
Incremental verification with mode variable invariants
in state machines ?

Temesghen Kahsai1, Pierre-Loı̈c Garoche1,2, Cesare Tinelli1, and Mike Whalen3

1 The University of Iowa
2 Onera, the French Aerospace Lab

3 University of Minnesota

Abstract. We describe two complementary techniques to aid the automatic ver-
ification of safety properties of synchronous systems by model checking. A first
technique allows the automatic generation of certain inductive invariants for mode
variables. Such invariants are crucial in the verification of safety properties in sys-
tems with complex modal behavior. A second technique allows the simultaneous
verification of multiple properties incrementally. Specifically, the outcome of a
property—valid or invalid—is communicated to the user as soon as it is known.
Moreover, each property proven valid is used immediately as an invariant in the
model checking procedure to aid the verification of the remaining properties. We
have implemented these techniques as new options in the KIND model checker.
Experimental evidence shows that these two techniques combine synergistically
to increase KIND’s precision as well as its speed.

1 Introduction

Embedded systems often contain complex modal behavior that describes how the sys-
tem will interact with its environment. In these systems, the modes of the software drive
the behavior of the device. In a flight guidance system, these modes cause a particular
control algorithm to be chosen; an approach mode enables a control algorithm that at-
tempts to land the airplane, while a go-around mode enables a controller that attempts
to climb the aircraft to a suitable safe altitude. These modes are often designed as state
machines or mode transition tables. In addition, embedded systems typically have sev-
eral parallel mode machines that communicate with one another to define the control
state of the system. For instance, in flight guidance, there are separate lateral and verti-
cal modes that manage the lateral and vertical aspects of flight.

Understanding which variables in a system’s model represent system modes, and
discovering relationships between such variables often determine whether or not a prop-
erty can be proven about a system. However, such variable, which from now on we will
refer informally to as mode variables, may not be easily identifiable among all of the
system’s variables. In addition, once identified, determining correct invariants between
different mode variables is non-trivial. As an example of these challenges consider the

? This work was partially supported by AFOSR grant #AF9550-09-1-0517, NSF grant CNS-
1035715, DGA/MRIS/ERE support and FNRAE Cavale project.

2 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

Fig. 1: State machine of a microwave model.

hierarchical state machines (HSMs) described in Figure 1 that illustrates the modal be-
havior of a microwave.4 HSMs are used by model-based development notations such
as Simulink and SCADE which are becoming widespread for software development in
avionics and other industries. In the example, mode information is encoded both explic-
itly, in the states of the HSM, and implicitly, through the integer variable mode. This
sort of hybrid encoding of mode information occurs regularly in industrial models that
we have analyzed. An additional complication is that when HSMs are compiled to a
lower level modeling language or to code, their state are usually encoded into integer
variables that are not immediately distinguishable from other integer variables.

The focus of this paper is on leveraging mode information for k-induction-based
model checking. In this approach, a prover attempts to prove a safety property of a
system inductively by showing for some k ≥ 0 that (i) the property holds in all states
reachable in up to k steps, and (ii) for all sequences of k + 1 states along the sys-
tem’s transition relation, the last state satisfies the property whenever all the previous
ones do. As with mathematical induction, sometimes safety properties are not strong
enough to be provable by k-induction, for any k. In that case, it is helpful to strengthen
the induction hypotheses with known invariants properties of the system. We believe
that invariants involving mode variables are critical for the success of inductive meth-
ods when proving properties of control systems, and we provide initial experimental
evidence to support this conjecture.

This paper describes two complementary techniques to aid, more generally, the au-
tomatic verification of safety properties of synchronous systems with modal behavior.
The first technique, described in Section 3, allows the automatic identification of likely
mode variables, and the discovery of invariant relationships among them by adapting
an invariant generation method, described in Section 2, we developed in previous work.
We heuristically consider as a mode variables any system variable that (i) ranges over
a (small) finite set of values and (ii) whose next-state value is determined in part by its
current value. We generalize this idea slightly to mode variable sets in which strongly-
connected variables define a particular system mode. We develop a general invariant
generation method to identify implicative relationships between values of mode vari-

4 We thank Steve Miller and Lucas Wagner at Rockwell Collins for the example.

Incremental verification with mode variable invariants in state machines 3

ables. The second technique, described in Section 4 and motivated by the industrial use
of model checkers for the verification of large numbers of safety properties on the same
system, allows the simultaneous and incremental verification of multiple properties. It
is incremental in the sense that the status of a property—whether it holds in the system
or not—is communicated to the user as soon as the checker determines it. Moreover,
each property proven to hold is used immediately as an auxiliary invariant to aid the ver-
ification of the remaining properties. Our experimental results, described in Section 5
for selected benchmarks, indicate that our two techniques are quite effective in practice,
especially in combination. As we show, using them together considerably increases the
number of provable safety properties, as well as speeding up the verification process.

Related Work. Automatic invariant generation has been intensively investigated since
the 1970s, producing a large body of literature. Manna and Pnueli [15] provide an early
compendium of this research and an extensive set of references. In this paper, we fo-
cus on discovering invariants related to system modes. The idea of automatically dis-
covering mode machines for hardware is (very briefly) referenced in [9]. The idea of
generation of mode-specific invariants for the SCR notation was introduced in [10] and
improved in [11] then generalized to LTSs by Damas [3, 2]. This work supports dis-
covery of invariants between a (known) state machine and variables used in guard ex-
pressions for transitions of the machine, using syntactic fixpoint algorithm that operates
over the state machine graph. Our approach, based on our own previous work invariant
discovery [12], is more general; it automatically identifies mode (state machine) vari-
ables and uses symbolic analysis to discover a superset of the implications in [11, 3] to
include variables not explicitly referenced in the definition of the state machine. On the
other hand, the other approaches can quickly determine “local” mode invariants through
simple graph traversal algorithms. It may be possible to combine both approaches to im-
prove the scalability of invariant generation. In [6], query checking is used to discover
mode invariants. That work uses symbolic methods and is in principle more general (a
single query can discover all state invariants), but has serious scaling problems. The
idea of simultaneous verification of multiple properties is not new [14, e.g.]. Our ap-
proach contrasts with previous work by using a parallel architecture that allows the
incorporation of invariant generators to enhance the basic verification process.

1.1 Formal Preliminaries

Our work is built on logic-based model checking techniques that phrase reachability
problems as entailment problems in a suitable logic for which efficient solvers exist.
Relevant examples of such logics are propositional logic or any of the many logics used
in SMT. For generality, we consider any of these logic L (with classical semantics)
extending propositional logic, and rely on L’s notion of variable, term, formula, free
variable, model, satisfiability in a model, and entailment (which we denote as |=L). If F
is a formula of L and (x1, . . . , xk) a tuple of distinct variables, we write F [x1, . . . , xk]
to express that the free variables of F are in (x1, . . . , xk). If t1, . . . , tk are any terms,
we write F [t1, . . . , tk] to denote the formula obtained from F [x1, . . . , xk] by simulta-
neously replacing each occurrence of xi in F by ti, for i = 1, . . . , k. We denote finite
tuples of elements by letters in bold font, and use comma (,) for tuple concatenation.

4 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

Let Q be a set of states, a state space. We assume some encoding of the state space
Q in terms of n-tuples of ground terms in L, for some fixed n.5 Then, we say that
(the encoding of) a state q satisfies a formula F [x], where x is an n-tuple of distinct
variables, if F [x] is satisfied by every model of L interpreting x as q. This terminology
extends to formulas over several n-tuples of free variables in the obvious way.

A transition system S over Q is a pair (SI, ST) where SI ⊆ Q is the set of S’s
initial states, and ST ⊆ Q × Q is S’s transition relation. A state q ∈ Q is 0-reachable
if q ∈ SI; it is k-reachable with k > 0 if it is (k− 1)-reachable or (s, q) ∈ ST for some
(k − 1)-reachable state s. A state is (S-)reachable if it is k-reachable for some k ≥ 0.
A (state) property is any formula P [x] for some n-tuple x of variables. It is invariant
(for S) if it is satisfied by all S-reachable states. For automated verification purposes
one does not work directly with a transition system S itself, but with an encoding of it
in some logic L, namely, a pair (I[x], T [x,x′]) of formulas of L, with x and x′ both
of size n, where

– I[x] is a formula satisfied exactly by the initial states of S;
– T [x,x′] is a formula satisfied by two reachable states q, q′ iff (q, q′) ∈ ST.

k-induction Given an L-encoding (I[x], T [x,y]) of some transition system S, one can
prove that a property P is invariant for S by showing that P is k-inductive.

Definition 1. A state property P [x] is k-inductive (wrt T) for some k ≥ 0 if

I[x0] ∧ T [x0,x1] ∧ · · · ∧ T [xk−1,xk] |=L P [x0] ∧ · · · ∧ P [xk] (1)
T [x0,x1] ∧ · · · ∧ T [xk,xk+1] ∧ P [x0] ∧ · · · ∧ P [xk] |=L P [xk+1] (2)

When entailment in L is decidable and an L-solver is available for that, the k-
inductiveness of a property P can be established by asking the L-solver to prove both
entailments in the definition above for some initial choice of k, retrying with an increas-
ingly larger k until either the base case (1) is shown not to hold or both the base and
the induction step (2) are shown to hold. In the second situation, P has been shown
to hold for all reachable states, which means it is invariant. In the first situation, P is
not invariant and a counterexample path can be generated from a counter-model of (1)
above if the L-solver is able to return models.

Since k-inductiveness is a sufficient condition for invariance, the k-induction proce-
dure above is a sound verifier for invariance. The procedure, however, is not complete
since there exist systems with invariant properties that are not k-inductive for any k.
For those properties, the procedure will keep increasing k indefinitely. A number of
improvements are possible to increase the procedure’s precision, the set of invariant
properties it can prove [17, 4, 7]. In particular, if Y is another state property already
known to be invariant, one can strengthen the antecedent of the entailment in the induc-
tion step (2) by adding (conjunctively) the formula Y [x0] ∧ · · · ∧ Y [xk+1] to it. The
strengthening is beneficial for eliminating spurious counter-examples to the induction
step, i.e., counter-models involving unreachable states.

5 Depending on L, states may be encoded for instance as n-tuples of Boolean constants or as
n-tuples of integer constants, and so on.

Incremental verification with mode variable invariants in state machines 5

2 Template-based invariant generation

In previous work [12] we described a general invariant discovery scheme that produces
k-inductive invariants for a given transition system S from a template R[x, y], a formula
of L representing a decidable binary relation over one of the system’s data types. The
discovered invariants are instancesR[s, t] of the template generated with terms s, t from
a set U of terms over the same n-tuple x of variables. The set U can be constructed
heuristically in any number of ways from S and a given set of properties to be proven
invariant for S. In the experiments reported in [12], U included terms occurring in a
given L-encoding of S, as well as a few distinguished constants.

The general scheme relies on the availability of efficient reasoning engines, such as
SAT and SMT solvers, for the given logic L, and capitalizes on their ability to quickly
generate counter-models. It consists of a simple two-phase procedure, with an optional
third phase not discussed here. Given the template R and the term set U , the first phase
starts with the (very crude) conjecture that the state property C[x] =

∧
s,t∈U R[s, t]

is invariant. Then, it uses the L-solver to weaken that conjecture by eliminating from
it as many conjuncts R[s, t] as possible that have a counterexample—specifically, all
conjuncts falsified by a k-reachable state, for some heuristically determined k. The re-
sulting formula C is passed to the second phase, which attempts to prove C k-inductive
by checking that it satisfies the inductive step of k-induction. Any counter-examples
there are used, conservatively, to weaken C further by eliminating additional conjuncts
until no counter-examples exists. The final formula—the empty conjunction in the worst
case—is by construction k-inductive, and so invariant.

The scheme above is impractical in its full generality because the number of in-
stances of R over U can be very large. So we devised two specializations to relations R
that are partial orders, one for general posets and one specific to binary posets. These
specializations rely on the properties of partial orders to represent the conjunctive con-
jecture C compactly, and weaken it efficiently. In the following, we briefly illustrate the
case of binary posets (see [12] for a more formal treatment and for the general case).

Invariant generation for binary posets. For concreteness, and because it is relevant to
our goal of learning invariants on mode variables, let us consider the poset ({⊥,>},→)
of the Booleans, with logical implication→ as the partial order, and with linear integer
arithmetic as L. In this case, the instances of R have the form F → G, where F and G
are any arithmetic predicates, i.e., quantifier-free arithmetic formulas.

The invariant generation procedure maintains a directed acyclic graph where each
node contains a set of arithmetic predicates and stands for the conjecture that those
predicates all imply each other (i.e., are all equivalent) in every reachable state of S. An
edge from a node A to a node B in the graph represents the weaker conjecture that the
predicates in A imply the predicates in B, again in all reachable states.

The graph starts with a single node containing all the predicates in the candidate set
U ; it is then updated incrementally using a sequence (M1,M2, . . .) of models ofL, each
containing a reachable state q that falsifies one of the conjectures in the current graph.
Let G0 be the initial graph and Gi the version of the graph updated after observing
model Mi. The graph Gi is updated to Gi+1 using model Mi+1 as follows. If Mi+1

falsifies (the conjecture expressed by) an edge of Gi, the edge is removed; if it falsifies

6 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

DAG Conjecture

O O : {x = 0 ↔ x = 1 ↔ x 6= 0 ↔ x 6= 1 ↔ y = 3 ↔ y = 4
↔ y 6= 3 ↔ y 6= 4 ↔ x+ y ≥ 3 ↔ (2 ∗ x)− y ≥ y}

M1 : x 7→ 0, y 7→ 4
A

[⊥]

B

[>]
A : {x = 1 ↔ x 6= 0 ↔ y = 3 ↔ y 6= 4 ↔ (2 ∗ x)− y ≥ y}
B : {x = 0 ↔ x 6= 1 ↔ y 6= 3 ↔ y = 4 ↔ x+ y ≥ 3}

M2 : x 7→ 0, y 7→ 3

C

[⊥,⊥]

D

[⊥,>]

E

[>,⊥]

F

[>,>]

C : {x = 1 ↔ x 6= 0 ↔ (2 ∗ x)− y ≥ y}
D : {y = 3 ↔ y 6= 4}
F : {y 6= 3 ↔ y = 4}
E : {x = 0 ↔ x 6= 1 ↔ x+ y ≥ 3}

Fig. 2: In each graph, a node stands for a set of predicates that have evaluated to the
same Boolean value (⊥ or >) in each model considered until them. The predicates in
a node are shown, as a double implication chain, in the Conjecture column. The list of
observed values for the predicates in each node is shown on top of the node.

a node N , then (i) the node is split in two new nodes N⊥ and N> connected with an
edge from N⊥ and N>, (ii) N ’s predicates are assigned to N⊥ and N> depending on
whether they are respectively falsified or satisfied byMi+1, and (iii) all edges involving
N are updated so that the set of conjectures represented by Gi+1 is consistent with all
the models observed so far and weakens the previous set only as little as needed to
accommodate Mi+1. The procedure is perhaps best illustrated with an example.

Example 1. Consider a system whose L-encoding contains exactly the predicates x +
y ≥ 3 and (2∗x)−y ≥ y, with x ∈ [0..1] and y ∈ [3..4], say. In the invariant generation
procedure in [12], the set U would be just {x+ y ≥ 3, (2 ∗ x)− y ≥ y}. In the version
we discuss here, if x and y are identified as mode variables of interest (see later) U is
augmented with the predicates from the following set

V := {x = 0, x = 1, y = 3, y = 4} ∪ {x 6= 0, x 6= 1, y 6= 3, y 6= 4} .

Figure 2 shows how the graph evolves with a sample sequence of two models. The
procedure starts with the implication graph consisting of the node O, conjecturing that
all predicates in U are equivalent. Nodes A and B are the result of splitting O. Nodes
C and D are the result of splitting A, and node E and F of splitting B. �

The addition to U of predicates like those in the set V in Example 1 allows our
procedure to discover, among others, invariants of the form x = a → y = b where
x and y are mode variables and a and b are specific values in their range. Together
with range constraints, negative predicates of the form y 6= b, allow the procedure to

Incremental verification with mode variable invariants in state machines 7

discover, in effect, also invariants of the form x = a → ∨
i∈I y = bi where [b1..bn] is

y’s range and I ⊆ 1, . . . , n.6 We will call these two kinds of invariants mode invariants.

3 Identifying mode variables

In this section we propose a technique to identify a relatively tight number of system
variables as mode variables and a set of predicates on them to be used to produce mode
invariants as described in the previous section. The overall goal is to capture with these
invariants enough mode information about a software system under analysis—or, more
accurately, about its encoding as a transition system in some logic L.

The logic L used here will be the two-sorted logic consisting of the quantifier-free
fragment of (mixed integer and real) linear arithmetic.

3.1 State machines in synchronous models

Embedded systems, controllers for instances, are usually modeled as a set of syn-
chronous dataflow computations governed by an overall mode logic. In aircraft control
command, the mode logic could be a finite state machine iterating through the phases:
taxi, take-off, flying, landing. For a car cruise controller, it could be a state machine
describing how the controller engages and disengages depending on a number of pa-
rameters and actions. As mentioned in the introduction, when encoding these models as
transition systems for verification purposes, the state machine expressing the original
system’s mode logic is often encoded with the introduction of mode variables to model
the mode logic’s finite state machine. These are variables over an enumeration type or,
more often, Boolean variables or variables over a finite integer range.

While this approach is rather general, it has the disadvantage that the structure of
state machine gets lost in the translation. This has important consequences for verifi-
cation methods based on inductive arguments, such as k-induction, because the logical
encoding ends up creating a state space with states that do not correspond to any state
of the original state machine, and so are unreachable by the resulting transition system.
These states are problematic because they typically lead to spurious counter-examples
for the inductive step of the verification process.

To illustrate the problem with an example, consider again the microwave model of
Figure 1, but without the variable mode. Consider then a layered encoding of the model
into a transition system where a mode variable top ∈ [1..2] represents the top states
SETUP and RUNNING, with top = 1 for the first and top = 2 for the second, and a mode
variable running ∈ [0..2] represents the running state, with 0 meaning not running, 1
meaning SUSPENDED and 2 COOKING. The state space of this transition system contains
the unreachable states {top 7→ 1, run 7→ 1} and {top 7→ 1, run 7→ 2} which may
cause problems during induction. Those states can be ruled out during the verification
process if (top = 1)↔ (running = 0) is discovered to be an invariant for the system.

6 The reason is that such an invariant is equivalent to
∧

j∈[b1..bn]\I(x = a→ y 6= bj).

8 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

T1 := x′ = z
∧ y′ = if c′1 then 2 else

if c′2 then 1 else x′

∧ z′ = if c′3 then 0 else y′

∧ x, y, z ∈ [0..2]

T2 := a′ = z ∧ x′ = b
∧ b′ = if c′4 ∧ a′ = 2 then 1 else if c′5 then y′ else 2
∧ y′ = if c′1 then 2 else if c′2 then 1 else x′

∧ z′ = if c′3 then 0 else y′

∧ a, b, x, y, z ∈ [0..2]

Fig. 3: Transition relations over integer and Boolean variables. The latter are uncon-
strained just for simplicity.

3.2 Selecting mode variables

To generate mode invariants for a transition system S it is necessary to identify its mode
variables in the first place. In the absence of explicit user-provided information, a possi-
bility is to perform interval analysis on S to uncover variables that have a finite domain
in all reachable states, and treat all such variables as mode variables. In general, exam-
ples of finite domain variables would be Boolean variables, enumeration type variables,
and integer variables over a finite range. Then, one can strengthen S’s transition relation
as needed with the discovered finite domain constraints on those variables, and apply
the invariant generation technique presented in Section 2 based on a set of predicates
that contains all equations of the form x = v and their negation, for each finite domain
variable x and value v in its domain.

One problem with this approach is that it does not to scale well with respect to the
number of finite domain variables or the size of their domains. Furthermore, many fi-
nite domain variables are uninteresting from a mode invariant generation perspective
because they simply store intermediate values in the system’s computation. For exam-
ple, consider the two transition relations T1 and T2 in Figure 3, already strengthened
with finite domain constraints for some of their variables. While artificial and some-
what contrived, they illustrate a common situation in which several of the finite domain
variables can be ignored for depending functionally on other variables.

It is easy to see that in T1 the values of x′, y′ and z′—i.e., the next-state values of
x, y and z—are all determined by the value of the tuple (z, c′1, c

′
2, c
′
3). A closer look

reveals that they are also all determined by the value of (x, c′1, c
′
2, c
′
3). As we will argue

later, this suggests that it is enough to consider just z or just x as a mode variable for
invariant generation purposes. In contrast, it would not be advantageous to consider just
y because the next-state value of x is not determined by (y, c′1, . . . , c

′
3). In T2, no tuple

consisting of the Boolean variables and just one of the integer variables determines the
next-state value of all the other variables. However, a tuple made of b and z and the
Boolean variables will do. We formalize this intuition in the following and discuss a
mode variable selection heuristics based on it.

Definition 2. Let F [z] be a formula in L and let FL be the relation denoted by F in
L. A variable y in z depends (in F) on a tuple x of variables from z, if the projection
πx,y(F

L) of FL over x, y, in the sense of relational algebra, is functional; that is, if
πx,y(F

L) contains no two distinct tuples of the form (v, u1), (v, u2); the variable y
strictly depends on x if, additionally, it depends on no proper subtuple of x.

Incremental verification with mode variable invariants in state machines 9

x

z

y
c1

c2
c3

az b

y x

c3

c2

c1

c4

c5

Fig. 4: Dependency graphs for the formulas T1 and T2, respectively, from Figure 3.

Now, let’s consider a formula T [x,x′] of L encoding the transition relation of some
system S. Suppose we are given a mapping dep from each variable y′ of x′ to a tuple
of variables (of F) that y′ strictly depends on. This mapping induces a directed labelled
multigraph (V,E), a dependency graph for T , where

V = x E = {y −→ z | z′ ∈ dep(y′)} ∪ {y −→• z | z ∈ dep(y′)} .

Intuitively, there is an edge−→ in the graph between y and z iff the next-state value of y
depends on the next-state value of z, and there is an edge−→• between them iff the next-
state value of y depends on the current-state value of z. For the transition relation T1 in
Figure 3, a suitable mapping dep would be {x′ 7→ (z), y′ 7→ (c′1, c

′
2, x
′), z′ 7→ (c′3, y

′)}.
That mapping and its analogous for T2 induce the multigraphs depicted in Figure 4.

We assume here that, for a given transition relation formula T , it is possible to
compute from it a mapping dep, and hence its induced dependency graph. The ease, or
in fact the possibility, of doing this automatically depends in general on T ’s format. In
our experiments, where transition relation formulas are generated from system models
written in Lustre [8], the process is straightforward because there each variable is given
an explicit equational definition, as in the formulas of Figure 3.

Definition 3. LetG = (V,E) be a dependency graph and letC be a strongly connected
component (SCC) of G.7 The base of C is the set

{y ∈ C | x −→• y ∈ E for some x, y ∈ C} (3)

if this set is non-empty; otherwise it is C itself. A variable is a base variable of G if it is
in the base of one of G’s SCCs; it is a stateful base variable if it is in a base like (3).

The SCCs of the left-hand graph of Figure 4 are {c1}, {c2}, {c3}, and {x, y, z};
their respective bases are {c1}, {c2}, {c3}, and {z}. The SCCs of the other graph are
{c1}, . . . , {c5}, {a, b, c, x, y, z}; their respective bases are are {c1}, . . . , {c5}, {b, z}.

It is not difficult to show that the following holds.

Proposition 1. Let G = (V,E) be a dependency graph for a transition relation T , and
let N = {x1, . . . , xk} be the union of all the base variables of G. Then, every variable
in V \N depends on (x1, . . . , xk) in T .

The proposition above suggests that for invariant generation purposes it is enough to
restrict attention to base variables only since they determine the values of all the other

7 With respect to paths built with any of the two edge types of G.

10 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

variables. Therefore, it is enough to constraint their values only. In fact, one can go
even further and ignore any invariants containing only non-stateful base variables. For
instance, invariants over just the base variables c1, . . . , c3 and c1, . . . , c5 in the graphs
of Figure 4. The reason is that the current state values of such variables constraints
only current state values of other variables, but no next state values. This means that
invariants containing only such variables will be entailed by the transition relation. Such
invariants are useless for induction because they do not not strengthen the transition
relation.8 In this work we take a more draconian approach and simply discard all non-
stateful base variables, to reduce as much as possible the number of predicates x = v
fed to our invariant discovery procedure. Of course, we also discard all stateful base
variables that do not (or that we cannot determine to have) a finite domain.

The rationale behind this selection heuristics is that each independently defined
state machines in the original system model—in particular, submachines of a hierar-
chical state machine—typically end up generating separate SCCs over mode variables
in the dependency graph. Our conjecture is that enough useful invariants about these
submachines and their relationships, are captured by considering just the finite-domain
stateful base variables of each SCC.

A variable selection procedure. To summarize, to limit the number of variables used
for mode invariant generation for a transition relation formula T we use a procedure
that (i) computes a dependency graph G = (V,E) for T , (ii) identifies G’s strongly
connected components, and (iii) collects and returns all and only the finite-domain
stateful base variables of these components.

4 Multi-property incremental verification

In this section we present a technique to verify simultaneously and incrementally mul-
tiple safety properties. Its relevance in this work is that it combines synergistically with
the invariant generation techniques described in the previous sections.

Given a transition system encoding (I, T) and a list of properties P 1, . . . , Pn all to
be checked for invariance, there are two possible ways of doing that with k-induction.
One is to check each property individually. This is however time consuming and not
very effective because a conjunction of formulas is usually easier to prove by induction
that its individual conjuncts. Another way then is to check the property P = P 1 ∧
· · · ∧ Pn. But this has its drawbacks as well. To start, if even just one of the individual
properties fails to be invariant so does the whole P . However, even when P is indeed
invariant, it is often the case that its individual constituents are k-inductive for different
values of k. So the k-induction procedure has to wait until the largest of these values is
reached before succeeding. In the worst case, one of the individual properties may not
be k-inductive for any k, forcing the basic k-induction procedure to diverge.

Our solution to the problems above is to work with all properties at the same time
but also keep track in each iteration of the k induction loop of the current status of
each property P i. In the base case, all properties that are falsified for a particular k are

8 Note, however, that they might nevertheless be useful to speed up queries to an L-solver, the
way auxiliary (deductive) lemmas generally do.

Incremental verification with mode variable invariants in state machines 11

proc base proc ≡
k := 0; props := {P 1, . . . , Pn}; for P ∈ props P.level :=∞
while (props 6= ∅)

model := SAT(T0 ∧ · · · ∧ Tk ∧ ¬
∧

P∈props(P0 ∧ · · · ∧ Pk))

if (model = Unsat) then k := k + 1
else

invalid := filter sat(model, props)
send(INVALID(invalid), ind proc)
props := props \ invalid
print out invalid

if receive(VALID(possibly valid, k′), ind proc) then
for P ∈ possibly valid P.level := k′

valid := {P ∈ props | P.level ≤ k}
props := props \ valid
if props 6= ∅ then send(INVAR(valid), ind proc)
print out valid

send(STOP, [ind proc, inv gen proc])

Fig. 5: Base step process. For each i, Ti abbreviates I[xi] if i = 0 and T [xi−1,xi]
otherwise. Pi abbreviates P [xi].

removed from consideration before increasing the value of k. In the induction step, all
properties that are validated for a particular k (see later for details on how we check
this) are also removed from the list of properties to be checked but immediately added
back as invariants, to aid the verification of the remaining ones.

Our incremental approach builds on the parallel k-induction-based model checking
architecture we developed in recent work [13]. That architecture is designed to min-
imize synchronization delays and facilitate the incorporation of concurrent invariant
generators, and has the following basic structure:

base proc || ind proc || inv gen proci

The base and the inductive step of k-induction execute concurrently respectively in
the base proc and the ind proc process, as do one or more independent processes
inv gen proci that incrementally generate auxiliary invariants for the system being ver-
ified. These invariants are fed to the k-induction loop as soon as they are produced
and used to strengthen the induction hypothesis. The processes communicate with one
another by asynchronous messages passing, with non-blocking send and receive op-
erations relying on message queues. The operation receive(pat , source) matches the
pattern pat with a message from process source, if any; it returns true if there is a
message and the matching succeeds, and returns false otherwise. Some more details on
each process are described below, assuming for simplicity just one invariant generator.

Base case process. Figure 5 shows the pseudo-code for base proc. Its main task is to
partition incrementally the initial set of properties, the initial value of props , into valid
(i.e., invariant) properties and invalid (i.e., non-invariant) ones.

The process checks the entailment in Case (1) of Definition 1 for increasing values
of k starting from 0. The function SAT implements the L-solver. It takes a formula F
over n states and returns either unsat or a model model of F , i.e., a sequence of n

12 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

proc ind proc ≡
k := 0; props := {P 1, . . . , Pn}; invs := ∅
while (props 6= ∅)

assert(Tk+1 ∧
∧

Y ∈invs Yk+1 ∧
∧

P∈props Pk)

if entailed(
∧

P∈props Pk+1) then send(VALID(props, k), base proc); exit
else

possibly valid := recheck validity(props, k)
send(VALID(possibly valid, k), base proc)
props := props \ possibly valid

if receive(msg ,) then
match msg with

STOP→ exit
| INVALID(invalid)→ props := props \ invalid
| INVAR(new invs)→ for i = 0 to k + 1 assert(

∧
Y ∈new invs Yi)

invs := invs ∪ new invs
k := k + 1

Fig. 6: Inductive step process. For each i, Yi abbreviates Y [xi].

states that satisfies F . The function filter sat returns the set of properties in props that
are falsified by one of the states in model . Those properties are definitely invalid. They
are both printed for the user and sent the inductive step process, and then removed from
the current set props of properties. Note that the counter k left unchanged as long as
the solver keeps finding counter-models for some of the current properties.

Before repeating the main loop the process checks its message queue; a message
from ind proc stating that it has successfully proven the inductive step (2) of Defini-
tion 1 for a some k′ and a subset possibly valid of the input properties. The value
k′ need not be the same as k since the two processes increase their own induction
level independently. As a consequence, the base proc first annotates each property in
possibly valid with k′, storing it in the level field of the property. Then it collects in
valid all properties from props whose level is at that point smaller or equal to the cur-
rent k. Each property P in valid has been cooperatively shown by the two processes
to be (P.level)-inductive. So it is removed from the list of properties to be proven and
sent back to ind proc to be used as an invariant, provided there are still properties to
be proven. The process terminates when props becomes empty, sending a termination
signal to the other processes as well.

Inductive step process. Pseudo-code for this process is provided in Figure 6. There we
assume a stateful L-solver that allows one to assert formulas (with the assert procedure)
and then check (with the entailed Boolean function) whether the current set of asserted
formulas entails a given one.

The process checks the inductive step entailment for increasing values of k. How-
ever, it strengthens the induction hypothesis with any invariants at its disposal (in invs).
If the entailment holds for the current k and set props of properties, they are both sent
to the base case process, and the inductive process terminates. As discussed earlier,
base proc will confirm their individual invariance, or not, by checking that they have
no counter-examples of length up to k. If the entailment fails, the process passes the
properties to the auxiliary function recheck validity which (using a separate copy of the

Incremental verification with mode variable invariants in state machines 13

L-solver) computes the largest subset of props for which the entailment test succeeds.
This set is sent to base proc as in the previous case, and removed from props .

The remaining properties are rechecked for an increased value of k. Before pro-
ceeding, however, the process checks its message queue. If it sees a message (from
base proc) with a set of properties found to be invalid, it removes them from props .
If it sees a message from an invariant generation process, providing a set of auxiliary
invariants, or from base proc, providing a set of properties confirmed to be valid and
so usable as invariants, it asserts all those invariants for all steps from 0 to k + 1 and
then adds them to the current invariant set invs . The process terminates if it sees a
termination message from base proc.

Incremental invariant generator. This process can be any incremental invariant gener-
ator for the given transition system. It is supposed to keep sending any newly discovered
invariants to the induction step process until it can generate no more, or it receives a ter-
mination message from the base case process. In our current implementation, we have
one such process that essentially implements the general template-based invariant dis-
covery procedure seen in Section 2. The process is composed of three main modules:
the Candidate generator, which constructs the initial set C of candidate invariants from
predefined templates, the Int invariant generator, which produces from C invariants of
the form s ≤ t where s and t are integer terms, and the Bool invariant generator, which
produces invariants of the forms F → G as discussed in Section 3.

5 Experimental results

To evaluate experimentally the techniques presented in the previous sections, we have
implemented it as new options in our k-induction-based model checker KIND.9 KIND
can simultaneously check multiple invariant properties of programs written in an ide-
alized version of the specification/programming language Lustre [8].10 The underlying
logic of KIND is a quantifier-free logic that includes both propositional logic and mixed
real-integer linear arithmetic. Lustre programs can be readily encoded as transition sys-
tems in this logic [7]. KIND uses the SMT solvers CVC3 and Yices, in alternative, as
satisfiability solvers for this logic. The version discussed here is based on the incremen-
tal parallel architecture discussed in the previous section.

The experiments discussed below were run, using Yices version 1.0.9 as the back-
ground solver, on a 12-core 2.10 GHz AMD Opteron machine under Ubuntu 11.10. The
experiments used benchmark derived from the following problem.

NASA Docking Approach Example. This is a complex hierarchical problem that de-
scribes the approach behavior of the Space Shuttle when docking with the International
Space Station [16]. As the shuttle approaches the ISS it goes through several opera-
tional modes related to how the shuttle is to orient itself for capture, dock with the ISS,
and capture the ISS docking latch, among several other operational modes. The model
describing this behavior is quite intricate and consists of a hierarchical and parallel state
machine with three levels of hierarchy and multiple parallel state machines, including a

9 Tools and experimental data can be found at http://clc.cs.uiowa.edu/Kind.
10 The idealization consists in treating Lustre’s numerical types as infinite precision types.

14 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

Fig. 7: The left graph illustrates the distribution of solved and unsolved properties for
the different benchmarks, DA1 . . . DA5, using configurations A though G for KIND.
Darker areas indicate the portion of solved properties. The right graph indicates the
number of variables considered for mode invariant generation before and after applying
the selection procedure from Section 3 to the 5 benchmarks.

total of 64 states. For the purposes of this experiment, we created five reduced versions
of the docking approach model in which we replaced one of the complex hierarchical
states with a simple state that approximates its behavior. This allows us to examine the
behavior of the invariant generation over a range of state machine models with different
characteristics (the hierarchical states vary substantially in size). Note that it also causes
some of the original properties to be violated.

We ran KIND on the five problems above in different configurations: (A) single-
prop, no invars; (B) multi-prop, no invars; (C) single-prop, no mode invars; (D) multi-
prop, no mode invars; (E) single-prop, mode invars; (F) multi-prop, mode invars; (G)
multi-prop, selected mode invars. In the single-prop configurations, each property was
checked individually; in multi-prop configurations the properties were checked together
incrementally as discussed in Section 4. In no invars, no invariants were generated at all.
In no mode invars, invariants were generated, but no mode invariants. In mode invars,
invariants included mode invariants generated for all finite domain variables. In the
selected mode invars configuration, invariants included mode invariants generated only
for those variables selected by the procedure discussed in Section 3.

Precision results. The first graph of Figure 7 summarizes the precision achieved by
KIND under the configurations above. In cases A and B, KIND is able to solve 42%
of all the properties without relying on auxiliary invariants. The percentage of solved
properties goes up to 73%, 80% and 87% in cases C, D and E, respectively, illustrating
the effectiveness of invariant generation and of incremental multi-property verification.
In particular, general invariants (case C) increase precision by 31 percentage points over
configurations A and B. The further addition of mode invariants in the single property
case increases precision by 14 more points (from C to E). Going from single to incre-
mental multi-property verification but without mode invariants (from C to D) increases
precision by 7 points. Finally, the combination of multi-property verification and mode
invariants does noticeably better than each of them alone (91% vs 80% and 87%).

Runtime results. As we conjectured, reducing the number of variables to generate
mode invariants using our variable selection procedure reduces runtimes in general

Incremental verification with mode variable invariants in state machines 15

without impacting precision. In particular, in case F, KIND can to solve all the valid
properties in a total time of 15s; in case G, such value goes down to 14.3s. As shown
by the right-hand side graph of Figure 7, our selection procedure reduces the number
of mode variables to consider in problems DA1, DA2 and DA3—although not in DA4
and DA5, perhaps because of their small number there. As a result, the total time for the
first three benchmarks goes respectively from 4089ms, 57ms and 6025ms before the
selection of mode variables (case F) to 3728ms, 33ms and 5752ms after (case G).

6 Conclusion

We have presented two complementary techniques for the verification of safety prop-
erties in synchronous systems with complex modal behavior. A first technique allows
the automatic generation of certain inductive invariants for system variables identified
heuristically as containing mode information. A second technique allows the simultane-
ous verification of multiple properties in an incremental fashion. The synergy between
these two techniques allowed us to verify safety properties of complex systems like the
NASA docking benchmarks.

References

1. Mathworks Inc. Simulink product web site. http://www.mathworks.com/products/simulink.
2. C. Damas, B. Lambeau, P. Dupont, and A. van Lamsweerde. Generating annotated behavior

models from end-user scenarios. SE, IEEE Transactions on, 31(12):1056–1073, 2005.
3. C. Damas, B. Lambeau, F. Roucoux, and A. van Lamsweerde. Analyzing critical process

models through behavior model synthesis. In ICSE ’09, pages 441–451. IEEE, 2009.
4. L. de Moura, H. Rueß, and M. Sorea. Bounded model checking and induction: From refuta-

tion to verification. In CAV 2003, volume 2725 of LNCS. Springer, 2003.
5. Esterel-Technologies. SCADE Suite product description, 2004.
6. A. Gurfinkel, M. Chechik, and B. Devereux. Temporal logic query checking: a tool for model

exploration. SE, IEEE Transactions on, 29(10):898 – 914, oct. 2003.
7. G. Hagen and C. Tinelli. Scaling up the formal verification of Lustre programs with SMT-

based techniques. In FMCAD ’08, pages 1–9, Piscataway, NJ, USA, 2008. IEEE Press.
8. N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data-flow program-

ming language Lustre. Proceedings of the IEEE, 79(9):1305–1320, September 1991.
9. S. Hangal, S. Narayanan, N. Chandra, and S. Chakravorty. IODINE: a tool to automatically

infer dynamic invariants for hardware designs. In DAC ’05, pages 775 – 778, june 2005.
10. R. Jeffords and C. Heitmeyer. Automatic generation of state invariants from requirements

specifications. SIGSOFT Softw. Eng. Notes, 23:56–69, November 1998.
11. R. Jeffords and C. Heitmeyer. An algorithm for strengthening state invariants generated from

requirements specifications. In RE 2011, pages 182 –191, 2001.
12. T. Kahsai, Y. Ge, and C. Tinelli. Instantiation-based invariant discovery. In NFM 2011,

volume 6617 of LNCS, pages 192–207. Springer, 2011.
13. T. Kahsai and C. Tinelli. PKIND: a parallel k-induction based model checker. In PDMC

2011, EPTCS 72, pages 55–62, 2011.
14. Z. Khasidashvili, A. Nadel, A. Palti, and Z. Hanna. Simultaneous SAT-based model checking

of safety properties. In Haifa Verification Conference’05, pages 56–75, 2005.
15. Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer, 1995.

16 Temesghen Kahsai, Pierre-Loı̈c Garoche, Cesare Tinelli, and Mike Whalen

16. M. Sampson and V. Derevenko. Interface definition document (IDD) for international space
station (ISS) visiting vehicles (VVs). Technical report, NASA, 2000.

17. M. Sheeran, S. Singh, and G. Stålmarck. Checking safety properties using induction and a
SAT-solver. In FMCAD ’00, pages 108–125. Springer, 2000.

