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ABSTRACT
Complex computer-controlled systems are commonly constructed
in a middle-out fashion where existing subsystems and available
components have a significant influence on system architecture
and drive design decisions. During system design, the architect
must verify that the components, put together as specified in the ar-
chitecture, will achieve the desired system behavior. This typically
leads to further design modifications or adjustments to require-
ments triggering another iteration of the design-verify cycle. For
software components that are acquired from third-parties, often
the only definitive source of information about the component’s
system-relevant behavior – its contract – is its object code. We
posit that existing static and dynamic analysis techniques can be
used to discover contracts that can help the system designer and
specifically discuss how symbolic execution of object code may be
particularly well-suited for this purpose.
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1 INTRODUCTION
Modern computer-controlled systems are often constructed in a
middle-out fashion, where available components and existing sub-
systems often drive system architecture and design to an equal
extent as the overall system requirements. Construction of such
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systems is largely an integration effort focused on putting together
available components procured from third-parties to realize system
functionality. Software for such components may frequently be
supplied only in the form of object-code binaries, accompanied by
verification and validation reports providing some evidence of the
component meeting its specified claims and intended purposes. It is,
however, the system integrator’s responsibility to ensure that the
component is an appropriate fit for the system context in which it is
to be used. While the supplied specifications about the component
may be used as a basis to design the system, the integrator must go
beyond simply relying on those claims and perform independent
assessment of the component in the context of the particular system
being constructed. The impact of the component’s use on system
characteristics such as functionality, safety, security, maintainability
and performance is typically assessed by the system integrator.

In this setting, techniques for extracting properties of the compo-
nent software from its object-code that are relevant to the system
context in which it is to be used would be of significant help to
system integrators. We refer to such context-specific properties of
the component, as the component’s contract [2]. The specifications
that are provided with the component by its vendor, while useful
for this purpose, may neither be necessary nor sufficient for the
particular system being built. For example, a temperature sensor
that provides readings with no more that 0.1% error in the range
of 0-100 ◦C may be more accurate than needed but specified range
may be too narrow for use in a typical weather station for homes
in the temperate zone. If the sensor component can be analyzed
to determine its operating range and error characteristics, its suit-
ability for a particular application can be reliably determined. In
the case of software components, if the binary code can be an-
alyzed to extract relevant contracts, those can then be used to
reason about system behavior, e.g., in a compositional fashion as
in Assume-Guarantee Reasoning approaches [3]. In this paper, we
discuss symbolic execution-based object-code analysis techniques
to extract such component contracts.

2 MOTIVATION AND BACKGROUND
Modern computer-controlled systems are often complex and are
built by decomposing them into subsystems often created by inde-
pendent teams or procured from external suppliers. The require-
ments on the system as a whole are similarly decomposed and
allocated to the subsystems. When the subsystems themselves are
sufficiently complex, they are further decomposed, leading to an
architectural view of the system as a hierarchical organization of in-
terconnected components. This decomposition induces an analysis
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effort to ascertain whether the requirements allocated to the com-
ponents are sufficient to establish the system-level requirements.

This hierarchical decomposition and the components’ require-
ments do not, however, evolve in a top-down fashion. Existing
subsystems and available components significantly influence archi-
tectural design decisions and, in turn, requirements allocation. The
overall system requirements provide the context for construction
around the existing parts, which provides a basis for system de-
sign, in a process that is aptly described as middle-out development.
What appears as requirements at one layer of the system architec-
ture, would seem to be a design detail from the vantage point of
a higher layer in the same architecture [11]. Middle-out develop-
ment is, in essence, a process to reconcile the desired “whats” and
the available “hows”. Important to this process is not only what a
component is expected to provide—the guarantees—but also what
a component expects to be true of its context within the system—
the assumptions. Whether done formally through compositional
verification or informally through human reasoning, this process
will yield requirements (what guarantees are sought under what
given assumptions) that will serve as a basis for contracting out
their development or procuring them from third-parties.

To convincingly argue that a system thus built serves its pur-
pose, Hammond et al. developed the notion of a Satisfaction Ar-
gument [6], based on Jackson and Zave’s World and the Machine
model [7]. A satisfaction argument lays out why one should be-
lieve that system requirements hold, using a rigorous argument
based on the specifications of the system guarantees as well as the
assumptions about the system’s environment and domain. In the
ideal top-down view of development, this would be performed by
the system integrator before the subsystems are contracted out
for development or procured from third parties. In practice, this
is rarely, if ever, the case. The requirements for a subsystem are
typically expressed using a combination of artifacts—natural lan-
guage statements, partial models in notations such as Simulink and
Stateflow, prototype code, and at times through implicit appeal to
domain and organizational knowledge—which do not easily lend
themselves to a rigorous verification of the delivered system. Thus,
instead of expecting a formal contract specified a priori, we be-
lieve that it is necessary and feasible to “discover” those from the
artifacts a posteriori. A formal satisfaction argument can then be
constructed to reason compositionally over the system architecture
to determine if the contracts for the sub-systems, working together
as defined in the architecture, are sufficient to establish the system’s
contract (system-level requirements).

Of particular interest, in this paper, are subsystems that are soft-
ware components supplied by third-parties in object-code format.
In this setting, techniques for extracting properties of the compo-
nent software from its object-code that are relevant to the system
context in which it is to be used would be of significant help to
system integrators. A range of existing techniques for analyzing
object-code, both statically and dynamically, can be applied for this
purpose. Specifically, symbolic execution of binary object-code can
be used to discover contracts from software components and to
construct satisfaction arguments for the system in which the com-
ponent is used. In cases where the software component matches
most but not all of the contract, symbolic execution-based contract
discovery can be combined with other techniques to recommend
changes to the contract. This paper discusses known applications
of symbolic execution which provide confidence that this is indeed

feasible and discusses desirable characteristics of such techniques
for use as a contract discovery tool. While we do not describe the
implementation of a contract discovery tool, this paper provides
a foundation for developers attempting to do contract discovery
using symbolic execution in the future.

3 APPROACH
In this section we will discuss why binary symbolic execution is an
appealing approach for middle-out contract discovery, and compare
it to other possible static or dynamic approaches. Next we discuss
the previously-studied problem of adaptor synthesis, for which
binary symbolic execution has proved effective, and then discuss
the problem of automatically suggesting changes to a contract.

3.1 Binary Symbolic Execution
There are several reasons why symbolic execution [8] is well suited
for contract discovery and comparison problems. Symbolic execu-
tion can operate well even on unstructured code, so it can apply
directly to off-the-shelf code available only in object code form.
But perhaps the most basic advantage is that symbolic execution
already works by translating the behavior of program execution
paths into precise formulas, so it is a convenient starting point
for other analyses that also reason about program semantics in
this way. Contracts are also typically expressed as formulas for
component outputs in terms of component inputs, so symbolically
executing a component is a convenient first step that expresses
its behavior as formulas so that they can be compared with the
expectations embedded in a contract.

While symbolic execution produces formulas, its results typi-
cally differ from contracts because the formulas are derived from
code execution and so describe the implementation’s behavior in
precise detail. The formulas may be split into many cases if code has
complex control-flow structure, and the formula derived from each
path will also reflect the exact operations the code performed, per-
haps with some syntactic simplification. By contrast, our goal for a
contract is a simpler formula which captures the most important
aspects of a component’s behavior but abstracts over many imple-
mentation details. The formulas derived by symbolic execution will
typically be too complex to ask developers to read, but if the com-
ponent matches its contract, the component’s behavior, as explored
by symbolic execution, should logically imply the contract; in other
words, the contract should be a weakening of the component’s
full behavior. Thus we can use the results of symbolic execution
for automated comparison, but when proposing contract changes
we should use a more limited grammar of formulas to control the
complexity of the contracts that developers reason about.

3.2 Other Static/Dynamic Analyses
Some of the other benefits of symbolic execution for binary con-
tract discovery can be summarized in comparison to other purely
dynamic or static approaches.

Symbolic execution of a full component in its concrete execution
context shares with purely dynamic analysis the advantage of re-
flecting the component’s behavior precisely, without abstraction: it
need not overapproximate the code’s behavior, which might cause
important behavioral properties to be lost. For such precise analy-
ses, the key challenge is getting sufficient coverage of component
behavior. Behavioral coverage is a weakness of purely dynamic
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Figure 1: Middle-out Approach

techniques, such as those based on a user-supplied set of test cases,
because they cannot exclude the possibility that new behaviors
might occur on untested execution paths. Behavioral coverage can
be a challenge for symbolic execution as well: if a component has
many possible execution paths, it may take a long time to explore
them all. But a single symbolic execution path can cover the behav-
ior of a number of concrete test cases, and when uncovered paths
remain, the branch conditions produced by symbolic execution
provide a logical characterization of the untested inputs.

Because it is desirable to have complete behavioral coverage
when reasoning about high-assurance systems, it is natural to con-
sider sound static analyses that can provide such a coverage guar-
antee in a limited analysis run time. Unfortunately, sound static
analysis of unannotated binaries is challenging because of their
lack of structural information, which makes it difficult to build tools
with such an approach. The two key challenges are the unstruc-
tured nature of control flow and memory accesses when analyzing
a binary. Binary level indirect jumps and indirect memory accesses
take an arbitrary machine word as their addresses, so considered
in isolation, an indirect jump might transfer control to any code
in a program, and an indirect memory access might read or write
from any data structure. The analogous constructs in source-level
languages, like function and data pointers, are constrained by the
source-level type system, but these types are erased in the transla-
tion to binary code and so cannot be relied upon for analysis. Any
sound analysis of binaries for another purpose, such as contract dis-
covery, must perform a sound control-flow and data pointer analysis
as a prerequisite; note also that the control and pointer analysis are
intertwined when code pointers are stored in dynamically allocated
memory. These problems are not fundamentally unsolvable, but
they are a challenging obstacle especially if a scalable analysis is re-
quired. In particular there is a shortage of sound and scalable binary
static analysis frameworks that are freely available for research.

3.3 Adaptor Synthesis
An example from previous work of an application of binary sym-
bolic execution for reasoning about component behavior is Sharma
et al.’s adaptor synthesis [9]. Adaptor synthesis reasons about the

behavior of two components using a counter-example guided syn-
thesis loop to determine if one can be wrapped to serve as a re-
placement for the other. Specifically, adaptor synthesis finds the
correct adaptor that can adapt the interface of a function, f2, to
the interface of a different function, f1, such that the adapted f2
serves as a replacement to f1. This relationship is represented as
f1 ← f2. Adaptor synthesis can be applied for discovering the
contract of a binary function, f1, by finding another function, f2,
that is adaptably equivalent to f1. If a contract is available or can
be written for f2, then a contract can be written for adapted f2
because an adaptor only performs interface-level changes such as
argument substitution and type conversion. Because adaptor syn-
thesis finds f2 to be adaptably equivalent to f1, the contract for f2
must be adaptably equivalent to f1 as well. Thus, adaptor synthesis
allows us to discover the contract for a binary function f1 by using
another function, f2, for which a contract is available. Sharma et
al.’s adaptor synthesis approach uses binary symbolic execution for
both checking the equivalence of functions and for synthesizing
adaptors. Though Sharma et al. only consider adaptors between
two implementations, the same approach can be used to adapt an
implementation to match a contract.

1 int isalpha_component(int c) {
2 return table[c] & 1024;
3 }
4 int adapted_isalpha(int c) {
5 return (isalpha_component(c) != 0) ? 1 : 0;
6 }

Listing 1: Glibc implementation of the isalpha predicate
and a wrapper around the glibc implementation that is
equivalent to the specification in Listing 2

As a simple but concrete example, consider the source code for an
isalpha_component shown in Listing 1. The isalpha_component
(which is same as the function glibc_isalpha function used by
Sharma et al.) checks a bitmask in a previously populated table
array to see if the bit at position 10 is set. If this bit is set, it signals
that the character argument is alphabetic. If this isalpha predicate
is satisfied, it returns a value of 1024, else it returns 0. The return
value of 1024 satisfies the loose contract from the C standard that a
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non-zero return value be returned if the argument is alphabetic. The
specification in Listing 2 is a stronger one that many programmers
would think of first, where a true result is represented by the integer
1. In order for isalpha_component to match the specification in
Listing 2, a return value of 1024 returned by isalpha_component
must be changed to 1. The adapted_isalpha function makes this
possible by adapting the return value of isalpha_component. (As-
tute readers may notice another mismatch between this component
and contract, which we will address below.)

1 (declare-fun c () (_ BitVec 32))
2 (declare-fun ret () (_ BitVec 32))
3 (assert
4 (= ret
5 (ite
6 (or (and (bvuge c #x00000041)
7 (bvule c #x0000005a))
8 (and (bvuge c #x00000061)
9 (bvule c #x0000007a)))
10 #x00000001 #x00000000)))

Listing 2: isalpha predicate in SMT-LIB notation

3.4 Recommending Contract Changes
If the behavior of a binary component, for instance as discovered us-
ing symbolic execution, matches the component contract assumed
in the system level design, then the component and system are
compatible without further changes. But when the component and
the system architecture are developed independently, we expect it
will be more common that initially the implementation and contract
will not match. We envision that an automated system will assist
developers in this situation by recommending possible changes to
the component contract that would resolve the incompatibility.

One common situation will be that the binary component re-
quires a stronger precondition that was not mentioned in the ex-
isting architecture. For instance, returning to the simple isalpha
example introduced above in Listing 1, suppose that the table-based
glibc implementation is to be used in a larger system, and the
existing component contract does not provide any range limitation
on the argument c. The implementation therefore does not obey
the contract: values of c that are too large or small will cause it
to give meaningless results, or even crash. But analyzing the re-
lationship between the component and the contract, we imagine
that a tool may be able to suggest that if the precondition on c is
strengthened to 0 ≤ c ≤ 127, the component would satisfy this
more restrictive contract. It will still be up to the system developer
to determine whether this change is consistent with the plan for
the rest of the architecture, and it may need changes to contracts
of other components or of the system as a whole. For instance, if
the component was intended to operate only on ASCII text, the
isalpha component is suitable, but the character set requirement
needs to be propagated to other parts of the system that operate
on text. Or, if the system developer decides that the system should
support Unicode, the component will need a more complex adaptor
or may not be usable at all.

One approach to determining a recommended preconditionweak-
ening is to treat the task as a formula synthesis problem: the goal
is to find a simple formula that, among possible inputs to the com-
ponent, distinguishes inputs for which the component’s output

matches the contract postconditions from inputs that lead to in-
correct outputs. A syntax-guided approach is natural because sim-
ple and human-comprehensible predicates are preferred, and a
counterexample-guided algorithm can be used by selecting a repre-
sentative set of component inputs that should satisfy or not satisfy
the synthesized precondition. As an optimization, one can start
by proposing conditions using a fast fixed-grammar tool such as
Daikon [5] (in Daikon terminology, a division of samples is called
a “splitting condition” [4]). If no suitable condition lies in Daikon’s
grammar, the analysis can switch to a more expensive synthesis
approach that supports an arbitrary grammar [1, 10].

4 CONCLUSION
Complex systems are often built using binary-only black-box com-
ponents, so the ability to discover or refine contracts for such com-
ponents will be important to facilitate assurance in these large
composed systems. Specifically, in the context of middle-out de-
velopment, we have identified that a key need is to adjust an in-
development system architecture to accommodate a third-party
component. We propose using symbolic execution and synthesis
to suggest modifications to a component contract to match a bi-
nary implementation; given other recent successes in the use of
binary symbolic execution, we believe this approach holds signifi-
cant promise. This short paper has only sketched the outlines of this
approach; we hope this will be just the start of a research program
that leads to this promising capability becoming a practical reality.
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