
An Empirical Study on the Effectiveness of Time-Aware
Test Case Prioritization Techniques∗

Dongjiang You1,2, Zhenyu Chen1,2,∗, Baowen Xu1, Bin Luo1,2 and Chen Zhang1,2

1State Key Laboratory for Novel Software Technology, Nanjing University, China
2Software Institute, Nanjing University, China

∗zychen@software.nju.edu.cn

ABSTRACT
Regression testing is often performed with a time budget
and it does not allow executing all test cases. Test case
prioritization techniques re-order test cases to increase the
rate of fault detection. Several time-aware test case prior-
itization techniques have been proposed to satisfy a time
budget. Since it is difficult to collect the time cost of each
test case in some cases, a natural question is whether it is
worth using such information when prioritizing test cases.
In this paper, two most popular criteria: statement cover-
age and fault detection are considered for time-aware test
case prioritization. We investigate whether the time cost of
each test case affects the effectiveness of prioritization tech-
niques, i.e. the rate of statement coverage and the rate of
fault detection. Our empirical study shows that: although
the techniques considering the time cost of each test case are
slightly better than the techniques not considering such in-
formation in some cases, they have no significant difference
in most cases.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

General Terms
Experimentation, Verification.

Keywords
Test case prioritization, time, statement coverage, fault de-
tection.

∗The work described in this article was partially sup-
ported by the National Natural Science Foundation of China
(90818027, 60803007, 61003024, 61011130171), the National
High Technology Research and Development Program of
China (863 Program: 2009AA01Z147), the Major State Ba-
sic Research Development Program of China (973 Program:
2009CB320703).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’11 March 21-25, 2011, TaiChung, Taiwan.
Copyright 2011 ACM 978-1-4503-0113-8/11/03 ...$10.00.

1. INTRODUCTION
Regression testing is used to validate modified software

and confirm that no new fault has been introduced into pre-
viously verified code. Typically, regression testing involves
executing a large number of test cases, and it is very time-
consuming. Therefore, regression testing is often performed
with a time budget and it does not allow executing all test
cases.

Test case prioritization problem is introduced and defined
to re-order test cases such that more faults are revealed as
early as possible [1]. Prioritization techniques are based on
different coverage criteria such as statement coverage, block
coverage, probability of exposing faults, etc. [1, 2, 3].

The time-aware test case prioritization problem was intro-
duced by Walcott et al. in [4]. They proposed a test case pri-
oritization technique that used a genetic algorithm in light of
testing time constraints. Zhang et al. proposed time-aware
test case prioritization techniques using integer linear pro-
gramming [5]. A suitable subset of test cases can be selected
firstly and then these test cases were re-ordered. Alspaugh
et al. used knapsack solvers to prioritize test cases, such
that a test suite was re-ordered rapidly to cover the test re-
quirements and it always terminated within a specified time
limit [6]. Some newly proposed test case prioritization tech-
niques may be applied to time-aware circumstances. Ma et
al. proposed test case prioritization techniques based on the
analysis of software structure [7]. Yoo et al. used cluster-
ing techniques to group test cases to achieve effective and
scalable prioritization [8]. Zhang et al. proposed test case
prioritization techniques based on varying testing require-
ment priorities and test case costs [9].

The time budget is a practical requirement in regression
testing. In [10, 11], Hyunsook Do et al. conducted a se-
ries of controlled experiments to study the effects of time
constraints on test case prioritization. Their studies showed
that the time budgets could impact the costs and benefits of
test case prioritization techniques. Although the effects of
regression testing time constraints have been studies deeply,
the effects of time cost of each test case have not been stud-
ied. In [10, 11], the test cases were assumed to have the
same time cost.

Furthermore, whether the time cost of each test case is a
key factor is a non-trivial problem. First, a test case which
costs long time often covers more parts of program, then it
may have strong fault detection capability. Second, more
test cases can be executed within a time limit if each test
case costs short time. Third, it always needs extra expense
to collect the time cost information of each test case. It

1451

Table 1: Subject Programs

Subject
Lines

of code

Test
pool
size

Number
of

versions

Average
small test
suite size

Average
large test
suite size

Total test
case

execution
time (s)

Average
test case
execution
time (s)

Longest
test case
execution
time (s)

Shortest
test case
execution
time (s)

print tokens 726 4130 7 16 318 7.56268 0.00183 0.01798 0.00167
print tokens2 570 4115 10 11 389 7.98576 0.00194 0.03678 0.00175

replace 564 5542 31 18 397 11.01607 0.00199 0.30888 0.00160
schedule 412 2650 9 8 224 5.26270 0.00199 0.01482 0.00179
schedule2 374 2710 9 7 233 5.44754 0.00201 0.00350 0.00175

tcas 173 1608 41 5 83 2.97943 0.00185 0.00648 0.00166
tot info 565 1052 23 7 198 2.19234 0.00208 0.00306 0.00180
space 9564 13585 34 155 4362 33.05996 0.00243 0.03892 0.00186

is difficult to collect the accurate time cost information in
some cases, such as manual testing. Therefore, it motivates
us to investigate whether the time cost of each test case is a
key factor that impacts the effectiveness of time-aware test
case prioritization techniques.

This paper provides an empirical study to investigate the
time-aware test case prioritization techniques. In summary,
our study makes the following main contributions: although
the techniques considering the time cost of each test case
are slightly better than the techniques not considering such
information under some circumstances, they generally have
no significant difference both for the purpose of statement
coverage and fault detection. That is to say, it is not worth
considering the time cost of each test case for time-aware
test case prioritization in most cases. For this result, we
suggest using the techniques that consider only coverage or
assuming all the test cases have the same time cost when
prioritizing test cases.

The rest of this paper is organized as follows. Section
2 introduces the time-aware test case prioritization prob-
lem. Section 3 describes our experiment. Section 4 reports
our experiment results and analysis. Section 5 analyzes the
threats to validity. Section 6 presents the conclusions and
future work.

2. TIME-AWARE TEST CASE
PRIORITIZATION

According to [4, 5], the time-aware test case prioritization
problem is defined as follows.

Time-Aware Test Case Prioritization Problem:
Given: A test suite T and the time budget timemax, the

permutations of all subsets of T is denoted by PT ; two func-
tions from PT to the real numbers, f and time.

Problem: Find T ′ ∈ PT and time(T ′) ≤ timemax, such
that

(∀T ′′)(T ′′ ∈ PT)(time(T ′′) ≤ timemax)[f(T ′) ≥ f(T ′′)]
In this problem, PT represents the set of all possible or-

derings of test cases in the subsets of T . The function time
measures the execution time of each PT , and we also use
time(t) to represent the execution time of test case t for
simplicity.

The function f measures the fitness value of each PT .
The fitness function is often used as an evaluation metric.
A popular metric called APFD, was introduced by Rother-
mel et al. to evaluate the rate of entity coverage and fault
detection of a test suite [1, 2]. Walcott et al. applied a pe-

nalize measure in APFD [4]. Elbaum et al. proposed a new
evaluation metric called APFDc to consider time cost and
fault severity into the evaluation of prioritized test suites
[12]. In this paper, the function f quantifies the rate of
statement coverage and the rate of fault detection of a test
suite, which will be described in detail in section 3.6. With
the function f , the problem requires us to seek for an order-
ing that satisfies the time budget and has the highest fitness
value.

3. EXPERIMENT

3.1 Research Question
We are interested in the following research question:
Both for the purpose of statement coverage and fault de-

tection, is the time cost of each test case a key factor for
time-aware test case prioritization?

3.2 Subject Programs, Test Suites, and
Versions

In order to improve the generality of our results in this
paper and limit the threats to our experiment’s validity, the
following three issues about experimental subjects were con-
sidered.

3.2.1 Subject Programs
We used eight C programs as subjects. Both large pro-

grams and small programs were used in our experiment,
ranging from 374 to 9564 lines of code. All these programs
and their test suites were taken from Software-artifact In-
frastructure Repository (SIR) [13]. Table 1 shows the basic
information of the eight programs.

3.2.2 Test Suites
Both large test suites and small test suites were used in

our experiment. The average size of small test suites ranged
from 5 to 155, and the average size of large test suites ranged
from 83 to 4362. The two groups of test suites were gener-
ated in the following way [13]: in order to generate small test
suites, test cases were randomly selected from the test pool
and added to the test suite as long as they added coverage.
This was repeated until the test suite achieved full branch
coverage. In order to generate large test suites, test cases
were randomly selected from the test pool and added to the
test suite until full branch coverage was achieved. For each
group of test suites, 1000 test suites were made. In order to
reduce the time cost of our experiment, without significant

1452

Table 2: Prioritization Techniques
No. Abbr. Description
1 rand Randomized ordering

2 st-tot
Prioritizing test case on total

statement coverage

3 st-add
Prioritizing test case on additional

statement coverage

4 rt-tot
Prioritizing test case on the ratio of

total statement coverage to time cost

5 rt-add
Prioritizing test case on the ratio of

additional statement coverage to time
cost

6 ILP-tot
Time-aware total statement coverage

prioritization via ILP

7 ILP-add
Time-aware additional statement
coverage prioritization via ILP

loss of generality, we randomly selected 100 test suites for
each group of test suites.

3.2.3 Multi-fault Versions
Our experiment required programs with varying numbers

of faults. We generated these versions in the following way
[2]: each subject program was provided with a correct base
version and multiple single-fault versions. We created multi-
fault versions by combining these single-fault versions. In
order to limit the threats to our experiment’s validity, we
generated the same number of versions for each of the pro-
grams. For each subject program, we created 10 multi-fault
versions, the number of faults contained in each version var-
ied randomly from 1 to the total number of single-fault ver-
sions of that program.

Note the fact that types and locations of faults may affect
the results of our experiment, but this is not the scope of
our discussion. In our experiment, we did not distinguish
different types and locations of faults.

3.3 Test Case Prioritization Techniques
Table 2 shows the seven techniques considered in our ex-

periment.
For all the seven techniques, if the test cases had the same

priority, we prioritized them randomly.
rand was considered as an experimental control. st-tot, st-

add, rt-tot, and rt-add are widely known traditional test case
prioritization techniques. st-tot and st-add are techniques
that only consider statement coverage, rt-tot and rt-add are
techniques that consider both time cost and statement cov-
erage, i.e. the coverage efficiency of test cases.

ILP-tot and ILP-add were proposed by Zhang et al. in
[5], a suitable subset of test cases can be selected firstly us-
ing integer linear programming, and then these selected test
cases were re-ordered using traditional test case prioritiza-
tion techniques.

Among all the seven techniques, four of them (rt-tot, rt-
add, ILP-tot, ILP-add) depend on the time cost information
of each test case; the others (rand, st-tot, st-add) do not
need such information.

In this paper, besides traditional techniques, we also stud-
ied ILP techniques. We did not consider other techniques
such as genetic algorithms and 2-optimal algorithms [4, 14]
because the performances of our selected techniques are bet-

ter than the others in most cases and generally have no sig-
nificant difference [5, 14, 15].

3.4 Time Budgets
We used five time budgets for each subject program: 5%,

25%, 50%, 75%, and 100% of the execution time of the en-
tire test suite. Following [5], we used 5% of the total exe-
cution time to represent a very tight time budget. We also
used 100% of the total execution time, which was the same
as traditional test case prioritization, to represent no time
budget for each subject program.

3.5 Effectiveness Measure
According to the effectiveness measure used in [1, 2, 4, 5,

12], and depending on the research question in this paper,
i.e. both the rate of statement coverage and the rate of fault
detection were studied, two evaluation metrics were used in
this paper, APSCTA and APFDTA.

APSCTA (Average Percentage Statement Coverage, Time-
Aware): This measures the rate at which a prioritized test
suite covers statements.

Consider a prioritized test suite T ′ containing n test cases
that covers m statements. Let TSj be the first test case in
the prioritized order that covers statement j, and ti be the
time cost of test case i. The APSCTA for this order is given
by the following equation:

APSCTA =

∑m
j=1 (

∑n
i=TSj

ti − 1
2
tTSj)∑n

i=1 ti ×m

APFDTA (Average of the Percentage of Faults Detected,
Time-Aware): This measures the rate at which a prioritized
test suite detects faults.

Consider a prioritized test suite T ′ containing n test cases
that detects m faults. Let TFj be the first test case in the
prioritized order that detects fault j, and ti be the time cost
of test case i. The APFDTA for this order is given by the
following equation:

APFDTA =

∑m
j=1 (

∑n
i=TFj

ti − 1
2
tTFj)∑n

i=1 ti ×m

For simplicity, we consider APFDTA as an example in the
following of this section.

Since T ′ is a subset of T , it may contain fewer test cases
than T . Therefore T ′ may not be able to detect all defects.
Based on the penalize measure used in [4], if a fault j cannot
be detected by any test case in T ′, we define

tpenalize = tj+1

Then the part

(

n∑
i=TFj

ti −
1

2
tTFj)

in the APFDTA equation will be calculated as

−1

2
tpenalize

Note that when the time budget is 100%, i.e. the number
of test cases in T ′ equals that in T , tn+1 is a meaningless
value. At this moment, we define

tn+1 =

∑n
i=1 ti

n

1453

This measure would possibly cause a prioritized test suite
that finds few faults to have a negative APFDTA value.
Thus, test suites finding few faults are penalized in this way.

Note the following special case: If the time budget is so
tight that no test case is selected to execute, the value of
n will be 0, and APFDTA will be negative infinity. In
our analysis of results, we removed such meaningless val-
ues. The range of APFDTA is (−∞, 1). The higher the
APFDTA value is, the better the effectiveness of the prior-
itization technique detects faults.

3.6 Information Collected for Coverage and
Execution Time

In our experiment, we used statement coverage as prior-
itization criteria. We removed the statements that could
not be covered by any test case in collection of statement
coverage information.

We used a test coverage tool gcov in Linux to collect the
coverage information of test cases [16]. We developed scripts
to run all the test cases for each subject program and cre-
ated the profiling files of *.gcov format. Then we interpreted
all the profiling files to generate coverage matrix, in which
a column stands for a statement and a row stands for a test
case. If a test case could cover a statement, the correspond-
ing position in the coverage matrix would be marked as 1,
otherwise marked as 0.

In order to generate fault matrix, we ran all test cases on
correct base version and faulty versions. In our experiment,
if the output of a test case Ti for a single-fault version Fj

is different from its output for the correct base version, we
define test case Ti can detect fault Fj . In the fault matrix, a
column stands for a fault and a row stands for a test case. If
a test case could detect a fault, the corresponding position
in the fault matrix would be marked as 1, otherwise marked
as 0.

In order to obtain the execution time of each test case,
we executed the whole test pool and used a tool called time
provided by SIR to record the time cost of each test case. To
ensure the accuracy of the time cost information, each test
pool was executed 10 times and the final test case execution
time was the average over them.

4. RESULTS AND ANALYSIS
Figure 1 shows the APSCTA and APFDTA results of

both large test suite and small test suite on print tokens. In
the line diagram, the X-axis shows the five time budgets, and
the Y-axis shows the APSCTA or APFDTA values. Figure 2
shows the APSCTA and APFDTA results on print tokens at
50% time budget. In the boxplot, the X-axis shows different
techniques, and the Y-axis shows the APSCTA or APFDTA

values. Due to the page limit, we only put figures of the first
subject program here.

Note that when the test suite is large, it is very time-
consuming even impossible to prioritize test cases using ILP
techniques. A large number of variables make this NP-hard
problem unsolvable. In [5], for their two subject programs,
the total number of test cases is 53 and 209, which is much
less than that in our subject programs. Therefore, for large
test suite, we did not get any result of ILP methods; and for
small test suite, we performed all techniques successfully.

From the observation of Figure 1 and Figure 2, we can
conclude that: both for the purpose of statement cover-
age and fault detection, and both for large test suite and

APSCTA values of large test suite

APSCTA values of small test suite

APFDTA values of large test suite

APFDTA values of small test suite

Figure 1: Line diagrams of print tokens

1454

APSCTA values of large test suite

APSCTA values of small test suite

APFDTA values of large test suite

APFDTA values of small test suite

Figure 2: Boxplot of print tokens at 50% time bud-
get

small test suite, (1) the effectiveness of time-aware test case
prioritization techniques is significantly better than that of
randomized prioritization; (2) the effectiveness of additional
techniques (st-add, rt-add, and ILP-add for small test suite)
is very close, so is the effectiveness of total techniques (st-tot,
rt-tot, and ILP-tot for small test suite).

We performed ANOVA (ANalysis Of VAriance) to in-
vestigate the difference among these techniques. The LSD
(Least Significant Difference) method was used in multiple-
comparison to compare the six techniques (st-tot, st-add, rt-
tot, rt-add, ILP-tot, and ILP-add) pair wise. Table 3 shows
the summary of ANOVA analysis. In Total groups column,
the number should be 40 in all rows (i.e. 8 subject programs
and 5 time budgets), but for small test suite the number is
35 because there is no test case selected for print tokens2,
schedule, schedule2, tcas, and tot info at 5% time budget for
all the 100 test suites.

From the observation of these tables, we can conclude that
prioritizing test cases both on their coverage and time cost
(rt-add, ILP-add) (rt-tot, ILP-tot) cannot significantly out-
perform that only on their coverage (st-add) (st-tot) in most
cases both for the purpose of statement coverage and fault
detection. Due to the fact that it is difficult to collect the ac-
curate time cost information of each test case in some cases,
we suggest that it is enough for prioritizing test cases only
on their coverage to improve the rate of statement coverage
and the rate of fault detection within the time limit. Mean-
while, we believe that assuming all the test cases have the
same time cost is also a good choice [10, 11]. Under some
circumstances, such as small test suite and tight time bud-
get, ILP methods are efficient and significantly better than
the other techniques.

5. THREATS TO VALIDITY

5.1 Internal Validity
Threats to internal validity are uncontrolled factors that

are also responsible for our results. The first threat is that
there are defects in our implementation of prioritization tech-
niques and effectiveness measurement procedures. To reduce
this threat, we reviewed all the implementation code before
conducting our experiment. The second threat is that our
measurement of time cost for each test case is not accurate.
To reduce this threat, we used a tool called time provided by
SIR to record time, and we ran the test case pool 10 times,
and got the final time cost value as the average over them.

5.2 External Validity
Threats to external validity are the representativeness of

our subject programs and experiment procedures. The first
threat is that the subject programs with their test suites and
faulty versions may not have generality. The second threat
is that our experiment process may not be representative of
real industrial testing process. To reduce these threats, we
used widely used Siemens programs and a relatively large
program space in our experiment. Furthermore, we used dif-
ferent test suite sizes and different time budgets to simulate
the real situations.

5.3 Construct Validity
Threats to construct validity are mainly concerned with

the evaluation metrics in our experiment. In order to mea-
sure the rate of statement coverage, APSC has been used

1455

Table 3: ANOVA Summary

Evaluation
metric

Techniques
Test
suite
size

Total
groups

Number of groups that st
methods have no significant
difference with rt and ILP

methods

Number of groups that st
methods are significantly
better than rt and ILP

methods
APSCTA Total Large 40 16 6
APSCTA Total Small 35 30 0
APSCTA Additional Large 40 39 0
APSCTA Additional Small 35 30 0
APFDTA Total Large 40 19 8
APFDTA Total Small 35 30 0
APFDTA Additional Large 40 34 5
APFDTA Additional Small 35 30 0

by [14, 15], and in order to measure the rate of fault detec-
tion, APFD has been widely used by [1, 2, 3, 4, 5, 6, 12].
In our experiment, we combined the idea provided by [12]
with the penalize measure used by [4]. Under some partic-
ular conditions, these evaluation metrics are identical with
ours.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we have studied the effectiveness of some

statement coverage based time-aware test case prioritization
techniques. Our experiment results show that both for the
purpose of statement coverage and fault detection, the time
cost of each test case is not a key factor for time-aware test
case prioritization. Therefore, it is not worth considering
the time cost of each test case in most cases. We suggest
using the techniques that consider only coverage or assuming
all the test cases have the same time cost when prioritizing
test cases. Under some circumstances, such as small test
suite and tight time budget, techniques considering the time
cost of each test case can significantly outperform traditional
techniques.

We will investigate the following issues in the future. First,
we will introduce some newly proposed prioritization tech-
niques and some other coverage criteria. Second, we will
investigate which factors affect the effectiveness of prioriti-
zation techniques. Third, we will conduct experiments on a
wider range of subject programs.

7. REFERENCES
[1] Gregg Rothermel, Roland H. Untch, Chengyun Chu,

and Mary Jean Harrold. Test case prioritization: An
empirical study. In ICSM, pages 179–188, 1999.

[2] Sebastian G. Elbaum, Alexey G. Malishevsky, and
Gregg Rothermel. Test case prioritization: A family of
empirical studies. IEEE Transactions on Software
Engineering, 28(2):159–182, 2002.

[3] Hyunsook Do, Gregg Rothermel, and Alex Kinneer.
Empirical studies of test case prioritization in a junit
testing environment. In ISSRE, pages 113–124, 2004.

[4] Kristen R. Walcott, Mary Lou Soffa, Gregory M.
Kapfhammer, and Robert S. Roos. Time-aware test
suite prioritization. In ISSTA, pages 1–12, 2006.

[5] Lu Zhang, Shan-Shan Hou, Chao Guo, Tao Xie, and
Hong Mei. Time-aware test-case prioritization using
integer linear programming. In ISSTA, pages 213–224,
2009.

[6] Sara Alspaug, Kristen R. Walcott, Michael Belanich,
Gregory M. Kapfhammer, and Mary Lou Soffa.
Efficient time-aware prioritization with knapsack
solvers. In WEASELTech, pages 17–31, 2007.

[7] Zengkai Ma and Jianjun Zhao. Test case prioritization
based on analysis of program structure. In APSEC,
pages 471–478, 2008.

[8] Shin Yoo, Mark Harman, Paolo Tonella, and Angelo
Susi. Clustering test cases to achieve effective and
scalable prioritisation incorporating expert knowledge.
In ISSTA, pages 201–212, 2009.

[9] Xiaofang Zhang, Changhai Nie, Baowen Xu, and
Bo Qu. Test case prioritization based on varying
testing requirement priorities and test case costs. In
QSIC, pages 15–24, 2007.

[10] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and
Gregg Rothermel. An empirical study of the effect of
time constraints on the cost-benefits of regression
testing. In SIGSOFT FSE, pages 71–82, 2008.

[11] Hyunsook Do, Siavash Mirarab, Ladan Tahvildari, and
Gregg Rothermel. The effects of time constraints on
test case prioritization: A series of controlled
experiments. IEEE Transactions on Software
Engineering, 36(5):593–617, 2010.

[12] Sebastian G. Elbaum, Alexey G. Malishevsky, and
Gregg Rothermel. Incorporating varying test costs and
fault severities into test case prioritization. In ICSE,
pages 329–338, 2001.

[13] Hyunsook Do, Sebastian G. Elbaum, and Gregg
Rothermel. Supporting controlled experimentation
with testing techniques: An infrastructure and its
potential impact. Empirical Software Engineering,
10(4):405–435, 2005.

[14] Zheng Li, Mark Harman, and Robert M. Hierons.
Search algorithms for regression test case
prioritization. IEEE Transactions on Software
Engineering, 33(4):225–237, 2007.

[15] Sihan Li, Naiwen Bian, Zhenyu Chen, Dongjiang You,
and Yuchen He. A simulation study on some search
algorithms for regression test case prioritization. In
QSIC, pages 72–81, 2010.

[16] Hao Zhong, Lu Zhang, and Hong Mei. An
experimental study of four typical test suite reduction
techniques. Information & Software Technology,
50(6):534–546, 2008.

1456

