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ABSTRACT
Object-Branch Coverage (OBC) is often used to measure effective-
ness of test suites, when source code is unavailable. The traditional
OBC definition can be made more resilient to variations in compil-
ers and the structure of generated code by creating more robust
definitions. However finding which instructions should be included
in each new definition is laborious, error-prone, and architecture-
dependent. We automate the discovery of instructions to be in-
cluded for an improved OBC definition on the X86 and ARM archi-
tectures. We discover all possible valid instructions by symbolically
executing instruction decoders for X86 and ARM instructions. For
each discovered instruction, we translate it to Vine IR, and check
if the Vine IR translation satisfies the OBC definition. We verify
the correctness of our tool by comparing its output with the X86
and ARM architecture manuals. Our automated instruction clas-
sification facilitates development of more robust OBC definitions
with better bug-finding ability and lesser sensitivity to compiler
variations.

CCS CONCEPTS
• Software and its engineering → Software testing and debug-
ging;
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instruction classification, object branch coverage
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1 INTRODUCTION
Object-Branch Coverage (OBC) is a binary-level structural coverage
criterion that mandates both sides of conditional branch instruc-
tions be exercised by a test suite, when measuring its coverage [2, 3].
OBC has many advantages over its source-level counterparts: it is
programming language-independent, and it can be measured in the
absence of source code. OBC can be measured non-intrusively and
with low execution overhead, for example, using Intel Real Time
Instruction Trace [13], or using the Embedded Trace Macrocell
architecture [19] on ARM processors. These advantages make OBC
desirable for replacing source-level coverage criteria such as branch
coverage and modified condition/decision coverage (MC/DC). Fur-
ther, criteria like OBC are essential for assessing test coverage of
object-code that is not directly traceable to source code, which is
mandated by standards such as DO-178C [28] for safety-critical
avionics software.

Listing 1: C code for ctermid function in eglibc-2.19
1 char * ctermid (char *s) {
2 static char name[L_ctermid];
3 if (s == NULL)
4 s = name;
5 return strcpy (s, "/dev/tty");
6 }

Listing 2: ctermid compiled with -O0
1 40052e: mov %rsp,%rbp
2 400531: mov %rdi,-0x8(%rbp)
3 /* if (s == NULL) */
4 400535: cmpq $0x0,-0x8(%rbp)
5 40053a: jne 400544 <myctermid+0x17>
6 /* s = name */
7 40053c: movq $0x601041,-0x8(%rbp)
8 400543: /* move s to %rax */
9 400544: mov -0x8(%rbp),%rax
10 /* %rdx = "/dev/tty" */
11 400548: movabs $0x7974742f7665642f,%rdx
12 40054f: /* move "/dev/tty" to *s */
13 400552: mov %rdx,(%rax)
14 /* null-terminate *s */
15 400555: movb $0x0,0x8(%rax)
16 400559: pop %rbp
17 40055a: retq

However, traditional OBC remains susceptible to variations in com-
pilers and compiler optimizations [31]. This susceptibility stems
from traditional OBC’s reliance on only conditional branch in-
structions. For example, consider the source code for a C func-
tion ctermid, shown in Listing 1. ctermid [10] returns a string
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which, when used as a pathname, refers to the controlling termi-
nal for the current process. Listing 2 presents the disassembly of
ctermid when compiled with the GNU C compiler with opti-
mizations turned off (-O0). Listing 2 contains a jne instruction
at instruction address 0x40053a. This conditional branch corre-
sponds with the condition on line 3 of Listing 1. Traditional OBC
that relies on only conditional branches would measure coverage
based onwhether both sides of this jne instruction are covered. For
this unoptimized compilation, the results match source-level branch
coverage. However, consider the disassembly shown in Listing 3.

Listing 3: ctermid compiled with -O1
1 /* %rax = s */
2 40052d: mov %rdi,%rax
3 /* ZF = (s == NULL) */
4 400530: test %rdi,%rdi
5 /* move name to %edx */
6 400533: mov $0x601041,%edx
7 /* %rax = (ZF == 1) ? %rdx : %rax */
8 400538: cmove %rdx,%rax
9 /* %rcx = "/dev/tty" */
10 40053c: movabs $0x7974742f7665642f,%rcx
11 400543: /* *%rax = "/dev/tty" */
12 400546: mov %rcx,(%rax)
13 /* null-terminate *%rax */
14 400549: movb $0x0,0x8(%rax)
15 40054d: retq

Listing 3 shows disassembly for ctermid when compiled with
the GNU C compiler with the -O1 option. It should be noted that
there are no conditional branch instructions in Listing 3. In the -O1
case, the compiler is able to translate the source-level condition on
line 3 of Listing 1 using a cmove instruction. Conditional move
instructions (commonly referred to as CMOVcc) [15] check the state
of one or more status flags in the EFLAGS register and perform
the move operation if the flags are in the specified state. When
ctermid is compiled with -O1, traditional OBC fails to cover the
source-level condition, manifested using the cmove instruction
at the binary level. This lack of coverage provides motivation for
updating the definition of traditional OBC.

One way to improve the definition of OBC is to expand the set
of instructions that need to be covered. This can be done by going
through instruction set architecture manuals. However there are
a wide variety of instruction set architectures and variants in use,
especially in embedded systems, and instruction sets are large. For
instance, the Intel architecture manual is 4700 pages long and the
ARM architecture manual is more than 6300 pages long. For ev-
ery improved OBC definition, manually scanning the architecture
manuals to find the set of instructions that satisfy the improved
OBC definition would require hundreds of person-hours. It also
increases the chance of human errors, either including unnecessary
instructions in the updated OBC definition, or missing required
instructions. These reasons motivate an automated approach to
identifying instructions that satisfy a given OBC definition. A start-
ing point might be to collect instructions from a sample of binaries
compiled for a target architecture, but this could miss less common
instructions that happened not to appear in the sample. To ensure
the entire instruction space is examined, we also want to automate
the enumeration of instructions. We present such a principled ex-
ploration of X86 and ARM instructions, followed by classification
of each discovered valid instruction in Section 2. Section 3 describes
related literature, and Section 4 concludes.

2 ENUMERATION AND CLASSIFICATION
As shown in Section 1, OBC based on conditional jumps alone is
susceptible to compiler optimization as the branches in the source
code may be translated to other conditional instructions. Hence,
more robust definitions of OBC are needed. Different definitions of
OBC can be created based on the kind of coverage of the machine
state required. For example, one definition of OBC could include all
instructions that read from the EFLAGS register. Another definition
could include all instructions that write to the EFLAGS register.
Choosing a more robust OBC definition is a separate research prob-
lem that has recently been investigated by Byun et al. [4]. For our
evaluation, we use Byun et al.’s definition named Flag-Use Coverage.
Flag-Use Coverage is defined as coverage of conditional behav-
iors of instructions that either (1) read non-system flags from the
EFLAGS register, or (2) are conditional branch instructions.

Flag-Use Coverage includes predicated instructions such as
cmovne, setne, and conditional branch instructions like jne.
We identified X86 and ARM flag-use instructions in three steps.
First, we obtained a list of instruction byte sequences for every
valid X86 and ARM instruction. Next, we performed automated
classification of the behavior of every instruction byte sequence as
exhibiting conditional behavior or not, and recorded the source of
conditional behavior. Finally, we manually verified the classification
output against the Intel Architecture manual [15], and the ARM
manual [1], and obtained a list of instruction mnemonics along
with the source of each instruction’s conditional behavior.

2.1 Identifying X86 Flag-Use Instructions
Instruction Set Exploration. We obtained instruction byte se-

quences by exploring the X86 instruction set, as performed by the
PokeEMU tool described by Martignoni et al. [21]. The PokeEMU
framework generates high-coverage test cases for an emulator and
allows those tests to be run on a different emulator or a real machine
for comparison. Martignoni et al. used the PokeEMU framework to
compare a low fidelity emulator (QEMU [26]) with a high fidelity
emulator (Bochs [17]). Similar to PokeEMU, we performed an ex-
ploration of the X86 instruction set by symbolically executing the
instruction decoder of Bochs with the first three bytes of the instruc-
tion byte sequence set to be symbolic. The symbolic execution was
performed using FuzzBALL [8], a binary symbolic execution tool for
machine code. This gave us a list of 76510 candidate byte sequences
which are valid instructions as per the Bochs instruction decoder.
While some instruction prefixes (such as rep) allow further explo-
ration of conditional behavior in instructions, other prefixes (such
as lock and gs) do not. Using the lock prefix does not cause any
change in instruction behavior in a single-threaded context. Using
segment override prefixes requires segment registers to be set up
correctly before execution of the instruction without giving the
instruction any additional conditional behavior. We chose to ignore
a total of seven instruction prefixes (lock, cs, ss, ds, es, fs, gs).
For every byte sequence, we first checked if its disassembled string
representation contained any of these seven prefixes as a substring,
and removed corresponding prefix bytes from the instruction byte
sequence, if it did. Removal of the prefix byte(s) could cause a byte
sequence to become equal to a previously decoded byte sequence.
We saved byte sequences into a hashtable, and discarded a byte
sequence if it was decoded previously. This reduced our 76510 byte
sequences to 45311 unique byte sequences.
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Instruction Classification. We independently classified each byte
sequence using an instruction decoder using XED [16] and using
FuzzBALL and merged the two lists of instruction mnemonics into
one by consulting the Intel manual.

XED-based classification: The X86 Encoder Decoder (XED) is
a software library for encoding and decoding X86 32 and 64-bit
instructions. It is used by Pin [20] and by several other research
and commercial projects. One of the outputs of the XED-based
instruction decoder is the set of flags read by an instruction. We
used this output to check whether an instruction byte sequence
execution led to a read of the EFLAGS register. 8841 of the 45311
instruction byte sequences read from the EFLAGS register, which
resulted in a list of 104 unique instruction mnemonics.

FuzzBALL-based classification: FuzzBALL has the ability to
execute a single instruction byte sequence (in a FuzzBALL program
named test_insn). It decodes and executes a single instruction
and can be configured to print a simplified Vine IR [30] translation.
We extended FuzzBALL’s Vine IR translation to identify Vine IR
statements that contain either a conditional jump, or a read from
one of the six flag register bits (OF, SF, ZF, AF, PF, CF) in the
right-hand side Vine IR expression of an assignment statement, or
an ITE (if-then-else) ternary operator. Instruction byte sequences,
whose Vine IR translation satisfied our checks, were classified as
having conditional behavior. Of the 45311 unique byte sequences,
10106 were classified as having conditional behavior, which gave
us a list of 178 unique instruction mnemonics. Our Vine IR-based
classification was useful in detecting instructions such as jcxz,
which jumps to the target address if the CX register is set to 0. We
ran both classifications on a machine running Ubuntu 14.04 with
Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz and 16 GB RAM. Our
XED-based classification took about 4 minutes, and our FuzzBALL-
based classification took about 20 minutes.

Combination with Intel Manual. We took a union of the two
lists of instruction mnemonics obtained from XED-instruction
decoding-based classification and Fuzzball’s Vine IR-based clas-
sification. We examined the description of each mnemonic in the
Intel manual [15], checking if any instruction behavior reads the
non-system flags from the EFLAGS register, or is a conditional
branch. Any flag bit other than CF, OF, PF, SF, AF, ZF was con-
sidered a system flag. This final combination gave us a list of
104 instruction mnemonics. Instructions were excluded in this
final combination if they read from a system flag, or had their
Vine IR translation use a ITE (if-then-else) expression, but were
not conditional branch instructions. We filtered this list based on
which of these instruction mnemonics are most commonly used
in X86 binaries. This step gave us instructions belonging to the
conditional move (CMOVcc), set-byte-on-condition (SETcc), con-
ditional jumps (Jcc) instruction categories, along with the add
with carry (ADC) and subtract with borrow (SBB) instructions. We
present the list of commonly used instruction mnemonics in Fig-
ure 1. Another set of instructions, which read the direction flag (DF)
(use of REPE/REPZ/REPNE/REPNZ causes read of RCX and ZF,
use of REP causes read of RCX) is: (1) cmps, cmpsb, cmpsw,
cmpsd, cmpsq (2) ins, insb, insw, insd (3) outs, outsb,
outsw, outsd (4) lods, lodsb, lodsw, lodsd, lodsq (5)
movs, movsb, movsw, movsd, movsq (6) scas, scasb, scasw,
scasd, scasq (7) stos, stosb, stosw, stosd, stosq. Be-
cause these instructions create a loop with the loop count set in

SETcc 
setb, setbe, setl, setle, 
setnb, setnbe, setnl, 
setnle, setno, setnp, 

setns, setnz, seto, setp, 
sets, setz 

CMOVcc 
cmova, cmovc, cmovg, cmovl, 
cmovna, cmovnc, cmovng, 
cmovnl, cmovno, cmovnp, 
cmovns, cmovnz, cmovo, cmovp, 
cmovs, cmovz, fcmovb, fcmovbe, 
fcmove, fcmovnb, fcmovnbe, 
fcmovne, fcmovnu, fcmovu 

Jcc 
jb, jbe, jl, jle, jnb, jnbe, jnl, 
jnle, jno, jnp, jns, jnz, jo, jp, 
js, jz, jcxz, jecxz, jrcxz 

LOOPcc 
loop, loope, loopne aaa, aas, daa, das, adc, rcl, rcr, 

salc, sbb 

Tradi&onal	OBC	

Flag-Use	OBC	

Figure 1: Commonly-used X86 Flag-Use instructions

RCX, they come close to being classified as flag-use instructions.
We further validated instructions that read the EFLAGS register
with Table A-2 in Appendix A of Volume 1 of the Intel manual [14].

2.2 Identifying ARM Flag-Use Instructions
Instruction Set Exploration. We discovered flag-use ARM instruc-

tions by symbolically executing the instruction decoder in the VEX
library of Valgrind [25]. Valgrind is a heavyweight dynamic binary
instrumentation framework with support for the ARM platform.
VEX is a part of Valgrind’s core. It is responsible for dynamic trans-
lation of machine code to VEX IR. The first step in this dynamic
translation is disassembly of machine instructions to VEX IR op-
codes. Each ARM instruction consists of 4 bytes and is given as
input to the instruction decoder. We used FuzzBALL to replace this
4-byte input, corresponding to the instruction byte sequence, by
4 symbolic bytes. We symbolically executed the VEX instruction
decoder to discover 4306 unique ARM instruction byte sequences.

Instruction Classification. We ran a FuzzBALL-based instruction
classification, similar to that done for X86 instructions. We made
a small change to make FuzzBALL track reads from the negative
flag (NF), the zero flag (ZF), the carry flag (CF), and the overflow
flag (OF). Running this classification over 4306 ARM instruction
byte sequences takes about 3.5 minutes. This classification produces
2612 instruction byte sequences as satisfying the flag-use coverage
definition. Refining this list to unique instruction mnemonics gives
us 309 instruction mnemonics. Discarding the two-letter suffixes,
which indicate condition code values, gives us 70 unique instruction
mnemonics. A majority of these allow the instruction execution to
be predicated on the condition code. For these instruction mnemon-
ics, the instruction is converted into a no-op if the condition code
is not satisfied. Of the remaining instruction mnemonics, we find
the following mnemonics are not conditional branches but satisfy
the flag-use definition: adc, adcs, rsc, rscs, sbc, sbcs. We
verified the correctness of our instruction classification by checking
the ARM manual.

3 RELATEDWORK
The original motivation for achieving binary-level coverage comes
from the avionics standard DO-178B [29]. The DO-248B [27] stan-
dard discusses substituting source-level coverage (e.g. MC/DC [5])
with object-level coverage. Recovering source-level like conditions
from binary code [6] is a related research direction that can help
bridge the gap between MC/DC and OBC.

A motivating factor for improving the traditional definition of
OBC is its susceptibility to compiler optimizations. Making sym-
bolic execution, mutation testing, and error resilience of software

3



TECPS’17, July 13, 2017, Santa Barbara, CA, USA V. Sharma, T. Byun, S. McCamant, S. Rayadurgam, and M.P.E. Heimdahl

applications not be susceptible to compiler optimizations are areas
of research that have been investigated [7, 11, 24]. Such related
techniques can be applied towards creating better OBC definitions.

Instruction set exploration has been the subject of research in
the emulator testing community [21–23]. Martignoni et al. [21]
describe path exploration lifting, a technique to generate test cases
on a high fidelity emulator, and to run them on a low fidelity emu-
lator. Martignoni et al. use FuzzBALL to symbolically execute the
instruction decoder of Bochs [17].

Automatic synthesis of symbolic representations of instructions
for a processor instruction set is another related area of research.
Godefroid et al. [9], and more recently Heule et al. [12], synthesize
bit-vector circuits for X86 instructions and discover inconsistencies
across X86 processors and errors in the Intel manual [15]. Such
inconsistencies motivate the need for our automated instruction
classification, assimilated from multiple independent sources.

Our instruction classification implementation can be extended
to become a machine code analysis tool that can be retargeted for
multiple platforms. Translating instructions from different archi-
tectures to a Universal Assembly Language [18] would be a starting
point for such an extension.

4 CONCLUSION
Object Branch Coverage (OBC) is an important coverage criterion
to measure the efficacy of test suites in the absence of source code.
With an increasing prevalence of third-party components, and an
emphasis on binary-level coverage in aeronatics standards [27],
better OBC measurement directly impacts testing. While creating
newer and more robust definitions of OBC is important, identifying
which instructions should be included in each definition is equally
important. Manually reading architecture manuals is laborious, and
prone to picking up errors in the manuals [9]. Given a definition of
OBC, we present a technique for automatically identifying which
X86 and ARM architecture instructions should be included when
measuring coverage for the new definition. We present a princi-
pled way to discover all possible valid X86 and ARM instruction
byte sequences and classify them automatically in a few minutes.
Our automated instruction identification promotes development of
newer and more robust OBC definitions, which are less sensitive to
compiler variations and have better fault-finding efficacy.
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