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Abstract 

 
Mathematical and computational interventions in the field of social 

networks have a fairly recent history. Social networks analysis exists 

at the intersection of several fields, including social sciences, 

psychology, organizational behavior, business studies, mathematics, 

physics, and biology. Studies were often manually facilitated in the 

last century as the social networks’ sizes were typically small. But, 

the recent emergence of the internet, the world wide web, big data, 

and numerous platforms of social media have triggered a period of 

intense academic activities in this field, which is also true in the field 

of criminology where advances in social network analytics have 

engendered a flourishing sub-culture that has influenced 

enforcement techniques spawning new fields such as predictive 

policing, investigation techniques specifically based on network 

analytics, and even studies of criminal behavior patterns. 

Interest in studying criminal and terrorist networks, generally called 

covert networks, has peaked after recent attacks by terror 

organizations. There is a felt necessity of presaging criminal or 

covert activities well before they erupt into public consciousness. 

However, recent research has been reactive rather than proactive and 

has essentially focused on analyzing illegal networks unearthed, and 

the accent is on disrupting such networks. Relatively little focus has 

centered on the question of why some networks are termed covert 

or, indeed, if covertness is innate to all networks., which further 

leads to the related issues of identifying metrics to measure the 

characteristics that typify covertness and to detect the presence of 

covert communities in social networks leveraging the metric so 

developed.   

A further challenge is an increasing emphasis on privacy rights, data 

protection measures, and exponential growth in encryption 
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measures, which has placed a ceiling limit on the information 

obtained on communications. Added to this aspect is the vast 

volumes of data that need to be processed, requiring 

commensurately vast use of computational resources, often with 

very little time.  

These aspects have been comprehensively addressed by the 

dissertation, which has used the ENRON email corpus to identify 

the employees who had been connected with the financial fraud in 

some manner. The research seeks to identify covertness within 

networks without any intrusive analysis or content-based measures, 

which is necessary given the increasing legal and policy constraints 

based around privacy, encryption, and general exclusion of personal 

data from the public domain, and also by reducing the size of the 

problem. The dissertation also develops specific metrics to define 

covertness in communications among network entities and defines 

a separate metric to identify covert entities' clusters with common 

aims. In the process of defining metrics, the dissertation also seeks 

to solve the problem of resource-constraints common in law-

enforcement agencies by reducing the volume of information to be 

processed. 
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Chapter 1 

 

Introduction 

 

1.1 Background 

 

Ever since John Guare’s famous play (and later film) Six Degrees of Separation1 burst into 

public consciousness, there has been an explosion of public interest in social networks2. 

Alongside the laity, academics and researchers have also invested huge efforts and 

resources in analyzing social networks. Adding to the momentum has been the exponential 

growth on the internet and its spin-off social web networks and online chat forums like 

Facebook, MySpace, Twitter, Tik-Tok, Weibo, Whatsapp, and many others. Social 

network analysis typically occurs at the intersection of many disciplines right since its 

inception. Studies into social networks are usually traced to at least three disciplines: 

psychology, anthropology, and sociology (Knoke and Yang 2008, p vii). A parallel wave 

of interest in this area was generated through the mushrooming of research applications in 

basic and natural sciences. In the words of Knoke and Yang (2008, p2), “Network analysis 

became an institutionalized, transdisciplinary perspective whose basic concepts and 

measures are now widely familiar to researchers from such diverse fields as sociology, 

anthropology, economics, organization studies, business management, public health, 

information science, biology, complexity and chaos theory.” 

 

 

 

                                                           
1Six degrees of separation is the concept that all people are six, or lesser, social links away from each other. 

It was originally set out as the small-world idea by Stanley Milgrom, a psychologist and popularized in an 

eponymous playwritten by John Guare. 

 
2 However, social scientists often suggest that modern social network analysis began with the publication in 

1934 of Jacob L. Moreno's pioneering book on sociometry, Who Shall Survive? There are also other defining 

works on metrics that precede this seminal piece of literature, including those of J.C. Almack in 1922, B. 

Wellman in 1926,E. Chevaleva-Janovskaja, in 1927, R.M. Hubbard in 1929, E.P. Hagman in 1933. For a 

more detailed perspective refer to Freeman’s brief paper “Some Antecedents of Social Network Analysis”, 

1996. 
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1.2 Social Network Analysis in Law Enforcement 

 

One of the later domain additions has been the field of law enforcement, particularly the 

sub-area called predictive policing. Researchers' interest in this domain has focused on 

networks formed by terror groups and criminal organizations. The essential research 

question asked is, “can one predict the outcomes of criminal activities of malfeasant actors 

in such networks.” The social networks that are the subject of much research and debate 

are justifiably called ‘covert networks’ due to their inscrutability and resistance to network 

analysis's standard tools. Current interest in the study of networks indulging in criminal 

and clandestine activities has their roots in the seminal work done by Claire Sterling, whose 

book, The Terror Network, published in 1981, is considered a standard textbook in police 

training schools across the world. In her book, Sterling describes the relationships 

amongSoviet Secret Services and the Palestinian and Irish Republican Army terrorists in 

the 1970s. However, the one incident that spurred academic researchers to begin applying 

social network methods to covert networks was the infamous 9/11 Al-Qaida attacks inside 

the United States. Researchers like Valdis Krebs (2001, 2002) made painstaking efforts in 

the aftermath to construct meaningful networks of the attackers by piecing together data 

from newspaper reports, the electronic media, and investigation and prosecution related 

documents. The data so collected was then pipelined into creating adjacency matrices for 

making the data compatible with computer programs. 

 

Apart from the 9/11 attacks, other recent threats posed by criminal and transnational 

clandestine organizations have generated a storm of interest, both academic and political, 

in covert networks. However, much of the work on such networks to date is based on 

simulations, theoretical models, and even speculation. Relatively little is based on 

empirical data, owing to the absence of real-time data (Rodriguez2009; Asal and 

Rethemyer2006). A crucial lacuna that exists to date in the study of covert networks is the 

lack of complete data and the opaqueness of the existing channels of transactions between 

the key players. Indeed, the social analysis of covert networks has come to recognize this 

key handicap as a structural and defining feature of such networks and has incorporated 

this feature in research. 
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1.3 The Concept of Covertness 

 

A key aspect in covert networks studies is how the term covert must be quantified to be 

rendered into some tangible mathematical formula. There are suggestions that covert 

networks as an entity of research in computer science may be gradated rather than be 

described as a sharply defined artifact that is different from other social networks. There 

are differences between ties exhibiting covertness between nodes that, for example, are 

having extramarital liaisons than between actors who might be trading insider information 

about a company. And both these instances will vary from covert ties involving terrorists 

or spies. The costs of exposure vary from embarrassment to legal strictures to summary 

executions. The formatter thus needs to create these components, incorporating the 

applicable criteria that follow. 

 

The second question that research needs to answer about covertness in networks is whether 

this feature applies to all social networks or is confined exclusively to criminal or terrorist 

networks and other under-the-radar networks labeled as ‘covert networks’3 by observers. A 

possible answer may be found in the landmark paper on conspiracy networks in the heavy 

electrical industry of the United States by Baker and Faulkner (1994, p 21) wherein they 

state thus – “this study is the first quantitative network analysis of intercorporate 

conspiracies. Most empirical research on organizational action sets has focused on legal 

activities. Sociologists acknowledge that action sets4 can conduct illegal acts (Aldrich 1979, 

pp. 317, 320), but this promising research line has remained virtually unexplored. Our 

research shows that the study of illegal networks can yield important theoretical and 

substantive insights into inter-organizational behavior.” Thus, in the sociological literature, 

we know that there are elements (action sets) within overt organizations that might be doing 

a covert or undesirable activity. 

 

                                                           
3What might be called ‘covert’ in one country may not be so in another. For example, spy-networks are 

unquestionably covert in their target countries, but not so in their parent countries. 
4Illegal interorganizational networks studied here are organizational action sets. An action set is a coalition 

of organizations assembled for the purpose of carrying out specific activities. Action sets may be short-lived 

or long lived. Soma are disbanded after success or failure. (Knoke & pappi, 1991, p 510; Knoke & Burleigh, 

1989). 
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Hence, when this study refers to covertness, it does so in the broader context of all social 

networks, not just the ones labeled as covert or dark or clandestine or by any other synonym. 

Thus, covertness is treated in this study as an attribute inherent to all social networks 

irrespective of their labeling. Such an approach has the advantage of measuring the 

covertness coefficients of communities or subgroups within a network and also acts as a 

marker for entire networks if the attribute is pervasive across the entire architecture. 

 

 

1.4 Key Research Questions 

 

As in any new study, this research seeks to answer six basic research questions: 

(a) What is the nature of the problem? 

(b)Why is the problem important? 

(c)Why is the problem challenging? What are the existing methods to address these 

challenges? What are its limitations? 

(d) What are the contributions? 

(e) What is their novelty? 

(f)How are the contributions better than state of the art? 

 

The first four of these questions are briefly answered in the Introduction itself, and the last 

question on comparisons with existing methodologies is analyzed throughout this 

dissertation. Finally, a short comparative narrative is also made out in summary. 

 

1.4.1 Nature of the Problem 

 

The preceding sections have already shed light on the nature of the study's problem. The 

dissertation briefly seeks to survey what covert networks mean and their chief 

characteristics and how these properties differ from those of conventional networks. It also 

takes a detailed look at the existing methodologies in social network analysis and the 

modifications in these techniques to adapt to covert networks' special characteristics.  The 

dissertation then seeks to answer whether covertness is a feature-based atomic attribute 

based on which entire subgroups with common aims and objectives within the overall 
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architecture of a network can be labeled as a collusive covert community. The dissertation 

also looks at this attribute's design from a standpoint that makes it mathematically malleable 

to construct other more complex properties and similarity measures. The conception, 

design, and application of the covertness metric in the manner and form deemed desirable 

is the prime motivation of this research. A further narrative on this proposed metric's nature 

is presented in one of the sections following the ones on motivations. 

 

1.4.2 Importance of the Problem 

 

The problem's importance stems from the urgent need for enforcement agencies, security 

forces, and even businesses to identify covert or clandestine networks, guess the activities' 

nature, and predict their outcomes within reasonable time constraints resources. This 

question converges with Krebs’s (2002) observations expressed at the very beginning in his 

network analysis of the 9/11 attacks, “We were all shocked by the tragic events of 

September 11, 2001. In the non-stop stream of news and analysis, one phrase was constantly 

repeated and used in many contexts ‘terrorist network’. Everyone talked about this concept 

and described it as amorphous, invisible, resilient, dispersed, and other terms that made it 

difficult to visualize what this structure looks like.” This narrative captures the urgency of 

the issue and the need to find reasonable answers in the shortest possible time. 

 

1.4.3 Challenges 

 

The primary challenge lies in interpreting real-world issues from a computational or 

mathematical perspective. Social network analysis is now a full-fledged curriculum in 

computer science studies. Yet, the nuances of the parent social science domains from where 

social networks are derived are only just being understood from a mathematical or 

formulaic framework. It is trivial to expect that the mathematical and computational 

interpretations will only approximate the sociological constructs. As the research body 

grows, the gap between mathematical models and the real-world scenarios will continue to 

narrow. In most computational experiments on real-world social networks models, the 

results have been very encouraging and point to a bright future in the convergence of these 
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two very important study branches. But it may well be stated that every sociological issue 

is a unique one. The formulations to translate it into a computationally meaningful format 

presents its own unique set of challenges. The key to resolving this problem is to scrutinize 

each sociological construct from a micro-perspective and then build a computational 

superstructure on a foundation of smaller constructs. The second key step would be to apply 

existing computational models to the new problem at hand. Previous results and 

interpretations will act as viable inputs to the current research. This dissertation has(I 

have)strived to build micro-models of the sociological problem in hand and has (have) 

attempted to knit smaller and more basic solutions into a bigger narrative that results in a 

best-fit answer. In the process, this study has also relied on a wide array of existing 

mathematical and computational tools adopted in similar real-world problems to bring the 

proposed solution in convergence with established procedures. 

 

The overall approach to structure the problem is outlined in Figure-1.1. First, I examine 

whether covertness in social networks 

can be interpreted in a way that makes 

sense mathematically. Then I define 

various sociological structures 

inherent to the problem from a 

mathematical standpoint. Lastly, I use 

the mathematical constructs so 

derived to evaluate the dataset 

computationally. It needs to be noted 

that the study of ‘covert’ or ‘dark’ 

networks (there are many synonyms 

to these kinds of networks) is an 

emergent domain even in the field of sociology. The studies have increased in recent times, 

partly in response to the necessity of the law enforcement machinery, making sense of 

terror-related attacks and the harmful effects of criminal activities, which are the outcomes 

of such networks. Bigger financial scams occurring due to collusion and conspiracies of 

smaller sub-groups which are inseparable parts of bigger and perfectly ‘overt’ or ‘bright’ 



 

7 

 

commercial organizations (like ENRON, for instance) have added the practitioners in the 

field of Organization Behavior to the list of specialists interested in detecting and decoding 

‘covert’ interactions within the overall architecture of larger and benign networks. 

 

Examining the challenges posed by the problem, it is easy to see a plethora of them. Sparrow 

(1991) had highlighted the issues of such networks being incomplete, fuzzy, and dynamic. 

Add to these several other issues, including a lack of consensus on what defines covertness, 

interpretation of results from specific datasets remaining confined to those domains alone, 

the widespread practice of deception, stealth, and camouflage by the constituents of such 

networks, often trading efficiency for secrecy, the invariable shadow of pre-existing 

relationships amongst the key actors which remain hidden. In contrast, the network is being 

observed at the current time and the exchange of communications that defy ordinary social 

networks' usual structural properties. 

 

There has been increasing interest in unveiling covert networks. Most of the research, 

however, has focused on post facto scenarios, i.e., after some (usually undesirable) event, 

whose roots lie in the Network, has occurred. Though this methodology helps solve the 

offense that has occurred as an outcome, it does not predict the possibility of a hostile event 

occurring by looking at an existing network. A second problem with recent research has 

been a disproportionate focus on content-based analysis, i.e., tools developed to do semantic 

and language analyses of information exchanges, and this leads to accurate detections but 

requires the investigator to know a priori which actors to focus on, which rarely happens in 

real-life law enforcement scenarios. This method is also resource-intensive as the volume 

of information that needs to be parsed is enormous, and the resources may not be available 

at short notice. Third, many of the proposed methods depend on networks' structural 

properties, e.g., geodesic paths, centrality measures, etc., which may either be absent or 

unreliable due to incomplete information, all hallmarks of covert networks. 

 

Another challenge that the real-world problems of this nature face are the covert subsets' 

size being searched for. These days, most social networks are massive. The number of 

malicious actors in such huge and, for the most part, benign networks are minuscule. Even 
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if the question is centered around networks that may be thought of as wholly covert or 

criminal in its outlook, the network often forms larger (and ‘brighter’) networks to carry on 

with its clandestine activities. The investigator's job is to dig out the fixtures' malfeasant 

parts without disrupting the activities of the bigger Network in any major way. I answer this 

part of the problem by proposing a solution that identifies the contours of the ‘covert’ sub-

networks to an optimal extent and leaves the other, more benign parts minimally affected. 

In other words, this research looks at the proverbial “needle(s) in the haystack” problem. It 

comes out with an answer that detects the needles while reducing the haystack's size or 

identifies a comparatively smaller part of the haystack that needs to have a closer look. 

 

A concomitant challenge is to identify commonness amongst the covert sub-groups 

identified. All nodes (or higher structures) within a network labeled as covert need not be 

working towards the same aims. There may be different covert sub-groups with differing 

aims and objectives. In other words, identification of covertness is just a small first step. 

The more important hurdle is to identify subsets of actors (or communities) within a social 

network who have common intentions and work towards those objectives in concert 

somehow. Thus, the riddle is not just finding the ‘needle in the haystack’ but also sorting 

out the different size needles. 

 

1.4.4  Key Contributions 

 

This research makes several contributions to the state of knowledge in covert networks. 

 

First, the dissertation takes a detailed look at various abstract sociological concepts that 

define the problem of complex sociological networks and then distills out those concepts 

specifically associated with covert social network analysis. These concepts are somewhat 

more complex than those associated with social network analysis as a whole. The concepts 

are then articulated as mathematical constructs to enable a later computational evaluation. 

 

Second, this study proposes a simple metric of information confinement, which provides a 

way around the challenges posed by attempts to hide or encrypt information exchanges or 



 

9 

 

disguise exchange's real nature. The metrics developed by considering covertness as a 

property at the most basic network level, i.e., of the tie (or edge) between a pair of nodes, 

rather than entire sub-networks or cliques/communities. The covertness attribute is based 

on a measurement of confinement of information in ties between nodes and is used to rank 

node-pairs (or dyad-pairs as they are termed in this work) based on their covertness 

measure. This approach to covertness removes much of the subjectivity associated with 

most studies of covert or dark networks. By focusing on covertness as an attribute rather 

than as an overall network label, the task of identifying covert entities and communities 

within a network (including whole networks if the need arises) becomes more objective. It 

lends itself to precise measurements and mathematical modeling. 

 

Third, this study proposes a metric for measuring collusion between node pairs that have 

been identified as having high covertness rankings. This metric termed a collusion index, 

enables the construction of covert subgroups within the network with common aims or 

intentions. This step segregates covert entities' groupings into separate cells collectively 

covert and whose covertness aligns with a common output or set of similar outputs. 

 

1.4.5 Novelty 

 

The dissertation deviates from the usual studies on covert networks by focusing on 

covertness as a basic attribute inherent to all social networks to a smaller or larger extent. 

The covert nature of an entire network is thus an aggregation of this unit coefficient. This 

study also looks at covertness as a property that clusters covert entities (nodes or pairs of 

nodes) into distinct communities inside a network. The solution also allows each covert 

community classification to be based on its constituent entities' common intentions that 

actuate their covert activities. Classification of this nature allows differential scrutiny of 

each covert community in the network, which allows specificity of later investigative 

interventions, instead of indiscriminate lumping together of all covert looking entities in the 

network (sometimes, the entire network itself) into one investigative bracket which can be 

both resources consuming and legally unsound. 
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The solution in the form of a covertness metric proposed in the dissertation minimizes 

dependence on a content-based analysis or any related intrusive or interceptive 

methodologies that law enforcement agencies generally adopt. The metric is a direct 

derivative of easily observed structural or topological properties of the network. The 

solution developed methods are robust and resistant to the incompleteness of information, 

which is an inevitable characteristic of such networks. Thus, they can thwart measures of 

deception or camouflage adopted by the potentially suspect actors. Both the covertness 

index and the subsequent Jaccard Index based similarity measures are minimalistic and 

simple to compute and apply. Further discussions on the novelty of the solutions developed 

in this dissertation and the improvements upon the state-of-the-art methodologies in related 

research are discussed in the last chapter. 

 

1.4.6  Current Research 

 

Network analytic approaches to covert networks(or criminal or terrorist or dark, the epithets 

vary, but the meaning remains the same more or less) can be broadly classified into two 

categories. The first category, which is by far, the most prevalent, is a post-facto analysis 

of the network, i.e., scrutiny of the covert network after an incident (usually illegal or 

undesirable) has occurred. Such approaches range from detecting the main actors from a 

centrality standpoint to measuring the network's disrupting actions by the simulated 

removal of the principals from the covert communities.  

Regardless of the mechanism adopted, the crucial underlying assumption inherent to this 

sort of intervention remains the same; namely, the researcher is well aware that the network 

is covert and begins his/ her scrutiny with this fact in mind. Based on preliminary 

assumptions about the nature of the network, the researcher tackles the issue of which actor 

(or set of actors) are important to the Network, the way the network has evolved, which are 

the channels or pathways through which the information flows occur, the topological 

features of the entire network itself, etc.  

 

The second analytical approach, which is comparatively rare in the research literature, is 

the predictive approach. This type of intervention aims to look at a network and 
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prognosticate its nature, i.e., whether it is covert or, in any way, predisposed to hide the 

information flows within itself. Even within this predictive approach, the literature models 

embed some knowledge about the participant entities' covert nature. A more comprehensive 

look is offered in the chapter on network analytic interventions in covert networks. 

   

Regarding the methodologies adopted, there are many, ranging from structural analyses 

based on the topological features of the nodes of the network (e.g., centrality measures, 

shortest paths, etc.) to the overall architecture of the network (density, core-periphery 

structure, the assortative missing of the constituent entities, etc.) to graph-partitioning and 

clustering approaches. Recent research has focused on machine learning algorithms, mostly 

supervised (and rule-based), and may either have classifiers or clustering mechanisms. 

Analytical approaches to such networks may also be categorized as either divisive (e.g., 

partitioning the network into smaller graph structures) or agglomerative (clustering 

individual nodes into communities). 

 

The solution proposed in this dissertation is patterned more on the second type of approach, 

i.e., the predictive model. The solution doesn’t have any presumptions about the overall 

nature of the network being studied and begins from the standpoint of zero knowledge about 

the covert activities of the entities within the network. The metric proposed is based on 

measuring to what extent interacting entities within the network under observation are 

confining information exchanges to themselves (i.e., within node pairs or sets of node pairs) 

and deciding on a minimum threshold value to select such entities or sets of such entities 

for further scrutiny. In addition to identifying suitable covert candidates, the solution also 

mines the selected set for patterns of commonness (common intentions) and distills the most 

‘linked’ or cohesive entities. Thus, the result is a set of the most covert looking entities 

within the network and communities of such entities with a probable common aim; in other 

words, a ‘conspiracy’ group. The result is a two-stage approach that is agnostic of the nature 

of the network and the result of which provides a strong base for later (more intrusive and 

targeted) interventions. 
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1.5 Motivations 

 

Krebs (2001), in his landmark analysis of the 9/11 attackers, had been surprised by the 

sparse nature of the social network he was able to build, based on what was appearing in 

the news media of the time. In his own words – “I was amazed at how sparse the Network 

was and how distant many of the hijackers on the same team were from each other. Many 

pairs of team members were beyond the horizon of observability5 from each other – many 

on the same flight were more than two steps away from each other. Keeping cell members 

distant from each other, and other cells minimize damage to the Network if a cell member 

is captured or otherwise compromised.” 

 

Krebs (2001) says that once the investigators knew who to look at, they quickly found the 

hijackers' connections and discovered several of the hijackers’ alters6. Being an altar of a 

terrorist does not necessarily imply guilt – but it does invite suspicion and potential 

investigation. Krebs (2001) wonders- “The big question remains – why wasn’t this attack 

predicted and prevented? Everyone expects the intelligence community to uncover these 

covert plots and stop them before they are executed. Occasionally plots are uncovered, and 

criminal networks are disrupted. But this is very difficult to do. How do you discover a 

network that focuses on secrecy and stealth?” 

 

The above observations draw attention to the most fundamental aspects of problem-solving 

in covert networks. In a scenario where information is not readily accessible and the data at 

hand is inadequate, how does one predict the nature of the actors involved, the nature of 

their purported activities, the timeline of their payload delivery, etc.? The convoluted nature 

of the problem is caused by the deception and stealth adopted by the malicious actors to 

hide their ties. The second aspect is, given the constraints, can such actors be detected and 

their activities predicted in any meaningful manner before the planned incident happens? 

                                                           
5Friedkin (1983) as cited in Krebs (2001). 

6 A social network consists of a focal node which is termed an "ego" and the nodes to which the ego is 

directly connected are called "alters". In turn, each alter has its own ego network, and all 

ego networks interlock to form the social network. 
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After all, Krebs (2001) conducted his analysis post facto when the perpetrators had already 

been identified, and their activities had been laid bare. 

 

 

1.6 The Proposed Solution 

 

1.6.1 Defining the Nature of Covertness 

 

There has been an outpouring of research in recent years devoted to tackling the menace 

from ‘covert’ networks or disrupting ‘dark’ networks, identifying key players or actors in 

‘terrorist’ networks, etc. In all these studies, there one common strand of thought- that 

covert or dark or clandestine networks are illegal, or at least their output is unlawful within 

the scope of what passes for legality in the concerned jurisdiction. This interpretation aspect 

is dealt with in the chapter's breadth, which surveys the covert networks' literature. Any 

network that employs secrecy or stealth or a similar narrative to achieve its illicit aims is 

thus defined as a covert network. Researchers have attempted to pin down these concepts 

in a more mathematically formalized style, and several formulae are now in existence to 

study different aspects of covert networks.  

 

However, a key feature that is somewhat overlooked in many of these studies is some 

common substructure that leads to the expression of covertness as an output of a network 

or some substantial subset of it. Such a substructure must be, as described earlier, definable 

as a unit metric, which can be meaningfully summed up to yield a larger structure of 

covertness, which is detectable. The second property of this unit metric should be that its 

articulation can be qualified in some manner by the covert intent of the participant nodes 

(or group of nodes). If a certain set of nodes are covert, the intent behind their covertness is 

different from another set of nodes within the same network. This aspect should be 

discernible from the articulation of the unit metric of covertness. To put it more succinctly, 

all covert sets need not have the same aim, but even for achieving different clandestine 

objectives, covertness is a required attribute. 
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1.6.2 Dealing with Dynamicity of Covert Networks 

 

It is well known that social networks are extremely dynamic by nature. Their study presents 

formidable challenges to the researcher who tries to fit them into some systematic 

mathematical model. The challenges grow manifold when researchers seek to predict how 

a network might look in the future, given the dynamics between the actors; this aspect 

remains the most debated and researched topic in recent social networks studies. A special 

subset of the study of social networks is the study of covert social networks. As has been 

discussed earlier, these networks present special problems to the researcher and the 

investigator alike. The active acts of deception, dissimulation, hiding, and camouflaging of 

information flow between the actors, and indeed throughout the network add a layer of 

complexity to the existing problem of social networks' dynamic nature. Add to this the 

chance that the actors had ties before the network's plotting, and predicting the nature and 

future shape of a covert network becomes practically unsolvable. However, given the 

security challenges that the world faces from such networks, an approximate solution is 

more than welcome. 

 

1.6.3 Uncovering Nuances of Covertness 

 

Covertness as an attribute resists firm mathematical formulation since its nature is abstract. 

It’s seen from the above analyses that a common denominator to all forms of covertness, 

licit or illicit, is the element of hiding of information in some manner. This hiding is also 

synonymous with the confinement of information exchanged between entities within a 

network. This confinement or hiding of information may take the shape of deception, use 

of covert channels7, encryption of transactions, lack of sharing of knowledge with third 

party entities within the networks. These pre-existing ties are not apparent at the time of 

observation, etc. Most of these actions differ in how they work and how they are used to 

achieve covertness. The one area of convergence is the hiding of information, i.e., the 

                                                           
7In computer security, a covert channel is a type of attack that creates a capability to transfer information 

objects between processes that are not supposed to be allowed to communicate by the computer security 

policy. Covert channels are defined as channels not intended for information transfer at all.                                 

(https://en.wikipedia.org/wiki/Covert_channel accessed on 20.06.2020) 

https://en.wikipedia.org/wiki/Covert_channel
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methodologies are different, but the impact is the same. In other words, if we find a 

methodology to detect the confinement or hiding of information by entities in a network 

and can also measure how much of the information is dammed up, we can arrive at how 

exactly these entities are arranging to go about it. Irrespective of the nuances of the 

techniques the entities are using to bring about covertness in their transactions; the result 

inevitably is the hiding of information. If we succeed in measuring this quantity, it will not 

be difficult to reach the causes of what is causing it and, more importantly, causing it. 

 

Second, social networks are seldom completely covert. Many of the covert networks that 

are so labeled are subsets of bigger networks that may not be defined as covert. Most social 

networks have covert areas manifest within themselves, and much of this ‘dark matter’ may 

not necessarily be illegal or clandestine. Covert areas are perfectly compatible with most 

businesses and enterprises. For example, a group of senior employees within an 

organization who confer with each other in private to decide key organizational strategies 

for a forthcoming market launch will conform to the definition of a covert subgroup in as 

much as they will not share any information lest it leaks out and benefits their competitors. 

Such a subgroup's appearance and outcomes are covert but not their aims, anything but 

clandestine8. The larger question that arises is whether covertness as a property is 

fundamental to every network. The answer should be unqualifiedly affirmative. If so, then 

how do we measure this property, and more importantly, can we construct basic building 

blocks of covertness at the most fundamental level of a social network, say at the node or 

the tie level and then somehow correlate or coalesce the units of covertness into larger 

covert subgroups within the overall architecture of the network? 

 

Third, this study looks upon covertness as an abstract concept and seeks to meaningfully 

derive a mathematical formula that describes it as a data point aggregated or disaggregated 

or factored into calculations. The difference between a sub-structural attribute like density, 

sparsity, homogeneity, connectedness, and an abstract concept like covertness needs to be 

emphasized. Any structural attribute is easily observable and measurable, while an abstract 

attribute like covertness needs to be inferred from such structural attributes after further 

                                                           
8 Something is clandestine if it is covert and illegal. 
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analysis, mostly manual. Sub-structures with some specific attributes (like the one 

described in this study) are more likely to be covert than others whose measure of the same 

attribute is lesser. It is necessary to corroborate other facts on the ground and perform some 

deep-packet searches of these groups before concluding their nature. This study aims at 

presenting a distinct number of sub-structures within a network that stands out from other 

structures in terms of the overall measure of the covertness attribute. The number of 

structures selected for further analysis is much smaller than the overall number of sub-

structures in the network and presents an affordable scenario. But the caveat remains that 

the final analysis is always manual. 

 

1.6.4 Covertness as a Universal Attribute   

 

Earlier, there was a discussion about how all organizational networks have covertness 

manifest within them, even at the most fundamental levels. So, if covertness is considered 

a universal attribute in all social networks, covert sub-networks or subgroups can be built 

up as superstructures using the units of covertness as some sort of ‘lego’ bricks. To solve 

this part of the problem, we need to look at the parallel problem of ‘commonness’ (i.e., 

common intention) inherent in the larger covert superstructures. To extend the example 

given earlier, we may consider the second group of employees within the same organization 

whose aims are not benign and might be involved in trading the enterprise's business secrets. 

This category of activity is surely risky, illegal, and clandestine and carries the pain of 

punishment if discovered. It stands to reason that these actors will hide information flows 

that occur amongst themselves from others and thereby form a covert subgroup entirely 

different in purpose (illegal) and methodology (deception or camouflaging their 

exchanges). Thus, when we formulate a technique to measure covertness and then find a 

way to agglomerate the covert units into bigger structures, we also must devise the means 

to differentially aggregate units of covertness so that the dark areas within a network fall 

into independent buckets (or overlapping buckets in case entities repeat themselves across 

such containers) and form covert subgroups within the network whose methods to hide 

information may be similar, but whose objectives might be wholly different. 
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1.6.5 Tie as a Basic Unit of Covertness 

 

While trying to solve these issues, there is yet one more crucial aspect that needs to be 

considered. This is the question about the nature of the individual actors within the network; 

given that they may form parts of covert subgroups, is there a possibility that these actors 

lead some kind of ‘double existence,’ a sort of Dr. Jekyll and Mr. Hyde type of role? If we 

go by some of the more seminal studies focused on covert networks, the answer is a 

surprising “Yes.” Let’s take the case of some of the plane hijackers who were involved in 

the 9/11 bombings. Many of them were pursuing innocuous trades (training to be pilots 

would hardly qualify as something nefarious). They were part of social networks that were 

overt (the trainee pilot community network, for instance). Hence, there is a likelihood that 

a node that is designated as a member of a covert subgroup may also be part of other 

subgroups that may or may not be covert. The solution should thus be able to filter out the 

covert essence from within the actor or node to allow the node’s inclusion in multiple 

subgroups, covert or otherwise, within the larger ecosystem of the social network. This 

study brings out the covertness aspect of nodes through their relationships or ties with other 

nodes. An actor in a network will express its covertness only with another actor who shares 

its intentions and aims, i.e., the basic unit of a network so far as its covertness content is 

concerned, is a pair of nodes and the tie between them. 

 

1.6.6 Non-Intrusiveness of the Proposed Metric 

 

Next, the solution should be so devised that it doesn’t need any ‘intrusive’ content, i.e., 

detecting the nature of any entity or structure (i.e., whether or not its covert and related 

facts) shouldn’t be dependent on what is inside the communication flows. The reasons for 

this particular facet have been made clear in the earlier passages. Today’s world is full of 

privacy laws, data protection policies and protocols, and encrypted messaging. The 

surveillance and enforcement agencies typically find it very difficult to bypass these rules 

and regulations to access the content. Across most open societies wiretapping laws have 

gotten more and more strict. And the covert actors have become better and better with their 
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hiding and deception skills. Technology hasn’t lagged in this race, and modern-day 

encryption is extremely hard to beat even with vast computational resources at command.  

 

1.6.7 Minimization of Resource Requirements 

 

The other aspect of difficulty in intercepting and analyzing content is the sheer volumes of 

data involved. Most communication networks today have typically millions of nodes and 

the data generated per second is typically in trillions of bytes. The problem of monitoring 

the content of each exchange of data and coming to any sane conclusion about possible 

clandestine activities is bewilderingly complex and time and resource consuming. It won’t 

be far off the mark to state that no enforcement agency currently has these resources and 

brutes processing power on tap continuously. Typically, the time available to detect and 

stop malicious actors from delivering their payloads is in days, not weeks. The aim should 

be to meaningfully pare down the numbers of suspect actors to a minimal level while 

ensuring that the information about at least some part of the covert subgroup is captured for 

analysis and further dissection. If the set of suspect actors is not large, it will not be difficult 

to obtain warrants calling for the contents' information exchanges. 

 

 

1.6.8 Summary of the Proposed Solution 

 

Based on the above discussions, we can summarise the motivations of this research into the 

following points: 

(i) To define the concept of ‘covert’ or ‘covertness.’ 

(ii) To break down the covertness concept into fundamental covertness units, 

which can be applied at the network's base layers. 

(iii) To devise covertness units in ways that allow individual nodes to 

‘participate’ in more than one subgroup, whether covert or otherwise. 

(iv) To achieve the above steps in a not intrusive manner and rely on the social 

network's existing structural information. 



 

19 

 

(v) To use the covertness unit as a basic building block to construct larger 

communities of covertness, which will have some common aims different from the 

network's overall objectives. 

(vi) To detect the covert actors (nodes) or covert communities of nodes and 

predict their activities with some accuracy. 

(vii) To achieve a fair degree of accuracy in detecting and predicting covert 

communities with easily affordable resources and real-time. 

 

 

1.7 Problem Definition 

 

This research focuses on the email corpus of the ENRON Company, which went bankrupt 

following a major financial scam in 2002. The email corpus of ENRON is easily available 

in the public domain and remains one of the most well researched social network platforms. 

Researchers have focused on many aspects relating to the ENRON company and the 

interactions amongst the employees. It’s not surprising to note that many of the studies have 

tried to determine if the employees were complicit in the scandal or had some prior 

knowledge about the goings-on through various methodologies. This aspect of the ENRON 

email-based social network makes it useful for comparing the effectiveness of approaches. 

Most computational approaches are based on analysis of the contents of the emails, or the 

nature of financial information exchanged amongst the employees. Some have even looked 

at the incentives derived by certain employees as a means to detect complicities. 

 

Briefly, the ENRON dataset is a corpus of emails collected from the inboxes of 151 of its 

employees covering a limited period relevant to the investigation of the insider trading scam 

and other concomitant illegal business practices that led to it.  A total of 517,431 email 

exchanges available from these inboxes, and information about a possible 6568 employee 

email ids were extracted from the email corpus. Each email id takes the place of a node or 

vertex in a social network. The half a million or so email exchanges condense to 

approximately 55,300 unique email pairs, i.e., the number of pairs of email ids that have 

exchanged at least one mail. Further, scrutiny of the mail exchanges and reports from 
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contemporary media sources reveals that a certain ENRON employee segment was indicted 

in the judicial processes that followed multiple investigations. Some of the employees were 

also examined as witnesses. Based on these sources, this paper has zeroed in on 19 

employees who were either indicted or were privy to the proceedings otherwise as witnesses 

or recipients of the information. There are 43 unique mail pairs from amongst these 

employees of interest9. The challenge is to extract a small enough subset of mail pairs (or 

edges) from half a million-plus, which will contain a significant number of these edges of 

interest (EoIs). Notationally, the problem is defined below: 

 

Let’s define the ENRON mail corpus as a social network graph G, such that G = (V, E  

), 

where V  is the set of all nodes in the graph network  

and E is the set of all edges or mail-pairs in the graph network, including those formed 

when copies of e-mail exchanges between pairs of nodes are marked to other nodes. 

The number of edges in the network graph is represented as the cardinality of the set of 

edges V, i.e., |V  |  

&|V  | = 6568. 

The number of edges in the network graph is represented as the cardinality of the set of 

edges E, i.e., |E  |  

&|E| = 55,300. 

Let’s define the set of the employees of ENRON who were part of the scam as a graph GC, 

such that GC= (VC, EC  ), 

where VC is the set of all nodes of interest (NoIs) in the graph networkandECis the set of 

all edges of interest (EoIs) in the graph network. 

Obviously, GC⊂G andVC⊂V&EC⊂E; 

&|VC| = 19 and |EC| = 43; 

                                                           
9 The mail pairings between these employees are referred to mostly as Edges of Interest or EoIs throughout 

this paper. The employees who are of interest are referred to as Nodes of Interest or NoIs. 
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The ratio of the overall edges of interest (EoI) eij (i and j are nodes of interest (NoIs) in the 

graph network) to the set of all edges of the graph G thus comes to: 

 

  

 

The task in hand is now to increase this ratio, i.e., boost the chances of detecting an edge of 

interest (EoI) in the graph network's set of edges comprising ENRON's mail corpus. 

  

The above problem statement may also be framed in a probabilistic manner: 

 

What is the probability of detecting at least one covert edge from amongst the broad set of 

edges of the ENRON e-mail network in 20 tries? 

 

Let’s define an integer k, s.t., k = number of tries; here, k = 20. 

There are 43 covert edges or Edges of Interest (EoIs). 

Let’s define the number of EoIs as m; here, m = 43.  

The number of edges overall is 55,288 ~ 55,300 

Let the total number of edges be defined as e; here, e = 55,288. 

We need to calculate the probability of not getting any covert edges in 20 tries. 

Let’s define the probability of detecting a covert edge as Pc and not detecting a covert edge 

as Pnc. 

 

The probability of not detecting a covert edge in the first try is(55,300 – 43)/ 55,300. 

The probability of not detecting a covert edge in the second try is (55,299 – 43)/ 55,299. 

In this manner, the probability of not detecting a covert edge on the 20th try is(55,280-43)/ 

55,280. 

 

Notationally, 

 

𝑷𝒏𝒄 = ∏
((𝑒 − 𝑖) − 𝑚)

(𝑒 − 𝑖)

𝑘−1

𝑖=0

 

P=|EC| / |E| = 43/ 55,300 = 

0.000778

 ------(1.1) 

 



 

22 

 

 

 

 

    𝑷𝒄= (1 - 𝑷𝒏𝒄) = (1 - ∏
((𝑒−𝑖)−𝑚)

(𝑒−𝑖)

𝑘−1
𝑖=0 ) 

 

 

Hence, the probability of not getting a covert edge detected in 20 tries (k = 20) comes to: 

 

𝑷𝒏𝒄 =
(55,300 − 43)

55,300
 𝑥 

(55,299 − 43)

55,299
 𝑥 … . 𝑥 

(55,281 − 43)

55,281
 

 

 

𝑷𝒏𝒄 = 0.984560175;   
 

𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.015439825 
 

Thus, the probability of detecting at least one covert edge (or Edge of Interest, EoI) from 

the set of all edges in the ENRON mail network is 0.0154 approximately. The graph plot of 

the sequence of probabilities of identifying EoIs in k tries with 0<k≤ 500 is shown in Figure 

1.2 below. The vertical line marks the value of the probability of detecting at least one 

covert edge or an Edge of Interest (EoI) when k = 20, i.e., with 20 tries. The value of Pc 

goes on increasing monotonically with an increase in the value of k. The probability of 

detecting a covert edge when k = 500 is 0.33 approximately. As the study progresses, the 

probability values get enhanced by introducing the proposed solution metrics (i.e., the 

Covertness Index and then the Collusion Index). 
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This research seeks to determine whether the probability of identifying at least one covert 

edge in a fixed number of attempts can be enhanced using the metrics proposed. 

 

 

1.8 Outline of the Dissertation 

 

Chapter Two begins with a survey of covert social networks and the various definitions of 

what best describes covertness from a qualitative standpoint, as discussed in multiple 

sociological treatises that have dealt with the topic. This survey is a needed primer for this 

study. It brings out covert networks' unique characteristics instead of ordinary social 

networks where the priorities and outcomes are entirely different. I then employ select 

properties of covert networks to develop technical measures and metrics to evaluate such 

networks and make the covertness attribute a unique one rather than one that applies just to 

specific networks described as covert, often contextually.  

The second chapter of the dissertation also describes various tools and techniques associated 

with social network analysis (SNA) in general and covert networks. This section discusses 

the pros and cons of multiple methodologies to detect interest nodes to the investigator and 
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the network's shape after their deletion. Newer approaches to the old problem of detection 

of critical nodes are included. This chapter also touches upon the methodologies for linking 

structurally unrelated nodes and matrix-based approaches to solving community detection 

problems in social networks.  

 

Chapter 3 discusses the concept of defining a unit for covertness and explores other research 

in the area which has looked at covertness as an attribute inherent to networks rather than a 

qualifier for an entire network. In the same part, I propose and derive a formula to 

mathematically encapsulate the concept of covertness based on the edges (ties) between the 

nodes of a dyad (pair of nodes considered as a unit). The covertness metric developed in 

the previous chapter is applied to the email-based network of ENRON. After the covertness 

values of the edges in the network are estimated using the metric, the edges within the 

network are then ranked in descending order of the covertness index values defined on their 

edges. Thresholds based on cut-off values of the covertness index are chosen heuristically, 

and sets of top-ranked edges are accordingly selected from the overall group of edges in the 

network. The selected sets of edges are scanned for the presence of edges of interest (EoIs), 

and the outcomes are measured with the help of metrics like precision and recall to evaluate 

the efficiency of the covertness index. The results obtained from the covertness index's 

application are compared with those derived from a hypothetical set of edges of the ENRON 

mail network. The distribution of the edges of interest is assumed to be uniform. The 

difference in outcomes is a further testament to the efficacy of the covertness index. 

 

Chapter 4 is a survey of various approaches toward community detection in social networks, 

emphasizing covert social networks. This chapter discusses the pros and cons of different 

approaches to the problem. Various solutions existing in the literature are examined, such 

as graph partitioning, clustering, etc. are discussed and briefs on their usefulness in the 

current scenario. Finally, the choice of a modified link prediction mechanism to link the 

edges in the selected set obtained in the previous chapter is justified. The linkage 

mechanism forms the basis of the similarity index that is developed to translate the 

sociological concepts of collusion and conspiracy between pairs of nodes in a network into 

a graph theoretic format. This similarity coefficient, which is termed the “collusion index” 
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in this dissertation, is used to link pairs of edges from selecting the experimental dataset 

(i.e., the set of edges chosen based on the specific thresholds of their covertness index 

values) obtained in the previous section.  

 

Chapter 5 uses the similarity index proposed in the previous chapter. The index is used to 

link edges extracted from the table of top-ranked covert edges arrived at after applying the 

covertness index. After the edge-pairs are linked, the pairs are ranked in terms of their scores 

of similarities, i.e., the more excellent the Jaccard Index score of the edge pair, the higher 

it scores. As in Chapter 4, sets of edge-pairs are selected based on a heuristically calculated 

threshold score of similarity. Precision and recall are computed on the selected set of edge-

pairs to ascertain how many pairs of edges of interest (EoIs) are present. These results are 

compared with the corresponding results from a model where the distribution of the pairs 

of edges of interest is assumed to be uniform. The comparisons reveal the efficacy of using 

a similarity index to link pairs of edges. 

 

Chapter 6 discusses and analyzes the approaches and methodologies adopted in this study 

and analyzes the results arrived at. Chapter 7 concludes the dissertation and suggests future 

steps.  

 

 

1.9 A Note on Terminology  

 

The study of social networks is an interdisciplinary one involving concepts and inferences 

from sociology and computer science. A network is a collection of points joined together 

in pairs by lines in its most basic form. The mathematical construct that is closest to a social 

network in terms of structure is the graph. A graph is a mathematical representation of a 

network, and it describes the relationship between lines and points. A graph comprises a set 

of points and lines between them. The length of the lines and position of the points do not 

matter. The branch of mathematics that is devoted to the study of graphs is called graph 

theory. Given the structure of networks, whether they belong in the fields of physical, 

biological, electrical, economics, or the social sciences, the most optimal way they can be 
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modeled mathematically is through the lens of graph theory. All computational studies on 

social networks are predominantly based on the concepts of graph theory. 

 

Thus, many of the terms used in social sciences to describe networks and their structures 

have their counterparts in graph theory and computer science. From the perspective of 

sociology, the most basic unit in a social network is an actor. The equivalent term in graph 

theory is the vertex, and in computer science, the node. Actors have links amongst 

themselves, called relations. Such relations may either be undirected or directed, where one 

of the actors is the initiator, and the other is the receiver. The transactions may be mutual, 

for example, a telephone conversation. The counterpart terminology for a relation in graph 

theory and computer science is the edge, also called a tie. A pair of actors who share a 

relationship form a dyad. A dyad is termed a dyadic-pair or a node-pair or just referred to 

as a pair of nodes in graph theory and computer science. Likewise, a group of three actors 

is termed a triad. These terms have been used interchangeably throughout this dissertation, 

and there is no loss or alteration of meaning when one term is used in place of the other. 

 

A few terms used in the dissertation are specific to the study. Since the dataset used here is 

the ENRON email corpus, the mail-ids of the employees are, for the most part, considered 

as the nodes in the network. In some places, the employees themselves have been referred 

to as actors in the specific context of their activities, which are under the lens. The mail 

exchanges between the employee mail-ids constitute the relations between the employees 

and are referred to as the edges or ties interchangeably. An edge or tie exists between two 

nodes if at least a single email has been exchanged between them. A single edge or tie is 

defined as existing between the nodes irrespective of the number of emails exchanged.  If 

there are no mails exchanged at all between a pair of nodes, the edge has by definition a 

value of 0, and if one or more have been exchanged, the value of the edge is 1. Unusually, 

pairs of nodes that don’t have an email exchange are also considered part of the study. Still, 

it needs to be noted that in the study of covertness, the material available is often incomplete 

and needs to be inferred based on further scrutiny. 
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There are inevitable instances where there may not be any relations existing at the time of 

the scrutiny. Still, it may have existed earlier, or it might merely be unavailable due to 

incomplete information. Other significant terms used are Relationship Sets, Shared 

Relationship Sets, Neighborhood Relationship Sets, and Edge-Vertices. An edge-vertex is 

a function defined upon an edge between two nodes and is a list set that stores several pieces 

of information needed for further processing. Edge vertices are different from edges in that 

the data stored in an edge-vertex is more significant, and the two terms should not be 

confused. Another commonly used word in the dissertation is the edge-pair, which denotes 

a pair of edges joining different dyads' nodes. The two metrics developed in the study, the 

covertness index, and the collusion index, are defined and described in detail during the 

experiment. Communities within the network, which are generally homogeneous groups, 

have extrapolated meanings in this study. Here, they mean covert communities with shared 

aims and are referred to interchangeably as collusion or conspiracy networks. 
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Chapter 2 

 

Covert Networks & Use of Analytics in Covert Networks 

 

2.1 Overview 

 

Koschade (2006) defines a social network as a finite set of actors and the relation or 

relations defined on them and describes social network analysis as a mathematical method 

for connecting the dots that allows the analyst to map and measure complex group. The 

overall structure rests with the researcher's interpretation of its relationships and dynamics. 

The nature of a social network lies in the beholder (or researcher), which gives rise to the 

intriguing possibility that the same organization may be seen to have different network 

configurations depending on the study priorities and on which aspect of the inter-

relationships the researcher may find interesting. This type of conceptualization is at the 

heart of network multiplexity, the idea that many kinds of relations can coexist among a set 

of nodes. The researcher has to decide which relational content is essential and which to 

ignore. 

 

The social network perspective provides a set of methods for analyzing the structure of 

whole social entities and various theories explaining the patterns observed. The study of 

these structures uses social network analysis to identify local and global patterns, locate 

influential entities, and examine network dynamics. The correct interpretation of networks 

assists in predicting behavior and decision-making within the network. 

 

These features are not essentially different for covert networks. There are suggestions that 

covert networks function similarly to their overt counterparts (Asal and Rethemeyer, 2008; 

Crenshaw 2010). A survey of the literature in this regard, however, reveals few comparative 

studies, with some of the existing work aimed at the similarities and differences between 

offline and online covert networks (Keegan et al. 2010). There doesn’t seem to be any single 

definition of what constitutes a covert network. Even within this category, there is a 



 

29 

 

proliferation of terms to describe networks that are not overt or normal in some sense. Some 

of the standard descriptions of such networks are “clandestine,” “dark,” “illegal,” “illicit,” 

“underground,” “criminal,” “terror,” etc. The demarcation of any network as a covert one 

appears to be context-specific and based on what the study considers overt or “bright 

networks” instead of dark networks (Raab and Milward, 2003, 419).  

 

Baker and Faulkner (1993) defined covert networks (the illegal network was the authors' 

precise terminology in their landmark paper) as a network that doesn't often behave like 

standard social networks. Conspirators don't form many ties outside of their nearest cluster 

and often minimize the activation of the network's existing relations. Strong ties between 

prior contacts, which were frequently created years ago in school and training camps, keep 

the cells linked. Krebs (2002) states that these strong ties remain mostly latent and hidden 

to outsiders, unlike in typical social networks. Since participants in dark networks intend to 

commit illicit actions, they deliberately conceal their conspiratorial relations to avoid 

exposure.  

 

(An example, a sleeper cell that remains inactive until called into action). Freeman and Gill 

(2013) define covert (or dark) networks as social networks characterized by low visibility, 

low interactivity between nodes, and high uncertainty about the connections. In a regular 

social network, strong ties reveal the cluster of network players – it is easy to see who is in 

the group and who is not. Strong ties may appear to be weak ties in a covert network because 

of their low activation frequency. Furthermore, the ties of interest typically have multiple 

qualitative aspects and are likely to change over time. Although connections between 

individuals change character temporally, such changes typically cannot be measured 

directly and require some form of estimation. These are fundamentally distinct networks 

since the actors are “trading efficiency for secrecy” (Fellman & Wright 2004, 5; Krebs 

2002). The less active the network, the more difficult it is to discover. Yet, the covert 

network has a goal to accomplish.  

 

One of the earliest definitions of such networks was given by Erikson (1981, 60:188-210), 

who defined a secret society as a persisting pattern of the relationship which links 
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participants in secret activities. This definition covers a wide swath of networks and 

organizations whose aims are not illegal per se. For reasons that may be political or social, 

they tend to keep themselves undetected. Examples include the early twentieth century's 

suffragette movements in western nations, Alcoholics Anonymous, different gay and 

lesbian interaction networks, etc. The very structure of covert networks is determined by a 

desire to maximize secrecy and avoid detection (Krebs, 2002; Raab and Milward 2003; 

Helfstein and Wright 2011). Baker and Faulkner (1993) state that network members must 

balance the need for secrecy and stealth with frequent and intense task-based 

communication. The covert network must be active at times – it has goals to accomplish. 

During these periods of activity and increased connectedness is when it may be most 

vulnerable to discovery. Thus, the primal instinct of all covert networks of all hues is an 

overriding need to keep the network secret and undisclosed, although just what needs to be 

kept confidential and from whom and for what length of time vary widely. 

  

Oliver (2014) observes that much of the literature on covert networks attempt to describe 

and resolve opposing tensions, the requirement to be secret, and achieve the network aims. 

The imperative to keep things hidden stems from the severity of network detection, 

“infiltration” or exposure, ranging from embarrassment to penal punishments, to death 

(Oliver 2014; Bakker, Raab, and Milward 2012). Secrecy is not easily quantifiable, and this 

renders the task of measuring the covertness of any network a subjective one. Secrecy may 

be pervasive across all aspects of the network’s structures (e.g., in terror networks and many 

organized crime networks) or may be limited to any or all of their identities, aims, activities, 

as in gay and lesbian groups, specific political movements, suffragettes, etc. Oliver (2014) 

states that the requirements for different secrecy types, for various lengths of time and from 

different audiences, are likely to produce a range of network structures. She feels that the 

effects of these facets of secrecy are not well understood. 

 

Simply stated, covertness is not a binary state, and there may be several gradations that will 

be difficult to quantify in a mathematical sense of the term. Nevertheless, in the wake of 

several major terrorist incidents and the rapid proliferation of organized criminal networks 

in recent times, researchers have attempted to identify the commonalities among covert 
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network security concerns that have led to several studies regarding covert networks' 

commonalities. Their primary motivation has been security concerns and the pressing need 

to identify such networks' vulnerabilities to disrupt them. Most of the research in this area 

has focused on actual events or case studies, like the 9/11 attacks or the Bali bombings. This 

accent on singular instances combined with differences in approach, data used, methods, 

context, or even the native discipline has led to significant disagreements about their very 

nature. 

 

 

2.2 Distinguishing Traits in Covert Networks 

 

The above analysis brings out features in networks that are responsible for covertness in 

networks. The preceding discussion explains covertness as something that arises from the 

general features of social networks. A network’s form and the structure of the relationships 

between its members determine its purposes (Morselli 2009), which is true of covert 

networks, and the same is true of a covert network as well? However, Sparrow(1991) 

identifies four distinct traits that point to covertness in a network: (1) Size, (2) 

Incompleteness, (3) Fuzzy Boundaries, and (4) Dynamic Networks. 

 

Size:  Crime related databases are typically enormous, with thousands of nodes, many of 

which might not be actual members of the network. The fact that such lists of unconnected 

persons are massive tells us nothing about covert networks' real size, which has been 

disputed by others who feel dark networks tend to keep themselves small to avoid detection 

(Bouchard 2007). 

 

Incompleteness: Criminal network data is inevitably incomplete, given the element of 

secrecy by the actors involved, the biases introduced by the investigative methods, and 

assumptions. Incompleteness is two-fold: actors can be absent from the database (or 

inaccurately included), or ties between actors may be unknown (or incorrectly believed to 

exist). The fragmented nature of these networks tends to get further distorted by agencies' 

inclination to pay the closest attention to those individuals they were already familiar with 
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and who may not be the principal players. The nature of incompleteness means that 

prevalent statistical inference methods can’t be successfully applied to predict the entire 

structure. 

 

Fuzzy Boundaries: In covert networks, it’s challenging to decide which individuals to 

include within the network. Sparrow describes criminal networks as having ambiguous 

boundaries and possessing complex inter-relationships with other criminal networks. 

Actors may participate in multiple criminal networks, thus serving as portals that link 

subgroups. The fuzziness aspect makes it hard to apply conventional centrality measures to 

study and evaluate illegal or covert networks. 

 

Dynamic: Sparrow observes that covert networks change relatively faster through time than 

conventional networks, and relationships between actors have different/varied distributions 

over time. Many of the patterns that define the covertness of a network are transient. This 

aspect of covert networks is perhaps the most significant for identifying them, particularly 

if we consider the fact that such networks are likely to be disrupted frequently and need to 

evolve quickly to survive. 

 

 

2.3 Ties in Covert Network 

 

Ties may be defined as connections that transfer information and resources between actors 

in a network. Borgatti (2003) calls this aspect of networks the “flow model” (In other words, 

ties are channels through which something is transferred from one actor to another). The 

other significant type is the “bond model,” where actors are involved in a collaborative 

action (conducting a robbery or a terror attack). Ties involve flows of information and other 

resources, including finance, disease, ideas, issues arising from kinship or friendships, etc. 

Based on their strength, Granovetter (1973) identifies ties as strong, weak, or absent. He 

defines the strength of a tie as the “combination of the amount of time, the emotional 

intensity, the intimacy (mutual confiding), and the reciprocal services which characterize 

the tie….It is sufficient for the present purpose if most of us can agree, on a rough intuitive 
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basis, whether a given tie is strong, weak, or absent” (Granovetter, 1973, p.1361). Thus, 

determining the strength of a tie is a subjective affair, and researchers from different 

domains are liable to define tie-strength variably.  

 

Sparrow (1991, p.271) believes that the most valuable communications channels to monitor 

are seldom used and lie outside the relatively dense clique structures. These outer channels 

correspond to weak ties, or perhaps they are not weak ties to the participants but only appear 

weak to outside observers who fail to detect the secret link. These are the ties that add most 

to the efficiency of communication within a covert network. Therefore, urgent or important 

network signals are more likely to be detected on the weak ties than on the manifestly strong 

ones. Granovetter (1973) argued that weak ties are most valuable if they are bridges that 

link otherwise separated subgroups. 

 

Given the imperatives of maintaining secrecy, Oliver (2014) argues that covert nodes may 

reasonably be assumed to have fewer ties than overt nodes. Keegan et al. (2010), using 

MMORPG data, have also drawn similar conclusions. However, in a recent study of child 

exploitation websites, Westlake and colleagues showed the reverse (Keegan et al. 2010). 

Thus, there may not always be a linear relationship between secrecy and weak ties in a 

covert network. Still, it may be safely assumed that in most cases, this view is somewhat 

counter-intuitive to the conventional wisdom that strong ties, kinship, in particular, are 

crucial to prevent a covert cell from being penetrated by agents trying to disrupt the 

network. Amore vital hallmark of covert networks is the large number (or proportion) of 

null ties compared to overt networks. Secrecy is better protected not by many weak ties but 

by many edges with no ties. Clandestine organizations that use a classic cell structure escape 

detection and disruption when one member is captured because that member has few 

connections to others that can be betrayed. 
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2.4 Pre-existing Ties 

 

Pre-existing ties between the actors are the precursor of covert network structures (Erikson 

1981; Harris Hogan 2012; Lauchs, Keast and Yousefpour 2011; Milward and Raab 2006). 

Such ties increase covert networks' resilience by relying on individuals who can be trusted 

(Keegan et al. 2010; Lauchs et al. 2011). Thus, given the importance of pre-existing ties in 

covert networks, studying the existing relations linking actors may be deceptive. Key actors 

may choose to connect to others in the network rarely to avoid detecting and identifying 

their roles. Raab and Milward (2003) state that actors in a covert network must continuously 

evaluate the risks and react accordingly. Many of the ties forging the leading players may 

have been generated informally and based on trust before the formal network structure 

evolved. Structural intuition based on a last snapshot of the network can be misleading. Pre-

existing ties are said to underpin and help maintain covertness in networks (Oliver, 2014; 

Crossley, Edwards, Harries, and Stevenson 2012; Edwards and Crossley 2009; Erickson 

1981; Sageman 2004).  

 

An excellent example of trusted pre-existing ties leading to a covert network set-up is the 

9/11 event. The 19 hijackers appeared to have come from a network that had formed while 

they were completing terrorist training in Afghanistan. Many were school chums from 

many years ago, some had lived together for years, and kinship ties related others. Deep 

trusted ties that were not easily visible to outsiders wove this terror network together. Krebs 

(2002) states that an accurate picture of a covert network depends on identifying tasks, trust, 

resources, and strategy/goal related ties amongst the conspirators. 

 

Coleman states (1990) that networks are often the unintended consequences of other 

activities, which implies that pre-existing ties are not the exclusive progenitor of covert 

networks. Also, most networks tend to form around shared spaces, events, activities, and 

covert networks that are also amenable to this principle. Klerks (2001) and Reed (2007) 

suggest that ties in covert networks are multiplex in nature. The more multiplexed the tie, 

the closer the relationship between the actors. An example is a network formed by Al Qaeda 

and its affiliates. The work done by Zimmerman (2013) reveals that these links were multi-
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layered and multi-dimensional, ranging from ideology (Islamic fundamentalism) to 

commercial and even charity. Multiplexity of ties where each dimension's nature may be 

orthogonal to each other, i.e., information about the nature of one tie, may be independent 

of information about the nature of another tie. Neither tie can be used to infer anything about 

the other. This property can make covert networks extraordinarily resilient and resistant to 

disruption. This property is borne out of how Al Qaida has borne many powerful nations' 

military might. The US military action in Afghanistan and elsewhere in the Middle East 

and Africa in the first decade of the millennium virtually annihilated the older network 

structures of the Al Qaida network as it existed in the nineties. The targeted killing of Osama 

bin Laden in 2011 capped the effort to cripple the network from launching any meaningful 

attacks. But the decade since has seen the organization claw back into public imagination 

through a series of outrageous attacks (but with a lesser impact on the western media). Its 

affiliates in Iraq, Syria, Kenya, Mali, and Somalia have wrought devastation. Its spiritual 

comrades-in-arms (not completely subscribing to its philosophies but rather similar in 

practice and prejudice) have sprung up in areas vacated by the old Al Qaida. Even though 

some consider the ISIS terror group as a distinct group from the old Al Qaida, there is an 

increasing trend amongst watchers of Islamist terror groups that ISIS and Al Qaida are 

joined at the hip in many respects, as explained in excerpts from a recent article in ‘The 

Atlantic’10 by Hassan Hassan, co-author of ISIS: Inside the Army of Terror. 

“Most historians of the Islamic State agree that the group emerged out of al-Qaeda in 

Iraq due to the U.S. invasion in 2003. They also agree that it was shaped primarily by 

a Jordanian jihadist and the eventual head of al-Qaeda in Iraq, Abu Musab al-Zarqawi. 

The Jordanian had a dark vision: He wished to fuel a civil war between Sunnis and 

Shiites and establish a caliphate. Although he was killed in 2006, his vision was 

realized in 2014—the year ISIS overran northern Iraq and eastern Syria. Narratives 

about the origins of Islamic State ideology often focus on the fact that Zarqawi and 

Osama bin Laden, both Sunni extremists, diverged on the idea of fighting Shiites and 

questions of takfir, or ex-communication. Such differences, the story goes, were 

reinforced in Iraq and eventually led to the split between ISIS and al-Qaeda. Based 

on this set of assumptions, many conclude that Zarqawi must have provided the 

                                                           
10https://www.theatlantic.com/ideas/archive/2018/11/isis-origins-anbari-zarqawi/577030/ 

https://www.theatlantic.com/ideas/archive/2018/11/isis-origins-anbari-zarqawi/577030/
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intellectual framework for ISIS. Recently, I came to question the conventional 

wisdom. The groundwork for ISIS was arguably laid long before the invasion. If there 

was one person responsible for the group’s modus operandi, Abdulrahman al-Qaduli, 

an Iraqi from Nineveh, was better known by his nom de guerre, Abu Ali al-Anbari—

not Zarqawi. It was Anbari, Zarqawi’s No. 2 in his al-Qaeda years, who defined the 

Islamic State’s radical approach more than any other person; his influence was more 

systematic, longer-lasting, and more profound than that of Zarqawi. (p.1)” 

 

The views above are a reflection of the fact that though most of the old ties within the Al 

Qaida network got obliterated with intense action from counterterror groups, some of the 

ideological moorings that had fostered the network and its objectives remained unaffected, 

and its “seeds” led to green shoots of ISIS-related terror in the fertile badlands of revolution 

and anarchy prone border regions of Iraq and Syria, which is ample proof of the fact that 

resilience of covert networks is a fundamental aspect built into their structures and ties. 

Repeated counter-terror action in the manner of “mowing the grass” once in a while may 

reduce resilience in such networks. 

 

 

2.5 Homophily and Microstructures 

 

Underpinning all networks, overt or covert, are the actors’ common objectives and 

methods. The commonness of objectives, methods, occupations, ideologies, and 

preferences underpin all networks, overt, or covert. But this trend is marked in covert 

networks where the actors have incredibly convergent aims and methodologies to achieve 

them, and participants are often drawn towards these networks based on strong homophilic 

connections (Harris-Hogan 2012; Freeman and Gill 2013; Everton 2011; Milward and 

Raab 2006; Reed 2007; von Lampe 2009).  Earlier sociological studies (Kossinets &Watts, 

2006; McPherson, Smith-Lovin, & Cook, 2001) indicate that a set of facilitators influences 

the tie-formation process in covert networks. These facilitators may be individual attributes 

like age, race, gender, type of crime, etc. (Feld, 1982; McPherson et al., 2001; Everton 

2011; Thelwall, 2008; Reiss, 1986) of the nodes/actors in the network, or shared 
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affiliations between actors, like kinship and mutual acquaintances (Backstrom, 

Huttenlocher, Kleinberg, & Lan, 2006; Kossinets & Watts, 2006).  

 

Other studies indicate that though homophily may play an essential role in the covert 

network's formative stages, exogenous factors may dilute its effect at a more mature phase. 

Klerks (2001) looks at organized crime networks and concludes that covert networks tend 

to become less homogeneous over time. The same conclusion is seen in other works as 

well (Carrington and van Mastrigt 2013). The actors in a covert network are also aware of 

attempts to detect their activities using homophily as a tool and may resort to disassortative 

mixing to avoid detection (Keegan et al. 2010). Thus, homophily is a distinguishing trait 

in covert networks in their incipient stages, but it becomes less of an identifying 

characteristic with maturity. 

 

Given the imperatives of a covert network to maintain secrecy and, at the same time, be 

prepared to deliver results, small cells or microstructures are inevitable in covert networks. 

Clusters (Memon et al. 2008) and cliques (Gill and Freeman 2013) have been proposed as 

typical microstructures, often based on homophily around ethnicity and occupation, 

role/skill specialization, or pre-existing ties (Demiroz and Kapucu 2012; Harris-Hogan 

2012; Milward and Raab 2006; Raab and Milward 2003). Memon et al. (2008) showed 

that many terrorist networks exhibit small-world characteristics, with high clustering 

coefficients and short path length. But, modeling using idealized network structures did 

not show clustering (Toth et al. 2013). Helfstein and Wright (2011) used model threat 

vectors to attack networks to show that covert networks that maximize secrecy do not show 

clustering. Kirby (2007), using Sageman’s data (2004), argues that cliques can be self-

starters, progress towards fragmentation and isolation, and generate collective identities 

for members.  

 

To ensure survival, covert networks avoid developing highly centralized actors. As a 

counterview, Carley et al. (2002) argue that peripheral individuals act as mediators 

between sub-networks and spread information. This view is in accord with Granovetter 

(1973), who had argued that weak ties between actors are often bridges that link subgroups 
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otherwise separated. Several studies indicate that covert networks cluster around 

specialized actors, leading to functional differentiation within such networks (Calderoni 

2011; Malm and Bichler 2011). This specialization tends to become more accentuated over 

time (Raab and Milward, 2003). Pedazhur and Perlinger (2006) remarked that terrorist 

networks with many cliques appear to be more effective than those with fewer cliques, 

which they have interpreted to mean that the existence of cohesive subgroups within a 

network had proven to be a predictor of the network’s effectiveness.  

 

 

2.6 Density  

 

Some studies reveal covert networks to be sparse or maximally low density (Krebs, 2002; 

Demiroz and Kapucu 2012; Gimenez-Salinas Framis 2011; Toth et al. 2013) and loosely 

organized (Natarajan 2000) with micro-structures (Freeman and Gill 2013). Sparseness is 

a network trait of covert networks that may result from incomplete information (Sparrow 

1991) or the actors' efforts to avoid detection. Such organizations also tend to curtail 

density of ties to prevent any infiltration; apparently, added action or communication 

between members will lead to a higher chance of detection by law enforcement officials 

(Krebs 2002; Morselli et al. 2007; Raab and Milward 2003; Xu and Chen 2008; Demiroz 

and Kapucu 2012). The US Army’s counterinsurgency manual (Petraeus 2007) argues that 

network density is positively associated with network efficiency, a feature that highlights 

the secrecy-efficiency trade-off in covert networks, i.e., covert networks tend to maintain 

minimum density at the cost of efficiency. The issue that comes in the way of this 

hypothesis is the lack of consensus on what defines ‘high’ density. Adding to the 

complexity is the variance of density over time in covert networks. Helfstein and Wright 

(2011) have shown that density increases over time in covert networks. Other factors 

affecting density are pre-existing ties, which tend to make networks denser (Krebs, 2002; 

Raab and Milward 2003) and the actors' levels of skills, with more skilled players leading 

to sparser networks (Helfstein and Wright 2011).  
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2.7 Centralization, Core-Periphery, and Poly-Centricity  

 

As discussed earlier, the overriding priority in covert networks is maintaining secrecy, 

even if this happens at the cost of efficiency in outcomes. One of the aspects of secrecy is 

to protect the actors who matter in the network. To this end, the general assumption has 

been that covert networks are decentralized (Enders and Su 2007, 51; Clutterbuck 2008; 

Keegan et al. 2011, p24; Natarajan 2006). But, Baker and Faulkner (1983) studied three 

illegal networks and demonstrated that they all had centralized structures. In their study, 

two of the covert networks, switchgear, and transformers, were decentralized while the 

conspiracy network regarding the steam turbine generator business had a relatively 

centralized network structure. Baker and Faulkner (1993) relate this variation to the 

information processing requirements of the organizations. In their study, organizations that 

do not need high information processing could decentralize their structure for concealment 

purposes, while organizations that focus on custom production with high information 

processing need a relatively centralized formation even if it undermines the secrecy of their 

relationships. Nevertheless, they add that conspiracy's centralized network was 

successfully separated into a “small core and a large periphery” (Baker and Faulkner, 1993, 

p855). In other words, even centralized illegal networks disperse their relationships in a 

way that lowers risks.  

 

Recent studies have also identified a core-periphery divide in covert networks. An 

idealized core-periphery structure entails that core nodes are well-connected to 

other core nodes and peripheral nodes and that peripheral nodes are not well-connected to 

each other (Rombach, Porter, Fowler & Mucha, 2017, Core-periphery structure in 

networks (revisited). SIAM Review, 59(3), 619-646). Social networks can be modeled 

using a mixture of local (node-level, dyad-level, etc.), global (involving the entire structure 

of the network), and mesoscale (intermediate-scale) perspectives. One of the critical uses 

of network theory is identifying summary statistics for large networks to develop a 

framework for analyzing and comparing complex structures. In such efforts, the 

algorithmic identification of mesoscale network structures makes it possible to discover 

features that might not be apparent either at the local level of nodes and edges or at the 
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global level of summary statistics. Networks can be described using a mixture of local, 

global, and intermediate-scale (mesoscale) perspectives used to identify statistics to define 

large networks, which leads to the development of a framework for analyzing and 

comparing complex structures.  

 

The mathematical formulation of mesoscale network structures makes it possible to 

discover features that might not be apparent either at the local level of nodes and edges or 

at the global level of summary statistics. In particular, considerable effort has gone into the 

development of statistical formulation and identification, and investigation of a specific 

type of mesoscale structure known as community structure in which cohesive (and 

assortative) groups called “communities” consist of nodes that are connected densely to 

each other and the connections between nodes in different communities are comparatively 

sparse. Numerous methods have been developed to detect network communities. Some of 

these methods allow communities to overlap with each other, and others are mutually 

exclusive. Investigations of community structure have led to insights in several 

applications spanning fields and voting networks in political science, friendship networks 

at universities and other schools, protein-protein interaction networks, mobile telephone 

networks, and criminal networks. Rombach et al. (2017, p.620) report that “Although (and 

arguably because) studies of community structure have been very successful, other types 

of mesoscale structures—often in the form of different “block models”—have received 

much less attention than they deserve. We consider the type of mesoscale network structure 

in the present paper known as the core-periphery structure.” 

 

The type of mesoscale network structure most studied from the perspective of covert 

networks is the core-periphery structure. Notably, in the Russian Mafia study, Varese 

(2013) finds a polycentric structure around a few central actors. Demiroz and Kapucu’s 

survey of Turkey’s Ergenekon Terrorist Organization (ETO) network, developed from 

indictment documents, also shows a network with core and periphery densities 0.735 and 

0.441, respectively (Demiroz and Kapucu 2012). Raab and Milward (2003) argue that 

cores with specialized skills (e.g., finance, strategy, planning) benefit terrorist networks, 

possibly to increase security for central members. Gimenez-Salinas compared criminal 
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networks in Spain, which all exhibited core-periphery structures (Gimenez-Salinas Framis 

2011). This is quite reasonable for an illegal network, where the numbers of connections 

are minimal while the smaller groups are fragmented. Also, larger network density is 

usually lower than in smaller networks setting (Hanneman and Riddle 2005). The figures 

below, adapted from Demiroz and Kapucu (2012), reflect typical core-periphery formation 

in a covert network. Several other studies have also independently supported these findings 

(Demiroz et al.; Varese 2013; Cockbain et al. 2011). Other studies have yielded ambivalent 

results indicating that covert networks may exhibit both centralized and decentralized 

structures (Crenshaw 2010). 

 

However, not all networks show this property (Lauchs, Keast, and Yousefpour 2011). 

Morselli et al. (2007) opine that terrorist networks do not show core-periphery structures, 

whereas criminal networks do, although they employ only one case study of each to 

support this claim. The diagrams in Figures 2.1(a) and 2.1(b) of a social network drawn 

only for illustration are examples of core-periphery structures in a social network. It’s 

interesting to note that the core-periphery structure remains unchanged even when the 

centrality metrics are changed. In Figure 2.1(a), for instance, the centrality measure chosen 

is the degree centrality, and a few of the nodes with high scores are concentrated in the 

“core” area. In contrast, those with low scores populate the network's fringes: the 

“periphery.” When the degree centrality metric is replaced with the betweenness centrality, 

a similar picture emerges (Figure 2.1 (b)). 
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2.8 Secrecy Efficiency Trade-Offs 

 

When shaping the structure of their relationships, covert networks necessarily encounter a 

trade-off between efficiency and safety and prefer the safest path for communication 

among their members. Ericsson(1981) examined six secret organizations' cases and 

concluded that one of the essential ways to achieve safety in risky environments is to 

maintain pre-existing ties. The varying needs for secrecy amongst different covert 

networks result in significantly different network outcomes and even network structure. 

Terrorists and organized crime groups have similar concerns concerning secrecy; however, 

their purposes significantly impact their preference over the safety-efficiency tradeoff. 

Terrorist organizations aim to create social and political disruption through spectacular 

events. They tend to remain inert until the most appropriate time comes for an attack 

(Morselli et al. 2007).  

 

By contrast, organized crime organizations exist primarily for generating monetary gains 

and aim to maximize their income and try to work most efficiently (Kenney 2007; Morselli 

2009). Such organizations tend to prefer efficiency over secrecy because an excessive 

focus on secrecy results in wastage of time and resources, thereby culminating in a 

decrease in their gains. For criminals, time is money, while for terrorists, time optimizes 

opportunity. Enders and Su (2007) discuss two aspects of terror-related networks 

encountered during intelligence and surveillance efforts. The first approach is the rational-

actor model in which terrorist organizations act intending to reach a common purpose. 

While terrorist organizations are trying to get their destination with limited financial, 

material, and human resources, they consume certain commodities (e.g., media attention). 

This model assumes that criminals and terrorists will act rationally to reach the maximum 

possible output. The second approach focuses on the disruption of networks based on how 

individuals or cells communicate with each other and how the elimination of individuals 

or cell units affects the network. The disruption of covert networks is a widely discussed 

topic with several studies coming out in the last decade or so, specifically to detect key 

actors or central players and issues resulting in the disruption of these networks (Borgatti 
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2003, 2006; Carley 2006; Memon et al. 2007; Schwartz and Rouselle 2009; Xu and Chen 

2005). 

 

The tradeoff between rational behavior and secrecy related structural priorities forces 

networks to make choices under external factors, goals, and resources (Baker and Faulkner 

1993; Brass et al. 1998; Lindelauf et al. 2009a; 2009b; Raab and Milward 2003). Baker 

and Faulkner (1993), in their landmark study on conspiracies in the heavy electrical 

industry in the United States, are amongst the first researchers to have examined the 

correspondence between secrecy and efficiency methodically. They comment thus –  

“Various practices and organizational devices are used to protect a secret society. 

Members may conceal the secret society and their involvement in it by limiting face-

to-face interaction. Leaders, for example, maybe unknown to ordinary members. 

Members can increase protection by minimizing the channels of communication. 

Impersonal communication procedures and decision rules (e.g., the phases-of-the 

moon system in the switchgear conspiracy) may be used to substitute direct personal 

communication and negotiation. Organizational buffers can seal off different levels 

or groups—for example, a graduated division of labor-hierarchy-may separate 

members of a secret society. Top managers may approve or direct activities but 

delegate implementation to lower-level operatives. Decentralization limits exposure, 

making it difficult to uncover an entire network, particularly its leaders. Subversive 

political movements, for example, are organized into decentralized cells. Secrecy 

was a paramount consideration in our three price-fixing conspiracies. These criminal 

networks involved high stakes, major corporations, government buyers, and dozens 

of corporate managers and executives' careers and reputations, many of whom were 

pillars of their local communities and elite class members. The conspirators knew 

their activities were illegal yet continued them despite repeated written directives 

from the chief executive's office to refrain from meeting with competitors. Given the 

importance of secrecy, we expect to observe criminal networks that use buffers and 

other means to maximize concealment. In particular, the need for secrecy should lead 

conspirators to conceal their activities by creating sparse and decentralized networks. 

If secrecy were the only consideration, we would expect sparse and decentralized 
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communication networks in each of our three conspiracies. But secrecy is not the 

only consideration. Like participants in legal networks, conspirators have tasks to 

accomplish, and these tasks must be performed effectively and efficiently. The 

information must be exchanged quickly and accurately. Problems and disputes must 

be worked out quickly and smoothly. Most of all, acceptable agreements must be 

hammered out in time to meet deadlines (e.g., due dates for proposals). Secrecy is 

critical, but if price-fixing tasks are not performed well, the conspiracy will be a vain 

and needlessly risky endeavor. Given the need for efficient task performance, what 

type of communication network is required? The social psychology of small groups 

and organizational theory agrees that the answer depends on information-processing 

requirements- the amounts and types of data, knowledge, and intelligence that must 

be handled to execute a task sequence. Experimental research on small groups has 

found that simple, routine, unambiguous tasks are performed more efficiently in 

centralized structures, while difficult, complex, ambiguous tasks are performed more 

efficiently in decentralized structures. (p.843)” 

 

These remarks cast a clear light on the relationship between secrecy and operational 

efficiency. Everything depends on the context; if the need for the hour is just to escape 

surveillance, secrecy becomes paramount. If there are deliverables that can’t be delayed, 

efficiency gains the upper hand. As discussed in the section about centralization, covert 

networks tend to be decentralized, but internal and external environments' requirements 

can force centralization in some instances (Raab and Milward 2003).  

 

Interestingly, Helfstein and Wright’s (2011) analysis of the six terror networks presents 

surprising results. They compare networks that prioritize operational secrecy with scale-

free networks. The most notable characteristic in a scale-free network is the relative 

commonness of vertices with a degree that significantly exceeds the average. The highest-

degree nodes are often called "hubs" and are thought to serve specific purposes in their 

networks, although this depends much on the domain. Scale-free networks are typically 

robust to failure. In such networks, it turns out that smaller ones closely follow the major 

hubs. In turn, these smaller hubs are followed by other nodes with an even smaller degree 
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and so on. This hierarchy allows for fault-tolerant behavior. If failures occur at random, 

and the vast majority of nodes are those with a small degree, the likelihood of a hub being 

affected is almost negligible. When focusing on operational secrecy, the authors examine 

the relationship between network structure and its impact on the outcome. Logically, terror 

networks are expected to form a design that will minimize detection and vulnerabilities. 

Yet, results show that the networks which are studied did not remain in the most secure 

state. Helfstein and Wright (2011) argue that when terrorist networks perceive their 

environment as safe, they act less carefully and have a structure that is more susceptible to 

disruption. They conclude that risk perception is influential in shaping the network 

structure of terror groups.  

 

Similar approaches apply graph-theoretic metrics to recognize and understand proposed 

network structural properties (Lindelauf, Borm, and Hamers (2009a)). They compared 

covert communication network models to find structures with optimal trade-offs between 

secrecy to avoid detection and efficiency of information flow to coordinate and control cell 

members. The model's optimality depends on the assumptions about all cell members' 

likely exposure if any of the actors are randomly removed. A star graph in which all 

members communicate only through the commander is an example of an optimal structure 

for balancing the conflicting objectives if one member's detection also exposes all his links 

to the other cell members. In contrast, if the probability of exposure is a function of the 

node centrality in the network, the optimal structures are reinforced rings and reinforced 

wheel graphs. Many related models making different exposure assumptions and 

imbalanced secrecy-efficiency trade-offs identify other optimal systems (Lindelauf, Borm, 

& Hamers, 2009b, 2011). However, many of these graph theoretic models tend to exclude 

law enforcement agencies that actively seek to detect and disrupt the terror networks. 

 

A color gradient showing the secrecy-efficiency trade-off is shown in Figure 2.2: 
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2.9 Path Distance 

 

The average path distance between a node and any random peer in the network is an 

essential indicator of network safety (Ayling 2009; Kenney 2007; Williams 2001). Large 

and small networks have different structural characteristics. The size determines how path 

distance can determine the efficiency of actions taken by network members. Xu and Chen 

(2008) mention Global Salafi Jihadists as an example of an extensive network with a 

relatively short mean path distance (2.5 links). Cliques in dark networks would have 

“denser and stronger relationships with one another” (Xu and Chen 2008, p. 62) but, to 

avoid detection, cliques tend to be segregated. Krebs’s (2002) study of the 9/11 attackers 
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demonstrates how subgroup networks work. His paper indicates that the 9/11 terrorist 

network structure had a serpent-like shape (Demiroz et al. 2012). Nodes in the system were 

connected to a limited number of actors that aimed to lower the risk of detection for the 

entire network if one or more members within the network were caught.  

 

Krebs (2002, p 46) highlights Bin Laden’s statement about this strategy: “Those who were 

trained to fly didn’t know the others. One group of people did not know the other group”. 

He also indicates that the network actors had an average path length distance of 4.75 from 

each other. This is a relatively long distance of communication in a network of 20 nodes. 

It is important to note that this path length applied to the specific hijackers (i.e., functional 

group) involved in the 9/11 attacks. When complementary actors, who were not physically 

involved in the 9/11 attacks, are added to the network, the average path length decreases 

from 4.75 to 2.94 (Krebs 2002). One implication is that monitoring the peripheral actors 

would enable law enforcement more efficiently to reach (i.e., detect) the core actors, 

reflecting that based on the sensitivity and importance of tasks and actions, security 

necessities and secrecy precautions may vary. 

 

 

2.10 Applicability of Social Network Analysis to Covert Networks 

 

As is evident from the previous passages, covert networks' analysis presents challenges 

distinct from ordinary social network research. Traditional SNA investigates networks 

where the data are virtually complete. By contrast, covert networks pose difficulties that 

are not easily handled by conventional social network analysis tools. A known nefarious 

actor who is being observed is concerned about being followed. So, the actors' regular 

interactions are not likely to be the interactions of interest. It is expected that the 

interactions with individuals of interest are the most difficult to watch. So naïve network 

analysis would place the highest emphasis on the least essential edges and the lowest 

priority on the most critical edges. 
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As seen from their defining characteristics, covert networks share many traits with overt 

networks and are separable only by specific prominent features. All four properties 

identified by Sparrow (1991) and described earlier in this paper are to be seen in any given 

social network, possibly to a lesser degree. Many networks about broad social movements 

or religious organizations are vast in size. Incompleteness and fuzziness can result from 

inadequate information and research about a network rather than deliberate attempts by the 

actors to hide linkages. Similarly, most networks will change in time, whether as a result 

of actors changing their roles or leaving the network or only as a reaction to changing 

social mores and traditions. One of the challenges in analyzing a covert network is to 

ascertain how well the traditional concepts of SNA measure. Sparrow (1991) opines that 

the traits typical of covert networks produce computational difficulties. Such 

characteristics demand algorithmic complexity and require substantial advances in 

methods of statistical (or computational) inference and add that “these properties will 

likely render some of the existing network theory concepts less useful than others. For 

example, the fuzzy boundaries render precise global network measures (such as radius, 

diameter, even density) almost meaningless. With the global measures go some, but not 

all, centrality” (Sparrow 1991, 263). 

 

Freeman (2004) defines four elements that typically define social network analysis: (i) 

Motivation by a structural intuition based on ties linking social actors, (ii) Research-based 

on systematic, empirical data, (iii) Utilization of graphic imagery; and (iv) Employment of 

mathematical and computational models to predict future behavior. Of the four elements, 

the latter two's performance depends on the first two's completeness and accuracy. Many 

of the ties binding the leading players are likely forged before the formal network structure 

evolved, and any conclusions based on the extant structure can yield wrong results. As 

mentioned, the relations between the key players in the Al Qaeda network were formed in 

Afghanistan when they fought the Soviets. After Al Qaeda attained notoriety, the network 

structure that was unveiled by the researchers initially did not reflect the true nature of the 

principal players. The second element defined by Freeman regarding research based on 

systematic and empirical data may not be feasible in the case of covert networks where the 

need to repress leakage of information related to the structure may be paramount. If any 
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systematic information regarding such networks were found, the network would lose its 

covertness tag. 

 

In the 9/11 attacks, the research timeframe began when the cell had finalized its intended 

modus operandi and covertly established itself to undertake its objectives. The deadline 

ceased after the operation or at the stage when authorities disrupted the cell. Sparrow 

(1991) suggests looking at the waxing and waning strength of a tie depending upon the 

time and task instead of looking at the presence or absence of a relation between two 

individuals. Such observations require longitudinal monitoring of cell members’ activities, 

which only law enforcement has sufficient resources to conduct. 

 

Covert networks generally include several actors who neither have an unusually large 

number of ties nor are connectors between different parts of the network. Such networks 

have players situated in a strategic location in terms of their proximity to hubs (or highly 

active nodes) or large numbers of members. Hence, these members have a high level of 

access to information and resources. How can these three critical kinds of actors be 

detected? How can we compare the influence of different actors in the same or different 

networks? The most common techniques for evaluating the actor’s role and power within 

the network are the traditional measures of centrality. Several prominent, relevant actions 

that can effectively study violent groups are the degree of centrality, closeness (limited to 

connected networks and large components), and betweenness. A similar measure was 

introduced by Brams, Hande, and Ramirez (2006), who developed the concept of influence 

as a function of the actor’s importance within the network. This, in turn, is determined by 

the number of their ties and their directions relative to the other actors. Baker and Faulkner 

(1994) suggest looking at archival data to derive relationship data. The data they used to 

analyze illegal price-fixing networks were mostly court documents and sworn testimony. 

These data included accounts of observed interpersonal relationships from various 

witnesses. 

 

The seminal effort to link social network analysis to covert networks through analyzing 

law enforcement and intelligence efforts and, by extension, to covert networks was perhaps 
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that of Malcolm Sparrow of the Kennedy School of Government, Harvard University in 

1991. There were earlier sporadic efforts, e.g., Coady (1985), Howlett (1980), Davis 

(1981), but these had focused only on basic network concepts and lacked sophistication). 

Sparrow looked at the methodologies used by law enforcement agencies akin to those 

prevalent in the SNA domain. He found that intelligence (and by extension, law 

enforcement) agencies, despite an evident awareness of the importance of analysis, had 

remained, for the most part, unsophisticated in their use of analytic tools and concepts. 

(This has changed over the years, and law enforcement agencies have increasingly adopted 

sophisticated mechanisms to study crime and criminality patterns, including advanced 

network analytics).  Sparrow observed that agencies typically had plenty of data, much of 

it computerized, but they had comparatively little capability to extract useful intelligence 

from it. 

 

According to Sparrow, even the primitive tools (primitive by the standards of existing 

social network analysis in other domains) that were in use by these agencies were simple 

forms of SNA. He expressed disappointment over the lack of overlap between the literature 

of social network analysis and that of law enforcement. He also lamented these agencies' 

tendency to score individual successes in taking down criminal entities they perceived as 

crucial without waiting to uncover the entire network or identifying strategic 

vulnerabilities. The first approach, i.e., to strike before the whole network is exposed, is 

especially problematic as it is “difficult, dangerous, time-consuming and expensive” 

(Sparrow 1991, 260).  

 

The efforts to apply SNA to covert networks have been primarily oriented to optimize the 

process of disruption. In other words, researchers have tried to identify actors or subsets 

within the covert networks whose removal will likely affect the functioning of the network 

most adversely. This approach is not without its critics, and many studies indicate 

diminishing returns from disruption and may allow key actors to develop methods to 

increase resilience and avoid detection (Tvestovat and Carley 2003; Brafman and 

Beckstrom 2006; Bouchard 2007; Ayling 2009; Everton 2011; Dujin et al. 2014). 

Disruption is thought to make covert networks more decentralized and hence, more 
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difficult to target. In the case of terrorist networks, it only brings about what Sageman 

(2008) refers to as the “leaderless jihad,” by which he means the evolution of numerous 

independent and local groups that use Al Qaeda as a franchisee rather than act as an organic 

part of it. 

 

 

2.11  Defining Covertness as a Unit Attribute   

 

The previous section broadly encapsulates the types and features of social networks 

described as dark or covert. This study's primary objectives are to break down the notion 

of what constitutes a covert network to a more fundamental and functional unit of 

measurement. The widely varying perceptions about how a covert or dark network might 

be defined have caused a palpable lack of consensus amongst sociologists and 

criminologists alike. Plus, the situations where entire networks can be categorized as covert 

are not very common. Usually, such networks come as parts of much larger networks that 

might not be covert or representative of any criminal enterprise.  

 

The present research deals with the ENRON enterprise, which was by no means a criminal 

organization. If anything, it was a widely respected Fortune 50 company with worldwide 

dealings that were anything but covert. But, the insider trading scam that was budding 

within the overt confines of the company’s employees network can’t be kept outside the 

scope of blatantly criminally oriented behavior. Yet, the number of employees who 

participated in this covert undertaking under a mundane façade is minuscule. Suppose we 

stick to the convention of labeling an entire network as covert or criminal. In that case, it 

will entail a severe lack of understanding about the overall network’s function, and many 

actors who are innocent and in no way connected will be unjustly tagged. 

 

Thus, the aim is to devise a mechanism to decompose the concept of “covert” into a more 

atomic unit, which will serve as bricks for constructing more uniform covert models 

instead of wholesale labeling. This ground-up approach towards identifying covertness 

within a network achieves the twin objectives of avoiding wholesale negative labeling of 
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a network and pointing out specific parts of an otherwise innocuous network worthy of 

further scrutiny regarding their outputs objectives. For example, in the case of the 9/11 

attackers, if we consider all the contacts of the attackers, including flight trainers, the co-

passengers with whom they might have interacted, different types of service providers who 

they might have liaisoned with during their stay in the United States, then the network size 

becomes huge (Krebs, 2002). If we add the number of visitors from the Middle East to the 

United States during that period, the network will have thousands of nodes, if not more. 

And only a small piece of this network was involved in the planning and execution of 

networks. Imagine a surveillance agency that was not aware of the conspiracy was 

scanning the broader network of covert activity; what might it have done with the 

humongous information that would’ve come its way. 

 

As discussed in the previous sections, laws on privacy, the widespread use of encrypted 

messaging systems, and even the simple lack of complete information about a network are 

formidable barriers to forming any opinions about covertness. There has to be a meaningful 

way to capture parts of the information in a manner that can be analyzed and dissected on-

the-fly to identify at least some portion of a subgroup that might be planning covertly to 

achieve some wrongful objective. There is a need to add an attribute that can be applied 

universally on all networks. Furthermore, this universal attribute should be so ubiquitous 

that it defeats any privacy, encryption, or incompleteness barrier. 

 

To successfully predict covert sub-groups within a network, the proposed attribute should 

have some key features that may correspond to the properties noted below.  

 

(a)  The attribute needs to be based around the easily observable topological 

features of a network akin to some of the more popular centrality measures  

 

(b)  The attribute should be a minimalistic one that will not require many 

components or complicated manipulations of input variables; in other words, it 

shouldn’t consume too many computational resources or bandwidth to calculate.  
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(c)  The attribute must be capable of being used for non-intrusive analysis, i.e., 

there should be no need for contents of the information exchanges to be known. It’s 

especially essential to bypass existing data privacy laws, encryption mechanisms, 

varying policies across countries that allow differential access to information, legal 

strictures, inadequate information about the network, and covert communication 

channels not apparent to the surveillance team. 

 

(d)  It should be easily applied across all networks (node or edge or even higher 

groupings). That is, the attribute should be of such a nature that it can be combined 

easily with existing metrics. 

 

(e) The attribute should have the ability to act as a linkage mechanism, tying 

together disparate nodes, edges, triads, or higher group formations based on some 

formulation of commonness (or collusion as the term is viewed in this study). A 

corollary of this characteristic is that the attribute should exhibit some form of 

structural transcendence, i.e., there needs to be some tangible structural links 

between entities that might end up being grouped through its application. This 

aspect is covered later on in some detail in the section, which discusses the methods 

of building a collusion index. 

 

(f) More importantly, it should allow the investigator to reduce the sheer 

volume of exciting data and likely yield results. That is, the size of the haystack 

should be reduced considerably. Most networks (even the smaller ones) have tens 

of thousands of nodes, edges, and other related structures. The resources needed to 

detect covert activities are usually not commensurate to cope with the massive 

volumes of data generated; the information immediately available for processing 

must be manageable and still yield meaningful results. 

 

(g) The attribute should be dynamic, i.e., it should be able to change in time 

and still retain its usefulness despite evolutionary changes in the network structure. 
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If there are changes in the network's topology, the attribute changes should track 

the changes and even predict the network's future shape. 

 

The approaches to developing an attribute with all or some of these properties can be 

categorized into two broad classes. The first approach is node-centric, i.e., the attribute is 

defined on a node. The value produced by the attribute is assigned to it, much like the 

popular centrality measures such as degree centrality, closeness centrality, betweenness 

centrality, and eigenvalue centrality. The second approach is to develop the attribute based 

on ties or edges or a multiple thereof (i.e., a sub-network). Of these two approaches, the 

first one, based on nodes, is, by far, the most popular. 

 

 

2.12  Covertness as a Centrality Measure 

 

Some recent studies on developing node-based covertness indices by sociologists and 

network scientists, most notably Ovelgonne, Kang, Sawant, and Subrahmanian (2012), 

have proposed such a node centric covertness centrality measure. Their covertness 

centrality measure consists of two parts: how “common” a node concerning a centrality 

measure and how well the node can “communicate” with a user-specified set of vertices. 

 

As they define it, commonness is a measure of how well a node hides in a crowd of similar 

nodes. Depending on the range of values, the commonness may reflect one of two 

properties: Optimal Hiding or No Hiding. With Optimal Hiding, all nodes are equal vis-a-

vis all centrality measures which have been considered. In this case, the nodes are 

indistinguishable from each other, and so the hiding is optimal. In this case, the 

commonness has to be 1 for all nodes. With No Hiding, if a node is not similar (a similarity 

measure needs to be defined for this) to any other node concerning any centrality measure, 

this node's commonness should be 0. Hence, based on the commonness scores, any node 

in a network will have a value that varies between 0 and 1. A threshold value can be defined 

to make any set of nodes stand out from the others.  
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The next characteristic of a node's covertness centrality is its communication potential, 

which Ovelgonne and colleagues (2012) have defined as an attribute that reflects a node's 

ability to communicate and cooperate with other nodes to achieve a common objective. 

The answer as to which communication and cooperation options are essential to achieve 

that objective rests solely on the researcher and the study's nature. Finally, the node’s 

covertness centrality is calculated based on a combination of its commonness and 

communication potential. The exact recipe of this combination is again a function of the 

circumstances where the attribute is sought to be applied. 

 

Memon (2012) has suggested a hybrid approach to covertness centrality by adding weights 

to ties or edges between nodes in a social network. His study has focused on covert 

networks in general and on terrorist networks in particular. He adds edge weights to 

traditional centrality measures like degree centrality, closeness centrality, betweenness 

centrality, and the shortest path mechanism increase differentiability of identifying the 

central characters in a terrorist network. This variant of the famous critical node detection 

problem helps solve problems across different disciplines that deal with networks (or 

graphs). A further variation of this approach was proposed by Newman (2001c) and 

Brandes (2001) independently, who used the notion of Inverted tie strengths while 

extending closeness and betweenness centrality, respectively. Thus, the resulting tie 

weights can be considered costs since weak (and costly) ties have high values, and healthy 

(and cheap) ties have low values. Hence, the higher a link's weight, the stronger it is, and 

the less it costs to transmit information along with that link. However, the extra dimension 

added by using weighted ties or edges has also been applied to node centrality. Hence, it 

belongs more or less to the node centric approach of detection of covertness. 

 

The second category of covertness centrality applies to edges, triangles, and other graph-

like structures in a network with higher dimensions than a node. Newman and Girvan 

(2002) enunciated the principle of edge-betweenness centrality, which they defined as the 

number of shortest paths that go through an edge in a graph or network. In this manner, 

each edge in the network can be associated with a score that is an edge betweenness  
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Centrality value. This measure is an 

extrapolation of Freeman’s node-betweenness 

centrality to edges. The concept was used to 

contrast the hierarchical clustering models with 

a dendrogram like appearance and had a 

divisive approach instead. The edge-

betweenness values were calculated iteratively 

for effecting division partitions of the network. 

This concept, which extends a node centrality 

measure to an edge, may well be extrapolated to 

higher graph formations within a network. For 

instance, if a set of homogeneous communities 

is identified within the network confines, each 

community may be treated as a nodal entity, and 

node-centrality measures can again be applied. 

In this study, a similar approach is undertaken with a covertness index being developed 

based on information exchanges between a pair of nodes and treating the node-pair (termed 

as a dyad) as a single unit instead of a node. The approach in this paper has been aimed at 

developing the covertness index as an edge-based property and leveraging this index 

through a ranking mechanism (higher the value of the index, higher the rank) to prune the 

network into a more manageable size and then identify community structures as a second 

step through a separate similarity index. As a further measure, each agglomerative 

(community or group) is treated as a single nodal unit. The index is then used iteratively 

until the desired covert communities are identified to the surveillance unit's satisfaction. 

 

 

2.13  Recent Research 

  

Research into the analysis of covert networks has been relatively extensive in current times. 

Driving this upsurge has been the recent terror and the consequent desire to analyze these 

attacks' causes and identify the main actors and structures. During this renewed focus on 

Fig. 2.3. A schematic representation of a 

network with group structures linked with 

each other and each group being considered 

as a nodal unit. In this network there are three 

communities of densely connected nodes 

(circles with solid lines), with a much lower 

density of connections (thinner lines) 

between them. 
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terror, interest has also spilled over increasingly into the domain of other networks that are 

somehow “darker.” This category includes organized criminal groups, insurgencies, 

oppositional political movements (in countries that look upon opposition from an 

adversarial viewpoint), foreign (and potentially hostile) intelligence networks, etc.  Cutting 

edge techniques in tackling covert networks are increasingly occurring at the intersection 

of mathematics, game theory, and computer science, especially the newly emergent fields 

of artificial intelligence and machine learning. These newer technologies prove to be a 

game-changer in expanding research beyond the necessary case studies of covert networks. 

Many of the recent studies center around the formulation of tactics to destabilize such 

networks. Many mathematical constructs and related computer algorithms can fine-tune 

network parameters to evaluate possible covert structures and then explore the incremental 

disruption of its ways to incrementally disrupt its activities. 

 

Many of the recent network models are not based on real data but on sophisticated 

simulations of network functionalities with synthetic datasets. One of the more exciting 

developments in simulated studies of networks is the concept of a generative adversarial 

network (GAN)11, which is a class of machine-learning frameworks in which two neural 

networks are competing with each other in a game (in the sense of game theory, often but 

not always in the form of a zero-sum game). This technique learns to generate new data 

with the same statistics as the training set(Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-

Farley, Ozair, and Bengie, 2014). A second approach has been collecting vast quantities of 

information from open sources, such as television, news reports, social media, and the 

internet, and then mine these sources for patterns that zero in on the key actors, their 

relations, and characteristics (Krebs, 2002). These newly evolved techniques have found 

applications in two main areas: networks of organized criminal syndicates and networks 

formed by terrorist organizations. Predictably, more recent research has focused on terrorist 

networks owing to numerous terror-related events around the world since the nineties. 

  

We may broadly divide the current mathematical and computational methodologies and 

techniques into two broad categories: (1) Interventionist and (2) Predictive. Interventionist 

                                                           
11GAN modeling was developed by  Ian Goodfellow and his colleagues in 2014.  
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strategies comprise, by far, the most predominant narrative in research on covert networks. 

As the name suggests, the techniques employed in this category study networks after some 

incidents have occurred (major criminal or terror-related incidents), i.e., interventionist 

methods are post-hoc in their approach.  Predictive approaches are challenging to find in 

current day research literature and have started gaining traction lately. Such practices are 

considered to be a subset of the broader crime analysis platforms. The main driver behind 

crime analysis methodologies is that crime is not a one-off random event but takes place in 

ways that fit into patterns (Brantingham 1981; Tayebi, Ester, Glässer, & Brantingham; 

Santos 2014; Tayebi, Glässer, Alhajj 2016; Smith, Santos & Roberto 2018). Predictive 

crime analysis encompasses understanding criminal behavior patterns and the extraction of 

these patterns to predict crime and interdict it. 

 

2.13.1  Interventionist Methodologies 

 

Interventional procedures require a general understanding of the network being studied, the 

identities of at least some of the principal actors, the structure (or at least an estimate of it) 

of the network, and the outcomes that have happened because of the activities of the 

network. Network analysis of this nature happens only when the analyst is well aware of 

the network's nature and plies his trade tools on the observable patterns. Interventionist 

strategies can be further sub-divided into content-based or interceptive techniques and 

structural analysis.  

 

2.13.1.1 Interceptive Strategies 

 

Interceptive methods involve wire-tapping of phones and emails (through legal or extra-

legal means), contents of messages exchanged on web-based platforms like WhatsApp, 

Facebook, Weibo, etc. (if these messages are available in unencrypted format), forensically 

extracted from the cell-phones and computers of persons of interest, etc. Occasionally, such 

information may be retrieved from suspects through questioning (both legal and extra-

legal). The contents then are made to undergo semantic analysis through computational and 

manual means. Terminologies of interest (words like “terror,” “bomb,” explosive,” 
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“hawala” are good examples) or any alias terms used in place of these (codes) are extracted, 

and the mails or messages or voice recordings containing such terms are culled out for more 

in-depth analysis. This sort of methodology is the most popular amongst law enforcement 

analysts. It offers the richest and most accessible “pickings” to identify suspects and their 

plans and activities. Though easy on computational terms, such methods are difficult to 

implement in the face of increasing legal hurdles. Existing wire-tapping policies in 

countries that enjoy more democratic space are difficult to obtain, and attempts to get these 

through less savory methods entail stiff legal costs. Coming in the way of retrieval of 

content-based data is the increasing use of sophisticated encryption (WhatsApp uses a 256-

bit encryption protocol to encrypt its messages), and the possession of an encrypted message 

is as good as not having it since breaking the code will take an immense amount of effort 

and time. 

 

2.13.1.2 Structural Strategies 

 

Structural mechanisms to analyze covert network behavior are less direct than 

interventionist techniques and are more subtle in practice. Structural methods exploit the 

graph-like structure of social networks and such networks' tendency to broadly follow graph 

theory's established paradigms. There should be a reasonable inference about the actors of 

interest, the ties amongst them, the immediate historical context of the network's evolution, 

etc. Structural analysis may also encompass non-content based knowledge such as meta-

data, tie structures, the centrality of certain actors, etc. The peculiar to covert network 

structures are enumerated at length in the previous sections, and these structures are given 

the most significant attention in this approach. Interventionist structural approached are 

often a hybrid of content and non-content based techniques, including the determination of 

shortest paths between the actors of interest, i.e., actors who might have participated in the 

covert activity (Malm, Kinney & Pollard 2008; Magalingam, Davis &Rao 2015), security-

efficiency trade-offs (Everton & Cunningham 2015), variants of network modularity 

(Newman 2006; Ferrara, De Meo, Fiumara& Baumgartner  2014), etc.  
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2.13.1.3 Disrupting Covert Networks 

 

A subset of the structural approach is the methodology of disrupting covert or dark networks 

by removing nodes deemed crucial to their functioning (Everton 2008; Roberts & Everton 

2011; Everton 2012; Everton & Cunningham 2013; Roberts & Everton 2016; Cunningham, 

Everton & Murphy 2016). Farley (2003, 2007,2009) applied the mathematical theory of 

ordered sets to calculate the threshold at which a terrorist group ceases to be actionable 

when key participants are removed. Farley’s model rejects the idea of modeling a terrorist 

network as a pure graph and then destabilizing it by removing key players (Carley, Lee & 

Krackhardt, 2001) and instead assumes a hierarchical cell structure of leaders' followers. 

The technique involves searching for the network’s cutset12, the network actors whose 

removal breaks all vertical chains of command linking the commanders to the actual 

operatives. Keller, Desouza, & Lin (2010) expand upon this concept by defining a four-

level strategy to disrupt terrorist (and dark) networks, namely, targeting leadership, 

targeting grassroots workers or foot soldiers, targeting specific geographies, and targeting 

random structures within the system. One of the drawbacks of disruption strategies is that 

they do not factor into such networks' resilience. Knoke (2015, p.5) feels that the 

“mathematical model is moot for real terrorist groups that are not structured as hierarchical 

communication networks,” which is a fair reflection of the sheer diversity of structures of 

such networks in the real world.  

 

2.13.2 Predictive Methodologies 

 

Predictive crime analysis has two main functions: strategic and tactical. Strategic analysis 

is about examining long-term crime trends. Tactical based research concentrates on short-

term and immediate problems to investigate the relationship between suspects and crime 

incidents. Predictive techniques use network analysis to identify potential suspects with the 

goal of crime prevention—efficient predictive analysis results in policing, which is more 

proactive and less reactive. One of the principal objectives of forward-looking crime 

analysis is generating information that can enhance decision making for optimally 

                                                           
12A collection of nodes that intersects every maximal chain is called a cutset. 
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deploying police resources to prevent criminal activity. Tayebi and Glasser (2016) describe 

predictive policing as a tool for mining information to mitigate crimes. Although neither a 

“crystal ball” nor a substitute for integrated solutions- “With predictive analysis, this 

process becomes more efficient and effective using the discovered patterns about crime 

locations, crime incidents, crime victims, criminals, criminal groups, and criminal 

networks”(p.2). They add the caveat that “predictive policing methods are neither a 

substitute for integrated solutions to policing nor equivalent toa crystal ball that can foretell 

the future” (p.2). They describe predictive networks as having the power to facilitate 

proactive policing and improve intervention strategies employing efficient use of limited 

resources. “These methods give law enforcement agencies a set of tools to do more with 

less” (p.3). Analysts have long realized the importance of analyzing conspiracy networks—

networks of offenders who have committed crimes together (Wasserman & Faust, 1993) 

for designing prevention and interdiction tactics. Thus, one of the priority tasks in predictive 

network techniques is analyzing the relationships between malfeasant actors to learn the 

connivance and collaboration patterns. Tayebi and Glasser add a note of caution on its use, 

stating: 

“Despite the importance of co-offending network analysis for public safety, 

computational methods for analyzing large-scale networks are rather premature. 

Contrary to other social networks, concealment of activities and actors' identity is a 

common characteristic of co-offending networks. Still, the network topology is a 

primary source of information for predictive tasks” (p.3). 

 

The comparative novelty of the predictive approach is laid bare by Tayebi and Glasser 

(2016, p.3), who states thus – “To the best of our knowledge, this work is the first 

comprehensive attempt to use co-offending network analysis in predictive policing 

suggesting a paradigm shift in the way co-offending network analysis is used for crime 

reduction and prevention.” 

 

Many people think of Wall Street and hedge funds when they think of predictive 

methodologies used to make futuristic projections in network models. In her acclaimed 

book, ‘The Weapons of Math Destruction,’ O’Neil (2016) talks about financial Weapons 



 

63 

 

of Math Destruction (WMD) and her experiences in the same realm. Still, the examples in 

her book come from many other facets of life as well: college rankings, employment 

application screeners, policing and sentencing algorithms, workplace wellness programs, 

and the many inappropriate ways credit scores reward the rich and punish the poor. As an 

example of the latter, she shares the galling statistic that “in Florida, adults with clean 

driving records and poor credit scores paid an average of $1552 more than the same drivers 

with excellent credit.”  

She shares stories of people who have been deemed unworthy in some way by an algorithm. 

She relates the instance of a highly-regarded teacher who is fired due to a low score on an 

inscrutable teacher assessment tool, the college student who couldn’t get a minimum wage 

job at a grocery store due to his answers on a personality test, the people whose credit card 

spending limits were lowered because they shopped at certain stores. To add insult to injury, 

the algorithms that judged them are completely opaque and unassailable. People often have 

no recourse when the algorithm makes a mistake. 

Many algorithms create feedback loops that perpetuate injustice. Crime recidivism models 

and predictive policing algorithms—programs that send officers to patrol certain locations 

based on crime data—are rife with the potential for harmful feedback loops. For example, 

a recidivism model may ask about the person’s first encounter with law enforcement. Due 

to racist policing practices such as stop and frisk, black people are likely to have that first 

encounter earlier than white people. If the model takes this measure into account, it will 

probably deem a black person more likely. But they are harmful even beyond their potential 

to be racist.  

O’Neil writes,  

A person who scores as ‘high risk’ is likely to be unemployed and to come from a 

neighborhood where many of his friends and family have had run-ins with the law. 

Thanks in part to the resulting high score on the evaluation, he gets a longer 

sentence, locking him away for more years in a prison where he’s surrounded by 

fellow criminals—which raises the likelihood that he’ll return to prison. He is finally 
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released into the same poor neighborhood, this time with a criminal record, which 

makes it that much harder to find a job. If he commits another crime, the recidivism 

model can claim another success. But in fact, the model itself contributes to a toxic 

cycle and helps to sustain it. 

 

As O’Neil eloquently demonstrates, the problem is that these algorithms are often 

inherently incapable of comprehending real-world problems and hence, incapable of 

expressing their solutions as well. In O’Neil’s words, “mathematical models should be our 

tools, not our masters.” 

 

There has been a great deal of research on achieving algorithmic accountability and 

transparency in automated decision-making systems - especially for those used in public 

governance. However, good accountability in the implementation and use of automated 

decision-making systems is far from simple. It involves multiple overlapping institutional, 

technical, and political considerations and becomes all the more complex in the context of 

machine learning-based rather than rule-based decision systems.  

 

Goldenfein (2019) argues that  

relying on human oversight of automated systems, so-called ‘human-in-the-loop’ 

approaches, is entirely deficient. It suggests addressing transparency and 

accountability during the procurement phase of machine learning systems - during 

their specification and parameterization - is critical. In a machine learning-based 

automated decision system, the accountability typically associated with a public 

official making a decision has already been displaced into the actions and decisions 

of those creating the system - the bureaucrats and engineers involved in building the 

relevant models, curating the datasets, and implementing a system. (p.1). 

There are many accountability mechanisms available for developers of predictive 

algorithms and mathematical-statistical models to consider, including new computational 

transparency mechanisms, fairness, and non-discrimination of decisions. An exercise of this 

nature proceeding without understanding the complexities and limitations of those 

accountability and transparency ideas risks disempowering public officials in the face of 



 

65 

 

increasingly complex machine-led decision making. This dissertation aims at making 

predictive algorithms in the realm of social networks as transparent and as ‘explainable’ as 

possible, and at the same time, desisting from exploiting any ‘intrusive’ content of 

communications. 

 

 

2.14  Recent Developments  

 

Improved computational algorithms, especially those connected with neural learning, allow 

massive-scale simulations of terrorist networks. A good example is generative adversarial 

networks or GANs (Goodfellow et al. 2015), which can typically generate networks 

comprising tens of thousands of nodes. The simulation of such large scale networks allows 

analysts to study the impact of different counterterror strategies on the resiliency of criminal 

networks and the capacity to conduct future operations. One of the methods adopted for 

simulations is based on the concept of agent-based modeling (ABM) where an agent, say, 

an individual terrorist, or a criminal operative like a drug trafficker, is considered an actor 

within the network, methods involve “(i) the simulation of automated agent behaviors and 

interactions in the context of their environments; (ii) the analysis of macro-level patterns 

resulting from micro-level agent interactions” (Keller, Desouza, &Lin, 2010, p. 1020. An 

example of ABM network analytics is the StochasticOpponent Modeling Agent (SOMA), 

which uses textual data extracted from document sources to generate rules explaining a 

terrorist group’s behavior. The SOMA Terror Organization Portal (STOP) features the 

SOMA Extraction Engine (SEE), the SOMA Adversarial Forecast Engine (SAFE), and the 

SOMA Analyst Network (SANE) “that allows analysts to find other analysts doing similar 

work, share findings with them, and let consensus findings emerge.”(Sliva, Subrahmanian, 

Martinez, & Simari, 2008, p.1). 

Researchers applied STOP to  25 years of monthly data on the Pakistan-based Lashkar-e-

Taiba, also called Lashkar-e-Tayyaba  (LeT), a proxy militia cum terror group that acts as 

a proxy for the Pakistan Armed Forces (Sliva,  Subrahmanian, Mannes, & Shakarian, 2011). 

The data used for their analysis of LeT’scharacteristics is part of the Computational 

Modeling of Terrorism (CMOT) Project, “which is a specialized codebook for developing 
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datasets on terrorist and other violent organizations throughout the world. Also, besides to 

LeT, we have collected data for Jaish-e-Mohammed (JeM), Indian Mujahideen 

(Mujahideen fi-al Hind), Students Islamic Movement of India, Forces Democratique de 

Liberation du Rwanda (FDLR), and many others. The CMOT data is an example of a 

behavioral time-series dataset, a class of relational time-series databases that can be used to 

describe the context and behavior of an agent or group.” (p.1).Their model inferred ten rules 

from the behavioral time series set that predicted when LeT would likely launch offensives 

against targets in India. These rules could “provide accurate probabilistic forecasts for both 

real and hypothetical situations,” helping law enforcement agencies in India and make 

optimal deployment and interdiction decisions (p. 6).  

 

 

2.15  Cutting-edge Tools 

  

Other popular data-mining, event-forecasting, link-prediction models, and tool-based 

methods include the random walk based tool CrimeWalker (Tayebi, Jamali, ester, Glasser 

& Frank 2011); CrimeTracer, a supervised learning framework for co-offense prediction 

(Tayebi et al. 2016); data-mining based link prediction models  (Mahesh, Mahesh, and 

Vinayababu 2010); strategy equilibrium based models (Arce, Croson, and Eckel, (2011); 

COPLINK, a user collaborative based commercially available model from M/s Forensic 

Logic; web content-based detection methodology and disruption strategies(Chaurasia, 

Dhakar, Tiwari, and Gupta 2012); deterministic similarity-based edge prediction methods 

with a model-based probabilistic approach (Liben-Nowell and Kleinberg 2007; Hanneke, 

Fu, and Xing  2010); and the same models applied to the ITERATE13 dataset(Desmaraisand 

Cranmer 2013) and prediction models based on hidden Markov models (Petroff, Bond, and 

Bond 2013). 

 

There are other excellent models with agent simulation frameworks and game-theoretic 

approaches. Some of the well-known works in this area are the Hats Simulator 

                                                           
13The ITERATE data are one of the most comprehensive and commonly used data sets on transnational 

terrorism proposed by Mickolus, Sandler, Murdock, &Flemming (2008). These data are well suited to 

research purposes as they cover all transnational terrorist attacks over a 34 year period (1968–2002). 
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(Cohen2004), Game-theoretic results (Sandler 2008), and Dynamic Network Analysis 

(Carley 2006). The third area of simulation looks at more detailed terrorist (and by 

extension, other covert and criminal) activities. One of the models used frequently in this 

area is the one developed by Pattipati (2006), which uses HMM14 models of terrorist 

activities. That work is described further in (Singh 2006).One of the more practical models 

that integrate one or more of all these formats is the Counter-Terror Social Network 

Analysis and Intent Recognition or CT-SNAIR developed by Weinstein, Campbell, 

Delaney&O’Leary (2009) of MIT Laboratories. Carley’s (2003) Dynamic Network 

Analysis (DNA) package, which treats terrorist groups as “complex dynamic networked 

systems that evolve” (Carley, 2006, p. 1), combines traditional social network analysis of 

ties between nodes with multiagent modeling to connect nodes, locations, events, tasks, 

knowledge, resources, and other elements. 

 

Dynamic network analysis is perhaps the first primary “toolkit” that has emerged in the 

quest for an integrated software platform that combines traditional and labor-intensive 

social network analysis with networks' computational perspectives. “DNA combines the 

methods and techniques of SNA and link analysis with multi-agent simulation techniques 

to afford analysts with a set of techniques and tools for investigating complex and dynamic 

socio-technical systems” (Diesner & Carley, 2004, p. 1). In other words, it is more than just 

a toolkit. It resembles a “suite of tools,” i.e., an ensemble of computer algorithms for 

extracting data from texts, mapping networks of words in texts, and forecasting 

changes.“Map analysis systematically extracts and analyzes the links between words in a 

text to model the author’s ‘mental map’ as networks of words”(Diesner & Carley, 2004, p. 

2).DNA leverages network analytic methods to identify actors’neighborhoods, focus on 

actors who aspire to leadership positions, and mark paths between critical actors. 

Community properties and regular equivalence measures, such as homophily and link 

prediction, can be applied to estimate the probability of a tie between two actors where no 

link is seen. More importantly, it allows researchers and investigators to run virtual network 

experiments, simulate actors' removal, and then observe the model's consequences without 

                                                           
14Hidden Markov Model. The premise behind an HMM is that the true underlying process (represented as a 

series of Markov chain states) is not directly observable (hidden), but it can be probabilistically inferred 

through another set of stochastic processes (observed transactions, for example).(Pattipati 2006, p.28). 
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disturbing the existing network under surveillance. The tool allows analysts to evaluate the 

effects of alternative interventions by investigative organizations in a measurable manner. 

The efficacy of DNA was demonstrated with an automatic collection of vast amounts of 

open-source information about Al-Qaida(Carley 2006). The network model that resulted 

had a “decidedly cellular structure with 5–12 persons per cell”(p. 5). The analysis done 

along one time period showed that over a decade or so, the network structure of Al Qaida 

in Iraq decreased in density and interaction levels. Still, it increased in cohesiveness, leading 

analysts to infer “a movement to a more distributed and efficient organizational form, 

possibly with larger cells” (p. 4). A key finding of the tool's demonstration was that 

removing highly central actors in a network would be less effective than taking out 

important leaders who were beginning to rise.  

 

A prevalent benchmark model for testing strategies and hypotheses related to covert 

networks is the Counter-Terror Social Network Analysis and intent Recognition (CT-

SNAIR) project. According to Weinstein, Campbell, Delaney,& O’Leary (2009, p.1), the 

project focuses on developing automated techniques and tools to detect and track 

dynamically-changing terrorist networks and recognize potential capability intent. In 

addition to obtaining and working with real data for algorithm development and test, the 

project has a significant focus on modeling and simulating terrorist attacks based on 

objective information about past episodes. It describes the development and application of 

a new terror attack description language (TADL), which is used as a basis for modeling and 

simulation of terrorist attacks. A simulator based on a hidden Markov model (HMM) 

structure is used to generate transactions for attack scenarios drawn from real events. The 

model can generate realistic background noise to enable experiments to estimate 

performance in the presence of a mix of data both wanted and unwanted. The examples of 

terror-related attacks included specific examples from the September 2004 bombing of the 

Australian embassy in Jakarta and a fictitious scenario developed in a prior research project 

in social network analysis. The project employed the DNA tool as a filtering step to divide 

the actors into distinct communities before determining intent. Given a set of time-ordered 

transactions between actors, this step helped reduce noise and enhanced the ability to decide 

activities within a specific group. It generates random networks with structures and 
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properties similar to real-world social networks for modeling and simulation purposes. 

Modeling background traffic is an essential step in developing classifiers that can separate 

harmless activities from suspicious activity. The algorithm used to recognize simulated 

potential attack scenarios in clutter is based on support vector machine (SVM) techniques15. 

The model is used to demonstrate performance examples, including the probability of 

detection versus the possibility of false alarm tradeoffs, for a range of system parameters. 

 

Covert networks are constantly mutating and changing, and this dynamicity will shape 

emerging trends in the social network analysis of covert networks, including those of 

terrorism and counterterrorism. Predicting covert networks' outcomes and underlying 

covert structures in ordinary networks is notoriously imprecise, but some broad trends are 

visible, which can be exploited through mathematical and computational modeling. In the 

discussion of terrorist groups' behavior, it was seen that under constant pressure from the 

counterterror agencies, movements of global jihadism like Al Qaida and ISIS have evolved 

during the past two decades from centralized hierarchies to networked groups, finally to 

fragmented or discrete cells. It is common policing knowledge that separate units are more 

difficult to detect and disrupt, especially lone-wolf attacks such as November 9, 2009, Fort 

Hood shooting, and April 15, 2013, Boston Marathon bombing. Knoke(2015 p.7) explains 

the emerging trends in terrorism this way: 

“Unstable and failed states increasingly offer sanctuaries for terrorists to assemble, 

train, plane, and launch operations, such as the September 21, 2013, attack by Al-

Shabaab gunmen from Somalia on Westgate Mall in Nairobi, Kenya. Insurgencies 

and guerrilla wars, flaring across Libya, Mali, Yemen, Sudan, the Sinai, Syria, and 

                                                           
15“A support vector machine” (SVM) is a supervised machine learning algorithm which can be used for both 

classification or regression challenges. However,  it is mostly used in classification problems. In the SVM 

algorithm, each data item is plotted as a point in n-dimensional space (where n is number of features which 

are present) with the value of each feature being the value of a particular coordinate. Then, classification is 

performed by finding the hyper-plane that differentiates the two classes optimally. Weinstein et al. (2009, 

p.11) describe the reason for selecting SVM for recognition as being based upon “multiple considerations. 

First, at a top level, the use of the simulation models for scenario and clutter should be optimal for 

recognition. But, using these models for recognition will not create a robust detection system. For instance, 

in real situations, scenarios can be reordered subject to their dependencies. Using the generation model to 

detect a rearranged scenario in this case will result in a low detector score and probably a miss by the detector. 

Therefore, separating the detection framework from the simulation framework is critical in our modeling. 

Other reasons for choosing an SVM are its flexibility in incorporating multiple feature types, good detector 

performance, and a well-developed tool set.” 
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other parts of theMiddle East and North Africa, offer training grounds for terrorist 

organizations and their foot soldiers to acquire arms, weapon skills, and combat 

experience…..Transnational terror will likely plague the planet into the foreseeable 

future”. 

 

 

2.16  Recommendations 

  

Knoke (2015, p.9) believes that scholars in the interdisciplinary field of terrorism study 

too often trail behind event-driven trends in transnational terrorism. To get ahead of the 

curve, researchers must look beyond investigating recent incidents to understanding 

broader contexts and longer-range perspectives. He outlines some “key issues and 

opportunities for future network research” which include (extrapolated to include all covert 

or dark networks which have more or less similar orientations in so far as computational 

modeling is concerned): 

(1) Rigorous comparative analyses of “four historical waves of modern 

terrorism”16 for clues about the present and future waves. “Comparing each wave’s 

long-term network dynamics will yield important contrasts and insights into their 

similar and unique trajectories” (p.9).  

(2) “Build more comprehensive, cohesive, and integrated theoretical models 

capable of explaining the formation, structure, and consequences of terrorist 

networks. Analytic models of network dynamics must explicate the interpersonal 

processes by which people are recruited to clandestine organizations, trained in 

nefarious skills, allocated to organizational positions, and assigned roles in terror 

operations” (p.10). 

(3) Interdisciplinary research and close collaboration between experts in 

different domains are crucial. “Elements for building social network theories of 

covert networks should be drawn from diverse social science disciplines, 

                                                           
16 The four-wave theory of terrorism was proposed by Rapoport, (2001, 2015). These four waves comprise 

an anarchist wave, beginning in late-19th century following the repressive policies of the Russian tsarist 

system, followed by anti-colonialist, New Left, and the finally the contemporary jihadist wave. Each wave 

lasts for approximately a generation according to Rapoport. 
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encompassing psychological, sociology, geographic, political, economic, and related 

paradigms. Connecting these elements necessitates close collaborations among 

substantive experts” (p.9). 

(4) Data for computational intervention should be sourced from laboratory 

experiments rather than collecting inaccessible and dangerous field observation data. 

“Researchers will construct theoretically based models of interdependent terrorist 

and counterterror networks comprising both computer programs and human 

subjects” (p.9). 

(5) Develop new methods of measuring network relations among terrorists. 

Besides improving the accuracy of automated text analysis techniques, other data 

sources such as photographic, video, audio recordings, biometric authentication, 

face, and voice-recognition software should be adapted and integrated to generate a 

new relationship model. 

(6) “Create large, high-quality relational datasets to test social network theories 

of terrorism” (p.9). Sources should include secondary data from public documents, 

material from the Internet, and cyberspace, including communication networks 

linking thousands of crime and terrorism oriented websites. A caveat mentioned by 

Knoke (2015) is that“quality assurance will necessitate such automated routines be 

supplemented by painstaking hands-on correction of gaps and errors” (p.9). 

 

 

2.17 Special Features of SNA in Covert Networks 

 

A detailed description of covert social networks, their varied nomenclature, categories, and 

characteristics was made in the previous chapter. Covert networks are a unique subset of 

social networks, and such networks are by no means uniform, as we saw earlier. The study 

of social networks is drawn from a diverse variety of sociological fields such as friendships 

and conflicts, an example of which is the famous (and well-studied) Zachary’s Karate club 

(Zachary, 1977), the worldwide web, various social media, and instant messaging platforms 

on the internet like Facebook, Instagram, Twitter, mySpace, WhatsApp, Tumblr, etc., the 

comity of nations in a world grouping like NATO, SEATO, the United Nations, etc. 
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Included in this set are the terrorist, criminal, and hybrid terror-criminal networks. Social 

network analysis and the systematic study of social networks from mathematical and 

computational perspectives have been game-changers. Newer advances in mathematical 

modeling, improvements in computational abilities on a logarithmic scale in recent years, 

and the availability of more modern and more revolutionary algorithmic techniques like 

artificial intelligence and machine learning have leveraged social network analytic studies 

massively.  

 

Knoke (1993b) offers a broad insight into the advantages of a structured approach to social 

network analysis. In his words, “Network concepts and principles offer a perceptive 

theoretical framework to explain public policy phenomena. By gluing together, several 

levels of analysis—personal, organizational, systemic—the network approach gives a 

comprehensive account of political activity and its consequences that surpasses other more 

piecemeal explanations” (Knoke 1993b, p.164). Knoke (1993a) explains the importance of 

network analysis in current research on “community power structures and national political 

elites” which he expresses as increasingly incorporating social network concepts, 

principles, and methodologies and points to social network analysts using such techniques 

seek to uncover the various mechanisms underlying the “cleavages and coalitions among 

state managers, political parties, corporations, interest groups, social movements, mass 

publics, class segments, and other social formations.”The diverse array employed by 

researchers in the field include “combining reputational, positional, and decision-making 

measures, researchers delineate the networks of communication ties and resource 

exchanges, which shape collective actions that attempt to influence the outcomes of 

political controversies”(Knoke 1993b). 

 

As a particular subset of the studies on social networks, covert network studies derive many 

of their usual social network analytics methodologies. But, ordinary analytics are not trained 

to cope with covert networks' most important aspects: confinement of information, hiding 

of intent, and active deception. We may add encryption and covert channel communications 

to this list. Given this backdrop, computational studies have come up with a variety of 

methodologies to deal with it. All of them have many similarities with social network 
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analytics and also crucial differences. This chapter begins with the usual tools and 

techniques used to evaluate social networks and segues to the variations introduced to adapt 

to covert network studies. Many variants have much to do with coverts networks' main 

characteristics, i.e., size, incompleteness, dynamicity, and fuzzy boundaries. Other 

derivatives of these main properties, like core-periphery structures, pre-existing ties, 

sparsity, etc. are also touched. There is a section on the methodologies explicitly used for 

detecting the employees who had a role to play in the ENRON insider trading scandal. 

These studies on ENRON fall within the overall scope of covert network analysis. 

 

 

2.18 Sociological versus Computational Perspectives 

 

Before delving into discussions on social network analysis tools and covert network 

analysis, it’s worth reviewing some of the differences between sociological and 

computational aspects of social network analysis. Sociological studies of networks have 

long preceded the computational approaches to the subject. A significant constraint that 

hindered these studies was the lack of computational resources to account for large 

networks with hundreds of nodes. Consequently, early computational interventions 

centered around small-sized networks (Zachary’s Karate club network had only 34 nodes), 

and a few ventured into ones that were only slightly larger. With increasing computational 

power and complexity, however, the ability to deal with massive real-world networks with 

millions of nodes also evolved. Social network analytics have acquired remarkable 

sophistication and specificity (to the network being studied).  

 

Despite the recent explosion of interest in computer science, the subtlety and nuance 

associated with a sociological outlook of networks have yet to find an exact echo in the 

computational area. There is an undeniable dichotomy in social network studies when 

approached from computational and sociological perspectives. Both approaches typically 

converse past each other. The divergence is especially stark when individual node related 

differences are considered. Social network researchers rarely account for the possible effect 

of individual differences on network structure (Mehra et al. 2001). Researchers looking at 
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unique characteristics are often wedded to conceptualizations of individuals as independent 

entities rather than the relational approach of network analysis. For studies in covert 

networks, this divergence plays out as a contrast between research studies that focus on 

criminal behavior and studies that focus on criminal networks' motivations. Covert network 

analysis is distinctly different from the studies in the domain of conventional network 

analysis in that the focus is more on the concealment of activities by the actors and even the 

actual identities of the actors themselves, which may not be apparent immediately; these 

aspects need to be teased out during the analysis, which adds an extra layer of scrutiny, and 

this part of the analysis is a fraught one in most circumstances. 

 

Surprisingly, even within a purely sociological approach, social psychological and social 

network approaches manifest contrasting methodologies (Robins and Kashima 2008). For 

example, studies in social cognition relate to actions by the actors and individual 

perceptions, without an overarching idea of how such individual-level effects merge to form 

an entire social network system, which leads to a disproportionate focus on network 

topology to the neglect of node-based individual motivations. Such gaps have occupied the 

interest of social network theorists. (Emirbayer and Goodwin 1994). While recent research 

has bridged the deficit in many ways, there are indications that a fuller integration of 

individual node-based action within social structures will require considering both network 

and individual variables and their possible interaction. In examining several of these factors 

together, Copeland et al. (2008) concluded that an exclusive group psychological or 

network structural approach might not adequately explain organizational behavior. They 

argued for a more unified theoretical approach linking, in particular, identity and network 

perspectives, which is also what law enforcement agencies consider in investigations, and 

these agencies have intuitively accorded importance to co-offending17 entities or 

communities within networks. 

 

 

 

                                                           
17Co-offending networks are groups of offenders who plan covert acts together. More on this topic in chapter 

6. 
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2.19 Social Geometry in Social Networks 

  

The concept that all social networks have an underlying geometry that lends itself to 

systematic appraisal has been around since Moreno, the sociology journal founder in 

193718. Donald Black has enunciated the notion that social networks can be exploited for 

structure-based (and hence, mathematical and computational) analysis through his twin 

concepts of social space and social geometry (1976, 1998 & 2004) and its recent 

extrapolation to terrorist networks (2004).  

 

Black (2004, pp.15-16) States thus, “Pure sociology19 explains human behavior with its 

social geometry – its multi-dimensional location and direction in social space…Social space 

has various dimensions – horizontal (such as degrees of intimacy and integration): vertical 

(inequality): corporate (involvement of groups): cultural (language and religion): normative 

(social control)”. Black's model allows for the scrutiny of each variable by including 

multiple dimensions while holding others constant. That is, the theoretical propositions 

have under a condition of ceteris paribus20, a probabilistic approach characteristic of 

mathematics and computer science. Further, the inclusion of these dimensions (or vectors 

as they may be called in computer science parlance) within the same model allows for the 

possibility of both interaction effects of entities within the dimensions and correlations 

between them, with any one of them being used to explain any other. Such models lend 

themselves uses each of the measurements to explain variation in normative behavior, but 

relational or cultural behavior might also be jointly accountable by the other dimensions. A 

multi-dimensional sociological approach that breaks down a nuanced real-world structure 

into dimensions and variables allows easy mathematical interventions. Not surprisingly, 

increasing sophistication in networks' sociological modeling has rubbed off on 

mathematical and computational methodologies in recent times. 

                                                           
18There are examples of structural approaches to networks in sociology even prior to Moreno. For a more 

detailed history please refer to Freeman’s “Some Antecedents of Social Network Analysis” (1996). 
19 Pure sociology projects human behavior as social life—a concept that does not exist in the mind, is not 

explainable by the aims of actions. It is distinguished from other sociological models by what is absent from 

it: psychology, teleology, and even people as such. 
20Ceterisparibusis a Latin phrase meaning all other things being equalwhich is used for manipulating a single 

variable holding all other variables constant in a multi-variate system. 
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Another significant contribution of Black (2004) is his work on terrorist and criminal 

networks to which he extrapolates his constructs of social space and social geometry 

mentioned above. Violence, which may be considered as a logical outcome of a terrorist 

network, is described by him as an “unpredictable outburst or unexplainable explosion, but 

it arises with geometric precision…violence occurs when the social geometry of a conflict 

– the conflict structure is violent…..It is unpredictable and unexplainable only if we seek 

its origins in individuals' characteristics (such as their beliefs or frustrations) or the 

characteristics of societies, communities, or other collectivities (such as their cultural values 

or inequality). But violent individuals and violent collectivities do not exist: No individual 

or collectivity is violent in all settings. Neither individualistic nor collectivistic theories 

predict and explain precisely when and how violence occurs (see Black 1995: 852-58; 

2002d:1-3). Violence occurs when the social geometry of a conflict – the conflict 

structure – is violent. Every form of violence has its structure, whether a beating structure, 

dueling structure, lynching structure, feuding structure, genocide structure--or 

terrorism”(p.3). In other words, individuals and their behavior patterns don’t count in so far 

as network-based outcomes are concerned, and this is indeed a most interesting way of 

looking at network outputs since we have a theory that inextricably relates results (including 

illegal ones) to the structures that have produced them. The actors manning different 

perches within these structures do not count; preferably, when they are participants within 

the structure, the results will invariably be the ones the structure is built for.  

 

Adverse or illegal outcomes like terrorism or lynching are described as relational distance, 

inequality, and functional independence. All these entities are social distances21 (Senechal 

de La Roche 1996: p120), which we may interpret in graph-theoretic terms as edges or ties 

or multiples thereof, like geodesic distances between nodes or communities (shortest paths). 

Black (2004) builds upon this argument and articulates a mathematical (more or less) 

relationship between acts of terrorism and various social distance types: 

                                                           
21A social distance is defined by Black as a separation between social locations, such as wealth (economic 

distance); authority (hierarchical distance); integration (radial distance); culture (cultural distance); intimacy 

(relational distance); organization (organizational distance); and activities (functional distance). (Black 1976, 

2000:348, n.13) 
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“Terrorism crosses other social distances as well-other vertical distances (such as 

radial distance, a difference in social integration); organizational distance (a 

difference in the capacity for corporate action); and another kind of functional 

distance (a difference in social activity, such as modes of livelihood). In other words, 

pure terrorism strikes across very long distances and along diverse dimensions of 

social space-cultural, relational, economic, hierarchical, functional, etc. Accordingly: 

Pure terrorism arises intercollectively and upwardly across long distances in 

multidimensional social space. So travel the bullets, bombs, and other weapons of 

terrorists. And the greater the social distances, the greater their destructivity”(p.19). 

Sociological constructs of this nature paved the way towards constructing a 

mathematical model of covert networks that includes terrorist, criminal, clandestine 

networks of various types. 

 

Black(2004) argues that each form of social control has a corresponding social geometry. 

Suicide, gossip, avoidance, and all other forms of social control, including “terrorism” 

labeling, is isomorphic with its geometric configuration. The theoretical goal is to identify 

each behavior’s geometry. By doing so, we are stating the social conditions under which 

that behavior occurs. Afterward, the geometry can be subject to empirical testing to assess 

its validity. A recent application of social geometry concerns “terrorism labeling” of certain 

collective and violent actions (Boches 2020). Boches extends Black’s theory of behavior 

geometry by finding the behavior’s geographical location, direction, and distance along five 

dimensions of social space. The vertical dimension comprises wealth and its distribution; 

the horizontal dimension comprises intimacy, integration, and interdependence; the 

symbolic dimension comprises culture; the corporate dimension comprises organization, 

and the normative dimension comprises social control. Boches illustrates the concept of 

location and distance by citing an example of offending among modern street gangs: 

“This feuding occurs laterally across moderate distances in the horizontal dimension, 

at moderate elevations in the corporate dimension, and at a vertical location 

significantly below third-party settlement agents. If this geometry begins to change, 

the associated violence will also start to look different. For instance, holding all else 

constant, lowering the location of gang violence along the corporate dimension – in 
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other words, changing the disputants from moderately organized groups to 

individuals – decreases the probability that the violence will be reciprocal” (p.151). 

 

 

2.20 Importance of Structure in Evaluating Covert Networks 

 

Black’s enunciation of the structural underpinnings of network behavior initially made for 

his theory of law(1976), and later for terrorism (2004), was a benchmark for sociologists, 

who started employing the twin structural concepts of social geometry and social distance 

to explain different forms of violent (and covert) activities, including terrorism, lynching, 

rioting, vigilantism (Senechal de La Roche, 1996), genocide (Campbell, 2015), domestic 

violence(Tucker, 1999), while others analyzed the social control of specific behaviors such 

as suicide (Campbell and Manning, 2019; Tucker, 2015) and homicide (Cooney, 2009). and 

therapy(Tucker, 1999). 

 

My dissertation mirrors this approach to some extent because of the emphasis on network 

structures, particularly on actors or nodes. It has been a moot presumption that once an actor 

forms a relationship with another actor, the relationship's nature dictates the tie's outcome. 

If the relationship or tie has come about in a situation where both actors forming the tie are 

circumstanced to produce a particular type of output, say, opaque, and covert, the tie 

structure becomes defining for the future transaction outputs. So long as the tie exists, the 

nature of the outcomes will not vary by any great degree. It needs to be mentioned here that 

this dissertation does, to some extent, acknowledges a defining role to the actors. The 

dataset under study, i.e., the ENRON email set, has a few employees planning insider 

trading before its collapse. It’s entirely possible that if other employees had been transferred 

through some design to the posts held by those who were part of the conspiracy, the 

outcomes might have been different. 

 

The theory that covert structures, rather than individual actors, are responsible for covert 

outcomes finds an echo in the paper on conspiracy in the heavy electrical industry in the 
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United States by Baker and Faulkner (1994). The authors elegantly expressed the reasons 

why such conspiracies became pervasive in this industry:  

“Collusive agreements in the heavy electrical equipment industry go back to the 

1880s, but the price-fixing "schemes of the 1950s were given special impetus when 

repeated episodes of price warfare proved incompatible with top management 

demands for higher profits"(Scherer 1980, p. 170). Top executives imposed 

unrealistic profit objectives in an industry characterized by chronic overcapacity, 

increasing foreign competition, and stagnating demand (Ohio Valley 1965, p. 939). 

To cope, managers decided to conspire rather than compete. Their elaborate 

conspiracy involved as many as 40 manufacturers and included more than 20 product 

lines, with total annual sales over $2 billion. The conspiracy was pervasive and long-

lasting; it became, insiders said, a"way of life" (U.S. Senate Committee on the 

judiciary 1961, pp. 16879-84 [henceforwardKefauver Committee])”.   

 

I highlighted the phrase “way of life” in the specific context of structures within networks 

that have evolved in the face of particular circumstances and practices to possess a life of 

their own. It is trivial to conclude from the observations of Baker and Faulkner (1994) that 

any player that entered the heavy electrical industry in the specific role of a vendor was 

prone to this sort of covert activity propelled by its participation in the network structure 

which had already evolved through decades of reactions to the existing practices. This 

detailed analysis of the concept of social spaces and geometry serves to underpin the 

importance of placing our focus on the structures, and especially, the ties between actors 

rather than on the actors themselves when studying covert networks, my approach, 

therefore, runs counts to most computational analyses in social network research. 

  

 

2.21 Causal Modelling of Network Structures 

 

The models presented by Black (2004) and Baker and Faulkner (1994) above point to the 

evolution of structures within networks around an environment that prevails for some length 

of time. Such structures have a personality of their own and influence the course of the 
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outcomes substantially to the extent of subsuming the roles of actors populating these 

structures' vertices, which is true for all networks. This is even more true for structures that 

generate violence (and by extension covertness, as there can be no pre-planning of violence 

without accompanying secrecy). Thus, there is pressing need to identify structures that 

produce covert results, whether they are networks as a whole or sub-structures within the 

network. And as such structures arise in response to external variables, there is also a need 

to carefully observe which factors can generate such structures and if these factors are 

prevailing in the context of the network’s functioning. A multi-modeling approach can be 

envisaged in these circumstances, where each model will be the product of slight variations 

in the causal factors. These models may then be compared to the structures being studied to 

ascertain how closely they fit. The closest fit may then be considered for predicting the 

outcome of the structure in question. There are many popular mathematical methods for 

comparing models and their outputs; models in this regard may be both deterministic or 

stochastic. (For an excellent introduction to the topic of mathematical modeling, please refer 

to https://people.maths.bris.ac.uk/~madjl/course_text.pdf. ) 

 

Thus, the focus shifts from the shape of the structures understudy to the input variables that 

molded their morphologies in the first place; in other words, a causal analytic approach. 

There are many instances of causal analyses in the sociological literature. One of the more 

popular ones proposed by Ross (1993) about terror networks; this study is a generic one 

and can safely extrapolate to fit other types of clandestine networks. Typical structures like 

core-periphery, poly-centricity, centralization, sparseness, homophily, microstructures, etc. 

in covert networks have been discussed in the previous chapter. There is variance even 

among these specialized structures exclusive to covert networks, depending on the nature 

of their covert behavior, i.e., terrorist or criminal or counterintelligence. Identifying the 

external factors that lead to the development of these typical structures' requires close study. 

Such studies may be termed as the causal methodology, which focuses on the prevalent 

environmental variables that result in structures that have covert outputs.  

 

Ross (1993) studied the causes of terrorism and stressed the structural factors that cause this 

phenomenon to arise. He describes his reasons thus – “Specifically, there is some dispute 

https://people.maths.bris.ac.uk/~madjl/course_text.pdf
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over which method is the best way to understand the causes of terrorism, the quality of the 

analyzes, and the hidden agendas of causation studies. Moreover, none of the causes 

identified are mutually exclusive; all approaches to studying the causes of terrorism borrow 

concepts from each other. For example, analyzes of specific causes often derive their 

processes from case studies. Case studies use concepts found in studies of specific causes 

and attempt to develop comprehensive theories to develop their postulates from case studies 

and analyze individual causes. Thus, over the years, several causes for the occurrence of 

terrorism have been presented. This literature's most prominent causes fall into three 

categories: structural, psychological, and rational choice. In general, structural theories 

posit that terrorism can be found in the environment and a society's political, cultural, social, 

and economic structure. Psychological theories try to explain why individuals join terrorist 

organizations, terrorist group dynamics; and, how participants (i.e., terrorists, victims, and 

audiences) affect the commission of terrorist acts. Finally, rational choice theories attempt 

to explain participation in terrorist organizations and the choice of terrorist actions due to 

the participants' cost-benefit calculations. Of the three, the structural causes are the easiest 

to test but have rarely been integrated into a comprehensive causal model that would serve 

as the foundation for testing” (Ross 1993, pp.317-318). 

 

Ross defines his aim to construct what he terms as a tentative model of the structural causes 

of terrorism to help researchers develop and test the relative importance of previously 

identified causes and their interactions to determine the scope, intensity, and amount of 

terrorism. He further defines his motivations to create a test-model that would act as a 

benchmark for other researchers. This model will allow researchers just to observe if the 

outcomes are along predicted lines. He states, “A causal model using the structural variables 

of terrorism would specify the dominant processes by which this form of political behavior 

occurs. This model does not preclude the possibility that psychological and rational choice 

theories could not adequately explain the final decision that individual terrorists or groups 

make to engage in terrorism. It is only a practical research strategy”. (Ross, 1993, p.318). 

This model is a development on the one suggested by Hopple (1982), who indicated that a 

causal model of terrorism should be created and prescribed which type of variables may be 

included and theorized that a feasible first iteration of the model of terrorism would have 
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two independent variables, internal (intra-societal) and external (interstate and systemic); 

and one dependent variable, transnational terrorism. Hopple argued for restricting the model 

to one of the categories of terrorism then recognized by researchers. 

 

Ross (1993) opines that the structural causes are ideal starting points for a model of the kind 

recommended by Hopple because structural variables are easier to actuate and measure than 

psychological or rational choice variables, which are abstract and do not lend themselves 

easily to mathematical articulation. Further, Ross (1993) thinks that the accuracy of such a 

causal model's predictive capability is directly proportional to the specificity of the variables 

and their interactions that cause terrorism. He also hypothesizes that the higher the number 

and intensity of structural causes of terrorism (the independent variables), the higher the 

number of terrorist acts perpetrated by any particular terrorist or terrorist organization (the 

dependent variable). In his words, “If these variables are causally related, then the 

systematic elimination or lessening of them should lead to a decrease in terrorism. 

Knowledge of this kind would be useful to actors involved in counterterrorism measures” 

(Ross 1993, p.318). 
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In simple terms, the study of causality leads to a better understanding of covert structures, 

leading to better outcomes prediction. Ross’ causal model of terrorism is represented in 

Figure 2.4 (Ross 1993, p.321). In his model, Geographical Location, Type of Political 

System, and Level of Modernization are the permissive reasons for terrorism. The 

remaining cause, i.e., Social, Cultural, and Historical Facilitation, Organizational Split and 

Development, Presence of Other Forms of Unrest, Support, Counterterrorist Organization 

Failure, Availability of Weapons and Explosives, and Grievances are the precipitant causes. 

This modeling exercise can be generalized for any network structure, as Figure 2.5 shows: 

 

Figure 2.4 
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2.22 Domains, Action Sets, and Opposition Networks 

 

Many of the social networks' outcomes are related to groups or communities within the 

networks themselves, which is true of both bright and dark networks without exception. As 

discussed extensively earlier, the structures within networks arise from environmental 

variables, both external and internal. Once formed, these structures tend to be more or less 

static as far as their outputs are concerned. The presence of groups or communities within 

networks is similar to policy domains and action sets in groups of organizations in a 

particular field (political, social, business, etc.).  A policy domain is a component of the 

political system organized around substantive issues (Burstein 1991, p.327).  Burstein 

(1991) defines policy domains in three sets of characteristics-substantive or functional, 

2.5 
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organizational, and cultural. Substantive issues that define an environment are seen as 

sharing inherent substantive factors which arguably have a certain logic and coherence and 

which influence how they are framed and dealt with; for instance, fields such as energy, 

health, transportation, or agriculture, for example, and most specific issues qualify in this 

definition of a domain. Organizational characteristics define policy domains assets of 

organizations concerned about substantive problems, which take each other into account as 

they formulate policy options and work for their adoption. This sociological analysis places 

less emphasis on the qualities innate to policy domains. Instead, domains are seen as 

primarily constructed socially by those active in politics (Laumann & Knoke 1987). A third 

way of characterizing domains is through cultural constructs around which organizations 

and individuals orient their actions. The cultural basis of policy domains determines which 

policy options the domains adopt and which other organizations to deal with. Cultural 

constructs are strongly influenced by cultural theories about how society works. Domains 

are significant to the analysis of social networks from the perspective of communities and 

cliques that are inevitable parts of networks and are also instrumental in the networks' 

evolution, predicting their outcomes, etc. The use of domain analysis in covert networks is 

especially crucial given their tendency of sub-centrality and poly-centricity to attempt to 

disrupt their functions by law enforcement and other legal agencies. Domains are also 

crucial from an inter-organizational point of view in as much as they determine how 

networks interact amongst themselves. 

 

In their study of conspiracies, Baker and Faulkner (1994, p.8) described the interaction of 

criminal inter-organizational networks in price-fixing cartels in the US heavy electrical 

industry as organizational action sets. The concept of action sets was introduced in Chapter 

1. This concept deserves a revisit, given its importance in comprehending how covert 

communities are generated and how they evolve during the network’s evolution. Action 

sets may be defined in the context of the policy domain, the basic unit in organizational 

state analysis, defined as any part of the system whose constituents are identified "by 

specifying a substantively defined criterion of mutual relevance or common orientation ... 

concerned with formulating, advocating, and selecting courses of action" (Knoke and 

Laumann 1982, p. 256).  
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A policy domain's members comprise organizations and events whose interests and actions 

must be taken into account by other members. According to Knoke and Pappi (1991): 

“Every domain encompasses a diversity of controversial policy matters, interest 

groups, and public authorities, each seeking to influence the ultimate decisions about 

matters of importance to them and their constituencies…each policy domain also 

develops a logically coherent substantive or functional basis for framing its policies 

and that its participants usually construct a common culture about how society works 

or should work” (p.510).  

 

Domains are seldom permanent, and their participants may choose different domains 

depending on the issues involved and how important these issues are the participants. 

Domains are thus decided by the problems and less by participation. Knoke and Pappi 

(1991) go on to say:  

“the fluid nature of the national policy domain fights is captured by four nested 

analytic concepts: the event public, the collective actor, the action set, and the 

opposition network. These constructs rely heavily on network principles in which the 

basic elements are actors linked by exchange ties of specific forms and content. An 

event public consists of all domain organizations that express interest in a particular 

policy event, regardless of which outcomes they prefer. (Some members may have 

no preferred outcome.).  A collective actor22 consists of three or more formal 

organizations within an event public that communicate about policy matters and that 

favor the same outcome. An action set, which is even more restricted, consists of 

those collective actor organizations that consciously coordinate activities on a 

particular event. Group cohesion is the essential feature of an action set: All members 

prefer the same outcome for the event, are directly or indirectly linked in a 

communication network, and collaborate in lobbying and other activities to influence 

policy…an opposition network is the pattern of overlapping memberships among the 

                                                           
22 Collective Actor is a concept introduced by Laumann and Marsden (1979) who proposed it as an alternative 

to the existing political theories and to provide a theoretical rationale for characterizing oppositional 

structures in political elites. The concept of a collective actor is treated in their paper as an elementary 

analytic unit in the study of conflict structures in elite systems.  
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collective actors or action sets that form around a set of policy events within a specific 

domain during some period. The structure of a domain's opposition network is a 

function of the degree to which its collective actors' or action sets' members 

coincide”.(p.510) 

 

To recap, domains, actions sets, and identify community groups in covert networks or 

covert communities within networks that are open but susceptible to the budding of 

conspiracy sub-networks within their architecture (The ENRON dataset under study is an 

excellent example of this). Of particular interest are the concept of action sets described as 

assemblages of organizations brought together to carry out specific activities and consist of 

the same participant actors across events. Such sets tend to be short-lived or long-lived, 

depending on how durable their common aims are in different domains and events (Aldrich 

1979; Knoke and Pappi, 1991; Knoke and Burleigh 1989). That many of these action sets 

tend to dissipate after success or failure is a construct which has a lot of similarity to 

collusive(please see ibid p.234 for a detailed discussion on collusion) communities with 

common intentions(please see ibid p.248 for a specific definition of common intention) and 

objectives in a covert network and contributes significantly to the study of community 

evolution(Spiliopoulou and Aggarwal 2011) as opposed to the evolution of the networks as 

a whole.  

 

 

2.23 Structure and Topology of Social Networks  

   

The most basic and atomic unit that can be identified in a network is the node or actor. In 

the definition provided by Knoke and Yang (2008): 

“Actors may be individual natural persons or collectives, such as informal groups and 

formal organizations. Common examples of individual actors include children on a 

playground, high school students, employees in a corporate work team, a nursing home 

staff, and terrorists operating in a covert cell. Collective actors might be firms competing 

in an industry, voluntary associations raising funds for charities, political parties holding 

seats in a parliament, or nations signing a military alliance. Sometimes network actors 
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encompass mixed types, such as an organizational field comprising the suppliers, 

producers, customers, and government regulators of health care. (pp.6-7)” The 

counterpart of an actor in graph theory is a node or vertex. 

 

A network is defined by the relation/link between the nodes in it, as given in the examples 

above. There can be particular relations between a single set of nodes in a network. For 

instance, in a product network, the connection could be based on "similarity" or "brought 

together" in a product set. Similarly, there can be unique/distinct relations between multiple 

groups of nodes, such as user-product networks. These types of networks are heterogeneous 

networks. When the network comprises two sets of nodes, it is called a two-mode network. 

Some examples of two-mode networks include user-product networks (Amazon, eBay, 

etc.), membership or affiliation networks (actor-movies (IMDB), user-group (YouTube), 

user-channel (YouTube), user-project (GitHub), user-organization, etc.), user-preference 

networks (Pinterest, Instagram, Twitter), citation networks, user-stock investment. These 

two-mode networks can be transformed into single-mode networks between a single set of 

nodes as in the examples given above and then analyzed. However, two-mode networks can 

also be analyzed using the methods of Borgatti and Everett (1997) and Latapy et al. (2008).  

 

Apart from social networks, numerous data networks are also formed between objects other 

than social entities, like sensors, products, words/texts, brain neurons, proteins, genes, 

geographical locations, predators and preys, webpages, etc. Though the social network 

analysis measures were primarily designed to analyze social networks, they can also be 

employed to analyze data networks like these. Common tasks of SNA involve the 

identification of the most influential, prestigious, or central actors, using statistical 

measures; detection of hubs and authorities, using link analysis algorithms; discovery of 

communities, using community detection techniques, and understanding of how 

information propagates in the network, using diffusion algorithms. These tasks are 

instrumental in extracting knowledge from networks and, consequently, in the process of 

problem-solving. Due to such tasks' appealing nature and the high potential opened by such 

types of analyses, social network analytics has become a popular approach in a wide range 

of fields, from biology to business. For instance, some companies use social network 
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analysis to maximize their products' positive word-of-mouth by targeting the customers 

with higher network value (those with greater influence and support) (Domingos and 

Richardson, 2001; Richardson and Domingos, 2002; 3 Leskovec et al., 2007). According 

to these profiles, other companies, such as those operating in the mobile 

telecommunications sector, apply social network analytic techniques to their call center 

networks and use them to identify customers” profiles and recommend personalized mobile 

phone tariffs. These companies also use network analytics to churn out predictions, e.g., to 

detect customers who may switch to another mobile operator by detecting changes in phone 

contacts (Dasgupta et al., 2008; Wei and Chiu, 2002).  

 

Another interesting application emerges from the domain of fraud detection. For instance, 

social network analysis can be applied to organizational communications (e.g., Enron 

company dataset) to analyze the frequency and direction of formal/informal email 

communication, revealing communication patterns among employees and managers. These 

patterns can help identify people engaged in fraudulent activities, thus promoting more 

efficient forms of acting towards eradicating crime (Xu and Chen, 2005; Shetty and Adibi, 

2004). 

 

Although the origins of network studies go back several decades, recent years have 

witnessed impressive advances in network-related fields, mainly due to the growing interest 

in social networks (Wasserman and Faust, 1994; Abraham et al., 2009; Charu  Aggarwal, 

2011; Furht, 2010; Zafarani et al., 2014; Barabási, 2016; Aggarwal, 2009). Social networks 

have thus become a hot topic and a focus of considerable academic attention. Increasing the 

use of mathematical devices and algorithmic interventions has widenedSNA techniques' 

potential for studying several categories of problems. My research aims to provide a general 

and concise overview of the essentials of SNA to lay down the basis of the approach 

developed in the course of this study. 

 

To conclude about the nature of the Network, there are several ways. Social network 

analysis can be described as a tiered structure, starting with node or vertex level properties 

and progressing to characteristics that define the entire network. Robins (2009) described 
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social networks' analysis as a multi-tier mechanism, reflected in Figure 2.6below. Although 

many levels are shown in a hierarchical (pyramidal) manner, each level's properties are not 

necessarily limited to that level and may be applicable across the tiers. Each of the 

properties can be dynamically linked to any other, cutting across the levels depicted in 

Figure 2.6.  

 

The results of these interactions can be complex and may lead to potentially new constructs 

that can then be plowed back into the model or simulation. Different combinations of 

variables and parameters can also be made by allotting differing weights to each factor, 

according to need. This simulation's overarching impression is that it is flexible and 

dynamic and may be applicable across domains and from longitudinal and non-longitudinal 

(time-based or otherwise) perspectives. Within such a multilevel and multi-dynamic 

network ecosystem, the network perspective comes into its own. At this point, researchers, 

analysts, simulators, and investigators need to bear in mind the possibilities of designing 

their research. Covert networks tend to be highly dynamic and reactive to external stimuli, 

and this approach may be considered ideal in modeling these networks. 
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Based on the figure above, of the five levels, the first relates explicitly to individual factors 

that are not conceptually related to network constructs. In contrast, the remaining four are 

different relational effects levels, from the dyadic to the global. Robins (2009) considers 

how some of these individual and relational factors may interact with each other. The 

interplay of these constructs approximates a sociological model translated into a more 

mathematical one, i.e., the abstract dynamics of a social network decompose into 

measurable parts. 

 

 

2.24 Mathematical Representation of Social Networks 

 

In computational terms, a social network consists of a finite set of vertices and the relations, 

or ties, defined on them (Wasserman and Faust, 1994). The established relationships can 

2.6 
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be personal or professional, ranging from casual acquaintance to close familial bonds. 

Besides social relations, links can also represent the flow of information/goods/money, 

interactions, and similarities. Graphs usually represent the structure of such networks. 

Therefore, networks are often regarded as equivalent to graphs. A graph is composed of 

two fundamental units: vertices and edges. A pair of vertices define every edge, also called 

its endpoints. According to the application field, vertices can represent various individual 

entities (e.g., people, organizations, countries, papers, products, plants, and animals). In 

turn, an edge is a line that connects two vertices. It can, analogously, represent numerous 

kinds of relationships between individual entities (e.g., communication, cooperation, 

friendship, kinship, acquaintances, and trade). Edges may be directed or undirected, 

depending on if the nature of the relation is asymmetric or symmetric.  

 

Formally, a graph G consists of a non-empty set V  of vertices and a set E of edges, being 

defined as G = (V, E). According to Diestel (1990), the order of a graph G is given by the 

total number of vertices n or, mathematically, |V | = n. Analogously, the graph G'’s size is 

the total number of edges |E | = m. The maximum number of edges in an undirected graph 

is n(n−1), and for undirected graphs, the figure isn(n − 1)/2.  

 

In the existing literature, two main types of data structures are used to represent graphs: 

list structures and matrix structures. These structures are appropriate for storing graphs in 

computers to analyze them further using automatic tools. List structures, such as incidence 

lists and adjacency lists, are suitable for storing sparse graphs since they reduce the 

required storage space. Matrix structures are used to represent full matrices. They include 

incidence matrices, adjacency matrices (also termed sociomatrices or sociograms), 

Laplacian matrices (which contain both adjacency and degree information), and distance 

matrices (i.e., adjacency matrices whose entries are the lengths of the shortest paths 

between pairs of nodes).  

 

Several types of graphs can be used to model different kinds of social networks. For 

instance, graphs can be classified according to the direction of their links, which leads us 

to the differentiation between undirected and directed graphs. Undirected graphs (or 
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undirected networks) are graphs whose edges connect unordered pairs of vertices. In other 

words, each edge of the graph connects concomitantly two vertices.  

 

A stricter type of graph is the so-called directed graph (or directed network). Directed 

graphs, sometimes referred to as di-graphs, can be straightforwardly defined as graphs 

whose edges (also called arcs or ties)have an orientation assigned, so the order of the 

vertices they link matters. Formally, in a directed graph, if E12 is an arc and v1 and v2 are 

vertices such that e12 = (v1, v2), then e12 is said to join v1 to v2. As the first vertex,v1is 

called the initial vertex or tail, and the second vertex v2is called the terminal vertex or 

simply head. Graphically, directed edges are depicted by arrows, indicating the direction 

of the linkage. Directed graphs can be either cyclic, i.e., graphs containing closed loops of 

edges or ring structures, or acyclic (e.g., trees).  

 

The second significant type is undirected graphs. A typical example is Facebook, since, in 

this social network, the established friendship tie is mutual or reciprocal (e.g., if someone 

accepts a friend request from a given person), it is implicitly assumed that s/he and the 

other person are friends). By contrast, Twitter is an example of a directed graph since 

others can follow a person without necessarily following them. In this case, the tie between 

a pair of individuals is directed, with the tail being the follower and the head being 

followed, meaning that a one-way relationship is established. 

 

Edges joining nodes can also be assigned weights or values depending on what such 

weights may represent (e.g., number of emails exchanged in a mailing network). Such 

networks are called weighted networks or graphs. Unless explicitly stated, graphs are 

considered unweighted, i.e., all existing edges are assigned a value of 1. Unweighted 

graphs are binary since edges are either present or absent (edges have 0). On the other 

hand, weighted graphs are richer graphs since each edge has associated a weight providing 

the user with more information about the social network, such as the strength of the 

connection of the pair of vertices it joins.  
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According to Granovetter (1973, 1995), in social networks, the weight of a tie is generally 

a function of duration, emotional intensity, frequency of interaction, intimacy, and services 

exchange. Therefore, strong ties usually represent close friends, and weak ties represent 

acquaintances. In other kinds of networks, the meaning of a tie's weight can vary, 

depending on the context; for instance, a tie can define the number of seats among airports, 

the number of exchanged products, etc. For undirected and unweighted graphs, adjacency 

matrices are necessarily binary (as a consequence of being unweighted) and symmetric (as 

a consequence of being undirected, meaning that eij = eji), with eij = 1 representing the 

presence of an edge between vertices i and j, and eij = 0 representing the absence of an 

edge between vertex pair (i, j). For directed and weighted graphs, such matrices' entries 

take values from interval [0, max(w)] and are non-symmetric. In both cases, the matrix 

has non-negative values. Figure 2.7 below illustrates how a graph can be represented by 

both an edge list and an adjacency matrix. 

 

 
 

 

2.25 Statistical Measures in a Social Network 

 

As has been described, social networks are graph-like structures with nodes (or vertices) 

and an edge connecting them. Nodes and edges are the basic building blocks of the entire 

network. At the secondary level, we have two nodes and the edge connecting them, called 

2.7 
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dyads. At a slightly higher level, we have three nodes forming a triangular relationship 

called a triad. Higher-level structures are also discernible in networks, such as quartets or 

rectangles, cliques (completely interconnected nodes), trees, communities, etc. Many 

measures have been developed for evaluating the relationships within higher structures and 

measuring their homogeneity and uniformity. This section introduces some of the 

statistical measures that my work uses to assess network structures. The measures can be 

divided according to the level of analysis: node-level or network-level. At the node level, 

centrality measures provide information about a node or vertex’s position within the 

network’s overall structure and identify its key players. Network-level measures provide 

more compact information and assess the network’s overall structure, giving insights into 

the essential properties underlying the social phenomena. 

 

2.25.1 Node-level Statistical Measures 

 

Studying how individuals interact in the network context helps understand the overall 

behavior of the social systems that generated those networks, which is usually the final 

goal of such analysis. Centrality is a general measure of how important an actor or node's 

position is within the social network's overall structure. Prestige, a closely synonymous 

term used in the sociological literature, adds dimension to this notion, referring to the 

“extent to which a social actor in a network “receives” or “serves as the object” of relations 

sent by others in the network. The sender-receiver or source-target distinction strongly 

emphasizes inequalities in control over resources, as well as authority and deference 

accompanying such inequalities” (Knoke and Song, 2008, p69). 

 

Centrality can be computed using several metrics; the most widely of which are degree, 

betweenness, closeness, and eigenvector centrality. The first three were proposed by 

Freeman (1978) in a groundbreaking approach towards social network analysis. These 

were initially designed for unweighted networks. Recently, Brin and Page (2012) came up 

with extensions to weighted networks. The fourth metric - eigenvector centrality - was 

later proposed by Bonacich (1987) and had its foundations in spectral graph theory. It 

became wildly popular after being used as the basis of the well-known Google’s PageRank 
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algorithm. These measures determine the relative importance of a node within the network, 

showing how the relationships are concentrated in a few individuals and, therefore, giving 

an idea about their social power. Higher centrality values measures are associated with 

powerful actors in the network since their central position offers them several advantages, 

such as easier and quicker access to other actors in the network (useful for accessing 

resources such as information) and the ability to exert control over the flow between the 

different actors (Freeman, 1978). These central actors are also called "focal points" by 

Freeman. Many of these node-level metrics (e.g., degree, betweenness, and closeness) are 

normalized in some manner to perform comparisons of networks with different orders and 

sizes. These metrics have been normalized in this study, as well. 

 

2.25.1.1 Degree Centrality 

 

The degree centrality or valency of a node v, usually denoted as kv, is a measure of the 

immediate adjacency and involvement of the node in the network and is computed as the 

number of edges incident on a given node or, similarly, as the number of neighbors of node 

v. The neighborhood Nv is thus defined by the set of nodes that are directly connected to 

v. The degree can be computed in at least two different ways: one, based on the adjacency 

matrix and the second, based on the neighborhood of a node. The equations below present 

each of these alternatives for undirected networks. 

 

𝒌𝒊 =  ∑ 𝒂𝒊𝒋            𝟎 < 𝒌𝒊 < 𝑛

𝒏

𝒋=𝟏

 

 

where aij is the entry of the i-th row and j-th column of the adjacency matrix 
 

𝒌𝒗 = |𝑵𝒗|         𝟎 < 𝒌𝒗 < 𝑛 
 

Where |Nv| is the neighborhood of node v. Despite its simplicity, the degree is an effective 

measure to assess the importance and influence of an actor in a social network. Yet, it has 

some limitations. The main one is that it does not take into consideration the global 

structure of the network.  
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In weighted networks, strength is the equivalent of degree and is computed as the sum of 

the weights of the edges adjacent to a given node, as expressed by the next equation. 

 

𝒌𝒊
𝒘 =  ∑ 𝒂𝒋𝒊

𝒘

𝒏

𝒋=𝟏

 

 

 

There have been significant research efforts in studying the degree distribution of several 

networks, making it possible to classify a network based on this distribution. For instance, 

Barabási and Albert (1999) and Barabási and Bonabeau (2003) observed that most real 

networks follow a power-law or Pareto distribution23. The networks possessing this 

quality are known as scale-free24, an expression coined by the same researchers (i.e., 

Barabasi and Bonabeau in their landmark 1999 paper). Other common functional forms 

are exponential (e.g., railways and power grids networks) and power-laws with exponential 

cut-offs (e.g., networks of movie actors and some collaboration networks).  

 

 

2.25.1.2 Betweenness Centrality 

 

Node betweenness b measures how closely a node lies between other nodes in the network 

and can be computed as the percentage of shortest paths that pass through the node. The 

formula is presented in the equation below. Nodes with high betweenness occupy critical 

roles in the network structure. They usually have a network position that allows them to 

work as an interface between tightly-knit groups, being vital elements in the connection 

between different network regions. From the social networks perspective, “interactions 

between two nonadjacent actors might depend on other actors in the set of actors, 

especially the actors who lie on the paths between the two” (Wasserman and Faust, 1994) 

                                                           
23Power law distributions describe those networks where the distribution of the degree of the nodes or 

vertices is highly skewedto the right with a large majority of vertices having a low degree and a small number 

having a high degree. 
 

24Scale-free networks are those follow network whose degree distribution follows a power law, at least 

asymptotically. That is, the fraction P(k) of nodes in the network having k connections to other nodes goes 

for large values of k as P(k) = k-γ, where  γ is a parameter whose value varies between 2 and 3 typically, there 

might be exceptions though. 

https://en.wikipedia.org/wiki/Complex_network
https://en.wikipedia.org/wiki/Degree_distribution
https://en.wikipedia.org/wiki/Power_law
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stresses the importance of the fair value of betweenness. These actors are also called 

gatekeepers since they tend to control the flow of information between communities: 

 

𝒃𝒗 =  ∑
𝝈𝒔𝒕(𝒗)

𝝈𝒔𝒕
𝒔,𝒕∈𝑽(𝑮)\𝒗

  , 

 

 

where σst denotes the number of shortest paths between vertices s and t (usually σst = 1) 

and σst (v) expresses the number of shortest paths passing through node v. This quantity 

can also be computed for edges. The betweenness of an edge is commonly defined as the 

number of shortest paths between nodes that run along a given edge of the network. It is 

quite useful in social network analysis since it allows discovering bridges and local 

bridges, which are, by definition, edges with high betweenness. In the context of social 

network analysis, bridges are connections outside an individual’s circle of acquaintances. 

These connections are of great interest to individuals seeking to access new information 

and resources since they ease information diffusion across entire communities (Kossinets 

and Watts, 2006). However, situations like these are relatively rare in real-world scenarios. 

Even if they happen, the advantages they confer are usually temporary due to such edges' 

temporal instability. A more common and realistic situation is local bridges. The following 

equation indicates how this measure can be computed: 

 

𝒃𝒆 =  ∑
𝝈𝒖𝒗(𝒆)

𝝈𝒖𝒗
  ,

𝒖,𝒗∈𝑽(𝑮)

 

 

 

where σuv(e) is the number of shortest paths passing through edge e, and the sum indicates 

that this fraction needs to be computed for every pair of nodes u and v in the network. 
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2.25.1.3 Closeness Centrality 

 

Closeness centrality Cv is a rough measure of a node or vertex's overall position in the 

network, giving an idea about how long it will take to reach other nodes from a given 

starting node. Formally, it is the mean length of all shortest paths from one node to all 

other network nodes. Due to its definition, this measure is usually only computed for nodes 

within the network's largest component, using the equation presented in the equation 

below. In the social network context, closeness is a measure of reachability that measures 

how fast a given actor can reach everyone in the network. 

 

𝑪𝒗 =  
𝒏 − 𝟏

∑ 𝒅(𝒖, 𝒗)𝒖 ∈𝑽(𝑮)\𝒗
  , 

 

where n is the number of nodes within the network, (u,v) is a dyad or a pair of nodes whose 

centrality is being measured, and d is the path between nodes u and v. 

 

2.25.1.4 Eigenvalue Centrality 

 

This metric is based on the assignment of a relative score to each node and measures how 

well a given node is connected to other well-connected nodes. This score is provided by 

the first eigenvector of the adjacency matrix. The basic idea behind eigenvector centrality 

is that an actor's power and status are recursively defined by the power and quality of 

his/her alters. Alters is a term frequently used in the selfish approach of social networks 

analysis. It refers to the nodes (or actors in sociological terminology) directly connected to 

a specific node or actor, called the ego (the node in focus). In other words, the eigenvector 

centrality of a given node i is proportional to the sum of i’s neighbors' centralities, and this 

is the assumption behind the eigenvector centrality formula, which is as follows: 

 

𝒙𝒊 =  
𝟏

𝝀 
∑ 𝒂𝒊𝒋𝒙𝒋

𝒏

𝒋=𝟏

 

 



 

100 

 

Where xi /xj denotes the centrality of node i /j, aij represents an entry of the adjacency 

matrix A ((aij) = 1, if nodes an edge connects i and j and (aij) = 0 if there is no connection) 

and λ denotes the largest eigenvalue of A. Eigenvector centrality is a more elaborate 

version of degree centrality, with the difference being that it assumes that not all 

connections have the same importance by taking into account not only the quantity but 

especially the quality of these connections. 

 

In theory, eigenvector centrality can be calculated for either undirected or directed 

networks. It works best, however, for the undirected case. In the directed case, other 

complications arise. First of all, a directed network has an adjacency matrix that is, in 

general, asymmetric. This means that it has two sets of eigenvectors, the left eigenvectors, 

the right eigenvectors, and two leading eigenvectors. So which of the two should be used 

to define the centrality? 

 

In most cases, the correct answer is to use the right eigenvector. The reason is that centrality 

in directed networks is usually bestowed by other nodes pointing towards the node in 

focus, rather than by that node pointing to other nodes. For instance, on the World Wide 

Web, the number and stature of web pages that point to a page can give a reasonable 

indication of how significant or useful the page is. 

 

While the fact that the page might point to other 

important pages is of no significance, anyone can 

set up a page that points to a thousand others, but 

that does not make the page meaningful. Similar 

considerations also apply to citation networks and 

other-directed networks. Thus, the correct 

definition of eigenvector centrality for a vertex i 

in a directed network makes it proportional to the 

vertices' centralities that point to i, making eigenvector centrality of little use in undirected 

networks, such as the one this paper has focused on. 

 

Figure 2.8 
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However, there are still problems with eigenvector centrality on directed networks. 

Consider Figure 2.8; Vertex A in this figure is connected to the rest of the network but has 

only outgoing edges and no incoming ones. Such a vertex will always have eigenvector 

centrality zero because there are no terms in the sum in the eigenvector equation above, 

which might not seem to be a problem: perhaps a vertex that no one points to should have 

centrality zero. Consider vertex B, which has one ingoing edge, but that edge originates at 

vertex A. Hence, B also has centrality zero because the one term in its sum in the above 

equation is zero. Taking this argument further, we see that a vertex may be pointed to by 

others that are pointed to by many more vertices, and so on through many layers. If the 

progression ends up at a vertex or vertices with in-degree zero, it is all for nothing—the 

final value of the centrality will still be zero. In mathematical terms, only vertices that are 

in a strongly connected component of two or more vertices, or the outgoing portion of such 

a component, can have non-zero eigenvector centrality. 

 

Nevertheless, it is appropriate for vertices with high in-degree to have high centrality in 

many cases, even if they are not in a strongly connected component or out-component. 

Web pages with many links, for instance, can reasonably be considered important even if 

they are not in a strongly connected component. Sinceacyclic networks, such as citation 

networks, have no strongly connected components of more than one node, all nodes will 

have centrality zero. This fact renders the standard eigenvector centrality completely 

useless for acyclic networks. 

 

2.25.1.5 Other Centrality Measures/Katz Centrality 

  

In addition to the four most popular centrality measures, various others have been 

proposed, and indeed, many variations of the four measures above exist. One is a possible 

solution to the eigenvalue problem, which is allotting some centrality to each node 

regardless of its relative importance within the network. By this device, even nodes or 

vertices with zero in-degrees manage to have some residual centrality. The nodes pointed 

to derive secondary advantage from the residual centrality values of zero in-degree nodes. 

Thus, any node with many low centrality nodes pointing to it will still garner some 
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importance. This modification was suggested by Katz in 1953 and is termed Katz 

centrality. The equation below defines the measure. The term 𝜷 in the equation is the 

residual value allotted to each node, described above. 

 

𝒙𝒊 =  
𝟏

𝝀 
∑ 𝒂𝒊𝒋𝒙𝒋

𝒏

𝒋=𝟏

+ 𝜷 

 

In other work, Brandes (2008) describes variants of betweenness centrality that consider 

paths only up to a specific path. For example, n-path centrality uses a simple counting 

algorithm to find the n-paths in a binary matrix(Sade, 1989). Lindelauf (2011) discusses 

the power of using centrality measures based on cooperative game theory, which allows 

incorporating more parameters than network structure alone into the analysis and argues 

that game-theoretic centrality measures, or power indices as they are called, are useful in 

the study of covert networks. He presents a specific centrality measure based on the 

Shapley25 value that he uses to analyze covert networks.G´omez et al. (2003) presented an 

entirely different perspective on centrality based on game theory analysis. Borgatti and 

Everett (2006b) did an exhaustive and comprehensive classification and comparison of 

centrality measures. 

 

2.25.2 Higher Level Social Network Tools and Measures 

 

Apart from node-based measures, various higher-level structural measures enable an 

overall grasp of the network's architecture. Such measures may comprise other 

combinations of the node centrality measures just discussed, or maybe entirely 

independent. 

 

 

 

                                                           
25 The Shapley value is a common power index and is used to determine the importance of the players, i.e., 

to set up a ranking based on all the available information. 
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2.25.2.1 Dyads 

 

The level higher than nodes in a network is the dyadic network comprising pairs of nodes 

or vertices. These are being referred to as dyads or node-pairs without any loss of meaning. 

There are (N2 – N)/2 dyads in a network of N nodes. In directed social networks, there are 

(N2 – N)ordered dyads. At the dyad level, the key to measurability is the presence of an 

edge or tie that relates both nodes in the dyad (nodes in a dyad or dyad are termed as-

constituent nodes in this study). The edge between a pair of constituent nodes is described 

in terms of its strength, intensity, variability in time, etc. One other characteristic of a tie 

is if it's direct or indirect via intermediary nodes. Indirect edges are constructed based on 

the regular equivalence of the constituent nodes rather than structural equivalence. Thus, 

a pair of disparate nodes can be related through homophily (“birds of a feather stick 

together”) or complementarity (“opposites attract”) properties (Knoke, Yang, 2008).  

 

2.25.2.2 Adjacency Matrix    

 

The most common way in social network analysis 

to represent structural ties or edges is through 

adjacency matrices. Newman (2011, p110) 

describes the construction of a simple adjacency 

matrix through the figure of a smallish network 

shown in Figure 2.9.  If we denote an edge between 

nodes i and j by (i,j), then the complete network can 

be specified by giving the value of n and a list of all 

the edges. For example, the network in the figure has n = 6vertices and edges (1,2), (1,5), 

(2,3), (2,4), (3,4), (3,5), and (3,6).Such a specification is called an edge list. Edge lists are 

used to store the structure of networks, but this method of storage representation is 

cumbersome for very large networks. A better representation of the relationships in a 

network is the adjacency matrix.  

 

The adjacency matrix A of a simple graph is the matrix with elements Aij such that- 

Figure 2.9 
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𝐴𝑖𝑗 =  {
1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑖𝑠 𝑎𝑛 𝑒𝑑𝑔𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑛𝑜𝑑𝑒𝑠 𝑖 𝑎𝑛𝑑 𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Based on this formulation, the adjacency matrix of the network in Figure 2.9 is shown in 

Figure 2.10 

 

One of the points to notice about an adjacency matrix is that, first, for a network with no 

self-edges such as this one, the diagonal matrix elements are all zero, and second that the 

matrix is symmetric, since if there is an edge between i and j, then there is an edge between 

j and i. One of the significant advantages offered by this implementation is that all 

attributes in a network, including entities higher in level than nodes, such as dyads, 

communities, and cliques, can take the place of nodes in the above representation to yield 

adjacency matrices of higher orders. In the current study, a matrix showing the similarity 

of edge-pairs akin to an adjacency matrix is built using dyads or edges rather than nodes. 

The adjacency matrix variant is the incidence matrix, which describes the relationships 

between the members of two groups in a network (such networks are termed bi-partite 

networks or graphs, for example, if several individuals are members in several clubs). 

Unlike adjacency matrices, incidence matrices tend to be non-square. 

 

 

 

 

2.10 
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2.25.2.3 Triads 

  

The level higher than dyads is the triadic relation, which involves triple nodes. A social 

network of N nodes has (𝑁
3

) Triples. The presence or absence of relations amongst the 

triads' constituent nodes gives rise to 16 distinct triad types. Triads are generally used in 

gauging sentiments in a social network, like friendship or rivalry. Triadic analysis can be 

used for extrapolating relations between a pair of nodes to a third node constituting the 

triangular relationship. Knoke and Yang (2008, p14) term this property of triads transitive 

triadic relations, which they describe thus, “if A chooses B and B chooses C, does A tend 

to choose C?” The answer leads to triad closure and thence to the crucial question of pre-

existing ties in social networks, especially covert networks where such ties tend to be latent 

or invisible to the observer. 

 

 

2.25.2.4 Community Structures at the Network Level 

 

The highest level of analysis above the microlevels of node, dyad, and triad is the network 

as a whole. This level may include quadrangular relationships amongst four nodes or 

polygonal relationships with four or more nodes. Community structures, including dyads 

and triads, can take the place of nodes or vertices in polygonal relationship patterns to 

bring out how communities, rather than nodes, interact within a social network. The 

macrostructures above the three micro levels are essentially community structures into 

which social networks naturally tend to divide. For instance, the World Wide Web divides 

into groups of related web pages. The most common community constructs are cliques, 

plexes, cores, groups, and components. 

 

Cliques are maximal26 subsets of the nodes in an undirected network such that an edge 

connects every member of the set to every other member. A clique's existence is very 

                                                           
26Maximal implies that no further nodes can be added to the subset of nodes without destroying the property 

of complete connectivity of the member nodes with each other. 
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significant in less dense social networks as it depicts a closely-knit community. Cliques 

can overlap each other, i.e., member nodes can belong to two or more cliques. Cliques are, 

however, not real-world constructs, and more often, there are groups within networks, 

which, while being closely knit, may not exhibit the property of complete connectivity. A 

more common occurrence is the k-plex clique. A k-plex clique of size n is a maximal subset 

of n nodes within a network such that each node is connected to at least n-k other nodes. 

A related structure is a k-core clique, a maximal subset of nodes such that each member 

node is connected to at least k other member nodes. Ak-core cliques is an (n-k)-plex clique. 

Unlike k-plex cliques, k-core cliques are non-overlapping, and if any member node is a 

member of another k-core, both cores will fuse into a larger core. 

 

Groups are similar to cliques and are defined as subsets of nodes with at least as many 

connections to nodes within the group as to nodes outside. A more useful definition was 

proposed by Radicchi et al. (2004). They defined groups as subsets nodes, whose total 

number of connections with other nodes within the group is always higher than the total 

number of connections they have with nodes outside the group. This view of groups offers 

a powerful way of detecting communities within networks. 

 

Components are maximal subsets of nodes such that each node is reachable by some path 

from each of the others. A k-component is a variant of this concept and is defined as a 

maximal subset of nodes, connected to the others within the set by at least k node 

independent paths. Sets with values of k=2 and k=3 are termed as bicomponents and 

tricomponents, respectively. Each higher value of k implies that the higher value set is a 

subset of the lower value subset of k. Thus, a tricomponent is a subset of a bicomponent, 

and both are a subset of a component. An interesting spin-off of this community structure 

is that it can also be looked at as a maximal subset in which if a node needs to be unpaired 

from another node in the k-component, at least k links need to be disconnected. The concept 

is a beneficial one in the disruption strategies of covert networks wherein central actors 

within the network need to be dislodged to study before their impact on network function, 

and efficiency can be studied. 
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The different levels of network analysis discussed above imply that the characteristics at 

one level cannot be simply deduced from the information available at other levels. For 

instance, the transitivity of relations is a significant input for friendship formation (“a 

friend of my friend is my friend”), which is unique at the triadic level but not seen at the 

node-level or at the dyadic level. Knoke and Yang (2008, p14) make this aspect clear with 

an illustration: 

“Consider two scientific research communities with roughly similar egocentric, 

dyadic, and triadic structures in their scientific discussion networks. But, if the first 

community's complete network is fragmented into several unconnected 

subgroupings, many scientists may be unable to communicate with others indirectly. 

If the second community's entire network contains ties that bridge and broker 

relations among its subgroupings, we could anticipate a more rapid and widespread 

flow of information and a higher scientific innovation rate. This protean capacity of 

network analysis to address problems at multiple levels of analysis by encompassing 

emergent structural relations lies behind its rapid increase in popularity as a 

framework for theorizing and guiding empirical research.”(p.14) 

 

 

2.26 Social Network Analytics in Covert Networks 

 

2.26.1 Background 

 

As has been discussed, social network analysis is a quantitative methodology to model 

relationships and behavior amongst networked actors. It focuses on the ties amongst the 

actors and the implications of these ties on the network structure. The structure or topology 

of a network can affect, promote, and constrain individual actor behavior (Wasserman & 

Faust, 1994). The quantitative nature of social network analysis enables the depiction of 

the network structure and its implications upon collective and individual behavior in a 

mathematical format. It also aids the identification of actors involved significantly in 

collusive conduct and gives shape to the determination of communities of actors within 
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the network. Additionally, the quantitative basis enables the detection of changes over time 

in network structure, actors’ roles, and community formation or dissolution.  

 

It is necessary to note that any social network model is built to a specific context. The data 

are collected, and the model is constructed in a particular set of real-world questions that 

the study is attempting to solve. This specificity and the problems associated with it 

determine the selection of the network analytic techniques. As these analytical techniques 

are mathematically oriented, they have certain assumptions associated with them. These 

assumptions crystallize the data requirements to provide inputs to the chosen social 

network analytic model's mathematical needs. Thus, the conclusions and interpretations 

derived from the analytical techniques are based on the contextual considerations within 

which the social network model operates and as well as the data collected at the initial 

stages. These quantitative aspects of social network analysis enable law enforcement and 

other governmental agencies to identify key actors or network facilitators and target them 

or keep them under active surveillance. Removing key actors, detaining leaders of an 

organized criminal gang, or targeting those with vital skills, such as explosive experts in a 

terrorist network, may inhibit a network’s negative output without large scale arrests or 

even complete disruption. The network models built based on this type of analysis are 

dependent upon the correctness of the information sources providing data. When dealing 

with criminal or terrorist networks, these sources may provide unreliable information, 

leading to wrong conclusions from the model. The sources may corroborate or disprove 

reports from other sources, leaving the analysts to decide which data are to be used and 

which to be discarded. 

 

Social network analysis methodologies have predominantly evolved from research 

conducted on open networks such as corporations, businesses, governmental 

organizations, clubs, social groups, and activities where data is available and collected 

without any surveillance. In contrast, covert organizations considered threats to national 

security are structured and have mechanisms built into their structures to counter 

conventional data collection techniques' effectiveness. These unique mechanisms present 

additional layers of challenges in applying social network analytic techniques to these 
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networks. A deeper understanding of these organizations and associated mechanisms must 

address the concomitant implications of modeling such networks. Accordingly, a 

comparative approach that brings out the similarities and differences between traditional 

social network analytic approaches and modified approaches to model covert networks has 

been outlined in the following sections. The following provides an outline comparing 

traditional social network analytic approaches with their modified versions for modeling 

covert networks. 

 

There are several studies which have examined various aspects of social network analysis 

study covert networks, covering the spectrum from terrorist groups to organized criminal 

networks and insurgencies (Sparrow, 1991; Coles, 2001; Reed, 2006; van der Ressler, 

2006; Hulst,2009) with several of these studies introducing new methodologies and 

algorithms adapted to the specific models (Renfro, 2001; Sterling, 2004; Hamill, 2006; 

Seder, 2007; Farley, 2007; Geffre, 2007; Herbranson, 2007; Leinart, 2008; Kennedy, 

2009;). Acquisition of specialized knowledge of dark networks and their structures, 

operations, processes, and mechanisms, coupled with the roles of the key actors, has the 

potential to grant deeper insight into inherent vulnerabilities that are susceptible to 

exploitation and, more crucially, to make network activities predictable in the future. 

 

 

2.26.2 Data Collection in Network Studies 

 

The first steps in social network analysis necessarily involve the collection of data about 

the network. This data is then used to build a visualization of the network. As we saw 

earlier, all networks have graph-like structures and can easily be reduced into a matrix 

format. The matrix is a very malleable mathematical construct that can lend itself to various 

articulations, leading to viable computational models. Social network analysis includes in 

its folds diverse methodologies to collect data. This section presents a brief synopsis of the 

data collection procedures followed in conventional social network analysis based 

primarily on the exhaustive chapter on this subject by Knoke and Yang (2008, pp.15-20). 

The synopsis includes comments on how data collection procedures that hold true for 
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ordinary social networks come up short for covert networks. There are brief discussions 

on various modifications in data collection and collation, which are in practice to cater to 

covert networks. 

 

 

2.26.3 Data Distortions in Covert Networks 

 

Imperfections in social networks data stem from various causes. A primary source of error 

relates to all social network modeling issues, namely, boundary specification. The modeler 

must decide the inclusion and exclusion of specific data elements and decide heuristically 

which actors and which relations are to be included in the data set. The issue acquires 

further complexity when selecting the associated variables to collect on each actor and 

each relation. Difficulty in obtaining specific nodal or edge information, such as actors’ 

demographic data or the ability to measure relationships’ intensities, may drive boundary 

specification decisions.  

 

The second set of challenges arise in the data collection part of the analysis. An improper 

data collection design, inherent inaccuracies generated by the specific data providers, or 

the intentional lack of information characteristic of dark networks – may introduce 

extraneous, spurious, or inaccurate data. These factors also potentially prevent the 

comprehensive collection of essential elements that can significantly impact the 

subsequent analysis and results. In short, SNA is almost guaranteed to be conducted in an 

environment of imperfect data. (Morris & Deckro, 2018). 

 

 

2.26.4 Boundary Specifications in Social Networks  

 

It has been discussed in depth that covert networks tend to be incomplete and have fuzzy 

boundaries. This quality stems from their innate tendency to confine information flows 

from leaking out. In many instances, the networks observed today may be far removed 

from their topologies in the past. Thus, data collection during the early stages of 
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surveillance of a covert network is crucial. Historical data reduces the deficit of 

information about the network and its constituents and helps foster a sense of caution as 

new data is evaluated, and conclusions are drawn. Data collection is a necessary first step 

in the study of covert networks, and all social networks, which by design, are dynamic and 

fluid. 

 

One of the first questions that a researcher faces while collecting data is setting the limits 

(of data collection). The answer to this is contextual and may not be any limits (Barnes, 

1979 as cited in Knoke & Yang, 2008). Strategies for collecting data have been enumerated 

by Knoke and Yang (2008, pp.15-20), including the three27 generic approaches developed 

by Laumann, Marsden, and Prensky (1989), namely, positional, relational, and event-

based. The positional strategy uses actors' attributes, including their memberships in a 

formal organization or their occupancy of a well-defined position for inclusion in a 

network. 

 

Positional approaches identify actors similar in status in any organization and who may 

not be connected through any links. We may equate position with the concept of regular 

equivalence in a graph-theoretic context. This technique runs the risk of producing sets of 

entirely unrelated actors who might just happen to share some attribute; This is evident 

from the example of the Cameroonian women who belonged to the same hometowns and 

who were interviewed by researchers about collective memory choices, ended up being 

slotted to the same sets based on their hometowns. However, they were often strangers 

(Knoke & Yang, 2008, p.16). 

 

Relational approaches rely on the actors being interviewed to identify others for inclusion 

in the group. This strategy is similar to snowball sampling, reputational method, fixed list 

selection, expanding selection, and k-core methods. Snowball sampling consists of 

requesting interviewees to nominate others whom they are related to. In turn, these actors 

are requested similarly and so on; this method effectively ascertains memberships of 

                                                           
27Initially, there were two strategies defined, namely, realist and nominalist in respect of data collection by 

Laumann, Marsden and Prensky (1983) which were replaced by the three approach model by them in 1989. 
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remote populations. Reputational methods relate to asking the most well-informed actors 

about others who need to be included. Fixedlistselection uses questionnaires that allow 

respondents to reply regarding ties with actors chosen by the interviewers themselves. The 

k-core method finds subsets of actors wherein any particular actor has relations with at 

least k other actors. This concept mirrors the concept of the k-core clique in graph theory. 

 

Event-Based methods choose actors who are participants in a pre-defined set of activities 

at particular times and places. Knoke and Yang (2008, p.20) noted examples of Southern 

Californian beachgoers who visited the beach at least three days in a month. They 

cautioned that while using this methodology, meticulous attention needs to be paid to 

categorize activities cleanly. They add a caveat that event-based methods run the risk of 

missing data by not identifying activities that ought to have been included. A solution 

would be to observe multiple editions of the set of activities in question to not miss out on 

any aspect or any actor who is essential and who may not be essential in a particular edition. 

 

The issue of boundary limitation is challenging in complex and dynamic networks. A key 

hurdle in the study of formal and informal responses within complex problem domains is 

that they are, by definition, ill-defined, leaving it to the analyst to make choices concerning 

who is and is not to be considered part of the network. To add to the complexity, networks 

are social constructs with extreme specificity whose evaluations vary from case to case, 

depending on whose perspective is being privileged (Nowell et al. 2016; Nowell et al. 

2018; Mandell & Keast 2008). For example, network actors may differ from each other in 

their understanding of who belongs to or within the network. Further, scholars may differ 

in their perspectives about a network relative to those actors involved in the network 

(Mandell and Keast 2008; Turrini et al. 2010). Finally, two scholars may study the same 

social phenomenon yet draw the boundaries of the network differently. Consequently, 

challenges relating to network boundary determinations are endemic to all network 

research. They are particularly relevant when applying network analysis to gain insight 

into social structures that anchor complex domains (Weber and Khademian 2008). 
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2.26.5 Boundary Selection in Covert Networks 

 

As discussed above, the boundary specification problem involves the inclusion and 

exclusion of actors and relations. Rule-sets are defined apriori to describe an actor’s 

inclusion in the network. Inclusion or exclusion depends on the actors’ characteristics, their 

affiliations, or other specifications. Relation types may also be identified for inclusion in 

the network from the set of all relations. This triage process entails reducing the overall 

pool of actors or relations and depends on the analysis being conducted (Wasserman & 

Faust, 1994). Triage is incredibly challenging in covert network actors. They may 

deliberately blur the lines between their professional and personal lives, causing 

difficulties in clearly delineating where lawful transactions and activities end and where 

illicit operations begin, which has the effect of creating a fuzzy boundary whose exact 

contours the social network analyst must decide on (Sparrow, 1991). Laumann, Marsden, 

and Prensky (1983) saw two possible approaches to the boundary specification problem: 

realist and nominalist. The realist approach defines the boundary by assuming “that a 

social entity exists as a collectively shared subjective awareness of all, or at least most, of 

the actors who are members” (Laumann et al., 1983, p. 21). For formal organizations with 

clear membership, this type of selection is effective; however, this assumption makes the 

boundary fluid when dealing with covert organizations such as terrorist networks. 

Secondly, it has the potential to create a paradox where actors may consider themselves 

part of the social network. In contrast, members of the social network may consider the 

actor excluded from the collective. The reverse of the paradox could just as quickly occur.  

 

The nominalist approach, according to Laumann et al. (1983, p. 21), is one where the 

“analyst self-consciously imposes a conceptual framework constructed to serve his 

analytic purposes.” The social network is thus defined by arbitrary criteria that serve the 

analyst’s lines of inquiry. In opposition to the realist approach, the social network’s self-

defined boundary is no longer an assumption, but an empirical question of how it compares 

against the analyst’s defined boundary (Laumann et al., 1983). Arbitrary boundary 

selection by the analyst could significantly distort the results. However, if correctly done, 

this method could capture the data to precisely analyze the question while concurrently 
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eliminating extraneous data that could distort the results. The data collected for a social 

network analysis study includes actors, relations, events, affiliations, or any combination. 

The inclusion and exclusion rules determine which elements of the four data types are 

incorporated into the social network model. Various inclusion and exclusion rules can be 

applied exclusively or in combination to determine which social data elements, expressly 

which actors, relations, events, or affiliations, are incorporated into the social network 

model and subsequent analysis (Laumann et al., 1983). 

 

According to Laumann et al. (1983), rules for inclusion and exclusion in actor boundary 

specification tend to positional, reputational, or a combination of both. Positional rules test 

actors’ attributes for inclusion into the social network. The actor’s attributes fulfill a 

specific position within an organization, which gives the category its name. The second 

type, a reputational rule, “utilizes the judgments of knowledgeable informants in 

delimiting participant actors” (Laumann et al., 1983, p. 23). Hybrid rules generated from 

both types are standard in research (Laumann et al., 1983). Applying these rule categories 

to real-world problems generates a wide range of options to select inclusion actors into the 

social network model in question. According to the three rule categories defined by 

Laumann et al. (1989), an actor’s inclusion and exclusion may be based upon membership 

with particular organizations, positional specification, demographic data or other actor 

attributes, involvement with specific relation types, event attendance, identification of 

inclusion by different actors, or a combination of these factors (Kossinets, 2006; Kossinets 

2008; Nowell et al. 2018).  

 

If any network’s internal transactions are of interest, limiting the network boundaries only 

to those acknowledged members of the organization may be appropriate to enhance 

accuracy in representation and interpretation (Marsden, 1990). Examples may include a 

human trafficking organization in which the actors may have several relations with 

suppliers, transporters, harborers, and customers. Still, to accurately describe internal 

processes, the social network may need to be limited to only a subset comprising core 

members. Positional specifications restrict the network members to those who occupy 

positions of rank in a formally constituted group. Going by this definition, a  terrorist 
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leadership social network may only include those in command of a single detachment 

(Kossinets, 2008). 

 

The use of specific actor attributes, including demographic data of the individual, such as 

gender, age, or rank, enables a reduction in extraneous nodes, which boosts results by 

limiting the network to significant value actors. A real-world network where this is 

applicable is an organized crime network based on close family ties, such as the Italian 

mafia, or specific insurgent organizations based primarily on familial connections (the 

Haqqani Network in Afghanistan is a good example). The selection of actors may be 

limited to those who only possess specific relations (Marsden, 1990). A good example is 

that of terror funding networks, where actors with financial connections may be relevant 

in determining the network structure, which is easier said than done since routes of 

financial transactions may include formal (overt) channels like international banking and 

informal,e.g., hawala channels. These methods are usually based on the individual 

perspectives of actors pre-identified as belonging to the network; hence, they subject to 

bias. Kossinets (2008, p. 5) notes that “actors may disagree in their perception of social 

structure; they may be attributing different weights to certain other actors, relationships or 

types of relationships.”In other words, a paradox can come about in which an actor believes 

he or she is part of a network, while the other actors do not include him or her as part of 

the system. Anti-government insurgencies are good real-world examples of this fallacy; 

individuals within an insurgent network may construe differing thresholds of inclusion 

activities with the network. Some may view not supporting government forces or donating 

funds and resources as justification for inclusion, while others may set the threshold higher 

as in actively fighting, and so forth.  

 

Relational rules, on the other hand, only allow actors to possess specific, defined 

relationship types into the network model (Laumann et al., 1983; 1989). Relations for a 

given social network are chosen to represent specific types of actor interaction, and the 

exclusion of extraneous relationship types condenses the network to represent only 

required interactions. Incorrectly bounding the relationships in the model removes links 

that are present in the actual network under investigation.  
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Events and affiliations also provide a basis for inclusion and exclusion rules. An event or 

specified activity selected by the analyst as relevant to the network allows only those actors 

and their internecine relationships derived from participating in the event or activity to be 

included in the social network model (Laumann et al., 1983). Similar boundary 

specifications can be made applicable to affiliations as well. In some instances, affiliation 

data between actors is generated by event attendance and can also be derived through 

membership in multiple organizations and groups. In this category of boundary 

specifications, actors who attend a particular set of events or are affiliated to the same 

organizations are included as part of the network (Marsden, 1990). However, Kossinets 

(2008, p. 5) warns that event attendance “is particularly error-prone and is best described 

as convenience sampling.” To quote an example, such a technique can produce distorted 

results in the case of terror networks where some of the main actors may not have 

affiliations to common ideological platforms but might have joined together in some larger 

cause. By selecting particular affiliations, the analyst runs the risk of missing out on these 

vital individuals. 

 

Each of the three approaches proposed by Laumann et al. (1989) has strengths and 

limitations related to (1) its ability to reveal formal and informal institutional norms and 

structures; (2) its ability to capture isolates and disconnected sub-groups, and (3) its ability 

to represent social relations over time. Through recognizing these strengths and associated 

limitations, researchers are better informed to choose the most appropriate strategy 

(Nowell et al. 2018). To sum up, the analysts' solution is to have complete clarity about a 

given boundary decision's comparative advantages and disadvantages. Transparency, 

deliberate consideration of boundary consequences, and evidence of informed choices are 

all reasonable responses to the challenges of dealing with boundary specification with 

messy networks in complex problem domains. In 1989, Laumann et al. warned scholars of 

network research boundary determinations' methodological and theoretical significance. 

Despite this, decisions concerning how network boundaries are determined are rarely 

discussed or critically examined, and the extant literature provides little advice to guide a 

scholars’ decision or to consider the consequences of their design choices 
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2.26.6 Data Collection Procedure 

 

Data collection methods include single and multiple-name generators, position and 

resource generators, measurement of total personal networks, and archival documents. 

Single and multiple-name generators obtain information about respondents’ alters in an 

ego-centric network, name interpreters that obtain information on each alter, and their ego 

relations. A single-name generator may produce a core set of alters but fails to identify all 

the contacts which can be elicited using multiple-name generators. A single-name 

generator uses a single item questionnaire, whereas multiple item questionnaires are used 

in multiple-name generators. To impose reasonable boundaries on the network size, 

stringent limits need to be imposed. These constraints are of four types (1) role or content-

based constraints where relationships based on particular roles are used to build networks, 

(2) geographical constraints, which put restrictions on the area, (3)  temporal constraints, 

which are based on a window of time (4) numerical constraints which limit respondents to 

naming up-to a certain number of other actors. 

 

Positional generators collect information from respondents about their ties with other 

actors in specific organizational hierarchy positions. The resultant network size depends 

on the choice of social positions. Depending on a respondent’s origin (relation to someone 

in the organization), tie-strength can be assigned. That is, if the origin is high, tie-

strength,28whether strong or weak, is immaterial, and if the origin is low weak ties are 

beneficial. Resource generators typically collect information based on a quantity called 

social capital, which encompasses all forms of assistance or resources that a respondent is 

receiving and that he or she can enumerate during data collection. A resource generator 

asks respondents if they know anybody possessing specific resources or skill-sets rather 

than just their positions. This helps build a network with more layers and is more varied 

than a positional generator based approach can produce. 

 

                                                           
28 A tie is deemed strong if the relation is direct relative, and is termed weak if the 

respondent’s contact is only an acquaintance. 
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Measuring total personal network involves gathering information on all alters known to 

the ego. This technique invokes name generators, especially “invented” (or designed), to 

elicit this information, which is done using a checklist method in which respondents are 

given randomly generated names. They are asked if they know anyone by these names. 

This methodology is used through the reverse small-world method(RSW). Researchers 

create fictitious personalities with invented names, random attributes such as age, sex, 

gender, membership in organizations, occupation, location, etc. The respondents are then 

exposed to this list and asked to name alters who could provide a link to these fictitious 

people. The second step in this process involves querying the respondents about the alters 

they’ve named in the first part. These methods have been combined to produce optimal 

results sets. 

 

Archival documents reveal past information about networks. Such documents are relatively 

cheap and less resource consuming than the survey-based methodologies discussed above. 

With the vast majority of the archival data now available in digital format, data-mining 

tools have become indispensable for extracting useful information from vast quantities of 

data. The explosive growth in the internet-based archival frameworks and the development 

of increasingly sophisticated web-crawling search engines have transformed this data 

retrieval method. However, archival documents often have to be combined with surveys 

to present a complete picture. 

 

Archival documents are also a handy way to counter the incompleteness that is a 

common feature of covert networks; particularly, archival information can firm up 

the pre-existing ties in a covert network in a significant way. Networks built out of 

archival information can be extrapolated to current times using sophisticated 

mathematical tools (Markov chains and Bayesian statistics are good examples) to 

configure what the network should look like in current times. This model can be used 

as a null set to compare with the structure we have in hand. Substantial differences 

can alert us to the possibility of deception by the actors in the network. 
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Data collection procedures in covert networks are likely to differ significantly from those 

prescribed for conventional networks described in the section above. In most instances, 

information about covert networks or covert cells within open networks is obtained after 

the “deed is done.” The terrorist network structure of the 9/11 attackers was constructed 

by Krebs (2002) painstakingly based on open-source information available from television 

channels and newspapers. The difficulties Krebs faced while mapping out the network is 

best described in his own words:  

“I set out to map this network of terrorist cells that had so affected all of our lives. 

I would be mapping a ‘project team’ – much like the legal, overt groups I had 

mapped in countless consulting assignments. Both overt and covert project 

teams have tasks to complete, information to share, funding to obtain and 

administer, schedules to meet, work to coordinate, and objectives. How a 

typical project team does all of that is easy to map and measure using several 

sets of ties – task, resource, strategy, and expertise links. I was surprised at 

the difficulty of this particular effort – both in data definition and discovery. 

My data sources were publicly released information reported in major newspapers 

such as the New York Times, the Wall Street Journal, the Washington Post, and 

the Los Angeles Times. As I monitored the investigation, it was apparent that the 

investigators would not be releasing all pertinent network/relationship information 

and maybe releasing misinformation to fool the enemy. I soon realized that the data 

was not going to be as complete and accurate as I had grown accustomed to in 

mapping and measuring organizational networks.” (pp. 43-44).” 

 

The portions highlighted in the passage reproduced from Krebs’s paper are interesting. 

Krebs was used to mapping out networks as a part of his work schedule. Even so, all his 

knowledge and experience in this domain had not prepared him for the challenges that this 

particular problem posed. His sources were from open channels, which are often 

incomplete and may include incorrect information based on how the journalists(the 

primary sources or collectors in this case) have extracted, interpreted, and expressed them. 

It may be argued that this case was just a “one-off,” and plenty of “complete” information 

is available in most cases. Unfortunately, for covert networks, these characteristics are the 
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norms and not the exception. Baker and Faulkner's (1993) pioneering works and Erikson 

(1981) are useful pointers in this direction. Wayne Baker and Robert Faulkner (Baker and 

Faulkner 1993) studied conspiracies in the heavy electrical industry equipment suppliers 

have recommended looking at archival data to derive relationship data. The data they used 

to analyze illegal price-fixing networks were mostly court documents and sworn 

testimony, including various witnesses' accounts. Krebs (2002) adds that others did not 

directly observe the hijackers of September 11th in great detail. Bonnie Erickson (Erickson 

1981) stresses the importance of “trusted prior contacts” for a secret society's effective 

functioning. Krebs 92002) mentions that the 19 hijackers “appeared to have come from a 

network that had formed while they were completing terrorist training in Afghanistan. 

Many were school chums from many years ago, some had lived together for years, and 

kinship ties related others. Deeptrusted ties that were not easily visible to outsiders wove 

this terror network together.” (p.44). 

 

The issues faced by analysts while conducting surveillance of covert networks or sub-

networks are generally two-fold. The data they receive is “current,” i.e., what is existing 

at that timepoint, shorn of past connections, and the impact of pre-existing ties on the 

current topology. (A detailed discussion on pre-existing ties has been done earlier in 

Chapter 2 of ibid work). The second challenge is that the data is only obtainable post hoc, 

i.e., after the incident. As has been stressed repeatedly, such “after the fact” analyses may 

be useful in investigations to establish guilt or provide a roadmap for future interventions 

by law enforcement agencies in similar cases, but they are practically useless in predicting 

imminent offenses or adverse outcomes. For successful prediction modeling of covert 

networks, data collection procedures need to have radically different properties. This 

dissertation has already delineated the metrics that the requirements for successful 

predictive modeling in this context, i.e., accurate detection of the covert networks and the 

ability to predict possible outcomes within a reasonable timeframe.  

 

These requirements have a significant bearing on data collection for building the network 

model. Two things to be on the lookout for while collecting data about covert or dark 

networks are (1) structures from past instances which have led to similar outcomes as well 
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as isomorphic structures in the network being investigated (2) that data is being collected 

from multiple sources for corroboration. 

 

Regarding the issue of structures to look for, it should be borne in mind while collecting 

data for covert networks that violent or adverse outcomes, despite their sudden appearance, 

are seldom sudden in their build-up. Black (2004) has described the violence as arising 

from pre-defined structures that have arisen over time in reaction to prevailing political, 

legal, and cultural conditions. Watts (1999) also addresses the same issue and points out 

that “networks can affect a system’s dynamical behavior in what might be termed an active 

and a passive sense; and that it is the passive sense…Active implies that the network is a 

device to be manipulated consciously for an actor’s ends; passive implies that the network 

connections themselves, in concert with blind dynamical rules, determine the global 

behavior of the system” (p.3). Once formed, the structures are designed to produce the 

outputs they do, and the characteristics of individual actors staffing different positions in 

these structures are not that significant. It is good for an analyst to have a library of 

structures and topologies that have produced outcomes in earlier instances currently being 

investigated.  

 

Second, the analyst should collect the same or similar data from multiple sources and 

corroborate29 all the information. Various surveys and sampling mechanisms related to 

conventional networks were discussed previously. All of these tend to believe the first 

source that is encountered. It needs to be kept in mind that participants in covert networks 

will not be forthcoming about their roles, functions, relationships, and even identities. It’s 

best to presume that deception rules their behavior. Obtaining second or even third-hand 

accounts about the same information is prudent, and bolstering the same through 

circumstantial evidence from the field is also recommended. Sociological treatises abound 

on the use of corroboration and triangulation for data collection and rectification purposes. 

Refitting these methods to the study of dark networks is but a step also. 

 

                                                           
29 Corroboration is a legal term that refers to the requirement that any evidence adduced be backed up by at 

least one other source. 
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The value of obtaining data from multiple sources is well documented in research-  

“qualitative analyses of text that are often supplemented with other sources of 

information to satisfy the principle of triangulation30 and increase trust in the 

validity of the study’s conclusions. It would not be uncommon, for example, to 

analyze transcribed interviews along with observational field notes and documents 

authored by the respondents themselves. The purpose of multiple sources of data 

is corroboration and converging evidence.” 

(https:\\www.sagepub.com/sites/default/files/upm-binaries/43144_12.pdf, p.350).  

 

Flick (1992, 2018) addresses validating results through triangulation with other results by 

enunciating the idea of a master reality behind the use of several methods and reducing 

bias. On this topic, Mathison (1988, p.13) states, “Good research practice obligates the 

researcher to triangulate, that is, to use multiple methods, data sources, and researchers to 

enhance the validity of research findings … it is necessary to use multiple methods and 

sources of data in the execution of a study to withstand critique by colleagues”. 

 

2.26.7 Informant Bias 

 

Knoke and Yang (2008, p.35) define informant bias as the discrepancy between self-

reported and actual behaviors. Informant bias occurs due to many reasons, including the 

inability of respondents to report their behavior accurately, tendency to “impose 

categorical from on noncategorical affiliation patterns,” propensity on the part of the 

sources to “correct their perceptions to maintain a balanced network among their close 

friends,” Other reasons include the belief in informants that they are more central to the 

scheme of things than others, Bias may also result from the varying abilities of sources to 

recall events; those have excellent domain knowledge tend to introduce errors by 

“reporting on nonexistent members.” Knoke and Yang (2008, p.36) quotes a study by H. 

Russell Bernard and his associates who did a comparative analysis of seven sets of paired 

communication network datasets and found that “about half the informants’ self-reports 

                                                           
30Triangulation: A method used in qualitative research that involves crosschecking multiple data sources and 

collection procedures to evaluate the extent to which all evidence converges. 

http://(www.sagepub.com/sites/default/files/upm-binaries/43144_12.pdf
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were erroneous in some ways” and concluded that cognitive data about communication 

couldn’t be used as a proxy for the equivalent behavioral data. However, Knoke and 

Kuklinski (1982) have been cited in Knoke and Yang (2008, p.36) as having challenged 

the conclusions of Bernard and his colleagues by questioning the “accuracy and 

unobtrusiveness of the observers,” which led to Bernard acknowledging that “facilitative 

factors” such as expertise of the sources in some field, could lead to a reduction in 

informant biases.  

 

Distortions may also result from the tendency to forget less prominent players and falsely 

recall major actors in a network, false recollections of interactions that never occurred, and 

false recall of persons interacting. Consensus between informants leads to a reduction in 

bias. Knoke and Yang (2008, p.37-38) remark that “Highly knowledgeable informants 

produce unbiased data about long-term repeated patterns. They also tend to produce 

consensus answers to questions, which indicates greater validity31.” The conclusion that 

may be drawn from the above is that analysts while collecting data in the field to build 

network models, must be picky about whom to interview and choose wisely from amongst 

the pool of respondents who are regarded as knowledgeable and collect information about 

relationships from sources who have close ties with the others sought to be included. The 

analysts also need to be aware of sources' predilections to portray themselves as being 

more central in the network than the average perceptions of the others about these 

individuals. 

 

2.26.8 Reliability of Data 

 

Reliability as a measure of the extent to which “a particular instrument, when applied 

repeatedly to the same subject, yields an identical result every time.” Reliability measures 

include interobserver reliability, test-retest reliability, and internal consistency reliability, 

including split-half reliability and Cronbach’s α reliability32. A mathematical co-efficient 

                                                           
31 Validity refers to the extent to which the data collected gives a true measurement / description of the 

ground realities. Data is only useful if it actually measures what it claims to be measuring. 
32Cronbach'salpha is a measure of internal consistency, that is, how closely related a set of items are as a 

group. 
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frequently used to measure reliability is Jaccard’s coefficient (coincidentally, this 

dissertation uses the same measure to link pairs of related covert edges while identifying 

covert communities with common intentions). If we go by this scale, reliability values vary 

from 0.00, indicating nil reliability, to 1.00, showing full reliability. A high level of 

consensus amongst respondents results in high levels of reliability of the information. 

Knoke and Yang (2008, p.39) summarize the concept of reliability by stating that 

“individuals with high reliability tend to have a higher correlation in their self-reports than 

do individuals with low reliability….though reliability predicts validity, informants with 

more validity will have more similar responses to one another than informants of low 

reliability.” 

 

They conclude that social network data is substantially different from other types of data. 

The impacts of informant reliability and validity measures differ significantly from 

conventional data. This is particularly so in egocentric analyses where high correlations 

amongst informants in choosing similar alters indicate high reliability. High informant 

validity is implied by high correlations of an informant’s description of their alters’ 

characteristics, such as age, gender, education, and economic status (p.40). 

 

2.26.9 Missing Data 

 

Missing data is a significant source of data distortion in social networks. The impact of 

missing data on building network models is well illustrated by Knoke and Yang (2008, pp. 

41-44). They’ve explained the impact of missing actors (nodes) and missing relationship 

information (ties) on the resultant network structure. In the ensuing example reproduced 

from them, N is the number of nodes or actors in the network, R is the relational response 

rate, M is the number of actors not responding on relationships with other nodes. The 

impact is evaluated in terms of both undirected (or non-directed) and directed networks. 

The relational response rate (R) for egocentric networks is calculated by dividing the 

number of reported ties by the total number of possible dyadic relations among the alters. 

For example, if the ego reported about 8 of the ten nondirected relations, then R = 0.80, or 

80 percent; if the ego failed to report 6 of the 20 directed relations, then R = 0.70 70 percent.  
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Calculating the response rate for a complete social network is more complicated. A 

complete network consists of the dyadic relations among all pairs of N actors in the 

network. R is less attenuated for a non-directed network because a report by one member 

of a dyad suffices when the measure is reliable. For example, to measure friendship 

between actors A and B, the information provided by either informant could be used to 

determine whether that relationship is present or absent. That is unless both A's and B's 

reports about one another are missing, we measure their friendship with a single report. In 

general, for a complete nondirected network of N actors with no alter reports from M 

actors, the response rate for a particular relation is illustrated from the following example: 

 

Let’s assume that a network has five actors, labeled A, B, C, D, and E. The ten nondirected 

dyadic relations among these five actors are AB, AC, AD, AE, BC, BD, BE, CD, CE, and 

DE. If actor A fails to report its relations, those dyadic ties can be obtained from the other 

four actors’ reports about A. Thus, the relational response rate is 100 percent despite 

missing reports from one node. When the missing nodes range between 2 and 4 (1 <M 

<N), the relational response rate is(1 − 
𝐶2

𝑀

𝐶2
𝑁 ) percent. For example, if three nodes (A, B, 

and C) do not report their relations with anyone, the response rate is (1 −  
𝐶2

3

𝐶2
5 ) = 0.70,or 

70 percent. Three nondirected relations are missing (AB, AC, and BC), but at least one 

member reported the other seven dyads. If no actors provide information, both nodal and 

relational response rates fall to 0 percent 

 

For the above example of a network of five actors, the nodal response rate and the relational 

response rate for varied numbers of missing nodes are given in Table 2.1:  
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The general formula of the impact of missing information on undirected networks is: 

 

 

 

It may be noted that the relational response rates for non-directed networks are always 

higher than the nodal response rates at every level of missing nodal reports.  

 

For directed networks, where there is an asymmetry in ties (for example, giving advice, 

trust-based links, financial transactions), the calculations vary from the above in that 

missing nodes have a more significant impact on the relationship model. If node A is 

missing from the set, for instance, let’s say, ties (AB, AC, AD, and AE) go unreported.  

Let’s suppose that node A is missing, and ties (AB, AC, AD, and AE) go unreported. 

Unlike ties in the undirected model explained above, which can be retrieved from the nodes 

which are not missing (i.e., B, C, D, and E), the same ties in a directed network will not be 

available as they are directed outwards from A and knowledge about them will only be 

available with A. 

 

 

 

Table 2.1 
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2.26.10 Dealing with Data Distortions 

 

The current dissertation deals with an email-based network, and the ties are undirected. 

One of the advantages of an email-based network (or, for that matter, any electronic 

transaction-based network) over other types of social networks is that the cognitive and 

actual information will always match. There is less dependence on the memory recall or 

peculiarities of the actors needed to be interviewed or surveyed while building the network 

model. Even so, we will see in the chapters following that missing information has a 

significant impact on the ensuing network structure and, consequently, on the prediction 

of outcomes of the network. In the ENRON email-based corpus made available to the 

public, only 151 inboxes of employees are available for study out of the thousands of 

employees who might have worked there. These 151 inboxes have been selected for public 

viewing based on the investigators’ perception of what is interesting and what isn’t. With 

the non-availability of several inboxes, the employees' information with those mail-ids was 

also lost to the investigators. 

 

Consequently, during the experiments conducted during this study, we shall see that the 

missing nodes greatly impacted the results. The predictions based on the initial lossy data 

also tend to be lossy. Please see Table 2.2 for details: 

 

The ENRON dataset used in this study has 151 mail inboxes available in the public 

domain. From the mails headers contained in these inboxes, information regarding 6429 

other employees was obtained. It needs to be noted here that there is no other source of 

information available regarding these employees. There may likely be even more 

employees whose mail-ids have not figured in the mails' mail headers in the 151 available 

inboxes. However, after applying the covertness index metric, which is the first stage of 

the experiment, the number of employees of interest to the study, i.e., those who were 

either indicted in the insider trading case or who were in some ways aware of the 

proceedings reduces from 19 to 16. All three losses occurred in the category of employees 

who did not have inboxes (reducing that number from 11 to 8), whereas the number of 
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employees whose inboxes were available remained at 8. In the category of employees who 

were of no interest to the study, i.e., those who had no role in the scam, the results are even 

more apparent: their number drops by 74% from 6418 to 1674.  

 

Similar results are observed after the second phase of the experiment is carried out on the 

database. The number of employees of interest to the study, i.e., those who had either been 

indicted in the insider trading case or those who were in some way aware of the 

proceedings, reduces from 16 to 12 (the number of those with inboxes drops by three as 

does the number without inboxes). However, much more significantly, the number of 

employees of little interest to the investigation drops even more sharply from 1674 to 621. 

This is a welcome result since this dissertation's key objective is to define attributes that 

can quickly weed out actors who are less likely to require attention from investigators. 

However, it is significant that entities with incomplete information were lost. It indicates 

that entities with incomplete information are more prone to elimination than those with 

complete information. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

129 

 

 Employees of Interest Employees not of Interest 

Employees 

with mail 

inboxes 

Employees 

without mail 

inboxes 

Employees 

with mail 

inboxes 

Employees 

without mail 

inboxes 

At the start of the 

Experiment 

 

8 

 

11 

 

143 

 

6418 

After the First 

Experiment 

(Application of 

the Covertness 

Index) 

 

 

8 

(Loss = 0) 

 

 

8 

(Loss = 3) 

 

 

106 

(Loss = 37) 

 

 

1674 

(Loss = 4744) 

After the second 

part of the 

experiment 

(Application of 

the Collusion 

Index) 

 

 

6 

(Loss = 2) 

 

 

6 

(Loss = 5) 

 

 

67 

(Loss = 76) 

 

 

621 

(Loss = 5797) 

 

 

Table2.2 Table showing losses of node related information while conducting the experiment. 

After the first part of the experiment the number of nodes of interest i.e. employees of ENRON 

who have had some role (indicted or aware of the details) decreases by 3 i.e. from 19 to 16. But 

the employees of interest who are not having mail inboxes have lost 3 whereas those who are 

having inboxes have lost none. The proportion of the loss is greater for nodes with incomplete or 

nil information. The results are on similar lines for those employees who are not of interest to the 

study. From this category, those employees who are having inboxes lose 37 or about 26%  after 

the first part of the experiment whereas those who have no inboxes lose a whopping 4744 or  74%. 

Similarly, after the second part of the experiment, where the edges are clustered into pairs, in the 

resultant set of employees, those employees who are having mail inboxes available to begin with 

have smaller losses. The employees who are of interest to the study, i.e. who are in some way 

connected to the insider trading scandal are down from 8 after the first stage to 6, a loss of 2, 

whereas the number is down from 8 to 6 in case of those employees who had no inboxes at 

inception, a net loss of 5 from the start. Similarly, in the set of employees who are outside the 

scope on interest, those who are having inboxes decrease from 106 after the first part of the 

experiment to 67 i.e. an overall loss of 65 or about 53% from the overall figure (143)  after the 

second part. In contrast, those employees who had no inboxes to begin with have decreased from 

1674 to 621, a loss of 1013 and an overall loss of 5797 or a loss of about 90%. This indicates that 

entities with incomplete information in the network model tend to be filtered out during the process 

of scrutiny faster than those entities whose information is complete while building the network 

model. 
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2.26.11 Methods to Mitigate Missing Data 

 

Researchers in social network analysis are perpetually searching for strategies and tools to 

counteract the harmful effects of missing and distorted data. The analysis of covert 

networks, however, presents conditions in complete contrast to those of conventional SNA. 

In the words of Kossinets (2008), who studied criminal networks: 

“While data collection quality in an analysis of conventional social relationships 

(such as ‘friendship’ or ‘advice’ networks) may be improved by appropriate research 

design and cooperation on the part of the participants, the situation in a criminal 

investigation is exacerbated by the unfortunate fact that criminals seldom cooperate 

with the law–enforcement agencies. Not infrequently, they engage in a conspiracy 

to conceal their identities and the structure of criminal organizations. Since 

investigators typically proceed by expanding the ego-networks of several main 

suspects, the key actors may be omitted due to ignored or unknown interaction 

contexts. Actors with false or multiple identities also (deliberately) introduce errors 

into the criminal group's structural representation. A plausible conjecture is that links 

may be easier to uncover once we know the primary suspects (via surveillance). 

However, since we expand the suspects' circle by traversing interactions in certain 

contexts, missing links are of great importance, too. As a result of the conspiracy, 

some meetings, telephone conversations, or email exchanges may not be recorded. 

The consequences are two-fold: first, investigators may be missing certain 

connections between actors in the main pool of suspects; second, since those 

connections lead to other potential suspects, truncated ties effectively hinder the 

course of the investigation. We interpret this type of missing data due to 

incriminating interaction contexts left outside the analysis scope,”  

 

This is a universal feature of analysis when looking at building models of covert networks. 

Many investigators resort to approximations and informed guesswork to fill in the gaps. 

The results vary; if the guesses have been effective, the network model is more or less 

accurate. If not, erroneous outcomes ensue. There is always a need for the analyst to have 
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an ear to the ground in such cases and be in close touch with the domain specialists who 

can point to flaws during the collection of information at initial stages. 

 

One of the more acknowledged methods of collecting data about covert or criminal 

networks is the one adopted by Krebs (2002). While gathering data in connection with the 

9/11 attacks, Krebs realized how tenuous the sources of data were and was amazed at the 

sheer scale of wrong and misleading information pouring out into the public domain:  

“Once the names of the 19 hijackers were public, discovery about their background 

and ties seemed to accelerate. From two to six weeks after the event, it appeared that 

a new relationship or node was added to the network daily. In addition to tracking 

the newspapers mentioned, I started to search for the terrorists’ names using the 

Google search engine 1. Although I would find information about each of the 19 

hijackers, I rarely found information from the search engine that was not reported in 

the major newspapers I was tracking. Finding information that was not duplicated in 

one of the prominent newspapers made me suspicious. Several false stories appeared 

about a cell in Detroit. These stories, originally reported with great fanfare, were 

proven false within one week. This made me even more cautious about which 

sources I used to add a link or a node to the network.”(p.45).  

In his observations, one thing to note is the emphasis on trusting duplicated information in 

trusted domains like prominent newspapers. This technique approximates the concept of 

triangulation. His study ended up constructing the terror network in stages, reflected in the 

network diagrams in his work. 

 

The first model (Figure 2, p.4) that resulted from his data-gathering efforts was based on 

the “trusted prior contacts” of the hijackers. The model was sparse, reflecting “how distant 

many of the hijackers on the same team were from each other. Many pairs of team members 

were beyond the horizon of observability.” (p.46)Krebs concluded that “Keeping cell 

members distant from each other, and from other cells, minimizes damage to the network 

if a cell member is captured or otherwise compromised.” Krebs quotes the mastermind,  

Usama(Osama)  bin Laden, who is recorded having described this strategy on a videotape 
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that was found in a hastily deserted house in Afghanistan. “Those who were trained to fly 

didn’t know the others.One group of people did not know the other group.” (p. 46). 

 

After the initial network model took shape, Kreb’s next problem was to ascertain how 

exactly a covert network accomplishes its goals. He solved the problem by using the 

concept of “transitory short-cuts”33in the network. Such short cuts happen when meetings 

are undertaken to connect disparate parts of the network to coordinate tasks. After the 

coordination is accomplished, the key actors' cross-ties go dormant until the need for their 

activity arises again, presumably before the terrorist act is to happen. Krebs reports that 

“One well-documented meeting of the hijacker network took place in Las Vegas” (p. 10) 

and he factored the new ties resulting from this meeting and a few others into the 

construction of a second and larger network model which comprised “trusted prior contacts 

plus meeting ties (short-cuts)”(Figure 3, p.4). 

 

Krebs’s research revealed that the hijackers’ network had a “hidden strength – massive 

redundancy through trusted prior contacts. Through kinship and training/fighting in 

Afghanistan, the ties forged in school made this network very resilient. These ties were 

solidly in place as the hijackers made their way to America. While in America, these strong 

ties were rarely active – used only for planning and coordination. In effect, these strong 

underlying ties were mostly invisible during their stay in the U.S. It was only after the 

tragic event that intelligence from Germany (about the Hamburg Cell) and other countries 

revealed the dense under-layer of this violent network.” (p.50). Krebs added these dense 

“underlayers” to the second model and came up with the third and final model – “the 

hijackers’ network neighborhood” (Figure 3, p.8) which was much denser.  

 

 

 

                                                           
33 The concept of transitory short-cuts is similar to the concept of short paths proposed by Watts, (1999). In 

his words – “If the world did not contain many people, then it would not be surprising if they were all closely 

associated (as in a small town). If most people knew most other people then, once again, it would not be 

surprising to find that two strangers had an acquaintance in common. If the network were highly 

centralized—say a star—then an obvious short path” (p.4) 
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It needs to be pointed out that Krebs and many other similar researchers based their studies 

on the information available after the incident. Though some of this information appeared 

to be misleading initially, as time passed, the data became more “settled” and was 

corroborated through multiple sources. However, this doesn’t settle the issue of building 

models of covert structures that lurk without their payloads being delivered. The detection 

of covert networks or subnetworks through prior or preventive surveillance is almost 

certainly tougher than post hoc analyses. However, many of the methodologies Krebs 

adopted are instructive. Looking at past ties in a network and ascertaining how they have 

evolved through time gives a very accurate window into the stages of a conspiracy’s 

development. For instance, an investigator is smart to ask why a pair of actors who had 

been chatting incessantly on their cell phones a month ago have stopped conversing with 

each other all of a sudden and even though they remain in the vicinity of each other. Or, 

why two actors who were rarely communicating with each other have suddenly started 

exchanging information; such penetrating and close observation is likely to lead an analyst 

to a rich trove of hidden information. 

 

Kossinets (2008, p.4) proposed a two-fold strategy to deal with missing data in criminal 

networks. The first approach develops analytic techniques that capture global statistical 

tendencies and do not depend on individual interactions. The second is a complementary 

strategy to develop remedial techniques that minimize the effect of missing data. To 

achieve this, he adopted a three-step iterative process: 

(1) take a real (large enough) social network or an ensemble of random graphs and 

assume that network data is complete; 

(2) remove a fraction of entities to simulate different sources of error; and 

(3) measure network properties and compare them to the “true” values (from the 

“complete” network).  

 

He has quantified the uncertainty caused by missing network data. He assesses the 

sensitivity of graph-level metrics such as average vertex degree, clustering coefficient, 

degree correlation coefficient, size, and mean path length in the largest connected 

component. Although noting that his results may not be generalizable to all networks, he 
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concludes that “for forensic (criminological) research, it seems most important that the 

network of suspects is well-connected so that investigators can start from a few principal 

actors and “snowball” to the rest of suspects. As we have found that the size of the largest 

connected component is very sensitive to the omission of actors, an obvious 

recommendation would be to expand surveillance at the early stages in the investigation.” 

(p. 26) 

 

 

2.27 Summary 

 

Knoke’s recommendations are made with terrorist network modeling in mind. Still, the 

content holds equally well for any other covert or dark network where the main aim is to 

secrete away information from law enforcement's prying eyes. Indeed, the suggestions are 

suitable for any social network analysis. With the advent of artificial intelligence and 

machine learning algorithms, which are essentially computer programs that “learn” and 

“make inferences” from the training data that is fed into them, it becomes a sine qua non 

that computational research into social network modeling marches in tandem with domain-

specific knowledge and lock-step with inputs from domain specialists. Collaborative 

relationships should help correct any bias that’s likely to creep in while predicting 

outcomes.  
 

Although the study by Kossinets (2008) was “specific” to the dataset he studied (as is the 

case in the dissertation), the learning points are universally applicable across all networks: 

the errors and distortions that may creep in at the initial stages of network model building 

can have a profound impact on the analysis later on. There is no good alternative to 

accurate surveillance. These points need to be ingrained in any covert networks analysis 

where missing (and misleading) information is the norm and not the exception. 
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Chapter 3 

 

Design and Application of a Covertness Metric 

 

3.1  Introduction 

 

The previous chapter highlights the challenges of applying traditional social network 

analysis techniques to covert networks. The contents also show up the substantial 

differences between traditional social networks and covert networks. One way to tackle 

this problem is to make out a very case-specific scenario and identify attributes peculiar to 

the covert network at hand. These attributes can then be metricized in some manner and 

used for measuring the outcomes. This approach is useful only if the concerned law 

enforcement (or oversight department in an organization in case the idea is to keep tabs on 

intra-corporate conspiracies) has many resources. It has a good amount of prior knowledge 

of what is being scrutinized. All too often, that is not the case, and the surveillance agencies 

are working against unknown or hidden adversaries in a timeframe that is marked with 

unknown deadlines. To avoid these pitfalls in conventional covert network analysis, this 

study proposes a universal metric for measuring all social networks' covertness potential, 

not just ones that are deemed covert. Covertness as a centrality measure has been 

highlighted in a few studies before this (Ovelgonne et al. 2012), and the idea has been 

further exploited here. 

 

 

3.2  Defining an Edge-Vertex Function 

 

In a typical email network, we have nodes that have previously sent emails to each other 

or sent and received copies of others' emails. Thus, a node in such a network will have a 

certain number of emails received and a certain number of emails sent, the total of which 

we may define as its incidence. A certain portion may be received or sent as copies of 

emails exchanged between two other nodes of these emails. We may start our study from 
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the basic sub-network structure in any network; namely, the relationship between two 

nodes also called a tie or an edge. Both terms are used interchangeably for this study's 

purposes. In an email network, an edge comprises a pair of nodes which have exchanged 

emails between them. Each mail so exchanged is termed a relationship. For simplicity, as 

noted earlier, the tie's direction is not considered here.  

 

 

3.3 Edge as the Basic Network Unit 

  

One of this study's unique contributions is its focus on the edge or the tie between nodes 

rather than the nodes themselves. I have observed that a disproportionate corpus of studies 

has revolved around identifying nodes (or players) in networks of interest, whether covert 

or otherwise. This approach runs the risk of identifying a particular node as wholly covert. 

In contrast, in real-life situations, it’s often observed that the same node may function in a 

completely overt or transparent manner in many of its dealings with other nodes in the 

same social network, yet transact with others in opaque covert ways. The same behavioral 

trend may also be longitudinally (time-dependent) visible as well. For example, many 

ENRON employees who played pivotal roles in the conspiracy leading to the scam were 

also functioning in a completely open fashion with many other employees. A quick 

scrutiny of the emails reveals that even with some of the other employees who eventually 

became their co-conspirators, older mail exchanges have practically nothing to do with any 

label that may be tagged with their actions leading to the scam. Thus, it is a key inference 

that while studying covertness, it’s important to keep the context in mind. In other words, 

what are the prevailing situations and surroundings in which the actions of any node (or 

player or employee, as in this case) are being judged? 

 

This study treats an edge as a relationship (or a relational tie) between a pair of nodes, 

referred to as a dyad. Wasserman & Faust (1994, p. 18) define dyads as subgraphs of size 

two consisting of a pair of actors and all ties between them. They define a tie as a linkage 

or relationship between two actors (nodes) at the basic level. The tie is inherently a 

property between the dyad's nodes and therefore is not thought of as pertaining simply to 
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an individual actor. Robins (2009) expands the definition of a dyad further to include 

information on what he has named “dyadic level factors” and defines a dyad as a “pair of 

actors and the social relationships between them” (which may at times be non-existent if 

visible links do not link any two nodes). He mentions that social networks are typically 

measured at the dyadic level regarding relationships of certain types observed between 

actors' pairs. Accordingly, dyadic level factors may also be “embodied in the design and 

method of data collection of a network study.” The dyad or the edge-based properties occur 

typically at tier-2 of the pyramid defined by Robins (2009)34;  

 

A focus on edges or ties as the basis of observation in a social network has its echoes in 

previous studies, though not in any way related to its usage in this work. Most methods of 

social network analysis look at edges exclusively as a relationship attribute between nodes. 

These approaches consider the node the fundamental unit of analysis and the edge as a 

means to relate one to the other. But this doesn’t mean that edges have never been the 

center of attention in social network analysis. Wasserman & Faust (1994, p18) focused on 

dyadic analyses and on the properties of pairwise relationships, such as whether ties are 

reciprocated or not. Robins (2009) also examined the apparent contradiction between 

traditional node-based approaches to social network analysis and one that pays heed to 

relationships. A similar approach is seen in the concept of edge-betweenness developed by 

Girvan and Newman (2004). The betweenness property of an edge forms the center-piece 

of the proposed algorithm for community detection.  

 

Robins (2009), in his study, critiqued a pure graph-theoretic model built around node based 

attributes and approaches focused only on node-centric approaches that he has found to be 

inadequate. He argues that graph-theoretic approaches say nothing about the actors in a 

network, except that they express and receive ties. Suppose the network topology is 

considered as a complete representation of the network. In that case, the implication is that 

any particular qualities of the actors, i.e., the individuals within the network, are irrelevant. 

Robins (2009) further states that “extreme claims” of interpretation are indeed untenable 

                                                           
34Please see the pyramid figure in the earlier section on analytics. 
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for human social systems, and more crucially, for criminal network studies like the one in 

focus here. 

 

 

3.4 Types of Relationships  

 

Wasserman and Faust (1994) expanded upon the definition of a dyadic entity, thus: 

"A dyad is an unordered pair of actors (nodes) and the arcs (ties) that exist between 

the two actors in the pair. The dyad consisting of actors (nodes)i and j will be denoted 

by Dij = (Xij, Xji), for i ≠ j. Dyads are defined for unordered pairs, where the first 

actor index is less than the second, so that i < j. Every pair of actors is then just 

considered once. There are exactly (gC2) =g (g - 1)/ 2dyads. However, there are g (g 

- 1) ordered pairs of actors. (p.510)”  

 

Here, the term ordered pair means a directed graph, and the direction of the information 

flow is also a factor in identifying a dyadic tie. For example, in an undirected graph, a tie 

between nodes i  and j is depicted as eij and ∀ (i,j) ∈ E, and i ≠   j E is the set of all edges 

in graph G, eij= eji, i.e., the ties in undirected graphs are reflexive. In a directed graph, 

however, eij≠eji,i.e., ties are directional and non-reflexive. 

 

Wasserman and Faust (1994) elaborate upon the types or states of relationships between 

the nodes belonging to a dyad and define the following three types: 

 

1. M: Mutual relationships 

2. A: Asymmetric dyads (2 types) 

3. N: Null dyad 

Wasserman and Faust (1994)35 define a  mutual relationship between node i and node jas 

one that exists when i →j and j →I in the dyad, and a mutual relationship is apparent in a 

                                                           
35The notation followed in this section broadly follows the notation pattern adopted by Wasserman & Faust 

(1994). 
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sociomatrix36 when both the (i, j) and (j, i) cells (located symmetrically about the diagonal 

of X) are unity; that is, Xij= 1 and Xji= 1 so that the dyad Dij= (1,1).  

 

The second state defined by them is the asymmetric dyad, which can occur in two ways. 

Either i →j or j →i, but not both ; specifically, Dij = (1,0) or (0,1). Thus, in the Adjacency 

Matrix (sociomatrix), only one of Xijor Xji, which are symmetrically located off the 

diagonal, will contain a 1. This type of relationship is asymmetric since the relationship is 

not reciprocated.  

 

The third type of dyad classified by Wasserman and Faust (1994) is the null dyad, in which 

neither of the pair of actors (nodes) has a relationship (or tie) with the other. By default, a 

dyad that is not asymmetric or mutual must he null. Thus, the cells in the adjacency matrix 

(sociogram) which correspond to(i,j) and (j, i);symmetrically placed within the matrix, are 

both 0; that is, Xij= Xji= 0, thereby implying that Dij= (0,0) 

 

Figure 3.1 illustrates all four relationship types. Null dyads are important for research and 

analysis purposes in covert networks where null edges may often signal missing 

information. It’s required not to discard null dyads and explore a potential link through 

predictive methods. 

 

                                                           
36A tabular representation in matrix form of data collected using a sociometric method to measure 

interpersonal relationships. Used by Social Scientists and is identical to the term Adjacency Matrix (used by 

Computer Scientists). 



 

140 

 

 

 

The dyadic properties indicated above are the center-point of developing an Index of 

Covertness in this study. A dyadic tie37 is typically the simplest form of social network 

with only two nodes joined by an edge or relationship or tie. A dyadic tie can be directed 

or undirected. Simply defined, a dyad is a pair of actors (nodes) and all the ties between 

them, and can be in one of three states: null (no ties), asymmetric (one tie; two 

possibilities), and mutual (two ties)(Wasserman & Pattison, 1996). Why these concepts 

have been discussed in some detail here becomes apparent when we come to the second 

half of the approach in this paper, where we seek to enjoin pairs of edges formed between 

the constituent nodes in a dyad. We’ll see that such edge-pairs may either be 1 or 0, 

depending on whether linkage is possible or not. There is no further use of asymmetric 

dyads, as all ties have been considered subsequently in this paper as undirected. 

                                                           
37For the purposes of this study the term DyadicTie is used interchangeably as an edge or a dyad without any 

loss of  the meaning of this term. 

3.1 
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Any social network can be decomposed into a set of dyads or edges. For this study, an 

edge is defined as a tie or relationship that relates two nodes without indicating the 

direction of the information (i.e., the relationship is undirected). The study assumes that 

all pairs of nodes in a social network have edges, even those that haven’t exchanged any 

information and can be considered null or absent. This approach allows the construction 

of the basic substratum upon which we will construct a tangible metric or index for 

measuring the covertness inherent to the dyads constituting the network; this entity we call 

an Edge Vertex, which will be defined and explained in detail in the coming sections. 

 

 

3.5 Relationship Set 

 

Let’s describe a set R comprising all instances of relationships (or emails exchanged) 

between two network nodes. A Relationship Set between nodes i and j should read as Rij. 

Further, each instance of a relationship between nodes i &j may be read as Rij(m). For 

example, the first communication between i &j is read as Rij(1). The second is Rij(2), and so 

on. Thus, for the edgei-j, Rij, there is a set of m elements { Rij(1), Rij(2), Rij(3),........ Rij(m)} 

where m is the total number of instances of communication (emails) between nodes i &j. 

Each instance has attributed a value of 1 (Values may vary if weights are allotted to each 

instance depending on its importance, but again for this study's purposes, each instance's 

weight is universally considered 1 for simplicity). Of the above, some might be copied (or 

intimated) to other nodes. Suppose node a is made aware of one such communication, say, 

the second instance between nodes i &j. The communications will be marked as a binary 

flow of information between the edge formed between dyad (i, j)& node a with 1. 

 

Definition(Relationship Set)Consider a finite set of nodes, V = {V1,V2,…..,Vi,Vj,….Vn}of 

n entities constituting a social network. Consider the finite set of all communications 

exchanged between nodes Vi and Vj, Rij= {Rij(1), Rij(2),…., Rij(m)} comprising m entities. 

Then we call Rij as the Relationship Set between Nodes Vi and Vj of the social network, 

and rij = |Rij| = m is the cardinality of set Rij. 
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3.6 Shared Relationship Set 

 

I now describe a set Rij’ where Rij’ is the set of all communication instances between i &j, 

which have been associated with at least one node, neither i  nor j. 

Thus, Rij’ is the set comprising emails that have been copied to at least one node other than 

nodes i or j. 

For example,  

If the first mail exchanged between nodes i and j, i.e.Rij(1), is copied to nodes a and k and 

the third instance of communication, Rij(3) is copied to nodes c & d then, we consider 

Rij(1)
’=Rij(1),  

Rij(2)
’= Rij(3)etc. and thus, 

Rij’ = {Rij(1)’, Rij(2)’,….}. 

Further, let, 

rij’= Number of instances of communications between i &j, which are known to other 

nodes, i.e., the number of elements in Rij,’i.e. rij’ = Number of elements in set Rij,’ i.e., its 

cardinality. 

  

Definition(Shared Relationship Set)Consider the finite set of all communications 

exchanged between nodes Vi and Vj, Rij= {Rij(1), Rij(2),…., Rij(m)} comprising m entities and 

consider a finite setRij’ = {Rij’(1), Rij’(2),…..Rij’(k)} comprising k entities where k ≤ m, 

constituting all such mail communications between nodes Vi and Vj which have been 

copied to nodes other than Viand Vj. Then we call the set Rij’ as the Shared Relationship 

Set of nodes Vi and Vj of the social network, and rij’ = |Rij’| = k is the cardinality of set 

Rij.’ 

 

A Relationship Set and a Shared Relationship Set can be explained with a simple 

illustrative example. In Figure 3.2, we have a basic social network consisting of four nodes; 

a, b, c, and d. In the example given below, mail exchanges occur between two nodes, 

namely, b and c. In the first two instances of email exchanges, no copies are marked. 
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In Figure 3.2(a) above, node b sends a mail to node c, and this instance is not copied to the 

other two nodes in the above network. 

 

As per the definitions above, the Relationship Set between nodes b and c is Rbc = {Rbc(1)} 

after the first instance of mail exchange. 

 

 

 

In Figure 3.2(b), node b sends a mail to c, which is the second instance of a communication 

exchange between the two nodes, and this instance is also not marked to any of the other 

two nodes in the network. 

 

Figure 3.2 (a) 

Figure 3.2 (b)  
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Going by the definitions above, the Relationship Set between nodes b and c becomes to 

Rbc= {Rbc(1), Rbc(2)} after the second instance of mail exchange. 

 

The third instance of mail exchange happens between nodes b and c, but this time there is 

a copy marked to c, shown in Figure 3.2 (c).  

 

 

 

Thus, after the third instance of mail exchange, the Relationship Set between nodes b and 

c becomes to Rbc= {Rbc(1), Rbc(2), Rbc(3 )}. More importantly, since there is an instance of a 

copied mail, the Shared Relationship Set starts to be populated; Rbc
’= {Rbc(1)

’}. 

 

This routine gets iterated each time a mail is exchanged between the two nodes, and both 

the sets, namely, the Relationship Set and the Shared Relationship Set, increase in size. 

 

 

3.7 Neighborhood Relationship Set 

  

We now come to the question of the sets of nodes that received copies of some of the email 

instances exchanged between the constituent nodes of a dyad, which has already been 

touched upon while defining the Relationship Set and the Shared Relationship Set. Neither 

of these entities contains any references about the identities of the nodes which received 

the copies. This information will be of crucial importance to the second part of this study. 

Figure 3.2 (c)  
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We attempt to find links between dyads based on their common intentions (meaning 

described later in the paper). 

 

Definition(Neighborhood Relationship Set)Consider the finite set of all communications 

exchanged between nodes Vi and Vj, Rij= {Rij(1), Rij(2),…., Rij(m)} comprising m entities and 

consider a finite set of finite sets Nij= {{ Nij }(1),{ Nij }(2),…..{ Nij }(m)} comprising m entities 

comprising all mail communications between nodes Vi and Vjwhether or not these emails 

have been copied to other nodes. If there is an instance k of mail exchange between nodes 

Vi and Vj, which is not copied out to other nodes, then  { Nij }(k) = {φ }. Then we call the set 

Nij the Neighborhood Relationship Set of the edge vector (Ev)is formed by the pair of 

nodesVi and Vj of the social network and |Nij | = |Rij| = m the cardinality of set Nij. 

 

For the sake of notational uniformity, we may represent the finite set Nij as 

Γ(ij)subsequently. The symbol Γ represents the dyad's neighborhood in terms of nodes that 

have received copies of mail instances exchanged between the pair of nodes. Just what a 

neighborhood set consisting of email copy-receiving nodes looks like is shown in Figures 

3.3(a) and Figure 3.3(b).  

 

Figure 3.3(a) depicts a fictional email-based social network where the solid lines between 

the nodes represent mail exchanges and the dotted lines joining nodes represent mail 

instances. In Figure 3.3(b), the mail exchanges (i.e., the solid lines) have been removed, 

leaving behind only the dotted lines representing the copies sent out by the pair of nodes 

(a,b). As can be seen, nodes c,d, and g are the ones with dotted lines joining them to the 

dyad (a,b ), i.e., these are the nodes that have received copies of instances from (a,b). Thus, 

nodes c, d & g constitute the dyad (a,b ). However, recall that the Neighborhood 

Relationship Set of any dyad (or edge) is a set of sets. Each element of this set is a set that 

is constituted by the identities of nodes that have received copies of a particular instance 

of mail exchanged between a and b, i.e., the constituent nodes of the dyad. Hence, nodes 

c, d, and g in Figures 3.3(a) and 3.3(b) may belong to different sets within the overall 

Neighborhood Relationship Set. 
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This may be true because these nodes may have received different copies of emails 

exchanged between a and b. If one of the instances was marked out to say c and d but not 

g, the set that would be formed will be (c,d ), and if the copy of another instance of mail is 

marked out to nodes c and g  but not d, the set that is formed will be (c, g) and so on. Each 

such set will be a subset of the overall Neighborhood Relationship Set that would be 

created after considering all the exchanges of emails that have taken place between nodes 

a and b. The number of sets within the overall Neighborhood Relationship Set will equal 

the number of instances of mails exchanged between nodes a and b of the dyad (a,b), which 

have been marked out as copies to other nodes within the network.  
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3.8 Edge-Vertex Function Explained 

 

Now that Relationship Set, Shared Relationship Set, and Neighborhood Relationship Set 

have been defined, we can define an Edge-Vertex function. A brief description of how the 

concept Edge-Vertex works were given in an earlier section. However, before defining 

Edge-Vertex, the concept is explained below with illustrative examples and Figures 3.4 

(a), 3.4 (b), and 3.4(c): 

 

 

 

3. 3. 
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Fig. ?? : The above Social Network is an example of an e-mail exchange 

community. Each mail-id which is the equivalent of a node in a network is 

named as an alphabet. The solid lines that link the nodes represent actual 

exchanges of mail. The dotted lines in green indicate mails copied from one 

node to the other. The links or edges are not shown as directionally oriented 

since the study looks at undirected links. That is, it doesn’t really matter 

who has mailed whom. 

Fig. ?? : The Dyad of interest i.e. the nodes a andb have been highlighted 

in the figure above. There is an Edge Eab between the nodes defining the 

mail exchange relationship or tie between them. The dotted lines 

emanating from the pair of nodes are symbolic of the mails which have 

been copied out from the overall mail exchanges between nodes ‘a’ and 

‘b’. 

Fig. ??: The Dyad of interest i.e. 

the Nodes ‘a’ and ‘b’ have been 

shown in isolation in the figure 

above. The Edge Eab between 

nodes ‘a’ and ‘b’ has 4 dotted lines 

emanating out of it which reflects 

that there are 4 mails copied out. 

Figure 3.4.(a) 

3.4.(b) 

3.4 (c) 
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Figure 3.4 (a) shows that the social network shown is an example of a representative 

community based on e-mail exchanges. Each mail-id, equivalent to a node in a network, is 

assigned an alphabet used as its identity. The solid lines that link any pair of nodes 

represent actual exchanges of mail between them. The dotted green lines between nodes 

indicate mails copied from one node to the other. The links or edges are not shown as 

directionally oriented since the study is based on undirected links. That is, it doesn’t matter 

who has mailed whom. 

 

From the figures above, it’s clear that if we are to ascribe an index or a value based on the 

tie between the pair of nodes comprising the dyad, the use of a measure akin to the degree 

centrality, i.e., the number of edges connected to nodes a and b is the most preferable and 

simple one amongst all the centrality measures enumerated earlier. The measure is adapted 

to developing a tie based metric and hence is deployed in a modified format that is made 

clear in the analysis that follows. The way degree centrality is modified is explained below 

based on the figures shown above. 

 

Figures 3.4(a), 3.4(b), and 3.4(c) shows that node a has exchanged emails with c, b, and h; 

thus, its degree centrality is 3. Similarly, b is seen to have exchanged emails with e and a, 

and thus, its degree centrality is 2. It needs to be pointed out here that the degree centrality 

measure does not indicate the total number of emails exchanged by these nodes. It merely 

reflects the total number of tangible links that a particular node has with other nodes via 

mail exchanges. For instance, let’s suppose that nodes a and c have exchanged ten emails, 

nodes a and b have exchanged 20 emails, and nodes a and h have exchanged 15 emails. 

Then, node a is a part of 45 mail exchanges, which is not reflected by its degree centrality 

of 3. What is proposed here is to use the volume of mail associated with a particular node 

(or, more correctly, the volume of mail between a pair of nodes) rather than the node's 

degree centrality attribute? Thus, the metric used here is a variation of the degree centrality, 

in that it is calculated around the edge between a pair of nodes rather than a single node. 

 

Thus, the edge between nodes a and b, i.e., eab, belongs to the set E  that consists of all the 

edges in the mail based social network. The edge eab between nodes a and b is essentially 
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the mailing link between both these nodes. The edge itself represents the individual 

instances of mail exchanged, which are the elements that constitute the Relationship Set 

Rab between the nodes (this set was defined earlier). To obtain the Edge Vertex, the number 

of emails that have been copied to nodes outside of the nodes constituting the dyad is 

recorded. Then the ratio between the two, i.e., the ratio between the number of mails copied 

out by the dyad to the number of emails exchanged between the constituent nodes, becomes 

an index of the covertness of the tie that links the pair of nodes. (We may also directly 

calculate and record the fraction obtained from deducting this Overtness Index from 1, 

which gives us the Covertness Index of the edge.) Finally, the list of all sets of nodes that 

have received copies of mails is also recorded in a separate Shared Relationship Set.  

 

The Edge-Vertex is thus a list that contains the following five elements connected to a 

dyad that it’s defined on: 

      -Node Identifiers of the nodes constituting the dyad. 

      -The cardinality of the Relationship Set between the nodes. 

 -The cardinality of the Shared Relationship Set between the nodes. 

-The Covertness Index of the tie between the constituent nodes. 

             -The Neighborhood Relationship Set between the nodes. 

 

Given the above facts, we may now define the Edge Vertex as follows: 

 

Definition (Edge-Vertex)Consider a finite set of nodes, V = {V1, V2,…..,Vi,Vj,….Vn} of n 

entities constituting a social network. Consider further, any pair of nodes (i,j) from the set 

V. Consider also, the finite Relationship Set Rijconsisting of the instances of 

communication between the pair of nodes selected and the Shared Relationship Set R’ij 

between the selected nodes and the Covertness Index Cijof the tie between the nodes. 

Consider finally that the finite Neighborhood Relationship Set Nij consists of nodes that 

have received copies of mail communications from the selected pair of nodes. The Edge-

Vertex function (Ev)ij, when defined on the edge eij between nodes i and j, outputs the list 

(Ev)ij= {Vi, Vj, |Rij|, |R’ij|, Cij, Nij}. 
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The above definition superficially appears to say the Edge-Vertex function is identical to 

E, the set of all edges in graph G, but it isn’t. The set E comprises all possible ties in a 

network between distinct nodes. In contrast, the Edge-Vertex between nodes i and j is a 

list-set and consists only of a composite group of values concerning the nodes' identity, a 

covertness index, and their Relationship Sets' cardinalities and Shared Relationship Sets 

along with the Neighborhood Relationship Set. There is no single value assigned to the 

Edge-Vertex as such, and its purpose is to store an assorted set of values and information 

about a pair of nodes, as illustrated in Figure 3.5: 

 

 

Figure 3.5 presents two cases. In the first case, there are some communication exchanges 

between nodes A and B, and in the second, there are no exchanges between the nodes. But, 

in both cases, there will be a resulting edge eAB. But, the Edge-Vertex values for both cases 

will vary significantly because the Edge-Vertex function is designed to store values 

emerging from each mail transaction between a given pair of nodes, and the list-set that is 

obtained by applying this function gets changed incrementally. The reason why the Edge-

Vertex function is proposed in this study is made clear once we come to the part that 

measures collusion between covert edges. The information supplied by the function 

becomes very crucial then. 

 

A more detailed analysis of how the set constituting an Edge-Vertex is constructed is 

illustrated in Figures 3.6 (a) to 3.6 (d), representing a small e-mail based network.  

 

3. 
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Figure 3.6 (a) shows the exchange of emails between two nodes, a and b, and copies of 

some of these emails sent out to other network nodes. Each mail exchanged between nodes 

a and b is marked with a solid line of a particular color if the same instance of mail 

exchange has been marked out as copies to one or more nodes in the same network (outside 

of the pair of nodes in question, i.e., a and b) the copy is denoted by a dotted line with the 

same color as the instance of the mail exchange. 

 

 

 

 

 

In the figure, node a sends a mail to b, labeled as Instance 1 and colored blue. Three copies 

of the mail instance are marked as copies by a to nodes c, e, and f. 

We are constructing the set on which Edge-Vertex (Ev)ab is based. 

After the first instance of mail exchange between nodes a and b, 

(Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve,Vf)} } 

 

where, 

Va is node a, Vb is node b, Rab is the Relationship Set between nodes a and b as defined 

earlier, Rab’ is the Shared Relationship Set between nodes a and b, Cab is the Covertness 

Index of the tie between nodes a and b after this instance of an exchange of mail and the 

last entity in the list is the set of sets of nodes to which the particular instance of mail was 

marked out. 

Figure 3.6 (a) 
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After the first instance of an exchange of mail between nodes a and b, the Relationship 

Set cardinality between a and b is 1. Since there is only a single mail, the Shared 

Relationship Set cardinality is also one as copies have been marked. It needs to be noted 

here that though three copies of the first instance are seen marked out from the mail 

exchanged between the dyad(a,b) (i.e., to nodes c, e, and f’),  the cardinality will remain 

1. (However, the fact that three nodes have received copies of the instance of mail 

exchange is reflected in the last entity of the Edge-Vertex list). The entity that occurs after 

the cardinality entries is the Covertness Index, which is obtained by computing the ratio 

of the cardinalities of the Shared Relationship Set to that of the Relationship Set formed 

between nodes a and b deducted from 1.  

 

After the first instance of mail transfer, the Covertness Indexof edge (a,b) is 0, which is 

found through the following calculation: 

 

|Rab| = 1,  |Rab’| = 1,  

Overtness Index = |Rab’|÷ |Rab| = 1 

Cab = Covertness Index  = (1 – Overtness Index)  = (1 – 1) = 0; 

 

The last entity in the list set comprising the Edge-Vertex for edge (a,b) is the set of sets 

containing details of the nodes to which the copies of a particular instance of mail exchange 

are marked. Since we can see here that node a, which has sent the mail to b in this instance, 

it has marked out copies to nodes c, e, and f, this entity reads as {Vc, Ve, Vf}. 

 

We can summarizetheoutputs after the first instance of mail exchange as follows: 

1. Relationship Set(Rab): 

a) Rab(1) = 1; 

b) Rbc={1}; 

c) |Rab| = 1; 

2. Shared Relation Set (Rab ‘): 
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a) Rab(1)’ = 1; 

b) Rab ‘= {1}; 

c) |Rab’| = 1; 

3. Covertness Index (Cab) = 0: 

4. Set of Copied Nodes = {{Vc,Ve,Vf}}; 

5. (Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve,Vf)} ; 

i.e. (Ev)ab = {Va, Vb, 1, 1, 0 , {(Vc,Ve,Vf)} }; 

 

 

 

 

 

Figure3.6 (b) above shows the second instance of mail being exchanged between nodes a 

and b; it’s node b that has sent a mail to node a. The arrows representing this second 

instance are yellow. The mail exchange between a and b is shown in a solid yellow line, 

whereas the mails marked by node b to other nodes, namely, nodes d, e, g, and h, are shown 

in dotted format. 

 As in the first instance of mail exchange, we go on with constructing the set on which edge 

vertex (Ev)ab is based.  

 

After the second instance of mail exchange between nodes a and b, we have: 

(Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve, Vf), (Ve, Vd, Vg,Vh} } 

 

Figure 3.6(b) 
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After the second instance of an exchange of the mail between nodes a and b, the 

cardinality of the Relationship Set formed between a and b is 2; since there are two mails 

between a and b at this stage, the cardinality of the Shared Relationship Set also 

increases to2 as copies of emails have been marked out the second time around as well. 

The CovertnessIndex, as in the earlier case, gets computed by calculating the ratio of the 

cardinalities of the Shared Relationship Set and that of the Relationship Set, respectively, 

and then deducting from 1.  

 

At this stage, the Covertness Index of the edge is 0, as is revealed through the following 

calculation: 

 

|Rab| = 2,  |Rab’| = 2,  

Overtness Index = |Rab|÷|Rab’| = 1 

Cab = Covertness Index  = (1 – Overtness Index)  = (1 – 1) = 0; 

 

The last entity in the set comprising the Edge-Vertex between nodes a and b is the set of 

sets containing details of the nodes to which the copies of a particular mail exchange are 

marked. Since we can see here that node b, which has sent the mail to node a in this 

instance, has marked out copies to nodes d, e and g and h, this entity reads as {{(Vc, Ve, 

Vf),(Vd, Ve, Vg, Vh)}. 

 

Summarized results after the second mail exchange:- 

1. Relationship Set(Rab) : 

d) Rab(2) = 2; 

e) Rbc={1,1}; 

f) |Rab| = 2; 

2. Shared Relation Set (Rab ‘): 

d) Rab(2)’ = 1; 

e) Rab ‘= {1,1}; Increases by one element since there is at least one copy. 

f) |Rab’| = 2; 



 

156 

 

3. Covertness Index (Cab) = 0: 

4. Set of Copied Nodes = {(Vc, Ve,Vf), (Vd, Ve,Vg,Vh)}; 

5. (Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve, Vf),,(Vd, Ve,Vg,Vh)}}; 

6. i.e. (Ev)ab = {Va, Vb,2, 2, 0, {(Vc,Ve, Vf),(Vd, Ve,Vg,Vh)}}; 

 

 

 

 

The third instance of mail being exchanged between nodes a and b is shown in Figure 3.6 

(c) above.  It is seen that node b has sent a mail to node a. The arrow representing this 

instance is red. The mail exchange between a and b is shown as a solid red line, and no 

copies of this instance are seen to be marked out. 

 

 As in the first two mail exchange instances, we continue constructing the set on which 

edge vertex (Ev)ab is based.  

 

After the third instance of mail exchange between nodes a and b, 

(Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, {(Vc,Ve, Vf), (Ve, Vd, Vg,Vh), (φ)} 

 

As in the earlier instances, 

 

Va is node a, and Vb is node b, Rab is the Relationship Set between nodes a and b as defined 

earlier, Rab’ is the Shared Relationship, Set between nodes a and b, Cab is the Covertness 

Index of the tie between nodes a and b after this instance of an exchange of mail and the 

Figure 3.6(c) 



 

157 

 

last entity in the list is the set of sets of nodes to which the particular instance of mail was 

marked out. 

 

After the third instance of an email exchange between nodes a and b, the Relationship Set 

cardinality between a and b is three since three emails are exchanged between a and b. 

Still, the Shared Relationship Set cardinality remains at two as no copies have been 

marked out this time. The Covertness Index is obtained as earlier by computing the Shared 

Relationship Set's cardinality ratio to that of the Relationship Set, respectively, and then 

deducting from 1.  

 

The Covertness Index of the edge is computed to be after the third instance of mail 

exchange and calculated as follows: 

 

|Rab| = 3,  |Rab’| = 2,  

Overtness Index = |Rab’| ÷ Rab| = 2/3 = 0.67 

Cab = Covertness Index   = (1 – 0.67) = 0.33; 

 

Again, the last entity in the list-set comprising the Edge-Vertex is the set of sets containing 

details of the nodes to which the copies of a particular mail exchange are marked. Since 

we can see here that node b, which has sent the mail to node a in this instance, has not 

marked out copies to any other nodes and this entity reads as {{(Vc, Ve, Vf),(Vd, Ve, Vg, Vh), 

(φ)}. 

 

Summarized results after the third mail exchange:- 

1. Relationship Set(Rab) : 

g) Rab(3) = 3; 

h) Rbc={1,1,1}; 

i) |Rab| = 3; 

2. Shared Relation Set (Rab ‘): 

g) Rab(-)’ = φ; Since there are no copies, there will be no entry in this set. 

h) Rab ‘= {1,1,}; (No change since there are no copies this time). 



 

158 

 

i) |Rab’| = 2;(No change). 

3. Covertness Index (Cab) = 0.33: 

4. Set of Copied Nodes = {(Vc, Ve,Vf), (Vd, Ve,Vg,Vh), (φ)}; 

5. (Ev)ab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve, Vf),,(Vd, Ve,Vg,Vh), (φ)}}; 

6. i.e. (Ev)ab= {Va, Vb,3, 2, 0.33, {(Vc,Ve, Vf),(Vd, Ve,Vg,Vh), (φ)}}; 

 

 

 

  

The fourth and last instance of mail being exchanged between nodes a and b is shown in 

Figure 3.6 (d) above.  Node a has sent a mail to node b. The arrow representing this 

instance is black. As in the earlier instances, the mail exchange between a and b  is shown 

as a solid black line, and two copies of this instance are seen to be marked out by node a, 

i.e., to nodes d and h, respectively (dotted black arrows). 

 

After this instance,  

Eab= {Va, Vb, |Rab|, |Rab’|, Cab, {(Vc,Ve, Vf), (Ve, Vd, Vg,Vh}, (φ), (Vd ,Vh) } 

 

Four emails have been exchanged between nodes a and b at this stage; the Relationship 

Set cardinality between a and b is four since four emails are exchanged. The cardinality 

of the SharedRelationshipSetincreases to 3 as copies have been marked out this time. 

 

The Covertness Index is calculated, as shown below: 

|Rab| = 4,  |Rab’| = 3,  

Figure 3.6(d) 
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Overtness Index = |Rab’|  ÷|Rab| = 3/4 = 0.75 

Cab = Covertness Index   = (1 – 0.75) = 0.25; 

 

The last entity in the set comprising the Edge-Vertex reads after the last exchange of mail 

as  

{{(Vc,Ve, Vf),(Vd, Ve,Vg,Vh), (φ), (Vd ,Vh) }. 

 

Summarized results after the fourth mail exchange:- 

1. Relationship Set(Rab) : 

a) Rab(4) = 4; 

b) Rbc={1,1,1,1}; 

c) |Rab| = 4; 

2. Shared Relation Set (Rab ‘): 

a) Rab(3)’ = 1; This is the third entry in this set as there was no entry in the last 

(third) instance of mail transfer. 

b) Rab ‘= {1,1,1}; Increases in size since there are copies this time. 

c) |Rab’| = 3; 

3. Covertness Index (Cab) = 0.25: 

4. Set of Copied Nodes = {(Vc, Ve,Vf), (Vd, Ve,Vg,Vh),(φ), (Vd,Vh)}; 

5. Eab = {Va, Vb, |Rab|, |Rab’|, Cab, , {(Vc,Ve, Vf),,(Vd, Ve,Vg,Vh),(φ), (Vd,Vh) }} ; 

6. i.e. Eab = {Va, Vb,4, 3, 0.25, {(Vc,Ve, Vf),(Vd, Ve,Vg,Vh)(φ), (Vd,Vh)}} 

The table3.1below illustrates how the list-set generated by the application of the 

Edge-Vertex function on dyad (a,b) evolves over the increasing instances of mail 

transfer: 
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3.9 Overtness and Covertness of Ties Explained 

 

Let us now define a function σijwhere σij= (rij’/ rij) 

In all cases, 0 ≤ σij≤ one since the number of communications copied to other nodes can’t 

exceed the total number of emails exchanged. 

The closer σij is to 1, the more accessible the communications from the dyad to other nodes; 

in other words, the edge of the dyad is more transparent and less covert in the 

communication interchanges between its constituent nodes. 

 

Thus, going by the above discussions, we may now define the Overtness Index of the tie 

between the nodes i & j as σij or the proportion of the total number of communication 

instances shared with other nodes. 

 

Definition (Overtness Index)Consider the finite set of all communications exchanged 

between nodes Vi and Vj, Rij= {Rij(1), Rij(2),…., Rij(m)} comprising m entities and consider 

Rij’ = {Rij’(1), Rij’(2),…..Rij’(k)} comprising k entities where k <= m, constituting the set of 

Table 3.1 
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all mail communications between nodes Vi and Vj which have been copied to nodes other 

than Viand Vj. Then the ratio of their respective cardinalities σij where σij = (rij’/ rij) defines 

the Overtness Index of the nodes Viand Vj. 

 

Likewise, the Covertness Index of the Edge between the nodes i&j will be defined by the 

formula: 

 

Cij = (1 – σij) 

 

Definition (Covertness Index)Consider the finite set of all communications exchanged 

between nodes Vi and Vj Rij= {Rij(1), Rij(2),…., Rij(m)} comprising m entities and consider 

Rij’ = {Rij’(1), Rij’(2),…..Rij’(k)} comprising k entities where k <= m, constituting the set of 

all mail communications between nodes Vi and Vj which have been copied to nodes other 

than Viand Vj. Then the ratio of their respective cardinalities when deducted from 1, i.e., 

Cij = (1- σij ), where σij = (rij’/ rij) defines the Covertness Index of the nodes Viand Vj. 

 

The concepts of Overtness and Covertness are explained illustratively by using the same 

example of mail exchanges between two nodes in a simple four-node network as in the 

earlier  

Case. The figures below in sequence Figures 3.7(a) to (d)  illustrate how the Covertness 

Index is constructed: 

 

In the figures below, we have four nodes in a Network: a, b, c & d.  
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To start with, node b sends a mail to node c without marking any copies to either node a 

or node d. In the Awareness Matrix38 shown within the figure, the cells corresponding to 

node b and node care populated with 1, reflecting the communications status. It may be 

seen that since no copies are marked to either node a or node d, the cells corresponding to 

them remain unpopulated. 

                                                           

 

 

 

 

 

 

 

 

 

 

 

 

 
38An Awareness Matrix is described as a Matrix that reflects how many copies of mails exchanged between two nodes have been 

marked (copied) to other nodes and also indicates the identities of the nodes privy to such copied mails. An Awareness Matrix is specific 

to a node pair in a Social Network. This concept has been enlarged upon in the succeeding sections. 

3.7 



 

163 

 

 

 

 

 

 

 

 

 

In Fig 3.7(b) above, we see that a mail has been directed back from node c to node b again, 

with no copies. In the Awareness Matrix shown to the bottom left of Figure 3.7 (b), in the 

cells corresponding to nodesb&c, the second column in the Awareness Index (or AI)39, 

which counts the number of emails exchanged, increases to 2. Again, the cells 

corresponding to nodes a and d remain at zero, reflecting that there are no copies received 

by them of the emails exchanged between nodes b and c.  

 

Figure 3.7 (c) below shows that the third instance of mail is seen exchanged between nodes 

b and c. This time around, however, a copy is marked to node a. Thus, the count in the 

second column of the Awareness Matrix increases to 3 for both nodes b and c. More 

importantly, the column corresponding to node a is now populated with a 1, reflecting the 

node's status as the recipient of a copy of one of the instances of mail exchanged between 

nodes b and c.  

                                                           
39 An Awareness Index is an entry in an Awareness Matrix that reflects the number of copied mails received by a node other than the 

nodes in the Dyad between whom the interchange of mails is going on. The concept is explained in a succeeding section. 
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The mechanism by which the Covertness Index (CI) of the Information Tie between nodes 

b and c is calculated is shown in the text box to the right in Figure 3.7 (d). The total number 

of emails exchanged between nodes b and c is 3. Of these three emails exchanged, only 

one mail is seen to be copied to a third node, namely node a. Thus, two of the three mails 

exchanged between nodes band care confined between these nodes, i.e., the information in 

these emails has not left the dyad formed between nodes b and c. As per the construct 

proposed in this study, the extent to which the information exchanges between b and c is 

not shared comes to 2/3 or 0.67 (67%), which is also the Covertness Index of the edge or 

tie between nodes b and c.  
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3.10 Developing a Balanced Covertness Index 

 

However, the above formulation is agnostic of the number of communication interchanges 

between the constituent nodes in the Edge. The Covertness Index should depend upon Rij,’ 

i.e., the number of instances known to other nodes, and the cardinality of Rij, i.e., the 

number of instances of communications between i and j. One of the ways this can be done 

is by re-defining the Covertness Index (or CI) as 

 

Cij = Cij log (Rij) when Rij = 0 

Cij = 0 when Rij = 0 

  

The reasons for selecting this redesign becomes obvious as we proceed to the actual 

calculations of the Covertness Index of ties between nodes. A sample calculation has been 

done in the subsequent sections to demonstrate the efficacy of the revised formulation. The 

figures below (not based on actual values, basically drawn to show the patterns) illustrate 

the improvement in results when the Revised formulation is applied to the ENRON dataset. 
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The scatter plots' horizontal axis represents the rankings of the edges of interest (EoIs) 

based on the Covertness Index scores associated with them. Figure 3.8 (a) shows the 

distribution of the EoIs when the unrevised Covertness Index metric is applied to the edges 

and their rankings calculated. Figure 3.8 (b) shows the shift leftwards along the horizontal 

axis of the rankings of the EoIs as the revised Covertness Index metric is applied to the 

edges in the ENRON mail corpus. The highest rankings occur at the horizontal axis's origin 

and decrease as we move to the right. The higher the Covertness Index value of an edge, 

the higher its rank, and the more it is positioned towards the left on the horizontal axis. 

The revised Covertness Index makes the rankings of the EoIs better and allows them to be 

detected more easily, as we will see later. 
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Thus, it’s trivial to observe from a comparative view of the scatterplots of the rankings of 

the edges of interest before and after applying the revised formulation that the Edges of 

Interest rankings have shifted to the left. That is, more of the Edges of Interest’s now figure 

in the higher ranks than earlier, which is the improvement that has resulted from the 

revision of the CI formula. 

 

A comparative graphical representation given in Figure 3.9below shows the improvement 

in covertness rankings of the edges of interest (EoIs) after applying the revised metric. 

Figure 3.10 shows the lift chart, which gives a clear picture of the comparative rankings of 

the EoIs before and after the application of the revised metric. The improvement arises 

from the utilization of the volume of transactions between the nodes in a dyad. Earlier, 

many of the edges had been assigned high rankings because they had not shared any copies 

of their exchanges. Still, this model failed to consider the possibility of very few mails 

having been exchanged and resulting in high index values based on very few copies having 

been marked out.  
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Thus, pairs of nodes with a high volume of mail exchanges between them may have 

marked out a marginally less percentage of their transactions as copies to outside mails are 

liable to be left out of the higher rankings. The revised metric's application solves this 

problem largely, as shown in Figure 3.9 and Figure 3.10. This is somewhat of a paradox, 

which is explained in the sections following in this chapter. 
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3.11 ENRON email Dataset: A Brief History 

 

Enron was founded in July 1985 when Texas-based Houston Natural Gas merged with 

InterNorth, a Nebraska-based natural gas company. In its first few years, the new company 

was simply a natural gas provider. Still, by 1989 it had begun trading natural gas 

commodities, and in 1994 it began trading electricity, and by 2001 it was executing on-

line trades worth about $2.5 billion a day. By the late 1990s, Enron had begun shuffling 

much of its debt obligations into offshore partnerships—many created by Chief Financial 

Officer Andrew Fastow. At the same time, the company was reporting inaccurate trading 

revenues. Enron was also using its partnerships to sell contracts back and forth to itself and 

booking revenue each time. 

 

In February 2001, Jeffrey Skilling, the president, and the chief operating officer, took over 

as Enron’s chief executive officer, while former CEO Kenneth Lay stayed on as chairman. 

In August, however, Skilling abruptly resigned, and Lay resumed the CEO role. By this 

point, Lay had received an anonymous memo about the Fastow partnerships, which warned 
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of possible accounting scandals. As rumors about Enron’s troubles abounded, the firm 

shocked investors on October 16 when it announced that it would post a $638 million loss 

for the third quarter and take a $1.2 billion reduction in shareholder equity due in part to 

Fastow’s partnerships. Simultaneously, some officials at Arthur Andersen LLP, Enron’s 

accountant, began destroying Enron audits documents.  

 

By October 22, the Securities and Exchange Commission had begun an inquiry into Enron 

and the partnerships; a week later, the inquiry had become a full investigation. Its stock 

value began to crater—it fell below $1 per share by the end of November and was delisted 

on Jan. 16, 2002. Many executives at Enron were indicted for various charges, and some 

were later sentenced to prison.  

 

 

3.12 Nature of the ENRON Dataset 

 

The email inboxes of 151 executives were uploaded onto the Internet by the Federal 

Energy Regulatory Commission (FERC) on March 26, 2003, in the public interest. The 

federal agency decided to post hundreds of thousands of e-mails that Enron executives sent 

and received from 1998 through 2002. The FERC eventually culled the trove to remove 

the most sensitive and personal data after receiving complaints. Even so, the “Enron e-mail 

corpus,” as the cleaned-up version is now known, remains one of the largest public domain 

databases of real e-mails in the world. Please see FERC (2013) for the Federal Energy 

Regulatory Commission’s website on the Enron investigation, FERC (2003) for the final 

order releasing the data to the public, and the informative book on the ENRON scandal by 

McLean and Elkind (2013) for a popular account of the Enron scandal. 

 

This corpus is valuable to computer scientists and social-network theorists in ways that the 

e-mails’ authors and recipients could never have intended. The mails are a rich brew of 

how real people in a real organization use e-mail—full of mundane lunch plans, boring 

meeting notes, embarrassing flirtations that revealed at least one extramarital affair, the 

damning missives that spelled out corruption. Research into the corpus is prolific and wide-
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ranging, so much so that it has become the foundation of hundreds of research studies in 

fields as diverse as machine learning and workplace gender studies.  A selection from the 

large range of ENRON studies is briefly presented here to highlight some of the research-

related methodologies that the corpus has spurred and the approaches adopted. One of the 

earliest research studies on the subject was by Shetty and Adibi (2004) whodeveloped an 

RDBMS (MySQL) database of the corpus, Wang et al. (2014) have utilized the corpus for 

conducting anomaly detection studies in a dynamic network, Diesner et al. (2005) have 

provided a social network analysis procedure that focuses on changes in behavior during 

the scandal period, Deitrick et al. (2012) have developed a neural network model predicting 

the gender of an email-based on the email exchanges that happened in ENRON, Peterson 

et al. (2011) have proposed measures of formality in the email correspondence, Chapanond 

et al. (2005) have adopted a graph-theoretic and spectral classification analysis, Martin et 

al. (2005) have suggested techniques for detection of abnormal email activity in sent 

messages, Zhou et al. (2006) proposed  a probabilistic (Bayesian) approach to community 

detection for identifying employees who were involved in the scam, and Zhou et al. (2007) 

have also developed methodologies for effecting data cleaning with focus on email aliases, 

Hardin and Sarkis (2015)  discuss six measures of the Enron corpus based on the adjacency 

matrices of the email network, and suggest how these measures can be used in 

undergraduate education and research. They also provide a brief analysis of the group 

membership of the most connected cliques, found through the method of hierarchical 

clustering and hierarchical decomposition. Alkhereyf & Rambow (2017) have developed 

a classifier that trains on the Enron email corpus and tests the Enron email corpora. They 

show that information from the email exchange networks improves the performance of 

classification 

 

This wide-ranging and roving research has had widespread applications: computer 

scientists have used the corpus to train systems that automatically prioritize certain 

messages in an in-box and alert users that they may have forgotten about an important 

message. Other researchers have used the Enron corpus to develop systems that 

automatically organize or summarize messages. The data set has somehow touched much 
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of today’s software for fraud detection, counterterrorism operations, and mining workplace 

behavioral patterns over e-mail. 

 

The reason why the Enron email corpus is used in this study is access to a huge volume of 

existing research, which enables the comparison of different techniques and evolution of 

better network analytics with demonstrable improvements in outcomes. 

 

 

3.13 Previous Research on ENRON Dataset 

 

This dissertation focuses on the ENRON email corpus, which, strictly speaking, is not a 

covert network. The financial scam that engulfed the corporation was the handiwork of a 

select group of actors who planned their concert strategies. There have numerous analyzes 

of the ENRON corpus. Most approaches have focused on semantic-based algorithms where 

key words connected to the scam have been used to classify and cluster the employees of 

interest to the investigation. There also have been some structural approaches, namely, 

variants of the geodesic path algorithm of Djikstra (1959) or the ShortestPaths Network 

Search Algorithm, SPNSA(Magalingam, Davis and Rao 2015), wherein the authors have 

presented an algorithm designed to extract a smaller, more manageable, network of possible 

relationships from a large dataset of interactions and have further developed this algorithm 

to show that it performs well in a variety of scenarios, and can extract meaningful sub-

networks for a criminal investigator to start an investigation. 

 

Most of these researches on the ENRON corpus are based on a post hoc scenario, i.e., the 

analysis is aware of the employees involved, and then the research evolves methodologies 

to identify them optimally. Though many of the techniques do yield very impressive results 

in terms of bringing out the conspiracy structure from within the larger organizational 

network of ENRON, it needs to be borne in mind that in most cases, analysts may not aware 

that a conspiracy or an offense is underway or may just have an inkling without knowing 

about the principal actors and the way they are collaborating. This research orients itself to 
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such a blind scenario. It presumes not to know either the employees of interest or the acts 

of collaboration to commit fraudulent activities.  

 

 

3.14 Metrics to Identify Covert Structures 

 

The idea here is first to apply the attribute of covertness (described earlier) of ties between 

pairs of nodes and then rank them in a descending order of the index values, which is the 

preliminary step to building the first layer of communities in the ENRON network. But the 

higher-ranked edges in terms of covertness in their ties are not necessarily related to each 

other. That is, each edge may be confining information related to the exchange of emails 

between its constituent nodes for different reasons. 

 

In this study, we seek to ascertain which of the edges (and, as by extension, the constituent 

pair of nodes) were involved in activities about insider trading of stocks before the scam 

coming loose, or just being privy to the events leading to it. As we have discussed earlier, 

the top-ranked covert Edges may be confining information due to reasons unconnected to 

our study. They may be ranked higher as they might have been secretive in a more 

fastidious manner.  

 

The challenge then is to evolve a subsequent series of steps that will not only take into 

account the scores generated from the application of covertness index but also cluster the 

‘covert’ Edges into groups that will reflect the commonness of the covert intentions, i.e., 

the effort will be to cluster those top-ranked Edges which have specifically been part of 

the efforts to conceal information about the scam. 

 

The flow chart below shows the series of steps schematically to identify top-ranked covert 

edges and then build bigger sub-nets based on common intent. 
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3.15 ENRON Email Dataset in Numbers 
  

Research into the ENRON email corpus reveals 34980 unique nodes, including many 

belonging to non-ENRON domains. Many of these nodes are not employees or even 

persons; rather, they are inanimate, for example, outlook-migration-team@enron.com. 

 

Of these, the number of unique nodes belonging to the ENRON domain (i.e., possessing 

the suffix @enron.com) is 4643. The number of available Edges between these nodes 

comes to 122987 in the sense that there are these the number of pairs of nodes that have 

exchanged at least one mail amongst themselves. However, for this study's purposes, the 

non-ENRON domain mails have been removed from the above number, and the total 

number of unique Edges comes down to 55288. The template below summarizes some of 

the numbers connected to the ENRON e-mail corpus which have been used in this report: 

 

And as mentioned earlier, the email inboxes of only 151 employees are fully available in 

the public domain. The details of the remaining persons employed in ENRON can only be 

inferred from the information available in the different sections (like the ‘From,’ ‘To,’ ‘cc’ 

and ‘bcc’) within the existing in-boxes. Thus, the details of the network are substantially 

incomplete, which adds to the challenge.  
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For research, this study has considered 19 employees of ENRON who were either indicted 

during the subsequent trial proceedings or were in some way connected to the matter (We 

may call these players ‘Complimentary Participants’ described by Krebs (2001) In his 

seminal study regarding the 9/11 conspiracy, He defined ComplimentaryParticipants as 

“essentially co-conspirators who did not board the planes and who served as “conduits for 

money and also provided needed skills and knowledge.”For this study's purposes, 

however, Participatory Participants' definition is broadened to mean all the players or 

nodes who might have been aware of the intentions or actions of the core participants who 

were later indicted). The broadening of the covert sub-net that participated in the actions 

leading to the crisis in ENRON allows what Krebs describes as “The addition of 

complimentary participants brought “shortcuts” to the network and improved the flow of 

communication. We assume that it also placed the overall network at a greater risk of 

detection.” (Krebs, 2001). 

 

The same strand of thought pervades the study by Morselli et al. (2007), who describe the 

utility of adding such Complimentary Participants thus, “The transition from an action 

network to a complete network that incorporates complimentary participants results in an 

inverse pattern when studying criminal enterprise networks” (p.147). The Caviar 

network40studied by Morselli (2009) included a greater number of participants than did 

Krebs’ terrorist network (2001,2002). Furthermore, the Caviar network's action segment, 

the traffickers, represented most of the network's participants. Although larger than the 

terrorist network, the Caviar network was more clustered with shorter distances separating 

participants. Morselli describes the impact of including complimentary participation on 

the Caviar network model structure; thus - “The geodesic range for Caviar's trafficking 

segment was smaller (between 1 and 4). Adding non-traffickers to the network increased 

this range, but only slightly (between 1 and 5). The overall average path length for the 

trafficking segment of the network was 2.15. The addition of 28 complimentary 

participants, such as accountants, lawyers, legitimate importers, border agents, and other 

                                                           
40The Caviar network represents the profit-driven criminal enterprise network. It was reconstructed using electronic surveillance data 

gathered during a 2-year (1994–1996) tandem investigation (Project Caviar) by the Montreal Police, the Royal Canadian Mounted 

Police, and other national and regional law-enforcement agencies from various countries (i.e., England, Spain, Italy, Brazil, Paraguay, 
and Colombia). The investigation was aimed at dismantling a series of hashish and cocaine distribution chains that spanned across 

several countries and resulted in the seizures of four hashish and eight cocaine consignments. 
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non-traffickers, increased this metric by 37%, to 2.95. In contrast to the terrorist network, 

in which complementary actors made the action segment of the network more efficient by 

reducing the distance between participants, the addition of complementary participants to 

this drug trafficking network increased distance and therefore assured greater security for 

all involved.”(p.147) It needs to be noted that the use of the term complementary 

participants is synonymous with the use of facilitators used by Klerks (2001). 

 

The list of ENRON employees who are of some interest to this study's purposes are termed 

as nodes of interest or NoIs, and their list is furnished in the table3.2below. The table itself 

is partitioned into two columns, the first one comprising employee mail-ids whose inboxes 

are available in the public domain for analysis. The second column contains employee 

mail-ids whose inboxes are not provided initially. This partition is made to test the impact 

of incomplete data on the results obtained through the experiments conducted during this 

research. 

 

Figures3.13and 3.14below show the existing e-mail links amongst the Nodes of Interest 

(NoIs) in the ENRON mail corpus. (The mapping of the Node-Ids to the Mail-Ids of the 

individual employees of interest is shown in table 3.3). The size of the labels against each 

node is proportionate to that node's degree, i.e., the number of links the employee 

Table 3.2 
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represented by the node has got through the exchange of emails with other employees 

(nodes). The links or edges are undirected. Each existing tie amongst the noise is denoted 

as an Edge of Interest (EoI). An EoI is defined to exist as a link between two nodes 

(employees) comprising a dyad and is unweighted. That is, the edge between two nodes 

isn’t influenced by the number of incoming or outgoing information exchanges (e-mails). 

An edge is defined to have a value of 1 if any mail has been exchanged between the nodes 

it connects and 0 if there are no mails exchanged along with it. Each edge in the ENRON 

mail corpus is acted upon by a function termed as the Edge-Vertex function or (Ev)ij, where 

i and j are the nodes, the tie between which forms the substrate upon which the Edge-

Vertex function acts. The concept of the Edge-Vertex function has been defined earlier in 

this study. For this study's purposes, the tie or the edge between the constituent nodes is an 

atomic unit that serves as the building block of covert communities within the ENRON 

mail network. In effect, each edge plays the same role as a node or a vertex in conventional 

social network analysis techniques. 

 

In the ENRON email dataset, 19 employees are within the focus of this study as players 

who have some knowledge about the insider trading scam that happened in the period 

between 1998 to 2002. Many of these employees are not having visible ties in the form of 

mail exchanges between themselves. Scrutiny reveals that there are only 43 edges amongst 

these employee mail-ids, whereas, in theory, there should have been 81 undirected edges 

((19 x 18)/2, or, n(n-1)/2), which is a fairly dense matrix. The subnetwork density of mail 

exchanges that may be defined amongst these employees is 53% (43/81). We may compare 

this with the ENRON mail network's overall density, where there are 4600 or so unique 

mail-ids that result in a potential 10,000,000 (10 million-plus) ties. In contrast, only 

123,000 edges are available (i.e., at least one mail has been exchanged between the dyads' 

nodes that contain these edges). The ENRON mail network's overall density of linkage 

comes to approximately 0.01 (123,000 / 10,000,000) or 1%.   
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Figure 3.13 

Figure 3.14 

Graph showing the links amongst the nodes of interest (NoIs) in the 

ENRON e-mail network. 

 

The same graph with the nodes now displaying their respective 

degrees. 
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Node-Id               Mail-Id 

1 andrew.fastow@enron.com 

2 richard.causey@enron.com 

3 lea.fastow@enron.com 

4 tim.belden@enron.com 

5 david.delainey@enron.com 

6 jeff.skilling@enron.com 

7 kenneth.lay@enron.com 

8 jeff.dasovich@enron.com 

9 jeffrey.shankman@enron.com 

10 sally.beck@enron.com 

11 louise.kitchen@enron.com 

12 james.steffes@enron.com 

13 karen.denne@enron.com 

14 maureen.mcvicker@enron.com 

15 rob.bradley@enron.com 

16 jeff_dasovich@enron.com 

17 steven.kean@enron.com 

18 vince.kaminski@enron.com 

19 angela.schwarz@enron.com 

 

 

 

 

3.16 Applying Covertness Metric to Dataset 

 

The challenge is to ascertain if a viable sub-net (community) comprising these nodes of 

interest (NoI) or at least a substantial portion of them can be constructed based around the 

Index of Covertness evolved earlier. The Covertness Index, whose procedure is outlined 

in an earlier section, is applied to each of the 55,288 Edges, and each of the above Edges 

has then been assigned an index. 

 

Table 3.3 Table showing Node Id to employee Mail-Id mapping for the 

network diagrams at Figures 4.15 and 4.16 above. 

mailto:andrew.fastow@enron.com
mailto:richard.causey@enron.com
mailto:lea.fastow@enron.com
mailto:tim.belden@enron.com
mailto:david.delainey@enron.com
mailto:jeff.skilling@enron.com
mailto:kenneth.lay@enron.com
mailto:jeff.dasovich@enron.com
mailto:jeffrey.shankman@enron.com
mailto:sally.beck@enron.com
mailto:louise.kitchen@enron.com
mailto:james.steffes@enron.com
mailto:karen.denne@enron.com
mailto:maureen.mcvicker@enron.com
mailto:rob.bradley@enron.com
mailto:jeff_dasovich@enron.com
mailto:steven.kean@enron.com
mailto:vince.kaminski@enron.com
mailto:angela.schwarz@enron.com
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An illustration of this process has been explained below: 

 

We consider the instance of the edge formed between two of ENRON employees, namely, 

Kevin Hannon and Kenneth Lay.  

 

It’s seen from the data that the number of emails exchanged between these two nodes is 

24. 

Of these exchanges, no e-mails are seen to be copied to others.  

 

Thus, 

Let,ij = Total no. of   mails exchanged = 24; 

Let, ij’   = Number of Mails copied to others = 0; 

 And let, σij = Covertness Index for the tie (or edge) between nodes i and j. 

Node i represents the mail-id of Kevin Hannon, and the node j represents the mail-id of 

Kenneth Lay. 

Hence, the Covertness Index for ties between Kevin Hannon & Kenneth Lay is calculated 

as below: 

σij = (24 – 0)/ 24= 1.00. (A value of 1 signifies that Hannon and Lay's tie is perfectly 

opaque or covert). 

 

Based on calculations like the one illustrated above, Covertness Index values have been 

calculated for all possible edges used to exchange messages within the ENRON e-mail 

network. Further, a ranking in descending order of the values of the Covertness Index has 

been worked out. That is, the ones with the highest Covertness Index values have been 

ranked higher, and those with lower index values occur down the ladder of rankings. Table 

3.4shows the top 100 edges ranked according to their Covertness Index values, i.e., the 

edges having the highest values of Covertness Index occupying the top 100. The meaning 

of this exercise becomes clear once we look for the edges of interest to the study (EoIs),i.e., 

the edges connecting pairs of ENRON employees who are in some way connected with 

the scandal. The same table has been presented in table 3.5 with the EoIs highlighted in 

yellow. The rankings reflect the status of the opacity of the information exchanges that 
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have been transacted along the corresponding edges by the constituent nodes of a dyad that 

are joined by them. The fundamental philosophy of this study’s approach to the concept of 

covertness is to devise a measure for measuring the confinement of information exchanges. 

Confinement of information is possible through many mechanisms such as deception 

(where the actors are exchanging data, but, in a manner invisible to an external observer), 

pre-existing ties (that is, the actors were in close touch with each other at some point before 

the surveillance and these ties are no longer reflected in the current time) or through plain 

silence, i.e., the existing communications between the actors are visible and complete. The 

actors avoid sharing it with the others in the network to keep their dealings a secret. 

Irrespective of the mechanism to keep the information exchanges under a lid, the 

covertness metric proposed in this study can draw out the essence of these efforts by the 

concerned actors (employees of interest in the ENRON network) information from seeping 

out. 

 

It bears repeating here that there are only 43 possible edges of interest-based on the 

communications between the nodes of interest or NoIs comprising ENRON employees 

who had some part in the matter in question. To locate them in a 55,288 edges dataset is, 

to say the least, searching for the proverbial needle in a haystack. The real objective of 

developing a Covertness Index metric is to enhance the visibility of covert edges within 

this ocean of information.  
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Table 3.4 
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A closer look at the second of the two tables reveals a single EoI (David Delainey – Sally 

Beck), which makes its appearance within the top 50 ranked Edges going by their 

Covertness Index values. This pair has been highlighted in yellow in the second table.  

Table 3.5 Top-ranked edges as per their Covertness Index values. The presence of a single Edge of 

Interest may be seen amongst the entries. 
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The complete picture of the 43 Edges of Interest rankings is shown in table 3.6 below. 

 

 

 

From To Covertness Index Ranking

david.delainey@enron.com sally.beck@enron.com 1 32

maureen.mcvicker@enron.com david.delainey@enron.com 1 122

maureen.mcvicker@enron.com kenneth.lay@enron.com 1 123

jeff.dasovich@enron.com louise.kitchen@enron.com 1 204

maureen.mcvicker@enron.com andrew.fastow@enron.com 1 331

maureen.mcvicker@enron.com richard.causey@enron.com 1 505

karen.denne@enron.com richard.causey@enron.com 1 681

karen.denne@enron.com david.delainey@enron.com 1 1214

maureen.mcvicker@enron.com rob.bradley@enron.com 1 1215

vince.kaminski@enron.com andrew.fastow@enron.com 1 1216

maureen.mcvicker@enron.com tim.belden@enron.com 1 1729

maureen.mcvicker@enron.com jeff.skilling@enron.com 1 2292

tim.belden@enron.com jeff.skilling@enron.com 1 2293

vince.kaminski@enron.com tim.belden@enron.com 1 3421

jeff.dasovich@enron.com jeff_dasovich@enron.com 1 4540

sally.beck@enron.com steven.kean@enron.com 1 4541

vince.kaminski@enron.com kenneth.lay@enron.com 1 4542

james.steffes@enron.com steven.kean@enron.com 1 5849

louise.kitchen@enron.com kenneth.lay@enron.com 1 9876

andrew.fastow@enron.com jeff.skilling@enron.com 1 10496

kenneth.lay@enron.com tim.belden@enron.com 1 10497

louise.kitchen@enron.com jeff.skilling@enron.com 1 10498

jeff.dasovich@enron.com jeff.skilling@enron.com 1 15406

david.delainey@enron.com angela.schwarz@enron.com 1 27723

richard.causey@enron.com jeff.skilling@enron.com 1 27724

steven.kean@enron.com kenneth.lay@enron.com 0.956043956 34423

jeff.dasovich@enron.com angela.schwarz@enron.com 0.933729822 34455

jeff.dasovich@enron.com steven.kean@enron.com 0.929648241 34465

karen.denne@enron.com kenneth.lay@enron.com 0.927419355 34470

rob.bradley@enron.com kenneth.lay@enron.com 0.9 34533

david.delainey@enron.com kenneth.lay@enron.com 0.890909091 34547

vince.kaminski@enron.com jeff.skilling@enron.com 0.863636364 34661

steven.kean@enron.com jeff.skilling@enron.com 0.851239669 34723

david.delainey@enron.com tim.belden@enron.com 0.821011673 34888

jeffrey.shankman@enron.com jeff.skilling@enron.com 0.804878049 34973

louise.kitchen@enron.com vince.kaminski@enron.com 0.727272727 35702

andrew.fastow@enron.com louise.kitchen@enron.com 0.714285714 35894

vince.kaminski@enron.com david.delainey@enron.com 0.710526316 35987

jeff.dasovich@enron.com maureen.mcvicker@enron.com 0.666666667 36221

david.delainey@enron.com andrew.fastow@enron.com 0.666666667 36317

steven.kean@enron.com steven.kean@enron.com 0.615384615 37527

james.steffes@enron.com maureen.mcvicker@enron.com 0.607142857 37559

maureen.mcvicker@enron.com steven.kean@enron.com 0.5 39330

Table 3.6 The rankings of all the 43 Edges of Interest. 
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Based on our results, we can summarize the prevalence of the Edges of Interest in the total 

distribution as per the table below: 

 

Top-ranked 

Edges 

(Overall) 

Prevalence 

of 

Edges of 

Interest 

Cumulative 

Occurrence 

of EoIs 

1 - 100 1 1 

101 - 500 4 5 

500 - 1000 2 7 

1000 - 1500 3 10 

1500 - 2000 1 11 

2000 - 3000 2 13 

3000 - 4000 1 14 

4000 - 5000 3 17 

> 4000 26 43 

Total 43 43 

 

 

 

The above distribution is presented graphically in the figure below. 
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Table3.7 Table showing rank distribution of 

EoIs within the overall rankings of all edges 

Figure 3.15 
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The ratio of the number of Edges of Interest (EoI) to the set of all edges comes to 0.000778 

(43/55288) if we deem that the EoIs are distributed uniformly throughout the set of edges 

in the dataset. The plot above shows that the 13 EoIs are occurring in the top-ranked 2500 

Edges. The ratio of the number of EoIs to the number of top-ranked covert edges improves 

to (13/2500) = 0.0052 if the covertness metric is applied. In the graph in figure 3.23 below, 

the prevalence of EoIs given a Uniform Distribution is shown for comparative purposes. 

 

 

 

The above plot shows the linear pattern of growth of the prevalence of Edges of Interest 

provided that the EoIs are distributed uniformly throughout the distribution. The 

cumulative number of EoIs reaches 43 (i.e., the total number of EoIs in the dataset), 

eventually at the distribution's culmination. 

 

Table 3.8 shows how the use of the Covertness Index metric enhances the chances of 

identifying the EoIs.The table compares the prevalence of the EoIs in the given distribution 

after employing the Covertness Index mechanism vis-à-vis the prevalence if we presume 

a Uniform Distribution:- 

 

Figure 3.16 
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Top-ranked 

Edges 

(Overall) 

Cumulative 

Occurrence 

of EoIs 

(Using CI) 

Cumulative 

Occurrence 

of EoIs 

(Uniform 

Dist.) 

Probability of 

Identifying an 

EoI using 

Covertness 

Index 

The ratio of 

Number of 

EoI to Top-

ranked edges 

using 

UniformDist 

1 - 100 1 0.08 0.01 0.0008 

101 - 500 5 0.39 0.01 0.0008 

500 - 1000 7 0.78 0.007 0.0008 

1000 - 1500 10 1.17 0.007 0.0008 

1500 - 2000 11 1.56 0.006 0.0008 

2000 - 3000 13 2.33 0.004 0.0008 

3000 - 4000 14 3.11 0.0035 0.0008 

4000 - 5000 17 3.88 0.0034 0.0008 

>5000 43 43   

 

 

 

The chances of detection of covert edges within the distribution improve markedly once 

the covertness metric is applied. In a real-world situation where there is a requirement of 

mounting surveillance over millions of nodes in a social network to detect only a handful 

of the covert ones, applying the proposed Covertness Index metric to the ties (or edges) 

substantially improves the chances of identification, which is particularly true in an 

environment where enforcement agencies may not have access to all the mails or contents 

of information exchanges. Besides, even in situations where such intrusive access to 

information is available, it’ll still be arduous computationally to parse tens or hundreds of 

millions of messages or information exchanges to filter out contents interesting to the 

inquiry. Having only a few select edges (and the nodes associated with them) is an easy 

solution to bypass computationally expensive interventions and duck any legal issues 

arising from privacy and encryption. 

   

 The advantages of yoking the Covertness Index metric to enhance chances of identification 

of the Edges of Interest as compared to a Uniform Distribution is apparent from the lift 

chart provided below: - 

Table 3.8 Table showing the comparison between the performances of the 

Covertness Index Model and a Uniform Distribution Model. 
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3.17 Modified Covertness Index 

 

Though the use of a mechanism involving the Covertness Index did boost the chances of 

identifying covert edges significantly, the rankings reveal a typical feature. It’s easily 

observed that most of the top-ranked Edges are those whose constituent node pairs have 

not marked out any emails to other nodes at all, i.e., their Covertness Index is a perfect 1. 
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Figure 3.26 above is a scatter plot showing the correlation between the number of mails 

copied out by the dyads (shown on the horizontal axis) and the dyads' ranking based on 

their covertness indexes on the vertical axis. It’s seen from the graph above that the data 

points are all concentrated around the 0 marks on the horizontal axis, i.e., the 

overwhelming majority of the top-ranked pairs haven’t marked out any copies at all, which 

is an indicator of the fact that if we use the covertness index in its current context, many 

pairs which have no mails copied out score high ranks irrespective of the volume of 

information exchanged, i.e., there is little correlation with the data kept confined. 

 

A similar inference is reached when we correlate the dyads' rankings with the total number 

of emails exchanged between the constituent nodes, which may be seen from the scatter 

plot below, reflecting the correlation between the covertness ranking dyads and the number 

of emails exchanged. Most of the top ranks are occupied by dyads, which have exchanged 

fewer emails comparatively. In contrast, dyads whose constituent nodes have exchanged 

more mails score lower in the rankings. 

 

 

 

This downside to the present state of estimation of covertness of an edge vertex (of a dyad) 

is illustrated by the example shown below. 

 

Let’s consider the Edge Vertex case formed by David Delainey and Sally Beck, two 

ENRON employees who are persons of interest in the case in question. The Covertness 

Fig. 3.19 
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Index of the tie between these two has been worked out. The Covertness Index of the Edge 

Vertex of another dyad of interest, i.e., Jeff Dasovich and Angela Schwarz, is worked out 

subsequently. The pairs have been selected specially to show the skewness caused by using 

the current methodology. The first pair have exchanged very few mails (47) but has marked 

out no copies to other nodes, whereas the second pair have exchanged a large number of 

mails (1177) but has marked out some as copies to outside nodes. But the covertness 

ranking of the first pair is far higher than that of the second pair. Thus, despite the large 

volume of information exchange, the second pair loses out in ranking. 

 

 To illustrate this, a simple example of a Dyad is given below: 

 

   

 

 

The Covertness Index of the above pair is calculated as follows: 

1. Number of mails exchanged = 47. 

2. Number of mails copied out = 0. 

3. The ratio of mails copied out to mails exchanged = 0. 

4. Overtness Index = Ratio above = 0. 

5. Covertness Index = 1 – (Overtness Index) = 1 – 0 =1. 

We may compare this with the Covertness Index calculated in respect of the tie between 

two other employees of our interest, namely, Jeff Dasovich and Angela Schwarz. 

 

 

 

 

 

 

The Covertness Index of the above pair is calculated as follows: 

 

david.delainey@enron.co

m 
sally.beck@enron.com 

1. 47 Mails Exchanged. 

2. Zero Mails Copied out. 

jeff.dasovich@enron.com angela.schwarz@enron.com 

1. Number of Mails Exchanged = 1177. 

2. Number of Mails copied out = 78. 

Fig. 3.20 

Fig. 3.21 
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6. Number of mails exchanged = 1177. 

7. Number of mails copied out = 78. 

8. The ratio of mails copied out to mails exchanged = 0.0663. 

9. Overtness Index = Ratio above = 0.0663. 

10. Covertness Index = 1 – (Overtness Index) = 1 – 0.0663 =0.9337. 

 

Thus, though the Edge between the said dyad is quite high at 0.9337, its rank in the 

Covertness List comes to 34454, extremely low. Besides, as stated earlier, the exchange of 

mails is fairly intense at 1177 mails. We may compare this with the number of emails 

exchanged between the previous pair of employees, i.e., David Delainey and Sally Beck, 

who have exchanged only 47 mails. That is to say, this pair has exchanged hardly about 

4% of what the employees in the second pair (Jeff Dasovich and Angela Schwarz) have 

exchanged, yet their covertness ranking comes to within the top 100 overall. It needs to be 

noted here that we’ve considered only two dyads of interest here. If we look at the top 

ranks, all the reckoning pairs are sailing in the same boat practically. All of these dyads 

have not marked out copies to outside nodes. If we recall the covertness attribute definition, 

such pairs are ‘Perfectly Covert’ or opaque.  

 

However, it may be observed that most of these ‘Perfectly Covert’ dyads have exchanged 

very few mails, which may have happened due to one or more of three reasons: 

a) The nodes in the dyad are genuinely secretive and have communicated 

through means other than through mail exchange and would have led to fewer 

traces on the e-mail-based network, but the information would have been 

transferred all the same. 

b) A more likely possibility is that the information about these dyads is 

incomplete. It may be recalled that the ENRON e-mail corpus comprises only 151 

inboxes, basically of such employees who were thought to be of interest by the 

investigators at the point in time. This narrow selection has likely led to a 

substantial loss of information, and many mail exchanges that might have happened 

are simply no longer available. 
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c) There is also the likelihood that the high ranked covert dyads' constituent 

nodes have not exchanged many emails. The fact that nothing is marked out as a 

copy is more or less an indicator of the scant nature of the relationship between 

them. 

 

Be that as it may, it leads us to the question of whether the number of emails exchanged 

between the constituent nodes of a dyad (which constitutes the Edge Vertex basically) has 

any impact upon the calculation of a putative Covertness Index. In other words, by simply 

considering the ratio between the mails copied out and the total emails exchanged, the 

complete picture of covertness is not revealed, which leads us to the issue of what other 

factors may influence the covertness in tie beside the ratio that has been just described in 

the paper. May we use the Covertness Index in combination with other more traditional 

network attributes to enhance its effectiveness, or should we just use the Index in sui 

generis? 

 

As described elsewhere in this study, graph theory interventions in social network analysis 

identify the prominent nodes or actors and relationships (ties)at both the individual and 

group levels of analysis. The weapons of choice in graph-theoretic approaches are the 

various centrality measures that a node’s prominence within a network encapsulates the 

relationships among all nodes. An individual node’s ranks based around its centrality 

reflect its greater visibility to the other network nodes, and similar arguments may be made 

for ties (Edge Vectors) defining a relationship. As discussed earlier, the most widely used 

centrality measures in social network analysis are degree, closeness, and betweenness 

(Freeman, 1977, 1979). It’s worth looking at the value of each of these measures in refining 

the Covertness Index proposed in this study. 

 

The simplest of the centrality measure and perhaps the most easily applicable of all 

centrality measures is the Degree of a node or vertex. The degree is also called the Degree 

Centrality of a node in a network. Although degree centrality is a simple centrality 

measure, it can be very illuminating. In a social network, individual actors or nodes with 



 

194 

 

relationships with many others might have more influence, more access to information, or 

more prestige than those with fewer relationships (Newman, 2004, pp 168 -172). 

 

Another candidate measure combined with the newly evolved Covertness Index is a natural 

extension is eigenvector centrality. Whereas degree centrality invests a centrality point for 

every neighbor a node is connected to in a network, eigenvector centrality looks at the 

neighboring node's quality. Not all neighbors are equivalent in a social network context. If 

any of the neighboring nodes is important in some meaningful manner, the node whose 

centrality is in question also gets more weightage for its links or ties. The concept of how 

eigenvector centrality has been applied in social networks, particularly in dark or covert 

networks, has been analyzed in an earlier section. Here, we’re just considering its value as 

a combination or a companion attribute. 

 

The other centrality measures that are popular in social network analytics are Closeness 

Centrality and Betweenness Centrality. Closeness centrality measures the mean distance 

from a node to other nodes. Closeness metric between a pair of nodes is based upon the 

geodesic path(s) between them. A geodesic path concept has been explained earlier and 

generally means the number of paths or edges connecting a pair of interest nodes. The 

mean geodesic distance from any node i to j is obtained by dividing the network nodes' 

geodesic distance. As has been discussed, this centrality measure is low for nodes separated 

by shorter geodesic distances. We may describe the importance of this measure in a social 

network in terms of a node with a low closeness measure, i.e., a person with a lower mean 

distance to others, which would imply that this node (or person) can reach others in the 

social network more expeditiously than others who possess higher mean distance scores. 

The distance measure is somewhat counter-intuitive in the sense that nodes with higher 

influence have lower scores, and nodes with lesser influence have higher scores. Hence, 

Closeness Centrality is generally considered as the inverse of the Mean Geodesic Distance 

of a node. 

 

Another popular measure of centrality is the betweenness centrality, which measures the 

extent to which a node lies on the path between other vertices. This measure was proposed 
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by Freeman (1977,1979) and also by Anthonisse (1971). Betweenness is simply the 

number of geodesic paths passing through a particular node. Thus, nodes with high 

betweenness centrality tend to significantly influence their control over the information 

passing between other nodes in the network. As we have seen earlier, researchers and 

investigators of covert networks tend to favor this centrality measure since they can simply 

remove the nodes with the best values of betweenness centrality to disrupt communications 

in the network. This centrality measure differs from the other centrality measures in as 

much as it doesn’t reflect how well connected a node is. Instead, it shows how much a 

node falls between other nodes in the network. Hence, if we take betweenness centrality 

scores as an index to measure a node’s status, it may return high scores even if it has a low 

degree, has ties to other nodes that have a low degree, and might even have a long distance 

from others on an average. 

 

The figure below (reproduced from Newman (2010, p.188)) shows how this is possible. 

Node A lies on a bridge between two groups on a network. Since any shortest path or any 

other path between a node in any component group and a node in another component group 

in a social network must pass along the bridge, Node A acquires a high betweenness score. 

The node may well be on the periphery of the network and is likely to have low eigenvector 

and closeness centrality, and its degree centrality is only two. Still, it will have a high 

influence on negotiating between two disparate groups within the network. As mentioned 

here, such nodes with a high between centrality are called brokers in a sociological context. 
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The sections above describe the comparative benefits and disadvantages of the principal 

centrality measures, which this study seeks to deploy as companions to the newly evolved 

Covertness Index. While considering their strengths and weaknesses, it is worthwhile 

noting that the Covertness Index is defined along with a tie or an edge connecting a dyad 

(of nodes).  Since this study focuses on mail exchanges between the constituent nodes of 

a dyad, the utility of all the centrality measures we discussed just prior is extremely narrow. 

We may use only that centrality attribute that best relates to a relationship between two 

nodes to exclude other properties within a network. This isolated need allows us to use the 

degree centrality as a companion attribute, and only that part of the degree centrality relates 

to the tie in the dyad. The concept of an Edge Vertex has been discussed at some length in 

the previous sections. Since the Edge Vector is limited only to the pair of nodes within the 

dyad in question, we can extract only the fraction of the degree centrality values that accrue 

to both the nodes from the interchange of mails (or information). 

 

This analysis is best illustrated from the series of diagrams depicting the same fictional 

email network which had been described in an earlier section and which has been 

reproduced below again for the sake of clarity: 

 

 

 

b 

h 

g 

3.23 
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From the figures above, it’s clear that if we are to ascribe an index or a value based on the 

tie between the pair of nodes comprising the dyad, the use of a fraction of the degree 

centrality that is the number of edges connected to each of node a and b is the most 

accessible instrument amongst the centrality measures enumerated earlier, albeit, in a 

 

3.24 

3.24 

3.25 
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modified mechanism. The way degree centrality is applied in these curated circumstances 

is explained in the passages below. 

 

In the instant case, it’s seen that node a is seen to have exchanged emails with nodes c, b, 

and h. Hence its degree centrality is 3. Similarly, b is seen to have exchanged emails with 

nodes e and a, and thus, its degree centrality comes to 2. It needs to be pointed out here 

that the degree centrality measure does not indicate the total number of emails exchanged 

by these nodes. For instance, let’s suppose that nodes a and c have exchanged ten mails 

and nodes a and b have exchanged 20 mails, and nodes a and h have exchanged 15 mails. 

Then, node a is a part of 45 mail exchanges, which is not reflected by its degree centrality 

of 3. What is proposed here is to use the volumes of mail exchanged between two nodes 

as a single attribute of the tie or the edge between the nodes. 

 

It’s been analyzed in the passages previous that the Covertness Index matric envisaged has 

a few drawbacks. There is a need to decide which centrality measure to incorporate as a 

companion attribute to the existing covertness index to bring about a more balanced 

outcome. From the nature of the list-set contents that define an Edge-Vertex function, it’s 

seen that the impact of degree centrality is the maximum. The number of emails exchanged 

between the constituent nodes of the pair is a fraction of the total mails received by either 

of the nodes from the nodes they have ties with, which is a form of degree centrality, and 

the emails exchanged between only the two of them is a fraction of the degree. No other 

centrality measure, be it eigenvalue or closeness or betweenness centrality, has such a 

proximal impact upon the performance of edges, and this doesn’t necessarily mean that we 

can’t use any other centrality; conversely, if any dyad is situated strategically between two 

discrete components of the network, we may use betweenness. Closeness or Eigenvalue 

centrality can be employed after some knowledge is acquired about the influence of the 

nodes in a network, about which this study presumes agnosticism. The only attribute the 

study has prior awareness about is the number of mails and copies exchanged, which is 

nothing but a facet of degree centrality alone. After identifying nodes as covert or 

otherwise within a network, the other structural aspects of the nodes (or edges) such as 
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their placement, proximity to influential nodes or subnets, etc. can be looked at from a 

more balanced perspective. 

 

Suppose we look at the edge between nodes a and b as an entity akin to a single vertex. In 

that case, its degree centrality can be estimated as the total number of mails existing in the 

tie between nodes a and b, which will be a fraction of the total mails sent or received by 

nodes a and b in their capacity. It needs to be noted that for this study, the mails copied 

out from a dyad (or edge) do not constitute a part of the degree centrality of the edge. 

 

In light of these arguments, in respect of an Edge Vertex, where the defining attribute is 

the tie or relationship between a dyad's constituent nodes, two candidate attributes are 

similar to the degree centrality. One is the total number of emails exchanged between the 

dyad's constituent nodes (irrespective of the mail exchange direction). The second is the 

total number of emails copied to nodes outside of the pair. As discussed earlier, the number 

of mails opens a window into the volume of information interchanged between the social 

network actors. There are good arguments that run counter to this in as much as two covert 

actors may try and hide their interactions through deception (such as the use of covert 

channels) and make active efforts to hide the ties between themselves by communicating 

as little and as cryptically as possible. In such circumstances, the question that arises is 

whether to ascribe any importance to the number of mails alongside the ties' covertness 

index. The answer is an emphatic yes, as the analysis below shows.  

 

It needs to be recalled that a substantial part of the network-related information is absent, 

missing, or deliberately kept hidden (Sparrow,1991).  The addition of the number of mail 

exchanges between a node as an extra attribute in the covertness analysis bolsters the 

information we have about the relationship's nature. Though this study is limited to a non-

longitudinal analysis of a network (i.e., looking only at the ties of a snapshot of the network 

or just a cross-section of it), the framework we presume to be possessing for our study is 

the accumulated information about the network, e.g., the number of emails that have been 

exchanged from the inception of the network (or at least since we began looking at its 

evolution). Suppose two actors have been partners in a covert enterprise. In that case, it 
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stands to reason that we look at their interaction in its entirety, given that the study aims to 

identify the confinement of information. Even if we presume for the sake of argument that 

these two actors were enjoying a benign relationship till a point in time and then 

commenced their attempts to transform their ties into a covert one, the pre-existing 

information will be useful. 

 

Pre-existing ties' crucial importance has focused on a recent study in corruption-related 

social networks (Diviák, Dijkstra & Snijders, 2019). Pre-existing ties are a measure of trust 

between actors in a social network. In the research on covert networks, there has been a 

great emphasis on the importance of ties based on trust41. (Erickson, 1981; Krebs, 2002; 

Milward and Raab, 2006; Oliver et al. ,2014; Robins, 2009; van der Hulst, 2011). Pre-

existing ties, meaning ties established before the criminal act itself, may be crucial sources 

of trust, making their analysis important (Morselli and Roy 2008). In the literature on 

social networks research, pre-existing ties include marriage, sharing the same classes in a 

university or even a karate class, or membership in a board of directors. The existence of 

such a tie does not by itself create trust between the two actors. It may only potentially 

facilitate the future build-up of trust between the same set of actors. Still, by ignoring such 

ties, there is an unacceptable risk of omitting vitally relevant information. 

 

In an email network, like the one which is the subject of scrutiny in this study, the closest 

attribute that we have to pre-existing ties is the corpus of emails exchanged between two 

actors (or nodes) and, like pre-existing ties, the existing mail correspondence between the 

actors is a form of kinship relations, friendships, or relations based on shared ideology or 

shared affiliation to the same organizations or institutions. The question that now arises is, 

to what extent was the connivance dependent on the mail correspondence? This may well 

be answered by the outcomes(e.g., the conspiracy to commit insider trading on Enron 

shares, for instance). Ties in this dimension capture the notion of Krebs’ (2002) and 

Everton’s (2012) dimension of trust, Papachristos and Smith (2014; Smith and 

                                                           
41Trust may be defined as the expectation of reciprocation and of not breaking the 

confidentiality in a covert environment (Campana and Varese 2013; von Lampe and Ole 

Johansen 2004). 
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Papachristos 2016) personal ties and partly legal ties, and Gerdes’ (2015a) links of 

training, ideology, family and friendship (Diviák et al., 2019). 

 

In the earlier arguments' backdrop, the Covertness attribute is modified to include the 

number of emails exchanged as a multiplicand. However, instead of using the number 

itself, this study suggests the use of its logarithmic value. In large and busy networks, the 

number of mail exchanges can be huge, to the extent of millions, making the calculation 

unwieldy and unbounded. Using the logarithm reduces the index value to manageable 

proportions.  

This modification in calculating the Covertness Index is tried on the example cited earlier 

and may revisit. 

 

 

  

 

   

 

 

 

The Covertness Index of the above pair is calculated as follows: 

 

1. Number of mails exchanged = 47. 

2. Number of mails copied out = 0. 

3. The ratio of mails copied out to mails exchanged = 0. 

4. Overtness Index = Ratio above = 0. 

5. Covertness Index = 1 – (Overtness Index) = 1 – 0 =1. 

6. Modified Covertness Index = 1 x Log (47) = 1.67. 

 

We may compare this with the Covertness Index calculated upon the tie between two other 

employees of our interest: Jeff Dasovich and Angela Schwarz. A pictorial depiction of the 

mail exchange status between them and the copies mark out by the pair to other nodes is 

shown in Figure 3.27 below. 

david.delainey@enron.com sally.beck@enron.com 

3. 47 Mails Exchanged. 

4. Zero Mails Copied out. 
Fig. 3.26 
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The modified Covertness Index of the above pair is calculated as follows: 

 

1. Number of mails exchanged = 1177. 

2. Number of mails copied out = 78. 

3. The ratio of mails copied out to mails exchanged = 0.0663. 

4. Overtness Index = Ratio above = 0.0663. 

5. Covertness Index = 1 – (Overtness Index) = 1 – 0.0663 =0.9337. 

6. Modified Covertness Index = 0.9337 x Log (1177) = 2.87. 

 

Thus, the Covertness Index of both pairs is reversed now in terms of value. Earlier, the 

edge joining the pair of David Delainey and Sally Beck had a Covertness Index of 1.0, 

which was higher than the Covertness Index of the second pair, which we had considered, 

namely, Jeff Dasovich and Angela Schwarz, which came to 0.93 approximately. After 

modifying the formula, the edge connecting David Delainey and Sally Beck change to 

1.67, which is less than the modified value of the Covertness Index of the edge tying the 

second pair, namely, Jeff Dasovich and Angela Schwarz (which is now 2.87). This way, 

we successfully factored in the number of emails exchanged between a pair of actors in 

the network and rationalized the covertness rankings. 

 

The graphs in the figures below (Figures 3.28 and 3.29) represent an improvement in 

ranking based on Covertness Index after applying the modification suggested earlier. The 

lift achieved is considerable. Though the cumulative count of Edges of Interest (EoIs) 

match up towards the end, the prevalence of the EoIs till the first 10,000 ranks is 

jeff.dasovich@enron.com angela.schwarz@enron.com 

3. Number of Mails Exchanged = 1177. 

4. Number of Mails copied out = 78. 
Fig. 3.27 
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measurably denser, which improves the chances of detecting such edges. The horizontal 

axis in the first of the figures shows the incremental ranking of all dyads numerically. The 

second figure has the incremental values arranged logarithmically for more clarity. 

 

The same graphs are repeated in the figures on the page following (Figures 3.30 and 3.31) 

with the addition of the prevalence of the Edges of Interest (EoIs) based on a presumed 

uniform distribution throughout the set of all edges in the network. The enhancements 

brought about by applying the Covertness Index of the ties, both modified and unmodified, 

stand out in stark contrast. The uniform distribution network model, which has been 

extensively used in this dissertation, can be described as being akin to the concept of a 

random graph42 in which the covert edges are presumed to be equally distributed over the 

entire set of edges. From a mathematical perspective, random graphs are used to answer 

actual graphs or networks' properties. Its practical applications are found in all areas in 

which complex networks need to be modeled – many random graph models are thus 

known, mirroring the diverse types of complex networks encountered in different areas. 

Here, the uniform distribution model has been used for comparing the performance of the 

models proposed in the study. 

                                                           
42 The concept of a random graph was introduced through a seminal article published in 1959 by Erdős and 

Rényi.The construction of a random graph is  defined by Newman, Watts and Strogatz (2002, p.2567) thus 

– “One takes some number N of nodes or “vertices” and places connections or “edges” between them, such 

that each pair of vertices i, j has a connecting edge with independent probability p. “…. This example is one 

of the simplest models of a network there is, and is certainly the best studied; the random graph has become 

a cornerstone of the discipline known as discrete mathematics.”  



 

204 

 

 

Fig. 3.28 

Fig. 3.29 
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Fig. 3.30 

Fig. 3.31 
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The revised rankings of the Dyads based on the modified scores of their Covertness 

Indexes are shown in the tables (Table 3.9 and Table 3.10) below. The first table reveals a 

snapshot of the overall picture of the ranking (top 50ranks), whereas the next one highlights 

the rankings of the top-ranked Edges of Interest within the top ranks of all edges. 

 

 

From To Modified CI Ranking

kay.mann@enron.com suzanne.adams@enron.com 3.07 1

evelyn.metoyer@enron.com kate.symes@enron.com 2.91 2

jeff.dasovich@enron.com angela.schwarz@enron.com 2.87 3

jeff.dasovich@enron.com steven.kean@enron.com 2.86 4

jeff.dasovich@enron.com beverly.aden@enron.com 2.85 5

kerri.thompson@enron.com kate.symes@enron.com 2.77 6

veronica.espinoza@enron.com william.bradford@enron.com 2.76 7

veronica.espinoza@enron.com debbie.brackett@enron.com 2.75 8

bill.iii@enron.com portland.shift@enron.com 2.73 9

kristin.walsh@enron.com louise.kitchen@enron.com 2.67 10

kate.symes@enron.com sharen.cason@enron.com 2.59 11

kate.symes@enron.com stephanie.piwetz@enron.com 2.57 12

kate.symes@enron.com kimberly.hundl@enron.com 2.39 13

kay.mann@enron.com heather.kroll@enron.com 2.35 14

chris.germany@enron.com alvin.thompson@enron.com 2.35 15

kenneth.thibodeaux@enron.com john.allison@enron.com 2.31 16

bill.williams@enron.com todd.bland@enron.com 2.29 17

susan.scott@enron.com ted.noble@enron.com 2.26 18

pete.davis@enron.com craig.dean@enron.com 2.26 19

john.arnold@enron.com ina.rangel@enron.com 2.26 20

mary.hain@enron.com phillip.allen@enron.com 2.25 21

brant.reves@enron.com susan.bailey@enron.com 2.24 22

robin.rodrigue@enron.com becky.pitre@enron.com 2.24 23

karen.denne@enron.com kenneth.lay@enron.com 2.22 24

kysa.alport@enron.com tom.alonso@enron.com 2.20 25

pete.davis@enron.com bert.meyers@enron.com 2.19 26

victor.lamadrid@enron.com f..brawner@enron.com 2.17 27

pete.davis@enron.com bill.williams.iii@enron.com 2.16 28

steven.kean@enron.com kenneth.lay@enron.com 2.16 29

victor.lamadrid@enron.com chuck.ames@enron.com 2.16 30

chris.germany@enron.com edward.terry@enron.com 2.16 31

daren.farmer@enron.com megan.parker@enron.com 2.15 32

david.delainey@enron.com rob.milnthorp@enron.com 2.15 33

kenny.soignet@enron.com berney.aucoin@enron.com 2.15 34

kysa.alport@enron.com robert.badeer@enron.com 2.15 35

kenny.soignet@enron.com john.arnold@enron.com 2.15 36

kenny.soignet@enron.com phillip.allen@enron.com 2.15 37

kay.chapman@enron.com raymond.bowen@enron.com 2.13 38

carla.hoffman@enron.com jeff.richter@enron.com 2.11 39

debra.davidson@enron.com portland.desk@enron.com 2.11 40

robin.rodrigue@enron.com kathy.reeves@enron.com 2.11 41

cara.semperger@enron.com portland.shift@enron.com 2.08 42

john.forney@enron.com portland.shift@enron.com 2.07 43

jeff.dasovich@enron.com mpalmer@enron.com 2.07 44

rosalee.fleming@enron.com cliff.baxter@enron.com 2.06 45

pete.davis@enron.com albert.meyers@enron.com 2.05 46

jennifer.mcquade@enron.com andy.zipper@enron.com 2.02 47

kenneth.thibodeaux@enron.com beth.apollo@enron.com 2.01 48

jeffrey.gossett@enron.com kam.keiser@enron.com 2.00 49

ray.alvarez@enron.com tim.belden@enron.com 2.00 50

Table3.9  Rankings of edges after applying the Modified Covertness Index 
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From To Modified CI Ranking

kay.mann@enron.com suzanne.adams@enron.com 3.07 1

evelyn.metoyer@enron.com kate.symes@enron.com 2.91 2

jeff.dasovich@enron.com angela.schwarz@enron.com 2.87 3

jeff.dasovich@enron.com steven.kean@enron.com 2.86 4

jeff.dasovich@enron.com beverly.aden@enron.com 2.85 5

kerri.thompson@enron.com kate.symes@enron.com 2.77 6

veronica.espinoza@enron.com william.bradford@enron.com 2.76 7

veronica.espinoza@enron.com debbie.brackett@enron.com 2.75 8

bill.iii@enron.com portland.shift@enron.com 2.73 9

kristin.walsh@enron.com louise.kitchen@enron.com 2.67 10

kate.symes@enron.com sharen.cason@enron.com 2.59 11

kate.symes@enron.com stephanie.piwetz@enron.com 2.57 12

kate.symes@enron.com kimberly.hundl@enron.com 2.39 13

kay.mann@enron.com heather.kroll@enron.com 2.35 14

chris.germany@enron.com alvin.thompson@enron.com 2.35 15

kenneth.thibodeaux@enron.com john.allison@enron.com 2.31 16

bill.williams@enron.com todd.bland@enron.com 2.29 17

susan.scott@enron.com ted.noble@enron.com 2.26 18

pete.davis@enron.com craig.dean@enron.com 2.26 19

john.arnold@enron.com ina.rangel@enron.com 2.26 20

mary.hain@enron.com phillip.allen@enron.com 2.25 21

brant.reves@enron.com susan.bailey@enron.com 2.24 22

robin.rodrigue@enron.com becky.pitre@enron.com 2.24 23

karen.denne@enron.com kenneth.lay@enron.com 2.22 24

kysa.alport@enron.com tom.alonso@enron.com 2.20 25

pete.davis@enron.com bert.meyers@enron.com 2.19 26

victor.lamadrid@enron.com f..brawner@enron.com 2.17 27

pete.davis@enron.com bill.williams.iii@enron.com 2.16 28

steven.kean@enron.com kenneth.lay@enron.com 2.16 29

victor.lamadrid@enron.com chuck.ames@enron.com 2.16 30

chris.germany@enron.com edward.terry@enron.com 2.16 31

daren.farmer@enron.com megan.parker@enron.com 2.15 32

david.delainey@enron.com rob.milnthorp@enron.com 2.15 33

kenny.soignet@enron.com berney.aucoin@enron.com 2.15 34

kysa.alport@enron.com robert.badeer@enron.com 2.15 35

kenny.soignet@enron.com john.arnold@enron.com 2.15 36

kenny.soignet@enron.com phillip.allen@enron.com 2.15 37

kay.chapman@enron.com raymond.bowen@enron.com 2.13 38

carla.hoffman@enron.com jeff.richter@enron.com 2.11 39

debra.davidson@enron.com portland.desk@enron.com 2.11 40

robin.rodrigue@enron.com kathy.reeves@enron.com 2.11 41

cara.semperger@enron.com portland.shift@enron.com 2.08 42

john.forney@enron.com portland.shift@enron.com 2.07 43

jeff.dasovich@enron.com mpalmer@enron.com 2.07 44

rosalee.fleming@enron.com cliff.baxter@enron.com 2.06 45

pete.davis@enron.com albert.meyers@enron.com 2.05 46

jennifer.mcquade@enron.com andy.zipper@enron.com 2.02 47

kenneth.thibodeaux@enron.com beth.apollo@enron.com 2.01 48

jeffrey.gossett@enron.com kam.keiser@enron.com 2.00 49

ray.alvarez@enron.com tim.belden@enron.com 2.00 50

Table 3.10 Prevalence of EoIs within the top 50 rankings of edges after applying the Modified 

Covertness Index. 
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From To CI Value Ranking

kate.symes@enron.com lester.rawson@enron.com 1.99 1

christi.nicolay@enron.com jeff.brown@enron.com 1.99 2

scott.neal@enron.com kimberly.brown@enron.com 1.99 3

chris.germany@enron.com crystal.hyde@enron.com 1.98 4

ray.alvarez@enron.com mike.swerzbin@enron.com 1.98 5

david.delainey@enron.com tim.belden@enron.com 1.98 6

kysa.alport@enron.com shift.dl-portland@enron.com 1.98 7

m..forney@enron.com joe.errigo@enron.com 1.97 8

kay.mann@enron.com david.fairley@enron.com 1.96 9

m..forney@enron.com joe.capasso@enron.com 1.95 10

dan.hyvl@enron.com kim.ward@enron.com 1.95 11

jeffrey.keeler@enron.com stanley.horton@enron.com 1.95 12

kay.chapman@enron.com janet.dietrich@enron.com 1.93 13

shona.wilson@enron.com leslie.reeves@enron.com 1.93 14

cindy.derecskey@enron.com richard.shapiro@enron.com 1.92 15

mary.hain@enron.com steve.c.hall@enron.com 1.92 16

chris.germany@enron.com dick.jenkins@enron.com 1.91 17

becky.spencer@enron.com samantha.boyd@enron.com 1.90 18

victor.lamadrid@enron.com kevin.alvarado@enron.com 1.90 19

lexi.elliott@enron.com mark.lindsey@enron.com 1.90 20

kevin.hyatt@enron.com market.team@enron.com 1.89 21

kay.mann@enron.com matthew.berry@enron.com 1.89 22

drew.fossum@enron.com lorraine.lindberg@enron.com 1.89 23

hector.mcloughlin@enron.com bob.hall@enron.com 1.89 24

mark.mccoy@enron.com stacey.neuweiler@enron.com 1.88 25

vincent.strohmeyer@enron.com jerry.peters@enron.com 1.87 26

alan.comnes@enron.com robert.badeer@enron.com 1.86 27

kate.symes@enron.com mark.confer@enron.com 1.86 28

ray.alvarez@enron.com michael.driscoll@enron.com 1.86 29

scott.neal@enron.com dick.jenkins@enron.com 1.85 30

brant.reves@enron.com stephanie.panus@enron.com 1.85 31

susan.mara@enron.com mark.palmer@enron.com 1.85 32

debra.perlingiere@enron.com sylvia.pollan@enron.com 1.84 33

chris.germany@enron.com meredith.mitchell@enron.com 1.84 34

chris.germany@enron.com jesse.villarreal@enron.com 1.84 35

jeff.dasovich@enron.com jdasovic@enron.com 1.83 36

jinsung.myung@enron.com benjamin.rogers@enron.com 1.83 37

susan.scott@enron.com kevin.hyatt@enron.com 1.83 38

rebecca.cantrell@enron.com barry.tycholiz@enron.com 1.82 39

janet.butler@enron.com daniel.allegretti@enron.com 1.82 40

caroline.abramo@enron.com sara.shackleton@enron.com 1.82 41

chris.germany@enron.com judy.townsend@enron.com 1.82 42

kay.young@enron.com gerald.nemec@enron.com 1.82 43

david.delainey@enron.com w.duran@enron.com 1.82 44

allison.navin@enron.com steven.kean@enron.com 1.80 45

ginger.dernehl@enron.com mark.palmer@enron.com 1.79 46

taffy.milligan@enron.com alan.aronowitz@enron.com 1.78 47

eric.benson@enron.com richard.shapiro@enron.com 1.78 48

stanley.horton@enron.com peggy.fowler@enron.com 1.78 49

lorna.brennan@enron.com w..mcgowan@enron.com 1.78 50

Table 3.11 Prevalence of EoIs within the next 50 rankings of edges after applying the 

Modified Covertness Index. 

 



 

209 

 

 

 

The results obtained after applying the Modified Covertness Index to the ties between all 

the network dyads yield better results. Tables 3.12 and 3.13 below reflect how the edges 

of interest (EoIs) ' rankings transform after the rectification. Earlier, when the Covertness 

Index was applied, a skewed distribution favoring dyads hadn’t copied out any of the mails 

they had exchanged. The ranking of such ‘perfectly opaque’ edges dominated the front 

half of the rankings. The pairs that had sizeable mails' exchanges but had some of these 

copied out to nodes outside the pairs scored far lesser on the rankings. 

 

 The second of the tables below shows the comparative rankings of the edges of interest 

(EoIs) before and after applying the modified formula for the ties between the actors who 

focus on study in the ENRON mail network. The pairs which had sizeable exchanges of 

mails now move up in the rankings. To the extent that many of the pairs which were 

languishing at the bottom of the rankings table following the application of the initial 

(unmodified version) of the Covertness Index appear at the very top after modifying the 

formula on the above lines. The upending of the rankings brings to the fore the importance 

of the number of emails exchanged (incidence) in calculating the covertness of ties  
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Sl. No. From To Modified CI

Ranking after 

Modifying the CI

1 jeff.dasovich@enron.com angela.schwarz@enron.com 2.87 4

2 jeff.dasovich@enron.com steven.kean@enron.com 2.86 5

3 karen.denne@enron.com kenneth.lay@enron.com 2.22 25

4 steven.kean@enron.com kenneth.lay@enron.com 2.16 30

5 david.delainey@enron.com tim.belden@enron.com 1.98 57

6 steven.kean@enron.com jeff.skilling@enron.com 1.77 105

7 vince.kaminski@enron.com jeff.skilling@enron.com 1.68 168

8 david.delainey@enron.com sally.beck@enron.com 1.67 173

9 maureen.mcvicker@enron.com david.delainey@enron.com 1.61 285

10 maureen.mcvicker@enron.com kenneth.lay@enron.com 1.61 286

11 jeff.dasovich@enron.com maureen.mcvicker@enron.com 1.60 327

12 rob.bradley@enron.com kenneth.lay@enron.com 1.60 328

13 jeff.dasovich@enron.com louise.kitchen@enron.com 1.57 393

14 david.delainey@enron.com kenneth.lay@enron.com 1.55 464

15 maureen.mcvicker@enron.com andrew.fastow@enron.com 1.51 566

16 maureen.mcvicker@enron.com richard.causey@enron.com 1.45 775

17 karen.denne@enron.com richard.causey@enron.com 1.38 1029

18 vince.kaminski@enron.com david.delainey@enron.com 1.34 1395

19 jeffrey.shankman@enron.com jeff.skilling@enron.com 1.30 1629

20 karen.denne@enron.com david.delainey@enron.com 1.26 1766

21 maureen.mcvicker@enron.com rob.bradley@enron.com 1.26 1767

22 vince.kaminski@enron.com andrew.fastow@enron.com 1.26 1768

23 maureen.mcvicker@enron.com tim.belden@enron.com 1.18 2465

24 maureen.mcvicker@enron.com jeff.skilling@enron.com 1.08 3336

25 tim.belden@enron.com jeff.skilling@enron.com 1.08 3337

26 james.steffes@enron.com maureen.mcvicker@enron.com 1.06 4317

27 vince.kaminski@enron.com tim.belden@enron.com 1.00 4849

28 maureen.mcvicker@enron.com steven.kean@enron.com 0.98 5620

29 louise.kitchen@enron.com vince.kaminski@enron.com 0.98 5695

30 david.delainey@enron.com andrew.fastow@enron.com 0.92 6464

31 jeff.dasovich@enron.com jeff_dasovich@enron.com 0.90 6529

32 sally.beck@enron.com steven.kean@enron.com 0.90 6530

33 vince.kaminski@enron.com kenneth.lay@enron.com 0.90 6531

34 steven.kean@enron.com steven.kean@enron.com 0.87 8144

35 james.steffes@enron.com steven.kean@enron.com 0.85 8312

36 louise.kitchen@enron.com kenneth.lay@enron.com 0.70 14223

37 andrew.fastow@enron.com louise.kitchen@enron.com 0.60 16385

38 andrew.fastow@enron.com jeff.skilling@enron.com 0.60 16476

39 kenneth.lay@enron.com tim.belden@enron.com 0.60 16477

40 louise.kitchen@enron.com jeff.skilling@enron.com 0.60 16478

41 jeff.dasovich@enron.com jeff.skilling@enron.com 0.48 25958

42 david.delainey@enron.com angela.schwarz@enron.com 0.00 48444

Table 3.12 Changed Rankings of the edges of interest (EoIs) after the Covertness Index is modified. 
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Sl. No. From To

Modified 

CI

Ranking 

after 

Modifying 

the CI

Ranking 

before 

Modification

1 jeff.dasovich@enron.com angela.schwarz@enron.com 2.87 4 34455

2 jeff.dasovich@enron.com steven.kean@enron.com 2.86 5 34465

3 karen.denne@enron.com kenneth.lay@enron.com 2.22 25 34470

4 steven.kean@enron.com kenneth.lay@enron.com 2.16 30 34423

5 david.delainey@enron.com tim.belden@enron.com 1.98 57 34888

6 steven.kean@enron.com jeff.skilling@enron.com 1.77 105 34723

7 vince.kaminski@enron.com jeff.skilling@enron.com 1.68 168 34661

8 david.delainey@enron.com sally.beck@enron.com 1.67 173 32

9 maureen.mcvicker@enron.com david.delainey@enron.com 1.61 285 122

10 maureen.mcvicker@enron.com kenneth.lay@enron.com 1.61 286 123

11 jeff.dasovich@enron.com maureen.mcvicker@enron.com 1.60 327 36221

12 rob.bradley@enron.com kenneth.lay@enron.com 1.60 328 34533

13 jeff.dasovich@enron.com louise.kitchen@enron.com 1.57 393 204

14 david.delainey@enron.com kenneth.lay@enron.com 1.55 464 34547

15 maureen.mcvicker@enron.com andrew.fastow@enron.com 1.51 566 331

16 maureen.mcvicker@enron.com richard.causey@enron.com 1.45 775 505

17 karen.denne@enron.com richard.causey@enron.com 1.38 1029 681

18 vince.kaminski@enron.com david.delainey@enron.com 1.34 1395 35987

19 jeffrey.shankman@enron.com jeff.skilling@enron.com 1.30 1629 34973

20 karen.denne@enron.com david.delainey@enron.com 1.26 1766 1214

21 maureen.mcvicker@enron.com rob.bradley@enron.com 1.26 1767 1215

22 vince.kaminski@enron.com andrew.fastow@enron.com 1.26 1768 1216

23 maureen.mcvicker@enron.com tim.belden@enron.com 1.18 2465 1729

24 maureen.mcvicker@enron.com jeff.skilling@enron.com 1.08 3336 2292

25 tim.belden@enron.com jeff.skilling@enron.com 1.08 3337 2293

26 james.steffes@enron.com maureen.mcvicker@enron.com 1.06 4317 37559

27 vince.kaminski@enron.com tim.belden@enron.com 1.00 4849 3421

28 maureen.mcvicker@enron.com steven.kean@enron.com 0.98 5620 39330

29 louise.kitchen@enron.com vince.kaminski@enron.com 0.98 5695 35702

30 david.delainey@enron.com andrew.fastow@enron.com 0.92 6464 36317

31 jeff.dasovich@enron.com jeff_dasovich@enron.com 0.90 6529 4540

32 sally.beck@enron.com steven.kean@enron.com 0.90 6530 4541

33 vince.kaminski@enron.com kenneth.lay@enron.com 0.90 6531 4542

34 steven.kean@enron.com steven.kean@enron.com 0.87 8144 37527

35 james.steffes@enron.com steven.kean@enron.com 0.85 8312 5849

36 louise.kitchen@enron.com kenneth.lay@enron.com 0.70 14223 9876

37 andrew.fastow@enron.com louise.kitchen@enron.com 0.60 16385 35894

38 andrew.fastow@enron.com jeff.skilling@enron.com 0.60 16476 10496

39 kenneth.lay@enron.com tim.belden@enron.com 0.60 16477 10497

40 louise.kitchen@enron.com jeff.skilling@enron.com 0.60 16478 10498

41 jeff.dasovich@enron.com jeff.skilling@enron.com 0.48 25958 15406

42 david.delainey@enron.com angela.schwarz@enron.com 0.00 48444 34423

43 richard.causey@enron.com jeff.skilling@enron.com 0.00 48445 27724

Table 3.13 Rankings of the edges of interest (EoIs) compared with previous rankings after the Covertness 

Index is modified. 
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The two graphs are shown earlier emphasize the enhancement in the covertness profile of 

the edges of interest (EoIs) upon applying the originally modified formula. In parallel, the 

figures also draw attention to the importance of factoring in the total amount of information 

exchanged between the constituent nodes in a dyad.  

  

A scatterplot diagram showing the top ranks' skewness towards dyads having no mails 

copied out from amongst the mail exchanges between their constituent nodes is shown in 

Figure3.34 below. The plot in Figure 3.34 reflects the correlation between covertness-

based rankings of the edges and the number of mails that the constituent nodes of the dyad 

the edges belong to have sent out to the other nodes outside the pair. A clear correlation is 

visible from the scatterplot. To further elucidate the trend, another version of the same plot 

is presented in Figure 3.35, highlighting that all the dyads that have not sent out any copies 

are concentrated in the top ranks (please see the encircled area in the same graph). This 

trend is somewhat of an obstacle since many node pairs may have exchanged very few 

mails due to genuine reasons and wouldn’t have found the opportunity or need to mark 

them out as copies. Quite simply, these node pairs are false positives blotting out the true 

positive covert pairs of nodes dyads. To an extent, false positives will remain since many 

innocuous pairs of nodes will share characteristics with genuinely covert node pairs and 

may mimic them. But the numbers of false positives need to be further pruned for effective 

analysis and better surveillance focus. At this stage where pruning is needed, the role of 

the modified covertness metric comes into play. The second scatterplot between the mails 

copied and the covertness ranking in the context of a modified Covertness Index is also 

shown in Figure 3.36. 
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Figure 3.34 

Figure 3.35 
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In the first of the two plots shown above, it’s seen that all of the first 3000 top ranks by 

covertness are occupied by dyads, which have not marked out any of the emails exchanged 

as copies, i.e., the ‘perfectly covert’ or opaque edges. But, this is not seen in the second of 

the plots (in which the Covertness Index has been modified), where many of the top ranks 

by covertness index values are seen occupying a majority of the top ranks. 

 

A similar conclusion can be drawn from the scatter plots shown below (Figures 3.37 and 

3.38), which exhibit the correlation between the total number of emails exchanged between 

the constituent nodes of a dyad and the dyad's ranking based on the Covertness Index 

defined on its constituent edge. In the first of the two plots below, i.e., Figure 3.37, the 

scatter plot is in respect of the Covertness Index calculated as per the initial (unmodified) 

formula. In this plot, we may observe that dyads whose constituent nodes have exchanged 

a higher number of emails, say around 200 – 500, have very low rankings (many are at 

ranks 20,000 to 40,000). But dyads whose nodes have exchanged a lesser number of emails 

(less than 50) enjoy far better rankings on an average (5000 or less). Thus, in a way, dyads 

active in higher volumes of mail exchanges are getting disincentivized in rankings, which 

becomes a distinct disadvantage when analysts add pre-existing tie related data to the 

existing set-up as and how they become available. Extra volumes mean lower rankings, 

Figure 3.36 



 

216 

 

and paradoxically when such dyads go out of reckoning, the information they contain also 

moves out from the scope of analysis. In this study, the edges are undirected and have 

binary orientation, i.e., a tie can have a value of 0 if the pair of nodes that it connects have 

exchanged no mails or a value of 1 if the associated nodes have exchanged one or more 

mails. The edge value isn’t weighted in any way by the number of mail transactions that 

have occurred along with it. The Edge-Vertex function also doesn’t keep a record of the 

number of mail exchanges directly. This important parameter can be factored into the 

calculation of covertness to make it a part of the Covertness Index, which is the basis for 

the modified formula. 

 

This picture is more nuanced when we apply the modification to the Covertness Index 

formula, as is evident from the second of the scatterplots below Figure 3.38). The same 

dyads whose constituent node has exchanged a higher number of mails (200 – 500)  enjoy 

better ranking (less than 500 or so), and the pairs whose nodes have exchanged less number 

of mails score lower on the rankings. In this way, the modified Covertness Index formula 

conserves the net information exchanged within a dyad, which is crucial if we are to drill 

further into the nature of their relationships later on. 

 

Figure 3.37 
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3.18 Selecting a Threshold of Covertness 

  

The introduction of the Covertness Index43 as a tie-based measure is seen to improve the 

chances of detecting Edge Vertexes of Interest to the study. In other words, the ‘Needle in 

the haystack’ problem of identifying 43 Edges of Interest in a set of 55000 plus edges is 

mitigated considerably with this approach.  

 

If we have to consider all the 55288 edges in the reckoning, any surveillance operations 

involving multiples of this number will be exponentially more complex. Suppose a social 

network happens to bigger than the ENRON e-mail network, as most of them are likely to 

be. For instance, the worldwide web has typically billions of webpages, and the number of 

nodes on the Internet may still be higher. 

 

                                                           
43From this stage onwards the term ‘Covertness Index’ will mean the Modified Covertness Index. 

 

Figure 3.38 
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Therefore, this study suggests a threshold of covertness that will serve as the floor of our 

analysis. That is, only such dyads having edges possessing a minimum value of the 

Covertness Index will be considered for analysis. This threshold will be a heuristic 

depending upon the circumstances in which the inquiry is being conducted. 

 

Most analyses of covert networks are done with limited resources, both in terms of 

computational bandwidth and human resources. The time available is also fairly limited. 

It’s often necessary to select what the analyst may consider as the ‘best snapshot’ of the 

solution in these situations. This solution may well be a subset of the whole, but one that 

sufficiently represents the problem.  

 

In the present instance where the study focuses on detecting covertness of edges within the 

ENRON email corpus, the necessity is to identify the most covert specimens amongst the 

edges and then apply further analytics to unearth more of the related covert edges. This 

problem fits what Moore and Mertens (2011, p351) describes as a situation that happens 

if there is a whole stack of needles, but it’s required to find the longest one, or the shortest, 

or the sharpest. The class of solutions is called Approximations. The need for an 

approximate path to solving any issue is justified by the famous quote often ascribed to 

Aristotle – “It is the mark of an educated mind to rest satisfied with the degree of precision 

which the nature of the subject admits and not to seek exactness where only an 

approximation is possible.” 

 

Moore and Mertens (2011, p.355) describe approximations thus – “ If an Optimization 

problem is NP-hard, we can’t expect to find an efficient algorithm that finds the optimal 

solution. But we might hope for an algorithm that finds a good solution – one that is 

guaranteed to be not much worse than the optimum.” Using the notation of Moore and 

Mertens (2011), the “not much worse.” An algorithm of this type that attempts to find a 

solution to an optimization problem using a reasonable rule of thumb is called a heuristic.44

  

                                                           
44From the Greek εὑρίσκω,for “I discover”. a heuristicis any approach to problem solving or self-discovery that 

employs a practical method that is not guaranteedtobe optimal, perfect or rational, but which is nevertheless 
sufficient for reaching an immediate, short-term goal. 
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Finding an optimal solution is impossible or impractical; heuristic methods can be used to 

speed up finding a satisfactory solution. Heuristics can be mental shortcuts that ease the 

cognitive load of making a decision.ionsApproximations are heuristic in nature. 

Wikipedia45 defines a heuristic in “computer science, artificial intelligence, 

and mathematical optimization as a technique designed for solving a problem more 

quickly when classic methods are too slow, or for finding an approximate solution when 

classic methods fail to find any exact solution, which is achieved by trading optimality, 

completeness, accuracy, or precision for speed. In a way, it can be considered a shortcut.” 

 

Another definition of a  heuristic function, also called simply a heuristic, is 

a function that ranks alternatives in search algorithms at each branching step based on 

available information to decide which branch to follow. It may approximate the exact 

solution without producing the identical result.. 

(https://en.wikipedia.org/wiki/Heuristic_(computer_science)). 

 

Going by this definition, Wikipedia further explains that a heuristic's objective is to solve 

a reasonable time frame that is good enough to solve the problem. This solution may not 

be the best solution to this problem, or it may simply approximate the exact solution. 

But it is still valuable because finding it does not require a prohibitively long time. 

 

Most real-world applications have a complexity that matches the NP-hard postulates. 

Hence, the results of NP-hard computer science problems make heuristics the only viable 

option for various complex optimization problems that need to be routinely solved in real-

world applications. Heuristics underlie the whole field of Artificial Intelligence and the 

computer simulation of thinking, as they may be used in situations where there are no 

known algorithms (Apter, 1970,  p. 83). 

The trade-off46 criteria for deciding whether to use a heuristic for solving a given problem 

include the following: 

 Optimality: When several solutions exist for a given problem, does the heuristic 

guarantee that the best solution will be found? Is it necessary to find the best solution? 

                                                           
45https://en.wikipedia.org/wiki/Heuristic_computer_science, (accessed  June 6, 2020.) 

https://en.wikipedia.org/wiki/Heuristic_computer_science
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 Completeness: When several solutions exist for a given problem, can the heuristic find 

them all? Do we need all solutions? Many heuristics are only meant to find one solution. 

 Accuracy and precision: Can the heuristic provide a confidence interval for the 

purported solution? Is the error bar on the solution unreasonably large? 

 Execution time: Is this the best-known heuristic for solving this type of problem? 

Some heuristics converge faster than others. Some heuristics are only marginally quicker 

than classic methods. 

It may be difficult to decide whether the heuristic solution is good enough because the 

theory underlying heuristics is not very elaborate. The rationale for selecting a threshold 

of covertness is thus well established in the present case. Three different levels of the 

threshold are chosen just to have a comparative picture of the results. There is a progressive 

decrease in the cut-offs of the Covertness Index values and a corresponding increase in the 

numbers of dyads selected for further screening. 

 

 

3.19 Metrics for Measuring Performance 

 

3.19.1  Accuracy 

 

The model we seek to build in the first part of the experiment is a type of engine that seeks 

to classify edges as covert (and of interest) and not covert (not of interest). Several types 

of metrics and scales measure performance in classifiers. The most naïve and popular is 

Accuracy. As a heuristic, or rule of thumb, accuracy can tell us immediately whether a 

model is being trained correctly and how it may perform generally. However, it does not 

give detailed information regarding its application to the problem. 

 

The problem with using accuracy as your main performance metric is that it does not do 

well when there is a severe class imbalance. The present problem at hand is a good example 

where Accuracy may not work well, explained through an example below. 

 

                                                           
46https://en.wikipedia.org/wiki/Heuristic_(computer_science) (accessed June 6, 2020) 

https://en.wikipedia.org/wiki/Heuristic_(computer_science)
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Suppose we were to claim to create a model to identify covert Edge Vertices of Interest 

(EoIs) with greater than 99% accuracy. Would it be sufficient for detecting the Edges of 

Interest over the entire distribution? Well, here is the model: let’s simply label every single 

edge as not a covert one. Given the 55300 edges in the overall ENRON mail corpus and 

the 43 (confirmed) Edges of Interest, which had something or the other to do with the 

scandal, this model achieves an astounding accuracy of 99.992%! That might sound 

impressive, but hides the crucial fact that we have not identified any covert edges at all 

though they exist! While this solution has nearly-perfect accuracy, this problem is one in 

which accuracy is not an adequate metric. 

 

The covert edge detection task is an example of an imbalanced classification problem: we 

have two classes we need to identify — covert edges and not covert edges, i.e., edges 

which are not of any interest to us — with one category representing the overwhelming 

majority of the data points. Another imbalanced classification problem occurs in disease 

detection when the public's rate is very low. In both these cases, the positive class — 

disease or covert edge detection — is greatly outnumbered by the negative class. These 

problems are examples of the fairly common case in social networks when accuracy is not 

a good measure for assessing model performance. 

 

3.19.2 Recall  

 

Intuitively, we know that proclaiming all data points as negative in the covert edge 

detection problem is not helpful and, instead, we should focus on identifying the positive 

cases. The metric our intuition tells us we should maximize is known in statistics as recall, 

or the ability of a model to find all the relevant cases within a dataset. The precise definition 

of recall is the number of true positives divided by the number of true positives and false 

negatives. True positives are data points classified correctly as positive by the model 

(meaning they are correct), and false negatives are data points the model identifies wrongly 

as negatives (incorrect). In the instant case, true positives are correctly identified covert 

edges, and false negatives would be the edges the model labels as not covert edges that 
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were covert. Recall can be thought of as a model’s ability to find all the data points of 

interest in a dataset. 

 

Recall calculates how many of the Actual Positives our model captures through labeling it 

as Positive (True Positive). Applying the same understanding, it is trivial to note that Recall 

is an ideal metric used to select the best model when there is a high cost associated with 

False Negatives. 

 

To quote another instance, in fraud detection or sick patient detection, if a fraudulent 

transaction(Actual Positive) is predicted as non-fraudulent(Predicted Negative), the 

consequence can be harmful for the financial institution. 

 

Similarly, in sick patient detection, a sick patient (Actual Positive) goes through the test 

and is predicted as not sick (Predicted Negative). The cost associated with False Negative 

will be extremely high if the sickness is contagious. 
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True Positive + False Negative = Actual Positive 

 

However, there is an additional point to note at this stage: if we label all edges as covert 

and of interest, then Recall goes to 1.0! We end up with a perfect classifier. Well, not 

exactly. As with most concepts in data science, there is a trade-off in the metrics chosen to 

maximize. In the case of a recall, when we increase the recall, we decrease the precision. 

Again, we intuitively know that a model that labels 100% of the edges as covert is probably 

not useful because we would have to keep surveillance on all ENRON employees, a costly 

proposition indeed, and one that the study aimed to mitigate in the first place! This new 

model suffers from low Precision or a classification model's ability to identify only the 

relevant data points. 

 

3.19.3  Precision 

  

Precision is defined as the number of true positives divided by the number of true positives 

and false positives. False positives are cases the model incorrectly labels as positive that 

are negative. In the case being studied here, the edges the model classifies as covert are 

not covert at all. While Recall expresses the ability to find all relevant instances in a 

dataset, precision expresses the proportion of the data points our model says was relevant 

were relevant. Precision talks about how precise/accurate the model is; that is, out of those 

predicted positive, how many are positive. 

 

Table 3.14 (a)  Confusion matrix showing Actual Positive results. 
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Precision is a good measure to determine when the costs of False Positive is high. For 

instance, in email spam detection, a false positive means that a non-spam email (actual 

negative) has been identified as spam (predicted spam). The email user might lose 

important emails if the precision is not high for the spam detection model. 

Thus, we may define Precision as per the formula below: 

 

 

 

True Positive + False Positive = Total Predicted Positive 

 

Now, we can see that our first model, which labeled all edges as not covert, wasn’t very 

useful. Although it had near-perfect accuracy, it had 0 Precision and 0 Recall because there 

were no True Positives! Say we modify the model slightly and identify a single edge 

correctly as a covert one; now, our precision will be 1.0 (no false positives). However, our 

Recall will be very low because we will still have many false negatives. Suppose we go to 

the other extreme and classify all edges as covert. In that case, we will have a recall of 1.0 

— we’ll detect every covert edge of interest — but our Precision will be very low, and 

we’ll end up keeping costly surveillance on what would be many uninvolved employees. 

In other words, as we increase precision, we decrease recall and vice-versa. The see-saw 

nature of the correlation between Precision and Recall in a model is shown in Figure3.39 

below: 

Table 3.14 (b)  Confusion Matrix showing total predicted positive results. 
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3.19.4  Combining Precision and Recall 

 

We might know that we want to maximize either Recall or Precision at the other metric's 

expense in some situations. For example, in preliminary disease screening of patients for 

follow-up examinations, we would probably want a recall near 1.0 — we want to find all 

patients who have the disease — and we can accept a low Precision if the cost of the 

follow-up examination is not significant. However, in cases where we want to find an 

optimal blend of Precision and Recall, we can combine the two metrics using the F1 score. 

 

The F1 score is the harmonic mean of precision and recall taking both metrics into account 

in the following equation: 

 

 

 

Figure 3.39 



 

226 

 

The harmonic mean instead of a simple average is used because it dis-incentivizes extreme 

values. A classifier with a Precision of 1.0 and a Recall of 0.0 has a simple average of 0.5 

but an F1 score of 0. The F1 score gives equal weight to both measures and is a specific 

example of the general Fβ metric, where β can be adjusted to give more weight to either 

Recall or Precision. (There are other metrics for combining precision and recall, such as 

the Geometric Mean of Precision and Recall, but the F1 score is the most commonly used.) 

If we need to create a balanced classification model with the optimal balance of Recall and 

Precision, we try to maximize the F1 score. 

 

3.19.5 Visualizing Precision and Recall 

 

Having discussed various metrics to evaluate our model's efficacy, we briefly discuss a 

few techniques to explain how the concepts described above may be applied. 

 

By far, the most common technique is computing the confusion matrix, which is useful for 

quickly calculating Precision and Recall given the predicted labels from a model. A 

confusion matrix for binary classification shows the four different outcomes: True 

Positive, False Positive, True Negative, and False Negative. The actual values form the 

columns and the predicted values (labels) form the rows. The intersection of the rows and 

columns shows one of the four outcomes. For example, if we predict a data point to be 

positive, it turns out to be negative, then it’s termed as a false positive. 
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Going from the Confusion Matrix to the Recall and Precision requires finding the 

respective values in the matrix and applying the equations: 

 

 

Table 3.15 An example of a Confusion Matrix 
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We can recast the above matrix into one that suits the purposes of our study. In the instant 

case, the True Positives are those dyads whose edges are covert and are the ones that are 

sought to be detected. The False Positives are the dyads whose edges have been wrongly 

classified as covert and of interest to us. False Negatives are those dyads whose constituent 

nodes have ties that are covert and of interest to the investigator but wrongly classified as 

benign edges and liable to be left out of the inquiry's scope. Finally, True Negatives in the 

Confusion Matrix above correspond to the dyads whose edges are not covert or interested 

in the investigation and correctly identified.  

 

The table below shows the Confusion Matrix with the cells' entities recast as per the above 

analysis. The subsequent table maps the entries of the Confusion Matrix with the ones 

required for this study's purposes. 

 

 

Table 3.16 Confusion Matrix applied to the problem in hand. 
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Confusion Matrix 

Entries 

Recast Confusion Matrix 

Entries 

 

True Positives 

Covert Edges of Interest 

(EoIs) correctly identified. 

 

False Positives 

Benign or Non-Covert Edges 

incorrectly identified as  

Covert Edges of Interest 

 

True Negatives 

Benign or Non-Covert Edges 

identified correctly. 

 

False Negatives 

Covert Edges of Interest 

(EoIs) incorrectly identified 

as  Benign or Non-Covert 

Edges of Interest 

Table 3.17 Table showing mapping of Confusion Matrix entries to 

Problem Statement. 
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Figure 3.40 The Figure above illustrates how the values of 

Precision and Recall are selected from a model and how they 

are calculated. 



 

231 

 

3.20 Measuring Improvement in Detection 

  

In the first instance, we have selected the first 2500 top-ranked Edge Vertices (arranged in 

the descending order of their values of Covertness Index). The Precision, Recall, F1 

measures are all calculated to prove the better detection of the Edge Vertices of Interest 

(EoIs) in the overall distribution by using the index. 

 

Case#1:  2500 Top-Ranked Edges: 

 

Two charts are presented below. The first of the pair reflects the numbers of the Edges of 

Interest (EoIs), which occur in the top 2500 edges arranged along with the Covertness 

Index's descending values of the respective ties. The first chart has the ranks of the edges 

arranged in numerical order. The lower the placement of an edge on the X-axis, the better 

the rank. The second chart is a replica of the first, but the ranks are now shown in a 

logarithmic format47.  

 

The figures below show how the prevalence of the edges of interest (EoIs) has markedly 

improved after applying the Covertness Index to the ties between the nodes constituting 

the dyads. 

 

We discussed using various metrics to measure improvement in the detection of covert 

edges, i.e., EoIs. The first of the metrics discussed was Precision, which indicates how 

correctly the model predicts the true positives. That is, of the Edges predicted as covert, 

how many are the covert edges we seek. The charts below show that there are 23 covert 

edges detected correctly, and the remainder out of 2500 are incorrectly predicted as covert. 

That is, the true positives are 23, whereas the false positives are 2500 – 23 = 2477. 

Referring back to the section on the metrics, the formula of Precision was : 

Precision = True Positives / (True Positives + False Positives) 

                                                           
47Though there is not much importance of depicting values on the X-axis in a logarithmic pattern with only 

2500 edges to consider, if we increase the number of edges to a much larger number (say 50,000) the plotting 

becomes unwieldy without using log values. 
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In other words, the Precision of our model when we reach the count of 2500 in terms of 

ranking is: 

Precision = 23/ (23 + 2477) = 23/ 2500 = 0.0092 or about 1%. 

 

The figure on the face appears not too encouraging till we compare it with the Precision 

achieved by adopting a uniform distribution model. That is, the covert edges we want to 

identify and detect are distributed throughout the set of all the edges uniformly. As seen 

from the figure below, the number of covert edges (EoIs) detected at 2500 is hardly 2. This 

model's Precision is barely 0.0008 or 0.08%, which is less than 10% of what our model 

based on the covertness index gives us. 

Let’s denote Precision arising out of the Covertness Model as PCandthe Precision arising 

out of a Uniform Distribution as PU. 

 

Thus, 

PC=
(𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝑪𝒐𝒗𝒆𝒓𝒕𝑬𝒅𝒈𝒆𝒔𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

 

PC = 
𝟐𝟑

𝟐𝟑+𝟐𝟒𝟕𝟕
 = 

𝟐𝟑

𝟐𝟓𝟎𝟎
 = 0.0092 or, 0.92 %. 

 

Likewise, 

PU =  
𝟏.𝟖𝟒

𝟐𝟓𝟎𝟎
 = 0.0008 or, 0.08 %. 

 

 
Figure 3.41 (a) 



 

233 

 

 

 

The second of the metrics we had discussed to measure performance was Recall.  We may 

now estimate the figure for Recall for the Covertness Index model. As discussed earlier, 

Recall calculates how many of the Actual Positives our model captures through labeling it 

as Positive (True Positive). In other words, Recall calculates how many of the actual Edges 

of Interest (EoIs) our model was able to detect through labeling them as correct out of the 

total EoIs available. We’ve seen that in the set of the 2500 dyads ranked as per the 

Covertness Index measured on their ties, there were 23 EoIs correctly identified. The total 

number of EoIs that we have is 43. Thus, Recall as per your model comes to 23/43  or 0.53, 

i.e., 53 %. Again, this figure is not very impressive until we compare it with the figure of 

Recall obtained from a Uniform Distribution. We discussed the calculation of Precision. 

 

In a Uniform Distribution, the Edges of Interest are presumed to be prevalent uniformly 

throughout the edges whose cardinality is around 55,300. Suppose we calculate the number 

of EoIs that will occur within the figure of 2500. In that case, it comes to 1.84, which 

means that using the Uniform Distribution calculation, the Recall figure is 1.84/43 0.04, 

i.e., 4 %. Compare this with the figure of 53 % for the model built around the Covertness 

Index of ties. The Recall metric increases if the model reduces the False Negatives. Here, 

the False Negatives are the Edges of Interest (EoIs), which the model has incorrectly 

identified as not covert.  Since the number of detected EoIs is 23, and the total number of   

Figure 3.41 (b) 
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EoIs is 43, 20 EoIs have been left out by employing the Covertness Index model. In 

contrast, the Uniform Distribution of the model identifies only about 2 EoIs and leaves out 

as many as 41. Our model thus scores significantly higher in the Recall metric as well. 

 

As in the case of the Precision metric, the results are presented below notationally. 

 

Let’s denote the Recall in the Covertness Model as RC and the Recall in the Uniform 

Distribution as RU. 

 

RC = 
(𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑪𝒐𝒗𝒆𝒓𝒕𝑬𝒅𝒈𝒆𝒔𝑵𝒐𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

 

RC = 
𝟐𝟑

𝟐𝟑+𝟐𝟎
 = 

𝟐𝟑

𝟒𝟑
 = 0.53 or, 53 %. 

 

Likewise, 

RU =  
𝟏.𝟖𝟒

𝟒𝟑
 = 0.04 or, 4 %. 

 

Our model is far more efficient in reducing the number of covert edges not detected in the 

dataset. The recall is particularly important in the study of covert social networks. It is 

important that any detection model in this field needs to keep as many suspect actors within 

the surveillance system. If a significant number of the bad actors slip out of the dragnet, 

the results can be catastrophic. In the Uniform Distribution Model, the number of covert 

edges that have managed to elude scrutiny is a staggering 42 or 96 %, which, in a real-

world situation, implies that almost all the malfeasant players are roaming free to 

perpetuate their actions. 

 

The chart below summarizes Recall performance by invoking the Covertness Index over 

the Uniform Distribution model. 
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It has been discussed at some length earlier that a balanced model doesn’t lean too heavily 

on either Precision or Recall. There are advantages in choosing a more balanced metric 

like the F1 Measure. F1 is an overall measure of a model’s accuracy that combines 

Precision and Recall. A good F1 score means that there are low False Positives and low 

False Negatives, so the model is correctly identifying real threats, and the number of false 

alarms is less. An F1 score is considered perfect when it’s 1, while the model is a total 

failure when it’s 0. 

 

In the Covertness Model that we have developed, the F1 score is  

 

  

𝑭𝟏 = 𝟐 
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

 

 (F1)C   = 𝟐 ∗  
(𝟎.𝟎𝟎𝟗𝟐∗𝟎.𝟓𝟑)

(𝟎.𝟎𝟎𝟗𝟐+𝟎.𝟓𝟑)
  = 0.018. 

 
   

 (F1)C = 0.018. 
 

Figure 3.42 
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  Likewise, for the Uniform Distribution Model, 

 

 

  (F1)U  = 𝟐 ∗  
(𝟎.𝟎𝟎𝟎𝟖∗𝟎.𝟎𝟒)

(𝟎.𝟎𝟎𝟎𝟖+𝟎.𝟎𝟒)
≅ 0.0016. 

 

  (F1)U= 0.0016 

 

  (F1)C | (F1)U = 0.036/ 0.0016 = 11.3  

 
Thus, we can see that the improvement in the detection of covert edges in terms of F1 

Score is also considerable. This is made clear by the chart shown below. 

 

 
 

 

 

Case#2:  5000 Top-Ranked Edges: 

 
We now compare the results for top-ranked 5000 dyads. As in the earlier instance of 2500 

top-ranked pairs, we compute and compare first the prevalence48 of the covert Edges of 

                                                           
48Prevalence as we know is same as the Precision measure for the distributions. 

Figure 3.43 
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Interest over the entire set of 5000 edges between the Covertness Index model and the 

Uniform Distribution model, followed by the comparison of Recall values for both the 

distributions and finally by the computation and comparison of F1 Scores.  

 

To compare the prevalence, two charts are presented below. The first of the pair reflects 

the numbers of the Edges of Interest (EoIs), which occur in the top 5000 edges arranged 

along with the Covertness Index's descending values of the respective ties. The first chart 

has the ranks of the edges arranged in numerical order. The lower the placement of an edge 

on the X-axis, the better the rank. The second chart is a replica of the first, but the ranks 

are now shown in a logarithmic format.  

 

The figures below show how the Precision values of the edges of Interest (EoIs) have 

markedly improved after applying the Covertness Index to the ties between the nodes 

constituting the dyads. Precision indicates how accurate the prediction is that the model 

makes regarding true positives. That is, of the edges predicted as covert, how many are the 

covert edges we aim for? From the figures below, we may see that there are 27 covert 

edges detected correctly, and the remainder out of the 5000 are incorrectly predicted as 

covert. That is, the true positives are 27, whereas the false positives are 5000 – 27 = 4973. 

 

Precision  is calculated per the following formula: as : 

Precision = True Positives / (True Positives + False Positives) 

 

In other words, the Precision of our model when we reach the count of 5000 in terms of 

ranking is: 

Precision = 27/ (27 + 4973) = 27/ 5000 = 0.0054 or about 0.5%. 
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As in the earlier case where we considered the 2500 top-ranked covert edges, the figure 

appears insignificant until we compare it to 0.0008 or 0.08% obtained from the Uniform 

Distribution. The Precision value produced by the Covertness model is more than six times 

that of the Precision figure from the Uniform Model. 

 

We can now repeat the notational representation for calculating and comparing the 

Precision measure. The Precision arising out of the Covertness Model is denoted as PC, 

and the Precision arising out of a Uniform Distribution is represented as PU. 

 

Thus, 

PC=

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

 

PC=
𝟐𝟕

𝟐𝟑+𝟒𝟗𝟕𝟑
 = 

𝟐𝟕

𝟓𝟎𝟎𝟎
 = 0.0054 or, 0.54 %. 

 

Likewise, 

 

PU= 
𝟑.𝟖𝟗

𝟓𝟎𝟎𝟎
 = 0.00078 or 0.08 %. 
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Figure 3.44 

Figure 3.45 
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We now compare the second of the metrics we had discussed to measure performance, i.e., 

Recall, which calculates how many of the Actual Positives our model captures through 

labeling it as Positive (True Positive), which is the same as calculating how many of the 

actual covert Edges of Interest (EoIs) our model was able to detect through labeling them 

as correct out of the total EoIs available. In the top 5000 dyads ranked as per their 

Covertness Index, there were 27 EoIs correctly identified. The total number of EoIs that 

we have is 43. Thus, Recall as per our model comes to 27/43  or 0.63, i.e.,63 %. Again, 

this figure is not very enticing until we compare it with Recall's figure obtained from the 

Uniform Distribution model. 

 

In a Uniform Distribution, the Edges of Interest are presumed to be prevalent uniformly 

throughout the edges whose cardinality is around 55,300. If we calculate the number of 

EoIs that will occur within the figure of 5000, it comes to 3.89. The figure of Recall is 

3.89/43 or 0.09, i.e.,9 %. This is only a fraction of 63 % that is obtained from the  

Covertness Index Model. The Recall metric increases if the model reduces the False 

Negatives. Here, the False Negatives are the Edges of Interest (EoIs), which the model has 

incorrectly identified as not covert. Since the number of detected EoIs is 27, and the total 

number of EoIs is 43, 16 EoIs have been left out by employing the Covertness Index model. 

In contrast, the Uniform Distribution model identifies only about 4 EoIs and leaves out as 

many as 39.  

 

Notationally, let’s denote the Recall in the Covertness Model as RCand the Recall in the 

Uniform Distribution as RU. 

 

Thus, 

RC= (𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑵𝒐𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

 

RC=
𝟐𝟕

𝟐𝟕+𝟏𝟔
 = 

𝟐𝟕

𝟒𝟑
 = 0.63 or, 63 %. 
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Likewise, 

RU= 
𝟑.𝟖𝟗

𝟒𝟑
 = 0.09 or 9 %. 

Thus, in the second instance where 5000 top-ranked covert dyads are considered, the 

Covertness Index model is far more efficient in reducing the number of covert edges not 

detected in the dataset. If many bad actors slip out of the dragnet in a surveillance 

mechanism, the entire exercise fails. In the Uniform Distribution Model, the number of 

covert edges that have managed to elude scrutiny is a staggering 39 or 91 %, which implies 

that nearly all covert players have eluded the surveillance dragnet. 

 

 The chart below summarizes Recall performance by invoking the Covertness Index over 

the Uniform Distribution model. 

 

 

We now come to the third measure of performance, i.e., the F1 measure.F1 is a balanced 

measure of a model’s accuracy that combines Precision and Recall. A good F1 score means 

that there are low False Positives and low False Negatives, so an optimal number of 

vulnerabilities is identified. The number of false alarms is also less.  
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Figure 3.46 
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In the Covertness Model that we have developed, the F1 score is  

 

  

𝑭𝟏 = 𝟐 
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

 

          (F1)C   = 𝟐 ∗  
(𝟎.𝟎𝟎𝟓𝟒∗𝟎.𝟔𝟑)

(𝟎.𝟎𝟎𝟓𝟒+𝟎.𝟔𝟑)
  = 0.0107. 

 
   

 (F1)C = 0.011. 
 

  

  Likewise, for the Uniform Distribution Model, 

 

 

  (F1)U   = 𝟐 ∗  
(𝟎.𝟎𝟎𝟎𝟖∗𝟎.𝟎𝟗)

(𝟎.𝟎𝟎𝟎𝟖+𝟎.𝟎𝟗)
≅ 0.0016. 

 

  (F1)U= 0.0016 

 

  (F1)C | (F1)U = 0.011/ 0.0016 = 6.9  

 
 

The improvement in the detection of covert edges in terms of the F1 Score is marked. The 

chart below illustrates this. 
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Case#3-10,000 Top-ranked Covert Dyads 

 
The performance metrics have been calculated for this case and presented below: 

 

Precision: 
Precision = True Positives / (True Positives + False Positives) 

 

            = 35/ (35 + 9965) = 35/ 10000 = 0.0035 or about 0.35%. 

 

As in the earlier case where we considered the 5000 top-ranked covert edges, the figure 

appears insignificant until we compare it to the figure of 0.0008 or 0.08% obtained from 

the Uniform Distribution. The Precision value produced by the Covertness model is more 

than four times that of the Precision figure from the Uniform Model. 

 

We can now repeat the notational representation for calculating and comparing the 

Precision measure. The Precision arising out of the Covertness Model is denoted as PC, 

and the Precision arising out of a Uniform Distribution is represented as PU. 

 

 

 

Figure 3.47 
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Thus, 

 

PC= (𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

PC=
𝟑𝟓

𝟑𝟓+𝟗𝟗𝟔𝟓
 = 

𝟑𝟓

𝟏𝟎𝟎𝟎𝟎
 = 0.0035 or, 0.35 %. 

Likewise, 

PU= 
𝟕.𝟖

𝟏𝟎𝟎𝟎𝟎
 = 0.00078 or 0.08 %. 

 

The pair of figures shown below illustrates the Covertness Index model's superiority over the 

Uniform Distribution model in detecting the covert EoIs. The first figure has the horizontal 

axis laid out on a plain numerical scale, and the next one is laid out on a logarithmic scale for 

clarity. 

 

 
 

 

 

Figure 3.48 
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Recall: 

 

In the top 10000 dyads ranked as per their Covertness Index, 35 EoIs are correctly 

identified. Thus, Recall as per our model comes to 35/43  or 0.81, i.e., 81 %.  

 

In a Uniform Distribution, the figure of Recall is 7.8/43 or 0.18, i.e., 18 %. Again, this is 

only a fraction of 81 % obtained from the  Covertness Index Model. The Recall metric 

increases if the model reduces the False Negatives. Here, the False Negatives are the Edges 

of Interest (EoIs), which the model has incorrectly identified as not covert. Since the 

number of detected EoIs is 35, and the total number of EoIs is 43, 8 EoIs have been left 

out by employing the Covertness Index model. In contrast, the Uniform Distribution model 

identifies only about 8 EoIs and leaves out as many as 35.  

 

Figure 3.49 
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Notationally- 

 

RC= (𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑵𝒐𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

 

RC=
𝟑𝟓

𝟑𝟓+𝟖
 = 

𝟑𝟓

𝟒𝟑
 = 0.81 or 81 %. 

 

Likewise, 

RU= 
𝟕.𝟖

𝟒𝟑
 = 0.18 or 18 %. 

 

RC | RU = 4.5 

 

Thus, in the third instance where 10000 top-ranked covert dyads are considered, the 

Covertness Index model is far more efficient in reducing the number of covert edges not 

detected in the dataset. In a situation where scrutiny is being carried out to detect 

adversarial and covert players, if many suspects go undetected, the dangers of an unwanted 

incident grow manifold. We may see that in the Uniform Distribution Model, the number 

of covert edges that have managed to elude scrutiny is a staggering 35 or 82 %, which 

implies that nearly all of the suspects have eluded detection. 

 

The chart below summarizes Recall performance by invoking the Covertness Index over 

the Uniform Distribution model. 
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F1 Measure Scores Compared for the top 10000 ranks: 

  

𝑭𝟏 = 𝟐 
(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 ∗ 𝑹𝒆𝒄𝒂𝒍𝒍)

(𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 + 𝑹𝒆𝒄𝒂𝒍𝒍)
 

 

          (F1)C   = 𝟐 ∗  
(𝟎.𝟎𝟎𝟑𝟓∗𝟎.𝟖𝟏)

(𝟎.𝟎𝟎𝟑𝟓+𝟎.𝟖𝟏)
  = 0.007. 

 

  (F1)C = 0.007. 
 

  

Likewise, for the Uniform Distribution Model, 

 

  (F1)U   = 𝟐 ∗  
(𝟎.𝟎𝟎𝟎𝟖∗𝟎.𝟏𝟖)

(𝟎.𝟎𝟎𝟎𝟖+𝟎.𝟏𝟖)
≅ 0.0016. 

 

  (F1)U= 0.0016 

 

  (F1)C | (F1)U = 0.007/ 0.0016 = 4.4 
 

 

Figure 3.50 



 

248 

 

The improvement in the detection of covert edges in the F1 score is shown in the figure 

below. 

 

 

 

Figure 3.51 
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The results from all the three cases presented above are convergent. Further, even the 

individual metrics' performance from each of the cases compared between the two models 

point unequivocally towards the Covertness Index model's overall superiority. We are 

faced with the question of which threshold to choose – the top-ranked 2500 edges, the 5000 

ranked edges, or the 10,000 top-ranked edges. The different metrics' performance for each 

of the cases is summarized in the table below for easier reference. 

 

The table below proves that the choice of 2500 top-ranked edges gives the Covertness 

Index model. All the three performance metrics for the Covertness model, namely, 

Precision, Recall, and F1 Measure, are at least ten times their counterparts in the Uniform 

Index model. Additionally, the number of edges that are nothing but the relationships 

between the constituent nodes of the dyads under observation is also the least. The number 

of unique nodes within this set of 2500 edges is also the least.  

 

Thus, the computational (and human) resources needed to surveil the network for 

covertness signs are least encumbered if we choose the smallest sized instance. It needs to 

be recalled at this stage that since we don’t know at the time of surveillance as to which of 

the actors are into covert acts or are trying to communicate in ways that allow information 

exchange to be confined, the entire instance of the network has to be scrutinized, that is, 

all the 2500 (or 5000 or 10,000) edges and the nodes between which the ties are formed 

need to be kept in focus. If the instance's size increases say from 2500 to 5000, the 

surveillance's complexity will increase in exponents of 2. 

 

 

3.21 Conclusion 

 

The concomitant complexities caused by the privacy laws, the difficulty in obtaining 

accurate field-based information, and the possible lack of information about the previous 

communication flow within the network will add to the layers of resource mobilization as 

the size of the instance goes on increasing. The hour's need is to optimize the bandwidth 

that the surveillance agency has with a decent trade-off with the results. In case we take up 
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the instance of 2500 top-ranked nodes, we end up with 26 of the 43 Edges of Interest (EoIs) 

required to complete the detection exercise. But, the edges that we have in hand, if 

scrutinized further and processed to produce narrower outputs regarding covertness, the 

loss is more than made up, as we will see in the subsequent section. 

 

 
 

 

Problem Statement in light of the Covertness Metric proposed 

 

Based on the above analysis, we may revisit the problem statement that was first defined 

in section 1.7 of Chapter 1 of this dissertation and compare results obtained after applying 

the covertness index metric. 

 

The ENRON mail corpus may be defined as a social network graph G, such that G = (V, 

E);  

 

 

Table 3.18 
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Where V is the set of all nodes in the graph network. 

&E is the set of all edges or mail-pairs in the graph network, including those formed when 

copies of e-mail exchanges between pairs of nodes are marked to other nodes. 

 

The number of edges in the network graph is represented as the cardinality of the set of 

edges V, i.e., | V |  

& | V | = 6568. 

 

The number of edges in the network graph is represented as the cardinality of the set of 

edges E, i.e., |E |  

& |E | = 55,300. 

 

Let’s define the set of the employees of ENRON who were part of the scam as a graph GC, 

such that GC = (VC, EC);  

 

Where VC is the set of all nodes of interest (NoIs) in the graph network and EC is the set of 

all edges of interest (EoIs) in the graph network. 

 

GC⊂G and   VC⊂V&EC⊂E; 

& | VC | = 19 and |EC | = 43; 

 

The ratio of the overall edges of interest (EoI) eij (i and j are nodes of interest (NoIs) in the 

graph network) to the set of all edges of graph G thus comes to: 

 

 

 

 

The problem may also be reframed in a probabilistic sense as is given below; 

 

What is the probability of detecting at least one covert edge from amongst the overall set 

of edges of the ENRON e-mail network in 20 tries? 

P=|EC| / |E| = 43/ 55,300 = 

0.000778

 ------(1.1) 
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Let’s define an integer k, s.t., k = Number of tries; Here, k = 20. 

There are 43 covert edges or Edges of Interest (EoIs). 

Let’s define the number of EoIs as m; Here, m = 43. 

 

The number of edges overall is 55,288 ~ 55,300 

Let the total number of edges be defined as e; Here, e=55,288  

 

We need to calculate the probability of not getting any covert edges in 20 tries. 

Let’s define the probability of detecting a covert edge as Pc and not detecting a covert 

edge as Pnc. 

 

The probability of not detecting a covert edge in the first try will be  

(55,300 – 43)/ 55,300. 

The probability of not detecting a covert edge in the second try will be  

(55,299 – 43)/ 55,299. 

In this manner, the probability of not detecting a covert edge on the 20th try will be 

(55,280-43)/ 55,280. 

 

Notationally, 

 

𝑷𝒏𝒄 =  ∏
((𝑒 − 𝑖) − 𝑚)

(𝑒 − 𝑖)

𝑘−1

𝑖=0

 

 

 

 

    𝑷𝒄= (1 - 𝑷𝒏𝒄) = (1 - ∏
((𝑒−𝑖)−𝑚)

(𝑒−𝑖)

𝑘−1
𝑖=0 ) 
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Hence, the probability of not getting a covert edge detected in 20 tries (k = 20) comes to: 

 

 

𝑷𝒏𝒄 =
(55,300 − 43)

55,300
 𝑥 

(55,299 − 43)

55,299
 𝑥 … . 𝑥 

(55,281 − 43)

55,281
 

 

 

 

𝑷𝒏𝒄 = 0.984560175;𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.015439825 

 
 
 

After Applying Covertness Index 

 
After applying the Covertness Index to all the edges, the number of covert edges of 

interest (EoIs) comes to 23 in a selected-set of 2500 top-ranked covert edges.  

Thus, after this part of the experiment, m = 23; e=2500; k = 20. 

Plugging in these values into equation (1) above, we get –  

 

 

𝑷𝒏𝒄 =
(2500 − 23)

2500
 𝑥 

(2499 − 23)

2499
 𝑥 … . 𝑥 

(2481 − 23)

2481
 

 

 

𝑷𝒏𝒄  = 0.830638142;  𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.169361858 
 
 
Figure 4.70 below is a comparative graph that shows the enhancement in the probability 

of detecting covert edges in the overall set of edges in the ENRON mail corpus network. 
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3.52 
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Chapter 4 

 

Detecting Collusion in Networks 

 

4.1 Introduction 

 

Thus far, the research has identified the basic building blocks of covertness in the form of 

ranking edges or ties between constituent nodes of dyads. Edges are very basic in their 

structure and cannot, in isolation, end the quest for identifying covert subnets or 

communities within the overall network. Ways need to be found to establish linkages 

between high ranked covert edges such that there is some commonness of purpose amongst 

them. The top-ranked covert edges derived in the previous section may exhibit covertness 

in their ties that arise from diverse causes. Some may relate to organizational policies like 

formulation of crucial sale strategies, for instance, which will remain confined amongst 

the employees who wouldn’t want them to leak out to competitors; other edges might be 

confining information due to more mundane reasons such as marital affairs, mutual 

interests like gambling which might have an adverse impact once out in the open; others 

might simply be covert due to structural reasons, i.e., the employee nodes may be in 

isolated positions where there is not much chance of interaction, or due to inadequate 

information about information exchanges (As already analyzed earlier, the ENRON mail 

corpus comprises only 151 complete inboxes spanning a limited period, whereas analysis 

of the “To-From” headers of all emails reveals at least 4600 mail-ids). So, it’s incumbent 

that after identifying high covertness in select edges, the next step should be to group these 

covert edges into groups or communities with identical covert aims. ‘Similarity’ in covert 

objectives  may be termed the commonness of purpose for lack of a better term. A more 

technical term that one hears of more frequently in studies of criminal organizational 

networks is common intention (defined later in this study).  

  

The endeavor amongst social network researchers to seek out commonness amongst actors 

(nodes) or even larger subgroups of actors is a well-established practice. Though the search 
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for conspiracy groupings in identified criminal organizations is common in law 

enforcement, and several field-based practices are available with policing organizations 

worldwide, its systematic study has started only recently. Field-based methods such as 

interrogation, forensic analyses of different crime scene artifacts, and compiling of history 

sheets containing surveillance records of known criminal elements, suspects, and other 

affiliates in criminal organizations have been commonplace in policing. There have been 

many articles on collecting and analyzing call records of suspects and potential offenders' 

telephones and cell phones. But the forays of social networks scientists into the domain of 

criminal networks and conspiracy-oriented structures are only a few decades old. The study 

in this domain that catches the eye is that of Baker and Faulkner (1994) who, in their 

landmark paper on conspiracy networks in the heavy electrical equipment industry, first 

dwelt upon concerted action in aid of a common (and illegal) action by groups or 

communities of actors have remarked in their abstract thus- “We analyze the social 

organization of three well-known price-fixing conspiracies in the heavy electrical 

equipment industry. Although industrial organization economists and organizational 

criminologists have studied aspects of collusion, the organization of conspiracies has 

remained virtually unexplored. Using archival data, we reconstruct the actual 

communication networks involved in conspiracies in switchgear transformers and 

turbines. We find that the structure of illegal networks is driven primarily by the need to 

maximize concealment, rather than the need to maximize efficiency.” 

 

The key terms used by them have been highlighted for effect. The mathematical contours 

of sociological terms such as “conspiracy,” “collusion,” “concealment,” etc. are beginning 

to take shape through multi-faceted studies of criminal and terrorist networks. The terms 

“conspiracy” and “collusion” have, more often than not, negative and criminal 

connotations. Both terms have similar meanings. Merriam-Websters dictionary defines 

conspiracy in two different ways, (a) as an act “to join in a secret agreement to do an 

unlawful or wrongful act or an act which becomes unlawful as a result of the secret 

agreement” and (b) “to act in harmony toward a common end” and defines collusion as a 

“secret agreement or cooperation especially for an illegal or deceitful purpose.” The terms 

to watch out for in the twin definitions are “secret agreement,” “cooperation,” “act in 
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harmony,” and “common end,” which also act as portals into a more mathematical 

interpretation of conspiracy and collusion. When we talk about building a computational 

model of conspiracy networks, what we are looking for is some sort of a formula to 

mathematically define the word “agreement” between the individual actors or entities 

within the network to work towards a common end or purpose and to ensure that the 

formula incorporates the fact that the “agreement” functions in a “concealed” manner. 

We’ve already come up with a way to quantify the “concealed” part, and this is the concept 

of the Covertness Index, which measures the confinement of information in a tie between 

a pair of actors in the network. The problem that now arises is how to implement the 

“agreement” part of it. In other words, how do we yoke together the covert ties into a set 

of “commonness,” and all the covert ties or edge-pairs in the said set can be demonstrably 

proven to be working towards a “common” end.     

 

 

4.2  Co-offending Networks 

 

There has been a sustained research focus on collusion among participant nodes in 

instances of a covert enterprise. Recent work in identifying sub-structures of co-offending 

networks within larger criminal networks falls within this domain. Tayebi and Glasser 

(2016) have defined a co-offending network as “ a network of offenders who have 

committed crimes together.” The key importance of studying such networks has been 

increasingly at the core of academic research (Morselli. 2009,  Hauck. Et al. 2002, 

McGloin et al. 2008, McGloin et al. 2009, Reiss 1988; Reiss, 1991). In Reiss (1988), 

“understanding co-offending is central to understanding crimes’ etiology and the effects 

of intervention strategies.” We may particularly note the word “together” in the definition 

by Tayebi and Glasser(2016). This is the term that approximates our quest for commonness 

or collusion; in other words, it approximates the concept of “working in harmony towards 

a common end”- the dictionary definition of “conspiracy.” 
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The collusion aspect amongst actors in a criminal network has received special attention 

from Tayebi and Glasser (2016), who have defined it in co-offending networks. In their 

words,  

“A co-offending network is a network of offenders who have committed crimes 

together. With increasing attention to SNA, law enforcement and intelligence 

agencies have realized the importance of detailed knowledge about co-offending 

networks.  Groups and organizations that engage in conspiracies, terroristic 

activities, and crimes like drug trafficking typically do this in a concealed fashion, 

hiding their illegal activities. In analyzing such activities, investigations do not only 

focus  on individual suspects but also examine criminal groups and illegal 

organization and their behavior.” (pp 10-11) 

 

Having defined the act of co-offending, Tayebi and Glasser (2016, 20-27) elaborate upon 

the network structural properties of co-offenders’ networks. They include characteristics 

such as Degree Distribution, which is the probability that a randomly selected node has a 

specified number of links: Strength Distribution, which is the number of collaborative 

acts (crimes) the co-offending nodes have participated in: Connecting Paths which 

determine if there are possible connections amongst the co-offenders and if so, what is the 

shortest path that links them using either the Shortest Path algorithm (Djikstra, 1959) or 

the Breadth-First Search (BFS) Algorithm: the Clustering Coefficient, which indicates 

the likelihood of an actor’s collaborator to collaborate with that actor: Connected 

Components Analysis, which is premised upon the fact that there is a higher degree of 

connectivity within the co-offenders’ group than outside the group and finally, Network 

Evolution Analysis, which reflects the dynamic nature of co-offending networks and the 

study of the evolutionary patterns of co-offending patterns spawned by such dynamicity 

helps investigators to identify these groups. 

 

It should be noted here that Tayebi and Glasser (2016) have commented on the aspect of 

committing a crime together by a network of actors in a concealed fashion. They have 

also emphasized the need to investigate entire groups of such actors rather than 

individuals. Therefore, the scrutiny needs to be focused first on detecting networks of 
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actors co-offending with concealment being a key aspect of their actions and then 

identifying groups of such co-offending networks. 

 

 

4.3  Community Detection 

 

To tackle the next stage of the research question, i.e., how do we identify a group of covert 

entities (edges in our case rather than nodes) with “common ends” or form a conspiracy 

sub-network within the overall network. The problem is now akin to the class of problems 

referred to in Graph Theory as Community Detection. Fortunato (2010, p91), in his survey 

paper, defines a community as a “subgraph whose vertices have a higher probability of 

being connected to the other vertices of the subgraph than to external vertices.” Schaeffer, 

in his survey on Graph Clustering (2007) defines a community as “a cluster in a graph” 

(p.31) and defines clustering thus – “Any nonuniform data contains underlying structure 

due to the heterogeneity of the data. The process of identifying this structure in terms of 

grouping the data elements is called clustering also called data classification. The resulting 

groups are called clusters. The grouping is usually based on some similarity measure 

defined for the data elements” (p.27). 

 

The first problem in discovering communities in networks is looking for a quantitative 

formulation of the term ‘community.’ There is no consensus on how this term is defined 

in Social Network Analysis. The definition often depends on the specific network in 

question, and the specific domain one has in mind. However, the most common and 

baseline approach towards identifying communities inside a network remains rooted in the 

fact that there must be more edges inside the community than edges linking nodes 

belonging to the community with the rest of the network, which is the reference guideline 

at the basis of most community definitions. In his survey, Fortunato (2010) states that 

communities are algorithmically defined in most cases, i.e., they are just the final product 

of the algorithm, without a precise a priori definition. 
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A generally well-regarded property of a community that can be exploited algorithmically 

is connectedness. Connectedness refers to the extent, the constituent nodes within the 

community are linked to each other. A type of density measurement and density of a graph 

is perhaps the most widely used group-level index (Wasserman and Faust, 1994). It is 

trivial to expect that for any group of nodes to be a community, there must be links between 

each pair of its constituent nodes and that these links run only through nodes of the said 

group. Schaeffer (2007), who equates the concept of a community with a graph cluster, 

defines graph clustering as the task of grouping the vertices of the graph into clusters, 

taking into consideration the edge structure of the graph in such a way that there would be 

many edges within each cluster and relatively few between the clusters. He remarks that 

graph clustering in the sense of grouping the vertices of a given input graph into clusters 

is tied to the task of finding clusters within a given graph. Fortunato (2010) has categorized 

a community's definition into three classes, local, global, and based on vertex (node) 

similarity. 

 

Local definitions focus on the sub-network in question, possibly including its immediate 

neighborhood but excluding the rest of the network. Wasserman and Faust (1994) 

identified four types of local criteria: complete mutuality, reachability, vertex(node) 

degree, and the comparison of internal versus external cohesion. The communities defined 

in this way are mostly maximal subgraphs, which cannot be enlarged with new nodes and 

edges without losing the property, which defines the community. Communities in a social 

network context can be defined in a very strict sense as subgroups whose members enjoy 

complete mutuality, i.e., they are all “friends to each other” (Luce and Perry, 1949), the 

equivalent of the definition of a clique49in graph-theoretic terms.  

 

Global definitions of communities are those concerning the graph as a whole. Such 

definitions are reasonable for cases in which any prospective sub-group is an essential part 

of the network, which cannot be excised without seriously affecting the network 

                                                           
49a subset of a graph or network whose vertices are all adjacent to each other. In social network analysis, a 

clique is a maximal subgraph, i.e. which cannot be enlarged with the addition of new nodes and edges without 

losing the inherent property which defines it, whereas in graph theory cliques may also be non-maximal.  
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functioning. One of the network characteristics popularly used as a global property of 

communities is modularity, a concept introduced in a groundbreaking paper by Newman 

and Girvan (2004). In the standard formulation of modularity, a sub-network is a 

community if the number of edges inside the sub-network exceeds the expected number of 

internal edges that the same sub-network would have in the null model50equivalent to the 

network. 

 

The third way that communities may be defined is based on the similarity of nodes (or 

vertices). It is trivial to assume that communities are groups of nodes that are, in some way, 

similar to each other and that the similarity between each pair of nodes can be computed 

based on some reference property, local or global, whether an edge connects them or not. 

Thus, each vertex ends up in a sub-group whose vertices are most similar to it. Several 

similarity measures have been used by researchers across various domains, the more 

popular ones of which include various distance measures (Euclidean, Manhattan, 

Mahalanobis, etc.), dissimilarity measures (posed by Wasserman and Faust, 1994), 

similarity measures such as cosine similarity, neighborhood overlap (whose normalized 

version is called a Jaccard Index), Tanimoto coefficient51, Adamic-Adar metric, Pearson’s 

Index52, Zhou-Lu-Zhang Index (2009), Preferential Attachment measure (PA)53, etc. 

                                                           
50 In Graph Theory, a Null Model is a graph which matches the original graph which it seeks to replicate, in 

some of its structural features, but which is otherwise a random graph i.e. a graph in which all edges have 

equal probabilities of being connected to vertices. (This implies that a Random Graph doesn’t have any 

community structure within it as density of connections is uniform throughout the graph). The null model is 

used for comparison with the parent-graph, to verify whether the parent-graph in question displays 

community structure or not. The most popular null model is the one proposed by Newman and Girvan in 

their landmark paper of 2004 and where they hypothesized about the null model consisting of a randomized 

version of the original graph, where edges are rewired at random, under the constraint that the expected 

degree of each vertex matches the degree of the vertex in the original graph. 
51A variant of Jaccard Coefficient. The similarity score is the dot product of two vectors divided by the 

squared magnitudes of each of the vectors minus their dot product.  

 
52 Pearson’s coefficient is a linear similarity measure which uses mean centering and normalization of 

profiles. It uses a best fit regression line that runs through the attributes of the two data objects, plotted on a 

two-dimensional plane. It is calculated by dividing the covariance of the two data objects by the product of 

their standard deviations.  

 
53 Preferential Attachment (PA) is a measure that calculates the product of the degree of two nodes, so the 

higher the degree of both nodes, the higher is the similarity between them. 
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Another sub-class of metrics in this category is the number of edge-independent paths 

between two vertices. Independent paths do not share any edges (vertices). Their number 

is related to the maximum flow that can be conveyed between the two vertices subject to 

the condition that each edge can carry only one unit of flow, which is also the formulation 

of the classic max-flow/min-cut theorem proposed by Elias, Feinstein & Shannon, (1956). 

This class also includes the sum of all paths between the nodes or vertices of a network, 

and the sum is termed as a weighted sum of paths. Another important class of measures of 

vertex similarity is based on the properties of random walks on graphs. (A random walk is 

a path across a graph or network constructed by taking random steps repeatedly. The ‘walk’ 

starts at some specific initial node or vertex; at each step of the walk, edges attached to the 

node or vertex are chosen randomly. The walker moves along the chosen edge to the node 

vertex at the other end, and the process gets iterated. Random walks are usually permitted 

to repeat the edges they move along more than once or retrace their steps through an edge 

they have just crossed.)  

 

One of the other metrics in this class is the commute-time (Chandra et al., 1989) between 

a pair of vertices, which is the average number of steps needed for a random walker, 

starting at either vertex, to reach the other vertex for the first time and then return to the 

original vertex. The commute-time and then revert to the original vertex. The commute-

time is closely related to the resistance distance introduced by Klein and Randic (1993), 

expressing the effective electrical resistance between two vertices if the graph is turned 

into an electrical network. Another quantity used to define similarity measures is the 

escape probability, defined as the probability that the walker reaches the target vertex 

before coming back to the source vertex. The escape probability is related to the effective 

conductance between the two vertices in the equivalent resistor network. (Palmer and 

Faloutsos, 2003; Tong et al., 2008). Fortunato (2010) describes other methods that exploit 

modified random walks' intrinsic properties, citing Gori and Pucci's instances and that by 

Tong and others who have used similarity measures derived from Google’s PageRank 

process. 
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4.4  Approaches to Community Detection 

 

The nature of communities within graphs or networks is described by Fortunato (2010); 

thus – “Real networks are not random graphs, as they display big inhomogeneities, 

revealing a high level of order and organization. The degree distribution is broad, with a 

tail that often follows a power law: therefore, many vertices with low degrees coexist with 

some vertices with a large degree. Furthermore, the edges' distribution is globally and 

locally inhomogeneous, with high concentrations of edges within special groups of vertices 

and low concentrations between these groups. This feature of real networks is called 

community structure”. To detect such clusters within networks, three broad solutions are 

envisaged at this point, each with its concomitant advantages and disadvantages. The first 

one is the Graph Partitioning approach where the network is split into progressively 

smaller and more cohesive groups; the Community Detection approach is similar to graph 

partitioning but less structured in terms of partition size and number, and finally, the 

Network Evolution or Link Prediction approach which looks at how a network might 

look at a future point of time based on how it looked like in the immediate past. A related 

approach is the Missing Link approach, which looks for links between covert entities that 

might exist but not available based on available information due to deliberate deception by 

the participant entities or incomplete information about the network. We may look at 

identifying groups of edges having covertness related, i.e., groups of edges from within 

the set of top-ranked covert edges, which have a common aim. The resulting architecture 

of subgroups of covert edges may not have the structural quality to it because any path 

may not connect the constituents edges within the related subgroup but given substantial 

similarities; otherwise, their aims to keep information confined can be said to have a lot of 

commonness. For a better understanding of this concept, a representative network is shown 

in Figure544.1 below:   

 

                                                           
54  A more detailed explanation of how this figure evolved into its present structure is given in the section on 

Edge-Vertices which follows this discussion. 
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The pairs of nodes highlighted in 

different colors represent different 

subgroups of covertness. Let’s choose 

the green colored subgroup, which 

comprises the node pairs (b,o) and (m,k) 

and vice versa. In this sense, neither pair 

displays structural equivalence. Rather, 

their similarities belong more to the 

regular equivalence domain. 

 

With this architecture in mind, we may 

consider constructing covert subgroups 

from two different approaches: a) A top-

down approach and b) An aggregational 

approach beginning from the ground up. 

  

A top-down approach would entail dividing the graph into smaller sized partitions and 

evaluating each partition for cohesiveness using different statistical methods.55 The two 

main mechanisms available for this type of computational intervention are a) graph 

partitioning and b) community detection. The fundamental difference between the two is 

that in graph partitioning, the groups' number and size into which a network is divided are 

specified. In community detection, they are not. There is also a difference between the 

goals of the two types of calculations. Graph partitioning aims to divide a network into 

smaller, more manageable pieces, such as numerical calculations. On the other hand, 

community detection is more of a tool for understanding the overall structure of a network 

or “for shedding light on large-scale patterns of connection that may not be easily visible 

in raw network topology.” 

 

                                                           
55 Please see the section on Social Network Analytic methods, especially the section on Group based analytics 

in social networks. 

4.1 
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4.4.1  Graph Partitioning Approaches 

 

Graph partitioning algorithms seek to find the best division of a network, given certain 

conditions, regardless of whether any good division exists. If there are indeed no partitions 

that meet the specifications, then the least bad one must be accepted. On the other hand, 

with community detection, where the goal is normally to comprehend the network 

structure, there is no need to partition the network if there is no good division. If a network 

has no suitable divisions, then that in itself may be a useful piece of information, and it 

would be perfectly reasonable for a community detection algorithm only to divide up 

networks when good divisions exist and to leave them undivided the rest of the time. 

(Newman, 2010, pp 357-358). 

 

Coming to the graph partitioning algorithms, as has been mentioned earlier, a graph 

partition is defined as the decomposition of any network to smaller sub-networks 

by dividing its set of nodes into mutually exclusive groups. Edges of the original network 

that cross between the resultant groups will also produce edges in the partitioned sub-

network. Graph partitioning aims to ensure that the number of resulting edges is small 

compared to the original network. The partition may be better optimized for analysis and 

problem-solving than the original network. There are a variety of graph partitioning 

algorithms available. The simplest graph partitioning problem is the division of a network 

into just two parts called graph bisection. Most graph partitioning algorithms are, in fact, 

mechanisms for bisecting networks rather than for partitioning them into arbitrary numbers 

of sun-networks. Though this aspect may at first appear to be a disadvantage, it is not in 

practice since if a network can be divided into two parts, it can be divided into more than 

two by further partitioning one or both of the resultant partitions. This repeated bisection 

is the commonest approach to the partitioning of networks into arbitrary numbers of parts. 

 

Further illumination into the bisection mechanism is provided by Newman (2010), who 

states: 

“Formally, the graph bisection problem is the problem of dividing the vertices of a 

network into two non-overlapping groups of given sizes such that the number of 
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edges running between vertices in different groups is minimized. The number of 

edges between groups is called the cut size. Simple though it is to describe, this 

problem is not easy to solve. One might imagine that one could bisect a network 

simply by looking through all possible network divisions into two parts of the 

required sizes and choosing the one with the smallest cut size. For all but the 

smallest of networks, however, this so-called exhaustive search turns out to be 

prohibitively costly in terms of computer time.”(p. 359) 

 

Newman dwells on the algorithm's complexity that he derives as an exponential function 

(2n+1) where n is the network's size. This value can escalate quickly as the network size 

increases. More to the point is Newman’s remarks on the nature of the solution we might 

come to expect: “Perhaps one might find a way to limit one’s search to only those divisions 

of the network that have a chance to be the best one.”(Newman, 2010, p360). This 

viewpoint is a truism when we visit real-world problems of community detection in a 

network, and it will apply to every kind of mechanism that research may come up with it. 

It is also very true of the solution proposed in this study. 

 

The graph partitioning algorithm family includes the Kernighan-Lin algorithm proposed 

by Ben Kernighan and Shen Lin in 1970 (Kernighan et al. 1970), which works by reducing 

the number of edges between the sub-networks by exchanging nodes between them. Other 

popular algorithms in this class are spectral partitioning proposed by Fiedler (1973) and 

Pothen et al. (1990), multi-level graph partitioning (Teng, 1999), (which include tools like 

METIS (Karypis et al. 1999), Graclus (Dhillon et al. 2007) and MLR-MCL (Satuluri et al. 

2009)).  

 

4.4.2  Community Detection Approaches 

 

Community detection is used essentially for discovering and comprehending the overall 

structure of the network. It is similar to graph partitioning because the goal is to divide the 

network into nodes with minimum links amongst them. More importantly, the number or 

size of these groups or communities is not pre-decided. In this category, popular techniques 
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include simple modularity maximization, which is similar to the Kernighan-Lin algorithm 

(Newman, 2006a, 2006b), and the spectral modularity maximization algorithm, which is 

the equivalent of the spectral graph partitioning algorithm. Other algorithms that may be 

said to belong to the class of community detection are the Markov clustering mechanisms 

or MCL proposed by Dongen et al. (2000) and upgraded subsequently (Satuluri et al., 

2009, 2010), related approaches like the local graph clustering (Speilman & Srivastava, 

2008, Speilman & Teng, 2004), flow-based post-processing  (maximum computing flow 

to improve existing partitions) proposed by Flake et al. (2000) and a related conductance-

based derivative by Lang & Rao (2004), community discovery via Shingling (Broder et 

al., 1997), betweenness-Based methods developed by Newman et al. (2004) which look 

for the edges that lie between community like structures and seeks to remove them56, short 

loop betweenness based algorithm (Radicchi et al. 2004), hierarchical clustering (and 

hierarchical decomposition) techniques which together comprise one of the oldest set of 

approaches to the subject and many others. 

 

There are a great number of clustering techniques available in the literature. Which one(s) 

are the handiest? The literature has not resolved this question, and it remains an area of 

little consensus amongst researchers in the subject.  What can perhaps be said with some 

certainty is that the most popular are the modularity optimization57 techniques. Still, the 

results of this approach in large graphs(networks) are likely to be unreliable. Fortunato, in 

his survey paper on community detection (2010, p91), has commented on the popularity 

of this class of algorithms stating thus –“Nevertheless, people have become accustomed to 

using it (Modularity Optimization), and there have been several attempts to improve the 

measure. A newcomer, who wishes to find clusters in a given network and is not familiar 

                                                           
56Interestingly enough, this methodology is based on an attribute defined on an edge called the edge-

betweenness that counts the number of geodesic paths that run along edges and edges that lie between sub-

networks are expected to have high values of betweenness. The algorithm iteratively calculates the edge-

betweenness of all edges and ranks them. The edge with the highest score is removed and the algorithm goes 

on iteratively calculating new scores of edge betweenness and progressively divides the network into two 

parts, then three and so on. This is somewhat similar to the Covertness Index attribute defined in this study 

and also has a parallel in ranking the edges as per the attribute vales. 

 
57Modularity has a range of values between −0.5 (non-modular clustering) and 1 (fully modular clustering) 

that measures the relative density of edges inside communities with respect to edges outside communities. 

Optimizing the value of Modularity results in the best possible grouping of the nodes of a given network.. 
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with clustering techniques, would not know, off-hand, which method to use, and he/she 

would hardly find indications about good methods in any single paper on graph clustering, 

except perhaps on the method presented in the paper. So, people keep using algorithms 

because they have heard of them, or because they know that other people are using them, 

or because of the reputation of the scientists who designed them. Waiting for future reliable 

benchmarks that may give an objective assessment of the quality of the algorithms, there 

are at the moment hardly solid reasons to prefer one algorithm to another” the comparative 

analyzes by Danon et al. (2005) and by Lancichinetti and Fortunato (2008). 

 

4.4.3  Link Based Approaches 

 

In the previous sections, I proposed a Covertness Index to build a rank of covert edges. 

The primary task was to define an attribute centered upon the confinement of information 

exchanged between two nodes. Thus, the study has considered the ties between the nodes 

as a fundamental and indivisible building block of covertness. Edges have attributes of 

being two-dimensional as well as behaving like an atomic unit. But, this solves the 

questions addressed by this research only halfway. 

 

Suppose that we have a group of edges denoted as covert; how do we know if these edges 

have a type of covertness common? To rephrase the question, the methodology to cluster 

edges established through metrics to be oriented covertly. At the beginning of the study, 

examples were given where groups of covert actors in a network whose intentions58 were 

not common. But they were confining information for diverse purposes. To segregate the  

purposes for which the constituent nodes of a dyad perform in an opaque manner is a 

different dimension from the original covertness issue. It is a well-known phenomenon in 

social networks that nodes which cluster into groups are more closely linked than nodes 

outside the group, which is true of the covertness property.  The sequence of three figures 

below captures this dilemma somewhat more expressively. 

                                                           
58Common Intention may be defined as a prearranged plan and acting in concert or in some kind of social 

cohesion pursuant to the plan. 
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The first figure shows a general social network whose ties are under scrutiny to discover 

their covertness index. The second figure shows the same network's status after the 

exercise to calculate the covertness index of ties, and ranking them as covert or otherwise 

based on a certain threshold is completed. The third figure in the series represents attempts 

to group the covert nodes into community structures having common aims or intentions. 

 

The set of edges (and the associated Edge-Vertex functions) which are seen in the above 

representative network are: 

Ev={(a,f), (a,h), (a,n), (b,e), (b,o), (b,h), (c,d), (c,h), (d,g), (e,h), (i,k), 

(j,k), (j,l), (k,m), (k,n)} 

 

After computing the Covertness Index on each of the above edges and then assigning each 

edge a rank depending on the covertness index's value, we get the following figure. In this 

figure, all the top ranking edges are highlighted in pale red. The set of identified covert 

edges are listed below: 

 

 

Figure 4.2 (a) 
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(Ev)covert ={(a,h),(b,o),(b,h),(c,d),(i,k),(k,m)} 

 

The third and last in the figures show what we aspire to do in the next step: finding links 

between the edges identified as covert to somehow group them in subnets representing 

common intention. 

 

A third of the figures below show that there are three sub-groups of covert edges. Each 

sub-group is colored differently. It needs to be emphasized that some of the edges of the 

nodes constituting the edges are not connected structurally. The linkages have been made 

through other associations. The three different sets of covert edges are shown below: 

 

[(Ev)covert]Green={(k,m), (b,o)} 

[(Ev)covert]Red={(a,h), (b,h), (i,j)} 

[(Ev)covert]Blue = {(c,d)} 

 

 

Figure 4.2 (b) 
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Mere confinement of information being exchanged is too wide and too shallow to measure 

group actors (or nodes) who display covertness characteristics but whose aims to maintain 

covert attitudes are widely variable. So the task now is to make groups (communities) out 

of these covert edges so that the groups have common intentions, i.e., their covertness 

display has a common aim. Community detection already exists as a topic within the 

overall research on social networks. It is a widely studied and researched topic, and there 

is a correspondingly wide variety of algorithms for community detection (Newman, 2015, 

p354).  

 

 

4.5  Link-Prediction in Social Networks 

 

Social networks are highly dynamic; they grow and evolve quickly by adding new nodes 

and edges, indicating new interactions in the existing social structure. As discussed in some 

previous sections, quantifying the mechanisms through which such networks evolve is still 

not fully comprehended. The second part of this research is to define and convert into a 

measurable format a basic mathematical and computational problem underpinning the 

evolution of social networks, the link-prediction problem.  Link prediction in social 

networks is defined as the probability of establishing a link between two disparate (un-

connected) nodes.  

 

Figure 4.2 (c) 
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Liben-Nowell and Kleinberg (2007) were one of the first to propose the Link Prediction 

model. Given a social network snapshot, the Link Prediction approach seeks to predict the 

edges added to the network accurately. In their words – “In effect, the link-prediction 

problem asks: to what extent can a social network's evolution be modeled using features 

intrinsic to the network itself? Consider a co-authorship network among scientists, for 

example. There are many reasons exogenous to the network why two scientists who have 

never written a paper together will do so in the next few years. For example, they may 

happen to become geographically close when one of them changes institutions. Such 

collaborations can be hard to predict. But one also senses that many new collaborations 

are hinted at by the topology of the network: two scientists who are close in the network 

will have colleagues in common and will travel in similar circles; this social proximity 

suggests that they are more likely to collaborate shortly. Our goal is to make this intuitive 

notion precise and understand which proximity measures in a network lead to the most 

accurate link predictions. We find that several proximity measures lead to predictions that 

outperform chance by factors of forty to fifty, indicating that the network topology does 

indeed contain latent information from which to infer future interactions. Moreover, 

certain fairly subtle measures—involving infinite sums over paths in the network—often 

outperform more direct measures, such as shortest-path distances and numbers of shared 

neighbors.”(Liben-Nowell et al., 2007) 

 

Link prediction modeling is not limited to predicting social-network evolution; it is also 

applicable across a wide variety of application areas; to begin with, it is very relevant to 

several interesting, current applications of social networks (Cao, Z., Zhang, Y., Guan, J., 

& Zhou, S., 2018). To give an example, in online social networks, such as Twitter, 

Facebook, and Weibo, link prediction is used to recommend registered users to connect 

with someone they are acquainted with but were not able to recognize in the network 

(Zhang, Y., Zheng, Z. and  Lyu, M. R.,  2014; Aiello, L. M. 2012; Zhang, Z. K., Zhou, T. 

& Zhang, Y.C., 2011). Accurate recommendations through link predictions are likely to 

promote user loyalty in personalized services (Zhang, Y., Zheng, Z. & Lyu, M. R. 2014). 
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In Bioinformatics59, it has been used in protein-protein interaction (PPI) prediction (Airodi 

et al.,2006) or to annotate the PPI graph (Freschi, 2009). 

 

Accurate link prediction based on known network structure and some specific biological 

information help design targeted experiments, which may substantially reduce 

experimental time and cost (Bu, D. B., Zhao, Y. & Cai, L. 2003, Stumpf, M. P. H., 2008, 

Cannistraci, C. V., Alanis-Lobato, G. & Ravasi, T. 2013; Cannistraci, C. V., Alanis-

Lobato, G. & Ravasi, T., 2013).  The Internet and web science area can be used in tasks 

like automatic web hyperlink creation (Adafre et al., 2005) and web site hyperlink 

prediction (Zhu et al., 2002). In e-commerce, one of the most prominent usages of link 

prediction is to build recommendation systems (Huang et al., 2005; Liu et al., 2007; Li et 

al., 2009). It also has various applications in other scientific disciplines. For instance, in 

bibliography and library science, it can be used for de-duplication (Malin & Karley, 2005) 

and record linkage (Ahmed et al., 2007).  

 

 

4.6 Link-Prediction in Missing Link Problems 

 

In the application to monitoring the network of criminals, link prediction is used to 

discover the possible connections among criminals (including potential criminals), which 

is useful for locating some specific criminals and thus detecting and disrupting terror 

attacks (Knoke, 2015; Li, 2014). 

 

Increasingly, for example, researchers in artificial intelligence and data mining have 

argued that a large organization, such as a company, can leverage the interactions within 

the informal social network among its members; these ties serve to supplement the official 

hierarchy imposed by the organization itself (Krautz et al., 1997; Raghavan, 2002). Liben-

Nowell and Kleinberg (2007) have noted that effective methods for link prediction could 

                                                           
59 However, in the implementation of Link Prediction modeling in biological networks, including inprotein-

protein interaction networks and metabolic networks, the links are found to be typically neither complete 

(high false positives) nor highly reliable (high false negatives)(Cao, Z., Zhang, Y., Guan, J., & Zhou, S., 

2018; Maslov, S. & Sneppen, K. 2002; Yu, H. Y., 2008;  Jeong, H., Mason, S. P. & Barabási, A. L.; 2001). 
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be used to analyze such a social network to suggest “promising interactions or 

collaborations that have not yet been identified within the organization.” 

 

It can be used in security-related applications to identify terrorists and criminals (Al Hasan 

& Zaki, 2011).  Liben-Nowell and Kleinberg (2007) have gone a step further to include 

the analysis of covert networks; in their words, “In a different vein, research in security 

has recently begun to emphasize the role of social network analysis, largely motivated by 

the problem of monitoring terrorist networks; link prediction in this context allows one to 

conjecture that particular individuals are working together even though their interaction 

has not been directly observed.” which is typically the approach that has been adopted in 

several studies on clandestine networks, specifically the ones involving the 9/11 attacks. 

(Krebs, 2002). 

 

This approach to link prediction in networks has also been extrapolated by Liben-Nowell 

and Kleinberg(2007) by applying it to the problem of inferring missing links from an 

observed network:  

“in several domains, one constructs a network of interactions based on observable 

data and then tries to infer additional links that, while not directly visible, are likely 

to exist. This line of work differs from our problem formulation in that it works 

with a static snapshot of a network, rather than considering network evolution; it 

also tends to take into account specific attributes of the nodes in the network, rather 

than evaluating the power of prediction methods that are based purely on the graph 

structure.” (p.2) 

 

Link prediction modeling is only one of the mechanisms to tackle the larger problem of 

network evolution. There are a plethora of models dealing with network evolution in recent 

research on networks. Prime examples would be the work of Barabasi et al. (2002), 

Davidsen et al. (2002), Jin et al. (2001) on collaboration networks, and the survey of 

Newman (2003). It is difficult to evaluate and compare the different models used in these 

works. They have generally been evaluated only in terms of how well they reproduce 

certain global structural features observed in real networks. However, link prediction 
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modeling offers a very natural basis for such comparative evaluations: a network model is 

useful to the extent that it can support meaningful inferences from observed network data 

(Liben-Nowell & Kleinberg, 2007). Newman (2001) has a similar approach in as much as 

he has considered the correlation between certain network-growth models and data on the 

appearance of edges of co-authorship networks. Hasan et al. (2006) have extended this 

work in two ways. First, they showed that data external to the scope of graph topology 

could significantly boost the prediction results. Secondly, they employed different 

similarity measures as features in a supervised learning setup where the link prediction 

problem is binary. This supervised classification approach to link prediction modeling 

gained further momentum in work by Bilgic et al. (2007), Wang Chao et al. (2007), and 

Doppa Janardan et al. (2009).  

 

A similar but not identical area of application of link prediction modeling (and thus where 

explicit graph representations were not used) has been in the domain of relational data 

(Tasker et al., 2003, Popescul et al., 2003, Popescul et al., 2003) and also in the Internet 

domain (Sarukkai et al., 2000). According to Hasan et al. (2008), the prediction system 

proposed in these works can accept any relational dataset. The objects in the dataset are 

related to each other in any complex manner. The system's task is to predict the existence 

and the type of links between a pair of objects in the dataset. Proximal applications have 

been seen in Stochastic relational models (Airodi et al. 2006, Weiss et al. 2004, Xu et al. 

2008, Fu et al., 2009), Probabilistic relational models (Getoor et al. 2002), graphical 

models (Nallapati et al.,2008), and other variations of such studies. The advantages of these 

approaches include the genericity and ease with which they can incorporate the model's 

entities' attributes. On the downside, they are usually complex and have too many 

parameters, many of which may not be intuitive to the user (Hasan et al., 2008). 
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4.7 Challenges in Using Link-Prediction 

 

Clearly, there is a close relationship between the study of network evolution and link 

prediction modeling. Both research areas have seen much progress in their respective 

fields. An evolution model predicts the edges of a network at some future point in time, 

factoring in the widely available social network attributes, such as the small-world 

phenomenon (Kleinberg, 2000) and the power-law degree distribution (Barabasi et al., 

1999). The two are not the same; however, the main difference between the social network 

evolution model and the link prediction model is that the former concentrates on the global 

properties of the network, while the latter focuses on the network's local parameters to 

predict the existence of a link between a certain pair of nodes in the network. Nevertheless, 

the ideas in the network evolution model have been key to research works that have directly 

addressed the problem of link prediction (Kashima et al., 2006).  

  

One of the main challenges in link prediction is the evolution of huge networks in size and 

highly dynamic for which earlier algorithms may not scale well. For example, internet-

scale social networks like WhatsApp, Instagram, Linked-In, Facebook, mySpace, Flickr, 

and so on pose special challenges during their extremely fast evolution. More direct 

approaches are required to address these challenges. For example, using the timestamps of 

past interactions, which explicitly use the lineage of interactions, can significantly improve 

link prediction efficiency (Tylenda et al., 2009). Another direct approach, matrix 

factorization, has been employed to estimate the similarity between the nodes in real-world 

social networks having approximately 2 million nodes and 90 million edges (Song et al., 

2009). Matrix-based factorization mechanisms have also been applied to higher-order 

models, such as tensors. Any traditional algorithm that aims to compute pair-wise 

similarities between such a big graph's vertices is doomed to fail (Hasan et al., 2008).  
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4.8  Network Evolution vis-a-vis Link-Prediction 

 

We have seen the link prediction mechanism is inextricably linked with the dynamics of 

network evolution. Essentially, any analysis of link prediction applications is predicated 

upon a time-based approach tied to the truth that network evolution is itself a time-

dependent process. If link prediction is used to predict the network’s future shape, time 

becomes an essential factor in the calculations. A modified example from Liben-Powell 

and Kleinberg (2007) to work using their notation illustrates the importance of time in link 

prediction applications.  

 

Example: Given a social network G (V, E) where V is the set of vertices and E the set of 

edges, in which an edge e  =  (u, v ) ∈E represents some form of interaction between its 

endpoints at a particular time t (e), we can record multiple interactions by parallel edges 

or by using a complex timestamp for an edge. For time t ≤ t’, we assume that G [t, t’] 

denotes the subgraph of G restricted to the edges with time-stamps between t and t.’In a 

supervised training setup for link prediction, we can choose a training interval[t0, to’ ], and 

a test interval[t1, t1’ ]  wheret0’< t1. The link prediction task is to output a list of edges not 

present inG [t 0, to’], but are predicted to appear in the network G [t1, t1’ ]. 

 

Hasan et al. (2008) extrapolated this approach and modeled the link prediction problem as 

a supervised classification task, where each data point corresponds to a pair of vertices in 

the social network graph. They proposed using the information from the training interval 

([t0, t0’]). The model belonging to this timestamp seeks to predict the future links in the 

test interval ([t1, t1’]) are sought to be made. Assuming that u, v ∈V are two vertices in the 

graph G (V, E ) and the label of the data point⟨𝑢, 𝑣〉 is yu,v and further assuming that the 

interactions between u and v are  symmetric, the pair⟨𝑢, 𝑣〉and⟨𝑣, 𝑢〉represent the same data 

point: hence, yu,v = yv,u . 
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Using the above labeling for a set of training data points, a classification model is built that 

can predict the unknown labels of a pair of vertices⟨𝑢, 𝑣〉where⟨𝑢, 𝑣〉∈E in the graph G [t1, 

t1’]. This is a typical binary classification task. Any popular supervised classification tool, 

such as naive Bayes, neural networks, support vector machines, or k nearest neighbors, can 

be used. The major challenge in this approach is choosing a set of features for the 

classification task. Feature sets that have been used successfully for supervised link 

prediction tasks are discussed next. 

 

In essence, the model proposed above is dedicated to predicting how a social network will 

evolve over time. An earlier timestamp snapshot of the network is taken as the basis for 

working out the same network structure slightly later. This approach may not fit for the 

study here as we are not looking for a network's future evolution. Rather, we are trying to 

determine whether two entities (edges and their associated Edge-Vertices in this case) are 

linked in some manner that may not be structurally discernible, i.e., there may not be any 

visible ties amongst them. Hence, though the context of the problem studied in this paper 

is somewhat similar, it is not identical. The situation that presents itself is somewhat more 

static in that we are trying to infer the present state of the network, presuming that many 

of the links or ties which should otherwise have been there are missing. 

 

What we have here is an e-mail network of an organization (ENRON) where the covert 

dyads (or edges) have been identified through the mechanism of ascertaining how much 

of the information exchanged between the constituent nodes of the dyad has been confined 

(the Covertness Index of the tie between them essentially). Further analysis is required to 

determine if these edges have any links with each other, i.e. if there is any common 

intention that binds together several of these covert edges. As explained earlier, one of the 

keys and defining features of covert networks are pre-existing ties or relationships that may 

have existed between the actors at some point in the past but that are not observable now. 

A related feature is a deception inherent to the relationships between the actors where they 

try and hide their information exchange. In this study, these features which exist between 

nodes in a covert relationship are extrapolated to the edges, which are considered the basic 

units instead of nodes. 
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4.9  Link-Prediction in Covert Networks 

 

Earlier, we saw link prediction models applied to identify criminals and terrorists in 

clandestine or covert social networks. The second part of this study attempts to apply the 

strategy of individual node-based link prediction modeling to the edges derived in the first 

part. That is to say; we’ve selected a definite number of edges between the constituent 

nodes of dyads based on their Covertness Index scores and also based on a heuristic 

threshold value of the index. The challenge arises when using the link prediction 

techniques to build links between these covert edges and thereby build larger covert 

subgroups of related edges. There is no longitudinal dimension (i.e., timestamp-based 

analysis) to this problem, unlike the one illustrated above by Liben-Nowell and Kleinberg 

(2007). Covert network analysis necessarily relies on the information already at hand to 

essentially fill in the structural holes (missing links) in the network and present a complete 

picture. The objective is not to predict how the network might look at some future point in 

time, but rather how it should look if the missing ties are reinstated. 

  

Berlusconi et al. (2016) used this type of link prediction application in a non-timestamp 

based network analysis where a similarity index was used to construct missing links 

between the actors in a criminal network (the Oversize drug trafficking network in Italy, 

to be precise). Links that merited study were successfully predicted between actors with 

strong commonness, which is largely the direction this study takes. The only difference, it 

needs to be emphasized is that this work uses Edge Vertices rather than nodes (or actors) 

as the basic building block of covert subnets.  

 

As discussed above, there are many different techniques to implement link prediction. 

Broadly, however, such techniques may be divided into feature-based and probabilistic 

mechanisms. Each technique has inherent strengths and weaknesses. The cardinal principle 

in applying models for link prediction, according to Liben-Nowell and Kleinberg (2007), 

is that “a network model is useful to the extent that it can support meaningful inferences 

from observed network data.” This statement has motivated several studies in link 

prediction modeling, most notably the one carried out by Kashima et al. (2006), who 
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proposed the development of tunable parameters within the network model, which allows 

the construction of learning algorithms for link prediction, leading to improved accuracy 

of prediction. The link prediction problem is usually described in terms of a binary 

classification issue or a ranking issue on node pairs. Thus, link prediction is based on two 

types of information available in the network, first, on the information about the nodes 

themselves and second, information on the network topology as a whole. Probabilistic 

approaches to link prediction, on the other hand, involve supervised models that use 

Bayesian concepts. The main idea here is to obtain a posterior probability that denotes the 

chance of co-occurrence of the node pairs of interest. An advantage of such a model is that 

the score itself can be used as a classification feature. Figure 4.3 shows the different 

techniques in a high-level view.  

 

 

4.10  Feature Based Link-Prediction 

 

The notations used in describing the feature-based mechanisms are all adapted from Hasan 

& Zaki (2011)60, who described the methodologies in some detail in their exhaustive 

survey of link prediction in social networks. This research reviews some of the more 

popular methods that could potentially be used to design a similarity measure to detect 

links between top-ranked (i.e., candidate covert) pairs of edges.  

 

 

 

 
 

 

                                                           
60Notation. Typically, small letters, like x, y, z are used to denote a node 

in a social network, the edges are represented by the letter e. For a node x, 

Γ(x) represents the set of neighbors of x. degree(x) is the size of the Γ(x). 

The letter A is used for the adjacency matrix of the graph. 

 



 

281 

 

 

Figure 4.3 
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Features are network attributes that are based on graph topology61. Features usually 

represent some sort of proximity between pairs of vertices or nodes as nodes are deemed 

to be the fundamental unit of a network upon which models need to be built. Node and 

edge attributes play an important role in link prediction. It needs to be noted that in a social 

network, the links are directly motivated by the utility of the individual representing the 

nodes, and the utility is a function of vertex and edge attributes. Many studies (Hasan et 

al. .2006, Doppa et al., 2009) have shown that using node or edge attributes as proximity 

features could significantly improve link prediction performance. Forexample, Hasan et 

al. (2006) showed that attributes such as the degree of overlap among the research 

keywords used by a pair of authors were the top-ranked attributes for link prediction in a 

co-authorship social network dataset. In this study, the vertex (node) attribute was the 

research keyword set, and the presumption was that two authors are proximal to each other 

if their research work centers around a large set of common keywords. 

 

Similarly, the Katz metric computes the similarity between two web pages by the degree 

to which they have a larger set of common words where the words in the web page form 

the node attributes. The advantage of such a feature set is that it is generally 

computationally less complex and relatively easier on the resources. On the flip-side, the 

features are highly domain-specific, requiring very good domain knowledge to identify 

them. Link prediction based on feature sets computes similarity based on node 

neighborhoods or ensembles of paths between two nodes.  

 

A feature-set based approach usually offers generic advantages, and no domain knowledge 

is necessary to compute the values of these features from a social network. Many 

significant studies are completely based around feature-sets (36, 29,22). Graph topological 

features fall into two broad categories – (a) node neighborhood-based and (b) path-based. 

 

 

                                                           
61Network Topology is the way in which the nodes and edges are arranged within a network. Topological 

properties can apply to the network as a whole or to individual nodes and edges. Some of the most used 

topological properties and concepts are Degree, Shortest Path, Scale Free Networks,  Transitivity and the 

Centralities. 
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4.11  Node-Neighborhood based Features 

 

4.11.1 Common Neighbors 

 

The size of the set of common neighbors for two nodes, x and y defined as |Γ(x) ∩Γ(y)|. 

The idea of using the size of common neighbors is just an attestation to the network 

transitivity property. In simple words, it means that in social networks, if vertex x is 

connected to vertex z and vertex y is connected to vertex z; then, there is a heightened 

probability that vertex x will also be connected to vertex y. Thus, as the number of common 

neighbors grows, so does the chance that x and y will have a link between them. Newman 

(2001) has computed this quantity in the context of collaboration networks to show that a 

positive correlation exists between the number of common neighbors of x and y at time t 

and the probability that they will collaborate in the future. 

 

4.11.2  Jaccard Index 

 

The common neighbors metric is not normalized, so one can use the Jaccard Coefficient, 

which normalizes the size of common neighbors as below: 

  

  Jaccard-coefficient(x,y) =
|𝚪(𝒙) ∩𝚪(𝒚)|

|𝚪(𝐱) ∪ 𝚪(𝐲)|
 

 

Conceptually, Jaccard defines the probability that a common neighbor of a pair of vertices x 

and y would be selected if the selection were made randomly from the union of the neighbor-

sets of x and y. So, for a high number of common neighbors, the score would be higher. 

However, from their experimental results on four different collaboration networks, Liben-

Nowell et al. (2007) showed that the Jaccard coefficient performs worse than the number of 

common neighbors. 
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4.11.3  Adamic/Adar 

 

Adamic and Adar (2003) proposed this score as a metric of similarity between two web 

pages. For a set of features, it is defined as: 

 

∑
𝟏

𝒍𝒐𝒈 (𝒇𝒓𝒆𝒒𝒖𝒆𝒏𝒄𝒚(𝒛))
𝒛:𝒇𝒆𝒂𝒕𝒖𝒓𝒆 𝒔𝒉𝒂𝒓𝒆𝒅 𝒃𝒚 𝒙,𝒚

 

  

This measure was customized for link prediction as per the formula below (Liben-Nowell 

& Kleinberg, 2007), where the number of common neighbors is considered a feature of 

nodes x and y. 

 

adamic/adar(x,y) = ∑
𝟏

𝐥𝐨𝐠 |𝚪(𝒛)|𝒛 ∈  𝚪(𝒙)∩𝚪(𝒚)  

 

This version of the formula allows the Adamic/Adar measure to weigh common neighbors 

with a smaller degree more heavily. 

 

 

4.12  Path-Based Features 

 

4.12.1  Shortest Path Distance 

 

The fact that the neighbors of a node can themselves become neighbors suggests that the 

path distance between two nodes in a social network can influence the formation of a link 

between them. The shorter the distance, the higher the chance that this could happen. But, 

also note that, due to the small world phenomenon (Watts et al., 1998), mostly every pair 

of nodes is separated by a small number of vertices. So, this feature sometimes does not 

work that well. Hasan et al. (2006) found this feature to have an average rank of 4 among 

nine features used in their work on link prediction in a biological co-authorship network. 

A similar finding of poor performance by this feature was also reported by Liben-Nowell 

& Kleinberg (2007). 
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4.12.2  Katz Measure 

 

The Katz measure is a variant of the shortest path distance, proposed by Leo Katz (1953), 

but generally works better for link prediction. It directly sums over all the paths that exist 

between a pair of vertices x and y. But, to penalize the contribution of longer paths in the 

similarity computation, it exponentially dampens the contribution of a path by a factor of 

βl, where l is the path length. The exact equation to compute the Katz value is as follows: 

 

Katz(x,y) = ∑ 𝜷𝒍∞
𝒍=𝟏 . |𝑝𝑎𝑡ℎ𝑠𝒙,𝒚

(𝒍)
|, 

 

where |paths(l)
x,y| is the set of all lengths l from x to y. Katz generally works much better 

than the shortest path since it is based on an ensemble of all paths between nodes x and y. 

The parameter β(≤1) can be used to regularize this feature. A small value of βconsiders 

only the shorter paths for which this feature very much behaves like features based on the 

node neighborhood. A problem with this feature is that it is computationally expensive. It 

can be shown that the Katz score between all pairs of vertices can be computed by finding 

(I − βA)−1− I, where A is the adjacency matrix, and I is an identity matrix of proper size. 

This task has roughly cubic complexity (i.e., to an exponent of 3), which could be very 

expensive, even for medium-sized social networks. 

 

4.12.3  Hitting Time 

 

The concept of hitting time comes from the random walks on a graph. For two nodes, x 

and y, in a graph, the hitting time, Hx,y defines the expected number of steps required for a 

random walk starting at x to reach y. Shorter hitting time denotes that the nodes are similar 

to each other, so they have a higher chance of linking in the future. Since this metric is not 

symmetric, the commute time, Cx,y = Hx,y +Hy,x, can be used for undirected graphs. The 

benefit of this metric is that it is easy to compute by performing some random trail walks. 

On the downside, its value can have high variance; hence, this feature's prediction can be 

poor (Liben-Nowell & Kleinberg, 2008). For instance, the hitting time between x and y 
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can be affected by a vertex z, which is far away from x and y; for instance, if z has a high 

stationary probability, it could be hard for a random walk escapes from the neighborhood 

of z. To protect against this problem, random walks can be fitted with a restart. The random 

walk is periodically reset by returning to x with a fixed probability α in each step. Due to 

a social network's scale-free nature, some of the vertices may have very high stationary 

probability (π) in a random walk. To safeguard against this, the hitting time can be 

normalized by multiplying it with the stationary probability of the respective node, as 

shown below: 

 

normalized-hitting-time(x,y) = Hx,y .πy + Hy,x . πx 

 

4.12.4  Rooted Page Rank 

 

Pagerank measures are mostly used for web-page ranking(Brin et al., 1998). These 

measures have an inherent relationship with the hitting time. So, PageRank value can also 

be used as a feature for link prediction(Chung and Zhao, 2010). However, since PageRank 

is an attribute of a single node, it requires modification to represent the similarity between 

a pair of nodes x and y. PageRank's original definition denotes a node's importance under 

two assumptions: for some fixed probability α, a consumer at a particular web page jumps 

to a random web page with probability α and follows a linked hyperlink with probability 

(1 – α). Under this random walk, any web page's importance of any webpage w is the 

expected sum of the importance of all the web pages p that link to w. In random walk 

terminology, one can replace the term importance with the term stationary distribution. For 

link prediction, the random walk assumption of the original PageRank can be altered as 

follows: the similarity score between two vertices x and y can be measured as the stationary 

probability of y in a random walk that returns to x with probability (1 – β) in each step, 

moving to a random neighbor with probability β. This measure is asymmetric and can be 

made symmetric by summing with the counterpart result where x and y are reversed. Liben-

Nowell and Kleinberg (2008) call this “rooted PageRank.” The rooted PageRank between 

all node pairs (represented as RPR) can be derived as follows. Let D be a diagonal degree 
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matrix with D[i, i] = ∑ 𝐴[𝑖, 𝑗]𝑗 . Let N = D−1A be the adjacency matrix with row sums 

normalized to 1. Then, 

 

RPR = (1 –𝜷) (1 – 𝜷N)-1 

 

 

4.13  Probabilistic Bayesian Models 

 

Probabilistic Bayesian-based models employ an a posteriori probability that denotes the 

chance of co-occurrence of the node pairs (edges) of interest. There are three algorithms. 

The first one, proposed by Wang, Satuluri, and Parthasarathy (2007) and Kashimaand Abe 

(2006), uses a Markov random field (MRF)62 based probabilistic local model in which 

(the output is itself used as a feature in addition to other features like Katz, common 

neighbors, and vertex attribute similarity and the output is invariably a binary one.) The 

second algorithm uses a network evolution based parameterized probabilistic model. 

The third model proposed by Clauset et al. (2008) is a probabilistic hierarchical model, 

which considers the hierarchy in an organizational network. The nodes divide into groups, 

and the groups are further divided into sub-groups and so on. 

 

 

4.14  Probabilistic Relational Models 

 

A probabilistic relational model (PRM) is a technique that incorporates both node and edge 

attributes to model the joint probability distribution of a set of entities and the links that 

associate them. In the methods discussed earlier, the node attributes play a significant role 

in the link prediction problem. The involvement of node-specific attributes in these 

                                                           
62A Markov Random Field (MRF) is a graphical model of a joint probability distribution. It consists of an 

undirected graph G = (N,E) in which the nodes N represent random variables. Let Xs be the set of random 

variables associated with the set of nodes S. Then, the edges E encode conditional independence relationships 

via the following rule: given disjoint subsets of nodes A, B, and C, XA is conditionally independent 

ofXB  givenXC  if there is no path from any node in A to any node in B that doesn't pass through a node of 

C. (http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/#:~:text=A%20M

arkov%20Random%20Field%20(MRF,the%20set%20of%20nodes%20S.) 

http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/#:~:text=A%20Markov%20Random%20Field%20(MRF,the%20set%20of%20nodes%20S.
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0809/ORCHARD/#:~:text=A%20Markov%20Random%20Field%20(MRF,the%20set%20of%20nodes%20S.
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approaches makes them non-generic and not useful in all scenarios. The benefit of a PRM 

is that it considers the object-relational nature of structured data by capturing probabilistic 

interactions between entities and the links themselves. So, it is better than a flat model that 

discards such relational information (Hasan et al., 2011). It needs to be underlined that the 

only entities that other (non-relational) models consider are the node. However, in PRM, 

heterogeneous entities can be blended. There are two main approaches; one, relational 

Bayesian-based network considers the relationship (edge) links to be directed (Getoor et 

al. 2002). The other relational Markov-based network considers the related links 

undirected (Tasker et al., 2003). Although both are suitable for link prediction tasks, an 

undirected model seems to be more appropriate for most networks due to its flexibility 

(Hasan et al. 2011).  

 

  

4.15  Linear Algebraic Models 

 

A linear algebraic model is a method that generalizes several graph kernels and 

dimensionality reduction methods to solve the link prediction problem(Kunegis et al., 

.2009). This method is unique because it is the only method that proposes to learn a 

function F, which works directly on the graph adjacency or the graph Laplacian matrix. 

Any function F that accepts a matrix and returns another matrix is suitable for link 

prediction,i.e., the entries in the returned matrix should encode the similarity between the 

corresponding vertex pairs. Many graph kernels can be used for F. A few of the more 

popular are the exponential kernel, which uses the exponential value of the adjacency 

matrix A, i.e., An; the Von Neumann kernel, and the Laplacian kernels. 
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Chapter 5 

 

Collusion Metric: Design and Applications 

 

5.1 The Choice of a Similarity Function 

 

As the discussions in the preceding chapter show, implementing the link prediction 

mechanism is numerous. A small but growing subset of this vast corpus of research on link 

prediction techniques is to find missing links in an existing network. Recent research has 

focused on feature-based mechanisms or approaches using machine learning (ML) 

algorithms with feature-based attributes as inputs. Less visible in this field are the 

applications of probabilistic (Bayesian, relational) or linear algebraic models, possibly 

owing to the complexity of their use. Feature-based link prediction mechanisms to 

reconstruct missing links are often the simplest and most effective in their results. Zhou et 

al. (2009) empirically investigated a simple link prediction framework based on node 

similarity. They compared nine well-known local similarity measures on six real networks 

spanning a wide array of network categories, including protein-protein interactions (PPI), 

co-authorships, electrical grids, political blogs, router level topology of the Internet, and 

finally, the US Air transportation network. Their results indicate that the simplest measure, 

namely the common neighbors, has the best overall performance. Similar results were 

reported by Dong et al. (2011). 

 

This study has employed the Jaccard Index, a normalized version of the common neighbor 

model, and is an equally simple technique. The importance of the number of mail 

exchanges between the constituent nodes of a dyad was discussed in-depth previously. It 

has been factored into the formula of the modified Covertness Index. This strand of logic 

has also been baked into the considerations of selecting a proper feature-based similarity 

measure. In the Jaccard Index, the common neighbor formula is divided by the union of 

sets of common neighbors that both nodes in question may possess.  
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This work diverges from most other studies. It considers edges between the constituent 

nodes of a dyad to be the fundamental units of analysis and not the nodes themselves, i.e., 

the concept of Edge Vertex has been enunciated. In the first part of this study, Edge 

Vertices were arranged in descending order of their Covertness Index value, and a certain 

number of them selected based on a heuristic (i.e., a threshold). The challenge is to find 

pairs of dyads that are linked by some common intention. The problem of finding links 

signifying common intentions that exist between related Edge Vertex pairs (or dyads) is 

tied to the structure of the ENRON network itself. Information exchanges between nodes 

in the ENRON network are usually of two types:  through the direct exchange of mails 

(direction of mail is not relevant to this study) and the copies of these emails marked by 

different nodes to other nodes. Mail copies are usually mirror images of the emails that a 

pair of nodes exchange with each other. 

 

 In the first part of the study, a Covertness Index was developed to serve as a function of 

the total emails exchanged between the constituent nodes of a dyad and the copies marked 

out by this pair from amongst these exchanges. We may reasonably assume that the nodes 

receiving mail copies’ are privy to at least some of the information exchanges that might 

be happening between the nodes of the dyad, which has sent the copies. If so, these 

recipient nodes can be reasonably assumed to be partners of a part of the covert 

proceedings if the dyad is deemed covert. Extending this logic strand, we may look at the 

recipient nodes receiving mail copies from several dyads to be a common repository of 

their knowledge. 

 

In the common neighbor model, the number of neighbors that a particular node within the 

network possessed through direct (structural) links was the statistic used to determine the 

node’s similarity with another node. Since this study has substituted the edge of the tie 

between the constituent nodes of a dyad, the concept of a neighborhood node changes quite 

a bit. The ENRON network is an e-mail network, and an edge is the fundamental entity. A 

neighborhood is now defined for our purposes as the nodes that have received copies from 

constituent nodes of a dyad whose common neighbor index is being evaluated. The set of 

neighbors that a dyad has is the set of nodes which have received mail copies from it; in 
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other words, the Neighborhood Relationship Set that we defined earlier. Thus, for a pair 

of edges or dyads, the common neighbor will be the intersection of each edge's 

Neighborhood Relationship Set. 

 

Consider two dyads, the first one comprising nodes i and j, and the second, the pair of 

nodes p and q. That is, we are considering the associated Edge-Vertices ((Ev)ij and (Ev)pq. 

Then for the two edges and their Edge Vertices, the size of their common neighbors is 

defined as |Γ(𝑬𝒗)(ij)∩Γ(𝑬𝒗)(pq)|. Accordingly, the Jaccard Index, which normalizes 

the size of the set of common neighbors, is shown below: 

 

Jaccard-Index ((Ev)ij,(Ev)pq) =
|𝜞((𝑬𝒗)𝒊𝒋) ∩𝜞((𝑬𝒗)𝒑𝒒)|

|𝜞((𝑬𝒗)𝒊𝒋) ∪ 𝜞((𝑬𝒗)𝒑𝒒)|
 

 

We may also define the similarity function between the edges (ij) and (pq) as the Jaccard 

Index between them described in the equation above.  

Thus, 

(𝑺)𝒊𝒋 ↔𝒑𝒒=
|𝜞((𝑬𝒗)𝒊𝒋) ∩𝜞((𝑬𝒗)𝒑𝒒)|
|𝜞((𝑬𝒗)𝒊𝒋) ∪ 𝜞((𝑬𝒗)𝒑𝒒)|

-----------(6.1) 

 

For the present case, the edges' neighborhood comprises the nodes to whom the copies of 

the emails exchanged between the dyad's constituent nodes have been marked. Figure 5.1 

shows how the neighborhood is defined for an edge. Observe the edge between nodes a 

and b in the figure. All the nodes other than a and b themselves have received copies of 

emails from instances of mails exchanged between a and b comprise the Edge Vertex 

neighborhood defined on edge between nodes a and b. We may observe from the figure 

that nodes c, d, e, f, g, and h have all received copies of emails exchanged between a and 

b. Thus, the neighborhood set of the Edge Vertex between a and b will include these 

nodes. Notationally speaking: 

 

(𝑬𝒗)ab= {c,d,e,f,g,h} 
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𝜞(𝑬𝒗)ab = |{c,d,e,f,g,h}| = 6 

 

 

 

 

 

5.2  Building Links Using Collusion Index 

 

A pair of edges is considered to build the common neighbors from edges (and their 

associated Edge-Vertices). There is a set of nodes for each of the edges to which copies of 

emails have been marked. This set forms the Union Set when the nodes' details to which 

copies are marked find a mention. As we have seen, the Set of Union comprises the total 

number of unique nodes that have received copies of mail exchanges from either of the 

Edge Vertices in question. The cardinality of the Set of Union becomes the denominator 

during the Jaccard Index of correlation calculation.  

 

To calculate the numerator, we need first to determine the cardinality of the Set of 

Intersections. The Set of Intersection comprises those nodes which have received copies 

from both the edges. The fraction represents the Jaccard correlation between the edges and 

populates the corresponding cell in the correlation matrix. 

An illustration is provided below: 

 

Let’s define an Edge-Vertex function on the edge formed between the following mentioned 

employee mail-ids (nodes, basically): 

Figure 5.1  Diagram showing how the neighborhood of the edge 

between nodes a and b is defined. 
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jeff.dasovich@enron.com and richard.shapiro@enron.com. 

 

Suppose that we want to calculate the Jaccard Index between this edge-pair and the edge-

pair formed by a second pair of mail-ids: 

tana.jones@enron.com and stacy.dickson@enron.com 

 

The calculation is enumerated as follows: 

 

Step#1: Compute the set of nodes which have received copies of emails from 

jeff.dasovich@enron.com and richard.shapiro@enron.com 

 

The set of recipient nodes is: 

{james.steffes@enron.com,  janine.migden@enron.com,  karen.denne@enron.com,  

mark.schroeder@enron.com,  mona.petrochko@enron.com,  mpalmer@enron.com,  

paul.dawson@enron.com, aleck.dadson@enron.com, david.parquet@enron.com, 

ginger.dernehl@enron.com, james.steffes@enron.com, linda.robertson@enron.com, 

paul.kaufman@enron.com, susan.mara@enron.com} 

 

Let’s name this set as A. 

 

Step#2: Calculate the cardinality of set A,  

It comes to 14 i.e. |A | = 14. 

 

Step#3: Determine the set of nodes which have received copies of emails from the second 

edge, namely: 

tana.jones@enron.com and stacy.dickson@enron.com 

 

 Set of recipients: 

{karen.lambert@enron.com, david.parquet@enron.com, dale.neuner@enron.com, 

jeffrey.hodge@enron.com} 

mailto:jeff.dasovich@enron.com
mailto:richard.shapiro@enron.com
mailto:tana.jones@enron.com
mailto:stacy.dickson@enron.com
mailto:jeff.dasovich@enron.com
mailto:richard.shapiro@enron.com
mailto:tana.jones@enron.com
mailto:stacy.dickson@enron.com
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Step#4: Calculate the cardinality of the above set, which we may name set B. The 

cardinality of set B is 4, i.e., |B | = 4. 

 

Step#5: Effect a union of set A and set B, which we may name Set U. The set of the union 

looks like: 

 

{james.steffes@enron.com,  janine.migden@enron.com,  karen.denne@enron.com,  

mark.schroeder@enron.com,  mona.petrochko@enron.com,  mpalmer@enron.com,  

paul.dawson@enron.com, aleck.dadson@enron.com, david.parquet@enron.com, 

ginger.dernehl@enron.com, james.steffes@enron.com, linda.robertson@enron.com, 

paul.kaufman@enron.com, susan.mara@enron.com,  karen.lambert@enron.com, 

dale.neuner@enron.com, jeffrey.hodge@enron.com} 

 

Step#6: Compute the cardinality of the set of the union or U ; 

It comes to 17. 

|U | = 17 

 

Step#7: Effect an intersection of the sets A and B and name it set I. 

 

Thus, I = {david.parquet@enron.com}, since this is the only email node common to both 

sets A & B. 

 

Step#8: Compute the cardinality of the set of the intersection or set I ; 

 It comes to 1, i.e., |I | = 1. 

 

Step#9: Compute the Jaccard Index63 (JI) of the pair of edges; 

 

JI (pair of Edges) = 
𝐂𝐚𝐫𝐝𝐢𝐧𝐚𝐥𝐢𝐭𝐲 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐈𝐧𝐭𝐞𝐫𝐬𝐞𝐜𝐭𝐢𝐨𝐧

𝐂𝐚𝐫𝐝𝐢𝐧𝐚𝐥𝐢𝐭𝐲 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐞𝐭 𝐨𝐟 𝐮𝐧𝐢𝐨𝐧
 

                                                           
63For all purposes from here on, Jaccard Index and Collusion Index carry the same meaning and formulation. 

Both terms are used interchangeably. 

mailto:susan.mara@enron.com
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= |I| / |U| = 1/17 = 0.0588 

 

Thus, the similarity values that link a pair of edges (Edge Vertices) is reflected in the JI 

value that gets computed in the manner indicated above. Continuing for all the pairs of 

edges in the network, the JIs of all the edge pairs can be computed, and the pairs of Edge 

Vertices can then be ranked in a descending order based on their JI values. The higher the 

JI value, the more cohesive or similar the correlation is between that pair of edges. The 

conjugation of the edges' pairs and their associated Edge-Vertex functions is the key step 

in building larger covert edge-pairs communities with common intentions.  

 

In the sections on the computation of the Covertness Index, we had selected a threshold 

value of covertness above which the Edge Vertices (Dyads of nodes) were selected for the 

next computation step, i.e., the task of link prediction between similar or cohesive pairs of 

edges again, after we compute the similarity co-efficient Sij↔ pq where (i,j,p,q) ∈VJI, 

whereVJI is the set of all nodes present in the chosen selection and the parameter JI  denotes 

the Jaccard Index value chosen as the threshold.  

 

Obviously, 

𝑽JI ⊂ 𝑽, where 𝑽 is the set of all nodes in the network. 

Similarly, all the edges that fall within the scope of the selection belong to 𝑬𝑱𝑰, 

where𝑬𝑱𝑰 ⊂ 𝑬(the set of all edges in Graph G ). 

 

In the previous section, we had selected three threshold values in serial order for selecting 

the top-ranked covert edges, namely, T=2500, T=5000 & T=10000.  

 

The top-ranked 2500 covert edges have been chosen for the generation of the Edge Pair 

similarity coefficient (the Jaccard Index or the Collusion Index basically) between every 

edge pair present in the set of 2500 top-ranked covert edges. The pairs of the edges are 

again ranked in a descending manner on their similarity coefficient scores (i.e., the Jaccard 

Index value); the higher the Jaccard Index value, the higher ranked the edge-pair. The 
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higher values mean that the pair of edge-pairs that occur higher in the Collusion Index 

ranking have a better correlation. A higher value of similarity implies that the pair of edges 

have a higher degree of correlation. This can be simply stated as the measure of Common 

Intention between the edges constituting the edge-pair in question. Stated differently, the 

ranking of the edge-pairs based on their Collusion-Index values is a ranking of how 

covertly related the pair of edges are; in fact, the Collusion-Index scores accentuate the 

initial edge attribute values of the Covertness Index, which were earlier used to rank edges. 

 

Two tables (see table 5.1 and table 5.2) are given below to show how the pairs of edges 

line up in the Collusion Index rankings. The first table (table 5.3) shows the top 50 ranked 

edge-pairs. In the second table (table 5.4), which also contains the same top 50 ranked 

edge-pairs, the status of edge-pairs of interest in these rankings is reflected. The pairs 

comprising edges, both of which are of interest for covertness classification (i.e., both the 

edges comprising the pair are EoIs), are highlighted in yellow. It needs to be mentioned 

here that the Collusion Index Values of some of the edge-pairs which exist between pairs 

of nodes will be zero if no emails have been exchanged. These pairs are the perfectly covert 

edges with an unmodified Covertness Ranking of one. Such pairs have been taken out of 

the selected-set of edge-pairs in consideration since they yield a Collusion Index value of 

zero, as the example below illustrates: 

 

Let’s consider node pairs(a,b )and (c,d )such that 𝒂, 𝒃, 𝒄, 𝒅 ∈ 𝑉𝑱𝑰, where JI is the 

threshold value selected. Let’s further presume that of the emails exchanged between nodes 

a and b, not a single instance has been marked out as a copy to any outside node. That is, 

the unmodified Covertness Index values of the edges (a,b) and (c,d) are one. We plug in 

these values into equation 6.1, defining the similarity coefficient.  

 

(𝑺)𝒂𝒃 ↔𝒄𝒅=
|𝜞((𝑬𝒗)𝒂𝒃) ∩ 𝜞((𝑬𝒗)𝒄𝒅)|
|𝜞((𝑬𝒗)𝒂𝒃) ∪  𝜞((𝑬𝒗)𝒄𝒅)|

 

 

(𝑺)𝒂𝒃 ↔𝒄𝒅=
𝟎

|𝜞((𝑬𝒗)𝒂𝒃) ∪ 𝜞((𝑬𝒗)𝒄𝒅)|
= 0; 
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While computing the Collusion Index values of the links between edge-pairs and then 

selecting a set of edge-pairs ranked based on their JI values, we need to be careful about 

removing edge-pairs with 0 values that may be perfectly covert dyads with a high value of 

Covertness Index. In the present experiment, there are not that many EoIs that have 

Covertness Index values of 1, and the loss of such perfectly covert EoIs is negligible. In 

instances where there may be a greater proportion of such perfectly covert edges, it will be 

a good practice to keep the edge-pairs discarded due to null Jaccard Index values in a 

separate container for further evaluation. One way to avoid deleting such edges from being 

selected would be to define exceptions within the algorithm and add them back into the 

zone of consideration after the collusion index values are calculated for the remaining 

members of the set of edge-pairs. 

 

Another possibility of edge-pairs generating null values arises if the pairs don’t have any 

common nodes to which copies of the emails exchanged have been marked. These edge-

pairs can be safely eliminated from contention as they have no meaningful information to 

offer in terms of collusiveness between the edges in question. 

 

The third category of edge-pairs that can be eliminated is the diagonal entries in the matrix 

formed when the similarity or collusion index is calculated between the constituent edges. 

These entries occur due to interaction between the same pair of edges essentially, but which 

are ordered differently. For instance, the edge-pairs (a,b) and (b, a) are the same and will 

have both the numerator and denominator common. However, there will be rare instances 

when both edges may have an identical intersection and the union sets, i.e., when all the 

mail exchanges between the constituent nodes of both the dyadic-pairs in question have 

been marked out as copies to the same set of outside nodes. The collusion index value will 

be 1 in these cases. But such instances will be aberrations rather than the rule and can be 

safely eliminated from consideration(See the color matrix in Figure 5.2 below). 
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Figure 5.2 A representative Adjacency Matrix showing the entries 

obtained after applying the similarity metric (Jaccard Index) to pairs of 

edges (shown along the rows and columns). It may be noticed that the 

diagonal entries are all1’s since the edge pairs are identical and will have 

all their values in common. The matrix itself is symmetric and diagonal in 

nature. The cells with the same colors have the same similarityvalues. 
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Rank Edge # 1                                                                                          Edge # 2                                                                                      Jaccard Index

1 alan.comnes@enron.com ginger.dernehl@enron.com brandon.neff@enron.com benjamin.rogers@enron.com 0.003759398

2 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com beverly.aden@enron.com 0.994764398

3 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com mpalmer@enron.com 0.994764398

4 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com mpalmer@enron.com 0.994764398

5 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

6 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

7 jeff.dasovich@enron.com mpalmer@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

8 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com john.moore@enron.com 0.993527508

9 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com lisa.alfaro@enron.com 0.993527508

10 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com lisa.alfaro@enron.com 0.993527508

11 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

12 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

13 kay.mann@enron.com lisa.alfaro@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

14 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

15 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

16 kay.mann@enron.com lisa.alfaro@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

17 kay.mann@enron.com matthew.berry@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

18 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

19 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

20 jeff.dasovich@enron.com mpalmer@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

21 jeff.dasovich@enron.com smara@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.992167102

22 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com alvin.thompson@enron.com 0.992125984

23 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com anita.patton@enron.com 0.992125984

24 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com anita.patton@enron.com 0.992125984

25 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

26 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

27 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

28 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

29 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

30 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

31 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

32 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

33 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

34 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

35 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

36 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

37 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

38 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

39 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

40 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

41 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

42 chris.germany@enron.com dana.daigle@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

43 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

44 chris.germany@enron.com jesse.villarreal@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

45 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

46 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

47 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

48 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

49 chris.germany@enron.com dana.daigle@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

50 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com matthew.fleming@enron.com 0.992125984

Table 5.1  Table showing edge pairs whose similarity co-efficient (Jaccard Index values) are the 

highest. The co-efficient is termed as the Collusion Index and measures how related are a pair of 

covert edges. 
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Rank Edge # 1                                                                                          Edge # 2                                                                                      Jaccard Index

1 alan.comnes@enron.com ginger.dernehl@enron.com brandon.neff@enron.com benjamin.rogers@enron.com 0.003759398

2 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com beverly.aden@enron.com 0.994764398

3 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com mpalmer@enron.com 0.994764398

4 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com mpalmer@enron.com 0.994764398

5 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

6 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

7 jeff.dasovich@enron.com mpalmer@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.994764398

8 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com john.moore@enron.com 0.993527508

9 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com lisa.alfaro@enron.com 0.993527508

10 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com lisa.alfaro@enron.com 0.993527508

11 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

12 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

13 kay.mann@enron.com lisa.alfaro@enron.com kay.mann@enron.com matthew.berry@enron.com 0.993527508

14 kay.mann@enron.com john.ayres@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

15 kay.mann@enron.com john.moore@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

16 kay.mann@enron.com lisa.alfaro@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

17 kay.mann@enron.com matthew.berry@enron.com kay.mann@enron.com roger.ondreko@enron.com 0.993527508

18 jeff.dasovich@enron.com angela.schwarz@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

19 jeff.dasovich@enron.com beverly.aden@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

20 jeff.dasovich@enron.com mpalmer@enron.com jeff.dasovich@enron.com smara@enron.com 0.992167102

21 jeff.dasovich@enron.com smara@enron.com jeff.dasovich@enron.com steven.kean@enron.com 0.992167102

22 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com alvin.thompson@enron.com 0.992125984

23 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com anita.patton@enron.com 0.992125984

24 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com anita.patton@enron.com 0.992125984

25 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

26 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

27 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com brad.bangle@enron.com 0.992125984

28 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

29 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

30 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

31 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com cindy.vachuska@enron.com 0.992125984

32 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

33 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

34 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

35 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

36 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com dana.daigle@enron.com 0.992125984

37 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

38 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

39 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

40 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

41 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

42 chris.germany@enron.com dana.daigle@enron.com chris.germany@enron.com jesse.villarreal@enron.com 0.992125984

43 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

44 chris.germany@enron.com jesse.villarreal@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

45 chris.germany@enron.com alfonso.trabulsi@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

46 chris.germany@enron.com anita.patton@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

47 chris.germany@enron.com brad.bangle@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

48 chris.germany@enron.com cindy.vachuska@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

49 chris.germany@enron.com dana.daigle@enron.com chris.germany@enron.com mark.friedman@enron.com 0.992125984

50 chris.germany@enron.com alvin.thompson@enron.com chris.germany@enron.com matthew.fleming@enron.com 0.992125984

igure 6.4  Same table showing edge pairs whose similarity co-efficient (Jaccard Index values) are 

the highest. One of the edge-pairs of interest occurs at rank 4. 

Table 5.2 
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The results obtained after applying the Collusion Index (Jaccard Index) to calculate links 

between all the top-ranked covert edges have been represented graphically in the figures 

below (Figures 5.3, 5.4, and 5.5). The first figure (Figure 5.3) is a chart plotting the 

prevalence of the pairs of edges of interest (EoIs) against the overall ranking of all possible 

edge-pairs (i.e., which have been considered as per discussions above) based on the value 

of the Collusion Index of the links binding each pair. The second of the charts (Figure 5.4) 

is the same but shows the rankings' logarithmic value. The last of the charts (Figure 5.5) 

shows the comparative performance in detecting the pairs of the edges of interest (EoIs) 

between the model where Collusion Index values are calculated and applied to the links 

between the edge-pairs and a Uniform Distribution model where the pairs of EoIs are 

assumed to populate the entire set of edge-pairs in a uniform manner, which is similar to 

the comparisons that were done between the Covertness Index model and the Uniform 

Distribution model in the earlier section. 

 

After these charts, a set of three more plots (Figures 5.6, 5.7, and 5.8) are presented, 

showing how the use of the Collusion Index as a similarity measure between pairs of edges 

improves the detection performance measurably. As per the previous practice, the 

performance improvement has been presented in Precision, Recall, and F1 Score metrics. 

The calculations are shown in the paras following the charts. The horizontal axes in all 

charts denote the edge-pairs' rankings based on the Jaccard Index values of the links 

between them. The vertical axes denote the count of the covert or the desired edges in the 

distribution.  

   



 

302 

 

 

 
 

  

Figure.5.3 

Figure.5.4 

Figure.5.5 
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Figure.5.6 

Figure.5.7 

Figure.5.8 
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5.3 Selecting a Threshold of Collusion 

 

We may observe that there are as many as 170,000 edge-pairs or more in the theatre of 

consideration. Of these, only 61 are pairs that have been formed out of the edges of interest 

(EoIs), which we may recall are only 43 in number. If we consider keeping the entire set 

of 170,000 plus entities within the investigation purview, the task becomes a surveillance 

nightmare. There needs to be a selected-set of some convenient size that will keep within 

its fold, a substantial number of EoIs pairs while not being so large as to be unmanageable 

for investigators.  

 

This discussion again raises the question of the heuristic or threshold value that needs to 

be chosen to evaluate the Collusion Index (Jaccard Index) metric's success. In this study, I 

have selected the top-ranked 2500 edge-pairs64 with ranks based on the Jaccard Index 

values of the links between the edge-pairs. As was discussed earlier, this value is strictly 

based on the surveillance circumstances, including parameters of human resources 

availability, computational resources, information availability, and, more crucially, the 

time available to predict the network. More often than not, the agencies tasked with such 

responsibilities are deficient in all these resources. Often, there is a race against time to 

produce actionable results. There is an element of error, no doubt, given the constraints of 

incomplete information. The savings made in terms of resources and the fact that this 

approach doesn’t impinge on communication privacy more than makeup for the losses. 

Also, the outputs vastly optimize the scope of surveillance. For instance, there is no need 

to study all 170,000 plus edge-pairs. The results from just the 2500 edge-pairs (the top-

ranked 0.6% of the overall set of edge-pairs) taken up for study seem to justify the efforts.  

 

 

 

 

 

                                                           
64This threshold is deliberately chosen to prepare a common ground to compare performances between the 

first stage of the detection performance i.e. after the application of the Covertness Index on the ties between 

the actors and the performance after applying Jaccard Index to link pairs of edges between actors. 
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5.4 The Impact of Applying the Collusion Index 

 

After computing the Collusion Index values of the links that form between the pairs of 

edges and then ranking them in descending order, the top-ranked 2500 pairs of edges are 

observed to contain 14 pairs of edges of interest (EoIs), i.e., pairs of dyadic node pairs, in 

which all 4 participant nodes are nodes of interest (NoIs), 74 pairs of edges, in which 3 out 

of 4 constituent nodes are NoIs. Hence, out of the top 

2500 most correlated pairs of edges, 88 pairs are 

either completely constituted by nodes of interest (i.e., 4 

out of 4) or nearly so (3 out of 4 constituent nodes). The 

table shows how many interest nodes are present in 

each edge-pair or cluster obtained after calculating the 

Collusive Index. The proportion of accuracy in 

constructing the desired communities of edges 

(edge-pairs of interest) comes to 3.52% (88/2500), 

which is much better than the initial accuracy figures 

arrived at after the CI rankings were worked out 

(23/2500 or  0.92 %).  

 

It’s also noteworthy that only 2500 pairs of edges have 

been considered out of a possible 170,000 plus edges. 

The threshold value of 2500 is a heuristic and can be 

fine-tuned depending on the degree of accuracy desired in the results.  

 

 

But, what is significant is that the proportion of edge-pairs that are of interest to the study 

in the selected set65is quite high. Recall that the initial exercise was to narrow down the 

scope of surveillance from the entire network to a manageable subnet without intruding 

into the emails' content. At this stage of the operations, we can see that nearly one in every 

                                                           
65The Selected Set is defined as the set of edge-pairs which are having the highest values of Collusion Index 

which are ranked in a descending order. 

Table 5.3 
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twenty of the communities of actors (nodes), i.e., the edge-pairs available after applying 

the similarity coefficient (Collusion Index), is of interest. This is to say that if surveillance 

happens on all 2500 selected edge-pairs, the investigation will succeed with a likelihood 

of 3.52% in detecting covert edges. 

 

The second finding of significance is the steep reduction in the number of nodes that are 

not of interest to our study. An analysis of the pairs of edges populating the top 2500 ranks 

by the Collusion Index value reveals 12 nodes of interest (NoI) and 221 nodes that are not 

of interest (nNoI) in our study. The ratio is approximately 1: 20 (12:221), i.e., about 5.4 % 

of the nodes that are filtered out turn out to be nodes of interest for the study's purposes. 

Compared to the previous ratio of NoI to nNoI arrived at after computing and ranking the 

2500 top-ranked edges based on their Covertness Index, this ratio is far more favorable 

(To recall the exact figures, the NoIs numbered 16 and the nNoIs numbered 1780, which 

yields a ratio of 1:1100 or 0.89 %). Thus, the exercise of correlating pairs of edges has not 

only improved the chances of picking up the correct subnetwork for more granular analysis 

(3.52% from 0.92%), the level of noise66 has also decreased significantly since. We now 

have 221 nodes that are of no interest (nNoIs) compared to 1780 nNoIs, which were present 

in the set of 2500 top-ranked covert edges. If the experiment had stopped at the stage of 

applying the Covertness Index, the resources allocated to surveillance would have been 

some multiple of 1780 rather than 221, which is eight times less. So far, the Collusion 

Index as a clustering mechanism has successfully enhanced the probability of selecting a 

subnet where the constituent nodes have a greater degree of covert affiliation. It has 

eliminated nodes that are not spoken, related in terms of their covert affiliations. 

 

 

 

 

 

 

                                                           
66Here, noise refers to the information that is not necessary for scrutiny and will likely consume valuable 

resources which otherwise would be allotted to the assets of interest (covert nodes or interest). 
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5.5 Improvements due to the Collusion Index 

 

To buttress the argument further, we apply the same performance metrics for measuring the 

Covertness Index model's performance, namely, the precision, recall, and F1 measures. 

These metrics are applied for the limited set of 2500 top-ranked edge-pairs (going by their 

Collusion Index values), and the comparisons are made against the Uniform Distribution 

model. 

 

In a previous section, I discussed using various metrics to measure improvement in detecting 

covert edges, i.e., EoIs. The first of the metrics discussed was Precision, which indicates how 

correctly the model predicts the true positives. That is, of the covert edge-pairs predicted to 

be related, how many are part of a conspiracy with common intentions. The charts below 

show 88 edge-pairs whose linkages are predicted correctly (we include edge-pairs with three 

out of four constituent nodes in the NoI list). The remainder out of 2500 is incorrectly 

predicted as being related. That is, the true positives are 88, whereas the false positives are 

2500 – 88 = 2412. 

 

Precision is calculated as follows : 

Precision = True Positives / (True Positives + False Positives) 

In other words, the Precision of our model when we reach the count of 2500 in terms of 

ranking is: 

 

Precision = 88/ (88 + 2412) = 88/ 2500 = 0.0352 or about 3.52%. 

 

This figure doesn’t appear encouraging until we compare it with the uniform distribution 

model's figure. The edge-pairs that are related through commonness are assumed to be 

distributed throughout the set of all the edges uniformly. In this model, the number of related 

pairs of EoIs which are detected at the count of 2500 is less than 1 (0.56 to be exact). This 

model's Precision is barely 0.000224, or 0.0224%, which is about 5% of our model's 

performance based on the Collusion Index. 
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Figures 5.9, 5.10&5.11 are graphs that show the betterment in performance wrought by 

applying the Collusion Index to bring out linkages between different edge-pairs obtained 

from the Selected Set. To recall matters briefly, the Selected Set is a set of edges with the 

Covertness Index's highest values. A certain number of these edges is selected based on a 

heuristic figure. In this study, the heuristic threshold of Covertness Index value was so 

chosen that 2500 highly covert edges were selected, i.e., the Selected Set comprised these 

2500 edges. The Collusion Index was applied to find how strongly linked each of these 

selected covert edges was. The higher the value of the collusion metric of the link between 

two edges, the more common they are in terms of covertness. The results at the end of this 

part of the experiment give us pairs of highly linked edges and, by inference, tightly linked 

set of nodes (since the edge is associated with two nodes), which we may look at as small 

covert communities or conspiracy subnetworks, which was the original intent of their 

research. 

 

The graph in Figure 5.9 shows the improvement in the detection of the covert entities that 

the Collusion Index model brings about compared to a Uniform Distribution model, which 

allows the covert edges to be present throughout the set of all edges in a uniform manner. In 

a sense, the Uniform Distribution model serves as the null-set in this study. Figure 

5.10compares the Recall metric readings between the Collusion Index model and the 

Uniform Distribution model. Even here, the performance after applying the Collusion Index 

is marked. The graph in Figure 5.11 pertains to the F1 metric, which shows the Collusion 

Index model's clear superiority. 

 

Let’s denote the precision arising out of the JI Model as PJ and the precision arising out 

of a Uniform Distribution as PU. 

Thus, 

PJ=
(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒂𝒊𝒓𝒔 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)

(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆 𝑷𝒂𝒊𝒓𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑬𝒅𝒈𝒆 𝑷𝒂𝒊𝒓𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅)
 

PJ=
𝟖𝟖

𝟖𝟖+𝟐𝟒𝟏𝟐
 = 

𝟖𝟖

𝟐𝟓𝟎𝟎
 = 0.0352 or, 3.52 %. 
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Likewise, 

PU= 
𝟎.𝟓𝟔

𝟐𝟓𝟎𝟎
 = 0.000224 or, 0.0224 %. 

We may now recall the original ratio of covert edges we had while starting. The result 

was expressed as Equation (1.1) i.e. 

P = |EC| / |E |  = 43/ 55,300 = 0.000778 (or 0.08 %) 

 
We may now compare this to the figure of covert edge-pairs within the overall set of edge-

pairs after applying the Collusion Index similarity measure to the edge-pairs, which is – 

 

PJ = 0.0352>>>0.000778 

The results obtained after the experiments are nearly 45 times better than what we started 

with. 

 

 

Figure 5.9 
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Figure 5.10 

Figure.5.11 
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Chapter 6 

 

Summary and Analysis of Results 

 

6.1 Summary of the Results 

 

6.1.1  Background 

 

The dissertation has focused on the email corpus of the ENRON Company, which went 

bankrupt following a major financial scam in 2002. The ENRON dataset is a corpus of 

emails collected from the inboxes of 151 employees covering a limited period relevant to 

the investigation of the insider trading scam and other concomitant illegal business practices 

that led to it.  A total of 517,431 mail exchanges are available from these inboxes, and 

information about 6568 distinct employee email ids is available in the mail corpus. These 

mail-ids are not unique, as many of the employees had more than one mail-id. Preliminary 

data cleaning was undertaken to combine all the email-ids of a single employee into a single 

mail-id entity. This mail-id takes the place of a node or vertex in the ENRON company's 

social network universe. 

 

The dissertation has treated the ties or edges between nodes or mail-ids as comprising all 

the mail exchanges that have taken place between the mail-ids. Thus, if a pair of mail-ids 

has exchanged a thousand mails, it still translates to a single edge, as does the single mail 

exchange between a pair of mail-ids. Following this methodology, the figure of 517,431 

mail exchanges has been condensed to approximately 55,300 unique mail pairs, i.e., the 

number of mail ids that have exchanged at least one mail. The research has focused on the 

roles played by 19 ENRON employees who were either indicted or otherwise privy to the 

proceedings as witnesses or recipients of the information. Forty-three unique mail pairs 

exist between different mail-id pairs from amongst these employees of interest. The solution 

proposed in this dissertation has pared down the existing edges in the mail corpus of 
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ENRON (55,300 approximately) to a small enough selection of edges. The problem was 

notationally defined as per the statement below: 

 

Let’s define the ENRON mail corpus as a social network graph G, such that G  = (V, E  

), 

where V is the set of all nodes in the graph network. 

And E is the set of all edges or mail-pairs in the graph network. 

Hence, any node vi belonging to the network belongs to set V. 

In other words, V  =  {vi:1≤i ≤|V  |}, 

where the number of nodes in the network graph is represented as the cardinality of the set 

of nodes V, i.e., |V   |  

and | V | = 6568. 

The number of edges in the network graph is represented as the cardinality of the set of 

edges E, i.e., |E |  

& |E  | = 55,300. 

E  = {eij : 1≤i≤| V | , 1≤j≤| V | and i ≠j} 

 

Let’s define the set of the ENRON employees who were part of the scam as a graph GC, 

such that GC= (VC, EC),  

where VC is the set of all nodes of interest (NoIs) in the graph network, and EC  is the set 

of all edges of interest (EoIs) in the graph network. 

GC  ⊂ G and VC   ⊂V   &EC  ⊂ E; 

&|VC  | = 19 and |EC  | = 43; 

 



 

313 

 

The probability of finding an edge of interest (EoI) eij (i and j are nodes of interest (NoIs) 

in the graph network) in the set of edges of graph G thus becomes67: 

P= |EC  | / |E| = 43/ 55,300 = 0.000778  

 

The task undertaken by the study was to increase this value of the probability of detection, 

i.e., boost the chances of detecting an edge of interest (EoI) in the set of edges of the graph 

network comprising the mail corpus of ENRON. 

Thus we may reframe the problem statement in Section 1.6 Chapter 1 by applying a 

probabilistic formulation to the solution above. 

 

Problem Statement (Probabilistic Perspective) 

 

What is the probability of detecting at least one covert edge from amongst the overall set 

of edges of the ENRON e-mail network in 20 tries? 

 

Let’s define an integer k, s.t., k = Number of tries; Here, k = 20. 

There are 43 covert edges or Edges of Interest (EoIs). 

Let’s define the number of EoIs as m; Here, m = 43. 

The number of edges overall is 55,288 ~ 55,300 

Let the total number of edges be defined as e; Here, e=55,288. 

 

We need to calculate the probability of not getting any covert edges in 20 tries. 

Let’s Denote the probability of detecting a covert edge as Pcand not detecting a covert 

edge as Pnc. 

 

The probability of not detecting a covert edge in the first try will be  

(55,300 – 43)/ 55,300. 

The probability of not detecting a covert edge in the second try will be  

(55,299 – 43)/ 55,299. 

                                                           
67Ibid p.26. 



 

314 

 

 

In this manner, the probability of not detecting a covert edge on the 20th try will be 

(55,280-43)/ 55,280. 

 

Notationally, 

 

𝑷𝒏𝒄 =  ∏
((𝑒 − 𝑖) − 𝑚)

(𝑒 − 𝑖)

𝑘−1

𝑖=0

 

 

 

 

  𝑷𝒄= (1 - 𝑷𝒏𝒄) = (1 - ∏
((𝑒−𝑖)−𝑚)

(𝑒−𝑖)

𝑘−1
𝑖=0 ) 

 
 

Hence, the probability of not getting a covert edge detected in 20 tries (k = 20) comes to: 

 

𝑷𝒏𝒄 =
(55,300 − 43)

55,300
 𝑥 

(55,299 − 43)

55,299
 𝑥. 𝑥 

(55,281 − 43)

55,281
 

 

𝑷𝒏𝒄 = 0.984560175;𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.015439825 

 
 
Step#1:    After Applying the Covertness Index 
 
After applying the Covertness Index to all the edges, the number of covert edges of 

interest (EoIs) comes to 23 in a selected-set of 2500 top-ranked covert edges.  

Thus, after this part of the experiment, m = 23; e=2500; k = 20. 

Plugging these values into the equation above, we get:  

 

𝑷𝒏𝒄 =
(2500 − 23)

2500
 𝑥 

(2499 − 23)

2499
 𝑥 … . 𝑥 

(2481 − 23)

2481
 

 

𝑷𝒏𝒄  = 0.830638142;  𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.169361858 

 
 
Step#2:    After Applying the Collusion Index 
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After applying the Collusion Index to all the edge-pairs, the number of covert edge-pairs 

of interest (EoIs) comes to 88 in a selected-set of 2500 top-ranked covert edge-pairs.  

 

Thus, after this part of the experiment, m = 88; e=2500; k = 20. 

 

Plugging these values into the equation above, we get –  

 

𝑷𝒏𝒄 =
(2500 − 88)

2500
 𝑥 

(2499 − 88)

2499
 𝑥 … . 𝑥 

(2481 − 88)

2481
 

 

 𝑷𝒏𝒄  = 0.48701;  𝑷𝒄= (1 - 𝑷𝒏𝒄) = 0.51299 

 

 

  

 

The plot in Figure 6.1 shows the comparison of probabilities of detecting at least one covert 

edge or edge of interest or EoI in a fixed number of tries. The line colored blue-gray is the 

plot of probabilities of detecting at least one covert edge (EoI) in k tries.  

 

6. 



 

316 

 

In the graph shown above, the value of k varies between 1 to 500(1≤k≤500). 

 

As can be seen, the best chance of detecting at least one covert edge occurs at the value of 

k = 100 (approx.)  after the application of the Collusion Index to find linkages between 

pairs of covert edges (see the vertical line cutting across the line plots at k =100 on the 

horizontal axis). 

Thus, the efficacy of the metrics is established. 

 

6.1.2  Covertness Index Metric 

   

As a first step, a Covertness Index was defined on the edges connecting the nodes 

constituting the network's dyads. The Index was designed to measure the confinement of 

information between the nodes in the pair. Confinement of information is one of the 

principal methods to detect if the nodes communicating between themselves hide any 

information. Since the network in question is an email-based network, the methodology 

adopted in this study to measure covertness or confinement of information between a pair 

of nodes was to ascertain how much of the information exchanged was going out of the pair 

of nodes to other nodes. In other words, since the information exchange is happening via 

email, how many of the mails were being copied out to the others. The proportion of emails 

copied out represents the ‘overt’ portion of the exchange based on the trivial assumption 

that two entities will not share confidential information with third parties. Going by this 

logic, the retained information exchange (without being copied out) comprises the ‘covert’ 

portion. This interpretation was mapped out mathematically as follows: 

Let eij (Vi and Vj being two nodes constituting a dyad) represent an edge between nodes Vi 

and Vj.  

The cardinality of eij or, |eij| = Number of mails exchanged between nodes Vi and Vj. 

Let (eij)c represent the mails copied out from the set of emails exchanged between nodes Vi 

and Vj. 

Thus, the cardinality of (eij)c or, |(eij)c| = Number of mails copied out by the dyad with the 

edge (eij)c, i.e., between nodes Vi and Vj. 
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The Covertness Index of edge eij is defined as per the formula below: 

(𝑪𝑰)𝒊𝒋 = 𝟏 −  
|(𝒆𝒊𝒋)𝒄

|

|𝒆𝒊𝒋|
 

This formula is modified to include the number of emails exchanged between two nodes in 

a dyad. The volume of exchange is akin to a centrality measure for an edge, and it adds 

context to the calculation of the Covertness Index. Examples have been provided in the 

concerned section to show how the exclusion of the volume of emails exchanged within the 

pair skews the covertness results and allows dyad having fewer emails exchanged to 

dominate the rankings.  

 

The modified Covertness Index is defined as follows: 

𝑴𝒐𝒅𝒊𝒇𝒊𝒆𝒅 (𝑪𝑰)𝒊𝒋 = |𝒆𝒊𝒋| ∗  ((𝑪𝑰)𝒊𝒋) = |𝒆𝒊𝒋| ∗  (𝟏 −  
|(𝒆𝒊𝒋)

𝒄
|

|𝒆𝒊𝒋|
) 

 

The Covertness Index(only the modified Covertness Index formula is used in this study) is 

calculated for each of the dyads, and the edges are ranked in descending order. A selection 

of edges is made based on a threshold value of covertness chosen heuristically. In this 

research, three such thresholds are chosen, yielding sets of 2500 numbers of edges, 5000 

numbers, and 10,000 edges, respectively. The following formula represents the smaller 

sized sets based on thresholds of Covertness Index values: 

The ENRON mail corpus is defined as a graph G, 

such that G = (V, E  ),  

where V is the set of all nodes in the graph network. 

And E is the set of all edges or mail-pairs in the graph network. 

Then, the Selected Set of edges based on a threshold value of Covertness Index is defined 

as graph GT, 

such that GT = (VT,ET  ); 

(T is the threshold value of the Covertness Index). 

Thus, ET  ={eij:(𝑪𝑰)𝒊𝒋 ≤ T  and 𝑖 ≠ 𝑗} 
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And, VT = { vi , vj : (𝑪𝑰)𝒊𝒋 ≤ T  and 𝑖 ≠ 𝑗}; 

 Obviously, ET  ⊂E &VT  ⊂V  

And | ET |≪ | E |and |VT  | ≪ | V  |, 

The selected sets were examined for the presence of edges of interest (EoIs). Three 

evaluation metrics were calculated: Precision (number of true positives, i.e., the actual EoIs 

to the number of positives detected by applying the index), Recall (number of true positives 

as a proportion of the actual number of EoIs present in the dataset, i.e., 43) and finally, the 

F1 measure, which is the harmonic mean of the Precision and Recalls figures. 

 

6.1.3 Effectiveness Examined 

 

To ascertain if the application of the Covertness Index has been effective in detecting the 

EoIs in the selected set, there is a need for a reference model with which the results can be 

compared. The model chosen was the Uniform Distribution model, where it is assumed that 

the EoIs are distributed uniformly. The comparison establishes clearly that the results are 

far better for all three threshold values chosen in terms of all the three metrics. 

 

 

 

Table 6.1 
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A summary of the comparative results is given in Table 6.1. The table's values bear ample 

evidence that the Covertness Index application measurably enhances the probability that 

edges of interest (EoIs) will be detected. Furthermore, a comparison between the 

thresholds selected shows that the smallest selection set (2500 top-ranked edges) works 

efficiently across all metrics. Hence, the index's application improves the detection of the 

edges of interest and acts to minimize the size of the selected set (i.e., smaller thresholds 

seem to offer better results).  

 

A second takeaway from the experiment is the vast reduction in the set of edges that an 

investigator needs to examine. When the experiment started, 55,300 edges were examined, 

and 6568 nodes needed to be accounted for. If these many mails were to be examined for 

concluding the covert nature of the dyads or the communities of such pairs, it would be 

extremely resourced intensive. By reducing the number of edges to be examined to 2500, 

the complexity decreases by a factor of 20 (This figure is arrived at by dividing the number 

of edges we started with by the number we ended up with, i.e., 55,300 ÷2500 ~ 20.) 

 

6.1.4 Collusion Index Design & Efficacy 

  

This part of the experiment successfully reduces the set size needed to be examined for the 

presence of edges of interest (EoIs) and boosts the chances of detection. However, the mere 

identification of covert edges is not the result desired in this study. The stated aim was to 

identify covert communities sharing common aims and striving to produce the same output. 

The differentiation between the identification of covert edges and their grouping into 

common-aim based communities is crucial. There is always a possibility that the covert 

edges detected will belong to different sub-groups having varied aims and separate outputs. 

In such an eventuality, the results of surveillance will be sub-optimal. The second part of 

the experiment was undertaken to address this aspect, which seeks to agglomerate covert 

pairs into bigger communities of pairs of edges. The linkages between the pairs of edges 

selected based on the first part of the experiment are based on a similarity measure that 

seeks to bring out the commonalities between pairs of edges, particularly covert (EoIs). The 

higher the value of the similarity index, the better the chances that the pair's edges are 
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collaborating (or colluding) in a common covert enterprise. It may be pointed out that the 

linkages may be purely benign and may not have anything to do with any clandestine 

outcomes. But we need to realize that all the edges selected as inputs for the second part of 

the experiment are deemed to be covert and, therefore, worthy of further investigation and 

scrutiny. The study does not purport to know which of the edges are covert within the 

selected set and not of interest. Nevertheless, even a set of limited sizes still causes problems 

of computational complexity.  

 

For example, even if the smallest set of edges is selected from the first experiment (i.e., 

2500 edges), the potential number of edge-pairs which will need to be examined comes to 

2500x2500 = 6,250,000, i.e., more than 6 million! Thus, a similar exercise of pruning edge-

pairs by selecting a threshold value of the similarity index needs to be carried out. Small 

sets of edges are based on heuristic thresholds for the Covertness Index values selected for 

scrutiny. There are several candidates available for linking the edges into edge-pairs.  

 

This study has selected the Jaccard Index as the similarity measure based on its simple 

applicability, robustness, and its property of normalization, i.e.; it accepts the sum of the 

number of features being linked as a denominator (in this case, the union of the sets of nodes 

which are receiving copies from a pair of edges). The Jaccard Index defines the similarity 

between two edges by determining how many of the outside nodes which have received 

copies (other than the constituent nodes of the edge-pairs in question) are common to them 

(intersection of the sets of copied nodes in respect of each of the edges in the pair) and 

dividing this value by the cardinality of the union of the sets of copied nodes of each of the 

edges in the pair in question. The question of just why this measure brings out the element 

of collusion between a pair of edges may be answered from the observation that edges with 

common aims tend to have common neighbors, which is essentially similar to the 

established concept in community detection algorithms that similar nodes tend to have 

similar neighbors68. Following this logic, if two edges have many common nodes with 

                                                           
68This is akin to the concept of regular equivalence which states that two regularly equivalent nodes are 

equivalent if they have similar neighbors who are themselves similar. In this case, similarity means a larger 

shared set of common nodes which have received copies from each of the pairs of edges. This has been 

discussed more comprehensively in Chapter 5. 
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received copies, they are similar. But this aspect needs to be looked at from a normalization 

perspective, in the sense that if each of the edges has large sets of nodes that have received 

copies of their mail exchanges, then there is a greater likelihood of the set of intersections 

being large as well. This is not a desirable outcome since we started to assume that covert 

edges tend to be secretive about their information exchanges and are, therefore, likely to 

have comparatively smaller sized sets of copied nodes. Suppose we don’t use a normalized 

measure. In that case, we are likely disincentivizing edges that have been opaque about 

information sharing. This runs counter to the stated purpose of detecting edges (or edge-

pairs), which have been opaque about their communications and thus covert. 

 

We now continue with the second part of the solution definition as follows: 

The ENRON mail corpus is defined as a graph G, 

such that G = (V,E  ) ,  

where V is the set of all nodes in the graph network. 

And E is the set of all edges or mail-pairs in the graph network. 

The Selected Set of edges based on a threshold value of Covertness Index is defined as 

graph GT,  

such that GT= (VT, ET  ); 

(T   is the threshold value of the Covertness Index). 

ET= { eij: (𝑪𝑰)𝒊𝒋 ≤ T  and𝑖 ≠ 𝑗} 

        And, VT= { vi , vj : (𝑪𝑰)𝒊𝒋 ≤ T  and𝑖 ≠ 𝑗}. 

 We may recall the formula for the similarity coefficient (Jaccard Index), which was 

defined in equation 6.1: 

 (𝑺)𝒊𝒋 ↔𝒑𝒒=
|𝜞((𝑬𝒗)𝒊𝒋) ∩𝜞((𝑬𝒗)𝒑𝒒)|
|𝜞((𝑬𝒗)𝒊𝒋) ∪ 𝜞((𝑬𝒗)𝒑𝒒)|

 

  

where, 𝑣𝑖 , 𝑣𝑗 , 𝑣𝑝, &𝑣𝑞 are nodes belonging to the Select Set of edges, which is the result 

after enforcing a threshold value on the ranking of edges based on their values of the 

Covertness Index. 
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Based on the above, the Selected Set of edge-pairs linked by the given similarity coefficient 

(Jaccard Index) may be defined as a graph network(GT )JI: 

 Such that (GT )JI = ((VT )JI , (ET )JI); 

 (JI being the threshold value of the similarity coefficient or the Jaccard Index indicating 

a linkage between two edges). 

(ET  )JI  =  { ((𝑬𝑷)𝒊𝒋↔𝒑𝒒: (𝑺)𝒊𝒋↔𝒑𝒒 ≤JI and(𝒊, 𝒋) ≠ (𝒑, 𝒒)} 

where EP represents an edge pair between dyads (edges) (i, j) and (p, q), and 𝑺 is the 

similarity coefficient (also called the Collusion Index) defined on the linkage between the 

pairs of edges. 

&(VT  )JI  = { vi , vj, vp ,  vq: (𝑺)𝒊𝒋↔𝒑𝒒 ≤ JI &(𝒊, 𝒋) ≠ (𝒑, 𝒒)}. 

 

We saw earlier that the number of pairs of edges of interest (EoIs) detected within the top 

2500 edge-pairs ranked in a descending order comes to 21, which works out to a precision 

value of 0.8 %. When this value is compared with the precision value obtained from a 

Uniform Distribution model, it’s nearly ten times. However, if we compare the detection 

accuracy on covert edge-pairs arrived at after applying the Collusion Index to the links 

between edges constituting a pair with the detection accuracy of EoIs arrived at following 

the application of the Covertness Index, we don’t find much of a difference. The detection 

percentage seems to have slipped marginally from 0.92 % (23 EoIs in a Select set of 2500) 

to 0.8%. But this doesn’t tell the entire story. Detection in the second part of the experiment 

(application of the Collusion Index) pertains to pairs of edges or four nodes rather than pairs 

of nodes or two nodes, as in the first part. The detection of communities of four nodes or 

edge-pairs at any given iteration is a major gain over the detection of just one covert edge. 

With the Collusion Index application, we have in hand a set of developing communities of 

covert edges that have common intentions or are likely colluding with each other to pursue 

some clandestine enterprise, and this is what we had primarily endeavored to achieve in this 

study. These communities can be increased in size, with further formulations of similarity 

and collusion in future work. 
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6.2 Analysis of Results 

 

6.2.1 Data Loss Evaluation 

 

One of the proposed solutions' challenges is the loss of potentially useful data that is an 

inevitable part of the result as detection performance improves. For example, after the 

Covertness Index was applied and a threshold value was defined on the ranked edges, we 

could detect 23 EoIs within the top 2500 edges ranked per their Covertness Index values, 

which implies that of the 43 edges of interest, 20 were not detected. This loss of potentially 

useful information has to be looked at as a trade-off between achieving 100% accuracy and 

expending huge resources in the process and achieving accuracy that is less than 100% but 

enough to launch a successful surveillance process. To illustrate, we may compare the 

results obtained with 10,000 top-ranked edges versus those obtained from a set of 2500 

(after applying the Covertness Index).  

 

When 10,000 edges were selected, 35 EoIs were correctly detected within the set, an 

increase of 12 EoIs over the 23 correctly detected in the 2500 set. But, when we consider 

the resources needed to keep surveillance over 10,000 ties (each tie representing potentially 

several email exchanges), the cost is at least four times greater than what is required to keep 

an eye on 2500 ties only. Suppose the covert communities are further distilled out, as was 

done in the second part of the experiment using the Collusion Index. In that case, all we 

need to do is to keep a surveillance on the groups instead; however, if we had gone in for a 

selected set of  10,000 edges after the first stage (i.e., application of the Covertness Index), 

the potential number of linkages we would have needed to deal with would have come to 

10,000 x 10,000, i.e., 108, i.e., a 100 million, rather than the 2500 x 2500 = 6,250,000 or 

approximately 6 million which is less by a factor of sixteen. This implies that the resources 

needed to keep surveillance would also increase 16-fold, an unattractive prospect given the 

very marginal gains in identifying suspect (covert) pairs of EoIs (a gain of only 12 from 23 

to 35). 
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It needs to be mentioned that the discussions on trade-offs between giving up the 

surveillance on important assets or artifacts are very subjective. There is a possibility that 

the ‘one that got past’ might have been of vital importance, and the ones who remained in 

the dragnet are of relatively less importance, and this is a decision that the field units (or the 

oversight mechanisms in business organizations) need to take. But we need to keep in mind 

that when a surveillance process begins, there is no information on who is a covert actor 

and who isn’t. There is just the network structure, the nodes (or actors), their links or ties, 

and other topological features (metadata basically) that are available initially. The idea is to 

detect covert activities within what appears to be a benign network (or is a benign network 

if it’s a business organization) without any prior information whatsoever other than the 

basic network structure. There may be arguments to the contrary, stating that there is 

invariably some knowledge available a priori about any network that needs to be studied. 

It needs to be emphasized that this a priori knowledge should serve to enhance the model 

developed in this study rather than the other way around. Conversely, suppose the covert 

structure has completed its payload delivery, and the covert actors are more or less known. 

In that case, this methodology can only be used for training and testing the model. 

  

There is a need to consider if we are to proceed with another layer of linking the edge-pairs 

pairs. If we decide to proceed further and operate on the resultant dataset with more 

similarity measures, the complexity level will increase exponentially. Hence, by losing 12 

EoIs through the choice of a lesser sized dataset, we’ve gained by keeping the complexity 

at a manageable scale. Table 6.2 shows the trade-off between losing some of the Edges of 

Interest (covert edges) against the prospect of increasing resources (both computational and 

human) to enforce proper surveillance. It is presumed that each edge requires at least one 

unit of resource to watch over it. For instance, 2500 edges will require 2500 units of 

surveillance, and 5000 edges will require 5000 units, and so on. 
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The same table is represented as a graph in Figure 6.2. The interpretation from the plot 

shown here is clear about the choices that need to be made. Though there is a small loss of 

a few edges of interest which will remain outside the net of scrutiny, the savings in resources 

that need to be deployed is quite significant. There should be no hesitation in choosing the 

smallest sized selection set to begin the scrutiny. 

 

 

Table 6.2 

6.2 
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6.2.2 Node Centric Analysis  

 

Although this dissertation is focused on the edges formed between the constituent nodes in 

dyads, there is an interesting corollary benefit obtained related to node-centric analysis, 

which is the more common analytic approach used in social network analysis. Recall that 

there were 19 employees of ENRON identified as persons of interest (or nodes of interest 

or NoIs). From these nodes, we extracted 43 edges of interest (EoIs), which became the 

pivots around which this study developed. It should be interesting to analyze how these 

nodes fare in the trade-offs just discussed above. Table 6.3 displays the accuracy gains and 

losses in detecting the (constituent) nodes compared to surveillance resource requirements. 

As the earlier analysis of covert edge detection, we assume that each node requires at least 

one unit of surveillance resource (human and computational). It is easily concluded, based 

on these figures, that the observations made regarding the optimization of surveillance 

resources for the detection of covert edges (EoIs) are also true for the constituent nodes of 

Table 6.3 
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those edges. As in the case of the EoI detection, the table is also represented as a graph in 

Figure 6.3 to put the bigger picture in perspective. The gains made in terms of covert asset 

detection after the threshold value of 2500 are marginal and do not warrant the 

corresponding massive increases in surveillance resource deployment. 

 

 

 

6.2.3 Collusion Index Results Analyzed 

  

The second step in the dissertation was to detect covert communities within the network 

building on the Covertness Index metric developed in the first part. The mechanism to 

achieve this was the design of a Collusion Index. The overall methodology was adapted to 

detect covert communities in which the covert edges (EoIs) with common intentions are 

grouped using the said Collusion Index. The approach is agglomerative rather than divisive 

(e.g., using graph partitioning methods). The Collusion Index is a similarity coefficient 

based on the Jaccard Index, a common similarity measure. The index aims to identify 

6.3
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features common to pairs of covert edges selected based on their high Covertness Index 

values. The stronger the links between a pair of edges, the more likely they are colluding 

towards a common (and likely covert) goal. When the Collusion Index was applied to the 

selected set of 2500 highly covert edges, each pair was assigned a link value, and the edge-

pairs were given rankings based on these values. Again, as in the earlier case, it was felt 

necessary to cull edge pairs down to a manageable number, which could then be kept under 

the surveillance lens rather than keep all the pairs. (There were 170,000 plus such pairs; in 

fact, the potential number of pairs can reach six million-plus, just that many pairs will have 

no common features, and their links will have null or zero values and can be eliminated 

swiftly).   

 

An examination of the edge-pairs ranked highly based on the values of their Collusion Index 

revealed that 14 edge-pairs whose constituent edges were EoIs and 74 edge-pairs one of 

whose constituent edges was an EoI and the other edge had one of its constituent nodes in 

the set of NoIs (That is, 3 out of 4 nodes in the linked edge-pairs were of interest). Thus, 

there are 88 edge-pairs of interest in the selected set of 2500 pairs. If 100 units of 

surveillance resources were to be deployed to keep a watch, at least 3 of them would come 

across communities that are covert in their transactions and collusion with each other. 

Communities of 4 nodes are not very large. Hence, one may argue that it is inappropriate to 

invest resources to track small communities that are likely to produce undesirable outcomes. 

But, we do well to remember here that bigger communities comprise these smaller units of 

edge-pairs, and they are likely to be detected in the longer run through observation. The 

presence of such ‘conspiracy’ subgroups though small in size, offers a valuable window 

into predicting undesirable activities in a larger, more benign network (in most cases, 

although networks completely devoted to criminal activities also exist); which is achieved 

by using widely available structural features without invoking the need to be intrusive. Note 

that if these cohesive covert communities' activities arouse suspicion in the minds of the 

investigators, they can always call for methods that will access content through legal 

methods. By doing so for a very limited number of communities of actors, they will dispel 

any allegations of widespread surveillance and disruption of privacy. 
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6.2.4 Reduction in ‘Noise.’ 

  

We now tackle the ‘needle’ part of the ‘needle in the haystack’ problem. The twin 

applications of the Covertness Index and the Collusion Index have succeeded in identifying 

a limited set of suspected covert and cohesive ‘conspiracy’ communities within the 

network, and how many of these turn out to be malfeasant will be revealed through more 

intensive surveillance. But the question that arises at this point is if these indices are also 

playing some role in thinning out the ‘haystack.’ To answer this question, we need to 

understand what a haystack would correspond to. Suppose the aim is to identify nodes that 

are part of covert communities within the network. In that case, the nodes that are 

completely uninvolved in covert activities and thereby, no interest in the study are 

equivalent to the ‘haystack’ in this research. The word ‘noise’ has already been used to refer 

to such nodes, also termed nNoIs (nodes NOT of Interest). Table 6.4 shows how the nNoIs 

are eliminated measurably through the use of the indices. 

 

The above result is another of the unique contributions of this study. The metrics developed 

therein, in as much as the metrics succeed in reducing the overall set of nodes from which 

the nodes of interest need to be extracted. The reduction in the number of nodes that are not 

of interest is fairly precipitous, indicating that the metrics of the Covertness Index and 

Collusion Index tend to incentivize nodes that are part of covert formations with high 

ranking scores. The nodes which are likely not covert or opaque in their transactions are 

correspondingly disincentivized and eliminated from contention. This property of the 

metrics results in a significant increase in the chances of covert detection formations of 

which the NoIs are part of in the sense that the denominator (overall set of nodes or entities 

in the network) of the equation decreases and the numerator (the number of covert nodes or 

entities) increases.  
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6.2.5 Dealing with Data Incompleteness 

 

Another test that the metrics need to undergo is that of resistance to the incompleteness of 

information. One of the principal features of covert networks is their incompleteness 

(Sparrow, 1991), and incomplete information may lead to wholly erroneous results 

regarding the nature of edges and pairings of edges. Dyads that seem innocuous based on 

the readings of their currently observable parameters may be malfeasant. But, due to lack 

of information resulting from unavailable data on pre-existing ties or deception and 

camouflage of exchanges, they emanate signals that may confuse the observer. From this 

standpoint, the metrics evolved to measure covertness should be resistant to partial or 

inadequate information.  

 

Table 6.5 shows the status of information available about the ENRON dataset at its 

inception. We should note that there were only 151 mail in-boxes, to begin with. As shown 

in the table, 8 of 19 nodes of interest (NoIs) had in boxes associated with them, while 11 

NoIs had none. This implies that the email-based information for these NoIs was 

successfully reconstructed from the available inboxes, and 8 of them were in-boxes 

belonging to nodes of interest (NoIs). In contrast, the remaining 11 (out of a total of 19 NoIs 

in the dataset) is seen not have in-boxes, and their email-based information is reconstructed 

from the available in-boxes. It is also interesting to note from the table that the nodes of 

interest (NoIs) that don’t have in-boxes are not significantly affected by the metric 

operations. This result indicates that the metrics have resistance to incomplete information 

and can detect covertness despite this hurdle. 
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6.3 Characteristics of the Metrics 

   

Two metrics have been proposed in this dissertation: 1) an edge-based attribute called a 

Covertness Index, which captures the confinement of information within the constituent 

nodes of a dyad and 2) a Collusion Index or similarity coefficient based on the Jaccard 

Index, which measures the strength of the links between pairs of covert edges. It is time to 

recall the seven desirable attributes of a covert network metric defined in Chapter 1. Each 

attribute is reproduced below and discussed in terms of how well the proposed covertness 

Table 6.5 
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attribute and the similarity coefficient satisfy its description. In this regard, we may recall 

the desirable attributes defined for the proposed metrics at the beginning of this study. 

These are now reproduced below and are also discussed from the compliance perspective 

to show how well the covertness attribute and the similarity coefficient developed during 

the dissertation fit the requirements.  

 

(a) The attribute needs to be based on easily observable topological features of a 

network akin to more popular centrality measures. 

The Covertness Index is an easily calculated metric with minimal requirements of 

information from the topology. During the experiments in this study, we've seen that only 

151 email inboxes were available in the public domain, to begin with. Much of the 

information available about the employees who had either been indicted or had been aware 

in some manner about the insider trading that happened in ENRON was absent (of the 19 

employees who were of interest to the study, only 8 had inboxes and regarding the other 

eight information was gathered from the study of mail headers in the available inboxes). If 

we consider the total number of employee mail-ids that were part of the corpus and 

analyzed at some point in the study, the figure comes to 6570 mail-ids. Of this figure, 

complete information was available for 151 mail-ids. In other words, 6419 mail-ids had 

incomplete information. 

 

The aspect of incomplete information was factored into the experiment, and the Covertness 

Index was not much affected by this fact. However, nodes (mail-ids) that didn’t represent 

the 151 inboxes (whether they were nodes of interest) tended to have higher attrition rates 

when the index was applied. 

 

The Collusion Index was also designed on the available structural information and was 

found to be robust enough to yield meaningful results in covert community detection. As 

has been discussed, this index is more of a regular equivalence feature than a structural 

one, and its computation is based on the intersection of the sets of nodes that have received 

copies from the edge-pairs. This information is easily available and, more importantly, 

doesn’t require any intrusive content-based analysis. 
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(b)  The attribute should be a minimalistic one that will not require many components 

or complicated manipulations of input variables; in other words, it shouldn’t consume too 

many computational resources or bandwidth to calculate.  

 

Both metrics proposed in this study are simple, and their calculations are relatively 

uncomplicated. The computational complexity required is minimal, and the components 

of their formulae are also easily extracted from the network topology. 

 

(c)  The attribute must be capable of being used for non-intrusive analysis, i.e., there 

should be no need for the contents of the information exchanges to be known, which is 

especially important for bypassing existing data privacy laws, encryption mechanisms, 

varying policies across countries which allow differential access to information, legal 

strictures, inadequate information about the network and covert channels of 

communication which may not be apparent to the surveillance team. 

 

As was pointed out in (a) above, the Covertness Index calculation relies on how the 

constituent nodes mark many copies in a dyad. This information is based on the available 

meta-data of the network independent of content in the emails. Similarly, the Collusion 

Index also relies on the commonality of the nodes receiving copies of emails from the 

edge-pairs' constituent edges, which has no dependency on the emails' content. Thus, this 

property is also satisfied with the proposed metrics. 

 

(d)  It should be easily applied across all networks (node or edge or even higher 

groupings). That is, the attribute should be of such a nature that it can be combined easily 

with existing metrics. 

 

We have seen that the Covertness Index was applicable at the level of edges between 

nodes, which is the most basic structure in a network. Later, when the Collusion Index was 

applied, the Covertness Index was used in the input selected set to rank the edges by 

covertness value. The Collusion Index, which is applied to bring out the strength of the 



 

335 

 

linkages between covert edge-pairs, is also amenable to being repeated for higher-order 

structures in the networks, e.g., pairs of edges (or quartets) and so on. Thus, both metrics 

are easily adaptable for application at any layer within the network. 

 

(e) The attribute should have the ability to act as a linkage mechanism, tying together 

disparate nodes, edges, triads, or higher group formations based on some formulation of 

commonness (or cooperation as the term is viewed in this study). A corollary of this 

characteristic is that the attribute should exhibit some form of structural transcendence, 

i.e., there need not be any tangible structural links between entities that might be grouped 

through its application.  

 

Both the metrics have a tie or edge-based mechanism. Although the Covertness Index 

doesn’t link any structures, its subsequent usage as a ranking parameter allows the 

constituent nodes of the dyad to be yoked into larger community structures using the 

second metric, the Collusive Index. This is a linkage mechanism that fits the regular 

equivalence metric description rather than a structural one. That is, the edge-pairs to be 

linked may not have any linkages amongst themselves structurally. Edge-pairs, which are 

in similar neighborhoods, are liable to form strong collusive bonds. 

 

(f) More importantly, it should allow the investigator to reduce the sheer volume of 

data that is not interesting and increase the chances of obtaining positive results.  

 

This aspect was discussed in detail earlier in this chapter. Both metrics succeed in reducing 

the size of the overall dataset considerably. Ultimately, the 6780 nodes that we began with 

was reduced to just 221 by the time the experiment ended. Thus, the size of the haystack 

was pared down considerably. While this happened, the size of the set of edges of interest 

(EoIs) remained more or less unaffected, a development that significantly increased the 

chances of detecting covert edges. 

 

(g) The attribute should be dynamic, i.e., it should change in time and still retain its 

usefulness despite evolutionary changes in the network structure. If there are changes in 



 

336 

 

the network's topology, changes in the attribute should be able to track the changes and 

even predict the future shape of the network. 

 

Although this dissertation is a non-longitudinal one and doesn’t factor in time as a 

parameter, it can well be concluded that the Covertness Index, in particular, can be key in 

detecting unusual patterns of communication over time. For example, suppose the value 

of the Covertness Index of a particular edge increases sharply in a particular period. In that 

case, it signifies the start of some covert collaboration by the constituent nodes. Similarly, 

if an edge that had a high Covertness Index value suddenly comes down within a short 

timespan, this would indicate that the covert enterprise has either completed its formalities 

successfully or has transferred the task of payload delivery elsewhere in the network. Both 

possibilities are indicators of probable covert collaboration, and the variations in 

Covertness Index values over time capture this fact. 

 

Thus, both the Covertness Index and the Collusion Index meet the above criteria and 

provide better than reasonable results to detect a much higher proportion of covert edges 

than would be possible through uniform distribution. 

 

 

6.4 Recapitulation of the Steps 

 

Figure 6.8 recapitulates the steps taken in this dissertation. The study started with the 

ENRON email corpus, which had 570,000 plus mail exchanges amongst 151 employee 

email ids. This figure was rationalized to 55,300 unique mail pairs, which represented pairs 

of employee mail-ids who had exchanged emails, and each pair of nodes (mail-ids) which 

had exchanged at least one mail was assigned an edge value of 1. The study defined the 

concepts of Relation Sets, Shared Relationship Sets, and Neighborhood Sets, designed to 

bring out the nature and quantity of mail exchanges and mail copies. These three sets were 

defined on the edges between each dyad's constituent nodes and were made to convey the 

nature of the pair's neighborhood.  
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Layered on top of these three concepts is the concept of an Edge-Vertex, a function defined 

on edge between the constituent nodes of a dyad that had exchanged at least one mail. An 

Edge-Vertex of a dyad is a list containing the following elements: 

(i) The identities of the constituent nodes of the dyad. 

(ii) The sum of the Relationship Set elements conveys the total number of emails 

exchanged via the edge between the constituent nodes. 

(iii) The sum of the Shared Relationship Set elements, i.e., the total number of emails 

copied from the mail exchanges between the constituent nodes to nodes outside the dyad. 

(iv) The Covertness Index, i.e., the ratio of the sum of the Shared Relationship Set 

elements and the sum of the Relationship Set elements deducted from 1. 

(v) The Neighborhood Relationship Set, whose elements are the sets of nodes that are 

the recipients of copies from each mail exchange between the constituent nodes. 

The Edge-Vertex function is a unique concept that allows multiple operations to take place 

with the edge or tie, acting as the fundamental unit. This entity calculates the Collusion 

Index between pairs of edges in the experiment's second leg. The Collusion Index allows 

us to determine if two covert edges are linked in a meaningful manner, i.e., whether they 

have common covert intentions. 
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Chapter 7 

 

Conclusions and Future Work 

 

The dissertation started out answering Krebs's challenge in his groundbreaking study of the 

9/11 attacks (2001), who states thus –“The big question remains – why wasn’t this attack 

predicted and prevented? Everyone expects the intelligence community to uncover these 

covert plots and stop them before they are executed. Occasionally plots are uncovered, and 

criminal networks are disrupted. But this is very difficult to do. How do you discover a 

network that focuses on secrecy and stealth?”  

 

The three big questions that this quote expresses are quite apparent. First, why are the covert 

actors not detected before the incident happens? Second, how does one recognize a covert 

actor and, by extension, a community of covert actors who habitually engage in stealth and 

secrecy? The third question relates to Krebs' term ‘plot,’ which essentially alludes to a 

conspiracy by a community of covert actors. To rephrase the question, even if we manage 

to ascertain that some actors are covert or trying to hide their activities within a network, 

how do we determine if a group of such covert actors has the same aims? 

 

These core questions raise some related issues which this dissertation has attempted to 

address. Firstly, can an investigator detect covert entities within an otherwise bright network 

without needing to intercept communications amongst the actors or without being intrusive? 

Second, how do we translate a more or less abstract sociological concept like covertness in 

a mathematically meaningful manner? A corollary to this question is whether covertness 

should be studied as a global attribute of an entire network or studied as a unit attribute that 

is manifest across all social networks? Is covertness an attribute akin to more popularly 

studied and invoked centrality measures like degree (or incidence), betweenness, closeness, 

and eigenvalue? If so, how do we breakdown the covert aspects of entire networks or parts 

of such networks into an indivisible atomic aspect? 
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The dissertation has chosen to define the concealment or confinement of information 

exchanged between entities or, more precisely, between a pair of nodes. To be more 

specific, the study has tried to translate the confinement of information exchanged between 

a pair of nodes into a variable that can be enumerated. In this research, the pathway along 

which such information is exchanged, i.e., the tie or the edge in SNA terminology, is used 

as the most basic unit of analysis rather than the more popular vertex node in traditional 

SNA literature. Since the dataset used here is the email corpus of the ENRON Corporation, 

a unit of covertness was sought that would reflect the transparency or mail exchange. The 

opacity in a dyad is defined as the proportion of emails that have been exchanged between 

two nodes and which have not been marked out as copies. The index was further modified 

to bring into play the volume of mail transactions between nodes, which was felt to have 

a bearing on the relative importance of the covertness metric of dyads known to have heavy 

exchanges. 

 

This simple index of covertness of mail exchange of information confinement was 

computed for all edges within the network and used as a ranking mechanism to arrange the 

edges in descending order. A particular number of top-ranked covert edges was selected 

using a heuristic (minimum) threshold value of the Covertness Index. This select set was 

used as an input for developing a similarity coefficient, based on the Jaccard Distance 

formula to link pairs of top-ranked covert edges. These links are termed the Collusion 

Index, and this index is the first step towards identifying communities of covert edges 

having common intentions, otherwise known as conspiracy subgroups. 

 

The Collusion Index represents the strength of the linkage between two covert edges, i.e., 

the higher the index value, the stronger the relationship. After calculating this index, 

further exercise was taken to arrange the edge pairs in descending order of their link 

strengths (Collusion Index values). A selection was made out of this set, giving a reduced 

set comprising edge-pairs with link strengths higher than a heuristic threshold of the 

Collusion Index value. This set represents those covert communities of actors within the 

most cohesive and strongly linked network. Hence, it represents the best pool of candidate 

structures for investigators to focus on in their search for conspiracy sub-networks. The 
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experiment results were encouraging. A large proportion of covert nodes (actors) and 

covert community structures were detected using both the Covertness Index and the 

Collusion Index in succession. Figure 7.1 gives an overview of the different stages in 

developing both indices and their net impact on the experiment's success. 

 

 

 

 

 

Figure 7.1 
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While the present research has concluded, several lingering issues merit attention. The first 

issue concerns the additional steps that need to be taken to identify larger communities 

within a network. So far, the results have provided us with communities of at most four 

nodes. In a comparatively small-sized network where there are not many nodes, 4-node 

communities of 4 nodes are significant. But, if the network sizes are bigger, we may need 

to look for larger sized communities with common (and covert) aspirations.  

 

The traditional definition of communities in networks is that they are groups of nodes 

having greater ties internally than with the rest of the network. Traditionally a network 

community is defined as a group of nodes having greater ties among themselves than with 

the rest of the network. It bears repeating here that some community detection methods are 

more popular than others, but no single technique is applicable across all social networks. 

Since the study started by developing a Covertness Index metric defined on edges rather 

than on nodes, the broad approach was agglomerative, i.e., one based on detecting clusters 

of edges with high covertness values using a similarity measure (the Collusion Index). At 

this juncture, the choice available to us is to continue the aggregation or clustering of the 

communities that have already been identified through the second-ranking processes. We 

may continue to use the Jaccard Index as in the second step or choose another similarity 

measure that links the 4-node communities already in existence. As discussed earlier, 

several candidate methods exist for identifying these larger communities.  

 

Another method is to cluster the available communities as neighbors of the nodes that have 

received copies. First, the nodes that have received copies of emails from different edge-

pairs (obtained after applying the Collusion Index to link covert edges) can be ranked based 

on the number of links to different edge-pairs. Each of these nodes becomes a centroid for 

the cluster of edge-pairs that form its neighborhood. We may heuristically select a certain 

number of clusters from the ranking, which will account for most of the existing nodes in 

the Collusion Index select sets. This community detection mechanism can be further 

advanced by checking the number of edges between the clusters and merging clusters 

based on a certain minimum heuristic, i.e., merging clusters whose component nodes share 

more than a minimum threshold number of edges with each other. 
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The proposed additional steps for detecting (additional or larger) communities in the 

network are illustrated in Figure 7.2. The figure shows a fictitious email-based social 

network in which there are seven dyads: eab, ecd, eef, egh eij, emn, and ekl, and six other nodes 

that have received copies. Of these nodes, p receives copies of emails from 5 dyads, r 

receives copies from 4 dyads, q receives copies from 3, s from 2, u from 1, and t from 

none. The details of the dyads, contributing copies of emails to each of the above nodes 

are given in table 7.1. Based on the table, the detected communities are centered around, 

as shown in Figure 7.3. 

 

 

 

7. 
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Another important issue deserving attention concerns the element of time. This study's 

orientation has been non-longitudinal, i.e., the element of time as a variable is not 

considered. The same steps and experiments proposed in this dissertation can also be 

executed with a longitudinal slant. That is, a time element can be introduced into the 

equations to refine the results further. The discussion on link prediction models in Chapter 

5 offered a glimpse into the problem of predicting a network’s evolution, i.e., predicting 

what the structure of a network will look like after a short period Liben-Powell and 

Kleinberg (2007). The utility of time in unraveling covert communities' activities and 

eventual detection is a practice very prevalent in law enforcement. For example, it is 

common for offenders who plan a crime to stop conversing over their mobile phones after 

the planning is over and before the actual incident. More often than not, this is the behavior 

that the officers mounting surveillance seize upon before launching pre-emptive raids. The 

trends just opposite to this are also interesting for predictive policing. If a group of 

offenders is planning a major heist, the frequency of their calls to each other over their 

phones tends to increase for a while. There is a brief spike in their call frequencies that last 

until the planning phase is over, and the waiting phase begins. A sudden change (increase 

or decrease) in communications is a time-dependent phenomenon. For an automated 

investigation into such patterns, network models would need to be studied and stored for 

comparison at earlier points in time. 

 

The above time-based approaches look at network evolution as a whole over time. But, 

recent studies have disengaged the problems of community evolution from that of overall 

network evolution. Spiliopoulou and Aggarwal (2011), in their survey on evolution in 

social networks, argue that an evolving community is not necessarily part of an evolving 

graph. They treat the problem as a subset of the larger problem of evolving networks or 

the study of volatility in networks. In a survey on community detection algorithms, 

Fortunato (2010) devoted an entire chapter to detecting dynamic communities. Sharma, 

Feng, Singhal, Kuang, and Srivastava (2015), in their paper on predicting small group 

accretion in social networks, also dealt with group evolution dynamics through increment 

accretion by process size increment the addition of more members. As a part of this 
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problem, they defined two subproblems: incremental accretion and subgroup accretion. 

In the first subproblem, given a certain size group, the paper predicts the likelihood of one 

more members being absorbed in it. The second subproblem, i.e., subgroup accretion, is 

the problem of incremental accretion on all possible subgroups of a given group to yield 

new prediction scores for the incremental groups. The intuition behind this idea is that 

many future groups are formed through these two processes, given a group collaboration 

history. The paper, fittingly enough, aims to build models that predict future groups likely 

to form through these two mechanisms. It notes that the work is an initial step towards a 

more general higher-order group prediction problem. The next steps proposed in this 

dissertation also point in this direction. A good third step in the experiment would be to 

work towards identifying communities or groups no larger in size than perhaps ten nodes 

while preserving their homogeneity to a large extent. 

 

One constraint with longitudinal processing is the huge amounts of data to be crunched per 

snapshot for even a moderate-sized network. For instance, if we consider the solution given 

in this study as applying to only one point in time, we would need to repeat it; if we treat 

this as giving the solution at one particular point in time, we would need to repeat it for a 

sizeable number of timestamps for the results to be reliable on both the evolution of the 

overall network and evolution of communities within the network to be reliable. To cite an 

example, if we’re going to predict what the 2500 potentially covert communities identified 

in this study are going to look like at a certain timestamp in the future, we need to consider 

each of the 2500 communities individually and also their constituent edges (4 per 

community) and use all of them in the algorithm that has been worked out for prediction 

purposes, the complexity will increase by leaps and bounds. The model used in this 

dissertation is not very large, and even so, the introduction of a time variable would pose 

formidable challenges, to say the least. 

 

Most social networks today (especially those on the internet) can have up to millions of 

nodes, but the distribution of activity among the network members follows Zipf’s law69. 

                                                           
69 Zipf's law is an empirical law which states that when events are ranked (denoted as R) from highest 

frequency to lowest frequency, the frequency (f) of the event is inversely proportional to the rank of the 
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For incremental timestamp-based methods, this implies that huge initial matrices must be 

built at each time point and that sophisticated heuristics are needed to fill the entries for 

new nodes with imputed average values of acceptable reliability. The sheer numbers of 

such nodes make it likely that the derived values may affect the model's viability. Even if 

we assume that there are no side effects on the resulting model's quality, there will surely 

be effects on the execution time and storage demand. As has been repeatedly stressed in 

this study, surveillance on covert communities within networks to pre-empt any adverse 

incident is a process that requires quick results with a minimum investment of resources. 

Hence, there is a need for economical or even frugal resource use when adapting models 

to such networks. How this can be achieved with incremental methods that process massive 

sized matrices (or tensors) is still an open issue. 

 

Several studies have deployed machine learning techniques for predicting models of the 

evolution of social networks (Liben-Nowell and Kleinberg 2007; Krautz et al. 1997; 

Raghavan 2002). The idea of melding machine learning (ML) to link prediction using 

features like the Covertness Index and Jaccard Index as inputs are worth trying out in future 

research. If a partition-based approach were taken to the problem, these features could also 

be used to increase cluster modularity after ML-based classifiers had partitioned the 

network. 

 

A third important topic that needs consideration in the future is to conclude that domain 

specificity remains in these kinds of problem-solving approaches to detecting covert edges. 

As discussed earlier, the main limitation of such research is that the devised solutions are 

tailored to particular contexts. What may be good enough for an email-based social 

network like the one proposed here may fail to do well in other scenarios. It is best to 

maintain a library of solutions and apply the best fit after comparing each solution's results. 

 

One of the major problems with deciding which approach to adopt for community 

detection in networks (detection of covert communities or sub-groups is a specific sub-set 

                                                           

event. The result of Zipf’s Law is equivalent to the Power Law. It is represented asf∞
1

𝑅∝where 𝛼 is some 

positive exponent. 
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of this) is that different approaches appear to do well in specific scenarios. In other words, 

there is no universal secret ingredient to success. In this context, it’s worth revisiting what 

Fortunato states in his exhaustive survey paper (2010) 

 

“A newcomer, who wishes to find clusters in a given network and is not familiar 

with clustering techniques, would not know, off-hand, which method to use, and 

he/she would hardly find indications about good methods in any single paper on 

graph clustering, except perhaps on the method presented in the paper. So, people 

keep using algorithms because they have heard of them, or because they know that 

other people are using them, or because of the reputation of the scientists who 

designed them. Waiting for future reliable benchmarks that may give an objective 

assessment of the quality of the algorithms, there are at the moment hardly solid 

reasons to prefer an algorithm to another…However, we want to stress that there 

is no such thing as the perfect method, so it is pointless to look for it. Among other 

things, if one tries to look for a very general method that should give good results 

on any type of graphs, one is inevitably forced to make very general assumptions 

on the graph's structure and communities' properties. In this way, one neglects 

many of the system's specific features, leading to more accurate detection of the 

clusters. Informing a method with features characterizing some types of graphs 

makes it far more reliable to detect the community structure of those graphs than a 

general method, even if its applicability may be limited. Therefore in the future, we 

envision the development of domain-specific clustering techniques. The challenge 

here is to identify the peculiar features of classes of graphs, which are bound to 

become crucial ingredients in the design of suitable algorithms.” (p.91)  

 

Fortunato prescribes that for optimal results, the practitioner should leverage  

 

“specific information about a graph, whenever available… For instance, it may be 

that one has some information on a subset of vertices, like demographic data on 

people of a social network. Such data may highlight relationships between people 

that are not obvious from the network of social interactions. In this case, using only 
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the social network may be reductive. Ideally, one should exploit both the structural 

and the non-structural information searching clusters, as the latter should be 

consistent with both inputs. How to do this is an open problem.” (p.91) 

 

The above remarks set the matter in perspective. When looking for communities in 

networks, domain specificity is unavoidable. The researcher must be aware of multiple 

aspects of the social network being studied, the nature of the entities that will likely 

populate the communities, how big (or how small) the community sizes should be. This 

dissertation leverages the availability of certain structural features of the ENRON mail 

corpus, notably the mail exchange between employees (to the extent these are present in 

the 151 in-boxes made public), links formed between mail-id pairs through marking of 

copies, etc. If one of the structural features said the copied mail information was 

unavailable, an entirely different approach to the problem of confinement of information 

exchange would have been required. Or, suppose information exchange in the network was 

in the form of telephone calls or social media messaging rather than email exchanges. 

Different approaches would have been called for since far more structural information 

would be available. In a social media platform like Facebook, sentiment-related data is 

easily observed without having to dig deep. In telephone call detail records, the voice-

based exchanges are usually linear without the equivalent of the mail copies on which this 

study relies so heavily. 

 

It is clear that social network research needs to be a close collaboration between 

practitioners in the computational field and domain experts from whom the network 

information is derived. The nature of the domain information should guide the selection of 

computational methodologies to be woven into the very fabric of the algorithmic solutions. 

There are calls for universal solutions across all domains of social networks, indeed of 

networks as a whole, but a “Grand Unified Theory” for detecting communities in networks 

remains distant, at least in the foreseeable future. One of the advantages of close domain-

based collaboration would be the access that the researcher in the computational domain 

would have to the vast literature in the field where the domain expert works. Careful 
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choices of features in the network architecture can then be made with concomitant positive 

effects on the outcomes. 

 

Things are no different in the study of covert networks (or covertness in networks). We 

saw in Chapter 2 how different such networks could be from each other: in their structure, 

resilience, secrecy-efficiency trade-offs, and the ways and means by which secrecy is 

maintained. So what may work for a terror-related covert network might not be optimal 

for a criminal network. There are divergences even within criminal networks, with 

different structures seen in networks related to different forms of crimes or criminal 

enterprises that underlie such networks' functioning. And even if a ‘panacea’ type solution 

were to be found for social networks which are wholly engaged in criminal activities, it 

still wouldn’t work for bright or open networks like business or commercial enterprises 

where there may be embedded sub-structures that are covert and whose activities are 

harmful and even illegal to the interests of the organization (as in the case of ENRON 

where an overwhelming proportion of the employees were law-abiding and ignorant of the 

designs of the few bad actors). In other words, the research must be aware of what artifacts 

to look for, and this won’t be possible if the researcher is not very familiar with the 

background and literature of the domain subject. More importantly, given the nature of 

social networks generally, computational research needs to accept the reality of specific 

best-fit models rather than a one-size-fits-all approach. There also needs to be an 

acceptance of approximate solutions whose accuracy may be enhanced incrementally by 

adding new features like variables and fine-tuning parameters. 

 

Finally, despite the extensive research on covert networks, an overwhelming amount of it 

has focused on post facto analysis, i.e., the research is already aware of who the bad actors 

are, their activities, and how their removal from the network disrupts the network's 

activities as a whole. In a real-world scenario, such information is a luxury seldom 

available to the field investigators, who are often racing against unknown deadlines and 

competing against unseen foes. The task of predicting what payload a covert network 

might deliver and within what timelines are far more complicated than the study of past 

events. A related issue is the tendency to label entire networks as covert or dark. The 
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tendency needs to be resisted because most covert networks are incubated. Most of these 

covert networks are incubated within larger and essentially benign networks, where they 

seek shelter and try to camouflage their intentions. It is my considered opinion that for any 

predictive approach to succeed in the detection of covertness, the focus has to be broader. 

There needs to be an acceptance that malfeasant actors will also have more licit pursuits 

and may use such overt activities to mask nefarious actions. The scrutiny should be 

directed to the network's larger structure, first drilling down to the sub-structures of 

interest. 

 

The field of covert network analysis is an intensively studied one, and interest in the 

predictive analysis is gaining traction. Powerful new algorithms are being developed. Their 

focus is on capturing the multifaceted nature of covertness, collusion, and dynamism in 

the structure of such networks (and communities within these networks) and on expressing 

these concepts in a computationally comprehensible way. Many open issues remain, 

however, while newer ones continue to emerge with further research results. This 

dissertation has attempted to bring to the fore some of these challenges in this field and 

present a somewhat unified underpinning to the whole set of dynamics involved. 
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	Most analyses of covert networks are done with limited resources, both in terms of computational bandwidth and human resources. The time available is also fairly limited. It’s often necessary to select what the analyst may consider as the ‘best snapsh...
	In the present instance where the study focuses on detecting covertness of edges within the ENRON email corpus, the necessity is to identify the most covert specimens amongst the edges and then apply further analytics to unearth more of the related co...
	Finding an optimal solution is impossible or impractical; heuristic methods can be used to speed up finding a satisfactory solution. Heuristics can be mental shortcuts that ease the cognitive load of making a decision.ionsApproximations are heuristic ...
	Another definition of a  heuristic function, also called simply a heuristic, is a function that ranks alternatives in search algorithms at each branching step based on available information to decide which branch to follow. It may approximate the exac...
	Going by this definition, Wikipedia further explains that a heuristic's objective is to solve a reasonable time frame that is good enough to solve the problem. This solution may not be the best solution to this problem, or it may simply approximate th...
	Most real-world applications have a complexity that matches the NP-hard postulates. Hence, the results of NP-hard computer science problems make heuristics the only viable option for various complex optimization problems that need to be routinely solv...
	The trade-off  criteria for deciding whether to use a heuristic for solving a given problem include the following:
	 Optimality: When several solutions exist for a given problem, does the heuristic guarantee that the best solution will be found? Is it necessary to find the best solution?
	 Completeness: When several solutions exist for a given problem, can the heuristic find them all? Do we need all solutions? Many heuristics are only meant to find one solution.
	 Accuracy and precision: Can the heuristic provide a confidence interval for the purported solution? Is the error bar on the solution unreasonably large?
	 Execution time: Is this the best-known heuristic for solving this type of problem? Some heuristics converge faster than others. Some heuristics are only marginally quicker than classic methods.
	It may be difficult to decide whether the heuristic solution is good enough because the theory underlying heuristics is not very elaborate. The rationale for selecting a threshold of covertness is thus well established in the present case. Three diffe...
	3.19 Metrics for Measuring Performance
	3.19.1  Accuracy
	To quote another instance, in fraud detection or sick patient detection, if a fraudulent transaction(Actual Positive) is predicted as non-fraudulent(Predicted Negative), the consequence can be harmful for the financial institution.
	Similarly, in sick patient detection, a sick patient (Actual Positive) goes through the test and is predicted as not sick (Predicted Negative). The cost associated with False Negative will be extremely high if the sickness is contagious.
	True Positive + False Negative = Actual Positive
	However, there is an additional point to note at this stage: if we label all edges as covert and of interest, then Recall goes to 1.0! We end up with a perfect classifier. Well, not exactly. As with most concepts in data science, there is a trade-off ...
	3.19.3  Precision
	Precision is defined as the number of true positives divided by the number of true positives and false positives. False positives are cases the model incorrectly labels as positive that are negative. In the case being studied here, the edges the model...
	Precision is a good measure to determine when the costs of False Positive is high. For instance, in email spam detection, a false positive means that a non-spam email (actual negative) has been identified as spam (predicted spam). The email user might...
	Thus, we may define Precision as per the formula below:
	True Positive + False Positive = Total Predicted Positive
	Now, we can see that our first model, which labeled all edges as not covert, wasn’t very useful. Although it had near-perfect accuracy, it had 0 Precision and 0 Recall because there were no True Positives! Say we modify the model slightly and identify...
	3.19.4  Combining Precision and Recall
	We might know that we want to maximize either Recall or Precision at the other metric's expense in some situations. For example, in preliminary disease screening of patients for follow-up examinations, we would probably want a recall near 1.0 — we wan...
	The F1 score is the harmonic mean of precision and recall taking both metrics into account in the following equation:
	The harmonic mean instead of a simple average is used because it dis-incentivizes extreme values. A classifier with a Precision of 1.0 and a Recall of 0.0 has a simple average of 0.5 but an F1 score of 0. The F1 score gives equal weight to both measur...
	3.19.5 Visualizing Precision and Recall
	Having discussed various metrics to evaluate our model's efficacy, we briefly discuss a few techniques to explain how the concepts described above may be applied.
	By far, the most common technique is computing the confusion matrix, which is useful for quickly calculating Precision and Recall given the predicted labels from a model. A confusion matrix for binary classification shows the four different outcomes: ...
	Going from the Confusion Matrix to the Recall and Precision requires finding the respective values in the matrix and applying the equations:
	We can recast the above matrix into one that suits the purposes of our study. In the instant case, the True Positives are those dyads whose edges are covert and are the ones that are sought to be detected. The False Positives are the dyads whose edges...
	The table below shows the Confusion Matrix with the cells' entities recast as per the above analysis. The subsequent table maps the entries of the Confusion Matrix with the ones required for this study's purposes.
	3.20 Measuring Improvement in Detection
	In the first instance, we have selected the first 2500 top-ranked Edge Vertices (arranged in the descending order of their values of Covertness Index). The Precision, Recall, F1 measures are all calculated to prove the better detection of the Edge Ver...
	Case#1:  2500 Top-Ranked Edges:
	Two charts are presented below. The first of the pair reflects the numbers of the Edges of Interest (EoIs), which occur in the top 2500 edges arranged along with the Covertness Index's descending values of the respective ties. The first chart has the ...
	The figures below show how the prevalence of the edges of interest (EoIs) has markedly improved after applying the Covertness Index to the ties between the nodes constituting the dyads.
	We discussed using various metrics to measure improvement in the detection of covert edges, i.e., EoIs. The first of the metrics discussed was Precision, which indicates how correctly the model predicts the true positives. That is, of the Edges predic...
	Referring back to the section on the metrics, the formula of Precision was :
	Precision = True Positives / (True Positives + False Positives)
	The figure on the face appears not too encouraging till we compare it with the Precision achieved by adopting a uniform distribution model. That is, the covert edges we want to identify and detect are distributed throughout the set of all the edges un...
	Let’s denote Precision arising out of the Covertness Model as PCandthe Precision arising out of a Uniform Distribution as PU.
	Thus,
	PC=,,𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑬𝒅𝒈𝒆𝒔𝒐𝒇𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓𝒐𝒇𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕𝑪𝒐𝒗𝒆𝒓𝒕𝑬𝒅𝒈𝒆𝒔𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	PC = ,𝟐𝟑-𝟐𝟑+𝟐𝟒𝟕𝟕. = ,𝟐𝟑-𝟐𝟓𝟎𝟎. = 0.0092 or, 0.92 %.
	Likewise,
	PU =  ,𝟏.𝟖𝟒-𝟐𝟓𝟎𝟎. = 0.0008 or, 0.08 %.
	The second of the metrics we had discussed to measure performance was Recall.  We may now estimate the figure for Recall for the Covertness Index model. As discussed earlier, Recall calculates how many of the Actual Positives our model captures throug...
	In a Uniform Distribution, the Edges of Interest are presumed to be prevalent uniformly throughout the edges whose cardinality is around 55,300. Suppose we calculate the number of EoIs that will occur within the figure of 2500. In that case, it comes ...
	EoIs is 43, 20 EoIs have been left out by employing the Covertness Index model. In contrast, the Uniform Distribution of the model identifies only about 2 EoIs and leaves out as many as 41. Our model thus scores significantly higher in the Recall metr...
	As in the case of the Precision metric, the results are presented below notationally.
	Let’s denote the Recall in the Covertness Model as RC and the Recall in the Uniform Distribution as RU.
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	RC = ,𝟐𝟑-𝟐𝟑+𝟐𝟎. = ,𝟐𝟑-𝟒𝟑. = 0.53 or, 53 %.
	Likewise,
	RU =  ,𝟏.𝟖𝟒-𝟒𝟑. = 0.04 or, 4 %.
	Our model is far more efficient in reducing the number of covert edges not detected in the dataset. The recall is particularly important in the study of covert social networks. It is important that any detection model in this field needs to keep as ma...
	The chart below summarizes Recall performance by invoking the Covertness Index over the Uniform Distribution model.
	It has been discussed at some length earlier that a balanced model doesn’t lean too heavily on either Precision or Recall. There are advantages in choosing a more balanced metric like the F1 Measure. F1 is an overall measure of a model’s accuracy that...
	To compare the prevalence, two charts are presented below. The first of the pair reflects the numbers of the Edges of Interest (EoIs), which occur in the top 5000 edges arranged along with the Covertness Index's descending values of the respective tie...
	The figures below show how the Precision values of the edges of Interest (EoIs) have markedly improved after applying the Covertness Index to the ties between the nodes constituting the dyads. Precision indicates how accurate the prediction is that th...
	Precision  is calculated per the following formula: as :
	Precision = True Positives / (True Positives + False Positives)
	In other words, the Precision of our model when we reach the count of 5000 in terms of ranking is:
	Precision = 27/ (27 + 4973) = 27/ 5000 = 0.0054 or about 0.5%.
	As in the earlier case where we considered the 2500 top-ranked covert edges, the figure appears insignificant until we compare it to 0.0008 or 0.08% obtained from the Uniform Distribution. The Precision value produced by the Covertness model is more t...
	We can now repeat the notational representation for calculating and comparing the Precision measure. The Precision arising out of the Covertness Model is denoted as PC, and the Precision arising out of a Uniform Distribution is represented as PU.
	Thus,
	PC=,,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	PC=,𝟐𝟕-𝟐𝟑+𝟒𝟗𝟕𝟑. = ,𝟐𝟕-𝟓𝟎𝟎𝟎. = 0.0054 or, 0.54 %.
	Likewise,
	PU= ,𝟑.𝟖𝟗-𝟓𝟎𝟎𝟎. = 0.00078 or 0.08 %.
	We now compare the second of the metrics we had discussed to measure performance, i.e., Recall, which calculates how many of the Actual Positives our model captures through labeling it as Positive (True Positive), which is the same as calculating how ...
	In a Uniform Distribution, the Edges of Interest are presumed to be prevalent uniformly throughout the edges whose cardinality is around 55,300. If we calculate the number of EoIs that will occur within the figure of 5000, it comes to 3.89. The figure...
	Notationally, let’s denote the Recall in the Covertness Model as RCand the Recall in the Uniform Distribution as RU.
	Thus,
	RC=,,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑵𝒐𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	RC=,𝟐𝟕-𝟐𝟕+𝟏𝟔. = ,𝟐𝟕-𝟒𝟑. = 0.63 or, 63 %.
	Likewise,
	RU= ,𝟑.𝟖𝟗-𝟒𝟑. = 0.09 or 9 %.
	Thus, in the second instance where 5000 top-ranked covert dyads are considered, the Covertness Index model is far more efficient in reducing the number of covert edges not detected in the dataset. If many bad actors slip out of the dragnet in a survei...
	The chart below summarizes Recall performance by invoking the Covertness Index over the Uniform Distribution model.
	We now come to the third measure of performance, i.e., the F1 measure.F1 is a balanced measure of a model’s accuracy that combines Precision and Recall. A good F1 score means that there are low False Positives and low False Negatives, so an optimal nu...
	PC=,,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	PC=,𝟑𝟓-𝟑𝟓+𝟗𝟗𝟔𝟓. = ,𝟑𝟓-𝟏𝟎𝟎𝟎𝟎. = 0.0035 or, 0.35 %.
	Likewise,
	PU= ,𝟕.𝟖-𝟏𝟎𝟎𝟎𝟎. = 0.00078 or 0.08 %.
	The pair of figures shown below illustrates the Covertness Index model's superiority over the Uniform Distribution model in detecting the covert EoIs. The first figure has the horizontal axis laid out on a plain numerical scale, and the next one is la...
	Notationally-
	RC=,,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑪𝒐𝒗𝒆𝒓𝒕 𝑬𝒅𝒈𝒆𝒔 𝑵𝒐𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	RC=,𝟑𝟓-𝟑𝟓+𝟖. = ,𝟑𝟓-𝟒𝟑. = 0.81 or 81 %.
	Likewise,
	RU= ,𝟕.𝟖-𝟒𝟑. = 0.18 or 18 %.
	RC | RU = 4.5
	Thus, in the third instance where 10000 top-ranked covert dyads are considered, the Covertness Index model is far more efficient in reducing the number of covert edges not detected in the dataset. In a situation where scrutiny is being carried out to ...
	The chart below summarizes Recall performance by invoking the Covertness Index over the Uniform Distribution model.
	The pairs of nodes highlighted in different colors represent different subgroups of covertness. Let’s choose the green colored subgroup, which comprises the node pairs (b,o) and (m,k) and vice versa. In this sense, neither pair displays structural equ...
	With this architecture in mind, we may consider constructing covert subgroups from two different approaches: a) A top-down approach and b) An aggregational approach beginning from the ground up.
	A top-down approach would entail dividing the graph into smaller sized partitions and evaluating each partition for cohesiveness using different statistical methods.  The two main mechanisms available for this type of computational intervention are a)...
	The set of edges (and the associated Edge-Vertex functions) which are seen in the above representative network are:
	Ev={(a,f), (a,h), (a,n), (b,e), (b,o), (b,h), (c,d), (c,h), (d,g), (e,h), (i,k), (j,k), (j,l), (k,m), (k,n)}
	After computing the Covertness Index on each of the above edges and then assigning each edge a rank depending on the covertness index's value, we get the following figure. In this figure, all the top ranking edges are highlighted in pale red. The set ...
	(Ev)covert ={(a,h),(b,o),(b,h),(c,d),(i,k),(k,m)}
	The third and last in the figures show what we aspire to do in the next step: finding links between the edges identified as covert to somehow group them in subnets representing common intention.
	A third of the figures below show that there are three sub-groups of covert edges. Each sub-group is colored differently. It needs to be emphasized that some of the edges of the nodes constituting the edges are not connected structurally. The linkages...
	[(Ev)covert]Green={(k,m), (b,o)}
	[(Ev)covert]Red={(a,h), (b,h), (i,j)}
	[(Ev)covert]Blue = {(c,d)}
	Mere confinement of information being exchanged is too wide and too shallow to measure group actors (or nodes) who display covertness characteristics but whose aims to maintain covert attitudes are widely variable. So the task now is to make groups (c...
	4.5  Link-Prediction in Social Networks
	Let’s denote the precision arising out of the JI Model as PJ and the precision arising out of a Uniform Distribution as PU.
	Thus,
	PJ=,,𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑷𝒂𝒊𝒓𝒔 𝒐𝒇 𝑬𝒅𝒈𝒆𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅.-(𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑬𝒅𝒈𝒆 𝑷𝒂𝒊𝒓𝒔 𝒐𝒇 𝑰𝒏𝒕𝒆𝒓𝒆𝒔𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅+𝑵𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑬𝒅𝒈𝒆 𝑷𝒂𝒊𝒓𝒔 𝑫𝒆𝒕𝒆𝒄𝒕𝒆𝒅).
	PJ=,𝟖𝟖-𝟖𝟖+𝟐𝟒𝟏𝟐. = ,𝟖𝟖-𝟐𝟓𝟎𝟎. = 0.0352 or, 3.52 %.
	Likewise,
	PU= ,𝟎.𝟓𝟔-𝟐𝟓𝟎𝟎. = 0.000224 or, 0.0224 %.
	We may now recall the original ratio of covert edges we had while starting. The result was expressed as Equation (1.1) i.e.
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