2.6)

From (2.4) and (2.5), 𝐸&*&+, has the form of:

𝐸&*&+, =
𝑒$ × 𝑑$

100% − 𝑆𝑂𝐶&$'
. (2.7)

By substituting (2.6) and (2.7) into (2.3), and representing the 𝑆𝑂𝐶($) as the ratio

of 𝐸($) and 𝐸&*&+,:

𝑆𝑂𝐶($) = 100%− (100% − 𝑆𝑂𝐶&$') ×
𝑒& × 𝑑&
𝑒$ × 𝑑$

. (2.8)

The desired 𝑆𝑂𝐶&$' in this work was set 10%. The energy intensity term of the

equation can be expressed through a new variable defined as 𝐿.$&:

𝐿.$& =
𝑒$ × 𝑑$
𝑒&

. (2.9)

Equation (2.8) now simplifies to (2.10) which is being used in the delivery fleet:

𝑆𝑂𝐶($) = 100% × S1 − 0.9 4!
5"#!
T . (2.10)

The 𝑆𝑂𝐶($) decreases linearly with 𝑑& while driving when the value of 𝐿.$& is fixed.

Furthermore, to reduce fuel consumption in short trips and prevent charging the battery

too frequently, which will degrade its life, if the calculated 𝑆𝑂𝐶($) is larger than 60%, it

is set to 60% in this work. Consequently, for short trips and the beginning of long trips

 24

where SOC never drops below 60%, the REx will not operate. 𝑆𝑂𝐶($) represents how

much battery energy is expected to be left when the vehicle has traveled for 𝑑& given

predetermined 𝐿.$&. Similar SOC reference values are also used in [17][60] for blended

mode control for an OB EMS. The single parameter in (2.10) to be optimized is 𝐿.$&. At

the beginning of a trip, the vehicle will first operate in charge depleting (CD) mode and

will switch to a combination of CD mode and charge sustaining (CS) mode such that the

actual SOC follows the reference value with the aid of the REx engine. This control

strategy can be classified as a blended RB method as it is designed to make the SOC

achieve the lowest value at the end of the trip set by 𝑆𝑂𝐶&$'. Figure 2.3 shows an example

comparison of battery SOC and corresponding 𝑆𝑂𝐶($) with two 𝐿.$& settings. It can be

observed that the lower 𝐿.$& leads to a lower fuel consumption and final battery state of

charge.

Figure 2.3: Comparison of 𝑆𝑂𝐶($) and real-time SOC (upper) and fuel use (lower)

with different 𝐿.$& settings for one measured delivery trip.

 25

 Problem to Solve

To reduce fuel consumption on a future trip, it is evident that 𝐿.$& should be

preprogrammed according to trip distance and energy intensity. To save cost, the vehicle

should charge at the depot using grid electricity at night, minimizing fuel consumption

and on-road emissions. Setting 𝐿.$& to minimize REx operation is the key problem to solve

in this work. Ideally, if the trip distance and energy intensity of the trip are known in

advance, the 𝐿.$& can be preprogrammed according to these two values so that the vehicle

finishes the trip with a 10% SOC value for long trips and operates as a pure EV for short

trips. However, 𝐿.$& is difficult to determine for at least two reasons. First, it is difficult

to estimate the trip distance accurately a priori. Vehicles in different delivery areas have

very different distributions of trip distances day-to-day. Also, for an individual vehicle,

the trip distances in actual routes vary from the scheduled distance and differ day-to-day

based on delivery demand, even though the vehicles might traverse the same region each

day. Second, it is difficult to estimate energy intensity before a given trip as it relates to

many factors like traffic condition, weather and the behavior of the driver. In Figure 2.4,

the distribution of distance and energy intensity of an example EREV is shown. In Figure

2.5, four historical GPS trajectories of the same example delivery vehicle is used to show

the similarities and differences of trajectories of the same vehicle. Due to the reasons

discussed above, the values of 𝐿.$& for the real-world delivery fleet are set high (100 miles)

to prevent potential delays of delivery tasks or dangerous conditions like running out of

battery during highway driving. Figure 2.6 shows a typical trip with high 𝐿.$& setting: the

 26

final battery SOC is much higher than 10%, which means some or all of the fuel consumed

during the delivery trip was unnecessary.

Figure 2.4 Distribution of distance and energy intensity for an example EREV.

(a)

 27

(b)

(c)

(d)

Figure 2.5: Four historical GPS trajectories of an example delivery vehicle.

 28

Figure 2.6: A typical delivery trip data with high 𝐿.$& setting.

 29

3. BAYESIAN INFERENCE BASED ENERGY MANAGEMENT

 Probability Density Estimation Problem Formulation

For an individual vehicle, there exists a best 𝐿.$& that achieves the highest fuel

efficiency without compromising the drivability for each trip. This value can be calculated

after the trip as the full velocity profile is available. It is a natural idea to estimate a better

𝐿.$& for the next trip of the vehicle by considering all the previous best 𝐿.$& of the vehicle.

However, it is not straightforward to determine how to estimate a proper 𝐿.$& for the next

trip as there is uncertainty in future trips. To deal with the uncertainty, the distribution of

the best 𝐿.$& of each individual vehicle is modeled as a Gaussian distribution as shown in

Figure 3.1. If the distribution is known, the 𝐿.$& is calculated through the cumulative

density function (CDF). As shown in Figure 3.1, the 𝐿.$& for the next trip of the vehicle is

the value where the CDF equals 0.99; i.e., the 𝐿.$& is the 99th percentile of the distribution.

This conservative calculation method ensures that the probability of running out of battery

is very low if the real data follows the Gaussian assumption. Therefore, our goal is to

estimate the parameters in the Gaussian distribution using the available best 𝐿.$& data for

each individual vehicle, which can be considered as a probability density estimation

problem in the area of pattern recognition and machine learning.

 30

Figure 3.1: Illustration of how to determine the 𝐿.$& from a known Gaussian

distribution of one vehicle.

 Maximum Likelihood and Bayesian Inference

For a 1-dimensional Gaussian distribution, there are two parameters to be determined:

mean 𝜇 and variance 𝜎". The naïve and straightforward estimation method is maximizing

likelihood using the available data. The distribution of the best 𝐿.$& associated with each

vehicle is assumed to follow a Gaussian distribution with unknown mean and unknown

precision: 𝑝(𝐿.$&)~𝑁(𝜇, 𝜆) where 𝜆 is the precision defined as the reciprocal of variance:

𝜆 = 	 !
6$

. Using precision instead of the variance facilitates the derivation of the Bayesian

inference method.

 31

To simplify the notation, 𝐿.$&
[#] and 𝐿Z.$&

[#] represent actual best 𝐿.$& and predicted 𝐿.$&

for the 𝑛th trip. Given historical data from 𝑁 trips, the likelihood can be written in the

form given in (3.1) assuming the data are independent and identically distributed (i.i.d.).

𝑝 S𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9] _𝜇, 𝜆T =

𝜆
9
"

(2𝜋)
9
"
exp d−

𝜆
2
eS𝐿.$&

[2] − 𝜇T
"

9

2:!

f . (3.1)

Maximizing the likelihood with respect to the unknown parameters 𝜇 and 𝜆 gives:

𝜇̂0,$ =
1
𝑁e𝐿.$&

[#]
9

#:!

,

𝜆h0,$ =
1

𝜎i0,$" =
1

1
𝑁∑ S𝐿.$&

[#] − 𝜇̂0,$T
"

9
#:!

. (3.2)

This method works well and gives good estimates if the amount of data is large.

However, for new vehicles or for vehicles driving new route profiles, the number of trips

is very small or zero so that it is difficult to have a good estimation of the distribution, and

the statistical strength of such a prediction will be low. To deal with this problem, the

parameters in the Gaussian distribution are estimated using a Bayesian algorithm [74].

The parameters are determined by both data and prior knowledge. Every time new trip

data is available, distribution parameters are updated adaptively. Once the parameters are

updated, the 𝐿.$& can be calculated conservatively by the CDF of the posterior predictive

distribution. The following derivation mainly follows [75] and more detailed information

can be found in [76]-[78].

If 𝐿Z.$& is calculated using the distribution estimated only on the historical data by

maximizing the likelihood (3.2) yielding point estimates of 𝜇 and 𝜆, when the size of data

 32

is small or there is no data, the calculated 𝐿Z.$& will be highly unstable, leading to

potentially undesirable vehicle performance. To solve this problem, a prior is introduced

by considering the distribution of 𝜇 and 𝜆 to make the model more conservative.

With the introduced prior distribution of 𝜇 and 𝜆: 𝑝(𝜇, 𝜆), the posterior distribution of

𝜇 and 𝜆: 𝑝 S𝜇, 𝜆_𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T can be determined by incorporating the historical data.

As	posterior ∝ prior × likelihood [78], the form of posterior is given by (3.3), which

models the distribution of 𝜇 and 𝜆 instead of just providing point estimates, i.e., instead

of estimating 𝜇 and 𝜆 as single values, the distribution of them are modeled.

𝑝 S𝜇, 𝜆_𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T ∝ 𝑝(𝜇, 𝜆) ∙ 𝑝 S𝐿.$&

[!] , 𝐿.$&
["] ……𝐿.$&

[9] _𝜇, 𝜆T . (3.3)

By introducing a prior distribution, 𝜇 and 𝜆 is estimated based on both the information

from data and prior knowledge. This can give us a more conservative estimation for small

𝑁 . The concept of conjugate prior from Bayesian probability theory is used, which

considerably simplifies the analysis and makes the calculation of posterior distribution

tractable. If a prior distribution is conjugate to the likelihood function of a given

distribution, the posterior distribution will have the same form of distribution as the prior

[75]-[78]. The conjugate prior for a Gaussian distribution with unknown mean and

unknown precision is the Normal-Gamma distribution [76]: 𝑝(𝜇, 𝜆)~𝑁𝑜𝑟𝑚𝑎𝑙 −

𝐺𝑎𝑚𝑚𝑎(𝜇;, 𝜅;, 𝑎;, 𝑏;).

There are 4 parameters in the prior. 𝜇; is the prior estimate of the mean. 𝜅; is the size

of pseudo samples from which 𝜇; is estimated. 𝑎; is half the size of pseudo samples from

which the prior precision is estimated. 𝑏; represents the prior estimate of the precision.

 33

With use of the conjugate prior, the posterior distribution is also Normal-Gamma:

𝑝 S𝜇, 𝜆|𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T~𝑁𝑜𝑟𝑚𝑎𝑙 − 𝐺𝑎𝑚𝑚𝑎(𝜇9 , 𝜅9 , 𝑎9 , 𝑏9), where:

𝜇9 =
𝜅;𝜇; + 𝑁𝑚

𝜅9
,

𝜅9 = 𝜅; + 𝑁,

𝑎9 =
1
2
(2𝑎; + 𝑁),

𝑏9 = 𝑏; +
𝑁
2
𝑠" +

𝜅;𝑁
2𝜅9

(𝑚 − 𝜇;)". (3.4)

𝑚 and 𝑠" are the sample mean and variance of best 𝐿.$& of available trips. As can be

observed in (3.4), the posterior mean 𝜇9 is the weighted sum of the prior estimate of the

mean and the sample mean of the available data. Posterior precision is also determined by

the prior estimate and the statistic of the data. The estimate of the posterior mean and

precision are based on 𝜅9 and 2𝑎9	samples respectively, which are both the sum of the

number of real data and the number of pseudo samples. The parameters become the prior

if the number of data 𝑁 is 0, e.g. 𝜇9 = 𝜇; if 𝑁 = 0 according to (3.4). It can be observed

that the influence of the prior information decreases as the number of available data

increases.

After the posterior distribution of 𝜇 and 𝜆 are obtained, the next 𝐿Z.$& can be predicted

by using 𝑝{𝐿Z.$&|𝜇, 𝜆}, considering all possible values of 𝜇 and 𝜆 according to the posterior

distribution 𝑝 S𝜇, 𝜆_𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T by integrating over 𝜇 and 𝜆:

𝑝 S𝐿Z.$&_𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T = 	~𝑝{𝐿Z.$&|𝜇, 𝜆}𝑝 S𝜇, 𝜆_𝐿.$&

[!] , 𝐿.$&
["] …𝐿.$&

[9]T 𝑑𝜇𝑑𝜆

 34

			~𝑡"+% �𝜇9 ,
𝑏9(𝜅9 + 1)
𝑎9𝜅9

� . (3.5)

Intuitively, this is a weighted sum of infinite number of Gaussians, and the weight is

determined by the posterior distribution. Given the prior and historical data, the posterior

predictive model for the next 𝐿Z.$& is a t-distribution after integration. To be clear, 𝐿.$& is

assumed to follow a Gaussian distribution. However, the 𝜇 and 𝜆 are unknown such that

all possibilities of 𝜇 and 𝜆 are considered by the posterior distribution

𝑝 S𝜇, 𝜆_𝐿.$&
[!] , 𝐿.$&

["] …𝐿.$&
[9]T and integrated over 𝜇 and 𝜆. The t-distribution is like an infinite

sum of Gaussians [75][76].

Robustness is one of the main characteristics of a t-distribution. It has longer ‘tails’

than Gaussian distribution, which means the position and shape of the t-distribution is less

sensitive to outliers [76][77]. This property is an advantageous in this application as it can

prevent the shape and position of the distribution from being influenced largely by some

very short trips.

After the parameters in the prior are determined, the posterior predictive model

𝑝 S𝐿Z.$&_𝐿.$&
[!] , 𝐿.$&

["] ……𝐿.$&
[9]T is determined. This t-distribution is used to calculate the 𝐿Z.$&

conservatively for the next trip. After the data of the next trip is observed, the previous

posterior becomes the prior and the distribution is updated according to the new

observation.

The procedure for calculating 𝐿Z.$& and updating parameters is described as follows:

Initialization step

 35

The initial t-distribution is 𝑡"+&(𝜇;,
3&(=&>!)
+&=&

), which is completely determined by the

prior as there is no available trip information (𝑁 = 0), leading to:

𝜇9 =
𝜅;𝜇; + 𝑁𝑚

𝜅9
= 𝜇;,

𝜅9 = 𝜅; + 𝑁 = 𝜅;,

𝑎9 =
1
2
(2𝑎; + 𝑁) = 𝑎;,

𝑏9 = 𝑏; +
𝑁
2
𝑠" +

𝜅;𝑁
2𝜅9

(𝑚 − 𝜇;)" = 𝑏;. (3.6)

Prediction step

The prediction step is based on the CDF of the t-distribution as shown in Figure 3.1.

The value of the CDF evaluated at 𝐿Z.$&, is the probability that the next actual best 𝐿.$&

will take a value less than or equal to the predicted 𝐿Z.$&:

𝐶𝐷𝐹5"#!{𝐿Z.$&} = 𝑃{𝐿.$& ≤ 𝐿Z.$&}. (3.7)

𝐿Z.$& is determined by setting the CDF = 0.99, which means 𝐿.$& will be smaller than

𝐿Z.$& with a probability of 0.99 under the assumption. From this point, it can be seen that,

the calculated 𝐿Z.$& will be higher than the actual ideal 𝐿.$& by a margin in most trips. For

real-world driving, low 𝐿Z.$& leading to a very low SOC during a trip should be avoided to

a high confidence level even at the expense of smaller improvement in fuel economy.

Update step

 36

After a new trip is observed, the parameters in the prior are updated by the parameters

in the posterior; i.e., after new data is recorded, the previous posterior information

becomes prior for the new information:

𝜇;#$% = 𝜇9*,4 ,

𝜅;#$% = 𝜅9*,4 ,

𝑎;#$% = 𝑎9*,4 ,

𝑏;#$% = 𝑏9*,4 . (3.8)

The parameters in the posterior are then updated according to the new data 𝐿.$& and

the updated prior:

𝜅9#$% = 𝜅;#$% + 1,

𝜇9#$% =
𝜅;#$%𝜇;#$% + 𝐿.$&

𝜅9#$%
,

𝑎9#$% =
1
2
(2𝑎;#$% + 1),

𝑏9#$% = 𝑏;#$% +
𝜅;#$%

2𝜅9#$%
(𝐿.$& − 𝜇;#$%)". (3.9)

 37

After updating the parameters in the t-distribution, 𝐿Z.$& for the next trip can be

calculated by the prediction step.

 Vehicle Model

A vehicle model is necessary as it is used to calculate the best 𝐿.$& for each trip and

guides updates to the Bayesian algorithm. Also, fuel efficiency improvement is estimated

by calculating the fuel use for different 𝐿.$& values.

Vehicle dynamics

Symbol Parameter Unit
𝐹4 Total force demand of the vehicle N
𝑐((Coefficient of rolling resistance /
𝑐4 Coefficient of air resistance /
𝑃4 Total power demand of the vehicle W
𝑃3 Battery power W
𝑃$ Engine power W
𝜂3&% Efficiency from battery to wheel /
𝜂$&% Efficiency from engine to wheel /
𝜌 Air density kg/𝑚@
𝐴 Frontal area 𝑚"
𝑚 Total vehicle mass kg
g Gravity constant N/kg
a Acceleration m/𝑠"
v Velocity m/s
t Time s
𝜃 Road slope rad
𝑉*- Open circuit voltage V
I Current A
𝑅; Battery internal resistance ohm
Q Battery capacity Ah
f Cumulated fuel use L
𝐶- Battery charging rate %/s
𝐶) Fuel consumption rate L/s

Table 3.1: Vehicle model parameters

 38

A simplified vehicle model is derived here and used in this work. The used notation is

summarized in Table 3.1. The vehicle force demand can be written in the following form:

𝐹4 = 	𝑚𝑎 + 𝑐((𝑚𝑔𝑐𝑜𝑠(𝜃) +
1
2 𝑐4𝐴𝜌𝑣

" +𝑚𝑔𝑠𝑖𝑛(𝜃). (3.10)

Ignoring the road grade, it can be simplified to:

𝐹4 = 	𝑚𝑎 + 𝑐((𝑚𝑔	 +
1
2 𝑐4𝐴𝜌𝑣

". (3.11)

Since power can be calculated as 𝑃 = 𝐹𝑣, the power demand can be written as:

𝑃4 = 𝑚𝑎𝑣 + 𝑐((𝑚𝑔𝑣 +
1
2 𝑐4𝐴𝜌𝑣

@. (3.12)

The power in the case of an EREV is provided solely by the motor, which uses energy

from the battery and the engine:

𝑃4 =	𝑃3𝜂3&% + 𝑃$𝜂$&% . (3.13)

From (3.12) and (3.13), the battery power can be written as:

𝑃3 =
S𝑐((𝑚𝑔𝑣 +

1
2 𝑐4𝐴𝜌𝑣

@ +𝑚𝑎𝑣T
𝜂3&%

−
𝑃$𝜂$&%
𝜂3&%

. (3.14)

By assuming 𝜂3&% , 𝜂$&% , 𝑚, 𝑔, 𝑐((, 𝐴, 𝑐% , 𝜌 are all constants and the fact 𝑃$ is a

constant (ignoring the transition process from on to off and off to on), this equation can

be rewritten including the dependence on time 𝑡 as:

𝑃3(𝑡) = 𝐴𝑣(𝑡) + 𝐵𝑣@(𝑡) + 𝐶𝑎(𝑡)𝑣(𝑡) − 	𝐷, (3.15)

where 𝐴,	𝐵, 𝐶 and 𝐷 are combinations of constants:

𝐴 =
𝑐((𝑚𝑔
𝜂3&%

,	

 39

𝐵 =
1
2 𝑐4𝐴𝜌
𝜂3&%

,

𝐶 =
𝑚
𝜂3&%

,

𝐷 =
𝑃$𝜂$&%
𝜂3&%

. (3.16)

Battery model

A simplified battery model is used to model the battery pack:

𝑃3(𝑡) = 𝑉*-(𝑠)𝐼(𝑡) − 𝑅;(𝑠)𝐼"(𝑡), (3.17)

𝑉*-(𝑠) and 𝑅;(𝑠)	 depends on SOC which is denoted as 𝑠 . The derivative of 𝑠 is

proportional to current at the battery terminals:

𝑠̇(𝑡) = 	−
1
𝑄
	𝐼(𝑡). (3.18)

If the current is found from the battery power equation and substituted into the above

equation (3.17) results:

𝑠̇(𝑡) = −
𝑉*-(𝑠) − �𝑉*-"(𝑠) − 4𝑅;(𝑠)𝑃3(𝑡)

2𝑅;(𝑠)𝑄
, (3.19)

𝑉*-(𝑠) can be modeled as a piecewise linear function of the SOC and 𝑅;(𝑠) can be

modeled as a constant 𝑅;(𝑠) = 	𝑅;. By combining (3.15) and (3.19), velocity profiles

can be used as an input to calculate the SOC profile step by step given the initial SOC:

𝑠(𝑡 + ∆𝑡) = 𝑠(𝑡) +	 𝑠̇(𝑡)∆𝑡. (3.20)

If the vehicle is stopped and the engine is on, the SOC update is simply:

 40

𝑠(𝑡 + ∆𝑡) = 𝑠(𝑡) +	𝐶-∆𝑡, (3.21)

where ∆𝑡 = 1𝑠, which means the step size is 1 second.

Engine Model

As the engine only works at a predefined fixed condition, the fuel rate and engine

charging power are both constant. The transition process from off to on and on to off is

ignored. Therefore, when the engine is turned on, the fuel use can be calculated as:

𝑓(𝑡 + ∆𝑡) = 𝑓(𝑡) + 𝐶)/$,	(+&$∆𝑡. (3.22)

Validation

The accuracy of the vehicle model is very important for the developed framework. As

the engine on/off control logic is based on the SOC value, validation of the model is based

on the SOC curve. Starting with the developed vehicle model, parameters were calibrated

for different vehicles on each delivery area using several trips. After calibration, the model

performed consistently on the other trips for the same vehicle. Errors arose from

simplifications in the model including ignoring wind speed and road grade, and assuming

constant vehicle components efficiencies. Also, noisy and low-resolution raw data

introduced error even after the preprocessing process. Furthermore, the SOC value in the

raw data itself contained some level of error as the SOC value was not measured directly.

Some degree of error is inevitable in all vehicle measurement datasets. As an example,

raw SOC data and simulated SOC data for one EREV are shown in Figure 3.2 for four

actual trips. For each simulated trip in this study, the mean relative error of the calculated

SOC curve is less than 5% compared with recorded SOC curve. Considering raw data

 41

quality and model complexity as well as the goal of determining fuel consumption under

different 𝐿.$&, the accuracy of the model is deemed adequate.

Figure 3.2: Validation of the vehicle model by comparing the raw SOC data and

simulated SOC data.

 Designing of the prior

In this section, a prior is designed for use in the Bayesian inference algorithm by

determining the parameters 𝜇;, 𝜅;, 𝑎;, 𝑏; from the collected vehicle data so that the

𝐿Z.$&	calculated is conservative, especially for small 𝑁 or when no data are available for

new vehicles. The origin 𝐿Z.$& can be used as an initial condition (100 miles). The

parameters are determined using data from 78 vehicles with more than 12,000

accumulated trips in total. The 78 vehicles in different delivery areas have various mean

distance and standard deviation as shown in Figure 3.3.

 42

Figure 3.3: Distribution of the mean (left) and standard deviation (right) of trip

distance for all delivery vehicles used to design the prior from the collected dataset.

The chosen parameters should satisfy two conditions: first, the corresponding initial t-

distribution should yield a 𝐿Z.$& that is about 100 miles, which means if there is no data

available, the original setting will be used; second, the series of updated 𝐿Z.$& values should

be no lower than the actual series of 𝐿.$& for all historical trips for each vehicle. The

difference between the calculated 𝐿Z.$& curve and the actual best 𝐿.$& curve needs to be

minimized to reduce fuel use under the constraint of 𝐿Z.$& always no lower than best 𝐿.$&.

Considering this goal, the parameters were varied to reduce the gap between the two

curves until the two curves touched for one of the vehicles. The final values of the

parameters in the prior are shown in Table 3.2.

In Table 3.2, the prior mean is 74 and is estimated from 5 pseudo samples. The prior

precision is 0.01, which is estimated using 50 pseudo samples (the relation to the

parameters in the prior is 𝜅; =	𝑛B&, 𝑎; = 𝑛C&/2, 	𝑏; = 𝑛C&/2𝜆;).

 43

Figure 3.4 shows the calculated 𝐿Z.$& curve and best 𝐿.$& curve for four vehicles, which

are used to design the prior. Vehicle A and B represent about 75% of other vehicles; the

calculated 𝐿Z.$& is clearly higher than the actual 𝐿.$& for all trips. Vehicle C and D illustrate

conditions where the calculated 𝐿Z.$& and the actual 𝐿.$& are very close, which represents

about 25% of all vehicles. It can be observed that there is a margin between these two

curves. As the margin gets smaller, more fuel can be saved as the prediction becomes

closer to the best value. However, the risk of underestimating the 𝐿.$& also increases. The

designed prior minimizes the gap while avoiding the condition of calculated 𝐿Z.$& being

smaller than the actual 𝐿.$& for more than 12,000 trips of the 78 vehicles.

Parameter Value
𝜇; 74
𝑛B& 5
𝜆; 0.01
𝑛C& 50

Table 3.2: Bayesian model parameters

 44

Figure 3.4: Bayesian 𝐿.$& and the best 𝐿.$& curves for four vehicles.

The initial posterior predictive distribution only determined by the prior and final

distribution using all trip data of vehicle D is shown in Figure 3.5. Also, the actual best

𝐿.$& data is shown in the form of normalized histogram. It can be shown that the real best

𝐿.$& distribution can be represented by the calculated distribution well after enough data

 45

is available. Several intermediate distributions are shown in Figure 3.6. It can be observed

that as the number of data increases, the estimated distribution can better represent the real

data distribution. When the number of data is small, the updated distribution does not

significantly deviate from the prior, guaranteeing a stable and conservative 𝐿Z.$& . For

example, even though the first best 𝐿.$& data of vehicle D is found to be less than 40 miles,

which is much lower than the baseline 100 miles, the 𝐿Z.$& calculated from the updated t-

distribution is about 96 miles as there is only one historical trip available.

Figure 3.5: Initial and final t-distribution and the normalized actual data.

Figure 3.6: T-distributions with different number of data.

 46

 Results and Discussion

The fuel efficiency improvement achieved by the EMS framework is quantified by

fuel use and the mile per gallon equivalent (MPGe). MPGe is estimated by the equation

[79]:

𝑀𝑃𝐺𝑒 = 	
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑖𝑙𝑒)

𝑓𝑢𝑒𝑙	𝑢𝑠𝑒(𝑔𝑎𝑙𝑙𝑜𝑛) +	𝑒𝑙𝑒𝑐𝑡𝑖𝑐	𝑒𝑛𝑒𝑟𝑔𝑦	𝑢𝑠𝑒(𝑘𝑤ℎ)

33.7 � 𝑘𝑤ℎ
𝑔𝑎𝑙𝑙𝑜𝑛�

. (3.23)

In this paper, fuel efficiency improvement is demonstrated on 13 vehicles with 155

real-world delivery trips in total. The 13 vehicles are relative new vehicles and are not

used to design the prior. Figure 3.7 illustrates the components of the developed framework.

Figure 3.7: Components of the developed Bayesian inference framework.

In Figure 3.8, the actual best 𝐿.$& and Bayesian 𝐿Z.$& is shown for two of the selected

demonstration vehicles. It can be observed that the update is conservative. Since the

number of data points is small, the margin between Bayesian 𝐿Z.$& and actual best 𝐿.$& is

significant at the beginning and gradually decrease as the number of data increases.

 47

Figure 3.8: Bayesian 𝐿.$&, best 𝐿.$& and baseline 𝐿.$& curves for vehicle T11 (upper)

and T12 (lower).

Figure 3.9 illustrates how fuel is saved over the course of a real delivery trip. First, it

can be seen that the simulated SOC and the actual SOC are closely aligned. Second, as the

𝐿Z.$& is lowered by the developed method, the actual SOC reference value is lower than

the baseline 𝐿Z.$& case (100 miles). Consequently, the actual SOC follows the reference

value, consuming less fuel at the last part of the trip compared with the unchanged one.

Also, the minimal SOC during the trip is greater than 10%. A comparison of engine

operation frequency for the last part of the same trip is shown in Figure 3.10. For clarity,

the y-axis has two “on” positions, one for the Bayesian EMS and one for the baseline

condition. It is clear from the figure that the REx engine operated much less frequently

for the Bayesian EMS case, thus consuming less fuel.

 48

Figure 3.9: Illustration of how fuel is saved in a real delivery trip.

Figure 3.10: Engine operation frequency for Bayesian EMS and baseline case.

Figure 3.12 and Figure 3.13 show the detailed fuel consumption and MPGe of test

delivery trips for two vehicles. It can be observed that improvement is not guaranteed

when the 𝐿Z.$& is lowered. The reason is that for some of the delivery trips, the 𝐿Z.$&	is not

low enough to make a difference. Fuel use for a given vehicle in a particular trip is a

 49

function of the 𝐿.$& value. It was observed that fuel use reduction is not guaranteed when

the 𝐿.$& value is lowered from the original setting. Also, fuel use will not increase after it

is higher than a particular value. For example, Figure 3.11 shows the fuel use under

different 𝐿.$& of a trip from vehicle D. It can be found that when the 𝐿.$& is higher than

about 90 miles, no matter how high it is, the fuel use is the same. On the other hand, the

𝐿.$& should be lower than 90 miles to achieve some fuel reduction for this trip. The value

below which fuel can be saved is different to each trip of one vehicle due to different trip

distance and energy intensity.

Figure 3.11: Fuel use and minimal SOC under different 𝐿.$& for a trip of vehicle D.

 50

Figure 3.12: Fuel use and MPGe comparison for test trips of vehicle T11.

Figure 3.13: Fuel use and MPGe comparison for test trips of vehicle T12.

All fuel reduction data for the 13 demonstration vehicles is summarized in Table 3.3.

It can be observed that the average fuel use reduction ranges from 0% to 28.4%. The high

fuel use of the original setting is due to the fact that there is no clear method to determine

the 𝐿.$& for different delivery vehicles in different delivery areas. The proposed

framework can effectively tune the 𝐿.$& for each vehicle in the thermostatic method by

updating the estimated distribution associated with each individual vehicle every time

there is a new trip data.

 51

This work provides a scalable and systematic framework for the energy management

of the EREVs used for package delivery. It can be used with a small amount data and deals

with the sequential nature of the problem elegantly. Since the developed framework is

conservative and programs the 𝐿.$& only at the beginning of a trip, there is potential to

further reduce fuel use if it is set dynamically using real-time information during the trip.

Vehicle
Number

Average MPGe
Improvement (%)

Average Fuel
Reduction (%) Number of Trips

T0 0 0 10

T1 2.7 4.2 3

T2 5.8 9.2 3

T3 11.9 15.9 6

T4 3.3 4.9 6

T5 13.8 18.3 7

T6 4.1 6.6 9

T7 5.4 8.7 9

T8 1.2 1.8 10

T9 20.8 28.4 15

T10 8.4 11.9 15

T11 9.3 11.2 16

T12 10.5 16.5 46

Total 8.9 12.8 155

Table 3.3: Fuel efficiency improvement

 52

4. DEEP REINFORCEMENT LEARNING BASED ENERGY MANAGEMENT

 Reinforcement Learning

Reinforcement learning algorithms are used to solve sequential decision-making

problems under uncertainty, which means they are aimed to find good behavioral

strategies to achieve some predefined goals under an environment or system that is

unknown to the algorithm [83]-[85]. The searching process of good behavioral strategies

is driven by the interaction with the unknown environment with trial and error, and this

process is also called learning. If the mathematical model of the environment is given, the

problem can be solved by planning methods.

Reinforcement learning is closely connected to optimal control [80]-[82]. Optimal

control is also used to solve sequential decision-making problems, and the main difference

is it requires a known mathematical model of the studied system, for example, dynamic

programming (DP) can achieve the theoretical optimal results given the known model.

Value-based deep reinforcement learning can be considered to approximate dynamic

programming [82] with deep neural networks as function approximators. In the optimal

control literature, the goal of a controller is to minimize the cumulated cost in a known

system through a sequence of decisions or controls. In the terminology of reinforcement

learning, the goal of an agent is to maximize the cumulated reward in an unknown

environment through a sequence of actions. The more detailed discussion on the

connection and difference between reinforcement learning and optimal control can be

found in [81]. In the remaining of this dissertation, our problem is formulated in the RL

 53

setting since the underlying environment that generates the velocity profiles is unknown

to us.

In a RL problem setting, there are two roles, the agent and the environment. The

boundary between the agent and the environment is determined by the criteria of whether

it can be totally controlled. The agent is the part we can control, and the environment is

the part that is unknown to us. We can only influence or learn about the environment

through interaction with it by controlling the agent. The interaction is enabled by three

signals: state (𝑠), action (𝑎), and reward (𝑟). There are different types of RL problems and

in this dissertation, we focus on the episodic task with discrete time steps, which means

there is a clear terminal state for each task. At the beginning of each episode, the initial

state 𝑠; is provided by the environment. The agent observes 𝑠; and chooses to execute

action 𝑎; according to its policy 𝜋;, which is a mapping from states to actions: 𝜋: 𝑠 → 𝑎.

The environment responses with the next state 𝑠! and reward 𝑟*. This interaction process

will continue until a terminal state 𝑠D is achieved, and each episode of interaction can be

recorded as:

𝑠;, 𝑎;, 𝑟;, 𝑠!, 𝑎!, 𝑟!, 𝑠", 𝑎", 𝑟", 𝑠@…𝑠D . (4.1)

The policy 𝜋 is improved using the recorded interactions and updated during or after

each episode according to different RL algorithms. The goal of the policy	𝜋 is to achieve

high discounted cumulated rewards at each time step 𝑡, which is defined as:

𝐺& = 𝑟& + γ𝑟&>! + γ"𝑟&>" +⋯+ γDE!E&𝑟DE!, (4.2)

where γ ∈ [0,1] is the discount factor. When it equals 0, the agent only considers the

immediate reward 𝑟&, meaning that it is extremely “shortsighted”. When it equals to 1, the

 54

agent considers all future rewards equally, meaning that it is very “farsighted”. As future

rewards are more difficult to earn, a discount factor slightly less than 1 is widely used.

A sequential decision-making problem can be formulated as a RL problem by

converting it to a Markov decision process (MDP). An MDP consists of a state space 𝑆,

an action space 𝐴 , a reward function 𝑟(𝑟&|𝑠&>!, 𝑠& , 𝑎&), a transition probability model

𝑝(𝑠&>!|𝑠& , 𝑎&) and a discount factor γ. It should be noted that in MDPs, the transition

probability to next states 𝑠&>! only depends on the current state 𝑠& and action 𝑎& so that it

has the Markov Property. It can be considered as the current state 𝑠& consists of all the

information that can make a difference for the future, and it is sufficient to make decisions

according to it. If a problem can be formulated as an MDP, RL algorithms can be used to

solve it, i.e., find satisfying policies. If states are not available and only observations (𝑜&)

can be used, partially observable MDP (POMDP) related algorithms should be considered

[74].

One of the key features of RL is the trade-off between exploration and exploitation.

The main reason behind it is the delayed rewards. For each time step, the reward received

from the environment can not represent how good is the selected action accurately. For

example, some states with high rewards may only be achieved by going through some

negative or low rewards. In contrast, actions lead to immediate positive rewards may lead

to bad state space. Consequently, the agent must try different actions at different states to

cumulate knowledge about the unknow environment. At the same time, it should also

exploit the experience it gained from previous interaction to get high cumulated rewards.

Although these two ideas have the same final goal: to achieve high cumulated reward,

 55

they are contradictory to some degree when solving RL problems, since the best action

according to the current estimation is usually not the action with highest uncertainty.

Practically, for problems with a large continuous state space, the most widely used

methods are based on heuristics like 𝜀-greedy and adding noises to the action directly,

which are easy to implement and works well for many problems. More sophisticated

exploration methods can be found in [87] and [88], and are an active research area with

advancements continually being developed.

 Feedforward Neural Networks

Feedforward neural networks (FNNs), which are also called multi-layer perceptron

(MLPs), are powerful and flexible function approximators. They are capable of learning

complex nonlinear mappings. In fact, it has been proved that neural networks with just

two layers of weights are capable of approximating any continuous functional mapping

[89][93], detailed discussion about the universal approximation theorem can be found in

[90][91]. In this part, NN architectures for regression and classification with

corresponding loss functions are introduced.

The structure of a general FNN is shown in Figure 4.1. The inputs have 𝑑 dimensions.

There are 𝑀 hidden units and 𝑐 output units. The output 𝑧F of hidden layer can be

calculated by transforming the linear combination of inputs using an activation function

𝑔(∙). The linear combination of the inputs is:

𝑎F =e𝑤F2
(!)𝑥2

4

2:;

, (4.3)

 56

where 𝑤F2
(!) is the weight in the first layer, going from the 𝑖𝑡ℎ dimension of the input to

the 𝑗𝑡ℎ hidden unit. Then, it is transformed by an activation function:

𝑧F = 𝑔{𝑎F}. (4.4)	

 The output 𝑦G of the FNN can be calculated similarly as 𝑧F:

𝑦G = 𝑔� �e𝑤GF
(")𝑧F

H

F:;

� . (4.5)

By combining (4.3)-(4.5), the function represented by the FNN structure shown in

Figure 4.1 can be written as:

𝑦G = 𝑔� e𝑤GF
(") ∙ 𝑔 ¡e𝑤F2

(!)𝑥2

4

2:;

¢
H

F:;

£ . (4.6)

More layers can be added to the shown general FNN structure which leads to more

transformations like (4.5).

Figure 4.1: An example of a feedforward neural network with one hidden layer. The

bias parameters have a fixed value of 1.

 57

For regression tasks, given the known right label 𝑡G# , the most widely used error

function is the sum-of-squares error:

𝐸 =
1
2ee[𝑦G(𝑥#; 𝑤) − 𝑡G#]"

-

G:!

9

#:!

. (4.7)

This error function can be derived from the principle of maximum likelihood. Given a

set of training data which is assumed to be independently and identically distributed, the

likelihood function can be expressed as:

𝐿 =¥𝑝(𝑥#, 𝑡#)
9

#:!

=¥𝑝(𝑡#|𝑥#)𝑝(𝑥#)
9

#:!

. (4.8)	

 Usually, instead of maximizing the likelihood, it is more convenient to minimize the

negative logarithm of the likelihood:

𝐸 = −𝑙𝑛𝐿 = −e 𝑙𝑛𝑝(𝑡#|𝑥#)
9

#:!

−e𝑙𝑛
9

#:!

𝑝(𝑥#). (4.9)	

 Since the second term does not depend on the weights, (4.9) is rewritten as:

𝐸 = −e𝑙𝑛𝑝(𝑡#|𝑥#)
9

#:!

. (4.10)	

 By assuming 𝑝(𝑡#|𝑥#) is Gaussian distributed with fixed unknown variance, the sum-

of-squares error can be derived.

 For classification tasks, the error function of cross-entropy is widely used with the 1-

of-c coding scheme of target data 𝑡G# , or with 0 ≤ 𝑡G# ≤ 1 and ∑ 𝑡G#-
G:! :	

𝐸 = −ee𝑡G#𝑙𝑛𝑦G(𝑥#; 𝑤)
-

G:!

9

#:!

. (4.11)

 58

This function is derived by assuming the conditional probability 𝑝(𝑡#|𝑥#) in (4.10)

can be written as:

𝑝(𝑡#|𝑥#) =¥𝑦G(𝑥#; 𝑤)&'
(

-

G:!

. (4.12)

By using the derived error functions, for regression problems, the output of the NN

can be interpreted as the approximation of conditional average of the target data. For

classification problems, the output can be interpreted as probabilities of class membership,

conditioned on the outputs of the hidden units. With other form of loss functions, the NN

can be used to approximate other quantities, e.g., if the mean absolute error is used in a

regression task, the conditional median of the target data is modeled.

The activation function 𝑔(∙) in the FNN structure is used to provide the nonlinearity.

The default choice is the rectified linear unit (ReLU) [93][96]. Other useful functions

include sigmoid function and tanh function.

With a determined NN structure and a chosen loss function, the optimization or the

training process of the weights in the NN is usually performed by gradient based methods

and the idea of error back-propagation [92]. The detailed optimization methods beyond

the scope of this dissertation and can be found in [93][94]. The implementation of NNs

and the training process in this dissertation are all enabled by the popular deep learning

package PyTorch [95].

 59

 Reinforcement Learning Problem Formulation

The energy management problem studied in this work can be formulated as a RL

problem by defining the five components of an MDP. The discount factor γ is set to be

0.99 in this work and the rest of four components are defined as follows.

• State space

The state space is a seven-dimensional space, 𝑆 ∈ ℝI. Each dimension of the state

space represents one type of available information that can be provided by the studied

EREV in real-time during the delivery task. Therefore, each state 𝑠& is represented by a

vector:

𝑠& = [𝑡&(+'$, , 𝑑, 𝑆𝑂𝐶, 𝑓, 𝑥, 𝑦, 𝐿.$&], (4.13)

where 𝑡&(+'$, is the travelled time, d is the travelled distance, SOC is the current state of

charge, f is the current total fuel use, x and y are the GPS coordinates, and 𝐿.$& is the

current 𝐿.$& setting. A state 𝑠& is a point in the state space.

• Action space

The action space is a one-dimensional space, 𝐴 ∈ ℝ! . Its value represents the

magnitude of 𝐿.$& change at each timestep. In this work, two versions of action space are

defined: the discrete version and the continuous version. The discrete version is defined

as:

𝑎& ∈ {𝐴E!;, 𝐴EJ, 𝐴;, 𝐴>J, 𝐴>!;}, (4.14)

where the subscript represents the magnitude of 𝐿.$& change. The continuous version is

defined as:

𝑎& ∈ [−𝐴0+K , 𝐴0+K]. (4.15)

 60

The 𝑎& can be in the range of −𝐴0+K to 𝐴0+K ,and 𝐴0+K is set to be 20 in this work.

In addition, if the magnitude of the calculated action is smaller than 5, it will be set to 0,

which leads to no change of 𝐿.$& at this time step. In other words, the algorithm has a

choice of doing nothing by producing an action 𝑎& in the range of (−5,+5). This design

is useful to our reward function.

• Reward function

The reward function should reflect our goal of minimizing fuel consumption, with the

constraint of battery SOC always higher than 10%. To guide the RL algorithm to find a

policy that can achieve this goal, the reward function is designed as:

𝑟& = 𝑟)𝑡),& + 𝑟MNO𝑡MNO,& + 𝑟+,& + 𝑟- , (4.16)

where the first term penalizes fuel use and its magnitude is proportional to the engine

running time 𝑡),& with coefficient 𝑟) equals to -0.001. The second term penalizes the

condition of SOC lower than 10% and its magnitude is proportional to the amount of time

under that condition 𝑡MNO,& with coefficient 𝑟MNO equals to -0.060. To guide the algorithm

in finding an efficient policy, 𝑟+,& is added to penalize actions that change 𝐿.$&. It will

cause a reward of -0.020 if the 𝐿.$& is changed.

The first term 𝑟)𝑡),& penalizes all the fuel use during the trip as the remaining distance

and energy intensity is unknown. However, for trips exceeding the vehicle’s all-electric

range, some amount of fuel use is necessary to keep the SOC larger than 10% during the

whole delivery trip. To compensate for this necessary fuel use, a reward term 𝑟- is imposed

at the end of the trip. After the trip is finished, the amount of fuel that was necessary to

keep the SOC larger than 10% is simulated using the vehicle model and the velocity profile,

 61

which determines the magnitude of 𝑟-. For example, if after a delivery trip it is calculated

that 1 gallon of fuel was required to keep the SOC larger than 10% during the trip, and the

actual total fuel use was 1.5 gallons, the negative reward caused by the required 1 gallon

will be compensated by the 𝑟- term at the end of the trip.

• Transition probability

The transition probability 𝑝(𝑠&>!|𝑠& , 𝑎&) of the environment that generates the velocity

profiles is unknown and difficult to model as discussed in the problem statement section.

Therefore, it is approximated by the recorded historical delivery trips and the vehicle

model. Based on any part of the recorded velocity profiles, the change of SOC and fuel

consumption under arbitrary 𝐿.$& values corresponding to that part of trip can be

calculated. Since for any segment of recorded velocity profiles, the change of 𝑡&(+'$, , 𝑑

and GPS coordinates are fixed, the next state 𝑠&>! can be obtained. Combined with the

designed reward function, the reward 𝑟& can also be calculated. This approximation

provides an interface for the intelligent agent to interact with. The underlying assumption

for this approximation method is the recorded trips can represent the future trips well so

that the experience learned from interaction with this environment is also useful for future

testing. Consequently, to use DRL methods, relatively large amount of historical delivery

trips is needed.

 Value-based Method

Value-based RL algorithms are based on the concept of action-values, which is also

called Q-values [83]. It is defined as:

𝑄P(𝑠, 𝑎) = 𝐸P[𝐺&|𝑠& = 𝑠, 𝑎& = 𝑎]. (4.17)

 62

It represents the expected discounted cumulated reward 𝐺& can be achieved if action 𝑎

is taken at state 𝑠 and following policy 𝜋 thereafter. Intuitively, it quantifies the goodness

of taking action 𝑎 at state	𝑠 under policy 𝜋 in the environment. The optimal action-value

is defined as:

𝑄∗(𝑠, 𝑎) = 𝑚𝑎𝑥R𝑄P(𝑠, 𝑎). (4.18)

For each state-action pair, it represents the highest action-value that can be achieved

in the predefined environment among all possible policies. Therefore, if the optimal

action-values for all possible state-action pairs that is possible to be encountered during

the task are known, the optimal control policy can be derived easily by acting greedily

with respect to it:

𝜋∗(𝑠) = 𝑎𝑟𝑔𝑚𝑎𝑥+𝑄∗(𝑠, 𝑎). (4.19)

Consequently, the goal of value-based RL methods is to estimate the optimal action-

values which is based on the Bellman optimality equation [80][81]:

𝑄∗(𝑠, 𝑎) = 𝐸.)[𝑟 + γ𝑚𝑎𝑥+)𝑄∗(𝑠S, 𝑎S)|𝑠, 𝑎]. (4.20)

It describes the relation that the optimal action-values should satisfy for a given MDP.

The standard Q-learning algorithm is an off-policy, temporal difference (TD) method

which utilizes this relation [83][86]. Instead of trying to evaluate the expectation over all

possible next states, which requires the detailed environment model and leads to dynamic

programming, it approximates the right hand side with a transition pair (𝑠& , 𝑎& , 𝑟& , 𝑠&>!).

This approximation process can be considered as sampling from the underlying

environment, i.e., sampling from the right hand side of (4.20), and the sampled result is

 63

called TD target.	𝑠&>! is the resulting state and 𝑟& is the immediate reward when action 𝑎&

is taken at state 𝑠&:

𝑄&+(T$& = 𝑟& + 	𝛾𝑚𝑎𝑥+)𝑄(𝑠&>!, 𝑎S). (4.21)

Traditional RL algorithms use tables to represent the action-values. For tables, the

entry for 𝑄∗(𝑠& , 𝑎&) will be updated by 𝑄&+(T$& at each iteration:

𝑄(𝑠& , 𝑎&) ← 𝑄(𝑠& , 𝑎&) + 𝛼[𝑟& + 	𝛾𝑚𝑎𝑥+)𝑄(𝑠&>!, 𝑎S) − 𝑄(𝑠& , 𝑎&)], (4.22)

where 𝛼 is the step size or learning rate.

For larger scale real-world problems, NNs are widely used as function approximators

for the optimal action-value functions, which is expressed as 𝑄(𝑠, 𝑎; 𝜃), and that is why

DRL is also called neuro-dynamic programming [80]. It is called Q-Network and 𝜃

represents all the parameters in the model. Linear models are also widely investigated in

the literature and it can be considered as a special case of Q-Network. The algorithm of

Deep Q-Network (DQN) is used in this work [98]. The loss function is the square of the

difference between the estimated Q-value for the current state-action pair and its TD target,

which is also called TD error:

𝐿 = ¬𝑄&+(T$& − 𝑄(𝑠& , 𝑎&; 𝜃)­
". (4.23)

The Q-Network can be trained as in the supervised learning case by utilizing (3.23).

However, there are mainly two problems encountered in training Q-networks. First, the

transition pairs generated during the training process are highly correlated. This is because

during one episode of task, the action chosen in the current time step will influence the

next state. This makes the Q-Network overfits to some part of the state space, and the data

are not independently and identically distributed. Second, when a gradient decent step is

 64

performed to update the parameter 𝜃, both of 𝑄(𝑠& , 𝑎&; 𝜃) and the TD target 𝑄&+(T$& are

changed as they are both determined by 𝜃 . This means a value is updating toward a

changing target, which leads to highly unstable training processes. To solve the first

problem, experience replay is used. Every time a transition pair is observed, it is added to

a replay buffer. To update 𝜃, a random minibatch of transition pairs is sampled from the

buffer, which breaks the temporal correlation. To solve the second problem, two copies

of the Q-network are kept. The second Q-network is called the target network. Every time

the main Q-network is updated, a soft update is performed on the target network, which

means 0.01% of the updated Q-network will be mixed into the target network, providing

a more stable TD target. In addition, the technique of double DQN is also highly helpful

for both the training process and the final performance of DQN-based algorithms [99]. It

solves the problem of maximization bias and the form of TD target is:

𝑄&+(T$& = 𝑟& + 	𝛾𝑄(𝑠&>!, 𝑎𝑟𝑔𝑚𝑎𝑥+)𝑄(𝑠&>!, 𝑎S; 𝜃); 𝜃E). (4.24)

For each episode of interaction, the initial state 𝑠; is provided by the environment,

which is a fixed vector, since the delivery task starts at the same location, battery SOC as

well as the initial 𝐿.$& setting. Then, the action is selected with respect to the current Q-

network with the exploration strategy of 𝜀 −greedy, i.e., choose actions randomly with

probability 𝜀 and choose actions with the highest action-value otherwise. The value of 𝜀

is initialized as 1.0 and gradually decreased to 0.01. The updated value of 𝐿.$& will be

used to calculate the next state 𝑠! and reward 𝑟;. The transition pair (𝑠;, 𝑎;, 𝑟;, 𝑠!) will be

stored into the experience replay buffer. This process will continue until the current trip is

finished. When all the training trips are used once, it is called one epoch of training. The

 65

number of epochs is a hyperparameter. The update step is executed during the training

process after the number of stored transition pairs is higher than the batch size. The

detailed training algorithm is summarized in Algorithm 1 and Figure 4.2 illustrates one

step of interaction which is in the while loop of Algorithm 1.

The main limitation of this method is the algorithm is not guaranteed to converge. The

main reason is the combination of the Bellman operator and the squared loss function is

not a contraction with respect to any norm, which means the current estimation of Q-

values is not guaranteed to be closer to the optimal Q-values after the gradient-based

update with respect to any distance metrics, e.g. L1 norm or L2 norm. In addition, due to

the use of NN, global optimal solution cannot be achieved. Consequently, the goal of using

DQN is to find weights that yield satisfying results and it should be achieved by

hyperparameter tuning and multiple times of training with different initial NN weights.

This is also true for all other DRL algorithms.

There are many techniques can be added to the DQN framework, such as prioritized

experience replay [100], dueling network structure [101] and noisy network structure

[102]. In [103], a combination of many techniques mentioned above including double

DQN is studied.

 66

Figure 4.2: Illustration of one update step in Algorithm 1.

Algorithm 1 Double Q-learning

Initialize the action-value function Q-network with random parameters 𝜃
Initialize the target action-value function Q-network as 𝜃* = 𝜃
Initialize the replay buffer 𝐵 to capacity 𝐷 with no transitions
Initialize ε = 1.0
For epoch = 1, M do
. For trip = 1, N do
. . Get initial state 𝑠+ from current trip data
. . 𝑡 = 0
. . While 𝑡 < 𝑇, do
. . . With probability 𝜀, randomly select an action 𝐴,
. . . Otherwise select 𝑎, = 𝑎𝑟𝑔𝑚𝑎𝑥-𝑄(𝑠, , 𝑎; 𝜃)
. . . Update current 𝐿./, according to 𝑎,
. . . Run the vehicle model for 2000s with updated 𝐿./,
. . . Return state 𝑠,01 and 𝑟,
. . . Store the transition (𝑠, , 𝑎, , 𝑟, , 𝑠,01) in the replay buffer 𝐵
. . . Sample random 𝑛 transitions (𝑠2 , 𝑎2 , 𝑟2 , 𝑠201) from 𝐵

. . . 𝑦2 = >
𝑟2 																			if	trip	terminates	at	step	j + 1

𝑟2 + 𝛾𝑄(𝑠201, 𝑎𝑟𝑔𝑚𝑎𝑥-!𝑄M𝑠201, 𝑎; 𝜃N; 𝜃*)	otherwise

. . . Perform a gradient descent step on R𝑦2 − 𝑄M𝑠2 , 𝑎2; 𝜃NT
3

. . . Perform soft update of the target network 𝜃*

. . . 𝑠, = 𝑠,01

. . 𝜀 = max	(0.01,0.995 × 𝜀)

. End For
 End For

 67

 Actor-Critic-based Method

Value-based methods make decisions according to the estimated action-values and do

not keep explicit policies. For actor-critic-based methods, instead of keeping implicit

policies, policies are parametrized directly by function approximators, which take states

as inputs and actions as outputs:

𝑎& = 𝜋U4(𝑠&) = 𝜇(𝑠&|𝜃B), (4.25)

where 𝜃B represents all the parameters in the parametrized policy, which is also called

actor. The policy can be either stochastic or deterministic. In this work, the algorithm of

deep deterministic policy gradient (DDPG) is used [104][105]. Some literature about

stochastic policies can be found in [106]-[110]. The goal of the actor is to maximize the

expected discounted cumulated reward for each episode of interaction, and it is defined

as:

𝐽(𝜃B) = 𝐸V~154(V)[𝑟(𝜏)]. (4.26)

𝜏 is a trajectory of interaction which has the form of:

𝑠;, 𝑎;, 𝑠!, 𝑎!, 𝑠", 𝑎"…𝑠D . (4.27)

𝑟(𝜏) is the total discounted reward for a trajectory 𝜏:

𝑟(𝜏) =e𝛾&𝑟(𝑠& , 𝑎&)
D

&:;

. (4.28)

𝑝U4(𝜏) is the probability distribution of trajectory 𝜏 under policy 𝜋U4 and the

predefined environment:

𝑝U4(𝜏) = 𝑝(𝑠;)¥𝜋U4(𝑠&)
D

&:;

𝑝(𝑠&>!|𝑠& , 𝑎&). (4.29)

 68

Therefore, 𝐽(𝜃B) represents the expected discounted cumulated reward the policy 𝜋U4

can achieve under the predefined environment, which quantifies how good is a policy under

a specific environment. To improve the quality of the policy 𝜋U4, the parameters 𝜃B should

be adjusted so that the value of 𝐽(𝜃B) is increased. According to the deterministic policy

gradient theorem [104], the policy gradient ∇U4𝐽(𝜃B) can be estimated from 𝐾 sampled

transition pairs (𝑠2 , 𝑎2 , 𝑟2 , 𝑠2>!) as:

∇U4𝐽(𝜃B) ≈
1
𝐾e[∇+𝑄R54(𝑠2 , 𝑎|𝜃

X)|+:BY𝑠2Z𝜃B[∙ ∇U4
\

2:!

𝜇(𝑠2|𝜃B)]. (4.30)

𝑄R54(𝑠, 𝑎|𝜃
X) is the action-value defined in (4.17) and it is also called the critic, since

it quantifies how good is the action calculated by the actor in the current state. 𝜃X

represents all the parameters in the critic. If the policy gradient ∇U4𝐽(𝜃B) can be evaluated,

the parameters in the actor can be improved by the gradient ascent method:

𝜃B ← 𝜃B + 𝜂∇U4𝐽(𝜃B). (4.31)

The learning rate, 𝜂 is a hyperparameter, which means it is not learned by the

algorithm but determined by us. The training process is similar to the training process of

DQN described and there are two main differences. First, for one update step, both of the

actor and the critic are updated. Second, the noise for exploration is added by utilizing a

predefined Gaussian distribution. When the action is calculated by the actor, a sample

from the Gaussian distribution is added to the calculated action. The detailed algorithm is

summarized in Algorithm 2 and the illustration of one update step is shown in Figure 4.3.

 69

Figure 4.3: Illustration of one update step in Algorithm 2.

Algorithm 2 Deep Deterministic Policy Gradient

Initialize the critic network 𝑄(𝑠, 𝑎|𝜃6) with random parameters 𝜃6
Initialize the target critic network 𝑄7(𝑠, 𝑎|𝜃6!) with 𝜃6! = 𝜃6
Initialize the actor network 𝜇(𝑠|𝜃8)	with random parameters 𝜃8
Initialize the target actor network 𝜇7(𝑠|𝜃8!) with 𝜃8! = 𝜃8
Initialize the replay buffer B to capacity 𝐷 with no transitions
Initialize ε = 0.3, 𝜏 = 0.001, 𝐷 = 109, 𝐾 = 48
For epoch = 1, M do
. For trip = 1, N do
. . Get initial state 𝑠+ from current trip data
. . While t < T, do
. . . Calculate action 𝑎, = 𝜇(𝑠,|𝜃8) + ε ∙ 𝑁(0,1)
. . . Clip 𝑎, to the range of [-1, +1]
. . . Update current 𝐿./, according to 𝐴:-; ∙ 𝑎,
. . . Run the vehicle model for 2000s with updated 𝐿./,
. . . Return state 𝑠,01 and reward 𝑟,
. . . Store the transition (𝑠, , 𝑎, , 𝑟, , 𝑠,01) in the replay buffer B
. . . Sample 𝐾 random transitions (𝑠< , 𝑎< , 𝑟< , 𝑠<01) from B
. . . Set 𝑦< = 𝑟< + 𝛾𝑄7(𝑠<01, 𝜇7(𝑠<01|𝜃8

!)|𝜃6!)
. . . Update critic network by minimizing the loss:
. . . 𝐿 = 1

=
∑ (𝑦< − 𝑄(𝑠< , 𝑎<|𝜃6))3=
<>1

. . . Update the actor network using the sampled policy gradient:

. . . ∇?"𝐽 ≈
1
=
∑ ∇-𝑄(𝑠, 𝑎|𝜃6)|.>.#,->8(.#)∇?"
=
<>1 𝜇(𝑠|𝜃8)|.#

. . . Perform soft update on target networks:

. . . 𝜃6! ← 𝜏𝜃6 + (1 − 𝜏)𝜃6!

. . . 𝜃8! ← 𝜏𝜃8 + (1 − 𝜏)𝜃8!

. . . 𝑠, = 𝑠,01

. End For
 End For

 70

 Results and Discussion

4.6.1. Deep Q-Network

For model selection and hyperparameter tuning, the Q-network was trained on 52

delivery trips for 500 epochs. The distance and energy intensity of the used training trips

ranged from of 38 to 57 miles and 1.03 to 1.20 kWh/miles, respectively. The Q-network

used was a feedforward neural network with two hidden layers. The number of hidden

units in the two hidden layers was tuned in the range of 16 to 64 with an interval of 16.

Learning rate was tuned over the range of 0.00001 to 0.00025 and batch size was tuned

over the range of 16 to 64. Part of the tuning results are shown in Figure 4.4. The selected

model structure of Q-network is summarized in Table 4.1.

Figure 4.4: Learning curves of 3 learning rates (upper) and batch sizes (lower).

 71

To evaluate the performance of the trained Q-network, it was tested on 44 unseen trips

made by the same vehicle with a distance range of 31 to 54 miles. Figure 4.5 and Figure

4.6 show the detailed performance of the trained DQN algorithm on two of the test trips

with different distances. For the trip in Figure 4.5, no fuel was used, so that the vehicle

achieved the highest fuel efficiency. For the trip in Figure 4.6, the 𝐿.$& was first decreased

and then increased at the last part of the trip, achieving a final SOC very close to 10%.

Figure 4.5: Performance of DQN on a test trip with 40 miles.

 DQN

Hidden layer 1 Number of units 64
 Activation function ReLU [95]
Hidden layer 2 Number of units 32
 Activation function ReLU
Output layer Number of units 5
 Activation function Linear
Hyperparameters Optimizer Adam [97]
 Learning rate 5 × 10EJ
 Batch size 48

Table 4.1: Neural network structures and hyperparameters for DQN

 72

Figure 4.6: Performance of DQN on a test trip with 50 miles.

To better understand how the algorithm makes decisions, the action-values

corresponding to state 𝐴 and 𝐵 in Figure 4.6 is shown in Figure 4.7. For state 𝐴, the action

values for different actions do not differ largely as the algorithm knows that no matter

what action is chosen in this early time step, there are enough opportunities in the

remaining trip to choose the correct 𝐿.$&. Since 𝐴E!; had the highest action value, 𝐿.$&

was decreased by 10. However, for state 𝐵, the action-value was high only for 𝐴!; as the

algorithm figured out that unless 𝐿.$& was immediately increased by 10 miles, the SOC

would be lower than 10% for some time during the remaining trip, which would lead to a

large negative reward.

Figure 4.7: Action-values for state 𝐴 (left) and state 𝐵 (right).

 73

The developed algorithm can also generalize to unforeseen conditions. During the

training, the initial 𝐿.$& was always set to be 100 miles. During the testing, if the initial

𝐿.$& was changed to other values, the algorithm still made stable decisions. For example,

in Figure 4.8, the initial 𝐿.$& was set to 20 miles for the trip in Figure 4.6. The algorithm

still achieved good performance, even though during training, this condition was never

seen by the algorithm.

Figure 4.8: Performance of DQN on low initial 𝐿.$& values.

In Figure 4.9, the MPGe (miles per gallon gasoline equivalent) of using DQN and the

baseline setting is compared for every test trip. For most of the trips, the DQN method

achieved higher fuel efficiency by tuning the 𝐿.$& adaptively using real-time information.

The average fuel economy improvement was 19.5% over 44 test trips with a distance

range of 31 miles to 54 miles. Also, there was no condition of SOC lower than 10% in all

test trips. The results show the trained DQN can generalize to unseen trips with different

distance and energy intensity. Consequently, the method can be used in real-world

application without information from other sources or an additional predictive model.

 74

Figure 4.9: Comparison of MPGe by using DQN and baseline settings on test trips.

4.6.2. Deep Deterministic Policy Gradient

The network structure and hyperparameters for the DDPG algorithm is summarized

in Table 4.2. The activation function tanh is used in the output layer of the actor since it

can provide bounded outputs (−1,1). The training trips are the same with that of DQN.

To evaluate the performance of the trained DDPG solution, it was tested on 51 delivery

trips not used for training made by the same vehicle. The distance range of the test trips

was from 31 to 54 miles. Figure 4.10 shows the velocity profiles of two test trips with

significantly different distances to demonstrate the performance of the solution. Figure

4.11 and Figure 4.12 show the detailed performance of the solution on the two test trips.

For the shorter trip, the vehicle did not use any fuel during the trip, achieving the highest

 Actor Critic

Hidden layer 1 Number of units 64 64
 Activation function ReLU ReLU
Hidden layer 2 Number of units 48 48
 Activation function ReLU ReLU
Output layer Number of units 1 1
 Activation function tanh Linear
Hyperparameters Optimizer Adam Adam
 Learning rate 10E] 10E@
 Batch size 48 48

Table 4.2: Neural network structures and hyperparameters for DDPG

 75

fuel efficiency under this EMS. For the longer trip, the 𝐿.$& was increased at the final leg

of the trip and prevented the SOC from dropping lower than 10% while not using too

much unnecessary fuel.

Figure 4.10: Velocity profiles of two example test trips with a distance of 35 miles

(upper) and 50 miles (lower).

Figure 4.11: Performance of DDPG on a test trip with 50 miles.

Figure 4.12: Performance of DDPG on a test trip with 35 miles.

 76

A straightforward view of how the algorithm quantifies the value of different actions

under different states can be determined by calculating the action-value 𝑄R54(𝑠, 𝑎|𝜃
X) by

the critic for different actions under state 𝐴 and 𝐵 shown in Figure 4.11. From Figure 4.13,

it can be observed that the actor and critic agree well. The actions calculated by the actor

are also quantified with high action-value by the critic compared with other possible

actions. On the other hand, for state 𝐴, an early stage of the trip, the difference between

the action-values are not significant as there is enough remaining time to change the 𝐿.$&

no matter what action is taken in this step. However, for state 𝐵, there is a gap of action-

value when the action is lower than about -10. This means if such actions are used (e.g.

decrease the 𝐿.$& by 15), it is highly possible that the SOC will drop below 10%, causing

a large negative reward. This is very similar to the interpretation of the action-values in

DQN.

Figure 4.13: Action-values of state 𝐴 (left) and state 𝐵 (right) calculated by the critic

for 13 example actions in the predefined range of [-20, +20]. The red bar indicates the

action that is calculated by the actor.

 77

The presented results also show that the trained DDPG solution is very robust,

generalizing to different unseen conditions like different initial SOC and 𝐿.$& setting. The

longer test trip shown in Figure 4.11 is used to show this characteristic. During the training

process, the initial SOC is 100% and the initial 𝐿.$& is 100 miles. From Figure 4.14 and

Figure 4.15, it can be observed that the algorithm can still keep the SOC higher than 10%

while minimizing fuel use under unseen conditions. Further investigation on the

robustness will be performed in future work by showing more quantitative results from

actual optimized trips.

Figure 4.14: Performance of DDPG on low initial 𝐿.$& values.

Figure 4.15: Performance of DDPG on low initial SOC values.

 78

The comparison of MPGe by using DDPG and baseline setting for all 51 test trips are

summarized in Figure 4.16. In most trips, the DDPG solution that dynamically changes

the 𝐿.$&	 outperforms the static baseline 𝐿.$&	. The average MPGe improvement was 21.8%

over 51 test trips with a distance range of 31 to 54 miles.

Figure 4.16: Comparison of MPGe by using DDPG and baseline settings on test trips.

4.6.3. Real-world Testing

The DDPG algorithm was tested on 3 in-use delivery vehicles with different

characteristics. To quantify the difference and similarity between the driving cycles of the

3 vehicles, characteristic acceleration 𝑎�, aerodynamic speed 𝑣+$(* and kinetic intensity 𝑘𝑖

are used, which are defined as [111]:

𝑎� =
∑ 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒(12 ∙ (𝑣F>!

" − 𝑣F"))9E!
F:!

𝐷 ,

𝑣+$(*" =
∑ 𝑣 ,^>!

@²²²²²²² ∙ 𝛥𝑡F,F>!9E!
F:!

𝐷 ,

𝑘𝑖 =
𝑎�

𝑣+$(*" . (4.32)

Kinetic intensity is used to quantify the characteristic of driving cycles. Intuitively,

urban driving cycles tend to have a high 𝑘𝑖 as it has lower speed limits and consists of

many stop-and-go conditions. On the contrary, highway driving tends to have a low 𝑘𝑖

 79

due to its high-speed nature. All the three metrics are closely linked to the energy usage

characteristic of a driving cycle independent of vehicle type. Therefore, they can be used

to quantify the similarity among driving cycles from an energy perspective [111]. In

Figure 4.17, the historical trip of the 3 vehicles are plotted with x-axis represents the 𝑎�

and y-axis represents the 𝑣+$(* of each trip. It can be observed that the data points

corresponding to the same vehicle form a cluster in the 𝑎�-𝑣+$(* space and the main parts

of the 3 clusters are clearly separated from each other with some amount of overlapping.

Consequently, it can be concluded that first, although the delivery trips corresponding to

the same vehicle are different, they share similar characteristics and follow some

underlying unknown distributions. Second, the three selected routes are clearly different

from each other according to the introduced metrics. The average distance (𝐷́), average

kinetic intensity (𝐾𝐼²²²) and average energy intensity (𝐸𝐼²²²) of the selected routes are also

summarized in Table 4.3.

Figure 4.17: Characteristics of the delivery trips of three testing vehicles.

 80

In Figure 4.18, the GPS trajectories of example historical delivery trips of the three

test vehicles are shown. For vehicle R1 and R2, the depot is connected with the delivery

area by a highway, so the driving condition consists of both highway and urban driving.

For vehicle R3, the depot is near to the delivery area so that the driving condition is much

like urban driving compared with the other two. These observations closely match the

intuition behind kinetic intensity: the average value of kinetic intensity of both R1 and R2

are higher than the R3, which is mostly urban driving.

After training, the trained algorithms were tested on new trips on the same routes. The

testing framework is illustrated in Figure 4.19. During each testing trip, the trip

information was uploaded from the vehicle every 5s during the driving, which contained

the state 𝑠& information. The trained RL algorithm took the 𝑠& as input and calculated the

corresponding 𝑎&. Then, the 𝐿.$& value stored in an FTP (file transfer protocol) server was

updated according to the action 𝑎& . The EREV requested the value of 𝐿.$& every 30

minutes.

Vehicle 𝐷́ (𝑚𝑖𝑙𝑒) 𝐾𝐼²²² (𝑘𝑚E!) 𝐸𝐼²²² (𝑘𝑊ℎ/𝑚𝑖𝑙𝑒) Number of trips

R1 46.0 0.66 1.08 52
R2 49.6 0.89 1.03 58
R3 46.3 1.06 0.92 62

Table 4.3: Statistics of the three selected routes

 81

 82

Figure 4.18: Example GPS trajectories of testing vehicle R1, R2 and R3.

Figure 4.19: Diagram illustrating the testing framework of DDPG.

The velocity profile of one example testing trip of R1 is shown in Figure 4.20, and the

𝐿.$& value along the trip and the corresponding 𝑆𝑂𝐶($) is shown in Figure 4.21. It can be

shown that on this particular trip, the 𝐿.$& is first decreased to a low value to prevent any

fuel use in the first half of the trip. Then, it is increased to make the 𝑆𝑂𝐶($) higher than

 83

the real-time SOC to charge the vehicle. After the battery is charged to some value that

the RL algorithm considers sufficient according to its interaction with the historical trips,

the 𝐿.$& is lowered again and there is no more fuel use in the rest of the trip. The trained

RL algorithm can adaptively tune the 𝐿.$& during the trip according to the real-time

information of the vehicle and it gains experience from the interaction with the historical

trips. The experience is embedded as the weights in the actor network 𝜇(𝑠&|𝜃B).

It can also be observed that the 𝐿.$& value is not changed at every 30 minutes; this can

be explained by the 𝑟+,& term in the defined reward function: to maximize the cumulated

future reward, the RL algorithm learned an efficient strategy that requires as little updates

as possible.

Figure 4.20: Velocity profile of the example test trip.

Figure 4.21: SOC, 𝑆𝑂𝐶($) and 𝐿.$& profile for the example test trip.

 84

In Figure 4.22, the SOC, fuel use, and engine state under the RL and baseline condition

are compared. The data of the RL condition is from the testing trip and the data of the

baseline condition is from simulation.

Figure 4.22: SOC, fuel use and engine state comparison between RL method and

baseline method. In the last figure, two “on” positions are labeled on the y-axis to

differentiate the two conditions.

In Figure 4.23, the MPGe and fuel use for the three test vehicles under RL and baseline

conditions are compared. The average MPGe improvement is shown in Figure 4.24, and

 85

the black line on each bar indicates one standard deviation from the mean value. The

detailed performance improvements are also summarized in Table 4.4.

In this chapter, under the assumption that the historical delivery trip data can represent

future conditions well, the energy management problem can be formulated as a sequential

decision-making problem and solved by DRL algorithms.

Figure 4.23: MPGe and fuel use comparison of all test trips of R1, R2 and R3.

 86

Figure 4.24: Mean and one standard deviation of MPGe improvement of R1, R2 and

R3.

Vehicle Average MPGe
improvement (%)

Average fuel use
reduction (%) Number of trips

R1 21.8 48.7 15
R2 20.1 33.1 9
R3 20.5 88.9 12

Table 4.4: Summary of testing results

 87

5. SAFE AND ROBUST ALGORITHMS FOR CONNECTED ENERGY

MANAGEMENT SYSTEMS

In recent years, deep reinforcement learning algorithms have been applied to many

applications in the area of transportation including traffic light cycle control [112][113],

autonomous driving [114][115], bottleneck decongestion [116], online ride order

dispatching [117], and energy management of hybrid vehicles [118][119]. It has been a

popular research topic especially for applications involving processes of sequential

decision making. However, although successes have been achieved with various degrees,

due to some characteristics of real-world problems and DRL, it is still not easy to deploy

DRL systems in real-world applications, especially for the area of transportation, where

robustness and safety are of great importance. This chapter mainly identifies the problems

that might be encountered when deploying trained DRL systems into real-world

conditions and gives potential solutions and research directions to the challenges. Safety

in the area of AI is becoming more and more important in recent years and some related

work can be found in [134]-[137].

First, model uncertainty is considered [120][121]. Most prior work about applying

DRL algorithms use a simulation environment to train the intelligent agent. This is

inevitable due to at least two reasons. First, under simulation environments, the interaction

process can be accelerated and paralleled so that it is not restricted by the actual time

available. In this way, the amount of data that DRL algorithms need can be generated.

Second, training an agent in a real-world environment can be expensive and dangerous.

Hardware could be destroyed during the exploration process, when any action could be

 88

chosen by the exploration strategy. Consequently, the problems related to the training in

the simulation environment should be considered carefully. For model-based methods, the

performance of the agent highly depends on the quality of the model of the environment,

and usually, building the model itself is a difficult research problem. Errors will

accumulate from the process of building the model and from the process of training the

agent using the model. Similarly, although model-free methods do not need an explicit

model of the environment, the collected data generated from the interaction between the

agent and the simulator may not represent all possible conditions in the real-world

scenario. Consequently, this work deals with model uncertainty: training a policy that not

only gives actions during a task, but also the confidence level about the action under the

current state, so that novel and out-of-distribution states could be captured.

Second, a risk-aware algorithm is developed to deal with environment uncertainty

[120]. Under simulation environments, agents are trained to yield high average scores.

However, giving an average satisfying results are sometimes not acceptable under real-

world problems, especially for safety-critical applications like autonomous driving.

Therefore, risk-aware strategies are developed in this work, making decisions using the

metric of conditional value at risk (CVaR) [128], which includes the average score as a

special case. This is enabled by distributional reinforcement learning algorithms [124]-

[127], which models the whole return distribution given state-action pairs instead of just

modelling the expected value (Q-value).

Lastly, the effects of adversarial examples [139][140] are investigated. Neural

networks are core components of DRL algorithms so that the problems related to them

 89

also need to be considered in DRL systems. In this work, the effects of adversarial

examples on DRL-based energy management systems are investigated, which

demonstrate NN-based policies are not stable under designed noise.

In the rest of this chapter, model uncertainty, environment uncertainty, and adversarial

attacks are discussed respectively, and the corresponding solutions or research directions

are followed.

 Uncertainties in Reinforcement Learning

5.1.1. Model Uncertainty

There are two kinds of uncertainty in an RL problem setting: model uncertainty and

environment uncertainty [120][121]. Model uncertainty (also called epistemic uncertainty)

can be explained away with enough data, and it is usually handled under a Bayesian

framework [74]. It can be beneficial to RL applications in at least two aspects. First, it

helps with exploration during the training process. In [122], a Bayesian ensemble of neural

networks (NNs) was used to quantify the predictive uncertainty and facilitate the

exploration strategy of Thompson sampling. Second, model uncertainty can help identify

novel and out-of-distribution data during testing, providing a safer algorithm. In [115], an

autonomous driving system was able to identify novel obstacles during testing and

perform safer and more conservative actions. In this work, our goal is to exploit the second

benefit.

A simple but inspiring regression problem is shown in Figure 5.1. There is a nonlinear

mapping from 𝑥 to 𝑦 and the eight red dots represent the available data points. An

ensemble of neural networks with imposed diversity are trained to capture the nonlinear

 90

mapping by learning from the available data [122]. It can be observed that, in the region

where data exists, different NNs agree well while in the region there is no data, NNs diverge

which indicates high model uncertainty. This result is consistent with our intuition: with

dense data, our regression model can perform well, and we can be confident about it.

However, with spare data or no data, the result of the regression model is not trustworthy,

and it is important that we are aware of it.

Figure 5.1: Ten NNs are trained. The prediction of each individual NN is shown on

the left figure. The mean prediction is shown on the right figure with one and two standard

deviation represented by the shaded region.

5.1.2. Environment Uncertainty

Risk, also called environment uncertainty and aleatoric uncertainty [120], is an

intrinsic property of a system. For example, no matter how many times we flip a coin, the

results are still stochastic. In a standard RL algorithm, the decisions are made based on

the expected long-term return, which means if we have many chances to choose an action

at a certain state, it will lead to the highest possible return on average. However, for real-

world transportation applications, it is not enough to deliver an algorithm that works well

 91

on average, especially for safety-critical applications. Therefore, it is very important to be

able to estimate the full return distribution, not just one expected return value. C51

[124][125], the first distributional RL algorithm integrated into the popular DQN

algorithm achieved state-of-the-art performance on video games. It calculates the

probabilities for a set of predefined returns. Another approach used quantile regression

(QR) to calculate a fixed number of quantiles of a return distribution with fixed

probabilities [126]. This method achieved better theoretical guarantee in convergence

compared with C51. Implicit quantile network (IQN) removes the limitation of a fixed

number of quantiles [127] and the quality of the estimated return distributions depends on

the network structure.

Figure 5.2 illustrates a one-step decision-making problem which can be considered as

the simplest RL problem. At state 𝑠!, actions can be chosen from 𝑎! and 𝑎". If the only

given is the expected reward for each action, then 𝑎! would be taken. However, if the

underlying return distributions for both actions are given, 𝑎" might be taken depending on

the application scenario as there is no risk in taking 𝑎". In addition, although the expected

reward for taking action 𝑎! is +3, the reward of +3 will never be achieved as the reward is

either +5 or -5 in reality. This also reflects one downside of the expected value: it is

sometimes unrealistic to achieve.

 92

Figure 5.2: A one-step decision-making problem showing the importance of estimating

the uncertainty associated with different actions. The 𝑇 represents terminal states.

Instead of discrete values, the possible return is usually modeled as distributions in

complex problems. If the return distribution is multi-modal or has a high variance, only

considering the expected value may lead to bad decisions in a real-world scenario. This is

because what the agent will receive during one task is just one sample from the distribution.

In Figure 5.3, it can be observed that although the expected values of action 2 in both cases

are higher than action 1, action 2 may lead to much worse results due to multi-modality

(left) and high variance (right).

Figure 5.3: Multi-modality (left) and high variance (right) return distributions.

 93

 Risk-aware Energy Management

To deal with risk, which is also called the environment uncertainty, decisions should

be made according to metrics beyond the expected value, and this needs the full return

distribution given state-action pairs. To model the full return distribution instead of just

estimating the mean, two distributional RL algorithms are adapted in this work. The first

algorithm is C51 [124], whose results are easy to understand and visualize since the return

distributions are modeled explicitly. The second is IQN [127], whose results are less

straightforward to follow, since the return distributions are implicit and utilized by

sampling. Nevertheless, it is very convenient to build risk-aware strategies.

5.2.1. Categorical Distributional Reinforcement Learning

In the C51 algorithm, the Q-network outputs a discrete probability distribution on

predefined 𝑁 atoms: {𝑧2 = 𝑉02# + 𝑖Δ𝑧 ∶ 0 ≤ 𝑖 < 𝑁} with Δ𝑧 = (𝑉0+K − 𝑉02#)/(𝑁 − 1).

The set of atoms 𝑧2 represents the predefined possible long-term return with 𝑧; = 𝑉02#

and 𝑧9E! = 𝑉0+K as boundaries. Given a state 𝑠& and an action 𝑎&, the distribution is:

𝑝(𝑠& , 𝑎&) = 𝐶(𝑠& , 𝑎&|𝜃X), (5.1)

which has 𝑁 components and whose 𝑖𝑡ℎ component 𝑝2(𝑠& , 𝑎&) is the probability of getting

the return 𝑧2 if action 𝑎& is taken at state 𝑠& . Figure 5.4 illustrates an example return

distribution for a (𝑠& , 𝑎&) pair with 𝑁 = 8.

 94

Figure 5.4: An example return distribution for a state-action pair with 𝑁 = 8.

The expected long-term return for a (𝑠& , 𝑎&) pair is calculated as a weighted sum of the

predefined 𝑁 atoms according to the estimated probability 𝑝(𝑠& , 𝑎&):

𝑄(𝑠& , 𝑎&) = e 𝑧2𝑝2(𝑠& , 𝑎&)
9E!

2:;

. (5.2)

For the training of C51, the error to be minimized is based on transition pairs

(𝑠& , 𝑎& , 𝑟& , 𝑠&>!) generated during the interaction process like standard RL algorithms. The

difference is, in this case, the distance between two distributions should be minimized.

The cross-entropy of the current estimation of return distribution for (𝑠& , 𝑎&) and its target

distribution is minimized by gradient-based method. In this work, the standard Q-network

in the DDPG is replaced with C51. For simplicity, the resulting algorithm will be noted as

D3PG (Distributional DDPG). The detailed training algorithm is shown in Algorithm 4.

The detailed method to calculate the cross-entropy loss is shown in Algorithm 3 and

Figure 5.5 illustrates the process in its for loop.

 95

Figure 5.5: One step in the for loop in Algorithm 3. The blue arrow and red arrow

indicate the distribution of the probability is according to its distances with the nearest

two atoms.

 Algorithm 3 Calculate cross-entropy loss

Input A transition pair (𝑠, , 𝑎, , 𝑟, , 𝑠,01)
Initialize 𝑉:<C = −15, 𝑉:-; = +3, 𝑁 = 51
Initialize the target probabilities: 𝑚< = 0, 𝑖 ∈ 0,… ,𝑁 − 1
𝑝(𝑠,01, 𝑎∗) = 𝐶7(𝑠,01, 𝑎∗|𝜃E

!)|-∗>8!(.%&'|?"!)
𝑝(𝑠, , 𝑎,) 				= 𝐶	(𝑠, , 𝑎,|𝜃E)

For 𝑖 = 0 to 𝑁 − 1 do
 𝑧<7 = [𝑟, + 𝛾𝑧<]G:<C

G()*
 𝑏< = (𝑧<7 − 𝑉:<C)/∆𝑧
 𝑙 ← 𝑓𝑙𝑜𝑜𝑟(𝑏<), 𝑢 ← 𝑐𝑒𝑖𝑙(𝑏<)
 𝑚H 	← 𝑚H + 𝑝<(𝑠,01, 𝑎∗)(𝑢 − 𝑏<)
 𝑚I ← 𝑚I + 𝑝<(𝑠,01, 𝑎∗)(𝑏< − 𝑙)
 End For
 Output 𝐿 = −∑ 𝑚<𝑙𝑜𝑔𝑝<J*1

<>+ (𝑠, , 𝑎,) #Cross-entropy loss

 96

The NN structure and hyperparameters are summarized in Table 5.1. The activation

function softmax is used in the output layer of the critic as it can convert the outputs from

the 51 output units to probabilities. The D3PG was trained with the same trips as the DQN

and was tested with 66 unseen test trips. The average ideal MPGe for the test trips was

30.8 which was calculated with the full velocity profiles. The average MPGe achieved by

Algorithm 4 Distributional DDPG (D3PG)

Initialize the critic network 𝐶(𝑠, 𝑎|𝜃E) with random parameters 𝜃E
Initialize the target critic network 𝐶7(𝑠, 𝑎|𝜃E!) with 𝜃E! = 𝜃E
Initialize the actor network 𝜇(𝑠|𝜃8)	with random parameters 𝜃8
Initialize the target actor network 𝜇7(𝑠|𝜃8!) with 𝜃8! = 𝜃8
Initialize the replay buffer 𝐵 to capacity 𝐷 with no transitions
Initialize ε = 0.3, 𝜏 = 0.001, 𝐷 = 109, 𝐾 = 48
For epoch = 1, 𝑀 do
. For trip = 1, 𝑁 do
. . Get initial state 𝑠+ from current trip data
. . While 𝑡 < 𝑇, do
. . . Calculate action 𝑎, = 𝜇(𝑠,|𝜃8) + ε ∙ 𝑁(0,1)
. . . Clip 𝑎, to the range of [-1, +1]
. . . Update current 𝐿./, according to 𝐴:-; ∙ 𝑎,
. . . Run the vehicle model for 2000s with updated 𝐿./,
. . . Return state 𝑠,01 and reward 𝑟,
. . . Store the transition (𝑠, , 𝑎, , 𝑟, , 𝑠,01) in the replay buffer 𝐵
. . . Sample 𝐾 random transitions (𝑠< , 𝑎< , 𝑟< , 𝑠<01) from 𝐵
. . . Call Algorithm II to calculate the loss 𝐿< on the 𝐾 transitions
. . . Update the critic network by performing gradient descent
 . . . on the calculated cross entropy loss:
. . . 𝐿:/-C =

1
=
∑ 𝐿<=
<>1

. . . Calculate probabilities associated with 𝑧2, 𝑗 ∈ 0,1…𝑁 − 1

. . . for each sampled transition pair:

. . . 𝑝(𝑠<) = 𝐶(𝑠< , 𝑎|𝜃6)|->8(.#|?")

. . . Calculate Q-value 𝑄(𝑠, 𝑎) for each sampled transition pair:

. . . 𝑄(𝑠< , 𝑎)|->8(.#|?") = ∑ 𝑧2𝑝2(𝑠<)J*1
2>+

. . . Update the actor network using the sampled policy gradient:

. . . ∇?"𝐽 ≈
1
=
∑ ∇-𝑄(𝑠< , 𝑎)|->8(.#|?")∇?"
=
<>1 𝜇(𝑠<|𝜃8)

. . . Perform soft update on target networks:

. . . 𝜃E! ← 𝜏𝜃E + (1 − 𝜏)𝜃E!

. . . 𝜃8! ← 𝜏𝜃8 + (1 − 𝜏)𝜃8!

. . . 𝑠, = 𝑠,01

. End For
End For

 97

the D3PG was 28.3, only 8.1% less efficient than the condition of knowing the full

velocity profiles. Figure 5.6 shows how D3PG performed on three test trips of varying

distance. It can be observed that the distributional RL can perform well on these test trips

like standard RL algorithms. It should be noted that, although the full return distributions

are estimated by the critic, the actions are still based on the Q-values.

 Actor Critic

Hidden layer 1 Number of units 64 64
 Activation function ReLU ReLU
Hidden layer 2 Number of units 48 48
 Activation function ReLU ReLU
Output layer Number of units 1 51
 Activation function tanh softmax
Hyperparameters Optimizer Adam Adam
 Learning rate 10E] 10E@
 Batch size 48 48

Table 5.1: Neural network structures and hyperparameters for D3PG

 98

Figure 5.6: Performance of the D3PG on three test trips with distances of 35

miles(upper), 51 miles (middle) and 50 miles (lower). The states associated with 𝐴, 𝐵 and

𝐶 are all at time step 26000s. The dashed lines help to see how close is the real-time SOC

with the value of 10%.

 99

Figure 5.7 shows the Q-values for the actor action and two example actions under

states 𝐴, 𝐵 and 𝐶 (calculated from the return distribution shown in Figure 5.8). It can be

seen that in all cases, the actor action has the highest Q-value as expected. Standard value-

based RL algorithms model Q-values directly, and actions are chosen with respect to it.

Figure 5.7: The Q-values of three actions under states 𝐴 (left), 𝐵 (middle) and 𝐶

(right). The actor action is 0 for states 𝐴 and 𝐵 (do not change the 𝐿.$&) and +6.5 for state

𝐶.

We modeled the underlying full return distribution by the D3PG algorithm. Figure

5.8 shows the return distributions for state 𝐴 , 𝐵 and 𝐶 for the three actions. For

conditions like state 𝐴 and 𝐵, the distributions are nearly unimodal so that the expected

value (Q-value) can represent it well. However, for conditions like state 𝐶 (distributions

are shown separately in Figure 5.9), the return distributions are approximately bimodal,

and the long-term reward associated with the two peaks are significantly different.

 100

Figure 5.8: Return distributions of an actor action and two example actions for state 𝐴

(left), state 𝐵 (middle) and state 𝐶 (right).

Figure 5.9: Return distribution of actor action (left), +15 (middle) and -15 (right) for

state 𝐶.

From the reward function, it can be concluded that the distribution density

concentrated around -1 is mainly due to excessive fuel use and the density around -15 is

due to the condition of 𝑆𝑂𝐶 < 10%. From this view, taking the actor action had a higher

probability of running out of battery compared with the +15 action as less fuel was used.

It can be observed that if the 𝐿.$& is increased by 15 at state 𝐶, some amount of fuel would

be used in the next 2000s while by taking the actor action, no fuel was used. The potential

risk of running out of battery for the actor action was offset by the benefits of a higher

possibility of not using excessive fuel. The trained D3PG uses the action that has a higher

 101

risk of running out of battery to get a better performance with respect to the expected

long-term return. As discussed previously, making decisions with respect to the expected

value can yield average higher returns. However, in the real-world condition, more

conservative actions might be preferred under some conditions. By modelling and

visualizing the return distributions, the necessity of considering the environment

uncertainty is demonstrated.

Although the return distributions modeled by C51 is easy to understand, it is not

convenient to use to build risk-aware strategies. One naïve method is as follows. By

modeling the full return distributions, we can follow the actor action when the uncertainty

is low and choose more conservative actions when the uncertainty is high. One simple

metric that can represent the magnitude of uncertainty is the variance. The variance of the

return distribution of the three actions under states 𝐴, 𝐵 and 𝐶 are shown in Figure 5.10.

As can be seen, the Q-values (expected value) represent the return distribution well when

the variance is low as in states 𝐴 and 𝐵. If the variance is 0, i.e., all the probability is

concentrated on one value, the Q-value carries all the information about the return

distribution. In conditions of high variance, as in state 𝐶, the Q-value loses the important

spread information which contains the probability of different possible results.

In this work, the importance and benefits of using distributional RL algorithm is shown

by visualizing the return distributions under different states. The return distributions can

be multi-modal with high variance which shows the probability of different possible

results. Under these states, decisions based on the expected value might not be suitable

 102

for real-world applications. Consequently, a risk-aware strategy is develop in the next part

of work.

Figure 5.10: The variance of return distributions of three actions under state 𝐴(left),

state 𝐵(middle) and state 𝐶(right).

5.2.2. Implicit Quantile Network

The IQN parametrized by 𝜃 takes a state-action pair (𝑠, 𝑎) and a sample 𝜏 from a

uniform distribution 𝑈([0,1]) as inputs and outputs a sample 𝑍V(𝑠, 𝑎; 𝜃) from the

implicitly defined return distribution 𝑍(𝑠, 𝑎; 𝜃) . The action-value 𝑄(𝑠, 𝑎; 𝜃) can be

estimated by multiple samples of 𝑍V(𝑠, 𝑎; 𝜃)~𝑍(𝑠, 𝑎; 𝜃) as:

𝑄(𝑠, 𝑎; 𝜃) = 𝐸V~_([;,!])[𝑍V(𝑠, 𝑎; 𝜃)] ≈
1
𝐾e𝑍VK(𝑠, 𝑎; 𝜃)

\

2:!

, (5.3)

where index 𝑖 represents the 𝑖𝑡ℎ sample from 𝑍(𝑠, 𝑎; 𝜃), and 𝐾 represents the total number

of samples. Figure 5.11 illustrates the difference between a standard DRL algorithm DQN

and the IQN.

 103

Figure 5.11: Illustration of the differences between DQN and IQN. The DQN outputs

the expected value for a given state-action pair while IQN outputs samples from the

implicitly modeled return distribution whose mean is the output of DQN.

The return distribution for a given state-action pair is modeled implicitly by estimating

the quantile function 𝑄𝐹 (.,+)(𝜏) , also known as the inverse cumulative distribution

function (inverse CDF). Assume the CDF of the return distribution is 𝐹 (.,+): 𝑍V(𝑠, 𝑎) →

[0,1], then:

𝑍V(𝑠, 𝑎) = 𝑄𝐹 (.,+)(𝜏) = 𝐹 (.,+)
E! (𝜏), (5.4)

which indicates a mapping from 𝜏 sampled from [0,1] to 𝑍V(𝑠, 𝑎). A simple example is

shown in Figure 5.12. Assume the	𝑄𝐹 (.,+) of a return distribution 𝑍(𝑠, 𝑎) for a state-

action pair is given, sampling 𝜏 from uniform distribution 𝑈([0,1]) and then feed them

into 𝑄𝐹 (.,+)(𝜏) equals to sampling returns from the underlying return distribution

 104

according to its probability density function (blue dashed line). The sampled returns (red

dots) can be used to calculate action-values and other statistics.

Figure 5.12: A simple example illustrating how to sample returns 𝑍V(𝑠, 𝑎) from the

implicitly modeled return distribution. Assume five 𝜏 values: 0.1, 0.3…0.9 are sampled

from the uniform distribution 𝑈([0,1]), five values of 𝑍V(𝑠, 𝑎) are calculated by feeding

the five 𝜏 values into the estimated 𝑄𝐹 (.,+)(𝜏). With enough number of samples, the

mean and other statistics of the underlying return distribution can be estimated accurately.

The quantile function 𝑄𝐹 (.,+)(𝜏) is estimated by IQN. It is trained by the quantile

regression (QR) loss function. In Figure 5.13, a simple linear regression example

illustrates the difference between the common mean squared loss (MSE) and QR loss.

 105

Figure 5.13: Comparison of fitting an artificial dataset with linear regression and

quantile regression with 0.9, 0.5 and 0.1 quantiles. For each 𝑥 , twenty 𝑦 values are

sampled from a gamma distribution. For linear regression (LR), the MSE is minimized,

which tries to estimate the conditional mean of the underlying assumed Gaussian

distribution for each input 𝑥. For quantile regression, there is no assumption about the

underlying distribution and the conditional quantile values are estimated.

For standard RL algorithms, the square of the temporal difference (TD) error is

minimized where the TD error is:

𝛿& = 𝑟& + 𝛾𝑚𝑎𝑥+𝑄(𝑠&>!, 𝑎; 𝜓S) − 𝑄(𝑠& , 𝑎&; 𝜓). (5.5)

For IQN, the QR loss of the TD error shown below is minimized:

𝛿&V = 𝑟& + 𝛾𝑚𝑎𝑥+𝑍V)(𝑠&>!, 𝑎; 𝜃S) − 𝑍V(𝑠& , 𝑎&; 𝜃). (5.6)

 106

The detailed QR loss and MSE for the supervised regression problem and DRL

problem is summarized in Table 5.2. The detailed algorithm to train the IQN in the EMS

problem is shown in Algorithm 5.

Algorithm 5 Implicit Quantile Network

Initialize IQN and target IQN with same set of random parameters
𝜃, 𝜃7
Initialize the replay buffer 𝐵 to capacity 𝐷 with no transitions
Initialize 𝜀 = 1.0, 𝐾 = 32, 𝐷 = 5𝑒4, 𝑛 = 48, 𝑀 = 800, 𝑁 = 52
For epoch = 1, 𝑀 do
. For trip = 1, 𝑁 do
. . Get initial state 𝑠+ from current trip data
. . 𝑡 = 0
. . While 𝑡 < 𝑇, do
. . . With probability 𝜀, randomly select an action 𝑎,
. . . Otherwise select 𝑎, = 𝑎𝑟𝑔𝑚𝑎𝑥- ∑ 𝑍L#(𝑠, , 𝑎; 𝜃)

=
<>1

. . . Update current 𝐿./, according to 𝑎,

. . . Run the vehicle model for 2000s with updated 𝐿./,

. . . Return state 𝑠,01 and 𝑟,

. . . Store the transition (𝑠, , 𝑎, , 𝑟, , 𝑠,01) in the replay buffer 𝐵

. . . Sample 𝑛 transition pairs from 𝐵

. . . For each transition pair (𝑠2 , 𝑎2 , 𝑟2 , 𝑠201), do

. . . . 𝑍,-MN/,,2 = >
𝑟2 																			if	trip	terminates	at	step	𝑗 + 1
𝑟2 + 𝛾𝑚𝑎𝑥-𝑍L+!M𝑠201, 𝑎; 𝜃N												otherwise

. . . . 𝛿2
L+ = 𝑍,-MN/,,2 − 𝑍L+M𝑠2 , 𝑎2; 𝜃N

. . . End For

. . . Perform a gradient descent step on ∑ (𝜏2 − 𝕝O+
,+P+

)𝛿2
L+C

2>1

. . . Perform soft update on the target network

. . . 𝑠, = 𝑠,01

. . 𝜀 = max	(0.01,0.995 × 𝜀)

. End For
 End For

 QR loss MSE

Regression (𝜏 − 𝕝ab%K>3)[𝑦 − (𝑤𝑥 + 𝑏)] [𝑦 − (𝑤𝑥 + 𝑏)]"

Deep RL (𝜏 − 𝕝c!Qb;)𝛿&

V 𝛿&"

Goal

Estimate the 𝜏𝑡ℎ quantile

Estimate the mean

Table 5.2: Comparison of QR loss and MSE under two problem settings

 107

Conditional value at risk is used as the risk measure in this work [128]. It is defined

as:

𝐶𝑉𝑎𝑅d(𝑠, 𝑎) = 𝐸(~`(.,+)¬𝑟|𝑟 < 𝐹 (.,+)
E! (𝜂)­, (5.7)

where 𝜂 is a hyperparameter. If 𝜂 = 1.0, the calculated 𝐶𝑉𝑎𝑅d(𝑠, 𝑎) is the expected value

of the return distribution, which is equal to the action value 𝑄(𝑠, 𝑎) and leads to a standard

risk-neutral strategy. If 𝜂 < 1.0, it calculates the expected value for the worst 𝜂 cases,

which leads to risk-averse strategies. A simple example is shown in Figure 5.14.

After the IQN is trained, risk-aware strategies can simply sample 𝜏2 from 𝑈([0, 𝜂])

and choose actions by:

𝑎& = 𝑎𝑟𝑔𝑚𝑎𝑥+
1
𝐾e𝑍VK(𝑠, 𝑎; 𝜃)

\

2:!

. (5.8)

Figure 5.14: Illustration of CVaR with 𝜂 = 1.0 (left) and 𝜂 = 0.5 (right). It can be

observed that although the expected value of return distribution 𝑍(𝑠, 𝑎!) is higher than

that of 𝑍(𝑠, 𝑎") (the position of the vertical dashed line), it does not hold true for 𝜂 = 0.5

due to its high variance (annotated by arrows).

 108

A feedforward NN was used to build the IQN which followed the structure of the

original paper [127]. There were two hidden layers in the main structure with 64 and 32

units. The embedding layer for the sampled 𝜏 had 64 units. The embedding was combined

with the features from the first hidden layer in the main structure by element-wise

multiplication. The activation function for all units were ReLU [96]. The optimizer used

was Adam [97] with an initial learning rate of 0.0005. The IQN was also trained with the

same trips as the DQN. The framework is shown in Figure 5.15.

Figure 5.15: Illustration of the proposed risk-aware framework.

Figure 5.16 shows how the trained algorithm performed on a short trip. The 𝐿.$& change

at each timestep is very similar under the conditions of 𝜂 = 1.0, 𝜂 = 0.5 and 𝜂 = 0.1,

which leads to identical fuel use and SOC curves. This can be explained by the return

distribution shown in Figure 5.17, which corresponds to the state 𝐴 annotated in Figure

5.16. For all possible actions, the return distributions are highly concentrated near some

value with a low variance and similar range. Therefore, the rank of calculated CVaR for

 109

different actions under 𝜂 = 0.5 and 𝜂 = 0.1 are still similar to the condition of 𝜂 = 1.0.

This shows that for short trips, risk-aware strategies do not make a difference.

Figure 5.16: Performance of the trained algorithm on a test trip with a distance of 35

miles with 𝜂 = 1.0 , 𝜂 = 0.5 and 𝜂 = 0.1 . To make the figure clear, the 𝐿.$&

corresponding to 𝜂 = 0.1 is not shown.

Figure 5.17: Return distributions with mean and variance for all possible actions in

state 𝐴. The smooth line is fitted with a kernel density estimator for better visualization,

and the mean and variance were still calculated with the original data. The y-axis

 110

represents the probability density so that the value could be higher than 1. The red dot

represents the mean value of each distribution.

For a longer trip, as shown in Figure 5.18, the 𝐿.$& changes significantly at each

timestep under different 𝜂 values, resulting in different fuel use and SOC curves. This can

also be explained by observing the return distributions for some states. Figure 5.19 shows

the return distributions for state 𝐵. Compared with state 𝐴, it can be observed that the

return distributions are much less concentrated and the probability densities for the peak

are much lower than that of state 𝐴. Also, the range of the distributions is much wider on

the negative side, indicating the possibilities of running out of battery. Therefore, for these

wide and high variance distributions, the ranks of calculated CVaR under the condition of

𝜂 < 1 are different from the standard risk-neutral condition. The lower the value of 𝜂, the

more fuel would be used by the risk-aware algorithm.

 111

Figure 5.18: Performance of the trained algorithm on a test trip with a distance of 48

miles with 𝜂 = 1.0 (upper), 𝜂 = 0.5 (middle) and 𝜂 = 0.1 (lower).

 112

Figure 5.19: Return distributions with mean and variance for all possible actions in

state 𝐵. The red dots indicate expected values of the estimated return distributions.

The highest CVaR (the values corresponding to the selected action at each state) along

the two delivery trips under the three values of 𝜂 are shown in Figure 5.20. As expected,

for each state, the CVaR decreases as the value of 𝜂 decreases from the upper figure,

showing a more and more pessimistic estimation of performance. This can be easily

explained by the definition of CVaR. The reason why this seems not true for the last state

of the lower figure is because the state information has become significantly different for

the three 𝜂 as different actions were taken during the task. For example, the final SOC

and fuel consumption values are quite different for the three conditions. In addition, it can

be observed that the values of CVaR are very similar at the beginning of the two trips.

This can be explained by the fact that the three trajectories are not clearly distinguishable

 113

at first, but the discrepancy grows as they proceed. The exact value at the initial state

reflects the algorithm’s estimation of its performance based on the properties of the

training trips and without knowing any information about the upcoming trip.

Figure 5.20: Highest CVaR among possible actions along the two test trips.

Table 5.3 summarizes the average fuel use and average final SOC for the 58 test trips

under the three 𝜂 values. The lower the value of 𝜂, the more fuel was used to prevent the

vehicle from running out of battery during the delivery trip, leading to a higher final SOC

value. This is the tradeoff between fuel efficiency and the risk of running out of battery

which could lead to delays of delivery tasks and dangerous conditions like stopping on

highways. Consequently, after the algorithm is trained, 𝜂 can be chosen according to

different application scenarios and preferences of the users. For example, if the vehicle

delivers in an urban area with frequent delivery stops, the 𝜂 can be set close to 1 as there

are enough charging opportunities, and the energy intensities for this kind of driving is

relatively low. However, if the delivery area includes long highway driving, a lower 𝜂

 114

might be used as the energy intensities for highway driving are usually high, and the

charging rate of the range-extender is low compared with the energy consumption rate.

A simple form of the original loss function is used in this work for faster training.

According to the original loss function, for each transition pair (𝑠& , 𝑎& , 𝑟& , 𝑠&>!), 𝑁 samples

of 𝑍VK and 𝑁S samples of 𝑍VR) should be sampled from the IQN and target IQN respectively.

Then, the loss is calculated [127] as:

𝐿(𝑠& , 𝑎& , 𝑟& , 𝑠&>!) = e
1
𝑁SeS𝜏2 − 𝕝

cQK,QR
)
b;
T 𝛿VK,VR

)
9)

F:!

9

2:!

, (5.9)

where:

𝛿VK,VR
)
= 𝑟& + 𝛾𝑚𝑎𝑥+𝑍VR)(𝑠&>!, 𝑎; 𝜃

S) − 𝑍VK(𝑠& , 𝑎&; 𝜃). (5.10)

The loss for every transition pair in a sampled batch should be calculated as in (5.9)

and then summed together. In our case, both 𝑁 and 𝑁S were set to 1 so there was only one

summation over 𝑛 sampled transition pairs. A better return distribution estimation is

expected to be achieved if more samples (𝑁 and 𝑁S) are used during the training.

 Average fuel use (L) Average final SOC (%)
𝜂 = 1.0 0.72 18.6

𝜂 = 0.5 1.11 20.0

𝜂 = 0.1

1.94

 23.1

Table 5.3: Tradeoff between fuel use and risk of running out of battery

 115

In this work, a risk-aware strategy is developed based on IQN. I demonstrate the

tradeoff between fuel efficiency and the risk of running out of battery power by changing

the value of 𝜂 in the risk measure of CVaR.

 Uncertainty-aware Energy Management

Model uncertainty can be explained away with enough data. If trajectories generated

during training process can populate the whole state space that is possible to be

encountered in the real-world condition, there is no need to consider the model uncertainty.

However, that is usually difficult to achieve as the amount of data needs to fill a space

grows exponentially with the dimensionality of the input space [77][89], and as the

transition probability of the real-world system cannot be fully captured by the data

generated from simulation.

The transition probability 𝑝(𝑠&>!|𝑠& , 𝑎&) of the underlying system that generates the

real-world data is unknown, and only can be approximated by existing data with a vehicle

model that calculates the SOC curve and fuel use with different 𝐿.$& settings.

Consequently, the explore of the state space is constrained within the recorded data,

especially for the dimension of distance 𝑑 and GPS coordinates 𝑥 and 𝑦. In this work, 22

recorded delivery trips were used for training and 30 trips were used for testing. The

distance and energy intensity distributions are shown in Figure 5.21. It can be observed

that, as data cumulates, the range of the possible trip distance gets larger as well as the

overall energy intensity.

 116

Figure 5.21: Distance and energy intensity distribution of training trips and training-

testing trips combined.

Furthermore, even for two delivery trips with similar distance, GPS trajectories of a

future trip can be significantly different, which will also lead to unfamiliar states. For

example, the GPS trajectories of two delivery trips are shown in Figure 5.22. It can be

observed that, although the delivery region is the same, there are differences in the area

covered due to factors like delivery demand.

Figure 5.22: Comparison of two GPS trajectories with 43.1 and 44.3 miles.

 117

Besides distance and GPS coordinates that can lead to novel and unseen states, there

is another reason corresponding to the dimensionality of the state space, which is the

“curse of dimensionality” [80][89]. The amount of data that needs to fill the state space

grows exponentially with the dimensionality of the state space. Consequently, for our

defined 7-dimensional state space, even for some of the visited states, data and interaction

trajectories can be sparse in that region due to relative less frequent visitation during the

training process, which is highly dependent on the statistics of the recorded trips.

Consequently, uncertainty estimation is of great importance when dealing with real-world

problems as it is not feasible to build a model that is well trained on all parts of the possible

state space.

To make the above discussion more straightforward, a simplified artificial state space

with two dimensions is shown in Figure 5.23. For each episode of interaction, a trajectory

from the initial state to the region of possible terminal states will be made. After recording

some real-world trajectories, simulations can be performed to train the agent based on the

recorded trajectory. During the training process, the region that is reachable from the

recorded trajectories by choosing different actions can be visited, and the frequency of

visitation depends on the statistics of the recorded trajectories. Region 𝐴 represents a

region which is visited frequently, region 𝐵 represents a region with sparse data and

region 𝐶 represents an unvisited part of the state space, which is not reachable from

changing actions from any of the recorded trajectories. The goal of the uncertainty-aware

RL algorithm is to measure whether the encountered state is novel during testing.

 118

Figure 5.23: Illustration of the concepts of frequently visited states, infrequently

visited states and unvisited states in a two-dimensional state space.

Model uncertainty can be handled elegantly with the Bayesian framework, if

applicable, and Bayesian NNs provide a systematic way to model uncertainties in NNs

[89][121]. It keeps posterior distributions for the parameters calculated from the

predefined prior distributions and training data. However, there are mainly two challenges

that prevent it from being widely used in real-world problems [121][122][129]. First, exact

Bayesian inference is only feasible on small-scale problems [123], and its approximations

are also computationally expensive. Second, to implement Bayesian NNs, significant

modifications in model building and training procedure are needed compared with

standard NNs, which are very easy to use with popular deep learning libraries like Pytorch

 119

and Tensorflow. Therefore, researchers have investigated non-Bayesian methods to model

the uncertainty, aiming at developing practical and scalable frameworks.

A simple and scalable method to estimate the predictive uncertainty is developed in

[129]. An ensemble of NNs is trained, and for each individual NN, the conditional

Gaussian distribution given the input is modeled. The predictive uncertainty is obtained

by treating the output as a mixture of Gaussian distributions. In [130], ensemble sampling

is developed to approximate the posterior distribution. First, 𝑀 NNs are drawn from a

prior distribution. Then, at each timestep during training, only one model in the ensemble

will be sampled to generate data. After the data is generated, all the models in the ensemble

will be updated. To bridge the gap between Bayesian NNs and the practical ensemble

methods, Bayesian ensemble [122] is developed, which regularizes the parameters in the

standard NNs to values drawn from a predefined distribution as the prior information for

the NNs, which can produce Bayesian behaviors while keeping the algorithm practical. In

[131], the authors investigate why using ensemble of NNs with different initializations

can help with the accuracy and uncertainty estimation of deep learning models. In [132],

a distribution-free, ensemble method is developed for prediction intervals of neural

networks. It is enabled by deriving a loss function that can be optimized by gradient-based

methods. A detailed review for prediction intervals can be found in [133].

Energy management problems of hybrid vehicles have been a research focus for a long

time. However, there is little work about the model uncertainty in EMS problems. One of

the main reasons is, for most hybrid vehicles, the worst condition is unsatisfying energy

efficiencies, which does not lead to serious problems. However, for our EREV for delivery,

 120

bad EMS can lead to the condition of running out of battery during the delivery trip, which

may cause delays of delivery tasks and can be very dangerous if it happens during highway

driving. Consequently, our goal is to build an uncertainty-aware agent that can facilitate a

postprocessing module to execute predefined rules when the uncertainty exceeds a

predefined threshold. The Bayesian ensemble method is used due to its simplicity in

implementation and better theoretical support compared with other ensemble-based

nonparametric methods.

For the standard DQN, the parameters 𝜃 are trained at each timestep by minimizing

the error:

𝐿 = S𝑄&+(T$& − 𝑄(𝑠& , 𝑎&; 𝜃)T
"
. (5.11)

The visited state 𝑠& is determined by the interaction between the agent and the simulated

environment. For the frequently visited region in the state space, the action-values for the

corresponding state-action pairs are well estimated. However, for the less visited region

where the data is sparse and unvisited region, 𝜃 are not well determined so that the output

action-value is not reliable. Consequently, having a measure of uncertainty can detect

whether the output of Q-network is trustworthy.

The intuition behind ensemble-based uncertainty estimation methods is for different

function approximators, the value will agree well on frequently visited states and diverge

on the rest of the regions, and the variance of the output values indicates the model

uncertainty. The diversity of different Q-networks mainly comes from the following

aspects. First, each of them is randomly initialized with different parameters so that the

target network that each Q-network is trained on is different. Second, stochastic gradient

 121

descent-based optimization provides another source of randomness. Third, the exploration

process like the 𝜀 −greedy chooses actions randomly with some probability controlled by

the hyperparameter 𝜀. In addition, for the Bayesian ensemble method, the parameters in

each Q-network is regularized to some anchored values sampled from a predefined

distribution. Therefore, the loss function (5.11) is modified as:

𝐿+#-e*(= S𝑄&+(T$& − 𝑄(𝑠& , 𝑎&; 𝜃)T
"
+ 𝜆‖𝜃 − 𝜃;‖", (5.12)

where 𝜆 represents the regularization strength and 𝜃; is the anchored value randomly

sampled from a distribution which represents the prior information of the Q-network.

Assume 𝑀 Q-networks 𝑄{𝑠, 𝑎; 𝜃F} are trained individually with the loss function in

(5.12) with corresponding anchored values 𝜃;,F~𝑁𝑜𝑟𝑚𝑎𝑙{𝜇1(2*(, Σ1(2*(}, the 𝑀 outputs

of the ensemble given an input state-action pair can be considered as 𝑀 samples from the

posterior distribution [122]. Therefore, the variance of the ensemble’s predictions can be

interpreted as its uncertainty.

Although this method does not perform exact or approximate Bayesian inference over

NN parameters [89], it keeps an explicit notion of prior which does not vanish during

training, resulting in Bayesian behavior. Also, it is built on the fact that adding a

regularization term to a loss function returns maximum a posterior (MAP) estimates of

parameters [138]. Therefore, the Bayesian ensemble method gets better theoretical support

compared with other ensemble-based methods without compromising the advantage of

being easy to implement.

 122

For each Q-network 𝑄{𝑠, 𝑎; 𝜃F} , both of the model parameters 𝜃F and the anchored

values 𝜃;,F were sampled from the distribution of 𝑁𝑜𝑟𝑚𝑎𝑙{𝜇1(2*(, Σ1(2*(} . All the

components in 𝜇1(2*(are 0 and Σ1(2*(is a diagonal matrix with equal variance. The

variance is set to be 1 and it controls the degree of diversity among the models in the

ensemble. In other words, the initial value of each parameter in the Q-networks is sampled

from a one-dimensional normal distribution with mean of 0 and variance of 1. It should be

noted that although the initial values of 𝜃F and 𝜃;,F comes from the same distribution, they

were not the same values as recommended in the original paper [122].

The training process of each DQN is similar to the standard DQN, and the NN structures

and hyperparameters are the same with our previous work with DQN. The regularization

coefficient	𝜆 is set to be 0.001. After training, for each 𝑠& encountered during testing, the

mean and standard deviation (SD) for the action-values for the state-action pairs are

calculated:

𝑄0$+#(𝑠& , 𝑎) =
1
𝑀e𝑄{𝑠& , 𝑎; 𝜃F}

H

F:!

,

𝑄Mf(𝑠& , 𝑎) = ¾∑ ¬𝑄{𝑠& , 𝑎; 𝜃F} − 𝑄0$+#(𝑠& , 𝑎)­
"H

F:!

𝑀 − 1 . (5.13)

Then the corresponding policy is:

𝜋(𝑠&) = 𝑎𝑟𝑔𝑚𝑎𝑥+𝑄0$+#(𝑠& , 𝑎). (5.14)

The mean is used to select actions and the values of SD indicate the uncertainty

corresponding to each action. Next, the detailed performance of the Bayesian ensemble on

 123

three delivery trips are shown, demonstrating the three kinds of conditions discussed in

Figure 5.23 respectively.

The frequently visited states where the model parameters are well-determined and the

infrequently visited states where the model parameters are less well-determined are shown

on two training trips with 43.1 and 52.9 miles from Figure 5.24-Figure 5.27. For the shorter

trip, it can be observed from Figure 5.24 that for all states encountered during the trip, the

SD of action-values for all the 5 possible actions are lower than 1, which indicates low

model uncertainties. Taking state 𝐴 annotated in Figure 5.24 as an example, the mean and

one standard deviation of action-values are plotted on the left part of Figure 5.25 and the

individual predictions from each agent are plotted on the right. Although there are imposed

diversities among the agents, it is obvious that all the agents agree well on the action-values

for each possible action. All the states encountered in this trip can be considered as locating

in the frequently visited region in the state space. This can be partly explained by looking

at Figure 5.21. The distance of most of the 22 training trips are concentrated near 43 miles,

and energy use is highly correlated with distance so that states with similar distance, SOC,

fuel use as well as the 𝐿.$& setting will be generated frequently when the simulation is run

on any of these trips with similar distance, which leads to a frequently visited region near

trajectories generated from these training trips in the state space, like region 𝐴 in Figure

5.23.

The simulation results for the longer trip which is also the second longest trip in the

training trips are shown in Figure 5.26. It requires the highest fuel use among the 22 training

trips, the states encountered at the last part of this trip can only be generated when the

 124

simulation is run on the longest two trips, which leads to relative less frequent visitations,

corresponding to region 𝐵 in Figure 5.23. Consequently, the uncertainties for part of the

action-values are higher than 1, indicating the parameters in the agents are not well-

determined for the corresponding state-action pairs.

Figure 5.24: Performance of the trained algorithm on a training trip with a distance of

43.1 miles (upper) and the estimated uncertainties along the trip (lower).

Figure 5.25: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐴.

 125

Figure 5.26: Performance of the trained algorithm on a training trip with a distance of

52.9 miles (upper) and the estimated uncertainties along the trip (lower).

Figure 5.27: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐵.

For a test trip with a distance longer than any of the training trips, it is obvious from

Figure 5.28 that the algorithm does not perform well as the battery SOC drops below 10%

for a significant amount of time. Nevertheless, the model outputs very high uncertainties

 126

for all the actions from 34000s, indicating the states are novel and significantly different

from the states that it experienced during the training process. It can be observed from

Figure 5.29 that although the ranking of the action-values for state 𝐶 is correct, the agents

cannot agree on the long-term return after this state, i.e., the agents are not sure whether

the EMS can prevent the EREV from running out of battery. The states that encountered

at the last part of this trip can be considered as locating in the region that is never visited

during training, just like region 𝐶 in Figure 5.23. Therefore, the predictions from different

agents are significant different, just like the NNs diverge on the region there is no data in

Figure 5.1.

Figure 5.28: Performance of the trained algorithm on a test trip with a distance of 57.4

miles (upper) and the estimated uncertainties along the trip (lower).

 127

Figure 5.29: The mean action-values for each action with one standard deviation (left)

and the predictions from each agent (right) for state 𝐶.

With the uncertainty-aware RL algorithm, an interpretable white-box postprocessing

module can be integrated into the black-box RL system to include predefined explicit rules

for unfamiliar or novel states as shown in Figure 5.30. The threshold to define unfamiliar

or novel states can also be controlled. If the threshold is set to be 0, then the RL-based

EMS becomes the widely used interpretable rule-based EMS. For example, for our EREV

application, if the model uncertainty is higher than the predefined threshold value, the

postprocessing module can overwrite the 𝐿.$& with a high value, or it can notify the driver

to stop the EREV until the SOC is charged back to some value. The focus of this work is

to develop the uncertainty-aware RL algorithm that can identify the novel states so that

the design of postprocessing module is not discussed here.

 128

Figure 5.30: Illustration of the proposed uncertainty-aware framework.

 Adversarial Attacks on Deep RL-based Energy Management

Robustness is one of the most important factors that needs to be considered when

implementing a new system into the transportation area. However, it was found for a well-

trained NN-based classifier, it is possible to add a small crafted perturbation to the original

image so that the classifier would misclassify the perturbed image, even the difference are

not discernable by human [139]. In [140], a method called Fast Gradient Sign Method

(FGSM) was introduced to create such adversarial examples. It requires small computation

resources and achieves very good results. In addition, they found one adversarial example

created for a specific model can also be misclassified by other models with different

architectures for the same task. Further, it was shown that the adversarial examples are still

effective even they are perceived through cameras in a real-world problem setting [141].

 129

As NNs are also the core components of DRL algorithms, researchers have investigated

the impacts of adversarial examples under several simulation settings. In [142], FGSM and

its two variations with different norm constraints were applied to degrade the performance

of a DRL agent on playing video games using image inputs. Also, adversarial examples

were compared with random noise under the same simulation environment in [143]. It was

shown that adversarial examples were much more effective in misleading the agent. In

[144], a more complex and computational expensive approach involving a generative

model and a planning algorithm was introduced to lure the agent to designated target states.

In [145], a systematic characterization of adversarial attacks was shown. They also

performed comprehensive experiments on video game playing as well as physical system

control which used low-dimensional state representations. The same physical system

control simulation environment was also used in [146]. They developed an adversarial

robust policy learning algorithm to help the agent perform better at test time under the gap

between simulation domain and physical domain caused by random noise or adversarial

noise.

In this work, I investigate the impacts of adversarial examples generated by FGSM

related methods on a well-behaved DRL-based EMS. The methods are categorized as

white-box or black-box methods according to the information known to the attacker. This

study investigates the adversarial examples on DRL algorithms in the area of ITS, where

robustness and safety are of great importance. Figure 5.31 illustrates the attack process. It

is shown that adversarial attacks can degrade the performance of the DRL-based EMS

 130

significantly, either causing the EREV using too much fuel, or leading it running out of

battery during the delivery trip.

Figure 5.31: Illustration of the adversarial attacks. The low-dimensional state

representation 𝑠& provided by the EREV is processed by the adversary before sending to

the DRL agent on the cloud.

5.4.1. White-box Methods

Under a white-box condition, it is assumed that the attacker has full access to the target

agent including network structure, parameter weights as well as all the training details. Our

white-box method is FGSM [140] with its two variations [142].

The main idea of the original FGSM is straightforward. Given a loss function 𝐽(𝜃, 𝑥, 𝑦),

where 𝜃 represents the weights in the NN-based classifier, 𝑥 represents the input image

with 𝑑 dimensions and 𝑦 is the true label corresponding to 𝑥, a small perturbation is added

 131

to the original input 𝑥 so that the loss function 𝐽(𝜃, 𝑥�, 𝑦) on the perturbed image 𝑥� is

increased as much as possible. This is achieved by：

𝑥� = 𝑥 + 𝜀𝑠𝑖𝑔𝑛[∇K𝐽(𝜃, 𝑥, 𝑦)], (5.15)

which is derived by linearizing the cost function around the current parameters 𝜃, and

solving a 𝐿g −constraint optimization problem. A more detailed analysis of the algorithm

can be found in the original papers [140][141]. In addition, the 𝐿! and 𝐿" norm constrained

form are also included [142]. For 𝐿!, we maximally perturb the dimension 𝑖 that has the

highest gradient magnitude:

𝑥� = 𝑥 + 𝜀𝑑 ∙ 𝑒2 , (5.16)

where 𝑒2 is an 𝑑 dimensional vector whose 𝑖𝑡ℎ component is 1 and 0 otherwise. For the 𝐿"

constraint, the perturbed input is:

𝑥� = 𝑥 + 𝜀√𝑑
∇K𝐽(𝜃, 𝑥, 𝑦)

‖∇K𝐽(𝜃, 𝑥, 𝑦)‖"
. (5.17)

In the RL setting, to get the perturbed 𝑠̃& from 𝑠& , the action-value vector is first

calculated from the DRL agent. Then, it is transformed into a set of probabilities 𝑦1 with a

softmax function. The label 𝑦 is obtained by replacing the position of the highest entry in

𝑦1 with 1 and replacing other entries by 0. The loss 𝐽(𝜃, 𝑠& , 𝑦) is then calculated as the

cross-entropy between 𝑦1 and 𝑦. Cross-entropy loss is used for classification and in the RL

setting, it is assumed the target agent performs well and what we want is to make it choose

another action instead of the action based on the original input (“misclassify actions”).

 132

5.4.2. Black-box Methods

Finite Difference Method

Under a black-box condition, the attacker does not know the NN structure or the

parameter weights, so the gradient ∇.!𝐽(𝜃, 𝑠& , 𝑦) cannot be calculated directly. One

method is to estimate it with the finite difference (FD) method [145]. To apply FD on an

input with 𝑑 dimensions requires querying the target agent 2𝑑 times. The 𝑖𝑡ℎ component

of the estimated gradient ∇.!𝐽Á(𝜃, 𝑠& , 𝑦) is:

𝐽(𝜃, 𝑠& + 𝛿𝑒2 , 𝑦) − 𝐽(𝜃, 𝑠& − 𝛿𝑒2 , 𝑦)
2𝛿

, (5.18)

where 𝛿 is a hyperparameter that controls the numerical accuracy. After ∇.!𝐽Á(𝜃, 𝑠& , 𝑦) is

calculated, it can be used as ∇.!𝐽(𝜃, 𝑠& , 𝑦). This method can be computationally expensive

if the input dimension is high, as with an image, for example. In this work, the inputs are

low-dimensional state representations, so the computation burden is insignificant.

Transferability Property

If the attacker is not allowed to query the target agent, but has access to the training

environment, the transferability property of adversarial examples can be utilized.

Adversarial examples generated for one NN have been found to often work for another

NN even if the parameter weights and structures are different [140][142]. Therefore, the

attacker can train an agent for the same task using the training environment and generate

𝑠̃& using its own agent for the unknown target agent.

 I investigate two cases: transfer across policies and transfer across algorithms. For

the first case, it is assumed that the attacker knows the RL algorithm, NN structures, and

 133

training hyperparameters used by the target agent. For the second case, the attacker only

has access to the training environment. There are plenty of variations of experiments that

can be done. For example, for the transfer across policies, the attacker may only know the

RL algorithm and nothing else. Although I only tested the two special cases described

above, it is enough to show initial results about the transferability property for this problem.

5.4.3. Results and Discussion

I applied the three adversarial methods on a DQN agent on 52 recorded delivery trips.

Two types of random noise were used as baselines. The first was random sign noise. A

value with magnitude 𝜀 was added to each dimension and the sign was randomly chosen

from positive and negative with equal probabilities. The second was uniform random noise.

For each dimension, a value sampled from a uniform distribution 𝑈([−𝜀, 𝜀]) was added to

the original input.

Figure 5.32 shows how the DQN performs under these two types of noise. For each

value of 𝜀, I ran 10 experiments and got 10 average scores.

Figure 5.32: Performance of the DQN under two kinds of random noise with different

values of 𝜀. The error bars indicate one standard deviation.

 134

The performance of the DQN under FGSM and its two variations are summarized in

Figure 5.33. First, it can be observed that all three versions are more effective at degrading

the performance of the deep RL-based EMS than random noise. For the same magnitude

of 𝜀, the gradient-based adversarial examples can degrade the agent to much worse scores.

On the other hand, to misguide the agent to a certain low level of performance, the

adversarial examples can be much more similar to the original inputs. Second, it is obvious

the 𝐿! − constrained method performs best for most cases. However, one major downside

is that it uses the entire 𝜀𝑑 budget to perturb one dimension, making it much easier to detect

compared with other methods.

Figure 5.33: Performance of the DQN under FGSM and its two variations.

Figure 5.34 compares the performance of FGSM under the white-box condition and its

estimation with the FD method under the black-box condition. 𝛿 is set to 0.0001. It can be

observed that the performance is nearly the same, which indicates the FD method can

estimate the gradient with high accuracy under low-dimensional states.

 135

Figure 5.34: Performance of the DQN under the FGSM and FD methods.

Figure 5.35 and Figure 5.36 show how well the adversarial examples exploit the

transferability property when the attacker cannot query the target agent freely. For the

transfer across policies case, adversarial examples were generated by a DQN with

different parameter weights. For the transfer across algorithms case, adversarial examples

were generated by an IQN with different NN structure, hyperparameters and training

process. Moreover, the IQN is a distributional RL algorithm so the process of calculating

the gradient ∇.!𝐽(𝜃, 𝑠& , 𝑦) is also different from the standard DQN. It can be observed that

although all three methods under these two cases are less effective compared with the

white-box FGSM method, they all outperform random noise in most cases. This indicates

the transferability property holds true in this EMS problem. Also, the results match our

expectation: the more we know about the target agent, the better the adversarial examples

that can be generated by another agent. The adversarial examples generated by the IQN

are less effective than those by DQN, because DQN is more similar to the target agent.

 136

Figure 5.35: Performance of the DQN under the strategy of transfer across policies.

Figure 5.36: Performance of the DQN under the strategy of transfer across algorithms.

Figure 5.37 and Figure 5.38 provide some concrete examples of how the DQN agent

behaves under adversarial attacks. The figures show the detailed trip information obtained

under the attack scenario for the two previously shown trips in chapter 3 (Figure 4.5 and

Figure 4.6). For the shorter trip, although no fuel was needed, 2.65 L fuel was consumed

under the adversarial attacks. For the longer trip, some amount of fuel should have been

used at the end of the trip to prevent the SOC from falling lower than 10%. However,

under the perturbed states, the DQN agent chose to decrease rather than increase the value

of 𝐿.$&.

To further understand the impact of adversarial examples on the DQN agent, we chose

state 𝐴 and state 𝐵 from the two trips to compare the action-values under normal states

 137

and perturbed states. In Figure 5.39. it is clear that the agent would choose the action of

decreasing the 𝐿.$& by 10 if the state information was correct. The action preference

among all possible actions is also easy to recognize according to the ranking of action-

values. However, the differences between the action-values became unclear under the

perturbed state. For state 𝐵 in Figure 5.40, it can be observed that if the state information

was transmitted correctly, the agent would consider that all actions could lead to bad

results since all the action-values were very low, and the action of +10 was the best it

could do. By contrast, when the state was perturbed, the magnitude of the action-values

all changed significantly, and the ranking seemed random.

Figure 5.37: Performance of DQN on the recorded trip shown in Figure 4.5 under

adversarial examples generated by 𝐿" method with 𝜀 = 0.05.

Figure 5.38: Performance of DQN on the recorded trip shown in Figure 4.6 under

adversarial examples generated by FGSM method with 𝜀 = 0.02.

 138

Figure 5.39: Action-values comparison for state 𝐴. The left is for the original state and

the right is for the perturbed state.

Figure 5.40: Action-values comparison for state 𝐵. The left is for the original state and

the right is for the perturbed state.

It should be emphasized that the results reported from Figure 5.32- Figure 5.36 are all

mean scores over all the 52 trips. Consequently, the methods used here to generate

adversarial examples are not guaranteed to degrade the performance of all trips. Addressing

two limitations of the methods can help improve the effectiveness of the adversarial

examples.

First, all the methods used in this work come from the area of computer vision. They

ignore a key notion from reinforcement learning which is that the inputs at each timestep

are correlated temporally. More efficient attacks could be achieved if the temporal

 139

correlation is utilized. One way to exploit this property is to train an adversarial agent to

generate adversarial examples. This can be formulated as a new RL problem which

considers the environment and the target agent combined as a new environment. The goal

of the adversarial agent is to decrease the cumulated reward of the target agent in the

original environment. By designing the reward function of the new problem, the norm and

frequency of attacks can be controlled. It is expected that with a well-trained adversarial

agent, the same level of performance drop could be reached with even smaller perturbations

and less frequent attacks. Work by [143] and [144] discuss two heuristic and easy to

implement methods to reduce attack frequency using value functions .

Another limitation of the current methods is that no target action or target state is

specified. The goal of a designed attack is to change an action so that it is different from

what the target agent intends to do. This could be partly addressed by more sophisticated

and time-consuming methods like combining a generative model and planning algorithm

[144] or an iterative least-likely class method [141].

There are at least two directions that could be taken to build a more robust agent against

possible adversarial attacks. First, detection methods could be utilized to monitor the inputs.

Second, adversarial training could be applied [146][147].

Robustness is one of the most important considerations when building technologies to

solve real-world problems. In this work, the impact of adversarial examples generated by

several fast methods under white-box and black-box conditions are investigated on a deep

RL-based vehicle energy management system. This work shows that on average

adversarial examples can significantly degrade the performance of a target agent in an

 140

EMS compared with random noise. As deep RL becomes more and more popular in the

area of intelligent transportation systems, researchers will need to understand and prepare

for a range of adversarial attacks. Threats to safety-critical systems will need especially

careful consideration.

 141

6. CONCLUSION

Development of energy management systems for HEVs and PHEVs has advanced

significantly in the last two decades. Yet, there are still gaps between simulation and real-

world applications, for example, future driving cycles are usually unknown, and detailed

trip information is difficult to predict due to complex and stochastic factors in real-world

transportation systems. In this dissertation, data-driven methods were presented to bridge

the gaps, which includes both traditional machine learning techniques like Bayesian

inference and emerging algorithms like deep reinforcement learning to improve the fuel

efficiency of in-use EREVs used in package delivery applications.

The Bayesian inference-based method developed here is a very conservative approach

for energy management in vehicles and is especially useful when the number of historical

trips associated with the target vehicle is low. Also, it is easy to implement and requires

low computational resources. Consequently, it is relatively easy to deploy in a delivery

fleet. The downside of this approach is that the fuel efficiency improvement is moderate.

The two main reasons are: first, the 𝐿.$& is only updated before the trip so that the real-

time information is not used. Second, even there are large amount of data available, the

average fuel efficiency improvement will still be moderate due to the conservative nature

of the algorithm.

The DRL-based approaches in this work have some of the opposite characteristics to

the Bayesian method. This approach assumes that the number of historical delivery trip

data is large enough to represent future trips. Therefore, the intelligent agent trained based

on the simulator which is built with historical data and vehicle model can adaptively

 142

update the value of 𝐿.$& in future trips. This approach can achieve high fuel efficiencies,

however, the training of each intelligent agent for each vehicle needs careful tuning and

validation, which may prevent it from being used on a large scale. There are always trade-

offs in real-world applications. If an algorithm is easy to use, the performance might be

compromised. If an algorithm can achieve near optimal performance, the feasibility might

be low. The advantages and disadvantages of the two proposed approaches can be

explained by this trade-off.

Some challenges may be encountered when applying the developed DRL approach in

real-world applications. Three types of problems are identified and presented in this work,

along with possible solutions and future research directions. First, the assumption of the

developed DRL-based approach is that the historical trips used to build the simulation

environment can accurately represent future trips; however, this might not hold true,

meaning that some future states are unfamiliar or novel to the intelligent agent. Under this

condition, the action calculated by the agent is not guaranteed to work and may lead to

poor performance, or even dangerous conditions like running out of battery when driving

on the highway. To address these challenges, an uncertainty-aware strategy was built that

can capture the out-of-distribution inputs and inform the system so that the EMS can

switch to predefined rules or notify the driver. Secondly, standard RL algorithms make

decisions based on expected return. This works well if the underlying return distributions

are unimodal with low variance. However, it is shown in this work that the underlying

return distributions are not always unimodal and may have high variance, which means

the expected value losses important information of the future return. To solve this problem,

 143

a risk-aware agent was developed, which makes decisions based on CVaR, leading risk-

averse strategies. Lastly, influences of adversarial attacks on DRL agents are investigated.

It is shown that the adversarial examples can significantly disturb the agent and need to

be protected against.

For future work in this problem area, many directions can be further studied. Some

directions are listed as of them are:

• Initialize the NN-based agent: One of the disadvantages of RL-based algorithms

is that it requires carefully tuning for each individual vehicle since the

characteristics of each trip data are diverse. This leads to training each NN-based

agent from random initialization, which will explore many obviously bad policies

for all vehicles at the beginning of the interaction. However, it is intuitive that

although the policies should be different for different vehicles, some basic

strategies should be similar, for example, when the battery SOC is low and close

to 10%, the engine should be turned on, and there is no benefit to increase the 𝐿.$&

if it is already very high. Consequently, for a new vehicle, the NN-based agent can

be initialized to some existing NNs so that the training time can be reduced as it is

not from random. This idea is called transfer learning in deep learning as well as

in deep RL [148].

• Improve the Vehicle Model: Further improvements can be achieved by improving

the environment, which consists of the historical trip data and a simplified vehicle

model in this work. The main idea is to bridge the gap between simulation and

reality. Some related work in other application domains can be found in [149]-

 144

[151]. Also, it is possible to build a model of the environment, which itself is a

research topic. This requires large amount of data and more advanced

transportation infrastructures. Some model-based RL algorithms are listed here

[152]-[158]. A straightforward and relatively easy next step for this work is to

manually or automatically build new trips using the available data; i.e., combining

different trips into one trip. The velocity profiles and GPS trajectories of the

combined new trips are all realistic, but the combination is novel. Generative

models [159]-[163] can be potentially used in this process.

• Build an Interpretable Agent: Although the RL-based agent can achieve good

performance as demonstrated in this work, it is a black-box method so that the

decisions are not interpretable. Therefore, a potential research direction is to

extract explicit rules from the trained agent or build an interpretable agent. This

direction is not only useful in our EMS application, but is also highly beneficial to

nearly all RL applications and data-driven methods involving NNs [164][165].

• Defend Against Adversarial Attacks: It is demonstrated that the performance of

NN-based agents can be influenced by adversarial attacks. Therefore, agents that

can resist adversarial methods are of great importance for real-world applications

[166]-[169]. More robust strategies for mitigating the impacts of adversarial

attacks are advised in future research.

This dissertation not only presents a systematic framework for the energy management

problem of in-use EREVs for package delivery, but also provides useful directions for

solving many other problems in the area of intelligent transportation systems. The data-

 145

driven methods used in this work can be applied to other vehicle applications so long as

the nature of the problems is similar. For example, they here have already been applied to

powertrain mode switching in power-split plug-in hybrid vehicles [170]. The three

challenges identified in this work also exist in many ITS-related applications like

autonomous driving [114][115]. Methods and discussion contained in this dissertation can

provide some initial insights and guidance to deal with other domain-specific problems.

 146

BIBLIOGRAPHY

[1] U.S. EIA, “Monthly Energy Review”, tables 1.1, 1.2, 1.3, 1.4a, 1.4b and 2.1, April

2019.

[2] “Inventory of U.S. greenhouse gas emissions and sinks: 1990–2009,” U.S.

Environmental Protection Agency (EPA), Washington, DC, USA, Final Rep., EPA

430-R-11-005, Apr. 2011.

[3] U.S. EIA, "Annual Energy Outlook 2011 with Projections to 2035," U.S. Energy

Information Administration,2010.

[4] Salisa, Abdul Rahman, Nong Zhang, and J. G. Zhu. "A comparative analysis of fuel

economy and emissions between a conventional HEV and the UTS PHEV." IEEE

Transactions on Vehicular Technology 60, no. 1 (2010): 44-54.

[5] Martinez, Clara Marina, Xiaosong Hu, Dongpu Cao, Efstathios Velenis, Bo Gao,

and Matthias Wellers. "Energy management in plug-in hybrid electric vehicles:

Recent progress and a connected vehicles perspective." IEEE Transactions on

Vehicular Technology 66, no. 6 (2016): 4534-4549.

[6] Guzzella, Lino, and Antonio Sciarretta. Vehicle propulsion systems. Vol. 1.

Springer-Verlag Berlin Heidelberg, 2007.

[7] Michel, Pierre, Alain Charlet, Guillaume Colin, Yann Chamaillard, Gérard Bloch,

and Cédric Nouillant. Pollution constrained optimal energy management of a

gasoline-HEV. No. 2013-24-0083. SAE Technical Paper, 2013.

[8] Akar, Furkan, Yakup Tavlasoglu, and Bulent Vural. "An energy management

strategy for a concept battery/ultracapacitor electric vehicle with improved battery

life." IEEE Transactions on Transportation Electrification 3, no. 1 (2016): 191-200.

[9] Tang, Li, Giorgio Rizzoni, and Simona Onori. "Energy management strategy for

HEVs including battery life optimization." IEEE Transactions on Transportation

Electrification 1, no. 3 (2015): 211-222.

 147

[10] Zhu, Li, Fei Richard Yu, Yige Wang, Bin Ning, and Tao Tang. "Big data analytics

in intelligent transportation systems: A survey." IEEE Transactions on Intelligent

Transportation Systems 20, no. 1 (2018): 383-398.

[11] Zhang, Junping, Fei-Yue Wang, Kunfeng Wang, Wei-Hua Lin, Xin Xu, and Cheng

Chen. "Data-driven intelligent transportation systems: A survey." IEEE

Transactions on Intelligent Transportation Systems 12, no. 4 (2011): 1624-1639.

[12] Rodrigues, Maradona, Steve King, Dan Scott, and Ducai Wang. Advanced energy

management strategies for range extended electric vehicle. No. 2015-26-0121. SAE

Technical Paper, 2015.

[13] Pozzato, Gabriele, Simone Formentin, Giulio Panzani, and Sergio M. Savaresi.

"Least costly energy management for extended range electric vehicles with start-up

characterization." In 2018 IEEE Conference on Control Technology and

Applications (CCTA), pp. 1020-1025. IEEE, 2018.

[14] Kalia, Aman V., and Brian C. Fabien. "On Implementing Optimal Energy

Management for EREV using Distance Constrained Adaptive Real-Time Dynamic

Programming." Electronics 9, no. 2 (2020): 228.

[15] Virtanen, Pauli, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,

David Cournapeau, Evgeni Burovski et al. "SciPy 1.0: fundamental algorithms for

scientific computing in Python." Nature methods 17, no. 3 (2020): 261-272.

[16] Huang, Bufu, Xi Shi, and Yangsheng Xu. "Parameter optimization of power control

strategy for series hybrid electric vehicle." In 2006 IEEE International Conference

on Evolutionary Computation, pp. 1989-1994. IEEE, 2006.

[17] Tulpule, P., Vincenzo Marano, and Giorgio Rizzoni. "Effects of different PHEV

control strategies on vehicle performance." In 2009 American Control Conference,

pp. 3950-3955. IEEE, 2009.

[18] Wirasingha, Sanjaka G., and Ali Emadi. "Classification and review of control

strategies for plug-in hybrid electric vehicles." IEEE Transactions on vehicular

technology 60, no. 1 (2010): 111-122.

 148

[19] Zhang, Fengqi, Xiaosong Hu, Reza Langari, and Dongpu Cao. "Energy

management strategies of connected HEVs and PHEVs: Recent progress and

outlook." Progress in Energy and Combustion Science 73 (2019): 235-256.

[20] Zeng, Xiangrui, and Junmin Wang. "A parallel hybrid electric vehicle energy

management strategy using stochastic model predictive control with road grade

preview." IEEE Transactions on Control Systems Technology 23, no. 6 (2015):

2416-2423.

[21] Martinez, Clara Marina, Mira Heucke, Fei-Yue Wang, Bo Gao, and Dongpu Cao.

"Driving style recognition for intelligent vehicle control and advanced driver

assistance: A survey." IEEE Transactions on Intelligent Transportation Systems 19,

no. 3 (2017): 666-676.

[22] Ripaccioli, Giulio, Daniele Bernardini, Stefano Di Cairano, Alberto Bemporad, and

I. V. Kolmanovsky. "A stochastic model predictive control approach for series

hybrid electric vehicle power management." In Proceedings of the 2010 American

Control Conference, pp. 5844-5849. IEEE, 2010.

[23] Chen, Zheng, Chunting Chris Mi, Jun Xu, Xianzhi Gong, and Chenwen You.

"Energy management for a power-split plug-in hybrid electric vehicle based on

dynamic programming and neural networks." IEEE Transactions on Vehicular

Technology 63, no. 4 (2013): 1567-1580.

[24] Nguyen, Bao-Huy, Ronan German, João Pedro F. Trovão, and Alain Bouscayrol.

"Real-time energy management of battery/supercapacitor electric vehicles based on

an adaptation of Pontryagin's minimum principle." IEEE Transactions on Vehicular

Technology 68, no. 1 (2018): 203-212.

[25] Tianheng, Feng, Yang Lin, Gu Qing, Hu Yanqing, Yan Ting, and Yan Bin. "A

supervisory control strategy for plug-in hybrid electric vehicles based on energy

demand prediction and route preview." IEEE Transactions on Vehicular

Technology 64, no. 5 (2014): 1691-1700.

[26] Musardo, Cristian, Giorgio Rizzoni, Yann Guezennec, and Benedetto Staccia. "A-

ECMS: An adaptive algorithm for hybrid electric vehicle energy

management." European Journal of Control 11, no. 4-5 (2005): 509-524.

 149

[27] Zeng, Xiangrui, and Junmin Wang. "Optimizing the energy management strategy

for plug-in hybrid electric vehicles with multiple frequent routes." IEEE

Transactions on Control Systems Technology 27, no. 1 (2017): 394-400.

[28] Zhang, Shuwei, Yugong Luo, Junmin Wang, Xiao Wang, and Keqiang Li.

"Predictive energy management strategy for fully electric vehicles based on

preceding vehicle movement." IEEE Transactions on Intelligent Transportation

Systems 18, no. 11 (2017): 3049-3060.

[29] Xie, Shaobo, Xiaosong Hu, Zongke Xin, and Liang Li. "Time-efficient stochastic

model predictive energy management for a plug-in hybrid electric bus with an

adaptive reference state-of-charge advisory." IEEE Transactions on Vehicular

Technology 67, no. 7 (2018): 5671-5682.

[30] Anselma, Pier Giuseppe, Yi Huo, Joel Roeleveld, Giovanni Belingardi et al.,

"Integration of On-Line Control in Optimal Design of Multimode Power-Split

Hybrid Electric Vehicle Powertrains." IEEE Transactions on Vehicular

Technology 68, no. 4 (2019): 3436-3445.

[31] Stroe, Nicoleta, Sorin Olaru, Guillaume Colin, Karim Ben-Cherif et al., "Predictive

Control Framework for HEV: Energy Management and Free-Wheeling

Analysis." IEEE Transactions on Intelligent Vehicles 4, no. 2 (2019): 220-231.

[32] Zhang, Chen, Ardalan Vahidi, Pierluigi Pisu, Xiaopeng Li, and Keith Tennant.

"Role of terrain preview in energy management of hybrid electric vehicles." IEEE

transactions on Vehicular Technology 59, no. 3 (2009): 1139-1147.

[33] Kermani, Saida, Rochdi Trigui, Sebastien Delprat, Bruno Jeanneret, and Thierry

Marie Guerra. "PHIL implementation of energy management optimization for a

parallel HEV on a predefined route." IEEE Transactions on Vehicular

Technology 60, no. 3 (2011): 782-792.

[34] Wu, Guoyuan, Kanok Boriboonsomsin, and Matthew J. Barth. "Development and

evaluation of an intelligent energy-management strategy for plug-in hybrid electric

vehicles." IEEE Transactions on Intelligent Transportation Systems 15, no. 3

(2014): 1091-1100.

 150

[35] Sun, Chao, Scott Jason Moura, Xiaosong Hu, J. Karl Hedrick, and Fengchun Sun.

"Dynamic traffic feedback data enabled energy management in plug-in hybrid

electric vehicles." IEEE Transactions on Control Systems Technology 23, no. 3

(2014): 1075-1086.

[36] Zhang, Fengqi, Junqiang Xi, and Reza Langari. "Real-time energy management

strategy based on velocity forecasts using V2V and V2I communications." IEEE

Transactions on Intelligent Transportation Systems 18, no. 2 (2016): 416-430.

[37] Qi, Xuewei, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J. Barth.

"Development and evaluation of an evolutionary algorithm-based online energy

management system for plug-in hybrid electric vehicles." IEEE Transactions on

Intelligent Transportation Systems 18, no. 8 (2016): 2181-2191.

[38] Chen, Di, Youngki Kim, and Anna G. Stefanopoulou. "State of charge node

planning with segmented traffic information." In 2018 Annual American Control

Conference (ACC), pp. 4969-4974. IEEE, 2018.

[39] Rama, Neeraj, Huanqing Wang, Joshua Orlando, Darrell Robinette, and Bo

Chen. Route-Optimized Energy Management of Connected and Automated Multi-

Mode Plug-In Hybrid Electric Vehicle Using Dynamic Programming. No. 2019-01-

1209. SAE Technical Paper, 2019.

[40] McNew, John-Michael. "Predicting cruising speed through data-driven driver

modeling." In 2012 15th International IEEE Conference on Intelligent

Transportation Systems, pp. 1789-1796. IEEE, 2012.

[41] Bender, Frank A., Martin Kaszynski, and Oliver Sawodny. "Drive cycle prediction

and energy management optimization for hybrid hydraulic vehicles." IEEE

Transactions on vehicular technology 62, no. 8 (2013): 3581-3592.

[42] Platho, Matthias, Horst-Michael Groß, and Julian Eggert. "Predicting velocity

profiles of road users at intersections using configurations." In 2013 IEEE

Intelligent Vehicles Symposium (IV), pp. 945-951. IEEE, 2013.

[43] Di Cairano, Stefano, Daniele Bernardini, Alberto Bemporad et al., "Stochastic MPC

with learning for driver-predictive vehicle control and its application to HEV energy

 151

management." IEEE Transactions on Control Systems Technology 22, no. 3 (2013):

1018-1031.

[44] Lefèvre, Stéphanie, Chao Sun, Ruzena Bajcsy et al., "Comparison of parametric and

non-parametric approaches for vehicle speed prediction." In 2014 American Control

Conference, pp. 3494-3499. IEEE, 2014.

[45] Park, Jungme, Yi Lu Murphey, Ryan McGee et al., "Intelligent trip modeling for the

prediction of an origin–destination traveling speed profile." IEEE Transactions on

Intelligent Transportation Systems 15, no. 3 (2014): 1039-1053.

[46] Ziegmann, Johannes, Jieqing Shi, Tobias Schnörer, et al., "Analysis of individual

driver velocity prediction using data-driven driver models with environmental

features." In 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 517-522. IEEE,

2017.

[47] Jiang, Bingnan, and Yunsi Fei. "Vehicle speed prediction by two-level data driven

models in vehicular networks." IEEE Transactions on Intelligent Transportation

Systems 18, no. 7 (2016): 1793-1801.

[48] Simmons, Reid, Brett Browning, Yilu Zhang, and Varsha Sadekar. "Learning to

predict driver route and destination intent." In 2006 IEEE Intelligent Transportation

Systems Conference, pp. 127-132. IEEE, 2006.

[49] Froehlich, Jon, and John Krumm. Route prediction from trip observations. No.

2008-01-0201. SAE Technical Paper, 2008.

[50] Larsson, Viktor, Lars Johannesson Mårdh, Bo Egardt, and Sten Karlsson.

"Commuter route optimized energy management of hybrid electric vehicles." IEEE

transactions on intelligent transportation systems 15, no. 3 (2014): 1145-1154.

[51] Xu, Bin, Farzam Malmir, Dhruvang Rathod, and Zoran Filipi. Real-time

reinforcement learning optimized energy management for a 48V mild hybrid electric

vehicle. No. 2019-01-1208. SAE Technical Paper, 2019.

[52] Lin, Xue, Paul Bogdan, Naehyuck Chang, and Massoud Pedram. "Machine

learning-based energy management in a hybrid electric vehicle to minimize total

operating cost." In 2015 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), pp. 627-634. IEEE, 2015.

 152

[53] Liu, Chang, and Yi Lu Murphey. "Power management for Plug-in Hybrid Electric

Vehicles using Reinforcement Learning with trip information." In 2014 IEEE

Transportation Electrification Conference and Expo (ITEC), pp. 1-6. IEEE, 2014.

[54] Liu, Teng, Yuan Zou, Dexing Liu, and Fengchun Sun. "Reinforcement learning of

adaptive energy management with transition probability for a hybrid electric tracked

vehicle." IEEE Transactions on Industrial Electronics 62, no. 12 (2015): 7837-

7846.

[55] Xu, Bin, Dhruvang Rathod, Darui Zhang, Adamu Yebi, Xueyu Zhang, Xiaoya Li,

and Zoran Filipi. "Parametric study on reinforcement learning optimized energy

management strategy for a hybrid electric vehicle." Applied Energy (2019): 114200.

[56] Zhao, Pu, Yanzhi Wang, Naehyuck Chang, Qi Zhu, and Xue Lin. "A deep

reinforcement learning framework for optimizing fuel economy of hybrid electric

vehicles." In 2018 23rd Asia and South Pacific Design Automation Conference

(ASP-DAC), pp. 196-202. IEEE, 2018.

[57] Liu, Teng, Xiaosong Hu, Shengbo Eben Li, and Dongpu Cao. "Reinforcement

learning optimized look-ahead energy management of a parallel hybrid electric

vehicle." IEEE/ASME Transactions on Mechatronics 22, no. 4 (2017): 1497-1507.

[58] Wu, Jingda, Hongwen He, Jiankun Peng, Yuecheng Li, and Zhanjiang Li.

"Continuous reinforcement learning of energy management with deep Q network

for a power split hybrid electric bus." Applied energy 222 (2018): 799-811.

[59] Han, Xuefeng, Hongwen He, Jingda Wu, Jiankun Peng, and Yuecheng Li. "Energy

management based on reinforcement learning with double deep Q-learning for a

hybrid electric tracked vehicle." Applied Energy 254 (2019): 113708.

[60] Li, Yuecheng, Hongwen He, Jiankun Peng, and Hong Wang. "Deep Reinforcement

Learning-Based Energy Management for a Series Hybrid Electric Vehicle Enabled

by History Cumulative Trip Information." IEEE Transactions on Vehicular

Technology 68, no. 8 (2019): 7416-7430.

[61] Hu, Yue, Weimin Li, Kun Xu, Taimoor Zahid, Feiyan Qin, and Chenming Li.

"Energy management strategy for a hybrid electric vehicle based on deep

reinforcement learning." Applied Sciences 8, no. 2 (2018): 187.

 153

[62] Zou, Yuan, Teng Liu, Dexing Liu, and Fengchun Sun. "Reinforcement learning-

based real-time energy management for a hybrid tracked vehicle." Applied

energy 171 (2016): 372-382.

[63] Xiong, Rui, Jiayi Cao, and Quanqing Yu. "Reinforcement learning-based real-time

power management for hybrid energy storage system in the plug-in hybrid electric

vehicle." Applied energy 211 (2018): 538-548.

[64] Qi, Xuewei, Guoyuan Wu, Kanok Boriboonsomsin, and Matthew J. Barth. "A novel

blended real-time energy management strategy for plug-in hybrid electric vehicle

commute trips." In 2015 IEEE 18th International Conference on Intelligent

Transportation Systems, pp. 1002-1007. IEEE, 2015.

[65] Chen, Zheng, Liang Li, Xiaosong Hu, Bingjie Yan, and Chao Yang. "Temporal-

Difference Learning-Based Stochastic Energy Management for Plug-in Hybrid

Electric Buses." IEEE Transactions on Intelligent Transportation Systems 20, no. 6

(2018): 2378-2388.

[66] Hu, Xiaosong, Teng Liu, Xuewei Qi, and Matthew Barth. "Reinforcement Learning

for Hybrid and Plug-In Hybrid Electric Vehicle Energy Management: Recent

Advances and Prospects." IEEE Industrial Electronics Magazine 13, no. 3 (2019):

16-25.

[67] Rousseau, Aymeric, Sylvain Pagerit, and David Wenzhong Gao. "Plug-in hybrid

electric vehicle control strategy parameter optimization." Journal of Asian Electric

Vehicles 6, no. 2 (2008): 1125-1133.

[68] Taherzadeh, Erfan, Morteza Dabbaghjamanesh, Mohsen Gitizadeh, and Akbar

Rahideh. "A new efficient fuel optimization in blended charge depletion/charge

sustenance control strategy for plug-in hybrid electric vehicles." IEEE Transactions

on Intelligent Vehicles 3, no. 3 (2018): 374-383.

[69] Overington, Shane, and Sumedha Rajakaruna. "High-efficiency control of internal

combustion engines in blended charge depletion/charge sustenance strategies for

plug-in hybrid electric vehicles." IEEE Transactions on Vehicular Technology 64,

no. 1 (2014): 48-61.

 154

[70] Lin, Chan-Chiao, Huei Peng, Jessy W. Grizzle, and Jun-Mo Kang. "Power

management strategy for a parallel hybrid electric truck." IEEE transactions on

control systems technology 11, no. 6 (2003): 839-849.

[71] Kum, Dongsuk, Huei Peng, and Norman K. Bucknor. "Optimal energy and catalyst

temperature management of plug-in hybrid electric vehicles for minimum fuel

consumption and tail-pipe emissions." IEEE Transactions on Control Systems

Technology 21, no. 1 (2011): 14-26.

[72] Pam, Abdoulaye, Alain Bouscayrol, Philippe Fiani, and Frederic Noth. "Rule-Based

Energy Management Strategy for a Parallel Hybrid Electric Vehicle Deduced from

Dynamic Programming." In 2017 IEEE Vehicle Power and Propulsion Conference

(VPPC), pp. 1-6. IEEE, 2017.

[73] Padmarajan, Brahmadevan V., Andrew McGordon, and Paul A. Jennings. "Blended

rule-based energy management for PHEV: System structure and strategy." IEEE

Transactions on Vehicular Technology 65, no. 10 (2015): 8757-8762.

[74] Kochenderfer, Mykel J. Decision making under uncertainty: theory and application.

MIT press, 2015.

[75] Alpaydin, Ethem. Introduction to machine learning. MIT press, 2020.

[76] Murphy, Kevin P. "Conjugate Bayesian analysis of the Gaussian distribution." def 1,

no. 2σ2 (2007): 16.

[77] Bishop, Christopher M. Pattern recognition and machine learning. springer, 2006.

[78] Gelman, Andrew, John B. Carlin, Hal S. Stern, David B. Dunson, Aki Vehtari, and

Donald B. Rubin. Bayesian data analysis. CRC press, 2013.

[79] Freyermuth, Vincent, Eric Fallas, and Aymeric Rousseau. "Comparison of

powertrain configuration for plug-in HEVs from a fuel economy perspective." SAE

International Journal of Engines 1, no. 1 (2009): 392-398.

[80] Bertsekas, Dimitri P., and John N. Tsitsiklis. Neuro-dynamic programming. Athena

Scientific, 1996.

[81] Bertsekas, Dimitri P. Reinforcement learning and optimal control. Athena Scientific,

2019.

[82] BERTSEKAS, DIMITRI P. "Approximate Dynamic Programming." (2012).

 155

[83] Sutton, Richard S., and Andrew G. Barto. Reinforcement learning: An introduction.

MIT press, 2018.

[84] Russell, Stuart, and Peter Norvig. "Artificial intelligence: a modern approach."

(2002).

[85] Sugiyama, Masashi. Statistical reinforcement learning: modern machine learning

approaches. CRC Press, 2015.

[86] Watkins, Christopher JCH, and Peter Dayan. "Q-learning." Machine learning 8, no.

3-4 (1992): 279-292.

[87] Bellemare, Marc, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton,

and Remi Munos. "Unifying count-based exploration and intrinsic motivation."

In Advances in neural information processing systems, pp. 1471-1479. 2016.

[88] Osband, Ian, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. "Deep

exploration via bootstrapped DQN." In Advances in neural information processing

systems, pp. 4026-4034. 2016.

[89] Bishop, Christopher M. Neural networks for pattern recognition. Oxford university

press, 1995.

[90] Cybenko, George. "Approximation by superpositions of a sigmoidal

function." Mathematics of control, signals and systems 2, no. 4 (1989): 303-314.

[91] Funahashi, KenIchi. "On the approximate realization of continuous mappings by

neural networks." Neural networks 2, no. 3 (1989): 183-192.

[92] Rumelhart, David E., Geoffrey E. Hinton, and Ronald J. Williams. "Learning

representations by back-propagating errors." nature 323, no. 6088 (1986): 533-536.

[93] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521,

no. 7553 (2015): 436-444.

[94] Bertsekas, Dimitri P. "Nonlinear programming." Journal of the Operational

Research Society 48, no. 3 (1997): 334-334.

[95] Paszke, Adam, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,

Gregory Chanan, Trevor Killeen et al. "PyTorch: An imperative style, high-

performance deep learning library." In Advances in Neural Information Processing

Systems, pp. 8024-8035. 2019.

 156

[96] Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted

boltzmann machines." In Proceedings of the 27th international conference on

machine learning (ICML-10), pp. 807-814. 2010.

[97] Kingma, Diederik P., and Jimmy Ba. "Adam: A method for stochastic

optimization." arXiv preprint arXiv:1412.6980 (2014).

[98] Mnih, Volodymyr, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,

Marc G. Bellemare, Alex Graves et al. "Human-level control through deep

reinforcement learning." Nature 518, no. 7540 (2015): 529-533.

[99] Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep reinforcement learning

with double q-learning." In Thirtieth AAAI conference on artificial intelligence.

2016.

[100] Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. "Prioritized

experience replay." arXiv preprint arXiv:1511.05952 (2015).

[101] Wang, Ziyu, Tom Schaul, Matteo Hessel, Hado Van Hasselt, Marc Lanctot, and

Nando De Freitas. "Dueling network architectures for deep reinforcement

learning." arXiv preprint arXiv:1511.06581 (2015).

[102] Fortunato, Meire, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian

Osband, Alex Graves, Vlad Mnih et al. "Noisy networks for exploration." arXiv

preprint arXiv:1706.10295 (2017).

[103] Hessel, Matteo, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,

Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.

"Rainbow: Combining improvements in deep reinforcement learning." In Thirty-

Second AAAI Conference on Artificial Intelligence. 2018.

[104] Silver, David, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and

Martin Riedmiller. "Deterministic policy gradient algorithms." 2014.

[105] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. "Continuous control with deep

reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).

 157

[106] Schulman, John, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.

"Trust region policy optimization." In International conference on machine

learning, pp. 1889-1897. 2015.

[107] Schulman, John, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

"Proximal policy optimization algorithms." arXiv preprint

arXiv:1707.06347 (2017).

[108] Schulman, John, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel.

"High-dimensional continuous control using generalized advantage

estimation." arXiv preprint arXiv:1506.02438 (2015).

[109] Haarnoja, Tuomas, Aurick Zhou, Pieter Abbeel, and Sergey Levine. "Soft actor-

critic: Off-policy maximum entropy deep reinforcement learning with a stochastic

actor." arXiv preprint arXiv:1801.01290 (2018).

[110] Wang, Ziyu, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray

Kavukcuoglu, and Nando de Freitas. "Sample efficient actor-critic with experience

replay." arXiv preprint arXiv:1611.01224 (2016).

[111] O'Keefe, Michael P., Andrew Simpson, Kenneth J. Kelly, and Daniel S.

Pedersen. Duty cycle characterization and evaluation towards heavy hybrid vehicle

applications. No. 2007-01-0302. SAE Technical Paper, 2007.

[112] Du, Yu, Wei ShangGuan, Dingchao Rong, and Linguo Chai. "RA-TSC: Learning

Adaptive Traffic Signal Control Strategy via Deep Reinforcement Learning."

In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pp. 3275-3280.

IEEE, 2019.

[113] Liang, Xiaoyuan, Xunsheng Du, Guiling Wang, and Zhu Han. "A deep

reinforcement learning network for traffic light cycle control." IEEE Transactions

on Vehicular Technology 68, no. 2 (2019): 1243-1253.

[114] Min, Kyushik, Hayoung Kim, and Kunsoo Huh. "Deep Distributional

Reinforcement Learning Based High-Level Driving Policy Determination." IEEE

Transactions on Intelligent Vehicles 4, no. 3 (2019): 416-424.

 158

[115] Lötjens, Björn, Michael Everett, and Jonathan P. How. "Safe reinforcement learning

with model uncertainty estimates." In 2019 International Conference on Robotics

and Automation (ICRA), pp. 8662-8668. IEEE, 2019.

[116] Vinitsky, Eugene, Kanaad Parvate, Aboudy Kreidieh, Cathy Wu, and Alexandre

Bayen. "Lagrangian control through deep-rl: Applications to bottleneck

decongestion." In 2018 21st International Conference on Intelligent Transportation

Systems (ITSC), pp. 759-765. IEEE, 2018.

[117] Wang, Zhaodong, Zhiwei Qin, Xiaocheng Tang, Jieping Ye, and Hongtu Zhu.

"Deep reinforcement learning with knowledge transfer for online rides order

dispatching." In 2018 IEEE International Conference on Data Mining (ICDM), pp.

617-626. IEEE, 2018.

[118] Wang, Pengyue, Yan Li, Shashi Shekhar, and William F. Northrop. "A deep

reinforcement learning framework for energy management of extended range

electric delivery vehicles." In 2019 IEEE Intelligent Vehicles Symposium (IV), pp.

1837-1842. IEEE, 2019.

[119] Wang, Pengyue, Yan Li, Shashi Shekhar, and William F. Northrop. "Actor-Critic

based Deep Reinforcement Learning Framework for Energy Management of

Extended Range Electric Delivery Vehicles." In 2019 IEEE/ASME International

Conference on Advanced Intelligent Mechatronics (AIM), pp. 1379-1384. IEEE,

2019.

[120] Osband, Ian. "Risk versus uncertainty in deep learning: Bayes, bootstrap and the

dangers of dropout." In NIPS Workshop on Bayesian Deep Learning, vol. 192. 2016.

[121] Gal, Yarin. "Uncertainty in deep learning." University of Cambridge 1 (2016): 3.

[122] Pearce, Tim, Nicolas Anastassacos, Mohamed Zaki, and Andy Neely. "Bayesian

Inference with Anchored Ensembles of Neural Networks, and Application to

Exploration in Reinforcement Learning." arXiv preprint arXiv:1805.11324 (2018).

[123] Dearden, Richard, Nir Friedman, and Stuart Russell. "Bayesian Q-learning."

In Aaai/iaai, pp. 761-768. 1998.

 159

[124] M. G. Bellemare, W. Dabney, and R. Munos, "A distributional perspective on

reinforcement learning." In Proceedings of the 34th International Conference on

Machine Learning-Volume 70, pp. 449-458. JMLR. org, 2017.

[125] Rowland, Mark, Marc G. Bellemare, Will Dabney, Rémi Munos, and Yee Whye

Teh. "An analysis of categorical distributional reinforcement learning." arXiv

preprint arXiv:1802.08163 (2018).

[126] Dabney, Will, Mark Rowland, Marc G. Bellemare, and Rémi Munos.

"Distributional reinforcement learning with quantile regression." In Thirty-Second

AAAI Conference on Artificial Intelligence. 2018.

[127] Dabney, Will, Georg Ostrovski, David Silver, and Rémi Munos. "Implicit quantile

networks for distributional reinforcement learning." arXiv preprint

arXiv:1806.06923 (2018).

[128] Majumdar, Anirudha, and Marco Pavone. "How should a robot assess risk? Towards

an axiomatic theory of risk in robotics." In Robotics Research, pp. 75-84. Springer,

Cham, 2020.

[129] Lakshminarayanan, Balaji, Alexander Pritzel, and Charles Blundell. "Simple and

scalable predictive uncertainty estimation using deep ensembles." In Advances in

Neural Information Processing Systems, pp. 6402-6413. 2017.

[130] Lu, Xiuyuan, and Benjamin Van Roy. "Ensemble sampling." In Advances in neural

information processing systems, pp. 3258-3266. 2017.

[131] Fort, Stanislav, Huiyi Hu, and Balaji Lakshminarayanan. "Deep Ensembles: A Loss

Landscape Perspective." arXiv preprint arXiv:1912.02757 (2019).

[132] Pearce, Tim, Mohamed Zaki, Alexandra Brintrup, and Andy Neely. "High-quality

prediction intervals for deep learning: A distribution-free, ensembled

approach." arXiv preprint arXiv:1802.07167 (2018).

[133] Khosravi, Abbas, Saeid Nahavandi, Doug Creighton, and Amir F. Atiya.

"Comprehensive review of neural network-based prediction intervals and new

advances." IEEE Transactions on neural networks 22, no. 9 (2011): 1341-1356.

 160

[134] Amodei, Dario, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and

Dan Mané. "Concrete problems in AI safety." arXiv preprint

arXiv:1606.06565 (2016).

[135] McAllister, Rowan, Yarin Gal, Alex Kendall, Mark Van Der Wilk, Amar Shah,

Roberto Cipolla, and Adrian Weller. "Concrete problems for autonomous vehicle

safety: Advantages of bayesian deep learning." International Joint Conferences on

Artificial Intelligence, Inc., 2017.

[136] Alshiekh, Mohammed, Roderick Bloem, Rüdiger Ehlers, Bettina Könighofer, Scott

Niekum, and Ufuk Topcu. "Safe reinforcement learning via shielding." In Thirty-

Second AAAI Conference on Artificial Intelligence. 2018.

[137] Berkenkamp, Felix, Matteo Turchetta, Angela Schoellig, and Andreas Krause. "Safe

model-based reinforcement learning with stability guarantees." In Advances in

neural information processing systems, pp. 908-918. 2017.

[138] MacKay, David JC, and David JC Mac Kay. Information theory, inference and

learning algorithms. Cambridge university press, 2003.

[139] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow, and R.

Fergus, “Intriguing properties of neural networks,” in Proceedings of the 2014

International Conference on Learning Representations. Computational and

Biological Learning Society, 2014.

[140] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing adversarial

examples,” in Proceedings of the 2015 International Conference on Learning

Representations. Computational and Biological Learning Society, 2015.

[141] Kurakin, Alexey, Ian Goodfellow, and Samy Bengio. "Adversarial examples in the

physical world." arXiv preprint arXiv:1607.02533 (2016).

[142] Huang, Sandy, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel.

"Adversarial attacks on neural network policies." arXiv preprint

arXiv:1702.02284 (2017).

[143] Kos, Jernej, and Dawn Song. "Delving into adversarial attacks on deep

policies." arXiv preprint arXiv:1705.06452 (2017).

 161

[144] Lin, Yen-Chen, Zhang-Wei Hong, Yuan-Hong Liao, Meng-Li Shih, Ming-Yu Liu,

and Min Sun. "Tactics of adversarial attack on deep reinforcement learning

agents." arXiv preprint arXiv:1703.06748 (2017).

[145] Xiao, Chaowei, Xinlei Pan, Warren He, Jian Peng, Mingjie Sun, Jinfeng Yi, Bo Li,

and Dawn Song. "Characterizing attacks on deep reinforcement learning." arXiv

preprint arXiv:1907.09470 (2019).

[146] Mandlekar, Ajay, Yuke Zhu, Animesh Garg, Li Fei-Fei, and Silvio Savarese.

"Adversarially robust policy learning: Active construction of physically-plausible

perturbations." In 2017 IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), pp. 3932-3939. IEEE, 2017.

[147] Pinto, Lerrel, James Davidson, Rahul Sukthankar, and Abhinav Gupta. "Robust

adversarial reinforcement learning." In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pp. 2817-2826. JMLR. org, 2017.

[148] Taylor, Matthew E., and Peter Stone. "Transfer learning for reinforcement learning

domains: A survey." Journal of Machine Learning Research 10, no. Jul (2009):

1633-1685.

[149] Tobin, Josh, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and

Pieter Abbeel. "Domain randomization for transferring deep neural networks from

simulation to the real world." In 2017 IEEE/RSJ international conference on

intelligent robots and systems (IROS), pp. 23-30. IEEE, 2017.

[150] Peng, Xue Bin, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel.

"Sim-to-real transfer of robotic control with dynamics randomization." In 2018

IEEE international conference on robotics and automation (ICRA), pp. 1-8. IEEE,

2018.

[151] Bousmalis, Konstantinos, Alex Irpan, Paul Wohlhart, Yunfei Bai, Matthew Kelcey,

Mrinal Kalakrishnan, Laura Downs et al. "Using simulation and domain adaptation

to improve efficiency of deep robotic grasping." In 2018 IEEE International

Conference on Robotics and Automation (ICRA), pp. 4243-4250. IEEE, 2018.

 162

[152] Abbeel, Pieter, Morgan Quigley, and Andrew Y. Ng. "Using inaccurate models in

reinforcement learning." In Proceedings of the 23rd international conference on

Machine learning, pp. 1-8. 2006.

[153] Chua, Kurtland, Roberto Calandra, Rowan McAllister, and Sergey Levine. "Deep

reinforcement learning in a handful of trials using probabilistic dynamics models."

In Advances in Neural Information Processing Systems, pp. 4754-4765. 2018.

[154] Nagabandi, Anusha, Gregory Kahn, Ronald S. Fearing, and Sergey Levine. "Neural

network dynamics for model-based deep reinforcement learning with model-free

fine-tuning." In 2018 IEEE International Conference on Robotics and Automation

(ICRA), pp. 7559-7566. IEEE, 2018.

[155] Gu, Shixiang, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. "Continuous

deep q-learning with model-based acceleration." In International Conference on

Machine Learning, pp. 2829-2838. 2016.

[156] Watter, Manuel, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller.

"Embed to control: A locally linear latent dynamics model for control from raw

images." In Advances in neural information processing systems, pp. 2746-2754.

2015.

[157] Deisenroth, Marc Peter, Carl Edward Rasmussen, and Dieter Fox. "Learning to

control a low-cost manipulator using data-efficient reinforcement

learning." Robotics: Science and Systems VII (2011): 57-64.

[158] Deisenroth, Marc, and Carl E. Rasmussen. "PILCO: A model-based and data-

efficient approach to policy search." In Proceedings of the 28th International

Conference on machine learning (ICML-11), pp. 465-472. 2011.

[159] Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,

Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "Generative adversarial nets."

In Advances in neural information processing systems, pp. 2672-2680. 2014.

[160] Kingma, Durk P., and Prafulla Dhariwal. "Glow: Generative flow with invertible

1x1 convolutions." In Advances in Neural Information Processing Systems, pp.

10215-10224. 2018.

 163

[161] Kingma, Diederik P., and Max Welling. "Auto-encoding variational bayes." arXiv

preprint arXiv:1312.6114 (2013).

[162] Yu, Lantao, Weinan Zhang, Jun Wang, and Yong Yu. "Seqgan: Sequence generative

adversarial nets with policy gradient." In Thirty-First AAAI Conference on Artificial

Intelligence. 2017.

[163] Oord, Aaron van den, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals,

Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu.

"Wavenet: A generative model for raw audio." arXiv preprint

arXiv:1609.03499 (2016).

[164] Doshi-Velez, Finale, and Been Kim. "Towards a rigorous science of interpretable

machine learning." arXiv preprint arXiv:1702.08608 (2017).

[165] Gunning, David. "Explainable artificial intelligence (xai)." Defense Advanced

Research Projects Agency (DARPA), nd Web 2 (2017).

[166] Cohen, Jeremy M., Elan Rosenfeld, and J. Zico Kolter. "Certified adversarial

robustness via randomized smoothing." arXiv preprint arXiv:1902.02918 (2019).

[167] Weng, Tsui-Wei, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui Hsieh, Duane

Boning, Inderjit S. Dhillon, and Luca Daniel. "Towards fast computation of certified

robustness for relu networks." arXiv preprint arXiv:1804.09699 (2018).

[168] Lütjens, Björn, Michael Everett, and Jonathan P. How. "Certified Adversarial

Robustness for Deep Reinforcement Learning." arXiv preprint

arXiv:1910.12908 (2019).

[169] Lecuyer, Mathias, Vaggelis Atlidakis, Roxana Geambasu, Daniel Hsu, and Suman

Jana. "Certified robustness to adversarial examples with differential privacy."

In 2019 IEEE Symposium on Security and Privacy (SP), pp. 656-672. IEEE, 2019.

[170] Wang, Pengyue, and William Northrop. Reinforcement Learning based Energy

Management of Multi-Mode Plug-in Hybrid Electric Vehicles for Commuter Route.

No. 2020-01-1189. SAE Technical Paper, 2020.

